Sample records for h2s emission rates

  1. Emission of hydrogen sulfide (H2S) at a waterfall in a sewer: study of main factors affecting H2S emission and modeling approaches.

    PubMed

    Jung, Daniel; Hatrait, Laetitia; Gouello, Julien; Ponthieux, Arnaud; Parez, Vincent; Renner, Christophe

    2017-11-01

    Hydrogen sulfide (H 2 S) represents one of the main odorant gases emitted from sewer networks. A mathematical model can be a fast and low-cost tool for estimating its emission. This study investigates two approaches to modeling H 2 S gas transfer at a waterfall in a discharge manhole. The first approach is based on an adaptation of oxygen models for H 2 S emission at a waterfall and the second consists of a new model. An experimental set-up and a statistical data analysis allowed the main factors affecting H 2 S emission to be studied. A new model of the emission kinetics was developed using linear regression and taking into account H 2 S liquid concentration, waterfall height and fluid velocity at the outlet pipe of a rising main. Its prediction interval was estimated by the residual standard deviation (15.6%) up to a rate of 2.3 g H 2h -1 . Finally, data coming from four sampling campaigns on sewer networks were used to perform simulations and compare predictions of all developed models.

  2. Characteristics of H2S emission from aged refuse after excavation exposure.

    PubMed

    Shen, Dong-Sheng; Du, Yao; Fang, Yuan; Hu, Li-Fang; Fang, Cheng-Ran; Long, Yu-Yang

    2015-05-01

    Hydrogen sulfide (H2S(g)) emission from landfills is a widespread problem, especially when aged refuse is excavated. H2S(g) emission from aged refuse exposed to air was investigated and the results showed that large amounts of H2S(g) can be released, especially in the first few hours after excavation, when H2S(g) concentrations in air near refuse could reach 2.00 mg m(-3). Initial exposure to air did not inhibit the emission of H2S(g), as is generally assumed, but actually promoted it. The amounts of H2S(g) emitted in the first 2 d after excavation can be very dangerous, and the risks associated with the emission of H2S(g) could decrease significantly with time. Unlike a large number of sulfide existed under anaerobic conditions, the sulfide in aged municipal solid waste can be oxidized chemically to elemental sulfur (but not sulfate) under aerobic conditions, and its conversion rate was higher than 80%. Only microorganisms can oxidize the reduced sulfur species to sulfate, and the conversion rate could reach about 50%. Using appropriate techniques to enhance these chemical and biological transformations could allow the potential health risks caused by H2S(g) after refuse excavation to be largely avoided. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. The impact of H2S emissions on future geothermal power generation - The Geysers region, California

    NASA Technical Reports Server (NTRS)

    Leibowitz, L. P.

    1977-01-01

    The future potential for geothermal power generation in the Geysers region of California is as much as 10 times the current 502 MW(e) capacity. However, environmental factors such as H2S emissions and institutional considerations may play the primary role in determining the rate and ultimate level of development. In this paper a scenario of future geothermal generation capacity and H2S emissions in the Geysers region is presented. Problem areas associated with H2S emissions, H2S abatement processes, plant operations, and government agency resources are described. The impact of H2S emissions on future development and the views of effected organizations are discussed. Potential actions needed to remove these constraints are summarized.

  4. Use of a Monte Carlo technique to complete a fragmented set of H2S emission rates from a wastewater treatment plant.

    PubMed

    Schauberger, Günther; Piringer, Martin; Baumann-Stanzer, Kathrin; Knauder, Werner; Petz, Erwin

    2013-12-15

    The impact of ambient concentrations in the vicinity of a plant can only be assessed if the emission rate is known. In this study, based on measurements of ambient H2S concentrations and meteorological parameters, the a priori unknown emission rates of a tannery wastewater treatment plant are calculated by an inverse dispersion technique. The calculations are determined using the Gaussian Austrian regulatory dispersion model. Following this method, emission data can be obtained, though only for a measurement station that is positioned such that the wind direction at the measurement station is leeward of the plant. Using the inverse transform sampling, which is a Monte Carlo technique, the dataset can also be completed for those wind directions for which no ambient concentration measurements are available. For the model validation, the measured ambient concentrations are compared with the calculated ambient concentrations obtained from the synthetic emission data of the Monte Carlo model. The cumulative frequency distribution of this new dataset agrees well with the empirical data. This inverse transform sampling method is thus a useful supplement for calculating emission rates using the inverse dispersion technique. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Inelastic rate coefficients for collisions of C6H- with H2 and He

    NASA Astrophysics Data System (ADS)

    Walker, Kyle M.; Lique, François; Dumouchel, Fabien; Dawes, Richard

    2017-04-01

    The recent detection of anions in the interstellar medium has shown that they exist in a variety of astrophysical environments - circumstellar envelopes, cold dense molecular clouds and star-forming regions. Both radiative and collisional processes contribute to molecular excitation and de-excitation in these regions so that the 'local thermodynamic equilibrium' approximation, where collisions cause the gas to behave thermally, is not generally valid. Therefore, along with radiative coefficients, collisional excitation rate coefficients are needed to accurately model the anionic emission from these environments. We focus on the calculation of state-to-state rate coefficients of the C6H- molecule in its ground vibrational state in collisions with para-H2, ortho-H2 and He using new potential energy surfaces. Dynamical calculations for the pure rotational excitation of C6H- were performed for the first 11 rotational levels (up to j1 = 10) using the close-coupling method, while the coupled-states approximation was used to extend the H2 rate coefficients to j1 = 30, where j1 is the angular momentum quantum number of C6H-. State-to-state rate coefficients were obtained for temperatures ranging from 2 to 100 K. The rate coefficients for H2 collisions for Δj1 = -1 transitions are of the order of 10-10 cm3 s-1, a factor of 2 to 3 greater than those of He. Propensity rules are discussed. The collisional excitation rate coefficients produced here impact astrophysical modelling since they are required for obtaining accurate C6H- level populations and line emission for regions that contain anions.

  6. Non-Controlled Biogenic Emission of CO, H2S, NH3 and Hg0 from Lazareto's Landfill, Tenerife, Canary Islands

    NASA Astrophysics Data System (ADS)

    Nolasco, D.; Lima, R.; Salazar, J.; Hernández, P. A.; Pérez, N. M.

    2002-12-01

    Landfills are important sources of contaminant gases to the surrounding environment and a significant amount of them could be released to the atmosphere through the surface environment in a diffuse form, also known as non-controlled emission of landfill gases. CH4 and CO2 are major components in landfill gases and other gas species are only present in minor amounts. Trace compounds include both inorganic and a large number of volatile organic components. The goal of this study is to evaluate the non-controlled biogenic emission of inorganic toxic gases from Lazareto's landfill. Which is located in the city of Santa Cruz de Tenerife, with a population of about 150,000, and is used as a Palm tree park. Lazareto's landfill has an extension of 0.22 Km2 and it is not operative since 1980. A non-controlled biogenic gas emission survey of 281 sampling sites was carried out from February tod March, 2002. Surface CO2 efflux measurements were performed by means of a portable NDIR sensor according with the accumulation chamber method. Surface CO2 efflux ranged from negligible values up to 30,600 gm-2d-1. At each sampling site, surface landfill gas samples were collected at 40 cm depth using a metallic soil probe. These gas samples were analyzed within 24 hours for major and inorganic toxic gas species by means of microGC and specific electrochemical sensors. The highest concentrations of CO, H2S, NH3 and Hg0 were 3, 20, 2,227, 0.010 ppmV, respectively. Non-controlled biogenic emission rate of CO, H2S, NH3, and Hg0 were estimated by multiplying the observed surface CO2 efflux times (Inorganic Toxic Gas)i/CO2 weight ratio at each sampling site, respectively. The highest surface inorganic toxic gas efllux rates were 699 gm-2d-1 for NH3, 81, 431 and 4 mgm-2d-1 for CO, H2S and Hg0, respectively. Taking into consideration the spatial distribution of the inorganic toxic gas efflux values as well as the extension of the landfill, the non-controlled biogenic emission of CO, H2S, NH3

  7. Precursory diffuse CO2 and H2S emission signatures of the 2011-2012 El Hierro submarine eruption, Canary Islands

    NASA Astrophysics Data System (ADS)

    Pérez, Nemesio M.; Padilla, Germán D.; Padrón, Eleazar; Hernández, Pedro A.; Melián, Gladys V.; Barrancos, José; Dionis, Samara; Nolasco, Dácil; Rodríguez, Fátima; Calvo, David; Hernández, Íñigo

    2012-08-01

    On October 12, 2011, a submarine eruption began 2 km off the coast of La Restinga, south of El Hierro Island. CO2 and H2S soil efflux were continuously measured during the period of volcanic unrest by using the accumulation chamber method at two different geochemical stations, HIE01 and HIE07. Recorded CO2 and H2S effluxes showed precursory signals that preceded the submarine eruption. Beginning in late August, the CO2 efflux time series started increasing at a relatively constant rate over one month, reaching a maximum of 19 gm-2d-1 one week before the onset of the submarine volcanic eruption. The H2S efflux time series at HIE07 showed a pulse in H2S emission just one day before the initiation of the submarine eruption, reaching peak values of 42 mg m-2 d-1, 10 times the average H2S efflux recorded during the observation period. Since CO2 and H2S effluxes are strongly influenced by external factors, we applied a multiple regression analysis to remove their contribution. A statistical analysis showed that the long-term trend of the filtered data is well correlated with the seismic energy. We find that these geochemical stations are important monitoring sites for evaluating the volcanic activity of El Hierro and that they demonstrate the potential of applying continuous monitoring of soil CO2 and H2S efflux to improve and optimize the detection of early warning signals of future volcanic unrest episodes at El Hierro. Continuous diffuse degassing studies would likely prove useful for monitoring other volcanoes during unrest episodes.

  8. Laboratory, semi-pilot and room scale study of nitrite and molybdate mediated control of H(2)S emission from swine manure.

    PubMed

    Moreno, Lyman; Predicala, Bernardo; Nemati, Mehdi

    2010-04-01

    The effects of manure age on emission of H(2)S and required level of nitrite or molybdate to control these emissions were investigated in the present work. Molybdate mediated control of H(2)S emission was also studied in semi-pilot scale open systems, and in specifically designed chambers which simulated swine production rooms. With fresh 1-, 3- and 6-month old manures average H(2)S concentration in the headspace gas of the closed systems were 4856+/-460, 3431+/-208, 1037+/-98 ppm and non-detectable, respectively. Moreover, the level of nitrite or molybdate required to control the emission of H(2)S decreased as manure age increased. In the semi-pilot scale open system and chambers, average H(2)S concentration at the surface of agitated fresh manure were 831+/-26 and 88.4+/-5.7 ppm, respectively. Furthermore, 0.1-0.25 mM molybdate was sufficient to control the emission of H(2)S. A cost study for an average size swine operation showed that the cost of treatment with molybdate was less than 1% of the overall production cost for each market hog. Copyright 2009 Elsevier Ltd. All rights reserved.

  9. The CU mobile Solar Occultation Flux instrument: structure functions and emission rates of NH3, NO2 and C2H6

    NASA Astrophysics Data System (ADS)

    Kille, Natalie; Baidar, Sunil; Handley, Philip; Ortega, Ivan; Sinreich, Roman; Cooper, Owen R.; Hase, Frank; Hannigan, James W.; Pfister, Gabriele; Volkamer, Rainer

    2017-02-01

    We describe the University of Colorado mobile Solar Occultation Flux instrument (CU mobile SOF). The instrument consists of a digital mobile solar tracker that is coupled to a Fourier transform spectrometer (FTS) of 0.5 cm-1 resolution and a UV-visible spectrometer (UV-vis) of 0.55 nm resolution. The instrument is used to simultaneously measure the absorption of ammonia (NH3), ethane (C2H6) and nitrogen dioxide (NO2) along the direct solar beam from a moving laboratory. These direct-sun observations provide high photon flux and enable measurements of vertical column densities (VCDs) with geometric air mass factors, high temporal resolution of 2 s and spatial resolution of 5-19 m. It is shown that the instrument line shape (ILS) of the FTS is independent of the azimuth and elevation angle pointing of the solar tracker. Further, collocated measurements next to a high-resolution FTS at the National Center for Atmospheric Research (HR-NCAR-FTS) show that the CU mobile SOF measurements of NH3 and C2H6 are precise and accurate; the VCD error at high signal to noise ratio is 2-7 %. During the Front Range Air Pollution and Photochemistry Experiment (FRAPPE) from 21 July to 3 September 2014 in Colorado, the CU mobile SOF instrument measured median (minimum, maximum) VCDs of 4.3 (0.5, 45) × 1016 molecules cm-2 NH3, 0.30 (0.06, 2.23) × 1016 molecules cm-2 NO2 and 3.5 (1.5, 7.7) × 1016 molecules cm-2 C2H6. All gases were detected in larger 95 % of the spectra recorded in urban, semi-polluted rural and remote rural areas of the Colorado Front Range. We calculate structure functions based on VCDs, which describe the variability of a gas column over distance, and find the largest variability for NH3. The structure functions suggest that currently available satellites resolve about 10 % of the observed NH3 and NO2 VCD variability in the study area. We further quantify the trace gas emission fluxes of NH3 and C2H6 and production rates of NO2 from concentrated animal feeding

  10. H2S Injection and Sequestration into Basalt - The SulFix Project

    NASA Astrophysics Data System (ADS)

    Gudbrandsson, S.; Moola, P.; Stefansson, A.

    2014-12-01

    Atmospheric H2S emissions are among major environmental concern associated with geothermal energy utilization. It is therefore of great importance for the geothermal power sector to reduce H2S emissions. Known solutions for H2S neutralization are both expensive and include production of elemental sulfur and sulfuric acid that needs to be disposed of. Icelandic energy companies that utilize geothermal power for electricity production have decided to try to find an environmentally friendly and economically feasible solution to reduce the H2S emission, in a joint venture called SulFix. The aim of SulFix project is to explore the possibilities of injecting H2S dissolved in water into basaltic formations in close proximity to the power plants for permanent fixation as sulfides. The formation of sulfides is a natural process in geothermal systems. Due to basalt being rich in iron and dissolving readily at acidic conditions, it is feasible to re-inject the H2S dissolved in water, into basaltic formations to form pyrite. To estimate the mineralization rates of H2S, in the basaltic formation, flow through experiments in columns were conducted at various H2S concentrations, temperatures (100 - 240°C) and both fresh and altered basaltic glass. The results indicate that pyrite rapidly forms during injection into fresh basalt but the precipiation in altered basalt is slower. Three different alteration stages, as a function of distance from inlet, can be observed in the column with fresh basaltic glass; (1) dissolution features along with precipitation, (2) precipitation increases, both sulfides and other secondary minerals and (3) the basalt looks to be unaltered and little if any precipitation is observed. The sulfur has precipitated in the first half of the column and thereafter the solution is possibly close to be supersaturated with respect to the rock. These results indicate that the H2S sequestration into basalt is possible under geothermal conditions. The rate limiting

  11. H2 emission as a tracer of molecular hydrogen: Large-scale observations of Orion

    NASA Technical Reports Server (NTRS)

    Luhman, M. L.; Jaffe, D. T.; Keller, L. D.; Pak, Soojong

    1994-01-01

    We have detected extremely extended (greater than 1.5 deg, or 12 pc) near-infrared H2 line emission from the Orion A molecular cloud. We have mapped emission in the 1.601 micrometer(s) upsilon = 6 - 4 Q(1) and 2.121 micrometer(s) upsilon = 1 - 0 S(1) lines of H2 along a approx. 2 deg R.A. cut and from a 6' x 6' region near theta(sup 1) Ori C. The surface brightness of the extended H2 line emission is 10(exp -6) to 10(exp -5) ergs/s/sq. cm/sr. Based on the distribution and relative strengths of the H2 lines, we conclude that UV fluorescene is most likely the dominant H2 emission mechanism in the outer parts of the Orion cloud. Shock-heated gas does not make a major contribution to the H2 emission in this region. The fluorescent component of the total H2 upsilon = 1 - 0 S(1) luminosity from Orion is 30-40 solar luminosity. Molecular hydrogen excited by UV radiation from nearby OB stars contributes 98%-99% of the global H2 line emission from the Orion molecular cloud, even though this cloud has a powerful shock-excited H2 source in its core. The ability to detect large-scale H2 directly opens up new possibilities for the study of molecular clouds.

  12. Control of H2S emissions using an ozone oxidation process: Preliminary results

    NASA Technical Reports Server (NTRS)

    Defaveri, D.; Ferrando, B.; Ferraiolo, G.

    1986-01-01

    The problem of eliminating industrial emission odors does not have a simple solution, and consequently has not been researched extensively. Therefore, an experimental research program regarding oxidation of H2S through ozone was undertaken to verify the applicable limits of the procedure and, in addition, was designed to supply a useful analytical means of rationalizing the design of reactors employed in the sector.

  13. Synthesis of zinc sulfide nanoparticles during zinc oxidization by H2S and H2S/H2O supercritical fluids

    NASA Astrophysics Data System (ADS)

    Vostrikov, A. A.; Fedyaeva, O. N.; Sokol, M. Ya.; Shatrova, A. V.

    2014-12-01

    Formation of zinc sulfide nanoparticles was detected during interaction of bulk samples with hydrogen sulfide at supercritical parameters. Synthesis proceeds with liberation of H2 by the reaction nZn + nH2S = (ZnS) n + nH2. It has been found by the X-ray diffraction method, scanning electron microscopy, and mass spectrometry that the addition of water stimulates coupled reactions of nanoparticle synthesis nZn + nH2O = (ZnO) n + nH2 and (ZnO) n + nH2S = (ZnS) n + nH2O and brings about an increase in the synthesis rate and morphological changes of (ZnS) n nanoparticles.

  14. Particle emission rates during electrostatic spray deposition of TiO2 nanoparticle-based photoactive coating.

    PubMed

    Koivisto, Antti J; Jensen, Alexander C Ø; Kling, Kirsten I; Kling, Jens; Budtz, Hans Christian; Koponen, Ismo K; Tuinman, Ilse; Hussein, Tareq; Jensen, Keld A; Nørgaard, Asger; Levin, Marcus

    2018-01-05

    Here, we studied the particle release rate during Electrostatic spray deposition of anatase-(TiO 2 )-based photoactive coating onto tiles and wallpaper using a commercially available electrostatic spray device. Spraying was performed in a 20.3m 3 test chamber while measuring concentrations of 5.6nm to 31μm-size particles and volatile organic compounds (VOC), as well as particle deposition onto room surfaces and on the spray gun user hand. The particle emission and deposition rates were quantified using aerosol mass balance modelling. The geometric mean particle number emission rate was 1.9×10 10 s -1 and the mean mass emission rate was 381μgs -1 . The respirable mass emission-rate was 65% lower than observed for the entire measured size-range. The mass emission rates were linearly scalable (±ca. 20%) to the process duration. The particle deposition rates were up to 15h -1 for <1μm-size and the deposited particles consisted of mainly TiO 2 , TiO 2 mixed with Cl and/or Ag, TiO 2 particles coated with carbon, and Ag particles with size ranging from 60nm to ca. 5μm. As expected, no significant VOC emissions were observed as a result of spraying. Finally, we provide recommendations for exposure model parameterization. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  15. Decreased N2O reduction by low soil pH causes high N2O emissions in a riparian ecosystem.

    PubMed

    Van den Heuvel, R N; Bakker, S E; Jetten, M S M; Hefting, M M

    2011-05-01

    Quantification of harmful nitrous oxide (N(2)O) emissions from soils is essential for mitigation measures. An important N(2)O producing and reducing process in soils is denitrification, which shows deceased rates at low pH. No clear relationship between N(2)O emissions and soil pH has yet been established because also the relative contribution of N(2)O as the denitrification end product decreases with pH. Our aim was to show the net effect of soil pH on N(2)O production and emission. Therefore, experiments were designed to investigate the effects of pH on NO(3)(-) reduction, N(2)O production and reduction and N(2) production in incubations with pH values set between 4 and 7. Furthermore, field measurements of soil pH and N(2)O emissions were carried out. In incubations, NO(3)(-) reduction and N(2) production rates increased with pH and net N(2)O production rate was highest at pH 5. N(2)O reduction to N(2) was halted until NO(3)(-) was depleted at low pH values, resulting in a built up of N(2)O. As a consequence, N(2)O:N(2) production ratio decreased exponentially with pH. N(2)O reduction appeared therefore more important than N(2)O production in explaining net N(2)O production rates. In the field, a negative exponential relationship for soil pH against N(2)O emissions was observed. Soil pH could therefore be used as a predictive tool for average N(2)O emissions in the studied ecosystem. The occurrence of low pH spots may explain N(2)O emission hotspot occurrence. Future studies should focus on the mechanism behind small scale soil pH variability and the effect of manipulating the pH of soils. © 2011 Blackwell Publishing Ltd.

  16. Degassing of CO2, SO2, and H2S associated with the 2009 eruption of Redoubt Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Werner, Cynthia; Kelly, Peter J.; Doukas, Michael; Lopez, Taryn; Pfeffer, Melissa; McGimsey, Robert; Neal, Christina

    2013-06-01

    The 2009 eruption of Redoubt Volcano, Alaska was particularly well monitored for volcanic gas emissions. We report 35 airborne measurements of CO2, SO2, and H2S emission rates that span from October 2008 to August 2010. The magmatic system degassed primarily as a closed system although minor amounts of open system degassing were observed in the 6 months prior to eruption on March 15, 2009 and over 1 year following cessation of dome extrusion. Only 14% of the total CO2 was emitted prior to eruption even though high emissions rates (between 3630 and 9020 t/d) were observed in the final 6 weeks preceding the eruption. A minor amount of the total SO2 was observed prior to eruption (4%), which was consistent with the low emission rates at that time (up to 180 t/d). The amount of the gas emitted during the explosive and dome growth period (March 15-July 1, 2009) was 59 and 66% of the total CO2 and SO2, respectively. Maximum emission rates were 33,110 t/d CO2, 16,650 t/d SO2, and 1230 t/d H2S. Post-eruptive passive degassing was responsible for 27 and 30% of the total CO2 and SO2, respectively. SO2 made up on average 92% of the total sulfur degassing throughout the eruption. Magmas were vapor saturated with a C- and S-rich volatile phase, and regardless of composition, the magmas appear to be buffered by a volatile composition with a molar CO2/SO2 ratio of ~ 2.4. Primary volatile contents calculated from degassing and erupted magma volumes range from 0.9 to 2.1 wt.% CO2 and 0.27-0.56 wt.% S; whole-rock normalized values are slightly lower (0.8-1.7 wt.% CO2 and 0.22-0.47 wt.% S) and are similar to what was calculated for the 1989-90 eruption of Redoubt. Such contents argue that primary arc magmas are rich in CO2 and S. Similar trends between volumes of estimated degassed magma and observed erupted magma during the eruptive period point to primary volatile contents of 1.25 wt.% CO2 and 0.35 wt.% S. Assuming these values, up to 30% additional unerupted magma degassed in the

  17. Jovian H2 dayglow emission (1978-1989)

    NASA Technical Reports Server (NTRS)

    Mcgrath, M. A.; Ballester, G. E.; Moos, H. W.

    1990-01-01

    The IUE data set accumulated through 10 years of Jovian equatorial observations is used to measure the long-term temporal variation of the H2 dayglow emission. The model that best fits the data indicates a possible correlation between long-term solar activity and the Jovian H2 emission in the region 1500-1700 A between 1978 and 1989, which spans the decline in solar activity for solar cycle 21 and the rise in solar activity accompanying solar cycle 22. The magnitude of the observed variation is closer to that of the solar Ly-alpha flux than the 10.7 cm radio flux. Short-wavelength H2 band emission intensity is inconsistent with the amount of long-wavelength emission but may be reconciled if relatively low-energy excitation or fluorescence of solar radiation is invoked. No persistent longitudinal feature analogous to the H I Ly-alpha can be identified.

  18. Detailed Analysis of Near-IR Water (H2O) Emission in Comet C/2014 Q2 (Lovejoy) with the GIANO/TNG Spectrograph

    NASA Astrophysics Data System (ADS)

    Faggi, S.; Villanueva, G. L.; Mumma, M. J.; Brucato, J. R.; Tozzi, G. P.; Oliva, E.; Massi, F.; Sanna, N.; Tozzi, A.

    2016-10-01

    We observed the Oort cloud comet C/2014 Q2 (Lovejoy) on 2015 January 31 and February 1 and 2 at a heliocentric distance of 1.3 au and geocentric distance of 0.8 au during its approach to the Sun. Comet Lovejoy was observed with GIANO, the near-infrared high-resolution spectrograph mounted at the Nasmyth-A focus of the TNG (Telescopio Nazionale Galileo) telescope in La Palma, Canary Islands, Spain. We detected strong emissions of radical CN and water, along with many emission features of unidentified origin, across the 1-2.5 μm region. Spectral lines from eight ro-vibrational bands of H2O were detected, six of them for the first time. We quantified the water production rate [Q(H2O), (3.11 ± 0.14) × 1029 s-1] by comparing the calibrated line fluxes with the Goddard full non-resonance cascade fluorescence model for H2O. The production rates of ortho-water [Q(H2O)ORTHO, (2.33 ± 0.11) × 1029 s-1] and para-water [Q(H2O)PARA, (0.87 ± 0.21) × 1029 s-1] provide a measure of the ortho-to-para ratio (2.70 ± 0.76)). The confidence limits are not small enough to provide a critical test of the nuclear spin temperature.

  19. Detailed Analysis of Near-IR Water (H2O) Emission in Comet C/2014 Q2 (LOVEJOY) with the GIANO/TNG Spectrograph

    NASA Technical Reports Server (NTRS)

    Faggi, S.; Villanueva, G. L.; Mumma, M. J.; Brucato, J.R.; Tozzi, G. P.; Oliva, E.; Massi, F.; Sanna, N.; Tozzi, A.

    2016-01-01

    We observed the Oort cloud comet C/2014 Q2 (Lovejoy) on 2015 January 31 and February 1 and 2 at a heliocentric distance of 1.3 au and geocentric distance of 0.8 au during its approach to the Sun. Comet Lovejoy was observed with GIANO, the near-infrared high-resolution spectrograph mounted at the Nasmyth-A focus of the TNG (Telescopio Nazionale Galileo) telescope in La Palma, Canary Islands, Spain. We detected strong emissions of radical CN and water, along with many emission features of unidentified origin, across the 1-2.5 micron region. Spectral lines from eight ro-vibrational bands of H2O were detected, six of them for the first time. We quantified the water production rate [Q(H2O), (3.11+/- 0.14) x 10(exp 29)/s] by comparing the calibrated line fluxes with the Goddard full non-resonance cascade fluorescence model for H2O. The production rates of ortho-water [Q(H2O)ORTHO, (2.33+/- 0.11) x 10(exp 29)/s] and para-water [Q(H2O)PARA, (0.87+/-0.21) x 10(exp 29)/s] provide a measure of the ortho-to-para ratio (2.70+/- 0.76)). The confidence limits are not small enough to provide a critical test of the nuclear spin temperature.

  20. Spatially resolved H2 emission from the disk around T Tau N

    NASA Astrophysics Data System (ADS)

    Gustafsson, M.; Labadie, L.; Herbst, T. M.; Kasper, M.

