Sample records for h2oand h2s anions

  1. Photoelectron spectroscopic study of the hydrated nucleoside anions: Uridine(-)(H(2)O)(n=0-2), cytidine(-)(H(2)O)(n=0-2), and thymidine(-)(H(2)O)(n=0,1).

    PubMed

    Li, Xiang; Wang, Haopeng; Bowen, Kit H

    2010-10-14

    The hydrated nucleoside anions, uridine(-)(H(2)O)(n=0-2), cytidine(-)(H(2)O)(n=0-2), and thymidine(-)(H(2)O)(n=0,1), have been prepared in beams and studied by anion photoelectron spectroscopy in order to investigate the effects of a microhydrated environment on parent nucleoside anions. Vertical detachment energies (VDEs) were measured for all eight anions, and from these, estimates were made for five sequential anion hydration energies. Excellent agreement was found between our measured VDE value for thymidine(-)(H(2)O)(1) and its calculated value in the companion article by S. Kim and H. F. Schaefer III.

  2. Photoelectron spectroscopic study of the hydrated nucleoside anions: Uridine-(H2O)n=0-2, cytidine-(H2O)n=0-2, and thymidine-(H2O)n=0,1

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Wang, Haopeng; Bowen, Kit H.

    2010-10-01

    The hydrated nucleoside anions, uridine-(H2O)n=0-2, cytidine-(H2O)n=0-2, and thymidine-(H2O)n=0,1, have been prepared in beams and studied by anion photoelectron spectroscopy in order to investigate the effects of a microhydrated environment on parent nucleoside anions. Vertical detachment energies (VDEs) were measured for all eight anions, and from these, estimates were made for five sequential anion hydration energies. Excellent agreement was found between our measured VDE value for thymidine-(H2O)1 and its calculated value in the companion article by S. Kim and H. F. Schaefer III.

  3. Computational and photoelectron spectroscopic study of the dipole-bound anions, indole(H2O)1,2 (.).

    PubMed

    Buytendyk, A M; Buonaugurio, A M; Xu, S-J; Nilles, J M; Bowen, K H; Kirnosov, N; Adamowicz, L

    2016-07-14

    We report our joint computational and anion photoelectron spectroscopic study of indole-water cluster anions, indole(H2O)1,2 (-). The photoelectron spectra of both cluster anions show the characteristics of dipole-bound anions, and this is confirmed by our theoretical computations. The experimentally determined vertical electron detachment (VDE) energies for indole(H2O)1 (-) and indole(H2O)2 (-) are 144 meV and 251 meV, respectively. The corresponding theoretically determined VDE values for indole(H2O)1 (-) and indole(H2O)2 (-) are 124 meV and 255 meV, respectively. The vibrational features in the photoelectron spectra of these cluster anions are assigned as the vibrations of the water molecule.

  4. Computational and photoelectron spectroscopic study of the dipole-bound anions, indole(H2O)1,2-

    NASA Astrophysics Data System (ADS)

    Buytendyk, A. M.; Buonaugurio, A. M.; Xu, S.-J.; Nilles, J. M.; Bowen, K. H.; Kirnosov, N.; Adamowicz, L.

    2016-07-01

    We report our joint computational and anion photoelectron spectroscopic study of indole-water cluster anions, indole(H2O)1,2-. The photoelectron spectra of both cluster anions show the characteristics of dipole-bound anions, and this is confirmed by our theoretical computations. The experimentally determined vertical electron detachment (VDE) energies for indole(H2O)1- and indole(H2O)2- are 144 meV and 251 meV, respectively. The corresponding theoretically determined VDE values for indole(H2O)1- and indole(H2O)2- are 124 meV and 255 meV, respectively. The vibrational features in the photoelectron spectra of these cluster anions are assigned as the vibrations of the water molecule.

  5. Gas-phase hydrogen atom abstraction reactions of S- with H2, CH4, and C2H6

    NASA Astrophysics Data System (ADS)

    Angel, Laurence A.; Dogbevia, Moses K.; Rempala, Katarzyna M.; Ervin, Kent M.

    2003-11-01

    Reaction cross sections, product axial velocity distributions, and potential energy surfaces are presented for the hydrogen atom abstraction reactions S-+RH→R+HS- (R=H, CH3, C2H5) as a function of collision energy. The observed threshold energy, E0, for S-+H2H+HS- agrees with the reaction endothermicity, ΔrH0. At low collision energies, the H+HS- products exhibit symmetric, low-recoil-velocity scattering, consistent with statistical reaction behavior. The S-+CH4→CH3+HS- and S-+C2H6→C2H5+HS reactions, in contrast, show large excess threshold energies when compared to ΔrH0. The excess energies are partly explained by a potential energy barrier separating products from reactants. However, additional dynamical constraints must account for more than half of the excess threshold energy. The observed behavior seems to be general for collisional activation of anion-molecule reactions that proceed through a tight, late transition state. For RH=CH4 and C2H6, the HS- velocity distributions show anisotropic backward scattering at low collision energies indicating small impact parameters and a direct rebound reaction mechanism. At higher collision energies, there is a transition to HS- forward scattering and high velocities consistent with grazing collisions and a stripping mechanism.

  6. Photoelectron spectroscopy and density functional theory studies of (FeS)mH- (m = 2-4) cluster anions: effects of the single hydrogen.

    PubMed

    Yin, Shi; Bernstein, Elliot R

    2017-12-20

    Single hydrogen containing iron hydrosulfide cluster anions (FeS) m H - (m = 2-4) are studied by photoelectron spectroscopy (PES) at 3.492 eV (355 nm) and 4.661 eV (266 nm) photon energies, and by Density Functional Theory (DFT) calculations. The structural properties, relative energies of different spin states and isomers, and the first calculated vertical detachment energies (VDEs) of different spin states for these (FeS) m H - (m = 2-4) cluster anions are investigated at various reasonable theory levels. Two types of structural isomers are found for these (FeS) m H - (m = 2-4) clusters: (1) the single hydrogen atom bonds to a sulfur site (SH-type); and (2) the single hydrogen atom bonds to an iron site (FeH-type). Experimental and theoretical results suggest such available different SH- and FeH-type structural isomers should be considered when evaluating the properties and behavior of these single hydrogen containing iron sulfide clusters in real chemical and biological systems. Compared to their related, respective pure iron sulfur (FeS) m - clusters, the first VDE trend of the diverse type (FeS) m H 0,1 - (m = 1-4) clusters can be understood through (1) the different electron distribution properties of their highest singly occupied molecular orbital employing natural bond orbital analysis (NBO/HSOMO), and (2) the partial charge distribution on the NBO/HSOMO localized sites of each cluster anion. Generally, the properties of the NBO/HSOMOs play the principal role with regard to the physical and chemical properties of all the anions. The change of cluster VDE from low to high is associated with the change in nature of their NBO/HSOMO from a dipole bound and valence electron mixed character, to a valence p orbital on S, to a valence d orbital on Fe, and to a valence p orbital on Fe or an Fe-Fe delocalized valence bonding orbital. For clusters having the same properties for NBO/HSOMOs, the partial charge distributions at the NBO/HSOMO localized sites additionally

  7. Expansion of antimonato polyoxovanadates with transition metal complexes: (Co(N3C5H15)2)2[{Co(N3C5H15)2}V15Sb6O42(H2O)]·5H2O and (Ni(N3C5H15)2)2[{Ni(N3C5H15)2}V15Sb6O42(H2O)]·8H2O.

    PubMed

    Antonova, Elena; Näther, Christian; Kögerler, Paul; Bensch, Wolfgang

    2012-02-20

    Two new polyoxovanadates (Co(N(3)C(5)H(15))(2))(2)[{Co(N(3)C(5)H(15))(2)}V(15)Sb(6)O(42)(H(2)O)]·5H(2)O (1) and (Ni(N(3)C(5)H(15))(2))(2)[{Ni(N(3)C(5)H(15))(2)}V(15)Sb(6)O(42)(H(2)O)]·8H(2)O (2) (N(3)C(5)H(15) = N-(2-aminoethyl)-1,3-propanediamine) were synthesized under solvothermal conditions and structurally characterized. In both structures the [V(15)Sb(6)O(42)(H(2)O)](6-) shell displays the main structural motif, which is strongly related to the {V(18)O(42)} archetype cluster. Both compounds crystallize in the triclinic space group P1 with a = 14.3438(4), b = 16.6471(6), c = 18.9186(6) Å, α = 87.291(3)°, β = 83.340(3)°, γ = 78.890(3)°, and V = 4401.4(2) Å(3) (1) and a = 14.5697(13), b = 15.8523(16), c = 20.2411(18) Å, α = 86.702(11)°, β = 84.957(11)°, γ = 76.941(11)°, and V = 4533.0(7) Å(3) (2). In the structure of 1 the [V(15)Sb(6)O(42)(H(2)O)](6-) cluster anion is bound to a [Co(N(3)C(5)H(15))(2)](2+) complex via a terminal oxygen atom. In the Co(2+)-centered complex, one of the amine ligands coordinates in tridentate mode and the second one in bidentate mode to form a strongly distorted CoN(5)O octahedron. Similarly, in compound 2 an analogous NiN(5)O complex is joined to the [V(15)Sb(6)O(42)(H(2)O)](6-) anion via the same attachment mode. A remarkable difference between the two compounds is the orientation of the noncoordinated propylamine group leading to intermolecular Sb···O contacts in 1 and to Sb···N interactions in 2. In the solid-state lattices of 1 and 2, two additional [M(N(3)C(5)H(15))(2)](2+) complexes act as countercations and are located between the [{M(N(3)C(5)H(15))(2)}V(15)Sb(6)O(42)(H(2)O)](4-) anions. Between the anions and cations strong N-H···O hydrogen bonds are observed. In both compounds the clusters are stacked along the b axis in an ABAB fashion with cations and water molecules occupying the space between the clusters. Magnetic characterization demonstrates that the Ni(2+) and Co(2+) cations do not

  8. Anion- or Cation-Exchange Membranes for NaBH4/H2O2 Fuel Cells?

    PubMed

    Sljukić, Biljana; Morais, Ana L; Santos, Diogo M F; Sequeira, César A C

    2012-07-19

    Direct borohydride fuel cells (DBFC), which operate on sodium borohydride (NaBH4) as the fuel, and hydrogen peroxide (H2O2) as the oxidant, are receiving increasing attention. This is due to their promising use as power sources for space and underwater applications, where air is not available and gas storage poses obvious problems. One key factor to improve the performance of DBFCs concerns the type of separator used. Both anion- and cation-exchange membranes may be considered as potential separators for DBFC. In the present paper, the effect of the membrane type on the performance of laboratory NaBH4/H2O2 fuel cells using Pt electrodes is studied at room temperature. Two commercial ion-exchange membranes from Membranes International Inc., an anion-exchange membrane (AMI-7001S) and a cation-exchange membrane (CMI-7000S), are tested as ionic separators for the DBFC. The membranes are compared directly by the observation and analysis of the corresponding DBFC's performance. Cell polarization, power density, stability, and durability tests are used in the membranes' evaluation. Energy densities and specific capacities are estimated. Most tests conducted, clearly indicate a superior performance of the cation-exchange membranes over the anion-exchange membrane. The two membranes are also compared with several other previously tested commercial membranes. For long term cell operation, these membranes seem to outperform the stability of the benchmark Nafion membranes but further studies are still required to improve their instantaneous power load.

  9. Anion- or Cation-Exchange Membranes for NaBH4/H2O2 Fuel Cells?

    PubMed Central

    Šljukić, Biljana; Morais, Ana L.; Santos, Diogo M. F.; Sequeira, César A. C.

    2012-01-01

    Direct borohydride fuel cells (DBFC), which operate on sodium borohydride (NaBH4) as the fuel, and hydrogen peroxide (H2O2) as the oxidant, are receiving increasing attention. This is due to their promising use as power sources for space and underwater applications, where air is not available and gas storage poses obvious problems. One key factor to improve the performance of DBFCs concerns the type of separator used. Both anion- and cation-exchange membranes may be considered as potential separators for DBFC. In the present paper, the effect of the membrane type on the performance of laboratory NaBH4/H2O2 fuel cells using Pt electrodes is studied at room temperature. Two commercial ion-exchange membranes from Membranes International Inc., an anion-exchange membrane (AMI-7001S) and a cation-exchange membrane (CMI-7000S), are tested as ionic separators for the DBFC. The membranes are compared directly by the observation and analysis of the corresponding DBFC’s performance. Cell polarization, power density, stability, and durability tests are used in the membranes’ evaluation. Energy densities and specific capacities are estimated. Most tests conducted, clearly indicate a superior performance of the cation-exchange membranes over the anion-exchange membrane. The two membranes are also compared with several other previously tested commercial membranes. For long term cell operation, these membranes seem to outperform the stability of the benchmark Nafion membranes but further studies are still required to improve their instantaneous power load. PMID:24958292

  10. Synthesis of zinc sulfide nanoparticles during zinc oxidization by H2S and H2S/H2O supercritical fluids

    NASA Astrophysics Data System (ADS)

    Vostrikov, A. A.; Fedyaeva, O. N.; Sokol, M. Ya.; Shatrova, A. V.

    2014-12-01

    Formation of zinc sulfide nanoparticles was detected during interaction of bulk samples with hydrogen sulfide at supercritical parameters. Synthesis proceeds with liberation of H2 by the reaction nZn + nH2S = (ZnS) n + nH2. It has been found by the X-ray diffraction method, scanning electron microscopy, and mass spectrometry that the addition of water stimulates coupled reactions of nanoparticle synthesis nZn + nH2O = (ZnO) n + nH2 and (ZnO) n + nH2S = (ZnS) n + nH2O and brings about an increase in the synthesis rate and morphological changes of (ZnS) n nanoparticles.

  11. Reactions of CH3SH and CH3SSCH3 with gas-phase hydrated radical anions (H2O)n(•-), CO2(•-)(H2O)n, and O2(•-)(H2O)n.

    PubMed

    Höckendorf, Robert F; Hao, Qiang; Sun, Zheng; Fox-Beyer, Brigitte S; Cao, Yali; Balaj, O Petru; Bondybey, Vladimir E; Siu, Chi-Kit; Beyer, Martin K

    2012-04-19

    The chemistry of (H(2)O)(n)(•-), CO(2)(•-)(H(2)O)(n), and O(2)(•-)(H(2)O)(n) with small sulfur-containing molecules was studied in the gas phase by Fourier transform ion cyclotron resonance mass spectrometry. With hydrated electrons and hydrated carbon dioxide radical anions, two reactions with relevance for biological radiation damage were observed, cleavage of the disulfide bond of CH(3)SSCH(3) and activation of the thiol group of CH(3)SH. No reactions were observed with CH(3)SCH(3). The hydrated superoxide radical anion, usually viewed as major source of oxidative stress, did not react with any of the compounds. Nanocalorimetry and quantum chemical calculations give a consistent picture of the reaction mechanism. The results indicate that the conversion of e(-) and CO(2)(•-) to O(2)(•-) deactivates highly reactive species and may actually reduce oxidative stress. For reactions of (H(2)O)(n)(•-) with CH(3)SH as well as CO(2)(•-)(H(2)O)(n) with CH(3)SSCH(3), the reaction products in the gas phase are different from those reported in the literature from pulse radiolysis studies. This observation is rationalized with the reduced cage effect in reactions of gas-phase clusters. © 2012 American Chemical Society

  12. Charge transfer complexes of metal-free phthalocyanine radical anions with decamethylmetallocenium cations: (Cp*2Co+)(H2Pc˙-)·solvent and (Cp*2Cr+)(H2Pc˙-)·4C6H4Cl2.

    PubMed

    Konarev, Dmitri V; Khasanov, Salavat S; Ishikawa, Manabu; Otsuka, Akihiro; Yamochi, Hideki; Saito, Gunzi; Lyubovskaya, Rimma N

    2017-03-14

    Charge transfer complexes (Cp* 2 Co + )(H 2 Pc˙ - )·0.5C 6 H 4 Cl 2 ·0.7C 6 H 5 CN·0.3C 6 H 14 (1) and (Cp* 2 Cr + )(H 2 Pc˙ - )·4C 6 H 4 Cl 2 (2) have been obtained as single crystals. Both complexes contain metal-free phthalocyanine (Pc) radical anions and decamethylmetallocenium cations. Reduction of the Pc macrocycle leads to the appearance of new bands at 1026-1030 nm in the NIR range and blue shifts of both Soret and Q-bands of H 2 Pc in the spectra of 1 and 2. The geometry of the Pc macrocycles supports the formation of H 2 Pc˙ - by the alternation of shorter and longer C-N(imine) bonds in the macrocycles in 2. Complex 1 contains pairs of H 2 Pc˙ - having effective π-π interactions with two sandwiched Cp* 2 Co + cations, whereas complex 2 contains stacks composed of alternating Cp* 2 Cr + and H 2 Pc˙ - ions. The magnetic moment of 1 is 1.64 μ B at 300 K due to the contribution of the H 2 Pc˙ - spins with the S = 1/2 state and diamagnetism of Cp* 2 Co + . This is supported by the observation of a narrow EPR signal of 1 with g = 2.0032-2.0036 characteristic of H 2 Pc˙ - . Strong antiferromagnetic coupling of spins with a Weiss temperature of -23 K is observed between H 2 Pc˙ - in 1. This coupling is probably mediated by the Cp* 2 Co + cations. The magnetic moment of 2 is 4.18 μ B at 300 K indicating the contribution of both paramagnetic H 2 Pc˙ - (S = 1/2) and Cp* 2 Cr + (S = 3/2) species. In spite of the presence of stacks of alternating ions in 2, only weak magnetic coupling is observed with a Weiss temperature of -4 K most probably due to ineffective π-π interactions between Cp* 2 Cr + and H 2 Pc˙ - . The EPR spectrum of 2 contains an asymmetric signal attributed to Cr III (g 1 = 3.9059-3.9220) and a narrow Lorentzian signal from H 2 Pc˙ - with g 2 = 1.9943-1.9961. In addition to these signals, a broad EPR signal grows in intensity below 80 K with g 4 = 2.1085-2.2438 which can be attributed to both paramagnetic Cp* 2 Cr + and H 2 Pc

  13. Transport of H2S and HS− across the human red blood cell membrane: rapid H2S diffusion and AE1-mediated Cl−/HS− exchange

    PubMed Central

    2013-01-01

    The rates of H2S and HS− transport across the human erythrocyte membrane were estimated by measuring rates of dissipation of pH gradients in media containing 250 μM H2S/HS−. Net acid efflux is caused by H2S/HS− acting analogously to CO2/HCO3− in the Jacobs-Stewart cycle. The steps are as follows: 1) H2S efflux through the lipid bilayer and/or a gas channel, 2) extracellular H2S deprotonation, 3) HS− influx in exchange for Cl−, catalyzed by the anion exchange protein AE1, and 4) intracellular HS− protonation. Net acid transport by the Cl−/HS−/H2S cycle is more efficient than by the Cl−/HCO3−/CO2 cycle because of the rapid H2S-HS− interconversion in cells and medium. The rates of acid transport were analyzed by solving the mass flow equations for the cycle to produce estimates of the HS− and H2S transport rates. The data indicate that HS− is a very good substrate for AE1; the Cl−/HS− exchange rate is about one-third as rapid as Cl−/HCO3− exchange. The H2S permeability coefficient must also be high (>10−2 cm/s, half time <0.003 s) to account for the pH equilibration data. The results imply that H2S and HS− enter erythrocytes very rapidly in the microcirculation of H2S-producing tissues, thereby acting as a sink for H2S and lowering the local extracellular concentration, and the fact that HS− is a substrate for a Cl−/HCO3− exchanger indicates that some effects of exogenous H2S/HS− may not result from a regulatory role of H2S but, rather, from net acid flux by H2S and HS− transport in a Jacobs-Stewart cycle. PMID:23864610

  14. Transport of H2S and HS(-) across the human red blood cell membrane: rapid H2S diffusion and AE1-mediated Cl(-)/HS(-) exchange.

    PubMed

    Jennings, Michael L

    2013-11-01

    The rates of H2S and HS(-) transport across the human erythrocyte membrane were estimated by measuring rates of dissipation of pH gradients in media containing 250 μM H2S/HS(-). Net acid efflux is caused by H2S/HS(-) acting analogously to CO2/HCO3(-) in the Jacobs-Stewart cycle. The steps are as follows: 1) H2S efflux through the lipid bilayer and/or a gas channel, 2) extracellular H2S deprotonation, 3) HS(-) influx in exchange for Cl(-), catalyzed by the anion exchange protein AE1, and 4) intracellular HS(-) protonation. Net acid transport by the Cl(-)/HS(-)/H2S cycle is more efficient than by the Cl(-)/HCO3(-)/CO2 cycle because of the rapid H2S-HS(-) interconversion in cells and medium. The rates of acid transport were analyzed by solving the mass flow equations for the cycle to produce estimates of the HS(-) and H2S transport rates. The data indicate that HS(-) is a very good substrate for AE1; the Cl(-)/HS(-) exchange rate is about one-third as rapid as Cl(-)/HCO3(-) exchange. The H2S permeability coefficient must also be high (>10(-2) cm/s, half time <0.003 s) to account for the pH equilibration data. The results imply that H2S and HS(-) enter erythrocytes very rapidly in the microcirculation of H2S-producing tissues, thereby acting as a sink for H2S and lowering the local extracellular concentration, and the fact that HS(-) is a substrate for a Cl(-)/HCO3(-) exchanger indicates that some effects of exogenous H2S/HS(-) may not result from a regulatory role of H2S but, rather, from net acid flux by H2S and HS(-) transport in a Jacobs-Stewart cycle.

  15. Suppression of H-/O2- exchange by incorporated nitride anions in the perovskite lattice

    NASA Astrophysics Data System (ADS)

    Takeiri, Fumitaka; Yajima, Takeshi; Yamamoto, Takafumi; Kobayashi, Yoji; Matsui, Toshiaki; Hester, James; Kageyama, Hiroshi

    2017-12-01

    We investigate the low temperature anion exchange behavior of hydride and oxide in perovskite oxynitrides. CaH2 reduction of (Sr1-xLax)Ti(O3-xNx) (0anion exchange of hydride for oxide rather than nitride, yielding the oxyhydride-nitride (Sr1-xLax)Ti(O3-x-yHyNx). However, the exchange of hydride is drastically suppressed with increasing nitrogen content and is completely impeded when the nitride content reaches 10% of the anionic site. This implies that the N3- anions in the oxide lattice play a crucial role in lowering diffusion of O2- (and H-). The present study indicates the necessity to consider kinetic aspects when manipulating anion compositions, in particular in a mixed anion system with a small amount of anion vacancies.

  16. Transformation of [M + 2H](2+) Peptide Cations to [M - H](+), [M + H + O](+), and M(+•) Cations via Ion/Ion Reactions: Reagent Anions Derived from Persulfate.

    PubMed

    Pilo, Alice L; Bu, Jiexun; McLuckey, Scott A

    2015-07-01

    The gas-phase oxidation of doubly protonated peptides is demonstrated here using ion/ion reactions with a suite of reagents derived from persulfate. Intact persulfate anion (HS2O8(-)), peroxymonosulfate anion (HSO5(-)), and sulfate radical anion (SO4(-•)) are all either observed directly upon negative nanoelectrospray ionization (nESI) or easily obtained via beam-type collisional activation of persulfate into the mass spectrometer. Ion/ion reactions between each of these reagents and doubly protonated peptides result in the formation of a long-lived complex. Collisional activation of the complex containing a peroxymonosulfate anion results in oxygen transfer from the reagent to the peptide to generate the [M + H + O](+) species. Activation of the complex containing intact persulfate anion either results in oxygen transfer to generate the [M + H + O](+) species or abstraction of two hydrogen atoms and a proton to generate the [M - H](+) species. Activation of the complex containing sulfate radical anion results in abstraction of one hydrogen atom and a proton to form the peptide radical cation, [M](+•). This suite of reagents allows for the facile transformation of the multiply protonated peptides obtained via nESI into a variety of oxidized species capable of providing complementary information about the sequence and structure of the peptide.

  17. Comparison of Anion Reorientational Dynamics in MCB 9 H 10 and M 2 B 10 H 10 (M = Li, Na) via Nuclear Magnetic Resonance and Quasielastic Neutron Scattering Studies

    DOE PAGES

    Soloninin, Alexei V.; Dimitrievska, Mirjana; Skoryunov, Roman V.; ...

    2016-12-13

    The disordered phases of the 1-carba-closo-decaborates LiCB9H10 and NaCB9H10 exhibit the best solid-state ionic conductivities to date among all known polycrystalline competitors, likely facilitated in part by the highly orientationally mobile CB9H10- anions. We have undertaken both NMR and quasielastic neutron scattering (QENS) measurements to help characterize the monovalent anion reorientational mobilities and mechanisms associated with these two compounds and to compare their anion reorientational behaviors with those for the divalent B10H102- anions in the related Li2B10H10 and Na2B10H10 compounds. NMR data show that the transition from the low-T ordered to the high-T disordered phase for both LiCB9H10 and NaCB9H10more » is accompanied by a nearly two-orders-of-magnitude increase in the reorientational jump rate of CB9H10- anions. QENS measurements of the various disordered compounds indicate anion jump correlation frequencies on the order of 1010-1011 s-1 and confirm that NaCB9H10 displays jump frequencies about 60% to 120% higher than those for LiCB9H10 and Na2B10H10 at comparable temperatures. The Q-dependent quasielastic scattering suggests similar small-angular-jump reorientational mechanisms for the different disordered anions, changing from more uniaxial in character at lower temperatures to more multidimensional at higher temperatures, although still falling short of full three-dimensional rotational diffusion below 500 K within the nanosecond neutron window.« less

  18. Crystal and molecular structure of Sr{sub 2}(Edta) . 5H{sub 2}O, Sr{sub 2}(H{sub 2}Edta)(HCO{sub 3}){sub 2} . 4H{sub 2}O, and Sr{sub 2}(H{sub 2}Edta)Cl{sub 2} . 5H{sub 2}O strontium ethylenediaminetetraacetates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polyakova, I. N., E-mail: polyakova@igic.ras.ru; Poznyak, A. L.; Sergienko, V. S.

    2009-03-15

    Three Sr{sup 2+} compounds with the Edta{sup 4-} and H{sub 2}Edta{sup 2-} ligands-Sr{sub 2}(Edta) . 5H{sub 2}O (I), Sr{sub 2}(H{sub 2}Edta)(HCO{sub 3}){sub 2} . 4H{sub 2}O (II), and Sr{sub 2}(H{sub 2}Edta)Cl{sub 2} . 5H{sub 2}O (III)-are synthesized, and their crystal structures are studied. In I, the Sr(1) atom is coordinated by the hexadentate Edta{sup 4-} ligand following the 2N + 4O pattern and by two O atoms of the neighboring ligands, which affords the formation of zigzag chains. The Sr(2) atom forms bonds with O atoms of five water molecules and attaches itself to a chain via bonds with threemore » O atoms of the Edta{sup 4-} ligands. The Sr(1)-O and Sr(2)-O bond lengths fall in the ranges 2.520(2)-2.656(3) and 2.527(3)-2.683(2) A, respectively. The Sr(1)-N bonds are 2.702(3) and 2.743(3) A long. In II and III, the H{sub 2}Edta{sup 2-} anions have a centrosymmetric structure with the trans configuration of the planar ethylenediamine fragment. The N atoms are blocked by acid protons. In II, the environment of the Sr atom is formed by six O atoms of three H{sub 2}Edta ligands, two O atoms of water molecules, and an O atom of the bicarbonate ion, which is disordered over two positions. In III, the environment of the Sr atom includes six O atoms of four H{sub 2}Edta{sup 2-} ligands and three O atoms of water molecules. The coordination number of the Sr atoms is equal to 8 + 1. In II and III, the main bonds fall in the ranges 2.534(3)-2.732(2) and 2.482(2)-2.746(3) A, whereas the ninth bond is elongated to 2.937(3) and 3.055(3) A, respectively. In II, all the structural elements are linked into wavy layers. The O-H-O interactions contribute to the stabilization of the layer and link neighboring layers. In III, hydrated Sr{sup 2+} cations and H{sub 2}Edta{sup -} anions form a three-dimensional [Sr{sub 2}(H{sub 2}Edta)(H{sub 2}O){sub 3}]{sub n}{sup 2n+} framework. The Cl{sup -} anions are fixed in channels of the framework by hydrogen bonds with four water

  19. Cesium Platinide Hydride 4Cs 2 Pt-CsH: An Intermetallic Double Salt Featuring Metal Anions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smetana, Volodymyr; Mudring, Anja-Verena

    2016-10-24

    With Cs9Pt4H a new representative of ionic compounds featuring metal anions can be added to this rare-membered family. Cs 9Pt 4H exhibits a complex crystal structure containing Cs + cations, Pt 2- and H - anions. Being a red, transparent compound its band gap is in the visible range of the electromagnetic spectrum and the ionic type of bonding is confirmed by quantum chemical calculations. This cesium platinide hydride can formally be considered as a double salt of the “alloy” cesium–platinum, or better cesium platinide, Cs2Pt, and the salt cesium hydride CsH according to Cs 9Pt 4H≡4 Cs 2Pt∙CsH.

  20. Pulsed-field magnetization of frustrated S = 1/2 Cu(pyrimidine) 1.5(H 2O)(BF 4) 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manson, J. L.; Jasen, D. M.; Singleton, John

    2017-02-13

    Cu(pym) 1.5(H 2O)(BF 4) 2 (pym = pyrimidine) was synthesized and its structure determined by synchrotron single crystal X-ray diffraction. The compound contains S = 1/2 Cu(II) ions arranged in a distorted triangular array (Fig. 1). Each Cu(II) ion is coordinated to three pym ligands, two weakly held BF 4 - anions and one H 2O. To get a sense to the extent (i.e., strength) of possible frustrated exchange interactions in this new compound we measured the magnetization of Cu(pym) 1.5(H 2O)(BF 4) 2 in pulsed magnetic fields up to 60 T.

  1. Self-Driven Photoelectrochemical Splitting of H2S for S and H2 Recovery and Simultaneous Electricity Generation.

    PubMed

    Luo, Tao; Bai, Jing; Li, Jinhua; Zeng, Qingyi; Ji, Youzhi; Qiao, Li; Li, Xiaoyan; Zhou, Baoxue

    2017-11-07

    A novel, facile self-driven photoelectrocatalytic (PEC) system was established for highly selective and efficient recovery of H 2 S and simultaneous electricity production. The key ideas were the self-bias function between a WO 3 photoanode and a Si/PVC photocathode due to their mismatched Fermi levels and the special cyclic redox reaction mechanism of I - /I 3 - . Under solar light, the system facilitated the separation of holes in the photoanode and electrons in the photocathode, which then generated electricity. Cyclic redox reactions were produced in the photoanode region as follows: I - was transformed into I 3 - by photoholes or hydroxyl radicals, H 2 S was oxidized to S by I 3 - , and I 3 - was then reduced to I - . Meanwhile, H + was efficiently converted to H 2 in the photocathode region. In the system, H 2 S was uniquely oxidized to sulfur but not to polysulfide (S x n- ) because of the mild oxidation capacity of I 3 - . High recovery rates for S and H 2 were obtained up to ∼1.04 mg h -1 cm -1 and ∼0.75 mL h -1 cm -1 , respectively, suggesting that H 2 S was completely converted into H 2 and S. In addition, the output power density of the system reached ∼0.11 mW cm -2 . The proposed PEC-H 2 S system provides a self-sustaining, energy-saving method for simultaneous H 2 S treatment and energy recovery.

  2. 1-(2-Cyano­ethyl)-2-(2-pyrid­yl)-1H,3H-benzimidazol-3-ium perchlorate

    PubMed Central

    Li, Yan; Tang, Xiaoliang; Chen, Jiayu; Wu, Daxiang; Liu, Weisheng

    2010-01-01

    The title compound, C15H13N4 +·ClO4 −, comprises a nonplanar 1-(2-cyano­ethyl)-2-(2-pyrid­yl)-1H,3H-benzimidazol-3-ium cation [dihedral angle between the imidazole and pyridine rings = 22.5 (8)°] and a perchlorate anion. The cation is formed by protonation of the N atom of the benzimidazole ring. A charged N—H⋯O hydrogen bond connects the anion and cation, and inter­molecular C—H⋯O and C—H⋯N inter­actions contribute to the crystal packing. PMID:21579831

  3. A neural network potential energy surface for the NaH2 system and dynamics studies on the H(2S) + NaH(X1Σ+) → Na(2S) + H2(X1Σg+) reaction.

    PubMed

    Wang, Shufen; Yuan, Jiuchuang; Li, Huixing; Chen, Maodu

    2017-08-02

    In order to study the dynamics of the reaction H( 2 S) + NaH(X 1 Σ + ) → Na( 2 S) + H 2 (X 1 Σ g + ), a new potential energy surface (PES) for the ground state of the NaH 2 system is constructed based on 35 730 ab initio energy points. Using basis sets of quadruple zeta quality, multireference configuration interaction calculations with Davidson correction were carried out to obtain the ab initio energy points. The neural network method is used to fit the PES, and the root mean square error is very small (0.00639 eV). The bond lengths, dissociation energies, zero-point energies and spectroscopic constants of H 2 (X 1 Σ g + ) and NaH(X 1 Σ + ) obtained on the new NaH 2 PES are in good agreement with the experiment data. On the new PES, the reactant coordinate-based time-dependent wave packet method is applied to study the reaction dynamics of H( 2 S) + NaH(X 1 Σ + ) → Na( 2 S) + H 2 (X 1 Σ g + ), and the reaction probabilities, integral cross-sections (ICSs) and differential cross-sections (DCSs) are obtained. There is no threshold in the reaction due to the absence of an energy barrier on the minimum energy path. When the collision energy increases, the ICSs decrease from a high value at low collision energy. The DCS results show that the angular distribution of the product molecules tends to the forward direction. Compared with the LiH 2 system, the NaH 2 system has a larger mass and the PES has a larger well at the H-NaH configuration, which leads to a higher ICS value in the H( 2 S) + NaH(X 1 Σ + ) → Na( 2 S) + H 2 (X 1 Σ g + ) reaction. Because the H( 2 S) + NaH(X 1 Σ + ) → Na( 2 S) + H 2 (X 1 Σ g + ) reaction releases more energy, the product molecules can be excited to a higher vibrational state.

  4. Hydrothermal Syntheses and Structures of Three-Dimensional Oxo-fluorovanadium Phosphates: [H 2N(C 2H 4) 2NH 2] 0.5[(VO) 4V(HPO 4) 2(PO 4) 2F 2(H 2O) 4] · 2H 2O and K 2[(VO) 3(PO 4) 2F 2(H 2O)] · H 2O

    NASA Astrophysics Data System (ADS)

    Bonavia, Grant; Haushalter, R. C.; Zubieta, Jon

    1996-11-01

    The hydrothermal reactions of FPO3H2with vanadium oxides result in the incorporation of fluoride into V-P-O frameworks as a consequence of metal-mediated hydrolysis of the fluorophosphoric acid to produce F-and PO3-4. By exploiting this convenient source of F-, two 3-dimensional oxo-fluorovanadium phosphate phases were isolated, [H2N(C2H4)2NH2]0.5[(VO)4V(HOP4)2(PO4)2F2(H2O)4) · 2H2O (1 · 2H2O) and K2[(VO)3(PO4)2F2(H2O)] · H2O (2 · H2O). Both anionic frameworks contain (VIVO)-F--phosphate layers, with confacial bioctahedral {(VIVO)2FO6} units as the fundamental motif. In the case of 1, the layers are linked through {VIIIO6} octahedra, while for 2 the interlayer connectivity is provided by edge-sharing {(VIVO)2F2O6} units. Crystal data are 1 · 2H2O, CH10FN0.5O13P2V2.5, monoclinicC2/m,a= 18.425(4) Å,c= 8.954(2) Å, β = 93.69(2)0,V= 1221.1(4) Å3,Z= 4,Dcalc= 2.423 g cm-3; 2 · H2O, H4F2K2O13P2V3, triclinicPoverline1,a= 7.298(1) Å,b= 8.929(2) Å,c = 10.090(2) Å, α = 104.50(2)0, β = 100.39(2)0, δ = 92.13(2)0,V= 623.8(3) Å3,Z= 2,Dcalc= 2.891 g cm-3.

  5. Polyoxometal cations within polyoxometalate anions. Seven-coordinate uranium and zirconium heteroatom groups in [(UO2)12(μ3-O)4(μ2-H2O)12(P2W15O56)4]32- and [Zr4(μ3-O)22-OH)2(H2O)4 (P2W16O59)2]14-

    NASA Astrophysics Data System (ADS)

    Gaunt, Andrew J.; May, Iain; Collison, David; Travis Holman, K.; Pope, Michael T.

    2003-08-01

    Two new composite polyoxotungstate anions with unprecedented structural features, [(UO2)12(μ3-O)4(μ2-H2O)12(P2W15O56)4]32- (1) and [Zr4(μ3-O)22-OH)2(H2O)4 (P2W16O59)2]14- (2) contain polyoxo-uranium and -zirconium clusters as bridging units. The anions are synthesized by reaction of Na12[P2W15O56] with solutions of UO2(NO3)2 and ZrCl4. The structure of 1 in the sodium salt contains four [P2W15O56]12- anions assembled into an overall tetrahedral cluster by means of trigonal bridging groups formed by three equatorial-edge-shared UO7 pentagonal bipyramids. The structure of anion 2 consists of a centrosymmetric assembly of two [P2W16O59]12- anions linked by a {Zr4O2(OH)2(H2O)4}10+ cluster. Both complexes in solution yield the expected two-line 31P-NMR spectra with chemical shifts of -2.95, -13.58 and -6.45, -13.69 ppm, respectively.

  6. Chanabayaite, Cu2(N3C2H2)Cl(NH3,Cl,H2O,□)4, a new mineral containing triazolate anion

    NASA Astrophysics Data System (ADS)

    Chukanov, N. V.; Zubkova, N. V.; Möhn, G.; Pekov, I. V.; Pushcharovsky, D. Yu.; Zadov, A. E.

    2015-12-01

    A new mineral, chanabayaite, has been discovered at a guano deposit located at Mt. Pabellón de Pica near the village of Chanabaya, Iquique Province, Tarapacá region, Chile. It is associated with salammoniac, halite, joanneumite, nitratine and earlier chalcopyrite. Chanabayaite occurs as blue translucent imperfect prismatic crystals, up to 0.05 × 0.1 × 0.5 mm in size, and their radial aggregates. Chanabayaite is brittle, with a Mohs' hardness of 2. The cleavage is perfect on (001) and imperfect on (100) and (010). D meas = 1.48(2) g/cm3, D calc = 1.464 g/cm3. The mineral is optically biaxial (-), α = 1.561(2), β = 1.615(3), γ = 1.620(2), 2 V meas = 25(10)°, 2 V calc = 33°. Pleochroism is strong, Z ≈ Y (deep blue) ≫ X (pale blue with gray tint). IR spectrum is given. The chemical composition (electron microprobe data for Cu, Fe and Cl; gas chromatography data for H, N, C and O) is as follows (wt %): 32.23 Cu, 1.14 Fe, 16.13 Cl, 3.1 H, 29.9 N, 12.2 C, 3.4 O, total is 98.1. The empirical formula is ( Z = 4): Cu1.92Fe0.08Cl1.72N8.09C3.85H11.66O0.81. The structural model was based on the single-crystal X-ray diffraction data ( R = 0.1627). Chanabayaite is orthorhombic, space group Imma, a = 19.484(3), b = 7.2136(10), c = 11.999(4) Å, V = 1686.5(7) Å3, Z = 2. In chanabayaite, chains of the corner-sharing Cu(l)-centered octahedra and single Cu(2)-centered octahedra are linked via 1,2,4-triazolate anions C2N3H2 -. NH3 and Cl- are additional ligands coordinating Cu2+. Chanabayaite is a transformational mineral species formed by leaching of Na and one third of Cl and partial dehydration of the protophase Na2Cu2Cl3(N3C2H2)2(NH3)2 • 4H2O. The strongest reflections in the powder X-ray diffraction pattern [ d, Å ( I, %) ( hkl)] are detected: 10.19 (100) (101), 6.189 (40) (011), 5.729 (23) (301), 5.216 (75) (211, 202), 4.964 (20) (400), 2.830 (20) (602, 413, 503), 2.611 (24) (123, 422, 404).

  7. Photochemical Generation of H_{2}NCNX, H_{2}NNCX, H_{2}NC(NX) (x = O, s) in Low-Temperature Matrices

    NASA Astrophysics Data System (ADS)

    Voros, Tamas; Lajgut, Gyozo Gyorgy; Magyarfalvi, Gabor; Tarczay, Gyorgy

    2017-06-01

    The [NH_{2}, C, N, O] and the [NH_{2}, C, N, S] systems were investigated by quantum-chemical computations and matrix-isolation spectroscopic methods. The equilibrium structures of the isomers and their relative energies were determined by CCSD(T) method. This was followed by the computation of the harmonic and anharmonic vibrational wavenumbers, infrared intensities, relative Raman activities and UV excitation energies. These computed data were used to assist the identification of products obtained by UV laser photolysis of 3,4-diaminofurazan, 3,4-diaminothiadiazole and 1,2,4-thiadiazole-3,5-diamine in low-temperature Ar and Kr matrices. Experimentally, first the precursors were studied by matrix-isolation IR and UV spectroscopic methods. Based on these UV spectra, different wavelengths were selected for photolysis. The irradiations, carried out by a tunable UV laser-light source, resulted in the decomposition of the precursors, and in the appearance of new bands in the IR spectra. Some of these bands were assigned to cyanamide (H_{2}NCN) and its isomer, the carbodiimide molecule (HNCNH), generated from H_{2}NCN. By the analysis of the relative absorbance vs. photolysis time curves, the other bands were grouped to three different species both for the O- and the S-containing systems. In the case of the O-containing isomers, these bands were assigned to the H_{2}NNCO:H_{2}NCN, and H_{2}NCNO:H_{2}NCN complexes, and to the ring-structure H_{2}NC(NO) isomer. In a similar way, the complexes of H_{2}NNCS and H_{2}NCNS with the H_{2}NCN, and H_{2}NC(NS) were also identified. 1,2,4-thiadiazole-3,5-diamine was also investigated in similar way like the above mentioned precursors. The results of this study also support the identification of the new S-containing isomers. Except for H_{2}NNCO and H_{2}NCNS, these molecules were not identified previously. It is expected that at least some of these species, like the methyl isocyanate (CH_{3}CNO) isomer, are present and could be

  8. Trapping {BW12}2 tungstoborate: synthesis and crystal structure of hybrid [{(H2BW12O42)2O}{Mo6O6S6(OH)4(H2O)2}]14- anion.

    PubMed

    Korenev, V S; Abramov, P A; Vicent, C; Mainichev, D A; Floquet, S; Cadot, E; Sokolov, M N; Fedin, V P

    2012-12-28

    Reaction between monolacunary {BW(11)} tungstoborate and oxothiocationic building block, {Mo(2)O(2)S(2)}, results in the formation of a new polyoxothiometalate with a unique architecture in which two [H(2)BW(12)O(43)](9-) tungstoborate subunits are linked together with a hexamolybdate [Mo(V)(6)O(6)S(6)(OH)(4)(H(2)O)(2)](2+) bridge.

  9. Nitric oxide reactivity of [2Fe-2S] clusters leading to H2S generation.

    PubMed

    Tran, Camly T; Williard, Paul G; Kim, Eunsuk

    2014-08-27

    The crosstalk between two biologically important signaling molecules, nitric oxide (NO) and hydrogen sulfide (H2S), proceeds via elusive mechanism(s). Herein we report the formation of H2S by the action of NO on synthetic [2Fe-2S] clusters when the reaction environment is capable of providing a formal H(•) (e(-)/H(+)). Nitrosylation of (NEt4)2[Fe2S2(SPh)4] (1) in the presence of PhSH or (t)Bu3PhOH results in the formation of (NEt4)[Fe(NO)2(SPh)2] (2) and H2S with the concomitant generation of PhSSPh or (t)Bu3PhO(•). The amount of H2S generated is dependent on the electronic environment of the [2Fe-2S] cluster as well as the type of H(•) donor. Employment of clusters with electron-donating groups or H(•) donors from thiols leads to a larger amount of H2S evolution. The 1/NO reaction in the presence of PhSH exhibits biphasic decay kinetics with no deuterium kinetic isotope effect upon PhSD substitution. However, the rates of decay increase significantly with the use of 4-MeO-PhSH or 4-Me-PhSH in place of PhSH. These results provide the first chemical evidence to suggest that [Fe-S] clusters are likely to be a site for the crosstalk between NO and H2S in biology.

  10. AOI [3] High-Temperature Nano-Derived Micro-H 2 and - H 2S Sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabolsky, Edward M.

    2014-08-01

    The emissions from coal-fired power plants remain a significant concern for air quality. This environmental challenge must be overcome by controlling the emission of sulfur dioxide (SO 2) and hydrogen sulfide (H 2S) throughout the entire coal combustion process. One of the processes which could specifically benefit from robust, low cost, and high temperature compatible gas sensors is the coal gasification process which converts coal and/or biomass into syngas. Hydrogen (H 2), carbon monoxide (CO) and sulfur compounds make up 33%, 43% and 2% of syngas, respectively. Therefore, development of a high temperature (>500°C) chemical sensor for in-situ monitoring ofmore » H 2, H 2S and SO2 2 levels during coal gasification is strongly desired. The selective detection of SO 2/H 2S in the presence of H 2, is a formidable task for a sensor designer. In order to ensure effective operation of these chemical sensors, the sensor system must inexpensively function within harsh temperature and chemical environment. Currently available sensing approaches, which are based on gas chromatography, electrochemistry, and IR-spectroscopy, do not satisfy the required cost and performance targets. This work focused on the development microsensors that can be applied to this application. In order to develop the high- temperature compatible microsensor, this work addressed various issues related to sensor stability, selectivity, and miniaturization. In the research project entitled “High-Temperature Nano-Derived Micro-H 2 and -H 2S Sensors”, the team worked to develop micro-scale, chemical sensors and sensor arrays composed of nano-derived, metal-oxide composite materials to detect gases like H 2, SO 2, and H 2S within high-temperature environments (>500°C). The research was completed in collaboration with NexTech Materials, Ltd. (Lewis Center, Ohio). NexTech assisted in the testing of the sensors in syngas with contaminate levels of H 2S. The idea of including nanomaterials as the

  11. Anionic pH-Sensitive Lipoplexes.

    PubMed

    Mignet, Nathalie; Scherman, Daniel

    2017-01-01

    To provide long circulating nanoparticles able to carry a gene to tumors, we have designed anionic pegylated lipoplexes which are pH sensitive. Anionic pegylated lipoplexes have been prepared from the combined formulation of cationic lipoplexes and pegylated anionic liposomes. The neutralization of the particle surface charge as a function of the pH was monitored by light scattering in order to determine the ratio between anionic and cationic lipids that would give pH sensitive complexes. This ratio has been optimized to form particles sensitive to pH change in the range 5.5-6.5. Compaction of DNA into these newly formed anionic complexes is checked by DNA accessibility to picogreen. The transfection efficiency and pH sensitive property of these formulations has been shown in vitro using bafilomycin, a vacuolar H + -ATPase inhibitor.

  12. Inelastic rate coefficients for collisions of C6H- with H2 and He

    NASA Astrophysics Data System (ADS)

    Walker, Kyle M.; Lique, François; Dumouchel, Fabien; Dawes, Richard

    2017-04-01

    The recent detection of anions in the interstellar medium has shown that they exist in a variety of astrophysical environments - circumstellar envelopes, cold dense molecular clouds and star-forming regions. Both radiative and collisional processes contribute to molecular excitation and de-excitation in these regions so that the 'local thermodynamic equilibrium' approximation, where collisions cause the gas to behave thermally, is not generally valid. Therefore, along with radiative coefficients, collisional excitation rate coefficients are needed to accurately model the anionic emission from these environments. We focus on the calculation of state-to-state rate coefficients of the C6H- molecule in its ground vibrational state in collisions with para-H2, ortho-H2 and He using new potential energy surfaces. Dynamical calculations for the pure rotational excitation of C6H- were performed for the first 11 rotational levels (up to j1 = 10) using the close-coupling method, while the coupled-states approximation was used to extend the H2 rate coefficients to j1 = 30, where j1 is the angular momentum quantum number of C6H-. State-to-state rate coefficients were obtained for temperatures ranging from 2 to 100 K. The rate coefficients for H2 collisions for Δj1 = -1 transitions are of the order of 10-10 cm3 s-1, a factor of 2 to 3 greater than those of He. Propensity rules are discussed. The collisional excitation rate coefficients produced here impact astrophysical modelling since they are required for obtaining accurate C6H- level populations and line emission for regions that contain anions.

  13. Inhibitory effect of selective cyclooxygenase-2 inhibitor lumiracoxib on human organic anion transporters hOAT1 and hOAT3.

    PubMed

    Uwai, Yuichi; Honjo, Hiroaki; Iwamoto, Kikuo

    2010-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) delay renal excretion of antifolate methotrexate by inhibiting human organic anion transporters hOAT1 (SLC22A6) and hOAT3 (SLC22A8). In this study, we performed uptake experiments using Xenopus laevis oocytes to assess the inhibitory effect of selective cyclooxygenase-2 inhibitors on hOAT1 and hOAT3. The uptake of methotrexate into oocytes was increased by the injection of hOAT1 and hOAT3 cRNA, and transport was strongly inhibited by lumiracoxib. The apparent 50% inhibitory concentrations of lumiracoxib were estimated to be 3.3 µM and 1.9 µM for uptake of p-aminohippurate by hOAT1 and of estrone sulfate by hOAT3, respectively. Eadie-Hofstee plot analysis showed that lumiracoxib inhibited hOAT1 and hOAT3 in a competitive manner. For other cyclooxygenase-2 inhibitors celecoxib, etoricoxib, rofecoxib and valdecoxib, slight to moderate inhibition of hOAT3 only was observed. These findings show that lumiracoxib has inhibitory potential toward hOAT1 and hOAT3, comparable to that of nonselective NSAIDs.

  14. Anionic ordering and thermal properties of FeF3·3H2O.

    PubMed

    Burbano, Mario; Duttine, Mathieu; Borkiewicz, Olaf; Wattiaux, Alain; Demourgues, Alain; Salanne, Mathieu; Groult, Henri; Dambournet, Damien

    2015-10-05

    Iron fluoride trihydrate can be used to prepare iron hydroxyfluoride with the hexagonal-tungsten-bronze (HTB) type structure, a potential cathode material for batteries. To understand this phase transformation, a structural description of β-FeF3·3H2O is first performed by means of DFT calculations and Mössbauer spectroscopy. The structure of this compound consists of infinite chains of [FeF6]n and [FeF2(H2O)4]n. The decomposition of FeF3·3H2O induces a collapse and condensation of these chains, which lead to the stabilization, under specific conditions, of a hydroxyfluoride network FeF3-x(OH)x with the HTB structure. The release of H2O and HF was monitored by thermal analysis and physical characterizations during the decomposition of FeF3·3H2O. An average distribution of FeF4(OH)2 distorted octahedra in HTB-FeF3-x(OH)x was obtained subsequent to the thermal hydrolysis/olation of equatorial anionic positions involving F(-) and H2O. This study provides a clear understanding of the structure and thermal properties of FeF3·3H2O, a material that can potentially bridge the recycling of pickling sludge from the steel industry by preparing battery electrodes.

  15. A novel amido-pyrophosphate Mn(II) chelate complex with the synthetic ligand O{P(O)[NHC(CH3)3]2}2 (L): [Mn(L)2{OC(H)N(CH3)2}2]Cl2·2H2O.

    PubMed

    Tarahhomi, Atekeh; Pourayoubi, Mehrdad; Fejfarová, Karla; Dušek, Michal

    2013-03-01

    The title complex, trans-bis(dimethylformamide-κO)bis{N,N'-N'',N'''-tetra-tert-butyl[oxybis(phosphonic diamide-κO)]}manganese(II) dichloride dihydrate, [Mn(C16H40N4O3P2)2(C3H7NO)2]Cl2·2H2O, is the first example of a bis-chelate amido-pyrophosphate (pyrophosphoramide) complex containing an O[P(O)(NH)2]2 fragment. Its asymmetric unit contains half of the complex dication, one chloride anion and one water molecule. The Mn(II) atom, located on an inversion centre, is octahedrally coordinated, with a slight elongation towards the monodentate dimethylformamide ligand. Structural features of the title complex, such as the P=O bond lengths and the planarity of the chelate ring, are compared with those of previously reported complexes with six-membered chelates involving the fragments C(O)NHP(O), (X)NP(O) [X = C(O), C(S), S(O)2 and P(O)] and O[P(O)(N)2]2. This analysis shows that the six-membered chelate rings are less puckered in pyrophosphoramide complexes containing a P(O)OP(O) skeleton, such as the title compound. The extended structure of the title complex involves a linear aggregate mediated by N-H...O and N-H...Cl hydrogen bonds, in which the chloride anion is an acceptor in two additional O-H...Cl hydrogen bonds.

  16. A comparative study of the Au + H{sub 2}, Au{sup +} + H{sub 2}, and Au{sup −} + H{sub 2} systems: Potential energy surfaces and dynamics of reactive collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorta-Urra, Anaís; Zanchet, Alexandre; Roncero, Octavio

    2015-04-21

    In order to study the Au{sup −} + H{sub 2} collision, a new global potential energy surface (PES) describing the ground electronic state of AuH{sub 2}{sup −} system is developed and compared with the PESs of the neutral [Zanchet et al., J. Chem. Phys. 132, 034301 (2010)] and cationic systems [Anaís et al., J. Chem. Phys. 135, 091102 (2011)]. We found that Au{sup −} − H{sub 2} presents a H-Au-H insertion minimum attributed to the stabilization of the LUMO 3b{sub 2} orbital, which can be considered as the preamble of the chemisorption well appearing in larger gold clusters. While themore » LUMO orbital is stabilized, the HOMO 6a{sub 1} is destabilized, creating a barrier at the geometry where the energy orbitals’ curves are crossing. In the anion, this HOMO is doubly occupied, while in the neutral system is half-filled and completely empty in the cation, explaining the gradual disappearance of the well and the barrier as the number of electrons decreases. The cation presents a well in the entrance channel partially explained by electrostatic interactions. The three systems’ reactions are highly endothermic, by 1.66, 2.79, and 3.23 eV for AuH, AuH{sup +}, and AuH{sup −} products, respectively. The reaction dynamics is studied using quasi-classical trajectory method for the three systems. The one corresponding to the anionic system is new in this work. Collision energies between 1.00 and 8.00 eV, measured for the cation, are in good agreement with the simulated cross section for the AuH{sup +}. It was also found that the total fragmentation, in three atoms, competes becoming dominant at sufficiently high energy. Here, we study the competition between the two different reaction pathways for the anionic, cationic, and neutral species, explaining the differences using a simple model based on the topology of the potential energy surfaces.« less

  17. Mineralization of Basalts in the CO 2-H 2O-H 2S System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaef, Herbert T.; McGrail, B. Peter; Owen, Antionette T.

    2013-05-10

    Basalt samples representing five different formations were immersed in water equilibrated with supercritical carbon dioxide containing 1% hydrogen sulfide (H2S) at reservoir conditions (100 bar, 90°C) for up to 3.5 years. Surface coatings in the form of pyrite and metal cation substituted carbonates were identified as reaction products associated with all five basalts. In some cases, high pressure tests contained excess H2S, which produced the most corroded basalts and largest amount of secondary products. In comparison, tests containing limited amounts of H2S appeared least reacted with significantly less concentrations of reaction products. In all cases, pyrite appeared to precede carbonation,more » and in some instances, was observed in the absence of carbonation such as in cracks, fractures, and within the porous glassy mesostasis. Armoring reactions from pyrite surface coatings observed in earlier shorter duration tests were found to be temporary with carbonate mineralization observed with all the basalts tested in these long duration experiments. Geochemical simulations conducted with the geochemical code EQ3/6 accurately predicted early pyrite precipitation followed by formation of carbonates. Reactivity with H2S was correlated with measured Fe(II)/Fe(III) ratios in the basalts with more facile pyrite formation occurring with basalts containing more Fe(III) phases. These experimental and modeling results confirm potential for long term sequestration of acid gas mixtures in continental flood basalt formations.« less

  18. Solvent-Dependent Delamination, Restacking, and Ferroelectric Behavior in a New Charge-Separated Layered Compound: [NH4 ][Ag3 (C9 H5 NO4 S)2 (C13 H14 N2 )2 ]⋅8 H2 O.

    PubMed

    Sushrutha, Sringeri Ramesh; Mohana, Shivanna; Pal, Somnath; Natarajan, Srinivasan

    2017-01-03

    A new anionic coordination polymer, [NH 4 ][Ag 3 (C 9 H 5 NO 4 S) 2 (C 13 H 14 N 2 ) 2 ]⋅8 H 2 O, with a two-dimensional structure, has been synthesized by a reaction between silver nitrate, 8-hydroxyquinoline-5-sulfonic acid (HQS), and 4,4'-trimethylene dipyridine (TMDP). The compound stabilizes in a noncentrosymmetric space group, and the lattice water molecules and the charge-compensating [NH 4 ] + group occupy the inter-lamellar spaces. The lattice water molecules can be fully removed and reinserted, which is accompanied by a crystalline-amorphous-crystalline transformation. This transformation resembles the collapse/delamination and restacking of the layers. To the best of our knowledge, this is the first observation of delamination and restacking in an inorganic coordination polymer that contains silver. The presence of a natural dipole (the anionic framework and cationic ammonium ions) along with the noncentrosymmetric space group gives rise to the room-temperature ferroelectric behavior of the compound. The ferroelectric behavior is also water-dependent and exhibits a ferroelectric-paraelectric transformation. The temperature-dependent dielectric measurements indicate that the ferroelectric/ paraelectric transformation occurs at 320 K. This transformation has also been investigated by using in-situ IR spectroscopy and PXRD studies. The second-harmonic generation (SHG) study indicated values that are comparable to some of the known SHG solids, such as potassium dihydrogen phosphate (KDP) and urea. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Structures of M2(SO2)6B12F12 (M = Ag or K) and Ag2(H2O)4B12F12: Comparison of the Coordination of SO2 versus H2O and of B12F122- versus Other Weakly Coordinating Anions to Metal Ions in the Solid State.

    PubMed

    Malischewski, Moritz; Peryshkov, Dmitry V; Bukovsky, Eric V; Seppelt, Konrad; Strauss, Steven H

    2016-12-05

    The structures of three solvated monovalent cation salts of the superweak anion B 12 F 12 2- (Y 2- ), K 2 (SO 2 ) 6 Y, Ag 2 (SO 2 ) 6 Y, and Ag 2 (H 2 O) 4 Y, are reported and discussed with respect to previously reported structures of Ag + and K + with other weakly coordinating anions. The structures of K 2 (SO 2 ) 6 Y and Ag 2 (SO 2 ) 6 Y are isomorphous and are based on expanded cubic close-packed arrays of Y 2- anions with M(OSO) 6 + complexes centered in the trigonal holes of one expanded close-packed layer of B 12 centroids (⊙). The K + and Ag + ions have virtually identical bicapped trigonal prism MO 6 F 2 coordination spheres, with M-O distances of 2.735(1)-3.032(2) Å for the potassium salt and 2.526(5)-2.790(5) Å for the silver salt. Each M(OSO) 6 + complex is connected to three other cationic complexes through their six μ-SO 2 -κ 1 O,κ 2 O' ligands. The structure of Ag 2 (H 2 O) 4 Y is unique [different from that of K 2 (H 2 O) 4 Y]. Planes of close-packed arrays of anions are offset from neighboring planes along only one of the linear ⊙···⊙···⊙ directions of the close-packed arrays, with [Ag(μ-H 2 O) 2 Ag(μ-H 2 O) 2 )] ∞ infinite chains between the planes of anions. There are two nearly identical AgO 4 F 2 coordination spheres, with Ag-O distances of 2.371(5)-2.524(5) Å and Ag-F distances of 2.734(4)-2.751(4) Å. This is only the second structurally characterized compound with four H 2 O molecules coordinated to a Ag + ion in the solid state. Comparisons with crystalline H 2 O and SO 2 solvates of other Ag + and K + salts of weakly coordinating anions show that (i) N[(SO 2 ) 2 (1,2-C 6 H 4 )] - , BF 4 - , SbF 6 - , and Al(OC(CF 3 ) 3 ) 4 - coordinate much more strongly to Ag + than does Y 2- , (ii) SnF 6 2- coordinates somewhat more strongly to K + than does Y 2- , and (iii) B 12 Cl 12 2- coordinates to K + about the same as, if not slightly weaker than, Y 2- .

  20. FLYING-WATER Renewables-H2-H2O TERRAFORMING: PERMANENT ETERNAL Drought(s)-Elimination FOREVER!!!

    NASA Astrophysics Data System (ADS)

    Wignall, J.; Lyons, Marv; Ertl, G.; Alefeld, Georg; Youdelis, W.; Radd, H.; Oertle, G.; Siegel, Edward

    2013-03-01

    ''H2O H2O everywhere; ne'er a drop to drink''[Coleridge(1798)] now: ''H2 H2 everywhere; STILL ne'er a drop to drink'': ONLY H2 (or methane CH4) can be FLYING-WATER(F-W) chemical-rain-in-pipelines Hindenberg-effect (H2-UP;H2O-DOWN): { ∖{}O/H2O{ ∖}} =[16]/[18] ∖sim 90{ ∖%} O already in air uphill; NO H2O pumping need! In global-warming driven H2O-starved glacial-melting world, rescue is possible ONLY by Siegel [ ∖underline {3rd Intl. Conf. Alt.-Energy }(1980)-vol.5/p.459!!!] Renewables-H2-H2O purposely flexible versatile agile customizable scaleable retrofitable integrated operating-system. Rosenfeld[Science 315,1396(3/9/2007)]-Biello [Sci.Am.(3/9 /2007)] crucial geomorphology which ONLY maximal-buoyancy H2 can exploit, to again make ''Mountains into Fountains'', ``upthrust rocks trapping the clouds to precipitate their rain/snow/H2O'': ''terraforming''(and ocean-rebasificaton!!!) ONLY VIA Siegel[APS March MTGS.:1960s-2000ss) DIFFUSIVE-MAGNETORESISTANCE (DMR) proprietary MAGNETIC-HYDROGEN-VALVE(MHV) ALL-IMPORTANT PRECLUDED RADIAL-diffusion, permitting ONLY AXIAL-H2-BALLISTIC-flow (``G.A''.''/DoE''/''Terrapower''/''Intellectual-Ventures''/ ''Gileland''/ ''Myhrvold''/''Gates'' ``ARCHIMEDES'') in ALREADY IN-ground dense BCC/ferritic-steels pipelines-network (NO new infrastructure) counters Tromp[Science 300,1740(2003)] dire warning of global-pandemics (cancers/ blindness/ famine)

  1. Anionic ordering and thermal properties of FeF 3·3H 2O

    DOE PAGES

    Burbano, Mario; Duttine, Mathieu; Borkiewicz, Olaf; ...

    2015-09-17

    In this study, iron fluoride tri-hydrate can be used to prepare iron hydroxyfluoride with the Hexagonal-Tungsten-Bronze (HTB) type structure, a potential cathode material for batteries. To understand this phase transformation, a structural description of β-FeF 3·3H 2O is first performed by means of DFT calculations and Mössbauer spectroscopy. The structure of this compound consists of infinite chains of [FeF 6]n and [FeF 2(H2O) 4] n. The decomposition of FeF 3·3H 2O induces a collapse and condensation of these chains, which lead to the stabilization, under specific conditions, of a hydroxyfluoride network FeF 3-x(OH) x with the HTB structure. The releasemore » of H 2O and HF was monitored by thermal analysis and physical characterizations during the decomposition of FeF 3·3H 2O. An average distribution of FeF 4(OH) 2 distorted octahedra in HTB-FeF 3-x(OH) x was obtained subsequent to the thermal hydrolysis/olation of equatorial anionic positions involving F- and H 2O. This study provides a clear understanding of the structure and thermal properties of FeF 3·3H 2O, a material that can potentially bridge the recycling of pickling sludge from the steel industry by preparing battery electrodes.« less

  2. Pentacoordinate silicon(IV): cationic, anionic and neutral complexes derived from the reaction of NHC→SiCl4 with highly Lewis acidic (C2F5)2SiH2.

    PubMed

    Böttcher, T; Steinhauer, S; Neumann, B; Stammler, H-G; Röschenthaler, G-V; Hoge, B

    2014-06-14

    Addition of NHC→SiCl4 to the highly Lewis acidic bis(pentafluoroethyl)silane ((C2F5)2SiH2) afforded the salt [(NHC)2SiCl2H][(C2F5)2SiCl3] with pentacoordinate silicon in the cation and the anion. The anion represents the first example of a chlorosilicate structurally characterized in the solid state. In this reaction, the long sought pentacoordinate NHC-adduct of silicochloroform was identified as an intermediate and its crystal structure is presented.

  3. A high level Ab initio study of the anionic hydrogen-bonded complexes FH-CN-, FH-NC-, H2O-CN- and H2O-NC-

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.

    1989-01-01

    HF, H2O, CN- and their hydrogen-bonded complexes were studied using state-of-the-art ab initio quantum mechanical methods. A large Gaussian one particle basis set consisting of triple zeta plus double polarization plus diffuse s and p functions (TZ2P + diffuse) was used. The theoretical methods employed include self consistent field, second order Moller-Plesset perturbation theory, singles and doubles configuration interaction theory and the singles and doubles coupled cluster approach. The FH-CN- and FH-NC- and H2O-CN-, H2O-NC- pairs of complexes are found to be essentially isoenergetic. The first pair of complexes are predicted to be bound by approx. 24 kcal/mole and the latter pair bound by approximately 15 kcal/mole. The ab initio binding energies are in good agreement with the experimental values. The two being shorter than the analogous C-N hydrogen bond. The infrared (IR) spectra of the two pairs of complexes are also very similar, though a severe perturbation of the potential energy surface by proton exchange means that the accurate prediction of the band center of the most intense IR mode requires a high level of electronic structure theory as well as a complete treatment of anharmonic effects. The bonding of anionic hydrogen-bonded complexes is discussed and contrasted with that of neutral hydrogen-bonded complexes.

  4. Precipitation synthesis of lanthanide hydroxynitrate anion exchange materials, Ln{sub 2}(OH){sub 5}NO{sub 3}.H{sub 2}O (Ln=Y, Eu-Er)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hindocha, Sheena A.; McIntyre, Laura J.; Fogg, Andrew M., E-mail: afogg@liverpool.ac.u

    2009-05-15

    Layered lanthanide hydroxynitrate anion exchange host lattices have been prepared via a room temperature precipitation synthesis. These materials have the composition Ln{sub 2}(OH){sub 5}NO{sub 3}.H{sub 2}O and are formed for Y and the lanthanides from Eu to Er and as such include the first Eu containing nitrate anion exchange host lattice. The interlayer separation of these materials, approximately 8.5 A, is lower than in the related phases Ln{sub 2}(OH){sub 5}NO{sub 3}.1.5H{sub 2}O which have a corresponding value of 9.1 A and is consistent with the reduction in the co-intercalated water content of these materials. These new intercalation hosts have beenmore » shown to undergo facile anion exchange reactions with a wide range of organic carboxylate and sulfonate anions. These reactions produce phases with up to three times the interlayer separation of the host lattice demonstrating the flexibility of these materials. - Graphical abstract: New anion exchangeable layered hydroxynitrates, Ln{sub 2}(OH){sub 5}NO{sub 3}.H{sub 2}O (Ln=Y, Eu - Er) have been synthesized via a precipitation route. These materials have been shown to be very flexible intercalation hosts undergoing facile exchange reactions with organic carboxylate and sulfonate anions.« less

  5. Relative Importance of H2 and H2S as Energy Sources for Primary Production in Geothermal Springs▿ †

    PubMed Central

    D'Imperio, Seth; Lehr, Corinne R.; Oduro, Harry; Druschel, Greg; Kühl, Michael; McDermott, Timothy R.

    2008-01-01

    Geothermal waters contain numerous potential electron donors capable of supporting chemolithotrophy-based primary production. Thermodynamic predictions of energy yields for specific electron donor and acceptor pairs in such systems are available, although direct assessments of these predictions are rare. This study assessed the relative importance of dissolved H2 and H2S as energy sources for the support of chemolithotrophic metabolism in an acidic geothermal spring in Yellowstone National Park. H2S and H2 concentration gradients were observed in the outflow channel, and vertical H2S and O2 gradients were evident within the microbial mat. H2S levels and microbial consumption rates were approximately three orders of magnitude greater than those of H2. Hydrogenobaculum-like organisms dominated the bacterial component of the microbial community, and isolates representing three distinct 16S rRNA gene phylotypes (phylotype = 100% identity) were isolated and characterized. Within a phylotype, O2 requirements varied, as did energy source utilization: some isolates could grow only with H2S, some only with H2, while others could utilize either as an energy source. These metabolic phenotypes were consistent with in situ geochemical conditions measured using aqueous chemical analysis and in-field measurements made by using gas chromatography and microelectrodes. Pure-culture experiments with an isolate that could utilize H2S and H2 and that represented the dominant phylotype (70% of the PCR clones) showed that H2S and H2 were used simultaneously, without evidence of induction or catabolite repression, and at relative rate differences comparable to those measured in ex situ field assays. Under in situ-relevant concentrations, growth of this isolate with H2S was better than that with H2. The major conclusions drawn from this study are that phylogeny may not necessarily be reliable for predicting physiology and that H2S can dominate over H2 as an energy source in terms of

  6. Tungsten phosphanylarylthiolato complexes [W{PhP(2-SC6H4)2-kappa3S,S',P} 2] and [W{P(2-SC6H4)3-kappa4S,S',S",P}2]: synthesis, structures and redox chemistry.

    PubMed

    Hildebrand, Alexandra; Lönnecke, Peter; Silaghi-Dumitrescu, Luminita; Hey-Hawkins, Evamarie

    2008-09-14

    PhP(2-SHC6H4)2 (PS2H2) reacts with WCl6 with reduction of tungsten to give the air-sensitive tungsten(IV) complex [W{PhP(2-SC6H4)2-kappa(3)S,S',P}2] (1). 1 is oxidised in air to [WO{PhPO(2-SC6H4)2-kappa(3)S,S',O}{PhP(2-SC6H4)2-kappa(3)S,S',P}] (2). The attempted synthesis of 2 by reaction of 1 with iodosobenzene as oxidising agent was unsuccessful. [W{P(2-SC6H4)3-kappa(4)S,S',S",P}2] (3) was formed in the reaction of P(2-SHC6H4)3 (PS3H3) with WCl6. The W(VI) complex 3 contains two PS3(3-) ligands, each coordinated in a tetradentate fashion resulting in a tungsten coordination number of eight. The reaction of 3 with AgBF4 yields the dinuclear tungsten complex [W2{P(2-SC6H4)3-kappa(4)S,S',S",P}3]BF4 (4). Complexes 1-4 were characterised by spectral methods and X-ray structure determination.

  7. Molecular structure studies of (1S,2S)-2-benzyl-2,3-dihydro-2-(1H-inden-2-yl)-1H-inden-1-ol

    PubMed Central

    Zhang, Tao; Paluch, Krzysztof; Scalabrino, Gaia; Frankish, Neil; Healy, Anne-Marie; Sheridan, Helen

    2015-01-01

    The single enantiomer (1S,2S)-2-benzyl-2,3-dihydro-2-(1H-inden-2-yl)-1H-inden-1-ol (2), has recently been synthesized and isolated from its corresponding diastereoisomer (1). The molecular and crystal structures of this novel compound have been fully analyzed. The relative and absolute configurations have been determined by using a combination of analytical tools including X-ray crystallography, X-ray Powder Diffraction (XRPD) analysis and Nuclear Magnetic Resonance (NMR) spectroscopy. PMID:25750458

  8. The solubility of gold in H 2 O-H 2 S vapour at elevated temperature and pressure

    NASA Astrophysics Data System (ADS)

    Zezin, Denis Yu.; Migdisov, Artashes A.; Williams-Jones, Anthony E.

    2011-09-01

    This experimental study sheds light on the complexation of gold in reduced sulphur-bearing vapour, specifically, in H 2O-H 2S gas mixtures. The solubility of gold was determined in experiments at temperatures of 300, 350 and 365 °C and reached 2.2, 6.6 and 6.3 μg/kg, respectively. The density of the vapour varied from 0.02 to 0.22 g/cm 3, the mole fraction of H 2S varied from 0.03 to 0.96, and the pressure in the cell reached 263 bar. Statistically significant correlations of the amount of gold dissolved in the fluid with the fugacity of H 2O and H 2S permit the experimental data to be fitted to a solvation/hydration model. According to this model, the solubility of gold in H 2O-H 2S gas mixtures is controlled by the formation of sulphide or bisulphide species solvated by H 2S or H 2O molecules. Formation of gold sulphide species is favoured statistically over gold bisulphide species and thus the gold is interpreted to dissolve according to reactions of the form: Au(s)+(n+1)HS(g)=AuS·(HS)n(g)+H(g) Au(s)+HS(g)+mHO(g)=AuS·(HO)m(g)+H(g) Equilibrium constants for Reaction (A1) and the corresponding solvation numbers ( K A1 and n) were evaluated from the study of Zezin et al. (2007). The equilibrium constants as well as the hydration numbers for Reaction (A2) ( K A2 and m) were adjusted simultaneously by a custom-designed optimization algorithm and were tested statistically. The resulting values of log K A2 and m are -15.3 and 2.3 at 300 and 350 °C and -15.1 and 2.2 at 365 °C, respectively. Using the calculated stoichiometry and stability of Reactions (A1) and (A2), it is now possible to quantitatively evaluate the contribution of reduced sulphur species to the transport of gold in aqueous vapour at temperatures up to 365 °C. This information will find application in modelling gold ore-forming processes in vapour-bearing magmatic hydrothermal systems, notably those of epithermal environments.

  9. Unimolecular reactivity of organotrifluoroborate anions, RBF3- , and their alkali metal cluster ions, M(RBF3 )2- (M = Na, K; R = CH3 , CH3 CH2 , CH3 (CH2 )3 , CH3 (CH2 )5 , c-C3 H5 , C6 H5 , C6 H5 CH2 , CH2 CHCH2 , CH2 CH, C6 H5 CO).

    PubMed

    Bathie, Fiona L B; Bowen, Chris J; Hutton, Craig A; O'Hair, Richard A J

    2018-07-15

    Potassium organotrifluoroborates (RBF 3 K) are important reagents used in organic synthesis. Although mass spectrometry is commonly used to confirm their molecular formulae, the gas-phase fragmentation reactions of organotrifluoroborates and their alkali metal cluster ions have not been previously reported. Negative-ion mode electrospray ionization (ESI) together with collision-induced dissociation (CID) using a triple quadrupole mass spectrometer were used to examine the fragmentation pathways for RBF 3 - (where R = CH 3 , CH 3 CH 2 , CH 3 (CH 2 ) 3 , CH 3 (CH 2 ) 5 , c-C 3 H 5 , C 6 H 5 , C 6 H 5 CH 2 , CH 2 CHCH 2 , CH 2 CH, C 6 H 5 CO) and M(RBF 3 ) 2 - (M = Na, K), while density functional theory (DFT) calculations at the M06/def2-TZVP level were used to examine the structures and energies associated with fragmentation reactions for R = Me and Ph. Upon CID, preferentially elimination of HF occurs for RBF 3 - ions for systems where R = an alkyl anion, whereas R - formation is favoured when R = a stabilized anion. At higher collision energies loss of F - and additional HF losses are sometimes observed. Upon CID of M(RBF 3 ) 2 - , formation of RBF 3 - is the preferred pathway with some fluoride transfer observed only when M = Na. The DFT-calculated relative thermochemistry for competing fragmentation pathways is consistent with the experiments. The main fragmentation pathways of RBF 3 - are HF elimination and/or R - loss. This contrasts with the fragmentation reactions of other organometallate anions, where reductive elimination, beta hydride transfer and bond homolysis are often observed. The presence of fluoride transfer upon CID of Na(RBF 3 ) 2 - but not K(RBF 3 ) 2 - is in agreement with the known fluoride affinities of Na + and K + and can be rationalized by Pearson's HSAB theory. Copyright © 2018 John Wiley & Sons, Ltd.

  10. Yb3O(OH)6Cl·2H2O: an anion-exchangeable hydroxide with a cationic inorganic framework structure.

    PubMed

    Goulding, Helen V; Hulse, Sarah E; Clegg, William; Harrington, Ross W; Playford, Helen Y; Walton, Richard I; Fogg, Andrew M

    2010-10-06

    The first anion-exchangeable framework hydroxide, Yb(3)O(OH)(6)Cl·2H(2)O, has been synthesized hydrothermally. This material has a three-dimensional cationic ytterbium oxyhydroxide framework with one-dimensional channels running through the structure in which the chloride anions and water molecules are located. The framework is thermally stable below 200 °C and can be reversibly dehydrated and rehydrated with no loss of crystallinity. Additionally, it is able to undergo anion-exchange reactions with small ions such as carbonate, oxalate, and succinate with retention of the framework structure.

  11. Tunneling chemical reactions D +H2→DH+H and D +DH→D2+H in solid D2-H2 and HD -H2 mixtures: An electron-spin-resonance study

    NASA Astrophysics Data System (ADS)

    Kumada, Takayuki

    2006-03-01

    Tunneling chemical reactions D +H2→DH+H and D +DH→D2+H in solid HD -H2 and D2-H2 mixtures were studied in the temperature range between 4 and 8K. These reactions were initiated by UV photolysis of DI molecules doped in these solids for 30s and followed by measuring the time course of electron-spin-resonance (ESR) intensities of D and H atoms. ESR intensity of D atoms produced by the photolysis decreases but that of H atoms increases with time. Time course of the D and H intensities has the fast and slow processes. The fast process, which finishes within ˜300s after the photolysis, is assigned to the reaction of D atom with one of its nearest-neighboring H2 molecules, D(H2)n(HD)12-n→H(H2)n-1(HD)13-n or D(H2)n(D2)12-n→H(HD )(H2)n-1(D2)12-n for 12⩾n⩾1. Rate constant for the D +H2 reaction between neighboring D atom-H2 molecule pair is determined to be (7.5±0.7)×10-3s-1 in solid HD -H2 and (1.3±0.3)×10-2s-1 in D2-H2 at 4.1K, which is very close to that calculated based on the theory of chemical reaction in gas phase by Hancock et al. [J. Chem. Phys. 91, 3492 (1989)] and Takayanagi and Sato [J. Chem. Phys. 92, 2862 (1990)]. This rate constant was found to be independent of temperature up to 7K within experimental error of ±30%. The slow process is assigned to the reaction of D atom produced in a cage fully surrounded by HD or D2 molecules, D(HD)12 or D(D2)12. This D atom undergoes the D +DH reaction with one of its nearest-neighboring HD molecules in solid HD -H2 or diffuses to the neighbor of H2 molecules to allow the D +H2 reaction in solid HD -H2 and D2-H2. The former is the main channel in solid HD -H2 below 6K where D atoms diffuse very slowly, whereas the latter dominates over the former above 6K. Rate for the reactions in the slow process is independent of temperature below 6K but increases with the increase in temperature above 6K. We found that the increase is due to the increase in hopping rate of D atoms to the neighbor of H2 molecules. Rate

  12. Working with "H2S": facts and apparent artifacts.

    PubMed

    Wedmann, Rudolf; Bertlein, Sarah; Macinkovic, Igor; Böltz, Sebastian; Miljkovic, Jan Lj; Muñoz, Luis E; Herrmann, Martin; Filipovic, Milos R

    2014-09-15

    Hydrogen sulfide (H2S) is an important signaling molecule with physiological endpoints similar to those of nitric oxide (NO). Growing interest in its physiological roles and pharmacological potential has led to large sets of contradictory data. The principle cause of these discrepancies can be the common neglect of some of the basic H2S chemistry. This study investigates how the experimental outcome when working with H2S depends on its source and dose and the methodology employed. We show that commercially available NaHS should be avoided and that traces of metal ions should be removed because these can reduce intramolecular disulfides and change protein structure. Furthermore, high H2S concentrations may lead to a complete inhibition of cell respiration, mitochondrial membrane potential depolarization and superoxide generation, which should be considered when discussing the biological effects observed upon treatment with high concentrations of H2S. In addition, we provide chemical evidence that H2S can directly react with superoxide. H2S is also capable of reducing cytochrome c(3+) with the concomitant formation of superoxide. H2S does not directly react with nitrite but with NO electrodes that detect H2S. In addition, H2S interferes with the Griess reaction and should therefore be removed from the solution by Cd(2+) or Zn(2+) precipitation prior to nitrite quantification. 2-Phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO) is reduced by H2S, and its use should be avoided in combination with H2S. All these constraints must be taken into account when working with H2S to ensure valid data. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Structural evolution of the [(CO2)n(H2O)]- cluster anions: quantifying the effect of hydration on the excess charge accommodation motif.

    PubMed

    Muraoka, Azusa; Inokuchi, Yoshiya; Hammer, Nathan I; Shin, Joong-Won; Johnson, Mark A; Nagata, Takashi

    2009-08-06

    The [(CO2)n(H2O)]- cluster anions are studied using infrared photodissociation (IPD) spectroscopy in the 2800-3800 cm(-1) range. The observed IPD spectra display a drastic change in the vibrational band features at n = 4, indicating a sharp discontinuity in the structural evolution of the monohydrated cluster anions. The n = 2 and 3 spectra are composed of a series of sharp bands around 3600 cm(-1), which are assignable to the stretching vibrations of H2O bound to C2O4- in a double ionic hydrogen-bonding (DIHB) configuration, as was previously discussed (J. Chem. Phys. 2005, 122, 094303). In the n > or = 4 spectrum, a pair of intense bands additionally appears at approximately 3300 cm(-1). With the aid of ab initio calculations at the MP2/6-31+G* level, the 3300 cm(-1) bands are assigned to the bending overtone and the hydrogen-bonded OH vibration of H2O bound to CO2- via a single O-H...O linkage. Thus, the structures of [(CO2)n(H2O)]- evolve with cluster size such that DIHB to C2O4- is favored in the smaller clusters with n = 2 and 3 whereas CO2- is preferentially stabilized via the formation of a single ionic hydrogen-bonding (SIHB) configuration in the larger clusters with n > or = 4.

  14. A new global analytical potential energy surface of NaH2+ system and dynamical calculation for H(2S) + NaH+(X2Σ+) → Na+(1S) + H2(X1Σg+) reaction

    NASA Astrophysics Data System (ADS)

    Yuan, Meiling; Li, Wentao; Yuan, Jiuchuang

    2018-05-01

    A new global potential energy surface (PES) of the NaH2+ system is constructed by fitting 27,621 ab initio energy points with the neural network method. The root mean square error of the new PES is only 4.1609 × 10-4 eV. Based on the new PES, dynamical calculations have been performed using the time-dependent quantum wave packet method. These results are then compared with the H(2S) + LiH+(X2Σ+) → Li+(1S) + H2(X1Σg+) reaction. The direct abstract mechanism is found to play an important role in the reaction because only forward scattering signals on the differential cross section results for all calculated collision energies.

  15. Xenobiotic metal-induced autoimmunity: mercury and silver differentially induce antinucleolar autoantibody production in susceptible H-2s, H-2q and H-2f mice

    PubMed Central

    Hansson, M; Abedi-Valugerdi, M

    2003-01-01

    Xenobiotic-metals such as mercury (Hg) and silver (Ag) induce an H-2 linked antinucleolar autoantibody (ANolA) production in susceptible mice. The mechanism for induction of ANolA synthesis is not well understood. However, it has been suggested that both metals interact with nucleolar proteins and reveal cryptic self-peptides to nontolerant autoreactive T cells, which in turn stimulate specific autoreactive B cells. In this study, we considered this suggestion and asked if mercury and silver display, if not identical, similar cryptic self-peptides, they would induce comparable ANolA responses in H-2 susceptible mice. We analysed the development of ANolA production in mercury- and/or silver-treated mice of H-2s, H-2q and H-2f genotypes. We found that while mercury stimulated ANolA synthesis in all strains tested, silver induced ANolA responses of lower magnitudes in only H-2s and H-2q mice, but not in H-2f mice. Resistance to silver in H-2f mice was independent of the dosage/time-period of silver-treatment and non-H-2 genes. Further studies showed that F1 hybrid crosses between silver-susceptible A.SW (H-2s) and -resistant A.CA (H-2f) mice were resistant to silver, but not mercury with regard to ANolA production. Additionally, the magnitudes of mercury-induced ANolA responses in the F1 hybrids were lower than those of their parental strains. The above differential ANolA responses to mercury and silver can be explained by various factors, including the different display of nucleolar cryptic peptides by these xenobiotics, determinant capture and coexistence of different MHC molecules. Our findings also suggest that the ability of a xenobiotic metal merely to create cryptic self-peptides may not be sufficient for the induction of an ANolA response. PMID:12605692

  16. Investigation of H2S separation from H2S/CH4 mixtures using functionalized and non-functionalized vertically aligned carbon nanotube membranes

    NASA Astrophysics Data System (ADS)

    Gilani, Neda; Towfighi, Jafar; Rashidi, Alimorad; Mohammadi, Toraj; Omidkhah, Mohammad Reza; Sadeghian, Ahmad

    2013-04-01

    Separation of H2S from binary mixtures of H2S/CH4 using vertically aligned carbon nanotube membranes fabricated in anodic aluminum oxide (AAO) template was studied experimentally. Carbon nanotubes (CNTs) were grown in five AAO templates with different pore diameters using chemical vapor deposition, and CNT/AAO membranes with tubular carbon nanotube structure and open caps were selected for separation of H2S. For this, two tubular CNT/AAO membranes were fabricated with the CNT inner diameters of 23 and 8 nm. It was found that permeability and selectivity of the membrane with inner diameter of 23 nm for CNT were independent of upstream feed pressure and H2S feed concentration unlike that of CNT having an inner diameter of 8 nm. Selectivity of these membranes for separation of H2S was obtained in the ranges of 1.36-1.58 and 2.11-2.86, for CNTs with internal diameters of 23 and 8 nm, respectively. In order to enhance the separation of H2S from H2S/CH4 mixtures, dodecylamine was used to functionalize the CNT/AAO membrane with higher selectivity. The results showed that for amido-functionalized membrane, both upstream feed pressure and H2S partial pressure in the feed significantly increased H2S permeability, and selectivity for H2S being in the range of 3.0-5.57 respectively.

  17. KCd2[N(CN)2]5(H2O)4: an enmeshed honeycomb grid.

    PubMed

    Schlueter, John A; Geiser, Urs; Funk, Kylee A

    2008-02-01

    The title compound, poly[potassium [diaquapenta-micro(2)-dicyanamido-dicadmium(II)] dihydrate], {K[Cd(2)(C(2)N(3))(5)(H(2)O)(2)].2H(2)O}(n), contains two-dimensional anionic sheets of {[Cd(2){N(CN)(2)}(H(2)O)(2)](-)}(n) with a modified (6,3)-net (layer group cm2m, No. 35). Two sets of equivalent sheets interpenetrate orthogonally to form a tetragonal enmeshed grid.

  18. FLYING-WATER Renewables-H2-H2O TERRAFORMING: PERMANENT Drought(s)-Elimination FOREVER!!!

    NASA Astrophysics Data System (ADS)

    Ertl, G.; Alefeld, G.; Youdelis, W.; Radd, H.; Oertle, G.; Siegel, Edward

    2011-03-01

    "H2O H2O everywhere; ne'er a drop to drink"[Coleridge(1798)]; now: "H2 H2 everywhere; STILL ne'er a drop to drink": ONLY H2 (or methane CH4) can be FLYING-WATER(F-W) chemical-rain-in-pipelines Hindenberg-effect (H2-UP;H2O-DOWN): {O/H2O}=[16]/[18] 90 % ; O already in air uphill; NO H2O pumping need! In global-warming driven H2O-starved glacial-melting world, rescue is possible ONLY by Siegel [{3rd Intl. Conf. Alt.-Energy }(1980)-vol.5/p.459!!!] Renewables-H2-H2O purposely flexible versatile agile customizable scaleable retrofitable integrated operating-system. Rosenfeld[Science 315,1396(3/9/2007)]-Biello [Sci.Am.(3/9/2007)] crucial geomorph-ology which ONLY maximal-buoyancy H2 can exploit, to again make "Mountains into Fountains", ``upthrust rocks trapping the clouds to precipitate their rain/snow/H2O'': "terraforming"(and ocean-rebasificaton!!!) Siegel proprietary magnetic-hydrogen-valve (MHV) permits H2 flow in already in-ground dense BCC/ferritic-steels pipelines-network (NO new infrastructure) counters Tromp[Science 300,1740(2003)] dire warning of global-pandemics (cancers/ blindness/famine) Hydrogen-economy CATASTROPHIC H2 ozone-layer destruction sobering cavat to dangerous H2-automotion-economy panacea hype!!!

  19. Synthesis, crystal structure and thermal study of the hybrid nickel sulfate: C6N2H16[Ni(H2O)6(SO4)2].2H2O

    NASA Astrophysics Data System (ADS)

    Ngopoh, F. A. I.; Hamdi, N.; Chaouch, S.; Lachkar, M.; da Silva, I.; El Bali, B.

    2018-03-01

    A new inorganic-organic hybrid open framework nickel sulfate C6N2H16[Ni(H2O)6(SO4)2].2H2O has been synthesized by slow evaporation in aqueous solution using trans-1,4-diaminocyclohexane as structure-directing agent. It was characterized by single-crystal X-ray diffraction, infrared spectroscopy and analyzed by TGA-DSC. The compound crystallizes in the monoclinic space group P21/n, with the unit cell parameters of a = 6.2586 Å, b = 12.3009 Å, c = 13.2451 Å, β = 98,047°, Z = 4. Its crystal structure consists of isolated polyhedrons [Ni(H2O)6]2+ and [SO4]2- and free water which connects through hydrogen bonds. This association results in the porous framework where the protonated organic molecule trans-1,4-diaminocyclohexane is located as a counter ion. The IR spectra Shows the bands corresponding to the sulfate anion, water molecule and diprotonated trans-1-4-diaminocyclohexane. Thermal study indicates the loss of water molecules and the degradation of trans-1-4-diaminocyclohexane.

  20. High-resolution photoelectron spectroscopy of TiO3H2-: Probing the TiO2- + H2O dissociative adduct

    NASA Astrophysics Data System (ADS)

    DeVine, Jessalyn A.; Abou Taka, Ali; Babin, Mark C.; Weichman, Marissa L.; Hratchian, Hrant P.; Neumark, Daniel M.

    2018-06-01

    Slow electron velocity-map imaging spectroscopy of cryogenically cooled TiO3H2- anions is used to probe the simplest titania/water reaction, TiO20/- + H2O. The resultant spectra show vibrationally resolved structure assigned to detachment from the cis-dihydroxide TiO(OH)2- geometry based on density functional theory calculations, demonstrating that for the reaction of the anionic TiO2- monomer with a single water molecule, the dissociative adduct (where the water is split) is energetically preferred over a molecularly adsorbed geometry. This work represents a significant improvement in resolution over previous measurements, yielding an electron affinity of 1.2529(4) eV as well as several vibrational frequencies for neutral TiO(OH)2. The energy resolution of the current results combined with photoelectron angular distributions reveals Herzberg-Teller coupling-induced transitions to Franck-Condon forbidden vibrational levels of the neutral ground state. A comparison to the previously measured spectrum of bare TiO2- indicates that reaction with water stabilizes neutral TiO2 more than the anion, providing insight into the fundamental chemical interactions between titania and water.