    2008-09-01

    Context: Molecular hydrogen is the main constituent of circumstellar disks and could be an important tracer for the evolution and structure of such disks. So far, H2 has only been detected in a few disks and only through spectroscopic observations, resulting in a limited knowledge of the spatial distribution of the H2 emitting gas. Aims: We report the detection of quiescent H2 emission in a spatially resolved ring-like structure within 100 AU of T Tau N. We present evidence to show that the emission most likely arises from shocks in the atmosphere of a nearly face-on disk around T Tau N. Methods: Using high spatial resolution 3D spectroscopic K-band data, we trace the spatial distribution of several H2 NIR rovibrational lines in the vicinity of T Tau N. We examine the structure of the circumstellar material around the star through SED modeling. Then, we use models of shocks and UV+X-ray irradiation to reproduce the H2 line flux and line ratios in order to test how the H2 is excited. Results: We detect weak H2 emission from the v=1{-}0 S(0), S(1), Q(1) lines and the v=2{-}1 S(1) line in a ring-like structure around T Tau N between 0.1 arcsec ( 15 AU) and 0.7 arcsec ( 100 AU) from the star. The v=1{-}0 S(0) and v=2{-}1 S(1) lines are detected only in the outer parts of the ring structure. Closer to the star, the strong continuum limits our sensitivity to these lines. The total flux of the v=1{-}0 S(1) line is 1.8 × 10-14 erg s-1 cm-2, similar to previous measurements of H2 in circumstellar disks. The velocity of the H2 emitting gas around T Tau N is consistent with the rest velocity of the star, and the H2 does not seem to be part of a collimated outflow. Both shocks impinging on the surface of a disk and irradiation of a disk by UV-photons and X-rays from the central star are plausible candidates for the H2 excitation mechanism. However, irradiation should not create a large degree of excitation at radii larger than 20 AU. Most likely the H2 emission arises in the

  1. Degassing of CO2, SO2, and H2S associated with the 2009 eruption of Redoubt Volcano, Alaska

    USGS Publications Warehouse

    Werner, Cynthia A.; Kelly, Peter; Doukas, Michael P.; Lopez, Taryn; Pfeffer, Melissa; McGimsey, Robert G.; Neal, Christina

    2013-01-01

    The 2009 eruption of Redoubt Volcano, Alaska was particularly well monitored for volcanic gas emissions. We report 35 airborne measurements of CO2, SO2, and H2S emission rates that span from October 2008 to August 2010. The magmatic system degassed primarily as a closed system although minor amounts of open system degassing were observed in the 6 months prior to eruption on March 15, 2009 and over 1 year following cessation of dome extrusion. Only 14% of the total CO2 was emitted prior to eruption even though high emissions rates (between 3630 and 9020 t/d) were observed in the final 6 weeks preceding the eruption. A minor amount of the total SO2 was observed prior to eruption (4%), which was consistent with the low emission rates at that time (up to 180 t/d). The amount of the gas emitted during the explosive and dome growth period (March 15–July 1, 2009) was 59 and 66% of the total CO2and SO2, respectively. Maximum emission rates were 33,110 t/d CO2, 16,650 t/d SO2, and 1230 t/d H2S. Post-eruptive passive degassing was responsible for 27 and 30% of the total CO2 and SO2, respectively. SO2 made up on average 92% of the total sulfur degassing throughout the eruption. Magmas were vapor saturated with a C- and S-rich volatile phase, and regardless of composition, the magmas appear to be buffered by a volatile composition with a molar CO2/SO2 ratio of ~ 2.4. Primary volatile contents calculated from degassing and erupted magma volumes range from 0.9 to 2.1 wt.% CO2 and 0.27–0.56 wt.% S; whole-rock normalized values are slightly lower (0.8–1.7 wt.% CO2 and 0.22–0.47 wt.% S) and are similar to what was calculated for the 1989–90 eruption of Redoubt. Such contents argue that primary arc magmas are rich in CO2 and S. Similar trends between volumes of estimated degassed magma and observed erupted magma during the eruptive period point to primary volatile contents of 1.25 wt.% CO2 and 0.35 wt.% S. Assuming these values, up to 30% additional

  2. Jovian equatorial H2 emission from 1979-1987

    NASA Technical Reports Server (NTRS)

    Mcgrath, M. A.; Moos, H. W.; Ballester, G. E.; Coplin, K. A.

    1988-01-01

    Ninety two IUE observations of the Jovian equatorial region taken between 2 Dec. 1978 and 1 Feb. 1988 were averaged together by date of observation, resulting in 22 averaged spectra which were fit with a model to determine the amount of H2 Lyman band emission in the region 1552 to 1624A. The data suggest that the H2 emission may vary with time. Especially suggestive is the marked downward trend of the emission between 1983 and 1987, during which time the strength of the emission in the 1552 to 1624A region decreases by a factor of 10. Uncertainty in the existing data and a gap in the data in 1980 and 1981 preclude a positive identification of a correlation between the brightness of the H2 emission and the major solar cycle.

  3. Submillimeter H2O and H2O+emission in lensed ultra- and hyper-luminous infrared galaxies at z 2-4

    NASA Astrophysics Data System (ADS)

    Yang, C.; Omont, A.; Beelen, A.; González-Alfonso, E.; Neri, R.; Gao, Y.; van der Werf, P.; Weiß, A.; Gavazzi, R.; Falstad, N.; Baker, A. J.; Bussmann, R. S.; Cooray, A.; Cox, P.; Dannerbauer, H.; Dye, S.; Guélin, M.; Ivison, R.; Krips, M.; Lehnert, M.; Michałowski, M. J.; Riechers, D. A.; Spaans, M.; Valiante, E.

    2016-11-01

    We report rest-frame submillimeter H2O emission line observations of 11 ultra- or hyper-luminous infrared galaxies (ULIRGs or HyLIRGs) at z 2-4 selected among the brightest lensed galaxies discovered in the Herschel-Astrophysical Terahertz Large Area Survey (H-ATLAS). Using the IRAM NOrthern Extended Millimeter Array (NOEMA), we have detected 14 new H2O emission lines. These include five 321-312ortho-H2O lines (Eup/k = 305 K) and nine J = 2 para-H2O lines, either 202-111(Eup/k = 101 K) or 211-202(Eup/k = 137 K). The apparent luminosities of the H2O emission lines are μLH2O 6-21 × 108 L⊙ (3 <μ< 15, where μ is the lens magnification factor), with velocity-integrated line fluxes ranging from 4-15 Jy km s-1. We have also observed CO emission lines using EMIR on the IRAM 30 m telescope in seven sources (most of those have not yet had their CO emission lines observed). The velocity widths for CO and H2O lines are found to be similar, generally within 1σ errors in the same source. With almost comparable integrated flux densities to those of the high-J CO line (ratios range from 0.4 to 1.1), H2O is found to be among the strongest molecular emitters in high-redshift Hy/ULIRGs. We also confirm our previously found correlation between luminosity of H2O (LH2O) and infrared (LIR) that LH2O LIR1.1-1.2, with ournew detections. This correlation could be explained by a dominant role of far-infrared pumping in the H2O excitation. Modelling reveals that the far-infrared radiation fields have warm dust temperature Twarm 45-75 K, H2O column density per unit velocity interval NH2O /ΔV ≳ 0.3 × 1015 cm-2 km-1 s and 100 μm continuum opacity τ100> 1 (optically thick), indicating that H2O is likely to trace highly obscured warm dense gas. However, further observations of J ≥ 4 H2O lines are needed to better constrain the continuum optical depth and other physical conditions of the molecular gas and dust. We have also detected H2O+ emission in three sources. A tight correlation

  4. Hydrogen sulfide (H 2S) in urban ambient air

    NASA Astrophysics Data System (ADS)

    Kourtidis, K.; Kelesis, A.; Petrakakis, M.

    Despite indications of high hydrogen sulfide levels in some urban environments, only sparse measurements have been reported in the literature. Here we present one full year of hydrogen sulfide measurements in an urban traffic site in the city of Thessaloniki, Greece. In this 1-million-population city the H 2S concentrations were surprisingly high, with a mean annual concentration of 8 μg m -3 and wintertime mean monthly concentrations up to 20 μg m -3 (12.9 ppb). Daily mean concentrations in the winter were up to 30 μg m -3 (19.3 ppb), while hourly concentrations were up to 54 μg m -3 (34.8 ppb). During calm (wind velocity < 0.5 m s -1) conditions, mainly encountered during night-time hours, hourly values of H 2S were highly correlated with those of CO ( r2 = 0.75) and SO 2 ( r2 = 0.70), pointing to a common traffic source from catalytic converters. Annual mean concentrations are above the WHO recommendation for odor annoyance; hence, H 2S might play a role to the malodorous episodes that the city occasionally experiences. The high ambient H 2S levels might also be relevant to the implementation of preservation efforts for outdoor marble and limestone historical monuments that have been targeting SO 2 emissions as an atmospheric acidity source, since the measurements presented here suggest that about 19% of the annual sulfur (SO 2 + H 2S) emissions in Thessaloniki are in the form of H 2S.

  5. Detection of 183 GHz H2O megamaser emission towards NGC 4945

    NASA Astrophysics Data System (ADS)

    Humphreys, E. M. L.; Vlemmings, W. H. T.; Impellizzeri, C. M. V.; Galametz, M.; Olberg, M.; Conway, J. E.; Belitsky, V.; De Breuck, C.

    2016-08-01

    Aims: The aim of this work is to search Seyfert 2 galaxy NGC 4945, a well-known 22 GHz water megamaser galaxy, for H2O (mega)maser emission at 183 GHz. Methods: We used APEX SEPIA Band 5 (an ALMA Band 5 receiver on the APEX telescope) to perform the observations. Results: We detected 183 GHz H2O maser emission towards NGC 4945 with a peak flux density of ~3 Jy near the galactic systemic velocity. The emission spans a velocity range of several hundred km s-1. We estimate an isotropic luminosity of >1000 L⊙, classifying the emission as a megamaser. A comparison of the 183 GHz spectrum with that observed at 22 GHz suggests that 183 GHz emission also arises from the active galactic nucleus (AGN) central engine. If the 183 GHz emission originates from the circumnuclear disk, then we estimate that a redshifted feature at 1084 km s-1 in the spectrum should arise from a distance of 0.022 pc from the supermassive black hole (1.6 × 105 Schwarzschild radii), I.e. closer than the water maser emission previously detected at 22 GHz. This is only the second time 183 GHz maser emission has been detected towards an AGN central engine (the other galaxy being NGC 3079). It is also the strongest extragalactic millimetre/submillimetre water maser detected to date. Conclusions: Strong millimetre 183 GHz H2O maser emission has now been shown to occur in an external galaxy. For NGC 4945, we believe that the maser emission arises, or is dominated by, emission from the AGN central engine. Emission at higher velocity, I.e. for a Keplerian disk closer to the black hole, has been detected at 183 GHz compared with that for the 22 GHz megamaser. This indicates that millimetre/submillimetre H2O masers can indeed be useful for tracing out more of AGN central engine structures and dynamics than previously probed. Future observations using ALMA Band 5 should unequivocally determine the origin of the emission in this and other galaxies.

  6. Manganese ions enhance mitochondrial H2O2 emission from Krebs cycle oxidoreductases by inducing permeability transition.

    PubMed

    Bonke, Erik; Siebels, Ilka; Zwicker, Klaus; Dröse, Stefan

    2016-10-01

    Manganese-induced toxicity has been linked to mitochondrial dysfunction and an increased generation of reactive oxygen species (ROS). We could recently show in mechanistic studies that Mn 2+ ions induce hydrogen peroxide (H 2 O 2 ) production from the ubiquinone binding site of mitochondrial complex II (II Q ) and generally enhance H 2 O 2 formation by accelerating the rate of superoxide dismutation. The present study with intact mitochondria reveals that manganese additionally enhances H 2 O 2 emission by inducing mitochondrial permeability transition (mPT). In mitochondria fed by NADH-generating substrates, the combination of Mn 2+ and different respiratory chain inhibitors led to a dynamically increasing H 2 O 2 emission which was sensitive to the mPT inhibitor cyclosporine A (CsA) as well as Ru-360, an inhibitor of the mitochondrial calcium uniporter (MCU). Under these conditions, flavin-containing enzymes of the mitochondrial matrix, e.g. the mitochondrial 2-oxoglutaratedehydrogenase (OGDH), were major sources of ROS. With succinate as substrate, Mn 2+ stimulated ROS production mainly at complex II, whereby the applied succinate concentration had a marked effect on the tendency for mPT. Also Ca 2+ increased the rate of H 2 O 2 emission by mPT, while no direct effect on ROS-production of complex II was observed. The present study reveals a complex scenario through which manganese affects mitochondrial H 2 O 2 emission: stimulating its production from distinct sites (e.g. site II Q ), accelerating superoxide dismutation and enhancing the emission via mPT which also leads to the loss of soluble components of the mitochondrial antioxidant systems and favors the ROS production from flavin-containing oxidoreductases of the Krebs cycle. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Phylogenetic and functional potential links pH and N2O emissions in pasture soils.

    PubMed

    Samad, Md Sainur; Biswas, Ambarish; Bakken, Lars R; Clough, Timothy J; de Klein, Cecile A M; Richards, Karl G; Lanigan, Gary J; Morales, Sergio E

    2016-10-26

    Denitrification is mediated by microbial, and physicochemical, processes leading to nitrogen loss via N 2 O and N 2 emissions. Soil pH regulates the reduction of N 2 O to N 2 , however, it can also affect microbial community composition and functional potential. Here we simultaneously test the link between pH, community composition, and the N 2 O emission ratio (N 2 O/(NO + N 2 O + N 2 )) in 13 temperate pasture soils. Physicochemical analysis, gas kinetics, 16S rRNA amplicon sequencing, metagenomic and quantitative PCR (of denitrifier genes: nirS, nirK, nosZI and nosZII) analysis were carried out to characterize each soil. We found strong evidence linking pH to both N 2 O emission ratio and community changes. Soil pH was negatively associated with N 2 O emission ratio, while being positively associated with both community diversity and total denitrification gene (nir &nos) abundance. Abundance of nosZII was positively linked to pH, and negatively linked to N 2 O emissions. Our results confirm that pH imposes a general selective pressure on the entire community and that this results in changes in emission potential. Our data also support the general model that with increased microbial diversity efficiency increases, demonstrated in this study with lowered N 2 O emission ratio through more efficient conversion of N 2 O to N 2 .

  8. Phylogenetic and functional potential links pH and N2O emissions in pasture soils

    NASA Astrophysics Data System (ADS)

    Samad, M. D. Sainur; Biswas, Ambarish; Bakken, Lars R.; Clough, Timothy J.; de Klein, Cecile A. M.; Richards, Karl G.; Lanigan, Gary J.; Morales, Sergio E.

    2016-10-01

    Denitrification is mediated by microbial, and physicochemical, processes leading to nitrogen loss via N2O and N2 emissions. Soil pH regulates the reduction of N2O to N2, however, it can also affect microbial community composition and functional potential. Here we simultaneously test the link between pH, community composition, and the N2O emission ratio (N2O/(NO + N2O + N2)) in 13 temperate pasture soils. Physicochemical analysis, gas kinetics, 16S rRNA amplicon sequencing, metagenomic and quantitative PCR (of denitrifier genes: nirS, nirK, nosZI and nosZII) analysis were carried out to characterize each soil. We found strong evidence linking pH to both N2O emission ratio and community changes. Soil pH was negatively associated with N2O emission ratio, while being positively associated with both community diversity and total denitrification gene (nir & nos) abundance. Abundance of nosZII was positively linked to pH, and negatively linked to N2O emissions. Our results confirm that pH imposes a general selective pressure on the entire community and that this results in changes in emission potential. Our data also support the general model that with increased microbial diversity efficiency increases, demonstrated in this study with lowered N2O emission ratio through more efficient conversion of N2O to N2.

  9. Phylogenetic and functional potential links pH and N2O emissions in pasture soils

    PubMed Central

    Samad, M. d. Sainur; Biswas, Ambarish; Bakken, Lars R.; Clough, Timothy J.; de Klein, Cecile A. M.; Richards, Karl G.; Lanigan, Gary J.; Morales, Sergio E.

    2016-01-01

    Denitrification is mediated by microbial, and physicochemical, processes leading to nitrogen loss via N2O and N2 emissions. Soil pH regulates the reduction of N2O to N2, however, it can also affect microbial community composition and functional potential. Here we simultaneously test the link between pH, community composition, and the N2O emission ratio (N2O/(NO + N2O + N2)) in 13 temperate pasture soils. Physicochemical analysis, gas kinetics, 16S rRNA amplicon sequencing, metagenomic and quantitative PCR (of denitrifier genes: nirS, nirK, nosZI and nosZII) analysis were carried out to characterize each soil. We found strong evidence linking pH to both N2O emission ratio and community changes. Soil pH was negatively associated with N2O emission ratio, while being positively associated with both community diversity and total denitrification gene (nir & nos) abundance. Abundance of nosZII was positively linked to pH, and negatively linked to N2O emissions. Our results confirm that pH imposes a general selective pressure on the entire community and that this results in changes in emission potential. Our data also support the general model that with increased microbial diversity efficiency increases, demonstrated in this study with lowered N2O emission ratio through more efficient conversion of N2O to N2. PMID:27782174

  10. {{\\rm{H}}}_{2}\\,X{}^{1}{{\\rm{\\Sigma }}}_{g}^{+}-c{}^{3}{{\\rm{\\Pi }}}_{u} Excitation by Electron Impact: Energies, Spectra, Emission Yields, Cross-sections, and H(1s) Kinetic Energy Distributions

    NASA Astrophysics Data System (ADS)

    Liu, Xianming; Shemansky, Donald E.; Yoshii, Jean; Liu, Melinda J.; Johnson, Paul V.; Malone, Charles P.; Khakoo, Murtadha A.

    2017-10-01

    The c{}3{{{\\Pi }}}u state of the hydrogen molecule has the second largest triplet-state excitation cross-section, and plays an important role in the heating of the upper thermospheres of outer planets by electron excitation. Precise energies of the H2, D2, and HD c{}3{{{\\Pi }}}u-(v,N) levels are calculated from highly accurate ab initio potential energy curves that include relativistic, radiative, and empirical non-adiabatic corrections. The emission yields are determined from predissociation rates and refined radiative transition probabilities. The excitation function and excitation cross-section of the c{}3{{{\\Pi }}}u state are extracted from previous theoretical calculations and experimental measurements. The emission cross-section is determined from the calculated emission yield and the extracted excitation cross-section. The kinetic energy (E k ) distributions of H atoms produced via the predissociation of the c{}3{{{\\Pi }}}u state, the c{}3{{{\\Pi }}}u- - b{}3{{{Σ }}}u+ dissociative emission by the magnetic dipole and electric quadrupole, and the c{}3{{{\\Pi }}}u - a{}3{{{Σ }}}g+ - b{}3{{{Σ }}}u+ cascade dissociative emission by the electric dipole are obtained. The predissociation of the c{}3{{{\\Pi }}}u+ and c{}3{{{\\Pi }}}u- states both produce H(1s) atoms with an average E k of ˜4.1 eV/atom, while the c{}3{{{\\Pi }}}u- - b{}3{{{Σ }}}u+ dissociative emissions by the magnetic dipole and electric quadrupole give an average E k of ˜1.0 and ˜0.8 eV/atom, respectively. The c{}3{{{\\Pi }}}u - a{}3{{{Σ }}}g+ - b{}3{{{Σ }}}u+ cascade and dissociative emission gives an average E k of ˜1.3 eV/atom. On average, each H2 excited to the c{}3{{{\\Pi }}}u state in an H2-dominated atmosphere deposits ˜7.1 eV into the atmosphere while each H2 directly excited to the a{}3{{{Σ }}}g+ and d{}3{{{\\Pi }}}u states contribute ˜2.3 and ˜3.3 eV, respectively, to the atmosphere. The spectral distribution of the calculated continuum emission arising from the X{}1{{{

  11. DETAILED ANALYSIS OF NEAR-IR WATER (H{sub 2}O) EMISSION IN COMET C/2014 Q2 (LOVEJOY) WITH THE GIANO/TNG SPECTROGRAPH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faggi, S.; Brucato, J. R.; Tozzi, G. P.

    We observed the Oort cloud comet C/2014 Q2 (Lovejoy) on 2015 January 31 and February 1 and 2 at a heliocentric distance of 1.3 au and geocentric distance of 0.8 au during its approach to the Sun. Comet Lovejoy was observed with GIANO, the near-infrared high-resolution spectrograph mounted at the Nasmyth-A focus of the TNG (Telescopio Nazionale Galileo) telescope in La Palma, Canary Islands, Spain. We detected strong emissions of radical CN and water, along with many emission features of unidentified origin, across the 1–2.5 μ m region. Spectral lines from eight ro-vibrational bands of H{sub 2}O were detected, sixmore » of them for the first time. We quantified the water production rate [ Q (H{sub 2}O), (3.11 ± 0.14) × 10{sup 29} s{sup −1}] by comparing the calibrated line fluxes with the Goddard full non-resonance cascade fluorescence model for H{sub 2}O. The production rates of ortho-water [ Q (H{sub 2}O){sup ORTHO}, (2.33 ± 0.11) × 10{sup 29} s{sup −1}] and para-water [ Q (H{sub 2}O){sup PARA}, (0.87 ± 0.21) × 1029 s{sup −1}] provide a measure of the ortho-to-para ratio (2.70 ± 0.76)). The confidence limits are not small enough to provide a critical test of the nuclear spin temperature.« less

  12. Determination of the optimal rate for the microaerobic treatment of several H2S concentrations in biogas from sludge digesters.

    PubMed

    Díaz, I; Lopes, A C; Pérez, S I; Fdz-Polanco, M

    2011-01-01

    The treatment of H2S in the biogas produced during anaerobic digestion has to be carried out to ensure the efficient long-lasting use of its energetic potential. The microaerobic removal of H2S was studied to determine the treatment capacity at low and high H2S concentrations in the biogas (0.33 and 3.38% v/v) and to determine the optimal O2 rate that achieved a concentration of H2S of 150 mg/Nm3 or lower. Research was performed in pilot-plant scale digesters of sewage sludge, with 200 L of working volume, in mesophilic conditions with a hydraulic retention time of 20 d. O2 was supplied at different rates to the headspace of the digester to create the microaerobic conditions. The treatment successfully removed H2S from the biogas with efficacies of 97% for the low concentration and 99% for the highest, in both cases achieving a concentration below 150 mg/Nm3. An optimal O2 rate of 6.4 NLO2/Nm3 of biogas when treating the biogas was found with 0.33% (v/v) of H2S and 118 NLO2/ Nm3 of biogas for the 3.38% (v/v) concentration. This relation may be employed to control the H2S content in the biogas while optimising the O2 supply.

  13. Self-Driven Photoelectrochemical Splitting of H2S for S and H2 Recovery and Simultaneous Electricity Generation.

    PubMed

    Luo, Tao; Bai, Jing; Li, Jinhua; Zeng, Qingyi; Ji, Youzhi; Qiao, Li; Li, Xiaoyan; Zhou, Baoxue

    2017-11-07

    A novel, facile self-driven photoelectrocatalytic (PEC) system was established for highly selective and efficient recovery of H 2 S and simultaneous electricity production. The key ideas were the self-bias function between a WO 3 photoanode and a Si/PVC photocathode due to their mismatched Fermi levels and the special cyclic redox reaction mechanism of I - /I 3 - . Under solar light, the system facilitated the separation of holes in the photoanode and electrons in the photocathode, which then generated electricity. Cyclic redox reactions were produced in the photoanode region as follows: I - was transformed into I 3 - by photoholes or hydroxyl radicals, H 2 S was oxidized to S by I 3 - , and I 3 - was then reduced to I - . Meanwhile, H + was efficiently converted to H 2 in the photocathode region. In the system, H 2 S was uniquely oxidized to sulfur but not to polysulfide (S x n- ) because of the mild oxidation capacity of I 3 - . High recovery rates for S and H 2 were obtained up to ∼1.04 mg h -1 cm -1 and ∼0.75 mL h -1 cm -1 , respectively, suggesting that H 2 S was completely converted into H 2 and S. In addition, the output power density of the system reached ∼0.11 mW cm -2 . The proposed PEC-H 2 S system provides a self-sustaining, energy-saving method for simultaneous H 2 S treatment and energy recovery.

  14. Searching for H2 emission from protoplanetary disks using near- and mid-infrared high-resolution spectroscopy

    NASA Astrophysics Data System (ADS)

    Carmona, A.; van den Ancker, M. E.; Henning, Th.; Pavlyuchenkov, Ya.; Dullemond, C. P.; Goto, M.; Fedele, D.; Stecklum, B.; Thi, W.-F.; Bouwman, J.; Waters, L. B. F. M.

    2008-05-01

    The mass and dynamics of protoplanetary disks are dominated by molecular hydrogen (H2). However, observationally very little is known about the H2. In this paper, we discuss two projects aimed to constrain the properties of H2 in the disk's planet forming region (R<50AU). First, we present a sensitive survey for pure-rotational H2 emission at 12.278 and 17.035 μm in a sample of nearby Herbig Ae/Be and T Tauri stars using VISIR, ESO's VLT high-resolution mid-infrared spectrograph. Second, we report on a search for H2 ro-vibrational emission at 2.1228, 2.2233 and 2.2477 μm in the classical T Tauri star LkHα 264 and the debris disk 49 Cet employing CRIRES, ESO's VLT high-resolution near-infrared spectrograph. VISIR project: none of the sources show H2 mid-IR emission. The observed disks contain less than a few tenths of MJupiter of optically thin H2 at 150 K, and less than a few MEarth at T>300 K. % and higher T. Our non-detections are consistent with the low flux levels expected from the small amount of H2 gas in the surface layer of a Chiang and Goldreich (1997) Herbig Ae two-layer disk model. In our sources the H2 and dust in the surface layer have not significantly departed from thermal coupling (Tgas/Tdust<2) and the gas-to-dust ratio in the surface layer is very likely <1000. CRIRES project: The H2 lines at 2.1218 μm and 2.2233 μm are detected in LkHα 264. An upper limit on the 2.2477 μm H2 line flux in LkHα 264 is derived. 49 Cet does not exhibit H2 emission in any of observed lines. There are a few MMoon of optically thin hot H2 in the inner disk (0.1 AU) of LkHα 264, and less than a tenth of a MMoon of hot H2 in the inner disk of 49 Cet. The shape of the 1 0 S(0) line indicates that LkHα disk is close to face-on (i<35o). The measured 1 0 S(0)/1 0 S(1) and 2 1 S(1)/1 0 S(1) line ratios in LkHα 264 indicate that the H2 is thermally excited at T<1500 K. The lack of H2 emission in the NIR spectra of 49 Cet and the absence of Hα emission suggest that

  15. Transport of H2S and HS− across the human red blood cell membrane: rapid H2S diffusion and AE1-mediated Cl−/HS− exchange

    PubMed Central

    2013-01-01

    The rates of H2S and HS− transport across the human erythrocyte membrane were estimated by measuring rates of dissipation of pH gradients in media containing 250 μM H2S/HS−. Net acid efflux is caused by H2S/HS− acting analogously to CO2/HCO3− in the Jacobs-Stewart cycle. The steps are as follows: 1) H2S efflux through the lipid bilayer and/or a gas channel, 2) extracellular H2S deprotonation, 3) HS− influx in exchange for Cl−, catalyzed by the anion exchange protein AE1, and 4) intracellular HS− protonation. Net acid transport by the Cl−/HS−/H2S cycle is more efficient than by the Cl−/HCO3−/CO2 cycle because of the rapid H2S-HS− interconversion in cells and medium. The rates of acid transport were analyzed by solving the mass flow equations for the cycle to produce estimates of the HS− and H2S transport rates. The data indicate that HS− is a very good substrate for AE1; the Cl−/HS− exchange rate is about one-third as rapid as Cl−/HCO3− exchange. The H2S permeability coefficient must also be high (>10−2 cm/s, half time <0.003 s) to account for the pH equilibration data. The results imply that H2S and HS− enter erythrocytes very rapidly in the microcirculation of H2S-producing tissues, thereby acting as a sink for H2S and lowering the local extracellular concentration, and the fact that HS− is a substrate for a Cl−/HCO3− exchanger indicates that some effects of exogenous H2S/HS− may not result from a regulatory role of H2S but, rather, from net acid flux by H2S and HS− transport in a Jacobs-Stewart cycle. PMID:23864610

  16. Transport of H2S and HS(-) across the human red blood cell membrane: rapid H2S diffusion and AE1-mediated Cl(-)/HS(-) exchange.

    PubMed

    Jennings, Michael L

    2013-11-01

    The rates of H2S and HS(-) transport across the human erythrocyte membrane were estimated by measuring rates of dissipation of pH gradients in media containing 250 μM H2S/HS(-). Net acid efflux is caused by H2S/HS(-) acting analogously to CO2/HCO3(-) in the Jacobs-Stewart cycle. The steps are as follows: 1) H2S efflux through the lipid bilayer and/or a gas channel, 2) extracellular H2S deprotonation, 3) HS(-) influx in exchange for Cl(-), catalyzed by the anion exchange protein AE1, and 4) intracellular HS(-) protonation. Net acid transport by the Cl(-)/HS(-)/H2S cycle is more efficient than by the Cl(-)/HCO3(-)/CO2 cycle because of the rapid H2S-HS(-) interconversion in cells and medium. The rates of acid transport were analyzed by solving the mass flow equations for the cycle to produce estimates of the HS(-) and H2S transport rates. The data indicate that HS(-) is a very good substrate for AE1; the Cl(-)/HS(-) exchange rate is about one-third as rapid as Cl(-)/HCO3(-) exchange. The H2S permeability coefficient must also be high (>10(-2) cm/s, half time <0.003 s) to account for the pH equilibration data. The results imply that H2S and HS(-) enter erythrocytes very rapidly in the microcirculation of H2S-producing tissues, thereby acting as a sink for H2S and lowering the local extracellular concentration, and the fact that HS(-) is a substrate for a Cl(-)/HCO3(-) exchanger indicates that some effects of exogenous H2S/HS(-) may not result from a regulatory role of H2S but, rather, from net acid flux by H2S and HS(-) transport in a Jacobs-Stewart cycle.

  17. AOI [3] High-Temperature Nano-Derived Micro-H 2 and - H 2S Sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabolsky, Edward M.

    2014-08-01

    The emissions from coal-fired power plants remain a significant concern for air quality. This environmental challenge must be overcome by controlling the emission of sulfur dioxide (SO 2) and hydrogen sulfide (H 2S) throughout the entire coal combustion process. One of the processes which could specifically benefit from robust, low cost, and high temperature compatible gas sensors is the coal gasification process which converts coal and/or biomass into syngas. Hydrogen (H 2), carbon monoxide (CO) and sulfur compounds make up 33%, 43% and 2% of syngas, respectively. Therefore, development of a high temperature (>500°C) chemical sensor for in-situ monitoring ofmore » H 2, H 2S and SO2 2 levels during coal gasification is strongly desired. The selective detection of SO 2/H 2S in the presence of H 2, is a formidable task for a sensor designer. In order to ensure effective operation of these chemical sensors, the sensor system must inexpensively function within harsh temperature and chemical environment. Currently available sensing approaches, which are based on gas chromatography, electrochemistry, and IR-spectroscopy, do not satisfy the required cost and performance targets. This work focused on the development microsensors that can be applied to this application. In order to develop the high- temperature compatible microsensor, this work addressed various issues related to sensor stability, selectivity, and miniaturization. In the research project entitled “High-Temperature Nano-Derived Micro-H 2 and -H 2S Sensors”, the team worked to develop micro-scale, chemical sensors and sensor arrays composed of nano-derived, metal-oxide composite materials to detect gases like H 2, SO 2, and H 2S within high-temperature environments (>500°C). The research was completed in collaboration with NexTech Materials, Ltd. (Lewis Center, Ohio). NexTech assisted in the testing of the sensors in syngas with contaminate levels of H 2S. The idea of including nanomaterials as the

  18. The 1600 Å Emission Bump in Protoplanetary Disks: A Spectral Signature of H2O Dissociation

    NASA Astrophysics Data System (ADS)

    France, Kevin; Roueff, Evelyne; Abgrall, Hervé

    2017-08-01

    The FUV continuum spectrum of many accreting pre-main sequence stars, Classical T Tauri Stars (CTTSs), does not continue smoothly from the well-studied Balmer continuum emission in the NUV, suggesting that additional processes contribute to the short-wavelength emission in these objects. The most notable spectral feature in the FUV continuum of some CTTSs is a broad emission approximately centered at 1600 Å, which has been referred to as the “1600 Å Bump.” The origin of this feature remains unclear. In an effort to better understand the molecular properties of planet-forming disks and the UV spectral properties of accreting protostars, we have assembled archival FUV spectra of 37 disk-hosting systems observed by the Hubble Space Telescope-Cosmic Origins Spectrograph. Clear 1600 Å Bump emission is observed above the smooth, underlying 1100-1800 Å continuum spectrum in 19/37 Classical T Tauri disks in the HST-COS sample, with the detection rate in transition disks (8/8) being much higher than that in primordial or non-transition sources (11/29). We describe a spectral deconvolution analysis to separate the Bump (spanning 1490-1690 Å) from the underlying FUV continuum, finding an average Bump luminosity L(Bump) ≈ 7 × 1029 erg s-1. Parameterizing the Bump with a combination of Gaussian and polynomial components, we find that the 1600 Å Bump is characterized by a peak wavelength λ o = 1598.6 ± 3.3 Å, with FWHM = 35.8 ± 19.1 Å. Contrary to previous studies, we find that this feature is inconsistent with models of H2 excited by electron -impact. We show that this Bump makes up between 5%-50% of the total FUV continuum emission in the 1490-1690 Å band and emits roughly 10%-80% of the total fluorescent H2 luminosity for stars with well-defined Bump features. Energetically, this suggests that the carrier of the 1600 Å Bump emission is powered by Lyα photons. We argue that the most likely mechanism is Lyα-driven dissociation of H2O in the inner disk, r

  19. Different evolutionary stages in massive star formation. Centimeter continuum and H2O maser emission with ATCA

    NASA Astrophysics Data System (ADS)

    Sánchez-Monge, Á.; Beltrán, M. T.; Cesaroni, R.; Fontani, F.; Brand, J.; Molinari, S.; Testi, L.; Burton, M.

    2013-02-01

    Aims: We present Australia Telescope Compact Array (ATCA) observations of the H2O maser line and radio continuum at 18.0 GHz and 22.8 GHz toward a sample of 192 massive star-forming regions containing several clumps already imaged at 1.2 mm. The main aim of this study is to investigate the water maser and centimeter continuum emission (that likely traces thermal free-free emission) in sources at different evolutionary stages, using evolutionary classifications previously published. Methods: We used the recently comissioned Compact Array Broadband Backend (CABB) at ATCA that obtains images with ~20'' resolution in the 1.3 cm continuum and H2O maser emission in all targets. For the evolutionary analysis of the sources we used millimeter continuum emission from the literature and the infrared emission from the MSX Point Source Catalog. Results: We detect centimeter continuum emission in 88% of the observed fields with a typical rms noise level of 0.45 mJy beam-1. Most of the fields show a single radio continuum source, while in 20% of them we identify multiple components. A total of 214 cm continuum sources have been identified, that likely trace optically thin H ii regions, with physical parameters typical of both extended and compact H ii regions. Water maser emission was detected in 41% of the regions, resulting in a total of 85 distinct components. The low angular (~20'') and spectral (~14 km s-1) resolutions do not allow a proper analysis of the water maser emission, but suffice to investigate its association with the continuum sources. We have also studied the detection rate of H ii regions in the two types of IRAS sources defined in the literature on the basis of the IRAS colors: High and Low. No significant differences are found, with high detection rates (>90%) for both High and Low sources. Conclusions: We classify the millimeter and infrared sources in our fields in three evolutionary stages following the scheme presented previously: (Type 1) millimeter

  20. Nitric oxide reactivity of [2Fe-2S] clusters leading to H2S generation.

    PubMed

    Tran, Camly T; Williard, Paul G; Kim, Eunsuk

    2014-08-27

    The crosstalk between two biologically important signaling molecules, nitric oxide (NO) and hydrogen sulfide (H2S), proceeds via elusive mechanism(s). Herein we report the formation of H2S by the action of NO on synthetic [2Fe-2S] clusters when the reaction environment is capable of providing a formal H(•) (e(-)/H(+)). Nitrosylation of (NEt4)2[Fe2S2(SPh)4] (1) in the presence of PhSH or (t)Bu3PhOH results in the formation of (NEt4)[Fe(NO)2(SPh)2] (2) and H2S with the concomitant generation of PhSSPh or (t)Bu3PhO(•). The amount of H2S generated is dependent on the electronic environment of the [2Fe-2S] cluster as well as the type of H(•) donor. Employment of clusters with electron-donating groups or H(•) donors from thiols leads to a larger amount of H2S evolution. The 1/NO reaction in the presence of PhSH exhibits biphasic decay kinetics with no deuterium kinetic isotope effect upon PhSD substitution. However, the rates of decay increase significantly with the use of 4-MeO-PhSH or 4-Me-PhSH in place of PhSH. These results provide the first chemical evidence to suggest that [Fe-S] clusters are likely to be a site for the crosstalk between NO and H2S in biology.

  1. 40 CFR 74.22 - Actual SO2 emissions rate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Actual SO2 emissions rate. 74.22... (CONTINUED) SULFUR DIOXIDE OPT-INS Allowance Calculations for Combustion Sources § 74.22 Actual SO2 emissions... actual SO2 emissions rate shall be 1985. (2) For combustion sources that commenced operation after...

  2. Molecular hydrogen (H2) emissions from gasoline and diesel vehicles.

    PubMed

    Bond, S W; Alvarez, R; Vollmer, M K; Steinbacher, M; Weilenmann, M; Reimann, S

    2010-08-01

    This study assesses individual-vehicle molecular hydrogen (H2) emissions in exhaust gas from current gasoline and diesel vehicles measured on a chassis dynamometer. Absolute H2 emissions were found to be highest for motorcycles and scooters (141+/-38.6 mg km(-1)), approximately 5 times higher than for gasoline-powered automobiles (26.5+/-12.1 mg km(-1)). All diesel-powered vehicles emitted marginal amounts of H2 ( approximately 0.1 mg km(-1)). For automobiles, the highest emission factors were observed for sub-cycles subject to a cold-start (mean of 53.1+/-17.0 mg km(-1)). High speeds also caused elevated H2 emission factors for sub-cycles reaching at least 150 km h(-1) (mean of 40.4+/-7.1 mg km(-1)). We show that H2/CO ratios (mol mol(-1)) from gasoline-powered vehicles are variable (sub-cycle means of 0.44-5.69) and are typically higher (mean for automobiles 1.02, for 2-wheelers 0.59) than previous atmospheric ratios characteristic of traffic-influenced measurements. The lowest mean individual sub-cycle ratios, which correspond to high absolute emissions of both H2 and CO, were observed during cold starts (for automobiles 0.48, for 2-wheelers 0.44) and at high vehicle speeds (for automobiles 0.73, for 2-wheelers 0.45). This finding illustrates the importance of these conditions to observed H2/CO ratios in ambient air. Overall, 2-wheelers displayed lower H2/CO ratios (0.48-0.69) than those from gasoline-powered automobiles (0.75-3.18). This observation, along with the lower H2/CO ratios observed through studies without catalytic converters, suggests that less developed (e.g. 2-wheelers) and older vehicle technologies are largely responsible for the atmospheric H2/CO ratios reported in past literature. 2010 Elsevier B.V. All rights reserved.

  3. Endogenous mitigation of H2S inside of the landfills.

    PubMed

    Fang, Yuan; Zhong, Zhong; Shen, Dongsheng; Du, Yao; Xu, Jing; Long, Yuyang

    2016-02-01

    Vast quantities of hydrogen sulfide (H2S) emitted from landfill sites require urgent disposal. The current study focused on source control and examined the migration and conversion behavior of sulfur compounds in two lab-scale simulated landfills with different operation modes. It aimed to explore the possible strategies and mechanisms for H2S endogenous mitigation inside of landfills during decomposition. It was found that the strength of H2S emissions from the landfill sites was dependent on the municipal solid waste (MSW) degradation speed and vertical distribution of sulfide. Leachate recirculation can shorten both the H2S influence period and pollution risk to the surrounding environment. H2S endogenous mitigation may be achieved by chemical oxidation, biological oxidation, adsorption, and/or precipitation in different stages. Migration and conversion mainly affected H2S release behavior during the initial stabilization phase in the landfill. Microbial activities related to sulfur, nitrogen, and iron can further promote H2S endogenous mitigation during the high reducing phase. Thus, H2S endogenous mitigation can be effectively enhanced via control of the aforementioned processes.

  4. Hydrothermal growth of two dimensional hierarchical MoS2 nanospheres on one dimensional CdS nanorods for high performance and stable visible photocatalytic H2 evolution

    NASA Astrophysics Data System (ADS)

    Chava, Rama Krishna; Do, Jeong Yeon; Kang, Misook

    2018-03-01

    The visible photocatalytic H2 production from water splitting considered as a clean and renewable energy source could solve the problem of greenhouse gas emission from fossil fuels. Despite tremendous efforts, the development of cost effective, highly efficient and more stable visible photocatalysts for splitting of water remains a great challenge. Here, we report the heteronanostructures consisting of hierarchical MoS2 nanospheres grown on 1D CdS nanorods referred to as CdS-MoS2 HNSs as a high performance visible photocatalyst for H2 evolution. The as-synthesized CdS-MoS2 HNSs exhibited ∼11 fold increment of H2 evolution rate when compared to pure CdS nanorods. This remarkable enhanced hydrogen evolution performance can be assigned to the positive synergetic effect from heteronanostructures formed between the CdS and MoS2 components which assist as an electron sink and source for abundant active edge sites and in turn increases the charge separation. This study presents a low-cost visible photocatalyst for solar energy conversion to achieve efficient H2.

  5. The 1600 Å Emission Bump in Protoplanetary Disks: A Spectral Signature of H{sub 2}O Dissociation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    France, Kevin; Roueff, Evelyne; Abgrall, Hervé, E-mail: kevin.france@colorado.edu

    The FUV continuum spectrum of many accreting pre-main sequence stars, Classical T Tauri Stars (CTTSs), does not continue smoothly from the well-studied Balmer continuum emission in the NUV, suggesting that additional processes contribute to the short-wavelength emission in these objects. The most notable spectral feature in the FUV continuum of some CTTSs is a broad emission approximately centered at 1600 Å, which has been referred to as the “1600 Å Bump.” The origin of this feature remains unclear. In an effort to better understand the molecular properties of planet-forming disks and the UV spectral properties of accreting protostars, we havemore » assembled archival FUV spectra of 37 disk-hosting systems observed by the Hubble Space Telescope -Cosmic Origins Spectrograph. Clear 1600 Å Bump emission is observed above the smooth, underlying 1100–1800 Å continuum spectrum in 19/37 Classical T Tauri disks in the HST -COS sample, with the detection rate in transition disks (8/8) being much higher than that in primordial or non-transition sources (11/29). We describe a spectral deconvolution analysis to separate the Bump (spanning 1490–1690 Å) from the underlying FUV continuum, finding an average Bump luminosity L (Bump) ≈ 7 × 10{sup 29} erg s{sup −1}. Parameterizing the Bump with a combination of Gaussian and polynomial components, we find that the 1600 Å Bump is characterized by a peak wavelength λ {sub o} = 1598.6 ± 3.3 Å, with FWHM = 35.8 ± 19.1 Å. Contrary to previous studies, we find that this feature is inconsistent with models of H{sub 2} excited by electron -impact. We show that this Bump makes up between 5%–50% of the total FUV continuum emission in the 1490–1690 Å band and emits roughly 10%–80% of the total fluorescent H{sub 2} luminosity for stars with well-defined Bump features. Energetically, this suggests that the carrier of the 1600 Å Bump emission is powered by Ly α photons. We argue that the most likely

  6. A survey of extended H2 emission from massive YSOs

    NASA Astrophysics Data System (ADS)

    Navarete, F.; Damineli, A.; Barbosa, C. L.; Blum, R. D.

    2015-07-01

    We present the results from a survey, designed to investigate the accretion process of massive young stellar objects (MYSOs) through near-infrared narrow-band imaging using the H2 ν=1-0 S(1) transition filter. A sample of 353 MYSO candidates was selected from the Red MSX Source survey using photometric criteria at longer wavelengths (infrared and submillimetre) and chosen with positions throughout the Galactic plane. Our survey was carried out at the Southern Astrophysical Research Telescope Telescope in Chile and Canada-France-Hawaii Telescope in Hawaii covering both hemispheres. The data reveal that extended H2 emission is a good tracer of outflow activity, which is a signpost of accretion process on young massive stars. Almost half of the sample exhibit extended H2 emission and 74 sources (21 per cent) have polar morphology, suggesting collimated outflows. The polar-like structures are more likely to appear on radio-quiet sources, indicating these structures occur during the pre-UCH II phase. We also found an important fraction of sources associated with fluorescent H2 diffuse emission that could be due to a more evolved phase. The images also indicate only ˜23 per cent (80) of the sample is associated with extant (young) stellar clusters. These results support the scenario in which massive stars are formed by accretion discs, since the merging of low-mass stars would not produce outflow structures.

  7. 40 CFR 74.24 - Current allowable SO2 emissions rate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Current allowable SO2 emissions rate... allowable SO2 emissions rate. The designated representative shall submit the following data: (a) Current allowable SO2 emissions rate of the combustion source, expressed in lbs/mmBtu, which shall be the most...

  8. 40 CFR 74.24 - Current allowable SO2 emissions rate.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... allowable SO2 emissions rate of the combustion source, expressed in lbs/mmBtu, which shall be the most... application. If the allowable SO2 emissions rate is not expressed in lbs/mmBtu, the allowable emissions rate shall be converted to lbs/mmBtu by multiplying the allowable rate by the appropriate factor as specified...

  9. Characterising the VHE diffuse emission in the central 200 parsecs of our Galaxy with H.E.S.S.

    NASA Astrophysics Data System (ADS)

    H.E.S.S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Andersson, T.; Angüner, E. O.; Arakawa, M.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bonnefoy, S.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Coffaro, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Cui, Y.; Davids, I. D.; Decock, J.; Degrange, B.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O.'C.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holch, T. L.; Holler, M.; Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Kerszberg, D.; Khangulyan, D.; Khélifi, B.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Rauth, R.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Richter, S.; Rieger, F.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Saito, S.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stycz, K.; Sushch, I.; Takahashi, T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.

    2018-04-01

    The diffuse very high-energy (VHE; >100 GeV) γ-ray emission observed in the central 200 pc of the Milky Way by H.E.S.S. was found to follow dense matter distribution in the central molecular zone (CMZ) up to a longitudinal distance of about 130 pc to the Galactic centre (GC), where the flux rapidly decreases. This was initially interpreted as the result of a burst-like injection of energetic particles 104 yr ago, but a recent more sensitive H.E.S.S. analysis revealed that the cosmic-ray (CR) density profile drops with the distance to the centre, making data compatible with a steady cosmic PeVatron at the GC. In this paper, we extend this analysis to obtain, for the first time, a detailed characterisation of the correlation with matter and to search for additional features and individual γ-ray sources in the inner 200 pc. Taking advantage of 250 h of H.E.S.S. data and improved analysis techniques, we perform a detailed morphology study of the diffuse VHE emission observed from the GC ridge and reconstruct its total spectrum. To test the various contributions to the total γ-ray emission, we used an iterative 2D maximum-likelihood approach that allows us to build a phenomenological model of the emission by summing a number of different spatial components. We show that the emission correlated with dense matter covers the full CMZ and that its flux is about half the total diffuse emission flux. We also detect some emission at higher latitude that is likely produced by hadronic collisions of CRs in less dense regions of the GC interstellar medium. We detect an additional emission component centred on the GC and extending over about 15 pc that is consistent with the existence of a strong CR density gradient and confirms the presence of a CR accelerator at the very centre of our Galaxy. We show that the spectrum of full ridge diffuse emission is compatible with that previously derived from the central regions, suggesting that a single population of particles fills the

  10. Relative Importance of H2 and H2S as Energy Sources for Primary Production in Geothermal Springs▿ †

    PubMed Central

    D'Imperio, Seth; Lehr, Corinne R.; Oduro, Harry; Druschel, Greg; Kühl, Michael; McDermott, Timothy R.

    2008-01-01

    Geothermal waters contain numerous potential electron donors capable of supporting chemolithotrophy-based primary production. Thermodynamic predictions of energy yields for specific electron donor and acceptor pairs in such systems are available, although direct assessments of these predictions are rare. This study assessed the relative importance of dissolved H2 and H2S as energy sources for the support of chemolithotrophic metabolism in an acidic geothermal spring in Yellowstone National Park. H2S and H2 concentration gradients were observed in the outflow channel, and vertical H2S and O2 gradients were evident within the microbial mat. H2S levels and microbial consumption rates were approximately three orders of magnitude greater than those of H2. Hydrogenobaculum-like organisms dominated the bacterial component of the microbial community, and isolates representing three distinct 16S rRNA gene phylotypes (phylotype = 100% identity) were isolated and characterized. Within a phylotype, O2 requirements varied, as did energy source utilization: some isolates could grow only with H2S, some only with H2, while others could utilize either as an energy source. These metabolic phenotypes were consistent with in situ geochemical conditions measured using aqueous chemical analysis and in-field measurements made by using gas chromatography and microelectrodes. Pure-culture experiments with an isolate that could utilize H2S and H2 and that represented the dominant phylotype (70% of the PCR clones) showed that H2S and H2 were used simultaneously, without evidence of induction or catabolite repression, and at relative rate differences comparable to those measured in ex situ field assays. Under in situ-relevant concentrations, growth of this isolate with H2S was better than that with H2. The major conclusions drawn from this study are that phylogeny may not necessarily be reliable for predicting physiology and that H2S can dominate over H2 as an energy source in terms of

  11. H2 Emission Nebulosity Associated with KH 15D

    NASA Astrophysics Data System (ADS)

    Tokunaga, A. T.; Dahm, S.; Gässler, W.; Hayano, Yutaka; Hayashi, Masahiko; Iye, Masanori; Kanzawa, Tomio; Kobayashi, Naoto; Kamata, Yukiko; Minowa, Yosuke; Nedachi, Ko; Oya, Shin; Pyo, Tae-Soo; Saint-Jacques, D.; Terada, Hiroshi; Takami, Hideki; Takato, Naruhisa

    2004-01-01

    An H2 emission filament is found in close proximity to the unique object KH 15D using the adaptive optics system of the Subaru Telescope. The morphology of the filament, the presence of spectroscopic outflow signatures observed by Hamilton et al., and the detection of extended H2 emission from KH 15D by Deming, Charbonneau, & Harrington suggest that this filament arises from shocked H2 in an outflow. The filament extends about 15" to the north of KH 15D. Based on data collected at Subaru Telescope, which is operated by the National AstronomiObservatory of Japan.

  12. H2 emission from non-stationary magnetized bow shocks

    NASA Astrophysics Data System (ADS)

    Tram, L. N.; Lesaffre, P.; Cabrit, S.; Gusdorf, A.; Nhung, P. T.

    2018-01-01

    When a fast moving star or a protostellar jet hits an interstellar cloud, the surrounding gas gets heated and illuminated: a bow shock is born that delineates the wake of the impact. In such a process, the new molecules that are formed and excited in the gas phase become accessible to observations. In this paper, we revisit models of H2 emission in these bow shocks. We approximate the bow shock by a statistical distribution of planar shocks computed with a magnetized shock model. We improve on previous works by considering arbitrary bow shapes, a finite irradiation field and by including the age effect of non-stationary C-type shocks on the excitation diagram and line profiles of H2. We also examine the dependence of the line profiles on the shock velocity and on the viewing angle: we suggest that spectrally resolved observations may greatly help to probe the dynamics inside the bow shock. For reasonable bow shapes, our analysis shows that low-velocity shocks largely contribute to H2 excitation diagram. This can result in an observational bias towards low velocities when planar shocks are used to interpret H2 emission from an unresolved bow. We also report a large magnetization bias when the velocity of the planar model is set independently. Our 3D models reproduce excitation diagrams in BHR 71 and Orion bow shocks better than previous 1D models. Our 3D model is also able to reproduce the shape and width of the broad H2 1-0S(1) line profile in an Orion bow shock (Brand et al. 1989).

  13. CO2, SO2, and H2S Degassing Related to the 2009 Redoubt Eruption, Alaska

    NASA Astrophysics Data System (ADS)

    Werner, C. A.; Kelly, P. J.; Evans, W.; Doukas, M. P.; McGimsey, R. G.; Neal, C. A.

    2012-12-01

    The 2009 eruption of Redoubt Volcano, Alaska was particularly well monitored for volcanic gas emissions with 35 airborne measurements of CO2, SO2, and H2S that span from October 2008 to August 2010. Increases in CO2 degassing were detected up to 5 months prior to the eruption and varied between 3630 and 9020 tonnes per day (t/d) in the 6 weeks prior to the eruption. Increased pre-eruptive CO2 degassing was accompanied by comparatively low S emission, resulting in molar C/S ratios that ranged between 30-60. However, the C/S ratio dropped to 2.4 coincident with the first phreatic explosion on March 15, 2009, and remained steady during the explosive (March 22 - April 4, 2009), effusive dome-building (April 5 - July 1, 2009), and waning phases (August 2009 onward) of the eruption. Observations of ice-melt rates, melt water discharge, and water chemistry in the months leading up to the eruption suggested that surface waters represented drainage from surficial, perched reservoirs of condensed magmatic steam and glacial meltwater. While the surface waters were capable of scrubbing many thousands of t/d of SO2, sampling of these fluids revealed that only a few hundred tonnes of SO2 was reacting to a dissolved component each day. This is also much less than the ~ 2100 t/d SO2 expected from degassing of magma in the upper crust (3-6.5 km), where petrologic analysis shows the final magma equilibration occurred. Thus, the high pre-eruptive C/S ratios observed could reflect bulk degassing of upper-crustal magma followed by nearly complete loss of SO2 in a magmatic-hydrothermal system. Alternatively, high C/S ratios could be attributed to degassing of low silica andesitic magma that intruded into the mid-crust in the 5 months prior to eruption; modeling suggests that mixing of this magma with pre-existing high silica andesite magma or mush would have caused a reduction of the C/S ratio to a value consistent with that measured during the eruption. Monitoring emissions regularly

  14. Validation of a novel Multi-Gas sensor for volcanic HCl alongside H2S and SO2 at Mt. Etna

    NASA Astrophysics Data System (ADS)

    Roberts, T. J.; Lurton, T.; Giudice, G.; Liuzzo, M.; Aiuppa, A.; Coltelli, M.; Vignelles, D.; Salerno, G.; Couté, B.; Chartier, M.; Baron, R.; Saffell, J. R.; Scaillet, B.

    2017-05-01

    Volcanic gas emission measurements inform predictions of hazard and atmospheric impacts. For these measurements, Multi-Gas sensors provide low-cost in situ monitoring of gas composition but to date have lacked the ability to detect halogens. Here, two Multi-Gas instruments characterized passive outgassing emissions from Mt. Etna's (Italy) three summit craters, Voragine (VOR), North-east Crater (NEC) and Bocca Nuova (BN) on 2 October 2013. Signal processing (Sensor Response Model, SRM) approaches are used to analyse H2S/SO2 and HCl/SO2 ratios. A new ability to monitor volcanic HCl using miniature electrochemical sensors is here demonstrated. A "direct-exposure" Multi-Gas instrument contained SO2, H2S and HCl sensors, whose sensitivities, cross-sensitivities and response times were characterized by laboratory calibration. SRM analysis of the field data yields H2S/SO2 and HCl/SO2 molar ratios, finding H2S/SO2 = 0.02 (0.01-0.03), with distinct HCl/SO2 for the VOR, NEC and BN crater emissions of 0.41 (0.38-0.43), 0.58 (0.54-0.60) and 0.20 (0.17-0.33). A second Multi-Gas instrument provided CO2/SO2 and H2O/SO2 and enabled cross-comparison of SO2. The Multi-Gas-measured SO2-HCl-H2S-CO2-H2O compositions provide insights into volcanic outgassing. H2S/SO2 ratios indicate gas equilibration at slightly below magmatic temperatures, assuming that the magmatic redox state is preserved. Low SO2/HCl alongside low CO2/SO2 indicates a partially outgassed magma source. We highlight the potential for low-cost HCl sensing of H2S-poor HCl-rich volcanic emissions elsewhere. Further tests are needed for H2S-rich plumes and for long-term monitoring. Our study brings two new advances to volcano hazard monitoring: real-time in situ measurement of HCl and improved Multi-Gas SRM measurements of gas ratios.

  15. Mineral storage of CO2/H2S gas mixture injection in basaltic rocks

    NASA Astrophysics Data System (ADS)

    Clark, D. E.; Gunnarsson, I.; Aradottir, E. S.; Oelkers, E. H.; Sigfússon, B.; Snæbjörnsdottír, S. Ó.; Matter, J. M.; Stute, M.; Júlíusson, B. M.; Gíslason, S. R.