  1. Functionalization of liquid-exfoliated two-dimensional 2H-MoS2.

    PubMed

    Backes, Claudia; Berner, Nina C; Chen, Xin; Lafargue, Paul; LaPlace, Pierre; Freeley, Mark; Duesberg, Georg S; Coleman, Jonathan N; McDonald, Aidan R

    2015-02-23

    Layered two-dimensional (2D) inorganic transition-metal dichalchogenides (TMDs) have attracted great interest as a result of their potential application in optoelectronics, catalysis, and medicine. However, methods to functionalize and process such 2D TMDs remain scarce. We have established a facile route towards functionalized layered MoS2 . We found that the reaction of liquid-exfoliated 2D MoS2 , with M(OAc)2 salts (M=Ni, Cu, Zn; OAc=acetate) yielded functionalized MoS2 -M(OAc)2 materials. Importantly, this method furnished the 2H-polytype of MoS2 which is a semiconductor. X-ray photoelectron spectroscopy (XPS), diffuse reflectance infrared Fourier transform spectroscopy (DRIFT-IR), and thermogravimetric analysis (TGA) provide strong evidence for the coordination of MoS2 surface sulfur atoms to the M(OAc)2 salt. Interestingly, functionalization of 2H-MoS2 allows for its dispersion/processing in more conventional laboratory solvents. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Crystal structures of ZnCl2·2.5H2O, ZnCl2·3H2O and ZnCl2·4.5H2O

    PubMed Central

    Hennings, Erik; Schmidt, Horst; Voigt, Wolfgang

    2014-01-01

    The formation of different complexes in aqueous solutions is an important step in understanding the behavior of zinc chloride in water. The structure of concentrated ZnCl2 solutions is governed by coordination competition of Cl− and H2O around Zn2+. According to the solid–liquid phase diagram, the title compounds were crystallized below room temperature. The structure of ZnCl2·2.5H2O contains Zn2+ both in a tetra­hedral coordination with Cl− and in an octa­hedral environment defined by five water mol­ecules and one Cl− shared with the [ZnCl4]2− unit. Thus, these two different types of Zn2+ cations form isolated units with composition [Zn2Cl4(H2O)5] (penta­aqua-μ-chlorido-tri­chlorido­di­zinc). The trihydrate {hexa­aqua­zinc tetra­chlorido­zinc, [Zn(H2O)6][ZnCl4]}, consists of three different Zn2+ cations, one of which is tetra­hedrally coordinated by four Cl− anions. The two other Zn2+ cations are each located on an inversion centre and are octa­hedrally surrounded by water mol­ecules. The [ZnCl4] tetra­hedra and [Zn(H2O)6] octa­hedra are arranged in alternating rows parallel to [001]. The structure of the 4.5-hydrate {hexa­aqua­zinc tetra­chlorido­zinc trihydrate, [Zn(H2O)6][ZnCl4]·3H2O}, consists of isolated octa­hedral [Zn(H2O)6] and tetra­hedral [ZnCl4] units, as well as additional lattice water mol­ecules. O—H⋯O hydrogen bonds between the water mol­ecules as donor and ZnCl4 tetra­hedra and water mol­ecules as acceptor groups leads to the formation of a three-dimensional network in each of the three structures. PMID:25552980

  3. Diagnostic cyclisation reactions which follow phosphate transfer to carboxylate anion centres for energised [M-H]- anions of pTyr-containing peptides.

    PubMed

    Tran, T T Nha; Wang, Tianfang; Hack, Sandra; Bowie, John H

    2011-09-15

    The low-energy negative ion phosphoTyr to C-terminal -CO(2)PO(3)H(2) rearrangement occurs for energised peptide [M-H](-) anions even when there are seven amino acid residues between the pTyr and C-terminal amino acid residues. The rearranged C-terminal -CO(2)PO(2)H(O(-)) group effects characteristic S(N)i cyclisation/cleavage reactions. The most pronounced of these involves the electrophilic central backbone carbon of the penultimate amino acid residue. This reaction is aided by the intermediacy of an H-bonded intermediate in which the nucleophilic and electrophilic reaction centres are held in proximity in order for the S(N)i cyclisation/cleavage to proceed. The ΔG(reaction) is +184 kJ mol(-1) with the barrier to the S(N)i transition state being +240 kJ mol(-1) at the HF/6-31 + G(d)//AM1 level of theory. A similar phosphate rearrangement from pTyr to side chain CO(2)(-) (of Asp or Glu) may also occur for energised peptide [M-H](-) anions. The reaction is favourable: ΔG(reaction) is -44 kJ mol(-1) with a maximum barrier of +21 kJ mol(-1) (to the initial transition state) when Asp and Tyr are adjacent. The rearranged species R(1)-Tyr-NHCH(CH(2)CO(2)PO(3)H(-))COR(2) (R(1)  = CHO; R(2)  = OCH(3)) may undergo an S(N)i six-centred cyclisation/cleavage reaction to form the product anion R(1)-Tyr(NH(-)). This process has a high energy requirement [ΔG(reaction)  = +224 kJ mol(-1), with the barrier to the S(N)i transition state being +299 kJ mol(-1)]. Copyright © 2011 John Wiley & Sons, Ltd.

  4. Photoabsorption and photoionization cross sections of NH3, PH3, H2S, C2H2, and C2H4 in the VUV region

    NASA Technical Reports Server (NTRS)

    Xia, T. J.; Chien, T. S.; Wu, C. Y. Robert; Judge, D. L.

    1991-01-01

    Using synchrotron radiation as a continuum light source, the photoabsorption and photoionization cross sections of NH3, PH3, H2S, C2H2, and C2H4 have been measured from their respective ionization thresholds to 1060 A. The vibrational constants associated with the nu(2) totally symmetric, out-of-plane bending vibration of the ground electronic state of PH3(+) have been obtained. The cross sections and quantum yields for producing neutral products through photoexcitation of these molecules in the given spectral regions have also been determined. In the present work, autoionization processes were found to be less important than dissociation and predissociation processes in NH3, PH3, and C2H4. Several experimental techniques have been employed in order to examine the various possible systematic errors critically.

  5. FLYING-WATER Renewables-H2-H2O TERRAFORMING: PERMANENT Drought(s)-Elimination FOREVER!!!

    NASA Astrophysics Data System (ADS)

    Lyons, M.; Siegel, E.

    2010-03-01

    ``Water water everywhere; ne'er a drop to drink''[Coleridg(1798)]; now:``Hydrogen hydrogen everywhere;STILL ne'er a drop to drink'': ONLY H2 can be ``FLYING-WATER''/``chemical-rain-in-pipelines''/ ``Hindenberg-effect (H2-UP;H2O-DOWN): atomic-weights ratio: O/H2O=[16]/[18]˜90%; O already in air uphill; NO H2O pumping need! In water-starved glacial-melting world, rescue ONLY by Siegel[3rd Intl.Conf.Alt.Energy,Hemisphere/Springer(1980)- vol.5/ p.459]Renewables-H2-H2O purposely flexible versatile agile customizable scaleable retrofitable integrated operating- system. Rosenfeld[Sci.315,1396(3/9/2007)]-Biello[Sci.Am.(3/9/ 2007)]crucial geomorphology which ONLY maximal-buoyancy light- est-element H2 can exploit, to again make ``Mountains into Fount- ains": Siegel ``terra-forming''(and ocean-rebasificaton!!!) long pre-``Holdren''-``Ciccerine" ``geo-enginering'', only via Siegel proprietary magnetic-hydrogen-valve permits H2 flow in already in-ground dense BCC/ferritic-steels pipelines-network (NO new infrastructure) counters Tromp[Sci.300,1740(03)]global-pandemics (cancers/blindness/famine)dire-warning about H2-(ALONE)economy CATASTROPHIC H2 ozone-layer destruction sobering cavat to dangerous H2-automotion-economy panacea hype!

  6. Effect of acetate and nitrate anions on the molecular structure of 3-(hydroxyimino)-2-butanone-2-(1H-benzimidazol-2-yl)hydrazone

    NASA Astrophysics Data System (ADS)

    Kamat, Vinayak; Naik, Krishna; Revankar, Vidyanand K.

    2017-04-01

    A novel Schiff base ligand 3-(hydroxyimino)-2-butanone-2-(1H-benzimidazol-2-yl)hydrazone has been synthesized by the condensation reaction of 2-Hydrazinobenzimidazole with diacetyl monoxime in presence of acetic acid catalyst. The ligand has crystallized as its acetate salt, due to the charge-assisted hydrogen bonding between protonated benzimidazole ring and acetate anion. Efforts to synthesize the zinc(II) complex of the title compound, has resulted in the formation of a nitrate salt of the ligand, instead of coordination complex of zinc(II). Acetate salt has crystallized in monoclinic P 21/n, while the nitrate salt has crystallized in a triclinic crystal system with P -1 space group. Hirshfeld surface analysis is presented for both of the crystal structures. Structures of synthesized molecules are even computationally optimized using DFT. A comparative structural approach between the synthesized molecules and DFT optimized structure of bare ligand without any counterions is analyzed in terms of bond parameters. Hydrogen bonding is explained keeping the anions as the central dogma. Mass fragmentation pattern of the organic molecule and comparative account of IR, 1H and 13C NMR chemical shifts are also presented. Compounds are screened for their antibacterial and antifungal potencies against few pathogenic microorganisms. The organic motif is found be an excellent antifungal agent.

  7. Poisoning of Ni-Based anode for proton conducting SOFC by H2S, CO2, and H2O as fuel contaminants

    NASA Astrophysics Data System (ADS)

    Sun, Shichen; Awadallah, Osama; Cheng, Zhe

    2018-02-01

    It is well known that conventional solid oxide fuel cells (SOFCs) based on oxide ion conducting electrolyte (e.g., yttria-stabilized zirconia, YSZ) and nickel (Ni) - ceramic cermet anodes are susceptible to poisoning by trace amount of hydrogen sulfide (H2S) while not significantly impacted by the presence of carbon dioxide (CO2) and moisture (H2O) in the fuel stream unless under extreme operating conditions. In comparison, the impacts of H2S, CO2, and H2O on proton-conducting SOFCs remain largely unexplored. This study aims at revealing the poisoning behaviors caused by H2S, CO2, and H2O for proton-conducting SOFCs. Anode-supported proton-conducting SOFCs with BaZe0.1Ce0.7Y0.1Yb0.1O3 (BZCYYb) electrolyte and Ni-BZCYYb anode and La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) cathode as well as Ni-BZCYYb/BZCYYb/Ni-BZCYYb anode symmetrical cells were subjected to low ppm-level H2S or low percentage-level CO2 or H2O in the hydrogen fuel, and the responses in cell electrochemical behaviors were recorded. The results suggest that, contrary to conventional SOFCs that show sulfur poisoning and CO2 and H2O tolerance, such proton-conducting SOFCs with Ni-BZCYYb cermet anode seem to be poisoned by all three types of "contaminants". Beyond that, the implications of the experimental observations on understanding the fundamental mechanism of anode hydrogen electrochemical oxidation reaction in proton conducting SOFCs are also discussed.

  8. Broadening of spectral lines of CO2, N2O , H2CO, HCN, and H2S by pressure of gases dominant in planetary atmospheres (H2, He and CO2)

    NASA Astrophysics Data System (ADS)

    Samuels, Shanelle; Gordon, Iouli; Tan, Yan

    2018-01-01

    HITRAN1,2 is a compilation of spectroscopic parameters that a variety of computer codes use to predict and simulate the transmission and emission of light in planetary atmospheres. The goal of this project is to add to the potential of the HITRAN database towards the exploration of the planetary atmospheres by including parameters describing broadening of spectral lines by H2, CO2, and He. These spectroscopic data are very important for the study of the hydrogen and helium-rich atmospheres of gas giants as well as rocky planets with volcanic activities, including Venus and Mars, since their atmospheres are dominated by CO2. First step in this direction was accomplished by Wilzewski et al.3 where this was done for SO2, NH3, HF, HCl, OCS and C2H2. The molecules investigated in this work were CO2, N2O, H2CO, HCN and H2S. Line-broadening coefficients, line shifts and temperature-dependence exponents for transitions of these molecules perturbed by H2, CO2 and He have been assembled from available peer-reviewed experimental and theoretical sources. The data was evaluated and the database was populated with these data and their extrapolations/interpolations using semi-empirical models that were developed to this end.Acknowledgements: Financial support from NASA PDART grant NNX16AG51G and the Smithsonian Astrophysical Observatory Latino Initiative Program from the Latino Initiatives Pool, administered by the Smithsonian Latino Center is gratefully acknowledged.References: 1. HITRAN online http://hitran.org/2. Gordon, I.E., Rothman, L.S., Hill, C., Kochanov, R.V., Tan, Y., et al., 2017. The HITRAN2016 Molecular Spectroscopic Database. J. Quant. Spectrosc. Radiat. Transf. doi:10.1016/j.jqsrt.2017.06.0383. Wilzewski, J.S., Gordon, I.E., Kochanov, R. V., Hill, C., Rothman, L.S., 2016. H2, He, and CO2 line-broadening coefficients, pressure shifts and temperature-dependence exponents for the HITRAN database. Part 1: SO2, NH3, HF, HCl, OCS and C2H2. J. Quant. Spectrosc. Radiat

  9. Vibrational mode frequencies of H2S and H2O adsorbed on Ge(0 0 1)-(2 × 1) surfaces

    NASA Astrophysics Data System (ADS)

    Hartnett, M.; Fahy, S.

    2015-02-01

    The equilibrium geometry and vibrational modes of H2S and H2O-terminated Ge(0 0 1)-(2 × 1) surfaces are calculated in a supercell approach using first-principles density functional theory in the local density (LDA), generalized gradient (GGA) approximations and van der Waals (vdW) interactions. Mode frequencies are found using the frozen phonon method. For the H2S-passivated surface, the calculated frequencies in LDA (GGA) are 2429 cm-1 (2490) for the Hsbnd S stretch mode, 712 cm-1 (706) for the Hsbnd S bond bending mode, 377 cm-1 (36) for the Gesbnd S stretch mode and 328 cm-1 (337) for Hsbnd S wag mode. Frequencies for the H2O passivated surface are 3590 cm-1 (3600) for the Hsbnd O stretch mode, 921 cm-1 (947) for the bending mode, 609 cm-1 (559) for the Gesbnd O stretch, 1995 cm-1 (1991) for the Gesbnd H stretch mode, 498 cm-1 (478) for the Gesbnd H bending mode and 342 cm-1 (336) for the Hsbnd O wag mode. The differences between the functionals including vdW terms and the LDA or GGA are less than the differences between LDA and GGA for the vibrational mode frequencies.

  10. Di­hydro­cyclam dimaleate [H2(cyclam)(maleate)2

    PubMed Central

    Mireille Ninon, Mbonzi Ombenga; Fahim, Mohammed; Lachkar, Mohammed; Marco Contelles, José Luis; Perles, Josefina; El Bali, Brahim

    2013-01-01

    The asymmetric unit of the title mol­ecular salt [systematic name: 1,4,8,11-tetraazacyclotetradecane-1,8-diium bis(3-carboxy­prop-2-enoate)], C10H26N4 22C4H3O4 −, contains two half-cations (both completed by crystallographic inversion symmetry) and two maleate anions. The cyclam macrocycles adopt trans-III conformations, supported by two intra­molecular N—H⋯O hydrogen bonds. The O-bonded H atom of each maleate ion is disordered over two positions with an occupancy ratio of 0.61 (5):0.39 (5): each one generates an intra­molecular O—H⋯O hydrogen bond. In the crystal, the cations are linked to the anions by N—H⋯O hydrogen bonds, generating [001] chains. PMID:24098252

  11. pH-sensitive interaction of HMG-CoA reductase inhibitors (statins) with organic anion transporting polypeptide 2B1.

    PubMed

    Varma, Manthena V; Rotter, Charles J; Chupka, Jonathan; Whalen, Kevin M; Duignan, David B; Feng, Bo; Litchfield, John; Goosen, Theunis C; El-Kattan, Ayman F

    2011-08-01

    The human organic anion transporting polypeptide 2B1 (OATP2B1, SLCO2B1) is ubiquitously expressed and may play an important role in the disposition of xenobiotics. The present study aimed to examine the role of OATP2B1 in the intestinal absorption and tissue uptake of 3-hydroxy-3-methylglutaryl-Coenzyme A (HMG-CoA) reductase inhibitors (statins). We first investigated the functional affinity of statins to the transporter as a function of extracellular pH, using OATP2B1-transfeced HEK293 cells. The results indicate that OATP2B1-mediated transport is significant for rosuvastatin, fluvastatin and atorvastatin, at neutral pH. However, OATP2B1 showed broader substrate specificity as well as enhanced transporter activity at acidic pH. Furthermore, uptake at acidic pH was diminished in the presence of proton ionophore, suggesting proton gradient as the driving force for OATP2B1 activity. Notably, passive transport rates are predominant or comparable to active transport rates for statins, except for rosuvastatin and fluvastatin. Second, we studied the effect of OATP modulators on statin uptake. At pH 6.0, OATP2B1-mediated transport of atorvastatin and cerivastatin was not inhibitable, while rosuvastatin transport was inhibited by E-3-S, rifamycin SV and cyclosporine with IC(50) values of 19.7 ± 3.3 μM, 0.53 ± 0.2 μM and 2.2 ± 0.4 μM, respectively. Rifamycin SV inhibited OATP2B1-mediated transport of E-3-S and rosuvastatin with similar IC(50) values at pH 6.0 and 7.4, suggesting that the inhibitor affinity is not pH-dependent. Finally, we noted that OATP2B1-mediated transport of E-3-S, but not rosuvastatin, is pH sensitive in intestinal epithelial (Caco-2) cells. However, uptake of E-3-S and rosuvastatin by Caco-2 cells was diminished in the presence of proton ionophore. The present results indicate that OATP2B1 may be involved in the tissue uptake of rosuvastatin and fluvastatin, while OATP2B1 may play a significant role in the intestinal absorption of several

  12. Etude des mécanismes d'ionisation de H{2}O par interaction He^{*}(2 ^1S, 2 ^3S)/Ne^{*}(^3P{0}, ^3P{2})+H{2}O

    NASA Astrophysics Data System (ADS)

    Le Nadan, André; Sinou, Guillaume; Tuffin, Firmin

    1993-06-01

    Experimental observations of Penning ionisation of H{2}O by the helium metastables 21S and 23S and by the neon metastables ^3P{0} and ^3P{2} are reported. The kinetic energies of the ions created during the collision process (both parent and fragment) are analysed. Certain particularities of the experimental results are explained by involving the hypothesis of transfers of vibrational energy to kinetic energy. Furthermore, the forms of the energy distributions of the fragment ions are explained by th predissociation of the ^2B{2} state of H{2}O+. Nous avons étudié l'ionisation Penning de H{2}O par des métastables 21S et 23S de l'hélium, ainsi que ^3P{0} et ^3P{2} du néon. Nous avons analysé l'énergie cinétique des ions créés au cours de la collision (parents et fragments). Afin d'interpréter certaines particularités expérimentales, l'hypothèse de transferts d'énergie de vibration en énergie cinétique est proposées. Par ailleurs, les caractéristiques des distributions en énergie des ions fragments sont expliquées par la prédissociation de l'état ^2B{2} de H{2}O+.

  13. H2S and polysulfide metabolism: Conventional and unconventional pathways.

    PubMed

    Olson, Kenneth R

    2018-03-01

    It is now well established that hydrogen sulfide (H 2 S) is an effector of a wide variety of physiological processes. It is also clear that many of the effects of H 2 S are mediated through reactions with cysteine sulfur on regulatory proteins and most of these are not mediated directly by H 2 S but require prior oxidation of H 2 S and the formation of per- and polysulfides (H 2 S n , n = 2-8). Attendant with understanding the regulatory functions of H 2 S and H 2 S n is an appreciation of the mechanisms that control, i.e., both increase and decrease, their production and catabolism. Although a number of standard "conventional" pathways have been described and well characterized, novel "unconventional" pathways are continuously being identified. This review summarizes our current knowledge of both the conventional and unconventional. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Frequency Comb Assisted IR Measurements of H_3^+, H_2D^+ and D_2H^+ Transitions

    NASA Astrophysics Data System (ADS)

    Jusko, Pavol; Asvany, Oskar; Schlemmer, Stephan

    2016-06-01

    We present recent measurements of the fundamental transitions of H_3^+, H_2D^+ and D_2H^+ in a 4 K 22-pole trap by action spectroscopic techniques. Either Laser Induced Inhibition of Cluster Growth (He attachment at T≈4 K), endothermic reaction of H_3^+ with O_2, or deuterium exchange has been used as measurement scheme. We used a 3 μm optical parametric oscillator coupled to a frequency comb in order to achieve accuracy generally below 1 MHz. Five transitions of H_3^+, eleven of H_2D^+ and ten of D_2H^+ were recorder in our spectral range. We compare our H_3^+ results with two previous frequency comb assisted works. Moreover, accurate determination of the frequency allows us to predict pure rotational transitions for H_2D^+ and D_2H^+ in the THz range. P. Jusko, C. Konietzko, S. Schlemmer, O. Asvany, J. Mol. Spec. 319 (2016) 55 O. Asvany, S. Brünken, L. Kluge, S. Schlemmer, Appl. Phys. B 114 (2014) 203 O. Asvany, J. Krieg, S. Schlemmer, Rev. Sci. Instr. 83 (2012) 093110 J.N. Hodges, A.J. Perry, P.A. Jenkins, B.M. Siller, B.J. McCall, J. Chem. Phys. 139 (2013) 164201 H.-C. Chen, C.-Y. Hsiao, J.-L. Peng, T. Amano, J.-T. Shy, Phys. Rev. Lett. 109 (2012) 263002

  15. Quantum and quasiclassical dynamics of the multi-channel H + H2S reaction.

    PubMed

    Qi, Ji; Lu, Dandan; Song, Hongwei; Li, Jun; Yang, Minghui

    2017-03-28

    The prototypical multi-channel reaction H + H 2 SH 2 + SH/H + H 2 S has been investigated using the full-dimensional quantum scattering and quasi-classical trajectory methods to unveil the underlying competition mechanism between different product channels and the mode specificity. This reaction favors the abstraction channel over the exchange channel. For both channels, excitations in the two stretching modes promote the reaction with nearly equal efficiency and are more efficient than the bending mode excitation. However, they are all less efficient than the translational energy. In addition, the experimentally observed non-Arrhenius temperature dependence of the thermal rate constants is reasonably reproduced by the quantum dynamics calculations, confirming that the non-Arrhenius behavior is caused by the pronounced quantum tunneling.

  16. Specific IgE to peanut 2S albumin Ara h 7 has a discriminative ability comparable to Ara h 2 and 6.

    PubMed

    Blankestijn, M A; Otten, H G; Suer, W; Weimann, A; Knol, E F; Knulst, A C

    2018-01-01

    Little is known on the clinical relevance of peanut 2S albumin Ara h 7. To investigate the discriminative ability of Ara h 7 in peanut allergy and assess the role of cross-reactivity between Ara h 2, 6 and Ara h 7 isoforms. Sensitization to recombinant peanut storage proteins Ara h 1, 2, 3, 6, and 7 was assessed using a line blot in sera from 40 peanut-tolerant and 40 peanut-allergic patients, based on food challenge outcome. A dose-dependent ELISA inhibition experiment was performed with recombinant Ara h 2, 6 and Ara h 7 isoforms. For Ara h 7.0201, an area under the ROC curve was found of 0.83, comparable to Ara h 2 (AUC 0.81) and Ara h 6 (AUC 0.85). Ara h 7 intensity values strongly correlated with those from Ara h 2 and 6 (r s = 0.81). Of all patients sensitized to 2S albumins Ara h 2, 6, or 7, the majority was co-sensitized to all three (n = 24, 68%), although mono-sensitization to either 2S albumin was also observed in selected patients (Ara h 2: n = 6, 17%; Ara h 6: n = 2, 6%; Ara h 7: n = 2, 6%). Binding to Ara h 7.0101 could be strongly inhibited by Ara h 7.0201, but not the other way around. Specific IgE against Ara h 7.0201 has a predictive ability for peanut allergy similar to Ara h 2 and 6 and possesses unique IgE epitopes as well as epitopes shared between the other Ara h 7 isoform and Ara h 2 and 6. While co-sensitization to all three 2S albumins is most common, mono-sensitization to either Ara h 2, 6, or 7 occurs in selected patients, leading to a risk of misdiagnosis when testing for a single 2S albumin. © 2017 John Wiley & Sons Ltd.

  17. Endogenous mitigation of H2S inside of the landfills.

    PubMed

    Fang, Yuan; Zhong, Zhong; Shen, Dongsheng; Du, Yao; Xu, Jing; Long, Yuyang

    2016-02-01

    Vast quantities of hydrogen sulfide (H2S) emitted from landfill sites require urgent disposal. The current study focused on source control and examined the migration and conversion behavior of sulfur compounds in two lab-scale simulated landfills with different operation modes. It aimed to explore the possible strategies and mechanisms for H2S endogenous mitigation inside of landfills during decomposition. It was found that the strength of H2S emissions from the landfill sites was dependent on the municipal solid waste (MSW) degradation speed and vertical distribution of sulfide. Leachate recirculation can shorten both the H2S influence period and pollution risk to the surrounding environment. H2S endogenous mitigation may be achieved by chemical oxidation, biological oxidation, adsorption, and/or precipitation in different stages. Migration and conversion mainly affected H2S release behavior during the initial stabilization phase in the landfill. Microbial activities related to sulfur, nitrogen, and iron can further promote H2S endogenous mitigation during the high reducing phase. Thus, H2S endogenous mitigation can be effectively enhanced via control of the aforementioned processes.

  18. Rapid fluctuations in the northern Baltic Sea H2S layer

    NASA Astrophysics Data System (ADS)

    Kankaanpää, Harri T.; Virtasalo, Joonas J.

    2017-12-01

    Hydrogen sulfide (H2S) is linked to water quality deterioration in the Baltic Sea, with widespread seafloor hypoxia. We examined the vertical and temporal variability of in situ [H2S], oxygen concentration ([O2]), temperature (T) and pH at weekly, hourly and minute intervals at 13 locations in the western Gulf of Finland in 2013-2014. The main target was the 60-100 m water depth range, containing 3.2-290 μM O2 and 6.3-22.6 μM H2S. Where gas was detected by acoustic surveys, the structure of the H2S layer was more complex compared to stations devoid of gas. Local minima and maxima in pH frequently occurred near the H2S upper boundary (redox transition zone). Except for the homogeneous, tranquil zone above the seafloor at some stations, substantial rapid changes in hydrographic conditions were common. Typically, a layer of marked temporal T variability was present atop or within the topmost H2S layers. The largest temporal changes over a weekly period were - 0.44 °C/- 10.8 μM H2S/- 0.12 pH units (at seafloor level), + 0.18 °C/+7.9 μM H2S between casts (1 h) and + 0.03 °C/- 2.5 μM H2S per minute (high resolution logging). Abrupt [H2S] changes were recorded at two stations with sediments containing free gas. The T and [H2S] changes were synchronous at several layers, reflecting water movement. We conclude that rapid changes occur in hydrographic conditions in the near-bottom H2S layer in the northern Baltic Sea, especially at locations where free gas is present in the underlying sediments.

  19. First-principles characterization of potassium intercalation in the hexagonal 2H-MoS2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersen, Amity; Kathmann, Shawn M.; Lilga, Michael A.

    2012-01-12

    Periodic density functional theory calculations were performed to study the structural and electronic properties of potassium intercalated into hexagonal MoS{sub 2} (2H-MoS{sub 2}). Metallic potassium (K) atoms are incrementally loaded in the hexagonal sites of the interstitial spaces between MoS2 sheets of the 2H-MoS{sub 2} bulk structure generating 2H-KxMoS2 (0.125 {<=} x {<=} 1.0) structures. To accommodate the potassium atoms, the interstitial spacing c parameter in the 2H-MoS{sub 2} bulk expands from 12.816 {angstrom} in 2H-MoS{sub 2} to 16.086 {angstrom} in 2H-K{sub 0.125}MoS{sub 2}. The second lowest potassium loading concentration (K{sub 0.25}MoS{sub 2}) results in the largest interstitial spacing expansionmore » (to c = 16.726 {angstrom}). Our calculations show that there is a small gradual contraction of the interstitial spacing as the potassium loading increases with c = 14.839 {angstrom} for KMoS{sub 2}. This interstitial contraction is correlated with an in-plane expansion of the MoS{sub 2} sheets, which is in good agreement with experimental X-ray diffraction (XRD) measurements. The electronic analysis shows that potassium readily donates its 4s electron to the conduction band of the 2H-K{sub x}MoS{sub 2}, and is largely ionic in character. As a result of the electron donation, the 2H-K{sub x}MoS{sub 2} system changes from a semiconductor to a more metallic system with increasing potassium intercalation. For loadings 0.25 {<=} x {<=} 0.625, triangular Mo-Mo-Mo moieties are prominent and tend to form rhombitrihexagonal motifs. Intercalation of H{sub 2}O molecules that solvate the K atoms is likely to occur in catalytic conditions. The inclusion of two H{sub 2}O molecules per K atom in the K{sub 0.25}MoS{sub 2} structure shows good agreement with XRD measurements.« less

  20. [H{sub 2}en]{sub 2}{l_brace}La{sub 2}M(SO{sub 4}){sub 6}(H{sub 2}O){sub 2}{r_brace} (M=Co, Ni): First organically templated 3d-4f mixed metal sulfates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan Yanping; Wang Ruiyao; Kong Deyuan

    2005-06-15

    The first organically templated 3d-4f mixed metal sulfates, [H{sub 2}en]{sub 2}{l_brace}La{sub 2}M(SO{sub 4}){sub 6}(H{sub 2}O){sub 2}{r_brace} (M=Co 1, Ni 2) have been synthesized and structurally determined from non-merohedrally twinned crystals. The two compounds are isostructural and their structures feature a three-dimensional anionic network formed by the lanthanum(III) and nickel(II) ions bridged by sulfate anions. The La(III) ions in both compounds are 10-coordinated by four sulfate anions in bidentate chelating fashion, and two sulfate anions in a unidentate fashion. The transition metal(II) ion is octahedrally coordinated by six oxygens from four sulfate anions and two aqua ligands. The doubly protonated enthylenediaminemore » cations are located at the tunnels formed by 8-membered rings (four La and four sulfate anions)« less

  1. Hydrogen sulfide (H 2S) in urban ambient air

    NASA Astrophysics Data System (ADS)

    Kourtidis, K.; Kelesis, A.; Petrakakis, M.

    Despite indications of high hydrogen sulfide levels in some urban environments, only sparse measurements have been reported in the literature. Here we present one full year of hydrogen sulfide measurements in an urban traffic site in the city of Thessaloniki, Greece. In this 1-million-population city the H 2S concentrations were surprisingly high, with a mean annual concentration of 8 μg m -3 and wintertime mean monthly concentrations up to 20 μg m -3 (12.9 ppb). Daily mean concentrations in the winter were up to 30 μg m -3 (19.3 ppb), while hourly concentrations were up to 54 μg m -3 (34.8 ppb). During calm (wind velocity < 0.5 m s -1) conditions, mainly encountered during night-time hours, hourly values of H 2S were highly correlated with those of CO ( r2 = 0.75) and SO 2 ( r2 = 0.70), pointing to a common traffic source from catalytic converters. Annual mean concentrations are above the WHO recommendation for odor annoyance; hence, H 2S might play a role to the malodorous episodes that the city occasionally experiences. The high ambient H 2S levels might also be relevant to the implementation of preservation efforts for outdoor marble and limestone historical monuments that have been targeting SO 2 emissions as an atmospheric acidity source, since the measurements presented here suggest that about 19% of the annual sulfur (SO 2 + H 2S) emissions in Thessaloniki are in the form of H 2S.

  2. Tunneling chemical reactions D+H{sub 2}{yields}DH+H and D+DH{yields}D{sub 2}+H in solid D{sub 2}-H{sub 2} and HD-H{sub 2} mixtures: An electron-spin-resonance study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumada, Takayuki

    2006-03-07

    Tunneling chemical reactions D+H{sub 2}{yields}DH+H and D+DH{yields}D{sub 2}+H in solid HD-H{sub 2} and D{sub 2}-H{sub 2} mixtures were studied in the temperature range between 4 and 8 K. These reactions were initiated by UV photolysis of DI molecules doped in these solids for 30 s and followed by measuring the time course of electron-spin-resonance (ESR) intensities of D and H atoms. ESR intensity of D atoms produced by the photolysis decreases but that of H atoms increases with time. Time course of the D and H intensities has the fast and slow processes. The fast process, which finishes within {approx}300more » s after the photolysis, is assigned to the reaction of D atom with one of its nearest-neighboring H{sub 2} molecules, D(H{sub 2}){sub n}(HD){sub 12-n}{yields}H(H{sub 2}){sub n-1}(HD){sub 13-n} or D(H{sub 2}){sub n}(D{sub 2}){sub 12-n}{yields}H(HD)(H{sub 2}){sub n-1}(D{sub 2}){sub 12-n} for 12{>=}n{>=}1. Rate constant for the D+H{sub 2} reaction between neighboring D atom-H{sub 2} molecule pair is determined to be (7.5{+-}0.7)x10{sup -3} s{sup -1} in solid HD-H{sub 2} and (1.3{+-}0.3)x10{sup -2} s{sup -1} in D{sub 2}-H{sub 2} at 4.1 K, which is very close to that calculated based on the theory of chemical reaction in gas phase by Hancock et al. [J. Chem. Phys. 91, 3492 (1989)] and Takayanagi and Sato [J. Chem. Phys. 92, 2862 (1990)]. This rate constant was found to be independent of temperature up to 7 K within experimental error of {+-}30%. The slow process is assigned to the reaction of D atom produced in a cage fully surrounded by HD or D{sub 2} molecules, D(HD){sub 12} or D(D{sub 2}){sub 12}. This D atom undergoes the D+DH reaction with one of its nearest-neighboring HD molecules in solid HD-H{sub 2} or diffuses to the neighbor of H{sub 2} molecules to allow the D+H{sub 2} reaction in solid HD-H{sub 2} and D{sub 2}-H{sub 2}. The former is the main channel in solid HD-H{sub 2} below 6 K where D atoms diffuse very slowly, whereas the latter dominates

  3. Carbon Incorporation and Anion Dynamics as Synergistic Drivers for Ultrafast Diffusion in Superionic LiCB 11H 12 and NaCB 11H 12

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dimitrievska, Mirjana; Shea, Patrick; Kweon, Kyoung E.

    The disordered phases ofLiCB 11H 12 and NaCB 11H 12 possess superb superionic conductivities that make them suitable as solid electrolytes. In these materials, cation diffusion correlates with high orientational mobilities of the CB 11H 12 - anions; however, the precise relationship has yet to be demonstrated. In this work, ab initio molecular dynamics and quasielastic neutron scattering are combined to probe anion reorientations and their mechanistic connection to cation mobility over a range of timescales and temperatures. It is found that anions do not rotate freely, but rather transition rapidly between orientations defined by the cation sublattice symmetry. Themore » symmetry-breaking carbon atom in CB 11H 12 - also plays a critical role by perturbing the energy landscape along the instantaneous orientation of the anion dipole, which couples fluctuations in the cation probability density directly to the anion motion. Anion reorientation rates exceed 3 x 10 10 s -1, suggesting the underlying energy landscape fluctuates dynamically on diffusion-relevant timescales. Furthermore, carbon is found to modify the orientational preferences of the anions and aid rotational mobility, creating additional symmetry incompatibilities that inhibit ordering. The results suggest that synergy between the anion reorientational dynamics and the carbon-modified cation-anion interaction accounts for the higher ionic conductivity in CB 11H 12 - salts compared with B 12H 12 2-.« less

  4. Carbon Incorporation and Anion Dynamics as Synergistic Drivers for Ultrafast Diffusion in Superionic LiCB 11H 12 and NaCB 11H 12

    DOE PAGES

    Dimitrievska, Mirjana; Shea, Patrick; Kweon, Kyoung E.; ...

    2018-02-20

    The disordered phases ofLiCB 11H 12 and NaCB 11H 12 possess superb superionic conductivities that make them suitable as solid electrolytes. In these materials, cation diffusion correlates with high orientational mobilities of the CB 11H 12 - anions; however, the precise relationship has yet to be demonstrated. In this work, ab initio molecular dynamics and quasielastic neutron scattering are combined to probe anion reorientations and their mechanistic connection to cation mobility over a range of timescales and temperatures. It is found that anions do not rotate freely, but rather transition rapidly between orientations defined by the cation sublattice symmetry. Themore » symmetry-breaking carbon atom in CB 11H 12 - also plays a critical role by perturbing the energy landscape along the instantaneous orientation of the anion dipole, which couples fluctuations in the cation probability density directly to the anion motion. Anion reorientation rates exceed 3 x 10 10 s -1, suggesting the underlying energy landscape fluctuates dynamically on diffusion-relevant timescales. Furthermore, carbon is found to modify the orientational preferences of the anions and aid rotational mobility, creating additional symmetry incompatibilities that inhibit ordering. The results suggest that synergy between the anion reorientational dynamics and the carbon-modified cation-anion interaction accounts for the higher ionic conductivity in CB 11H 12 - salts compared with B 12H 12 2-.« less

  5. Pressure-induced superconductivity in H2-containing hydride PbH4(H2)2

    PubMed Central

    Cheng, Ya; Zhang, Chao; Wang, Tingting; Zhong, Guohua; Yang, Chunlei; Chen, Xiao-Jia; Lin, Hai-Qing

    2015-01-01

    High pressure structure, stability, metallization, and superconductivity of PbH4(H2)2, a H2-containing compound combining one of the heaviest elements with the lightest element, are investigated by the first-principles calculations. The metallic character is found over the whole studied pressure range, although PbH4(H2)2 is metastable and easily decompose at low pressure. The decomposition pressure point of 133 GPa is predicted above which PbH4(H2)2 is stable both thermodynamically and dynamically with the C2/m symmetry. Interestedly, all hydrogen atoms pairwise couple into H2 quasi-molecules and remain this style up to 400 GPa in the C2/m structure. At high-pressure, PbH4(H2)2 tends to form the Pb-H2 alloy. The superconductivity of Tc firstly rising and then falling is observed in the C2/m PbH4(H2)2. The maximum of Tc is about 107 K at 230 GPa. The softening of intermediate-frequency phonon induced by more inserted H2 molecules is the main origin of the high Tc. The results obtained represent a significant step toward the understanding of the high pressure behavior of metallic hydrogen and hydrogen-rich materials, which is helpful for obtaining the higher Tc. PMID:26559369

  6. Predicting possible effects of H2S impurity on CO2 transportation and geological storage.

    PubMed

    Ji, Xiaoyan; Zhu, Chen

    2013-01-02

    For CO(2) geological storage, permitting impurities, such as H(2)S, in CO(2) streams can lead to a great potential for capital and energy savings for CO(2) capture and separation, but it also increases costs and risk management for transportation and storage. To evaluate the cost-benefits, using a recently developed model (Ji, X.; Zhu, C. Geochim. Cosmochim. Acta 2012, 91, 40-59), this study predicts phase equilibria and thermodynamic properties of the system H(2)S-CO(2)-H(2)O-NaCl under transportation and storage conditions and discusses potential effects of H(2)S on transportation and storage. The prediction shows that inclusion of H(2)S in CO(2) streams may lead to two-phase flow. For H(2)S-CO(2) mixtures, at a given temperature, the bubble and dew pressures decrease with increasing H(2)S content, while the mass density increases at low pressures and decreases at high pressures. For the CO(2)-H(2)S-H(2)O system, the total gas solubility increases while the mass density of the aqueous solution with dissolved gas decreases. For the CO(2)-H(2)S-H(2)O-NaCl system, at a given temperature, pressure and NaCl concentration, the solubility of the gas mixture in aqueous phase increases with increasing H(2)S content and then decreases, while the mass density of aqueous solution decreases and may be lower than the mass density of the solution without gas dissolution.

  7. Corrosion of 310 stainless steel in H2-H2O-H2S gas mixtures: Studies at constant temperature and fixed oxygen potential

    NASA Technical Reports Server (NTRS)

    Rao, D. B.; Jacob, K. T.; Nelson, H. G.

    1981-01-01

    Corrosion of SAE 310 stainless steel in H2-H2O-H2S gas mixtures was studied at a constant temperature of 1150 K. Reactive gas mixtures were chosen to yield a constant oxygen potential of approximately 6 x 10 to the minus 13th power/cu Nm and sulfur potentials ranging from 0.19 x 10 to the minus 2nd power/cu Nm to 33 x 10 to the minus 2nd power/cu Nm. The kinetics of corrosion were determined using a thermobalance, and the scales were analyzed using metallography, scanning electron microscopy, and energy dispersive X-ray analysis. Two corrosion regimes, which were dependent on sulfur potential, were identified. At high sulfur potentials (p sub S sub 2 less than or equal to 2.7 x 10 to the minus 2nd power/cu Nm) the corrosion rates were high, the kinetics obeyed a linear rate equation, and the scales consisted mainly of sulfide phases similar to those observed from pure sulfication. At low sulfur potentials (P sub S sub 2 less than or equal to 0.19 x 10 to the minus 2nd power/cu Nm) the corrosion rates were low, the kinetics obeyed a parabolic rate equation, and scales consisted mainly of oxide phases.

  8. H{sub 2}S does not regulate proliferation via T-type Ca{sup 2+} channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elies, Jacobo; Johnson, Emily; Boyle, John P.

    T-type Ca{sup 2+} channels (Cav3.1, 3.2 and 3.3) strongly influence proliferation of various cell types, including vascular smooth muscle cells (VSMCs) and certain cancers. We have recently shown that the gasotransmitter carbon monoxide (CO) inhibits T-type Ca{sup 2+} channels and, in so doing, attenuates proliferation of VSMC. We have also shown that the T-type Ca{sup 2+} channel Cav3.2 is selectively inhibited by hydrogen sulfide (H{sub 2}S) whilst the other channel isoforms (Cav3.1 and Cav3.3) are unaffected. Here, we explored whether inhibition of Cav3.2 by H{sub 2}S could account for the anti-proliferative effects of this gasotransmitter. H{sub 2}S suppressed proliferation inmore » HEK293 cells expressing Cav3.2, as predicted by our previous observations. However, H{sub 2}S was similarly effective in suppressing proliferation in wild type (non-transfected) HEK293 cells and those expressing the H{sub 2}S insensitive channel, Cav3.1. Further studies demonstrated that T-type Ca{sup 2+} channels in the smooth muscle cell line A7r5 and in human coronary VSMCs strongly influenced proliferation. In both cell types, H{sub 2}S caused a concentration-dependent inhibition of proliferation, yet by far the dominant T-type Ca{sup 2+} channel isoform was the H{sub 2}S-insensitive channel, Cav3.1. Our data indicate that inhibition of T-type Ca{sup 2+} channel-mediated proliferation by H{sub 2}S is independent of the channels’ sensitivity to H{sub 2}S. - Highlights: • T-type Ca{sup 2+} channels regulate proliferation and are sensitive to the gasotransmitters CO and H{sub 2}S. • H{sub 2}S reduced proliferation in HEK293 cells expressing the H{sub 2}S sensitive Cav3.2 channel. • H{sub 2}S also inhibited proliferation in non-transfected cells and HEK293 cells expressing Cav3.1. • Native smooth muscle cells primarily express Cav3.1. Their proliferation was also inhibited by H{sub 2}S. • Unlike CO, H{sub 2}S does not regulate smooth muscle proliferation via T-type Ca

  9. Photolysis of H2O-H2O2 Mixtures: The Destruction of H2O2

    NASA Technical Reports Server (NTRS)

    Loeffler, M. J.; Fama, M.; Baragiola, R. A.; Carlson, R. W.

    2013-01-01

    We present laboratory results on the loss of H2O2 in solid H2O + H2O2 mixtures at temperatures between 21 and 145 K initiated by UV photolysis (193 nm). Using infrared spectroscopy and microbalance gravimetry, we measured the decrease of the 3.5 micrometer infrared absorption band during UV irradiation and obtained a photodestruction cross section that varies with temperature, being lowest at 70 K. We use our results, along with our previously measured H2O2 production rates via ionizing radiation and ion energy fluxes from the spacecraft to compare H2O2 creation and destruction at icy satellites by ions from their planetary magnetosphere and from solar UV photons. We conclude that, in many cases, H2O2 is not observed on icy satellite surfaces because the H2O2 photodestruction rate is much higher than the production rate via energetic particles, effectively keeping the H2O2 infrared signature at or below the noise level.

  10. [Effect of endogenous H2S on platelet L-Arg transport].

    PubMed

    Duan, Wen-zhuo; Wang, Yi-peng; Gong, Hai-min

    2010-05-01

    To observe the effect of novel air neuromodulator H2S on platelet function of L-Arg transport for discussing H2S of effect on platelet function. Saturate H2S solution as donate made rat rich platelet plasma and pre-incubation rat platelet with different density of H2S. To measure the velocity of L-Arg transport in platelet by radioactivity technique. At different concentrations of H2S (6.25, 12.5, 25, 50, 100 micromol/L), the velocity of L-Arg transport was lower than that in control. H2S reduced rapidly the Vmax and velocity of L-Arg transport in platelet (P < 0.05) and this effect had no effect to Km. H2S can affect platelet function by changing rapidly platelet L-Arg transport system function.

  11. 2S protein Ara h 7.0201 has unique epitopes compared to other Ara h 7 isoforms and is comparable to 2S proteins Ara h 2 and 6 in basophil degranulation capacity.

    PubMed

    Hayen, S M; Ehlers, A M; den Hartog Jager, C F; Garssen, J; Knol, E F; Knulst, A C; Suer, W; Willemsen, L E M; Otten, H G

    2018-07-01

    Screening for specific IgE against 2S albumin proteins Ara h 2 and 6 has good positive predictive value in diagnosing peanut allergy. From the third 2S member Ara h 7, 3 isoforms have been identified. Their allergenicity has not been elucidated. This study investigated the allergenicity of Ara h 7 isoforms compared to Ara h 2 and 6. Sensitization of 15 DBPCFC-confirmed peanut-allergic patients to recombinant Ara h 2.0201, Ara h 6.01 and isoforms of recombinant Ara h 7 was determined by IgE immunoblotting strips. A basophil activation test (BAT) was performed in 9 patients to determine IgE-cross-linking capacities of the allergens. Sensitivity to the allergens was tested in 5 patients who were sensitized to at least 1 Ara h 7 isoform, by a concentration range in the BAT. 3D prediction models and sequence alignments were used to visualize differences between isoforms and to predict allergenic epitope regions. Sensitization to Ara h 7.0201 was most frequent (80%) and showed to be equally potent as Ara h 2.0201 and 6.01 in inducing basophil degranulation. Sensitization to Ara h 7.0201 together with Ara h 2.0201 and/or 6.01 was observed, indicating the presence of unique epitopes compared to the other 2 isoforms. Differences between the 3 Ara h 7 isoforms were observed in C-terminal cysteine residues, pepsin and trypsin cleavage sites and 3 single amino acid substitutions. The majority of peanut-allergic patients are sensitized to isoform Ara h 7.0201, which is functionally as active as Ara h 2.0201 and 6.01. Unique epitopes are most likely located in the C-terminus or an allergenic loop region which is a known allergenic epitope region for Ara h 2.0201 and 6.01. Due to its unique epitopes and allergenicity, it is an interesting candidate to improve the diagnostic accuracy for peanut allergy. © 2018 The Authors. Clinical & Experimental Allergy Published by John Wiley & Sons Ltd.

  12. A Novel Dimeric Ni-Substituted beta-Keggin Silicotungstate: Structure and Magnetic Properties of K(12)[{beta-SiNi(2)W(10)O(36)(OH)(2)(H(2)O)}(2)].20H(2)O.

    PubMed

    Kortz, Ulrich; Jeannin, Yves P.; Tézé, André; Hervé, Gilbert; Isber, Samih

    1999-08-09

    The novel dimeric polyoxometalate [{beta-SiNi(2)W(10)O(36)(OH)(2)(H(2)O)}(2)](12)(-) (1) has been synthesized and characterized by IR spectroscopy, polarography, elemental analysis, thermogravimetric analysis, and magnetic measurements. An X-ray single-crystal analysis was carried out on K(12)[{beta-SiNi(2)W(10)O(36)(OH)(2)(H(2)O)}(2)].20H(2)O, which crystallizes in the monoclinic system, space group P2(1)/n, with a = 13.701(4) Å, b = 24.448(11) Å, c = 13.995(5) Å, beta = 99.62(3) degrees, and Z = 4. The anion consists of two [beta-SiNi(2)W(10)O(36)(OH)(2)(H(2)O)] Keggin moieties linked via two OH bridging groups, leading to a planar Ni(2)(OH)(2) unit. The two half-units are related by an inversion center and each contain one Ni atom in the rotated triad. The formation of the new anion involves insertion, isomerization, and dimerization. Magnetic measurements show that the central Ni(4) unit exhibits ferromagnetic (J' = 4.14 cm(-)(1)) as well as weak antiferromagnetic (J = -0.65 cm(-)(1)) Ni-Ni exchange interactions.

  13. Emission of hydrogen sulfide (H2S) at a waterfall in a sewer: study of main factors affecting H2S emission and modeling approaches.

    PubMed

    Jung, Daniel; Hatrait, Laetitia; Gouello, Julien; Ponthieux, Arnaud; Parez, Vincent; Renner, Christophe

    2017-11-01

    Hydrogen sulfide (H 2 S) represents one of the main odorant gases emitted from sewer networks. A mathematical model can be a fast and low-cost tool for estimating its emission. This study investigates two approaches to modeling H 2 S gas transfer at a waterfall in a discharge manhole. The first approach is based on an adaptation of oxygen models for H 2 S emission at a waterfall and the second consists of a new model. An experimental set-up and a statistical data analysis allowed the main factors affecting H 2 S emission to be studied. A new model of the emission kinetics was developed using linear regression and taking into account H 2 S liquid concentration, waterfall height and fluid velocity at the outlet pipe of a rising main. Its prediction interval was estimated by the residual standard deviation (15.6%) up to a rate of 2.3 g H 2h -1 . Finally, data coming from four sampling campaigns on sewer networks were used to perform simulations and compare predictions of all developed models.

  14. Key bioactive reaction products of the NO/H2S interaction are S/N-hybrid species, polysulfides, and nitroxyl

    PubMed Central

    Cortese-Krott, Miriam M.; Kuhnle, Gunter G. C.; Dyson, Alex; Fernandez, Bernadette O.; Grman, Marian; DuMond, Jenna F.; Barrow, Mark P.; McLeod, George; Nakagawa, Hidehiko; Ondrias, Karol; Nagy, Péter; King, S. Bruce; Saavedra, Joseph E.; Keefer, Larry K.; Singer, Mervyn; Kelm, Malte; Butler, Anthony R.; Feelisch, Martin

    2015-01-01

    Experimental evidence suggests that nitric oxide (NO) and hydrogen sulfide (H2S) signaling pathways are intimately intertwined, with mutual attenuation or potentiation of biological responses in the cardiovascular system and elsewhere. The chemical basis of this interaction is elusive. Moreover, polysulfides recently emerged as potential mediators of H2S/sulfide signaling, but their biosynthesis and relationship to NO remain enigmatic. We sought to characterize the nature, chemical biology, and bioactivity of key reaction products formed in the NO/sulfide system. At physiological pH, we find that NO and sulfide form a network of cascading chemical reactions that generate radical intermediates as well as anionic and uncharged solutes, with accumulation of three major products: nitrosopersulfide (SSNO−), polysulfides, and dinitrososulfite [N-nitrosohydroxylamine-N-sulfonate (SULFI/NO)], each with a distinct chemical biology and in vitro and in vivo bioactivity. SSNO− is resistant to thiols and cyanolysis, efficiently donates both sulfane sulfur and NO, and potently lowers blood pressure. Polysulfides are both intermediates and products of SSNO− synthesis/decomposition, and they also decrease blood pressure and enhance arterial compliance. SULFI/NO is a weak combined NO/nitroxyl donor that releases mainly N2O on decomposition; although it affects blood pressure only mildly, it markedly increases cardiac contractility, and formation of its precursor sulfite likely contributes to NO scavenging. Our results unveil an unexpectedly rich network of coupled chemical reactions between NO and H2S/sulfide, suggesting that the bioactivity of either transmitter is governed by concomitant formation of polysulfides and anionic S/N-hybrid species. This conceptual framework would seem to offer ample opportunities for the modulation of fundamental biological processes governed by redox switching and sulfur trafficking. PMID:26224837

  15. Ruthenium(II) 2,2'-bibenzimidazole complex as a second-sphere receptor for anions interaction and colorimeter.

    PubMed

    Cui, Ying; Niu, Yan-Li; Cao, Man-Li; Wang, Ke; Mo, Hao-Jun; Zhong, Yong-Rui; Ye, Bao-Hui

    2008-07-07

    A ruthenium(II) complex [Ru(bpy) 2(H 2bbim)](PF 6) 2 ( 1) as anions receptor has been exploited, where Ru(II)-bpy moiety acts as a chromophore and the H 2bbim ligand as an anion binding site. A systematic study suggests that 1 interacts with the Cl (-), Br (-), I (-), NO 3 (-), HSO 4 (-), and H 2PO 4 (-) anions via the formation of hydrogen bonds. Whereas 1 undergoes a stepwise process with the addition of F (-) and OAc (-) anions: formation of the monodeprotonated complex [Ru(bpy) 2(Hbbim)] with a low anion concentration, followed by the double-deprotonated complex [Ru(bpy) 2(bbim)], in the presence of a high anion concentration. These stepwise processes concomitant with the changes of vivid colors from yellow to orange brown and then to violet can be used for probing the F (-) and OAc (-) anions by naked eye. The deprotonation processes are not only determined by the basicity of the anion but also related to the strength of hydrogen bonding, as well as the stability of the formed compounds. Moreover, a double-deprotonated complex [Ru(bpy) 2(bbim)].CH 3OH.H 2O ( 3) has been synthesized, and the structural changes induced by the deprotonation has also been investigated. In addition, complexes [Ru(bpy) 2(Hbbim)] 2(HOAc) 3Cl 2.12H 2O ( 2), [Ru(bpy) 2(Hbbim)](HCCl 3CO 2)(CCl 3CO 2).2H 2O ( 4), and [Ru(bpy) 2(H 2bbim)](CF 3CO 2) 2.4H 2O ( 5) have been synthesized to observe the second sphere coordination between the Ru(II)-H 2bbim moiety and carboxylate groups via hydrogen bonds in the solid state.

  16. H2S, a novel therapeutic target in renal-associated diseases?

    PubMed

    Pan, Wen-Jun; Fan, Wen-Jing; Zhang, Chi; Han, Dan; Qu, Shun-Lin; Jiang, Zhi-Sheng

    2015-01-01

    For more than a century, hydrogen sulfide (H2S) has been regarded as a toxic gas. Recently, the understanding of the biological effects of H2S has been changed. This review surveys the growing recognition of H2S as an endogenous signaling molecule in mammals, with emphasis on its physiological and pathological pathways in the urinary system. This article reviews recent progress of basic and pharmacological researches related to endogenous H2S in urinary system, including the regulatory effects of H2S in the process of antioxidant, inflammation, cellular matrix remodeling and ion channels, and the role of endogenous H2S pathway in the pathogenesis of renal and urogenital disorders. Copyright © 2014. Published by Elsevier B.V.

  17. Experimental investigation on thermochemical sulfate reduction by H2S initiation

    USGS Publications Warehouse

    Zhang, T.; Amrani, A.; Ellis, G.S.; Ma, Q.; Tang, Y.

    2008-01-01

    Hydrogen sulfide (H2S) is known to catalyze thermochemical sulfate reduction (TSR) by hydrocarbons (HC), but the reaction mechanism remains unclear. To understand the mechanism of this catalytic reaction, a series of isothermal gold-tube hydrous pyrolysis experiments were conducted at 330 ??C for 24 h under a constant confining pressure of 24.1 MPa. The reactants used were saturated HC (sulfur-free) and CaSO4 in the presence of variable H2S partial pressures at three different pH conditions. The experimental results showed that the in-situ pH of the aqueous solution (herein, in-situ pH refers to the calculated pH of aqueous solution under the experimental conditions) can significantly affect the rate of the TSR reaction. A substantial increase in the TSR reaction rate was recorded with a decrease in the in-situ pH value of the aqueous solution involved. A positive correlation between the rate of TSR and the initial partial pressure of H2S occurred under acidic conditions (at pH ???3-3.5). However, sulfate reduction at pH ???5.0 was undetectable even at high initial H2S concentrations. To investigate whether the reaction of H2S(aq) and HSO4- occurs at pH ???3, an additional series of isothermal hydrous pyrolysis experiments was conducted with CaSO4 and variable H2S partial pressures in the absence of HC at the same experimental temperature and pressure conditions. CaSO4 reduction was not measurable in the absence of paraffin even with high H2S pressure and acidic conditions. These experimental observations indicate that the formation of organosulfur intermediates from H2S reacting with hydrocarbons may play a significant role in sulfate reduction under our experimental conditions rather than the formation of elemental sulfur from H2S reacting with sulfate as has been suggested previously (Toland W. G. (1960) Oxidation of organic compounds with aqueous sulphate. J. Am. Chem. Soc. 82, 1911-1916). Quantification of labile organosulfur compounds (LSC), such as thiols

  18. Catalytic activity of Cu4-cluster to adsorb H2S gas: h-BN nanosheet

    NASA Astrophysics Data System (ADS)

    Kansara, Shivam; Gupta, Sanjeev K.; Sonvane, Yogesh

    2018-05-01

    We have investigated the electronic properties, adsorptions strength and charge transfer using first principles calculations using density functional theory (DFT). The hexagonal boron nitride (h-BN) substrate shows metallic behavior, which helps to enhance the absorption process. The adsorption of three different orientations (S, D and T) of the H2S gas molecules to analyze the maximum adsorption strength from them onto a copper cluster (Cu4) based on h-BN nanosheet. The maximum adsorption energy of the H2S gas molecule is -1.50 eV for the S orientation and for D and U, it is -0.71 eV and -0.78 eV, respectively. The results show that Cu4 cluster helps to capture H2S gas from the environment and results are useful for the cleaning environment from the toxic gases.

  19. Collisional Quenching of Highly-Excited H2 due to H2 Collisions

    NASA Astrophysics Data System (ADS)

    Wan, Yier; Yang, Benhui H.; Stancil, Phillip C.; Naduvalath, Balakrishnan; Forrey, Robert C.; This work was partially support by Hubble grant HST-AT-13899. We thank Kyle Walkerassistance with vrrmm.

    2017-06-01

    Collision-induced energy transfer involving H2 molecules are of significant interest, since H2 is the most abundant molecular species in the universe. Collisional de-excitation rate coefficients of the H2-H2 system are necessary to produce accurate models of astrophysical environments. However, accurate calculations of collisional energy transfer are still a challenging problem, especially for highly-excited H2 because a large number of levels must be included in the calculation.Currently, most data are limited to initial rotational levels j up to 8 or initial vibrational levels up to 3. The vast majority of these results involve some form of a reduced-dimensional approach which may be of questionable accuracy. A reliable and accurate four-dimensional PES computed by Patkowski et al. is used in this work along with two quantum scattering programs (MOLSCAT and vrrmm). Another accurate full-dimensional PES has been reported for the H2-H2 system by Hinde.Not all transitions will be explicitly calculated. A zero-energy scaling technique (ZEST) is used to estimate some intermediate transitions from calculated rate coefficients. New inelastic quenching cross section for para-H2+para-H2 collisions with initial level j= 10, 12, 14, 18, 24 are calculated. Calculations for other de-excitation transitions from higher initial levels and collisions involving other spin isomer of hydrogen, ortho-H2+para-H2, ortho-H2+ortho-H2 and para-H2+ortho-H2 are in progress. The coupled- states approximation is also applied to obtain cross sections at high energy.K. Patkowski, et al., J. Chem. Phys. 129, 094304 (2008).J. M. Hutson and S. Green, MOLSCAT Computer code, v14 (1994).K. Walker, 2013, VRRMM: Vibrational/Rotational Rich Man’s MOLSCAT v3.1.K. Walker, Song, L., Yang, B. H.,et al. 2015, ApJ, \\811,27.S. Green, J. Chem. Phys. 62, 2271 (1975).Flower, D. R., Roueff, E. 1998, J. Phys. B, 31, 2935.T. -G. Lee, N. Balakrishnan, R. C. Forrey, P. C. Stancil, G. Shaw, D. R. Schultz, and G. J

  20. H2S-mediated thermal and photochemical methane activation.

    PubMed

    Baltrusaitis, Jonas; de Graaf, Coen; Broer, Ria; Patterson, Eric V

    2013-12-02

    Sustainable, low-temperature methods for natural gas activation are critical in addressing current and foreseeable energy and hydrocarbon feedstock needs. Large portions of natural gas resources are still too expensive to process due to their high content of hydrogen sulfide gas (H2S) mixed with methane, deemed altogether as sub-quality or "sour" gas. We propose a unique method of activation to form a mixture of sulfur-containing hydrocarbon intermediates, CH3SH and CH3SCH3 , and an energy carrier such as H2. For this purpose, we investigated the H2S-mediated methane activation to form a reactive CH3SH species by means of direct photolysis of sub-quality natural gas. Photoexcitation of hydrogen sulfide in the CH4 + H2S complex resulted in a barrierless relaxation by a conical intersection to form a ground-state CH3SH + H2 complex. The resulting CH3SH could further be coupled over acidic catalysts to form higher hydrocarbons, and the resulting H2 used as a fuel. This process is very different from conventional thermal or radical-based processes and can be driven photolytically at low temperatures, with enhanced control over the conditions currently used in industrial oxidative natural gas activation. Finally, the proposed process is CO2 neutral, as opposed to the current industrial steam methane reforming (SMR). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Factors affecting UV/H2O2 inactivation of Bacillus atrophaeus spores in drinking water.

    PubMed

    Zhang, Yongji; Zhang, Yiqing; Zhou, Lingling; Tan, Chaoqun

    2014-05-05

    This study aims at estimating the performance of the Bacillus atrophaeus spores inactivation by the UV treatment with addition of H2O2. The effect of factors affecting the inactivation was investigated, including initial H2O2 dose, UV irradiance, initial cell density, initial solution pH and various inorganic anions. Under the experimental conditions, the B. atrophaeus spores inactivation followed both the modified Hom Model and the Chick's Model. The results revealed that the H2O2 played dual roles in the reactions, while the optimum reduction of 5.88lg was received at 0.5mM H2O2 for 10min. The inactivation effect was affected by the UV irradiance, while better inactivation effect was achieved at higher irradiance. An increase in the initial cell density slowed down the inactivation process. A slight acid condition at pH 5 was considered as the optimal pH value. The inactivation effect within 10min followed the order of pH 5>pH 7>pH 9>pH 3>pH 11. The effects of three added inorganic anions were investigated and compared, including sulfate (SO4(2)(-)), nitrate (NO3(-)) and carbonate (CO3(2)(-)). The sequence of inactivation effect within 10min followed the order of control group>SO4(2)(-)>NO3(-)>CO3(2)(-). Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Rate Coefficients of C2H with C2H4, C2H6, and H2 from 150 to 359 K

    NASA Technical Reports Server (NTRS)

    Opansky, Brian J.; Leone, Stephen R.

    1996-01-01

    Rate coefficients for the reactions C2H with C2H4, C2H6, and H2 are measured over the temperature range 150-359 K using transient infrared laser absorption spectroscopy. The ethynyl radical is formed by photolysis of C2H2 with a pulsed excimer laser at 193 nm, and its transient absorption is monitored with a color center laser on the Q(sub 11)(9) line of the A(sup 2) Pi-Chi(sup 2) Sigma transition at 3593.68 cm(exp -1). Over the experimental temperature range 150-359 K the rate constants of C2H with C2H4, C2H6, and H2 can be fitted to the Arrhenius expressions k(sub C2H4) = (7.8 +/- 0.6) x 10(exp -11) exp[(134 +/- 44)/T], k(sub C2H6) = (3.5 +/- 0.3) x 10(exp -11) exp[(2.9 +/- 16)/T], and k(sub H2) = (1.2 +/- 0.3) x 10(exp -11) exp[(-998 +/- 57)]/T cm(exp 3) molecule(exp -1) sec(exp -1). The data for C2H with C2H4 and C2H6 indicate a negligible activation energy to product formation shown by the mild negative temperature dependence of both reactions. When the H2 data are plotted together with the most recent high-temperature results from 295 to 854 K, a slight curvature is observed. The H2 data can be fit to the non-Arrhenius form k(sub H2) = 9.2 x 10(exp -18) T(sup 2.17 +/- 0.50) exp[(-478 +/- 165)/T] cm(exp 3) molecules(exp -1) sec(exp -1). The curvature in the Arrhenius plot is discussed in terms of both quantum mechanical tunneling of the H atom from H2 to the C2H radical and bending mode contributions to the partition function.

  3. Na2S, a fast-releasing H2S donor, given as suppository lowers blood pressure in rats.

    PubMed

    Tomasova, Lenka; Drapala, Adrian; Jurkowska, Halina; Wróbel, Maria; Ufnal, Marcin

    2017-10-01

    Hydrogen sulfide (H 2 S) is involved in blood pressure control. The available slow-releasing H 2 S-donors are poorly soluble in water and their ability to release H 2 S in biologically relevant amounts under physiological conditions is questionable. Therefore, new slow-releasing donors or new experimental approaches to fast-releasing H 2 S donors are needed. Hemodynamics and ECG were recorded in male, anesthetized Wistar Kyoto rats (WKY) and in Spontaneously hypertensive rats (SHR) at baseline and after: 1) intravenous (iv) infusion of vehicle or Na 2 S; 2) administration of vehicle suppositories or Na 2 S suppositories. Intravenously administered vehicle and vehicle suppositories did not affect mean arterial blood pressure (MABP) and heart rate (HR). Na 2 S administered iv caused a significant, but transient (2-5min) decrease in MABP. Na 2 S suppositories produced a dose-dependent hypotensive response that lasted ∼45min in WKY and ∼75-80min in SHR. It was accompanied by a decrease in HR in WKY, and an increase in HR in SHR. Na 2 S suppositories did not produce a significant change in corrected QT, an indicator of cardiotoxicity. Na 2 S suppositories increased blood level of thiosulfates, products of H 2 S oxidation. Na 2 S administered in suppositories exerts a prolonged hypotensive effect in rats, with no apparent cardiotoxic effect. SHR and WKY differ in hemodynamic response to the H 2 S donor. Suppository formulation of fast-releasing H 2 S donors may be useful in research, if a reference slow-releasing H 2 S donor is not available. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  4. H2S: a universal defense against antibiotics in bacteria.

    PubMed

    Shatalin, Konstantin; Shatalina, Elena; Mironov, Alexander; Nudler, Evgeny

    2011-11-18

    Many prokaryotic species generate hydrogen sulfide (H(2)S) in their natural environments. However, the biochemistry and physiological role of this gas in nonsulfur bacteria remain largely unknown. Here we demonstrate that inactivation of putative cystathionine β-synthase, cystathionine γ-lyase, or 3-mercaptopyruvate sulfurtransferase in Bacillus anthracis, Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli suppresses H(2)S production, rendering these pathogens highly sensitive to a multitude of antibiotics. Exogenous H(2)S suppresses this effect. Moreover, in bacteria that normally produce H(2)S and nitric oxide, these two gases act synergistically to sustain growth. The mechanism of gas-mediated antibiotic resistance relies on mitigation of oxidative stress imposed by antibiotics.

  5. Fluoride anion sensing mechanism of 2-ureido-4[1H]-pyrimidinone quadruple hydrogen-bonded supramolecular assembly: photoinduced electron transfer and partial configuration change.

    PubMed

    Chen, Jun-Sheng; Zhou, Pan-Wang; Li, Guang-Yue; Chu, Tian-Shu; He, Guo-Zhong

    2013-05-02

    The fluoride anion sensing mechanism of 6-methyl-5-(9-methylene-anthracene)-(2-butylureido-4[1H]-pyrimidinone) (AnUP) has been investigated using the DFT/TDDFT method. The theoretical results indicate that the proton of the N3-H3 group in pyrimidine moiety is captured by the added fluoride anion and then deprotonated. The calculated vertical excitation energies of AnUP-dimer and its deprotonated form agree well with the experimental results. The molecular orbital analysis demonstrates that the first excited state (S1) of AnUP-dimer is a local excited state with a π-π* transition, whereas for the deprotonated form, S1 is a completely charge-separation state and is responsible for the photoinduced electron transfer (PET) process. The PET process from anthracene to the pyrimidine moiety leads to the fluorescence quenching.

  6. Metal Oxide/Zeolite Combination Absorbs H2S

    NASA Technical Reports Server (NTRS)

    Voecks, Gerald E.; Sharma, Pramod K.

    1989-01-01

    Mixed copper and molybdenum oxides supported in pores of zeolite found to remove H2S from mixture of gases rich in hydrogen and steam, at temperatures from 256 to 538 degree C. Absorber of H2S needed to clean up gas streams from fuel processors that incorporate high-temperature steam reformers or hydrodesulfurizing units. Zeolites chosen as supporting materials because of their high porosity, rigidity, alumina content, and variety of both composition and form.

  7. Ion chemistry of 1H-1,2,3-triazole.

    PubMed

    Ichino, Takatoshi; Andrews, Django H; Rathbone, G Jeffery; Misaizu, Fuminori; Calvi, Ryan M D; Wren, Scott W; Kato, Shuji; Bierbaum, Veronica M; Lineberger, W Carl

    2008-01-17

    A combination of experimental methods, photoelectron-imaging spectroscopy, flowing afterglow-photoelectron spectroscopy and the flowing afterglow-selected ion flow tube technique, and electronic structure calculations at the B3LYP/6-311++G(d,p) level of density functional theory (DFT) have been employed to study the mechanism of the reaction of the hydroxide ion (HO-) with 1H-1,2,3-triazole. Four different product ion species have been identified experimentally, and the DFT calculations suggest that deprotonation by HO- at all sites of the triazole takes place to yield these products. Deprotonation of 1H-1,2,3-triazole at the N1-H site gives the major product ion, the 1,2,3-triazolide ion. The 335 nm photoelectron-imaging spectrum of the ion has been measured. The electron affinity (EA) of the 1,2,3-triazolyl radical has been determined to be 3.447 +/- 0.004 eV. This EA and the gas-phase acidity of 2H-1,2,3-triazole are combined in a negative ion thermochemical cycle to determine the N-H bond dissociation energy of 2H-1,2,3-triazole to be 112.2 +/- 0.6 kcal mol-1. The 363.8 nm photoelectron spectroscopic measurements have identified the other three product ions. Deprotonation of 1H-1,2,3-triazole at the C5 position initiates fragmentation of the ring structure to yield a minor product, the ketenimine anion. Another minor product, the iminodiazomethyl anion, is generated by deprotonation of 1H-1,2,3-triazole at the C4 position, followed by N1-N2 bond fission. Formation of the other minor product, the 2H-1,2,3-triazol-4-ide ion, can be rationalized by initial deprotonation of 1H-1,2,3-triazole at the N1-H site and subsequent proton exchanges within the ion-molecule complex. The EA of the 2H-1,2,3-triazol-4-yl radical is 1.865 +/- 0.004 eV.

  8. H2S mediated thermal and photochemical methane activation

    PubMed Central

    Baltrusaitis, Jonas; de Graaf, Coen; Broer, Ria; Patterson, Eric

    2013-01-01

    Sustainable, low temperature methods of natural gas activation are critical in addressing current and foreseeable energy and hydrocarbon feedstock needs. Large portions of natural gas resources are still too expensive to process due to their high content of hydrogen sulfide gas (H2S) in mixture with methane, CH4, altogether deemed as sub-quality or “sour” gas. We propose a unique method for activating this “sour” gas to form a mixture of sulfur-containing hydrocarbon intermediates, CH3SH and CH3SCH3, and an energy carrier, such as H2. For this purpose, we computationally investigated H2S mediated methane activation to form a reactive CH3SH species via direct photolysis of sub-quality natural gas. Photoexcitation of hydrogen sulfide in the CH4+H2S complex results in a barrier-less relaxation via a conical intersection to form a ground state CH3SH+H2 complex. The resulting CH3SH can further be heterogeneously coupled over acidic catalysts to form higher hydrocarbons while the H2 can be used as a fuel. This process is very different from a conventional thermal or radical-based processes and can be driven photolytically at low temperatures, with enhanced controllability over the process conditions currently used in industrial oxidative natural gas activation. Finally, the proposed process is CO2 neutral, as opposed to the currently industrially used methane steam reforming (SMR). PMID:24150813

  9. H2+, HeH and H2: Approximating potential curves, calculating rovibrational states

    NASA Astrophysics Data System (ADS)

    Olivares-Pilón, Horacio; Turbiner, Alexander V.

    2018-06-01

    Analytic consideration of the Bohr-Oppenheimer (BO) potential curves for diatomic molecules is proposed: accurate analytic interpolation for a potential curve consistent with its rovibrational spectra is found. It is shown that in the BO approximation for four lowest electronic states 1 sσg and 2 pσu, 2 pπu and 3 dπg of H2+, the ground state X2Σ+ of HeH and the two lowest states 1 Σg+ and 3 Σu+ of H2, the potential curves can be analytically interpolated in full range of internuclear distances R with not less than 4-5-6 s.d. Approximation based on matching the Laurant-type expansion at small R and a combination of the multipole expansion with one-instanton type contribution at large distances R is given by two-point Padé approximant. The position of minimum, when exists, is predicted within 1% or better. For the molecular ion H2+ in the Lagrange mesh method, the spectra of vibrational, rotational and rovibrational states (ν , L) associated with 1 sσg and 2 pσu, 2 pπu and 3 dπg potential curves are calculated. In general, it coincides with spectra found via numerical solution of the Schrödinger equation (when available) within six s.d. It is shown that 1 sσg curve contains 19 vibrational states (ν , 0) , while 2 pσu curve contains a single one (0 , 0) and 2 pπu state contains 12 vibrational states (ν , 0) . In general, 1 sσg electronic curve contains 420 rovibrational states, which increases up to 423 when we are beyond BO approximation. For the state 2 pσu the total number of rovibrational states (all with ν = 0) is equal to 3, within or beyond Bohr-Oppenheimer approximation. As for the state 2 pπu within the Bohr-Oppenheimer approximation the total number of the rovibrational bound states is equal to 284. The state 3 dπg is repulsive, no rovibrational state is found. It is confirmed in Lagrange mesh formalism the statement that the ground state potential curve of the heteronuclear molecule HeH does not support rovibrational states. Accurate

  10. Theoretical study of radiative electron attachment to CN, C{sub 2}H, and C{sub 4}H radicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douguet, Nicolas; Fonseca dos Santos, S.; Orel, Ann E.

    A first-principle theoretical approach to study the process of radiative electron attachment is developed and applied to the negative molecular ions CN{sup −}, C{sub 4}H{sup −}, and C{sub 2}H{sup −}. Among these anions, the first two have already been observed in the interstellar space. Cross sections and rate coefficients for formation of these ions by direct radiative electron attachment to the corresponding neutral radicals are calculated. For the CN molecule, we also considered the indirect pathway, in which the electron is initially captured through non-Born-Oppenheimer coupling into a vibrationally resonant excited state of the anion, which then stabilizes by radiativemore » decay. We have shown that the contribution of the indirect pathway to the formation of CN{sup −} is negligible in comparison to the direct mechanism. The obtained rate coefficients for the direct mechanism at 30 K are 7 × 10{sup −16} cm{sup 3}/s for CN{sup −}, 7 × 10{sup −17} cm{sup 3}/s for C{sub 2}H{sup −}, and 2 × 10{sup −16} cm{sup 3}/s for C{sub 4}H{sup −}. These rates weakly depend on temperature between 10 K and 100 K. The validity of our calculations is verified by comparing the present theoretical results with data from recent photodetachment experiments.« less

  11. High light harvesting efficiency CuInS2 quantum dots/TiO2/MoS2 photocatalysts for enhanced visible light photocatalytic H2 production.

    PubMed

    Yuan, Yong-Jun; Fang, Gaoliang; Chen, Daqin; Huang, Yanwei; Yang, Ling-Xia; Cao, Da-Peng; Wang, Jingjing; Yu, Zhen-Tao; Zou, Zhi-Gang

    2018-04-24

    Expanding the photoresponse range of TiO2-based photocatalysts is of great interest for photocatalytic H2 production. Herein, noble-metal-free CuInS2 quantum dots were employed as a novel inorganic dye to expand the visible light absorption of TiO2/MoS2 for solar H2 generation. The as-prepared CuInS2/TiO2/MoS2 photocatalysts exhibit broad absorption from the ultraviolet to near-infrared region. Under visible light irradiation (λ > 420 nm), the CuInS2/TiO2/MoS2 photocatalyst with 0.6 mmol g-1 CuInS2 and 0.5 wt% MoS2 showed the highest H2 evolution rate with a value of 1034 μmol h-1 g-1. Moreover, a considerable H2 evolution rate of 141 μmol h-1 g-1 was obtained under the irradiation of the optimized CuInS2/TiO2/MoS2 photocatalyst with >500 nm light. The reaction mechanism of the CuInS2/TiO2/MoS2 photocatalyst for photocatalytic H2 evolution was investigated in detail by photoluminescence decay study, and the results showed that the photoexcited electrons of CuInS2 can be transferred efficiently through TiO2 to MoS2 and then react with the absorbed protons to generate H2. The reported sensitization strategy tremendously improves the visible light absorption capacity and the photocatalytic performance of TiO2-based photocatalysts.

  12. Inhibitory effect of selective cyclooxygenase-2 inhibitor etoricoxib on human organic anion transporter 3 (hOAT3).

    PubMed

    Honjo, Hiroaki; Uwai, Yuichi; Iwamoto, Kikuo

    2011-04-01

    It is well known that nonsteroidal anti-inflammatory drugs (NSAIDs) delay the elimination of methotrexate. One of the mechanisms is thought to be inhibition of methotrexate uptake via human organic anion transporter 3 (hOAT3, SLC22A8) in the renal proximal tubule by NSAIDs. In this study, we evaluated the inhibitory effects of selective cyclooxygenase-2 inhibitor etoricoxib on hOAT3 by uptake experiments using Xenopus laevis oocytes. The injection of hOAT3 cRNA stimulated the uptake of methotrexate into the oocytes, and its transport was inhibited by etoricoxib. Etoricoxib inhibited estrone sulfate uptake by hOAT3 dose dependently, and the 50% inhibitory concentration was estimated to be 9.8 µM. Eadie-Hofstee plot analysis showed that etoricoxib inhibited hOAT3 in a competitive manner. These findings show that etoricoxib has inhibitory effect on hOAT3, and that the potential is comparable to that of traditional NSAIDs. ©2011 Bentham Science Publishers Ltd.

  13. [Degradation of Organic Sunscreens 2-hydroxy-4-methoxybenzophenone by UV/ H2O2 Process: Kinetics and Factors].

    PubMed

    Feng, Xin-xin; Du, Er-deng; Guo, Ying-qing; Li, Hua-jie; Liu, Xiang; Zhou, Fang

    2015-06-01

    Organic sunscreens continue to enter the environment through people's daily consumption, and become a kind of emerging contaminants. The photochemical degradation of benzophenone-3 (BP-3) in water by UV/H2O2 process was investigated. Several factors, including the initial BP-3 concentration, H2O2 concentration, UV light intensity, coexisting cations and anions, humic acid and tert-butyl alcohol, were also discussed. The results showed that BP-3 degradation rate constant decreased with increasing initial BP-3 concentration, while increased with increasing H2O2 dosage and UV intensity. Coexisting anions could reduce the degradation rate, while coexisting ferric ions could stimulate the production of OH through Fenton-like reaction, further significantly accelerated BP-3 degradation process. The BP-3 degradation would be inhibited by humic acid or tert-butyl alcohol. The electrical energy per order (E(Eo)) values were also calculated to evaluate the cost of BP-3 degradation by UV/H2O2 process. The addition of ferric ions significantly reduced the value of E(Eo). The investigation of processing parameter could provide a reference for the practical engineering applications of benzophenone compounds removal by UV/H2O2 process.

  14. Negative ion photoelectron spectroscopy of solvated electron cluster anions, (H2O){/n -} and (NH3){/n -}

    NASA Astrophysics Data System (ADS)

    Lee, G. H.; Arnold, S. T.; Eaton, J. G.; Sarkas, H. W.; Bowen, K. H.; Ludewigt, C.; Haberland, H.

    1991-03-01

    The photodetachment spectra of (H2O){/n =2-69/-} and (NH3){/n =41-1100/-} have been recorded, and vertical detachment energies (VDEs) were obtained from the spectra. For both systems, the cluster anion VDEs increase smoothly with increasing sizes and most species plot linearly with n -1/3, extrapolating to a VDE ( n=∞) value which is very close to the photoelectric threshold energy for the corresponding condensed phase solvated electron system. The linear extrapolation of this data to the analogous condensed phase property suggests that these cluster anions are gas phase counterparts to solvated electrons, i.e. they are embryonic forms of hydrated and ammoniated electrons which mature with increasing cluster size toward condensed phase solvated electrons.

  15. H2S Loss through Nalophan™ Bags: Contributions of Adsorption and Diffusion

    PubMed Central

    2017-01-01

    Hydrogen-sulfide (H2S) is a molecule of small dimensions typically present in the odor emissions from different plants. The European Standard EN 13725:2003 set a maximum storage time allowed of 30 hours, during which the sampling bag has to maintain the mixture of odorants with minimal changes. This study investigates the H2S losses through Nalophan bags and it shows that nonnegligible losses of H2S can be observed. The percent H2S loss after 30 hrs with respect to the initial concentration is equal to 33%  ± 3% at a relative humidity of 20% and equal to 22%  ± 1% at a relative humidity of 60%. The average quantity of adsorbed H2S at 30 h is equal to 2.17 105 gH2S/gNalophan at a storage humidity of 20% and equal to 1.79 105 gH2S/gNalophan at a storage humidity of 60%. The diffusion coefficients of H2S through Nalophan, for these two humidity conditions tested, are comparable (i.e., 7.5 10−12 m2/sec at 20% humidity and 6.6 10−12 m2/sec at 60% humidity). PMID:28740857

  16. H2S-induced S-sulfhydration of pyruvate carboxylase contributes to gluconeogenesis in liver cells.

    PubMed

    Ju, YoungJun; Untereiner, Ashley; Wu, Lingyun; Yang, Guangdong

    2015-11-01

    Cystathionine gamma-lyase (CSE)-derived hydrogen sulfide (H(2)S) possesses diverse roles in the liver, affecting lipoprotein synthesis, insulin sensitivity, and mitochondrial biogenesis. H(2)S S-sulfhydration is now proposed as a major mechanism for H(2)S-mediated signaling. Pyruvate carboxylase (PC) is an important enzyme for gluconeogenesis. S-sulfhydration regulation of PC by H(2)S and its implication in gluconeogenesis in the liver have been unknown. Gene expressions were analyzed by real-time PCR and western blotting, and protein S-sulfhydration was assessed by both modified biotin switch assay and tag switch assay. Glucose production and PC activity was measured with coupled enzyme assays, respectively. Exogenously applied H(2)S stimulates PC activity and gluconeogenesis in both HepG2 cells and mouse primary liver cells. CSE overexpression enhanced but CSE knockout reduced PC activity and gluconeogenesis in liver cells, and blockage of PC activity abolished H(2)S-induced gluconeogenesis. H(2)S had no effect on the expressions of PC mRNA and protein, while H(2)S S-sulfhydrated PC in a dithiothreitol-sensitive way. PC S-sulfhydration was significantly strengthened by CSE overexpression but attenuated by CSE knockout, suggesting that H(2)S enhances glucose production through S-sulfhydrating PC. Mutation of cysteine 265 in human PC diminished H(2)S-induced PC S-sulfhydration and activity. In addition, high-fat diet feeding of mice decreased both CSE expression and PC S-sulfhydration in the liver, while glucose deprivation of HepG2 cells stimulated CSE expression. CSE/H(2)S pathway plays an important role in the regulation of glucose production through S-sulfhydrating PC in the liver. Tissue-specific regulation of CSE/H(2)S pathway might be a promising therapeutic target of diabetes and other metabolic syndromes. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. H2O2 levels in rainwater collected in south Florida and the Bahama Islands

    NASA Technical Reports Server (NTRS)

    Zika, R.; Saltzman, E.; Chameides, W. L.; Davis, D. D.

    1982-01-01

    Measurements of H2O2 in rainwater collected in Miami, Florida, and the Bahama Islands area indicate the presence of H2O2 concentration levels ranging from 100,000 to 700,000 M. No systematic trends in H2O2 concentration were observed during an individual storm, in marked contrast to the behavior of other anions for example, NO3(-), SO4(-2), and Cl(-). The data suggest that a substantial fraction of the H2O2 found in precipitation is generated by aqueous-phase reactions within the cloudwater rather than via rainout and washout of gaseous H2O2.

  18. Anti-H-Y responses of H-2b mutant mice.

    PubMed

    Simpson, E; Gordon, R D; Chandler, P R; Bailey, D

    1978-10-01

    Two strains of H-2b mutant mice, H-2ba and H-2bf, in which the mutational event took place at H-2K, make anti-H-Y cytotoxic T cell responses which are H-2-restricted, Db-associated and indistinguishable in target cell specificity from those of H-2b mice. Thus, alteration of the H-2K molecule affects neither the Ir gene controlling the response, nor the associative antigen. On the other hand, one H-2Db mutant strain, H-2bo, although it makes a good anti-H-Y cytotoxic response, shows target cell specificity restricted to its own Dbo antigen(s), and neither H-2b, H-2ba or H-2bf anti-H-Y cytotoxic cells kill H-2bo male target cells. Thus, the alteration of the H-2Db molecule does not affect the Ir gene of H-2b mice, but it does alter the H-2Db-associative antigen.

  19. Low-lying electronic structure of EuH, EuOH, and EuO neutrals and anions determined by anion photoelectron spectroscopy and DFT calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kafader, Jared O.; Ray, Manisha; Jarrold, Caroline Chick, E-mail: cjarrold@indiana.edu

    2015-07-21

    The anion photoelectron (PE) spectra of EuH{sup −} and the PE spectrum of overlapping EuOH{sup −} and EuO{sup −} anions are presented and analyzed with supporting results from density functional theory calculations on the various anions and neutrals. Results point to ionically bound, high-spin species. EuH and EuOH anions and neutrals exhibit analogous electronic structures: Transitions from {sup 8}Σ{sup −} anion ground states arising from the 4f{sup 7}σ{sub 6s}{sup 2} superconfiguration to the close-lying neutral {sup 9}Σ{sup −} and {sup 7}Σ{sup −} states arising from the 4f{sup 7}σ{sub 6s} superconfiguration are observed spaced by an energy interval similar to themore » free Eu{sup +} [4f{sup 7}6s] {sup 9}S - {sup 7}S splitting. The electron affinities (EAs) of EuH and EuOH are determined to be 0.771 ± 0.009 eV and 0.700 ± 0.011 eV, respectively. Analysis of spectroscopic features attributed to EuO{sup −} photodetachment is complicated by the likely presence of two energetically competitive electronic states of EuO{sup −} populating the ion beam. However, based on the calculated relative energies of the close-lying anion states arising from the 4f{sup 7}σ{sub 6s} and 4f{sup 6}σ{sub 6s}{sup 2} configurations and the relative energies of the one-electron accessible 4f{sup 7} and 4f{sup 6}σ{sub 6s} neutral states based on ligand-field theory [M. Dulick, E. Murad, and R. F. Barrow, J. Chem. Phys. 85, 385 (1986)], the remaining features are consistent with the 4f{sup 6}σ{sub 6s}{sup 2}  {sup 7}Σ{sup −} and 4f{sup 7}σ{sub 6s}{sup 7}Σ{sup −} anion states lying very close in energy (the former was calculated to be 0.15 eV lower in energy than the latter), though the true anion ground state and neutral EA could not be established unambiguously. Calculations on the various EuO anion and neutral states suggest 4f-orbital overlap with 2p orbitals in species with 4f{sup 6} occupancy.« less

  20. Room-temperature NaI/H2O compression icing: solute-solute interactions.

    PubMed

    Zeng, Qingxin; Yao, Chuang; Wang, Kai; Sun, Chang Q; Zou, Bo

    2017-10-11

    In situ Raman spectroscopy revealed that transiting the concentrated NaI/H 2 O solutions to an ice VI phase and then into an ice VII phase at 298 K proceeds in a way different from that activated by the solute type. Unlike the solute type that raises both the critical pressures P C1 and P C2 , for the liquid-VI, the VI-VII transition simultaneously occurs in the Hofmeister series order: I > Br > Cl > F ∼ 0; concentration increase raises the P C1 faster than the P C2 that remains almost constant at higher NaI/H 2 O molecular number ratios. Concentration increase moves the P C1 along the liquid-VI phase boundary and it finally merges with P C2 at the triple-phase junction featured at 350 K and 3.05 GPa. The highly-deformed H-O bond is less sensitive to the concentration because of the involvement of anion-anion repulsion that weakens the electric field in the hydration shells. Observations confirm that the salt solvation lengthens the O:H nonbond and softens its phonon but relaxes the H-O bond contrastingly. Compression, however, has the opposite effect from that of salt solvation. Therefore, compression recovers the polarization-deformed O:H-O bond first and then proceeds to the phase transitions. The anion-anion interaction discriminates the effect of NaI/H 2 O concentration from that of the solute type at an identical concentration on the phase transitions.

  1. A second polymorph with composition Co3(PO4)2·H2O

    PubMed Central

    Lee, Young Hoon; Clegg, Jack K.; Lindoy, Leonard F.; Lu, G. Q. Max; Park, Yu-Chul; Kim, Yang

    2008-01-01

    Single crystals of Co3(PO4)2·H2O, tricobalt(II) bis­[ortho­phosphate(V)] monohydrate, were obtained under hydro­thermal conditions. The compound is the second polymorph of this composition and is isotypic with its zinc analogue, Zn3(PO4)2·H2O. Three independent Co2+ cations are bridged by two independent orthophosphate anions. Two of the metal cations exhibit a distorted tetra­hedral coordination while the third exhibits a considerably distorted [5 + 1] octa­hedral coordination environment with one very long Co—O distance of 2.416 (3) Å. The former cations are bonded to four different phosphate anions, and the latter cation is bonded to four anions (one of which is bidentate) and one water mol­ecule, leading to a framework structure. Additional hydrogen bonds of the type O—H⋯O stabilize this arrangement. PMID:21200979

  2. Synthesis, DFT calculations of structure, vibrational and thermal decomposition studies of the metal complex Pb[Mn(C3H2O4)2(H2O)2].

    PubMed

    Gil, Diego M; Carbonio, Raúl E; Gómez, María Inés

    2015-04-15

    The metallo-organic complex Pb[Mn(C3H2O4)2(H2O)2] was synthesized and characterized by IR and Raman spectroscopy and powder X-ray diffraction methods. The cell parameters for the complex were determined from powder X-ray diffraction using the autoindexing program TREOR, and refined by the Le Bail method with the Fullprof program. A hexagonal unit cell was determined with a=b=13.8366(7)Å, c=9.1454(1)Å, γ=120°. The DFT calculated geometry of the complex anion [Mn(C3H2O4)2(H2O)2](2-) is very close to the experimental data reported for similar systems. The IR and Raman spectra and the thermal analysis of the complex indicate that only one type of water molecules is present in the structure. The thermal decomposition of Pb[Mn(C3H2O4)2(H2O)2] at 700 °C in air produces PbO and Pb2MnO4 as final products. The crystal structure of the mixed oxide is very similar to that reported for Pb3O4. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Evidence for the η(b)(2S) and observation of h(b)(1P)→η(b)(1S)γ and h(b)(2P)→η(b)(1S)γ.

    PubMed

    Mizuk, R; Asner, D M; Bondar, A; Pedlar, T K; Adachi, I; Aihara, H; Arinstein, K; Aulchenko, V; Aushev, T; Aziz, T; Bakich, A M; Bay, A; Belous, K; Bhardwaj, V; Bhuyan, B; Bischofberger, M; Bonvicini, G; Bozek, A; Bračko, M; Brodzicka, J; Browder, T E; Chekelian, V; Chen, A; Chen, P; Cheon, B G; Chilikin, K; Chistov, R; Cho, I-S; Cho, K; Choi, S-K; Choi, Y; Dalseno, J; Danilov, M; Doležal, Z; Drásal, Z; Drutskoy, A; Eidelman, S; Epifanov, D; Fast, J E; Gaur, V; Gabyshev, N; Garmash, A; Golob, B; Haba, J; Hara, T; Hayasaka, K; Hayashii, H; Horii, Y; Hoshi, Y; Hou, W-S; Hsiung, Y B; Hyun, H J; Iijima, T; Ishikawa, A; Itoh, R; Iwabuchi, M; Iwasaki, Y; Iwashita, T; Jaegle, I; Julius, T; Kang, J H; Kapusta, P; Kawasaki, T; Kim, H J; Kim, H O; Kim, J H; Kim, K T; Kim, M J; Kim, Y J; Kinoshita, K; Ko, B R; Koblitz, S; Kodyš, P; Korpar, S; Kouzes, R T; Križan, P; Krokovny, P; Kuhr, T; Kumita, T; Kuzmin, A; Kwon, Y-J; Lange, J S; Lee, S-H; Li, J; Libby, J; Liu, C; Liu, Y; Liu, Z Q; Liventsev, D; Louvot, R; Matvienko, D; McOnie, S; Miyabayashi, K; Miyata, H; Mohanty, G B; Mohapatra, D; Moll, A; Muramatsu, N; Mussa, R; Nakao, M; Natkaniec, Z; Ng, C; Nishida, S; Nishimura, K; Nitoh, O; Nozaki, T; Ohshima, T; Okuno, S; Olsen, S L; Onuki, Y; Pakhlov, P; Pakhlova, G; Park, C W; Park, H; Pestotnik, R; Petrič, M; Piilonen, L E; Poluektov, A; Röhrken, M; Sakai, Y; Sandilya, S; Santel, D; Sanuki, T; Sato, Y; Schneider, O; Schwanda, C; Senyo, K; Seon, O; Sevior, M E; Shapkin, M; Shen, C P; Shibata, T-A; Shiu, J-G; Shwartz, B; Sibidanov, A; Simon, F; Smerkol, P; Sohn, Y-S; Sokolov, A; Solovieva, E; Stanič, S; Starič, M; Sumihama, M; Sumiyoshi, T; Tanida, K; Tatishvili, G; Teramoto, Y; Tikhomirov, I; Trabelsi, K; Tsuboyama, T; Uchida, M; Uehara, S; Uglov, T; Unno, Y; Uno, S; Vanhoefer, P; Varner, G; Varvell, K E; Vinokurova, A; Vorobyev, V; Wang, C H; Wang, M-Z; Wang, P; Wang, X L; Watanabe, M; Watanabe, Y; Williams, K M; Won, E; Yabsley, B D; Yamaoka, J; Yamashita, Y; Yuan, C Z; Zhang, Z P; Zhilich, V

    2012-12-07

    We report the first evidence for the η(b)(2S) using the h(b)(2P)→η(b)(2S)γ transition and the first observation of the h(b)(1P)→η(b)(1S)γ and h(b)(2P)→η(b)(1S)γ transitions. The mass and width of the η(b)(1S) and η(b)(2S) are measured to be m(η(b)(1S))=(9402.4±1.5±1.8) MeV/c(2), m(η(b)(2S))=(9999.0±3.5(-1.9)(+2.8)) MeV/c(2), and Γ(η(b)(1S))=(10.8(-3.7-2.0)(+4.0+4.5)) MeV. We also update the h(b)(1P) and h(b)(2P) mass measurements. We use a 133.4 fb(-1) data sample collected at energies near the Υ(5S) resonance with the Belle detector at the KEKB asymmetric-energy e(+)e(-) collider.

  4. Characteristics of H2S emission from aged refuse after excavation exposure.

    PubMed

    Shen, Dong-Sheng; Du, Yao; Fang, Yuan; Hu, Li-Fang; Fang, Cheng-Ran; Long, Yu-Yang

    2015-05-01

    Hydrogen sulfide (H2S(g)) emission from landfills is a widespread problem, especially when aged refuse is excavated. H2S(g) emission from aged refuse exposed to air was investigated and the results showed that large amounts of H2S(g) can be released, especially in the first few hours after excavation, when H2S(g) concentrations in air near refuse could reach 2.00 mg m(-3). Initial exposure to air did not inhibit the emission of H2S(g), as is generally assumed, but actually promoted it. The amounts of H2S(g) emitted in the first 2 d after excavation can be very dangerous, and the risks associated with the emission of H2S(g) could decrease significantly with time. Unlike a large number of sulfide existed under anaerobic conditions, the sulfide in aged municipal solid waste can be oxidized chemically to elemental sulfur (but not sulfate) under aerobic conditions, and its conversion rate was higher than 80%. Only microorganisms can oxidize the reduced sulfur species to sulfate, and the conversion rate could reach about 50%. Using appropriate techniques to enhance these chemical and biological transformations could allow the potential health risks caused by H2S(g) after refuse excavation to be largely avoided. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Crystal structure of triaquamaleatostrontium(II) monohydrate, [Sr(C{sub 4}H{sub 2}O{sub 4})(OH{sub 2}{sub 3}) {center_dot}] H{sub 2}O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diaz de Delgado, G.; Parra, P.P.; Briceno, A.

    1995-05-01

    (Sr(C{sub 4}H{sub 2}O{sub 4})(OH{sub 2}{sub 3}) {center_dot} H{sub 2}O is monoclinic, P2{sub 1}/n, with a = 11.476(2), b = 7.027(1), c = 12.344(2) {angstrom}, {beta} = 115.74(3){degrees}, V= 896.67 {angstrom}{sup 3}, Z = 4. The Sr atom is surrounded by nine oxygen atoms which come from four different maleate anions and three water molecules. The Sr-O distances range from 2.546(2) to 2.808(2) {angstrom}. The C-O distances are equal within the standard deviation 1.263(3) to 1.258(3) {angstrom}). In the maleate anion, the planes that contain the carboxylate groups form an angle of 74.44(9){degrees}. Both carboxylate groups deviate significantly from planarity. Themore » different coordination modes of the carboxylate group and the extensive hydrogen bonding present are responsible for the polymeric nature of the structure.« less

  6. Fluid inclusion volatile analysis by gas chromatography with photoionization micro-thermal conductivity detectors: Applications to magmatic MoS 2 and other H 2O-CO 2 and H 2O-CH 4 fluids

    NASA Astrophysics Data System (ADS)

    Bray, C. J.; Spooner, E. T. C.

    1992-01-01

    Eighteen fluid inclusion volatile peaks have been detected and identified from 1-2 g samples (quartz) by gas chromatography using heated (~105°C) on-line crushing, helium carrier gas, a single porous polymer column (HayeSep R; 10' × 1/8″: 100/120#; Ni alloy tubing), two temperature programme conditions for separate sample aliquots, micro-thermal conductivity (TCD) and photoionization detectors (PID; 11.7 eV lamp), and off-line digital peak processing. In order of retention time these volatile peaks are: N 2, Ar, CO, CH 4, CO 2, C 2H 4, C 2H 6, C 2H 2, COS, C 3H 6, C 3H 8, C 3H 4 (propyne), H 2O (22.7 min at 80°C), SO 2, ± iso- C4H10 ± C4H8 (1-butene) ± CH3SH, C 4H 8 (iso-butylene), (?) C 4H 6 (1,3 butadiene) and ± n- C4H10 ± C4H8 (trans-2-butene) (80 and -70°C temperature programme conditions combined). H 2O is analysed directly. O 2 can be analysed cryogenically between N 2 and Ar, but has not been detected in natural samples to date in this study. H 2S, SO 2, NH 3, HCl, HCN, and H 2 ca nnot be analysed at present. Blanks determined by crushing heat-treated Brazilian quartz (800-900°C/4 h) are zero for 80°C temperature programme conditions, except for a large, unidentified peak at ~64 min, but contain H 2O, CO 2, and some low molecular weight hydrocarbons at -70°C temperature conditions due to cryogenic accumulation from the carrier gas and subsequent elution. TCD detection limits are ~30 ppm molar in inclusions; PID detection limits are ~ 1 ppm molar in inclusions and lower for unsaturated hydrocarbons (e.g., ~0.2 ppm for C 2H 4; ~ 1 ppb for C 2H 2; ~0.3 ppb for C 3H 6). Precisions (1σ) are ~ ±1-2% and ~ ± 13% for H 2O in terms of total moles detected; the latter value is equivalent to ±0.6 mol% at the 95 mol% H 2O level. Major fluid inclusion volatile species have been successfully analysed on a ~50 mg fluid inclusion section chip (~7 mm × ~10 mm × ~100 μm). Initial inclusion volatile analyses of fluids of interpreted magmatic origin from

  7. Structurally characterized 1,1,3,3-tetramethylguanidine solvated magnesium aryloxide complexes: [Mg(mu-OEt)(DBP)(H-TMG)]2, [Mg(mu-OBc)(DBP)(H-TMG)]2, [Mg(mu-TMBA)(DBP)(H-TMG)]2, [Mg(mu-DPP)(DBP)(H-TMG)]2, [Mg(BMP)2(H-TMG)2], [Mg(O-2,6-Ph2C6H3)2 (H-TMG)2].

    PubMed

    Monegan, Jessie D; Bunge, Scott D

    2009-04-06

    The synthesis and structural characterization of several 1,1,3,3-tetramethylguanidine (H-TMG) solvated magnesium aryloxide complexes are reported. Bu(2)Mg was successfully reacted with H-TMG, HOC(6)H(3)(CMe(3))(2)-2,6 (H-DBP), and either ethanol, a carboxylic acid, or diphenyl phosphate in a 1:1 ratio to yield the corresponding [Mg(mu-L)(DBP)(H-TMG)](2) where L = OCH(2)CH(3) (OEt, 1), O(2)CC(CH(3))(3) (OBc, 2), O(2)C(C(6)H(2)-2,4,6-(CH(3))(3)) (TMBA, 3), or O(2)P(OC(6)H(5))(2) (DPP, 4). Bu(2)Mg was also reacted with two equivalents of H-TMG and HOC(6)H(3)(CMe(3))-2-(CH(3))-6 (BMP) or HO-2,6-Ph(2)C(6)H(3) to yield [Mg(BMP)(2)(H-TMG)(2)] (5) and [Mg(O-2,6-Ph(2)C(6)H(3))(2)(H-TMG)(2)] (6). Compounds 1-6 were characterized by single-crystal X-ray diffraction. Polymerization of l- and rac-lactide with 1 was found to generate polylactide (PLA). A discussion concerning the relevance of compounds 2 - 4 to the structure of Mg-activated phosphatase enzymes is also provided. The bulk powders for all complexes were found to be in agreement with the crystal structures based on elemental analyses, FT-IR spectroscopy, and (1)H, (13)C and (31)P NMR studies.

  8. Oxothiomolybdenum derivatives of the superlacunary crown heteropolyanion {P8W48}: structure of [K4{Mo4O4S4(H2O)3(OH)2}2(WO2)(P8W48O184)]30– and studies in solution.

    PubMed

    Korenev, Vladimir S; Floquet, Sébastien; Marrot, Jérôme; Haouas, Mohamed; Mbomekallé, Israël-Martyr; Taulelle, Francis; Sokolov, Maxim N; Fedin, Vladimir P; Cadot, Emmanuel

    2012-02-20

    Reaction of the cyclic lacunary [H(7)P(8)W(48)O(184)](33-) anion (noted P(8)W(48)) with the [Mo(2)S(2)O(2)(H(2)O)(6)](2+) oxothiocation led to two compounds, namely, [K(4){Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(2)(WO(2))(P(8)W(48)O(184))](30-) (denoted 1) and [{Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(2)(P(8)W(48)O(184))](36-) (denoted 2), which were characterized in the solid state and solution. In the solid state, the structure of [K(4){Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(2)(WO(2))(P(8)W(48)O(184))](30-) reveals the presence of two disordered {Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(2+) "handles" connected on both sides of the P(8)W(48) ring. Such a disorder is consistent with the presence of two geometrical isomers where the relative disposition of the two {Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(2+) handles are arranged in a perpendicular or parallel mode. Such an interpretation is fully supported by (31)P and (183)W NMR solution studies. The relative stability of both geometrical isomers appears to be dependent upon the nature of the internal alkali cations, i.e., Na(+) vs K(+), and increased lability of the two {Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(2+) handles, compared to the oxo analogous, was clearly identified by significant broadening of the (31)P and (183)W NMR lines. Solution studies carried out by UV-vis spectroscopy showed that formation of the adduct [{Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(2)(P(8)W(48)O(184))](36-) occurs in the 1.5-4.7 pH range and corresponds to a fast and quantitative condensation process. Furthermore, (31)P NMR titrations in solution reveal formation of the "monohandle" derivative [{Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(P(8)W(48)O(184))](38-) as an intermediate prior to formation of the "bishandle" derivatives. Furthermore, the electrochemical behavior of [{Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(2)(P(8)W(48)O(184))](36-) was studied in aqueous medium and compared with the parent anion P(8)W(48).

  9. An Investigation of Armenite, BaCa2Al6Si9O302H2O.H2O Molecules and H Bonding in Microporous Silicates

    NASA Astrophysics Data System (ADS)

    Geiger, C. A.; Gatta, G.; Xue, X.; McIntyre, G.

    2012-12-01

    The crystal chemistry of armenite, ideally BaCa2Al6Si9O30.2H2O, a double-ring structure belonging to the milarite group, was studied to better understand the nature of extra-framework "Ca-oxygen-anion-H2O-molecule quasi-clusters" and H bonding behavior in microporous silicates. Neutron and X-ray single-crystal diffraction and IR powder and 1H NMR spectroscopic measurements were made. Four crystallographically independent Ca and H2O molecule sites were refined from the diffraction data, whereby both sites appear to have partial occupancies such that locally a Ca atom can have only a single H2O molecule bonded to it through an ion-dipole interaction. The Ca cation is further bonded to six O atoms of the framework forming a quasi cluster around it. The neutron results give the first static description of the protons in armenite, allowing bond distances and angles relating to the H2O molecules and H bonds to be determined. The IR spectrum of armenite is characterized in the OH-stretching region at RT by two broad bands at roughly 3470 and 3410 cm-1 and by a single H2O bending mode at 1654 cm-1. At 10 K four intense OH bands are located at 3479, 3454, 3401 and 3384 cm-1 and two H2O bending modes at 1650 and 1606 cm-1. The 1H MAS NMR spectrum shows a single strong resonance near 5.3 ppm and a smaller one near 2.7 ppm. The former can be assigned to H2O molecules bonded to Ca and the latter to weakly bonded H2O located at a site at the center of the structural double ring and it is partially occupied. The nature of H bonding in the microporous Ca-bearing zeolites scolecite, wairakite and epistilbite are also analyzed. The average OH stretching wavenumber shown by the IR spectra of armenite (~3435 cm-1) and scolecite (~3430 cm-1) are similar, while the average OH wavenumbers for wairakite (~3475 cm-1) and epistilbite (~3500 cm-1) are greater. In all cases the average OH stretching wavenumber is more similar to that of liquid water (~3400 cm-1) than of ice (~3220 cm-1). The

  10. Thermodynamic and transport properties of frozen and reacting pH2-oH2 mixtures

    NASA Technical Reports Server (NTRS)

    Carter, H. G.; Bullock, R. E.

    1972-01-01

    Application of experimental state data and spectroscopic term values shows that the thermodynamic and transport properties of reacting pH2-oH2 mixtures are considerably different than those of chemically frozen pH2 at temperatures below 300 R. Calculated H-S data also show that radiation-induced pH2-oH2 equilibration at constant enthalpy produces a temperature drop of at least 28 R, corresponding to an ideal shaft work loss of 15% or more for a turbine operating downstream from the point of conversion. Aside from differences in thermodynamic and transport properties, frozen pH2-oH2 mixtures may differ from pure pH2 on a purely hydrodynamical basis.

  11. Microwave-assisted synthesis of NiS2 nanostructures for supercapacitors and cocatalytic enhancing photocatalytic H2 production.

    PubMed

    Pang, Huan; Wei, Chengzhen; Li, Xuexue; Li, Guochang; Ma, Yahui; Li, Sujuan; Chen, Jing; Zhang, Jiangshan

    2014-01-06

    Uniform NiS2 nanocubes are successfully synthesized with a microwave-assisted method. Interestingly, NiS2 nanocubes, nanospheres and nanoparticles are obtained by controlling microwave reaction time. NiS2 nanomaterials are primarily applied to supercapacitors and cocatalytic enhancing photocatalytic H2 production. Different morphologies of NiS2 nanostructures show different electrochemical and cocatalytic enhancing H2 production activities. Benefited novel nanostructures, NiS2 nanocube electrodes show a large specific capacitance (695 F g(-1) at 1.25 A g(-1)) and excellent cycling performance (the retention 93.4% of initial specific capacitance after 3000 cycles). More importantly, NiS2 nanospheres show highly cocatalytic enhancing photocatalytic for H2 evolution, in which the photocatalytic H2 production is up to 3400 μmol during 12 hours under irradiation of visible light (λ>420 nm) with an average H2 production rate of 283 μmol h(-1).

  12. Microwave-assisted synthesis of NiS2 nanostructures for supercapacitors and cocatalytic enhancing photocatalytic H2 production

    NASA Astrophysics Data System (ADS)

    Pang, Huan; Wei, Chengzhen; Li, Xuexue; Li, Guochang; Ma, Yahui; Li, Sujuan; Chen, Jing; Zhang, Jiangshan

    2014-01-01

    Uniform NiS2 nanocubes are successfully synthesized with a microwave-assisted method. Interestingly, NiS2 nanocubes, nanospheres and nanoparticles are obtained by controlling microwave reaction time. NiS2 nanomaterials are primarily applied to supercapacitors and cocatalytic enhancing photocatalytic H2 production. Different morphologies of NiS2 nanostructures show different electrochemical and cocatalytic enhancing H2 production activities. Benefited novel nanostructures, NiS2 nanocube electrodes show a large specific capacitance (695 F g-1 at 1.25 A g-1) and excellent cycling performance (the retention 93.4% of initial specific capacitance after 3000 cycles). More importantly, NiS2 nanospheres show highly cocatalytic enhancing photocatalytic for H2 evolution, in which the photocatalytic H2 production is up to 3400 μmol during 12 hours under irradiation of visible light (λ>420 nm) with an average H2 production rate of 283 μmol h-1.

  13. di Synthesis and Characterization of the Platinum-Substituted Keggin Anion alpha-H2SiPtW11O404-

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klonowski, P; Goloboy, JC; Uribe-Romo, FJ

    2014-12-15

    Acidification of an aqueous solution of K8SiW11O39 and K2Pt(OH)(6) to pH 4 followed by addition of excess tetramethylammonium (TMA) chloride yielded a solid mixture of TMA salts of H2SiPtW11O404- (1) and SiW12O404- (2). The former was separated from the latter by extraction into an aqueous solution and converted into tetra-n-butylammonium (TBA) and potassium salts TBA-1 and K-1. The a-H2SiPtW11O404- was identified as a monosubstituted Keggin anion using elemental analysis, IR spectroscopy, X-ray crystallography, electrospray ionization mass spectrometry, Pt-195 NMR spectroscopy, (183)W NMR spectroscopy, and W-183-W-183 2D INADEQUATE NMR spectroscopy. Both TBA-1 and K-1 readily cocrystallized with their unsubstituted Keggin anionmore » salts, TBA-2 and K-2, respectively, providing an explanation for the historical difficulty of isolating certain platinum-substituted heteropolyanions in pure form.« less

  14. Anion-selective interaction and colorimeter by an optical metalloreceptor based on ruthenium(II) 2,2'-biimidazole: hydrogen bonding and proton transfer.

    PubMed

    Cui, Ying; Mo, Hao-Jun; Chen, Jin-Can; Niu, Yan-Li; Zhong, Yong-Rui; Zheng, Kang-Cheng; Ye, Bao-Hui

    2007-08-06

    A new anion sensor [Ru(bpy)2(H2biim)](PF6)2 (1) (bpy = 2,2'-bipyridine and H2biim = 2,2'-biimidazole) has been developed, in which the Ru(II)-bpy moiety acts as a chromophore and the H2biim ligand as an anion receptor via hydrogen bonding. A systematic investigation shows that 1 is an eligible sensor for various anions. It donates protons for hydrogen bonding to Cl-, Br-, I-, NO3-, HSO4-, H2PO4-, and OAc- anions and further actualizes monoproton transfer to the OAc- anion, changing color from yellow to orange brown. The fluoride ion has a high affinity toward the N-H group of the H2biim ligand for proton transfer, rather than hydrogen bonding, because of the formation of the highly stable HF2- anion, resulting in stepwise deprotonation of the two N-H fragments. These processes are signaled by vivid color changes from yellow to orange brown and then to violet because of second-sphere donor-acceptor interactions between Ru(II)-H2biim and the anions. The significant color changes can be distinguished visually. The processes are not only determined by the basicity of anion but also by the strength of hydrogen bonding and the stability of the anion-receptor complexes. The design strategy and remarkable photophysical properties of sensor 1 help to extend the development of anion sensors.

  15. Crystal and molecular structure of 2,2’-(quinoxaline-2,3-diyl)dipyridinium dinitrate (H{sub 2}L)(NO{sub 3}){sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egorova, O. A.; Polyakova, I. N., E-mail: polyakova@igic.ras.ru; Sergienko, V. S.

    2016-07-15

    The crystal structure of 2,2’-(quinoxaline-2,3-diyl)dipyridinium dinitrate (H{sub 2}L)(NO{sub 3}){sub 2} is studied by X-ray diffraction (T = 150 K, R1 = 0.0467). The H{sub 2}L{sup 2+} cation is located on the twofold rotation axis and connected with two NO{sub 3}{sup −} anions by strong N–H···O hydrogen bonds. Planar quinoxaline fragments of cations form stacks with the interplanar spacing of 3.308 Å. The structure of the diprotonated H{sub 2}L{sup 2+} cation is compared with those of the monoprotonated H{sub 2}L{sup 2+} cation and neutral L molecule.

  16. Electronic properties of in-plane phase engineered 1T'/2H/1T' MoS2

    NASA Astrophysics Data System (ADS)

    Thakur, Rajesh; Sharma, Munish; Ahluwalia, P. K.; Sharma, Raman

    2018-04-01

    We present the first principles studies of semi-infinite phase engineered MoS2 along zigzag direction. The semiconducting (2H) and semi-metallic (1T') phases are known to be stable in thin-film MoS2. We described the electronic and structural properties of the infinite array of 1T'/2H/1T'. It has been found that 1T'phase induced semi-metallic character in 2H phase beyond interface but, only Mo atoms in 2H phase domain contribute to the semi-metallic nature and S atoms towards semiconducting state. 1T'/2H/1T' system can act as a typical n-p-n structure. Also high holes concentration at the interface of Mo layer provides further positive potential barriers.

  17. Synthesis and characterization of polymer eight-coordinate (enH 2)[Y III(pdta)(H 2O)] 2·10H 2O as well as the interaction of [Y III(pdta)(H 2O)] 22- with BSA

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Wang, Jun; Wang, Xin; Liu, Bing-Mi; He, Ling-Ling; Xu, Shu-Kun

    2010-12-01

    The eight-coordinate (enH 2)[Y III(pdta)(H 2O)] 2·10H 2O (en = ethylenediamine and H 4pdta = 1,3-propylenediamine- N, N, N', N'-tetraacetic acid) was synthesized, meanwhile its molecular and crystal structures were determined by single-crystal X-ray diffraction technology. The interaction between [Y III(pdta)(H 2O)] 22- and bovine serum albumin (BSA) was investigated by UV-vis and fluorescence spectra. The results indicate that [Y III(pdta)(H 2O)] 22- quenched effectively the intrinsic fluorescence of BSA via a static quenching process with the binding constant ( Ka) of the order of 10 4. Meanwhile, the binding and damaging sites to BSA molecules were also estimated by synchronous fluorescence. Results indicate that the hydrophobic environments around Trp and Tyr residues were all slightly changed. The thermodynamic parameters (Δ G = -25.20 kJ mol -1, Δ H = -26.57 kJ mol -1 and Δ S = -4.58 J mol -1 K -1) showed that the reaction was spontaneous and exothermic. What is more, both Δ H and Δ S were negative values indicated that hydrogen bond and Van der Waals forces were the predominant intermolecular forces between [Y III(pdta)(H 2O)] 22- and BSA.

  18. The Jovian atmospheric window at 2.7 microns: A search for H2S

    NASA Technical Reports Server (NTRS)

    Larson, H. P.; Davis, D. S.; Hofmann, R.; Bjoraker, G. L.

    1984-01-01

    The atmospheric transmission window at 2.7 microns in Jupiter's atmosphere was observed at a spectral resolution of 0.1/cm from the Kuiiper Airborne Observatory. From an analysis of the CH4 abundance (80 m-am) and the H2O abundance ( 0.0125 cm-am) it was determined that the penetration depth of solar flux at 2.7 microns is near the base of the NH3 cloud layer. The upper limit to H2O at 2.7 microns and other results suggest that photolytic reactions in Jupiter's lower troposphere may not be as significant as was previously thought. A search for H2S in Jupiter's atmosphere yielded an upper limit of 0.1 cm-am. The corresponding limit to the element abundance ratio S/H was approx. 1.7x10(-8), about 10(-3) times the solar value. Upon modeling the abundance and distribution of H2S in Jupiter's atmosphere it was concluded that, contrary to expectations, sulfur-bearing chromophores are not present in significant amounts in Jupiter's visible clouds. Rather, it appears that most of Jupiter's sulfur is locked up as NH4SH in a lower cloud layer. Alternatively, the global abundance of sulfur in Jupiter may be significantly depleted.

  19. Protein kinase G–regulated production of H2S governs oxygen sensing

    PubMed Central

    Yuan, Guoxiang; Vasavda, Chirag; Peng, Ying-Jie; Makarenko, Vladislav V.; Raghuraman, Gayatri; Nanduri, Jayasri; Gadalla, Moataz M.; Semenza, Gregg L.; Kumar, Ganesh K.; Snyder, Solomon H.; Prabhakar, Nanduri R.

    2015-01-01

    Reflexes initiated by the carotid body, the principal O2-sensing organ, are critical for maintaining cardio-respiratory homeostasis during hypoxia. O2 sensing by the carotid body requires carbon monoxide (CO) generation by heme oxygenase-2 (HO-2) and hydrogen sulfide (H2S) synthesis by cystathionine-γ-lyase (CSE). We report that O2 stimulated the generation of CO, but not that of H2S, and required two cysteine residues in the heme regulatory motif (Cys265 and Cys282) of HO-2. CO stimulated protein kinase G (PKG)–dependent phosphorylation of Ser377 of CSE, inhibiting the production of H2S. Hypoxia decreased the inhibition of CSE by reducing CO generation resulting in increased H2S, which stimulated carotid body neural activity. In carotid bodies from mice lacking HO-2, compensatory increased abundance of nNOS (neuronal nitric oxide synthase) mediated O2 sensing through PKG-dependent regulation of H2S by nitric oxide. These results provide a mechanism for how three gases work in concert in the carotid body to regulate breathing. PMID:25900831

  20. H2 blockers

    MedlinePlus

    Peptic ulcer disease - H2 blockers; PUD - H2 blockers; Gastroesophageal reflux - H2 blockers; GERD - H2 blockers ... provider about your symptoms. If you have a peptic ulcer, your provider may prescribe H2 blockers along with ...

  1. H 2 Desorption from MgH 2 Surfaces with Steps and Catalyst-Dopants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reich, Jason M.; Wang, Lin-Lin; Johnson, Duane D.

    2014-03-10

    Light-metal hydrides, like MgH 2, remain under scrutiny as prototypes for reversible H-storage materials. For MgH 2, we assess hydrogen desorption/adsorption properties (enthalpy and kinetic barriers) for stepped, catalyst-doped surfaces occurring, e.g., from ball-milling in real samples. Employing density functional theory and simulated annealing in a slab model, we studied initial H 2 desorption from stepped surfaces with(out) titanium (Ti) catalytic dopant. Extensive simulated annealing studies were performed to find the dopant’s site preferences. For the most stable initial and final (possibly magnetic) states, nudged elastic band (NEB) calculations were performed to determine the H 2-desorption activation energy. We usedmore » a moment-transition NEB method to account for the dopant’s transition to the lowest-energy magnetic state at each image along the band. We identify a dopant-related surface-desorption mechanism that reloads via bulk H diffusion. While reproducing the observed bulk enthalpy of desorption, we find a decrease of 0.24 eV (a 14% reduction) in the activation energy on doped stepped surface; together with a 22% reduction on a doped flat surface, this brackets the assessed 18% reduction in kinetic barrier for ball-milled MgH 2 samples with low concentration of Ti from experiment.« less

  2. Structures, physicochemical and cytoprotective properties of new oxidovanadium(IV) complexes -[VO(mIDA)(dmbipy)]·1.5H2O and [VO(IDA)(dmbipy)]·2H2O

    NASA Astrophysics Data System (ADS)

    Drzeżdżon, Joanna; Jacewicz, Dagmara; Wyrzykowski, Dariusz; Inkielewicz-Stępniak, Iwona; Sikorski, Artur; Tesmar, Aleksandra; Chmurzyński, Lech

    2017-09-01

    New oxidovanadium(IV) complexes with a modification of the ligand in the VO2+ coordination sphere were synthesized. [VO(mIDA)(dmbipy)]•1.5H2O and [VO(IDA)(dmbipy)]•2H2O were obtained as dark green crystals and grey-green powder, respectively (mIDA = N-methyliminodiacetic anion, IDA = iminodiacetic anion, dmbipy = 4,4‧-dimethoxy-2,2‧-dipyridyl). The crystal structure of [VO(mIDA)(dmbipy)]·1.5H2O has been determined by the X-ray diffraction method. The studies of structure of [VO(mIDA)(dmbipy)]•1.5H2O have shown that this compound occurs in the crystal as two rotational conformers. Furthermore, the stability constants of [VO(mIDA)(dmbipy)]•1.5H2O and [VO(IDA)(dmbipy)]•2H2O complexes in aqueous solutions were studied by using the potentiometric titration method and, consequently, determined using the Hyperquad2008 program. Moreover, the title complexes were investigated as antioxidant substances. The impact of the structure modification in the VO2+ complexes on the radical scavenging activity has been studied. The ability to scavenge the superoxide radical by two complexes - [VO(mIDA)(dmbipy)]·1.5H2O and [VO(IDA)(dmbipy)]·2H2O was studied by cyclic voltammetry (CV) and nitrobluetetrazolium (NBT) methods. The title complexes were also examined by the spectrophotometric method as scavengers of neutral organic radical - 1,1-diphenyl-2-picrylhydrazyl (DPPH•) and radical cation - 2,2'-azinobis-(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS•+). Furthermore, the biological properties of two oxidovanadium(IV) complexes were investigated in relation to its cytoprotective properties by the MTT and LDH tests based on the hippocampal HT22 neuronal cell line during the oxidative damage induced by hydrogen peroxide. Finally, the results presented in this paper have shown that the both new oxidovanadium(IV) complexes with the 4,4‧-dimethoxy-2,2‧-dipyridyl ligand can be treated as the cytoprotective substances.

  3. Studies on two-gap superconductivity in 2H-NbS2

    NASA Astrophysics Data System (ADS)

    Kačmarčík, J.; Pribulová, Z.; Marcenat, C.; Klein, T.; Rodière, P.; Cario, L.; Samuely, P.

    2010-12-01

    We present the ac-calorimetry measurements of superconducting 2H-NbS2 in the temperature range down to 0.6 K and magnetic fields up to 8 T. The temperature and magnetic field dependence of the electronic specific heat consistently indicate existence of two superconducting energy gaps in the system - one of them with the coupling ratio below the BCS weak-coupling limit and the other above that value. These results support previous findings by scanning tunneling microscopy and spectroscopy measurements [I. Guillamón, H. Suderow, S. Vieira, L. Cario, et al., Phys. Rev. Lett. 101 (2008) 166407] of two pronounced features in density of states related to a two-gap superconductivity in this system.

  4. Variability of O2, H2S, and pH in intertidal sediments measured on a highly resolved spatial and temporal scale

    NASA Astrophysics Data System (ADS)

    Walpersdorf, E.; Werner, U.; Bird, P.; de Beer, D.

    2003-04-01

    We investigated the variability of O_2, pH, and H_2S in intertidal sediments to assess the time- and spatial scales of changes in environmental conditions and their effects on bacterial activities. Measurements were performed over the tidal cycle and at different seasons by the use of microsensors attached to an autonomous in-situ measuring device. This study was carried out at a sand- and a mixed flat in the backbarrier area of Spiekeroog (Germany) within the frame of the DFG research group "Biogeochemistry of the Wadden Sea". Results showed that O_2 variability was not pronounced in the coastal mixed flat, where only extreme weather conditions could increase O_2 penetration. In contrast, strong dynamics in O_2 availability, pH and maximum penetration depths of several cm were found at the sandflat. In these highly permeable sediments, we directly observed tidal pumping: at high tide O_2-rich water was forced into the plate and at low tide anoxic porewater drained off the sediment. From the lower part of the plate where organic rich clayey layers were embedded in the sediment anoxic water containing H_2S leaked out during low tide. Thus advective processes, driven by the tidal pump, waves and currents, control O_2 penetration and depth distribution of H_2S and pH. The effects of the resulting porewater exchange on mineralization rates and microbial activities will be discussed.

  5. Laser photoelectron spectroscopy of MnH - 2, FeH - 2, CoH - 2, and NiH - 2: Determination of the electron affinities for the metal dihydrides

    NASA Astrophysics Data System (ADS)

    Miller, Amy E. S.; Feigerle, C. S.; Lineberger, W. C.

    1986-04-01

    The laser photoelectron spectra of MnH-2, FeH-2, CoH-2, and NiH-2 and the analogous deuterides are reported. Lack of vibrational structure in the spectra suggests that all of the dihydrides and their negative ions have linear geometries, and that the transitions observed in the spectra are due to the loss of nonbonding d electrons. The electron affinities for the metal dihydrides are determined to be 0.444±0.016 eV for MnH2, 1.049±0.014 eV for FeH2, 1.450±0.014 eV for CoH2, and 1.934±0.008 eV for NiH2. Electronic excitation energies are provided for excited states of FeH2, CoH2, and NiH2. Electron affinities and electronic excitation energies for the dideuterides are also reported. A limit on the electron affinity of CrH2 of ≥2.5 eV is determined. The electron affinities of the dihydrides directly correlate with the electron affinities of the high-spin states of the monohydrides, and with the electron affinities of the metal atoms. These results are in agreement with a qualitative model developed for bonding in the monohydrides.

  6. H2S induced hypometabolism in mice is missing in sedated sheep.

    PubMed

    Haouzi, Philippe; Notet, Véronique; Chenuel, Bruno; Chalon, Bernard; Sponne, Isabelle; Ogier, Virginie; Bihain, Bernard

    2008-01-01

    On the basis of studies performed in mice that showed H(2)S inhalation decreasing dramatically the metabolic rate, H(2)S was proposed as a means of protecting vital organs from traumatic or ischemic episodes in humans. Hypoxia has in fact also long been shown to induce hypometabolism. However, this effect is observed solely in small-sized animals with high VO2 kg(-1), and not in large mammals. Thus, extrapolating the hypometabolic effect of H(2)S to large mammals is questionable and could be potentially dangerous. We measured metabolism in conscious mice (24 g) exposed to H(2)S (60 ppm) at an ambient temperature of 23-24 degrees C. H(2)S caused a rapid and large (50%) drop in gas exchange rate, which occurred independently of the change in body temperature. The metabolic response occurred within less than 3 min. In contrast, sheep, sedated with ketamine and weighing 74 kg did not exhibit any decrease in metabolic rate during a similar challenge at an ambient temperature of 22 degrees C. While a part of H(2)S induced hypometabolism in the mice is related to the reduction in activity, we speculate that the difference between sheep and mice may rely on the nature and the characteristics of the relationship between basal metabolic rate and body weight thus on the different mechanisms controlling resting metabolic rate according to body mass. Therefore, the proposed use of H(2)S administration as a way of protecting vital organs should be reconsidered in view of the lack of hypometabolic effect in a large sedated mammal and of H(2)S established toxicity.

  7. Microwave-assisted synthesis of NiS2 nanostructures for supercapacitors and cocatalytic enhancing photocatalytic H2 production

    PubMed Central

    Pang, Huan; Wei, Chengzhen; Li, Xuexue; Li, Guochang; Ma, Yahui; Li, Sujuan; Chen, Jing; Zhang, Jiangshan

    2014-01-01

    Uniform NiS2 nanocubes are successfully synthesized with a microwave-assisted method. Interestingly, NiS2 nanocubes, nanospheres and nanoparticles are obtained by controlling microwave reaction time. NiS2 nanomaterials are primarily applied to supercapacitors and cocatalytic enhancing photocatalytic H2 production. Different morphologies of NiS2 nanostructures show different electrochemical and cocatalytic enhancing H2 production activities. Benefited novel nanostructures, NiS2 nanocube electrodes show a large specific capacitance (695 F g−1 at 1.25 A g−1) and excellent cycling performance (the retention 93.4% of initial specific capacitance after 3000 cycles). More importantly, NiS2 nanospheres show highly cocatalytic enhancing photocatalytic for H2 evolution, in which the photocatalytic H2 production is up to 3400 μmol during 12 hours under irradiation of visible light (λ>420 nm) with an average H2 production rate of 283 μmol h−1. PMID:24389929

  8. Hydrazinium lanthanide oxalates: synthesis, structure and thermal reactivity of N2H5[Ln2(C2O4)4(N2H5)]·4H2O, Ln = Ce, Nd.

    PubMed

    De Almeida, Lucie; Grandjean, Stéphane; Rivenet, Murielle; Patisson, Fabrice; Abraham, Francis

    2014-03-28

    New hydrazinium lanthanide oxalates N2H5[Ln2(C2O4)4(N2H5)]·4H2O, Ln = Ce (Ce-HyOx) and Nd (Nd-HyOx), were synthesized by hydrothermal reaction at 150 °C between lanthanide nitrate, oxalic acid and hydrazine solutions. The structure of the Nd compound was determined from single-crystal X-ray diffraction data, space group P2₁/c with a = 16.315(4), b = 12.127(3), c = 11.430(2) Å, β = 116.638(4)°, V = 2021.4(7) Å(3), Z = 4, and R1 = 0.0313 for 4231 independent reflections. Two distinct neodymium polyhedra are formed, NdO9 and NdO8N, an oxygen of one monodentate oxalate in the former being replaced by a nitrogen atom of a coordinated hydrazinium ion in the latter. The infrared absorption band at 1005 cm(-1) confirms the coordination of N2H5(+) to the metal. These polyhedra are connected through μ2 and μ3 oxalate ions to form an anionic three-dimensional neodymium-oxalate arrangement. A non-coordinated charge-compensating hydrazinium ion occupies, with water molecules, the resulting tunnels. The N-N stretching frequencies of the infrared spectra demonstrate the existence of the two types of hydrazine ions. Thermal reactivity of these hydrazinium oxalates and of the mixed isotypic Ce/Nd (CeNd-HyOx) oxalate were studied by using thermogravimetric and differential thermal analyses coupled with gas analyzers, and high temperature X-ray diffraction. Under air, fine particles of CeO2 and Ce(0.5)Nd(0.5)O(1.75) are formed at low temperature from Ce-HyOx and CeNd-HyOx, respectively, thanks to a decomposition/oxidation process. Under argon flow, dioxymonocyanamides Ln2O2CN2 are formed.

  9. Pressure-Stabilized Cubic Perovskite Oxyhydride BaScO2H.

    PubMed

    Goto, Yoshihiro; Tassel, Cédric; Noda, Yasuto; Hernandez, Olivier; Pickard, Chris J; Green, Mark A; Sakaebe, Hikari; Taguchi, Noboru; Uchimoto, Yoshiharu; Kobayashi, Yoji; Kageyama, Hiroshi

    2017-05-01

    We report a scandium oxyhydride BaScO 2 H prepared by solid state reaction under high pressure. Rietveld refinements against powder synchrotron X-ray and neutron diffraction data revealed that BaScO 2 H adopts the ideal cubic perovskite structure (Pm3̅m), where oxide (O 2- ) and hydride (H - ) anions are disordered. 1 H nuclear magnetic resonance (NMR) spectroscopy provides a positive chemical shift of about +4.4 ppm, which can be understood by the distance to the nearest (and possibly the next nearest) cation from the H nucleus. A further analysis of the NMR data and calculations based on ab initio random structure searches suggest a partial cis preference in ScO 4 H 2 octahedra. The present oxyhydride, if compositionally or structurally tuned, may become a candidate for H - conductors.

  10. A fluorescent turn-on H2S-responsive probe: design, synthesis and application.

    PubMed

    Zhang, Yufeng; Chen, Haiyan; Chen, Dan; Wu, Di; Chen, Xiaoqiang; Liu, Sheng Hua; Yin, Jun

    2015-10-14

    Hydrogen sulfide (H2S) is considered as the third signaling molecule in vivo and it plays an important role in various physiological processes and pathological processes in vivo, such as vasodilation, apoptosis, neurotransmission, ischemia/reperfusion-induced injury, insulin secretion and inflammation. Developing a highly selective and sensitive method that can detect H2S in the biological system is very important. In this work, a colorimetric and "turn-on" fluorescent probe is developed. Furthermore, this probe displays a highly selective response to H2S in aqueous solution and possesses good capability for bioimaging H2S without interference in living cells. The results suggest that a H2S-selective probe has good water-solubility, biocompatibility and cell-penetrability and can serve as an efficient tool for probing H2S in the cell level.

  11. Impact of ozonation, anion exchange resin and UV/H2O2 pre-treatments to control fouling of ultrafiltration membrane for drinking water treatment.

    PubMed

    Pramanik, Biplob Kumar; Pramanik, Sagor Kumar; Sarker, Dipok Chandra; Suja, Fatihah

    2017-06-01

    The effects of ozonation, anion exchange resin (AER) and UV/H 2 O 2 were investigated as a pre-treatment to control organic fouling (OF) of ultrafiltration membrane in the treatment of drinking water. It was found that high molecular weight (MW) organics such as protein and polysaccharide substances were majorly responsible for reversible fouling which contributed to 90% of total fouling. The decline rate increased with successive filtration cycles due to deposition of protein content over time. All pre-treatment could reduce the foulants of a Ultrafiltration membrane which contributed to the improvement in flux, and there was a greater improvement of flux by UV/H 2 O 2 (61%) than ozonation (43%) which in turn was greater than AER (23%) treatment. This was likely due to the effective removal/breakdown of high MW organic content. AER gave greater removal of biofouling potential components (such as biodegradable dissolved organic carbon and assimilable organic carbon contents) compared to UV/H 2 O 2 and ozonation treatment. Overall, this study demonstrated the potential of pre-treatments for reducing OF of ultrafiltration for the treatment of drinking water.

  12. Degradation of n-butylparaben and 4- tert-octylphenol in H 2O 2/UV system

    NASA Astrophysics Data System (ADS)

    BŁędzka, Dorota; Gryglik, Dorota; Olak, Magdalena; Gębicki, Jerzy L.; Miller, Jacek S.

    2010-04-01

    The degradation of two endocrine disrupting compounds: n-butylparaben (BP) and 4- tert-octylphenol (OP) in the H 2O 2/UV system was studied. The effect of operating variables: initial hydrogen peroxide concentration, initial substrate concentration, pH of the reaction solution and photon fluency rate of radiation at 254 nm on reaction rate was investigated. The influence of hydroxyl radical scavengers, humic acid and nitrate anion on reaction course was also studied. A very weak scavenging effect during BP degradation was observed indicating reactions different from hydroxyl radical oxidation. The second-order rate constants of BP and OP with OH radicals were estimated to be 4.8×10 9 and 4.2×10 9 M -1 s -1, respectively. For BP the rate constant equal to 2.0×10 10 M -1 s -1was also determined using water radiolysis as a source of hydroxyl radicals.

  13. H2S adsorption and dissociation on NH-decorated graphene: A first principles study

    NASA Astrophysics Data System (ADS)

    Faye, Omar; Eduok, Ubong; Szpunar, Jerzy; Samoura, Almoustapha; Beye, Aboubaker

    2018-02-01

    The removal of H2S gas poses an emerging environmental concern because of the lack of knowledge of an efficient adsorbent. A detailed theoretical study of H2S adsorption and dissociation on NH-doped graphene (GNH) has been carried out by means of density theory calculations. Our results reveal that the adsorption of H2S molecule on GNH composite is enhanced by the presence of active site such as the NH radicals. These NH radical sites formed NHsbnd H bonds and increase the charge transfer from H2S to GNH. The dissociation of the adsorbed H2S molecule leads the chemisorption of SH radical via H-transfer to GNH, while the formation of GNH2 at a weight percent of 3.76 wt% of NH radical is an endothermic process with an energy of 0.299 eV and 0.358 eV for ortho and para-position respectively. However, at 7.25 wt% NH radical, we observed a complete dissociation of H2S molecule with an energy released of 0.711 eV for the chemisorbed S atom on GN2H4. Moreover, the H-transfer of the second H atom of H2S molecule at 3.76 wt% was energetic unfavorable. The trend of predicted results within this study reveals that NH-doped graphene (GNH) successfully adsorbed and eliminated of H2S molecule; this work unveils definitive theoretical procedures which can be tested and validated experimentally.

  14. Co3(PO4)2·4H2O

    PubMed Central

    Lee, Young Hoon; Clegg, Jack K.; Lindoy, Leonard F.; Lu, G. Q. Max; Park, Yu-Chul; Kim, Yang

    2008-01-01

    Single crystals of Co3(PO4)2·4H2O, tricobalt(II) bis­[ortho­phosphate(V)] tetra­hydrate, were obtained under hydro­thermal conditions. The title compound is isotypic with its zinc analogue Zn3(PO4)2·4H2O (mineral name hopeite) and contains two independent Co2+ cations. One Co2+ cation exhibits a slightly distorted tetra­hedral coordination, while the second, located on a mirror plane, has a distorted octa­hedral coordination environment. The tetra­hedrally coordinated Co2+ is bonded to four O atoms of four PO4 3− anions, whereas the six-coordinate Co2+ is cis-bonded to two phosphate groups and to four O atoms of four water mol­ecules (two of which are located on mirror planes), forming a framework structure. In addition, hydrogen bonds of the type O—H⋯O are present throughout the crystal structure. PMID:21200978

  15. Synthesis, structural and electrical properties of [C{sub 2}H{sub 10}N{sub 2}][(SnCl(NCS){sub 2}]{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karoui, Sahel; Kamoun, Slaheddine, E-mail: slah.kamoun@gmail.com; Jouini, Amor

    2013-01-15

    Synthesis, structural and electrical properties are given for a new organic stannous pseudo halide material. The structure of the [C{sub 2}H{sub 10}N{sub 2}][(SnCl(NCS){sub 2}]{sub 2} reveals that the adjacent Sn(II) centres are bridged by a pair of SCN{sup -} anions to form a 1-D array giving rise to the anionic chains (SnCl(NCS){sub 2}){sub n}{sup n-}. These chains are themselves interconnected by means of N-H Horizontal-Ellipsis Cl(S) hydrogen bonds originating from the organic cation [(NH{sub 3}){sub 2}(CH{sub 2}){sub 2}]{sup 2+}. The AC impedance measurements were performed as a function of both frequency and temperature. The electrical conduction and dielectric relaxation havemore » been studied. The activation energy associated with the electrical relaxation determined from the electric modulus spectra was found close to that of the activation energy obtained for DC conductivity. The conduction mechanisms are attributed to the quantum mechanical tunneling model in phase I and to the proton hopping among hydrogen vacancies in phase II. - Graphical abstract: Atomic coordination in [C2H10N2][SnCl(NCS)2)2]. Highlights: Black-Right-Pointing-Pointer X-ray diffraction analysis shows the 1D network character of the structure. Black-Right-Pointing-Pointer DSC experiments show a phase transition at 336 K. Black-Right-Pointing-Pointer The AC conductivity is interpreted in terms of Jonsher's law. Black-Right-Pointing-Pointer Two conduction mechanisms are proposed for phase I and II.« less

  16. Modes of physiologic H2S signaling in the brain and peripheral tissues.

    PubMed

    Paul, Bindu D; Snyder, Solomon H

    2015-02-10

    Hydrogen sulfide (H2S), once associated with rotten eggs and sewers, is now recognized as a gasotransmitter that is synthesized in vivo in a regulated fashion. This ancient gaseous molecule has been retained throughout evolution to perform various roles in different life forms. H2S modulates important signaling functions in diverse cellular processes ranging from regulation of blood pressure to redox homeostasis. One of the modes by which H2S signals is by post-translational modification of reactive cysteine residues in a process designated as sulfhydration, resulting in conversion of the -SH groups of target cysteine residues to -SSH. Using the modified biotin-switch assay and a fluorescent maleimide-based analysis, sulfhydration of several proteins has been detected in various cell types. Aberrant sulfhydration patterns occur in neurodegenerative conditions such as Parkinson's disease. The exact concentration, source of H2S, and conditions under which various stores of H2S are utilized have not been fully elucidated. Currently, available inhibitors of the biosynthetic enzymes of H2S lack sufficient specificity to shed light on detailed mechanisms of H2S action. Probes with a higher sensitivity that can reliably detect cellular and tissue H2S levels are yet to be developed. Availability of advanced probes and biosynthesis inhibitors would help in the measurement of real-time changes of endogenous H2S levels in an in vivo context. The study of the dynamics of sulfhydration and nitrosylation of critical cysteine residues of regulatory proteins involved in physiology and pathophysiology is an area of interest for the future.

  17. Swine influenza virus vaccine serologic cross-reactivity to contemporary U.S. swine H3N2 and efficacy in pigs infected with an H3N2 similar to 2011-2012 H3N2v

    USDA-ARS?s Scientific Manuscript database

    Background: Swine influenza A virus (IAV) reassortment with 2009 H1N1 pandemic (H1N1pdm09) virus has been documented and new genotypes and sub-clusters of H3N2 have since expanded in the U.S. swine population. An H3N2 variant (H3N2v) virus with the H1N1pdm09 matrix gene and the remaining genes of sw...

  18. Mechanistic Study of the Stereoselective Hydroxylation of [2-2 H1 ,3-2 H1 ]Butanes Catalyzed by Cytochrome P450 BM3 Variants.

    PubMed

    Yang, Chung-Ling; Lin, Cheng-Hung; Luo, Wen-I; Lee, Tsu-Lin; Ramu, Ravirala; Ng, Kok Yaoh; Tsai, Yi-Fang; Wei, Guor-Tzo; Yu, Steve S-F

    2017-02-21

    Engineered bacterial cytochrome P450s are noted for their ability in the oxidation of inert small alkanes. Cytochrome P450 BM3 L188P A328F (BM3 PF) and A74E L188P A328F (BM3 EPF) variants are able to efficiently oxidize n-butane to 2-butanol. Esterification of the 2-butanol derived from this reaction mediated by the aforementioned two mutants gives diastereomeric excesses (de) of -56±1 and -52±1 %, respectively, with the preference for the oxidation occurring at the C-H S bond. When tailored (2R,3R)- and (2S,3S)-[2- 2 H 1 ,3- 2 H 1 ]butane probes are employed as substrates for both variants, the obtained de values from (2R,3R)-[2- 2 H 1 ,3- 2 H 1 ]butane are -93 and -92 % for BM3 PF and EPF, respectively; whereas the obtained de values from (2S,3S)-[2- 2 H 1 ,3- 2 H 1 ]butane are 52 and 56 % in the BM3 PF and EPF systems, respectively. The kinetic isotope effects (KIEs) for the oxidation of (2R,3R)-[2- 2 H 1 ,3- 2 H 1 ]butane are 7.3 and 7.8 in BM3 PF and EPF, respectively; whereas KIEs for (2S,3S)-[2- 2 H 1 ,3- 2 H 1 ]butanes are 18 and 25 in BM3 PF and EPF, respectively. The discrepancy in KIEs obtained from the two substrates supports the two-state reactivity (TSR) that is proposed for alkane oxidation in cytochrome P450 systems. Moreover, for the first time, experimental evidence for tunneling in the oxidation mediated by P450 is given through the oxidation of the C-H R bond in (2S,3S)-[2- 2 H 1 ,3- 2 H 1 ]butane. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. ZnO-carbon nanofibers for stable, high response, and selective H2S sensors.

    PubMed

    Zhang, Jitao; Zhu, Zijian; Chen, Changmiao; Chen, Zhi; Cai, Mengqiu; Qu, Baihua; Wang, Taihong; Zhang, Ming

    2018-07-06

    Hydrogen sulfide (H 2 S), as a typical atmospheric pollutant, is neurotoxic and flammable even at a very low concentration. In this study, we design stable H 2 S sensors based on ZnO-carbon nanofibers. Nanofibers with 30.34 wt% carbon are prepared by a facial electrospinning route followed by an annealing treatment. The resulting H 2 S sensors show excellent selectivity and response compared to the pure ZnO nanofiber H 2 S sensors, particularly the response in the range of 102-50 ppm of H 2 S. Besides, they exhibited a nearly constant response of approximately 40-20 ppm of H 2 S over 60 days. The superior performance of these H 2 S sensors can be attributed to the protection of carbon, which ensures the high stability of ZnO, and oxygen vacancies that improve the response and selectivity of H 2 S. The good performance of ZnO-carbon H 2 S sensors suggests that composites with oxygen vacancies prepared by a facial electrospinning route may provide a new research strategy in the field of gas sensors, photocatalysts, and semiconductor devices.

  20. H2S adsorption on chromium, chromia, and gold/chromia surfaces: Photoemission studies

    NASA Astrophysics Data System (ADS)

    Rodriguez, J. A.; Chaturvedi, S.; Kuhn, M.; van Ek, J.; Diebold, U.; Robbert, P. S.; Geisler, H.; Ventrice, C. A., Jr.

    1997-12-01

    The reaction of H2S with chromium, chromia, and Au/chromia films grown on a Pt(111) crystal has been investigated using synchrotron-based high-resolution photoemission spectroscopy. At 300 K, H2S completely decomposes on polycrystalline chromium producing a chemisorbed layer of S that attenuates the Cr 3d valence features. No evidence was found for the formation of CrSx species. The dissociation of H2S on Cr3O4 and Cr2O3 films at room temperature produces a decrease of 0.3-0.8 eV in the work function of the surface and significant binding-energy shifts (0.2-0.6 eV) in the Cr 3p core levels and Cr 3d features in the valence region. The rate of dissociation of H2S increases following the sequence: Cr2O3H2S than the valence and conduction bands of the chromium oxides. This leads to a large dissociation probability for H2S on the metal, and a low dissociation probability for the molecule on the oxides. In the case of Cr3O4 and Cr2O3, there is a correlation between the size of the band gap in the oxide and its reactivity toward H2S. The uptake of sulfur by the oxides significantly increases when they are "promoted" with gold. The Au/Cr2O3 surfaces exhibit a unique electronic structure in the valence region and a larger ability to dissociate H2S than polycrystalline Au or pure Cr2O3. The results of ab initio SCF calculations for the adsorption of H2S on AuCr4O6 and AuCr10O15 clusters show a shift of electrons from the gold toward the oxide unit that enhances the strength of the Au(6s)↔H2S(5a1,2b1) bonding interactions and facilitates the decomposition of the molecule.

  1. Characterization of H2S removal and microbial community in landfill cover soils.

    PubMed

    Xia, Fang-Fang; Zhang, Hong-Tao; Wei, Xiao-Meng; Su, Yao; He, Ruo

    2015-12-01

    H2S is a source of odors at landfills and poses a threat to the surrounding environment and public health. In this work, compared with a usual landfill cover soil (LCS), H2S removal and biotransformation were characterized in waste biocover soil (WBS), an alternative landfill cover material. With the input of landfill gas (LFG), the gas concentrations of CH4, CO2, O2, and H2S, microbial community and activity in landfill covers changed with time. Compared with LCS, lower CH4 and H2S concentrations were detected in the WBS. The potential sulfur-oxidizing rate and sulfate-reducing rate as well as the contents of acid-volatile sulfide, SO4(2-), and total sulfur in the WBS and LCS were all increased with the input of LFG. After exposure to LFG for 35 days, the sulfur-oxidizing rate of the bottom layer of the WBS reached 82.5 μmol g dry weight (d.w.)(-1) day(-1), which was 4.3-5.4 times of that of LCS. H2S-S was mainly deposited in the soil covers, while it escaped from landfills to the atmosphere. The adsorption, absorption, and biotransformation of H2S could lead to the decrease in the pH values of landfill covers; especially, in the LCS with low pH buffer capacity, the pH value of the bottom layer dropped to below 4. Pyrosequencing of 16S ribosomal RNA (rRNA) gene showed that the known sulfur-metabolizing bacteria Ochrobactrum, Paracoccus, Comamonas, Pseudomonas, and Acinetobacter dominated in the WBS and LCS. Among them, Comamonas and Acinetobacter might play an important role in the metabolism of H2S in the WBS. These findings are helpful to understand sulfur bioconversion process in landfill covers and to develop techniques for controlling odor pollution at landfills.

  2. Ternary recombination of H3+, H2D+, HD2+, and D3+ with electrons in He/Ar/H2/D2 gas mixtures

    NASA Astrophysics Data System (ADS)

    Kalosi, Abel; Dohnal, Petr; Plasil, Radek; Johnsen, Rainer; Glosik, Juraj

    2016-09-01

    The temperature dependence of the ternary recombination rate coefficients of H2D+ and HD2+ ions has been studied in the temperature range of 80-150 K at pressures from 500 to 1700 Pa in a stationary afterglow apparatus equipped with a cavity ring-down spectrometer. Neutral gas mixtures consisting of He/Ar/H2/D2 (with typical number densities 1017 /1014 /1014 /1014 cm-3) were employed to produce the desired ionic species and their fractional abundances were monitored as a function of helium pressure and the [D2]/[H2] ratio of the neutral gas. In addition, the translational and the rotational temperature and the ortho to para ratio were monitored for both H2D+ and HD2+ ions. A fairly strong pressure dependence of the effective recombination rate coefficient was observed for both ion species, leading to ternary recombination rate coefficients close to those previously found for (helium assisted) ternary recombination of H3+ and D3+. Work supported by: Czech Science Foundation projects GACR 14-14649P, GACR 15-15077S, GACR P209/12/0233, and by Charles University in Prague Project Nr. GAUK 692214.

  3. Synthesis of TiO2-CNT hybrid nanocatalyst and its application in direct oxidation of H2S to S

    NASA Astrophysics Data System (ADS)

    Daraee, Maryam; Baniadam, Majid; Rashidi, Alimorad; Maghrebi, Morteza

    2018-07-01

    In this study, a TiO2-CNT hybrid catalyst has been synthesized and its catalytic activity in the oxidation of H2S to S has been investigated and compared with those of TiO2 nanoparticles and pyrolyzed TiO2-CNT hybrid (P-TiO2-CNT). The optimum catalyst amount was determined using central composite design (CCD) method. Catalysts were characterized by various analytical techniques. The H2S conversion, sulfur selectivity and yield at the optimal temperature of 200 °C and O2/H2S ratio of 0.5 were 98.3, 99.5 and 97%, respectively. TiO2-CNT16% catalyst has a higher surface area than TiO2 nanoparticles and P-TiO2-CNT. In addition, the former catalyst gives a high conversion of H2S and sulfur selectivity at 200 °C and O2/H2S ratio of 0.5 compared with the latter two catalysts. The superior conversion (over 10%) of TiO2-CNT16% hybrid compared to TiO2 nanoparticles can be attributed to the synergistic effects of TiO2 and CNT, the reduced band gap of TiO2-CNT16% hybrid and high specific surface area of the catalyst.

  4. Preparation of polyaniline/PbS core-shell nano/microcomposite and its application for photocatalytic H2 electrogeneration from H2O.

    PubMed

    Rabia, Mohamed; Mohamed, H S H; Shaban, Mohamed; Taha, S

    2018-01-18

    Lead sulfide (PbS) and polyaniline (PANI) nano/microparticles were prepared. Then, PANI/PbS core-shell nano/microcomposites (I, II, and III) were prepared by oxidative polymerization of different aniline concentrations (0.01, 0.03, and 0.05 M), respectively, in the presence of 0.05 M PbS. FT-IR, XRD, SEM, HR-TEM, and UV-Vis analyses were carried out to characterize the samples. From the FT-IR data, there are redshifts in PbS and PANI nano/microparticles bands in comparison with PANI/PbS nano/microcomposites. The average crystallite sizes of PANI/PbS core-shell nano/microcomposites (I, II, and III) from XRD analyses were 46.5, 55, and 42.16 nm, respectively. From the optical analyses, nano/microcomposite (II) has the optimum optical properties with two band gaps values of 1.41 and 2.79 eV. Then, the nano/microcomposite (II) membrane electrode supported on ITO glass was prepared and applied on the photoelectrochemical (PEC) H 2 generation from H 2 O. The characteristics current-voltage and current-time behaviors were measured at different wavelengths from 390 to 636 nm. Also, the incident photon-to-current conversion efficiency (IPCE) under monochromatic illumination condition was calculated. The optimum values for IPCE were 36.5 and 35.2% at 390 and 405 nm, respectively. Finally, a simple mechanism for PEC H 2 generation from H 2 O using the nano/microcomposite (II) membrane electrode was mentioned.

  5. H2S Injection and Sequestration into Basalt - The SulFix Project

    NASA Astrophysics Data System (ADS)

    Gudbrandsson, S.; Moola, P.; Stefansson, A.

    2014-12-01

    Atmospheric H2S emissions are among major environmental concern associated with geothermal energy utilization. It is therefore of great importance for the geothermal power sector to reduce H2S emissions. Known solutions for H2S neutralization are both expensive and include production of elemental sulfur and sulfuric acid that needs to be disposed of. Icelandic energy companies that utilize geothermal power for electricity production have decided to try to find an environmentally friendly and economically feasible solution to reduce the H2S emission, in a joint venture called SulFix. The aim of SulFix project is to explore the possibilities of injecting H2S dissolved in water into basaltic formations in close proximity to the power plants for permanent fixation as sulfides. The formation of sulfides is a natural process in geothermal systems. Due to basalt being rich in iron and dissolving readily at acidic conditions, it is feasible to re-inject the H2S dissolved in water, into basaltic formations to form pyrite. To estimate the mineralization rates of H2S, in the basaltic formation, flow through experiments in columns were conducted at various H2S concentrations, temperatures (100 - 240°C) and both fresh and altered basaltic glass. The results indicate that pyrite rapidly forms during injection into fresh basalt but the precipiation in altered basalt is slower. Three different alteration stages, as a function of distance from inlet, can be observed in the column with fresh basaltic glass; (1) dissolution features along with precipitation, (2) precipitation increases, both sulfides and other secondary minerals and (3) the basalt looks to be unaltered and little if any precipitation is observed. The sulfur has precipitated in the first half of the column and thereafter the solution is possibly close to be supersaturated with respect to the rock. These results indicate that the H2S sequestration into basalt is possible under geothermal conditions. The rate limiting

  6. Immobilization of Alkali Metal Fluorides via Recrystallization in a Cationic Lamellar Material, [Th(MoO4)(H2O)4Cl]Cl·H2O.

    PubMed

    Lin, Jian; Bao, Hongliang; Qie, Meiying; Silver, Mark A; Yue, Zenghui; Li, Xiaoyun; Zhu, Lin; Wang, Xiaomei; Zhang, Linjuan; Wang, Jian-Qiang

    2018-06-05

    Searching for cationic extended materials with a capacity for anion exchange resulted in a unique thorium molybdate chloride (TMC) with the formula of [Th(MoO 4 )(H 2 O) 4 Cl]Cl·H 2 O. The structure of TMC is composed of zigzagging cationic layers [Th(MoO 4 )(H 2 O) 4 Cl] + with Cl - as interlamellar charge-balancing anions. Instead of performing ion exchange, alkali thorium fluorides were formed after soaking TMC in AF (A = Na, K, and Cs) solutions. The mechanism of AF immobilization is elucidated by the combination of SEM-EDS, PXRD, FTIR, and EXAFS spectroscopy. It was observed that four water molecules coordinating with the Th 4+ center in TMC are vulnerable to competition with F - , due to the formation of more favorable Th-F bonds compared to Th-OH 2 . This leads to a single crystal-to-polycrystalline transformation via a pathway of recrystallization to form alkali thorium fluorides.

  7. Reactivity and dynamics of H2S, NO, and O2 interacting with hemoglobins from Lucina pectinata.

    PubMed

    Ramos-Alvarez, Cacimar; Yoo, Byung-Kuk; Pietri, Ruth; Lamarre, Isabelle; Martin, Jean-Louis; Lopez-Garriga, Juan; Negrerie, Michel

    2013-10-08

    Hemoglobin HbI from the clam Lucina pectinata is involved in H2S transport, whereas homologous heme protein HbII/III is involved in O2 metabolism. Despite similar tertiary structures, HbI and HbII/III exhibit very different reactivity toward heme ligands H2S, O2, and NO. To investigate this reactivity at the heme level, we measured the dynamics of ligand interaction by time-resolved absorption spectroscopy in the picosecond to nanosecond time range. We demonstrated that H2S can be photodissociated from both ferric and ferrous HbI. H2S geminately rebinds to ferric and ferrous out-of-plane iron with time constants (τgem) of 12 and 165 ps, respectively, with very different proportions of photodissociated H2S exiting the protein (24% in ferric and 80% in ferrous HbI). The Gln(E7)His mutation considerably changes H2S dynamics in ferric HbI, indicating the role of Gln(E7) in controling H2S reactivity. In ferric HbI, the rate of diffusion of H2S from the solvent into the heme pocket (kentry) is 0.30 μM(-1) s(-1). For the HbII/III-O2 complex, we observed mainly a six-coordinate vibrationally excited heme-O2 complex with O2 still bound to the iron. This explains the low yield of O2 photodissociation and low koff from HbII/III, compared with those of HbI and Mb. Both isoforms behave very differently with regard to NO and O2 dynamics. Whereas the amplitude of geminate rebinding of O2 to HbI (38.5%) is similar to that of myoglobin (34.5%) in spite of different distal heme sites, it appears to be much larger for HbII/III (77%). The distal Tyr(B10) side chain present in HbII/III increases the energy barrier for ligand escape and participates in the stabilization of bound O2 and NO.

  8. Functionalized UO[sub 2] salenes. Neutral receptors for anions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudkevich, D.M.; Verboom, W.; Brzozka, Z.

    1994-05-18

    A novel class of neutral receptors for anions that contain a unique combination of an immobilized Lewis acidic binding site (UO[sub 2][sup 2+]) and additional amide C(O)NH groups, which can form a favorable H-bond with a coordinated anion guest, has been developed. The unique combination of a Lewis acidic UO[sub 2] center and amide C(O)NH groups in one receptor leads to highly specific H[sub 2]PO[sub 4[sup [minus

  9. Effects of microsolvation on uracil and its radical anion: Uracil.(H2O)n (n=1-5)

    NASA Astrophysics Data System (ADS)

    Kim, Sunghwan; Schaefer, Henry F.

    2006-10-01

    Microsolvation effects on the stabilities of uracil and its anion have been investigated by explicitly considering the structures of complexes of uracil with up to five water molecules at the B3LYP /DZP++ level of theory. For all five systems, the global minimum of the neutral cluster has a different equilibrium geometry from that of the radical anion. Both the vertical detachment energy (VDE) and adiabatic electron affinity (AEA) of uracil are predicted to increase gradually with the number of hydrating molecules, qualitatively consistent with experimental results from a photodetachment-photoelectron spectroscopy study [J. Schiedt et al., Chem. Phys. 239, 511 (1998)]. The trend in the AEAs implies that while the conventional valence radical anion of uracil is only marginally bound in the gas phase, it will form a stable anion in aqueous solution. The gas-phase AEA of uracil (0.24eV) was higher than that of thymine by 0.04eV and this gap was not significantly affected by microsolvation. The largest AEA is that predicted for uracil•(H2O)5, namely, 0.96eV. The VDEs range from 0.76to1.78eV.

  10. Effects of microsolvation on uracil and its radical anion: uracil(H2O)n (n = 1-5).

    PubMed

    Kim, Sunghwan; Schaefer, Henry F

    2006-10-14

    Microsolvation effects on the stabilities of uracil and its anion have been investigated by explicitly considering the structures of complexes of uracil with up to five water molecules at the B3LYPDZP++ level of theory. For all five systems, the global minimum of the neutral cluster has a different equilibrium geometry from that of the radical anion. Both the vertical detachment energy (VDE) and adiabatic electron affinity (AEA) of uracil are predicted to increase gradually with the number of hydrating molecules, qualitatively consistent with experimental results from a photodetachment-photoelectron spectroscopy study [J. Schiedt et al., Chem. Phys. 239, 511 (1998)]. The trend in the AEAs implies that while the conventional valence radical anion of uracil is only marginally bound in the gas phase, it will form a stable anion in aqueous solution. The gas-phase AEA of uracil (0.24 eV) was higher than that of thymine by 0.04 eV and this gap was not significantly affected by microsolvation. The largest AEA is that predicted for uracil(H2O)5, namely, 0.96 eV. The VDEs range from 0.76 to 1.78 eV.

  11. The structure directing effect of organic cations onto the crystal structures of layered thioantimonates(III): Solvothermal synthesis and crystal structures of five new compounds containing the 2∞[Sb 8S 13] 2- anion

    NASA Astrophysics Data System (ADS)

    Puls, Angela; Näther, Christian; Kiebach, Ragnar; Bensch, Wolfgang

    2006-09-01

    The five new thioantimonates(III) ( iprH) 2[Sb 8S 13] ( I), (1,2-dapH) 2[Sb 8S 13] ( II), (1,3-dapH 2)[Sb 8S 13] ( III), (dienH 2)[Sb 8S 13]ṡ1.5H 2O ( IV), and (C 6H 9N 2)[Sb 8S 13]ṡ2.5H 2O ( V) were synthesised under solvothermal conditions ( ipr = iso-propylamine; 1,2-dap = 1,2-diaminopropane; 1,3-dap = 1,3-diaminopropane; dien = diethylentriamine; C 6H 9N 2 = 3-(aminoethyl)-pyridine). The structures of compounds I and II are topological very similar and a central motif is a Sb 10S 10 ring. On both sides of this ring Sb 5S 5 rings are condensed. These rings are connected via Sb 4S 4 rings leading to the sequence Sb 10S 10-Sb 5S 5-Sb 4S 4-Sb 5S 5-Sb 10Sb 10 in the [010] direction. Further interconnection into the two-dimensional [Sb 8S 13] 2- anion produces a large central Sb 18S 18 ring with dimensions of 11ṡ11 Å in both compounds. The two atoms thick layers are linear and stacked along the a axis generating large channels running along [010]. The layered anion of compound III is constructed by interconnection of the SbS 3 and SbS 4 units yielding Sb 19S 19, Sb 14S 14, Sb 13S 13, and Sb 8S 8 rings. The linear layers are two atoms thick and are stacked perpendicular to [001] to form channels running along the same direction. The last two compounds IV and V show a similar network topology. The layered anion is constructed by SbS 3 trigonal pyramids and SbS 4 units. The layer contains a Sb 12S 12 rings as the main structural motif. The corrugated layers extending in the (100) plane are two atoms thick and are stacked in a manner that large tunnels run along [100]. The total potential solvent areas are large and range from 20.7% for III to 35% for II.

  12. VUV photoionization cross sections of HO2, H2O2, and H2CO.

    PubMed

    Dodson, Leah G; Shen, Linhan; Savee, John D; Eddingsaas, Nathan C; Welz, Oliver; Taatjes, Craig A; Osborn, David L; Sander, Stanley P; Okumura, Mitchio

    2015-02-26

    The absolute vacuum ultraviolet (VUV) photoionization spectra of the hydroperoxyl radical (HO2), hydrogen peroxide (H2O2), and formaldehyde (H2CO) have been measured from their first ionization thresholds to 12.008 eV. HO2, H2O2, and H2CO were generated from the oxidation of methanol initiated by pulsed-laser-photolysis of Cl2 in a low-pressure slow flow reactor. Reactants, intermediates, and products were detected by time-resolved multiplexed synchrotron photoionization mass spectrometry. Absolute concentrations were obtained from the time-dependent photoion signals by modeling the kinetics of the methanol oxidation chemistry. Photoionization cross sections were determined at several photon energies relative to the cross section of methanol, which was in turn determined relative to that of propene. These measurements were used to place relative photoionization spectra of HO2, H2O2, and H2CO on an absolute scale, resulting in absolute photoionization spectra.

  13. Quantum-tunneling isotope-exchange reaction H2+D-→HD +H-

    NASA Astrophysics Data System (ADS)

    Yuen, Chi Hong; Ayouz, Mehdi; Endres, Eric S.; Lakhamanskaya, Olga; Wester, Roland; Kokoouline, Viatcheslav

    2018-02-01

    The tunneling reaction H2+D-→HD +H- was studied in a recent experimental work at low temperatures (10, 19, and 23 K) by Endres et al. [Phys. Rev. A 95, 022706 (2017), 10.1103/PhysRevA.95.022706]. An upper limit of the rate coefficient was found to be about 10-18cm3 /s. In the present study, reaction probabilities are determined using the ABC program developed by Skouteris et al. [Comput. Phys. Commun. 133, 128 (2000), 10.1016/S0010-4655(00)00167-3]. The probabilities for ortho-H2 and para-H2 in their ground rovibrational states are obtained numerically at collision energies above 50 meV with the total angular momentum J =0 -15 and extrapolated below 50 meV using a WKB approach. Thermally averaged rate coefficients for ortho- and para-H2 are obtained; the largest one, for ortho-H2, is about 3.1 ×10-20cm3 /s, which agrees with the experimental results.

  14. Two's company, three's a crowd: can H2S be the third endogenous gaseous transmitter?

    PubMed

    Wang, Rui

    2002-11-01

    Bearing the public image of a deadly "gas of rotten eggs," hydrogen sulfide (H2S) can be generated in many types of mammalian cells. Functionally, H2S has been implicated in the induction of hippocampal long-term potentiation, brain development, and blood pressure regulation. By acting specifically on KATP channels, H2S can hyperpolarize cell membranes, relax smooth muscle cells, or decrease neuronal excitability. The endogenous metabolism and physiological functions of H2S position this gas well in the novel family of endogenous gaseous transmitters, termed "gasotransmitters." It is hypothesized that H2S is the third endogenous signaling gasotransmitter, besides nitric oxide and carbon monoxide. This positioning of H2S will open an exciting field-H2S physiology-encompassing realization of the interaction of H2S and other gasotransmitters, sulfurating modification of proteins, and the functional role of H2S in multiple systems. It may shed light on the pathogenesis of many diseases related to the abnormal metabolism of H2S.

  15. Analysis of cardiovascular responses to the H2S donors Na2S and NaHS in the rat

    PubMed Central

    Yoo, Daniel; Jupiter, Ryan C.; Pankey, Edward A.; Reddy, Vishwaradh G.; Edward, Justin A.; Swan, Kevin W.; Peak, Taylor C.; Mostany, Ricardo

    2015-01-01

    Hydrogen sulfide (H2S) is an endogenous gaseous molecule formed from L-cysteine in vascular tissue. In the present study, cardiovascular responses to the H2S donors Na2S and NaHS were investigated in the anesthetized rat. The intravenous injections of Na2S and NaHS 0.03–0.5 mg/kg produced dose-related decreases in systemic arterial pressure and heart rate, and at higher doses decreases in cardiac output, pulmonary arterial pressure, and systemic vascular resistance. H2S infusion studies show that decreases in systemic arterial pressure, heart rate, cardiac output, and systemic vascular resistance are well-maintained, and responses to Na2S are reversible. Decreases in heart rate were not blocked by atropine, suggesting that the bradycardia was independent of parasympathetic activation and was mediated by an effect on the sinus node. The decreases in systemic arterial pressure were not attenuated by hexamethonium, glybenclamide, Nw-nitro-l-arginine methyl ester hydrochloride, sodium meclofenamate, ODQ, miconazole, 5-hydroxydecanoate, or tetraethylammonium, suggesting that ATP-sensitive potassium channels, nitric oxide, arachidonic acid metabolites, cyclic GMP, p450 epoxygenase metabolites, or large conductance calcium-activated potassium channels are not involved in mediating hypotensive responses to the H2S donors in the rat and that responses are not centrally mediated. The present data indicate that decreases in systemic arterial pressure in response to the H2S donors can be mediated by decreases in vascular resistance and cardiac output and that the donors have an effect on the sinus node independent of the parasympathetic system. The present data indicate that the mechanism of the peripherally mediated hypotensive response to the H2S donors is uncertain in the intact rat. PMID:26071540

  16. Fragmentations of [M-H]- anions of peptides containing Ser sulfate. A joint experimental and theoretical study.

    PubMed

    Tran, T T Nha; Wang, Tianfang; Hack, Sandra; Bowie, John H

    2013-11-15

    To determine the negative-ion cleavages from [M-H](-) ions of Ser sulfate-containing peptides using experiment and theory in concert. Fragmentations were explored using a Waters QTOF2 mass spectrometer in negative-ion electrospray mode, together with calculations at the CAM-B3LYP/6-311++g(d,p) level of theory. Peptides used in this study were: GS(SO3H)(OH) 1 GS(SO3H)(OCH3) 1a GAVS(SO3H)(OH) 2 GAVS(SO3H)(OCH3) 2a GLS(SO3H)(GVA(OH) 3 GLS(SO3H)GDA(OH) 4 GLS(SO3H)GS(SO3H)A(OH) 5. Previously, it has been shown that a peptide containing a Tyr sulfate group shows [(M-H)(-) -SO3] as the base peak. Only a small peak was observed corresponding to HOSO3(-) (formed following rearrangement of the sulfate). A Ser sulfate-containing peptide, in contrast, shows pronounced peaks due to cleavage product anions [(M-H)(-)-SO3] and HOSO3(-). Theoretical calculations at the CAM-B3LYP/6-311++g(d,p) level of theory suggest that rearrangement of a Ser sulfate to give C-terminal CO2SO3H is energetically unfavourable in comparison with fragmentation of the intact Ser sulfate to yield [(M-H)(-)-SO3] and HOSO3(-). [(M-H)(-)-H2SO4] anions are not observed in the spectra of peptides containing Ser sulfate, presumably because HOSO3(-) is a relatively weak gas-phase base (ΔGacid = 1265 kJ mol(-1)). Experimental and theoretical data suggest that [(M-H)(-)-SO3] and HOSO3(-) product anions (from a peptide with a C-terminal Ser sulfate) are formed from the serine sulfate anion accompanied by specific proton transfer. CID MS/MS/MS data for an [(M-H)(-)-SO3] ion of an underivatised sulfate-containing peptide will normally allow the determination of the amino acid sequence of that peptide. The one case we have studied where that is not the case is GLS(SO3H)GDA(OH), where the peptide contains Ser sulfate and Asp, where the diagnostic Asp cleavages are competitive with the Ser sulfate cleavages. Copyright © 2013 John Wiley & Sons, Ltd.

  17. Exogenous H2S facilitating ubiquitin aggregates clearance via autophagy attenuates type 2 diabetes-induced cardiomyopathy

    PubMed Central

    Wu, Jichao; Tian, Zhiliang; Sun, Yu; Lu, Cuicui; Liu, Ning; Gao, Zhaopeng; Zhang, Linxue; Dong, Shiyun; Yang, Fan; Zhong, Xin; Xu, Changqing; Lu, Fanghao; Zhang, Weihua

    2017-01-01

    Diabetic cardiomyopathy (DCM) is a serious complication of diabetes. Hydrogen sulphide (H2S), a newly found gaseous signalling molecule, has an important role in many regulatory functions. The purpose of this study is to investigate the effects of exogenous H2S on autophagy and its possible mechanism in DCM induced by type II diabetes (T2DCM). In this study, we found that sodium hydrosulphide (NaHS) attenuated the augment in left ventricular (LV) mass and increased LV volume, decreased reactive oxygen species (ROS) production and ameliorated H2S production in the hearts of db/db mice. NaHS facilitated autophagosome content degradation, reduced the expression of P62 (a known substrate of autophagy) and increased the expression of microtubule-associated protein 1 light chain 3 II. It also increased the expression of autophagy-related protein 7 (ATG7) and Beclin1 in db/db mouse hearts. NaHS increased the expression of Kelch-like ECH-associated protein 1 (Keap-1) and reduced the ubiquitylation level in the hearts of db/db mice. 1,4-Dithiothreitol, an inhibitor of disulphide bonds, increased the ubiquitylation level of Keap-1, suppressed the expression of Keap-1 and abolished the effects of NaHS on ubiquitin aggregate clearance and ROS production in H9C2 cells treated with high glucose and palmitate. Overall, we concluded that exogenous H2S promoted ubiquitin aggregate clearance via autophagy, which might exert its antioxidative effect in db/db mouse myocardia. Moreover, exogenous H2S increased Keap-1 expression by suppressing its ubiquitylation, which might have an important role in ubiquitin aggregate clearance via autophagy. Our findings provide new insight into the mechanisms responsible for the antioxidative effects of H2S in the context of T2DCM. PMID:28796243

  18. Visible light-driven photocatalytic H{sub 2}-generation activity of CuS/ZnS composite particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Liang; Chen, Hua; Huang, Jianhua, E-mail: jhhuang@zstu.edu.cn

    2015-04-15

    Highlights: • Preparation of CuS/ZnS composite photocatalyst by cation-exchange reaction. • Visible light photocatalytic activity for H{sub 2} evolution without cocatalyst. • The H{sub 2}-evolution rate from water splitting depends on the CuS content. • The highest rate of H{sub 2} evolution is obtained with CuS (0.5 mol%)/ZnS composite. - Abstract: CuS/ZnS composite particles with diameter of 200–400 nm were successfully prepared by a simple cation-exchange reaction using ZnS spheres as a precursor. CuS nanoparticles with a few nanometers in diameter were observed on the surface of composite particles. The synthesized CuS/ZnS composite particles showed photocatalytic property effective for H{submore » 2} evolution from an aqueous Na{sub 2}S and Na{sub 2}SO{sub 3} solution under visible light irradiation without any cocatalysts. The rate of H{sub 2} generation was found to be strongly dependent on the CuS content. The highest rate of H{sub 2} evolution reached 695.7 μmol h{sup −1} g{sup −1}, which was almost 7 times as high as that of the mechanical mixture of CuS and ZnS. The enhancement in the photocatalytic activity of CuS/ZnS composite particles is supposed to be due to the direct interfacial charge transfer of the CuS/ZnS heterojunction.« less

  19. Superconducting order from disorder in 2H-TaSe 2-xS x

    DOE PAGES

    Li, Lijun; Deng, Xiaoyu; Wang, Zhen; ...

    2017-02-24

    Here, we report on the emergence of robust superconducting order in single crystal alloys of TaSe 2$ -$x S x (0 ≤ × ≤2). The critical temperature of the alloy is surprisingly higher than that of the two end compounds TaSe2 and TaS2. The evolution of superconducting critical temperature T c(x) correlates with the full width at half maximum of the Bragg peaks and with the linear term of the high-temperature resistivity. The conductivity of the crystals near the middle of the alloy series is higher or similar than that of either one of the end members 2H-TaSe 2 and/ormore » 2H-TaS 2. It is known that in these materials superconductivity is in close competition with charge density wave order. We interpret our experimental findings in a picture where disorder tilts this balance in favor of superconductivity by destroying the charge density wave order.« less

  20. The role of electric field in enhancing separation of gas molecules (H2S, CO2, H2O) on VIB modified g-C3N4 (0 0 1)

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Li, Penghui; Wei, Shiqian; Guo, Jiaxing; Dan, Meng; Zhou, Ying

    2018-07-01

    In this study, the first-principles calculations were performed to investigate the adsorption behaviors of gas molecules H2S, CO2 and H2O on Cr, Mo and W modified g-C3N4 (0 0 1) surface. The results show that H2S, CO2 and H2O are physically adsorbed on the pristine g-C3N4, while the adsorption becomes chemisorbed due to the introduction of transition metals which significantly improve the interfacial electron transfer and narrow the band gap of g-C3N4 (0 0 1). Furthermore, it is found that the adsorption behaviors can be greatly influenced by the applied electric field. The adsorption energy is generally arranged in the order of Eads(H2S) > Eads(H2O) > Eads(CO2), and W/g-C3N4 (0 0 1) exhibits the best separation capability. The study could provide a versatile approach to selectively capture and separate the mixed gases in the catalytic reactions by controlling the applied intensity of electric field.

  1. Exploring the Reactivity Trends in the E2 and SN2 Reactions of X(-) + CH3CH2Cl (X = F, Cl, Br, HO, HS, HSe, NH2 PH2, AsH2, CH3, SiH3, and GeH3).

    PubMed

    Wu, Xiao-Peng; Sun, Xiao-Ming; Wei, Xi-Guang; Ren, Yi; Wong, Ning-Bew; Li, Wai-Kee

    2009-06-09

    The reactivity order of 12 anions toward ethyl chloride has been investigated by using the G2(+) method, and the competitive E2 and SN2 reactions are discussed and compared. The reactions studied are X(-) + CH3CH2Cl → HX + CH2═CH2 + Cl(-) and X(-) + CH3CH2Cl → CH3CH2X + Cl(-), with X = F, Cl, Br, HO, HS, HSe, NH2 PH2, AsH2, CH3, SiH3, and GeH3. Our results indicate that there is no general and straightforward relationship between the overall barriers and the proton affinity (PA) of X(-); instead, discernible linear correlations only exist for the X's within the same group of the periodic table. Similar correlations are also found with the electronegativity of central atoms in X, deformation energy of the E2 transition state (TS), and the overall enthalpy of reaction. It is revealed that the electronegativity will significantly affect the barrier height, and a more electronegative X will stabilize the E2 and SN2 transition states. Multiple linear regression analysis shows that there is a reasonable linear correlation between E2 (or SN2) overall barriers and the linear combination of PA of X(-) and electronegativity of the central atom.

  2. MICROWAVE SPECTRA AND GEOMETRIES OF C2H_{2\\cdots AgI} and C2H_{4\\cdots AgI}

    NASA Astrophysics Data System (ADS)

    Stephens, Susanna L.; Tew, David Peter; Walker, Nick; Legon, Anthony

    2015-06-01

    A chirped-pulse Fourier transform microwave spectrometer has been used to measure the microwave spectra of both C2H_{2\\cdots AgI} and C2H_{4\\cdots AgI}. These complexes are generated via laser ablation at 532 nm of a silver surface in the presence of CF3I and either C2H_{2} or C2H_{4} and argon and are stabilized by a supersonic expansion. Rotational (A0, B0, C0) and centrifugal distortion constants (ΔJ and ΔJK) of each molecule have been determined as well the nuclear electric quadrupole coupling constants the iodine atom (χaa(I) and χbb-χcc(I)). The spectrum of each molecule is consistent with a C2v structure in which the metal atom interacts with the π-orbital of the ethene or ethyne molecule. Isotopic substitutions of atoms within the C2H_{2} or C2H_{4} subunits are in progress and in conjunction with high level ab initio calculations will allow for accurate determination of the geometry of each molecule. These to complexes are put in the context of the recently studied H2S\\cdots AgI, OC\\cdotsAgI, H3N\\cdots AgI and (CH3)_{3N\\cdots AgI}. S.Z. Riaz, S.L. Stephens, W. Mizukami, D.P. Tew, N.R. Walker, A.C. Legon, Chem. Phys. Let., 531, 1-12 (2012) S.L. Stephens, W. Mizukami, D.P. Tew, N.R. Walker, A.C. Legon, J. Chem. Phys., 136(6), 064306 (2012) D.M. Bittner, D.P. Zaleski, S.L. Stephens, N.R. Walker, A.C. Legon, Study in progress.

  3. Full-dimensional, high-level ab initio potential energy surfaces for H{sub 2}(H{sub 2}O) and H{sub 2}(H{sub 2}O){sub 2} with application to hydrogen clathrate hydrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Homayoon, Zahra; Conte, Riccardo; Qu, Chen

    2015-08-28

    New, full-dimensional potential energy surfaces (PESs), obtained using precise least-squares fitting of high-level electronic energy databases, are reported for intrinsic H{sub 2}(H{sub 2}O) two-body and H{sub 2}(H{sub 2}O){sub 2} three-body potentials. The database for H{sub 2}(H{sub 2}O) consists of approximately 44 000 energies at the coupled cluster singles and doubles plus perturbative triples (CCSD(T))-F12a/haQZ (aug-cc-pVQZ for O and cc-pVQZ for H) level of theory, while the database for the three-body interaction consists of more than 36 000 energies at the CCSD(T)-F12a/haTZ (aug-cc-pVTZ for O, cc-pVTZ for H) level of theory. Two precise potentials are based on the invariant-polynomial technique and are comparedmore » to computationally faster ones obtained via “purified” symmetrization. All fits use reduced permutational symmetry appropriate for these non-covalent interactions. These intrinsic potentials are employed together with existing ones for H{sub 2}, H{sub 2}O, and (H{sub 2}O){sub 2}, to obtain full PESs for H{sub 2}(H{sub 2}O) and H{sub 2}(H{sub 2}O){sub 2}. Properties of these full PESs are presented, including a diffusion Monte Carlo calculation of the zero-point energy and wavefunction, and dissociation energy of the H{sub 2}(H{sub 2}O) dimer. These PESs together with an existing one for water clusters are used in a many-body representation of the PES of hydrogen clathrate hydrates, illustrated for H{sub 2}@(H{sub 2}O){sub 20}. An analysis of this hydrate is presented, including the electronic dissociation energy to remove H{sub 2} from the calculated equilibrium structure.« less

  4. Full-dimensional quantum dynamics study of the H{sub 2} + C{sub 2}HH + C{sub 2}H{sub 2} reaction on an ab initio potential energy surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Liuyang; University of Chinese Academy of Sciences, Beijing 100049; Shao, Kejie

    2016-05-21

    This work performs a time-dependent wavepacket study of the H{sub 2} + C{sub 2}HH + C{sub 2}H{sub 2} reaction on a new ab initio potential energy surface (PES). The PES is constructed using neural network method based on 68 478 geometries with energies calculated at UCCSD(T)-F12a/aug-cc-pVTZ level and covers H{sub 2} + C{sub 2}H↔H + C{sub 2}H{sub 2}, H + C{sub 2}H{sub 2} → HCCH{sub 2}, and HCCH{sub 2} radial isomerization reaction regions. The reaction dynamics of H{sub 2} + C{sub 2}HH + C{sub 2}H{sub 2} are investigated using full-dimensional quantum dynamics method. The initial-state selected reactionmore » probabilities are calculated for reactants in eight vibrational states. The calculated results showed that the H{sub 2} vibrational excitation predominantly enhances the reactivity while the excitation of bending mode of C{sub 2}H slightly inhibits the reaction. The excitations of two stretching modes of C{sub 2}H molecule have negligible effect on the reactivity. The integral cross section is calculated with J-shift approximation and the mode selectivity in this reaction is discussed. The rate constants over 200-2000 K are calculated and agree well with the experimental measured values.« less

  5. Low-T magnetometry study of S = 1 Q2D [Ni(pyz) 2(H 2O) 2](BF 4) 2 (pyz = pyrazine)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manson, J. L.; Villa, D. Y.; Blackmore, W. J. A.

    2017-02-13

    [Ni(pyz) 2(H 2O) 2](BF 4) 2 (pyz = N 2C 4H 4) was synthesized by a solvent-free technique and its structure solved by synchrotron X-ray powder diffraction.1 The compound contains S = 1 Ni(II) ions and has tetragonal symmetry. Two-D [Ni(pyz) 2(H 2O) 2] 2+ square lattices propagate in the ab-plane and stack along the c-axis (Fig. 1). Water ligands occupy axial sites and form H-bonds with interlayer BF 4 - ions. SQUID magnetometry shows a possible transition to long-range magnetic order near 3 K. We measured the magnetization of [Ni(pyz) 2(H 2O) 2](BF 4) 2 as a function ofmore » temperature to search for field-induced phase transitions and briefly report those findings here.« less

  6. D/H fractionation in the H2-H2O system at supercritical water conditions: Compositional and hydrogen bonding effects

    NASA Astrophysics Data System (ADS)

    Foustoukos, Dionysis I.; Mysen, Bjorn O.