    2017-12-01

    Carbon capture and storage is one solution to reducing CO2 emissions in the atmosphere. The long-term geological storage of buoyant supercritical CO2 requires high integrity cap rock. Some of the risk associated with CO2 buoyancy can be overcome by dissolving CO2 into water during its injection, thus eliminating its buoyancy. This enables injection into fractured rocks, such as basaltic rocks along oceanic ridges and on continents. Basaltic rocks are rich in divalent cations, Ca2+, Mg2+ and Fe2+, which react with CO2 dissolved in water to form stable carbonate minerals. This possibility has been successfully tested as a part of the CarbFix CO2storage pilot project at the Hellisheiði geothermal power plant in Iceland, where they have shown mineralization occurs in less than two years [1, 2]. Reykjavik Energy and the CarbFix group has been injecting a mixture of CO2 and H2S at 750 m depth and 240-250°C since June 2014; by 1 January 2016, 6290 tons of CO2 and 3530 tons of H2S had been injected. Once in the geothermal reservoir, the heat exchange and sufficient dissolution of the host rock neutralizes the gas-charged water and saturates the formation water respecting carbonate and sulfur minerals. A thermally stable inert tracer was also mixed into the stream to monitor the subsurface transport and to assess the degree of subsurface carbonation and sulfide precipitation [3]. Water and gas samples have been continuously collected from three monitoring wells and geochemically analyzed. Based on the results, mineral saturation stages have been defined. These results and tracer mass balance calculations are used to evaluate the rate and magnitude of CO2 and H2S mineralization in the subsurface, with indications that mineralization of carbon and sulfur occurs within months. [1] Gunnsarsson, I., et al. (2017). Rapid and cost-effective capture and subsurface mineral storage of carbon and sulfur. Manuscript submitted for publication. [2] Matter, J., et al. (2016). Rapid

  16. Extended Structures of Planetary Nebulae Detected in H2 Emission

    NASA Astrophysics Data System (ADS)

    Fang, Xuan; Zhang, Yong; Kwok, Sun; Hsia, Chih-Hao; Chau, Wayne; Ramos-Larios, Gerardo; Guerrero, Martín A.

    2018-06-01

    We present narrowband near-infrared images of a sample of 11 Galactic planetary nebulae (PNe) obtained in the H2 2.122 μm and Brγ 2.166 μm emission lines and the K c 2.218 μm continuum. These images were collected with the Wide-field Infrared Camera on the 3.6 m Canada–France–Hawaii Telescope (CFHT); their unprecedented depth and wide field of view allow us to find extended nebular structures in H2 emission in several PNe, some of these being the first detection. The nebular morphologies in H2 emission are studied in analogy with the optical images, and indication of stellar wind interactions is discussed. In particular, the complete structure of the highly asymmetric halo in NGC 6772 is witnessed in H2, which strongly suggests interaction with the interstellar medium. Our sample confirms the general correlation between H2 emission and the bipolarity of PNe. The knotty or filamentary fine structures of the H2 gas are resolved in the inner regions of several ring-like PNe, also confirming the previous argument that H2 emission mostly comes from knots or clumps embedded within fully ionized material at the equatorial regions. Moreover, the H2 image of the butterfly-shaped Sh 1-89, after removal of field stars, clearly reveals a tilted ring structure at the waist. These high-quality CFHT images justify follow-up detailed morphokinematic studies that are desired in order to deduce the true physical structures of a few PNe in the sample. Based on observations obtained with WIRCam, a joint project of CFHT, Taiwan, Korea, Canada, and France, at the Canada–France–Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l’Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.

  17. Bacterial aerosol emission rates from municipal wastewater aeration tanks.

    PubMed Central

    Sawyer, B; Elenbogen, G; Rao, K C; O'Brien, P; Zenz, D R; Lue-Hing, C

    1993-01-01

    In this report we describe the results of a study conducted to determine the rates of bacterial aerosol emission from the surfaces of the aeration tanks of the Metropolitan Water Reclamation District of Greater Chicago John E. Egan Water Reclamation Plant. This study was accomplished by conducting test runs in which Andersen six-stage viable samplers were used to collect bacterial aerosol samples inside a walled tower positioned above an aeration tank liquid surface at the John E. Egan Water Reclamation Plant. The samples were analyzed for standard plate counts (SPC), total coliforms (TC), fecal coliforms, and fecal streptococci. Two methods of calculation were used to estimate the bacterial emission rate. The first method was a conventional stack emission rate calculation method in which the measured air concentration of bacteria was multiplied by the air flow rate emanating from the aeration tanks. The second method was a more empirical method in which an attempt was made to measure all of the bacteria emanating from an isolated area (0.37 m2) of the aeration tank surface over time. The data from six test runs were used to determine bacterial emission rates by both calculation methods. As determined by the conventional calculation method, the average SPC emission rate was 1.61 SPC/m2/s (range, 0.66 to 2.65 SPC/m2/s). As determined by the empirical calculation method, the average SPC emission rate was 2.18 SPC/m2/s (range, 1.25 to 2.66 SPC/m2/s). For TC, the average emission rate was 0.20 TC/m2/s (range, 0.02 to 0.40 TC/m2/s) when the conventional calculation method was used and 0.27 TC/m2/s (range, 0.04 to 0.53 TC/m2/s) when the empirical calculation method was used.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8250547

  18. Visible light-driven photocatalytic H{sub 2}-generation activity of CuS/ZnS composite particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Liang; Chen, Hua; Huang, Jianhua, E-mail: jhhuang@zstu.edu.cn

    2015-04-15

    Highlights: • Preparation of CuS/ZnS composite photocatalyst by cation-exchange reaction. • Visible light photocatalytic activity for H{sub 2} evolution without cocatalyst. • The H{sub 2}-evolution rate from water splitting depends on the CuS content. • The highest rate of H{sub 2} evolution is obtained with CuS (0.5 mol%)/ZnS composite. - Abstract: CuS/ZnS composite particles with diameter of 200–400 nm were successfully prepared by a simple cation-exchange reaction using ZnS spheres as a precursor. CuS nanoparticles with a few nanometers in diameter were observed on the surface of composite particles. The synthesized CuS/ZnS composite particles showed photocatalytic property effective for H{submore » 2} evolution from an aqueous Na{sub 2}S and Na{sub 2}SO{sub 3} solution under visible light irradiation without any cocatalysts. The rate of H{sub 2} generation was found to be strongly dependent on the CuS content. The highest rate of H{sub 2} evolution reached 695.7 μmol h{sup −1} g{sup −1}, which was almost 7 times as high as that of the mechanical mixture of CuS and ZnS. The enhancement in the photocatalytic activity of CuS/ZnS composite particles is supposed to be due to the direct interfacial charge transfer of the CuS/ZnS heterojunction.« less

  19. Spectro-imaging observations of Jupiter's 2-μm auroral emission. I. H 3+ distribution and temperature

    NASA Astrophysics Data System (ADS)

    Raynaud, E.; Lellouch, E.; Maillard, J.-P.; Gladstone, G. R.; Waite, J. H.; Bézard, B.; Drossart, P.; Fouchet, T.

    2004-09-01

    We report on spectro-imaging infrared observations of Jupiter's auroral zones, acquired in October 1999 and October 2000 with the FTS/BEAR instrument at the Canada-France-Hawaii Telescope. The use of narrow-band filters at 2.09 and 2.12 μm, combined with high spectral resolution (0.2 cm -1), allowed us to map emission from the H 2S1(1) quadrupole line and from several H 3+ lines. The H 2 and H 3+ emission appears to be morphologically different, especially in the north, where the latter notably exhibits a "hot spot" near 150°-170° System III longitude. This hot spot coincides in position with the region of increased and variable hydrocarbon, FUV and X-ray emission, but is not seen in the more uniform H 2S1(1) emission. We also present the first images of the H 2 emission in the southern polar region. The spectra include a total of 14 H 3+ lines, including two hot lines from the 3 ν2- ν2 band, detected on Jupiter for the first time. They can be used to determine H 3+ column densities, rotational ( Trot) and vibrational ( Tvib) temperatures. We find the mean Tvib of the v2=3 state to be lower (960±50 K) than the mean Trot in v2=2 (1170±75 K), indicating an underpopulation of the v2=3 level with respect to local thermodynamical equilibrium. Rotational temperatures and associated column densities are generally higher and lower, respectively, than inferred previously from ν2 observations. This is a likely consequence of a large positive temperature gradient in the sub-microbar auroral atmosphere. While the signal-to-noise is not sufficient to take full advantage of the 2-D capabilities of the observations, the search for correlations between line intensities, Tvib and column densities, indicates that variations in line intensities are mostly due to correlated variations in the H 3+ column densities. The thermostatic role played by H 3+ at ionospheric levels may provide an explanation. The exception is the northern "hot spot," which exhibits a Tvib about 250 K

  20. Discovery of VHE emission towards the Carina arm region with the H.E.S.S. telescope array: HESS J1018-589

    NASA Astrophysics Data System (ADS)

    H. E. S. S. Collaboration; Abramowski, A.; Acero, F.; Aharonian, F.; Akhperjanian, A. G.; Anton, G.; Balzer, A.; Barnacka, A.; Becherini, Y.; Becker, J.; Bernlöh, K.; Birsin, E.; Biteau, J.; Bochow, A.; Boisson, C.; Bolmont, J.; Bordas, P.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Büsching, I.; Carrigan, S.; Casanova, S.; Cerruti, M.; Chadwick, P. M.; Charbonnier, A.; Chaves, R. C. G.; Cheesebrough, A.; Cologna, G.; Conrad, J.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; Drury, L. O'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Egberts, K.; Eger, P.; Espigat, P.; Fallon, L.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gallant, Y. A.; Gast, H.; Gérard, L.; Gerbig, D.; Giebels, B.; Glicenstein, J. F.; Glück, B.; Göring, D.; Häffner, S.; Hague, J. D.; Hahn, J.; Hampf, D.; Harris, J.; Hauser, M.; Heinz, S.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Jacholkowska, A.; de Jager, O. C.; Jahn, C.; Jamrozy, M.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Keogh, D.; Khélifi, B.; Klochkov, D.; Klużniak, D.; Kneiske, T.; Komin, Nu.; Kosack, K.; Kossakowski, R.; Krayzel, F.; Laffon, H.; Lamanna, G.; Lenain, J.-P.; Lennarz, D.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Masbou, J.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Medina, M. C.; Méhault, J.; Moderski, R.; Mohamed, M.; Moulin, E.; Naumann, C. L.; Naumann-Godo, M.; de Naurois, M.; Nedbal, D.; Nekrassov, D.; Nguyen, N.; Nicholas, B.; Niemiec, J.; Nolan, S. J.; Ohm, S.; de Oña Wilhelmi, E.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perez, J.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raue, M.; Rayner, S. M.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Ripken, J.; Rob, L.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sheidaei, F.; Skilton, J. L.; Sol, H.; Spengler, G.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Szostek, A.; Tavernet, J.-P.; Terrier, R.; Tluczykont, M.; Valerius, K.; van Eldik, C.; Vasileiadis, G.; Venter, C.; Viana, A.; Vincent, P.; Völk, H. J.; Volpe, F.; Vorobiov, S.; Vorster, M.; Wagner, S. J.; Ward, M.; White, R.; Wierzcholska, A.; Zacharias, M.; Zajczyk, A.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.

    2012-05-01

    The Carina arm region, containing the supernova remnant SNR G284.3-1.8, the high-energy (HE; E > 100 MeV) binary 1FGL J1018.6-5856 and the energetic pulsar PSR J1016-5857 and its nebula, has been observed with the H.E.S.S. telescope array. The observational coverage of the region in very-high-energy (VHE; E > 0.1 TeV) γ-rays benefits from deep exposure (40 h) of the neighboring open cluster Westerlund 2. The observations have revealed a new extended region of VHE γ-ray emission. The new VHE source HESS J1018-589 shows a bright, point-like emission region positionally coincident with SNR G284.3-1.8 and 1FGL J1018.6-5856 and a diffuse extension towards the direction of PSR J1016-5857. A soft (Γ = 2.7 ± 0.5stat)photon index, with a differential flux at 1 TeV of N0 = (4.2 ± 1.1) × 10-13 TeV-1 cm-2 s-1 is found for the point-like source, whereas the total emission region including the diffuse emission region is well fit by a power-law function with spectral index Γ = 2.9 ± 0.4stat and differential flux at 1 TeV of N0 = (6.8 ± 1.6) × 10-13 TeV-1 cm-2 s-1. This H.E.S.S. detection motivated follow-up X-ray observations with the XMM-Newton satellite to investigate the origin of the VHE emission. The analysis of the XMM-Newton data resulted in the discovery of a bright, non-thermal point-like source (XMMU J101855.4-58564) with a photon index of Γ = 1.65 ± 0.08 in the center of SNR G284.3-1.8, and a thermal, extended emission region coincident with its bright northern filament. The characteristics of this thermal emission are used to estimate the plasma density in the region as n ≈ 0.5 cm-3 (2.9 kpc/d)2. The position of XMMU J101855.4-58564 is compatible with the position reported by the Fermi-LAT collaboration for the binary system 1FGL J1018.6-5856 and the variable Swift XRT source identified with it. The new X-ray data are used alongside archival multi-wavelength data to investigate the relationship between the VHE γ-ray emission from HESS J1018-589 and the

  1. Online analysis of H2S and SO2 via advanced mid-infrared gas sensors.

    PubMed

    Petruci, João Flavio da Silveira; Wilk, Andreas; Cardoso, Arnaldo Alves; Mizaikoff, Boris

    2015-10-06

    Volatile sulfur compounds (VSCs) are among the most prevalent emitted pollutants in urban and rural atmospheres. Mainly because of the versatility of sulfur regarding its oxidation state (2- to 6+), VSCs are present in a wide variety of redox-environments, concentration levels, and molar ratios. Among the VSCs, hydrogen sulfide and sulfur dioxide are considered most relevant and have simultaneously been detected within naturally and anthropogenically caused emission events (e.g., volcano emissions, food production and industries, coal pyrolysis, and various biological activities). Next to their presence as pollutants, changes within their molar ratio may also indicate natural anomalies. Prior to analysis, H2S- and SO2-containing samples are usually preconcentrated via solid sorbents and are then detected by gas chromatographic techniques. However, such analytical strategies may be of limited selectivity, and the dimensions and operation modalities of the involved instruments prevent routine field usage. In this contribution, we therefore describe an innovative portable mid-infrared chemical sensor for simultaneously determining and quantifying gaseous H2S and SO2 via coupling a substrate-integrated hollow waveguides (iHWG) serving as a highly miniaturized mid-infrared photon conduit and gas cell with a custom-made preconcentration tube and an in-line UV-converter device. Both species were collected onto a solid sorbent within the preconcentrator and then released by thermal desorption into the UV-device. Hydrogen sulfide is detected by UV-assisted quantitative conversion of the rather weak IR-absorber H2S into SO2, which provides a significantly more pronounced and distinctively detectable rovibrational signature. Modulation of the UV-device system (i.e., UV-lamp on/off) enables discriminating between SO2 generated from H2S conversion and abundant SO2 signals. After optimization of the operational parameters, calibrations in the range of 0.75-10 ppmv with a limit

  2. ENHANCED WARM H{sub 2} EMISSION IN THE COMPACT GROUP MID-INFRARED ''GREEN VALLEY''

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cluver, M. E.; Ogle, P.; Guillard, P.

    2013-03-10

    We present results from a Spitzer mid-infrared spectroscopy study of a sample of 74 galaxies located in 23 Hickson Compact Groups (HCGs), chosen to be at a dynamically active stage of H I depletion. We find evidence for enhanced warm H{sub 2} emission (i.e., above that associated with UV excitation in star-forming regions) in 14 galaxies ({approx}20%), with 8 galaxies having extreme values of L(H{sub 2} S(0)-S(3))/L(7.7 {mu}m polycyclic aromatic hydrocarbon), in excess of 0.07. Such emission has been seen previously in the compact group HCG 92 (Stephan's Quintet), and was shown to be associated with the dissipation of mechanicalmore » energy associated with a large-scale shock caused when one group member collided, at high velocity, with tidal debris in the intragroup medium. Similarly, shock excitation or turbulent heating is likely responsible for the enhanced H{sub 2} emission in the compact group galaxies, since other sources of heating (UV or X-ray excitation from star formation or active galactic nuclei) are insufficient to account for the observed emission. The group galaxies fall predominantly in a region of mid-infrared color-color space identified by previous studies as being connected to rapid transformations in HCG galaxy evolution. Furthermore, the majority of H{sub 2}-enhanced galaxies lie in the optical ''green valley'' between the blue cloud and red sequence, and are primarily early-type disk systems. We suggest that H{sub 2}-enhanced systems may represent a specific phase in the evolution of galaxies in dense environments and provide new insight into mechanisms which transform galaxies onto the optical red sequence.« less

  3. Experimental investigation on thermochemical sulfate reduction by H2S initiation

    USGS Publications Warehouse

    Zhang, T.; Amrani, A.; Ellis, G.S.; Ma, Q.; Tang, Y.

    2008-01-01

    Hydrogen sulfide (H2S) is known to catalyze thermochemical sulfate reduction (TSR) by hydrocarbons (HC), but the reaction mechanism remains unclear. To understand the mechanism of this catalytic reaction, a series of isothermal gold-tube hydrous pyrolysis experiments were conducted at 330 ??C for 24 h under a constant confining pressure of 24.1 MPa. The reactants used were saturated HC (sulfur-free) and CaSO4 in the presence of variable H2S partial pressures at three different pH conditions. The experimental results showed that the in-situ pH of the aqueous solution (herein, in-situ pH refers to the calculated pH of aqueous solution under the experimental conditions) can significantly affect the rate of the TSR reaction. A substantial increase in the TSR reaction rate was recorded with a decrease in the in-situ pH value of the aqueous solution involved. A positive correlation between the rate of TSR and the initial partial pressure of H2S occurred under acidic conditions (at pH ???3-3.5). However, sulfate reduction at pH ???5.0 was undetectable even at high initial H2S concentrations. To investigate whether the reaction of H2S(aq) and HSO4- occurs at pH ???3, an additional series of isothermal hydrous pyrolysis experiments was conducted with CaSO4 and variable H2S partial pressures in the absence of HC at the same experimental temperature and pressure conditions. CaSO4 reduction was not measurable in the absence of paraffin even with high H2S pressure and acidic conditions. These experimental observations indicate that the formation of organosulfur intermediates from H2S reacting with hydrocarbons may play a significant role in sulfate reduction under our experimental conditions rather than the formation of elemental sulfur from H2S reacting with sulfate as has been suggested previously (Toland W. G. (1960) Oxidation of organic compounds with aqueous sulphate. J. Am. Chem. Soc. 82, 1911-1916). Quantification of labile organosulfur compounds (LSC), such as thiols

  4. Optical spectrophotometry of Comet P/Giacobini-Zinner and emission profiles of H2O+

    NASA Technical Reports Server (NTRS)

    Strauss, M. A.; Mccarthy, P. J.; Spinrad, H.

    1986-01-01

    Two-dimensional CCD spectrograms were obtained of Comet P/Giacobini-Zinner (1984e) on five occasions between July and October 1985. Spatial emission profiles of H2O+ were extracted at 6198 angstroms (the strongest ionic line in the visible spectrum). This emission line traces the extent of the ion, or plasma, tail. The spectrographic slit was placed approximately along the trajectory of the ICE spacecraft on September 11, 1985; the resulting H2O+ profile has a full-width-half-maximum of about 5700 km, about three times that of the plasma density profile measured by ICE, and has a full-width-zero-intensity of about 30,000 km, very similar to the ICE values. H2O production rates for the comet are derived and compared with those of Comet P/Halley (1982i).

  5. H2S Loss through Nalophan™ Bags: Contributions of Adsorption and Diffusion

    PubMed Central

    2017-01-01

    Hydrogen-sulfide (H2S) is a molecule of small dimensions typically present in the odor emissions from different plants. The European Standard EN 13725:2003 set a maximum storage time allowed of 30 hours, during which the sampling bag has to maintain the mixture of odorants with minimal changes. This study investigates the H2S losses through Nalophan bags and it shows that nonnegligible losses of H2S can be observed. The percent H2S loss after 30 hrs with respect to the initial concentration is equal to 33%  ± 3% at a relative humidity of 20% and equal to 22%  ± 1% at a relative humidity of 60%. The average quantity of adsorbed H2S at 30 h is equal to 2.17 105 gH2S/gNalophan at a storage humidity of 20% and equal to 1.79 105 gH2S/gNalophan at a storage humidity of 60%. The diffusion coefficients of H2S through Nalophan, for these two humidity conditions tested, are comparable (i.e., 7.5 10−12 m2/sec at 20% humidity and 6.6 10−12 m2/sec at 60% humidity). PMID:28740857

  6. Modelling the ArH+ emission from the Crab nebula

    NASA Astrophysics Data System (ADS)

    Priestley, F. D.; Barlow, M. J.; Viti, S.

    2017-12-01

    We have performed combined photoionization and photodissociation region (PDR) modelling of a Crab nebula filament subjected to the synchrotron radiation from the central pulsar wind nebula, and to a high flux of charged particles; a greatly enhanced cosmic-ray ionization rate over the standard interstellar value, ζ0, is required to account for the lack of detected [C I] emission in published Herschel SPIRE FTS observations of the Crab nebula. The observed line surface brightness ratios of the OH+ and ArH+ transitions seen in the SPIRE FTS frequency range can only be explained with both a high cosmic-ray ionization rate and a reduced ArH+ dissociative recombination rate compared to that used by previous authors, although consistent with experimental upper limits. We find that the ArH+/OH+ line strengths and the observed H2 vibration-rotation emission can be reproduced by model filaments with nH = 2 × 104 cm-3, ζ = 107ζ0 and visual extinctions within the range found for dusty globules in the Crab nebula, although far-infrared emission from [O I] and [C II] is higher than the observational constraints. Models with nH = 1900 cm-3 underpredict the H2 surface brightness, but agree with the ArH+ and OH+ surface brightnesses and predict [O I] and [C II] line ratios consistent with observations. These models predict HeH+ rotational emission above detection thresholds, but consideration of the formation time-scale suggests that the abundance of this molecule in the Crab nebula should be lower than the equilibrium values obtained in our analysis.

  7. Fabry-Perot Observations of [OI]6300, Hα, H-Beta, and NH2 Emissions from Comet Hyakutake C/1996B2

    NASA Astrophysics Data System (ADS)

    Scherb, F.; Roesler, F. L.; Tufte, S.; Haffner, M.

    1996-05-01

    During the period 16-23 March 1996, observations of Comet Hyakutake were carried out with the new WHAM facility at the University of Wisconsin Pine Bluff Observatory, near Madison. WHAM is a second-generation double-Fabry-Perot/CCD spectrometer that is more than ten times as efficient as our previous large-aperture Fabry-Perot instruments. Specifications of WHAM in the spectral mode are: a 1-degree field of view (FOV) on the sky, 10 km/sec velocity resolution, 200 km/sec range, and 20 sigma detection of a 1-Rayleigh H-alpha emission line in about 30 seconds. WHAM can also operate in a mode in which an image of an emission source over a 1-degree FOV can be obtained at a spectral resolution of about 10 km/sec. Spectra of cometary [OI]6300, H-alpha, H-beta, and NH2 emissions were obtained with the FOV centered on the comet head and also located 3/4 degree sunward of the comet head, repectively. This was the first time that cometary H-beta emission has been detected. Images of cometary [OI]6300 and NH2 emissions were obtained with the FOV centered on the comet head. The interpretation of these observations using coma gas dynamic and photochemical models yields values of the H2O production rate from both the [OI]6300 and H-alpha data. Comparison of the cometary H-alpha and H-beta intensities provides unique ground-based information on the EUV solar Lyman-beta and Lyman-gamma emission lines. These results will be presented.

  8. pH-dependent optical properties of N-acetyl-L-cysteine-capped ZnSe(S) nanocrystals with intense/stable emissions

    NASA Astrophysics Data System (ADS)

    Soheyli, Ehsan; Sahraei, Reza; Nabiyouni, Gholamreza

    2017-03-01

    In the present study, a series of aqueous-based ZnSe(S) nanocrystals (NCs) was prepared at different solution pH ranging from 8 to 11.9, and using N-acetyl-L-cysteine (NAC) as capping agent. In addition to zinc blende structure, the X-ray diffraction studies demonstrated the quantum size regime of the ZnSe(S) NCs. To gain further insight toward the influence of the quantum confinement and pH values on optical properties of the as-prepared NCs, their UV-visible absorption and photoluminescence spectra were systematically analyzed. The absorption spectra experienced a red shift from 340 to 382 nm as the pH increased from 8.0 to 11.9, indicating the growth of the as-prepared ZnSe(S) NCs. The emission spectra also show the obvious red shift and the relative area of excitonic to trap emission, firstly increases from pH = 8.0 to 10.7, and then decreases by further increasing of the solution pH. The initial behavior might be due to the improved surface passivation of the trap dangling states by better deprotonation of thiol groups in NAC, whereas at pH >10.7, the faster growth rate of the ZnSe(s) NCs may lead to the formation of many defect sites. All of these phenomena were combined in the scheme which displays the effect of quantum confinement and solution pH on variation of the excitonic and trap-related emissions.

  9. Detection of H-alpha emission in the hot white dwarf G191-B2B

    NASA Astrophysics Data System (ADS)

    Reid, Neill; Wegner, Gary

    1988-12-01

    High-resolution spectra of G191-B2B, the hottest known DA white dwarf were obtained which reveal emission in the core of the H-alpha line. The observations show little variation in the line profile over a period of four days, ruling out line-doubling in a close binary as an explanation. The observed emission cannot be due to a nearby red dwarf companion, while the absence of any spatially extended emission argues against either a planetary nebula remnant or local ionization of the interstellar medium. The determination of the systemic velocity, using the companion red dwarf G191-B2A, is 5 + or - 2 km/s and shows that both the H-alpha emission and the high-excitation species observed in the ultraviolet are redshifted by 19 + or - 3 km/s, suggesting a photospheric origin. The low redshift implies a mass of 0.45 solar mass for this hot white dwarf, although the uncertainties in the effective temperature and parallax permit masses in the range 0.29 to 0.60 solar mass.

  10. F2 region response to geomagnetic disturbances across Indian latitudes: O(1S) dayglow emission

    NASA Astrophysics Data System (ADS)

    Upadhayaya, A. K.; Gupta, Sumedha; Brahmanandam, P. S.

    2016-03-01

    The morphology of ionospheric storms has been investigated across equatorial and low latitudes of Indian region. The deviation in F2 region characteristic parameters (foF2 and h'F) along with modeled green line dayglow emission intensities is examined at equatorial station Thiruvananthapuram (8.5°N, 76.8°E, 0.63°S geomagnetic latitude) and low-latitude station Delhi (28.6°N, 77.2°E,19.2°N geomagnetic latitude) during five geomagnetic storm events. Both positive and negative phases have been noticed in this study. The positive storm phase over equatorial station is found to be more frequent, while the drop in ionization in most of the cases was observed at low-latitude station. It is concluded that the reaction as seen at different ionospheric stations may be quite different during the same storm depending on both the geographic and geomagnetic coordinates of the station, storm intensity, and the storm onset time. Modulation in the F2 layer critical frequency at low and equatorial stations during geomagnetic disturbance of 20-23 November 2003 was caused by the storm-induced changes in O/N2. It is also found that International Reference Ionosphere 2012 model predicts the F2 layer characteristic (foF2 and h'F) parameters at both the low and equatorial stations during disturbed days quite reasonably. A simulative approach in GLOW model developed by Solomon is further used to estimate the changes in the volume emission rate of green line dayglow emission under quiet and strong geomagnetic conditions. It is found that the O(1S) dayglow thermospheric emission peak responds to varying geomagnetic conditions.

  11. Corrosion of 310 stainless steel in H2-H2O-H2S gas mixtures: Studies at constant temperature and fixed oxygen potential

    NASA Technical Reports Server (NTRS)

    Rao, D. B.; Jacob, K. T.; Nelson, H. G.

    1981-01-01

    Corrosion of SAE 310 stainless steel in H2-H2O-H2S gas mixtures was studied at a constant temperature of 1150 K. Reactive gas mixtures were chosen to yield a constant oxygen potential of approximately 6 x 10 to the minus 13th power/cu Nm and sulfur potentials ranging from 0.19 x 10 to the minus 2nd power/cu Nm to 33 x 10 to the minus 2nd power/cu Nm. The kinetics of corrosion were determined using a thermobalance, and the scales were analyzed using metallography, scanning electron microscopy, and energy dispersive X-ray analysis. Two corrosion regimes, which were dependent on sulfur potential, were identified. At high sulfur potentials (p sub S sub 2 less than or equal to 2.7 x 10 to the minus 2nd power/cu Nm) the corrosion rates were high, the kinetics obeyed a linear rate equation, and the scales consisted mainly of sulfide phases similar to those observed from pure sulfication. At low sulfur potentials (P sub S sub 2 less than or equal to 0.19 x 10 to the minus 2nd power/cu Nm) the corrosion rates were low, the kinetics obeyed a parabolic rate equation, and scales consisted mainly of oxide phases.

  12. Road vehicle emissions of molecular hydrogen (H 2) from a tunnel study

    NASA Astrophysics Data System (ADS)

    Vollmer, Martin K.; Juergens, Niklas; Steinbacher, Martin; Reimann, Stefan; Weilenmann, Martin; Buchmann, Brigitte

    Motor vehicle combustion emissions of molecular hydrogen (H 2), carbon monoxide (CO), and carbon dioxide (CO 2) were measured during a 6-week period from November 2004 to January 2005 in Gubrist Tunnel, Switzerland, to determine vehicle emission factors for these trace gases and the ratios of the concentration growths ΔH2/ΔCO and ΔH2/ΔCO2 in the tunnel under real-world highway driving conditions. For H 2, molar mixing ratios at the tunnel exit were found to be 7-10 ppm (parts-per-million, 10-6) during rush hours. Mean emission factors of E=49.7(±16.5)mgkm-1, ECO=1.46(±0.54)gkm-1, and E=266(±69)gkm-1 were calculated. E was largest during weekday rush-hour traffic, a consequence of the more frequent accelerations in congested traffic when fuel combustion is not optimal. E was smaller for heavy-duty vehicles (HDV) compared to light-duty vehicles (LDV), a finding which was attributed to the diesel vs. gasoline engine technology. The mean ΔH2/ΔCO molecular ratio was 0.48±0.12. This ratio increased to ˜0.6 during rush hours, suggesting that H 2 yield is favored relative to CO under fuel-rich conditions, presumably a consequence of an increasing contribution of the water-gas-shift reaction. The mean ΔH2/ΔCO2 molecular ratio was 4.4×10-3 but reduced to 2.5×10-3 when the relative HDV abundance was at maximum. Using three different approaches, road traffic H 2 emissions were estimated for 2004 for Switzerland at 5.0-6.6 Gg and globally at 4.2-8.1 Tg. Despite projections of increasing traffic, Swiss H 2 emissions are not expected to change significantly in the near future, and global emissions are likely to decrease due to improved exhaust gas clean-up technologies.

  13. 40 CFR 74.23 - 1985 Allowable SO2 emissions rate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false 1985 Allowable SO2 emissions rate. 74... (CONTINUED) SULFUR DIOXIDE OPT-INS Allowance Calculations for Combustion Sources § 74.23 1985 Allowable SO2... data: (i) Allowable SO2 emissions rate of the combustion source expressed in lbs/mmBtu as defined under...

  14. H2S induced hypometabolism in mice is missing in sedated sheep.

    PubMed

    Haouzi, Philippe; Notet, Véronique; Chenuel, Bruno; Chalon, Bernard; Sponne, Isabelle; Ogier, Virginie; Bihain, Bernard

    2008-01-01

    On the basis of studies performed in mice that showed H(2)S inhalation decreasing dramatically the metabolic rate, H(2)S was proposed as a means of protecting vital organs from traumatic or ischemic episodes in humans. Hypoxia has in fact also long been shown to induce hypometabolism. However, this effect is observed solely in small-sized animals with high VO2 kg(-1), and not in large mammals. Thus, extrapolating the hypometabolic effect of H(2)S to large mammals is questionable and could be potentially dangerous. We measured metabolism in conscious mice (24 g) exposed to H(2)S (60 ppm) at an ambient temperature of 23-24 degrees C. H(2)S caused a rapid and large (50%) drop in gas exchange rate, which occurred independently of the change in body temperature. The metabolic response occurred within less than 3 min. In contrast, sheep, sedated with ketamine and weighing 74 kg did not exhibit any decrease in metabolic rate during a similar challenge at an ambient temperature of 22 degrees C. While a part of H(2)S induced hypometabolism in the mice is related to the reduction in activity, we speculate that the difference between sheep and mice may rely on the nature and the characteristics of the relationship between basal metabolic rate and body weight thus on the different mechanisms controlling resting metabolic rate according to body mass. Therefore, the proposed use of H(2)S administration as a way of protecting vital organs should be reconsidered in view of the lack of hypometabolic effect in a large sedated mammal and of H(2)S established toxicity.

  15. Search for TeV Gamma-ray Emission from GRB 100621A, an extremely bright GRB in X-rays, with H.E.S.S.

    NASA Astrophysics Data System (ADS)

    H.E.S.S. Collaboration; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Angüner, E.; Anton, G.; Balenderan, S.; Balzer, A.; Barnacka, A.; Becherini, Y.; Becker Tjus, J.; Bernlöhr, K.; Birsin, E.; Bissaldi, E.; Biteau, J.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Carrigan, S.; Casanova, S.; Cerruti, M.; Chadwick, P. M.; Chalme-Calvet, R.; Chaves, R. C. G.; Cheesebrough, A.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Conrad, J.; Couturier, C.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; deWilt, P.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; O'C. Drury, L.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Espigat, P.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giebels, B.; Glicenstein, J. F.; Grondin, M.-H.; Grudzińska, M.; Häffner, S.; Hahn, J.; Harris, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Jacholkowska, A.; Jahn, C.; Jamrozy, M.; Janiak, M.; Jankowsky, F.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Khélifi, B.; Kieffer, M.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lefaucheur, J.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Lennarz, D.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Méhault, J.; Menzler, U.; Meyer, M.; Moderski, R.; Mohamed, M.; Moulin, E.; Murach, T.; Naumann, C. L.; de Naurois, M.; Niemiec, J.; Nolan, S. J.; Oakes, L.; O'Brien, P. T.; Ohm, S.; de Oña Wilhelmi, E.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perez, J.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Raue, M.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Rob, L.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sol, H.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Szostek, A.; Tam, P. H. T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tluczykont, M.; Trichard, C.; Valerius, K.; van Eldik, C.; Vasileiadis, G.; Venter, C.; Viana, A.; Vincent, P.; Völk, H. J.; Volpe, F.; Vorster, M.; Wagner, S. J.; Wagner, P.; Ward, M.; Weidinger, M.; Weitzel, Q.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Zacharias, M.; Zajczyk, A.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.

    2014-05-01

    The long gamma-ray burst (GRB) 100621A, at the time the brightest X-ray transient ever detected by Swift-XRT in the 0.3-10 keV range, has been observed with the H.E.S.S. imaging air Cherenkov telescope array, sensitive to gamma radiation in the very-high-energy (VHE, >100 GeV) regime. Due to its relatively small redshift of z ~ 0.5, the favourable position in the southern sky and the relatively short follow-up time (<700 s after the satellite trigger) of the H.E.S.S. observations, this GRB could be within the sensitivity reach of the H.E.S.S. instrument. The analysis of the H.E.S.S. data shows no indication of emission and yields an integral flux upper limit above ~380 GeV of 4.2 × 10-12 cm-2 s-1 (95% confidence level), assuming a simple Band function extension model. A comparison to a spectral-temporal model, normalised to the prompt flux at sub-MeV energies, constraints the existence of a temporally extended and strong additional hard power law, as has been observed in the other bright X-ray GRB 130427A. A comparison between the H.E.S.S. upper limit and the contemporaneous energy output in X-rays constrains the ratio between the X-ray and VHE gamma-ray fluxes to be greater than 0.4. This value is an important quantity for modelling the afterglow and can constrain leptonic emission scenarios, where leptons are responsible for the X-ray emission and might produce VHE gamma rays.

  16. The excitation of OH by H2 revisited - I: fine-structure resolved rate coefficients

    NASA Astrophysics Data System (ADS)

    Kłos, J.; Ma, Q.; Dagdigian, P. J.; Alexander, M. H.; Faure, A.; Lique, F.

    2017-11-01

    Observations of OH in molecular clouds provide crucial constraints on both the physical conditions and the oxygen and water chemistry in these clouds. Accurate modelling of the OH emission spectra requires the calculation of rate coefficients for excitation of OH by collisions with the most abundant collisional partner in the molecular clouds, namely the H2 molecule. We report here theoretical calculations for the fine-structure excitation of OH by H2 (both para- and ortho-H2) using a recently developed highly accurate potential energy surface. Full quantum close coupling rate coefficients are provided for temperatures ranging from 10 to 150 K. Propensity rules are discussed and the new OH-H2 rate coefficients are compared to the earlier values that are currently used in astrophysical modelling. Significant differences were found: the new rate coefficients are significantly larger. As a first application, we simulate the excitation of OH in typical cold molecular clouds and star-forming regions. The new rate coefficients predict substantially larger line intensities. As a consequence, OH abundances derived from observations will be reduced from the values predicted by the earlier rate coefficients.

  17. Photoionization Models of the H_2 Emission of the Narrow Line Region of AGNs

    NASA Astrophysics Data System (ADS)

    Aleman, I.; Gruenwald, R.

    2011-05-01

    The excitation mechanism of the narrow line region (NLR) of AGNs is still an open question. Excitation by UV radiation from O and B stars, x-rays from the central black hole, shock from supernovae or jets, or a combination of these mechanisms have been suggested. In the present work, we use photoionization models to study the excitation mechanisms of the H_2 infrared emission lines in the NLR. In the literature, analyzes of the H_2 emission have been done assuming that the molecules is present only in neutral regions (photodissociation regions, x-ray-dominated regions, or shocks; Veilleux et al. 1997, Krabbe et al. 2000, Rigopoulou et al. 2002, Rodriguez-Ardila et al. 2004, 2005, and Davies et al. 2005). However, they are not conclusive. In previous work (Aleman & Gruenwald 2004, 2011), we show that the H_2 emission from the ionized region of PNe can be significant for planetary nebulae (PNe) with hot central stars (T⋆ > 150000 K). Such stars produce copious amounts of high energy photons, which create an extended partially ionized region that favors the H_2 survival. The conditions in the NLR are similar to those in PNe with hot central stars, so we can expect that the H_2 emission might also be important. We obtain and analyze a grid of photoionization models for different NRL parameters. We study the resulting H_2 density and emission, as well as, the formation, destruction, excitation, and de-excitation mechanisms. The higher values observed for the H_2 1-0 S(1)/Brγ ratio cannot be reproduced by our models. The calculated ratios are between 10^-8 and 10^-1, while the observational ration can be as high as 10. The calculated ratio is strongly anti-correlated with the ionization parameter (U) and only models with U<10-3 result in ratios inside the observational range. We show that the NLR is an environment more hostile to the H_2 molecule than the ionized region of PNe. Another interesting result of our calculations is that the H_2 formation on grain surfaces

  18. Fluorescent H2 Emission Lines from the Reflection Nebula NGC 7023 Observed with IGRINS

    NASA Astrophysics Data System (ADS)

    Le, Huynh Anh N.; Pak, Soojong; Kaplan, Kyle; Mace, Gregory; Lee, Sungho; Pavel, Michael; Jeong, Ueejeong; Oh, Heeyoung; Lee, Hye-In; Chun, Moo-Young; Yuk, In-Soo; Pyo, Tae-Soo; Hwang, Narae; Kim, Kang-Min; Park, Chan; Sok Oh, Jae; Yu, Young Sam; Park, Byeong-Gon; Minh, Young Chol; Jaffe, Daniel T.

    2017-05-01

    We have analyzed the temperature, velocity, and density of H2 gas in NGC 7023 with a high-resolution near-infrared spectrum of the northwestern filament of the reflection nebula. By observing NGC 7023 in the H and K bands at R ≃ 45,000 with the Immersion GRating INfrared Spectrograph, we detected 68 H2 emission lines within the 1″ × 15″ slit. The diagnostic ratio of 2-1 S(1)/1-0 S(1) is 0.41-0.56. In addition, the estimated ortho-to-para ratio (OPR) is 1.63-1.82, indicating that the H2 emission transitions in the observed region arise mostly from gas excited by UV fluorescence. Gradients in the temperature, velocity, and OPR within the observed area imply motion of the photodissociation region (PDR) relative to the molecular cloud. In addition, we derive the column density of H2 from the observed emission lines and compare these results with PDR models in the literature covering a range of densities and incident UV field intensities. The notable difference between PDR model predictions and the observed data, in high rotational J levels of ν = 1, is that the predicted formation temperature for newly formed H2 should be lower than that of the model predictions. To investigate the density distribution, we combine pixels in 1″ × 1″ areas and derive the density distribution at the 0.002 pc scale. The derived gradient of density suggests that NGC 7023 has a clumpy structure, including a high clump density of ˜105 cm-3 with a size smaller than ˜5 × 10-3 pc embedded in lower-density regions of 103-104 cm-3.

  19. Near-Infrared [Fe II] and H2 Study of the Galactic Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Lee, Yong-Hyun; Koo, Bon-Chul; Lee, Jae-Joon; Jaffe, Daniel T.; Burton, Michael G.; Ryder, Stuart D.

    2018-01-01

    We have searched for near-infrared (NIR) [Fe II] (1.644 μm) and H2 1-0 S(1) (2.122 μm) emission features associated with Galactic supernova remnants (SNRs) using the narrow-band imaging surveys UWIFE / UWISH2 (UKIRT Widefield Infrared Survey for [Fe II] / H2). Both surveys cover about 180 square degrees of the first Galactic quadrant (7° < l < 65° -1.3° < b < +1.3°), and a total of 79 SNRs are falling in the survey area. We have found 19 [Fe II]- and 19 H2-emitting SNRs, giving a detection rate of 24%. Eleven SNRs show both emission features. Some of the SNRs show bright, complex, and interesting structures that have never been reported in previous studies. The brightest SNR in the both emission is W49B, contributing ~70% of the total [Fe II] luminosity of the detected SNRs. The total [Fe II] luminosity, however, is considerably less than what we would expect from the SN rate of our Galaxy.Among the SNRs showing both [Fe II] and H2 emission lines, some SNRs show the “[Fe II]-H2 reversal” phenomenon, i.e., the H2 emission features are detected outside the [Fe II] emission boundary. We carried out high resolution (R~40,000) NIR H- and K-band spectroscopy of the five SNRs showing the [Fe II]-H2 reversal (G11.2-0.3, KES 73, W44, 3C 396, W49B) using IGRINS (Immersion GRating INfrared Spectrograph). Various ro-vibrational H2 lines have been detected, which are used to derive the kinematic distances to the SNRs and to investigate the origin of the H2 emission. The detected H2 lines show broad line width (> 10 km s-1) and line flux ratios of thermal excitation. We discuss the origin of the extended H2 emission features beyond the the [Fe II] emission boundary.

  20. Probing the extent of the non-thermal emission from the Vela X region at TeV energies with H.E.S.S.

    NASA Astrophysics Data System (ADS)

    Abramowski, A.; Acero, F.; Aharonian, F.; Akhperjanian, A. G.; Anton, G.; Balenderan, S.; Balzer, A.; Barnacka, A.; Becherini, Y.; Becker Tjus, J.; Bernlöhr, K.; Birsin, E.; Biteau, J.; Bochow, A.; Boisson, C.; Bolmont, J.; Bordas, P.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Carrigan, S.; Casanova, S.; Cerruti, M.; Chadwick, P. M.; Charbonnier, A.; Chaves, R. C. G.; Cheesebrough, A.; Cologna, G.; Conrad, J.; Couturier, C.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; deWilt, P.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; Drury, L. O.' C.; Dubois, F.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Egberts, K.; Eger, P.; Espigat, P.; Fallon, L.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Gast, H.; Giebels, B.; Glicenstein, J. F.; Glück, B.; Göring, D.; Grondin, M.-H.; Häffner, S.; Hague, J. D.; Hahn, J.; Hampf, D.; Harris, J.; Heinz, S.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Jacholkowska, A.; Jahn, C.; Jamrozy, M.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Khélifi, B.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Komin, Nu.; Kosack, K.; Kossakowski, R.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lenain, J.-P.; Lennarz, D.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Masbou, J.; Maurin, G.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Medina, M. C.; Méhault, J.; Menzler, U.; Moderski, R.; Mohamed, M.; Moulin, E.; Naumann, C. L.; Naumann-Godo, M.; de Naurois, M.; Nedbal, D.; Nguyen, N.; Niemiec, J.; Nolan, S. J.; Ohm, S.; de Oña Wilhelmi, E.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perez, J.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raue, M.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Ripken, J.; Rob, L.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sheidaei, F.; Skilton, J. L.; Sol, H.; Spengler, G.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Szostek, A.; Tavernet, J.-P.; Terrier, R.; Tluczykont, M.; Trichard, C.; Valerius, K.; van Eldik, C.; Vasileiadis, G.; Venter, C.; Viana, A.; Vincent, P.; Völk, H. J.; Volpe, F.; Vorobiov, S.; Vorster, M.; Wagner, S. J.; Ward, M.; White, R.; Wierzcholska, A.; Wouters, D.; Zacharias, M.; Zajczyk, A.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.

    2012-12-01

    Context. Vela X is a region of extended radio emission in the western part of the Vela constellation: one of the nearest pulsar wind nebulae, and associated with the energetic Vela pulsar (PSR B0833-45). Extended very-high-energy (VHE) γ-ray emission (HESS J0835-455) was discovered using the H.E.S.S. experiment in 2004. The VHE γ-ray emission was found to be coincident with a region of X-ray emission discovered with ROSAT above 1.5 keV (the so-called Vela X cocoon): a filamentary structure extending southwest from the pulsar to the centre of Vela X. Aims: A deeper observation of the entire Vela X nebula region, also including larger offsets from the cocoon, has been performed with H.E.S.S. This re-observation was carried out in order to probe the extent of the non-thermal emission from the Vela X region at TeV energies and to investigate its spectral properties. Methods: To increase the sensitivity to the faint γ-ray emission from the very extended Vela X region, a multivariate analysis method combining three complementary reconstruction techniques of Cherenkov-shower images is applied for the selection of γ-ray events. The analysis is performed with the On/Off background method, which estimates the background from separate observations pointing away from Vela X; towards regions free of γ-ray sources but with comparable observation conditions. Results: The γ-ray surface brightness over the large Vela X region reveals that the detection of non-thermal VHE γ-ray emission from the PWN HESS J0835-455 is statistically significant over a region of radius 1.2° around the position α = 08h35m00s, δ = -45°36'00'' (J2000). The Vela X region exhibits almost uniform γ-ray spectra over its full extent: the differential energy spectrum can be described by a power-law function with a hard spectral index Γ = 1.32 ± 0.06stat ± 0.12sys and an exponential cutoff at an energy of (14.0 ± 1.6stat ± 2.6sys) TeV. Compared to the previous H.E.S.S. observations of Vela X the

  1. High light harvesting efficiency CuInS2 quantum dots/TiO2/MoS2 photocatalysts for enhanced visible light photocatalytic H2 production.

    PubMed

    Yuan, Yong-Jun; Fang, Gaoliang; Chen, Daqin; Huang, Yanwei; Yang, Ling-Xia; Cao, Da-Peng; Wang, Jingjing; Yu, Zhen-Tao; Zou, Zhi-Gang

    2018-04-24

    Expanding the photoresponse range of TiO2-based photocatalysts is of great interest for photocatalytic H2 production. Herein, noble-metal-free CuInS2 quantum dots were employed as a novel inorganic dye to expand the visible light absorption of TiO2/MoS2 for solar H2 generation. The as-prepared CuInS2/TiO2/MoS2 photocatalysts exhibit broad absorption from the ultraviolet to near-infrared region. Under visible light irradiation (λ > 420 nm), the CuInS2/TiO2/MoS2 photocatalyst with 0.6 mmol g-1 CuInS2 and 0.5 wt% MoS2 showed the highest H2 evolution rate with a value of 1034 μmol h-1 g-1. Moreover, a considerable H2 evolution rate of 141 μmol h-1 g-1 was obtained under the irradiation of the optimized CuInS2/TiO2/MoS2 photocatalyst with >500 nm light. The reaction mechanism of the CuInS2/TiO2/MoS2 photocatalyst for photocatalytic H2 evolution was investigated in detail by photoluminescence decay study, and the results showed that the photoexcited electrons of CuInS2 can be transferred efficiently through TiO2 to MoS2 and then react with the absorbed protons to generate H2. The reported sensitization strategy tremendously improves the visible light absorption capacity and the photocatalytic performance of TiO2-based photocatalysts.

  2. Sulfur fertilization and fungal infections affect the exchange of H(2)S and COS from agricultural crops.

    PubMed

    Bloem, Elke; Haneklaus, Silvia; Kesselmeier, Jürgen; Schnug, Ewald

    2012-08-08

    The emission of gaseous sulfur (S) compounds by plants is related to several factors, such as the plant S status or fungal infection. Hydrogen sulfide (H(2)S) is either released or taken up by the plant depending on the ambient air concentration and the plant demand for S. On the contrary, carbonyl sulfide (COS) is normally taken up by plants. In a greenhouse experiment, the dependence of H(2)S and COS exchange with ambient air on the S status of oilseed rape (Brassica napus L.) and on fungal infection with Sclerotinia sclerotiorum was investigated. Thiol contents were determined to understand their influence on the exchange of gaseous S compounds. The experiment revealed that H(2)S emissions were closely related to pathogen infections as well as to S nutrition. S fertilization caused a change from H(2)S consumption by S-deficient oilseed rape plants to a H(2)S release of 41 pg g(-1) (dw) min(-1) after the addition of 250 mg of S per pot. Fungal infection caused an even stronger increase of H(2)S emissions with a maximum of 1842 pg g(-1) (dw) min(-1) 2 days after infection. Healthy oilseed rape plants acted as a sink for COS. Fungal infection caused a shift from COS uptake to COS releases. The release of S-containing gases thus seems to be part of the response to fungal infection. The roles the S-containing gases may play in this response are discussed.

  3. Effects of soil water content and elevated CO2 concentration on the monoterpene emission rate of Cryptomeria japonica.

    PubMed

    Mochizuki, Tomoki; Amagai, Takashi; Tani, Akira

    2018-09-01

    Monoterpenes emitted from plants contribute to the formation of secondary pollution and affect the climate system. Monoterpene emission rates may be affected by environmental changes such as increasing CO 2 concentration caused by fossil fuel burning and drought stress induced by climate change. We measured monoterpene emissions from Cryptomeria japonica clone saplings grown under different CO 2 concentrations (control: ambient CO 2 level, elevated CO 2 : 1000μmolmol -1 ). The saplings were planted in the ground and we did not artificially control the SWC. The relationship between the monoterpene emissions and naturally varying SWC was investigated. The dominant monoterpene was α-pinene, followed by sabinene. The monoterpene emission rates were exponentially correlated with temperature for all measurements and normalized (35°C) for each measurement day. The daily normalized monoterpene emission rates (E s0.10 ) were positively and linearly correlated with SWC under both control and elevated CO 2 conditions (control: r 2 =0.55, elevated CO 2 : r 2 =0.89). The slope of the regression line of E s0.10 against SWC was significantly higher under elevated CO 2 than under control conditions (ANCOVA: P<0.01), indicating that the effect of CO 2 concentration on monoterpene emission rates differed by soil water status. The monoterpene emission rates estimated by considering temperature and SWC (Improved G93 algorithm) better agreed with the measured monoterpene emission rates, when compared with the emission rates estimated by considering temperature alone (G93 algorithm). Our results demonstrated that the combined effects of SWC and CO 2 concentration are important for controlling the monoterpene emissions from C. japonica clone saplings. If these relationships can be applied to the other coniferous tree species, our results may be useful to improve accuracy of monoterpene emission estimates from the coniferous forests as affected by climate change in the present and

  4. Advanced oxidation technology for H2S odor gas using non-thermal plasma

    NASA Astrophysics Data System (ADS)

    Tao, ZHU; Ruonan, WANG; Wenjing, BIAN; Yang, CHEN; Weidong, JING

    2018-05-01

    Non-thermal plasma technology is a new type of odor treatment processing. We deal with H2S from waste gas emission using non-thermal plasma generated by dielectric barrier discharge. On the basis of two criteria, removal efficiency and absolute removal amount, we deeply investigate the changes in electrical parameters and process parameters, and the reaction process of the influence of ozone on H2S gas removal. The experimental results show that H2S removal efficiency is proportional to the voltage, frequency, power, residence time and energy efficiency, while it is inversely proportional to the initial concentration of H2S gas, and ozone concentration. This study lays the foundations of non-thermal plasma technology for further commercial application.

  5. The Rate Constant for the Reaction H + C2H5 at T = 295 - 150K

    NASA Technical Reports Server (NTRS)

    Pimentel, Andre S.; Payne, Walter A.; Nesbitt, Fred L.; Cody, Regina J.; Stief, Louis J.

    2004-01-01

    The reaction between the hydrogen atom and the ethyl (C2H3) radical is predicted by photochemical modeling to be the most important loss process for C2H5 radicals in the atmospheres of Jupiter and Saturn. This reaction is also one of the major sources for the methyl radicals in these atmospheres. These two simplest hydrocarbon radicals are the initial species for the synthesis of larger hydrocarbons. Previous measurements of the rate constant for the H + C2H5 reaction varied by a factor of five at room temperature, and some studies showed a dependence upon temperature while others showed no such dependence. In addition, the previous studies were at higher temperatures and generally higher pressures than that needed for use in planetary atmospheric models. The rate constant for the reaction H + C2H5 has been measured directly at T = 150, 202 and 295 K and at P = 1.0 Torr He for all temperatures and additionally at P = 0.5 and 2.0 Torr He at T = 202 K. The measurements were performed in a discharge - fast flow system. The decay of the C2H5 radical in the presence of excess hydrogen was monitored by low-energy electron impact mass spectrometry under pseudo-first order conditions. H atoms and C2H5 radicals were generated rapidly and simultaneously by the reaction of fluorine atoms with H2 and C2H6, respectively. The total rate constant was found to be temperature and pressure independent. The measured total rate constant at each temperature are: k(sub 1)(295K) = (1.02+/-0.24)x10(exp -10), k(sub 1)(202K) = (1.02+/-0.22)x10(exp -10) and k(sub 1)(150K) = (0.93+/-0.21)x10(exp -10), all in units of cu cm/molecule/s. The total rate constant derived from all the combined measurements is k(sub 1) = (l.03+/-0.17)x10(exp -10) cu cm/molecule/s. At room temperature our results are about a factor of two higher than the recommended rate constant and a factor of three lower than the most recently published study.

  6. Observed Barium Emission Rates

    NASA Technical Reports Server (NTRS)

    Stenbaek-Nielsen, H. C.; Wescott, E. M.; Hallinan, T. J.

    1993-01-01

    The barium releases from the CRRES satellite have provided an opportunity for verifying theoretically calculated barium ion and neutral emission rates. Spectra of the five Caribbean releases in the summer of 1991 were taken with a spectrograph on board a U.S. Air Force jet aircraft. Because the line of sight release densities are not known, only relative rates could be obtained. The observed relative rates agree well with the theoretically calculated rates and, together with other observations, confirm the earlier detailed theoretical emission rates. The calculated emission rates can thus with good accuracy be used with photometric observations. It has been postulated that charge exchange between neutral barium and oxygen ions represents a significant source for ionization. If so. it should be associated with emissions at 4957.15 A and 5013.00 A, but these emissions were not detected.

  7. Fumarole/plume and diffuse CO2 emission from Sierra Negra caldera, Galapagos archipelago

    NASA Astrophysics Data System (ADS)

    Padrón, Eleazar; Hernández, Pedro A.; Pérez, Nemesio M.; Toulkeridis, Theofilos; Melián, Gladys; Barrancos, José; Virgili, Giorgio; Sumino, Hirochika; Notsu, Kenji

    2012-08-01

    Measurements of visible and diffuse gas emission were conducted in 2006 at the summit of Sierra Negra volcano, Galapagos, with the aim to better characterize degassing after the 2005 eruption. A total SO2 emission of 11 ± 2 t day-1 was derived from miniature differential optical absorption spectrometer (mini-DOAS) ground-based measurements of the plume emanating from the Mini Azufral fumarolic area, the most important site of visible degassing at Sierra Negra volcano. Using a portable multigas system, the H2S/SO2, CO2/SO2, and H2O/SO2 molar ratios in the Mina Azufral plume emissions were found to be 0.41, 52.2, and 867.9, respectively. The corresponding H2O, CO2, and H2S emission rates were 562, 394, and 3 t day-1, respectively. The total output of diffuse CO2 emissions from the summit of Sierra Negra volcano was 990 ± 85 t day-1, with 605 t day-1 being released by a deep source. The diffuse-to-plume CO2 emission ratio was about 1.5. Mina Azufral fumaroles released gasses containing 73.6 mol% of H2O; the main noncondensable components amounted to 97.4 mol% CO2, 1.5 mol% SO2, 0.6 mol% H2S, and 0.35 mol% N2. The higher H2S/SO2 ratio values found in 2006 as compared to those reported before the 2005 eruption reveal a significant hydrothermal contribution to the fumarolic emissions. 3He/4He ratios measured at Mina Azufral fumarolic discharges showed values of 17.88 ± 0.25 R A , indicating a mid-ocean ridge basalts (MORB) and a Galapagos plume contribution of 53 and 47 %, respectively.