    2012-06-01

    A series of experiments has been conducted in the H2-D2-D2O-H2O-Ti-TiO2 system at temperatures ranging from 300 to 800 °C and pressures between ∼0.3 and 1.3 GPa in a hydrothermal diamond anvil cell, utilizing Raman spectroscopy as a quantitative tool to explore the relative distribution of hydrogen and deuterium isotopologues of the H2 and H2O in supercritical fluids. In detail, H2O-D2O solutions (1:1) were reacted with Ti metal (3-9 h) in the diamond cell, leading to formation of H2, D2, HD, and HDO species through Ti oxidation and H-D isotope exchange reactions. Experimental results obtained in situ and at ambient conditions on quenched samples indicate significant differences from the theoretical estimates of the equilibrium thermodynamic properties of the H-D exchange reactions. In fact, the estimated enthalpy for the H2(aq)-D2(aq) disproportionation reaction (ΔHrxn) is about -3.4 kcal/mol, which differs greatly from the +0.16 kcal/mol predicted for the exchange reaction in the gas phase by statistical mechanics models. The exothermic behavior of the exchange reaction implies enhanced stability of H2 and D2 relative to HD. Accordingly, the significant energy difference of the internal H2(aq)-D2(aq)-HD(aq) equilibrium translates to strong differences of the fractionation effects between the H2O-H2 and D2O-D2 isotope exchange relationships. The D/H fractionation factors between H2O-H2(aq) and D2O-D2(aq) differ by 365‰ in the 600-800 °C temperature range, and are indicative of the greater effect of D2O contribution to the δD isotopic composition of supercritical fluids. The negative ΔHrxn values for the H2(aq)-D2(aq)-HD(aq) equilibrium and the apparent decrease of the equilibrium constant with increasing temperature might be because of differences of the Henry’s law constant between the H- and D-bearing species dissolved in supercritical aqueous solutions. Such effects may be attributed to the stronger hydrogen bonding in the O-H⋯O relative to the

  7. Dihydroxo-bridged dimeric Cu(II) system containing sandwiched non-coordinating phenylacetate anion: Crystal structure, spectroscopic, anti-bacterial, anti-fungal and DNA-binding studies of [(phen)(H2O)Cu(OH)2Cu(H2O)(phen)]2L.6H2O: (HL = phenylacetic acid; phen = 1,10-phenanthroline)

    NASA Astrophysics Data System (ADS)

    Iqbal, Muhammad; Ali, Saqib; Tahir, Muhammad Nawaz; Shah, Naseer Ali

    2017-09-01

    This paper reports the synthesis, X-ray crystal structure, DNA-binding, antibacterial and antifungal studies of a rare dihydroxo-bridged dinuclear copper(II) complex including 1,10-phenanthroline (Phen) ligands and phenylacetate (L) anions, [Cu2(Phen)2(OH)2(H2O)2].2L.6H2O. Structural data revealed distorted square-pyramidal geometry for each copper(II) atom with the basal plane formed by the two nitrogen atoms of the phenantroline ligand and the oxygen atoms of two bridging hydroxyl groups. The apical positions are filled by the oxygen atom from a water molecule. This forms a centrosymmetric cationic dimer where the uncoordinated phenylacetate ligands serve to balance the electrical charge. The dimers interact by means of hydrogen bonds aided by the coordinated as well as uncoordinated water molecules and phenyl-acetate moieties in the crystal lattice. The binding ability of the complex with salmon sperm DNA was determined using cyclic voltammetry and absorption spectroscopy yielding binding constants 2.426 × 104 M-1 and 1.399 × 104 M-1, respectively. The complex was screened against two Gram-positive (Micrococcus luteus and Bacillus subtilis) and one Gram-negative (Escherichia coli) bacterial strains exhibiting significant activity against all the three strains. The complex exhibited significant, moderate and no activity against fungal strains Mucor piriformis, Helminthosporium solani and Aspergillus Niger, respectively. These preliminary tests indicate the competence of the complex towards the development of a potent biological drug.

  8. Role of Elemental Sulfur in Forming Latent Precursors of H2S in Wine.

    PubMed

    Jastrzembski, Jillian A; Allison, Rachel B; Friedberg, Elle; Sacks, Gavin L

    2017-12-06

    The level of hydrogen sulfide (H 2 S) can increase during abiotic storage of wines, and potential latent sources of H 2 S are still under investigation. We demonstrate that elemental sulfur (S 0 ) residues on grapes not only can produce H 2 S during fermentation but also can form precursors capable of generating additional H 2 S after bottle storage for 3 months. H 2 S could be released from S 0 -derived precursors by addition of a reducing agent (TCEP), but not by addition of strong brine to induce release of H 2 S from metal sulfide complexes. The size of the TCEP-releasable pool varied among yeast strains. Using the TCEP assay, multiple polar S 0 -derived precursors were detected following normal-phase preparative chromatography. Using reversed-phase liquid chromatography and high-resolution mass spectrometry, we detected an increase in the levels of diglutathione trisulfane (GSSSG) and glutathione disulfide (GSSG) in S 0 -fermented red wine and an increase in the levels of glutathione S-sulfonate (GSSO 3 - ) and tetrathionate (S 4 O 6 2- ) in S 0 -fermented white wine as compared to controls. GSSSG, but not S 4 O 6 2- , was shown to evolve H 2 S in the presence of TCEP. Pathways for the formation of GSSSG, GSSG, GSSO 3 - , and S 4 O 6 2- from S 0 are proposed.

  9. H2@Scale Workshop Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pivovar, Bryan

    2017-03-31

    Final report from the H2@Scale Workshop held November 16-17, 2016, at the National Renewable Energy Laboratory in Golden, Colorado. The U.S. Department of Energy's National Renewable Energy Laboratory hosted a technology workshop to identify the current barriers and research needs of the H2@Scale concept. H2@Scale is a concept regarding the potential for wide-scale impact of hydrogen produced from diverse domestic resources to enhance U.S. energy security and enable growth of innovative technologies and domestic industries. Feedback received from a diverse set of stakeholders at the workshop will guide the development of an H2@Scale roadmap for research, development, and early stagemore » demonstration activities that can enable hydrogen as an energy carrier at a national scale.« less

  10. Influence of the Organic Species and Oxoanion in the Synthesis of two Uranyl Sulfate Hydrates, (H 3 O) 2 [(UO 2 ) 2 (SO 4 ) 3 ­(H 2 O)]·7H 2 O and (H 3 O) 2 [(UO 2 ) 2 (SO 4 ) 3 (H 2 O)]·4H 2 O, and a Uranyl Selenate-Selenite [C 5 H 6 N][(UO 2 )(SeO 4 )(HSeO 3 )

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jouffret, Laurent J.; Wylie, Ernest M.; Burns, Peter C.

    2012-08-08

    Two uranyl sulfate hydrates, (H3O)2[(UO2)2(SO4)3(H2O)]·7H2O (NDUS) and (H3O)2[(UO2)2(SO4)3(H2O)]·4H2O (NDUS1), and one uranyl selenate-selenite [C5H6N][(UO2)(SeO4)(HSeO3)] (NDUSe), were obtained and their crystal structures solved. NDUS and NDUSe result from reactions in highly acidic media in the presence of L-cystine at 373 K. NDUS crystallized in a closed vial at 278 K after 5 days and NDUSe in an open beaker at 278 K after 2 weeks. NDUS1 was synthesized from aqueous solution at room temperature over the course of a month. NDUS, NDUS1, and NDUSe crystallize in the monoclinic space group P21/n, a = 15.0249(4) Å,b = 9.9320(2) Å, c = 15.6518(4)more » Å, β = 112.778(1)°, V = 2153.52(9) Å3,Z = 4, the tetragonal space group P43212, a = 10.6111(2) Å,c = 31.644(1) Å, V = 3563.0(2) Å3, Z = 8, and in the monoclinic space group P21/n, a = 8.993(3) Å, b = 13.399(5) Å, c = 10.640(4) Å,β = 108.230(4)°, V = 1217.7(8) Å3, Z = 4, respectively.The structural units of NDUS and NDUS1 are two-dimensional uranyl sulfate sheets with a U/S ratio of 2/3. The structural unit of NDUSe is a two-dimensional uranyl selenate-selenite sheets with a U/Se ratio of 1/2. In-situ reaction of the L-cystine ligands gives two distinct products for the different acids used here. Where sulfuric acid is used, only H3O+ cations are located in the interlayer space, where they balance the charge of the sheets, whereas where selenic acid is used, interlayer C5H6N+ cations result from the cyclization of the carboxyl groups of L-cystine, balancing the charge of the sheets.« less

  11. Novel 1H-1,2,3-, 2H-1,2,3-, 1H-1,2,4- and 4H-1,2,4-triazole derivatives: a patent review (2008 - 2011).

    PubMed

    Ferreira, Vitor F; da Rocha, David R; da Silva, Fernando C; Ferreira, Patrícia G; Boechat, Núbia A; Magalhães, Jorge L

    2013-03-01

    The triazoles represent a class of five-membered heterocyclic compounds of great importance for the preparation of new drugs with diverse biological activities because they may present several structural variations with the same numbers of carbon and nitrogen atoms. Due to the success of various triazoles that entered the pharmaceutical market and are still being used in medicines, many companies and research groups have shown interest in developing new methods of synthesis and biological evaluation of potential uses for these compounds. In this review, the authors explored aspects of patents for the 1H-1,2,3-, 2H-1,2,3-, 1H-1,2,4- and 4H-1,2,4-triazole families, including prototypes being considered in clinical studies between 2008 and 2011. The triazoles have been studied for over a century as an important class of heterocyclic compounds and still attract considerable attention due to their broad range of biological activities. More recently, there has been considerable interest in the development of novel triazoles with anti-inflammatory, antiplatelet, antimicrobial, antimycobacterial, antitumoral and antiviral properties and activity against several neglected diseases. This review emphasizes recent perspective and advances in the therapeutically active 1H-1,2,3-, 2H-1,2,3-, 1H-1,2,4- and 4H-1,2,4-triazole derivative patents between 2008 and 2011, covering the development of new chemical entities and new pharmaceuticals. Many studies have focused on these compounds as target structures and evaluated them in several biological targets. The preparation of 1H-1,2,3-, 2H-1,2,3-, 1H-1,2,4- and 4H-1,2,4-triazole derivatives brings to light several issues. There is a need to find new, more efficient preparations for these triazoles that take into consideration current issues in green chemistry, energy saving and sustainability. New diseases are discovered and new viruses and bacteria continue to challenge mankind, so it is imperative to find new prototypes for these

  12. Endothelium-derived hyperpolarizing factor and protein kinase G Iα activation: H2O2 versus S-nitrosothiols.

    PubMed

    Bautista-Niño, Paula K; van der Stel, Marien; Batenburg, Wendy W; de Vries, René; Roks, Anton J M; Danser, A H Jan

    2018-05-15

    Protein kinase G (PKG) Iα mediates the cyclic guanosine monophosphate-mediated vasodilatory effects induced by NO. Endothelium-derived hyperpolarizing factors (EDHFs), like H 2 O 2 can activate PKGIα in a cyclic guanosine monophosphate-independent manner, but whether this is true for all EDHFs (e.g., S-nitrosothiols) is unknown. Here, we investigated the contribution of PKGIα to bradykinin-, H 2 O 2 -, L-S-nitrosocysteine-, and light-induced relaxation in porcine coronary arteries, making use of the fact that thioredoxin reductase inhibition with auranofin or 1-chloro-2,4-dinitrobenzene potentiates PKGIα. Thioredoxin reductase inhibition potentiated bradykinin and H 2 O 2 , but not L-S-nitrosocysteine or light. The relaxations by the latter 2 and bradykinin, but not those by H 2 O 2 , were prevented by the soluble guanylyl cyclase (sGC) inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one. Yet, after S-nitrosothiol depletion with ethacrynic acid, thioredoxin reductase inhibition also potentiated light-induced relaxation, and this was prevented by the Na + -K + ATPase inhibitor ouabain. This indicates that photorelaxation depends on sGC activation by S-nitrosothiols, while only after S-nitrosothiol depletion oxidized PKGIα comes into play, and acts via Na + -K + ATPase. In conclusion, both bradykinin- and light-induced relaxation of porcine coronary arteries depend, at least partially, on oxidized PKGIα, and this does not involve sGC. H 2 O 2 also acts via oxidized PKGIα in an sGC-independent manner. Yet, S-nitrosothiol-induced relaxation is PKGIα-independent. Clearly, PKG activation does not contribute universally to all EDHF responses, and targeting PKGIα may only mimick EDHF under certain conditions. It is therefore unlikely that PKGIα activators will be universal vasodilators. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Electrochemical H2O2 biosensor composed of myoglobin on MoS2 nanoparticle-graphene oxide hybrid structure.

    PubMed

    Yoon, Jinho; Lee, Taek; Bapurao G, Bharate; Jo, Jinhee; Oh, Byung-Keun; Choi, Jeong-Woo

    2017-07-15

    In this research, the electrochemical biosensor composed of myoglobin (Mb) on molybdenum disulfide nanoparticles (MoS 2 NP) encapsulated with graphene oxide (GO) was fabricated for the detection of hydrogen peroxide (H 2 O 2 ). Hybrid structure composed of MoS 2 NP and GO (GO@MoS 2 ) was fabricated for the first time to enhance the electrochemical signal of the biosensor. As a sensing material, Mb was introduced to fabricate the biosensor for H 2 O 2 detection. Formation and immobilization of GO@MoS 2 was confirmed by transmission electron microscopy, ultraviolet-visible spectroscopy, scanning electron microscopy, and scanning tunneling microscopy. Immobilization of Mb, and electrochemical property of biosensor were investigated by cyclic voltammetry and amperometric i-t measurements. Fabricated biosensor showed the electrochemical signal enhanced redox current as -1.86μA at an oxidation potential and 1.95μA at a reduction potential that were enhanced relative to those of electrode prepared without GO@MoS 2 . Also, this biosensor showed the reproducibility of electrochemical signal, and retained the property until 9 days from fabrication. Upon addition of H 2 O 2 , the biosensor showed enhanced amperometric response current with selectivity relative to that of the biosensor prepared without GO@MoS 2 . This novel hybrid material-based biosensor can suggest a milestone in the development of a highly sensitive detecting platform for biosensor fabrication with highly sensitive detection of target molecules other than H 2 O 2 . Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Enhanced Synthesis of Alkyl Amino Acids in Miller's 1958 H2S Experiment

    NASA Technical Reports Server (NTRS)

    Parker, Eric T.; Cleaves, H. James; Callahan, Michael P.; Dworkin, James P.; Glavin, Daniel P.; Lazcano, Antonio; Bada, Jeffrey L.

    2011-01-01

    Stanley Miller's 1958 H2S-containing experiment, which included a simulated prebiotic atmosphere of methane (CH4), ammonia (NH3), carbon dioxide (CO2), and hydrogen sulfide (H2S) produced several alkyl amino acids, including the alpha-, beta-, and gamma-isomers of aminobutyric acid (ABA) in greater relative yields than had previously been reported from his spark discharge experiments. In the presence of H2S, aspariic and glutamic acids could yield alkyl amino acids via the formation of thioimide intermediates. Radical chemistry initiated by passing H2S through a spark discharge could have also enhanced alkyl amino acid synthesis by generating alkyl radicals that can help form the aldehyde and ketone precursors to these amino acids. We propose mechanisms that may have influenced the synthesis of certain amino acids in localized environments rich in H2S and lightning discharges, similar to conditions near volcanic systems on the early Earth, thus contributing to the prebiotic chemical inventory of the primordial Earth.

  15. The H2A.Z/H2B dimer is unstable compared to the dimer containing the major H2A isoform.

    PubMed

    Placek, Brandon J; Harrison, L Nicole; Villers, Brooke M; Gloss, Lisa M

    2005-02-01

    The nucleosome, the basic fundamental repeating unit of chromatin, contains two H2A/H2B dimers and an H3/H4 tetramer. Modulation of the structure and dynamics of the nucleosome is an important regulation mechanism of DNA-based chemistries in the eukaryotic cell, such as transcription and replication. One means of altering the properties of the nucleosome is by incorporation of histone variants. To provide insights into how histone variants may impact the thermodynamics of the nucleosome, the stability of the heterodimer between the H2A.Z variant and H2B was determined by urea-induced denaturation, monitored by far-UV circular dichroism, intrinsic Tyr fluorescence intensity, and anisotropy. In the absence of stabilizing agents, the H2A.Z/H2B dimer is only partially folded. The stabilizing cosolute, trimethylamine-N-oxide (TMAO) was used to promote folding of the unstable heterodimer. The equilibrium stability of the H2A.Z/H2B dimer is compared to that of the H2A/H2B dimer. The equilibrium folding of both histone dimers is highly reversible and best described by a two-state model, with no detectable equilibrium intermediates populated. The free energies of unfolding, in the absence of denaturant, of H2A.Z/H2B and H2A/H2B are 7.3 kcal mol(-1) and 15.5 kcal mol(-1), respectively, in 1 M TMAO. The H2A.Z/H2B dimer is the least stable histone fold characterized to date, while H2A/H2B appears to be the most stable. It is speculated that this difference in stability may contribute to the different biophysical properties of nucleosomes containing the major H2A and the H2A.Z variant.

  16. Dual-Reactable Fluorescent Probes for Highly Selective and Sensitive Detection of Biological H2 S.

    PubMed

    Wei, Chao; Wang, Runyu; Zhang, Changyu; Xu, Guoce; Li, Yanyan; Zhang, Qiang-Zhe; Li, Lu-Yuan; Yi, Long; Xi, Zhen

    2016-05-06

    Hydrogen sulfide (H2 S) is an important endogenous signaling molecule with a variety of biological functions. Development of fluorescent probes for highly selective and sensitive detection of H2 S is necessary. We show here that dual-reactable fluorescent H2 S probes could react with higher selectivity than single-reactable probes. One of the dual-reactable probes gives more than 4000-fold turn-on response when reacting with H2 S, the largest response among fluorescent H2 S probes reported thus far. In addition, the probe could be used for high-throughput enzymatic assays and for the detection of Cys-induced H2 S in cells and in zebrafish. These dual-reactable probes hold potential for highly selective and sensitive detection of H2 S in biological systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The Formation and Spatiotemporal Progress of the pH Wave Induced by the Temperature Gradient in the Thin-Layer H2O2-Na2S2O3-H2SO4-CuSO4 Dynamical System.

    PubMed

    Jędrusiak, Mikołaj; Orlik, Marek

    2016-03-31

    The H2O2-S2O3(2-)-H(+)-Cu(2+) dynamical system exhibits sustained oscillations under flow conditions but reveals only a single initial peak of the indicator electrode potential and pH variation under batch isothermal conditions. Thus, in the latter case, there is no possibility of the coupling of the oscillations and diffusion which could lead to formation of sustained spatiotemporal patterns in this process. However, in the inhomogeneous temperature field, due to dependence of the local reaction kinetics on temperature, spatial inhomogeneities of pH distribution can develop which, in the presence of an appropriate indicator, thymol blue, manifest themselves as the color front traveling along the quasi-one-dimensional reactor. In this work, we describe the experimental conditions under which the above-mentioned phenomena can be observed and present their numerical model based on thermokinetic coupling and spatial coordinate introduced to earlier isothermal homogeneous kinetic mechanism.

  18. Isolation and structures of sulfonium salts derived from thioethers: [{o-C(6)H(4)(CH(2)SMe)(2)}H][NbF(6)] and [{[9]aneS(3)}H][NbF(6)].

    PubMed

    Jura, Marek; Levason, William; Reid, Gillian; Webster, Michael

    2009-10-07

    Two very unusual sulfonium salts, [{o-C(6)H(4)(CH(2)SMe)(2)}H][NbF(6)] and [{[9]aneS(3)}H][NbF(6)], obtained from reaction of the thioethers with NbF(5) in CH(2)Cl(2) solution, are reported and their structures described; the eight-coordinate tetrafluoro Nb(v) cation of the dithioether is obtained from the same reaction.

  19. Non-covalent interactions in 2-methylimidazolium copper(II) complex (MeImH)2[Cu(pfbz)4]: Synthesis, characterization, single crystal X-ray structure and packing analysis

    NASA Astrophysics Data System (ADS)

    Sharma, Raj Pal; Saini, Anju; Kumar, Santosh; Kumar, Jitendra; Sathishkumar, Ranganathan; Venugopalan, Paloth

    2017-01-01

    A new anionic copper(II) complex, (MeImH)2 [Cu(pfbz)4] (1) where, MeImH = 2-methylimidazolium and pfbz = pentafluorobenzoate has been isolated by reacting copper(II) sulfate pentahydrate, pentafluorobenzoic acid and 2-methylimidazole in ethanol: water mixture in 1:2:2 molar ratio. This complex 1 has been characterized by elemental analysis, thermogravimetric analysis, spectroscopic techniques (UV-Vis, FT-IR) and conductance measurements. The complex salt crystallizes in monoclinic crystal system with space group C2/c. Single crystal X-ray structure determination revealed the presence of discrete ions: [Cu(pfbz)4]2- anion and two 2-methylimidazolium cation (C4H7N2)+. The crystal lattice is stabilized by strong hydrogen bonding and F⋯F interactions between cationic-anionic and the anionic-anionic moieties respectively, besides π-π interactions.

  20. Electroactive Au@Ag nanoparticles driven electrochemical sensor for endogenous H2S detection.

    PubMed

    Zhao, Yuan; Yang, Yaxin; Cui, Linyan; Zheng, Fangjie; Song, Qijun

    2018-05-26

    In this work, a novel and facile electrochemical sensor is reported for the highly selective and sensitive detection of dissolved hydrogen sulfide (H 2 S), attributing to the redox reaction between Au@Ag core-shell nanoparticles (Au@Ag NPs) and H 2 S. Electroactive Au@Ag NPs not only possess excellent conductivity, but exhibit great electrochemical reactivity at 0.26 V due to the electrochemical oxidation from Ag° to Ag + . In the presence of H 2 S, the Ag shell of Au@Ag NPs can be oxidized to Ag 2 S, resulting in the decrease of differential pulse voltammetry (DPV) peak at 0.26 V. The electrochemical sensor exhibits a wide linear response range from 0.1 nM to 500 nM. The limit of detection (LOD) for H 2 S is as low as 0.04 nM. The developed sensor shows significant prospects in the study of pathological processes related to the mechanism of H 2 S production. Copyright © 2018. Published by Elsevier B.V.

  1. Ratiometric fluorescent receptors for both Zn2+ and H2PO4(-) ions based on a pyrenyl-linked triazole-modified homooxacalix[3]arene: a potential molecular traffic signal with an R-S latch logic circuit.

    PubMed

    Ni, Xin-long; Zeng, Xi; Redshaw, Carl; Yamato, Takehiko

    2011-07-15

    A ratiometric fluorescent receptor with a C(3) symmetric structure based on a pyrene-linked triazole-modified homooxacalix[3]arene (L) was synthesized and characterized. This system exhibited an interesting ratiometric detection signal output for targeting cations and anions through switching the excimer emission of pyrene from the "on-off" to the "off-on" type in neutral solution. (1)H NMR titration results suggested that the Zn(2+) center of receptor L·Zn(2+) provided an excellent pathway of organizing anion binding groups for optimal host-guest interactions. It is thus believed that this receptor has potential application in sensing, detection, and recognition of both Zn(2+) and H(2)PO(4)(-) ions with different optical signals. In addition, the fluorescence emission changes by the inputs of Zn(2+) and H(2)PO(4)(-) ions can be viewed as a combinational R-S latch logic circuit at the molecular level.

  2. Crystal packing, high-temperature phase transition, second-order nonlinear optical and biological activities in a hybrid material: [(S)sbnd C7H16N2][CuBr4

    NASA Astrophysics Data System (ADS)

    Hadj Sadok, Ines Ben; Hajlaoui, Fadhel; Ayed, Hanen Ben; Ennaceur, Nasreddine; Nasri, Moncef; Audebrand, Nathalie; Bataille, Thierry; Zouari, Nabil

    2018-09-01

    The directed synthesis of non-centrosymmetric copper (II) bromo-complex has been achieved through the use of homochiral organic molecule. Reaction containing (S)-(-)-3-aminoquinuclidine, CuBr2, HBr and H2O were subjected to mild hydrothermal conditions, resulting in the growth of single crystals of [(S)sbnd C7H16N2][CuBr4]. The compound crystallizes in the non polar space group P212121(No. 19), which exhibits the enantiomorphic crystal class 222 (D2). In the crystal structure, the tetrabromocuprate(II) anion is connected to three organic cations through Nsbnd H…Br hydrogen bonds to form cation-anion-cation molecular units, which are held together by means of offset face-to-face interactions to give one-dimensional chains. DSC measurements indicated that the compound [(S)sbnd C7H16N2][CuBr4] underwent a reversible phase transition at 80 °C. [(S)sbnd C7H16N2][CuBr4] is more than 1.2 times as efficient as KDP in second harmonic generation; making it a potentially attractive material for non-linear optical applications. The synthesized product was also screened for in vitro antioxidant and antimicrobial activities, while showing favorable antioxidant activities against DPPH as well as the discoloration of β-carotene.

  3. A Computational Investigation of the Oxidative Deboronation of BoroGlycine, H2N–CH2–B(OH)2, Using H2O and H2O2

    PubMed Central

    Larkin, Joseph D.; Markham, George D.; Milkevitch, Matt; Brooks, Bernard R.; Bock, Charles W.

    2014-01-01

    We report results from a computational investigation of the oxidative deboronation of BoroGlycine, H2N–CH2–B(OH)2, using H2O and H2O2 as the reactive oxygen species (ROS) to yield aminomethanol, H2N–CH2–OH; these results complement our study on the protodeboronation of BoroGlycine to produce methylamine, H2N–CH3 (Larkin et al. J. Phys. Chem. A, 111, 6489–6500, 2007). Second-order Møller-Plesset (MP2) perturbation theory with Dunning-Woon correlation-consistent (cc) basis sets were used for the calculations with comparisons made to results from Density Functional Theory (DFT) at the PBE1PBE/6-311++G(d,p)(cc-pVDZ) levels. The effects of a bulk aqueous environment were also incorporated into the calculations employing PCM and CPCM methodology. Using H2O as the ROS, the reaction H2O + H2N–CH2–B(OH)2H2N–CH2–OH + H–B(OH)2 was calculated to be endothermic, the value of ΔH2980 was +12.0 kcal/mol at the MP2(FC)/cc-pVTZ computational level in vacuo and +13.7 kcal/mol in PCM aqueous media; the corresponding value for the activation barrier, ΔH‡, was +94.3 kcal/mol relative to the separated reactants in vacuo and +89.9 kcal/mol in PCM aqueous media. In contrast, the reaction H2O2 + H2N–CH2–B(OH)2H2N–CH2–OH + B(OH)3 was calculated to be highly exothermic with a ΔH2980 value of −100.9 kcal/mol at the MP2(FC)/cc-pVTZ computational level in vacuo and −99.6 kcal/mol in CPCM aqueous media; the highest-energy transition state for the multi-step process associated with this reaction involved the rearrangement of H2N–CH2–B(OH)(OOH) to H2N–CH2–O–B(OH)2 with a ΔH‡ value of +23.2 kcal/mol in vacuo relative to the separated reactants. These computational results for BoroGlycine are in accord with the experimental observations for the deboronation of the FDA approved anti-cancer drug Bortezomib (Velcade™, PS-341) where it was found to be the principle deactivation pathway. (Labutti et al. Chem. Res. Toxicol., 19, 539–546

  4. The first potential energy surfaces for the C{sub 6}H{sup −}–H{sub 2} and C{sub 6}H{sup −}–He collisional systems and their corresponding inelastic cross sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, Kyle M., E-mail: kyle.walker@univ-lehavre.fr; Dumouchel, Fabien, E-mail: fabien.dumouchel@univ-lehavre.fr; Lique, François, E-mail: francois.lique@univ-lehavre.fr

    2016-07-14

    Molecular anions have recently been detected in the interstellar and circumstellar media. Accurate modeling of their abundance requires calculations of collisional data with the most abundant species that are usually He atoms and H{sub 2} molecules. In this paper, we focus on the collisional excitation of the first observed molecular anion, C{sub 6}H{sup −}, by He and H{sub 2}. Theoretical calculations of collisional cross sections rely generally on ab initio interaction potential energy surfaces (PESs). Hence, we present here the first PESs for the C{sub 6}H{sup −}–H{sub 2} and C{sub 6}H{sup −}–He van der Waals systems. The ab initio energymore » data for the surfaces were computed at the explicitly correlated coupled cluster with single, double, and scaled perturbative triple excitations level of theory. The method of interpolating moving least squares was used to construct 4D and 2D analytical PESs from these data. Both surfaces are characterized by deep wells and large anisotropies. Analytical models of the PESs were used in scattering calculations to obtain cross sections for low-lying rotational transitions. As could have been anticipated, important differences exist between the He and H{sub 2} cross sections. Conversely, no significant differences exist between the collisions of C{sub 6}H{sup −} with the two species of H{sub 2} (para- and ortho-H{sub 2}). We expect that these new data will help in accurately determining the abundance of the C{sub 6}H{sup −} anions in space.« less

  5. Electro-Chemical Behavior of Low Carbon Steel Under H2S Influence

    NASA Astrophysics Data System (ADS)

    Zaharia, M. G.; Stanciu, S.; Cimpoesu, R.; Nejneru, C.; Savin, C.; Manole, V.; Cimpoeșu, N.

    2017-06-01

    Abstract A commercial low carbon steel material (P265GH) with application at industrial scale for natural gas delivery and transportation systems was analyzed in H2S atmosphere. The article proposed a new experimental cell in order to establish the behavior of the material in sulfur contaminated environment. In most of the industrial processes for gas purification the corrosion rate is speed up by the presence of S (sulfur) especially as ions or species like H2S. The H2S (hydrogen sulfide) is, beside a very toxic compound, a very active element in the acceleration of metallic materials deterioration especially in complex solicitations like pressure and temperature in the same time. For experiments we used a three electrodes cell with Na2SO4 + Na2S solution at pH 3 at room temperature (∼ 25 °C) to realize EIS (electrochemical impedance spectroscopy) and potentio-dynamic polarization experiments. Scanning electron microscopy and X-ray dispersive energy spectroscopy were used to characterize the metallic material surface exposed to experimental environment.

  6. A potential energy surface for the process H2 + H2O yielding H + H + H2O - Ab initio calculations and analytical representation

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Walch, Stephen P.; Taylor, Peter R.

    1991-01-01

    Extensive ab initio calculations on the ground state potential energy surface of H2 + H2O were performed using a large contracted Gaussian basis set and a high level of correlation treatment. An analytical representation of the potential energy surface was then obtained which reproduces the calculated energies with an overall root-mean-square error of only 0.64 mEh. The analytic representation explicitly includes all nine internal degrees of freedom and is also well behaved as the H2 dissociates; it thus can be used to study collision-induced dissociation or recombination of H2. The strategy used to minimize the number of energy calculations is discussed, as well as other advantages of the present method for determining the analytical representation.

  7. Rate contants for CF{sub 3} + H{sub 2} {yields} CF{sub 3}H + H and CF{sub 3}H + H {yields} CF{sub 3} + H{sub 2} reactions in the temperature range 1100-1600 K.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hranisavljevic, J.; Michael, V.; Chemistry

    1998-09-24

    The shock tube technique coupled with H-atom atomic resonance absorption spectrometry has been used to study the reactions (1) CF{sub 3} + H{sub 2} {yields} CF{sub 3}H + H and (2) CF{sub 3}H + H{yields} CF{sub 3} + H{sub 2} over the temperature ranges 1168-1673 K and 1111-1550 K, respectively. The results can be represented by the Arrhenius expressions k1 = 2.56 x 10{sup -11} exp(-8549K/T) and k2 = 6.13 x 10{sup -11} exp(-7364K/T), both in cm3 molecule-1 s-1. Equilibrium constants were calculated from the two Arrhenius expressions in the overlapping temperature range, and good agreement was obtained with themore » literature values. The rate constants for reaction 2 were converted into rate constants for reaction 1 using literature equilibrium constants. These data are indistinguishable from direct k1 measurements, and an Arrhenius fit for the joint set is k{sub 1} = 1.88 x 10{sup -11} exp(-8185K/T) cm3 molecule-1 s-1. The CF{sub 3} + H{sub 2} {yields} CF{sub 3}H + H reaction was further modeled using conventional transition-state theory, which included ab initio electronic structure determinations of reactants, transition state, and products.« less

  8. Methotrexate-loxoprofen interaction: involvement of human organic anion transporters hOAT1 and hOAT3.

    PubMed

    Uwai, Yuichi; Taniguchi, Risa; Motohashi, Hideyuki; Saito, Hideyuki; Okuda, Masahiro; Inui, Ken-ichi

    2004-10-01

    Human organic anion transporters hOAT1 (SLC22A6) and hOAT3 (SLC22A8) are responsible for renal tubular secretion of an antifolic acid methotrexate, and are considered to be involved in drug interaction of methotrexate with nonsteroidal anti-inflammatory drugs (NSAIDs). In our hospital, a delay of methotrexate elimination was experienced in a patient with Hodgkin's disease, who took loxoprofen, a commonly used NSAID in Japan, which suggested a cause. In this study, we examined the drug interaction via hOAT1 and hOAT3, using Xenopus laevis oocytes. hOAT1 and hOAT3 mediated the methotrexate transport with low affinity (K(m) of 724.0 muM) and high affinity (K(m) of 17.2 muM), respectively. Loxoprofen and its trans-OH metabolite, an active major metabolite, markedly inhibited the methotrexate transport by both transporters. Their inhibition concentrations (IC(50)) were in the range of the therapeutic levels. These findings suggest that loxoprofen retards the elimination of methotrexate, at least in part, by inhibiting hOAT1 and hOAT3.

  9. Hot gas, regenerative, supported H.sub.2 S sorbents

    NASA Technical Reports Server (NTRS)

    Voecks, Gerald E. (Inventor); Sharma, Pramod K. (Inventor)

    1993-01-01

    Efficient, regenerable sorbents for removal of H.sub.2 S from moderately high temperature (usually 200.degree. C.-550.degree.C.) gas streams comprise a porous, high surface area aluminosilicate support, suitably a zeolite, and most preferably a sodium deficient zeolite containing 1 to 20 weight percent of binary metal oxides. The binary oxides are a mixture of a Group VB or VIB metal oxide with a Group IB, IIB or VIII metal oxide such as V-Zn-O, V-Cu-O, Cu-Mo-O, Zn-Mo-O or Fe-Mo-O contained in the support. The sorbent effectively removes H.sub.2 S from the host gas stream in high efficiency and can be repetitively regenerated at least 10 times without loss of activity.

  10. Synthesis of Nanoscale CaO-Al2O3-SiO2-H2O and Na2O-Al2O3-SiO2-H2O Using the Hydrothermal Method and Their Characterization

    PubMed Central

    Yang, Jingbin; Li, Dongxu; Fang, Yuan

    2017-01-01

    C-A-S-H (CaO-Al2O3-SiO2-H2O) and N-A-S-H (Na2O-Al2O3-SiO2-H2O) have a wide range of chemical compositions and structures and are difficult to separate from alkali-activated materials. Therefore, it is difficult to analyze their microscopic properties directly. This paper reports research on the synthesis of C-A-S-H and N-A-S-H particles with an average particle size smaller than 300 nm by applying the hydrothermal method. The composition and microstructure of the products with different CaO(Na2O)/SiO2 ratios and curing conditions were characterized using XRD, the RIR method, FTIR, SEM, TEM, and laser particle size analysis. The results showed that the C-A-S-H system products with a low CaO/SiO2 ratio were mainly amorphous C-A-S-H gels. With an increase in the CaO/SiO2 ratio, an excess of Ca(OH)2 was observed at room temperature, while in a high-temperature reaction system, katoite, C4AcH11, and other crystallized products were observed. The katoite content was related to the curing temperature and the content of Ca(OH)2 and it tended to form at a high-temperature and high-calcium environment, and an increase in the temperature renders the C-A-S-H gels more compact. The main products of the N-A-S-H system at room temperature were amorphous N-A-S-H gels and a small amount of sodalite. An increase in the curing temperature promoted the formation of the crystalline products faujasite and zeolite-P. The crystallization products consisted of only zeolite-P in the high-temperature N-A-S-H system and its content were stable above 70%. An increase in the Na2O/SiO2 ratio resulted in more non-bridging oxygen and the TO4 was more isolated in the N-A-S-H structure. The composition and microstructure of the C-A-S-H and N-A-S-H system products synthesized by the hydrothermal method were closely related to the ratio of the raw materials and the curing conditions. The results of this study increase our understanding of the hydration products of alkali-activated materials. PMID

  11. High temperature kinetic study of the reactions H + O2 = OH + O and O + H2 = OH + H in H2/O2 system by shock tube-laser absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Ryu, Si-Ok; Hwang, Soon Muk; Dewitt, Kenneth J.

    1995-01-01

    The reactions: (1) H + O2 = OH + O; and (2) O + H2 = OH + H are the most important elementary reactions in gas phase combustion. They are the main chain-branching reaction in the oxidation of H2 and hydrocarbon fuels. In this study, rate coefficients of the reactions and have been measured over a wide range of composition, pressure, density and temperature behind the reflected shock waves. The experiments were performed using the shock tube - laser absorption spectroscopic technique to monitor OH radicals formed in the shock-heated H2/O2/Ar mixtures. The OH radicals were detected using the P(1)(5) line of (0,0) band of the A(exp 2) Sigma(+) from X(exp 2) Pi transition of OH at 310.023 nm (air). The data were analyzed with the aid of computer modeling. In the experiments great care was exercised to obtain high time resolution, linearity and signal-to-noise. The results are well represented by the Arrhenius expressions. The rate coefficient expression for reaction (1) obtained in this study is k(1) = (7.13 +/- 0.31) x 10(exp 13) exp(-6957+/- 30 K/T) cu cm/mol/s (1050 K less than or equal to T less than or equal to 2500 K) and a consensus expression for k(1) from a critical review of the most recent evaluations of k(1) (including our own) is k(1) = 7.82 x 10(exp 13) exp(-7105 K/T) cu cm/mol/s (960 K less than or equal to T less than or equal to 5300 K). The rate coefficient expression of k(2) is given by k(2) = (1.88 +/- 0.07) x 10(exp 14) exp(-6897 +/- 53 K/T) cu cm/mol/s (1424 K less than or equal to T less than or equal to 2427 K). For k(1), the temperature dependent A-factor and the correlation between the values of k(1) and the inverse reactant densities were not found. In the temperature range of this study, non-Arrhenius expression of k(2) which shows the upward curvature was not supported.

  12. Decomposition of 3,5-dinitrobenzamide in aqueous solution during UV/H2O2 and UV/TiO2 oxidation processes.

    PubMed

    Yan, Yingjie; Liao, Qi-Nan; Ji, Feng; Wang, Wei; Yuan, Shoujun; Hu, Zhen-Hu

    2017-02-01

    3,5-Dinitrobenzamide has been widely used as a feed additive to control coccidiosis in poultry, and part of the added 3,5-dinitrobenzamide is excreted into wastewater and surface water. The removal of 3,5-dinitrobenzamide from wastewater and surface water has not been reported in previous studies. Highly reactive hydroxyl radicals from UV/hydrogen peroxide (H 2 O 2 ) and UV/titanium dioxide (TiO 2 ) advanced oxidation processes (AOPs) can decompose organic contaminants efficiently. In this study, the decomposition of 3,5-dinitrobenzamide in aqueous solution during UV/H 2 O 2 and UV/TiO 2 oxidation processes was investigated. The decomposition of 3,5-dinitrobenzamide fits well with a fluence-based pseudo-first-order kinetics model. The decomposition in both two oxidation processes was affected by solution pH, and was inhibited under alkaline conditions. Inorganic anions such as NO 3 - , Cl - , SO 4 2- , HCO 3 - , and CO 3 2- inhibited the degradation of 3,5-dinitrobenzamide during the UV/H 2 O 2 and UV/TiO 2 oxidation processes. After complete decomposition in both oxidation processes, approximately 50% of 3,5-dinitrobenzamide was decomposed into organic intermediates, and the rest was mineralized to CO 2 , H 2 O, and other inorganic anions. Ions such as NH 4 + , NO 3 - , and NO 2 - were released into aqueous solution during the degradation. The primary decomposition products of 3,5-dinitrobenzamide were identified using time-of-flight mass spectrometry (LCMS-IT-TOF). Based on these products and ions release, a possible decomposition pathway of 3,5-dinitrobenzamide in both UV/H 2 O 2 and UV/TiO 2 processes was proposed.

  13. Comparison of trapped charges and hysteresis behavior in hBN encapsulated single MoS2 flake based field effect transistors on SiO2 and hBN substrates.

    PubMed

    Lee, Changhee; Rathi, Servin; Khan, Muhammad Atif; Lim, Dongsuk; Kim, Yunseob; Yun, Sun Jin; Youn, Doo-Hyeb; Watanabe, Kenji; Taniguchi, Takashi; Kim, Gil-Ho

    2018-08-17

    Molybdenum disulfide (MoS 2 ) based field effect transistors (FETs) are of considerable interest in electronic and opto-electronic applications but often have large hysteresis and threshold voltage instabilities. In this study, by using advanced transfer techniques, hexagonal boron nitride (hBN) encapsulated FETs based on a single, homogeneous and atomic-thin MoS 2 flake are fabricated on hBN and SiO 2 substrates. This allows for a better and a precise comparison between the charge traps at the semiconductor-dielectric interfaces at MoS 2 -SiO 2 and hBN interfaces. The impact of ambient environment and entities on hysteresis is minimized by encapsulating the active MoS 2 layer with a single hBN on both the devices. The device to device variations induced by different MoS 2 layer is also eliminated by employing a single MoS 2 layer for fabricating both devices. After eliminating these additional factors which induce variation in the device characteristics, it is found from the measurements that the trapped charge density is reduced to 1.9 × 10 11 cm -2 on hBN substrate as compared to 1.1 × 10 12 cm -2 on SiO 2 substrate. Further, reduced hysteresis and stable threshold voltage are observed on hBN substrate and their dependence on gate sweep rate, sweep range, and gate stress is also studied. This precise comparison between encapsulated devices on SiO 2 and hBN substrates further demonstrate the requirement of hBN substrate and encapsulation for improved and stable performance of MoS 2 FETs.

  14. Advanced oxidation technology for H2S odor gas using non-thermal plasma

    NASA Astrophysics Data System (ADS)

    Tao, ZHU; Ruonan, WANG; Wenjing, BIAN; Yang, CHEN; Weidong, JING

    2018-05-01

    Non-thermal plasma technology is a new type of odor treatment processing. We deal with H2S from waste gas emission using non-thermal plasma generated by dielectric barrier discharge. On the basis of two criteria, removal efficiency and absolute removal amount, we deeply investigate the changes in electrical parameters and process parameters, and the reaction process of the influence of ozone on H2S gas removal. The experimental results show that H2S removal efficiency is proportional to the voltage, frequency, power, residence time and energy efficiency, while it is inversely proportional to the initial concentration of H2S gas, and ozone concentration. This study lays the foundations of non-thermal plasma technology for further commercial application.

  15. Phase Equilibria and Transport Properties in the Systems AgNO3/RCN/H2O. R = CH3, C2H5, C3H7, C4H,, C6H5, and C6H5CH2

    NASA Astrophysics Data System (ADS)

    Das, Surjya P.; Wittekopf, Burghard; Weil, Konrad G.

    1988-11-01

    Silver nitrate can form homogeneous liquid phases with some organic nitriles and water, even when there is no miscibility between the pure liquid components. We determined the shapes of the single phase regions in the ternary phase diagram for the following systems: silver nitrate /RCN /H2O with R =CH3, C3H7, C6H5, and C6H5CH2 at room temperature and for R =C6H5 also at 60 °C and O °C. Furthermore we studied kinematic viscosities, electrical conductivities, and densities of mixtures containing silver nitrate, RCN, and water with the mole ratios X /4 /1 (0.2≦ X ≦S 3.4). In these cases also R = C2H5 and C4H9 were studied. The organic nitriles show different dependences of viscosity and conductivity on the silver nitrate content from the aliphatic ones.

  16. Reactions of hydrated electrons (H2O)n- with carbon dioxide and molecular oxygen: hydration of the CO2- and O2- ions.

    PubMed

    Balaj, O Petru; Siu, Chi-Kit; Balteanu, Iulia; Beyer, Martin K; Bondybey, Vladimir E

    2004-10-04

    The gas-phase reactions of hydrated electrons with carbon dioxide and molecular oxygen were studied by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Both CO2 and O2 react efficiently with (H2O)n- because they possess low-lying empty pi* orbitals. The molecular CO2- and O2- anions are concurrently solvated and stabilized by the water ligands to form CO2(-)(H2O)n and O2(-)(H2O)n. Core exchange reactions are also observed, in which CO2(-)(H2O)n is transformed into O2(-)(H2O)n upon collision with O2. This is in agreement with the prediction based on density functional theory calculations that O2(-)(H2O)n clusters are thermodynamically favored with respect to CO2(-)(H2O)n. Electron detachment from the product species is only observed for CO2(-)(H2O)2, in agreement with the calculated electron affinities and solvation energies.

  17. Synergetic photocatalytic effect between 1 T@2H-MoS2 and plasmon resonance induced by Ag quantum dots

    NASA Astrophysics Data System (ADS)

    Liu, Haiyang; Wu, Rong; Tian, Lie; Kong, Yangyang; Sun, Yanfei

    2018-07-01

    Semiconductor phase transitions and plasma noble metal quantum dots (QDs) for visible-light-driven photocatalysts have attracted significant research interest. In this study, novel microwave hydrothermal and photo-reduction methods are proposed to synthesise a visible-light-driven plasma photocatalytic 1T@2H-MoS2/Ag composite. Photoelectrochemical results show that the introduction of the 1T phase and Ag significantly enhances the light response range and charge separation. The 1T phase can act as a co-catalyst to provide a high electron concentration. Ag QDs can effectively improve the light absorption and catalytic effect. The synergistic effect between the 1T@2H-MoS2 microspheres and localised surface plasmon resonance of the Ag QDs can effectively enhance the photocatalytic activity of 1T@2H-MoS2/Ag. The developed 1T@2H-MoS2/Ag composite is superior, not only with respect to a visible-light photocatalytic degradation of conventional dyes, but also in the photocatalytic reduction of Cr(VI). Compared with 2H-MoS2, the catalytic efficiency of 1T@2H-MoS2/Ag for Cr(VI) and MB is increased by 81% and 41%, respectively. This study demonstrates that the introduction of 1T-MoS2 and Ag QDs can significantly enhance the catalytic properties of 2H-MoS2. The microwave and photo-reduction technologies can be employed as green, safe, simple, and rapid methods for the synthesis of noble metal plasma composites.

  18. Synergetic photocatalytic effect between 1 T@2H-MoS2 and plasmon resonance induced by Ag quantum dots.

    PubMed

    Liu, Haiyang; Wu, Rong; Tian, Lie; Kong, Yangyang; Sun, Yanfei

    2018-07-13

    Semiconductor phase transitions and plasma noble metal quantum dots (QDs) for visible-light-driven photocatalysts have attracted significant research interest. In this study, novel microwave hydrothermal and photo-reduction methods are proposed to synthesise a visible-light-driven plasma photocatalytic 1T@2H-MoS 2 /Ag composite. Photoelectrochemical results show that the introduction of the 1T phase and Ag significantly enhances the light response range and charge separation. The 1T phase can act as a co-catalyst to provide a high electron concentration. Ag QDs can effectively improve the light absorption and catalytic effect. The synergistic effect between the 1T@2H-MoS 2 microspheres and localised surface plasmon resonance of the Ag QDs can effectively enhance the photocatalytic activity of 1T@2H-MoS 2 /Ag. The developed 1T@2H-MoS 2 /Ag composite is superior, not only with respect to a visible-light photocatalytic degradation of conventional dyes, but also in the photocatalytic reduction of Cr(VI). Compared with 2H-MoS 2 , the catalytic efficiency of 1T@2H-MoS 2 /Ag for Cr(VI) and MB is increased by 81% and 41%, respectively. This study demonstrates that the introduction of 1T-MoS 2 and Ag QDs can significantly enhance the catalytic properties of 2H-MoS 2 . The microwave and photo-reduction technologies can be employed as green, safe, simple, and rapid methods for the synthesis of noble metal plasma composites.

  19. C3H7NO2S effect on concrete steel-rebar corrosion in 0.5 M H2SO4 simulating industrial/microbial environment

    NASA Astrophysics Data System (ADS)

    Okeniyi, Joshua Olusegun; Nwadialo, Christopher Chukwuweike; Olu-Steven, Folusho Emmanuel; Ebinne, Samaru Smart; Coker, Taiwo Ebenezer; Okeniyi, Elizabeth Toyin; Ogbiye, Adebanji Samuel; Durotoye, Taiwo Omowunmi; Badmus, Emmanuel Omotunde Oluwasogo

    2017-02-01

    This paper investigates C3H7NO2S (Cysteine) effect on the inhibition of reinforcing steel corrosion in concrete immersed in 0.5 M H2SO4, for simulating industrial/microbial environment. Different C3H7NO2S concentrations were admixed, in duplicates, in steel-reinforced concrete samples that were partially immersed in the acidic sulphate environment. Electrochemical monitoring techniques of open circuit potential, as per ASTM C876-91 R99, and corrosion rate, by linear polarization resistance, were then employed for studying anticorrosion effect in steel-reinforced concrete samples by the organic hydrocarbon admixture. Analyses of electrochemical test-data followed ASTM G16-95 R04 prescriptions including probability distribution modeling with significant testing by Kolmogorov-Smirnov and student's t-tests statistics. Results established that all datasets of corrosion potential distributed like the Normal, the Gumbel and the Weibull distributions but that only the Weibull model described all the corrosion rate datasets in the study, as per the Kolmogorov-Smirnov test-statistics. Results of the student's t-test showed that differences of corrosion test-data between duplicated samples with the same C3H7NO2S concentrations were not statistically significant. These results indicated that 0.06878 M C3H7NO2S exhibited optimal inhibition efficiency η = 90.52±1.29% on reinforcing steel corrosion in the concrete samples immersed in 0.5 M H2SO4, simulating industrial/microbial service-environment.

  20. Interatomic interactions in M2(C8H4O4)2C6H12N2 (M = Zn, Cu, Co, Ni) metal-organic framework polymers: X-ray photoelectron spectroscopy, QTAIM and ELF study

    NASA Astrophysics Data System (ADS)

    Kozlova, S. G.; Ryzhikov, M. R.; Samsonenko, D. G.; Kalinkin, A. V.

    2017-12-01

    Interatomic interactions in M2(C8H4O4)2C6H12N2 (M = Co, Ni, Cu, Zn) metal-organic framework polymers have been studied with the methods of quantum chemistry and X-ray photoelectron spectroscopy. Interactions of C6H12N2 molecules and C8H4O42- anions with metal atoms are shown to be of closed-shell type. C6H12N2 molecules are positively charged, the value of the charge slightly depends on the type of the metal atoms. Msbnd M interactions are described as "intermediate interactions" with some covalence contribution which reaches maximum for the interactions between cobalt atoms. The obtained quantum-chemical data agree with those obtained from photoelectron spectroscopy measurements.

  1. Total reaction cross sections of electronic state-specified transition metal cations: V + +C2H6, C3H8, and C2H4 at 0.2 eV

    NASA Astrophysics Data System (ADS)

    Sanders, Lary; Hanton, Scott D.; Weisshaar, James C.

    1990-03-01

    We describe a crossed beam experiment which measures total cross sections for reaction of electronic state-specified V+ with small hydrocarbons at well-defined collision energy E=0.2 eV. The V+ state distribution created at each ionizing wavelength is directly measured by angle-integrated photoelectron spectroscopy (preceding paper). Reactant and product ions are collected and analyzed by pulsed time-of-flight mass spectrometry following a reaction time of 6 μs. Tests of the performance of the apparatus are described in detail. Our experiment defines the reactant V+ electronic state distribution and the collision energy much more precisely than previous work. For all three hydrocarbons C2H6, C3H8, and C2H4, H2 elimination products dominate at 0.2 eV. We observe a dramatic dependence of cross section on the V+ electronic term. The second excited term 3d34s(3F) is more reactive than either lower energy quintet term 3d4(5D) or 3d34s(5F) by a factor of ≥270, 80, and ≥6 for the C2H6, C3H8, and C2H4 reactions, respectively. The 3d34s(3F) reaction cross sections at 0.2 eV are 20±11 Å2, 37±19 Å2, and 2.7±1.6 Å2, respectively, compared with Langevin cross sections of ˜80 Å2. For the C2H6 and C3H8 reactions, cross sections are independent of initial spin-orbit level J within the 3F term to the limits of our accuracy. Comparison with earlier work by Armentrout and co-workers shows that electronic excitation to d3s(3F) is far more effective at promoting H2 elimination than addition of the same total kinetic energy to reactants. Electron spin is clearly a key determinant of V+ reactivity with small hydrocarbons. We suggest that triplet V+ reacts much more efficiently than quintet V+ because of its ability to conserve total electron spin along paths to insertion in a C-H bond of the hydrocarbon.

  2. The condensation and vaporization behavior of ices containing SO2, H2S, and CO2: Implications for Io

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Allamandola, Louis J.

    1993-01-01

    In an extension of previously reported work on ices containing CO, CO2, H2O, CH3OH, NH3, and H2, measurements of the physical and infrared spectral properties of ices containing molecules relevant to Jupiter's moon Io are presented. These include studies on ice systems containing SO2, H2S, and CO2. The condensation and sublimation behaviors of each ice system and surface binding energies of their components are discussed. The surface binding energies can be used to calculate the residence times of the molecules on a surface as a function of temperature and thus represent important parameters for any calculation that attempts to model the transport of these molecules on Io's surface. The derived values indicate that SO2 frosts on Io are likely to anneal rapidly, resulting in less fluffy, 'glassy' ices and that H2S can be trapped in the SO2 ices of Io during night-time hours provided that SO2 deposition rates are on the order of 5 micrometers/hr or larger.

  3. Exploration of H2O-CO2 Solubility in Alkali Basalt at low-H2O

    NASA Astrophysics Data System (ADS)

    Roggensack, K.; Allison, C. M.; Clarke, A. B.

    2017-12-01

    A number of recent experimental studies have found conflicting evidence for and against the influence of H2O on CO2 solubility in basalt and alkali-rich mafic magma (e.g. Behrens et al., 2009; Shishkina et al., 2010;2014; Iacono-Marziano et al., 2012). Some of the uncertainty is due to the error with spectroscopic determination (FTIR) of carbon and the challenge of controlling H2O abundance in experiments. It's been widely observed that even experimental capsules without added H2O may produce hydrous glasses containing several wt.% H2O. We conducted fluid-saturated, mixed-fluid (H2O-CO2) experiments to determine the solubility in alkali basalt with particular emphasis on conditions at low-H2O. To limit possible H2O contamination, materials were dried prior to loading and experimental capsules were sealed under vacuum. Experiments were run using a piston-cylinder, in Pt (pre-soaked in Fe) or AuPd capsules and operating at pressures from 400 to 600 MPa. Post-run the capsules were punctured under vacuum and fluids were condensed, separated, and measured by mercury manometry. A comparison between two experiments run at the same temperature and pressure conditions but with different fluid compositions illustrates the correlation between carbonate and H2O solubility. Uncertainties associated with using concentrations calculated from FTIR data can be reduced by directly comparing analyses on wafers of similar thickness. We observe that the experiment with greater H2O absorbance also has a higher carbonate absorbance than the experiment with lower H2O absorbance. Since the experiments were run at the same pressure, the experiment with more water-rich fluid, and higher dissolved H2O, has lower CO2 fugacity, but surprisingly has higher dissolved CO2 content. Overall, the results show two distinct trends. Experiments conducted at low-H2O (0.5 to 0.8 wt.%) show lower dissolved CO2 than those conducted at moderate-H2O (2 to 3 wt.%) at similar CO2 fugacity. These data show that

  4. Mineralogical changes of a well cement in various H2S-CO2(-brine) fluids at high pressure and temperature.

    PubMed

    Jacquemet, Nicolas; Pironon, Jacques; Saint-Marc, Jérémie

    2008-01-01

    The reactivity of a crushed well cement in contact with (1) a brine with dissolved H2S-CO2; (2) a dry H2S-CO2 supercritical phase; (3) a two-phase fluid associating a brine with dissolved H2S-CO2 and a H2S-CO2 supercritical phase was investigated in batch experiments at 500 bar and 120, 200 degrees C. All of the experiments showed that following 15-60 days cement carbonation occurred. The H2S reactivity with cement is limited since it only transformed the ferrites (minor phases) by sulfidation. It appeared that the primary parameter controlling the degree of carbonation (i.e., the rate of calcium carbonates precipitation and CSH (Calcium Silicate Hydrates) decalcification) is the physical state of the fluid phase contacting the minerals. The carbonation degree is complete when the minerals contact at least the dry H2S-CO2 supercritical phase and partial when they contactthe brine with dissolved H2S-CO2. Aragonite (calcium carbonate polymorph) precipitated specifically within the dry H2S-CO2 supercritical phase. CSH cristallinity is improved by partial carbonation while CSH are amorphized by complete carbonation. However, the features evidenced in this study cannot be directly related to effective features of cement as a monolith. Further studies involving cement as a monolith are necessary to ascertain textural, petrophysical, and mechanical evolution of cement.

  5. Direct Z-scheme TiO2/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity

    NASA Astrophysics Data System (ADS)

    Meng, Aiyun; Zhu, Bicheng; Zhong, Bo; Zhang, Liuyang; Cheng, Bei

    2017-11-01

    Photocatalytic H2 evolution, which utilizes solar energy via water splitting, is a promising route to deal with concerns about energy and environment. Herein, a direct Z-scheme TiO2/CdS binary hierarchical photocatalyst was fabricated via a successive ionic layer adsorption and reaction (SILAR) technique, and photocatalytic H2 production was measured afterwards. The as-prepared TiO2/CdS hybrid photocatalyst exhibited noticeably promoted photocatalytic H2-production activity of 51.4 μmol h-1. The enhancement of photocatalytic activity was ascribed to the hierarchical structure, as well as the efficient charge separation and migration from TiO2 nanosheets to CdS nanoparticles (NPs) at their tight contact interfaces. Moreover, the direct Z-scheme photocatalytic reaction mechanism was demonstrated to elucidate the improved photocatalytic performance of TiO2/CdS composite photocatalyst. The photoluminescence (PL) analysis of hydroxyl radicals were conducted to provide clues for the direct Z-scheme mechanism. This work provides a facile route for the construction of redox mediator-free Z-scheme photocatalytic system for photocatalytic water splitting.

  6. o-Iminobenzosemiquinonate and o-imino-p-methylbenzosemiquinonate anion radicals coupled VO2+ stabilization.

    PubMed

    Roy, Amit Saha; Saha, Pinaki; Adhikary, Nirmal Das; Ghosh, Prasanta

    2011-03-21

    The diamagnetic VO(2+)-iminobenzosemiquinonate anion radical (L(R)(IS)(•-), R = H, Me) complexes, (L(-))(VO(2+))(L(R)(IS)(•-)): (L(1)(-))(VO(2+))(L(H)(IS)(•-))•3/2MeOH (1•3/2MeOH), (L(2)(-))(VO(2+))(L(H)(IS)(•-)) (2), and (L(2)(-))(VO(2+))(L(Me)(IS)(•-))•1/2 L(Me)(AP) (3•1/2 L(Me)(AP)), incorporating tridentate monoanionic NNO-donor ligands {L = L(1)(-) or L(2)(-), L(1)H = (2-[(phenylpyridin-2-yl-methylene)amino]phenol; L(2)H = 1-(2-pyridylazo)-2-naphthol; L(H)(IS)(•-) = o-iminobenzosemiquinonate anion radical; L(Me)(IS)(•-) = o-imino-p-methylbenzosemiquinonate anion radical; and L(Me)(AP) = o-amino-p-methylphenol} have been isolated and characterized by elemental analyses, IR, mass, NMR, and UV-vis spectra, including the single-crystal X-ray structure determinations of 1•3/2MeOH and 3•1/2 L(Me)(AP). Complexes 1•3/2MeOH, 2, and 3•1/2 L(Me)(AP) absorb strongly in the visible region because of intraligand (IL) and ligand-to-metal charge transfers (LMCT). 1•3/2MeOH is luminescent (λ(ext), 333 nm; λ(em), 522, 553 nm) in frozen dichloromethane-toluene glass at 77 K due to π(diimine→)π(diimine)* transition. The V-O(phenolato) (cis to the V═O) lengths, 1.940(2) and 1.984(2) Å, respectively, in 1•3/2MeOH and 3•1/2 L(Me)(AP) are consistent with the VO(2+) description. The V-O(iminosemiquinonate) (trans to the V═O) lengths, 2.1324(19) in 1•3/2MeOH and 2.083(2) Å in 3•1/2 L(Me)(AP), are expectedly ∼0.20 Å longer due to the trans influence of the V═O bond. Because of the stronger affinity of the paramagnetic VO(2+) ion to the L(H)(IS)(•-) or L(Me)(IS)(•-), the V-N(iminosemiquinonate) lengths, 1.908(2) and 1.921(2) Å, respectively, in 1•3/2MeOH and 3•1/2 L(Me)(AP), are unexpectedly shorter. Density functional theory (DFT) calculations using B3LYP, B3PW91, and PBE1PBE functionals on 1 and 2 have established that the closed shell singlet (CSS) solutions (VO(3+)-amidophenolato (L(R)(AP)(2-)) coordination) of these

  7. Quantum and quasi-classical calculations for the S+ + H2(v, j) →SH+(v′, j′)+H reactive collisions

    PubMed Central

    Zanchet, Alexandre; Roncero, Octavio; Bulut, Niyazi

    2016-01-01

    State-to-state cross sections for the S+ + H2(v, j) → SH+ (v′, j′) + H endothermic reaction are obtained with quantum wave packet(WP) and quasi-classical (QCT) methods for different initial rovibrational H2(v, j) over a wide range of translation energies. Final state distribution as a function of the initial quantum number is obtained and discussed. Additionally, the effect of the internal excitation of H2 on the reactivity is carefully studied. It appears that energy transfer among modes is very inefficient, that vibrational energy is the most favorable for reaction and rotational excitation significantly enhance reactivity when vibrational energy is sufficient to reach the product. Special attention is also paid on an unusual discrepancy between classical and quantum dynamics for low rotational levels while agreement improves with rotational excitation of H2, An interesting resonant behaviour found in WP calculations is also discussed and is associated to the existence of roaming classical trajectories that enhance the reactivity of the title reaction. Finally, a comparison with the experimental results of Stowe et al.[1] for S+ + HD and S+ +D2 reactions, finding a reasonably good agreement with those results. PMID:27055725

  8. Validation of a novel Multi-Gas sensor for volcanic HCl alongside H2S and SO2 at Mt. Etna

    NASA Astrophysics Data System (ADS)

    Roberts, T. J.; Lurton, T.; Giudice, G.; Liuzzo, M.; Aiuppa, A.; Coltelli, M.; Vignelles, D.; Salerno, G.; Couté, B.; Chartier, M.; Baron, R.; Saffell, J. R.; Scaillet, B.

    2017-05-01

    Volcanic gas emission measurements inform predictions of hazard and atmospheric impacts. For these measurements, Multi-Gas sensors provide low-cost in situ monitoring of gas composition but to date have lacked the ability to detect halogens. Here, two Multi-Gas instruments characterized passive outgassing emissions from Mt. Etna's (Italy) three summit craters, Voragine (VOR), North-east Crater (NEC) and Bocca Nuova (BN) on 2 October 2013. Signal processing (Sensor Response Model, SRM) approaches are used to analyse H2S/SO2 and HCl/SO2 ratios. A new ability to monitor volcanic HCl using miniature electrochemical sensors is here demonstrated. A "direct-exposure" Multi-Gas instrument contained SO2, H2S and HCl sensors, whose sensitivities, cross-sensitivities and response times were characterized by laboratory calibration. SRM analysis of the field data yields H2S/SO2 and HCl/SO2 molar ratios, finding H2S/SO2 = 0.02 (0.01-0.03), with distinct HCl/SO2 for the VOR, NEC and BN crater emissions of 0.41 (0.38-0.43), 0.58 (0.54-0.60) and 0.20 (0.17-0.33). A second Multi-Gas instrument provided CO2/SO2 and H2O/SO2 and enabled cross-comparison of SO2. The Multi-Gas-measured SO2-HCl-H2S-CO2-H2O compositions provide insights into volcanic outgassing. H2S/SO2 ratios indicate gas equilibration at slightly below magmatic temperatures, assuming that the magmatic redox state is preserved. Low SO2/HCl alongside low CO2/SO2 indicates a partially outgassed magma source. We highlight the potential for low-cost HCl sensing of H2S-poor HCl-rich volcanic emissions elsewhere. Further tests are needed for H2S-rich plumes and for long-term monitoring. Our study brings two new advances to volcano hazard monitoring: real-time in situ measurement of HCl and improved Multi-Gas SRM measurements of gas ratios.

  9. TES/Aura L2 Water Vapor (H2O) Limb V6 (TL2H2OL)

    Atmospheric Science Data Center

    2018-03-01

    TES/Aura L2 Water Vapor (H2O) Limb (TL2H2OL) News:  TES News ... Level:  L2 Platform:  TES/Aura L2 Water Vapor Spatial Coverage:  27 x 23 km Limb ... Access: OPeNDAP Parameters:  H2O Water Volume Mixing Radio Precision Vertical Resolution Order ...

  10. New metal-organic frameworks of [M(C6H5O7)(C6H6O7)(C6H7O7)(H2O)] . H2O (M=La, Ce) and [Ce2(C2O4)(C6H6O7)2] . 4H2O

    NASA Astrophysics Data System (ADS)

    Weng, Sheng-Feng; Wang, Yun-Hsin; Lee, Chi-Shen

    2012-04-01

    Two novel materials, [M(C6H5O7)(C6H6O7)(C6H7O7)(H2O)] . H2O (M=La(1a), Ce(1b)) and [Ce2(C2O4)(C6H6O7)2] . 4H2O (2), with a metal-organic framework (MOF) were prepared with hydrothermal reactions and characterized with photoluminescence, magnetic susceptibility, thermogravimetric analysis and X-ray powder diffraction in situ. The crystal structures were determined by single-crystal X-ray diffraction. Compound 1 crystallized in triclinic space group P1¯ (No. 2); compound 2 crystallized in monoclinic space group P21/c (No. 14). The structure of 1 is built from a 1D MOF, composed of deprotonated citric ligands of three kinds. Compound 2 contains a 2D MOF structure consisting of citrate and oxalate ligands; the oxalate ligand arose from the decomposition in situ of citric acid in the presence of CuII ions. Photoluminescence spectra of compounds 1b and 2 revealed transitions between the 5d1 excited state and two levels of the 4f1 ground state (2F5/2 and 2F7/2). Compounds 1b and 2 containing CeIII ion exhibit a paramagnetic property with weak antiferromagnetic interactions between the two adjacent magnetic centers.

  11. Quenching of para-H{sub 2} with an ultracold antihydrogen atom H{sub 1s}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sultanov, Renat A.; Guster, Dennis; Adhikari, Sadhan K.

    2010-02-15

    In this work we report the results of calculation for quantum-mechanical rotational transitions in molecular hydrogen, H{sub 2}, induced by an ultracold ground-state antihydrogen atom H{sub 1s}. The calculations are accomplished using a nonreactive close-coupling quantum-mechanical approach. The H{sub 2} molecule is treated as a rigid rotor. The total elastic-scattering cross section {sigma}{sub el}({epsilon}) at energy {epsilon}, state-resolved rotational transition cross sections {sigma}{sub jj}{sup '}({epsilon}) between states j and j{sup '}, and corresponding thermal rate coefficients k{sub jj}{sup '}(T) are computed in the temperature range 0.004 K < or approx. T < or approx. 4 K. Satisfactory agreement with othermore » calculations (variational) has been obtained for {sigma}{sub el}({epsilon}).« less

  12. Mineral storage of CO2/H2S gas mixture injection in basaltic rocks

    NASA Astrophysics Data System (ADS)

    Clark, D. E.; Gunnarsson, I.; Aradottir, E. S.; Oelkers, E. H.; Sigfússon, B.; Snæbjörnsdottír, S. Ó.; Matter, J. M.; Stute, M.; Júlíusson, B. M.; Gíslason, S. R.

    2017-12-01

    Carbon capture and storage is one solution to reducing CO2 emissions in the atmosphere. The long-term geological storage of buoyant supercritical CO2 requires high integrity cap rock. Some of the risk associated with CO2 buoyancy can be overcome by dissolving CO2 into water during its injection, thus eliminating its buoyancy. This enables injection into fractured rocks, such as basaltic rocks along oceanic ridges and on continents. Basaltic rocks are rich in divalent cations, Ca2+, Mg2+ and Fe2+, which react with CO2 dissolved in water to form stable carbonate minerals. This possibility has been successfully tested as a part of the CarbFix CO2storage pilot project at the Hellisheiði geothermal power plant in Iceland, where they have shown mineralization occurs in less than two years [1, 2]. Reykjavik Energy and the CarbFix group has been injecting a mixture of CO2 and H2S at 750 m depth and 240-250°C since June 2014; by 1 January 2016, 6290 tons of CO2 and 3530 tons of H2S had been injected. Once in the geothermal reservoir, the heat exchange and sufficient dissolution of the host rock neutralizes the gas-charged water and saturates the formation water respecting carbonate and sulfur minerals. A thermally stable inert tracer was also mixed into the stream to monitor the subsurface transport and to assess the degree of subsurface carbonation and sulfide precipitation [3]. Water and gas samples have been continuously collected from three monitoring wells and geochemically analyzed. Based on the results, mineral saturation stages have been defined. These results and tracer mass balance calculations are used to evaluate the rate and magnitude of CO2 and H2S mineralization in the subsurface, with indications that mineralization of carbon and sulfur occurs within months. [1] Gunnsarsson, I., et al. (2017). Rapid and cost-effective capture and subsurface mineral storage of carbon and sulfur. Manuscript submitted for publication. [2] Matter, J., et al. (2016). Rapid

  13. H2S in Shallow Groundwater: Hydrogeochemical Processes, Degassing Experiments and Health Impacts

    NASA Astrophysics Data System (ADS)

    Broers, H. P.; Weert, J. D.; Bouma, R.

    2016-12-01

    Hydrogen sulfide is known to be a hazardous gas even at rather low concentrations and may pose a serious health risk. Occurrences of H2S in groundwater and degassing into the atmosphere are known for volcanic or tectonic active regions, coal mining or gypsum dissolution regions. We studied the occurrence and origin of H2S in shallow groundwater and its degassing into air after pumping in a setting of shallow unconsolidated deposits in the south of the Netherlands, where the sulfate source is antropogenic. We measured H2S concentrations in water using a field photo spectrometer and the degassing into air with a Jerome 631. We analyzed for macro-ions and determined the apparent 3H/3He age to assess the origin of the sulfide in the groundwater. H2S was formed in-situ within organic-rich and carbonate free sediments and peat layers of a fluvio-glacial sediment series in groundwater that infiltrated approximately 15 years ago. Sulfate is omnipresent in Dutch shallow groundwater due to historical atmospheric inputs of SOx, sulfur inputs from intensive livestock farming and subsurface production of sulfate from pyrite oxidation following nitrate leaching from agricultural fields (Zhang et al. 2009 GCA, 2012 AppGeochem). The co-existence of H2S and sulfate in our groundwater appears to be determined by the low pH of the water (4.8-5.5) which limits the precipitation of mackinawite or amorphous FeS. Mapping the combination of observations wells with pH < 5.5, sulfate > 75 mg/L and Fe > 10 mg/l delineated large areas where H2S appeared to be present in concentration between 0.1 and 1.0 mg/L S2- in water. Degassing of groundwater with 0.7 mg S2-/L into a contained volume of air yielded concentrations > 50 ppmv within 15 minutes. Using the degassing rates observed in the experiments and assuming equilibrium degassing, we calibrated a simple model which describes the inflow of water, the degassing and the export of gas in relation to wind velocity. We used the model to evaluate

  14. Quantum dynamics of the reaction H((2)S) + HeH(+)(X(1)Σ(+)) → H2(+)(X(2)Σg(+)) + He((1)S) from cold to hyperthermal energies: time-dependent wavepacket study and comparison with time-independent calculations.

    PubMed

    Gamallo, Pablo; Akpinar, Sinan; Defazio, Paolo; Petrongolo, Carlo

    2014-08-21

    We present the adiabatic quantum dynamics of the proton-transfer reaction H((2)S) + HeH(+)(X(1)Σ(+)) → H2(+)(X(2)Σg(+)) + He((1)S) on the HeH2(+) X̃(2)Σ(+) RMRCI6 (M = 6) PES of C. N. Ramachandran et al. ( Chem. Phys. Lett. 2009, 469, 26). We consider the HeH(+) molecule in the ground vibrational–rotational state and obtain initial-state-resolved reaction probabilities and the ground-state cross section σ0 and rate constant k0 by propagating time-dependent, coupled-channel, real wavepackets (RWPs) and performing a flux analysis. Three different wavepackets are propagated to describe the wide range of energies explored, from cold (0.0001 meV) to hyperthermal (1000 meV) collision energies, and in a temperature range from 0.01 to 2000 K. We compare our time-dependent results with the time-independent ones by D. De Fazio and S. Bovino et al., where De Fazio carried out benchmark coupled-channel calculations whereas Bovino et al. employed the negative imaginary potential and the centrifugal-sudden approximations. The RWP cross section is in good agreement with that by De Fazio, except at the lowest collision energies below ∼0.01 meV, where the former is larger than the latter. However, neither the RWP and De Fazio results possess the huge resonance in probability and cross section at 0.01 meV, found by Bovino et al., who also obtained a too low σ0 at high energies. Therefore, the RWP and De Fazio rate constants compare quite well, whereas that by Bovino et al. is in general lower.

  15. 3-Methyl-7-(2-thienyl)pyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione: pi-stacked bilayers built from N-H...O, C-H...O and C-H...pi hydrogen bonds.

    PubMed

    Trilleras, Jorge; Quiroga, Jairo; Cobo, Justo; Glidewell, Christopher

    2009-06-01

    In the title compound, C(12)H(9)N(3)O(2)S, the thienyl substituent is disordered over two sets of sites with occupancies of 0.749 (3) and 0.251 (3). A combination of N-H...O, C-H...O and C-H...pi hydrogen bonds links the molecules into bilayers and these bilayers are themselves linked into a continuous structure by pi-pi stacking interactions.

  16. Comparative pathology of pigs infected with Korean H1N1, H1N2, or H3N2 swine influenza A viruses.

    PubMed

    Lyoo, Kwang-Soo; Kim, Jeong-Ki; Jung, Kwonil; Kang, Bo-Kyu; Song, Daesub

    2014-09-24

    The predominant subtypes of swine influenza A virus (SIV) in Korea swine population are H1N1, H1N2, and H3N2. The viruses are genetically close to the classical U.S. H1N1 and triple-reassortant H1N2 and H3N2 viruses, respectively. Comparative pathogenesis caused by Korean H1N1, H1N2, and H3N2 SIV was evaluated in this study. The H3N2 infected pigs had severe scores of gross and histopathological lesions at post-inoculation days (PID) 2, and this then progressively decreased. Both the H1N1 and H1N2 infected pigs lacked gross lesions at PID 2, but they showed moderate to severe pneumonia on PID 4, 7 and 14. The pigs infected with H1N1 had significant scores of gross and histopathological lesions when compared with the other pigs infected with H1N2, H3N2, and mock at PID 14. Mean SIV antigen-positive scores were rarely detected for pigs infected with H1N2 and H3N2 from PID 7, whereas a significantly increased amount of viral antigens were found in the bronchioles and alveolar epithelium of the H1N1infected pigs at PID 14. We demonstrated that Korean SIV subtypes had different pulmonary pathologic patterns. The Korean H3N2 rapidly induced acute lung lesions such as broncho-interstitial pneumonia, while the Korean H1N1 showed longer course of infection as compared to other strains.

  17. TES/Aura L2 Water Vapor (H2O) Limb V6 (TL2H2OLS)

    Atmospheric Science Data Center

    2018-03-01

    TES/Aura L2 Water Vapor (H2O) Limb (TL2H2OLS) News:  TES News ... Level:  L2 Platform:  TES/Aura L2 Water Vapor Spatial Coverage:  27 x 23 km Limb ... Access:  OPeNDAP Parameters:  H2O Water Volume Mixing Radio Precision Vertical Resolution Order ...

  18. Ca2+ and Mg2+-enhanced reduction of arsenazo III to its anion free radical metabolite and generation of superoxide anion by an outer mitochondrial membrane azoreductase.

    PubMed

    Moreno, S N; Mason, R P; Docampo, R

    1984-12-10

    At the concentrations usually employed as a Ca2+ indicator, arsenazo III underwent a one-electron reduction by rat liver mitochondria to produce an azo anion radical as demonstrated by electron-spin resonance spectroscopy. Either NADH or NADPH could serve as a source of reducing equivalents for the production of this free radical by intact rat liver mitochondria. Under aerobic conditions, addition of arsenazo III to rat liver mitochondria produced an increase in electron flow from NAD(P)H to molecular oxygen, generating superoxide anion. NAD(P)H generated from endogenous mitochondrial NAD(P)+ by intramitochondrial reactions could not be used for the NAD(P)H azoreductase reaction unless the mitochondria were solubilized by detergent or anaerobiosis. In addition, NAD(P)H azoreductase activity was higher in the crude outer mitochondrial membrane fraction than in mitoplasts and intact mitochondria. The steady-state concentration of the azo anion radical and the arsenazo III-stimulated cyanide-insensitive oxygen consumption were enhanced by calcium and magnesium, suggesting that, in addition to an enhanced azo anion radical-stabilization by complexation with the metal ions, enhanced reduction of arsenazo III also occurred. Accordingly, addition of cations to crude outer mitochondrial membrane preparations increased arsenazo III-stimulated cyanide-insensitive O2 consumption, H2O2 formation, and NAD(P)H oxidation. Antipyrylazo III was much less effective than arsenazo III in increasing superoxide anion formation by rat liver mitochondria and gave a much weaker electron spin resonance spectrum of an azo anion radical. These results provide direct evidence of an azoreductase activity associated with the outer mitochondrial membrane and of a stimulation of arsenazo III reduction by cations.

  19. Orbital selectivity causing anisotropy and particle-hole asymmetry in the charge density wave gap of 2 H - TaS 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, J.; Wijayaratne, K.; Butler, A.

    We report an in-depth angle-resolved photoemission spectroscopy study on 2H-TaS2, a canonical incommensurate charge density wave (CDW) system. This study demonstrates that just as in related incommensurate CDW systems, 2H-TaSe2 and 2H-NbSe2, the energy gap (triangle(CDW)) of 2H-TaS2 is localized along the K-centered Fermi surface barrels and is particle-hole asymmetric. The persistence of triangle(CDW) even at temperatures higher than the CDW transition temperature T-CDW in 2H-TaS2, reflects the similar pseudogap behavior observed previously in 2H-TaSe2 and 2H-NbSe2. However, in sharp contrast to 2H-NbSe2, where triangle(CDW) is nonzero only in the vicinity of a few "hot spots" on the innerK-centered Fermimore » surface barrels, triangle(CDW) in 2H-TaS2 is nonzero along the entirety of both K-centered Fermi surface barrels. Based on a tight-binding model, we attribute this dichotomy in the momentum dependence and the Fermi surface specificity of triangle(CDW) between otherwise similar CDW compounds to the different orbital orientations of their electronic states that participate in the CDW pairing. Our results suggest that the orbital selectivity plays a critical role in the description of incommensurate CDW materials.« less

  20. Orbital selectivity causing anisotropy and particle-hole asymmetry in the charge density wave gap of 2 H -TaS2

    NASA Astrophysics Data System (ADS)

    Zhao, J.; Wijayaratne, K.; Butler, A.; Yang, J.; Malliakas, C. D.; Chung, D. Y.; Louca, D.; Kanatzidis, M. G.; van Wezel, J.; Chatterjee, U.

    2017-09-01

    We report an in-depth angle-resolved photoemission spectroscopy study on 2 H -TaS2 , a canonical incommensurate charge density wave (CDW) system. This study demonstrates that just as in related incommensurate CDW systems, 2 H -TaSe2 and 2 H -NbSe2 , the energy gap (ΔCDW) of 2 H -TaS2 is localized along the K -centered Fermi surface barrels and is particle-hole asymmetric. The persistence of ΔCDW even at temperatures higher than the CDW transition temperature TCDW in 2 H -TaS2 , reflects the similar pseudogap behavior observed previously in 2 H -TaSe2 and 2 H -NbSe2 . However, in sharp contrast to 2 H -NbSe2 , where ΔCDW is nonzero only in the vicinity of a few "hot spots" on the inner K -centered Fermi surface barrels, ΔCDW in 2 H -TaS2 is nonzero along the entirety of both K -centered Fermi surface barrels. Based on a tight-binding model, we attribute this dichotomy in the momentum dependence and the Fermi surface specificity of ΔCDW between otherwise similar CDW compounds to the different orbital orientations of their electronic states that participate in the CDW pairing. Our results suggest that the orbital selectivity plays a critical role in the description of incommensurate CDW materials.

  1. Simultaneous absorption of CO2 and H2S into aqueous blends of N-methyldiethanolamine and diethanolamine.

    PubMed

    Mandald, Bishnupada; Bandyopadhyay, Shyamalendu S

    2006-10-01

    Removal of CO2 from gaseous streams by absorption with chemical reaction in the liquid phase is usually employed in industry as a method to retain atmospheric CO2 to combat the greenhouse effect. A broad spectrum of alkanolamines and, more recently, their mixtures are being employed for the removal of acid gases such as CO2, H2S, and COS from natural and industrial gas streams. In this research, simultaneous absorption of CO2 and H2S into aqueous blends of N-methyldiethanolamine and diethanolamine is studied theoretically and experimentally. The effect of contact time, temperature, and amine concentration on the rate of absorption and the selectivity were studied by absorption experiments in a wetted wall column at atmospheric pressure and constant feed gas ratio. The diffusion-reaction processes for CO2 and H2S mass transfer in blended amines are modeled according to Higbie's penetration theory with the assumption that all reactions are reversible. A rigorous parametric sensitivity test is done to quantify the effects of possible errors in the pertinent model parameters on the prediction accuracy of the absorption rates and enhancement factors. Model results based on the kinetics-equilibrium-mass transfer coupled model developed in this work are found to be in good agreement with the experimental results of rates of absorption of CO2 and H2S into (MDEA + DEA + H2O).

  2. Characteristics of layered tin disulfide deposited by atomic layer deposition with H2S annealing

    NASA Astrophysics Data System (ADS)

    Lee, Seungjin; Shin, Seokyoon; Ham, Giyul; Lee, Juhyun; Choi, Hyeongsu; Park, Hyunwoo; Jeon, Hyeongtag

    2017-04-01

    Tin disulfide (SnS2) has attracted much attention as a two-dimensional (2D) material. A high-quality, low-temperature process for producing 2D materials is required for future electronic devices. Here, we investigate tin disulfide (SnS2) layers deposited via atomic layer deposition (ALD) using tetrakis(dimethylamino)tin (TDMASn) as a Sn precursor and H2S gas as a sulfur source at low temperature (150° C). The crystallinity of SnS2 was improved by H2S gas annealing. We carried out H2S gas annealing at various conditions (250° C, 300° C, 350° C, and using a three-step method). Angle-resolved X-ray photoelectron spectroscopy (ARXPS) results revealed the valence state corresponding to Sn4+ and S2- in the SnS2 annealed with H2S gas. The SnS2 annealed with H2S gas had a hexagonal structure, as measured via X-ray diffraction (XRD) and the clearly out-of-plane (A1g) mode in Raman spectroscopy. The crystallinity of SnS2 was improved after H2S annealing and was confirmed using the XRD full-width at half-maximum (FWHM). In addition, high-resolution transmission electron microscopy (HR-TEM) images indicated a clear layered structure.

  3. Theoretical study of negatively charged Fe(-)-(H2O)(n ≤ 6) clusters.

    PubMed

    Castro, Miguel

    2012-06-14

    Interactions of a singly negatively charged iron atom with water molecules, Fe(-)-(H(2)O)(n≤6), in the gas phase were studied by means of density functional theory. All-electron calculations were performed using the B3LYP functional and the 6-311++G(2d,2p) basis set for the Fe, O, and H atoms. In the lowest total energy states of Fe(-)-(H(2)O)(n), the metal-hydrogen bonding is stronger than the metal-oxygen one, producing low-symmetry structures because the water molecules are directly attached to the metal by basically one of their hydrogen atoms, whereas the other ones are involved in a network of hydrogen bonds, which together with the Fe(δ-)-H(δ+) bonding accounts for the nascent hydration of the Fe(-) anion. For Fe(-)-(H(2)O)(3≤n), three-, four-, five-, and six-membered rings of water molecules are bonded to the metal, which is located at the surface of the cluster in such a way as to reduce the repulsion with the oxygen atoms. Nevertheless, internal isomers appear also, lying less than 3 or 5 kcal/mol for n = 2-3 or n = 4-6. These results are in contrast with those of classical TM(+)-(H(2)O)(n) complexes, where the direct TM(+)-O bonding usually produces high symmetry structures with the metal defining the center of the complex. They show also that the Fe(-) anions, as the TM(+) ions, have great capability for the adsorption of water molecules, forming Fe(-)-(H(2)O)(n) structures stabilized by Fe(δ-)-H(δ+) and H-bond interactions.

  4. Discovery and Mechanistic Characterization of Selective Inhibitors of H2S-producing Enzyme: 3-Mercaptopyruvate Sulfurtransferase (3MST) Targeting Active-site Cysteine Persulfide

    PubMed Central

    Hanaoka, Kenjiro; Sasakura, Kiyoshi; Suwanai, Yusuke; Toma-Fukai, Sachiko; Shimamoto, Kazuhito; Takano, Yoko; Shibuya, Norihiro; Terai, Takuya; Komatsu, Toru; Ueno, Tasuku; Ogasawara, Yuki; Tsuchiya, Yukihiro; Watanabe, Yasuo; Kimura, Hideo; Wang, Chao; Uchiyama, Masanobu; Kojima, Hirotatsu; Okabe, Takayoshi; Urano, Yasuteru; Shimizu, Toshiyuki; Nagano, Tetsuo

    2017-01-01

    Very recent studies indicate that sulfur atoms with oxidation state 0 or −1, called sulfane sulfurs, are the actual mediators of some physiological processes previously considered to be regulated by hydrogen sulfide (H2S). 3-Mercaptopyruvate sulfurtransferase (3MST), one of three H2S-producing enzymes, was also recently shown to produce sulfane sulfur (H2Sn). Here, we report the discovery of several potent 3MST inhibitors by means of high-throughput screening (HTS) of a large chemical library (174,118 compounds) with our H2S-selective fluorescent probe, HSip-1. Most of the identified inhibitors had similar aromatic ring-carbonyl-S-pyrimidone structures. Among them, compound 3 showed very high selectivity for 3MST over other H2S/sulfane sulfur-producing enzymes and rhodanese. The X-ray crystal structures of 3MST complexes with two of the inhibitors revealed that their target is a persulfurated cysteine residue located in the active site of 3MST. Precise theoretical calculations indicated the presence of a strong long-range electrostatic interaction between the persulfur anion of the persulfurated cysteine residue and the positively charged carbonyl carbon of the pyrimidone moiety of the inhibitor. Our results also provide the experimental support for the idea that the 3MST-catalyzed reaction with 3-mercaptopyruvate proceeds via a ping-pong mechanism. PMID:28079151

  5. (C6N2H16)[Co(H2O)6](SO4)2.2H2O: A new hybrid material based on sulfate templated by diprotonated trans-1,4-diaminocyclohexane

    NASA Astrophysics Data System (ADS)

    Hamdi, N.; Ngopoh, F. A. I.; da Silva, I.; El Bali, B.; Lachkar, M.

    2018-03-01

    Employing trans-1,4-diaminocyclohexane (DACH) as template, the new hybrid sulphate (C6N2H16)[Co(H2O)6](SO4)2.2H2O was prepared in solution. Single-crystal X-ray diffraction analysis shows that it crystallizes in the monoclinic system (S.G.: P 21/n), with the following unit-cell parameters (Å,°): a = 6.2897(2), b = 12.3716(6), c = 13.1996(4), β = 98.091(3) V = 1016.89(7) Å3, Z = 4. Its 3D crystal structure is made upon isolated [Co(H2O)6] octahedra, regular [SO4] tetrahedra, protonated DACH and free H2O molecules, which interact through N-H···O and O-H···O hydrogen bonds. The Fourier transform infrared result exhibits bands corresponding to the vibrations of DACH, sulfate group and water molecules. The thermal decomposition of the phase consists mainly in the loss of the organic moiety and one sulfate group, leading thus to the formation of anhydrous cobalt sulfate.

  6. Water-Network Mediated, Electron Induced Proton Transfer in Anionic [C5H5N\\cdot(H2O)n]- Clusters: Size Dependent Formation of the Pyridinium Radical for n ≥ 3

    NASA Astrophysics Data System (ADS)

    DeBlase, Andrew F.; Weddle, Gary H.; Archer, Kaye A.; Jordan, Kenneth D.; Johnson, Mark

    2015-06-01

    As an isolated species, the radical anion of pyridine (Py-) exists as an unstable transient negative ion, while in aqueous environments it is known to undergo rapid protonation to form the neutral pyridinium radical [PyH(0)] along with hydroxide. Furthermore, the negative adiabatic electron affinity (AEA) of Py- can become diminished by the solvation energy associated with cluster formation. In this work, we focus on the hydrates [Py\\cdot(H2O)n]- with n = 3-5 and elucidate the structures of these water clusters using a combination of vibrational predissociation and photoelectron spectroscopies. We show that H-trasfer to form PyH(0) occurs in these clusters by the infrared signature of the nascent hydroxide ion and by the sharp bending vibrations of aromatic ring CH bending.