  8. Thermal Pressure in Diffuse H2 Gas Measured by Herschel [C II] Emission and FUSE UV H2 Absorption

    NASA Astrophysics Data System (ADS)

    Velusamy, T.; Langer, W. D.; Goldsmith, P. F.; Pineda, J. L.

    2017-04-01

    UV absorption studies with the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite have made important observations of H2 molecular gas in Galactic interstellar translucent and diffuse clouds. Observations of the 158 μm [C II] fine-structure line with Herschel trace the same H2 molecular gas in emission. We present [C II] observations along 27 lines of sight (LOSs) toward target stars of which 25 have FUSE H2 UV absorption. Two stars have only HST STIS C II λ2325 absorption data. We detect [C II] 158 μm emission features in all but one target LOS. For three target LOSs that are close to the Galactic plane, | {\\text{}}b| < 1°, we also present position-velocity maps of [C II] emission observed by Herschel Heterodyne Instrument in the Far Infrared (HIFI) in on-the-fly spectral-line mapping. We use the velocity-resolved [C II] spectra observed by the HIFI instrument toward the target LOSs observed by FUSE to identify [C II] velocity components associated with the H2 clouds. We analyze the observed velocity integrated [C II] spectral-line intensities in terms of the densities and thermal pressures in the H2 gas using the H2 column densities and temperatures measured by the UV absorption data. We present the H2 gas densities and thermal pressures for 26 target LOSs and from the [C II] intensities derive a mean thermal pressure in the range of ˜6100-7700 K cm-3 in diffuse H2 clouds. We discuss the thermal pressures and densities toward 14 targets, comparing them to results obtained using the UV absorption data for two other tracers C I and CO. Our results demonstrate the richness of the far-IR [C II] spectral data which is a valuable complement to the UV H2 absorption data for studying diffuse H2 molecular clouds. While the UV absorption is restricted to the directions of the target star, far-IR [C II] line emission offers an opportunity to employ velocity-resolved spectral-line mapping capability to study in detail the clouds’ spatial and velocity structures.

  9. JET-SHOCKED H{sub 2} AND CO IN THE ANOMALOUS ARMS OF MOLECULAR HYDROGEN EMISSION GALAXY NGC 4258

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogle, P. M.; Lanz, L.; Appleton, P. N., E-mail: ogle@ipac.caltech.edu

    2014-06-20

    We present a Spitzer Infrared Spectrograph map of H{sub 2} emission from the nearby galaxy NGC 4258 (Messier 106). The H{sub 2} emission comes from 9.4 ± 0.4 × 10{sup 6} M {sub ☉} of warm molecular hydrogen heated to 240-1040 K in the inner anomalous arms, a signature of jet interaction with the galaxy disk. The spectrum is that of a molecular hydrogen emission galaxy (MOHEG), with a large ratio of H{sub 2} over 7.7 μm polycyclic aromatic hydrocarbon emission (0.37), characteristic of shocked molecular gas. We find close spatial correspondence between the H{sub 2} and CO emission from the anomalousmore » arms. Our estimate of cold molecular gas mass based on CO emission is 10 times greater than our estimate of 1.0 × 10{sup 8} M {sub ☉} based on dust emission. We suggest that the X {sub CO} value is 10 times lower than the Milky Way value because of high kinetic temperature and enhanced turbulence. The H{sub 2} disk has been overrun and is being shocked by the jet cocoon, and much of the gas originally in the disk has been ejected into the galaxy halo in an X-ray hot outflow. We measure a modest star formation rate of 0.08 M {sub ☉} yr{sup –1} in the central 3.4 kpc{sup 2} that is consistent with the remaining gas surface density.« less

  10. Dual Functional Core-Shell Fluorescent Ag2S@Carbon Nanostructure for Selective Assay of E. coli O157:H7 and Bactericidal Treatment.

    PubMed

    Wang, Ning; Wei, Xing; Zheng, An-Qi; Yang, Ting; Chen, Ming-Li; Wang, Jian-Hua

    2017-03-24

    A dual functional fluorescent core-shell Ag 2 S@Carbon nanostructure is prepared by a hydrothermally assisted multi-amino synthesis approach with folic acid (FA), polyethylenimine (PEI), and mannoses (Mans) as carbon and nitrogen sources (FA-PEI-Mans-Ag 2 S nanocomposite shortly as Ag 2 S@C). The nanostructure exhibits strong fluorescent emission at λ ex /λ em = 340/450 nm with a quantum yield of 12.57 ± 0.52%. Ag 2 S@C is bound to E. coli O157:H7 via strong interaction with the Mans moiety in Ag 2 S@C with FimH proteins on the fimbriae tip in E. coli O157:H7. Fluorescence emission from Ag 2 S@C/E. coli conjugate is closely related to the content of E. coli O157:H7. Thus, a novel procedure for fluorescence assay of E. coli O157:H7 is developed, offering a detection limit of 330 cfu mL -1 . Meanwhile, the Ag 2 S@C nanostructure exhibits excellent antibacterial performance against E. coli O157:H7. A 99.9% sterilization rate can be readily achieved for E. coli O157:H7 at a concentration of 10 6 -10 7 cfu mL -1 with 3.3 or 10 μg mL -1 of Ag 2 S@C with an interaction time of 5 or 0.5 min, respectively.

  11. Fugitive emission rates assessment of PM2.5 and PM10 from open storage piles in China

    NASA Astrophysics Data System (ADS)

    Cao, Yiqi; Liu, Tao; He, Jiao

    2018-03-01

    An assessment of the fugitive emission rates of PM2.5 and PM10 from an open static coal and mine storage piles. The experiment was conducted at a large union steel enterprises in the East China region to effectively control the fugitive particulate emissions pollution on daily work and extreme weather conditions. Wind tunnel experiments conducted on the surface of static storage piles, and it generated specific fugitive emission rates (SERs) at ground level of between ca.10-1 and ca.102 (mg/m2·s) for PM2.5 and between ca.101 and ca.103 (mg/m2·s) for PM10 under the u*(wind velocity) between ca.3.0 (m/s) and 10.0 (m/s). Research results show that SERs of different materials differ a lot. Material particulate that has lower surface moisture content generate higher SER and coal material generate higher SER than mine material. For material storage piles with good water infiltrating properties, aspersion is a very effective measure for control fugitive particulate emission.

  12. Analysis of cardiovascular responses to the H2S donors Na2S and NaHS in the rat

    PubMed Central

    Yoo, Daniel; Jupiter, Ryan C.; Pankey, Edward A.; Reddy, Vishwaradh G.; Edward, Justin A.; Swan, Kevin W.; Peak, Taylor C.; Mostany, Ricardo

    2015-01-01

    Hydrogen sulfide (H2S) is an endogenous gaseous molecule formed from L-cysteine in vascular tissue. In the present study, cardiovascular responses to the H2S donors Na2S and NaHS were investigated in the anesthetized rat. The intravenous injections of Na2S and NaHS 0.03–0.5 mg/kg produced dose-related decreases in systemic arterial pressure and heart rate, and at higher doses decreases in cardiac output, pulmonary arterial pressure, and systemic vascular resistance. H2S infusion studies show that decreases in systemic arterial pressure, heart rate, cardiac output, and systemic vascular resistance are well-maintained, and responses to Na2S are reversible. Decreases in heart rate were not blocked by atropine, suggesting that the bradycardia was independent of parasympathetic activation and was mediated by an effect on the sinus node. The decreases in systemic arterial pressure were not attenuated by hexamethonium, glybenclamide, Nw-nitro-l-arginine methyl ester hydrochloride, sodium meclofenamate, ODQ, miconazole, 5-hydroxydecanoate, or tetraethylammonium, suggesting that ATP-sensitive potassium channels, nitric oxide, arachidonic acid metabolites, cyclic GMP, p450 epoxygenase metabolites, or large conductance calcium-activated potassium channels are not involved in mediating hypotensive responses to the H2S donors in the rat and that responses are not centrally mediated. The present data indicate that decreases in systemic arterial pressure in response to the H2S donors can be mediated by decreases in vascular resistance and cardiac output and that the donors have an effect on the sinus node independent of the parasympathetic system. The present data indicate that the mechanism of the peripherally mediated hypotensive response to the H2S donors is uncertain in the intact rat. PMID:26071540

  13. Quantum and quasiclassical dynamics of the multi-channel H + H2S reaction.

    PubMed

    Qi, Ji; Lu, Dandan; Song, Hongwei; Li, Jun; Yang, Minghui

    2017-03-28

    The prototypical multi-channel reaction H + H 2 SH 2 + SH/H + H 2 S has been investigated using the full-dimensional quantum scattering and quasi-classical trajectory methods to unveil the underlying competition mechanism between different product channels and the mode specificity. This reaction favors the abstraction channel over the exchange channel. For both channels, excitations in the two stretching modes promote the reaction with nearly equal efficiency and are more efficient than the bending mode excitation. However, they are all less efficient than the translational energy. In addition, the experimentally observed non-Arrhenius temperature dependence of the thermal rate constants is reasonably reproduced by the quantum dynamics calculations, confirming that the non-Arrhenius behavior is caused by the pronounced quantum tunneling.

  14. Probing the gamma-ray emission from HESS J1834-087 using H.E.S.S. and Fermi LAT observations

    NASA Astrophysics Data System (ADS)

    H. E. S. S. Collaboration; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Angüner, E.; Anton, G.; Backes, M.; Balenderan, S.; Balzer, A.; Barnacka, A.; Becherini, Y.; Becker Tjus, J.; Bernlöhr, K.; Birsin, E.; Bissaldi, E.; Biteau, J.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Carrigan, S.; Casanova, S.; Chadwick, P. M.; Chalme-Calvet, R.; Chaves, R. C. G.; Cheesebrough, A.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Conrad, J.; Couturier, C.; Cui, Y.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; deWilt, P.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; O'C. Drury, L.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Espigat, P.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Grondin, M.-H.; Grudzińska, M.; Häffner, S.; Hahn, J.; Harris, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Jacholkowska, A.; Jahn, C.; Jamrozy, M.; Janiak, M.; Jankowsky, F.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Khélifi, B.; Kieffer, M.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lefaucheur, J.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Méhault, J.; Meintjes, P. J.; Menzler, U.; Meyer, M.; Moderski, R.; Mohamed, M.; Moulin, E.; Murach, T.; Naumann, C. L.; de Naurois, M.; Niemiec, J.; Nolan, S. J.; Oakes, L.; Odaka, H.; Ohm, S.; de Oña Wilhelmi, E.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perez, J.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Raue, M.; Reichardt, I.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Rob, L.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sol, H.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tluczykont, M.; Trichard, C.; Valerius, K.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Venter, C.; Viana, A.; Vincent, P.; Völk, H. J.; Volpe, F.; Vorster, M.; Vuillaume, T.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; Ward, M.; Weidinger, M.; Weitzel, Q.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zacharias, M.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.

    2015-02-01

    Aims: Previous observations with the High Energy Stereoscopic System (H.E.S.S.) have revealed an extended very-high-energy (VHE; E> 100 GeV) γ-ray source, HESS J1834-087, coincident with the supernova remnant (SNR) W41. The origin of the γ-ray emission was investigated in more detail with the H.E.S.S. array and the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope. Methods: The γ-ray data provided by 61 h of observations with H.E.S.S., and four years with the Fermi LAT were analyzed, covering over five decades in energy from 1.8 GeV up to 30 TeV. The morphology and spectrum of the TeV and GeV sources were studied and multiwavelength data were used to investigate the origin of the γ-ray emission toward W41. Results: The TeV source can be modeled with a sum of two components: one point-like and one significantly extended (σTeV = 0.17° ± 0.01°), both centered on SNR W41 and exhibiting spectra described by a power law with index ΓTeV ≃ 2.6. The GeV source detected with Fermi LAT is extended (σGeV = 0.15° ± 0.03°) and morphologically matches the VHE emission. Its spectrum can be described by a power-law model with an index ΓGeV = 2.15 ± 0.12 and smoothly joins the spectrum of the whole TeV source. A break appears in the γ-ray spectra around 100 GeV. No pulsations were found in the GeV range. Conclusions: Two main scenarios are proposed to explain the observed emission: a pulsar wind nebula (PWN) or the interaction of SNR W41 with an associated molecular cloud. X-ray observations suggest the presence of a point-like source (a pulsar candidate) near the center of the remnant and nonthermal X-ray diffuse emission that could arise from the possibly associated PWN. The PWN scenario is supported by the compatible positions of the TeV and GeV sources with the putative pulsar. However, the spectral energy distribution from radio to γ-rays is reproduced by a one-zone leptonic model only if an excess of low-energy electrons is injected

  15. Radiative transitions involving the (2p2)(3 Pe) metastable autodetaching of H(-)

    NASA Technical Reports Server (NTRS)

    Jacobs, V. L.; Bhatia, A. K.; Temkin, A.

    1974-01-01

    The absorption coefficient for the free-bound transition H (ls) + e(-)+ h omega yields H(-)(2 sq p,(3)P(e)) is calculated (together with the differential emission rate for the inverse process) using ls - 2s - 2p close coupling continuum wave functions and a Hylleraas bound state wave function. A maximum in the absorption and emission spectra is found to occur at a photon wavelength of 1219.5 A, which is 2 A closer to the Lyman alpha line than predicted by the calculations of Drake, and is in closer agreement with the stellar absorption feature identified by Heap and Stecher. The free-bound absorption process appears to be a significant source of continuous ultraviolet opacity.

  16. Isoprene emission rates and fluxes measured above a Mediterranean oak ( Quercus pubescens) forest

    NASA Astrophysics Data System (ADS)

    Simon, V.; Dumergues, L.; Bouchou, P.; Torres, L.; Lopez, A.

    2005-03-01

    The present work, carried out as part of the European fiEld experimentS to COnstrain Models of atmospheric Pollution and Transport of Emissions project (ESCOMPTE), brings a new contribution to the inventory of the main natural hydrocarbons sources that are liable to participate in the production of ozone. The measurement campaign was conducted in Montmeyan, a site close to Marseilles (France), with the aim of quantifying the terpenic emission pattern and the behaviour of Quercus pubescens, an important Mediterranean tree species. Biogenic emissions by Q. pubescens were determined by the enclosure of an intact branch of this tree in a Teflon cuvette. The total monoterpenic emission rates thus recorded were found to reach maximum values ranged between 40 and 350 μg g Dry Weight-1 h -1. Emissions were correlated strongly with leaf temperature and Photosynthetic Active Radiation (PAR). The fluxes were also determined by extrapolating the results of the enclosure method and by using aerodynamic gradient method. They reach around 73 mg m -2 h -1 with the first method and 55 mg m -2 h -1 with the second one. The obtained values fit with a maximal ratio of 2.

  17. Ammonia and hydrogen sulfide emissions from swine production facilities in North America: a meta-analysis.

    PubMed

    Liu, Z; Powers, W; Murphy, J; Maghirang, R

    2014-04-01

    Literature on NH3 and H2S emissions from swine production facilities in North America was reviewed, and a meta-analysis was conducted on measured emissions data from swine houses and manure storage facilities as well as concentration data in the vicinity of swine production facilities. Results from more than 80 studies were compiled with results from the 11 swine sites in the National Air Emissions Monitoring Study (NAEMS). Data across studies were analyzed statistically using the MIXED procedures of SAS. The median emission rates from swine houses across various production stages and manure handling systems were 2.78 and 0.09 kg/yr per pig for NH3 and H2S, respectively. The median emission rates from swine storage facilities were 2.08 and 0.20 kg/yr per pig for NH3 and H2S, respectively. The size of swine farm that may trigger the need to report NH3 emissions under the Emergency Planning and Community Right-to-Know Act (EPCRA) is 3,410 pigs on the basis of the median NH3 emission rate (4.86 kg/yr per pig), but the threshold can be as low as 992 pigs on the basis of the 90th-percentile emission rates (16.71 kg/yr per pig). Swine hoop houses had significantly higher NH3 emission rate (14.80 kg/yr per pig) than other manure-handling systems (P < 0.01), whereas deep-pit houses had the highest H2S emission rate (16.03 kg/yr per pig, P = 0.03). Farrowing houses had the highest H2S emission rate (2.50 kg/yr per pig), followed by gestation houses, and finishing houses had the lowest H2S emission rate (P < 0.01). Regression models for NH3 and H2S emission rates were developed for finishing houses with deep pits, recharge pits, and lagoons. The NH3 emission rates increased with increasing air temperature, but effects of air temperature on H2S emission rates were not significant. The recharge interval of manure pits significantly affected H2S but not NH3 emission rates. The H2S emission rates were also influenced by the size of the operation. Although NH3 and H2S

  18. Fluorescent H{sub 2} Emission Lines from the Reflection Nebula NGC 7023 Observed with IGRINS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le, Huynh Anh N.; Pak, Soojong; Lee, Hye-In

    We have analyzed the temperature, velocity, and density of H{sub 2} gas in NGC 7023 with a high-resolution near-infrared spectrum of the northwestern filament of the reflection nebula. By observing NGC 7023 in the H and K bands at R ≃ 45,000 with the Immersion GRating INfrared Spectrograph, we detected 68 H{sub 2} emission lines within the 1″ × 15″ slit. The diagnostic ratio of 2-1 S(1)/1-0 S(1) is 0.41−0.56. In addition, the estimated ortho-to-para ratio (OPR) is 1.63−1.82, indicating that the H{sub 2} emission transitions in the observed region arise mostly from gas excited by UV fluorescence. Gradients inmore » the temperature, velocity, and OPR within the observed area imply motion of the photodissociation region (PDR) relative to the molecular cloud. In addition, we derive the column density of H{sub 2} from the observed emission lines and compare these results with PDR models in the literature covering a range of densities and incident UV field intensities. The notable difference between PDR model predictions and the observed data, in high rotational J levels of ν = 1, is that the predicted formation temperature for newly formed H{sub 2} should be lower than that of the model predictions. To investigate the density distribution, we combine pixels in 1″ × 1″ areas and derive the density distribution at the 0.002 pc scale. The derived gradient of density suggests that NGC 7023 has a clumpy structure, including a high clump density of ∼10{sup 5} cm{sup −3} with a size smaller than ∼5 × 10{sup −3} pc embedded in lower-density regions of 10{sup 3}–10{sup 4} cm{sup −3}.« less

  19. Behaviour of volcanogenic S-bearing compounds (H2S and SO2) in air at Vulcano Island (Aeolian Archipelago, southern Italy)

    NASA Astrophysics Data System (ADS)

    Caponi, Chiara; Tassi, Franco; Ricci, Andrea; Capecchiacci, Francesco; Venturi, Stefania; Cabassi, Jacopo; Vaselli, Orlando

    2017-04-01

    The main sources of SO2 and H2S in air consist of both natural fluid emissions related to active/quiescent volcanoes and hydrothermal systems, and anthropogenic activities (e.g. gas and oil refineries, steel industries, urban traffic). These gas compounds have a strong impact on air quality, since they are strong toxic and climate forcing agents. Notwithstanding, the behaviour of these S-compounds in air once they are released from the contaminant source(s) is poorly known, due to the scarce available data from thermodynamics and direct measurements. Hydrogen sulfide is considered to be relatively reactive in the atmosphere, being easily oxidized to SO2 by photochemical reactions, even though the efficiency of the H2S to SO2 conversion is significantly lowered under dark, dry and relatively cold conditions, leading to a residence time of H2S in air up to 42 days in winter. In this work, H2S and SO2 measurements in air carried out at the Levante beach (Vulcano Island, Aeolian Archipelago), where a number of hydrothermal fluid discharges consisting of fumaroles and submarine emissions occur, are presented and discussed. These volcanic fluids, characterized by an H2S-rich chemical composition, are released in a close proximity to the touristic village of Vulcano Porto. The measurements were carried out using a Thermo Scientific™ Model 450i Analyzer coupled with a Davis® Vantage Vue weather station (air humidity and temperature, wind direction and speed) in 34 fixed spots and along 8 pathways, selected according to: (i) distance from the contaminant source, (ii) wind direction and (iii) accessibility by car (where the instrument was installed). The main aim was to provide empirical insights on the behavior of these air pollutants in relation to the physical and chemical processes controlling their spatial distribution. The measured data were elaborated using a statistical approach to construct spatial distribution maps and conceptual models able to forecast the

  20. Differential effects of buffer pH on Ca2+-induced ROS emission with inhibited mitochondrial complexes I and III

    PubMed Central

    Lindsay, Daniel P.; Camara, Amadou K. S.; Stowe, David F.; Lubbe, Ryan; Aldakkak, Mohammed

    2015-01-01

    Excessive mitochondrial reactive oxygen species (ROS) emission is a critical component in the etiology of ischemic injury. Complex I and complex III of the electron transport chain are considered the primary sources of ROS emission during cardiac ischemia and reperfusion (IR) injury. Several factors modulate ischemic ROS emission, such as an increase in extra-matrix Ca2+, a decrease in extra-matrix pH, and a change in substrate utilization. Here we examined the combined effects of these factors on ROS emission from respiratory complexes I and III under conditions of simulated IR injury. Guinea pig heart mitochondria were suspended in experimental buffer at a given pH and incubated with or without CaCl2. Mitochondria were then treated with either pyruvate, a complex I substrate, followed by rotenone, a complex I inhibitor, or succinate, a complex II substrate, followed by antimycin A, a complex III inhibitor. H2O2 release rate and matrix volume were compared with and without adding CaCl2 and at pH 7.15, 6.9, or 6.5 with pyruvate + rotenone or succinate + antimycin A to simulate conditions that may occur during in vivo cardiac IR injury. We found a large increase in H2O2 release with high [CaCl2] and pyruvate + rotenone at pH 6.9, but not at pHs 7.15 or 6.5. Large increases in H2O2 release rate also occurred at each pH with high [CaCl2] and succinate + antimycin A, with the highest levels observed at pH 7.15. The increases in H2O2 release were associated with significant mitochondrial swelling, and both H2O2 release and swelling were abolished by cyclosporine A, a desensitizer of the mitochondrial permeability transition pore (mPTP). These results indicate that ROS production by complex I and by complex III is differently affected by buffer pH and Ca2+ loading with mPTP opening. The study suggests that changes in the levels of cytosolic Ca2+ and pH during IR alter the relative amounts of ROS produced at mitochondrial respiratory complex I and complex III. PMID

  1. H2/O2 three-body rates at high temperatures

    NASA Technical Reports Server (NTRS)

    Marinelli, William J.; Kessler, William J.; Carleton, Karen L.

    1991-01-01

    Hydrogen atoms are produced in the presence of excess O2, and the first-order decay are studied as a function of temperature and pressure in order to obtain the rate coefficient for the three-body reaction between H-atoms and O2. Attention is focused on the kinetic scheme employed as well as the reaction cell and photolysis and probe laser system. A two-photon laser-induced fluorescence technique is employed to detect H-atoms without optical-thickness or O2-absorption problems. Results confirm measurements reported previously for the H + O2 + N2 reaction at 300 K and extend these measurements to higher temperatures. Preliminary data indicate non-Arrehenius-type behavior of this reaction rate coefficient as a function of temperature. Measurements of the rate coefficient for H + O2 + Ar reaction at 300 K give a rate coefficient of 2.1 +/- 0.1 x 10 to the -32nd cm exp 6/molecule sec.

  2. H.E.S.S. reveals a lack of TeV emission from the supernova remnant Puppis A

    NASA Astrophysics Data System (ADS)

    H. E. S. S. Collaboration; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Angüner, E. O.; Backes, M.; Balenderan, S.; Balzer, A.; Barnacka, A.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Birsin, E.; Biteau, J.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Bulik, T.; Carrigan, S.; Casanova, S.; Chadwick, P. M.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Conrad, J.; Couturier, C.; Cui, Y.; Davids, I. D.; Degrange, B.; Deil, C.; deWilt, P.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; O'C. Drury, L.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Espigat, P.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Grondin, M.-H.; Grudzińska, M.; Hadasch, D.; Häffner, S.; Hahn, J.; Harris, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Ivascenko, A.; Jacholkowska, A.; Jahn, C.; Jamrozy, M.; Janiak, M.; Jankowsky, F.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Khélifi, B.; Kieffer, M.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Méhault, J.; Meintjes, P. J.; Menzler, U.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Morå, K.; Moulin, E.; Murach, T.; de Naurois, M.; Niemiec, J.; Nolan, S. J.; Oakes, L.; Odaka, H.; Ohm, S.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Arribas, M. Paz; Pekeur, N. W.; Pelletier, G.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reichardt, I.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tluczykont, M.; Trichard, C.; Valerius, K.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Völk, H. J.; Volpe, F.; Vorster, M.; Vuillaume, T.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; Ward, M.; Weidinger, M.; Weitzel, Q.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.

    2015-02-01

    Context. Puppis A is an interesting ~4 kyr-old supernova remnant (SNR) that shows strong evidence of interaction between the forward shock and a molecular cloud. It has been studied in detail from radio frequencies to high-energy (HE, 0.1-100 GeV) γ-rays. An analysis of the Fermi-LAT data has shown extended HE γ-ray emission with a 0.2-100 GeV spectrum exhibiting no significant deviation from a power law, unlike most of the GeV-emitting SNRs known to be interacting with molecular clouds. This makes it a promising target for imaging atmospheric Cherenkov telescopes (IACTs) to probe the γ-ray emission above 100 GeV. Aims: Very-high-energy (VHE, E ≥ 0.1 TeV) γ-ray emission from Puppis A has been, for the first time, searched for with the High Energy Stereoscopic System (H.E.S.S.). Methods: Stereoscopic imaging of Cherenkov radiation from extensive air showers is used to reconstruct the direction and energy of the incident γ-rays in order to produce sky images and source spectra. The profile likelihood method is applied to find constraints on the existence of a potential break or cutoff in the photon spectrum. Results: The analysis of the H.E.S.S. data does not reveal any significant emission towards Puppis A. The derived upper limits on the differential photon flux imply that its broadband γ-ray spectrum must exhibit a spectral break or cutoff. By combining Fermi-LAT and H.E.S.S. measurements, the 99% confidence-level upper limits on such a cutoff are found to be 450 and 280 GeV, assuming a power law with a simple exponential and a sub-exponential cutoff, respectively. It is concluded that none of the standard limitations (age, size, radiative losses) on the particle acceleration mechanism, assumed to be continuing at present, can explain the lack of VHE signal. The scenario in which particle acceleration has ceased some time ago is considered as an alternative explanation. The HE/VHE spectrum of Puppis A could then exhibit a break of non-radiative origin (as

  3. Strategies for steam handling and H2S abatement at geothermal power plants in the geysers area of Northern California

    NASA Astrophysics Data System (ADS)

    Morris, W. F.; Stephens, F. B.

    1981-08-01

    Strict limitations on the emission of H2S from new geothermal power plants in The Geysers area of northern California were imposed by Lake and Northern Sonoma County Air Pollution Control Districts. Lake County, under new source review rules, stipulated that specific technologies should be utilized to limit H2S emissions to 5 lb/h as a condition for determination of compliance. The status of these technologies as well as other ongoing technology development efforts to conserve steam and abate H2S are evaluated.

  4. Rate Coefficients of C2H with C2H4, C2H6, and H2 from 150 to 359 K

    NASA Technical Reports Server (NTRS)

    Opansky, Brian J.; Leone, Stephen R.

    1996-01-01

    Rate coefficients for the reactions C2H with C2H4, C2H6, and H2 are measured over the temperature range 150-359 K using transient infrared laser absorption spectroscopy. The ethynyl radical is formed by photolysis of C2H2 with a pulsed excimer laser at 193 nm, and its transient absorption is monitored with a color center laser on the Q(sub 11)(9) line of the A(sup 2) Pi-Chi(sup 2) Sigma transition at 3593.68 cm(exp -1). Over the experimental temperature range 150-359 K the rate constants of C2H with C2H4, C2H6, and H2 can be fitted to the Arrhenius expressions k(sub C2H4) = (7.8 +/- 0.6) x 10(exp -11) exp[(134 +/- 44)/T], k(sub C2H6) = (3.5 +/- 0.3) x 10(exp -11) exp[(2.9 +/- 16)/T], and k(sub H2) = (1.2 +/- 0.3) x 10(exp -11) exp[(-998 +/- 57)]/T cm(exp 3) molecule(exp -1) sec(exp -1). The data for C2H with C2H4 and C2H6 indicate a negligible activation energy to product formation shown by the mild negative temperature dependence of both reactions. When the H2 data are plotted together with the most recent high-temperature results from 295 to 854 K, a slight curvature is observed. The H2 data can be fit to the non-Arrhenius form k(sub H2) = 9.2 x 10(exp -18) T(sup 2.17 +/- 0.50) exp[(-478 +/- 165)/T] cm(exp 3) molecules(exp -1) sec(exp -1). The curvature in the Arrhenius plot is discussed in terms of both quantum mechanical tunneling of the H atom from H2 to the C2H radical and bending mode contributions to the partition function.