  7. Hybridized 1T/2H MoS2 Having Controlled 1T Concentrations and its use in Supercapacitors.

    PubMed

    Thi Xuyen, Nguyen; Ting, Jyh-Ming

    2017-12-06

    Molybdenum disulfide (MoS 2 ) nanoflowers consisting of hybridized 1T/2H phases have been synthesized by using a microwave-assisted hydrothermal (MTH) method. The concentration of the 1T phase, ranging from 40 % to 73 %, is controlled by simply adjusting the ratio of the Mo and S precursors. By using the hybridized 1T/2H MoS 2 as an electrode material, it was demonstrated that the resulting supercapacitor performance is dominated by the 1T phase concentration. It was found that a supercapacitor with 73 % 1T phase exhibits excellent capacitance of 259 F g -1 and great cyclic stability after 1000 cycles. The formation mechanism of the MHT-synthesized hybridized 1T/2H MoS 2 is also reported. More importantly, the mechanism also explains the observed relationship between the 1T phase concentration and the ratio of the Mo and S precursors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Performance study of biofilter developed to treat H2S from wastewater odour

    PubMed Central

    Omri, Ilhem; Aouidi, Fethia; Bouallagui, Hassib; Godon, Jean-Jacques; Hamdi, Moktar

    2013-01-01

    Biofiltration is an efficient biotechnological process used for waste gas abatement in various industrial processes. It offers low operating and capital costs and produces minimal secondary waste streams. The objective of this study was to evaluate the performance of a pilot scale biofilter in terms of pollutants’ removal efficiencies and the bacterial dynamics under different inlet concentrations of H2S. The treatment of odourous pollutants by biofiltration was investigated at a municipal wastewater treatment plant (WWTP) (Charguia, Tunis, Tunisia). Sampling and analyses were conducted for 150 days. Inlet H2S concentration recorded was between 200 and 1300 mg H2S.m−3. Removal efficiencies reached 99% for the majority of the running time at an empty bed retention time (EBRT) of 60 s. Heterotrophic bacteria were found to be the dominant microorganisms in the biofilter. The bacteria were identified as the members of the genus Bacillus, Pseudomonas and xanthomonadacea bacterium. The polymerase chain reaction-single stranded conformation polymorphism (PCR-SSCP) method showed that bacterial community profiles changed with the H2S inlet concentration. Our results indicated that the biofilter system, containing peat as the packing material, was proved able to remove H2S from the WWTP odourous pollutants. PMID:23961233

  9. Upstream H/sub 2/S removal from geothermal steam. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-11-01

    The purpose of this project was to evaluate a new heat exchanger process as a method for removing hydrogen sulfide (H/sub 2/S) gas from geothermal steam upstream of a power plant turbine. The process utilizes a heat exchanger to condense geothermal steam so that noncondensable gases (including H/sub 2/S) can be removed in the form of a concentrated vent stream. Ultimate disposal of the removed H/sub 2/S gas may then be accomplished by use of other processes such as the commercially available Stretford process. The clean condensate is reevaporated on the other side of the heat exchanger using the heatmore » removed from the condensing geothermal steam. The necessary heat transfer is induced by maintaining a slight pressure difference, and consequently a slight temperature difference, between the two sides of the heat exchanger. Evaluation of this condensing and reboiling process was performed primarily through the testing of a small-scale 14 m/sup 2/ (150 ft/sup 2/) vertical tube evaporator heat exchanger at The Geysers Power Plant in northern California. The field test results demonstrated H/sub 2/S removal rates consistently better than 90 percent, with an average removal rate of 94 percent. In addition, the removal rate for all noncondensable gases is about 98 percent. Heat transfer rates were high enough to indicate acceptable economics for application of the process on a commercial scale. The report also includes an evaluation of the cost and performance of various configurations of the system, and presents design and cost estimates for a 2.5 MWe and a 55 MWe unit.« less

  10. 2D Heterostructure coatings of hBN-MoS2 layers for corrosion resistance

    NASA Astrophysics Data System (ADS)

    Vandana, Sajith; Kochat, Vidya; Lee, Jonghoon; Varshney, Vikas; Yazdi, Sadegh; Shen, Jianfeng; Kosolwattana, Suppanat; Vinod, Soumya; Vajtai, Robert; Roy, Ajit K.; Sekhar Tiwary, Chandra; Ajayan, P. M.

    2017-02-01

    Heterostructures of atomically thin 2D materials could have improved physical, mechanical and chemical properties as compared to its individual components. Here we report, the effect of heterostructure coatings of hBN and MoS2 on the corrosion behavior as compared to coatings employing the individual 2D layer compositions. The poor corrosion resistance of MoS2 (widely used as wear resistant coating) can be improved by incorporating hBN sheets. Depending on the atomic stacking of the 2D sheets, we can further engineer the corrosion resistance properties of these coatings. A detailed spectroscopy and microscopy analysis has been used to characterize the different combinations of layered coatings. Detailed DFT based calculation reveals that the effect on the electrical properties due to atomic stacking is one of the major reasons for the improvement seen in corrosion resistance.

  11. Meridional Variations of C2H2 and C2H6 in Jupiter's Atmosphere from Cassini CIRS Infrared Spectra

    NASA Technical Reports Server (NTRS)

    Nixon, C. A.; Achterberg, R. K.; Conrath, B. J.; Irwin, P. G. J.; Fouchet, T.; Parrish, P. D.; Romani, P. N.; Abbas, M.; LeClair, A.; Strobel, D.

    2004-01-01

    Hydrocarbons such as acetylene (C2H2) and ethane (C2H6) are important tracers in Jupiter's atmosphere, constraining our models of the chemical and dynamical processes. However, our knowledge of the vertical and meridional variations of their abundances has remained sparse. During the flyby of the Cassini spacecraft in December 2000, the Composite Infrared Spectrometer (CIRS) instrument was used to map the spatial variation of emissions from 10-1400 cm(sup -1) (1000-7 microns). In this paper we analyze a zonally-averaged set of CIRS spectra taken at the highest (0.5 cm(sup -1)) resolution, to infer atmospheric temperatures in the stratosphere at 0.5-20 mbar via the v4 band of CH4, and in the troposphere at 150-400 mbar, via the H2 absorption at 600-800 cm(sup -1). Simultaneously, we retrieve the abundances of C2H2 and C2H6 via the v5 and vg bands respectively. Tropospheric absorption and stratospheric emission are highly anti-correlated at the CIRS resolution, introducing a non-uniqueness into the retrievals, such that vertical gradient and column abundance cannot both be found without additional constraints. Assuming profile gradients from photochemical calculations, we show that the column abundance of C2H2 decreases sharply towards the poles by a factor approximately 4, while C2H6 is unchanged in the north and increasing in the south, by a factor approximately 1.8. An explanation for the meridional trends is proposed in terms of a combination of photochemistry and dynamics. Poleward, the decreasing UV flux is predicted to decrease the abundances of C2H2 and C2H6 by factors 2.7 and 3.5 respectively at a latitude 70 deg. However, the lifetime of C2H6 in the stratosphere (5 x 10(exp 9)) is much longer than the dynamical timescale for meridional motions inferred from SL-9 debris (5 x 10(exp 8 s)), and therefore the constant or rising abundance towards high latitudes likely indicates that meridional mixing dominates over photochemical effects. For C2H2, the opposite

  12. Diselenophosphate-Induced Conversion of an Achiral [Cu 20 H 11 {S 2 P(O i Pr) 2 } 9 ] into a Chiral [Cu 20 H 11 {Se 2 P(O i Pr) 2 } 9 ] Polyhydrido Nanocluster

    DOE PAGES

    Dhayal, Rajendra S.; Liao, Jian-Hong; Wang, Xiaoping; ...

    2015-11-09

    A polyhydrido copper nanocluster, [Cu 20H 11{Se 2P(OiPr) 2} 9] (2 H), which exhibits an intrinsically chiral inorganic core of C-3 symmetry, was synthesized from achiral [Cu 20H 11{S 2P(OiPr) 2} 9] (1(H)) of C-3h symmetry by a ligand-exchange method. Likewise, the structure has a distorted cuboctahedral Cu-13 core, two triangular faces of which are capped along the C-3 axis, one by a Cu-6 cupola and the other by a single Cu atom. The Cu-20 framework is further stabilized by 9 diselenophosphate and 11 hydride ligands. The number of hydride, phosphorus, and selenium resonances and their splitting patterns in multinuclearmore » NMR spectra of 2(H) indicate that the chiral Cu20H11 core retains its C-3 symmetry in solution. Moreover, the 11 hydride ligands were located by neutron diffraction experiments and shown to be capping (3)-H and interstitial (5)-H ligands (in square-pyramidal and trigonal-bipyramidal cavities), as supported by DFT calculations on [Cu 20H 11(Se 2PH 2) 9] (2 H') as a simplified model.« less

  13. Photo-Fenton degradation of a herbicide (2,4-D) in groundwater for conditions of natural pH and presence of inorganic anions.

    PubMed

    Conte, Leandro O; Schenone, Agustina V; Giménez, Bárbara N; Alfano, Orlando M

    2018-04-05

    The effects of four inorganic anions (Cl - , SO 4 2 -, HCO 3 - , NO 3 - ) usually present in groundwater were investigated on the photo-Fenton degradation of 2,4-dichlorophenoxyacetic acid (2,4-D). A kinetic model derived from a reaction sequence is proposed using the ferrioxalate complex as iron source at pH close to natural conditions (pH = 5). It was demonstrated that oxalate not only maintained iron in solution for the natural groundwater system, but also increased the photochemical activation of the process. Results showed that the minimum conversion of 2,4-D for the simulated groundwater after 180 min was 63.80%. This value was only 14.1% lower than the conversion achieved without anions. However, with all anions together, the consumption of hydrogen peroxide (HP) per mole of herbicide showed an increase with respect to the test without anions. Only one kinetic parameter was estimated for each anion applying a nonlinear regression method. Subsequently, these optimized kinetic constants were used to simulate the system behaviour, considering the influence of all the studied anions together. A good agreement between kinetic model predictions and experimental data was observed, with the following errors: RMSE 2,4-D  = 3.98 × 10 -3 mM, RMSE HP  = 1.83 × 10 -1  mM, RMSE OX  = 1.39 × 10 -2  mM, and RMSE 2,4-DCP  = 5.59 × 10 -3   mM. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Rate constants for CF{sub 3} + H{sub 2} {r_arrow} CF{sub 3}H + H and CF{sub 3}H + H {r_arrow} CF{sub 3} + H{sub 2} reactions in the temperature range 1100--1600 K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hranisavljevic, J.; Michael, J.V.

    1998-09-24

    The shock tube technique coupled with H-atom atomic resonance absorption spectrometry has been used to study the reactions (1) CF{sub 3} + H{sub 2} {r_arrow} CF{sub 3}H + H and (2) CF{sub 3}H + H {r_arrow} CF{sub 3} + H{sub 2} over the temperature ranges 1168--1673 K and 1111--1550 K, respectively. The results can be represented by the Arrhenius expressions k{sub 1} = 2.56 {times} 10{sup {minus}11} exp({minus}8549K/T) and k{sub 2} = 6.13 {times} 10{sup {minus}11} exp({minus}7364K/T), both in cm{sup 3} molecule{sup {minus}1} s{sup {minus}1}. Equilibrium constants were calculated from the two Arrhenius expressions in the overlapping temperature range, andmore » good agreement was obtained with the literature values. The rate constants for reaction 2 were converted into rate constants for reaction 1 using literature equilibrium constants. These data are indistinguishable from direct k{sub 1} measurements, and an Arrhenius fit for the joint set is k{sub 1} = 1.88 {times} 10{sup {minus}11} exp({minus}8185K/T) cm{sup 3} molecule{sup {minus}1} s{sup {minus}1}. The CF{sub 3} + H{sub 2} {r_arrow} CF{sub 3}H + H reaction was further modeled using conventional transition-state theory, which included ab initio electronic structure determinations of reactants, transition state, and products.« less

  15. Biofiltration of high concentration of H2S in waste air under extreme acidic conditions.

    PubMed

    Ben Jaber, Mouna; Couvert, Annabelle; Amrane, Abdeltif; Rouxel, Franck; Le Cloirec, Pierre; Dumont, Eric

    2016-01-25

    Removal of high concentrations of hydrogen sulfide using a biofilter packed with expanded schist under extreme acidic conditions was performed. The impact of various parameters such as H2S concentration, pH changes and sulfate accumulation on the performances of the process was evaluated. Elimination efficiency decreased when the pH was lower than 1 and the sulfate accumulation was more than 12 mg S-SO4(2-)/g dry media, due to a continuous overloading by high H2S concentrations. The influence of these parameters on the degradation of H2S was clearly underlined, showing the need for their control, performed through an increase of watering flow rate. A maximum elimination capacity (ECmax) of 24.7 g m(-3) h(-1) was recorded. As a result, expanded schist represents an interesting packing material to remove high H2S concentration up to 360 ppmv with low pressure drops. In addition, experimental data were fitted using both Michaelis-Menten and Haldane models, showing that the Haldane model described more accurately experimental data since the inhibitory effect of H2S was taken into account. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Constant serum levels of secreted asialoglycoprotein receptor sH2a and decrease with cirrhosis

    PubMed Central

    Benyair, Ron; Kondratyev, Maria; Veselkin, Elena; Tolchinsky, Sandra; Shenkman, Marina; Lurie, Yoav; Lederkremer, Gerardo Z

    2011-01-01

    AIM: To investigate the existence and levels of sH2a, a soluble secreted form of the asialoglycoprotein receptor in human serum. METHODS: Production of recombinant sH2a and development of a monoclonal antibody and an enzyme-linked immunosorbent assay (ELISA). This assay was used to determine the presence and concentration of sH2a in human sera of individuals of both sexes and a wide range of ages. RESULTS: The recombinant protein was produced successfully and a specific ELISA assay was developed. The levels of sH2a in sera from 62 healthy individuals varied minimally (147 ± 19 ng/mL). In contrast, 5 hepatitis C patients with cirrhosis showed much decreased sH2a levels (50 ± 9 ng/mL). CONCLUSION: Constant sH2a levels suggest constitutive secretion from hepatocytes in healthy individuals. This constant level and the decrease with cirrhosis suggest a diagnostic potential. PMID:22219600

  17. The Physics and Chemistry of Small Translucent Molecular Clouds. VII. SO + and H 2S

    NASA Astrophysics Data System (ADS)

    Turner, B. E.

    1996-09-01

    In this third paper on sulfur species, we have conducted a survey of SO+ (two transitions) and H2S (one transition) in our standard samples of 11 cirrus cores and 27 Clemens-Barvainis translucent objects whose structures and chemistry have been studied earlier in this series. SO+(2II½, J = 3/2-1/2) is seen weakly in 12 objects, while H2S (110 -101) is detected quite strongly in 31 objects. These results are modeled in terms of our previous hydrostatic equilibrium and n ˜r-α structures together with other chemical and physical properties derived earlier. The typical H2S fractional abundance is large, ˜1 × 10-8, and increases monotonically with increasing extinction in the 1.2-2.7 mag range (edge-to-center). Thus H2S displays the same characteristic transition between diffuse and dense cloud chemistry as do SO, SO2, CS, HCS +, HCO +, and other species studied in this series. By contrast, the SO + abundances are small, 1 × 10-9, and exhibit a marginal decrease with increasing extinction. The simple ion-molecule network as used by Turner for sulfur chemistry includes the sulfur hydride species and predicts the observed parameters of SO+ but predicts an H2S abundance 2 orders of magnitude less than observed. Of the 10 species presently analyzed in detail in the translucent cores, H2S is only the second (along with H2CO) that fails to be explained in detail by quiescent cloud ion-molecule chemistry. Various catalytic models of H2S on grains are discussed. Photocatalysis of H2S is found capable of producing the observed abundances but only for sizable accreted mantles. Other types of surface chemistry are also successful but are close to the limits of possible efficiencies. We have detected OCS and H2CS in one object, CB 17, with abundances of 1 × 10-9 and 7 × 10-9 respectively. Our ion-molecule model has been expanded to include OCS and H2CS chemistry. We find that the model fits observed abundances within a factor of 3 for both species.

  18. Fate of H2S during the cultivation of Chlorella sp. deployed for biogas upgrading.

    PubMed

    González-Sánchez, Armando; Posten, Clemens

    2017-04-15

    The H 2 S may play a key role in the sulfur cycle among the biogas production by the anaerobic digestion of wastes and the biogas upgrading by a microalgae based technology. The biogas is upgraded by contacting with slightly alkaline aqueous microalgae culture, then CO 2 and H 2 S are absorbed. The dissolved H 2 S could limit or inhibit the microalgae growth. This paper evaluated the role of dissolved H 2 S and other sulfured byproducts under prevailing biogas upgrading conditions using a microalgal technology. At initial stages of batch cultivation the growth of Chlorella sp. was presumably inhibited by dissolved H 2 S. After 2 days, the sulfides were oxidized mainly by oxic chemical reactions to sulfate, which was later rapidly assimilated by Chlorella sp., allowing high growing rates. The fate of H 2 S during the microalgae cultivation at pH > 8.5 was assessed by a mathematical model where the pentasulfide, thiosulfate and sulfite were firstly produced and converted finally to sulfate for posterior assimilation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Back-clocking of Fe2+/Fe1+ spin states in a H2-producing catalyst by advanced EPR

    NASA Astrophysics Data System (ADS)

    Stathi, Panagiota; Mitrikas, George; Sanakis, Yiannis; Louloudi, Maria; Deligiannakis, Yiannis

    2013-10-01

    A mononuclear Fe-(P(PPh2)3) ((P(PPh2)3) = tris[2-diphenylphospino)ethyl]phosphine) catalyst was studied in situ under catalytic conditions using advanced electron paramagnetic resonance (EPR) techniques. Fe-(P(PPh2)3) efficiently catalyses H2 production using HCOOH as substrate. Dual-mode continuous-wave (CW) EPR, used to study the initial Fe2+(S = 2) state, shows that the complex is characterised by a - rather small - zero field splitting parameter Δ = 0.45 cm-1 and geff = 8.0. In the presence of HCOOH substrate the complex evolves and a unique Fe1+(S = 1/2) state is trapped. The Fe1+ atom is coordinated by four 31P nuclei in a pseudo-C3 symmetry. Only a small fraction of the Fe1+ spin density is delocalised onto the 31P atoms. Four-pulse electron spin echo envelope modulation (ESEEM) and two-dimensional hyperfine sublevel correlation spectroscopy (2D-HYSCORE) data reveal the existence of two types of 1H couplings. One corresponds to weak, purely dipolar coupling, tentatively assigned to phenyl protons. The most important is a - rather unusual - 1H coupling with negative Aiso (-2.75 MHz) and strong dipolar part (T = 5.5 MHz). This 1H is located on the pseudo-C3 symmetry axis of the Fe1+-(P(PPh2)3-HCOO- complex where one substrate molecule, formate anion, is coordinated on the Fe1+ atom.

  20. H2S protects against methionine-induced oxidative stress in brain endothelial cells.

    PubMed

    Tyagi, Neetu; Moshal, Karni S; Sen, Utpal; Vacek, Thomas P; Kumar, Munish; Hughes, William M; Kundu, Soumi; Tyagi, Suresh C

    2009-01-01

    Homocysteine (Hcy) causes cerebrovascular dysfunction by inducing oxidative stress. However, to date, there are no strategies to prevent Hcy-induced oxidative damage. Hcy is an H2S precursor formed from methionine (Met) metabolism. We aimed to investigate whether H2S ameliorated Met-induced oxidative stress in mouse brain endothelial cells (bEnd3). The bEnd3 cells were exposed to Met treatment in the presence or absence of NaHS (donor of H2S). Met-induced cell toxicity increased the levels of free radicals in a concentration-dependent manner. Met increased NADPH-oxidase-4 (NOX-4) expression and mitigated thioredxion-1(Trx-1) expression. Pretreatment of bEnd3 with NaHS (0.05 mM) attenuated the production of free radicals in the presence of Met and protected the cells from oxidative damage. Furthermore, NaHS enhanced inhibitory effects of apocynin, N-acetyl-l-cysteine (NAC), reduced glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), Nomega-nitro-l-arginine methyl ester (L-NAME) on ROS production and redox enzymes levels induced by Met. In conclusion, the administration of H2S protected the cells from oxidative stress induced by hyperhomocysteinemia (HHcy), which suggested that NaHS/H2S may have therapeutic potential against Met-induced oxidative stress.

  1. SDS-MoS2 nanoparticles as highly-efficient peroxidase mimetics for colorimetric detection of H2O2 and glucose.

    PubMed

    Zhao, Kai; Gu, Wei; Zheng, Sisi; Zhang, Cuiling; Xian, Yuezhong

    2015-08-15

    In this work, we find that the peroxidase-like activity of MoS2 nanoparticles (NPs) is dependent on the surface charge. Negatively charged sodium dodecyl sulfate modified MoS2 nanoparticles (SDS-MoS2 NPs) possess highly-efficient peroxidase-like activity. MoS2 NPs with intrinsic peroxidase-like activity were synthesized through a simple one-pot hydrothermal route. The peroxidase-like activities of different surfactants modified MoS2 NPs were discussed. Compared with bare MoS2 NPs and positively charged cetyltrimethyl ammonium bromide modified MoS2 NPs, SDS-MoS2 NPs have the best peroxidase-like activity. SDS-MoS2 NPs can efficiently catalyze the oxidation of 3,3,5,5-tetramethylbenzidine (TMB) in the presence of H2O2 to generate a blue product. On basis of this, we have successfully established a novel platform for colorimetric detection of H2O2, and the detection limit is 0.32μM. Furthermore, the SDS-MoS2 NPs based platform can also be used for high sensitivity and selectivity detection of glucose with a wide linear range of 5.0-500μM by controlling the generation of H2O2 in the presence of glucose oxidase. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Online analysis of H2S and SO2 via advanced mid-infrared gas sensors.

    PubMed

    Petruci, João Flavio da Silveira; Wilk, Andreas; Cardoso, Arnaldo Alves; Mizaikoff, Boris

    2015-10-06

    Volatile sulfur compounds (VSCs) are among the most prevalent emitted pollutants in urban and rural atmospheres. Mainly because of the versatility of sulfur regarding its oxidation state (2- to 6+), VSCs are present in a wide variety of redox-environments, concentration levels, and molar ratios. Among the VSCs, hydrogen sulfide and sulfur dioxide are considered most relevant and have simultaneously been detected within naturally and anthropogenically caused emission events (e.g., volcano emissions, food production and industries, coal pyrolysis, and various biological activities). Next to their presence as pollutants, changes within their molar ratio may also indicate natural anomalies. Prior to analysis, H2S- and SO2-containing samples are usually preconcentrated via solid sorbents and are then detected by gas chromatographic techniques. However, such analytical strategies may be of limited selectivity, and the dimensions and operation modalities of the involved instruments prevent routine field usage. In this contribution, we therefore describe an innovative portable mid-infrared chemical sensor for simultaneously determining and quantifying gaseous H2S and SO2 via coupling a substrate-integrated hollow waveguides (iHWG) serving as a highly miniaturized mid-infrared photon conduit and gas cell with a custom-made preconcentration tube and an in-line UV-converter device. Both species were collected onto a solid sorbent within the preconcentrator and then released by thermal desorption into the UV-device. Hydrogen sulfide is detected by UV-assisted quantitative conversion of the rather weak IR-absorber H2S into SO2, which provides a significantly more pronounced and distinctively detectable rovibrational signature. Modulation of the UV-device system (i.e., UV-lamp on/off) enables discriminating between SO2 generated from H2S conversion and abundant SO2 signals. After optimization of the operational parameters, calibrations in the range of 0.75-10 ppmv with a limit

  3. Microwave Spectrum of the H_2S Dimer: Observation of K_{a}=1 Lines

    NASA Astrophysics Data System (ADS)

    Das, Arijit; Mandal, Pankaj; Lovas, Frank J.; Medcraft, Chris; Arunan, Elangannan

    2017-06-01

    Large amplitude tunneling motions in (H_2S)_{2} complicate the analysis of its microwave spectrum. The previous rotational spectrum of (H_2S)_{2} was observed using the Balle-Flygare pulsed nozzle FT microwave spectrometers at NIST and IISc. For most isotopomers of (H_2S)_{2} a two state pattern of a-type K_{a}=0 transitions had been observed and were interpreted to arise from E_{1}^{+/-} and E_{2}^{+/-} states of the six tunneling states expected for (H_2S)_{2}. K_{a}=0 lines gave us only the distance between the acceptor and donor S atoms. The (B+C)/2 for E_{1} and E_{2} states were found to be 1749.3091(8) MHz and 1748.1090(8) MHz respectively. In this work, we have observed the K_{a}=1 microwave transitions which enable us to determine finer structural details of the dimer. The observation of the K_{a}=1 lines indicate that (H_2S)_{2} is not spherical in nature, their interactions do have some anisotropy. Preliminary assignment of K_{a}=1 lines for the E_{1} state results in B=1752.859 MHz and C=1745.780 MHz. We also report a new progression of lines which probably belongs to the parent isotopomers. F. J. Lovas, P. K. Mandal and E. Arunan, unpublished work P. K. Mandal Ph.D. Dissertation, Indian Institute of Science, (2005) F. J. Lovas, R. D. Suenram, and L. H. Coudert. 43rd Int.Symp. on Molecular Spectroscopy. (1988)

  4. Influence of H 2O and H 2S on the composition, activity, and stability of sulfided Mo, CoMo, and NiMo supported on MgAl 2O 4 for hydrodeoxygenation of ethylene glycol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dabros, Trine Marie Hartmann; Gaur, Abhijeet; Pintos, Delfina Garcia

    Here in this work, density functional theory (DFT), catalytic activity tests, and in-situ X-ray absorption spectroscopy (XAS) was performed to gain detailed insights into the activity and stability of MoS 2, Ni-MoS 2, and Co-MoS 2 catalysts used for hydrodeoxygenation (HDO) of ethylene glycol upon variation of the partial pressures of H 2O and H 2S. The results show high water tolerance of the catalysts and highlight the importance of promotion and H 2S level during HDO. DFT calculations unraveled that the active edge of MoS 2 could be stabilized against SO exchanges by increasing the partial pressure of Hmore » 2S or by promotion with either Ni or Co. The Mo, NiMo, and CoMo catalysts of the present study were all active and fairly selective for ethylene glycol HDO at 400 °C, 27 bar H 2, and 550–2200 ppm H 2S, and conversions of ≈50–100%. The unpromoted Mo/MgAl 2O 4 catalyst had a lower stability and activity per gram catalyst than the promoted analogues. The NiMo and CoMo catalysts produced ethane, ethylene, and C1 cracking products with a C 2/C 1 ratio of 1.5–2.0 at 550 ppm H 2S. This ratio of HDO to cracking could be increased to ≈2 at 2200 ppm H 2S which also stabilized the activity. Removing H 2S from the feed caused severe catalyst deactivation. Both DFT and catalytic activity tests indicated that increasing the H 2S concentration increased the concentration of SH groups on the catalyst, which correspondingly activated and stabilized the catalytic HDO performance. In-situ XAS further supported that the catalysts were tolerant towards water when exposed to increasing water concentration with H2O/H2S ratios up to 300 at 400–450 °C. Raman spectroscopy and XAS showed that MoS2 was present in the prepared catalysts as small and highly dispersed particles, probably owing to a strong interaction with the support. Linear combination fitting (LCF) analysis of the X-ray absorption near edge structure (XANES) spectra obtained during in-situ sulfidation

  5. Influence of H 2O and H 2S on the composition, activity, and stability of sulfided Mo, CoMo, and NiMo supported on MgAl 2O 4 for hydrodeoxygenation of ethylene glycol

    DOE PAGES

    Dabros, Trine Marie Hartmann; Gaur, Abhijeet; Pintos, Delfina Garcia; ...

    2017-12-10

    Here in this work, density functional theory (DFT), catalytic activity tests, and in-situ X-ray absorption spectroscopy (XAS) was performed to gain detailed insights into the activity and stability of MoS 2, Ni-MoS 2, and Co-MoS 2 catalysts used for hydrodeoxygenation (HDO) of ethylene glycol upon variation of the partial pressures of H 2O and H 2S. The results show high water tolerance of the catalysts and highlight the importance of promotion and H 2S level during HDO. DFT calculations unraveled that the active edge of MoS 2 could be stabilized against SO exchanges by increasing the partial pressure of Hmore » 2S or by promotion with either Ni or Co. The Mo, NiMo, and CoMo catalysts of the present study were all active and fairly selective for ethylene glycol HDO at 400 °C, 27 bar H 2, and 550–2200 ppm H 2S, and conversions of ≈50–100%. The unpromoted Mo/MgAl 2O 4 catalyst had a lower stability and activity per gram catalyst than the promoted analogues. The NiMo and CoMo catalysts produced ethane, ethylene, and C1 cracking products with a C 2/C 1 ratio of 1.5–2.0 at 550 ppm H 2S. This ratio of HDO to cracking could be increased to ≈2 at 2200 ppm H 2S which also stabilized the activity. Removing H 2S from the feed caused severe catalyst deactivation. Both DFT and catalytic activity tests indicated that increasing the H 2S concentration increased the concentration of SH groups on the catalyst, which correspondingly activated and stabilized the catalytic HDO performance. In-situ XAS further supported that the catalysts were tolerant towards water when exposed to increasing water concentration with H2O/H2S ratios up to 300 at 400–450 °C. Raman spectroscopy and XAS showed that MoS2 was present in the prepared catalysts as small and highly dispersed particles, probably owing to a strong interaction with the support. Linear combination fitting (LCF) analysis of the X-ray absorption near edge structure (XANES) spectra obtained during in-situ sulfidation

  6. Comparative study of diethyl phthalate degradation by UV/H2O2 and UV/TiO2: kinetics, mechanism, and effects of operational parameters.

    PubMed

    Song, Chengjie; Wang, Liping; Ren, Jie; Lv, Bo; Sun, Zhonghao; Yan, Jing; Li, Xinying; Liu, Jingjing

    2016-02-01

    The photodegradation of diethyl phthalate (DEP) by UV/H2O2 and UV/TiO2 is studied. The DEP degradation kinetics and multiple crucial factors effecting the clearance of DEP are investigated, including initial DEP concentration ([DEP]0), initial pH values (pH0), UV light intensity, anions (Cl(-), NO(3-), SO4 (2-), HCO3 (-), and CO3 (2-)), cations (Mg(2+), Ca(2+), Mn(2+), and Fe(3+)), and humic acid (HA). Total organic carbon (TOC) removal is tested by two treatments. And, cytotoxicity evolution of DEP degradation intermediates is detected. The relationship between molar ratio ([H2O2]/[DEP] or [TiO2]/[DEP]) and degradation kinetic constant (K) is also studied. And, the cytotoxicity tests of DEP and its degradation intermediates in UV/H2O2 and UV/TiO2 treatments are researched. The DEP removal efficiency of UV/H2O2 treatment is higher than UV/TiO2 treatment. The DEP degradation fitted a pseudo-first-order kinetic pattern under experimental conditions. The K linearly related with molar ratio in UV/H2O2 treatment while nature exponential relationship is observed in the case of UV/TiO2. However, K fitted corresponding trends better in H2O2 treatment than in TiO2 treatment. The Cl(-) is in favor of the DEP degradation in UV/H2O2 treatment; in contrast, it is disadvantageous to the DEP degradation in UV/TiO2 treatment. Other anions are all disadvantageous to the DEP degradation in two treatments. Fe(3+) promotes the degradation rates significantly. And, all other cations in question inhibit the degradation of DEP. HA hinders DEP degradation in two treatments. The intermediates of DEP degradation in UV/TiO2 treatment are less toxic to biological cell than that in UV/H2O2 treatment.

  7. H2S adsorption and decomposition on the gradually reduced α-Fe2O3(001) surface: A DFT study

    NASA Astrophysics Data System (ADS)

    Lin, Changfeng; Qin, Wu; Dong, Changqing

    2016-11-01

    Reduction of iron based desulfurizer occurs during hot gas desulfurization process, which will affect the interaction between H2S and the desulfurizer surface. In this work, a detailed adsorption behavior and dissociation mechanism of H2S on the perfect and reduced α-Fe2O3(001) surfaces, as well as the correlation between the interaction characteristic and reduction degree of iron oxide, have been studied by using periodic density functional theory (DFT) calculations. Results demonstrate that H2S firstly chemisorbs on surface at relatively higher oxidation state (reduction degree χ < 33%), then dissociative adsorption occurs and becomes the main adsorption type after χ > 33%. Reduction of iron oxide benefits the H2S adsorption. Further, dissociation processes of H2S via molecular and dissociative adsorption were investigated. Results show that after reduction of Fe2O3 into the oxidation state around FeO and Fe, the reduced surface exhibits very strong catalytic capacity for H2S decomposition into S species. Meanwhile, the overall dissociation process on all surfaces is exothermic. These results provide a fundamental understanding of reduction effect of iron oxide on the interaction mechanism between H2S and desulfurizer surface, and indicate that rational control of reduction degree of desulfurizer is essential for optimizing the hot gas desulfurization process.

  8. Scalable fabrication of SnO2 thin films sensitized with CuO islands for enhanced H2S gas sensing performance

    NASA Astrophysics Data System (ADS)

    Van Toan, Nguyen; Chien, Nguyen Viet; Van Duy, Nguyen; Vuong, Dang Duc; Lam, Nguyen Huu; Hoa, Nguyen Duc; Van Hieu, Nguyen; Chien, Nguyen Duc

    2015-01-01

    The detection of H2S, an important gaseous molecule that has been recently marked as a highly toxic environmental pollutant, has attracted increasing attention. We fabricate a wafer-scale SnO2 thin film sensitized with CuO islands using microelectronic technology for the improved detection of the highly toxic H2S gas. The SnO2-CuO island sensor exhibits significantly enhanced H2S gas response and reduced operating temperature. The thickness of CuO islands strongly influences H2S sensing characteristics, and the highest H2S gas response is observed with 20 nm-thick CuO islands. The response value (Ra/Rg) of the SnO2-CuO island sensor to 5 ppm H2S is as high as 128 at 200 °C and increases nearly 55-fold compared with that of the bare SnO2 thin film sensor. Meanwhile, the response of the SnO2-CuO island sensor to H2 (250 ppm), NH3 (250 ppm), CO (250 ppm), and LPG (1000 ppm) are low (1.3-2.5). The enhanced gas response and selectivity of the SnO2-CuO island sensor to H2S gas is explained by the sensitizing effect of CuO islands and the extension of electron depletion regions because of the formation of p-n junctions.

  9. Ground and excited states of the [Fe(H2O)6]2+ and [Fe(H2O)6]3+ clusters: Insight into the electronic structure of the [Fe(H2O)6]2+ – [Fe(H2O)6]3+ complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miliordos, Evangelos; Xantheas, Sotiris S.

    We report the ground and low lying electronically excited states of the [Fe(H2O)6]2+ and [Fe(H2O)6]3+ clusters using multi-configuration electronic structure theory. In particular, we have constructed the Potential Energy Curves (PECs) with respect to the iron-oxygen distance when removing all water ligands at the same time from the cluster minima and established their correlation to the long range dissociation channels. Due to the fact that both the second and third ionization potentials of iron are larger than the one for water, the ground state products asymptotically correlate with dissociation channels that are repulsive in nature at large separations as theymore » contain at least one H2O+ fragment and a positive metal center. The most stable equilibrium structures emanate – via intersections and/or avoided crossings – from the channels consisting of the lowest electronic states of Fe2+(5D; 3d6) or Fe3+(6S; 3d5) and six neutral water molecules. Upon hydration, the ground state of Fe2+(H2O)6 is a triply (5Tg) degenerate one with the doubly (5Eg) degenerate state lying slightly higher in energy. Similarly, Fe3+(H2O)6 has a ground state of 6Ag symmetry under Th symmetry. We furthermore examine a multitude of electronically excited states of many possible spin multiplicities, and report the optimized geometries for several selected states. The PECs for those cases are characterized by a high density of states. Focusing on the ground and the first few excited states of the [Fe(H2O)6]2+ and [Fe(H2O)6]3+ clusters, we studied their mutual interaction in the gas phase. We obtained the optimal geometries of the Fe2+(H2O)6 – Fe3+(H2O)6 gas phase complex for different Fe–Fe distances. For distances shorter than 6.0 Å, the water molecules in the respective first solvation shells located between the two metal centers were found to interact via weak hydrogen bonds. We examined a total of ten electronic states for this complex, including those corresponding to the

  10. Hyperfine excitation of C2H and C2D by para-H2

    NASA Astrophysics Data System (ADS)

    Dumouchel, Fabien; Lique, François; Spielfiedel, Annie; Feautrier, Nicole

    2017-10-01

    The [C2H]/[C2D] abundance ratio is a useful tool to explore the physical and chemical conditions of cold molecular clouds. Hence, an accurate determination of both the C2H and C2D abundances is of fundamental interest. Due to the low density of the interstellar medium, the population of the energy levels of the molecules is not at local thermodynamical equilibrium. Thus, the accurate modelling of the emission spectra requires the calculation of collisional rate coefficients with the most abundant interstellar species. Hence, we provide rate coefficients for the hyperfine excitation of C2H and C2D by para-H2(j=0), the most abundant collisional partner in cold molecular clouds. State-to-state rate coefficients between the lowest levels were computed for temperatures ranging from 5 to 80 K. For both isotopologues, the Δj = ΔF propensity rule is observed. The comparison between C2H and C2D rate coefficients shows that differences by up to a factor of two exist, mainly for Δj = ΔN = 1 transitions. The new rate coefficients will significantly help in the interpretation of recent observed spectra.

  11. Quantum dynamics of the Mu+H2(HD,D2) and H+MuH(MuD) reactions

    NASA Astrophysics Data System (ADS)

    Tsuda, Ken-ichiro; Moribayashi, Kengo; Nakamura, Hiroki

    1995-10-01

    Quantum mechanically accurate calculations are carried out for the following reactions involving muonium atom (Mu) using the hyperspherical coordinate approach: Mu+H2→MuH+H, Mu+D2→MuD+D, Mu+HD→MuH(MuD)+D(H), H+MuH→MuH+H, and H+MuD ↔MuH+D. The initial vibrational state is restricted to the ground state (vi=0) and the collision energies considered are up to ˜1.2 eV. The various aspects of the dynamics, such as the isotope effects, the initial rotational state (ji) dependence, and the final rotational state (jf) distribution are analyzed for a wide range of ji and jf. Some of the isotope effects can be interpreted in terms of the variations in reaction barrier and endothermicity. The following two intriguing features are also found: (1) strong enhancement of reaction by initial rotational excitation, and (2) oscillation of integral cross section as a function of collision energy in the case of the Mu-transfer reactions.

  12. H2O Paradox and its Implications on H2O in Moon

    NASA Astrophysics Data System (ADS)

    Zhang, Youxue

    2017-04-01

    The concentration of H2O in the mantle of a planetary body plays a significant role in the viscosity and partial melting and hence the convection and evolution of the planetary body. Even though the composition of the primitive terrestrial mantle (PTM) is thought to be well known [1-2], the concentration of H2O in PTM remains paradoxial because different methods of estimation give different results [3]: Using H2O/Ce ratio in MORB and OIB and Ce concentration in PTM, the H2O concentration in PTM would be (300÷×1.5) ppm; using mass balance by adding surface water to the mantle [3-4], H2O concentration in PTM would be (900÷×1.3) ppm [2-3]. The inconsistency based on these two seemingly reliable methods is referred to as the H2O paradox [3]. For Moon, H2O contents in the primitive lunar mantle (PLM) estimated from H2O in plagioclase in lunar anorthosite and that from H2O/Ce ratio in melt inclusions are roughly consistent at ˜110 ppm [5-6] even though there is still debate about the volatile depletion trend [7]. One possible solution to the H2O paradox in PTM is to assume that early Earth experienced whole mantle degassing, which lowered the H2O/Ce ratio in the whole mantle but without depleting Ce in the mantle. The second possible solution is that some deep Earth reservoirs with high H2O/Ce ratios have not been sampled by MORB and OIB. Candidates include the transition zone [8] and the D" layer. The third possible solution is that ocean water only partially originated from mantle degassing, but partially from extraterrestrial sources such as comets [9-10]. At present, there is not enough information to determine which scenario is the answer to the H2O paradox. On the other hand, each scenario would have its own implications to H2O in PLM. If the first scenario applies to Moon, because degassed H2O or H2 would have escaped from the lunar surface, the very early lunar mantle could have much higher H2O [11] than that obtained using the H2O/Ce ratio method. The

  13. Voltammetric Perspectives on the Acidity Scale and H+/H2 Process in Ionic Liquid Media.

    PubMed

    Bentley, Cameron L; Bond, Alan M; Zhang, Jie

    2018-03-19

    Nonhaloaluminate ionic liquids (ILs) have received considerable attention as alternatives to molecular solvents in diverse applications spanning the fields of physical, chemical, and biological science. One important and often overlooked aspect of the implementation of these designer solvents is how the properties of the IL formulation affect (electro)chemical reactivity. This aspect is emphasized herein, where recent (voltammetric) studies on the energetics of proton (H + ) transfer and electrode reaction mechanisms of the H + H 2 process in IL media are highlighted and discussed. The energetics of proton transfer, quantified using the pK 3 a (minus logarithm of acidity equilibrium constant, K a ) formalism, is strongly governed by the constituent IL anion, and to a lesser extent, the IL cation. The H + /H 2 process, a model inner-sphere reaction, also displays electrochemical characteristics that are strongly IL-dependent. Overall, these studies highlight the need to carry out systematic investigations to resolve IL structure and function relationships in order to realize the potential of these diverse and versatile solvents. Expected final online publication date for the Annual Review of Analytical Chemistry Volume 11 is June 12, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  14. Understanding the Reactive Adsorption of H 2S and CO 2 in Sodium-Exchanged Zeolites

    DOE PAGES

    Fetisov, Evgenii O.; Shah, Mansi S; Knight, Christopher; ...

    2018-02-19

    Purifying sour natural gas streams containing hydrogen sulfide and carbon dioxide has been a long-standing environmental and economic challenge. In the presence of cation-exchanged zeolites, these two acid gases can react to form carbonyl sulfide and water (H 2S+CO 2H 2O+COS), but this reaction is rarely accounted for. In this work, we carry out reactive first-principles Monte Carlo (RxFPMC) simulations for mixtures of H 2S and CO 2 in all-silica and Na-exchanged forms of zeolite beta to understand the governing principles driving the enhanced conversion. The RxFPMC simulations show that the presence of Na + cations can change the equilibriummore » constant by several orders of magnitude compared to the gas phase or in all-silica beta. The shift in the reaction equilibrium is caused by very strong interactions of H 2O with Na + that reduce the reaction enthalpy by about 20 kJmol -1. The simulations also demonstrate that the siting of Al atoms in the framework plays an important role. Lastly, the RxFPMC method presented here is applicable to any chemical conversion in any confined environment, where strong interactions of guest molecules with the host framework and high activation energies limit the use of other computational approaches to study reaction equilibria.« less

  15. Infrared photodissociation spectroscopy of H(+)(H2O)6·M(m) (M = Ne, Ar, Kr, Xe, H2, N2, and CH4): messenger-dependent balance between H3O(+) and H5O2(+) core isomers.

    PubMed

    Mizuse, Kenta; Fujii, Asuka

    2011-04-21

    Although messenger mediated spectroscopy is a widely-used technique to study gas phase ionic species, effects of messengers themselves are not necessarily clear. In this study, we report infrared photodissociation spectroscopy of H(+)(H(2)O)(6)·M(m) (M = Ne, Ar, Kr, Xe, H(2), N(2), and CH(4)) in the OH stretch region to investigate messenger(M)-dependent cluster structures of the H(+)(H(2)O)(6) moiety. The H(+)(H(2)O)(6), the protonated water hexamer, is the smallest system in which both the H(3)O(+) (Eigen) and H(5)O(2)(+) (Zundel) hydrated proton motifs coexist. All the spectra show narrower band widths reflecting reduced internal energy (lower vibrational temperature) in comparison with bare H(+)(H(2)O)(6). The Xe-, CH(4)-, and N(2)-mediated spectra show additional band features due to the relatively strong perturbation of the messenger. The observed band patterns in the Ar-, Kr-, Xe-, N(2)-, and CH(4)-mediated spectra are attributed mainly to the "Zundel" type isomer, which is more stable. On the other hand, the Ne- and H(2)-mediated spectra are accounted for by a mixture of the "Eigen" and "Zundel" types, like that of bare H(+)(H(2)O)(6). These results suggest that a messenger sometimes imposes unexpected isomer-selectivity even though it has been thought to be inert. Plausible origins of the isomer-selectivity are also discussed.

  16. Micropore Formation of [Zn2(Oxac) (Taz)2]·(H2O)2.5 via CO2 Adsorption.

    PubMed

    Zubir, Moondra; Hamasaki, Atom; Iiyama, Taku; Ohta, Akira; Ohki, Hiroshi; Ozeki, Sumio

    2017-01-24

    As-synthesized [Zn 2 (Oxac) (Taz) 2 ]·(H 2 O) 2.5 , referred to as ZOTW 2.5 , was prepared from aqueous methanol solutions of Zn 5 (CO 3 ) 2 (OH) 6 and two kinds of ligands of 1,2,4-triazole (Taz) and oxalic acid (Oxac) at 453 K for 12 h. The crystal structure was determined by the Rietveld method. As-synthesized ZOTW 2.5 was pretreated at 383 K and 1 mPa for t pt h, ZOTW x (t pt h). ZOTW x (≥3h) showed a type I adsorption isotherm for N 2 at 77 K having a saturation amount (V s ) of 180 mg/g, but that pretreated shortly showed only 1/10 in V s . CO 2 was adsorbed at 303 K in sigmoid on nonporous ZOTW x (≤2h) and in Langmuir-type on ZOTW x (≥3h) to reach the adsorption amount of 120 mg/g at 700 Torr. N 2 adsorption on ZOTW x (≤2h)deCO 2 , degassed after CO 2 adsorption on ZOTW x (≤2h), was promoted 5-fold from 180 mg/g on ZOTW x (t pt h) and ZOTW x (≥3h)deCO 2 up to ca. 1000 mg/g. The interaction of CO 2 and H 2 O molecules in micropores may lead to a new route for micropore formation.

  17. Potential energy surfaces of LaH + and LaH + 2

    NASA Astrophysics Data System (ADS)

    Das, Kalyan K.; Balasubramanian, K.

    1991-03-01

    Using the complete active space multiconfiguration self-consistent field (CAS-MCSCF) followed by full second-order configuration interaction (SOCI) calculations, 16 electronic states of LaH+ and 8 electronic states of LaH+2 are investigated. The potential energy surface of these electronic states of LaH+2 and LaH+ are computed. These calculations show that the 3F(5d2) ground state of La+ ion forms a weak complex with H2. The La+(1D) excited state inserts into H2 with a small barrier (<8 kcal/mol) to form the 1A1 ground state of LaH+2 (re=2.057 Å, θe=106°). At the SOCI level of theory LaH+2 is found to be 11 kcal/mol more stable than La+(3F)+H2. Our calculations explain the experimental observations on La++H2→LaH++H reaction. The adiabatic ionization potential (IP) of LaH2 and LaH are calculated as 5.23 and 5.33 eV, respectively. The ground state of LaH+ was found to be a 2Δ state. We compute De(LaH+) and De(HLa-H+) as 2.54 eV in excellent agreement with the experimental De(LaH+)=2.57 eV measured by Armentrout and co-workers. The spin-orbit effects of LaH+ were also studied using the relativistic configuration interaction (RCI) method.

  18. Surface Defect Passivation and Reaction of c-Si in H2S.

    PubMed

    Liu, Hsiang-Yu; Das, Ujjwal K; Birkmire, Robert W

    2017-12-26

    A unique passivation process of Si surface dangling bonds through reaction with hydrogen sulfide (H 2 S) is demonstrated in this paper. A high-level passivation quality with an effective minority carrier lifetime (τ eff ) of >2000 μs corresponding to a surface recombination velocity of <3 cm/s is achieved at a temperature range of 550-650 °C. X-ray photoelectron spectroscopy (XPS) confirmed the bonding states of Si and S and provides insights into the reaction pathway of Si with H 2 S and other impurity elements both during and after the reaction. Quantitative analysis of XPS spectra showed that the τ eff increases with an increase in the surface S content up to ∼3.5% and stabilizes thereafter, indicative of surface passivation by monolayer coverage of S on the Si surface. However, S passivation of the Si surface is highly unstable because of thermodynamically favorable reaction with atmospheric H 2 O and O 2 . This instability can be eliminated by capping the S-passivated Si surface with a protective thin film such as low-temperature-deposited amorphous silicon nitride.

  19. Simultaneous high efficiency capture of CO.sub.2 and H.sub.2S from pressurized gas

    DOEpatents

    Gal, Eli; Krishnan, Gopala N.; Jayaweera, Indira S.

    2016-10-11

    Low-cost and energy-efficient CO.sub.2 and H.sub.2S capture is provided obtaining greater than 99.9% capture efficiency from pressurized gas. The acid species are captured in an ammonia solution, which is then regenerated by stripping the absorbed species. The solution can capture as much as 330 grams of CO.sub.2 and H.sub.2S per 1000 gram of water and when regenerated it produces pure pressurized acid gas containing more than 99.7% CO.sub.2 and H2S. The absorption of the acid species is accomplished in two absorbers in-series, each having multiple stages. More than 95% of the acid species are captured in the first absorber and the balance is captured in the second absorber to below 10 ppm concentration in the outlet gas. The two absorbers operate at temperatures ranging from 20-70 degrees Celsius. The two absorbers and the main stripper of the alkaline solution operate at similar pressures ranging from 5-200 bara.

  20. Crystal structure, quantum mechanical investigation, IR and NMR spectroscopy of two new organic perchlorates: (C6H18N3)·(ClO4)3H2O (I) and (C9H11N2)·ClO4(II)

    NASA Astrophysics Data System (ADS)

    Bayar, I.; Khedhiri, L.; Soudani, S.; Lefebvre, F.; Ferretti, V.; Ben Nasr, C.

    2018-06-01

    The reaction of perchloric acid with 1-(2-aminoethyl)piperazine or 5,6-dimethyl-benzimidazole results in the formation of 1-(2-amonioethyl)piperazine-1,4-dium triperchlorate hydrate (C6H18N3)·(ClO4)3·H2O (I) or 5,6-dimethyl-benzylimidazolium perchlorate (C9H11N2)·ClO4(II). Both compounds were fully structurally characterized including single crystal X-ray diffraction analysis. Compound (I) crystallizes in the centrosymmetric triclinic space group P 1 bar with the lattice parameters a = 7.455 (2), b = 10.462 (2), c = 10.824 (2) Å, α = 80.832 (2), β = 88.243 (2), γ = 88.160 (2) °, Z = 2 and V = 832.77 (3) Å3. Compound (II) has been found to belong to the P21/c space group of the monoclinic system, with a = 7.590 (3), b = 9.266 (3), c = 16.503 (6) Å, β = 107.38 (2) °, V = 1107.69 (7) Å3 and Z = 4. The structures of (I) and (II) consist of slightly distorted [ClO4]- tetrahedra anions and 1-(2-amonioethyl)piperazine-1,4-dium trication (I) or 5,6-dimethyl-benzylimidazolium cations (II) and additionally a lattice water in (I). The crystal structures of (I) and (II) exhibit complex three-dimensional networks of H-bonds connecting all their components. In the atomic arrangement of (I), the ClO4- anions form corrugated chains, while in (II) the atomic arrangement exhibits wide pseudo-hexagonal channels of ClO4 tetrahedra including the organic entities. The lattice water serves as a link between pairs of cations and pairs of anions via several Osbnd H⋯O and N-H⋯O interactions in compound (I). The vibrational absorption bands were identified by infrared spectroscopy. These compounds were also investigated by solid-state 13C, 35Cl and 15N NMR spectroscopy. DFT calculations allowed the attribution of the IR and NMR bands. Intermolecular interactions were investigated by Hirshfeld surfaces. Electronic properties such as HOMO and LUMO energies were derived.

  1. Microcapsules Containing pH-Responsive, Fluorescent Polymer-Integrated MoS2: An Effective Platform for in Situ pH Sensing and Photothermal Heating.

    PubMed

    Park, Chan Ho; Lee, Sangmin; Pornnoppadol, Ghasidit; Nam, Yoon Sung; Kim, Shin-Hyun; Kim, Bumjoon J

    2018-03-14

    We report the design of a novel microcapsule platform for in situ pH sensing and photothermal heating, which involves the encapsulation of pH-responsive polymer-coated molybdenum disulfide (MoS 2 ) nanosheets (NSs) in microcapsules with an aqueous core and a semipermeable polymeric shell. The MoS 2 NSs were functionalized with pH-responsive polymers having fluorescent groups at the distal end to provide pH-sensitive Förster resonance energy transfer (FRET) effect. The pH-responsive polymers were carefully designed to produce a dramatic change in the polymer conformation, which translated to a change in the FRET efficiency near pH 7.0 in response to subtle pH changes, enabling the detection of cancer cells. The pH-sensitive MoS 2 NSs were microfluidically encapsulated within semipermeable membranes to yield microcapsules with a uniform size and composition. The microcapsules retained the MoS 2 NSs without leakage while allowing the diffusion of small ions and water through the membrane. At the same time, the membranes excluded adhesive proteins and lipids in the surrounding media, protecting the encapsulated MoS 2 NSs from deactivation and enabling in situ pH monitoring. Moreover, the encapsulated MoS 2 NSs showed high-performance photothermal heating, rendering the dual-functional microcapsules highly suitable for cancer diagnosis and treatment.

  2. Microbial H2 cycling does not affect δ2H values of ground water

    USGS Publications Warehouse

    Landmeyer, J.E.; Chapelle, F.H.; Bradley, P.M.

    2000-01-01

    Stable hydrogen-isotope values of ground water (δ2H) and dissolved hydrogen concentrations (H(2(aq)) were quantified in a petroleum-hydrocarbon contaminated aquifer to determine whether the production/consumption of H2 by subsurface microorganisms affects ground water &delta2H values. The range of &delta2H observed in monitoring wells sampled (-27.8 ‰c to -15.5 ‰c) was best explained, however, by seasonal differences in recharge temperature as indicated using ground water δ18O values, rather than isotopic exchange reactions involving the microbial cycling of H2 during anaerobic petroleum-hydrocarbon biodegradation. The absence of a measurable hydrogen-isotope exchange between microbially cycled H2 and ground water reflects the fact that the amount of H2 available from the anaerobic decomposition of petroleum hydrocarbons is small relative to the amount of hydrogen present in water, even though milligram per liter concentrations of readily biodegradable contaminants are present at the study site. Additionally, isotopic fractionation calculations indicate that in order for H2 cycling processes to affect δ2H values of ground water, relatively high concentrations of H2 (>0.080 M) would have to be maintained, considerably higher than the 0.2 to 26 nM present at this site and characteristic of anaerobic conditions in general. These observations suggest that the conventional approach of using δ2H and δ18O values to determine recharge history is appropriate even for those ground water systems characterized by anaerobic conditions and extensive microbial H2 cycling.

  3. H2MBH2 and M(μ-H)2BH2 Molecules Isolated in Solid Argon: Interelement M-B and M-H-B Bonds (M = Ge, Sn).

    PubMed

    Zhao, Jie; Beckers, Helmut; Huang, Tengfei; Wang, Xuefeng; Riedel, Sebastian

    2018-02-19

    Laser-ablated boron atoms react with GeH 4 molecules to form novel germylidene borane H 2 GeBH 2 , which undergoes a photochemical rearrangement to the germanium tetrahydroborate Ge(μ-H) 2 BH 2 upon irradiation with light of λ = 405 nm. For comparison, the boron atom reactions with SnH 4 only gave the tin tetrahydroborate Sn(μ-H) 2 BH 2 . Infrared matrix-isolation spectroscopy with deuterium substitution and the state-of-the-art quantum-chemical calculations are used to identify these species in solid argon. A planar structure of H 2 GeBH 2 with an electron-deficient B-Ge bond with a partial multiple bond character (bond order = 1.5) is predicted by quantum-chemical calculations. In the case of M(μ-H) 2 BH 2 (M = Ge, Sn) two 3c-2e B-H-M hydrogen bridged bonds are formed by donation of electrons from the B-H σ-bonds into empty p-orbitals of M.

  4. Inherent variations in CO-H2S-mediated carotid body O2 sensing mediate hypertension and pulmonary edema

    PubMed Central

    Peng, Ying-Jie; Makarenko, Vladislav V.; Nanduri, Jayasri; Vasavda, Chirag; Raghuraman, Gayatri; Yuan, Guoxiang; Gadalla, Moataz M.; Kumar, Ganesh K.; Snyder, Solomon H.; Prabhakar, Nanduri R.

    2014-01-01

    Oxygen (O2) sensing by the carotid body and its chemosensory reflex is critical for homeostatic regulation of breathing and blood pressure. Humans and animals exhibit substantial interindividual variation in this chemosensory reflex response, with profound effects on cardiorespiratory functions. However, the underlying mechanisms are not known. Here, we report that inherent variations in carotid body O2 sensing by carbon monoxide (CO)-sensitive hydrogen sulfide (H2S) signaling contribute to reflex variation in three genetically distinct rat strains. Compared with Sprague-Dawley (SD) rats, Brown-Norway (BN) rats exhibit impaired carotid body O2 sensing and develop pulmonary edema as a consequence of poor ventilatory adaptation to hypobaric hypoxia. Spontaneous Hypertensive (SH) rat carotid bodies display inherent hypersensitivity to hypoxia and develop hypertension. BN rat carotid bodies have naturally higher CO and lower H2S levels than SD rat, whereas SH carotid bodies have reduced CO and greater H2S generation. Higher CO levels in BN rats were associated with higher substrate affinity of the enzyme heme oxygenase 2, whereas SH rats present lower substrate affinity and, thus, reduced CO generation. Reducing CO levels in BN rat carotid bodies increased H2S generation, restoring O2 sensing and preventing hypoxia-induced pulmonary edema. Increasing CO levels in SH carotid bodies reduced H2S generation, preventing hypersensitivity to hypoxia and controlling hypertension in SH rats. PMID:24395806

  5. Tuning the conductance of H2O@C60 by position of the encapsulated H2O

    PubMed Central

    Zhu, Chengbo; Wang, Xiaolin

    2015-01-01

    The change of conductance of single-molecule junction in response to various external stimuli is the fundamental mechanism for the single-molecule electronic devices with multiple functionalities. We propose the concept that the conductance of molecular systems can be tuned from inside. The conductance is varied in C60 with encapsulated H2O, H2O@C60. The transport properties of the H2O@C60-based nanostructure sandwiched between electrodes are studied using first-principles calculations combined with the non-equilibrium Green’s function formalism. Our results show that the conductance of the H2O@C60 is sensitive to the position of the H2O and its dipole direction inside the cage with changes in conductance up to 20%. Our study paves a way for the H2O@C60 molecule to be a new platform for novel molecule-based electronics and sensors. PMID:26643873

  6. Analytic H I-to-H2 Photodissociation Transition Profiles

    NASA Astrophysics Data System (ADS)

    Bialy, Shmuel; Sternberg, Amiel

    2016-05-01

    We present a simple analytic procedure for generating atomic (H I) to molecular ({{{H}}}2) density profiles for optically thick hydrogen gas clouds illuminated by far-ultraviolet radiation fields. Our procedure is based on the analytic theory for the structure of one-dimensional H I/{{{H}}}2 photon-dominated regions, presented by Sternberg et al. Depth-dependent atomic and molecular density fractions may be computed for arbitrary gas density, far-ultraviolet field intensity, and the metallicity-dependent H2 formation rate coefficient, and dust absorption cross section in the Lyman-Werner photodissociation band. We use our procedure to generate a set of {{H}} {{I}}{-}{to}{-}{{{H}}}2 transition profiles for a wide range of conditions, from the weak- to strong-field limits, and from super-solar down to low metallicities. We show that if presented as functions of dust optical depth, the {{H}} {{I}} and {{{H}}}2 density profiles depend primarily on the Sternberg “α G parameter” (dimensionless) that determines the dust optical depth associated with the total photodissociated {{H}} {{I}} column. We derive a universal analytic formula for the {{H}} {{I}}{-}{to}{-}{{{H}}}2 transition points as a function of just α G. Our formula will be useful for interpreting emission-line observations of H I/{{{H}}}2 interfaces, for estimating star formation thresholds, and for sub-grid components in hydrodynamics simulations.

  7. Submillimeter H2O and H2O+emission in lensed ultra- and hyper-luminous infrared galaxies at z 2-4

    NASA Astrophysics Data System (ADS)

    Yang, C.; Omont, A.; Beelen, A.; González-Alfonso, E.; Neri, R.; Gao, Y.; van der Werf, P.; Weiß, A.; Gavazzi, R.; Falstad, N.; Baker, A. J.; Bussmann, R. S.; Cooray, A.; Cox, P.; Dannerbauer, H.; Dye, S.; Guélin, M.; Ivison, R.; Krips, M.; Lehnert, M.; Michałowski, M. J.; Riechers, D. A.; Spaans, M.; Valiante, E.

    2016-11-01

    We report rest-frame submillimeter H2O emission line observations of 11 ultra- or hyper-luminous infrared galaxies (ULIRGs or HyLIRGs) at z 2-4 selected among the brightest lensed galaxies discovered in the Herschel-Astrophysical Terahertz Large Area Survey (H-ATLAS). Using the IRAM NOrthern Extended Millimeter Array (NOEMA), we have detected 14 new H2O emission lines. These include five 321-312ortho-H2O lines (Eup/k = 305 K) and nine J = 2 para-H2O lines, either 202-111(Eup/k = 101 K) or 211-202(Eup/k = 137 K). The apparent luminosities of the H2O emission lines are μLH2O 6-21 × 108 L⊙ (3 <μ< 15, where μ is the lens magnification factor), with velocity-integrated line fluxes ranging from 4-15 Jy km s-1. We have also observed CO emission lines using EMIR on the IRAM 30 m telescope in seven sources (most of those have not yet had their CO emission lines observed). The velocity widths for CO and H2O lines are found to be similar, generally within 1σ errors in the same source. With almost comparable integrated flux densities to those of the high-J CO line (ratios range from 0.4 to 1.1), H2O is found to be among the strongest molecular emitters in high-redshift Hy/ULIRGs. We also confirm our previously found correlation between luminosity of H2O (LH2O) and infrared (LIR) that LH2O LIR1.1-1.2, with ournew detections. This correlation could be explained by a dominant role of far-infrared pumping in the H2O excitation. Modelling reveals that the far-infrared radiation fields have warm dust temperature Twarm 45-75 K, H2O column density per unit velocity interval NH2O /ΔV ≳ 0.3 × 1015 cm-2 km-1 s and 100 μm continuum opacity τ100> 1 (optically thick), indicating that H2O is likely to trace highly obscured warm dense gas. However, further observations of J ≥ 4 H2O lines are needed to better constrain the continuum optical depth and other physical conditions of the molecular gas and dust. We have also detected H2O+ emission in three sources. A tight correlation

  8. H2@Scale Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruth, Mark

    2017-07-12

    'H2@Scale' is a concept based on the opportunity for hydrogen to act as an intermediate between energy sources and uses. Hydrogen has the potential to be used like the primary intermediate in use today, electricity, because it too is fungible. This presentation summarizes the H2@Scale analysis efforts performed during the first third of 2017. Results of technical potential uses and supply options are summarized and show that the technical potential demand for hydrogen is 60 million metric tons per year and that the U.S. has sufficient domestic resources to meet that demand. A high level infrastructure analysis is also presentedmore » that shows an 85% increase in energy on the grid if all hydrogen is produced from grid electricity. However, a preliminary spatial assessment shows that supply is sufficient in most counties across the U.S. The presentation also shows plans for analysis of the economic potential for the H2@Scale concept. Those plans involve developing supply and demand curves for potential hydrogen generation options and as compared to other options for use of that hydrogen.« less

  9. Turbulence in Supercritical O2/H2 and C7H16/N2 Mixing Layers

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth; Okong'o, Nora

    2003-01-01

    This report presents a study of numerical simulations of mixing layers developing between opposing flows of paired fluids under supercritical conditions, the purpose of the study being to elucidate chemical-species-specific aspects of turbulence. The simulations were performed for two different fluid pairs O2/H2 and C7H16/N2 at similar reduced initial pressures (reduced pressure is defined as pressure divided by critical pressure). Thermodynamically, O2/H2 behaves more nearly like an ideal mixture and has greater solubility, relative to C7H16/N2, which departs strongly from ideality. Because of a specified smaller initial density stratification, the C7H16/N2 layers exhibited greater levels of growth, global molecular mixing, and turbulence. However, smaller density gradients at the transitional state for the O2/H2 system were interpreted as indicating that locally, this system exhibits enhanced mixing as a consequence of its greater solubility and closer approach to ideality. These thermodynamic features were shown to affect entropy dissipation, which was found to be larger for O2/H2 and concentrated in high-density-gradient-magnitude regions that are distortions of the initial density-stratification boundary. In C7H16/N2, the regions of largest dissipation were found to lie in high-density-gradient-magnitude regions that result from mixing of the two fluids.

  10. Seroprevalence of H1N1, H3N2 and H1N2 influenza viruses in pigs in seven European countries in 2002-2003.

    PubMed

    Van Reeth, Kristien; Brown, Ian H; Dürrwald, Ralf; Foni, Emanuela; Labarque, Geoffrey; Lenihan, Patrick; Maldonado, Jaime; Markowska-Daniel, Iwona; Pensaert, Maurice; Pospisil, Zdenek; Koch, Guus

    2008-05-01

    Avian-like H1N1 and human-like H3N2 swine influenza viruses (SIV) have been considered widespread among pigs in Western Europe since the 1980s, and a novel H1N2 reassortant with a human-like H1 emerged in the mid 1990s. This study, which was part of the EC-funded 'European Surveillance Network for Influenza in Pigs 1', aimed to determine the seroprevalence of the H1N2 virus in different European regions and to compare the relative prevalences of each SIV between regions. Laboratories from Belgium, the Czech Republic, Germany, Italy, Ireland, Poland and Spain participated in an international serosurvey. A total of 4190 sow sera from 651 farms were collected in 2002-2003 and examined in haemagglutination inhibition tests against H1N1, H3N2 and H1N2. In Belgium, Germany, Italy and Spain seroprevalence rates to each of the three SIV subtypes were high (> or =30% of the sows seropositive) to very high (> or =50%), except for a lower H1N2 seroprevalence rate in Italy (13.8%). Most sows in these countries with high pig populations had antibodies to two or three subtypes. In Ireland, the Czech Republic and Poland, where swine farming is less intensive, H1N1 was the dominant subtype (8.0-11.7% seropositives) and H1N2 and H3N2 antibodies were rare (0-4.2% seropositives). Thus, SIV of H1N1, H3N2 and H1N2 subtype are enzootic in swine producing regions of Western Europe. In Central Europe, SIV activity is low and the circulation of H3N2 and H1N2 remains to be confirmed. The evolution and epidemiology of SIV throughout Europe is being further monitored through a second 'European Surveillance Network for Influenza in Pigs'.

  11. Hydrogen storage properties of nanosized MgH2-0.1TiH2 prepared by ultrahigh-energy-high-pressure milling.

    PubMed

    Lu, Jun; Choi, Young Joon; Fang, Zhigang Zak; Sohn, Hong Yong; Rönnebro, Ewa

    2009-11-04

    Magnesium hydride (MgH(2)) is an attractive candidate for solid-state hydrogen storage applications. To improve the kinetics and thermodynamic properties of MgH(2) during dehydrogenation-rehydrogenation cycles, a nanostructured MgH(2)-0.1TiH(2) material system prepared by ultrahigh-energy-high-pressure mechanical milling was investigated. High-resolution transmission electron microscope (TEM) and scanning TEM analysis showed that the grain size of the milled MgH(2)-0.1TiH(2) powder is approximately 5-10 nm with uniform distributions of TiH(2) among MgH(2) particles. Pressure-composition-temperature (PCT) analysis demonstrated that both the nanosize and the addition of TiH(2) contributed to the significant improvement of the kinetics of dehydrogenation and hydrogenation compared to commercial MgH(2). More importantly, PCT cycle analysis demonstrated that the MgH(2)-0.1TiH(2) material system showed excellent cycle stability. The results also showed that the DeltaH value for the dehydrogenation of nanostructured MgH(2)-0.1TiH(2) is significantly lower than that of commercial MgH(2). However, the DeltaS value of the reaction was also lower, which results in minimum net effects of the nanosize and the addition of TiH(2) on the equilibrium pressure of dehydrogenation reaction of MgH(2).

  12. H2S adsorption by municipal solid waste incineration (MSWI) fly ash with heavy metals immobilization.

    PubMed

    Wu, Huanan; Zhu, Yu; Bian, Songwei; Ko, Jae Hac; Li, Sam Fong Yau; Xu, Qiyong

    2018-03-01

    As a byproduct of municipal solid waste incineration (MSWI) plant, fly ash is becoming a challenge for waste management in recent years. In this study, MSWI fly ash (FA) was evaluated for the potential capacity of odorous gas H 2 S removal. Results showed that fly ash demonstrated longer breakthrough time and higher H 2 S capacities than coal fly ash and sandy soil, due to its high content of alkali oxides of metals including heavy metals. H 2 S adsorption capacities of FA1 and FA2 were 15.89 and 12.59 mg H 2 S/g, respectively for 750 ppm H 2 S. The adsorption of H 2 S on fly ash led to formation of elemental sulfur and metal sulfide. More importantly, the formation of metal sulfide significantly reduced the leachability of heavy metals, such as Cr, Cu, Cd and Pb as shown by TCLP tests. The adsorption isotherms fit well with Langmuir model with the correlation coefficient over 0.99. The adsorption of H 2 S on fly ash features simultaneous H 2 S removal and stabilization and heavy metals found in most MSWI fly ash, making fly ash the potential low cost recycled sorbent material. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Removal of H{sub 2}S using molten carbonate at high temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawase, Makoto, E-mail: kawase@criepi.denken.or.jp; Otaka, Maromu

    2013-12-15

    Highlights: • The performance of molten carbonate for the removal of H{sub 2}S improves at higher temperatures. • The degree of H{sub 2}S removal is significantly affected by the CO{sub 2} concentration in syngas. • Addition of carbon elements, such as char and tar, decrease the negative effects of CO{sub 2}. • Continuous addition of carbon elements into molten carbonate enables continuous desulfurization. • Desulfurization using molten carbonate is suitable for gasification gas. - Abstract: Gasification is considered to be an effective process for energy conversion from various sources such as coal, biomass, and waste. Cleanup of the hot syngasmore » produced by such a process may improve the thermal efficiency of the overall gasification system. Therefore, the cleanup of hot syngas from biomass gasification using molten carbonate is investigated in bench-scale tests. Molten carbonate acts as an absorbent during desulfurization and dechlorination and as a thermal catalyst for tar cracking. In this study, the performance of molten carbonate for removing H{sub 2}S was evaluated. The temperature of the molten carbonate was set within the range from 800 to 1000 °C. It is found that the removal of H{sub 2}S is significantly affected by the concentration of CO{sub 2} in the syngas. When only a small percentage of CO{sub 2} is present, desulfurization using molten carbonate is inadequate. However, when carbon elements, such as char and tar, are continuously supplied, H{sub 2}S removal can be maintained at a high level. To confirm the performance of the molten carbonate gas-cleaning system, purified biogas was used as a fuel in power generation tests with a molten carbonate fuel cell (MCFC). The fuel cell is a high-performance sensor for detecting gaseous impurities. When purified gas from a gas-cleaning reactor was continuously supplied to the fuel cell, the cell voltage remained stable. Thus, the molten carbonate gas-cleaning reactor was found to afford

  14. Fast-Response Turn-on Fluorescent Probes Based on Thiolysis of NBD Amine for H2 S Bioimaging.

    PubMed

    Wang, Runyu; Li, Zhifei; Zhang, Changyu; Li, Yanyan; Xu, Guoce; Zhang, Qiang-Zhe; Li, Lu-Yuan; Yi, Long; Xi, Zhen

    2016-05-17

    Hydrogen sulfide (H2 S) is an important endogenous signaling molecule with multiple biological functions. New selective fluorescent turn-on probes based on fast thiolyling of NBD (7-nitro-1,2,3-benzoxadiazole) amine were explored for sensing H2 S in aqueous buffer and in living cells. The syntheses of both probes are simple and quite straightforward. The probes are highly sensitive and selective toward H2 S over other biologically relevant species. The fluorescein-NBD-based probe showed 65-fold green fluorescent increase upon H2 S activation. The rhodamine-NBD-based probe reacted rapidly with H2 S (t1/2 ≈1 min) to give a 4.5-fold increase in red fluorescence. Moreover, both probes were successfully used for monitoring H2 S in living cells and in mice. Based on such probe-based tools, we could observe H2 O2 -induced H2 S biogenesis in a concentration-dependent and time-dependent fashion in living cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Water in Basaltic Melts: an Experimental and Thermodynamic Study of the Effect of H2O on Liquidus Temperatures.

    NASA Astrophysics Data System (ADS)

    Medard, E.; Grove, T. L.

    2006-12-01

    We present a thermodynamic model for the influence of H2O on liquidus temperatures of olivine-saturated primitive basaltic and andesitic melts. The thermodynamic model has been fitted to a suite of H2O-saturated liquidus experiments carried out on a primitive high-alumina basalt from Medicine Lake Volcano (82-72f) over a pressure range of 10 to 1000 MPa. The model of Silver and Stolper (S+S, 1985, J.Geol. 93:161) has been applied to the experimental data. This model uses the assumption of simple ideal mixing between water species and the anionic matrix in the melt. Water in the melt dissolves as molecular H2O, or dissociates to hydroxyl groups and an oxygen atomic network. For 82-72f, the liquidus olivine shows little compositional variability (Fo87.4 to Fo88.4) over the broad range of pressures and temperatures investigated that is not correlated with H2O content of the melt. This observation supports our assumption that major effect of H2O is on the anionic species in the melt and not on the cation equilibria (e.g. Mg and Si). The model reproduces the experimental data well. We find that there is a large influence of H2O addition on melting point for small amounts of H2O, resulting in a concave-down curvature when liquidus depression is plotted against the amount of H2O added. For addition of 0.8 and 5 wt% H2O to 82-72f, the liquidus is depressed by 35 K and 130 K, respectively. The best fits are obtained by assuming partial water dissociation to OH and H2O species, using the equilibrium constant measured by Stolper (1982). S+S applied their model to simple systems (diopside/H2O, albite/H2O, silica/H2O), and recovered the melting behavior extremely well. They also suggested that melt structure/composition influences the amount of liquidus depression caused by H2O addition. We have investigated the influence of bulk composition by performing complementary experiments on a high-magnesian andesite from Mount Shasta, and on a K, Na, and P rich alkali basalt from

  16. [Determination of H2S in Rat Intestinal Perfusion Solution Based on Fluorescence Analysis].

    PubMed

    Hou, Jun-feng; Li, Xin-xia; Shen, Xue-ru; Huojia, Miliban; Guan, Ming

    2015-08-01

    Under alkaline conditions, Fluorescein mercury has strong fluorescence, however, when it met S(2-), its fluorescence would quench, in view of the above, a fluorescence method for determination of H2S in biological samples was established. In the 0.1 mol · L(-1) NaOH dilution, when the concentration of fluorescein Mercury and Na2S was 5.0 × 10(-5) and 1.0 × 10(-5) mol · L(-1) respectively, the fluorescence intensity of system was determined at 522 nm. The results showed that, at the range of 4.0 × 10(-7)~2.0 × 10(-6) mol · L(-1), the concentration decreasing of H2S and fluorescence intensity had good linear relationship, r=0.9980, the RSD of precision test was 4.59% (n=7), the detection limit was 3.5 × 10(-8) mol · L(-1), the content of H2S in the sample were 1.01 × 10(-6) and 1.15 × 10(-6) mol · L(-1), and the recovery rate was 95.8%~101.0%, the method has the advantages of simple operation, high sensitivity, good selectivity, can accurately determine of H2S in intestinal perfused solution, and provides the basis for the determination of endogenous H2S.

  17. H2S Protects Against Methionine–Induced Oxidative Stress in Brain Endothelial Cells

    PubMed Central

    Tyagi, Neetu; Moshal, Karni S.; Sen, Utpal; Vacek, Thomas P.; Kumar, Munish; Hughes, William M.; Kundu, Soumi

    2009-01-01

    Abstract Homocysteine (Hcy) causes cerebrovascular dysfunction by inducing oxidative stress. However, to date, there are no strategies to prevent Hcy-induced oxidative damage. Hcy is an H2S precursor formed from methionine (Met) metabolism. We aimed to investigate whether H2S ameliorated Met-induced oxidative stress in mouse brain endothelial cells (bEnd3). The bEnd3 cells were exposed to Met treatment in the presence or absence of NaHS (donor of H2S). Met-induced cell toxicity increased the levels of free radicals in a concentration-dependent manner. Met increased NADPH-oxidase-4 (NOX-4) expression and mitigated thioredxion-1(Trx-1) expression. Pretreatment of bEnd3 with NaHS (0.05 mM) attenuated the production of free radicals in the presence of Met and protected the cells from oxidative damage. Furthermore, NaHS enhanced inhibitory effects of apocynin, N-acetyl-l-cysteine (NAC), reduced glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), Nω-nitro-l-arginine methyl ester (L-NAME) on ROS production and redox enzymes levels induced by Met. In conclusion, the administration of H2S protected the cells from oxidative stress induced by hyperhomocysteinemia (HHcy), which suggested that NaHS/H2S may have therapeutic potential against Met-induced oxidative stress. Antioxid. Redox Signal. 11, 25–33. PMID:18837652

  18. Hyperfine excitation of C2H in collisions with ortho- and para-H2

    NASA Astrophysics Data System (ADS)

    Dagdigian, Paul J.

    2018-06-01

    Accurate estimation of the abundance of the ethynyl (C2H) radical requires accurate radiative and collisional rate coefficients. Hyperfine-resolved rate coefficients for (de-)excitation of C2H in collisions with ortho- and para-H2 are presented in this work. These rate coefficients were computed in time-independent close-coupling quantum scattering calculations that employed a potential energy surface recently computed at the coupled-clusters level of theory that describes the interaction of C2H with H2. Rate coefficients for temperatures from 10 to 300 K were computed for all transitions among the first 40 hyperfine energy levels of C2H in collisions with ortho- and para-H2. These rate coefficients were employed in simple radiative transfer calculations to simulate the excitation of C2H in typical molecular clouds.

  19. Preparation of pH-sensitive anionic liposomes designed for drug delivery system (DDS) application.

    PubMed

    Aoki, Asami; Akaboshi, Hikaru; Ogura, Taku; Aikawa, Tatsuo; Kondo, Takeshi; Tobori, Norio; Yuasa, Makoto

    2015-01-01

    We prepared pH-sensitive anionic liposomes composed solely of anionic bilayer membrane components that were designed to promote efficient release of entrapped agents in response to acidic pH. The pH-sensitive anionic liposomes showed high dispersion stability at neutral pH, but the fluidity of the bilayer membrane was enhanced in an acidic environment. These liposomes were rather simple and were composed of dimyristoylphosphatidylcholine (DMPC), an anionic bilayer membrane component, and polyoxyethylene sorbitan monostearate (Tween 80). In particular, the present pH-sensitive anionic liposomes showed higher temporal stability than those of conventional DMPC/DPPC liposomes. We found that pHsensitive properties strongly depended on the molecular structure, pKa value, and amount of an incorporated anionic bilayer membrane component, such as sodium oleate (SO), dimyristoylphosphatidylserine (DMPS), or sodium β-sitosterol sulfate (SS). These results provide an opportunity to manipulate liposomal stability in a pH-dependent manner, which could lead to the formulation of a high performance drug delivery system (DDS).

  20. Synthesis Of [2h, 13c]M [2h2m 13c], And [2h3,, 13c] Methyl Aryl Sulfones And Sulfoxides

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.; Schmidt, Jurgen G.

    2004-07-20

    The present invention is directed to labeled compounds, [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfones and [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfoxides, wherein the .sup.13 C methyl group attached to the sulfur of the sulfone or sulfoxide includes exactly one, two or three deuterium atoms and the aryl group is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure: ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently, hydrogen, a C.sub.1 -C.sub.4 lower alkyl, a halogen, an amino group from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each a C.sub.1 -C.sub.4 lower alkyl, a phenyl, or an alkoxy group. The present invention is also directed to processes of preparing methyl aryl sulfones and methyl aryl sulfoxides.

  1. Structural stability of coplanar 1T-2H superlattice MoS2 under high energy electron beam.

    PubMed

    Reshmi, S; Akshaya, M V; Satpati, Biswarup; Basu, Palash Kumar; Bhattacharjee, K

    2018-05-18

    Coplanar heterojunctions composed of van der Waals layered materials with different structural polymorphs have drawn immense interest recently due to low contact resistance and high carrier injection rate owing to low Schottky barrier height. Present research has largely focused on efficient exfoliation of these layered materials and their restacking to achieve better performances. We present here a microwave assisted easy, fast and efficient route to induce high concentration of metallic 1T phase in the original 2H matrix of exfoliated MoS 2 layers and thus facilitating the formation of a 1T-2H coplanar superlattice phase. High resolution transmission electron microscopy (HRTEM) investigations reveal formation of highly crystalline 1T-2H hybridized structure with sharp interface and disclose the evidence of surface ripplocations within the same exfoliated layer of MoS 2 . In this work, the structural stability of 1T-2H superlattice phase during HRTEM measurements under an electron beam of energy 300 keV is reported. This structural stability could be either associated to the change in electronic configuration due to induction of the restacked hybridized phase with 1T- and 2H-regions or to the formation of the surface ripplocations. Surface ripplocations can act as an additional source of scattering centers to the electron beam and also it is possible that a pulse train of propagating ripplocations can sweep out the defects via interaction from specific areas of MoS 2 sheets.

  2. Structural stability of coplanar 1T-2H superlattice MoS2 under high energy electron beam

    NASA Astrophysics Data System (ADS)

    Reshmi, S.; Akshaya, M. V.; Satpati, Biswarup; Basu, Palash Kumar; Bhattacharjee, K.

    2018-05-01

    Coplanar heterojunctions composed of van der Waals layered materials with different structural polymorphs have drawn immense interest recently due to low contact resistance and high carrier injection rate owing to low Schottky barrier height. Present research has largely focused on efficient exfoliation of these layered materials and their restacking to achieve better performances. We present here a microwave assisted easy, fast and efficient route to induce high concentration of metallic 1T phase in the original 2H matrix of exfoliated MoS2 layers and thus facilitating the formation of a 1T-2H coplanar superlattice phase. High resolution transmission electron microscopy (HRTEM) investigations reveal formation of highly crystalline 1T-2H hybridized structure with sharp interface and disclose the evidence of surface ripplocations within the same exfoliated layer of MoS2. In this work, the structural stability of 1T-2H superlattice phase during HRTEM measurements under an electron beam of energy 300 keV is reported. This structural stability could be either associated to the change in electronic configuration due to induction of the restacked hybridized phase with 1T- and 2H-regions or to the formation of the surface ripplocations. Surface ripplocations can act as an additional source of scattering centers to the electron beam and also it is possible that a pulse train of propagating ripplocations can sweep out the defects via interaction from specific areas of MoS2 sheets.

  3. 11 CFR 102.11 - Petty cash fund (2 U.S.C. 432(h)(2)).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 11 Federal Elections 1 2010-01-01 2010-01-01 false Petty cash fund (2 U.S.C. 432(h)(2)). 102.11 Section 102.11 Federal Elections FEDERAL ELECTION COMMISSION GENERAL REGISTRATION, ORGANIZATION, AND... and Congressional district) sought by such candidate. ...

  4. H3S10ph broadly marks early-replicating domains in interphase ESCs and shows reciprocal antagonism with H3K9me2.

    PubMed

    Chen, Carol C L; Goyal, Preeti; Karimi, Mohammad M; Abildgaard, Marie H; Kimura, Hiroshi; Lorincz, Matthew C

    2018-01-01

    Phosphorylation of histone H3 at serine 10 (H3S10ph) by Aurora kinases plays an important role in mitosis; however, H3S10ph also marks regulatory regions of inducible genes in interphase mammalian cells, implicating mitosis-independent functions. Using the fluorescent ubiquitin-mediated cell cycle indicator (FUCCI), we found that 30% of the genome in interphase mouse embryonic stem cells (ESCs) is marked with H3S10ph. H3S10ph broadly demarcates gene-rich regions in G1 and is positively correlated with domains of early DNA replication timing (RT) but negatively correlated with H3K9me2 and lamin-associated domains (LADs). Consistent with mitosis-independent kinase activity, this pattern was preserved in ESCs treated with Hesperadin, a potent inhibitor of Aurora B/C kinases. Disruption of H3S10ph by expression of nonphosphorylatable H3.3S10A results in ectopic spreading of H3K9me2 into adjacent euchromatic regions, mimicking the phenotype observed in Drosophila JIL-1 kinase mutants . Conversely, interphase H3S10ph domains expand in Ehmt1 (also known as Glp ) null ESCs, revealing that H3S10ph deposition is restricted by H3K9me2. Strikingly, spreading of H3S10ph at RT transition regions (TTRs) is accompanied by aberrant transcription initiation of genes co-oriented with the replication fork in Ehmt1 -/- and Ehmt2 -/- ESCs, indicating that establishment of repressive chromatin on the leading strand following DNA synthesis may depend upon these lysine methyltransferases. H3S10ph is also anti-correlated with H3K9me2 in interphase murine embryonic fibroblasts (MEFs) and is restricted to intragenic regions of actively transcribing genes by EHMT2. Taken together, these observations reveal that H3S10ph may play a general role in restricting the spreading of repressive chromatin in interphase mammalian cells. © 2018 Chen et al.; Published by Cold Spring Harbor Laboratory Press.

  5. Control of Sulfidogenesis Through Bio-oxidation of H 2S Coupled to (per)chlorate Reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregoire, Patrick; Engelbrektson, Anna; Hubbard, Christopher G.

    2014-04-04

    Here, we investigate H 2S attenuation by dissimilatory perchlorate-reducing bacteria (DPRB). All DPRB tested oxidized H 2S coupled to (per)chlorate reduction without sustaining growth. H 2S was preferentially utilized over organic electron donors resulting in an enriched (34S)-elemental sulfur product. Electron microscopy revealed elemental sulfur production in the cytoplasm and on the cell surface of the DPRB Azospira suillum. We also propose a novel hybrid enzymatic-abiotic mechanism for H 2S oxidation similar to that recently proposed for nitrate-dependent Fe(II) oxidation. The results of this study have implications for the control of biosouring and biocorrosion in a range of industrial environments.

  6. Precursory diffuse CO2 and H2S emission signatures of the 2011-2012 El Hierro submarine eruption, Canary Islands

    NASA Astrophysics Data System (ADS)

    Pérez, Nemesio M.; Padilla, Germán D.; Padrón, Eleazar; Hernández, Pedro A.; Melián, Gladys V.; Barrancos, José; Dionis, Samara; Nolasco, Dácil; Rodríguez, Fátima; Calvo, David; Hernández, Íñigo

    2012-08-01

    On October 12, 2011, a submarine eruption began 2 km off the coast of La Restinga, south of El Hierro Island. CO2 and H2S soil efflux were continuously measured during the period of volcanic unrest by using the accumulation chamber method at two different geochemical stations, HIE01 and HIE07. Recorded CO2 and H2S effluxes showed precursory signals that preceded the submarine eruption. Beginning in late August, the CO2 efflux time series started increasing at a relatively constant rate over one month, reaching a maximum of 19 gm-2d-1 one week before the onset of the submarine volcanic eruption. The H2S efflux time series at HIE07 showed a pulse in H2S emission just one day before the initiation of the submarine eruption, reaching peak values of 42 mg m-2 d-1, 10 times the average H2S efflux recorded during the observation period. Since CO2 and H2S effluxes are strongly influenced by external factors, we applied a multiple regression analysis to remove their contribution. A statistical analysis showed that the long-term trend of the filtered data is well correlated with the seismic energy. We find that these geochemical stations are important monitoring sites for evaluating the volcanic activity of El Hierro and that they demonstrate the potential of applying continuous monitoring of soil CO2 and H2S efflux to improve and optimize the detection of early warning signals of future volcanic unrest episodes at El Hierro. Continuous diffuse degassing studies would likely prove useful for monitoring other volcanoes during unrest episodes.

  7. Special hydrogen bonds observed in two monovalent metal carboxylate-phosphinates: {NaH(Phsbnd PO2sbnd C2H4sbnd COOH)2}∞ and {[KH(Phsbnd PO2sbnd C2H4sbnd COOH)2H2O}∞

    NASA Astrophysics Data System (ADS)

    Zhao, Cui-Cui; Zhang, Jian-Wei; Zhou, Zhong-Gao; Du, Zi-Yi

    2013-02-01

    The addition of strong base such as sodium hydroxide or potassium hydroxide to the aqueous solution of (2-carboxyethyl)(phenyl)phosphinic acid afforded two novel monovalent metal carboxylate-phosphinates, namely, {NaH(Phsbnd PO2sbnd C2H4sbnd COOH)2}∞ (1) and {[KH(Phsbnd PO2sbnd C2H4sbnd COOH)2H2O}∞ (2). They represent the first examples of phosphinate containing short, symmetric or almost symmetric O⋯H⋯O hydrogen bonds.

  8. Ab initio studies on Al(+)(H(2)O)(n), HAlOH(+)(H(2)O)(n-1), and the size-dependent H(2) elimination reaction.

    PubMed

    Siu, Chi-Kit; Liu, Zhi-Feng; Tse, John S

    2002-09-11

    We report computational studies on Al(+)(H(2)O)(n), and HAlOH(+)(H(2)O)(n-1), n = 6-14, by the density functional theory based ab initio molecular dynamics method, employing a planewave basis set with pseudopotentials, and also by conventional methods with Gaussian basis sets. The mechanism for the intracluster H(2) elimination reaction is explored. First, a new size-dependent insertion reaction for the transformation of Al(+)(H(2)O)(n), into HAlOH(+)(H(2)O)(n-1) is discovered for n > or = 8. This is because of the presence of a fairly stable six-water-ring structure in Al(+)(H(2)O)(n) with 12 members, including the Al(+). This structure promotes acidic dissociation and, for n > or = 8, leads to the insertion reaction. Gaussian based BPW91 and MP2 calculations with 6-31G* and 6-31G** basis sets confirmed the existence of such structures and located the transition structures for the insertion reaction. The calculated transition barrier is 10.0 kcal/mol for n = 9 and 7.1 kcal/mol for n = 8 at the MP2/6-31G** level, with zero-point energy corrections. Second, the experimentally observed size-dependent H(2) elimination reaction is related to the conformation of HAlOH(+)(H(2)O)(n-1), instead of Al(+)(H(2)O)(n). As n increases from 6 to 14, the structure of the HAlOH(+)(H(2)O)(n-1) cluster changes into a caged structure, with the Al-H bond buried inside, and protons produced in acidic dissociation could then travel through the H(2)O network to the vicinity of the Al-H bond and react with the hydride H to produce H(2). The structural transformation is completed at n = 13, coincident approximately with the onset of the H(2) elimination reaction. From constrained ab initio MD simulations, we estimated the free energy barrier for the H(2) elimination reaction to be 0.7 eV (16 kcal/mol) at n = 13, 1.5 eV (35 kcal/mol) at n = 12, and 4.5 eV (100 kcal/mol) at n = 8. The existence of transition structures for the H(2) elimination has also been verified by ab initio calculations

  9. Evaluation of Stress Corrosion Resistance Properties of 15CrMoR(H) in H2S Environment

    NASA Astrophysics Data System (ADS)

    Zhang, Yiliang; Wang, Jing; Wu, Mingyao; Li, Shurui; Liu, Wenbin

    To evaluate the hydrogen resistant properties of the 15CrMoR(H) with new smelting process, according to NACE and National Standards, three tests including NACE standard tensile test, NACE standard bent-beam test and hydrogen induced cracking test are executed in saturated hydrogen sulfide(H2S) environment. Stress-life mathematical model of this material is given by analyzing and fitting the results of tensile test. Test results show that the threshold sth of tensile test is 0.7R eL(252MPa); the threshold nominal stress SC of bent-beam is higher than 4.5 R eL (1620MPa); for HIC test, the crack length rate CLR is 4.40%, the crack thickness rate CTR is 0.87% and the crack sensitive rate CSR is 0.04%. Compare with EFC standard, the safety margin of HIC test is 3.4, 3.4 and 37.5 times respectively. All the experimental results show that the new 15CrMoR(H) material has excellent H2S environmental cracking resistance properties.

  10. Microhydration effects on the electronic spectra of protonated polycyclic aromatic hydrocarbons: [naphthalene-(H2O)n = 1,2]H+

    NASA Astrophysics Data System (ADS)

    Alata, Ivan; Broquier, Michel; Dedonder-Lardeux, Claude; Jouvet, Christophe; Kim, Minho; Sohn, Woon Yong; Kim, Sang-su; Kang, Hyuk; Schütz, Markus; Patzer, Alexander; Dopfer, Otto

    2011-02-01

    Vibrational and electronic spectra of protonated naphthalene (NaphH+) microsolvated by one and two water molecules were obtained by photofragmentation spectroscopy. The IR spectrum of the monohydrated species is consistent with a structure with the proton located on the aromatic molecule, NaphH+-H2O. Similar to isolated NaphH+, the first electronic transition of NaphH+-H2O (S1) occurs in the visible range near 500 nm. The doubly hydrated species lacks any absorption in the visible range (420-600 nm) but absorbs in the UV range, similar to neutral Naph. This observation is consistent with a structure, in which the proton is located on the water moiety, Naph-(H2O)2H+. Ab initio calculations for [Naph-(H2O)n]H+ confirm that the excess proton transfers from Naph to the solvent cluster upon attachment of the second water molecule.

  11. Hydrogen Storage Properties of New Hydrogen-Rich BH3NH3-Metal Hydride (TiH2, ZrH2, MgH2, and/or CaH2) Composite Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Young Joon; Xu, Yimin; Shaw, Wendy J.

    2012-04-19

    Ammonia borane (AB = NH3BH3) is one of the most attractive materials for chemical hydrogen storage due to its high hydrogen contents of 19.6 wt.%, however, impurity levels of borazine, ammonia and diborane in conjunction with foaming and exothermic hydrogen release calls for finding ways to mitigate the decomposition reactions. In this paper we present a solution by mixing AB with metal hydrides (TiH2, ZrH2, MgH2 and CaH2) which have endothermic hydrogen release in order to control the heat release and impurity levels from AB upon decomposition. The composite materials were prepared by mechanical ball milling, and their H2 releasemore » properties were characterized by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The formation of volatile products from decomposition side reactions, such as borazine (N3B3H6) was determined by mass spectrometry (MS). Sieverts type pressure-composition-temperature (PCT) gas-solid reaction instrument was adopted to observe the kinetics of the H2 release reactions of the combined systems and neat AB. In situ 11B MAS-NMR revealed a destabilized decomposition pathway. We found that by adding specific metal hydrides to AB we can eliminate the impurities and mitigate the heat release.« less

  12. Antigenic variation of H1N1, H1N2 and H3N2 swine influenza viruses in Japan and Vietnam.

    PubMed

    Takemae, Nobuhiro; Nguyen, Tung; Ngo, Long Thanh; Hiromoto, Yasuaki; Uchida, Yuko; Pham, Vu Phong; Kageyama, Tsutomu; Kasuo, Shizuko; Shimada, Shinichi; Yamashita, Yasutaka; Goto, Kaoru; Kubo, Hideyuki; Le, Vu Tri; Van Vo, Hung; Do, Hoa Thi; Nguyen, Dang Hoang; Hayashi, Tsuyoshi; Matsuu, Aya; Saito, Takehiko

    2013-04-01

    The antigenicity of the influenza A virus hemagglutinin is responsible for vaccine efficacy in protecting pigs against swine influenza virus (SIV) infection. However, the antigenicity of SIV strains currently circulating in Japan and Vietnam has not been well characterized. We examined the antigenicity of classical H1 SIVs, pandemic A(H1N1)2009 (A(H1N1)pdm09) viruses, and seasonal human-lineage SIVs isolated in Japan and Vietnam. A hemagglutination inhibition (HI) assay was used to determine antigenic differences that differentiate the recent Japanese H1N2 and H3N2 SIVs from the H1N1 and H3N2 domestic vaccine strains. Minor antigenic variation between pig A(H1N1)pdm09 viruses was evident by HI assay using 13 mAbs raised against homologous virus. A Vietnamese H1N2 SIV, whose H1 gene originated from a human strain in the mid-2000s, reacted poorly with post-infection ferret serum against human vaccine strains from 2000-2010. These results provide useful information for selection of optimal strains for SIV vaccine production.

  13. Spectroscopic properties of morin in various CH3OH-H2O and CH3CN-H2O mixed solvents.

    PubMed

    Park, Hyoung-Ryun; Im, Seo-Eun; Seo, Jung-Ja; Kim, Bong-Gon; Yoon, Jin Ah; Bark, Ki-Min

    2015-01-01

    The specific fluorescence properties of morin (3,2',4',5,7-pentahydroxyflavone) were studied in various CH3OH-H2O and CH3CN-H2O mixed solvents. Although the dihedral angle is large in the S0 state, morin has an almost planar molecular structure in the S1 state owing to the very low rotational energy barrier around the interring bond between B and the A, C ring. The excited state intramolecular proton transfer (ESIPT) at the S1 state cannot occur immediately after excitation, S1 → S0 fluorescence can be observed. Two conformers, Morin A and B have been known. At the CH3OH-H2O, Morin B will be the principal species but at the CH3CN-H2O, Morin A is the principal species. At the CH3OH-H2O, owing to the large Franck-Condon (FC) factor for S2S1 internal convernal (IC) and flexible molecular structure, only S1 → S0 fluorescence was exhibited. At the CH3CN-H2O, as the FC factor for S2S1 IC is small and molecular structure is rigid, S2S0 and S1 → S0 dual fluorescence was observed. This abnormal fluorescence property was further supported by the small pK1 value, effective delocalization of the lone pair electrons of C(2')-OH to the A, C ring, and a theoretical calculation. © 2014 The American Society of Photobiology.

  14. Molecules for materials: germanium hydride neutrals and anions. Molecular structures, electron affinities, and thermochemistry of GeHn/GeHn- (n = 0-4) and Ge2Hn/Ge2Hn(-) (n = 0-6).

    PubMed

    Li, Qian-Shu; Lü, Rui-Hua; Xie, Yaoming; Schaefer, Henry F

    2002-12-01

    The GeH(n) (n = 0-4) and Ge(2)H(n) (n = 0-6) systems have been studied systematically by five different density functional methods. The basis sets employed are of double-zeta plus polarization quality with additional s- and p-type diffuse functions, labeled DZP++. For each compound plausible energetically low-lying structures were optimized. The methods used have been calibrated against a comprehensive tabulation of experimental electron affinities (Chemical Reviews 102, 231, 2002). The geometries predicted in this work include yet unknown anionic species, such as Ge(2)H(-), Ge(2)H(2)(-), Ge(2)H(3)(-), Ge(2)H(4)(-), and Ge(2)H(5)(-). In general, the BHLYP method predicts the geometries closest to the few available experimental structures. A number of structures rather different from the analogous well-characterized hydrocarbon radicals and anions are predicted. For example, a vinylidene-like GeGeH(2) (-) structure is the global minimum of Ge(2)H(2) (-). For neutral Ge(2)H(4), a methylcarbene-like HGë-GeH(3) is neally degenerate with the trans-bent H(2)Ge=GeH(2) structure. For the Ge(2)H(4) (-) anion, the methylcarbene-like system is the global minimum. The three different neutral-anion energy differences reported in this research are: the adiabatic electron affinity (EA(ad)), the vertical electron affinity (EA(vert)), and the vertical detachment energy (VDE). For this family of molecules the B3LYP method appears to predict the most reliable electron affinities. The adiabatic electron affinities after the ZPVE correction are predicted to be 2.02 (Ge(2)), 2.05 (Ge(2)H), 1.25 (Ge(2)H(2)), 2.09 (Ge(2)H(3)), 1.71 (Ge(2)H(4)), 2.17 (Ge(2)H(5)), and -0.02 (Ge(2)H(6)) eV. We also reported the dissociation energies for the GeH(n) (n = 1-4) and Ge(2)H(n) (n = 1-6) systems, as well as those for their anionic counterparts. Our theoretical predictions provide strong motivation for the further experimental study of these important germanium hydrides. Copyright 2002 Wiley

  15. Molecular adsorption properties of CO and H2O on Au-, Cu-, and AuxCuy-doped MoS2 monolayer

    NASA Astrophysics Data System (ADS)

    Kadioglu, Yelda; Gökoğlu, Gökhan; Üzengi Aktürk, Olcay

    2017-12-01

    In this study, we investigate the adsorption properties of Au, Cu, and AuxCuy nanoclusters on MoS2 sheet and the interactions of the adsorbed systems with CO and H2O molecules by using first principles calculations. Results indicate that Au, Cu, or AuxCuy strongly binds to MoS2 monolayer resulting in enhanced chemical activity and sensitivity toward CO and H2O molecules compared to bare MoS2 monolayer. Although both CO and H2O molecules bind weakly to pristine MoS2 monolayer, CO strongly binds to MoS2 sheet in the presence of Au, Cu atoms or AuxCuy clusters. Semiconductor MoS2 monolayer turns into metal upon Au or Cu adsorption. AuxCuy nanocluster adsorption decreases the band gap of MoS2 monolayer acting as a n-type dopant. AuxCuy-doped MoS2 systems have improved adsorption properties for CO and H2O molecules, so the conclusions provided in this study can be useful as a guide for next generation device modeling.

  16. Vibrational spectroscopy of NO + (H2O)n: Evidence for the intracluster reaction NO + (H2O)n --> H3O + (H2O)n - 2 (HONO) at n => 4

    NASA Astrophysics Data System (ADS)

    Choi, Jong-Ho; Kuwata, Keith T.; Haas, Bernd-Michael; Cao, Yibin; Johnson, Matthew S.; Okumura, Mitchio

    1994-05-01

    Infrared spectra of mass-selected clusters NO+(H2O)n for n=1 to 5 were recorded from 2700 to 3800 cm-1 by vibrational predissociation spectroscopy. Vibrational frequencies and intensities were also calculated for n=1 and 2 at the second-order Møller-Plesset (MP2) level, to aid in the interpretation of the spectra, and at the singles and doubles coupled cluster (CCSD) level energies of n=1 isomers were computed at the MP2 geometries. The smaller clusters (n=1 to 3) were complexes of H2O ligands bound to a nitrosonium ion NO+ core. They possessed perturbed H2O stretch bands and dissociated by loss of H2O. The H2O antisymmetric stretch was absent in n=1 and gradually increased in intensity with n. In the n=4 clusters, we found evidence for the beginning of a second solvation shell as well as the onset of an intracluster reaction that formed HONO. These clusters exhibited additional weak, broad bands between 3200 and 3400 cm-1 and two new minor photodissociation channels, loss of HONO and loss of two H2O molecules. The reaction appeared to go to completion within the n=5 clusters. The primary dissociation channel was loss of HONO, and seven vibrational bands were observed. From an analysis of the spectrum, we concluded that the n=5 cluster rearranged to form H3O+(H2O)3(HONO), i.e., an adduct of the reaction products.

  17. Bromidotetra-kis-(2-isopropyl-1H-imidazole-κN)copper(II) bromide.

    PubMed

    Godlewska, Sylwia; Socha, Joanna; Baranowska, Katarzyna; Dołęga, Anna

    2011-10-01

    The Cu(II) atom in the title salt, [CuBr(C(6)H(10)N(2))(4)]Br, is coordinated in a square-pyramidal geometry by four imidazole N atoms and one bromide anion that is located at the apex of the pyramid. The cations and the anions form a two-dimensional network parallel to (001) through N-H⋯Br hydrogen bonds.

  18. Nucleoplasmin Binds Histone H2A-H2B Dimers through Its Distal Face*

    PubMed Central

    Ramos, Isbaal; Martín-Benito, Jaime; Finn, Ron; Bretaña, Laura; Aloria, Kerman; Arizmendi, Jesús M.; Ausió, Juan; Muga, Arturo; Valpuesta, José M.; Prado, Adelina

    2010-01-01

    Nucleoplasmin (NP) is a pentameric chaperone that regulates the condensation state of chromatin extracting specific basic proteins from sperm chromatin and depositing H2A-H2B histone dimers. It has been proposed that histones could bind to either the lateral or distal face of the pentameric structure. Here, we combine different biochemical and biophysical techniques to show that natural, hyperphosphorylated NP can bind five H2A-H2B dimers and that the amount of bound ligand depends on the overall charge (phosphorylation level) of the chaperone. Three-dimensional reconstruction of NP/H2A-H2B complex carried out by electron microscopy reveals that histones interact with the chaperone distal face. Limited proteolysis and mass spectrometry indicate that the interaction results in protection of the histone fold and most of the H2A and H2B C-terminal tails. This structural information can help to understand the function of NP as a histone chaperone. PMID:20696766

  19. ORION’S VEIL. IV. H{sub 2} EXCITATION AND GEOMETRY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abel, N. P.; Ferland, G. J.; Troland, T. H.

    2016-03-10

    The foreground Veil of material that lies in front of the Orion Nebula is the best studied sample of the interstellar medium because we know where it is located, how it is illuminated, and the balance of thermal and magnetic energy. In this work, we present high-resolution STIS observations toward the Trapezium, with the goal of better understanding the chemistry and geometry of the two primary Veil layers, along with ionized gas along the line of sight. The most complete characterization of the rotational/vibrational column densities of H{sub 2} in the almost purely atomic components of the Veil are presented,more » including updates to the Cloudy model for H{sub 2} formation on grain surfaces. The observed H{sub 2} is found to correlate almost exclusively with Component B. The observed H{sub 2}, observations of CI, CI*, and CI**, and theoretical calculations using Cloudy allow us to place the tightest constraints yet on the distance, density, temperature, and other physical characteristics for each cloud component. We find the H{sub 2} excitation spectrum observed in the Veil is incompatible with a recent study that argued that the Veil was quite close to the Trapezium. The nature of a layer of ionized gas lying between the Veil and the Trapezium is characterized through the emission and absorption lines it produces, which we find to be the blueshifted component observed in S iii and P iii absorption. We deduce that, within the next 30–60 thousand years, the blueshifted ionized layer and Component B will merge, which will subsequently merge with Component A in the next one million years.« less

  20. Removal of H{sub 2}S, methyl macapton dimethyl sulfide and dimethyl disulfide with biofiltration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singleton, B.; Milligan, D.

    1996-12-31

    A pilot study describes the biofiltration process control that was necessary to remove H{sub 2}S, methyl mercaptan, dimethyl sulfide, and dimethyl disulfide, when mixed in an airstream. A pilot test at a waste water treatment facility was operated over a six month period. During that time H{sub 2}S was removed with very high efficiency at concentrations that reached to 400 ppm{sub v}; H{sub 2}S loading reached as high as 20 gms/m{sup 3}/hr. Methyl mercaptan and the organic sulfides were not removed sufficiently to deodorize the air-stream until a second stage biofilter was added. An odor analysis indicated that the odormore » detection level was approximately 250,000 odor units at the inlet and 1100 odor units at the outlet. The sulfur distribution in the media indicated that elemental sulfur and sulfate is deposited as a byproduct of the H{sub 2}S oxidation. Data from a fall scale biofilter treating H{sub 2}S from a pumping station is also presented. This data shows very efficient removal of H{sub 2}S, no organic reduced sulfur compounds were found in this air-stream.« less

  1. A review of developmental and reproductive toxicity of CS2 and H2 S generated by the pesticide sodium tetrathiocarbonate.

    PubMed

    Silva, Marilyn

    2013-04-01

    Sodium tetrathiocarbonate (STTC) is an example of a pesticide that when prepared for use in aqueous solution releases two toxic products carbon disulfide (CS2 ) (active ingredient) and hydrogen sulfide (H2 S) in ambient air in equimolar concentrations resulting in potential exposure to workers and bystanders. CS2 and H2 S are pollutants that are generated from several pesticides as well as in industrial settings. Registrant submitted reports and open literature studies for STTC, CS2 and H2 S were reviewed. Previous reports suggest that CS2 was a concern as a developmental and reproductive toxicant. H2 S was also examined since it is a neurotoxicant and potentially harmful to developing fetuses. STTC did not induce developmental or reproductive effects in animal studies. CS2 was a developmental neurobehavioral toxin in rat pups (inhalation no observed effect level [NOEL]=0.01 ppm). Reproductive effects occurred in male and female factory workers after CS2 exposure (NOEL=1 ppm). H2 S had developmental effects in rats at doses at or above those observed for nasal pathology (NOEL=10 ppm) but was not a reproductive or developmental toxin in humans. The database for CS2 indicates a strong potential for developmental neurotoxicity in animals at low doses but it is lacking in acceptable, well-performed studies. There is also a lack of studies performed with CS2 and H2 S as a mixture. © 2013 Wiley Periodicals, Inc.

  2. Ftmw Observation and Analysis of the {p}-H_2-{AgCl} and {o}-H_2-{AgCl} Complex

    NASA Astrophysics Data System (ADS)

    Grubbs, G. S.; Obenchain, D. A.; Pickett, H. M.; Novick, S. E.

    2013-06-01

    The rotational spectrum of p-H_2-{AgCl} and o-H_2-{AgCl} has been measured for the first time using a Balle-Flygare type Fourier transform microwave (FTMW) spectrometer. {(B+C)}/{2}'s, nuclear quadrupole coupling constants, and centrifugal distortion constants have been determined for multiple isotopologues of both species while spin-spin coupling constants have also been determined for at least one isotopologue of the o-H_2 species. Substantial changes in the eQq value from the monomer occur at the Cl nucleus upon complexation with the H_2 and will be discussed. Experimental r_0's for the H_2 C.O.M. distance to Ag and Ag distance to Cl are 1.809(2)Å and 2.2656(2)Å , respectively, for the p-H_2 species and will be compared to theory. Quantum chemical calculations were performed with an APFD density functional and MP2 with an aug-cc-pVQZ basis set for the hydrogen and chlorine with the effective core potential ECP28MDF_AVQZ for the Ag and will be presented. K. D. Hensel, C. Styger, W. Jäger, A. J. Merer, and M. C. L. Gerry, J. Chem. Phys., 99(1993) 3320. A. Austin, G. A. Petersson, M. J. Frisch, F. J. Dobek, G. Scalmani, and K. J. Throsselll. Chem. Theor. Comp., 8(2012) 4989. D. Figgen, G. Rauhut, M. Dolg, and H. Stoll. Chem. Phys., 311(2005) 227. K. A. Peterson and C. Puzzarini. Theor. Chem. Acc., 114(2005) 283.

  3. Capture and dissociation in the complex-forming CH + H2 → CH2 + H, CH + H2 reactions.

    PubMed

    González, Miguel; Saracibar, Amaia; Garcia, Ernesto

    2011-02-28

    The rate coefficients for the capture process CH + H(2)→ CH(3) and the reactions CH + H(2)→ CH(2) + H (abstraction), CH + H(2) (exchange) have been calculated in the 200-800 K temperature range, using the quasiclassical trajectory (QCT) method and the most recent global potential energy surface. The reactions, which are of interest in combustion and in astrochemistry, proceed via the formation of long-lived CH(3) collision complexes, and the three H atoms become equivalent. QCT rate coefficients for capture are in quite good agreement with experiments. However, an important zero point energy (ZPE) leakage problem occurs in the QCT calculations for the abstraction, exchange and inelastic exit channels. To account for this issue, a pragmatic but accurate approach has been applied, leading to a good agreement with experimental abstraction rate coefficients. Exchange rate coefficients have also been calculated using this approach. Finally, calculations employing QCT capture/phase space theory (PST) models have been carried out, leading to similar values for the abstraction rate coefficients as the QCT and previous quantum mechanical capture/PST methods. This suggests that QCT capture/PST models are a good alternative to the QCT method for this and similar systems.

  4. H2 S Sensors: Fumarate-Based fcu-MOF Thin Film Grown on a Capacitive Interdigitated Electrode.

    PubMed

    Yassine, Omar; Shekhah, Osama; Assen, Ayalew H; Belmabkhout, Youssef; Salama, Khaled N; Eddaoudi, Mohamed

    2016-12-19

    Herein we report the fabrication of an advanced sensor for the detection of hydrogen sulfide (H 2 S) at room temperature, using thin films of rare-earth metal (RE)-based metal-organic framework (MOF) with underlying fcu topology. This unique MOF-based sensor is made via the in situ growth of fumarate-based fcu-MOF (fum-fcu-MOF) thin film on a capacitive interdigitated electrode. The sensor showed a remarkable detection sensitivity for H 2 S at concentrations down to 100 ppb, with the lower detection limit around 5 ppb. The fum-fcu-MOF sensor exhibits a highly desirable detection selectivity towards H 2 S vs. CH 4 , NO 2 , H 2 , and C 7 H 8 as well as an outstanding H 2 S sensing stability as compared to other reported MOFs. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Carbon-armored Co9S8 nanoparticles as all-pH efficient and durable H2-evolving electrocatalysts.

    PubMed

    Feng, Liang-Liang; Li, Guo-Dong; Liu, Yipu; Wu, Yuanyuan; Chen, Hui; Wang, Yun; Zou, Yong-Cun; Wang, Dejun; Zou, Xiaoxin

    2015-01-14

    Splitting water to produce hydrogen requires the development of non-noble-metal catalysts that are able to make this reaction feasible and energy efficient. Herein, we show that cobalt pentlandite (Co9S8) nanoparticles can serve as an electrochemically active, noble-metal-free material toward hydrogen evolution reaction, and they work stably in neutral solution (pH 7) but not in acidic (pH 0) and basic (pH 14) media. We, therefore, further present a carbon-armoring strategy to increase the durability and activity of Co9S8 over a wider pH range. In particular, carbon-armored Co9S8 nanoparticles (Co9S8@C) are prepared by direct thermal treatment of a mixture of cobalt nitrate and trithiocyanuric acid at 700 °C in N2 atmosphere. Trithiocyanuric acid functions as both sulfur and carbon sources in the reaction system. The resulting Co9S8@C material operates well with high activity over a broad pH range, from pH 0 to 14, and gives nearly 100% Faradaic yield during hydrogen evolution reaction under acidic (pH 0), neutral (pH 7), and basic (pH 14) media. To the best of our knowledge, this is the first time that a transition-metal chalcogenide material is shown to have all-pH efficient and durable electrocatalytic activity. Identifying Co9S8 as the catalytically active phase and developing carbon-armoring as the improvement strategy are anticipated to give a fresh impetus to rational design of high-performance noble-metal-free water splitting catalysts.

  6. Steady- and transient-state H2S biofiltration using expanded schist as packing material.

    PubMed

    Romero Hernandez, A C; Rodríguez Susa, M S; Andrès, Y; Dumont, E

    2013-01-25

    The performances of three laboratory-scale biofilters (BF1, BF2, BF3) packed with expanded schist for H(2)S removal were studied at different empty bed residence times (EBRT=35, 24 and 16s) in terms of elimination capacity (EC) and removal efficiency (RE). BF1 and BF2 were filled with expanded schist while BF3 was filled with both expanded schist and a nutritional material (UP20; 12% vol). BF1 and BF3 were inoculated with activated sludge, whereas BF2 was not inoculated. A maximum EC of 42 g m(-3) h(-1) was recorded for BF3 at EBRT=35 s demonstrating the ability of schist to treat high H(2)S loading rates, and the ability of UP20 to improve H(2)S removal. Michaelis-Menten and Haldane models were fitted to the experimental elimination capacities while biofilter responses to transient-state conditions in terms of removal efficiency during shock load events were also evaluated for BF1 and BF3. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Dynamic exit-channel pathways of the microsolvated HOO-(H2O) + CH3Cl SN2 reaction: Reaction mechanisms at the atomic level from direct chemical dynamics simulations.

    PubMed

    Yu, Feng

    2018-01-07

    Microsolvated bimolecular nucleophilic substitution (S N 2) reaction of monohydrated hydrogen peroxide anion [HOO - (H 2 O)] with methyl chloride (CH 3 Cl) has been investigated with direct chemical dynamics simulations at the M06-2X/6-31+G(d,p) level of theory. Dynamic exit-channel pathways and corresponding reaction mechanisms at the atomic level are revealed in detail. Accordingly, a product distribution of 0.85:0.15 is obtained for Cl - :Cl - (H 2 O), which is consistent with a previous experiment [D. L. Thomsen et al. J. Am. Chem. Soc. 135, 15508 (2013)]. Compared with the HOO - + CH 3 Cl S N 2 reaction, indirect dynamic reaction mechanisms are enhanced by microsolvation for the HOO - (H 2 O) + CH 3 Cl S N 2 reaction. On the basis of our simulations, further crossed molecular beam imaging experiments are highly suggested for the S N 2 reactions of HOO - + CH 3 Cl and HOO - (H 2 O) + CH 3 Cl.

  8. Theoretical studies on photoelectron and IR spectral properties of Br2.-(H2O)n clusters.

    PubMed

    Pathak, A K; Mukherjee, T; Maity, D K

    2007-07-28

    We report vertical detachment energy (VDE) and IR spectra of Br2.-.(H2O)n clusters (n=1-8) based on first principles electronic structure calculations. Cluster structures and IR spectra are calculated at Becke's half-and-half hybrid exchange-correlation functional (BHHLYP) with a triple split valence basis function, 6-311++G(d,p). VDE for the hydrated clusters is calculated based on second order Moller-Plesset perturbation (MP2) theory with the same set of basis function. On full geometry optimization, it is observed that conformers having interwater hydrogen bonding among solvent water molecules are more stable than the structures having double or single hydrogen bonded structures between the anionic solute, Br2.-, and solvent water molecules. Moreover, a conformer having cyclic interwater hydrogen bonded network is predicted to be more stable for each size hydrated cluster. It is also noticed that up to four solvent H2O units can reside around the solute in a cyclic interwater hydrogen bonded network. The excess electron in these hydrated clusters is localized over the solute atoms. Weighted average VDE is calculated for each size (n) cluster based on statistical population of the conformers at 150 K. A linear relationship is obtained for VDE versus (n+3)(-1/3) and bulk VDE of Br2.- aqueous solution is calculated as 10.01 eV at MP2 level of theory. BHHLYP density functional is seen to make a systematic overestimation in VDE values by approximately 0.5 eV compared to MP2 data in all the hydrated clusters. It is observed that hydration increases VDE of bromine dimer anion system by approximately 6.4 eV. Calculated IR spectra show that the formation of Br2.--water clusters induces large shifts from the normal O-H stretching bands of isolated water keeping bending modes rather insensitive. Hydrated clusters, Br2.-.(H2O)n, show characteristic sharp features of O-H stretching bands of water in the small size clusters.

  9. Theoretical studies on photoelectron and IR spectral properties of Br2.-(H2O)n clusters

    NASA Astrophysics Data System (ADS)

    Pathak, A. K.; Mukherjee, T.; Maity, D. K.

    2007-07-01

    We report vertical detachment energy (VDE) and IR spectra of Br2•-•(H2O)n clusters (n=1-8) based on first principles electronic structure calculations. Cluster structures and IR spectra are calculated at Becke's half-and-half hybrid exchange-correlation functional (BHHLYP) with a triple split valence basis function, 6-311++G(d,p). VDE for the hydrated clusters is calculated based on second order Moller-Plesset perturbation (MP2) theory with the same set of basis function. On full geometry optimization, it is observed that conformers having interwater hydrogen bonding among solvent water molecules are more stable than the structures having double or single hydrogen bonded structures between the anionic solute, Br2•-, and solvent water molecules. Moreover, a conformer having cyclic interwater hydrogen bonded network is predicted to be more stable for each size hydrated cluster. It is also noticed that up to four solvent H2O units can reside around the solute in a cyclic interwater hydrogen bonded network. The excess electron in these hydrated clusters is localized over the solute atoms. Weighted average VDE is calculated for each size (n) cluster based on statistical population of the conformers at 150K. A linear relationship is obtained for VDE versus (n+3)-1/3 and bulk VDE of Br2•- aqueous solution is calculated as 10.01eV at MP2 level of theory. BHHLYP density functional is seen to make a systematic overestimation in VDE values by ˜0.5eV compared to MP2 data in all the hydrated clusters. It is observed that hydration increases VDE of bromine dimer anion system by ˜6.4eV. Calculated IR spectra show that the formation of Br2•--water clusters induces large shifts from the normal O-H stretching bands of isolated water keeping bending modes rather insensitive. Hydrated clusters, Br2•-•(H2O)n, show characteristic sharp features of O-H stretching bands of water in the small size clusters.

  10. Photolysis of low concentration H2S under UV/VUV irradiation emitted from microwave discharge electrodeless lamps.

    PubMed

    Xia, Lan-Yan; Gu, Ding-Hong; Tan, Jing; Dong, Wen-Bo; Hou, Hui-Qi

    2008-04-01

    The photolysis of simulating low concentration of hydrogen sulfide malodorous gas was studied under UV irradiation emitted by self-made microwave discharge electrodeless lamps (i.e. microwave UV electrodeless mercury lamp (185/253.7 nm) and iodine lamp (178.3/180.1/183/184.4/187.6/206.2 nm)). Experiments results showed that the removal efficiency (eta H2S) of hydrogen sulfide was decreased with increasing initial H2S concentration and increased slightly with gas residence time; H2S removal efficiency was decreased dramatically with enlarged pipe diameter. Under the experimental conditions with pipe diameter of 36 mm, gas flow rate of 0.42 standard l s(-1), eta H2S was 52% with initial H2S concentration of 19.5 mg m(-3) by microwave mercury lamp, the absolute removal amount (ARA) was 4.30 microg s(-1), and energy yield (EY) was 77.3 mg kW h(-1); eta H2S was 56% with initial H2S concentration of 18.9 mg m(-3) by microwave iodine lamp, the ARA was 4.48 microg s(-1), and the EY was 80.5mg kW h(-1). The main photolysis product was confirmed to be SO4(2-) with IC.

  11. Formation of cation-anion complexes in the photochemical reaction of molybdenocene dihydrode with iron pentacarbonyl. Crystal structures of (Cp/sub 2/Mo(CO)H)/sup +/(Fe/sub 3/(CO)/sub 11/H)/sup -/ and (Cp/sub 2/Mo(CO)H)/sup +/(CoMo(CO)/sub 3/)/sup -/ (triclinic modification) (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antsyshkina, A.S.; Dikareva, L.M.; Porai-Koshits, M.A.

    1985-11-01

    The reaction of Cp/sub 2/MoH/sub 2/ with Fe(CO)/sub 5/ in boiling benzene under UV irradiation gives the ionic complexes (Cp/sub 2/Mo(CO)H)/sup +/(Fe/sub 3/(CO)/sub 11/H)/sup -/ (I) and (Cp/sub 2/Mo(CO)H)/sup +/(CpMo(CO)/sub 3/)/sup -/ (II), whose structures were established by x-ray diffraction analysis (Syntex P2/sub 1/ automatic diffractometer, lambda Mo K/sub ..cap alpha../, graphite monochromator, theta/2theta scan technique, full-matrix least-squares method, isotropic variant for I on the basis of 2112 reflections to % = 0.11 and anisotropic variant for II on the basis of 3770 values of hkl to R = 0.052). In complexes I and II the (CpMo(CO)H)/sup +/ fragment ismore » a tapered sandwich with an eclipsed conformation of the rings. In complex I the angle between the rings is 33.9/sup 0/, the mean Mo-C(C/sub 5/H/sub 5/) distance is 2.28(3) A, the mean Mo-C(CO) distance is 2.03(3) A, and the mean Mo-H distance is 1.78(10) A. The corresponding parameters in complex II are: 32.4/sup 0/, 2.296(7), 2.020(6), and 1.87(7) A. The anion in complex I is based on a triangular cluster of Fe atoms, in which one Fe-Fe distance is significantly shorter (2.488(5) A) than the other two (2.702(5) and 2.697(5) A). The Fe atoms forming the short bond are joined additionally by hydride (Fe-H = 2.14 A) and carbonyl (Fe-C = 1.90(3) and 1.93(3) A) Bridges. The remaining groups are terminal. A probable scheme for the process of the formation of complexes I and II has been discussed.« less

  12. On the role of the termolecular reactions 2O2 + H22HO2 and 2O2 + H2H + HO2 + O2 in formation of the first radicals in hydrogen combustion: ab initio predictions of energy barriers.

    PubMed

    Monge-Palacios, M; Rafatijo, Homayoon

    2017-01-18

    We have investigated the role of termolecular reactions in the early chemistry of hydrogen combustion. We performed molecular chemical dynamics simulations using ReaxFF in LAMMPS to identify potential initial reactions for a 1 : 4 mixture of H 2  : O 2 in the NVT ensemble at density 276.3 kg m -3 and ∼3000 K (∼4000 atm) and ∼4000 K (∼5000 atm), and then characterized the saddle points for those reactions using ab initio methods: CCSD(T) = FC/cc-pVTZ//MP2/6-31G, CCSD(T) = FULL/aug-cc-pVTZ//CCSD = FC/cc-pVTZ and CASSCF MP2/6-31G//MP2/6-31G. The main initial reaction is H 2 + O 2H + HO 2 , frequently occurring in the presence of a second O 2 as a third body; that is, 2O 2 + H 2H + HO 2 + O 2 . The second most frequent reaction is 2O 2 + H 22HO 2 . We found three saddle points on the triplet PES of these termolecular reactions: one for 2O 2 + H 2H + HO 2 + O 2 and two for 2O 2 + H 22HO 2 . In the latter case, one has a symmetric structure consistent with simultaneous formation of two HO 2 and the other corresponds to a bimolecular reaction between O 2 and H 2 that is "interrupted" by a second O 2 before going to completion. The classical barrier height of the symmetric saddle point for 2O 2 + H 22HO 2 is 49.8 kcal mol -1 . The barrier to H 2 + O 2H + HO 2 is 58.9 kcal mol -1 . The termolecular reaction will be competitive with H 2 + O 2H + HO 2 only at sufficiently high pressures.

  13. Application of Symmetry-Broken H2-H2 Potential Energy Surface to Low Energy o-/p-H2+HD Collisions of Astrophysical Interest

    NASA Astrophysics Data System (ADS)

    Sultanov, R. A.; Guster, D.; Adhukari, S. K.

    2011-05-01

    A possibility of correct description of non-symmetrical HD+H2 collision at low temperatures (T≤300 K) is considered by applying symmetrical H2-H2 potential energy surface (PES) [Diep, P. & Johnson, K. 2000, J. Chem. Phys. 113, 3480 (DJ PES)]. With the use of a special mathematical transformation technique, which was applied to this surface, and a quantum dynamical method we obtained a quite satisfactory agreement with previous results when another H2-H2 PES was used [Boothroyd, A.I. et al. 2002, J. Chem. Phys. 116, 666 (BMKP PES)].

  14. [Analysis of H2S/PH3/NH3/AsH3/Cl2 by Full-Spectral Flame Photometric Detector].

    PubMed

    Ding, Zhi-jun; Wang, Pu-hong; Li, Zhi-jun; Du, Bin; Guo, Lei; Yu, Jian-hua

    2015-07-01

    Flame photometric analysis technology has been proven to be a rapid and sensitive method for sulfur and phosphorus detection. It has been widely used in environmental inspections, pesticide detection, industrial and agricultural production. By improving the design of the traditional flame photometric detector, using grating and CCD sensor array as a photoelectric conversion device, the types of compounds that can be detected were expanded. Instead of a single point of characteristic spectral lines, full spectral information has been used for qualitative and quantitative analysis of H2S, PH3, NH3, AsH3 and Cl2. Combined with chemometric method, flame photometric analysis technology is expected to become an alternative fast, real-time on-site detection technology to simultaneously detect multiple toxic and harmful gases.

  15. Ab initio chemical kinetics for SiH3 reactions with Si(x)H2x+2 (x = 1-4).

    PubMed

    Raghunath, P; Lin, M C

    2010-12-30

    Gas-phase kinetics and mechanisms of SiH(3) reactions with SiH(4), Si(2)H(6), Si(3)H(8), and Si(4)H(10), processes of relevance to a-Si thin-film deposition, have been investigated by ab initio molecular orbital and transition-state theory (TST) calculations. Geometric parameters of all the species involved in the title reactions were optimized by density functional theory at the B3LYP and BH&HLYP levels with the 6-311++G(3df,2p) basis set. The potential energy surface of each reaction was refined at the CCSD(T)/6-311++G(3df,2p) level of theory. The results show that the most favorable low energy pathways in the SiH(3) reactions with these silanes occur by H abstraction, leading to the formation of SiH(4) + Si(x)H(2x+1) (silanyl) radicals. For both Si(3)H(8) and n-Si(4)H(10) reactions, the lowest energy barrier channels take place by secondary Si-H abstraction, yielding SiH(4) + s-Si(3)H(7) and SiH(4) + s-Si(4)H(9), respectively. In the i-Si(4)H(10) reaction, tertiary Si-H abstraction has the lowest barrier producing SiH(4) + t-Si(4)H(9). In addition, direct SiH(3)-for-X substitution reactions forming Si(2)H(6) + X (X = H or silanyls) can also occur, but with significantly higher reaction barriers. A comparison of the SiH(3) reactions with the analogous CH(3) reactions with alkanes has been made. The rate constants for low-energy product channels have been calculated for the temperature range 300-2500 K by TST with Eckart tunneling corrections. These results, together with predicted heats of formation of various silanyl radicals and Si(4)H(10) isomers, have been tabulated for modeling of a-Si:H film growth by chemical vapor deposition.

  16. Raman spectroscopy of the multianion mineral gartrellite-PbCu(Fe3+,Cu)(AsO4)2(OH,H2O)2

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Xi, Yunfei; Palmer, Sara J.

    2012-04-01

    The multianion mineral gartrellite PbCu(Fe3+,Cu)(AsO4)2(OH,H2O)2 has been studied by a combination of Raman and infrared spectroscopy. The vibrational spectra of two gartrellite samples from Durango and Ashburton Downs were compared. Gartrellite is one of the tsumcorite mineral group based upon arsenate and sulphate anions. Crystal symmetry is either triclinic in the case of an ordered occupation of two cationic sites, triclinic due to ordering of the H bonds in the case of species with 2 water molecules per formula unit, or monoclinic in the other cases. Characteristic Raman spectra of the minerals enable the assignment of the bands to specific vibrational modes. These spectra are related to the structure of gartrellite. The position of the hydroxyl and water stretching vibrations are related to the strength of the hydrogen bond formed between the OH unit and the AsO4 anion.

  17. Silymarin preconditioning protected insulin resistant rats from liver ischemia-reperfusion injury: role of endogenous H2S.

    PubMed

    Younis, Nahla N; Shaheen, Mohamed A; Mahmoud, Mona F

    2016-08-01

    Hydrogen sulfide (H2S) can protect against hepatic ischemia-reperfusion injury (HIR). However, it is unknown whether it can protect against HIR in insulin resistance. This study investigated the protective effects of silymarin against HIR in a rat model of insulin resistance and the possible involvement of endogenous H2S. Insulin resistance was first established using 10% fructose in drinking water for 10 weeks. HIR was conducted in fructose-fed rats treated with saline or silymarin (100 mg/kg), 15 min before HIR (30 min ischemia, followed by 1 h reperfusion). Insulin resistance and serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), tumor necrosis factor-α (TNF-α), interleukin-10 (IL-10), total nitrites (NO2(-)), and H2S were measured. Hepatic malondialdehyde (MDA), reduced glutathione (GSH), hydroxyproline, H2S synthesizing activity, and mRNA expression of cystathionine β-synthase (CBS) or cystathionine γ-lyase (CSE) were determined. Additionally, histopathological examination involved H&E, Sirius red, and caspase-3 immunostaining. Fructose-induced insulin resistance increased serum ALT, TNF-α, H2S and H2S synthesizing activity, and hepatic MDA, hydroxyproline, and CSE mRNA and decreased NO2(-) and GSH. These changes exacerbated the HIR injury in which endogenous H2S production was auxiliary increased. Silymarin preconditioning decreased ALT, AST, MDA, NO2(-), TNF-α, and TNF-α/IL-10 ratio, increased GSH, IL-10, improved hepatic architecture, and lowered caspase-3 immunostaining. Serum H2S, its hepatic synthesizing activity, and CSE and CBS mRNA expressions were all suppressed by silymarin pretreatment. The increases in endogenous H2S exacerbate HIR injury, whereas silymarin preconditioning protected against HIR in insulin resistant rats via powerful antioxidant, anti-inflammatory, and antiapoptotic effects along with suppressing H2S production. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Highly Enhanced H2 Sensing Performance of Few-Layer MoS2/SiO2/Si Heterojunctions by Surface Decoration of Pd Nanoparticles.

    PubMed

    Hao, Lanzhong; Liu, Yunjie; Du, Yongjun; Chen, Zhaoyang; Han, Zhide; Xu, Zhijie; Zhu, Jun

    2017-10-17

    A novel few-layer MoS 2 /SiO 2 /Si heterojunction is fabricated via DC magnetron sputtering technique, and Pd nanoparticles are further synthesized on the device surface. The results demonstrate that the fabricated sensor exhibits highly enhanced responses to H 2 at room temperature due to the decoration of Pd nanoparticles. For example, the Pd-decorated MoS 2 /SiO 2 /Si heterojunction shows an excellent response of 9.2 × 10 3 % to H 2 , which is much higher than the values for the Pd/SiO 2 /Si and MoS 2 /SiO 2 /Si heterojunctions. In addition, the H 2 sensing properties of the fabricated heterojunction are dependent largely on the thickness of the Pd-nanoparticle layer and there is an optimized Pd thickness for the device to achieve the best sensing characteristics. Based on the microstructure characterization and electrical measurements, the sensing mechanisms of the Pd-decorated MoS 2 /SiO 2 /Si heterojunction are proposed. These results indicate that the Pd decoration of few-layer MoS 2 /SiO 2 /Si heterojunctions presents an effective strategy for the scalable fabrication of high-performance H 2 sensors.

  19. Contribution of the pre-ionized H2 and the ionized H2+ subsystems to the HHG Spectra of H2 in intense laser fields

    NASA Astrophysics Data System (ADS)

    Iravani, Hossein; Sabzyan, Hassan; Vafaee, Mohsen; Buzari, Behnaz

    2018-04-01

    Contributions of the pre-ionized H2 (PI-H2) and ionized {{{H}}}2+ subsystems of the two-electron H2 system to its high-order harmonic generation in eight-cycle sin2-like ultrafast intense laser pulses are calculated and analyzed based on the solution of the time-dependent Schrödinger equation for the one-dimensional two-electronic H2 system with fixed nuclei. The laser pulses have λ = 390 and 532 nm wavelengths and I = 1 × 1014, 5 × 1014, 1 × 1015 and 5 × 1015 W cm‑2 intensities. It is found that at the two lower intensities, the PI-H2 subsystem dominantly produces the HHG spectra. However, at the two higher intensities, both PI-H2 and ionized {{{H}}}2+ subsystems contribute comparably to the HHG spectra. In the {{{H}}}2+ subsystem, the symmetry of the populations of {{{H}}}2+(I) and {{{H}}}2+(II) regions (left and right regions of {{{H}}}2+ subsystem) is broken by increasing the laser intensity. Complex patterns and even harmonics also appear at these two higher intensities. For instance, at 1 × 1015 W cm‑2 intensity and λ = 532 nm wavelength, the even harmonics are appeared near cutoff region. Interestingly, at 5 × 1015 W cm‑2 intensity and λ = 390 nm wavelength, the even harmonics replaced by the odd harmonics with red shift. At λ = 390 and 532 nm wavelengths and I = 1 × 1015 intensity, the two-electron cutoffs corresponding to nonsequential double-recombination with maximum return kinetic energy of 4.70Up are detected. The HHG spectra of the whole H2 system obtained with and without nuclear dynamics treated classically are approximately similar. However, at 1 × 1015 W cm‑2 intensity and λ = 532 nm wavelength, if we take into account nuclear dynamics, the even harmonics which are appeared near cutoff region, replaced by the odd harmonics with blue shift.

  20. H2CO3(s): a new candidate for CO2 capture and sequestration.

    PubMed

    Tossell, J A

    2009-04-01

    To reduce the magnitude of anthropogenic global warming it is necessary to remove CO2(g) from the effluent streams of coal-fired power plants and to sequester the CO2 either as a liquid or by reaction with other compounds. A major difficulty in achieving this goal arises from the very weak acidity of CO2(g), causing it to react only incompletely with weak bases, although this weak interaction does provide a means for "stripping" the CO2 from the acid-base complex at high temperatures. Reaction with strong bases like Na0H yields more stable complexes, but massive amounts of chemical reactants would need to be purchased and chemical products like NaHCO3 then stored. However, when gas-phase CO2 reacts with the weak base water (or when bicarbonate reacts with strong acid) the unstable product monomeric "H2CO3" can be formed. The free energy required is about 16 kcal/mol in the gas phase and about 10 kcal/mol in aqueous solution. This energy can be supplied by particle or photon excitation and is only a small fraction ofthe energy released when a mole of CH4 is converted to a mole of CO2. Although this monomeric compound is highly unstable, its oligomers are considerably more stable, due to internal H-bonding, with free energies for the larger oligomers in the gas phase which are about 4 kcal/(mol of H2CO3) lower, only about 6 kcal/mol H2CO3 higher than the gas-phase combination of CO2 and H2O at room temperature. Also, at lower temperature the entropic penalty for the oligomer is less and oligomeric H2CO3 becomes stable around the sublimation temperature of dry ice. This indicates that it may be possible to capture gas-phase CO2 directly, using only cheap and abundant H2O as a reactant, and to store the resulting (H2CO3)n as a oligomeric solid at only moderately cold temperatures. These conclusions are based on quantum computations that accurately reproduce the structures, spectra, and stabilities of H2CO3 oligomers. Methods for producing and characterizing the H2CO3

  1. Depletion of H2S during obesity enhances store-operated Ca2+ entry in adipose tissue macrophages to increase cytokine production.

    PubMed

    Velmurugan, Gopal V; Huang, Huiya; Sun, Hongbin; Candela, Joseph; Jaiswal, Mukesh K; Beaman, Kenneth D; Yamashita, Megumi; Prakriya, Murali; White, Carl

    2015-12-15

    The increased production of proinflammatory cytokines by adipose tissue macrophages (ATMs) contributes to chronic, low-level inflammation during obesity. We found that obesity in mice reduced the bioavailability of the gaseous signaling molecule hydrogen sulfide (H2S). Steady-state, intracellular concentrations of H2S were lower in ATMs isolated from mice with diet-induced obesity than in ATMs from lean mice. In addition, the intracellular concentration of H2S in the macrophage cell line RAW264.7 was reduced during an acute inflammatory response evoked by the microbial product lipopolysaccharide (LPS). Reduced intracellular concentrations of H2S led to increased Ca(2+) influx through the store-operated Ca(2+) entry (SOCE) pathway, which was prevented by the exogenous H2S donor GYY4137. Furthermore, GYY4137 inhibited the Orai3 channel, a key component of the SOCE machinery. The enhanced production of proinflammatory cytokines by RAW264.7 cells and ATMs from obese mice was reduced by exogenous H2S or by inhibition of SOCE. Together, these data suggest that the depletion of macrophage H2S that occurs during acute (LPS-induced) or chronic (obesity) inflammation increases SOCE through disinhibition of Orai3 and promotes the production of proinflammatory cytokines. Copyright © 2015, American Association for the Advancement of Science.

  2. Straightforward entry to pyrido[2,3-d]pyrimidine-2,4(1H,3H)-diones and their ADME properties.

    PubMed

    Jatczak, Martyna; Muylaert, Koen; De Coen, Laurens M; Keemink, Janneke; Wuyts, Benjamin; Augustijns, Patrick; Stevens, Christian V

    2014-08-01

    A straightforward synthesis of pyrido[2,3-d]pyrimidine-2,4(1H,3H)-diones was developed starting from 2-chloropyridine-3-carboxylic acid by esterification, nucleophilic aromatic substitution and amide formation in one step, and ring closure allowing their synthesis with two identical or two different group attached to nitrogen. The structural diversity of these [2,3-d]pyrimidine-2,4(1H,3H)-diones resulted in significant variation in the biopharmaceutical properties. This was reflected by the broad range in fasted state simulated intestinal fluid solubility values (12.6 μM to 13.8 mM), Caco-2 permeability coefficients (1.2 × 10(-6)cm/s to 90.7 × 10(-6)cm/s) and in vitro-predicted human in vivo intrinsic clearance values (0 to 159 ml/min/kg). Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. The catalytic effects of H2CO3, CH3COOH, HCOOH and H2O on the addition reaction of CH2OO + H2O → CH2(OH)OOH

    NASA Astrophysics Data System (ADS)

    Zhang, Tianlei; Lan, Xinguang; Wang, Rui; Roy, Soumendra; Qiao, Zhangyu; Lu, Yousong; Wang, Zhuqing

    2018-07-01

    The addition reaction of CH2OO + H2O → CH2(OH)OOH without and with X (X = H2CO3, CH3COOH and HCOOH) and H2O was studied at CCSD(T)/6-311+ G(3df,2dp)//B3LYP/6-311+G(2d,2p) level of theory. Our results show that X can catalyse CH2OO + H2O → CH2(OH)OOH reaction both by increasing the number of rings, and by adding the size of the ring in which ring enlargement by COOH moiety of X inserting into CH2OO...H2O is favourable one. Water-assisted CH2OO + H2O → CH2(OH)OOH can occur by H2O moiety of (H2O)2 or the whole (H2O)2 forming cyclic structure with CH2OO, where the latter form is more favourable. Because the concentration of H2CO3 is unknown, the influence of CH3COOH, HCOOH and H2O were calculated within 0-30 km altitude of the Earth's atmosphere. The results calculated within 0-5 km altitude show that H2O and HCOOH have obvious effect on enhancing the rate with the enhancement factors are, respectively, 62.47%-77.26% and 0.04%-1.76%. Within 5-30 km altitude, HCOOH has obvious effect on enhancing the title rate with the enhancement factor of 2.69%-98.28%. However, compared with the reaction of CH2OO + HCOOH, the rate of CH2OO...H2O + HCOOH is much slower.

  4. Electronic structure and energetics of the tetragonal distortion for TiH2, ZrH2 and HfH2: a first principles study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quijano, Ramiro; DeCoss, Romeo; Singh, David J

    2009-01-01

    The electronic structure and energetics of the tetragonal distortion for the fluorite-type dihydrides TiH{sub 2}, ZrH{sub 2}, and HfH{sub 2} are studied by means of highly accurate first-principles total-energy calculations. For HfH{sub 2}, in addition to the calculations using the scalar relativistic (SR) approximation, calculations including the spin-orbit coupling have also been performed. The results show that TiH{sub 2}, ZrH{sub 2}, and HfH{sub 2} in the cubic phase are unstable against tetragonal strain. For the three systems, the total energy shows two minima as a function of the c/a ratio with the lowest-energy minimum at c/a < 1 in agreementmore » with the experimental observations. The band structure of TiH{sub 2}, ZrH{sub 2}, and HfH{sub 2} (SR) around the Fermi level shows two common features along the two major symmetry directions of the Brillouin zone, {Lambda}?L and {Lambda}?K, a nearly flat doubly degenerate band, and a van Hove singularity, respectively. In cubic HfH{sub 2} the spin-orbit coupling lifts the degeneracy of the partially filled bands in the {Lambda}?L path, while the van Hove singularity in the {Lambda}?K path remains unchanged. The density of states of the three systems in the cubic phase shows a sharp peak at the Fermi level. We found that the tetragonal distortion produces a strong reduction in the density of states at the Fermi level resulting mainly from the splitting of the doubly-degenerate bands in the {Lambda}?L direction and the shift of the van Hove singularity to above the Fermi level. The validity of the Jahn-Teller model in explaining the tetragonal distortion in this group of dihydrides is discussed.« less

  5. Photolysis of low concentration H2S under UV/VUV irradiation emitted from high frequency discharge electrodeless lamps.

    PubMed

    Xu, Jianhui; Li, Chaolin; Liu, Peng; He, Di; Wang, Jianfeng; Zhang, Qian

    2014-08-01

    The photolysis of low concentration of H2S malodorous gas was studied under UV irradiation emitted by self-made high frequency discharge electrodeless lamp with atomic mercury lines at 185/253.7nm. Experiments results showed that the removal efficiency (ηH2S) of H2S was decreased with increasing initial H2S concentration and increased slightly with gas residence time. ηH2S was increased dramatically with relative humidity from<5% to 43% while the concentration of oxygen in gas environments affected the removal of H2S. The mechanisms for direct and indirect photolysis (generation of ozone) were illustrated by the experimental results on photolysis of H2S under argon environments and ozonation of H2S under air environments, respectively. The overall ηH2S by photolysis is higher than the combination of ηH2S by direct photolysis and ozonation, suggesting that hydroxyl radical-mediated indirect photolysis played an important role during photolysis processes. The main photolysis product was confirmed to be SO4(2-) with ion chromatograph. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. The impact of H2S emissions on future geothermal power generation - The Geysers region, California

    NASA Technical Reports Server (NTRS)

    Leibowitz, L. P.

    1977-01-01

    The future potential for geothermal power generation in the Geysers region of California is as much as 10 times the current 502 MW(e) capacity. However, environmental factors such as H2S emissions and institutional considerations may play the primary role in determining the rate and ultimate level of development. In this paper a scenario of future geothermal generation capacity and H2S emissions in the Geysers region is presented. Problem areas associated with H2S emissions, H2S abatement processes, plant operations, and government agency resources are described. The impact of H2S emissions on future development and the views of effected organizations are discussed. Potential actions needed to remove these constraints are summarized.

  7. Electronic Structure and Multisite Basicity of the Pyramidal Phosphinidene-Bridged Dimolybdenum Complex [Mo2(η(5)-C5H5)(μ-κ(1):κ(1),η(5)-PC5H4)(η(6)-C6H3(t)Bu3)(CO)2(PMe3)].

    PubMed

    Albuerne, Isabel G; Alvarez, M Angeles; García, M Esther; García-Vivó, Daniel; Ruiz, Miguel A

    2015-10-19

    The title phosphinidene complex could be sequentially protonated with HBF4·OEt2 or [H(OEt2)2](BAr'4) to give the phosphido-bridged derivatives [Mo2Cp(μ-κ(1):κ(1),η(5)-HPC5H4)(η(6)-HMes*)(CO)2(PMe3)]X and then the hydrides [Mo2Cp(H)(μ-κ(1):κ(1),η(5)-HPC5H4)(η(6)-HMes*)(CO)2(PMe3)]X2 (X = BF4, BAr'4; Ar' = 3,5-C6H3(CF3)2; Mes* = 2,4,6-C6H2(t)Bu3). Density functional theory (DFT) calculations revealed that the most favored site for initial electrophilic attack is the metallocene Mo atom, but attachment of the electrophile to the phosphinidene P atom gives more stable products. This was in agreement with all other reactions investigated, which invariably involved the attachment of the added electrophile at the P site. Thus, the title compound reacted with S8 at 223 K to give the thiophosphinidene-bridged complex [Mo2Cp{μ-κ(1):κ(1),η(5)-P(S)C5H4}(η(6)-HMes*)(CO)2(PMe3)], a poorly stable molecule which reacted with MeI at room temperature to give the corresponding thiolatophosphido derivative, isolated as [Mo2Cp{μ-κ(1):κ(1),η(5)-P(SMe)C5H4}(η(6)-HMes*)(CO)2(PMe3)](BAr'4) (P-S = 2.128(4) Å) after anion exchange with Na(BAr'4). Reaction of the title compound with MeI proceeded smoothly to give the corresponding methylphosphido derivative, isolated analogously as [Mo2Cp{μ-κ(1):κ(1),η(5)-P(Me)C5H4}(η(6)-HMes*)(CO)2(PMe3)](BAr'4). The related complex [Mo2Cp{μ-κ(1):κ(1),η(5)-P(Me)C5H4}(η(6)-HMes*)(CO)2(PMe2Ph)](BAr'4) (P-C(Me) = 1.841(5) Å) could be prepared analogously from the neutral precursor [Mo2Cp{μ-κ(1):κ(1),η(5)-PC5H4}(η(6)-HMes*)(CO)2(PMe2Ph)]. In contrast, reaction of the title complex with ethylene sulfide involved opening of the C2S ring and formation of new P-C and Mo-S bonds (1.886(7) and 2.493(2) Å, respectively), with displacement of the PMe3 ligand, to give the phosphido-thiolato complex [Mo2Cp{μ-κ(2)(P,S):κ(1)P,η(5)-P(C2H4S)C5H4}(η(6)-HMes*)(CO)2]. All these derivatives of the title complex displayed an unusual

  8. Achieving Simultaneous CO2 and H2 S Conversion via a Coupled Solar-Driven Electrochemical Approach on Non-Precious-Metal Catalysts.

    PubMed

    Ma, Weiguang; Wang, Hong; Yu, Wei; Wang, Xiaomei; Xu, Zhiqiang; Zong, Xu; Li, Can

    2018-03-19

    Carbon dioxide (CO 2 ) and hydrogen sulfide (H 2 S) are generally concomitant with methane (CH 4 ) in natural gas and traditionally deemed useless or even harmful. Developing strategies that can simultaneously convert both CO 2 and H 2 S into value-added products is attractive; however it has not received enough attention. A solar-driven electrochemical process is demonstrated using graphene-encapsulated zinc oxide catalyst for CO 2 reduction and graphene catalyst for H 2 S oxidation mediated by EDTA-Fe 2+ /EDTA-Fe 3+ redox couples. The as-prepared solar-driven electrochemical system can realize the simultaneous conversion of CO 2 and H 2 S into carbon monoxide and elemental sulfur at near neutral conditions with high stability and selectivity. This conceptually provides an alternative avenue for the purification of natural gas with added economic and environmental benefits. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Synthesis and crystal structure of the [Co{sub 2}(Nicotinamide){sub 4}(C{sub 4}H{sub 9}COO){sub 4}(H{sub 2}O)] complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadikov, G. G., E-mail: sadgg@igic.ras.ru; Antsyshkina, A. S.; Koksharova, T. V.

    2007-09-15

    The [Co{sub 2}L{sub 4}(C{sub 4}H{sub 9}COO){sub 4}(H{sub 2}O)] coordination compound of cobalt(II) valerate with nicotinamide (L) is synthesized and studied by IR spectroscopy. The crystal structure of the synthesized compound is determined. The crystals are triclinic, and the unit cell parameters are as follows: a = 10.2759(10) A, b = 16.3858(10) A, c = 16.4262(10) A, {alpha} = 100.538(10) deg., {beta} = 101.199(10) deg., {gamma} = 90.813 (10) deg., Z = 2, and space group P1-bar. The structural units of the crystal are dimeric molecular complexes in which pairs of cobalt atoms are linked by triple bridges formed by oxygenmore » atoms of two bidentately coordinated valerate anions and a water molecule. The octahedral coordination of each cobalt atom is complemented by the pyridine nitrogen atoms of two nicotinamide ligands and the oxygen atom of the monodentate valerate group. The hydrocarbon chains of the valerate anions are disordered over two or three positions each.« less

  10. Colorimetric and fluorescent chemosensor for highly selective and sensitive relay detection of Cu2 + and H2PO4- in aqueous media

    NASA Astrophysics Data System (ADS)

    Su, Jun-Xia; Wang, Xiao-Ting; Chang, Jing; Wu, Gui-Yuan; Wang, Hai-Ming; Yao, Hong; Lin, Qi; Zhang, You-Ming; Wei, Tai-Bao

    2017-07-01

    In this manuscript, a new colorimetric and fluorescent chemosensor (T) was designed and synthesized, it could successively detect Cu2 + and H2PO4- in DMSO/H2O (v/v = 9:1, pH = 7.2) buffer solution with high selectivity and sensitivity. When added Cu2 + ions into the solution of T, it showed a color changes from yellow to colorless, meanwhile, the green fluorescence of sensor T quenched. This recognition behavior was not affected in the presence of other cations, including Hg2 +, Ag+, Ca2 +, Co2 +, Ni2 +, Cd2 +, Pb2 +, Zn2 +, Cr3 +, and Mg2 + ions. More interestingly, the Cu2 + ions contain sensor T solution could recover the color and fluorescence upon the addition of H2PO4- anions in the same medium. And other surveyed anions (including F-, Cl-, Br-, I-, AcO-, HSO4-, ClO4-, CN- and SCN-) had nearly no influence on the recognition behavior. The detection limits of T to Cu2 + and T-Cu2 + to H2PO4- were evaluated to be 1.609 × 10- 8 M and 0.994 × 10- 7 M, respectively. In addition, the sensor T also could be served as a recyclable component and the logic gate output was also defined in sensing materials. The test strips based on sensor T were fabricated, which acted as a convenient and efficient Cu2 + and H2PO4- test kits.

  11. Hexaaqua­cobalt(II) bis­(2,2′-sulfanediyldiacetato-κ3 O,S,O′)cobaltate(II) tetra­hydrate

    PubMed Central

    Wang, Huang; Gao, Shan; Ng, Seik Weng

    2011-01-01

    The two CoII atoms in the title salt, [Co(H2O)6][Co(C4H4O4S)2]·4H2O, exist in an octa­hedral coordination environment. In the cation, the Co atom is surrounded by six water mol­ecules, and in the anion, it is bis-O,S,O′-chelated by the thio­acetate ligands. The cations, anions and uncoordinated water mol­ecules are linked by O—H⋯O hydrogen bonds into a three-dimensional network. PMID:22219769

  12. Behaviour of volcanogenic S-bearing compounds (H2S and SO2) in air at Vulcano Island (Aeolian Archipelago, southern Italy)

    NASA Astrophysics Data System (ADS)

    Caponi, Chiara; Tassi, Franco; Ricci, Andrea; Capecchiacci, Francesco; Venturi, Stefania; Cabassi, Jacopo; Vaselli, Orlando

    2017-04-01

    The main sources of SO2 and H2S in air consist of both natural fluid emissions related to active/quiescent volcanoes and hydrothermal systems, and anthropogenic activities (e.g. gas and oil refineries, steel industries, urban traffic). These gas compounds have a strong impact on air quality, since they are strong toxic and climate forcing agents. Notwithstanding, the behaviour of these S-compounds in air once they are released from the contaminant source(s) is poorly known, due to the scarce available data from thermodynamics and direct measurements. Hydrogen sulfide is considered to be relatively reactive in the atmosphere, being easily oxidized to SO2 by photochemical reactions, even though the efficiency of the H2S to SO2 conversion is significantly lowered under dark, dry and relatively cold conditions, leading to a residence time of H2S in air up to 42 days in winter. In this work, H2S and SO2 measurements in air carried out at the Levante beach (Vulcano Island, Aeolian Archipelago), where a number of hydrothermal fluid discharges consisting of fumaroles and submarine emissions occur, are presented and discussed. These volcanic fluids, characterized by an H2S-rich chemical composition, are released in a close proximity to the touristic village of Vulcano Porto. The measurements were carried out using a Thermo Scientific™ Model 450i Analyzer coupled with a Davis® Vantage Vue weather station (air humidity and temperature, wind direction and speed) in 34 fixed spots and along 8 pathways, selected according to: (i) distance from the contaminant source, (ii) wind direction and (iii) accessibility by car (where the instrument was installed). The main aim was to provide empirical insights on the behavior of these air pollutants in relation to the physical and chemical processes controlling their spatial distribution. The measured data were elaborated using a statistical approach to construct spatial distribution maps and conceptual models able to forecast the

  13. Efficient removal of H2S at high temperature using the ionic liquid solutions of [C4mim]3PMo12O40-An organic polyoxometalate.

    PubMed

    Ma, Yunqian; Liu, Xinpeng; Wang, Rui

    2017-06-05

    An innovative approach to H 2 S capture and sulfur recovery via liquid redox at high temperature has been developed using [C 4 mim] 3 PMo 12 O 40 at temperatures ranging from 80 to 180°C, which is superior to the conventional water-based system with an upper limit of working temperature normally below 60°C. The ionic liquids used as solvents include [C 4 mim]Cl, [C 4 mim]BF 4 , [C 4 mim]PF 6 and [C 4 mim]NTf 2 . Microscopic observation and turbidity measurement were used to investigate the dissolution of [C 4 mim] 3 PMo 12 O 40 in the ionic liquids. Stabilization energy between H 2 S and the anion of ionic liquid as well as H 2 O was calculated to illustrate the interaction between H 2 S and the solvents. The cavity theory can be adopted to illustrate the mechanism for H 2 S absorption: the Cl - ion with small radius can be incorporated into the cavities of [C 4 mim] 3 PMo 12 O 40 , and interact with H 2 S strongly. The underlying mechanism for sulfur formation is the redox reaction between H 2 S and PMo 12 O 40 3- . H 2 S can be oxidized to elemental sulfur and Mo 6+ is partly reduced during absorption, according to UV-vis and FTIR spectra. The [C 4 mim] 3 PMo 12 O 40 -[C 4 mim]Cl after reaction can be readily regenerated by air and thus enabling its efficient and repeatitive use. The absorbent of [C 4 mim] 3 PMo 12 O 40 -ionic liquid system provides a new approach for wet oxidation desulfurization at high temperature. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Methylene blue counteracts H2S toxicity-induced cardiac depression by restoring L-type Ca channel activity

    PubMed Central

    Zhang, Xue-Qian; Sonobe, Takashi; Song, Jianliang; Rannals, Matthew D.; Wang, JuFang; Tubbs, Nicole; Cheung, Joseph Y.; Haouzi, Philippe

    2016-01-01

    We have previously reported that methylene blue (MB) can counteract hydrogen sulfide (H2S) intoxication-induced circulatory failure. Because of the multifarious effects of high concentrations of H2S on cardiac function, as well as the numerous properties of MB, the nature of this interaction, if any, remains uncertain. The aim of this study was to clarify 1) the effects of MB on H2S-induced cardiac toxicity and 2) whether L-type Ca2+ channels, one of the targets of H2S, could transduce some of the counteracting effects of MB. In sedated rats, H2S infused at a rate that would be lethal within 5 min (24 μM·kg−1·min−1), produced a rapid fall in left ventricle ejection fraction, determined by echocardiography, leading to a pulseless electrical activity. Blood concentrations of gaseous H2S reached 7.09 ± 3.53 μM when cardiac contractility started to decrease. Two to three injections of MB (4 mg/kg) transiently restored cardiac contractility, blood pressure, and V̇o2, allowing the animals to stay alive until the end of H2S infusion. MB also delayed PEA by several minutes following H2S-induced coma and shock in unsedated rats. Applying a solution containing lethal levels of H2S (100 μM) on isolated mouse cardiomyocytes significantly reduced cell contractility, intracellular calcium concentration ([Ca2+]i) transient amplitudes, and L-type Ca2+ currents (ICa) within 3 min of exposure. MB (20 mg/l) restored the cardiomyocyte function, ([Ca2+]i) transient, and ICa. The present results offer a new approach for counteracting H2S toxicity and potentially other conditions associated with acute inhibition of L-type Ca2+ channels. PMID:26962024

  15. Fabrication of 2D SnS2/g-C3N4 heterojunction with enhanced H2 evolution during photocatalytic water splitting.

    PubMed

    Liu, Enzhou; Chen, Jibing; Ma, Yongning; Feng, Juan; Jia, Jia; Fan, Jun; Hu, Xiaoyun

    2018-08-15

    In this work, the 2D SnS 2 /g-C 3 N 4 heterojunctions were successfully prepared by heating the homogeneous dispersion of SnS 2 nanosheets and g-C 3 N 4 nanosheets using a microwave muffle. SEM, TEM and HRTEM images indicated that the SnS 2 nanosheets were loaded on the surface of the g-C 3 N 4 nanosheets. The UV-vis spectra show that the absorption intensity of the as-prepared samples was increased and the absorption range was also extended from 420 nm to approximately 600 nm. The H 2 production rate over 5 wt% SnS 2 /g-C 3 N 4 can reach 972.6 μmol·h -1 ·g -1 under visible light irradiation (λ > 420 nm) using TEOA as the sacrifice agent and Pt as the electron trap, which is 2.9 and 25.6 times higher than those of the pristine g-C 3 N 4 and SnS 2 , respectively. According to the obtained PL spectra, photocurrent and EIS spectra, the enhanced performance for H 2 generation over the heterojunctions is primarily ascribed to the rapid charge transfer arising from the suitable band gap positions leading to an improved photocatalytic performance. The recycling experiments indicated that the as-prepared composites exhibit good stability in H 2 production. Additionally, a possible enhanced mechanism for H 2 evolution was deduced based on the results obtained by various characterization techniques. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Robustly photogenerating H2 in water using FeP/CdS catalyst under solar irradiation

    NASA Astrophysics Data System (ADS)

    Cheng, Huanqing; Lv, Xiao-Jun; Cao, Shuang; Zhao, Zong-Yan; Chen, Yong; Fu, Wen-Fu

    2016-01-01

    Photosplitting water for H2 production is a promising, sustainable approach for solar-to-chemical energy conversion. However, developing low-cost, high efficient and stable photocatalysts remains the major challenge. Here we report a composite photocatalyst consisting of FeP nanoparticles and CdS nanocrystals (FeP/CdS) for photogenerating H2 in aqueous lactic acid solution under visible light irradiation. Experimental results demonstrate that the photocatalyst is highly active with a H2-evolution rate of 202000 μmol h-1 g-1 for the first 5 h (106000 μmol h-1 g-1 under natural solar irradiation), which is the best H2 evolution activity, even 3-fold higher than the control in situ photo-deposited Pt/CdS system, and the corresponding to an apparent quantum efficiency of over 35% at 520 nm. More important, we found that the system exhibited excellent stability and remained effective after more than 100 h in optimal conditions under visible light irradiation. A wide-ranging analysis verified that FeP effectively separates the photoexcited charge from CdS and showed that the dual active sites in FeP enhance the activity of FeP/CdS photocatalysts.

  17. H-implantation in SO 2 and CO 2 ices

    NASA Astrophysics Data System (ADS)

    Garozzo, M.; Fulvio, D.; Gomis, O.; Palumbo, M. E.; Strazzulla, G.

    2008-07-01

    Ices in the solar system are observed on the surface of planets, satellites, comets and asteroids where they are continuously subordinate at particle fluxes (cosmic ions, solar wind and charged particles caught in the magnetosphere of the planets) that deeply modify their physical and structural properties. Each incoming ion destroys molecular bonds producing fragments that, by recombination, form new molecules also different from the original ones. Moreover, if the incoming ion is reactive (H +, O n+ , S n+ , etc.), it can concur to the formation of new molecules. Those effects can be studied by laboratory experiments where, with some limitation, it is possible to reproduce the astrophysical environments of planetary ices. In this work, we describe some experiments of 15-100 keV H + and He + implantation in pure sulfur dioxide (SO 2) at 16 and 80 K and carbon dioxide (CO 2) at 16 K ices aimed to search for the formation of new molecules. Among other results we confirm that carbonic acid (H 2CO 3) is formed after H-implantation in CO 2, vice versa H-implantation in SO 2 at both temperatures does not produce measurable quantity of sulfurous acid (H 2SO 3). The results are discussed in the light of their relevance to the chemistry of some solar system objects, particularly of Io, the innermost of Jupiter's Galilean satellites, that exhibits a surface very rich in frost SO 2 and it is continuously bombarded with H + ions caught in Jupiter's magnetosphere.

  18. Garlic oil polysulfides: H2S- and O2-independent prooxidants in buffer and antioxidants in cells

    PubMed Central

    DeLeon, Eric R.; Gao, Yan; Huang, Evelyn

    2016-01-01

    The health benefits of garlic and other organosulfur-containing foods are well recognized and have been attributed to both prooxidant and antioxidant activities. The effects of garlic are surprisingly similar to those of hydrogen sulfide (H2S), which is also known to be released from garlic under certain conditions. However, recent evidence suggests that polysulfides, not H2S, may be the actual mediator of physiological signaling. In this study, we monitored formation of H2S and polysulfides from garlic oil in buffer and in human embryonic kidney (HEK) 293 cells with fluorescent dyes, 7-azido-4-methylcoumarin and SSP4, respectively and redox activity with two redox indicators redox-sensitive green fluorescent protein (roGFP) and DCF. Our results show that H2S release from garlic oil in buffer requires other low-molecular-weight thiols, such as cysteine (Cys) or glutathione (GSH), whereas polysulfides are readily detected in garlic oil alone. Administration of garlic oil to cells rapidly increases intracellular polysulfide but has minimal effects on H2S unless Cys or GSH are also present in the extracellular medium. We also observed that garlic oil and diallyltrisulfide (DATS) potently oxidized roGFP in buffer but did not affect DCF. This appears to be a direct polysulfide-mediated oxidation that does not require a reactive oxygen species intermediate. Conversely, when applied to cells, garlic oil became a significant intracellular reductant independent of extracellular Cys or GSH. This suggests that intracellular metabolism and further processing of the sulfur moieties are necessary to confer antioxidant properties to garlic oil in vivo. PMID:27101293

  19. Garlic oil polysulfides: H2S- and O2-independent prooxidants in buffer and antioxidants in cells.

    PubMed

    DeLeon, Eric R; Gao, Yan; Huang, Evelyn; Olson, Kenneth R

    2016-06-01

    The health benefits of garlic and other organosulfur-containing foods are well recognized and have been attributed to both prooxidant and antioxidant activities. The effects of garlic are surprisingly similar to those of hydrogen sulfide (H2S), which is also known to be released from garlic under certain conditions. However, recent evidence suggests that polysulfides, not H2S, may be the actual mediator of physiological signaling. In this study, we monitored formation of H2S and polysulfides from garlic oil in buffer and in human embryonic kidney (HEK) 293 cells with fluorescent dyes, 7-azido-4-methylcoumarin and SSP4, respectively and redox activity with two redox indicators redox-sensitive green fluorescent protein (roGFP) and DCF. Our results show that H2S release from garlic oil in buffer requires other low-molecular-weight thiols, such as cysteine (Cys) or glutathione (GSH), whereas polysulfides are readily detected in garlic oil alone. Administration of garlic oil to cells rapidly increases intracellular polysulfide but has minimal effects on H2S unless Cys or GSH are also present in the extracellular medium. We also observed that garlic oil and diallyltrisulfide (DATS) potently oxidized roGFP in buffer but did not affect DCF. This appears to be a direct polysulfide-mediated oxidation that does not require a reactive oxygen species intermediate. Conversely, when applied to cells, garlic oil became a significant intracellular reductant independent of extracellular Cys or GSH. This suggests that intracellular metabolism and further processing of the sulfur moieties are necessary to confer antioxidant properties to garlic oil in vivo. Copyright © 2016 the American Physiological Society.

  20. Structures and Spectroscopic Properties of F-(H2O) n with n = 1-10 Clusters from a Global Search Based On Density Functional Theory.

    PubMed

    Shi, Ruili; Wang, Pengju; Tang, Lingli; Huang, Xiaoming; Chen, Yonggang; Su, Yan; Zhao, Jijun

    2018-04-05

    Using a genetic algorithm incorporated in density functional theory, we explore the ground state structures of fluoride anion-water clusters F - (H 2 O) n with n = 1-10. The F - (H 2 O) n clusters prefer structures in which the F - anion remains at the surface of the structure and coordinates with four water molecules, as the F - (H 2 O) n clusters have strong F - -H 2 O interactions as well as strong hydrogen bonds between H 2 O molecules. The strong interaction between the F - anion and adjacent H 2 O molecule leads to a longer O-H distance in the adjacent molecule than in an individual water molecule. The simulated infrared (IR) spectra of the F - (H 2 O) 1-5 clusters obtained via second-order vibrational perturbation theory (VPT2) and including anharmonic effects reproduce the experimental results quite well. The strong interaction between the F - anion and water molecules results in a large redshift (600-2300 cm -1 ) of the adjacent O-H stretching mode. Natural bond orbital (NBO) analysis of the lowest-energy structures of the F - (H 2 O) 1-10 clusters illustrates that charge transfer from the lone pair electron orbital of F - to the antibonding orbital of the adjacent O-H is mainly responsible for the strong interaction between the F - anion and water molecules, which leads to distinctly different geometric and vibrational properties compared with neutral water clusters.

  1. Interaction of soy isoflavones and their main metabolites with hOATP2B1 transporter.

    PubMed

    Navrátilová, Lucie; Applová, Lenka; Horký, Pavel; Mladěnka, Přemysl; Pávek, Petr; Trejtnar, František

    2018-06-22

    Membrane organic anion-transporting polypeptides (OATPs) are responsible for the drug transmembrane transport within the human body. The function of OATP2B1 transporter can be inhibited by various natural compounds. Despite increased research interest in soya as a part of human diet, the effect of its active components to interact with hOATP2B1 has not been elucidated in a complex extent. This in vitro study examined the inhibitory effect of main soy isoflavones (daidzin, daidzein, genistin, genistein, glycitin, glycitein, biochanin A, formononetin) and their metabolites formed in vivo (S-equol, O-desmethylangolensin) towards human OATP2B1 transporter. MDCKII cells overexpressing hOATP2B1 were employed to determine quantitative inhibitory parameters of the tested compounds and to analyze mechanism/s of the inhibitory interaction. The study showed that aglycones of soy isoflavones and the main biologically active metabolite S-equol were able to significantly inhibit hOATP2B1-mediated transport. The K i values for most of aglycones range from 1 to 20 μM. In contrast, glucosides did not exhibit significant inhibitory effect. The kinetic analysis did not indicate a uniform type of inhibition towards the hOATP2B1 although predominant mechanism of inhibition seemed to be competitive. These findings may suggest that tested soy isoflavones and their metabolites might affect transport of xenobiotics including drugs across tissue barriers via hOATP2B1.

  2. The role played by amine and ethyl group in the reversible thermochromic process of [(C2H5)2NH2]2CuCl4 probing by FTIR and 2D-COS analysis

    NASA Astrophysics Data System (ADS)

    Xie, Dongjin; Xu, Jing; Cheng, Haifeng; Wang, Nannan; Zhou, Qun

    2018-06-01

    Thermochromic compound [(C2H5)2NH2]2CuCl4 displays a solid-solid phase transition at 52 °C apparent with color changing from green to yellow, induced by the geometry of [CuCl4]2- anion (regarded as chromophore of the compound) ranging from square-planar to flattened tetrahedral structure. Fourier transform infrared (FTIR) spectroscopy and two-dimensional correlation (2D-COS) analysis have been applied to study the role played by the amine and ethyl group of the ammonium cation during the phase transition process in heating and cooling process. With temperature increasing, strength weakening of the N-H…Cl H-bond and thermal disordering of the alkyl chain both occur in the phase transition. 2D-COS analysis reveals the N-H…Cl H-bond responds to increasing temperature in the first place, and may the dominating driving force for the structure variation of [CuCl4]2- anion. Although the thermochromic process of [(C2H5)2NH2]2CuCl4 is a reversible process, the sequential order of the variation of NH2+ and alkyl group of [(C2H5)2NH2]2CuCl4 derived by 2D-COS analysis during heating and cooling process are reverse, indicating the dynamic process of the phase transition is not perfect reversible. The existence of undercooling phenomenon in the cooling process has been revealed by 2D-COS analysis.

  3. Detection of C2H4 Neptune from ISO/PHT-S Observations

    NASA Technical Reports Server (NTRS)

    Schulz, B.; Encrenaz, Th.; Bezard, B.; Romani, P. N.; Lellouch, E.; Atreya, S. K.

    1999-01-01

    The 6-12 micrometer spectrum of Neptune has been recorded with the PHT-S instrument of the Infrared Space Observatory (ISO) at a resolution of 0.095 micrometer. In addition to the emissions of CH4, CH3D and C2H6 previously identified, the spectrum shows the first firm identification of ethylene C2H4. The inferred column density above the 0.2-mbar level is in the range (1.1 - 3) x 10(exp 14) molecules/cm. To produce this low amount, previous photochemical models invoked rapid mixing between the source and sink regions of C2H4. We show that this requirement can be relaxed if recent laboratory measurements of CH4 photolysis branching ratios at Lyman alpha are used.

  4. Interpreting activity in H(2)O-H(2)SO(4) binary nucleation.

    PubMed

    Bein, Keith J; Wexler, Anthony S

    2007-09-28

    Sulfuric acid-water nucleation is thought to be a key atmospheric mechanism for forming new condensation nuclei. In earlier literature, measurements of sulfuric acid activity were interpreted as the total (monomer plus hydrate) concentration above solution. Due to recent reinterpretations, most literature values for H(2)SO(4) activity are thought to represent the number density of monomers. Based on this reinterpretation, the current work uses the most recent models of H(2)O-H(2)SO(4) binary nucleation along with perturbation analyses to predict a decrease in critical cluster mole fraction, increase in critical cluster diameter, and orders of magnitude decrease in nucleation rate. Nucleation rate parameterizations available in the literature, however, give opposite trends. To resolve these discrepancies, nucleation rates were calculated for both interpretations of H(2)SO(4) activity and directly compared to the available parameterizations as well as the perturbation analysis. Results were in excellent agreement with older parameterizations that assumed H(2)SO(4) activity represents the total concentration and duplicated the predicted trends from the perturbation analysis, but differed by orders of magnitude from more recent parameterizations that assume H(2)SO(4) activity represents only the monomer. Comparison with experimental measurements available in the literature revealed that the calculations of the current work assuming a(a) represents the total concentration are most frequently in agreement with observations.

  5. FRET ratiometric probes reveal the chiral-sensitive cysteine-dependent H2S production and regulation in living cells

    NASA Astrophysics Data System (ADS)

    Wei, Lv; Yi, Long; Song, Fanbo; Wei, Chao; Wang, Bai-Fan; Xi, Zhen

    2014-04-01

    Hydrogen sulfide (H2S) is an endogenously produced gaseous signalling molecule with multiple biological functions. In order to visualize and quantify the endogenous in situ production of H2S in living cells, here we developed two new sulphide ratiometric probes (SR400 and SR550) based on fluorescence resonance energy transfer (FRET) strategy for live capture of H2S. The FRET-based probes show excellent selectivity toward H2S in a high thiol background under physiological buffer. The probe can be used to in situ visualize cysteine-dependent H2S production in a chiral-sensitive manner in living cells. The ratiometric imaging studies indicated that D-Cys induces more H2S production than that of L-Cys in mitochondria of human embryonic kidney 293 cells (HEK293). The cysteine mimics propargylglycine (PPG) has also been found to inhibit the cysteine-dependent endogenous H2S production in a chiral-sensitive manner in living cells. D-PPG inhibited D-Cys-dependent H2S production more efficiently than L-PPG, while, L-PPG inhibited L-Cys-dependent H2S production more efficiently than D-PPG. Our bioimaging studies support Kimura's discovery of H2S production from D-cysteine in mammalian cells and further highlight the potential of D-cysteine and its derivatives as an alternative strategy for classical H2S-releasing drugs.

  6. Chlorogenic acid analogues from Gynura nepalensis protect H9c2 cardiomyoblasts against H2O2-induced apoptosis

    PubMed Central

    Yu, Bang-wei; Li, Jin-long; Guo, Bin-bin; Fan, Hui-min; Zhao, Wei-min; Wang, He-yao

    2016-01-01

    Aim: Chlorogenic acid has shown protective effect on cardiomyocytes against oxidative stress-induced damage. Herein, we evaluated nine caffeoylquinic acid analogues (1–9) isolated from the leaves of Gynura nepalensis for their protective effect against H2O2-induced H9c2 cardiomyoblast damage and explored the underlying mechanisms. Methods: H9c2 cardiomyoblasts were exposed to H2O2 (0.3 mmol/L) for 3 h, and cell viability was detected with MTT assay. Hoechst 33342 staining was performed to evaluate cell apoptosis. MMPs (mitochondrial membrane potentials) were measured using a JC-1 assay kit, and ROS (reactive oxygen species) generation was measured using CM-H2 DCFDA. The expression levels of relevant proteins were detected using Western blot analysis. Results: Exposure to H2O2 markedly decreased the viability of H9c2 cells and catalase activity, and increased LDH release and intracellular ROS production; accompanied by a loss of MMP and increased apoptotic rate. Among the 9 chlorogenic acid analogues as well as the positive control drug epigallocatechin gallate (EGCG) tested, compound 6 (3,5-dicaffeoylquinic acid ethyl ester) was the most effective in protecting H9c2 cells from H2O2-induced cell death. Pretreatment with compound 6 (1.56–100 μmol/L) dose-dependently alleviated all the H2O2-induced detrimental effects. Moreover, exposure to H2O2 significantly increased the levels of Bax, p53, cleaved caspase-8, and cleaved caspase-9, and decreased the level of Bcl-2, resulting in cell apoptosis. Exposure to H2O2 also significantly increased the phosphorylation of p38, JNK and ERK in the H9c2 cells. Pretreatment with compound 6 (12.5 and 25 μmol/L) dose-dependently inhibited the H2O2-induced increase in the level of cleaved caspase-9 but not of cleaved caspase-8. It also dose-dependently suppressed the H2O2-induced phosphorylation of JNK and ERK but not that of p38. Conclusion: Compound 6 isolated from the leaves of Gynura nepalensis potently protects H9c2

  7. Metagenomic Evidence for H2 Oxidation and H2 Production by Serpentinite-Hosted Subsurface Microbial Communities

    PubMed Central

    Brazelton, William J.; Nelson, Bridget; Schrenk, Matthew O.

    2012-01-01

    Ultramafic rocks in the Earth’s mantle represent a tremendous reservoir of carbon and reducing power. Upon tectonic uplift and exposure to fluid flow, serpentinization of these materials generates copious energy, sustains abiogenic synthesis of organic molecules, and releases hydrogen gas (H2). In order to assess the potential for microbial H2 utilization fueled by serpentinization, we conducted metagenomic surveys of a marine serpentinite-hosted hydrothermal chimney (at the Lost City hydrothermal field) and two continental serpentinite-hosted alkaline seeps (at the Tablelands Ophiolite, Newfoundland). Novel [NiFe]-hydrogenase sequences were identified at both the marine and continental sites, and in both cases, phylogenetic analyses indicated aerobic, potentially autotrophic Betaproteobacteria belonging to order Burkholderiales as the most likely H2-oxidizers. Both sites also yielded metagenomic evidence for microbial H2 production catalyzed by [FeFe]-hydrogenases in anaerobic Gram-positive bacteria belonging to order Clostridiales. In addition, we present metagenomic evidence at both sites for aerobic carbon monoxide utilization and anaerobic carbon fixation via the Wood–Ljungdahl pathway. In general, our results point to H2-oxidizing Betaproteobacteria thriving in shallow, oxic–anoxic transition zones and the anaerobic Clostridia thriving in anoxic, deep subsurface habitats. These data demonstrate the feasibility of metagenomic investigations into novel subsurface habitats via surface-exposed seeps and indicate the potential for H2-powered primary production in serpentinite-hosted subsurface habitats. PMID:22232619

  8. 45 CFR 1626.11 - H-2 agricultural workers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false H-2 agricultural workers. 1626.11 Section 1626.11... ON LEGAL ASSISTANCE TO ALIENS § 1626.11 H-2 agricultural workers. (a) Nonimmigrant agricultural workers admitted under the provisions of 8 U.S.C. 1101(a)(15)(h)(ii), commonly called H-2 workers, may be...

  9. H2 Detection via Polarography

    NASA Technical Reports Server (NTRS)

    Dominquez, Jesus; Barile, Ron

    2006-01-01

    Polarography is the measurement of the current that flows in solution as a function of an applied voltage. The actual form of the observed polarographic current depends upon the manner in which the voltage is applied and on the characteristics of the working electrode. The new gas polarographic H2 sensor shows a current level increment with concentration of the gaseous H2 similar to those relating to metal ions in liquid electrolytes in well-known polarography. This phenomenon is caused by the fact that the diffusion of the gaseous H2 through a gas diffusion hole built in the sensor is a rate-determining step in the gaseous-hydrogen sensing mechanism. The diffusion hole artificially limits the diffusion of the gaseous H2 toward the electrode located at the sensor cavity. This gas polarographic H2 sensor is actually an electrochemical-pumping cell since the gaseous H2 is in fact pumped via the electrochemical driving force generated between the electrodes. Gaseous H2 enters the diffusion hole and reaches the first electrode (anode) located in the sensor cavity to be transformed into an H ions or protons; H ions pass through the electrolyte and reach the second electrode (cathode) to be reformed to gaseous H2. Gas polarographic O2 sensors are commercially available; a gas polarographic O2 sensor was used to prove the feasibility of building a new gas polarographic H2 sensor.

  10. Removal of H2S in down-flow GAC biofiltration using sulfide oxidizing bacteria from concentrated latex wastewater.

    PubMed

    Rattanapan, Cheerawit; Boonsawang, Piyarat; Kantachote, Duangporn

    2009-01-01

    A biofiltration system with sulfur oxidizing bacteria immobilized on granular activated carbon (GAC) as packing materials had a good potential when used to eliminate H(2)S. The sulfur oxidizing bacteria were stimulated from concentrated latex wastewater with sulfur supplement under aerobic condition. Afterward, it was immobilized on GAC to test the performance of cell-immobilized GAC biofilter. In this study, the effect of inlet H(2)S concentration, H(2)S gas flow rate, air gas flow rate and long-term operation on the H(2)S removal efficiency was investigated. In addition, the comparative performance of sulfide oxidizing bacterium immobilized on GAC (biofilter A) and GAC without cell immobilization (biofilter B) systems was studied. It was found that the efficiency of the H(2)S removal was more than 98% even at high concentrations (200-4000 ppm) and the maximum elimination capacity was about 125 g H(2)S/m(3)of GAC/h in the biofilter A. However, the H(2)S flow rate of 15-35 l/h into both biofilters had little influence on the efficiency of H(2)S removal. Moreover, an air flow rate of 5.86 l/h gave complete removal of H(2)S (100%) in biofilter A. During the long-term operation, the complete H(2)S removal was achieved after 3-days operation in biofilter A and remained stable up to 60-days.

  11. Refinements in an Mg/MgH2/H2O-Based Hydrogen Generator

    NASA Technical Reports Server (NTRS)

    Kindler, Andrew; Huang, Yuhong

    2010-01-01

    Some refinements have been conceived for a proposed apparatus that would generate hydrogen (for use in a fuel cell) by means of chemical reactions among magnesium, magnesium hydride, and steam. The refinements lie in tailoring spatial and temporal distributions of steam and liquid water so as to obtain greater overall energy-storage or energy-generation efficiency than would otherwise be possible. A description of the prior art is prerequisite to a meaningful description of the present refinements. The hydrogen-generating apparatus in question is one of two versions of what was called the "advanced hydrogen generator" in "Fuel-Cell Power Systems Incorporating Mg-Based H2 Generators" (NPO-43554), NASA Tech Briefs, Vol. 33, No. 1 (January 2009), page 52. To recapitulate: The apparatus would include a reactor vessel that would be initially charged with magnesium hydride. The apparatus would exploit two reactions: The endothermic decomposition reaction MgH2-->Mg + H2, which occurs at a temperature greater than or equal to 300 C, and The exothermic oxidation reaction MgH2 + H2O MgO + 2H2, which occurs at a temperature greater than or equal to 330 C.

  12. Homoleptic 2,2'-bipyridine metalates(-I) of iron and cobalt, one cocrystallized with an anthracene radical anion and the other with neutral anthracene.

    PubMed

    Brennessel, William W; Ellis, John E

    2014-08-01

    Homoleptic 2,2'-bipyridine (bipy) metalates of iron and cobalt have been synthesized directly from the corresponding homoleptic anthracene metalates. In the iron structure, bis[([2.2.2]cryptand)potassium(I)] tris(2,2'-bipyridine)ferrate(-I) anthracene(-I), [K(C18H36N2O6)]2[Fe(C10H8N2)3](C14H10), the asymmetric unit contains one potassium complex cation in a general position, the Fe center and one and a half bipy ligands of the ferrate complex on a crystallographic twofold axis that includes the Fe atom, and one half of an anthracene radical anion whose other half is generated by a crystallographic inversion center. The cations and anions are well separated and the geometry about the Fe center is essentially octahedral. In the cobalt structure, ([2.2.2]cryptand)potassium(I) bis(2,2'-bipyridine)cobaltate(-I) anthracene hemisolvate tetrahydrofuran (THF) disolvate, [K(C18H36N2O6)][Co(C10H8N2)2]·0.5C14H10·2C4H8O, the asymmetric unit contains the cation, anion, and both cocrystallized THF solvent molecules in general positions, and one half of a cocrystallized anthracene molecule whose other half is generated by a crystallographic inversion center. The cation and anion are well separated and the ligand planes in the cobaltate anion are periplanar. Each anthracene molecule is midway between and is oriented perpendicular to a pair of symmetry-related bipy ligands such that aromatic donor-acceptor interactions may play a role in the packing arrangement. The lengths of the bonds that connect the bipy rings support the assertion that the ligands are bipy radical anions in the iron structure. However, in the case of cobalt, these lengths are between the known ranges for a bipy radical anion and a bipy dianion, and therefore no conclusion can be made from the crystallography alone. One cocrystallized THF solvent molecule in the cobalt structure was modeled as disordered over three positions with appropriate geometric and thermal restraints, which resulted in a refined

  13. Trimetallic Hybrid Nanoflower-Decorated MoS2 Nanosheet Sensor for Direct in Situ Monitoring of H2O2 Secreted from Live Cancer Cells.