  5. CO in Hickson compact group galaxies with enhanced warm H2 emission: Evidence for galaxy evolution?

    NASA Astrophysics Data System (ADS)

    Lisenfeld, U.; Appleton, P. N.; Cluver, M. E.; Guillard, P.; Alatalo, K.; Ogle, P.

    2014-10-01

    Context. Galaxies in Hickson Compact Groups (HCGs) are believed to experience morphological transformations from blue, star-forming galaxies to red, early-type galaxies. Galaxies with a high ratio between the luminosities of the warm H2 to the 7.7 μm PAH emission (so-called Molecular Hydrogen Emission Galaxies, MOHEGs) are predominantly in an intermediate phase, the green valley. Their enhanced H2 emission suggests that the molecular gas is affected in the transition. Aims: We study the properties of the molecular gas traced by CO in galaxies in HCGs with measured warm H2 emission in order to look for evidence of the perturbations affecting the warm H2 in the kinematics, morphology and mass of the molecular gas. Methods: We observed the CO(1-0) emission of 20 galaxies in HCGs and complemented our sample with 11 CO(1-0) spectra from the literature. Most of the galaxies have measured warm H2 emission, and 14 of them are classified as MOHEGs. We mapped some of these galaxies in order to search for extra-galactic CO emission. We analyzed the molecular gas mass derived from CO(1-0), MH2, and its kinematics, and then compared it to the mass of the warm molecular gas, the stellar mass and star formation rate (SFR). Results: Our results are the following. (i) The mass ratio between the CO-derived and the warm H2 molecular gas is in the same range as found for field galaxies. (ii) Some of the galaxies, mostly MOHEGs, have very broad CO linewidths of up to 1000 km s-1 in the central pointing. The line shapes are irregular and show various components. (iii) In the mapped objects we found asymmetric distributions of the cold molecular gas. (iv) The star formation efficiency (=SFR/MH2) of galaxies in HCGs is very similar to isolated galaxies. No significant difference between MOHEGs and non-MOHEGs or between early-type and spiral galaxies has been found. In a few objects the SFE is significantly lower, indicating the presence of molecular gas that is not actively forming stars

  6. VizieR Online Data Catalog: NGC253 near-infrared H2 emission (Rosenberg+,

    NASA Astrophysics Data System (ADS)

    Rosenberg, M. J. F.; van der Werf, P. P.; Israel, F. P.

    2012-11-01

    All observations were made with SINFONI at the ESO VLT. We observed in the H, and K bands using a spatial pixel scale of 0.25" corresponding to a field of view of 8" by 8" per frame and a spectral resolution of 2000, 3000 and 4000 respectively, which corresponds to a velocity resolution of 149.8, 99.9 and 74.9km/s. All science observations were taken in the ABA'nodding mode (300s of object, 300s of sky, 300s of object), where A' is slightly offset from A. The object exposures are aligned and averaged during the reconstruction of the data cube. The observations of NGC 253 were made in visitor mode on August 28th, 2005. In order to capture the full extent of the H2 emission, consecutive frames were taken in the K band moving further away from the center, along the disk until H2 was no longer detected. This resulted in 6 separate pointings. Since there are also H2 transitions in the H band, a similar strategy was used, resulting in 4 separate pointings. We used the standard reduction techniques of the SINFONI pipeline on all observations, including corrections for flat field, dark current, nonlinearity of pixels, distortion, and wavelength calibration. We obtained the flux calibration and atmospheric corrections from observations of a standard star, namely HR 2058 in the H band and HD 20001 in the K band (2 data files).

  7. Probing the gamma-ray emission from HESS J1834–087 using H.E.S.S. and FermiLAT observations

    DOE PAGES

    Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; ...

    2015-01-20

    Aims. Previous observations with the High Energy Stereoscopic System (H.E.S.S.) have revealed an extended very-high-energy (VHE; E> 100 GeV) γ-ray source, HESS J1834-087, coincident with the supernova remnant (SNR) W41. The origin of the γ-ray emission was investigated in more detail with the H.E.S.S. array and the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope. Methods. For this research, the γ-ray data provided by 61 h of observations with H.E.S.S., and four years with the Fermi LAT were analyzed, covering over five decades in energy from 1.8 GeV up to 30 TeV. The morphology and spectrum of themore » TeV and GeV sources were studied and multiwavelength data were used to investigate the origin of the γ-ray emission toward W41. Results. The TeV source can be modeled with a sum of two components: one point-like and one significantly extended (σ TeV = 0.17° ± 0.01°), both centered on SNR W41 and exhibiting spectra described by a power law with index Γ TeV ≃ 2.6. The GeV source detected with Fermi LAT is extended (σ GeV = 0.15° ± 0.03°) and morphologically matches the VHE emission. Its spectrum can be described by a power-law model with an index Γ GeV = 2.15 ± 0.12 and smoothly joins the spectrum of the whole TeV source. A break appears in the γ-ray spectra around 100 GeV. No pulsations were found in the GeV range. Conclusions. Two main scenarios are proposed to explain the observed emission: a pulsar wind nebula (PWN) or the interaction of SNR W41 with an associated molecular cloud. X-ray observations suggest the presence of a point-like source (a pulsar candidate) near the center of the remnant and nonthermal X-ray diffuse emission that could arise from the possibly associated PWN. The PWN scenario is supported by the compatible positions of the TeV and GeV sources with the putative pulsar. However, the spectral energy distribution from radio to γ-rays is reproduced by a one-zone leptonic model only if an excess of low

  8. Characterization of H2S removal and microbial community in landfill cover soils.

    PubMed

    Xia, Fang-Fang; Zhang, Hong-Tao; Wei, Xiao-Meng; Su, Yao; He, Ruo

    2015-12-01

    H2S is a source of odors at landfills and poses a threat to the surrounding environment and public health. In this work, compared with a usual landfill cover soil (LCS), H2S removal and biotransformation were characterized in waste biocover soil (WBS), an alternative landfill cover material. With the input of landfill gas (LFG), the gas concentrations of CH4, CO2, O2, and H2S, microbial community and activity in landfill covers changed with time. Compared with LCS, lower CH4 and H2S concentrations were detected in the WBS. The potential sulfur-oxidizing rate and sulfate-reducing rate as well as the contents of acid-volatile sulfide, SO4(2-), and total sulfur in the WBS and LCS were all increased with the input of LFG. After exposure to LFG for 35 days, the sulfur-oxidizing rate of the bottom layer of the WBS reached 82.5 μmol g dry weight (d.w.)(-1) day(-1), which was 4.3-5.4 times of that of LCS. H2S-S was mainly deposited in the soil covers, while it escaped from landfills to the atmosphere. The adsorption, absorption, and biotransformation of H2S could lead to the decrease in the pH values of landfill covers; especially, in the LCS with low pH buffer capacity, the pH value of the bottom layer dropped to below 4. Pyrosequencing of 16S ribosomal RNA (rRNA) gene showed that the known sulfur-metabolizing bacteria Ochrobactrum, Paracoccus, Comamonas, Pseudomonas, and Acinetobacter dominated in the WBS and LCS. Among them, Comamonas and Acinetobacter might play an important role in the metabolism of H2S in the WBS. These findings are helpful to understand sulfur bioconversion process in landfill covers and to develop techniques for controlling odor pollution at landfills.

  9. DETECTION OF H i IN EMISSION IN THE LY α EMITTING GALAXY HARO 11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pardy, Stephen A.; Cannon, John M.; Östlin, Göran

    We present the first robust detection of H i 21 cm emission in the blue compact galaxy Haro 11 using the 100 m Robert C. Byrd Green Bank Telescope (GBT). Haro 11 is a luminous blue compact galaxy with emission in both Ly α and the Lyman continuum. We detect (5.1 ± 0.7 × 10{sup 8}) M {sub ⊙} of H i gas at an assumed distance of 88 Mpc, making this galaxy H i deficient compared to other local galaxies with similar optical properties. Given this small H i mass, Haro 11 has an elevated M{sub H2}/ M{sub Hi} ratio and a verymore » low gas fraction compared to most local galaxies, and contains twice as much mass in ionized hydrogen as in neutral hydrogen. The H i emission has a linewidth of 71 km s{sup −}1 and is offset 60 km s{sup −1} redward of the optical line center. It is undergoing a starburst after a recent merger that has elevated the star formation rate, and will deplete the gas supply in <0.2 Gyr. Although this starburst has elevated the star formation rate (SFR) compared to galaxies with similar H i masses and line widths, Haro 11 matches a trend of lower gas fractions toward higher SFRs and is below the general trend of increasing H i mass with increasing luminosity. Taken together, our results paint Haro 11 as a standard low-mass galaxy that is undergoing an unusually efficient star formation episode.« less

  10. Fumarole/plume and diffuse CO2 emission from Sierra Negra volcano, Galapagos archipelago

    NASA Astrophysics Data System (ADS)

    Padron, E.; Hernandez Perez, P. A.; Perez, N.; Theofilos, T.; Melian, G.; Barrancos, J.; Virgil, G.; Sumino, H.; Notsu, K.

    2009-12-01

    The active shield-volcano Sierra Negra is part of the Galapagos hotspot. Sierra Negra is the largest shield volcano of Isabela Island, hosting a 10 km diameter caldera. Ten historic eruptions have occurred and some involved a frequently visited east caldera rim fissure zone called Volcan Chico. The last volcanic event occurred in October 2005 and lasted for about a week, covering approximately twenty percent of the eastern caldera floor. Sierra Negra volcano has experienced some significant changes in the chemical composition of its volcanic gas discharges after the 2005 eruption. This volcanic event produced an important SO2 degassing that depleted the magmatic content of this gas. Not significant changes in the MORB and plume-type helium contribution were observed after the 2005 eruption, with a 65.5 % of MORB and 35.5 % of plume contribution. In 2006 a visible and diffuse gas emission study was performed at the summit of Sierra Negra volcano, Galapagos, to evaluate degassing rate from this volcanic system. Diffuse degassing at Sierra Negra was mainly confined in three different DDS: Volcan Chico, the southern inner margin of the caldera, and Mina Azufral. These areas showed also visible degassing, which indicates highly fractured areas where volcano-hydrothermal fluids migrate towards surface. A total fumarole/plume SO2 emission of 11 ± 2 td-1 was calculated by mini-DOAS ground-based measurements at Mina Azufral fumarolic area. Molar ratios of major volcanic gas components were also measured in-situ at Mina Azufral with a portable multisensor. The results showed H2S/SO2, CO2/SO2 and H2O/SO2 molar ratios of 0.41, 52.2 and 867.9, respectively. Multiplying the observed SO2 emission rate times the observed (gas)i/SO2 mass ratio we have estimated other volatiles emission rates. The results showed that H2O, CO2 and H2S emission rates from Sierra Negra are 562, 394, and 2.4 t d-1, respectively. The estimated total output of diffuse CO2 emission from the summit of

  11. Na2S, a fast-releasing H2S donor, given as suppository lowers blood pressure in rats.

    PubMed

    Tomasova, Lenka; Drapala, Adrian; Jurkowska, Halina; Wróbel, Maria; Ufnal, Marcin

    2017-10-01

    Hydrogen sulfide (H 2 S) is involved in blood pressure control. The available slow-releasing H 2 S-donors are poorly soluble in water and their ability to release H 2 S in biologically relevant amounts under physiological conditions is questionable. Therefore, new slow-releasing donors or new experimental approaches to fast-releasing H 2 S donors are needed. Hemodynamics and ECG were recorded in male, anesthetized Wistar Kyoto rats (WKY) and in Spontaneously hypertensive rats (SHR) at baseline and after: 1) intravenous (iv) infusion of vehicle or Na 2 S; 2) administration of vehicle suppositories or Na 2 S suppositories. Intravenously administered vehicle and vehicle suppositories did not affect mean arterial blood pressure (MABP) and heart rate (HR). Na 2 S administered iv caused a significant, but transient (2-5min) decrease in MABP. Na 2 S suppositories produced a dose-dependent hypotensive response that lasted ∼45min in WKY and ∼75-80min in SHR. It was accompanied by a decrease in HR in WKY, and an increase in HR in SHR. Na 2 S suppositories did not produce a significant change in corrected QT, an indicator of cardiotoxicity. Na 2 S suppositories increased blood level of thiosulfates, products of H 2 S oxidation. Na 2 S administered in suppositories exerts a prolonged hypotensive effect in rats, with no apparent cardiotoxic effect. SHR and WKY differ in hemodynamic response to the H 2 S donor. Suppository formulation of fast-releasing H 2 S donors may be useful in research, if a reference slow-releasing H 2 S donor is not available. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  12. The reaction H + C4H2 - Absolute rate constant measurement and implication for atmospheric modeling of Titan

    NASA Technical Reports Server (NTRS)

    Nava, D. F.; Mitchell, M. B.; Stief, L. J.

    1986-01-01

    The absolute rate constant for the reaction H + C4H2 has been measured over the temperature (T) interval 210-423 K, using the technique of flash photolysis-resonance fluorescence. At each of the five temperatures employed, the results were independent of variations in C4H2 concentration, total pressure of Ar or N2, and flash intensity (i.e., the initial H concentration). The rate constant, k, was found to be equal to 1.39 x 10 to the -10th exp (-1184/T) cu cm/s, with an error of one standard deviation. The Arrhenius parameters at the high pressure limit determined here for the H + C4H2 reaction are consistent with those for the corresponding reactions of H with C2H2 and C3H4. Implications of the kinetic carbon chemistry results, particularly those at low temperature, are considered for models of the atmospheric carbon chemistry of Titan. The rate of this reaction, relative to that of the analogous, but slower, reaction of H + C2H2, appears to make H + C4H2 a very feasible reaction pathway for effective conversion of H atoms to molecular hydrogen in the stratosphere of Titan.

  13. Stratospheric cooling and polar ozone loss due to H2 emissions of a global hydrogen economy

    NASA Astrophysics Data System (ADS)

    Feck, T.; Grooß, J.-U.; Riese, M.; Vogel, B.

    2009-04-01

    "Green" hydrogen is seen as a major element of the future energy supply to reduce greenhouse gas emissions substantially. However, due to the possible interactions of hydrogen (H2) with other atmospheric constituents there is a need to analyse the implications of additional atmospheric H2 that could result from hydrogen leakage of a global hydrogen infrastructure. Emissions of molecular H2 can occur along the whole hydrogen process chain which increase the tropospheric H2 burden. Across the tropical tropopause H2 reaches the stratosphere where it is oxidised and forms water vapour (H2O). This causes increased IR-emissions into space and hence a cooling of the stratosphere. Both effects, the increase of stratospheric H2O and the cooling, enhances the potential of chlorine activation on liquid sulfate aerosol and polar stratospheric clouds (PSCs), which increase polar ozone destruction. Hence a global hydrogen economy could provoke polar ozone loss and could lead to a substantial delay of the current projected recovery of the stratospheric ozone layer. Our investigations show that even if 90% of the current global fossil primary energy input could be replaced by hydrogen and approximately 9.5% of the product gas would leak to the atmosphere, the ozone loss would be increased between 15 to 26 Dobson Units (DU) if the stratospheric CFC loading would retain unchanged. A consistency check of the used approximation methods with the Chemical Lagrangian Model of the Stratosphere (CLaMS) shows that this additional ozone loss can probably be treated as an upper limit. Towards more realistic future H2 leakage rate assumptions (< 3%) the additional ozone loss would be rather small (? 10 DU). However, in all cases the full damage would only occur if stratospheric CFC-levels would retain unchanged. Due to the CFC-prohibition as a result of the Montreal Protocol the forecasts suggest a decline of the stratospheric CFC loading about 50% until 2050. In this case our calculations

  14. Hyperfine excitation of C2H and C2D by para-H2

    NASA Astrophysics Data System (ADS)

    Dumouchel, Fabien; Lique, François; Spielfiedel, Annie; Feautrier, Nicole

    2017-10-01

    The [C2H]/[C2D] abundance ratio is a useful tool to explore the physical and chemical conditions of cold molecular clouds. Hence, an accurate determination of both the C2H and C2D abundances is of fundamental interest. Due to the low density of the interstellar medium, the population of the energy levels of the molecules is not at local thermodynamical equilibrium. Thus, the accurate modelling of the emission spectra requires the calculation of collisional rate coefficients with the most abundant interstellar species. Hence, we provide rate coefficients for the hyperfine excitation of C2H and C2D by para-H2(j=0), the most abundant collisional partner in cold molecular clouds. State-to-state rate coefficients between the lowest levels were computed for temperatures ranging from 5 to 80 K. For both isotopologues, the Δj = ΔF propensity rule is observed. The comparison between C2H and C2D rate coefficients shows that differences by up to a factor of two exist, mainly for Δj = ΔN = 1 transitions. The new rate coefficients will significantly help in the interpretation of recent observed spectra.

  15. Effects of mix ratio, moisture content and aeration rate on sulfur odor emissions during pig manure composting.

    PubMed

    Zang, Bing; Li, Shuyan; Michel, Frederick; Li, Guoxue; Luo, Yuan; Zhang, Difang; Li, Yangyang

    2016-10-01

    Sulfur compounds in swine manure can cause odor emissions during composting if conditions are not conducive to their rapid oxidation and degradation. In this study, the effects of controllable composting process variables on sulfur odor emissions were investigated. These included pig manure to corn stalk mix ratio (0.7:1, 1.5:1 and 2.2:1dw basis), initial moisture content (60%, 65%, 70% and 75%) and aeration rate (1.0, 2.0, 3.0 and 4.0m(3)m(-3)h(-1)). The compounds measured were carbonyl sulfide, carbon disulfide, hydrogen sulfide, methyl mercaptan, ethyl mercaptan, diethyl sulfide, dimethyl sulfide (Me2S) and dimethyl disulfide (Me2SS). The results showed that total sulfur losses ranged from 3.9% to 18.3% after 26days of composting. Me2S and Me2SS were the primary (>59.61%) sulfur compounds released during this period. After turning, emission rates of both Me2S and Me2SS increased. Emissions of the other six sulfur compounds were low and inconsistent during composting. Within the compost, feedstock mix ratio significantly influenced the concentration of Me2SS, while aeration rate significantly affected Me2S concentration (p<0.05). Moisture content did not have a significant effect on the concentrations of either of these two compounds. Concentrations of sulfur odor compounds were the lowest at the highest aeration rate. Therefore, high aeration rates during the thermophilic phase, especially after turning, are recommended to minimize sulfur odors produced during swine manure composting. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Retrofitting existing chemical scrubbers to biotrickling filters for H2S emission control

    PubMed Central

    Gabriel, David; Deshusses, Marc A.

    2003-01-01

    Biological treatment is a promising alternative to conventional air-pollution control methods, but thus far biotreatment processes for odor control have always required much larger reactor volumes than chemical scrubbers. We converted an existing full-scale chemical scrubber to a biological trickling filter and showed that effective treatment of hydrogen sulfide (H2S) in the converted scrubber was possible even at gas contact times as low as 1.6 s. That is 8–20 times shorter than previous biotrickling filtration reports and comparable to usual contact times in chemical scrubbers. Significant removal of reduced sulfur compounds, ammonia, and volatile organic compounds present in traces in the air was also observed. Continuous operation for >8 months showed stable performance and robust behavior for H2S treatment, with pollutant-removal performance comparable to that achieved by using a chemical scrubber. Our study demonstrates that biotrickling filters can replace chemical scrubbers and be a safer, more economical technique for odor control. PMID:12740445

  17. Retrofitting existing chemical scrubbers to biotrickling filters for H2S emission control.

    PubMed

    Gabriel, David; Deshusses, Marc A

    2003-05-27

    Biological treatment is a promising alternative to conventional air-pollution control methods, but thus far biotreatment processes for odor control have always required much larger reactor volumes than chemical scrubbers. We converted an existing full-scale chemical scrubber to a biological trickling filter and showed that effective treatment of hydrogen sulfide (H2S) in the converted scrubber was possible even at gas contact times as low as 1.6 s. That is 8-20 times shorter than previous biotrickling filtration reports and comparable to usual contact times in chemical scrubbers. Significant removal of reduced sulfur compounds, ammonia, and volatile organic compounds present in traces in the air was also observed. Continuous operation for >8 months showed stable performance and robust behavior for H2S treatment, with pollutant-removal performance comparable to that achieved by using a chemical scrubber. Our study demonstrates that biotrickling filters can replace chemical scrubbers and be a safer, more economical technique for odor control.

  18. Faster Electron Injection and More Active Sites for Efficient Photocatalytic H2 Evolution in g-C3 N4 /MoS2 Hybrid.

    PubMed

    Shi, Xiaowei; Fujitsuka, Mamoru; Kim, Sooyeon; Majima, Tetsuro

    2018-03-01

    Herein, the structural effect of MoS 2 as a cocatalyst of photocatalytic H 2 generation activity of g-C 3 N 4 under visible light irradiation is studied. By using single-particle photoluminescence (PL) and femtosecond time-resolved transient absorption spectroscopies, charge transfer kinetics between g-C 3 N 4 and two kinds of nanostructured MoS 2 (nanodot and monolayer) are systematically investigated. Single-particle PL results show the emission of g-C 3 N 4 is quenched by MoS 2 nanodots more effectively than MoS 2 monolayers. Electron injection rate and efficiency of g-C 3 N 4 /MoS 2 -nanodot hybrid are calculated to be 5.96 × 10 9 s -1 and 73.3%, respectively, from transient absorption spectral measurement, which are 4.8 times faster and 2.0 times higher than those of g-C 3 N 4 /MoS 2 -monolayer hybrid. Stronger intimate junction between MoS 2 nanodots and g-C 3 N 4 is suggested to be responsible for faster and more efficient electron injection. In addition, more unsaturated terminal sulfur atoms can serve as the active site in MoS 2 nanodot compared with MoS 2 monolayer. Therefore, g-C 3 N 4 /MoS 2 nanodot exhibits a 7.9 times higher photocatalytic activity for H 2 evolution (660 µmol g- 1 h -1 ) than g-C 3 N 4 /MoS 2 monolayer (83.8 µmol g -1 h -1 ). This work provides deep insight into charge transfer between g-C 3 N 4 and nanostructured MoS 2 cocatalysts, which can open a new avenue for more rationally designing MoS 2 -based catalysts for H 2 evolution. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Rate contants for CF{sub 3} + H{sub 2} {yields} CF{sub 3}H + H and CF{sub 3}H + H {yields} CF{sub 3} + H{sub 2} reactions in the temperature range 1100-1600 K.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hranisavljevic, J.; Michael, V.; Chemistry

    1998-09-24

    The shock tube technique coupled with H-atom atomic resonance absorption spectrometry has been used to study the reactions (1) CF{sub 3} + H{sub 2} {yields} CF{sub 3}H + H and (2) CF{sub 3}H + H{yields} CF{sub 3} + H{sub 2} over the temperature ranges 1168-1673 K and 1111-1550 K, respectively. The results can be represented by the Arrhenius expressions k1 = 2.56 x 10{sup -11} exp(-8549K/T) and k2 = 6.13 x 10{sup -11} exp(-7364K/T), both in cm3 molecule-1 s-1. Equilibrium constants were calculated from the two Arrhenius expressions in the overlapping temperature range, and good agreement was obtained with themore » literature values. The rate constants for reaction 2 were converted into rate constants for reaction 1 using literature equilibrium constants. These data are indistinguishable from direct k1 measurements, and an Arrhenius fit for the joint set is k{sub 1} = 1.88 x 10{sup -11} exp(-8185K/T) cm3 molecule-1 s-1. The CF{sub 3} + H{sub 2} {yields} CF{sub 3}H + H reaction was further modeled using conventional transition-state theory, which included ab initio electronic structure determinations of reactants, transition state, and products.« less

  20. Critical Nuclei Size, Rate, and Activation Energy of H2 Gas Nucleation.

    PubMed

    German, Sean R; Edwards, Martin A; Ren, Hang; White, Henry S

    2018-03-21

    Electrochemical measurements of the nucleation rate of individual H 2 bubbles at the surface of Pt nanoelectrodes (radius = 7-41 nm) are used to determine the critical size and geometry of H 2 nuclei leading to stable bubbles. Precise knowledge of the H 2 concentration at the electrode surface, C H 2 surf , is obtained by controlled current reduction of H + in a H 2 SO 4 solution. Induction times of single-bubble nucleation events are measured by stepping the current, to control C H 2 surf , while monitoring the voltage. We find that gas nucleation follows a first-order rate process; a bubble spontaneously nucleates after a stochastic time delay, as indicated by a sudden voltage spike that results from impeded transport of H + to the electrode. Hundreds of individual induction times, at different applied currents and using different Pt nanoelectrodes, are used to characterize the kinetics of phase nucleation. The rate of bubble nucleation increases by four orders of magnitude (0.3-2000 s -1 ) over a very small relative change in C H 2 surf (0.21-0.26 M, corresponding to a ∼0.025 V increase in driving force). Classical nucleation theory yields thermodynamic radii of curvature for critical nuclei of 4.4 to 5.3 nm, corresponding to internal pressures of 330 to 270 atm, and activation energies for nuclei formation of 14 to 26 kT, respectively. The dependence of nucleation rate on H 2 concentration indicates that nucleation occurs by a heterogeneous mechanism, where the nuclei have a contact angle of ∼150° with the electrode surface and contain between 35 and 55 H 2 molecules.

  1. Overlap corrections for emissivity calculations of H2O-CO2-CO-N2 mixtures

    NASA Astrophysics Data System (ADS)

    Alberti, Michael; Weber, Roman; Mancini, Marco

    2018-01-01

    Calculations of total gas emissivities of gas mixtures containing several radiatively active species require corrections for band overlapping. In this paper, we generate such overlap correction charts for H2O-CO2-N2, H2O-CO-N2, and CO2-CO-N2 mixtures. These charts are applicable in the 0.1-40 bar total pressure range and in the 500 K-2500 K temperature range. For H2O-CO2-N2 mixtures, differences between our charts and Hottel's graphs as well as models of Leckner and Modak are highlighted and analyzed.

  2. First limits on the very-high energy gamma-ray afterglow emission of a fast radio burst. H.E.S.S. observations of FRB 150418

    NASA Astrophysics Data System (ADS)

    H.E.S.S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Andersson, T.; Angüner, E. O.; Arakawa, M.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chrétien, M.; Coffaro, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Cui, Y.; Davids, I. D.; Decock, J.; Degrange, B.; Deil, C.; Devin, J.; Dewilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O.'c.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Kerszberg, D.; Khangulyan, D.; Khélifi, B.; Kieffer, M.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Öttl, S.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; de Los Reyes, R.; Richter, S.; Rieger, F.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Saito, S.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stycz, K.; Sushch, I.; Takahashi, T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.; Superb Collaboration; Jankowski, F.; Keane, E. F.; Petroff, E.

    2017-01-01

    Aims: Following the detection of the fast radio burst FRB150418 by the SUPERB project at the Parkes radio telescope, we aim to search for very-high energy gamma-ray afterglow emission. Methods: Follow-up observations in the very-high energy gamma-ray domain were obtained with the H.E.S.S. imaging atmospheric Cherenkov telescope system within 14.5 h of the radio burst. Results: The obtained 1.4 h of gamma-ray observations are presented and discussed. At the 99% C.L. we obtained an integral upper limit on the gamma-ray flux of Φγ(E > 350 GeV) < 1.33 × 10-8 m-2 s-1. Differential flux upper limits as function of the photon energy were derived and used to constrain the intrinsic high-energy afterglow emission of FRB 150418. Conclusions: No hints for high-energy afterglow emission of FRB 150418 were found. Taking absorption on the extragalactic background light into account and assuming a distance of z = 0.492 based on radio and optical counterpart studies and consistent with the FRB dispersion, we constrain the gamma-ray luminosity at 1 TeV to L < 5.1 × 1047 erg/s at 99% C.L.

  3. Rate coefficients from quantum and quasi-classical cumulative reaction probabilities for the S(1D) + H2 reaction

    NASA Astrophysics Data System (ADS)

    Jambrina, P. G.; Lara, Manuel; Menéndez, M.; Launay, J.-M.; Aoiz, F. J.