    PubMed

    Dou, Baoting; Yang, Jianmei; Yuan, Ruo; Xiang, Yun

    2018-05-01

    In situ monitoring of hydrogen peroxide (H 2 O 2 ) secreted from live cells plays a critical role in elucidating many cellular signaling pathways, and it is a significant challenge to selectively detect these low levels of endogenous H 2 O 2 . To address this challenge, we report the establishment of a trimetallic hybrid nanoflower-decorated MoS 2 nanosheet-modified sensor for in situ monitoring of H 2 O 2 secreted from live MCF-7 cancer cells. The Au-Pd-Pt nanoflower-dispersed MoS 2 nanosheets are synthesized by a simple wet-chemistry method, and the resulting nanosheet composites exhibit significantly enhanced catalytic activity toward electrochemical reduction of H 2 O 2 , due to the synergistic effect of the highly dispersed trimetallic hybrid nanoflowers and the MoS 2 nanosheets, thereby resulting in ultrasensitive detection of H 2 O 2 with a subnanomolar level detection limit in vitro. Also the immobilization of the laminin glycoproteins on the surface of the nanocomposites increases its biocompatibility for cell adhesion and growth, which enables in situ electrochemical monitoring of H 2 O 2 directly secreted from live cells for potential application of such sensor in cellular biology, clinical diagnosis, and pathophysiology.

  14. High-level ab initio predictions for the ionization energy, electron affinity, and heats of formation of cyclopentadienyl radical, cation, and anion, C5H5/C5H5+/C5H5-.

    PubMed

    Lo, Po-Kam; Lau, Kai-Chung

    2014-04-03

    The ionization energy (IE), electron affinity (EA), and heats of formation (ΔH°f0/ΔH°f298) for cyclopentadienyl radical, cation, and anion, C5H5/C5H5(+)/C5H5(-), have been calculated by wave function-based ab initio CCSDT/CBS approach, which involves approximation to complete basis set (CBS) limit at coupled-cluster level with up to full triple excitations (CCSDT). The zero-point vibrational energy correction, core-valence electronic correction, scalar relativistic effect, and higher-order corrections beyond the CCSD(T) wave function are included in these calculations. The allylic [C5H5((2)A2)] and dienylic [C5H5((2)B1)] forms of cyclopentadienyl radical are considered: the ground state structure exists in the dienyl form and it is about 30 meV more stable than the allylic structure. Both structures are lying closely and are interconvertible along the normal mode of b2 in-plane vibration. The CCSDT/CBS predictions (in eV) for IE[C5H5(+)((3)A1')←C5H5((2)B1)] = 8.443, IE[C5H5(+)((1)A1)←C5H5((2)B1)] = 8.634 and EA[C5H5(-)((1)A1')←C5H5((2)B1)] = 1.785 are consistent with the respective experimental values of 8.4268 ± 0.0005, 8.6170 ± 0.0005, and 1.808 ± 0.006, obtained from photoelectron spectroscopic measurements. The ΔH°f0/ΔH°f298's (in kJ/mol) for C5H5/C5H5(+)/C5H5(-) have also been predicted by the CCSDT/CBS method: ΔH°f0/ΔH°f298[C5H5((2)B1)] = 283.6/272.0, ΔH°f0/ΔH°f298[C5H5(+)((3)A1')] = 1098.2/1086.9, ΔH°f0/ΔH°f298[C5H5(+)((1)A1)] = 1116.6/1106.0, and ΔH°f0/ΔH°f298[C5H5(-)((1)A1')] = 111.4/100.0. The comparisons between the CCSDT/CBS predictions and the experimental values suggest that the CCSDT/CBS procedure is capable of predicting reliable IE(C5H5)'s and EA(C5H5) with uncertainties of ± 17 and ± 23 meV, respectively.

  15. A correlated ab initio study of linear carbon-chain radicals CnH (n = 2-7)

    NASA Technical Reports Server (NTRS)

    Woon, D. E.; Loew, G. H. (Principal Investigator)

    1995-01-01

    Linear carbon-chain radicals CnH for n = 2-7 have been studied with correlation consistent valence and core-valence basis sets and the coupled cluster method RCCSD(T). Equilibrium structures, rotational constants, and dipole moments are reported and compared with available experimental data. The ground state of the even-n series changes from 2 sigma+ to 2 pi as the chain is extended. For C4H, the 2 sigma+ state was found to lie only 72 cm-1 below the 2 pi state in the estimated complete basis set limit for valence correlation. The C2H- and C3H- anions have also been characterized.

  16. Mechanism of H2S Oxidation by the Dissimilatory Perchlorate-Reducing Microorganism Azospira suillum PS

    PubMed Central

    Mehta-Kolte, Misha G.; Loutey, Dana; Wang, Ouwei; Youngblut, Matthew D.; Hubbard, Christopher G.; Wetmore, Kelly M.; Conrad, Mark E.

    2017-01-01

    ABSTRACT The genetic and biochemical basis of perchlorate-dependent H2S oxidation (PSOX) was investigated in the dissimilatory perchlorate-reducing microorganism (DPRM) Azospira suillum PS (PS). Previously, it was shown that all known DPRMs innately oxidize H2S, producing elemental sulfur (So). Although the process involving PSOX is thermodynamically favorable (ΔG°′ = −206 kJ ⋅ mol−1 H2S), the underlying biochemical and genetic mechanisms are currently unknown. Interestingly, H2S is preferentially utilized over physiological electron donors such as lactate or acetate although no growth benefit is obtained from the metabolism. Here, we determined that PSOX is due to a combination of enzymatic and abiotic interactions involving reactive intermediates of perchlorate respiration. Using various approaches, including barcode analysis by sequencing (Bar-seq), transcriptome sequencing (RNA-seq), and proteomics, along with targeted mutagenesis and biochemical characterization, we identified all facets of PSOX in PS. In support of our proposed model, deletion of identified upregulated PS genes traditionally known to be involved in sulfur redox cycling (e.g., Sox, sulfide:quinone reductase [SQR]) showed no defect in PSOX activity. Proteomic analysis revealed differential abundances of a variety of stress response metal efflux pumps and divalent heavy-metal transporter proteins, suggesting a general toxicity response. Furthermore, in vitro biochemical studies demonstrated direct PSOX mediated by purified perchlorate reductase (PcrAB) in the absence of other electron transfer proteins. The results of these studies support a model in which H2S oxidation is mediated by electron transport chain short-circuiting in the periplasmic space where the PcrAB directly oxidizes H2S to So. The biogenically formed reactive intermediates (ClO2− and O2) subsequently react with additional H2S, producing polysulfide and So as end products. PMID:28223460

  17. Arginine-Containing Ligands Enhance H-2 Oxidation Catalyst Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutta, Arnab; Roberts, John A.; Shaw, Wendy J.

    2014-06-16

    In H2 fuel cells, performance depends on factors controlling turnover frequency and energy efficiency in the electrocatalytic oxidation of H2. Nature uses the hydrogenase enzymes to oxidize H2 at high turnover frequencies (up to 20,000 s-1) and low overpotentials (<100 mV), while the fastest synthetic catalyst reported to date only oxidizes H2 at 50 s-1 under 1 atm H2. Here we report a water-soluble complex incorporating the amino acid arginine, [NiII(PCy2NArg2)2]6+, that operates at 210 s-1 (180 mV overpotential) under 1 atm H2 and 144,000 s-1 (460 mV overpotential) under 133 atm H2. The complex functions from pH 0-14 withmore » rates increasing at lower pH values. The arginine groups impart water solubility and play a critical role in enhancing turnover frequency, most consistent with an intramolecular Arg-Arg interaction that controls the structure of the catalyst active site. This work was funded by the Office of Science Early Career Research Program through the US DOE, BES (AD, WJS), and the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US DOE, BES (JASR). PNNL is operated by Battelle for the US DOE.« less

  18. H2O-CO2-S-Cl partitioning and mixing in rhyolitic melts and fluid - Implications on closed-system degassing in rhyolite

    NASA Astrophysics Data System (ADS)

    Ding, S.; Webster, J. D.

    2017-12-01

    Magmatic degassing involving multiple volatile components (C, O, H, S, Cl, etc.) is one of the key factors influencing the timing and nature of volcanic eruptions, and the chemistry of volcanic gases released to the surface. In particular, exsolution of these volatiles from silicic magma during ascent could trigger explosive volcanic eruptions, which can exert strong impacts on surface temperature, ecology and human health. However, quantitative evaluation of this process in silicic magma remains ambiguous due to the lack of experiments in such chemically complex systems. Rhyolite-fluid(s) equilibria experiments were conducted in an IHPVat 100-300 MPa and 800 ° C to determine the solubilities, fluid-melt partitioning, and mixing properties of H2O, CO2, S, and Cl in the oxygen fugacity (fO2) range of FMQ to FMQ+3. The integrated bulk fluids contain up to 94 mol% H2O, 32 mol% CO2, 1 mol% S and 1mol% Cl. Rhyolite melt dissolved 20- 770 ppm CO2 and 4-7 wt.% H2O, varying with pressure, fluid composition, and fO2. Concentrations of H2O and CO2 in melt from C-O-H-S-Cl- bearing experiments at 100 and 200 MPa, and from C-O-H only experiments are generally consistent with the predictions of existing CO2-H2O solubility models based on the C-O-H only system [1-4], while the solubilities of H2O and CO2 in melt with addition of S±Cl at 300 MPa are less than those of the C-O-H- only system. This reduction in H2O and CO2 solubilities exceeds the effects of simple dilution of the coexisting fluid owing to addition of other volatiles, and rather, reflects complex mixing relations. Rhyolite melt also dissolved 20-150 ppm S and 850-2000 ppm Cl, varying with pressure. At 300 MPa, S concentrations in the melt change with fO2. The partitioning of CO2 and S between fluid and melt varies as a function of fluid composition and fO2. Solubilities and complex mixing relationships of CO2, H2O, S and Cl revealed in our experiments can be applied to massive rhyolitic eruptions like those of the

  19. Accelerating Palladium Nanowire H2 Sensors Using Engineered Nanofiltration.

    PubMed

    Koo, Won-Tae; Qiao, Shaopeng; Ogata, Alana F; Jha, Gaurav; Jang, Ji-Soo; Chen, Vivian T; Kim, Il-Doo; Penner, Reginald M

    2017-09-26

    The oxygen, O 2 , in air interferes with the detection of H 2 by palladium (Pd)-based H 2 sensors, including Pd nanowires (NWs), depressing the sensitivity and retarding the response/recovery speed in air-relative to N 2 or Ar. Here, we describe the preparation of H 2 sensors in which a nanofiltration layer consisting of a Zn metal-organic framework (MOF) is assembled onto Pd NWs. Polyhedron particles of Zn-based zeolite imidazole framework (ZIF-8) were synthesized on lithographically patterned Pd NWs, leading to the creation of ZIF-8/Pd NW bilayered H 2 sensors. The ZIF-8 filter has many micropores (0.34 nm for gas diffusion) which allows for the predominant penetration of hydrogen molecules with a kinetic diameter of 0.289 nm, whereas relatively larger gas molecules including oxygen (0.345 nm) and nitrogen (0.364 nm) in air are effectively screened, resulting in superior hydrogen sensing properties. Very importantly, the Pd NWs filtered by ZIF-8 membrane (Pd NWs@ZIF-8) reduced the H 2 response amplitude slightly (ΔR/R 0 = 3.5% to 1% of H 2 versus 5.9% for Pd NWs) and showed 20-fold faster recovery (7 s to 1% of H 2 ) and response (10 s to 1% of H 2 ) speed compared to that of pristine Pd NWs (164 s for response and 229 s for recovery to 1% of H 2 ). These outstanding results, which are mainly attributed to the molecular sieving and acceleration effect of ZIF-8 covered on Pd NWs, rank highest in H 2 sensing speed among room-temperature Pd-based H 2 sensors.

  20. Photodegradation of 4-tert-butylphenol in aqueous solution by UV-C, UV/H2O2 and UV/S2O8(2-) system.

    PubMed

    Wu, Yanlin; Zhu, Xiufen; Chen, Hongche; Dong, Wenbo; Zhao, Jianfu

    2016-01-01

    The photolytic degradation of 4-tert-butylphenol (4-t-BP) in aqueous solution was investigated using three kinds of systems: UV-C directly photodegradation system, UV/H2O2 and UV/S2O8(2-) system. Under experimental conditions, the degradation rate of 4-t-BP was in the order: UV/S2O8(2-) > UV/H2O2 > UV-C. The reaction kinetics of UV/S2O8(2-) system were thoroughly investigated. The increase of S2O8(2-) concentration enhanced the 4-t-BP degradation rate, which was inhibited when the concentration of S2O8(2-) exceeded 4.0 mM. The highest efficacy in 4-t-BP degradation was obtained at pH 6.5. The oxidation rate of 4-t-BP could be accelerated by increasing the reaction temperature and irradiation intensity. The highest rate constant (kobs = 8.4 × 10(-2) min(-1)) was acquired when the reaction temperature was 45 °C. The irradiation intensity was measured by irradiation distance, and the optimum irradiation distance was 10 cm. Moreover, the preliminary mechanism of 4-t-BP degradation was studied. The bond scission of the 4-t-BP molecule occurred by the oxidation of SO4(•-), which dimerized and formed two main primary products. Under the conditions of room temperature (25 °C ± 1 °C) and low concentration of K2S2O8 (0.5 mM), 35.4% of total organic carbon (TOC) was removed after 8.5-h irradiation. The results showed that UV/S2O8(2-) system was effective for the degradation of 4-t-BP.

  1. Don't mess with H/sub 2/S

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-09-01

    The American Petroleum Institute issued a report on ''Recommended Practices for Safe Drilling of Wells Containing Hydrogen Sulfide.'' The study (RP49) updates a first edition published in September 1974. It provides a solid overview of preventive steps that should be taken to safeguard crew and equipment when drilling through H/sub 2/S zones. Discussions cover personnel training, protective equipment, wellsite layout, rig and well equipment, general rig operations and contingency planning and emergency procedures. This article summarizes the report.

  2. An H2A Histone Isotype, H2ac, Associates with Telomere and Maintains Telomere Integrity

    PubMed Central

    Tzeng, Tsai-Yu; Lin, I-Hsuan; Hsu, Ming-Ta

    2016-01-01

    Telomeres are capped at the ends of eukaryotic chromosomes and are composed of TTAGGG repeats bound to the shelterin complex. Here we report that a replication-dependent histone H2A isotype, H2ac, was associated with telomeres in human cells and co-immunoprecipitates with telomere repeat factor 2 (TRF2) and protection of telomeres protein 1 (POT1), whereas other histone H2A isotypes and mutations of H2ac did not bind to telomeres or these two proteins. The amino terminal basic domain of TRF2 was necessary for the association with H2ac and for the recruitment of H2ac to telomeres. Depletion of H2ac led to loss of telomeric repeat sequences, the appearance of dysfunctional telomeres, and chromosomal instability, including chromosomal breaks and anaphase bridges, as well as accumulation of telomere-associated DNA damage factors in H2ac depleted cells. Additionally, knockdown of H2ac elicits an ATM-dependent DNA damage response at telomeres and depletion of XPF protects telomeres against H2ac-deficiency-induced G-strand overhangs loss and DNA damage response, and prevents chromosomal instability. These findings suggest that the H2A isotype, H2ac, plays an essential role in maintaining telomere functional integrity. PMID:27228173

  3. CO2-assisted fabrication of novel heterostructures of h-MoO3/1T-MoS2 for enhanced photoelectrocatalytic performance

    NASA Astrophysics Data System (ADS)

    Zhu, Chuanhui; Xu, Qun; Liu, Wei; Ren, Yumei

    2017-12-01

    Combining the peculiar properties of different ingredients in one ultimate material is an efficient route to achieve the desired functional materials. Compared to 2H-MoS2, 1T-MoS2 nanosheets display the perfect performance of hydrogen evolution reaction (HER) because of the excellent electronic conductivity. However, how to further realize HER in the visual and near-infrared (NIR) region is a great challenge. Herein, we develop an efficient method to locally pattern h-MoO3 on the ultrathin metallic 1T-MoS2 nanosheets and obtain the novel heterostructures of h-MoO3/1T-MoS2. The enhanced photoelectrochemical performance of the as-prepared heterostructures has been demonstrated. Our study indicates it is originated from the synergistic effect between h-MoO3 and 1T-MoS2, i.e., the strong optical absorption of h-MoO3 in the visible and NIR region, the excellent electronic conductivity of 1T-MoS2 and as well as the efficient separation of the photo-induced carriers from the heterostructures.

  4. Electron Excess Doping and Effective Schottky Barrier Reduction on the MoS2/h-BN Heterostructure.

    PubMed

    Joo, Min-Kyu; Moon, Byoung Hee; Ji, Hyunjin; Han, Gang Hee; Kim, Hyun; Lee, Gwanmu; Lim, Seong Chu; Suh, Dongseok; Lee, Young Hee

    2016-10-12

    Layered hexagonal boron nitride (h-BN) thin film is a dielectric that surpasses carrier mobility by reducing charge scattering with silicon oxide in diverse electronics formed with graphene and transition metal dichalcogenides. However, the h-BN effect on electron doping concentration and Schottky barrier is little known. Here, we report that use of h-BN thin film as a substrate for monolayer MoS 2 can induce ∼6.5 × 10 11 cm -2 electron doping at room temperature which was determined using theoretical flat band model and interface trap density. The saturated excess electron concentration of MoS 2 on h-BN was found to be ∼5 × 10 13 cm -2 at high temperature and was significantly reduced at low temperature. Further, the inserted h-BN enables us to reduce the Coulombic charge scattering in MoS 2 /h-BN and lower the effective Schottky barrier height by a factor of 3, which gives rise to four times enhanced the field-effect carrier mobility and an emergence of metal-insulator transition at a much lower charge density of ∼1.0 × 10 12 cm -2 (T = 25 K). The reduced effective Schottky barrier height in MoS 2 /h-BN is attributed to the decreased effective work function of MoS 2 arisen from h-BN induced n-doping and the reduced effective metal work function due to dipole moments originated from fixed charges in SiO 2 .

  5. Novel thioarsenates {[Mn(2,2'-bipy)2(SCN)][Mn(2,2'-bipy)](As(V)S4)}2 and {[Mn(2,2'-bipy)2(SCN)]2[As(III)2(S2)2S2]}: introducing an anionic second ligand to modify MnII complex cations of 2,2'-bipyridine.

    PubMed

    Liu, Guang-Ning; Guo, Guo-Cong; Wang, Ming-Sheng; Huang, Jin-Shun

    2014-03-14

    Two novel manganese thioarsenates, {[Mn(2,2'-bipy)2(SCN)][Mn(2,2'-bipy)](As(V)S4)}2 (1, 2,2'-bipy = 2,2'-bipyridine) and {[Mn(2,2'-bipy)2(SCN)]2[As(III)2(S2)2S2]} (2), containing thiocyanate-modified Mn-2,2'-bipy complex cations were synthesized. They feature two terminal [Mn(2,2'-bipy)2(SCN)](+) complex cations bridged by a polyanion {[Mn(2,2'-bipy)]2(As(V)S4)2}(2-) for 1 and a cyclic thioarsenate anion (As(III)2S6)(2-) for 2. In 2, the [As(III)2(S2)2S2](2-) anion can be described as two (As(III)S3)(3-) trigonal-pyramids interlinked through S-S bonds. The method to obtain new metal complex cations shown here, introducing an anionic second ligand to modify the number of coordination sites and the charges of the metal complex cations simultaneously, is different from the traditional methods, varying either the TM center or the organic ligand or employing mixed neutral organic ligands, and may open up a new route for preparing novel chalcogenidometalates. Compounds 1 and 2 exhibit wide optical gaps of 2.20 and 2.67 eV, respectively, and photoluminescence with the emission maxima occurring around 440 nm. Magnetic measurements show the presence of antiferromagnetic interactions between Mn(II) centers in the two compounds.

  6. Vibrational energy transfer and relaxation in O2 and H2O.

    PubMed

    Huestis, David L

    2006-06-01

    Near-resonant vibrational energy exchange between oxygen and water molecules is an important process in the Earth's atmosphere, combustion chemistry, and the chemical oxygen iodine laser (COIL). The reactions in question are (1) O2(1) + O2(0) --> O2(0) + O2(0); (2) O2(1) + H2O(000) --> O2(0) + H2O(000); (3) O2(1) + H2O(000) <--> O2(0) + H2O(010); (4) H2O(010) + H2O(000) --> H2O(000) + H2O(000); and (5) H2O(010) + O2(0) --> H2O(000) + O2(0). Reanalysis of the data available in the chemical kinetics literature provides reliable values for rate coefficients for reactions 1 and 4 and strong evidence that reactions 2 and 5 are slow in comparison with reaction 3. Analytical solution of the chemical rate equations shows that previous attempts to measure the rate of reaction 3 are unreliable unless the water mole fraction is higher than 1%. Reanalysis of data from the only experiment satisfying this constraint provides a rate coefficient of (5.5 +/- 0.4) x 10(-13) cm3/s at room temperature, between the values favored by the atmospheric and laser modeling communities.

  7. Cationic metal complex, carbonatobis(1,10-phenanthroline)cobalt(III) as anion receptor: Synthesis, characterization, single crystal X-ray structure and packing analysis of [Co(phen) 2CO 3](3,5-dinitrobenzoate)·5H 2O

    NASA Astrophysics Data System (ADS)

    Sharma, Raj Pal; Singh, Ajnesh; Brandão, Paula; Felix, Vitor; Venugopalan, Paloth

    2009-03-01

    To explore the potential of [Co(phen) 2CO 3] + as anion receptor, red coloured single crystals of [Co(phen) 2CO 3](dnb)·5H 2O (dnb = 3,5-dinitrobenzoate) were obtained by recrystallizing the red microcrystalline product synthesised by the reaction of carbonatobis (1,10-phenanthroline)cobalt(III)chloride with sodium salt of 3,5-dinitrobenzoic acid in aqueous medium (1:1 molar ratio). The newly synthesized complex salt has been characterized by elemental analysis, spectroscopic studies (IR, UV/visible, 1H and 13C NMR), solubility and conductance measurements. The complex salt crystallizes in the triclinic crystal system with space group P1¯, having the cell dimensions a = 10.3140(8), b = 12.2885(11), c = 12.8747(13), α = 82.095(4), β = 85.617(4), γ = 79.221(4)°, V = 1585.6(2) Å 3, Z = 2. Single crystal X-ray structure determination revealed ionic structure consisting of cationic carbonatobis(1,10-phenanthroline)cobalt(III), dnb anion and five lattice water molecule. In the complex cation [Co(phen) 2CO 3] +, the cobalt(III) is bonded to four nitrogen atoms, originating from two phenanthroline ligands and two oxygen atoms from the bidentate carbonato group showing an octahedral geometry around cobalt(III) center. Supramolecular networks between ionic groups [ CHphen+⋯Xanion-] by second sphere coordination i.e. C sbnd H⋯O (benzoate), C sbnd H⋯O (nitro), C sbnd H⋯O (water) besides electrostatic forces of attraction alongwith π-π interactions stabilize the crystal lattice.

  8. Biotic Control of Surface pH and Evidence of Light-Induced H+ Pumping and Ca2+-H+ Exchange in a Tropical Crustose Coralline Alga.

    PubMed

    Hofmann, Laurie C; Koch, Marguerite; de Beer, Dirk

    2016-01-01

    Presently, an incomplete mechanistic understanding of tropical reef macroalgae photosynthesis and calcification restricts predictions of how these important autotrophs will respond to global change. Therefore, we investigated the mechanistic link between inorganic carbon uptake pathways, photosynthesis and calcification in a tropical crustose coralline alga (CCA) using microsensors. We measured pH, oxygen (O2), and calcium (Ca2+) dynamics and fluxes at the thallus surface under ambient (8.1) and low (7.8) seawater pH (pHSW) and across a range of irradiances. Acetazolamide (AZ) was used to inhibit extracellular carbonic anhydrase (CAext), which mediates hydrolysis of HCO3-, and 4,4' diisothiocyanatostilbene-2,2'-disulphonate (DIDS) that blocks direct HCO3- uptake by anion exchange transport. Both inhibited photosynthesis, suggesting both diffusive uptake of CO2 via HCO3- hydrolysis to CO2 and direct HCO3- ion transport are important in this CCA. Surface pH was raised approximately 0.3 units at saturating irradiance, but less when CAext was inhibited. Surface pH was lower at pHSW 7.8 than pHSW 8.1 in the dark, but not in the light. The Ca2+ fluxes were large, complex and temporally variable, but revealed net Ca2+ uptake under all conditions. The temporal variability in Ca2+ dynamics was potentially related to localized dissolution during epithallial cell sloughing, a strategy of CCA to remove epiphytes. Simultaneous Ca2+ and pH dynamics suggest the presence of Ca2+/H+ exchange. Rapid light-induced H+ surface dynamics that continued after inhibition of photosynthesis revealed the presence of a light-mediated, but photosynthesis-independent, proton pump. Thus, the study indicates metabolic control of surface pH can occur in CCA through photosynthesis and light-inducible H+ pumps. Our results suggest that complex light-induced ion pumps play an important role in biological processes related to inorganic carbon uptake and calcification in CCA.

  9. Biotic Control of Surface pH and Evidence of Light-Induced H+ Pumping and Ca2+-H+ Exchange in a Tropical Crustose Coralline Alga

    PubMed Central

    Hofmann, Laurie C.; Koch, Marguerite; de Beer, Dirk

    2016-01-01

    Presently, an incomplete mechanistic understanding of tropical reef macroalgae photosynthesis and calcification restricts predictions of how these important autotrophs will respond to global change. Therefore, we investigated the mechanistic link between inorganic carbon uptake pathways, photosynthesis and calcification in a tropical crustose coralline alga (CCA) using microsensors. We measured pH, oxygen (O2), and calcium (Ca2+) dynamics and fluxes at the thallus surface under ambient (8.1) and low (7.8) seawater pH (pHSW) and across a range of irradiances. Acetazolamide (AZ) was used to inhibit extracellular carbonic anhydrase (CAext), which mediates hydrolysis of HCO3-, and 4,4′ diisothiocyanatostilbene-2,2′-disulphonate (DIDS) that blocks direct HCO3- uptake by anion exchange transport. Both inhibited photosynthesis, suggesting both diffusive uptake of CO2 via HCO3- hydrolysis to CO2 and direct HCO3- ion transport are important in this CCA. Surface pH was raised approximately 0.3 units at saturating irradiance, but less when CAext was inhibited. Surface pH was lower at pHSW 7.8 than pHSW 8.1 in the dark, but not in the light. The Ca2+ fluxes were large, complex and temporally variable, but revealed net Ca2+ uptake under all conditions. The temporal variability in Ca2+ dynamics was potentially related to localized dissolution during epithallial cell sloughing, a strategy of CCA to remove epiphytes. Simultaneous Ca2+ and pH dynamics suggest the presence of Ca2+/H+ exchange. Rapid light-induced H+ surface dynamics that continued after inhibition of photosynthesis revealed the presence of a light-mediated, but photosynthesis-independent, proton pump. Thus, the study indicates metabolic control of surface pH can occur in CCA through photosynthesis and light-inducible H+ pumps. Our results suggest that complex light-induced ion pumps play an important role in biological processes related to inorganic carbon uptake and calcification in CCA. PMID:27459463

  10. Synthetic, Infrared, 1H and 13C NMR Spectral Studies on N-(2-/3-Substituted Phenyl)-4-Substituted Benzenesulphonamides, 4-X'C6H4SO2NH(2-/3-XC6H4), where X' = H, CH3, C2H5, F, Cl or Br, and X = CH3 or Cl

    NASA Astrophysics Data System (ADS)

    Gowda, B. Thimme; Shetty, Mahesha; Jayalakshmi, K. L.

    2005-02-01

    Twenty three N-(2-/3-substituted phenyl)-4-substituted benzenesulphonamides of the general formula, 4-X'C6H4SO2NH(2-/3-XC6H4), where X' = H, CH3, C2H5, F, Cl or Br and X = CH3 or Cl have been prepared and characterized, and their infrared spectra in the solid state, 1H and 13C NMR spectra in solution were studied. The N-H stretching vibrations, νN-H, absorb in the range 3285 - 3199 cm-1, while the asymmetric and symmetric SO2 vibrations vary in the ranges 1376 - 1309 cm-1 and 1177 - 1148 cm-1, respectively. The S-N and C-N stretching vibrations absorb in the ranges 945 - 893 cm-1 and 1304 - 1168 cm-1, respectively. The compounds do not exhibit particular trends in the variation of these frequencies on substitution either at ortho or meta positions with either a methyl group or Cl. The observed 1H and 13C chemical shifts of are assigned to protons and carbons of the two benzene rings. Incremental shifts of the ring protons and carbons due to -SO2NH(2-/3-XC6H4) groups in C6H5SO2NH(2-/3-XC6H4), and 4- X'C6H4SO2- and 4-X'C6H4SO2NH- groups in 4-X'C6H4SO2NH(C6H5) are computed and employed to calculate the chemical shifts of the ring protons and carbons in the substituted compounds, 4-X'C6H4SO2NH(2-/3-XC6H4). The computed values agree well with the observed chemical shifts.

  11. Mercury-Bridged Cobaltacarborane Complexes Containing B-Hg-B Three-Center Bonds. Synthesis and Structure of mu, mu’-((n5-C5R5)Co(CH3)2C2B3H4)Hg, mu-(n(5)-C5R5)Co(CH3)2C2B3H4)HgCl, (R=H, CH3) and Related Compounds.

    DTIC Science & Technology

    1980-11-01

    MERCURY-BRIDGED COBALTACARBORANE COMPLEXES CONTAINING B-HG-B TH--ETC(U) NOV 80 D C FINSTER . R N GRIMES N0 0 0 1 4-75-0305 UNCLASSXFIED TR󈧨 NL ILn...C5R5) Co 3)2C2B3 4 2 5 .- -C5R5 )Co(CH3)2C2B3H4 ]HgCl, (R=H, CH3 ) and Related Compounds, David C./ Finster -- Russell N./Grimes ( Department of Chemistry...Compounds 1 \\David C. Finster And Russell N. Grimes* Abstract. Reactions of the nid~p-cobaltacarborane anions 01CR )(C 3 )C BH and [n (H 1oC ihH~5n 5

  12. Antimicrobial Resistance and Molecular Investigation of H2S-Negative Salmonella enterica subsp. enterica serovar Choleraesuis Isolates in China.

    PubMed

    Xie, Jing; Yi, Shengjie; Zhu, Jiangong; Li, Peng; Liang, Beibei; Li, Hao; Yang, Xiaoxia; Wang, Ligui; Hao, Rongzhang; Jia, Leili; Wu, Zhihao; Qiu, Shaofu; Song, Hongbin

    2015-01-01

    Salmonella enterica subsp. enterica serovar Choleraesuis is a highly invasive pathogen of swine that frequently causes serious outbreaks, in particular in Asia, and can also cause severe invasive disease in humans. In this study, 21 S. Choleraesuis isolates, detected from 21 patients with diarrhea in China between 2010 and 2011, were found to include 19 H2S-negative S. Choleraesuis isolates and two H2S-positive isolates. This is the first report of H2S-negative S. Choleraesuis isolated from humans. The majority of H2S-negative isolates exhibited high resistance to ampicillin, chloramphenicol, gentamicin, tetracycline, ticarcillin, and trimethoprim-sulfamethoxazole, but only six isolates were resistant to norfloxacin. In contrast, all of the isolates were sensitive to cephalosporins. Fifteen isolates were found to be multidrug resistant. In norfloxacin-resistant isolates, we detected mutations in the gyrA and parC genes and identified two new mutations in the parC gene. Pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and clustered regularly interspaced short palindromic repeat (CRISPR) analysis were employed to investigate the genetic relatedness of H2S-negative and H2S-positive S. Choleraesuis isolates. PFGE revealed two groups, with all 19 H2S-negative S. Choleraesuis isolates belonging to Group I and H2S-positive isolates belonging to Group II. By MLST analysis, the H2S-negative isolates were all found to belong to ST68 and H2S-positive isolates belong to ST145. By CRISPR analysis, no significant differences in CRISPR 1 were detected; however, one H2S-negative isolate was found to contain three new spacers in CRISPR 2. All 19 H2S-negative isolates also possessed a frame-shift mutation at position 760 of phsA gene compared with H2S-positive isolates, which may be responsible for the H2S-negative phenotype. Moreover, the 19 H2S-negative isolates have similar PFGE patterns and same mutation site in the phsA gene, these results indicated

  13. Antimicrobial Resistance and Molecular Investigation of H2S-Negative Salmonella enterica subsp. enterica serovar Choleraesuis Isolates in China

    PubMed Central

    Li, Peng; Liang, Beibei; Li, Hao; Yang, Xiaoxia; Wang, Ligui; Hao, Rongzhang; Jia, Leili; Wu, Zhihao; Qiu, Shaofu; Song, Hongbin

    2015-01-01

    Salmonella enterica subsp. enterica serovar Choleraesuis is a highly invasive pathogen of swine that frequently causes serious outbreaks, in particular in Asia, and can also cause severe invasive disease in humans. In this study, 21 S. Choleraesuis isolates, detected from 21 patients with diarrhea in China between 2010 and 2011, were found to include 19 H2S-negative S. Choleraesuis isolates and two H2S-positive isolates. This is the first report of H2S-negative S. Choleraesuis isolated from humans. The majority of H2S-negative isolates exhibited high resistance to ampicillin, chloramphenicol, gentamicin, tetracycline, ticarcillin, and trimethoprim-sulfamethoxazole, but only six isolates were resistant to norfloxacin. In contrast, all of the isolates were sensitive to cephalosporins. Fifteen isolates were found to be multidrug resistant. In norfloxacin-resistant isolates, we detected mutations in the gyrA and parC genes and identified two new mutations in the parC gene. Pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and clustered regularly interspaced short palindromic repeat (CRISPR) analysis were employed to investigate the genetic relatedness of H2S-negative and H2S-positive S. Choleraesuis isolates. PFGE revealed two groups, with all 19 H2S-negative S. Choleraesuis isolates belonging to Group I and H2S-positive isolates belonging to Group II. By MLST analysis, the H2S-negative isolates were all found to belong to ST68 and H2S-positive isolates belong to ST145. By CRISPR analysis, no significant differences in CRISPR 1 were detected; however, one H2S-negative isolate was found to contain three new spacers in CRISPR 2. All 19 H2S-negative isolates also possessed a frame-shift mutation at position 760 of phsA gene compared with H2S-positive isolates, which may be responsible for the H2S-negative phenotype. Moreover, the 19 H2S-negative isolates have similar PFGE patterns and same mutation site in the phsA gene, these results indicated

  14. Access and Binding of H2S to Hemeproteins: The Case of HbI of Lucina pectinata.

    PubMed

    Boubeta, Fernando M; Bari, Sara E; Estrin, Dario A; Boechi, Leonardo

    2016-09-15

    Hydrogen sulfide (H2S) was recently discovered as a gasotransmitter, capable of coordinating to the heme iron of hemeproteins. H2S is unique for its ability to render varying concentrations of the nucleophilic conjugate bases (HS(-) or S(2-)), either as free or bound species with expected outcomes on its further reactivity. There is no direct evidence about which species (H2S, HS(-), or S(2-)) coordinates to the iron. We performed computer simulations to address the migration and binding processes of H2S species to the hemoglobin I of Lucina pectinata, which exhibits the highest affinity for the substrate measured to date. We found that H2S is the most favorable species in the migration from the bulk to the active site, through an internal pathway of the protein. After the coordination of H2S, an array of clustered water molecules modifies the active site environment, and assists in the subsequent deprotonation of the ligand, forming Fe(III)-SH(-). The feasibility of the second deprotonation of the coordinated ligand is also discussed.

  15. [Analysis of breath hydrogen (H2) in diagnosis of gastrointestinal function: validation of a pocket breath H2 test analyzer].

    PubMed

    Braden, B; Braden, C P; Klutz, M; Lembcke, B

    1993-04-01

    Breath hydrogen (H2) analysis, as used in gastroenterologic function tests, requires a stationary analysis system equipped with a gaschromatograph or an electrochemical sensor cell. Now a portable breath H2-analyzer has been miniaturized to pocket size (104 mm x 62 mm x 29 mm). The application of this device in clinical practice has been assessed in comparison to the standard GMI-exhaled monitor. The pocket analyzer showed a linear response to standards with H2-concentrations ranging from 0-100 ppm (n = 7), which was not different from the GMI-apparatus. The correlation of both methods during clinical application (lactose tolerance tests, mouth-to-coecum transit time determined with lactulose) was excellent (Y = 1.08 X + 0.96; r = 0.959). Using the new device, both, analysis (3 s vs. 90 s) and the reset-time (43 s vs. 140 s) were shorter whereas calibration was more feasible with the GMI-apparatus. It is concluded, that the considerably cheaper pocket-sized breath H2-analyzer is as precise and sensitive as the GMI-exhaled monitor, and thus presents a valid alternative for H2-breath tests.

  16. Anisotropic dielectric phase transition triggered by pendulum-like motion coupled with proton transfer in a layered hybrid crystalline material (4-nitroanilinium+) (18-crown-6) (H2PO4-) (H3PO4)2

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Zhu, Chun-li; Qin, Liu-lei; Zheng, Xiao-yuan; Liu, Zun-qi

    2018-07-01

    The organic-inorganic hybrid phase-transition material, (4-nitroanilinium+) (18-crown-6) (H2PO4-) (H3PO4)2 (1), was successfully synthesized. The organic (4-nitroanilinium) (18-crown-6)+ supramolecular cation layer and inorganic phosphate anion layer were arranged alternately. Differential scanning calorimetry (DSC), temperature-dependent dielectric measurements, and variable-temperature single-crystal X-ray diffraction analysis confirmed the reversible isostructural phase transition of 1 with the same space group Pbca at 225 K, wherein the synergistic effect between the pendulum-like motion of organic cations and the proton transfer in the Osbnd H⋯O hydrogen bonding of inorganic anions was mainly responsible for the phase-transition behavior of 1. The most striking dielectric property was the remarkable anisotropy along various crystallographic axes. A potential-energy calculation further supported the possibility of dynamic motion of cations in the crystal.

  17. H2 formation via the UV photo-processing of a-C:H nano-particles

    NASA Astrophysics Data System (ADS)

    Jones, A. P.; Habart, E.

    2015-09-01

    Context. The photolysis of hydrogenated amorphous carbon, a-C(:H), dust by UV photon-irradiation in the laboratory leads to the release of H2 as well as other molecules and radicals. This same process is also likely to be important in the interstellar medium. Aims: We investigate molecule formation arising from the photo-dissociatively-driven, regenerative processing of a-C(:H) dust. Methods: We explore the mechanism of a-C(:H) grain photolysis leading to the formation of H2 and other molecules/radicals. Results: The rate constant for the photon-driven formation of H2 from a-C(:H) grains is estimated to be 2 × 10-17 cm3 s-1. In intense radiation fields photon-driven grain decomposition will lead to fragmentation into daughter species rather than H2 formation. Conclusions: The cyclic re-structuring of arophatic a-C(:H) nano-particles appears to be a viable route to formation of H2 for low to moderate radiation field intensities (1 ≲ G0 ≲ 102), even when the dust is warm (T ~ 50-100 K).

  18. Effect of simulated coal-derived gas composition on H{sub 2}S poisoning behavior evaluated using a disaggregation scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, T.S.; Miao, H.; Chen, T.

    2009-07-01

    H{sub 2}S poisoning is an important issue for solid oxide fuel cells (SOFCs) operated with syngas. The effect of simulated coal-derived gas composition on H{sub 2}S poisoning behavior was evaluated using a disaggregation scheme where the influence of H{sub 2} content was determined separately using a typical anode-supported SOFC operated with a N2/H{sub 2} mixture gas, while the effect of other compositions (CO, CO{sub 2}, and H{sub 2}O) was investigated with simulated coal-derived gas having constant H{sub 2} and CO flow rates balanced by a H{sub 2}/N2 mixture gas (83% H{sub 2} and 17% N2). The results indicated that themore » extent of H{sub 2}S poisoning was not pertinent to H{sub 2} content when the cell was tested galvanostatically with a current density of 0.3 A/cm{sup 2} at 800{sup o}C using a N2/H{sub 2} mixture gas containing 10 ppm H{sub 2}S, and the H{sub 2}S poisoning impact can be completely removed by switching to sulfur-free gas. The CO, CO{sub 2}, and high water vapor content aggravated the H{sub 2}S poisoning effect, and the performance was almost irrecoverable when the cell was tested with a 35% H{sub 2}-46% CO-16% N2-3% H{sub 2}O mixture gas containing 12.5 ppm H{sub 2}S. However, the introduction of 10% CO{sub 2} and an increase in H{sub 2}O content from 3 to 10% in the mixture gas can promote the performance recoverability to a larger extent.« less

  19. Comparison of the metabolic and ventilatory response to hypoxia and H2S in unsedated mice and rats.

    PubMed

    Haouzi, Philippe; Bell, Harold J; Notet, Veronique; Bihain, Bernard

    2009-07-31

    Hypoxia alters the control of breathing and metabolism by increasing ventilation through the arterial chemoreflex, an effect which, in small-sized animals, is offset by a centrally mediated reduction in metabolism and respiration. We tested the hypothesis that hydrogen sulfide (H(2)S) is involved in transducing these effects in mammals. The rationale for this hypothesis is twofold. Firstly, inhalation of a 20-80 ppm H(2)S reduces metabolism in small mammals and this effect is analogous to that of hypoxia. Secondly, endogenous H(2)S appears to mediate some of the cardio-vascular effects of hypoxia in non-mammalian species. We, therefore, compared the ventilatory and metabolic effects of exposure to 60 ppm H(2)S and to 10% O(2) in small and large rodents (20g mice and 700g rats) wherein the metabolic response to hypoxia has been shown to differ according to body mass. H(2)S and hypoxia produced profound depression in metabolic rate in the mice, but not in the large rats. The depression was much faster with H(2)S than with hypoxia. The relative hyperventilation produced by hypoxia in the mice was replaced by a depression with H(2)S, which paralleled the drop in metabolic rate. In the larger rats, ventilation was stimulated in hypoxia, with no change in metabolism, while H(2)S affected neither breathing nor metabolism. When mice were simultaneously exposed to H(2)S and hypoxia, the stimulatory effects of hypoxia on breathing were abolished, and a much larger respiratory and metabolic depression was observed than with H(2)S alone. H(2)S had, therefore, no stimulatory effect on the arterial chemoreflex. The ventilatory depression during hypoxia and H(2)S in small mammals appears to be dependent upon the ability to decrease metabolism.

  20. Homotopy Algorithm for Fixed Order Mixed H2/H(infinity) Design

    NASA Technical Reports Server (NTRS)

    Whorton, Mark; Buschek, Harald; Calise, Anthony J.

    1996-01-01

    Recent developments in the field of robust multivariable control have merged the theories of H-infinity and H-2 control. This mixed H-2/H-infinity compensator formulation allows design for nominal performance by H-2 norm minimization while guaranteeing robust stability to unstructured uncertainties by constraining the H-infinity norm. A key difficulty associated with mixed H-2/H-infinity compensation is compensator synthesis. A homotopy algorithm is presented for synthesis of fixed order mixed H-2/H-infinity compensators. Numerical results are presented for a four disk flexible structure to evaluate the efficiency of the algorithm.

  1. Superconducting H5S2 phase in sulfur-hydrogen system under high-pressure

    NASA Astrophysics Data System (ADS)

    Ishikawa, Takahiro; Nakanishi, Akitaka; Shimizu, Katsuya; Katayama-Yoshida, Hiroshi; Oda, Tatsuki; Suzuki, Naoshi

    2016-03-01

    Recently, hydrogen sulfide was experimentally found to show the high superconducting critical temperature (Tc) under high-pressure. The superconducting Tc shows 30-70 K in pressure range of 100-170 GPa (low-Tc phase) and increases to 203 K, which sets a record for the highest Tc in all materials, for the samples annealed by heating it to room temperature at pressures above 150 GPa (high-Tc phase). Here we present a solid H5S2 phase predicted as the low-Tc phase by the application of the genetic algorithm technique for crystal structure searching and first-principles calculations to sulfur-hydrogen system under high-pressure. The H5S2 phase is thermodynamically stabilized at 110 GPa, in which asymmetric hydrogen bonds are formed between H2S and H3S molecules. Calculated Tc values show 50-70 K in pressure range of 100-150 GPa within the harmonic approximation, which can reproduce the experimentally observed low-Tc phase. These findings give a new aspect of the excellent superconductivity in compressed sulfur-hydrogen system.

  2. Superconducting H5S2 phase in sulfur-hydrogen system under high-pressure

    PubMed Central

    Ishikawa, Takahiro; Nakanishi, Akitaka; Shimizu, Katsuya; Katayama-Yoshida, Hiroshi; Oda, Tatsuki; Suzuki, Naoshi

    2016-01-01

    Recently, hydrogen sulfide was experimentally found to show the high superconducting critical temperature (Tc) under high-pressure. The superconducting Tc shows 30–70 K in pressure range of 100–170 GPa (low-Tc phase) and increases to 203 K, which sets a record for the highest Tc in all materials, for the samples annealed by heating it to room temperature at pressures above 150 GPa (high-Tc phase). Here we present a solid H5S2 phase predicted as the low-Tc phase by the application of the genetic algorithm technique for crystal structure searching and first-principles calculations to sulfur-hydrogen system under high-pressure. The H5S2 phase is thermodynamically stabilized at 110 GPa, in which asymmetric hydrogen bonds are formed between H2S and H3S molecules. Calculated Tc values show 50–70 K in pressure range of 100–150 GPa within the harmonic approximation, which can reproduce the experimentally observed low-Tc phase. These findings give a new aspect of the excellent superconductivity in compressed sulfur-hydrogen system. PMID:26983593

  3. The role of high oxygen vacancy concentration on modification of surface properties and H2S adsorption on the rutile TiO2 (110)

    NASA Astrophysics Data System (ADS)

    Wei, Shiqian; Wang, Fang; Dan, Meng; Zeng, Kaiyue; Zhou, Ying

    2017-11-01

    In this work, spin-polarized DFT + U method has been employed to investigate adsorption properties of H2S on the rutile TiO2 (110) surface with a high coverage of bridging oxygen vacancies (BOVs). The influence of different BOV coverage (θ-BOVs) on the surface electronic structure is examined. Defected states increase within the band gap with θ-BOVs increasing from 1/8 to 4/8 monolayer (ML). The high defected surface with θ-BOVs = 4/8 ML is determined to have a desired band structure and noticeable visible light response. In addition, H2S adsorption behaviors are noticeably affected by different H2S coverage (θ-H2S). Particularly, it is found molecular adsorption at θ-H2S ≤ 1/8 ML and dissociative adsorption at the higher θ-H2S. The maximization of spontaneous dissociation of H2S can be realized when the BOVs are all covered by H2S molecules. This work gains mechanistic insights into BOVs in tuning the surface properties and provides a guide for the effective utilization of the active surface sites on the rutile TiO2 (110) in the field of H2S splitting.

  4. The mechanism for water exchange in [UO(2)(H(2)O)(5)](2+) and [UO(2)(oxalate)(2)(H(2)O)](2-), as studied by quantum chemical methods.

    PubMed

    Vallet, V; Wahlgren, U; Schimmelpfennig, B; Szabó, Z; Grenthe, I

    2001-12-05

    The mechanisms for the exchange of water between [UO(2)(H(2)O)(5)](2+), [UO(2)(oxalate)(2)(H(2)O)](2)(-)(,) and water solvent along dissociative (D), associative (A) and interchange (I) pathways have been investigated with quantum chemical methods. The choice of exchange mechanism is based on the computed activation energy and the geometry of the identified transition states and intermediates. These quantities were calculated both in the gas phase and with a polarizable continuum model for the solvent. There is a significant and predictable difference between the activation energy of the gas phase and solvent models: the energy barrier for the D-mechanism increases in the solvent as compared to the gas phase, while it decreases for the A- and I-mechanisms. The calculated activation energy, Delta U(++), for the water exchange in [UO(2)(H(2)O)(5)](2+) is 74, 19, and 21 kJ/mol, respectively, for the D-, A-, and I-mechanisms in the solvent, as compared to the experimental value Delta H(++) = 26 +/- 1 kJ/mol. This indicates that the D-mechanism for this system can be ruled out. The energy barrier between the intermediates and the transition states is small, indicating a lifetime for the intermediate approximately 10(-10) s, making it very difficult to distinguish between the A- and I-mechanisms experimentally. There is no direct experimental information on the rate and mechanism of water exchange in [UO(2)(oxalate)(2)(H(2)O)](2-) containing two bidentate oxalate ions. The activation energy and the geometry of transition states and intermediates along the D-, A-, and I-pathways were calculated both in the gas phase and in a water solvent model, using a single-point MP2 calculation with the gas phase geometry. The activation energy, Delta U(++), in the solvent for the D-, A-, and I-mechanisms is 56, 12, and 53 kJ/mol, respectively. This indicates that the water exchange follows an associative reaction mechanism. The geometry of the A- and I-transition states for both [UO

  5. Functional crosstalk between histone H2B ubiquitylation and H2A modifications and variants.

    PubMed

    Wojcik, Felix; Dann, Geoffrey P; Beh, Leslie Y; Debelouchina, Galia T; Hofmann, Raphael; Muir, Tom W

    2018-04-11

    Ubiquitylation of histone H2B at lysine residue 120 (H2BK120ub) is a prominent histone posttranslational modification (PTM) associated with the actively transcribed genome. Although H2BK120ub triggers several critical downstream histone modification pathways and changes in chromatin structure, less is known about the regulation of the ubiquitylation reaction itself, in particular with respect to the modification status of the chromatin substrate. Here we employ an unbiased library screening approach to profile the impact of pre-existing chromatin modifications on de novo ubiquitylation of H2BK120 by the cognate human E2:E3 ligase pair, UBE2A:RNF20/40. Deposition of H2BK120ub is found to be highly sensitive to PTMs on the N-terminal tail of histone H2A, a crosstalk that extends to the common histone variant H2A.Z. Based on a series of biochemical and cell-based studies, we propose that this crosstalk contributes to the spatial organization of H2BK120ub on gene bodies, and is thus important for transcriptional regulation.

  6. Bromidotetra-kis-(1H-2-ethyl-5-methyl-imidazole-κN)copper(II) bromide.

    PubMed

    Godlewska, Sylwia; Baranowska, Katarzyna; Socha, Joanna; Dołęga, Anna

    2011-12-01

    The Cu(II) ion in the title compound, [CuBr(C(6)H(10)N(2))(4)]Br, is coordinated in a square-based-pyramidal geometry by the N atoms of four imidazole ligands and a bromide anion in the apical site. Both the Cu(II) and Br(-) atoms lie on a crystallographic fourfold axis. In the crystal, the [CuBr(C(6)H(10)N(2))(4)](+) complex cations are linked to the uncoordinated Br(-) anions (site symmetry [Formula: see text]) by N-H⋯Br hydrogen bonds, generating a three-dimensional network. The ethyl group of the imidazole ligand was modelled as disordered over two orientations with occupancies of 0.620 (8) and 0.380 (8).

  7. A H2S Donor GYY4137 Exacerbates Cisplatin-Induced Nephrotoxicity in Mice

    PubMed Central

    Liu, Mi; Sun, Ying; Zhang, Aihua; Yang, Tianxin

    2016-01-01

    Accumulating evidence demonstrated that hydrogen sulfide (H2S) is highly involved in inflammation, oxidative stress, and apoptosis and contributes to the pathogenesis of kidney diseases. However, the role of H2S in cisplatin nephrotoxicity is still debatable. Here we investigated the effect of GYY4137, a novel slow-releasing H2S donor, on cisplatin nephrotoxicity in mice. Male C57BL/6 mice were pretreated with GYY4137 for 72 h prior to cisplatin injection. After cisplatin treatment for 72 h, mice developed obvious renal dysfunction and kidney injury as evidenced by elevated blood urea nitrogen (BUN) and histological damage. Consistently, these mice also showed increased proinflammatory cytokines such as TNF-α, IL-6, and IL-1β in circulation and/or kidney tissues. Meanwhile, circulating thiobarbituric aid-reactive substances (TBARS) and renal apoptotic indices including caspase-3, Bak, and Bax were all elevated. However, application of GYY4137 further aggravated renal dysfunction and kidney structural injury in line with promoted inflammation, oxidative stress, and apoptotic response following cisplatin treatment. Taken together, our results suggested that GYY4137 exacerbated cisplatin-induced nephrotoxicity in mice possibly through promoting inflammation, oxidative stress, and apoptotic response. PMID:27340345

  8. Induction of a Torpor-Like State by 5’-AMP Does Not Depend on H2S Production

    PubMed Central

    Dugbartey, George J.; Bouma, Hjalmar R.; Strijkstra, Arjen M.; Boerema, Ate S.; Henning, Robert H.

    2015-01-01

    Background Therapeutic hypothermia is used to reduce ischemia/reperfusion injury (IRI) during organ transplantation and major surgery, but does not fully prevent organ injury. Interestingly, hibernating animals undergo repetitive periods of low body temperature called ‘torpor’ without signs of organ injury. Recently, we identified an essential role of hydrogen sulfide (H2S) in entrance into torpor and preservation of kidney integrity during hibernation. A torpor-like state can be induced pharmacologically by injecting 5’-Adenosine monophosphate (5’-AMP). The mechanism by which 5’-AMP leads to the induction of a torpor-like state, and the role of H2S herein, remains to be unraveled. Therefore, we investigated whether induction of a torpor-like state by 5-AMP depends on H2S production. Methods To study the role of H2S on the induction of torpor, amino-oxyacetic acid (AOAA), a non-specific inhibitor of H2S, was administered before injection with 5'-AMP to block endogenous H2S production in Syrian hamster. To assess the role of H2S on maintenance of torpor induced by 5’-AMP, additional animals were injected with AOAA during torpor. Key Results During the torpor-like state induced by 5’-AMP, the expression of H2S- synthesizing enzymes in the kidneys and plasma levels of H2S were increased. Blockade of these enzymes inhibited the rise in the plasma level of H2S, but neither precluded torpor nor induced arousal. Remarkably, blockade of endogenous H2S production was associated with increased renal injury. Conclusions Induction of a torpor-like state by 5’-AMP does not depend on H2S, although production of H2S seems to attenuate renal injury. Unraveling the mechanisms by which 5’-AMP reduces the metabolism without organ injury may allow optimization of current strategies to limit (hypothermic) IRI and improve outcome following organ transplantation, major cardiac and brain surgery. PMID:26295351

  9. Synthetic and Spectroscopic Studies on N-(i,j-Disubstituted Phenyl)-4- Substituted Benzenesulphonamides, 4-X'C6H4SO2NH(i,j-X2C6H3), where X' = H, CH3, C2H5, F, Cl or Br; i, j = 2, 3; 2, 4; 2, 5; 2, 6 or 3, 4; and X = CH3 or Cl

    NASA Astrophysics Data System (ADS)

    Shetty, Mahesha; Gowda, B. Thimme

    2005-02-01

    Fifty four N-(i,j-disubstituted phenyl)-4-substituted benzenesulphonamides of the general formula 4-X'C6H4SO2NH(i,j-X2C6H3), where X' = H, CH3, C2H5, F, Cl or Br; i,j = 2,3; 2,4; 2,5; 2,6 or 3, 4; and X = CH3 or Cl, are prepared and characterized and their infrared, 1H and 13C NMR spectra in solution are studied. The N-H stretching vibrations νN-H absorb in the range 3305 - 3205 cm-1, while the asymmetric and symmetric SO2 vibrations vary in the ranges 1377 - 1307 cm-1 and 1184 - 1128 cm-1, respectively. The N-(i,j-disubstituted phenyl)-4-substituted benzenesulphonamides show C-S, S-N and C-N stretching vibrations in the ranges 844 - 800 cm-1, 945 - 891 cm-1 and 1309 - 1170 cm-1, respectively. The compounds do not exhibit particular trends in the variation of these frequencies on substitution either at ortho or meta positions with either a methyl group or Cl. The observed 1H and 13C chemical shifts of 2.jpg" /> are assigned to protons and carbon atoms of the two benzene rings. Incremental shifts of the ring protons and carbon atoms due to -SO2NH(i,j-X2C6H3) groups in C6H5SO2NH(i,j-X2C6H3) and 4-X'C6H4SO2NH- groups in 4-X'C6H4SO2NH(C6H*) are computed and employed to calculate the chemical shifts of the ring protons and carbon atoms in the substituted compounds 4-X'C6H4SO2NH(i,j-X2C6H3). The different methods of calculation lead to almost the same values in most cases and agree well with the observed chemical shifts, indicating the validity of the principle of additivity of the substituent effects with chemical shifts in these compounds.

  10. Energetics and kinetics of the prebiotic synthesis of simple organic acids and amino acids with the FeS-H2S/FeS2 redox couple as reductant

    NASA Technical Reports Server (NTRS)

    Schoonen, M. A.; Xu, Y.; Bebie, J.

    1999-01-01

    The thermodynamics of the FeS-H2S/FeS2 redox couple and a select number of reactions critical to the synthesis of simple carboxylic acids and amino acids have been evaluated as a function of temperature. This thermodynamic evaluation shows that the reducing power of the FeS-H2S/FeS2 redox couple decreases drastically with temperature. By contrast the equilibria describing the reduction of CO2 and the formation of simple carboxylic acids and amino acids require an increasingly higher reducing power with temperature. Given these two opposite trends, the thermodynamic driving force for CO2 reduction and amino acid formation with the FeS-H2S/FeS2 redox couple as reductant diminishes with increasing temperature. An evaluation of the mechanism of CO2 reduction by the FeS-H2S/FeS2 couple suggests that the electron transfer from pyrrhotite to CO2 is hindered by a high activation energy, even though the overall reaction is thermodynamically favorable. By comparison the electron transfer from pyrrhotite to either CS2, CO, or HCOOH are far more facile. This theoretical analysis explains the results of experimental work by Keefe et al. (1995), Heinen and Lauwers (1996) and Huber and Wachtershauser (1997). The implication is that a reaction sequence involving the reduction of CO2 with the FeS-H2S/FeS2 couple as reductant is unlikely to initiate a proposed prebiotic carbon fixation cycle (Wachtershauser, 1988b; 1990b, 1990a, 1992, 1993).

  11. Oxidation of alloys for energy applications in supercritical CO 2 and H 2O

    DOE PAGES

    Holcomb, Gordon R.; Carney, Casey; Doğan, Ömer N.

    2016-03-19

    To facilitate development of supercritical CO 2 (sCO 2) power plants, a comparison of the oxidation behavior of austenitic stainless steels and Ni-base alloys in sH 2O and sCO 2 were made. Experiments were conducted at 730 °C/207 bar (sCO 2) and 726 °C/208 bar (sH 2O). Ni-base alloys in sCO 2 did not exhibit much change with pressure. Ni-base alloys in sH 2O had an increase in corrosion rate and the log of the parabolic rate constant was proportional to pressure. Lastly, fine-grain austenitic stainless steels in sCO 2 and sH 2O were both less protective with pressure asmore » the dense protective chromia scale was replaced with faster growing Fe-oxide rich scales.« less

  12. Raman spectroscopy of the multi-anion mineral schlossmacherite (H 3O,Ca)Al 3(AsO 4,PO 4,SO 4) 2(OH) 6

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Palmer, Sara J.; Xi, Yunfei

    2012-02-01

    The mineral schlossmacherite (H 3O,Ca)Al 3(AsO 4,PO 4,SO 4) 2(OH) 6, a multi-cation-multi-anion mineral of the beudantite mineral subgroup has been characterised by Raman spectroscopy. The mineral and related minerals functions as a heavy metal collector and is often amorphous or poorly crystalline, such that XRD identification is difficult. The Raman spectra are dominated by an intense band at 864 cm -1, assigned to the symmetric stretching mode of the AsO 43- anion. Raman bands at 809 and 819 cm -1 are assigned to the antisymmetric stretching mode of AsO 43-. The sulphate anion is characterised by bands at 1000 cm -1 ( ν1), and at 1031, 1082 and 1139 cm -1 ( ν3). Two sets of bands in the OH stretching region are observed: firstly between 2800 and 3000 cm -1 with bands observed at 2850, 2868, 2918 cm -1 and secondly between 3300 and 3600 with bands observed at 3363, 3382, 3410, 3449 and 3537 cm -1. These bands enabled the calculation of hydrogen bond distances and show a wide range of H-bond distances.

  13. Characterization of Photochemical Processes for H2 Production by CdS Nanorod-[FeFe] Hydrogenase Complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, K. A.; Wilker, M. B.; Boehm, M.

    2012-03-28

    We have developed complexes of CdS nanorods capped with 3-mercaptopropionic acid (MPA) and Clostridium acetobutylicum [FeFe]-hydrogenase I (CaI) that photocatalyze reduction of H{sup +} to H{sub 2} at a CaI turnover frequency of 380-900 s{sup -1} and photon conversion efficiencies of up to 20% under illumination at 405 nm. In this paper, we focus on the compositional and mechanistic aspects of CdS:CaI complexes that control the photochemical conversion of solar energy into H{sub 2}. Self-assembly of CdS with CaI was driven by electrostatics, demonstrated as the inhibition of ferredoxin-mediated H{sub 2} evolution by CaI. Production of H{sub 2} by CdS:CaImore » was observed only under illumination and only in the presence of a sacrificial donor. We explored the effects of the CdS:CaI molar ratio, sacrificial donor concentration, and light intensity on photocatalytic H{sub 2} production, which were interpreted on the basis of contributions to electron transfer, hole transfer, or rate of photon absorption, respectively. Each parameter was found to have pronounced effects on the CdS:CaI photocatalytic activity. Specifically, we found that under 405 nm light at an intensity equivalent to total AM 1.5 solar flux, H{sub 2} production was limited by the rate of photon absorption ({approx}1 ms{sup -1}) and not by the turnover of CaI. Complexes were capable of H{sub 2} production for up to 4 h with a total turnover number of 106 before photocatalytic activity was lost. This loss correlated with inactivation of CaI, resulting from the photo-oxidation of the CdS capping ligand MPA.« less

  14. DFT studies on the mechanism of the reaction of C2H5S with NO2

    NASA Astrophysics Data System (ADS)

    Tang, Yi-Zhen; Sun, Hao; Pan, Ya-Ru; Pan, Xiu-Mei; Wang, Rong-Shun

    The mechanisms for the reaction of C2H5S with NO2 are investigated at the QCISD(T)/6-311++G(d, p)//B3LYP/6-311++G(d, p) level on both single and triple potential energy surfaces. The geometries, vibrational frequencies and zero-point energy (ZPE) corrections of all stationary points involved in the title reaction are calculated at the B3LYP/6-311++G(d, p) level. The results show that the reaction is more predominant on the single potential energy surface, while it is negligible on the triple potential energy surface. Without barrier height in the whole process, the major channel is R ? C2H5SONO (IM1 and IM2) ? P1 (C2H5SO+NO). With much heat released in the formation of C2H5SNO2 (IM3) and the transition state involved in the subsequent step more stable than reactants, P4 (CH3CHS + t-HONO) is subdominant product energetically.

  15. Changes in adaptation of H5N2 highly pathogenic avian influenza H5 clade 2.3.4.4 viruses in chickens and mallards

    PubMed Central

    DeJesus, Eric; Costa-Hurtado, Mar; Smith, Diane; Lee, Dong-Hun; Spackman, Erica; Kapczynski, Darrell R.; Torchetti, Mia Kim; Killian, Mary Lea; Suarez, David L.; Swayne, David E.; Pantin-Jackwood, Mary J.

    2016-01-01

    H5N2 highly pathogenic avian influenza (HPAI) viruses caused a severe poultry outbreak in the United States (U.S.) during 2015. In order to examine changes in adaptation of this viral lineage, the infectivity, pathogenesis and transmission of poultry H5N2 viruses were investigated in chickens and mallards in comparison to the wild duck 2014 U.S. index H5N2 virus. The four poultry isolates examined had a lower mean bird infectious dose than the index virus but still transmitted poorly to direct contacts. In mallards, two of the H5N2 poultry isolates had similar high infectivity and transmissibility as the index H5N2 virus, the H5N8 U.S. index virus, and a 2005 H5N1 clade 2.2 virus. Mortality occurred with the H5N1 virus and, interestingly, with one of two poultry H5N2 isolates. Increased virus adaptation to chickens was observed with the poultry H5N2 viruses; however these viruses retained high adaptation to mallards but pathogenicity was differently affected. PMID:27632565

  16. Crystal Structures and Thermal Properties of Two Transition-Metal Compounds {[Ni(DNI)2(H2O)3][Ni(DNI)2 (H2O)4]}·6H2O and Pb(DNI)2(H2O)4 (DNI = 2,4-Dinitroimidazolate)

    PubMed Central

    Zhang, Guo-Fang; Cai, Mei-Yu; Jing, Ping; He, Chong; Li, Ping; Zhao, Feng-Qi; Li, Ji-Zhen; Fan, Xue-Zhong; Ng, Seik Weng

    2010-01-01

    Two transition-metal compounds derived from 2,4-dinitroimidazole, {[Ni(DNI)2(H2O)3][Ni(DNI)2 (H2O)4]}·6H2O, 1, and Pb(DNI)2(H2O)4, 2, were characterized by elemental analysis, FT-IR, TG-DSC and X-ray single-crystal diffraction analysis. Crystal data for 1: monoclinic, space group C2/c, a = 26.826(3), b = 7.7199(10), c = 18.579(2) Å, β = 111.241(2)° and Z = 4; 2: monoclinic, space group C2/c, a = 6.5347(6), b = 17.1727(17), c = 14.1011(14) Å, β = 97.7248(10) and Z = 4. Compound 1 contains two isolated nickel centers in its structure, one being six-coordinate and another five-coordinate. The structure of 2 contains a lead (II) center surrounded by two chelating DNI ligands and four water molecules in distorted square-antiprism geometry. The abundant hydrogen bonds in two compounds link the molecules into three-dimensional network and stabilize the molecules. The TG-DSC analysis reveals that the first step is the loss of water molecules and the final residue is the corresponding metal oxides and carbon. PMID:20526419

  17. The relationship between reorientational molecular motions and phase transitions in [Mg(H{sub 2}O){sub 6}](BF{sub 4}){sub 2}, studied with the use of {sup 1}H and {sup 19}F NMR and FT-MIR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikuli, Edward, E-mail: mikuli@chemia.uj.edu.pl; Hetmańczyk, Joanna; Grad, Bartłomiej

    2015-02-14

    A {sup 1}H and {sup 19}F nuclear magnetic resonance study of [Mg(H{sub 2}O){sub 6}](BF{sub 4}){sub 2} has confirmed the existence of two phase transitions at T{sub c1} ≈ 257 K and T{sub c2} ≈ 142 K, detected earlier by the DSC method. These transitions were reflected by changes in the temperature dependences of both proton and fluorine of second moments M{sub 2}{sup H} and M{sub 2}{sup F} and of spin-lattice relaxation times T{sub 1}{sup H} and T{sub 1}{sup F}. The study revealed anisotropic reorientations of whole [Mg(H{sub 2}O){sub 6}]{sup 2+} cations, reorientations by 180° jumps of H{sub 2}O ligands, andmore » aniso- and isotropic reorientations of BF{sub 4}{sup −} anions. The activation parameters for these motions were obtained. It was found that the phase transition at T{sub c1} is associated with the reorientation of the cation as a whole unit around the C{sub 3} axis and that at T{sub c2} with isotropic reorientation of the BF{sub 4}{sup −} anions. The temperature dependence of the full width at half maximum value of the infrared band of ρ{sub t}(H{sub 2}O) mode (at ∼596 cm{sup −1}) indicated that in phases I and II, all H{sub 2}O ligands in [Mg(H{sub 2}O){sub 6}]{sup 2+} perform fast reorientational motions (180° jumps) with a mean value of activation energy equal to ca 10 kJ mole{sup −1}, what is fully consistent with NMR results. The phase transition at T{sub c1} is associated with a sudden change of speed of fast (τ{sub R} ≈ 10{sup −12} s) reorientational motions of H{sub 2}O ligands. Below T{sub c2} (in phase III), the reorientations of certain part of the H{sub 2}O ligands significantly slow down, while others continue their fast reorientation with an activation energy of ca 2 kJ mole{sup −1}. This fast reorientation cannot be evidenced in NMR relaxation experiments. Splitting of certain IR bands connected with H{sub 2}O ligands at the observed phase transitions suggests a reduction of the symmetry of the octahedral [Mg(H

  18. NCI calculations for understanding a physical phase transition in (C6H14N2)[Mn(H2O)6](SeO4)2

    NASA Astrophysics Data System (ADS)

    Naïli, Houcine; François, Michel; Norquist, Alexander J.; Rekik, Walid

    2017-12-01

    An organically templated manganese selenate, (C6H14N2)[Mn(H2O)6](SeO4)2, has been synthesized by slow evaporation and crystallographically characterized. The title compound crystallizes at room temperature in the monoclinic centrosymmetric space group P21/n, with the following unit cell parameters: a = 7.2373(4) Å; b = 12.5600(7) Å; c = 10.1945(7) Å; β = 91.155(4)°, V = 926.50(10) Å3and Z = 2. Its crystal structure is built of manganese(II) cations coordinated by six water molecules in octahedral geometry, disordered dabcodiium cations and selenate anions, resulting in an extensive hydrogen-bonding network. Differential scanning calorimetry (DSC) measurement indicated that the precursor undergoes a reversible phase transition at about 216 and 218 K during the cooling and heating processes respectively. Below this temperature the title compound is noncentrosymmetric with space group P21 and lattice parameters a = 7.2033(8) Å; b = 12.4981(13) Å; c = 10.0888(11) Å; β = 91.281(2)°, V = 908.04(17) Å3 and Z = 2. The disorder-order transformation of the C atoms of (C6H14N2)2+ cation may drive the structural phase transition. The low temperature phase obtained by breaking symmetry presents a fully ordered structure. The noncovalent interaction (NCI) method was used not only to locate, quantify, and visualize intermolecular interactions in the high and low temperature phases but also to confirm the phase transition detected by DSC measurement. The thermal decomposition of this new compound proceeds through four stages giving rise to the manganese oxide as final product at 850 °C.

  19. Mutational Analysis of the Stability of the H2A and H2B Histone Monomers

    PubMed Central

    Stump, Matthew R.; Gloss, Lisa M.

    2008-01-01

    The eukaryotic histone heterodimer H2A-H2B folds through an obligatory dimeric intermediate that forms in a nearly diffusion-limited association reaction in the stopped-flow dead time. It is unclear whether there is partial folding of the isolated monomers before association. To address the possible contributions of structure in the monomers to the rapid association, we characterized H2A and H2B monomers in the absence of their heterodimeric partner. By far-UV circular dichroism, the H2A and H2B monomers are 15% and 31% helical, respectively—significantly less than observed in X-ray crystal structures. Acrylamide quenching of the intrinsic Tyr fluorescence was indicative of tertiary structure. The H2A and H2B monomers exhibit free energies of unfolding of 2.5 and 2.9 kcal mol−1, respectively; at 10 μM, the sum of the stability of the monomers is ~60% of the stability of the native dimer. The helical content, stability and m values indicate that H2B has a more stable, compact structure than H2A. The monomer m values are larger than expected for the extended histone fold motif, suggesting that the monomers adopt an overly-collapsed structure. Stopped-flow refolding—initiated from urea-denatured monomers or the partially folded monomers populated at low denaturant concentrations—yielded essentially identical rates, indicating that monomer folding is productive in the rapid association and folding of the heterodimer. A series of Ala and Gly mutations were introduced into H2A and H2B to probe the importance of helix propensity on the structure and stability of the monomers. The mutational studies show that the central α-helix of the histone fold, which makes extensive inter-monomer contacts, is structured in H2B but only partially folded in H2A. PMID:18976667

  20. Triphasic 2D Materials by Vertically Stacking Laterally Heterostructured 2H-/1T'-MoS 2 on Graphene for Enhanced Photoresponse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Weili; Xu, Shanshan S.; Yan, Bo

    Recently the applications of two-dimensional (2D) materials have been broadened by engineering their mechanical, electronic, and optical properties through either lateral or vertical hybridization. Along with this line, we report the successful design and fabrication of a novel triphasic 2D material by vertically stacking lateral 2H-/1T'-molybdenum disulfide (MoS 2) heterostructures on graphene with the assistance of supercritical carbon dioxide. This triphasic structure is experimentally shown to significantly enhance the photocurrent densities for hydrogen evolution reactions. First-principles theoretical analyses reveal that the improved photoresponse should be ascribed to the beneficial band alignments of the triphasic heterostructure. More specifically, electrons can efficientlymore » hop to the 1T'-MoS 2 phase via the highly conductive graphene layer as a result of their strong vertical interfacial electronic coupling. Subsequently, the electrons acquired on the 1T'-MoS 2 phase are exploited to fill the photoholes on the photo-excited 2H-MoS 2 phase through the lateral heterojunction structure, thereby suppressing the recombination process of the photo-induced charge carriers on the 2H-MoS 2 phase. This novel triphasic concept promises to open a new avenue to widen the molecular design of 2D hybrid materials for photonics-based energy conversion applications.« less

  1. Triphasic 2D Materials by Vertically Stacking Laterally Heterostructured 2H-/1T'-MoS 2 on Graphene for Enhanced Photoresponse

    DOE PAGES

    Cui, Weili; Xu, Shanshan S.; Yan, Bo; ...

    2017-05-11

    Recently the applications of two-dimensional (2D) materials have been broadened by engineering their mechanical, electronic, and optical properties through either lateral or vertical hybridization. Along with this line, we report the successful design and fabrication of a novel triphasic 2D material by vertically stacking lateral 2H-/1T'-molybdenum disulfide (MoS 2) heterostructures on graphene with the assistance of supercritical carbon dioxide. This triphasic structure is experimentally shown to significantly enhance the photocurrent densities for hydrogen evolution reactions. First-principles theoretical analyses reveal that the improved photoresponse should be ascribed to the beneficial band alignments of the triphasic heterostructure. More specifically, electrons can efficientlymore » hop to the 1T'-MoS 2 phase via the highly conductive graphene layer as a result of their strong vertical interfacial electronic coupling. Subsequently, the electrons acquired on the 1T'-MoS 2 phase are exploited to fill the photoholes on the photo-excited 2H-MoS 2 phase through the lateral heterojunction structure, thereby suppressing the recombination process of the photo-induced charge carriers on the 2H-MoS 2 phase. This novel triphasic concept promises to open a new avenue to widen the molecular design of 2D hybrid materials for photonics-based energy conversion applications.« less

  2. Application of Mixed H2/H Infinity Optimization

    DTIC Science & Technology

    1991-11-01

    Standard Form .................. . 29 4.4 a-Plot of the Open Loop System .. ......... .. 31 4.5 o-Plot of the H2 & H. Optimal Td ........... . 32 4.6 o...o.34 4.9 o-Plot of Mixed SolutiCo,,, Te.. .......... 35 4.10 a-Plot of H. Central Solution Td ........ 36 4.11 a-Plot of the Mixed Controllers...norm = 3.7) .. .. ......... 41 4.18 a3-Plot of Ted (V-norm 2.8) .......... o.42 v 4.19 a-Plot of Td (ac-norm = 2.5) . . . . . .. 0 42 4.20 a-Plot

  3. X-ray crystallographic and tungsten-183 nuclear magnetic resonance structural studies of the [M4(H2O)2(XW9O34) 2]10- heteropolyanions (M = COII or Zn, X = P or As)

    USGS Publications Warehouse

    Evans, H.T.; Tourne, C.M.; Tourne, G.F.; Weakley, T.J.R.

    1986-01-01

    The crystal structures of K10[Co4(H2O)2(PW9O 34)2]??22H2O (1) and isomorphous K10[Zn4(H2O)2(AsW9O 34)2]??23H2O (2) have been determined {Mo-K?? radiation, space group P21/n, Z = 2; (1) a = 15.794(2), b = 21.360(2), c = 12.312(1) A??, ?? = 91.96??, R = 0.084 for 3 242 observed reflections [I ??? 3??(I)]; (2) a = 15.842(4), b = 21.327(5), c = 12.308(4) A??, ?? = 92.42(4)??, R = 0.066 for 4 675 observed reflections [F ??? 3??(F)]}. The anions have crystallographic symmetry 1 and non-crystallographic symmetry very close to 2/m (C2h). Each consists of two [XW9O34]9- moieties [??-B isomers; X = P (1) or As (2)] linked via four CoIIO6 or ZnO6 groups. Two Co or Zn atoms each carry a water ligand. The 183W n.m.r. spectra of the anions [Zn4(H2O)2(XW9O34) 2]10- (X = P or As) confirm that the anions retain 2/m symmetry in aqueous solution. Homonuclear coupling constants between 183W atoms are 5.8-9.0 Hz for adjacent WO6 octahedra sharing edges, and 19.6-25.0 Hz for octahedra sharing corners.

  4. H{sub 2} adsorption in Li-decorated porous graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seenithurai, S.; Pandyan, R. Kodi; Kumar, S. Vinodh

    Porous graphene (PG) has been decorated with Li atoms and subsequently studied the hydrogen (H{sub 2}) adsorption characteristics, by using Density Functional Theory (DFT)-based calculations. A 2×2 PG has been decorated with eight Li atoms. Upto four H{sub 2} molecules get adsorbed on each Li atom. The maximum H{sub 2} storage capacity that could be achieved in 2×2PG-8Li is 8.95 wt% which is higher than the U.S. DOE’s revised target for the on-board vehicles. The average H{sub 2} adsorption binding energy is 0.535 eV/H{sub 2}, which lies between 0.2-0.6 eV/H{sub 2} that is required for achieving adsorption and desorption atmore » near ambient conditions. Thus, Li-decorated PG could be a viable option for on-board automobile applications.« less

  5. trans-Bis(thio­cyanato-κN)tetra­kis­(3,4,5-trimethyl-1H-pyrazole-κN 2)nickel(II)–3,4,5-trimethyl-1H-pyrazole (1/1)

    PubMed Central

    Hossaini Sadr, Moayad; Engle, James T.; Ziegler, Christopher J.; Soltani, Behzad; Mousavi, Zahra

    2011-01-01

    In the title compound, [Ni(NCS)2(C6H10N2)4]·C6H10N2, the asymmetric unit comprises a NiII complex and a co-crystallised mol­ecule of 3,4,5-trimethyl-1H-pyrazole (PzMe3). The NiII atom is coordinated by four PzMe3 mol­ecules and two thio­cyanate anions to define a trans N4S2 distorted octa­hedral geometry. A number of intra­molecular N—H⋯N, N—H⋯S and C—H⋯N inter­actions contribute to the stability of the complex. The crystal structure is stabilized by inter­molecular N—H⋯S inter­actions, which link neighbouring mol­ecules into chains along the a axis. PMID:22219831

  6. Effects on H(-) production in a multicusp ion source by mixture of H2 with H2O, NH3, CH4, N2H4, and SF6

    NASA Technical Reports Server (NTRS)

    Orient, O. J.; Chutjian, A.; Leung, K. N.

    1987-01-01

    Effects of H(-) production in a multicusp ion source are measured by separately mixing with hydrogen small amounts (0.33-10 percent) of water, ammonia, methane, and hydrazine these are molecules which produce large amounts of H(-) via dissociative attachment (DA) resonances at higher electron energies. The mixing was done in a separate reservoir, with careful measurement of individual pressures. Experimental enhancements of 1.4 and less were observed, whereas calculated enhancements, using accurate DA cross sections for ground-state H2, should have produced factors of 1.5, 3.0, 1.3, and 2.4 enhancements for water, ammonia methane, and hydrazine, respectively, at a mean electron energy of 1.0 eV in the extraction region. The difference is accounted for by including, in the enhancement calculation, vibrationally and rotationally excited H2 molecules, with v-double prime = 5-11, and J-double prime = 0-5, and the large DA cross sections for the excited H2 (v-double prime, J-double prime). The relative populations of H2 (v-double prime, J-double prime) thus obtained are found to be substantially smaller than those predicted by theoretical calculations. The effect on H(-) current was also studied by mixing small amounts of SF6 with H2. A 1.5 percent mixture was found to reduce the H(-) output by one half.

  7. Ab initio correlated study of the Al13H- anion: Isomers, their kinetic stability and vertical detachment energies

    NASA Astrophysics Data System (ADS)

    Moc, Jerzy

    2012-01-01

    We report correlated ab initio calculations for the Al13H- cluster anion isomers, their kinetic stability and vertical detachment energies (VDEs). Of the two most energetically favored anion structures involving H atom in terminal and threefold bridged sites of the icosahedral Al13-, the higher energy ‘threefold bridged' isomer is shown to be of low kinetic stability. Our results are consistent with the recent photoelectron spectroscopy (PE) study of Grubisic et al. who observed two distinct Al13H- isomers, one of them identified as ‘metastable'. The VDE energies computed at the CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-pVDZ level for the ‘terminal' and ‘threefold bridged' Al13H- isomers of 3.21 and 2.32 eV are in good agreement with those determined in the PE study.

  8. Surface structure of bulk 2H-MoS2(0001) and exfoliated suspended monolayer MoS2: A selected area low energy electron diffraction study

    NASA Astrophysics Data System (ADS)

    Dai, Zhongwei; Jin, Wencan; Grady, Maxwell; Sadowski, Jerzy T.; Dadap, Jerry I.; Osgood, Richard M.; Pohl, Karsten

    2017-06-01

    We have used selected area low energy electron diffraction intensity-voltage (μLEED-IV) analysis to investigate the surface structure of crystalline 2H molybdenum disulfide (MoS2) and mechanically exfoliated and suspended monolayer MoS2. Our results show that the surface structure of bulk 2H-MoS2 is distinct from its bulk and that it has a slightly smaller surface relaxation at 320 K than previously reported at 95 K. We concluded that suspended monolayer MoS2 shows a large interlayer relaxation compared to the MoS2 sandwich layer terminating the bulk surface. The Debye temperature of MoS2 was concluded to be about 600 K, which agrees with a previous theoretical study. Our work has shown that the dynamical μLEED-IV analysis performed with a low energy electron microscope (LEEM) is a powerful technique for determination of the local atomic structures of currently extensively studied two-dimensional (2-D) materials.

  9. Surface structure of bulk 2H-MoS 2 (0001) and exfoliated suspended monolayer MoS 2 : A selected area low energy electron diffraction study

    DOE PAGES

    Dai, Zhongwei; Jin, Wencan; Grady, Maxwell; ...

    2017-02-10

    Here, we used selected area low energy electron diffraction intensity-voltage (μLEED-IV) analysis to investigate the surface structure of crystalline 2H molybdenum disulfide (MoS 2) and mechanically exfoliated and suspended monolayer MoS 2. Our results show that the surface structure of bulk 2H-MoS 2 is distinct from its bulk and that it has a slightly smaller surface relaxation at 320 K than previously reported at 95 K. We concluded that suspended monolayer MoS 2 shows a large interlayer relaxation compared to the MoS 2 sandwich layer terminating the bulk surface. The Debye temperature of MoS 2 was concluded to be aboutmore » 600 K, which agrees with a previous theoretical study. Our work has shown that the dynamical μLEED-IV analysis performed with a low energy electron microscope (LEEM) is a powerful technique for determination of the local atomic structures of currently extensively studied two-dimensional (2-D) materials.« less

  10. Ab Initio Potential Energy Surface for H-H2

    NASA Technical Reports Server (NTRS)

    Patridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene

    1993-01-01

    Ab initio calculations employing large basis sets are performed to determine an accurate potential energy surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged potential determined from the calculated energies agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- 3 micro E(h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive potential energy surfaces (25-70 kcal/mol above the H-H2 asymptote) at small interatomic separations; the Boothroyd, Keogh, Martin, and Peterson (BKMP) potential energy surface is found to agree with results of the present calculations within the expected uncertainty (+/- 1 kcal/mol) of the fit. Multipolar expansions of the computed H-H2 potential energy surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(0)) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.

  11. Robustly photogenerating H2 in water using FeP/CdS catalyst under solar irradiation

    PubMed Central

    Cheng, Huanqing; Lv, Xiao-Jun; Cao, Shuang; Zhao, Zong-Yan; Chen, Yong; Fu, Wen-Fu

    2016-01-01

    Photosplitting water for H2 production is a promising, sustainable approach for solar-to-chemical energy conversion. However, developing low-cost, high efficient and stable photocatalysts remains the major challenge. Here we report a composite photocatalyst consisting of FeP nanoparticles and CdS nanocrystals (FeP/CdS) for photogenerating H2 in aqueous lactic acid solution under visible light irradiation. Experimental results demonstrate that the photocatalyst is highly active with a H2-evolution rate of 202000 μmol h−1 g−1 for the first 5 h (106000 μmol h−1 g−1 under natural solar irradiation), which is the best H2 evolution activity, even 3-fold higher than the control in situ photo-deposited Pt/CdS system, and the corresponding to an apparent quantum efficiency of over 35% at 520 nm. More important, we found that the system exhibited excellent stability and remained effective after more than 100 h in optimal conditions under visible light irradiation. A wide-ranging analysis verified that FeP effectively separates the photoexcited charge from CdS and showed that the dual active sites in FeP enhance the activity of FeP/CdS photocatalysts. PMID:26818001

  12. Selective Adsorption Resonances in the Scattering of n-H2 p-H2 n-D2 and o-D2 from Ag(111)

    NASA Astrophysics Data System (ADS)

    Yu, Chien-Fan; Whaley, K. Birgitta; Hogg, Charles S.; Sibener, Steven J.

    1983-12-01

    Diffractive and rotationally mediated selective adsorption scattering resonances are reported for n-H2 p-H2 n-D2 and o-D2 on Ag(111). Small resonance shifts and line-width differences are observed between n-H2 and p-H2 indicating a weak orientation dependence of the laterally averaged H2/Ag(111) potential. The p-H2 and o-D2 levels were used to determine the isotropic component of this potential, yielding a well depth of ~ 32 meV.

  13. Highly Sensitive H2S Sensor Based on the Metal-Catalyzed SnO2 Nanocolumns Fabricated by Glancing Angle Deposition

    PubMed Central

    Yoo, Kwang Soo; Han, Soo Deok; Moon, Hi Gyu; Yoon, Seok-Jin; Kang, Chong-Yun

    2015-01-01

    As highly sensitive H2S gas sensors, Au- and Ag-catalyzed SnO2 thin films with morphology-controlled nanostructures were fabricated by using e-beam evaporation in combination with the glancing angle deposition (GAD) technique. After annealing at 500 °C for 40 h, the sensors showed a polycrystalline phase with a porous, tilted columnar nanostructure. The gas sensitivities (S = Rgas/Rair) of Au and Ag-catalyzed SnO2 sensors fabricated by the GAD process were 0.009 and 0.015, respectively, under 5 ppm H2S at 300 °C, and the 90% response time was approximately 5 s. These sensors showed excellent sensitivities compared with the SnO2 thin film sensors that were deposited normally (glancing angle = 0°, S = 0.48). PMID:26134105

  14. Synthesis Of [2h, 13c] And [2h3, 13c]Methyl Aryl Sulfides

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.

    2004-03-30

    The present invention is directed to labeled compounds, [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfides wherein the .sup.13 C methyl group attached to the sulfur of the sulfide includes exactly one, two or three deuterium atoms and the aryl group is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4, and R.sub.5 are each independently, hydrogen, a C.sub.1 -C.sub.4 lower alkyl, a halogen, an amino group from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each a C.sub.1 -C.sub.4 lower alkyl, a phenyl, or an alkoxy group. The present invention is also directed to processes of preparing [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2,.sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfides wherein the .sup.13 C methyl group attached to the sulfur of the sulfide includes exactly one, two or three deuterium atoms. The present invention is also directed to the labeled compounds of [.sup.2 H.sub.1, .sup.13 C]methyl iodide and [.sup.2 H.sub.2, .sup.13 C]methyl iodide.

  15. Temperature-Dependent Kinetics Studies of the Reactions Br((sup 2)P3/2) + H2S yields SH + HBr and Br((sup 2)P3/2) + CH3SH yields CH3S + HBr. Heats of Formation of SH and CH3S Radicals

    NASA Technical Reports Server (NTRS)

    Nicovich, J. M.; Kreutter, K. D.; vanDijk, C. A.; Wine, P. H.

    1997-01-01

    Time resolved resonance fluorescence detection of Br(sup 2)P3/2) atom disappearance or appearance following 266-nm laser flash photolysis of CF2Br2/H2S/H2/N2, CF2Br2/CH3SH/H2/N2, Cl2CO/H2S/HBr/N2, and CH3SSCH3/HBr/H2/N2 mixtures has been employed to study the kinetics of the reactions Br((sup 2)P3/2) + H2S = SH + HBr (1,-1) and Br((sup2)P3/2) + CH3SH = CH3S + HBr (2, -2) as a function of temperature over the range 273-431K. Arrhenius expressions in units of 10(exp -12) cu cm/molecule/s which describe the results are k1 = (14.2 +/- 3.4) exp[(-2752 +/- 90)/T],(k-1) = (4.40 +/- 0.92) exp[(-971 +/- 73)/T],k(2) = (9.24 +/- 1.15) exp[(-386 +/- 41)/T], and k(-2) = (1.46 +/-0.21) exp[(-399 +/-41)/T; errors are 2 sigma and represent precision only. By examining Br((sup 2)P3/2) equilibrium kinetics following 355nm laser flash photolysis of Br2/CH3SH/H2/N2 mixtures, a 298 K rate coefficient of (1.7 +/- 0.5) x 10(exp -10) cu cm/molecule/s has been obtained for the reaction CH3S + Br2 yields CH3SBr + Br. To our knowledge, these are the first kinetic data reported for each of the reactions studied. Measured rate coefficients, along with known rate coefficients for similar radical + H2S, CH3SH, HBr,Br2 reactions are considered in terms of possible correlations of reactivity with reaction thermochemistry and with IP - EA, the difference between the ionization potential of the electron donor and the electron affinity of the electron acceptor. Both thermochemical and charge-transfer effects appear to be important in controlling observed reactivities. Second and third law analyses of the equilibrium data for reactions 1 and 2 have been employed to obtain the following enthalpies of reaction in units of kcal/mol: for reaction 1, Delta-H(298) = 3.64 +/- 0.43 and Delta-H(0) = 3.26 +/-0.45; for reaction 2, Delta-H(298) = -0.14 +/- 0.28 and Delta-H(0) = -0.65 +/- 0.36. Combining the above enthalpies of reaction with the well-known heats of formation of Br, HBr, H2S, and CH3SH gives the

  16. Mechanism of nuclear spin initiated para-H2 to ortho-H2 conversion.

    PubMed

    Buntkowsky, G; Walaszek, B; Adamczyk, A; Xu, Y; Limbach, H-H; Chaudret, B

    2006-04-28

    In this paper a quantitative explanation for a diamagnetic ortho/para H2 conversion is given. The description is based on the quantum-mechanical density matrix formalism originally developed by Alexander and Binsch for studies of exchange processes in NMR spectra. Only the nuclear spin system is treated quantum-mechanically. Employing the model of a three spin system, the reactions of the hydrogen gas with the catalysts are treated as a phenomenological rate process, described by a rate constant. Numerical calculations reveal that for nearly all possible geometrical arrangements of the three spin system an efficient spin conversion is obtained. Only in the chemically improbable case of a linear group H-X-H no spin conversion is obtained. The efficiency of the spin conversion depends strongly on the lifetime of the H-X-H complex and on the presence of exchange interactions between the two hydrogens. Even moderate exchange couplings cause a quench of the spin conversion. Thus a sufficiently strong binding of the dihydrogen to the S spin is necessary to render the quenching by the exchange interaction ineffective.

  17. 30 CFR 550.215 - What hydrogen sulfide (H2S) information must accompany the EP?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false What hydrogen sulfide (H2S) information must accompany the EP? 550.215 Section 550.215 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF... Information Contents of Exploration Plans (ep) § 550.215 What hydrogen sulfide (H2S) information must...

  18. 30 CFR 550.215 - What hydrogen sulfide (H2S) information must accompany the EP?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false What hydrogen sulfide (H2S) information must accompany the EP? 550.215 Section 550.215 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF... Information Contents of Exploration Plans (ep) § 550.215 What hydrogen sulfide (H2S) information must...

  19. 30 CFR 550.215 - What hydrogen sulfide (H2S) information must accompany the EP?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false What hydrogen sulfide (H2S) information must accompany the EP? 550.215 Section 550.215 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF... Information Contents of Exploration Plans (ep) § 550.215 What hydrogen sulfide (H2S) information must...

  20. [Experimental investigation of mechanisms of forming RbH by irradiating a Rb+H2 mixture with laser light].

    PubMed

    Shen, Xiao-Yan; Liu, Jing; Dai, Kang; Shen, Yi-Fan

    2008-11-01

    The radiation of a laser photoexcited Rb atoms from the ground state to the 5P3/2 level in a mixture of Rb vapor and hydrogen. The energy-pooling collision 5P3/2 + 5P3/2 --> 5S1/2 + 5D producted 5D state. The Rb (5P3/2) density and spatial distribution were mapped by monitoring the absorption of a counter-propagating laser beam, tuned to the 5P3/2 --> 7S1/2 transition, which could be translated parallel to the pump beam. In the presence of radiation trapping, the spontaneous radiation rate is multiplied by the transmission factor T5P3/2 --> 5S1/2, which describes the average probability that photons emitted within the fluorescence detection region can pass through the optically thick vapor without being absorbed. The T5P3/2 --> 5S1/2 is related to the frequency dependent absorption cross section and the density and spatial distribution of atoms in the level of the transition. The effective radiative rates of the Rb D2 line as a function of the H2 pressure were obtained. These quantities were combined with the measured excited atom density and fluorescence ratio to yield absolute energy-pooling rate coefficient. The quenching collision Rb (5P3/2) + H2 (v = 0) --> Rb(5S) + H2 (v = 2) producted state H2 (v= 2). This process is at least 16 times faster than the Rb (5P3/2) radiative decay rate. The reverse process of this process is relatively unlikely due to their large translational energy defect. The cross section for the process H2 (v = 2) + H2 (v = 0) --> H2 (vn = 1) + H2 (v = 0) + 3 920.2 cm(-1) is 7.7 x 10(-19) cm2. Hence the relaxation rate of this vibrational level is relatively slow and the nuclear spin statistics is conserved. The H2 (v = 2) density was determined by using the cross section for Rb (5P3/2)-H2 quenching. RbH was fromed by the Rb(5D) + H2 and Rb (5P3/2) + H2 (v = 2) reactions and observed by laser absorption. The ratio of 5D --> 5P3/2 to 5P3/2 --> 5S1/2 fluorescence was measured as a function of the H2 density. The absorption of the laser beam

  1. Biological treatment of H(2)S using pellet activated carbon as a carrier of microorganisms in a biofilter.

    PubMed

    Duan, Huiqi; Koe, Lawrence C C; Yan, Rong; Chen, Xiaoge

    2006-08-01

    Biological treatment is an emerging technology for treating off-gases from wastewater treatment plants. The most commonly reported odourous compound in off-gases is hydrogen sulfide (H(2)S), which has a very low odor threshold. This study aims to evaluate the feasibility of using a biological activated carbon as a novel packing material, to achieve a performance-enhanced biofiltration processes in treating H(2)S through an optimum balance and combination of the adsorption capacity with the biodegradation of H(2)S by the bacteria immobilized on the material. The biofilm was mostly developed through culturing the bacteria in the presence of carbon pellets in mineral media. Scanning electron microscopy (SEM) was used to identify the biofilm development on carbon surface. Two identical laboratory scale biofilters, one was operated with biological activated carbon (BAC) and another with virgin carbon without bacteria immobilization. Various concentrations of H(2)S (up to 125 ppmv) were used to determine the optimum column performance. A rapid startup (a few days) was observed for H(2)S removal in the biofilter. At a volumetric loading of 1600 m(3)m(-3)h(-1) (at 87 ppmv H(2)S inlet concentration), elimination capacity of the BAC (181 gH(2)Sm(-3)h(-1)) at removal efficiency (RE) of 94% was achieved. If the inlet concentration was kept at below 30 ppmv, high H(2)S removal (over 99%) was achieved at a gas retention time (GRT) as low as 2s, a value, which is shorter than most previously reported for biofilter operations. The bacteria population in the acidic biofilter demonstrated capacity for removal of H(2)S in a broad pH range (pH 1-7). There are experimental evidences showing that the spent BAC could be re-used as packing material in a biofilter based on BAC. Overall, the results indicated that an unprecedented performance could be achieved by using BAC as the supporting media for H(2)S biofiltration.

  2. Synthesis and structures of new niobium cluster compounds with pyridinium cations: (PyrH){sub 2}[Nb{sub 6}Cl{sub 18}].EtOH (Pyr: pyridine, Et: ethyl) and the cubic modification of (PyrH){sub 2}[Nb{sub 6}Cl{sub 18}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flemming, Anke; Hoppe, Alessandra; Koeckerling, Martin

    2008-10-15

    Slow crystallization of (PyrH){sub 2}[Nb{sub 6}Cl{sub 18}] from hot ethanol solution affords triclinic (PyrH){sub 2}[Nb{sub 6}Cl{sub 18}].EtOH. Treatment of [Nb{sub 6}Cl{sub 14}(H{sub 2}O){sub 4}].4H{sub 2}O with pyridine in a methanol solution gives the second title compound, the cubic modification of (PyrH){sub 2}[Nb{sub 6}Cl{sub 18}]. Both structures were determined by single crystal X-ray diffraction, (PyrH){sub 2}[Nb{sub 6}Cl{sub 18}].EtOH: P1-bar , a=9.3475(3), b=9.3957(3), c=10.8600(3) A, {alpha}=82.582(1){sup o}, {beta}=78.608(1){sup o}, and {gamma}=78.085(1){sup o}, Z=1, R{sub 1}(F)/wR{sub 2}(F{sup 2})=0.0254/0.0573, cub.-(PyrH){sub 2}[Nb{sub 6}Cl{sub 18}]: Fd3-bar m, a=19.935(2) A, Z=8, R{sub 1}(F)/wR{sub 2}(F{sup 2})=0.0557/0.1796. The cluster compounds contain isolated, molecular [Nb{sub 6}Cl{sup i}{sub 12}Cl{sup a}{sub 6}]{supmore » 2-} cluster anions with an octahedron of metal atoms edge bridged by chlorido ligands with additional ones on all the six exo positions. These cluster anions are separated by the pyridinium cations and ethanol solvent molecules, respectively. For the cubic modification of (PyrH){sub 2}[Nb{sub 6}Cl{sub 18}], a structural comparison is given to the known rhombohedral modification using the group-subgroup relations as expressed by a Baernighausen tree. - Graphical abstract: The synthesis and structure of a second cubic modification of (PyrH){sub 2}[Nb{sub 6}Cl{sub 18}] and of the new (PyrH){sub 2}[Nb{sub 6}Cl{sub 18}].EtOH are reported, both of which contain isolated niobium halide cluster anions with an octahedral core of metal atoms.« less

  3. Expanding the remarkable structural diversity of uranyl tellurites: hydrothermal preparation and structures of K[UO(2)Te(2)O(5)(OH)], Tl(3)[(UO(2))(2)[Te(2)O(5)(OH)](Te(2)O(6))].2H(2)O, beta-Tl(2)[UO(2)(TeO(3))(2)], and Sr(3)[UO(2)(TeO(3))(2)](TeO(3))(2).

    PubMed

    Almond, Philip M; Albrecht-Schmitt, Thomas E

    2002-10-21

    The reactions of UO(2)(C(2)H(3)O(2))(2).2H(2)O with K(2)TeO(3).H(2)O, Na(2)TeO(3) and TlCl, or Na(2)TeO(3) and Sr(OH)(2).8H(2)O under mild hydrothermal conditions yield K[UO(2)Te(2)O(5)(OH)] (1), Tl(3)[(UO(2))(2)[Te(2)O(5)(OH)](Te(2)O(6))].2H(2)O (2) and beta-Tl(2)[UO(2)(TeO(3))(2)] (3), or Sr(3)[UO(2)(TeO(3))(2)](TeO(3))(2) (4), respectively. The structure of 1 consists of tetragonal bipyramidal U(VI) centers that are bound by terminal oxo groups and tellurite anions. These UO(6) units span between one-dimensional chains of corner-sharing, square pyramidal TeO(4) polyhedra to create two-dimensional layers. Alternating corner-shared oxygen atoms in the tellurium oxide chains are protonated to create short/long bonding patterns. The one-dimensional chains of corner-sharing TeO(4) units found in 1 are also present in 2. However, in 2 there are two distinct chains present, one where alternating corner-shared oxygen atoms are protonated, and one where the chains are unprotonated. The uranyl moieties in 2 are bound by five oxygen atoms from the tellurite chains to create seven-coordinate pentagonal bipyramidal U(VI). The structures of 3 and 4 both contain one-dimensional [UO(2)(TeO(3))(2)](2-) chains constructed from tetragonal bipyramidal U(VI) centers that are bridged by tellurite anions. The chains differ between 3 and 4 in that all of the pyramidal tellurite anions in 3 have the same orientation, whereas the tellurite anions in 4 have opposite orientations on each side of the chain. In 4, there are also additional isolated TeO(3)(2-) anions present. Crystallographic data: 1, orthorhombic, space group Cmcm, a = 7.9993(5) A, b = 8.7416(6) A, c = 11.4413(8) A, Z = 4; 2, orthorhombic, space group Pbam, a = 10.0623(8) A, b = 23.024(2) A, c = 7.9389(6) A, Z = 4; 3, monoclinic, space group P2(1)/n, a = 5.4766(4) A, b = 8.2348(6) A, c = 20.849(3) A, beta = 92.329(1) degrees, Z = 4; 4, monoclinic, space group C2/c, a = 20.546(1) A, b = 5.6571(3) A, c = 13.0979(8) A, beta

  4. D/H isotopic fractionation effects in the H2-H2O system: An in-situ experimental study at supercritical water conditions

    NASA Astrophysics Data System (ADS)

    Foustoukos, D.; Mysen, B. O.

    2011-12-01

    Understanding the effect of temperature on the relative distribution of volatiles in supercritical aqueous solutions is important to constrain elemental and isotopic partitioning/fractionation effects in systems applicable to planetary interiors where the temperature-pressure conditions are often beyond existing experimental or theoretical datasets. For example, very little exists for the fundamental equilibria between H2, D2 and HD (H2 + D2 = 2HD), which, in turn, constrains the internal D/H isotope exchange and the evolution of HD in H2-containing systems such as H2-CH4 and H2-H2O. Theoretical calculations considering the partition functions of the molecules predict that with temperature increase, the equilibrium constant of this reaction approximates values that correspond to the stochastic distribution of species. These calculations consider pure harmonic vibrational frequencies, which, however, do not apply to the diatomic molecule of hydrogen, especially because anharmonic oscillations are anticipated to become stronger at high temperatures. Published experimental data have been limited to conditions lower than 468°C with large uncertainties at elevated temperatures. To address the lack of experimental data, a series of hydrothermal diamond anvil experiments has been conducted utilizing vibrational spectroscopy as a novel quantitative method to explore the relative distribution of H- and D-bearing volatiles in the H2-D2-D2O-H2O-Ti-TiO2 system. The fundamentals of this methodology are based on the distinct Raman frequency shift resulting from deuterium substitution in the H-H and O-H bonds. In detail, H2O-D2O solutions (1:1) were reacted with Ti metal (for 3-9hrs) at 600-800°C and pressures of 0.5-1 GPa, leading to formation of H2, D2, HD and HDO species through Ti oxidation and H-D isotope exchange reactions. Experimental results obtained in-situ and in the quenched gas phase, indicate a significant deviation from the theoretical estimate of the equilibrium

  5. Syntheses, crystal structures, and magnetic properties of the oxalato-bridged mixed-valence complexes (FeII(bpm)3]2[FeIII2(ox)5].8H2O and FeII(bpm)3Na(H2O)2Fe(ox)(3).4H2O (bpm = 2,2'-bipyrimidine).

    PubMed

    Armentano, D; De Munno, G; Faus, J; Lloret, F; Julve, M

    2001-02-12

    The preparation and crystal structures of two oxalato-bridged FeII-FeIII mixed-valence compounds, [FeII(bpm)3]2[FeIII2(ox)5].8H2O (1) and FeII(bpm)3Na(H2O)2FeIII(ox)(3).4H2O (2) (bpm = 2,2'-bipyrimidine; ox = oxalate dianion) are reported here. Complex 1 crystallizes in the triclinic system, space group P1, with a = 10.998(2) A, b = 13.073(3) A, c = 13.308(3) A, alpha = 101.95(2) degrees, beta = 109.20(2) degrees, gamma = 99.89(2) degrees, and Z = 1. Complex 2 crystallizes in the monoclinic system, space group P2(1)/c, with a = 12.609(2) A, b = 19.670(5) A, c = 15.843(3) A, beta = 99.46(1) degrees, and Z = 4. The structure of complex 1 consists of centrosymmetric oxalato-bridged dinuclear high-spin iron(III) [Fe2(ox)5]2- anions, tris-chelated low-spin iron(II) [Fe(bpm)3]2+ cations, and lattice water molecules. The iron atoms are hexacoordinated: six oxygen atoms (iron(III)) from two bidentate and one bisbidentate oxalato ligands and six nitrogen atoms (iron(II)) from three bidentate bpm groups. The Fe(III)-O(ox) and Fe(II)-N(bpm) bond distances vary in the ranges 1.967(3)-2.099(3) and 1.967(4)-1.995(3) A, respectively. The iron(III)-iron(III) separation across the bridging oxalato is 5.449(2) A, whereas the shortest intermolecular iron(III)-iron(II) distance is 6.841(2) A. The structure of complex 2 consists of neutral heterotrinuclear Fe(bpm)2Na(H2O)2Fe(ox)3 units and water molecules of crystallization. The tris-chelated low-spin iron(II) ([Fe(bpm)3]2+) and high-spin iron(III) ([Fe(ox)3]3-) entities act as bidentate ligands (through two bpm-nitrogen and two oxalato-oxygen atoms, respectively) toward the univalent sodium cation, yielding the trinuclear (bpm)2Fe(II)-bpm-Na(I)-ox-Fe(III)(ox)2 complex. Two cis-coordinated water molecules complete the distorted octahedral surrounding of the sodium atom. The ranges of the Fe(II)-N(bpm) and Fe(III)-O(ox) bond distances [1.968(6)-1.993(5) and 1.992(6)-2.024(6) A, respectively] compare well with those observed in 1. The Na

  6. Molecular identification for epigallocatechin-3-gallate-mediated antioxidant intervention on the H2O2-induced oxidative stress in H9c2 rat cardiomyoblasts.

    PubMed

    Chen, Wei-Cheng; Hsieh, Shih-Rong; Chiu, Chun-Hwei; Hsu, Ban-Dar; Liou, Ying-Ming

    2014-06-09

    Epigallocatechin-3-gallate (EGCG) has been documented for its beneficial effects protecting oxidative stress to cardiac cells. Previously, we have shown the EGCG-mediated cardiac protection by attenuating reactive oxygen species and cytosolic Ca2+ in cardiac cells during oxidative stress and myocardial ischemia. Here, we aimed to seek a deeper elucidation of the molecular anti-oxidative capabilities of EGCG in an H2O2-induced oxidative stress model of myocardial ischemia injury using H9c2 rat cardiomyoblasts. Proteomics analysis was used to determine the differential expression of proteins in H9c2 cells cultured in the conditions of control, 400 μM H2O2 exposure for 30 min with and/or without 10 to 20 μM EGCG pre-treatment. In this model, eight proteins associated with energy metabolism, mitochondrial electron transfer, redox regulation, signal transduction, and RNA binding were identified to take part in EGCG-ameliorating H2O2-induced injury in H9c2 cells. H2O2 exposure increased oxidative stress evidenced by increases in reactive oxygen species and cytosolic Ca2+ overload, increases in glycolytic protein, α-enolase, decreases in antioxidant protein, peroxiredoxin-4, as well as decreases in mitochondrial proteins, including aldehyde dehydrogenase-2, ornithine aminotransferase, and succinate dehydrogenase ubiquinone flavoprotein subunit. All of these effects were reversed by EGCG pre-treatment. In addition, EGCG attenuated the H2O2-induced increases of Type II inositol 3, 4-bisphosphate 4-phosphatase and relieved its subsequent inhibition of the downstream signalling for Akt and glycogen synthase kinase-3β (GSK-3β)/cyclin D1 in H9c2 cells. Pre-treatment with EGCG or GSK-3β inhibitor (SB 216763) significantly improved the H2O2-induced suppression on cell viability, phosphorylation of pAkt (S473) and pGSK-3β (S9), and level of cyclin D1 in cells. Collectively, these findings suggest that EGCG blunts the H2O2-induced oxidative effect on the Akt activity

  7. Molecular identification for epigallocatechin-3-gallate-mediated antioxidant intervention on the H2O2-induced oxidative stress in H9c2 rat cardiomyoblasts

    PubMed Central

    2014-01-01

    Background Epigallocatechin-3-gallate (EGCG) has been documented for its beneficial effects protecting oxidative stress to cardiac cells. Previously, we have shown the EGCG-mediated cardiac protection by attenuating reactive oxygen species and cytosolic Ca2+ in cardiac cells during oxidative stress and myocardial ischemia. Here, we aimed to seek a deeper elucidation of the molecular anti-oxidative capabilities of EGCG in an H2O2-induced oxidative stress model of myocardial ischemia injury using H9c2 rat cardiomyoblasts. Results Proteomics analysis was used to determine the differential expression of proteins in H9c2 cells cultured in the conditions of control, 400 μM H2O2 exposure for 30 min with and/or without 10 to 20 μM EGCG pre-treatment. In this model, eight proteins associated with energy metabolism, mitochondrial electron transfer, redox regulation, signal transduction, and RNA binding were identified to take part in EGCG-ameliorating H2O2-induced injury in H9c2 cells. H2O2 exposure increased oxidative stress evidenced by increases in reactive oxygen species and cytosolic Ca2+ overload, increases in glycolytic protein, α-enolase, decreases in antioxidant protein, peroxiredoxin-4, as well as decreases in mitochondrial proteins, including aldehyde dehydrogenase-2, ornithine aminotransferase, and succinate dehydrogenase ubiquinone flavoprotein subunit. All of these effects were reversed by EGCG pre-treatment. In addition, EGCG attenuated the H2O2-induced increases of Type II inositol 3, 4-bisphosphate 4-phosphatase and relieved its subsequent inhibition of the downstream signalling for Akt and glycogen synthase kinase-3β (GSK-3β)/cyclin D1 in H9c2 cells. Pre-treatment with EGCG or GSK-3β inhibitor (SB 216763) significantly improved the H2O2-induced suppression on cell viability, phosphorylation of pAkt (S473) and pGSK-3β (S9), and level of cyclin D1 in cells. Conclusions Collectively, these findings suggest that EGCG blunts the H2O2-induced oxidative

  8. Efficient degradation of H2S over transition metal modified TiO2 under VUV irradiation: Performance and mechanism

    NASA Astrophysics Data System (ADS)

    Liu, Gaoyuan; Ji, Jian; Hu, Peng; Lin, Sixin; Huang, Haibao

    2018-03-01

    Odor pollution causes great harm to the atmospheric environment and human health. H2S, as an odor gas, is highly toxic and corrosive and thus requires removal efficiently. In this study, TiO2 catalysts modified by transition metals including Mn, Cu, Ni and Co, were prepared using a modified sol-gelatin method and tested under UV-PCO or VUV-PCO process. H2S degradation was great enhanced in VUV-PCO compared with conventional UV-PCO. Among the catalysts, 1 wt% Mn-TiO2 showed the highest removal efficiency of 89.9%, which is 30 times higher than that under 254 nm UV irradiation. Residual ozone in the outlet can be completely eliminated by Mn-TiO2. Photocatalytic oxidation, photolysis and ozone-assisted catalytic oxidation all involved in the VUV-PCO process and their contribution were determined by H2S removal efficiency.

  9. 30 CFR 250.215 - What hydrogen sulfide (H2S) information must accompany the EP?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What hydrogen sulfide (H2S) information must accompany the EP? 250.215 Section 250.215 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE... Contents of Exploration Plans (ep) § 250.215 What hydrogen sulfide (H2S) information must accompany the EP...

  10. Effect of Heating and Glycation on the Allergenicity of 2S Albumins (Ara h 2/6) from Peanut

    PubMed Central

    Skov, Per Stahl; Johnson, Phil E.; Rigby, Neil M.; Przybylski-Nicaise, Laetitia; Bernard, Hervé; Wal, Jean-Michel; Ballmer-Weber, Barbara; Zuidmeer-Jongejan, Laurian; Szépfalusi, Zsolt; Ruinemans-Koerts, Janneke; Jansen, Ad P. H.; Savelkoul, Huub F. J.; Wichers, Harry J.; Mackie, Alan R.; Mills, Clare E. N.; Adel-Patient, Karine

    2011-01-01

    Background Peanut allergy is one of the most common and severe food allergies, and processing is known to influence the allergenicity of peanut proteins. We aimed to establish the effect of heating and glycation on the IgE-binding properties and biological activity of 2S albumins (Ara h 2/6) from peanut. Methodology/Principal Findings Native Ara h 2/6 was purified from raw peanuts and heated in solution (15 min, 110°C) in the presence or absence of glucose. Ara h 2 and 6 were also purified from roasted peanut. Using PBMC and sera from peanut-allergic patients, the cellular proliferative potency and IgE reactivity (reverse EAST inhibition) and functionality (basophil degranulation capacity) of allergens were assessed. Heating Ara h 2/6 at 110°C resulted in extensive denaturation, hydrolysis and aggregation of the protein, whilst Ara h 2 and 6 isolated from roasted peanut retained its native conformation. Allergen stimulation of PBMC induced proliferation and Th2 cytokine secretion which was unaffected by thermal processing. Conversely, IgE reactivity and functionality of Ara h 2/6 was decreased by heating. Whilst heating-glycation further reduced the IgE binding capacity of the proteins, it moderated their loss of histamine releasing capacity. Ara h 2 and 6 purified from roasted peanut demonstrated the same IgE reactivity as unheated, native Ara h 2/6. Conclusions/Significance Although no effect of processing on T-cell reactivity was observed, heat induced denaturation reduced the IgE reactivity and subsequent functionality of Ara h 2/6. Conversely, Ara h 2 and 6 purified from roasted peanut retained the structure and IgE reactivity/functionality of the native protein which may explain the allergenic potency of this protein. Through detailed molecular study and allergenicity assessment approaches, this work then gives new insights into the effect of thermal processing on structure/allergenicity of peanut proteins. PMID:21901150

  11. Quantum chemical study of the mechanism of reaction between NH (X 3sigma-) and H2, H2O, and CO2 under combustion conditions.

    PubMed

    Mackie, John C; Bacskay, George B

    2005-12-29

    Reactions of ground-state NH (3sigma-) radicals with H2, H2O, and CO2 have been investigated quantum chemically, whereby the stationary points of the appropriate reaction potential energy surfaces, that is, reactants, products, intermediates, and transition states, have been identified at the G3//B3LYP level of theory. Reaction between NH and H2 takes place via a simple abstraction transition state, and the rate coefficient for this reaction as derived from the quantum chemical calculations, k(NH + H2) = (1.1 x 10(14)) exp(-20.9 kcal mol(-1)/RT) cm3 mol(-1) s(-1) between 1000 and 2000 K, is found to be in good agreement with experiment. For reaction between triplet NH and H2O, no stable intermediates were located on the triplet reaction surface although several stable species were found on the singlet surface. No intersystem crossing seam between triplet NH + H2O and singlet HNO + H2 (the products of lowest energy) was found; hence there is no evidence to support the existence of a low-energy pathway to these products. A rate coefficient of k(NH + H2O) = (6.1 x 10(13)) exp(-32.8 kcal mol(-1)/RT) cm3 mol(-1) s(-1) between 1000 and 2000 K for the reaction NH (3sigma-) + H2O --> NH2 (2B) + OH (2pi) was derived from the quantum chemical results. The reverse rate coefficient, calculated via the equilibrium constant, is in agreement with values used in modeling the thermal de-NO(x) process. For the reaction between triplet NH and CO2, several stable intermediates on both triplet and singlet reaction surfaces were located. Although a pathway from triplet NH + CO2 to singlet HNO + CO involving intersystem crossing in an HN-CO2 adduct was discovered, no pathway of sufficiently low activation energy was discovered to compare with that found in an earlier experiment [Rohrig, M.; Wagner, H. G. Proc. Combust. Inst. 1994, 25, 993.].

  12. Characterization of recycled rubber media for hydrogen sulphide (H2S) control.

    PubMed

    Wang, Ning; Park, Jaeyoung; Evans, Eric A; Ellis, Timothy G

    2014-01-01

    Hydrogen sulphide (H2S) adsorption capacities on recycled rubber media, tyre-derived rubber particle (TDRP), and other rubber material (ORM) have been evaluated. As part of the research, densities, moisture contents, and surface properties of TDRP and ORM have been determined. The research team findings show that TDRP and ORM are more particulate in nature and not highly porous-like activated carbon. The characteristics of surface area, pore size, and moisture content support chemisorption on the macrosurface rather than physical adsorption in micropores. For example, moisture content is essential for H2S adsorption on ORM, and an increase in moisture content results in an increase in adsorption capacity.

  13. Application of an octa-anionic 5,10,15,20-tetra[3,5-(nido-carboranylmethyl)phenyl]porphyrin (H2OCP) as dual sensitizer for BNCT and PDT

    USDA-ARS?s Scientific Manuscript database

    The applications of the octa-anionic 5,10,15,20-tetra[3,5-(nidocarboranylmethyl) phenyl]porphyrin (H2OCP) as a boron delivery agent in boron neutron capture therapy (BNCT) and a photosensitizer in photodynamic therapy (PDT) have been investigated. Using F98 Rat glioma cells, we evaluated the cytotox...

  14. Cross section data sets for electron collisions with H2, O2, CO, CO2, N2O and H2O

    NASA Astrophysics Data System (ADS)

    Anzai, K.; Kato, H.; Hoshino, M.; Tanaka, H.; Itikawa, Y.; Campbell, L.; Brunger, M. J.; Buckman, S. J.; Cho, H.; Blanco, F.; Garcia, G.; Limão-Vieira, P.; Ingólfsson, O.

    2012-02-01

    We review earlier cross section data sets for electron-collisions with H2, O2, CO, CO2, H2O and N2O, updated here by experimental results for their electronic states. Based on our recent measurements of differential cross sections for the electronic states of those molecules, integral cross sections (ICSs) are derived by applying a generalized oscillator strength analysis and then assessed against theory (BE f-scaling [Y.-K. Kim, J. Chem. Phys. 126, 064305 (2007)]). As they now represent benchmark electronic state cross sections, those ICSs for the above molecules are added into the original cross section sets taken from the data reviews for H2, O2, CO2 and H2O (the Itikawa group), and for CO and N2O (the Zecca group).

  15. Infrared spectra of seeded hydrogen clusters: (para-H2)N-N2O and (ortho-H2)N-N2O, N = 2-13.

    PubMed

    Tang, Jian; McKellar, A R W

    2005-09-15

    High-resolution infrared spectra of clusters containing para-H2 and/or ortho-H2 and a single nitrous oxide molecule are studied in the 2225-cm(-1) region of the upsilon1 fundamental band of N2O. The clusters are formed in pulsed supersonic jet expansions from a cooled nozzle and probed using a tunable infrared diode laser spectrometer. The simple symmetric rotor-type spectra generally show no resolved K structure, with prominent Q-branch features for ortho-H2 but not para-H2 clusters. The observed vibrational shifts and rotational constants are reported. There is no obvious indication of superfluid effects for para-H2 clusters up to N=13. Sharp transitions due to even larger clusters are observed, but no definite assignments are possible. Mixed (para-H2)N-(ortho-H2)M-N2O cluster line positions can be well predicted by linear interpolation between the corresponding transitions of the pure clusters.

  16. Room-temperature H2S Gas Sensor Based on Au-doped ZnFe2O4 Yolk-shell Microspheres.

    PubMed

    Yan, Yin; Nizamidin, Patima; Turdi, Gulmira; Kari, Nuerguli; Yimit, Abliz

    2017-01-01

    Room-temperature type H 2 S sensing devices that use Au-doped ZnFe 2 O 4 yolk-shell microspheres as the active material have been fabricated using a solvothermal method as well as subsequent annealing and a chemical etching process. The samples are characterized using X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), field-emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscopy (XPS). The results demonstrate that the doping of Au does not change the spinel structure of the products, which were yolk-shell microspheres, while the particle size varied with the Au doping concentration. Also, the as-fabricated sensor device exhibited excellent selectivity toward H 2 S gas at the room temperature; the gas-sensing property of 2 wt% Au-doped ZnFe 2 O 4 microspheres was the best. The Au-doped ZnFe 2 O 4 yolk-shell microspheres can be promising as a sensing material for H 2 S gas detecting at room temperature.

  17. Structure and Kinetic Analysis of H2S Production by Human Mercaptopyruvate Sulfurtransferase*

    PubMed Central

    Yadav, Pramod Kumar; Yamada, Kazuhiro; Chiku, Taurai; Koutmos, Markos; Banerjee, Ruma

    2013-01-01

    Mercaptopyruvate sulfurtransferase (MST) is a source of endogenous H2S, a gaseous signaling molecule implicated in a wide range of physiological processes. The contribution of MST versus the other two H2S generators, cystathionine β-synthase and γ-cystathionase, has been difficult to evaluate because many studies on MST have been conducted at high pH and have used varied reaction conditions. In this study, we have expressed, purified, and crystallized human MST in the presence of the substrate 3-mercaptopyruvate (3-MP). The kinetics of H2S production by MST from 3-MP was studied at pH 7.4 in the presence of various physiological persulfide acceptors: cysteine, dihydrolipoic acid, glutathione, homocysteine, and thioredoxin, and in the presence of cyanide. The crystal structure of MST reveals a mixture of the product complex containing pyruvate and an active site cysteine persulfide (Cys248-SSH) and a nonproductive intermediate in which 3-MP is covalently linked via a disulfide bond to an active site cysteine. The crystal structure analysis allows us to propose a detailed mechanism for MST in which an Asp-His-Ser catalytic triad is positioned to activate the nucleophilic cysteine residue and participate in general acid-base chemistry, whereas our kinetic analysis indicates that thioredoxin is likely to be the major physiological persulfide acceptor for MST. PMID:23698001

  18. Adsorption and dissociation mechanism of SO2 and H2S on Pt decorated graphene: a DFT-D3 study

    NASA Astrophysics Data System (ADS)

    Chen, Dachang; Zhang, Xiaoxing; Tang, Ju; Fang, Jiani; Li, Yi; Liu, Huijun

    2018-06-01

    This study explores the diffusion behavior of one Pt atom on graphene as well as the interaction mechanism between two types of gas molecule (SO2 and H2S) and Pt-graphene based on density functional theory (DFT) considering a dispersion correction about van der Walls force. Results suggest that one Pt atom shows high mobility with low activation energy and Pt doped graphene exhibits relatively stronger interaction with H2S than SO2 according to adsorption energy. SO2 accepts electrons from Pt-graphene while H2S losses electrons. Both two molecules introduce obvious hybridization with Pt-graphene in density of states. The charge density difference and Electron Localization Function (ELF) configurations indicate evident changes in the distribution of electrons about Pt-graphene and gas molecule before and after gas adsorption. H2S is easy to dissociate on Pt-graphene due to the much lower energy barrier compared to SO2. The work provides quantum chemistry methods to investigate the chemical interaction between Pt decorated graphene and two typical gases to shed light on practical application of Pt-graphene in adsorbing and detecting these two kinds of gases or other types of gases.

  19. Remote control of the dissociative ionization of H2 based on electron-H2 + entanglement

    NASA Astrophysics Data System (ADS)

    Wang, Jun-Ping; He, Feng

    2018-04-01

    The single ionization of H2 in strong laser fields creates the correlated electron-H2 + pair. Based on such a correlation, we conceive a strategy to control the energy spectra of the freed electron or dissociative fragments by simulating the time-dependent Schrödinger equation. Two attosecond pulses in a train produce the replica of electron-H2 + pairs, which are to be steered by a time-delayed phase-stabilized (mid)infrared laser pulse. By controlling the behavior of the freed electron, the dissociation of H2 + can be controlled even though there is no direct laser-H2 + coupling. On the other hand, the photoelectron energy spectra can be manipulated via laser-H2 + coupling. This study demonstrates the entanglement of molecular quantum wave packets, and affords a route to remotely control molecular dissociative ionization.

  20. Internal Gene Cassette from a Genotype S H9N2 Avian Influenza Virus Attenuates the Pathogenicity of H5 Viruses in Chickens and Mice.

    PubMed

    Hao, Xiaoli; Wang, Jiongjiong; Hu, Jiao; Lu, Xiaolong; Gao, Zhao; Liu, Dong; Li, Juan; Wang, Xiaoquan; Gu, Min; Hu, Zenglei; Liu, Xiaowen; Hu, Shunlin; Xu, Xiulong; Peng, Daxin; Jiao, Xinan; Liu, Xiufan

    2017-01-01

    H9N2 avian influenza virus (AIV) of genotype S frequently donate internal genes to facilitate the generation of novel reassortants such as H7N9, H10N8, H5N2 and H5N6 AIVs, posing an enormous threat to both human health and poultry industry. However, the pathogenicity and transmission of reassortant H5 viruses with internal gene cassette of genotype S H9N2-origin in chickens and mice remain unknown. In this study, four H5 reassortants carrying the HA and NA genes from different clades of H5 viruses and the remaining internal genes from an H9N2 virus of the predominant genotype S were generated by reverse genetics. We found that all four H5 reassortant viruses showed attenuated virulence in both chickens and mice, thus leading to increased the mean death times compared to the corresponding parental viruses. Consistently, the polymerase activity and replication ability in mammalian and avian cells, and the cytokine responses in the lungs of chickens and mice were also decreased when compared to their respective parental viruses. Moreover, these reassortants transmitted from birds to birds by direct contact but not by an airborne route. Our data indicate that the internal genes as a whole cassette from genotype S H9N2 viruses play important roles in reducing the pathogenicity of the H5 recombinants in chickens and mice, and might contribute to the circulation in avian or mammalian hosts.

  1. Internal Gene Cassette from a Genotype S H9N2 Avian Influenza Virus Attenuates the Pathogenicity of H5 Viruses in Chickens and Mice

    PubMed Central

    Hao, Xiaoli; Wang, Jiongjiong; Hu, Jiao; Lu, Xiaolong; Gao, Zhao; Liu, Dong; Li, Juan; Wang, Xiaoquan; Gu, Min; Hu, Zenglei; Liu, Xiaowen; Hu, Shunlin; Xu, Xiulong; Peng, Daxin; Jiao, Xinan; Liu, Xiufan

    2017-01-01

    H9N2 avian influenza virus (AIV) of genotype S frequently donate internal genes to facilitate the generation of novel reassortants such as H7N9, H10N8, H5N2 and H5N6 AIVs, posing an enormous threat to both human health and poultry industry. However, the pathogenicity and transmission of reassortant H5 viruses with internal gene cassette of genotype S H9N2-origin in chickens and mice remain unknown. In this study, four H5 reassortants carrying the HA and NA genes from different clades of H5 viruses and the remaining internal genes from an H9N2 virus of the predominant genotype S were generated by reverse genetics. We found that all four H5 reassortant viruses showed attenuated virulence in both chickens and mice, thus leading to increased the mean death times compared to the corresponding parental viruses. Consistently, the polymerase activity and replication ability in mammalian and avian cells, and the cytokine responses in the lungs of chickens and mice were also decreased when compared to their respective parental viruses. Moreover, these reassortants transmitted from birds to birds by direct contact but not by an airborne route. Our data indicate that the internal genes as a whole cassette from genotype S H9N2 viruses play important roles in reducing the pathogenicity of the H5 recombinants in chickens and mice, and might contribute to the circulation in avian or mammalian hosts. PMID:29075244

  2. Aqueous organometallic chemistry. 2. {sup 1}H NMR spectroscopic, synthetic, and structural study of the chemo- and diastereoselective reactions of [Cp{sup *}Rh(H{sub 2}O){sub 3}]{sup 2+} with nitrogen ligands as a function of pH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogo, Seiji; Chen, H.; Fish, R.H.

    The reactions of a new Cp{sup *}Rh aqua synthon, [Cp{sup *}Rh(H{sub 2}O){sub 3}]{sup 2+} (1), at acidic pH values (2-6) with aniline (2), pyridine (3), and L-phenylalanine (4) have provided interesting chemo- and diastereoselectivities as studied by {sup 1}H NMR, FAB/MS, and single-crystal X-ray crystallography. The reaction of 2 and aqua complex 1, at pH values from 4 to 6, quantitatively provided [Cp{sup *}Rh({eta}{sup 6}-aniline)]{sup 2+} (5); the structure of 5 was unequivocally determined by a single-crystal X-ray analysis, which also showed an approximate 25% {eta}{sup 5} component. Compound 3 reacted with 1, at pH 2-6, to selectively provide [Cp{supmore » *}Rh({eta}{sup 1}-pyridine){sub n} (H{sub 2}O){sub 3-n}]{sup 2+} (n = 1-3) complexes 6a-c as a function of pH. Surprisingly, complex 1 reacted with 4, from pH 4 to 6, to provide only one diastereomer of the known cyclic trimer [(Cp{sup *}Rh)({mu}-{eta}{sup 1}-(OCO):{eta}{sup 2}-(N,OCO)-L-phe nylalanine)]{sub 3}{sup 3+} (7; S{sub C},S{sub C},S{sub C},S{sub Rh},S{sub Rh},S{sub Rh},) an example of a one-step, highly diastereoselective reaction in H{sub 2}O. 8 refs., 4 figs., 2 tabs.« less

  3. H2O-Polyaluminium chloride-TBAB as synergistic catalysts for the synthesis of cyclic carbonate

    NASA Astrophysics Data System (ADS)

    Liu, X. J.; Yan, P.; Han, Y.

    2018-01-01

    An efficient catalytic system consisting of H2O, Polyaluminium chloride (PAC) and Tetrabutylammonium bromide (TBAB) was applied to the cycloaddition of carbon dioxide (CO2) to epoxides under mild conditions. Their catalytic cycloaddition activities were found to be well correlated with H2O and polyaluminium chloride, which had a synergetic effect with the halide anion of TBAB. The presence of H2O and PAC could remarkably improve the yield of propylene carbonate (PC) by which the reaction yield is about 4-5 times higher than TBAB. alone.The catalytic system also exhibited excellent cycloaddition activities for various epoxide substrates.

  4. (1H-pyrazole-κN2)(2,2':6',2''-terpyridine-κ3N,N',N'')platinum(II) bis(perchlorate) nitromethane monosolvate.

    PubMed

    Akerman, Matthew; Akerman, Kate; Jaganyi, Deogratius; Reddy, Desigan

    2011-09-01

    The reaction between [PtCl(terpy)]·2H(2)O (terpy is 2,2':6',2''-terpyridine) and pyrazole in the presence of two equivalents of AgClO(4) in nitromethane yields the title compound, [Pt(C(3)H(4)N(2))(C(15)H(11)N(3))](ClO(4))(2)·CH(3)NO(2), as a yellow crystalline solid. Single-crystal X-ray diffraction shows that the dicationic platinum(II) chelate is square planar with the terpyridine ligand occupying three sites and the pyrazole ligand occupying the fourth. The torsion angle subtended by the pyrazole ring relative to the terpyridine chelate is 62.4 (6)°. Density functional theory calculations at the LANL2DZ/PBE1PBE level of theory show that in vacuo the lowest-energy conformation has the pyrazole ligand in an orientation perpendicular to the terpyridine ligand (i.e. 90°). Seemingly, the stability gained by the formation of hydrogen bonds between the pyrazole NH group and the perchlorate anion in the solid-state structure is sufficient for the chelate to adopt a higher-energy conformation.

  5. Histamine H2 receptor trafficking: role of arrestin, dynamin, and clathrin in histamine H2 receptor internalization.

    PubMed

    Fernandez, Natalia; Monczor, Federico; Baldi, Alberto; Davio, Carlos; Shayo, Carina

    2008-10-01

    Agonist-induced internalization of G protein-coupled receptors (GPCRs) has been implicated in receptor desensitization, resensitization, and down-regulation. In the present study, we sought to establish whether the histamine H2 receptor (H2r) agonist amthamine, besides promoting receptor desensitization, induced H2r internalization. We further studied the mechanisms involved and its potential role in receptor resensitization. In COS7 transfected cells, amthamine induced H2r time-dependent internalization, showing 70% of receptor endocytosis after 60-min exposure to amthamine. Agonist removal led to the rapid recovery of resensitized receptors to the cell surface. Similar results were obtained in the presence of cycloheximide, an inhibitor of protein synthesis. Treatment with okadaic acid, an inhibitor of the protein phosphatase 2A (PP2A) family of phosphatases, reduced the recovery of both H2r membrane sites and cAMP response. Arrestin 3 but not arrestin 2 overexpression reduced both H2r membrane sites and H2r-evoked cAMP response. Receptor cotransfection with dominant-negative mutants for arrestin, dynamin, Eps15 (a component of the clathrin-mediated endocytosis machinery), or RNA interference against arrestin 3 abolished both H2r internalization and resensitization. Similar results were obtained in U937 cells endogenously expressing H2r. Our findings suggest that amthamine-induced H2r internalization is crucial for H2r resensitization, processes independent of H2r de novo synthesis but dependent on PP2A-mediated dephosphorylation. Although we do not provide direct evidence for H2r interaction with beta-arrestin, dynamin, and/or clathrin, our results support their involvement in H2r endocytosis. The rapid receptor recycling to the cell surface and the specific involvement of arrestin 3 in receptor internalization further suggest that the H2r belongs to class A GPCRs.

  6. Comparison of [Ni(PPh2NPh2)2(CH3CN)]2+ and [Pd(PPh2NPh2)2]2+ as Electrocatalysts for H2 Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiedner, Eric S.; Helm, Monte L.

    The complexes [Ni(PPh2NPh2)2(CH3CN)]2+ and [Pd(PPh2NPh2)2]2+, where PPh2NPh2 is 1,5-diphenyl-3,7-diphenyl-1,5-diaza-3,7-diphosphacyclooctane, are compared as electrocatalysts for H2 production under identical experimental conditions. With [(DMF)H]+ as the acid in acetonitrile solution, [Pd(PPh2NPh2)2]2+ afforded a turnover frequency (TOF) of 230 s-1 for formation of H2 under dry conditions and a TOF of 640 s-1 when H2O was added. These rates are similar to the TOF’s of 590 s-1 (dry) and 720 s-1 (wet) that were previously measured for [Ni(PPh2NPh2)2(CH3CN)]2+ using [(DMF)H]+. The [Ni(PPh2NPh2)2(CH3CN)]2+ and [Pd(PPh2NPh2)2]2+ complexes both exhibited large current enhancements when treated with trifluoroacetic acid (TFA). At a TFA concentration of 1.8 M,more » TOF values of 5670 s-1 and 2060 s-1 were measured for [Ni(PPh2NPh2)2(CH3CN)]2+ and [Pd(PPh2NPh2)2]2+, respectively. The fast rates observed using TFA are, in part, attributed to homoconjugation of TFA in acetonitrile solutions, which decreases the effective pKa of the acid. In support of this hypothesis, dramatically lower rates of H2 production were observed using p anisidinium, which has a pKa comparable to TFA but does not homoconjugate significantly in acetonitrile solutions. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is oper-ated by Battelle for the U.S. Department of Energy.« less

  7. Reactions of electronically excited molecular nitrogen with H2 and H2O molecules: theoretical study

    NASA Astrophysics Data System (ADS)

    Pelevkin, Alexey V.; Sharipov, Alexander S.

    2018-05-01

    Comprehensive quantum chemical analysis with the usage of the second-order perturbation multireference XMCQDPT2 approach was carried out to study the processes in the   +  H2 and   +  H2O systems. The energetically favorable reaction pathways have been revealed based on the exploration of potential energy surfaces. It has been shown that the reactions   +  H2 and   +  H2O occur with small activation barriers and, primarily, lead to the formation of N2H  +  H and N2H  +  OH products, respectively. Further, the interaction of these species could give rise to the ground state and H2 (or H2O) products, however, the estimations, based on RRKM theory and dynamic reaction coordinate calculations, exhibited that the   +  H2 and   +  H2O reactions lead to the dissociative quenching predominately. Appropriate rate constants for revealed reaction channels have been estimated by using a canonical variational theory and capture approximation. Corresponding three-parameter Arrhenius expressions for the temperature range T  =  300  ‑  3000 K were reported.

  8. The Relationship of HCN, C2H6, & H2O in Comets: A Key Clue to Origins?

    NASA Astrophysics Data System (ADS)

    Mumma, Michael J.; Charnley, Steven B.; Cordiner, Martin; Paganini, Lucas; Villanueva, Geronimo Luis

    2017-10-01

    Background: HCN, C2H6, and H2O are three of the best characterized volatiles in comets. It is often assumed that all three are primary volatiles, native to the nucleus. Here, we compare their properties in 26 comets (9 JFC and 17 Oort-cloud), making 6 points:1. Both HCN and C2H6 are poor proxies for water production. The production rate ratio (Q-ratio) of each trace gas relative to water varies by a factor of six among these comets.2. All 26 comets have Q-ratios HCN/C2H6 > 0.1. In 18 comets the Q-ratios HCN/H2O and C2H6/H2O are correlated, with a mean ratio of 0.33. In 6 comets undergoing complete disruption, this Q-ratio exceeds 0.5.3. Q-ratios HCN/C2H6 are not correlated with Q(H2O), nor are they correlated with dynamical class (Oort cloud vs. JFC).4. The nucleus-centered rotational temperatures measured for H2O and other primary species (C2H6, CH3OH) usually agree within error, but those for HCN are often slightly cooler. Could this mean that HCN is not fully developed in the warm near-nucleus region, and instead is at least in part a product species?5. With its strong dipole moment and H-bonding character, HCN should be linked more strongly in the nuclear ice to other molecules with similar properties (H2O, CH3OH), but instead its spatial release in some comets seems strongly coupled to volatiles that lack a dipole moment and thus do not form H-bonds (methane, ethane). Is HCN produced in part from an apolar precursor?6. ALMA maps of HCN and the dust continuum show a slight displacement in their centroids. Is this the signature of extended production of HCN?HCN as a product species: Points 4-6 suggest that HCN may have a significant distributed source. The astrochemical species ammonium cyanide is a strong candidate for this HCN precursor; at moderately low temperatures (< 200K) NH4CN is a stable solid, but it dissociates into HCN and NH3 when warmed. Disruption could eject macroscopic solid NH4CN into the coma where subsequent warming and release could augment

  9. Synthesis and physicochemical characterization of carbon backbone modified [Gd(TTDA)(H2O)]2- derivatives.

    PubMed

    Chang, Ya-Hui; Chen, Chiao-Yun; Singh, Gyan; Chen, Hsing-Yin; Liu, Gin-Chung; Goan, Yih-Gang; Aime, Silvio; Wang, Yun-Ming

    2011-02-21

    The present study was designed to exploit optimum lipophilicity and high water-exchange rate (k(ex)) on low molecular weight Gd(III) complexes to generate high bound relaxivity (r(1)(b)), upon binding to the lipophilic site of human serum albumin (HSA). Two new carbon backbone modified TTDA (3,6,10-tri(carboxymethyl)-3,6,10-triazadodecanedioic acid) derivatives, CB-TTDA and Bz-CB-TTDA, were synthesized. The complexes [Gd(CB-TTDA)(H(2)O)](2-) and [Gd(Bz-CB-TTDA)(H(2)O)](2-) both display high stability constant (log K(GdL) = 20.28 and 20.09, respectively). Furthermore, CB-TTDA (log K(Gd/Zn) = 4.22) and Bz-CB-TTDA (log K(Gd/Zn) = 4.12) exhibit superior selectivity of Gd(III) against Zn(II) than those of TTDA (log K(Gd/Zn) = 2.93), EPTPA-bz-NO(2) (log K(Gd/Zn) = 3.19), and DTPA (log K(Gd/Zn) = 3.76). However, the stability constant values of [Gd(CB-TTDA)(H(2)O)](2-) and [Gd(Bz-CB-TTDA)(H(2)O)](2-) are lower than that of MS-325. The parameters that affect proton relaxivity have been determined in a combined variable temperature (17)O NMR and NMRD study. The water exchange rates are comparable for the two complexes, 232 × 10(6) s(-1) for [Gd(CB-TTDA)(H(2)O)](2-) and 271 × 10(6) s(-1) for [Gd(Bz-CB-TTDA)(H(2)O)](2-). They are higher than those of [Gd(TTDA)(H(2)O)](2-) (146 × 10(6) s(-1)), [Gd(DTPA)(H(2)O)](2-) (4.1 × 10(6) s(-1)), and MS-325 (6.1 × 10(6) s(-1)). Elevated stability and water exchange rate indicate that the presence of cyclobutyl on the carbon backbone imparts rigidity and steric constraint to [Gd(CB-TTDA)(H(2)O)](2-)and [Gd(Bz-CB-TTDA)(H(2)O)](2-). In addition, the major objective for selecting the cyclobutyl is to tune the lipophilicity of [Gd(Bz-CB-TTDA)(H(2)O)](2-). The binding affinity of [Gd(Bz-CB-TTDA)(H(2)O)](2-) to HSA was evaluated by ultrafiltration study across a membrane with a 30 kDa MW cutoff, and the first three stepwise binding constants were determined by fitting the data to a stoichiometric model. The binding association constants (K

  10. Calculations of thermal radiation transfer of C2H2 and C2H4 together with H2O, CO2, and CO in a one-dimensional enclosure using LBL and SNB models

    NASA Astrophysics Data System (ADS)

    Qi, Chaobo; Zheng, Shu; Zhou, Huaichun

    2017-08-01

    Generally, the involvement of hydrocarbons such as C2H4 and its derivative C2H2 in thermal radiation has not been accounted in the numerical simulation of their flames, which may cause serious error for estimation of temperature in the early stage of combustion. At the first, the Statistical Narrow-Band (SNB) model parameters for C2H2 and C2H4 are generated from line by line (LBL) calculations. The distributions of the concentrations of radiating gases such as H2O, CO2, CO, C2H2 and C2H4, and the temperature along the centerline of a laminar ethylene/air diffusion flame were chosen to form a one-dimensional, planar enclosure to be tested in this study. Thermal radiation transfer in such an enclosure was calculated using the LBL approach and the SNB model, most of the relative errors are less than 8% and the results of these two models shows an excellent agreement. Below the height of 20 mm, which is the early stage of the flame, the average fraction contributed by C2H2 and C2H4 in the radiative heat source is 33.8%, while that by CO is only 5.8%. This result indicates that the involvement of C2H2 and C2H4 in radiation heat transfer needs to be taken into account in the numerical modeling of the ethylene/air diffusion flame, especially in the early stage of combustion.

  11. [Mechanism and performance of styrene oxidation by O3/H2O2].

    PubMed

    He, Jue-Cong; Huang, Qian-Ru; Ye, Qi-Hong; Luo, Yu-Wei; Zhang, Zai-Li; Fan, Qing-Juan; Wei, Zai-Shan

    2013-10-01

    It can produce a large number of free radicals in O3/H2O2, system, ozone and free radical coupling oxidation can improve the styrene removal efficiency. Styrene oxidation by O3/H2O2 was investigated. Ozone dosage, residence time, H2o2 volume fraction, spray density and molar ratio of O3/C8H8 on styrene removal were evaluated. The experimental results showed that styrene removal efficiency achieved 85.7%. The optimal residence time, H2O2, volume fraction, spray density and O3/C8H8 molar ratio were 20. 6 s, 10% , 1.72 m3.(m2.h)-1 and 0.46, respectively. The gas-phase degradation intermediate products were benzaldehyde(C6H5CHO) and benzoic acid (C6H5 COOH) , which were identified by means of gas chromatography-mass spectrometry(GC-MS). The degradation mechanism of styrene is presented.

  12. Synthesis, crystal structures, and characterization of double complex salts [Au(en)2][Rh(NO2)6]·2H2O and [Au(en)2][Rh(NO2)6

    NASA Astrophysics Data System (ADS)

    Plyusnin, Pavel E.; Makotchenko, Evgenia V.; Shubin, Yury V.; Baidina, Iraida A.; Korolkov, Ilya V.; Sheludyakova, Liliya A.; Korenev, Sergey V.

    2015-11-01

    Double complex salts of rhodium(III) and gold(III) of the composition [Au(en)2][Rh(NO2)6]·2H2O (1) and [Au(en)2][Rh(NO2)6] (2) have been prepared. Crystal structures of the compounds have been determined by single crystal X-ray diffraction. The compounds have been characterized by PXRD, IR, far-IR, CHN and DTA. The complexes have a layered structures. The presence of water in 1 makes the structure of the hydrated DCS less dense as compared to the anhydrous one. The environment of the cation and the anion in the two structures is the same, oxygen atoms of the nitro groups are involved in hydrogen bonds N-H⋯O, N⋯O distances being approximately the same. The structures of 1 and 2 are notable in having shortened contacts between the gold atoms and the oxygen atoms of the nitro groups of the neighboring complex anions. The thermal behavior of the complexes in a hydrogen atmosphere was investigated. The final product of thermolysis prepared at the temperature 600°C is a two-phase mixture of pure metallic gold and the solid solution Rh0.93Au0.07.

  13. Structure-based design synthesis of functionalized 3-(5-(s-phenyl)-4H-pyrazol-3-yl)-2H-chromen-2-one motifs and indigenous plant extracts and their antimalarial potential

    NASA Astrophysics Data System (ADS)

    Olayinka, Ajani; Grace, Olasehinde; Titilope, Dokunmu; Ruth, Diji-Geske; Olabode, Onileere; John, Openibo; Oreoluwa, Oluseye; Tochukwu, Chileke; Ezekiel, Adebiyi

    2018-04-01

    Resistance of the malaria parasite to conventional therapeutic agents calls for increased efforts in antimalarial drug discovery. Current efforts should be targeted at developing safe and affordable new agents to counter the spread of malaria parasites that are resistant to existing therapy. In this study, toxicological and in vivo antiplasmodial properties of 3-(5-(s-phenyl)-4H-pyrazol-3-yl)-42H-chromen-2, Mangifera indica and Tithonia diversifolia in swiss albino mice models, Musmusculus were investigated. 2H-Chromen-2-one also known as coumarin is highly privileged oxygen-containing heterocyclic entity which are present in plant kingdom as secondary metabolites. The maceration technique of crude drug extraction was employed using cold water extraction. Toxicological analysis was carried out using Lorke's method for acute toxicity testing while the chemosuppressive activity was carried out using Peter's four day test on early infection. We also report the synthesis of functionalized 3-(5-(s-phenyl)-4H-pyrazol-3-yl)-2H-chromen-2-one motifs via microwave assisted synthetic approach and isolation of indigenous plant extract in order to investigate their antimalarial efficacy. The condensation reaction of 3-acetylcoumarin with various benzaldehyde derivatives resulted in the formation of 3-[3-acryloyl]-2H-chromen-2-one which was subsequently reaction the hydrazine hydrate via microwave assisted hydrazinolysis to afford the targeted 3-(5-(s-phenyl)-4H-pyrazol-3-yl)-2H-chromen-2-one motifs. The chemical structures were confirmed by analytical data and spectroscopic means such as FT-IR, UV, 1H NMR, 13C NMR and DEPT-135. The microwave assisted reaction was remarkably successful and gave targeted 3-(5-(s-phenyl)-4H-pyrazol-3-yl)-2H-chromen-2-one motifs in higher yields at lesser reaction time compared to conventional heating method. The LD50 of the aqueous extracts of the leaves and stem bark Mangifera indica was established to be ± 707.11 mg/kg b.w., p.o. (body weight

  14. Hydrothermal growth of two dimensional hierarchical MoS2 nanospheres on one dimensional CdS nanorods for high performance and stable visible photocatalytic H2 evolution

    NASA Astrophysics Data System (ADS)

    Chava, Rama Krishna; Do, Jeong Yeon; Kang, Misook

    2018-03-01

    The visible photocatalytic H2 production from water splitting considered as a clean and renewable energy source could solve the problem of greenhouse gas emission from fossil fuels. Despite tremendous efforts, the development of cost effective, highly efficient and more stable visible photocatalysts for splitting of water remains a great challenge. Here, we report the heteronanostructures consisting of hierarchical MoS2 nanospheres grown on 1D CdS nanorods referred to as CdS-MoS2 HNSs as a high performance visible photocatalyst for H2 evolution. The as-synthesized CdS-MoS2 HNSs exhibited ∼11 fold increment of H2 evolution rate when compared to pure CdS nanorods. This remarkable enhanced hydrogen evolution performance can be assigned to the positive synergetic effect from heteronanostructures formed between the CdS and MoS2 components which assist as an electron sink and source for abundant active edge sites and in turn increases the charge separation. This study presents a low-cost visible photocatalyst for solar energy conversion to achieve efficient H2.

  15. Temperature-dependent kinetic measurements and quasi-classical trajectory studies for the OH(+) + H2/D2H2O(+)/HDO(+) + H/D reactions.

    PubMed

    Martinez, Oscar; Ard, Shaun G; Li, Anyang; Shuman, Nicholas S; Guo, Hua; Viggiano, Albert A

    2015-09-21

    We have measured the temperature-dependent kinetics for the reactions of OH(+) with H2 and D2 using a selected ion flow tube apparatus. Reaction occurs via atom abstraction to result in H2O(+)/HDO(+) + H/D. Room temperature rate coefficients are in agreement with prior measurements and resulting temperature dependences are T(0.11) for the hydrogen and T(0.25) for the deuterated reactions. This work is prompted in part by recent theoretical work that mapped a full-dimensional global potential energy surface of H3O(+) for the OH(+) + H2H + H2O(+) reaction [A. Li and H. Guo, J. Phys. Chem. A 118, 11168 (2014)], and reported results of quasi-classical trajectory calculations, which are extended to a wider temperature range and initial rotational state specification here. Our experimental results are in excellent agreement with these calculations which accurately predict the isotope effect in addition to an enhancement of the reaction rate constant due to the molecular rotation of OH(+). The title reaction is of high importance to astrophysical models, and the temperature dependence of the rate coefficients determined here should now allow for better understanding of this reaction at temperatures more relevant to the interstellar medium.

  16. Quantum chemical calculations of anion complex [B12Hx(NF2)12-x]2-, x = 9 - 12

    NASA Astrophysics Data System (ADS)

    Koblova, E. A.; Saldin, V. I.; Ustinov, A. Yu

    2017-01-01

    The geometric, energetic, spectral and electronic properties of various isomers of B12Hх(NF2)12-х 2- anion complex with x = 9 - 12 have been studied using Density Functional Theory (B3LYP/6-311++G**). It was shown that the most stable isomers are characterized by the preference to form the most symmetric structures with uniformly distributed charge densities. However, when replacing a hydrogen atom with difluoramino group, an inductive effect occurs. NF2 group pulls a part of electron density that leads to the polarization of the boron core. Blue shifts in the IR spectrum compared to the vibrations of the free radical NF2 ranging from 5 to 69 cm-1 for the most stable isomers with the minimum total energy are characteristic and points to the stability of B12Hх(NF2)12-х 2- anions. The obtained results broaden the idea of aromaticity of B12H12 2- anion and will be useful in synthesis of new B12H12 2- derivatives.

  17. Redox shuttle mechanism enhances photocatalytic H2 generation on Ni-decorated CdS nanorods

    NASA Astrophysics Data System (ADS)

    Simon, Thomas; Bouchonville, Nicolas; Berr, Maximilian J.; Vaneski, Aleksandar; Adrović, Asmir; Volbers, David; Wyrwich, Regina; Döblinger, Markus; Susha, Andrei S.; Rogach, Andrey L.; Jäckel, Frank; Stolarczyk, Jacek K.; Feldmann, Jochen

    2014-11-01

    Photocatalytic conversion of solar energy to fuels, such as hydrogen, is attracting enormous interest, driven by the promise of addressing both energy supply and storage. Colloidal semiconductor nanocrystals have been at the forefront of these efforts owing to their favourable and tunable optical and electronic properties as well as advances in their synthesis. The efficiency of the photocatalysts is often limited by the slow transfer and subsequent reactions of the photoexcited holes and the ensuing high charge recombination rates. Here we propose that employing a hydroxyl anion/radical redox couple to efficiently relay the hole from the semiconductor to the scavenger leads to a marked increase in the H2 generation rate without using expensive noble metal co-catalysts. The apparent quantum yield and the formation rate under 447 nm laser illumination exceeded 53% and 63 mmol g-1 h-1, respectively. The fast hole transfer confers long-term photostability on the system and opens new pathways to improve the oxidation side of full water splitting.

  18. Characterization of the human pH- and PKA-activated ClC-2G(2 alpha) Cl- channel.

    PubMed

    Sherry, A M; Stroffekova, K; Knapp, L M; Kupert, E Y; Cuppoletti, J; Malinowska, D H

    1997-08-01

    A ClC-2G(2 alpha) Cl- channel was identified to be present in human lung and stomach, and a partial cDNA for this Cl- channel was cloned from a human fetal lung library. A full-length expressible human ClC-2G(2 alpha) cDNA was constructed by ligation of mutagenized expressible rabbit ClC-2G(2 alpha) cDNA with the human lung ClC-2G(2 alpha) cDNA, expressed in oocytes, and characterized at the single-channel level. Adenosine 3',5'-cyclic monophosphate-dependent protein kinase (PKA) treatment increased the probability of opening of the channel (Po). After PKA activation, the channel exhibited a linear (r = 0.99) current-voltage curve with a slope conductance of 22.1 +/- 0.8 pS in symmetric 800 mM tetraethylammonium chloride (TEACl; pH 7.4). Under fivefold gradient conditions of TEACl, a reversal potential of +21.5 +/- 2.8 mV was measured demonstrating anion-to-cation discrimination. As previously demonstrated for the rabbit ClC-2G(2 alpha) Cl- channel, the human analog, hClC-2G(2 alpha), was active at pH 7.4 as well as when the pH of the extracellular face of the channel (trans side of the bilayer; pHtrans) was asymmetrically reduced to pH 3.0. The extent of PKA activation was dependent on pHtrans. With PKA treatment, Po increased fourfold with a pHtrans of 7.4 and eightfold with a pHtrans of 3.0. Effects of sequential PKA addition followed by pHtrans reduction on the same channel suggested that the PKA- and pH-dependent increases in channel Po were separable and cumulative. Northern analysis showed ClC-2G(2 alpha) mRNA to be present in human adult and fetal lung and adult stomach, and quantitative reverse transcriptase-polymerase chain reaction showed this channel to be present in the adult human lung and stomach at about one-half the level found in fetal lung. The findings of the present study suggest that the ClC-2G(2 alpha) Cl- channel may play an important role in Cl- transport in the fetal and adult human lung.

  19. Biogeochemistry of dihydrogen (H2).

    PubMed

    Hoehler, Tori M

    2005-01-01

    Hydrogen has had an important and evolving role in Earth's geo- and biogeochemistry, from prebiotic to modern times. On the earliest Earth, abiotic sources of H2 were likely stronger than in the present. Volcanic out-gassing and hydrothermal circulation probably occurred at several times the modern rate, due to presumably higher heat flux. The H2 component of volcanic emissions was likely buffered close to the modern value by an approximately constant mantle oxidation state since 3.9 billion years ago, and may have been higher before that, if the early mantle was more reducing. The predominantly ultramafic character of the early, undifferentiated crust could have led to increased serpentinization and release of H2 by hydrothermal circulation, as in modern ultramafic-hosted vents. At the same time, the reactive atmospheric sink for H2 was likely weaker. Collectively, these factors suggest that steady state levels of H2 in the prebiotic atmosphere were 3-4 orders of magnitude higher than at present, and possibly higher still during transient periods following the delivery of Fe and Ni by large impact events. These elevated levels had direct or indirect impacts on the redox state of the atmosphere, the radiation budget, the production of aerosol hazes, and the genesis of biochemical precursor compounds. The early abiotic cycling of H2 helped to establish the environmental and chemical context for the origins of life on Earth. The potential for H2 to serve as a source of energy and reducing power, and to afford a means of energy storage by the establishment of proton gradients, could have afforded it a highly utilitarian role in the earliest metabolic chemistry. Some origin of life theories suggest the involvement of H2 in the first energy-generating metabolism, and the widespread and deeply-branching nature of H2-utilization in the modern tree of life suggests that it was at least a very early biochemical innovation. The abiotic production of H2 via several mechanisms

  20. Protective effect of Dendrobium officinale polysaccharides on H2O2-induced injury in H9c2 cardiomyocytes.

    PubMed

    Zhao, Xiaoyan; Dou, Mengmeng; Zhang, Zhihao; Zhang, Duoduo; Huang, Chengzhi

    2017-10-01

    The preliminary studies have shown that Dendrobium officinale possessed therapeutic effects on hypertension and atherosclerosis. Studies also reported that Dendrobium officinale polysaccharides showed antioxidant capabilities. However, little is known about its effects on myocardial cells under oxidative stress. The present study was designed to study the protective effect of Dendrobium officinale polysaccharides against H 2 O 2 -induced oxidative stress in H9c2 cells. MTT assay was carried out to determine the cell viability of H9c2 cells when pretreated with Dendrobium officinale polysaccharides. Fluorescent microscopy measurements were performed for evaluating the apoptosis in H9c2 cells. Furthermore, effects of Dendrobium officinale polysaccharides on the activities of antioxidative indicators (malondialdehyde, superoxide dismutase), reactive oxygen species (ROS) production and mitochondrial membrane potential (MMP) levels were analyzed. Dendrobium officinale polysaccharides attenuated H 2 O 2 -induced cell death, as determined by the MTT assay. Dendrobium officinale polysaccharides decreased malondialdehyde levels, increased superoxide dismutase activities, and inhibited the generation of intracellular ROS. Moreover, pretreatment with Dendrobium officinale polysaccharides also inhibited apoptosis and increased the MMP levels in H9c2 cells. These results suggested the protective effects of Dendrobium officinale polysaccharides against H 2 O 2 -induced injury in H9c2 cells. The results also indicated the anti-oxidative capability of Dendrobium officinale polysaccharides. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. The expression of COX-2, hTERT, MDM2, LATS2 and S100A2 in different types of non-small cell lung cancer (NSCLC).

    PubMed

    Strazisar, Mojca; Mlakar, Vid; Glavac, Damjan

    2009-01-01

    Several studies have reported different expression levels of certain genes in NSCLC, mostly related to the stage and advancement of the tumours. We investigated 65 stage I-III NSCLC tumours: 32 adenocarcinomas (ADC), 26 squamous cell carcinomas (SCC) and 7 large cell carcinomas (LCC). Using the real-time reverse transcription polymerase chain reaction (RT-PCR), we analysed the expression of the COX-2, hTERT, MDM2, LATS2 and S100A2 genes and researched the relationships between the NSCLC types and the differences in expression levels. The differences in the expression levels of the LATS2, S100A2 and hTERT genes in different types of NSCLC are significant. hTERT and COX-2 were over-expressed and LATS2 under-expressed in all NSCLC. We also detected significant relative differences in the expression of LATS2 and MDM2, hTERT and MDM2 in different types of NSCLC. There was a significant difference in the average expression levels in S100A2 for ADC and SCC. Our study shows differences in the expression patterns within the NSCLC group, which may mimic the expression of the individual NSCLC type, and also new relationships in the expression levels for different NSCLC types.

  2. 2-(4-Hy-droxy-phen-yl)-1H-benzimidazol-3-ium chloride monohydrate.

    PubMed

    González-Padilla, Jazmin E; Rosales-Hernández, Martha Cecila; Padilla-Martínez, Itzia I; García-Báez, Efren V; Rojas-Lima, Susana

    2013-01-01

    The title mol-ecular salt, C13H11N2O(+)·Cl(-)·H2O, crystallizes as a monohydrate. In the cation, the phenol and benzimidazole rings are almost coplanar, making a dihedral angle of 3.18 (4)°. The chloride anion and benzimidazole cation are linked by two N(+)-H⋯Cl(-) hydrogen bonds, forming chains propagating along [010]. These chains are linked through O-H⋯Cl hydrogen bonds involving the water mol-ecule and the chloride anion, which form a diamond core, giving rise to the formation of two-dimensional networks lying parallel to (10-2). Two π-π inter-actions involving the imidazolium ring with the benzene and phenol rings [centroid-centroid distances = 3.859 (3) and 3.602 (3) Å, respectively], contribute to this second dimension. A strong O-H⋯O hydrogen bond involving the water mol-ecule and the phenol substituent on the benzimidazole unit links the networks, forming a three-dimensional structure.

  3. H and H2 NMR properties in amorphous hydrogenated silicon (a-Si:H)

    NASA Astrophysics Data System (ADS)

    Lee, Sook

    1986-07-01

    It is shown that the basic NMR properties of ortho-H2 molecules with a rotational angular momentum J and a spin angular momentum I under the influence of a completely asymmetric crystalline field in an amorphous matrix can be described by an effective nuclear spin Hamiltonian which contains only the nuclear spin angular momentum operators (Ii), but is independent of the molecular rotational angular momentum operators (Ji). By directly applying the existing magnetic-resonance theories to this effective nuclear spin Hamiltonian, a simple description is presented for various static and dynamic NMR properties of the ortho-H2 NMR centers in amorphous hydrogenated silicon (a-Si:H), thereby resolving many difficulties and uncertainties encountered in understanding and explaining the H and H2 NMR observations in a-Si:H.

  4. Kinetic Energy Distribution of H(2p) Atoms from Dissociative Excitation of H2

    NASA Technical Reports Server (NTRS)

    Ajello, Joseph M.; Ahmed, Syed M.; Kanik, Isik; Multari, Rosalie

    1995-01-01

    The kinetic energy distribution of H(2p) atoms resulting from electron impact dissociation of H2 has been measured for the first time with uv spectroscopy. A high resolution uv spectrometer was used for the measurement of the H Lyman-alpha emission line profiles at 20 and 100 eV electron impact energies. Analysis of the deconvolved 100 eV line profile reveals the existence of a narrow line peak and a broad pedestal base. Slow H(2p) atoms with peak energy near 80 meV produce the peak profile, which is nearly independent of impact energy. The wings of H Lyman-alpha arise from dissociative excitation of a series of doubly excited Q(sub 1) and Q(sub 2) states, which define the core orbitals. The fast atom energy distribution peaks at 4 eV.

  5. Quick and Selective Dual Mode Detection of H2S Gas by Mobile App Employing Silver Nanorods Array.

    PubMed

    Gahlaut, Shashank Kumar; Yadav, Kavita; Sharan, Chandrashekhar; Singh, Jitendra Pratap

    2017-12-19

    Hydrogen sulfide (H 2 S) is a hazardous gas, which not only harms living beings but also poses a significant risk to damage materials placed in culture and art museums, due to its corrosive nature. We demonstrate a novel approach for selective rapid detection of H 2 S gas using silver nanorods (AgNRs) arrays on glass substrates at ambient conditions. The arrays were prepared by glancing angle deposition method. The colorimetric and water wetting properties of as-fabricated arrays were found to be highly sensitive toward the sulfurization, in the presence of H 2 S gas with a minimal concentration in ppm range. The performance of AgNRs as H 2 S gas sensor is investigated by its sensing ability of 5 ppm of gas with an exposure time of only 30 s. We have developed an android-based mobile app to monitor real-time colorimetric detection of H 2 S. The wettability detection has been carried out by a mobile camera. A comparative analysis for different gases reveals the highest sensitivity and selectivity of the array AgNRs toward H 2 S. The rapid detection has also been demonstrated for H 2 S emission from aged wool fabric. Thus, high sensing ability of AgNRs toward H 2 S gas may have potential applications in health monitoring and art conservation.

  6. Structural variability in neptunium(V) oxalate compounds: synthesis and structural characterization of Na2NpO2(C2O4)OH.H2O.

    PubMed

    Bean, Amanda C; Garcia, Eduardo; Scott, Brian L; Runde, Wolfgang

    2004-10-04

    Reaction of a (237)Np(V) stock solution in the presence of oxalic acid, calcium chloride, and sodium hydroxide under hydrothermal conditions produces single crystals of a neptunium(V) oxalate, Na(2)NpO(2)(C(2)O(4))OH.H(2)O. The structure consists of one-dimensional chains running down the a axis and is the first example of a neptunium(V) oxalate compound containing hydroxide anions.

  7. EERE-SBIR technology transfer opportunity. H2 Safety Sensors for H2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, Mariann R.

    2015-12-01

    The Office of Energy Efficiency and Renewable Energy’s Fuel Cell Technologies Office (FCTO) works in partnership with industry (including small businesses), academia, and DOE's national laboratories to establish fuel cell and hydrogen energy technologies as economically competitive contributors to U.S. transportation needs. The work that is envisioned between the SBIR/STTR grantee and Los Alamos National Laboratory would involve Technical Transfer of Los Alamos Intellectual Property (IP) on Thin-film Mixed Potential Sensor (U.S. Patent 7,264,700) and associated know-how for H2 sensor manufacturing and packaging.

  8. Low levels of iron enhance UV/H2O2 efficiency at neutral pH.

    PubMed

    Ulliman, Sydney L; McKay, Garrett; Rosario-Ortiz, Fernando L; Linden, Karl G

    2018-03-01

    While the presence of iron is generally not seen as favorable for UV-based treatment systems due to lamp fouling and decreased UV transmittance, we show that low levels of iron can lead to improvements in the abatement of chemicals in the UV-hydrogen peroxide advanced oxidation process. The oxidation potential of an iron-assisted UV/H 2 O 2 (UV 254  + H 2 O 2  + iron) process was evaluated at neutral pH using iron levels below USEPA secondary drinking water standards (<0.3 mg/L). Para-chlorobenzoic acid (pCBA) was used as a hydroxyl radical (HO) probe to quantify HO steady state concentrations. Compounds degraded by different mechanisms including, carbamazepine (CBZ, HO oxidation) and N-nitrosodimethylamine (NDMA, direct photolysis), were used to investigate the effect of iron on compound degradation for UV/H 2 O 2 systems. The effects of iron species (Fe 2+ and Fe 3+ ), iron concentration (0-0.3 mg/L), H 2 O 2 concentration (0-10 mg/L) and background water matrix (low-carbon tap (LCT) and well water) on HO production and compound removal were examined. Iron-assisted UV/H 2 O 2 efficiency was most influenced by the target chemical and the water matrix. Added iron to UV/H 2 O 2 was shown to increase the steady-state HO concentration by approximately 25% in all well water scenarios. While CBZ removal was unchanged by iron addition, 0.3 mg/L iron improved NDMA removal rates in both LCT and well water matrices by 15.1% and 4.6% respectively. Furthermore, the combination of UV/Fe without H 2 O 2 was also shown to enhance NDMA removal when compared to UV photolysis alone indicating the presence of degradation pathways other than HO oxidation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Comparison of genes required for H2O2 resistance in Streptococcus gordonii and Streptococcus sanguinis

    PubMed Central

    Xu, Yifan; Itzek, Andreas

    2014-01-01

    Hydrogen peroxide (H2O2) is produced by several members of the genus Streptococcus mainly through the pyruvate oxidase SpxB under aerobic growth conditions. The acute toxic nature of H2O2 raises the interesting question of how streptococci cope with intrinsically produced H2O2, which subsequently accumulates in the microenvironment and threatens the closely surrounding population. Here, we investigate the H2O2 susceptibility of oral Streptococcus gordonii and Streptococcus sanguinis and elucidate potential mechanisms of how they protect themselves from the deleterious effect of H2O2. Both organisms are considered primary colonizers and occupy the same intraoral niche making them potential targets for H2O2 produced by other species. We demonstrate that S. gordonii produces relatively more H2O2 and has a greater ability for resistance to H2O2 stress. Functional studies show that, unlike in Streptococcus pneumoniae, H2O2 resistance is not dependent on a functional SpxB and confirms the important role of the ferritin-like DNA-binding protein Dps. However, the observed increased H2O2 resistance of S. gordonii over S. sanguinis is likely to be caused by an oxidative stress protection machinery present even under anaerobic conditions, while S. sanguinis requires a longer period of time for adaptation. The ability to produce more H2O2 and be more resistant to H2O2 might aid S. gordonii in the competitive oral biofilm environment, since it is lower in abundance yet manages to survive quite efficiently in the oral biofilm. PMID:25280752

  10. Synthesis, Structure, Bonding, and Reactivity of Metal Complexes Comprising Diborane(4) and Diborene(2): [{Cp*Mo(CO)2 }2 {μ-η22 -B2 H4 }] and [{Cp*M(CO)2 }2 B2 H2 M(CO)4 ], M=Mo,W.

    PubMed

    Mondal, Bijan; Bag, Ranjit; Ghorai, Sagar; Bakthavachalam, K; Jemmis, Eluvathingal D; Ghosh, Sundargopal

    2018-07-02

    The reaction of [(Cp*Mo) 2 (μ-Cl) 2 B 2 H 6 ] (1) with CO at room temperature led to the formation of the highly fluxional species [{Cp*Mo(CO) 2 } 2 {μ-η 22 -B 2 H 4 }] (2). Compound 2, to the best of our knowledge, is the first example of a bimetallic diborane(4) conforming to a singly bridged C s structure. Theoretical studies show that 2 mimics the Cotton dimolybdenum-alkyne complex [{CpMo(CO) 2 } 2 C 2 H 2 ]. In an attempt to replace two hydrogen atoms of diborane(4) in 2 with a 2e [W(CO) 4 ] fragment, [{Cp*Mo(CO) 2 } 2 B 2 H 2 W(CO) 4 ] (3) was isolated upon treatment with [W(CO) 5 ⋅thf]. Compound 3 shows the intriguing presence of [B 2 H 2 ] with a short B-B length of 1.624(4) Å. We isolated the tungsten analogues of 3, [{Cp*W(CO) 2 } 2 B 2 H 2 W(CO) 4 ] (4) and [{Cp*W(CO) 2 } 2 B 2 H 2 Mo(CO) 4 ] (5), which provided direct proof of the existence of the tungsten analogue of 2. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Chemical sputtering by H{sub 2}{sup +} and H{sub 3}{sup +} ions during silicon deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landheer, K., E-mail: c.landheer@uu.nl; Poulios, I.; Rath, J. K.

    2016-08-07

    We investigated chemical sputtering of silicon films by H{sub y}{sup +} ions (with y being 2 and 3) in an asymmetric VHF Plasma Enhanced Chemical Vapor Deposition (PECVD) discharge in detail. In experiments with discharges created with pure H{sub 2} inlet flows, we observed that more Si was etched from the powered than from the grounded electrode, and this resulted in a net deposition on the grounded electrode. With experimental input data from a power density series of discharges with pure H{sub 2} inlet flows, we were able to model this process with a chemical sputtering mechanism. The obtained chemicalmore » sputtering yields were (0.3–0.4) ± 0.1 Si atom per bombarding H{sub y}{sup +} ion at the grounded electrode and at the powered electrode the yield ranged from (0.4 to 0.65) ± 0.1. Subsequently, we investigated the role of chemical sputtering during PECVD deposition with a series of silane fractions S{sub F} (S{sub F}(%) = [SiH{sub 4}]/[H{sub 2}]*100) ranging from S{sub F} = 0% to 20%. We experimentally observed that the SiH{sub y}{sup +} flux is not proportional to S{sub F} but decreasing from S{sub F} = 3.4% to 20%. This counterintuitive SiH{sub y}{sup +} flux trend was partly explained by an increasing chemical sputtering rate with decreasing S{sub F} and partly by the reaction between H{sub 3}{sup +} and SiH{sub 4} that forms SiH{sub 3}{sup +}.« less

  12. Structure of salts of lithium chloride and lithium hexafluorophosphate as solvates with pyridine and vinylpyridine and structural comparisons: (C5H5N)LiPF6, [p-(CH2=CH)C5H4N]LiPF6, [(C5H5N)LiCl]n, and [p-(CH2=CH)C5H4N]2Li(μ-Cl)2Li[p-(CH2=CH)C5H4N]2.

    PubMed

    Jalil, AbdelAziz; Clymer, Rebecca N; Hamilton, Clifton R; Vaddypally, Shivaiah; Gau, Michael R; Zdilla, Michael J

    2017-03-01

    Due to the flammability of liquid electrolytes used in lithium ion batteries, solid lithium ion conductors are of interest to reduce danger and increase safety. The two dominating general classes of electrolytes under exploration as alternatives are ceramic and polymer electrolytes. Our group has been exploring the preparation of molecular solvates of lithium salts as alternatives. Dissolution of LiCl or LiPF 6 in pyridine (py) or vinylpyridine (VnPy) and slow vapor diffusion with diethyl ether gives solvates of the lithium salts coordinated by pyridine ligands. For LiPF 6 , the solvates formed in pyridine and vinylpyridine, namely tetrakis(pyridine-κN)lithium(I) hexafluorophosphate, [Li(C 5 H 5 N) 4 ]PF 6 , and tetrakis(4-ethenylpyridine-κN)lithium(I) hexafluorophosphate, [Li(C 7 H 7 N) 4 ]PF 6 , exhibit analogous structures involving tetracoordinated lithium ions with neighboring PF 6 - anions in the I-4 and Aea2 space groups, respectively. For LiCl solvates, two very different structures form. catena-Poly[[(pyridine-κN)lithium]-μ 3 -chlorido], [LiCl(C 5 H 5 N)] n , crystalizes in the P2 1 2 1 2 1 space group and contains channels of edge-fused LiCl rhombs templated by rows of π-stacked pyridine ligands, while the structure of the LiCl-VnPy solvate, namely di-μ-chlorido-bis[bis(4-ethenylpyridine-κN)lithium], [Li 2 Cl 2 (C 7 H 7 N) 4 ], is described in the P2 1 /n space group as dinuclear (VnPy) 2 Li(μ-Cl) 2 Li(VnPy) 2 units packed with neighbors via a dense array of π-π interactions.

  13. The reaction of H2O2 with NO2 and NO

    NASA Technical Reports Server (NTRS)

    Gray, D.; Lissi, E.; Heicklen, J.

    1972-01-01

    The reactions of NO and NO2 with H2O2 have been examined at 25 C. Reaction mixtures were monitored by continuously bleeding through a pinhole into a monopole mass spectrometer. NO2 was also monitored by its optical absorption in the visible part of the spectrum. Reaction mixtures containing initially 1.5 - 2.5 torr of NO2 and 0.8 - 1.4 torr of H2O2 or 1 - 12 torr of NO and 0.5 - 1.5 torr of H2O2 were studied. The H2O2 - NO reaction was complex. There was an induction period followed by a marked acceleration in reactant removal. The final products of the reaction, NO2, probably H2O, and possibly HONO2 were produced mainly after all the H2O2 was removed. The HONO intermediate was shown to disproportionate to NO2 + NO + H2O in a relatively slow first order reaction. The acceleration in H2O2 removal after the NO - H2O2 reaction is started is caused by NO2 catalysis.

  14. Removal of H2S pollutant from gasifier syngas by a multistage dual-flow sieve plate column wet scrubber.

    PubMed

    Kurella, Swamy; Bhukya, Pawan Kishan; Meikap, B C

    2017-05-12

    The objective of this study was to observe the performance of a lab-scale three-stage dual-flow sieve plate column scrubber for hydrogen sulfide (H 2 S) gas removal from a gas stream, in which the H 2 S concentration was similar to that of gasifier syngas. The tap water was used as scrubbing liquid. The gas and liquid were operated at flow rates in the range of 16.59 × 10 -4 -27.65 × 10 -4 Nm 3 /s and 20.649 × 10 -6 -48.183 × 10 -6 m 3 /s, respectively. The effects of gas and liquid flow rates on the percentage removal of H 2 S were studied at 50-300 ppm inlet concentrations of H 2 S. The increase in liquid flow rate, gas flow rate and inlet H 2 S concentration increased the percentage removal of H 2 S. The maximum of 78.88% removal of H 2 S was observed at 27.65 × 10 -4 Nm 3 /s gas flow rate and 48.183 × 10 -6 m 3 /s liquid flow rate for 300 ppm inlet concentration of H 2 S. A model has also been developed to predict the H 2 S gas removal by using the results from the experiments and adding the parameters that affect the scrubber's performance. The deviations between experimental and predicted H 2 S percentage removal values were observed as less than 16%.

  15. Vibrational investigations of CO2-H2O, CO2-(H2O)2, and (CO2)2-H2O complexes isolated in solid neon.

    PubMed

    Soulard, P; Tremblay, B

    2015-12-14

    The van der Waals complex of H2O with CO2 has attracted considerable theoretical interest as a typical example of a weak binding complex with a dissociation energy less than 3 kcal/mol. Up to now, experimental vibrational data are sparse. We have studied by FTIR the complexes involving CO2 and water molecules in solid neon. Many new absorption bands close to the well known monomers fundamentals give evidence for at least three (CO2)n-(H2O)m complexes, noted n:m. Concentration effects combined with a detailed vibrational analysis allow for the identification of sixteen, twelve, and five transitions for the 1:1, 1:2, and 2:1 complexes, respectively. Careful examination of the far infrared spectral region allows the assignment of several 1:1 and 1:2 intermolecular modes, confirmed by the observation of combinations of intra + intermolecular transitions, and anharmonic coupling constants have been derived. Our results demonstrate the high sensibility of the solid neon isolation to investigate the hydrogen-bonded complexes in contrast with the gas phase experiments for which two quanta transitions cannot be easily observed.

  16. The dipole moment surface for hydrogen sulfide H2S

    NASA Astrophysics Data System (ADS)

    Azzam, Ala`a. A. A.; Lodi, Lorenzo; Yurchenko, Sergey N.; Tennyson, Jonathan

    2015-08-01

    In this work we perform a systematic ab initio study of the dipole moment surface (DMS) of H2S at various levels of theory and of its effect on the intensities of vibration-rotation transitions; H2S intensities are known from the experiment to display anomalies which have so far been difficult to reproduce by theoretical calculations. We use the transition intensities from the HITRAN database of 14 vibrational bands for our comparisons. The intensities of all fundamental bands show strong sensitivity to the ab initio method used for constructing the DMS while hot, overtone and combination bands up to 4000 cm-1 do not. The core-correlation and relativistic effects are found to be important for computed line intensities, for instance affecting the most intense fundamental band (ν2) by about 20%. Our recommended DMS, called ALYT2, is based on the CCSD(T)/aug-cc-pV(6+d)Z level of theory supplemented by a core-correlation/relativistic corrective surface obtained at the CCSD[T]/aug-cc-pCV5Z-DK level. The corresponding computed intensities agree significantly better (to within 10%) with experimental data taken directly from original papers. Worse agreement (differences of about 25%) is found for those HITRAN intensities obtained from fitted effective dipole models, suggesting the presence of underlying problems in those fits.

  17. Degradation and mineralization of Bisphenol A (BPA) in aqueous solution using advanced oxidation processes: UV/H2O2 and UV/S2O8(2-) oxidation systems.

    PubMed

    Sharma, Jyoti; Mishra, I M; Kumar, Vineet

    2015-06-01

    This work reports on the removal and mineralization of an endocrine disrupting chemical, Bisphenol A (BPA) at a concentration of 0.22 mM in aqueous solution using inorganic oxidants (hydrogen peroxide, H2O2 and sodium persulfate, Na2S2O8;S2O8(2-)) under UV irradiation at a wavelength of 254 nm and 40 W power (Io = 1.26 × 10(-6) E s(-1)) at its natural pH and a temperature of 29 ± 3 °C. With an optimum persulfate concentration of 1.26 mM, the UV/S2O8(2-) process resulted in ∼95% BPA removal after 240 min of irradiation. The optimum BPA removal was found to be ∼85% with a H2O2 concentration of 11.76 mM. At higher concentrations, either of the oxidants showed an adverse effect because of the quenching of the hydroxyl or sulfate radicals in the BPA solution. The sulfate-based oxidation process could be used over a wider initial pH range of 3-12, but the hydroxyl radical-based oxidation of BPA should be carried out in the acidic pH range only. The water matrix components (bicarbonate, chloride and humic acid) showed higher scavenging effect in hydroxyl radical-based oxidation than that in the sulfate radical-based oxidation of BPA. UV/S2O8(2-) oxidation system utilized less energy (307 kWh/m(3)) EE/O in comparison to UV/H2O2 system (509 kWh/m(3)) under optimum operating conditions. The cost of UV irradiation far outweighed the cost of the oxidants in the process. However, the total cost of treatment of persulfate-based system was much lower than that of H2O2-based oxidation system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Non-adiabatic couplings and dynamics in proton transfer reactions of Hn+ systems: application to H2+H2+→H+H3+ collisions

    PubMed Central

    Sanz-Sanz, Cristina; Aguado, Alfredo; Roncero, Octavio; Naumkin, Fedor

    2016-01-01

    Analytical derivatives and non-adiabatic coupling matrix elements are derived for Hn+ systems (n=3, 4 and 5). The method uses a generalized Hellmann-Feynman theorem applied to a multi-state description based on diatomics-in-molecules (for H3+) or triatomics-in-molecules (for H4+ and H5+) formalisms, corrected with a permutationally invariant many-body term to get high accuracy. The analytical non-adiabatic coupling matrix elements are compared with ab initio calculations performed at multi-reference configuration interaction level. These magnitudes are used to calculate H2(v′=0,j′=0)+H2+(v,j=0) collisions, to determine the effect of electronic transitions using a molecular dynamics method with electronic transitions. Cross sections for several initial vibrational states of H2+ are calculated and compared with the available experimental data, yielding an excellent agreement. The effect of vibrational excitation of H2+ reactant, and its relation with non-adiabatic processes are discussed. Also, the behavior at low collisional energies, in the 1 meV-0.1 eV interval, of interest in astrophysical environments, are discussed in terms of the long range behaviour of the interaction potential which is properly described within the TRIM formalism. PMID:26696058

  19. Ab initio Potential Energy Surface for H-H2

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Bauschlicher, Charles W., Jr.; Stallcop, James R.; Levin, Eugene

    1993-01-01

    Ab initio calculations employing large basis sets are performed to determine an accurate potential energy surface for H-H2 interactions for a broad range of separation distances. At large distances, the spherically averaged potential determined from the calculated energies agrees well with the corresponding results determined from dispersion coefficients; the van der Waals well depth is predicted to be 75 +/- (mu)E(sub h). Large basis sets have also been applied to reexamine the accuracy of theoretical repulsive potential energy surfaces. Multipolar expansions of the computed H-H2 potential energy surface are reported for four internuclear separation distances (1.2, 1.401, 1.449, and 1.7a(sub 0) of the hydrogen molecule. The differential elastic scattering cross section calculated from the present results is compared with the measurements from a crossed beam experiment.

  20. Faster Electron Injection and More Active Sites for Efficient Photocatalytic H2 Evolution in g-C3 N4 /MoS2 Hybrid.

    PubMed

    Shi, Xiaowei; Fujitsuka, Mamoru; Kim, Sooyeon; Majima, Tetsuro

    2018-03-01

    Herein, the structural effect of MoS 2 as a cocatalyst of photocatalytic H 2 generation activity of g-C 3 N 4 under visible light irradiation is studied. By using single-particle photoluminescence (PL) and femtosecond time-resolved transient absorption spectroscopies, charge transfer kinetics between g-C 3 N 4 and two kinds of nanostructured MoS 2 (nanodot and monolayer) are systematically investigated. Single-particle PL results show the emission of g-C 3 N 4 is quenched by MoS 2 nanodots more effectively than MoS 2 monolayers. Electron injection rate and efficiency of g-C 3 N 4 /MoS 2 -nanodot hybrid are calculated to be 5.96 × 10 9 s -1 and 73.3%, respectively, from transient absorption spectral measurement, which are 4.8 times faster and 2.0 times higher than those of g-C 3 N 4 /MoS 2 -monolayer hybrid. Stronger intimate junction between MoS 2 nanodots and g-C 3 N 4 is suggested to be responsible for faster and more efficient electron injection. In addition, more unsaturated terminal sulfur atoms can serve as the active site in MoS 2 nanodot compared with MoS 2 monolayer. Therefore, g-C 3 N 4 /MoS 2 nanodot exhibits a 7.9 times higher photocatalytic activity for H 2 evolution (660 µmol g- 1 h -1 ) than g-C 3 N 4 /MoS 2 monolayer (83.8 µmol g -1 h -1 ). This work provides deep insight into charge transfer between g-C 3 N 4 and nanostructured MoS 2 cocatalysts, which can open a new avenue for more rationally designing MoS 2 -based catalysts for H 2 evolution. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.