    2012-10-01

    Cumulative reaction probabilities (CRPs) at various total angular momenta have been calculated for the barrierless reaction S(1D) + H2 → SH + H at total energies up to 1.2 eV using three different theoretical approaches: time-independent quantum mechanics (QM), quasiclassical trajectories (QCT), and statistical quasiclassical trajectories (SQCT). The calculations have been carried out on the widely used potential energy surface (PES) by Ho et al. [J. Chem. Phys. 116, 4124 (2002), 10.1063/1.1431280] as well as on the recent PES developed by Song et al. [J. Phys. Chem. A 113, 9213 (2009), 10.1021/jp903790h]. The results show that the differences between these two PES are relatively minor and mostly related to the different topologies of the well. In addition, the agreement between the three theoretical methodologies is good, even for the highest total angular momenta and energies. In particular, the good accordance between the CRPs obtained with dynamical methods (QM and QCT) and the statistical model (SQCT) indicates that the reaction can be considered statistical in the whole range of energies in contrast with the findings for other prototypical barrierless reactions. In addition, total CRPs and rate coefficients in the range of 20-1000 K have been calculated using the QCT and SQCT methods and have been found somewhat smaller than the experimental total removal rates of S(1D).

  4. Uncommon and Emissive {[Au2(C3H6NS2)2][Au(C3H6NS2)2]2(PF6)2} Mixed Au+ and Au3+ Pseudotetranuclear Crystalline Compound: Synthesis, Structural Characterization, and Optical Properties.

    PubMed

    Langaro, Ana P; Souza, Ana K R; Morassuti, Claudio Y; Lima, Sandro M; Casagrande, Gleison A; Deflon, Victor M; Nunes, Luiz A O; Da Cunha Andrade, Luis H

    2016-11-23

    An uncommon emissive pseudotetranuclear compound, {[Au 2 (C 3 H 6 NS 2 ) 2 ][Au(C 3 H 6 NS 2 ) 2 ] 2 (PF 6 ) 2 }, was synthesized and characterized in terms of its structure and optical properties. The synthesis produced a crystalline compound composed of four gold atoms with two different oxidation states (Au + and Au 3+ ) in the same crystalline structure. The title complex belonged to a triclinic crystalline system involving the centrosymmetric P1̅ space group. X-ray diffractometry and vibrational spectroscopy (infrared, Raman, and SERS) were used for structural characterization of the new crystal. The vibrational spectroscopy techniques supported the X-ray diffraction results and confirmed the presence of bonds including Au-Au and Au-S. Optical characterization performed using UV-vis spectroscopy showed that under ultraviolet excitation, the emissive crystalline complex presented characteristic broad luminescent bands centered at 420 and 670 nm.

  5. Upstream H/sub 2/S removal from geothermal steam. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-11-01

    The purpose of this project was to evaluate a new heat exchanger process as a method for removing hydrogen sulfide (H/sub 2/S) gas from geothermal steam upstream of a power plant turbine. The process utilizes a heat exchanger to condense geothermal steam so that noncondensable gases (including H/sub 2/S) can be removed in the form of a concentrated vent stream. Ultimate disposal of the removed H/sub 2/S gas may then be accomplished by use of other processes such as the commercially available Stretford process. The clean condensate is reevaporated on the other side of the heat exchanger using the heatmore » removed from the condensing geothermal steam. The necessary heat transfer is induced by maintaining a slight pressure difference, and consequently a slight temperature difference, between the two sides of the heat exchanger. Evaluation of this condensing and reboiling process was performed primarily through the testing of a small-scale 14 m/sup 2/ (150 ft/sup 2/) vertical tube evaporator heat exchanger at The Geysers Power Plant in northern California. The field test results demonstrated H/sub 2/S removal rates consistently better than 90 percent, with an average removal rate of 94 percent. In addition, the removal rate for all noncondensable gases is about 98 percent. Heat transfer rates were high enough to indicate acceptable economics for application of the process on a commercial scale. The report also includes an evaluation of the cost and performance of various configurations of the system, and presents design and cost estimates for a 2.5 MWe and a 55 MWe unit.« less

  6. Broadening of spectral lines of CO2, N2O , H2CO, HCN, and H2S by pressure of gases dominant in planetary atmospheres (H2, He and CO2)

    NASA Astrophysics Data System (ADS)

    Samuels, Shanelle; Gordon, Iouli; Tan, Yan

    2018-01-01

    HITRAN1,2 is a compilation of spectroscopic parameters that a variety of computer codes use to predict and simulate the transmission and emission of light in planetary atmospheres. The goal of this project is to add to the potential of the HITRAN database towards the exploration of the planetary atmospheres by including parameters describing broadening of spectral lines by H2, CO2, and He. These spectroscopic data are very important for the study of the hydrogen and helium-rich atmospheres of gas giants as well as rocky planets with volcanic activities, including Venus and Mars, since their atmospheres are dominated by CO2. First step in this direction was accomplished by Wilzewski et al.3 where this was done for SO2, NH3, HF, HCl, OCS and C2H2. The molecules investigated in this work were CO2, N2O, H2CO, HCN and H2S. Line-broadening coefficients, line shifts and temperature-dependence exponents for transitions of these molecules perturbed by H2, CO2 and He have been assembled from available peer-reviewed experimental and theoretical sources. The data was evaluated and the database was populated with these data and their extrapolations/interpolations using semi-empirical models that were developed to this end.Acknowledgements: Financial support from NASA PDART grant NNX16AG51G and the Smithsonian Astrophysical Observatory Latino Initiative Program from the Latino Initiatives Pool, administered by the Smithsonian Latino Center is gratefully acknowledged.References: 1. HITRAN online http://hitran.org/2. Gordon, I.E., Rothman, L.S., Hill, C., Kochanov, R.V., Tan, Y., et al., 2017. The HITRAN2016 Molecular Spectroscopic Database. J. Quant. Spectrosc. Radiat. Transf. doi:10.1016/j.jqsrt.2017.06.0383. Wilzewski, J.S., Gordon, I.E., Kochanov, R. V., Hill, C., Rothman, L.S., 2016. H2, He, and CO2 line-broadening coefficients, pressure shifts and temperature-dependence exponents for the HITRAN database. Part 1: SO2, NH3, HF, HCl, OCS and C2H2. J. Quant. Spectrosc. Radiat

  7. NATURAL VOLATILE ORGANIC COMPOUND EMISSION RATE ESTIMATES FOR U.S. WOODLAND LANDSCAPES

    EPA Science Inventory

    Volatile organic compound (VOC) emission rate factors are estimated for 49 tree genera based on a review of foliar emission rate measurements. oliar VOC emissions are grouped into three categories: isoprene, monoterpenes and other VOC'S. ypical emission rates at a leaf temperatur...

  8. Variability of OH(3-1) and OH(6-2) emission altitude and volume emission rate from 2003 to 2011

    NASA Astrophysics Data System (ADS)

    Teiser, Georg; von Savigny, Christian

    2017-08-01

    In this study we report on variability in emission rate and centroid emission altitude of the OH(3-1) and OH(6-2) Meinel bands in the terrestrial nightglow based on spaceborne nightglow measurements with the SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) instrument on the Envisat satellite. The SCIAMACHY observations cover the time period from August 2002 to April 2012 and the nighttime observations used in this study are performed at 10:00 p.m. local solar time. Characterizing variability in OH emission altitude - particularly potential long-term variations - is important for an appropriate interpretation of ground-based OH rotational temperature measurements, because simultaneous observations of the vertical OH volume emission rate profile are usually not available for these measurements. OH emission altitude and vertically integrated emission rate time series with daily resolution for the OH(3-1) band and monthly resolution for the OH(6-2) band were analyzed using a standard multilinear regression approach allowing for seasonal variations, QBO-effects (Quasi-Biennial Oscillation), solar cycle (SC) variability and a linear long-term trend. The analysis focuses on low latitudes, where SCIAMACHY nighttime observations are available all year. The dominant sources of variability for both OH emission rate and altitude are the semi-annual and annual variations, with emission rate and altitude being highly anti-correlated. There is some evidence for a 11-year solar cycle signature in the vertically integrated emission rate and in the centroid emission altitude of both the OH(3-1) and OH(6-2) bands.

  9. Performance evaluation of poly-urethane foam packed-bed chemical scrubber for the oxidative absorption of NH3 and H2S gases.

    PubMed

    Nisola, Grace M; Valdehuesa, Kris Niño G; Anonas, Alex V; Ramos, Kristine Rose M; Lee, Won-Keun; Chung, Wook-Jin

    2018-01-02

    The feasibility of open-pore polyurethane (PU) foam as packing material for wet chemical scrubber was tested for NH 3 and H 2 S removals. The foam is inexpensive, light-weight, highly porous (low pressure drop) and provides large surface area per unit volume, which are desirable properties for enhanced gas/liquid mass transfer. Conventional HCl/HOCl (for NH 3 ) and NaOH/NaOCl (for H 2 S) scrubbing solutions were used to absorb and oxidize the gases. Assessment of the wet chemical scrubbers reveals that pH and ORP levels are important to maintain the gas removal efficiencies >95%. A higher re-circulation rate of scrubbing solutions also proved to enhance the performance of the NH 3 and H 2 S columns. Accumulation of salts was confirmed by the gradual increase in total dissolved solids and conductivity values of scrubbing solutions. The critical elimination capacities at >95% gas removals were found to be 5.24 g NH 3 -N/m 3 -h and 17.2 g H 2 S-S/m 3 -h at an empty bed gas residence time of 23.6 s. Negligible pressure drops (< 4 mm H 2 O) after continuous operation demonstrate the suitability of PU as a practical packing material in wet chemical scrubbers for NH 3 and H 2 S removals from high-volume dilute emissions.

  10. Tungsten phosphanylarylthiolato complexes [W{PhP(2-SC6H4)2-kappa3S,S',P} 2] and [W{P(2-SC6H4)3-kappa4S,S',S",P}2]: synthesis, structures and redox chemistry.

    PubMed

    Hildebrand, Alexandra; Lönnecke, Peter; Silaghi-Dumitrescu, Luminita; Hey-Hawkins, Evamarie

    2008-09-14

    PhP(2-SHC6H4)2 (PS2H2) reacts with WCl6 with reduction of tungsten to give the air-sensitive tungsten(IV) complex [W{PhP(2-SC6H4)2-kappa(3)S,S',P}2] (1). 1 is oxidised in air to [WO{PhPO(2-SC6H4)2-kappa(3)S,S',O}{PhP(2-SC6H4)2-kappa(3)S,S',P}] (2). The attempted synthesis of 2 by reaction of 1 with iodosobenzene as oxidising agent was unsuccessful. [W{P(2-SC6H4)3-kappa(4)S,S',S",P}2] (3) was formed in the reaction of P(2-SHC6H4)3 (PS3H3) with WCl6. The W(VI) complex 3 contains two PS3(3-) ligands, each coordinated in a tetradentate fashion resulting in a tungsten coordination number of eight. The reaction of 3 with AgBF4 yields the dinuclear tungsten complex [W2{P(2-SC6H4)3-kappa(4)S,S',S",P}3]BF4 (4). Complexes 1-4 were characterised by spectral methods and X-ray structure determination.

  11. Molecular line emission models of Herbig-Haro objects. I - H2 emission

    NASA Technical Reports Server (NTRS)

    Wolfire, Mark G.; Konigl, Arieh

    1991-01-01

    A comprehensive model for molecular hydrogen emssion in Herbig-Haro objects that are associated with the heads of radiative stellar jets is presented by using a simple representation of the jet head as a comprising a leading bow shock and a trailing jet shock, separated by a dense layer of cool shocked gas. Attention is given to collisional excitation in a nondissociative shock and formation pumping in the molecular reformation zone behind a dissociative shock, employing detailed shock and photodissociation-region emission models that incorporate most of the relevant atomic physics and chemistry. The conditions under which each of these excitation mechanisms may be expected to contribute to the observed emission are discussed, and a general diagnostic scheme for discriminating among them is constructed. Applying this scheme to the HH 1-2 system, strong evidence for excitation by the radiation field of a fast shock is found. It is inferred that FUV pumping contributes a significant fraction of the H2 line emission, and it is shown that this can occur only if the UV pump lines are not strongly self-shielded.

  12. Light-dependent emission of hydrogen sulfide from plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, L.G.; Bressan, R.A.; Filner, P.

    1978-02-01

    With the aid of a sulfur-specific flame photometric detector, an emission of volatile sulfur was detected from leaves of cucumber (Cucumis sativus L.), squash and pumpkin (Cucurbita pepo L.), cantaloupe (Cucumis melo L.), corn (Zea mays L.), soybean (Glycine max (L.) Merr.) and cotton (Gossypium hirsutum L.). The emission was studied in detail in squash and pumpkin. It occurred following treatment of the roots of plants with sulfate and was markedly higher from either detached leaves treated via the cut petiole, or whole plants treated via mechanically injured roots. Bisulfite elicited higher rates of emission than sulfate. The emission wasmore » completely light-dependent and increased with light intensity. The rate of emission rose to a maximum and then declined steadily toward zero in the course of a few hours. However, emission resumed after reinjury of roots, an increase in light intensity, an increase in sulfur anion concentration, or a dark period of several hours. The emission was identified as H/sub 2/S by the following criteria: it had the odor of H/sub 2/S; it was not trapped by distilled H/sub 2/O, but was trapped by acidic CdCl/sub 2/ resulting in the formation of a yellow precipitate, CdS; it was also trapped by base and the contents of the trap formed methylene blue when reacted with N,N-dimethyl-p-phenylenediamine and Fe/sup 3 +/. H/sub 2/S emission is not the cause of leaf injury by SO/sub 2/, since bisulfite produced SO/sub 2/ injury symptoms in dim light when H/sub 2/S emission was low, while sulfate did not produce injury symptoms in bright light when H/sub 2/S emission was high. The maximum rates of emission observed, about 8 nmol min/sup -1/ g fresh weight/sup -1/, are about the activity that would be expected for the sulfur assimilation pathway of a normal leaf. H/sub 2/S emission may be a means by which the plant can rid itself of excess inorganic sulfur when HS/sup -/ acceptors are not available in sufficient quantity.« less

  13. Biogenic emissions and CO 2 gas exchange investigated on four Mediterranean shrubs

    NASA Astrophysics Data System (ADS)

    Hansen, U.; van Eijk, J.; Bertin, N.; Staudt, M.; Kotzias, D.; Seufert, G.; Fugit, J.-L.; Torres, L.; Cecinato, A.; Brancaleoni, E.; Ciccioli, P.; Bomboi, T.

    In order to investigate the impact of plant physiology on emissions of biogenic volatile organic compounds monoterpene emission rates from Rosmarinus officinalis (L.) and Pistacia lentiscus (L.) and isoprene emission rates from Erica arborea (L.) and Myrtus communis (L.) were determined. The study, an activity in the framework of BEMA (Biogenic Emissions in the Mediterranean Area), was carried out in May 1994 at Castelporziano near Rome in Italy, using a dynamic enclosure technique combined with recording CO 2 gas exchange, temperature and irradiance data. The monoterpenes dominating the emission pattern were 1,8-cineol, α-pinene and β-pinene for rosemary and α-pinene, linalool and β-pinene + sabinene for pistachio. Total monoterpene emission rates standardized to 30°C of 1.84 ± 0.24 and 0.35 ± 0.04 μg Cg -1 dw h -1 were found for rosemary and pistachio, respectively (on a leaf dry weight basis). Myrtle emitted 22.2 ± 4.9 μg C g -1 dw h -1 at standard conditions (30°C, PAR 1000 μmol photons m -2 s -1 as isoprene and erica 5.61 μg C g -1 dw h -1 The carbon loss due to terpenoid emissions per photosynthetically carbon uptake was about 0.01-0.1% for the monoterpene emitters. The isoprene emitting shrubs lost 0-0.9% of the assimilated carbon. The rapid induction of emissions in the sun after temporary shading indicates that isoprene emissions were closely linked to photosynthesis. A higher proportion of the assimilated carbon was lost as isoprene under conditions of high light and temperature compared to the morning and evening hours.

  14. Tunneling chemical reactions D +H2→DH+H and D +DH→D2+H in solid D2-H2 and HD -H2 mixtures: An electron-spin-resonance study

    NASA Astrophysics Data System (ADS)

    Kumada, Takayuki

    2006-03-01

    Tunneling chemical reactions D +H2→DH+H and D +DH→D2+H in solid HD -H2 and D2-H2 mixtures were studied in the temperature range between 4 and 8K. These reactions were initiated by UV photolysis of DI molecules doped in these solids for 30s and followed by measuring the time course of electron-spin-resonance (ESR) intensities of D and H atoms. ESR intensity of D atoms produced by the photolysis decreases but that of H atoms increases with time. Time course of the D and H intensities has the fast and slow processes. The fast process, which finishes within ˜300s after the photolysis, is assigned to the reaction of D atom with one of its nearest-neighboring H2 molecules, D(H2)n(HD)12-n→H(H2)n-1(HD)13-n or D(H2)n(D2)12-n→H(HD )(H2)n-1(D2)12-n for 12⩾n⩾1. Rate constant for the D +H2 reaction between neighboring D atom-H2 molecule pair is determined to be (7.5±0.7)×10-3s-1 in solid HD -H2 and (1.3±0.3)×10-2s-1 in D2-H2 at 4.1K, which is very close to that calculated based on the theory of chemical reaction in gas phase by Hancock et al. [J. Chem. Phys. 91, 3492 (1989)] and Takayanagi and Sato [J. Chem. Phys. 92, 2862 (1990)]. This rate constant was found to be independent of temperature up to 7K within experimental error of ±30%. The slow process is assigned to the reaction of D atom produced in a cage fully surrounded by HD or D2 molecules, D(HD)12 or D(D2)12. This D atom undergoes the D +DH reaction with one of its nearest-neighboring HD molecules in solid HD -H2 or diffuses to the neighbor of H2 molecules to allow the D +H2 reaction in solid HD -H2 and D2-H2. The former is the main channel in solid HD -H2 below 6K where D atoms diffuse very slowly, whereas the latter dominates over the former above 6K. Rate for the reactions in the slow process is independent of temperature below 6K but increases with the increase in temperature above 6K. We found that the increase is due to the increase in hopping rate of D atoms to the neighbor of H2 molecules. Rate

  15. Detection of C2H4 Neptune from ISO/PHT-S Observations

    NASA Technical Reports Server (NTRS)

    Schulz, B.; Encrenaz, Th.; Bezard, B.; Romani, P. N.; Lellouch, E.; Atreya, S. K.

    1999-01-01

    The 6-12 micrometer spectrum of Neptune has been recorded with the PHT-S instrument of the Infrared Space Observatory (ISO) at a resolution of 0.095 micrometer. In addition to the emissions of CH4, CH3D and C2H6 previously identified, the spectrum shows the first firm identification of ethylene C2H4. The inferred column density above the 0.2-mbar level is in the range (1.1 - 3) x 10(exp 14) molecules/cm. To produce this low amount, previous photochemical models invoked rapid mixing between the source and sink regions of C2H4. We show that this requirement can be relaxed if recent laboratory measurements of CH4 photolysis branching ratios at Lyman alpha are used.

  16. H.E.S.S. discovery of very high energy γ-ray emission from PKS 0625-354

    NASA Astrophysics Data System (ADS)

    H.E.S.S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Andersson, T.; Angüner, E. O.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Cui, Y.; Davids, I. D.; Decock, J.; Degrange, B.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Hadasch, D.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kerszberg, D.; Khélifi, B.; Kieffer, M.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu; Kosack, K.; Krakau, S.; Kraus, M.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morâ, K.; Moulin, E.; Murach, T.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Öttl, S.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.

    2018-05-01

    PKS 0625-354 (z = 0.055) was observed with the four High Energy Stereoscopic System (H.E.S.S.) telescopes in 2012 during 5.5 h. The source was detected above an energy threshold of 200 GeV at a significance level of 6.1σ. No significant variability is found in these observations. The source is well described with a power-law spectrum with photon index Γ = 2.84 ± 0.50stat ± 0.10syst and normalization (at E0 = 1.0 TeV) N0(E0) = (0.58 ± 0.22stat ± 0.12syst) × 10-12 TeV-1 cm-2 s-1. Multiwavelength data collected with Fermi-LAT, Swift-XRT, Swift-UVOT, ATOM and WISE are also analysed. Significant variability is observed only in the Fermi-LAT γ-ray and Swift-XRT X-ray energy bands. Having a good multiwavelength coverage from radio to very high energy, we performed a broad-band modelling from two types of emission scenarios. The results from a one zone lepto-hadronic and a multizone leptonic models are compared and discussed. On the grounds of energetics, our analysis favours a leptonic multizone model. Models associated to the X-ray variability constraint support previous results, suggesting a BL Lac nature of PKS 0625-354 with, however, a large-scale jet structure typical of a radio galaxy.

  17. Microwave-assisted synthesis of NiS2 nanostructures for supercapacitors and cocatalytic enhancing photocatalytic H2 production.

    PubMed

    Pang, Huan; Wei, Chengzhen; Li, Xuexue; Li, Guochang; Ma, Yahui; Li, Sujuan; Chen, Jing; Zhang, Jiangshan

    2014-01-06

    Uniform NiS2 nanocubes are successfully synthesized with a microwave-assisted method. Interestingly, NiS2 nanocubes, nanospheres and nanoparticles are obtained by controlling microwave reaction time. NiS2 nanomaterials are primarily applied to supercapacitors and cocatalytic enhancing photocatalytic H2 production. Different morphologies of NiS2 nanostructures show different electrochemical and cocatalytic enhancing H2 production activities. Benefited novel nanostructures, NiS2 nanocube electrodes show a large specific capacitance (695 F g(-1) at 1.25 A g(-1)) and excellent cycling performance (the retention 93.4% of initial specific capacitance after 3000 cycles). More importantly, NiS2 nanospheres show highly cocatalytic enhancing photocatalytic for H2 evolution, in which the photocatalytic H2 production is up to 3400 μmol during 12 hours under irradiation of visible light (λ>420 nm) with an average H2 production rate of 283 μmol h(-1).

  18. Microwave-assisted synthesis of NiS2 nanostructures for supercapacitors and cocatalytic enhancing photocatalytic H2 production

    NASA Astrophysics Data System (ADS)

    Pang, Huan; Wei, Chengzhen; Li, Xuexue; Li, Guochang; Ma, Yahui; Li, Sujuan; Chen, Jing; Zhang, Jiangshan

    2014-01-01

    Uniform NiS2 nanocubes are successfully synthesized with a microwave-assisted method. Interestingly, NiS2 nanocubes, nanospheres and nanoparticles are obtained by controlling microwave reaction time. NiS2 nanomaterials are primarily applied to supercapacitors and cocatalytic enhancing photocatalytic H2 production. Different morphologies of NiS2 nanostructures show different electrochemical and cocatalytic enhancing H2 production activities. Benefited novel nanostructures, NiS2 nanocube electrodes show a large specific capacitance (695 F g-1 at 1.25 A g-1) and excellent cycling performance (the retention 93.4% of initial specific capacitance after 3000 cycles). More importantly, NiS2 nanospheres show highly cocatalytic enhancing photocatalytic for H2 evolution, in which the photocatalytic H2 production is up to 3400 μmol during 12 hours under irradiation of visible light (λ>420 nm) with an average H2 production rate of 283 μmol h-1.

  19. Emissions of sulfur gases from marine and freshwater wetlands of the Florida Everglades: Rates and extrapolation using remote sensing

    NASA Technical Reports Server (NTRS)

    Hines, Mark E.; Pelletier, Ramona E.; Crill, Patrick M.

    1992-01-01

    Rates of emissions of the biogenic sulfur (S) gases carbonyl sulfide (COS), methyl mercaptan (MSH), dimethyl sulfide (DMS), and carbon disulfide (CS2) were measured in a variety of marine and freshwater wetland habitats in the Florida Everglades during a short duration period in October using dynamic chambers, cryotrapping techniques, and gas chromatography. The most rapid emissions of greater than 500 nmol/m(sup -2)h(sup -1) occurred in red mangrove-dominated sites that were adjacent to open seawater and contained numerous crab burrows. Poorly drained red mangrove sites exhibited lower fluxes of approximately 60 nmol/m(sup -2)h(sup -1) which were similar to fluxes from the black mangrove areas which dominated the marine-influenced wetland sites in the Everglades. DMS was the dominant organo-S gas emitted especially in the freshwater areas. Spectral data from a scene from the Landsat thematic mapper were used to map habitats in the Everglades. Six vegetation categories were delineated using geographical information system software and S gas emission were extrapolated for the entire Everglades National Park. The black mangrove-dominated areas accounted for the largest portion of S gas emissions to the area. The large area extent of the saw grass communities (42 percent) accounted for approximately 24 percent of the total S emissions.

  20. Quantifying Molecular Hydrogen Emissions and an Industrial Leakage Rate for the South Coast Air Basin of California

    NASA Astrophysics Data System (ADS)

    Irish, M. C.; Schroeder, J.; Beyersdorf, A. J.; Blake, D. R.

    2015-12-01

    The poorly understood atmospheric budget and distribution of molecular hydrogen (H2) have invited further research since the discovery that emissions from a hydrogen-based economy could have negative impacts on the global climate system and stratospheric ozone. The burgeoning fuel cell electric vehicle industry in the South Coast Air Basin of California (SoCAB) presents an opportunity to observe and constrain urban anthropogenic H2 emissions. This work presents the first H2 emissions estimate for the SoCAB and calculates an upper limit for the current rate of leakage from production and distribution infrastructure within the region. A top-down method utilized whole air samples collected during the Student Airborne Research Program (SARP) onboard the NASA DC-8 research aircraft from 23-25 June 2015 to estimate H2 emissions from combustion and non-combustion sources. H2:carbon monoxide (CO) and H2:carbon dioxide ratios from airborne observations were compared with experimentally established ratios from pure combustion source ratios and scaled with the well-constrained CO emissions inventory to yield H2 emissions of 24.9 ± 3.6 Gg a-1 (1σ) from combustion engines and 8.2 ± 4.7 Gg a-1 from non-combustion sources. Total daily production of H2 in the SoCAB was compared with the top-down results to estimate an upper limit leakage rate (5%) where all emissions not accounted for by incomplete combustion in engines were assumed to be emitted from H2 infrastructure. For bottom-up validation, the NOAA Hybrid Single Particle Lagrangian Integrated Trajectory dispersion model was run iteratively with all known stationary sources in attempt to constrain emissions. While this investigation determined that H2 emissions from non-combustion sources in the SoCAB are likely significant, more in-depth analysis is required to better predict the atmospheric implications of a hydrogen economy.

  1. Rate constants for CF{sub 3} + H{sub 2} {r_arrow} CF{sub 3}H + H and CF{sub 3}H + H {r_arrow} CF{sub 3} + H{sub 2} reactions in the temperature range 1100--1600 K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hranisavljevic, J.; Michael, J.V.

    1998-09-24

    The shock tube technique coupled with H-atom atomic resonance absorption spectrometry has been used to study the reactions (1) CF{sub 3} + H{sub 2} {r_arrow} CF{sub 3}H + H and (2) CF{sub 3}H + H {r_arrow} CF{sub 3} + H{sub 2} over the temperature ranges 1168--1673 K and 1111--1550 K, respectively. The results can be represented by the Arrhenius expressions k{sub 1} = 2.56 {times} 10{sup {minus}11} exp({minus}8549K/T) and k{sub 2} = 6.13 {times} 10{sup {minus}11} exp({minus}7364K/T), both in cm{sup 3} molecule{sup {minus}1} s{sup {minus}1}. Equilibrium constants were calculated from the two Arrhenius expressions in the overlapping temperature range, andmore » good agreement was obtained with the literature values. The rate constants for reaction 2 were converted into rate constants for reaction 1 using literature equilibrium constants. These data are indistinguishable from direct k{sub 1} measurements, and an Arrhenius fit for the joint set is k{sub 1} = 1.88 {times} 10{sup {minus}11} exp({minus}8185K/T) cm{sup 3} molecule{sup {minus}1} s{sup {minus}1}. The CF{sub 3} + H{sub 2} {r_arrow} CF{sub 3}H + H reaction was further modeled using conventional transition-state theory, which included ab initio electronic structure determinations of reactants, transition state, and products.« less

  2. Removal of H2S in down-flow GAC biofiltration using sulfide oxidizing bacteria from concentrated latex wastewater.

    PubMed

    Rattanapan, Cheerawit; Boonsawang, Piyarat; Kantachote, Duangporn

    2009-01-01

    A biofiltration system with sulfur oxidizing bacteria immobilized on granular activated carbon (GAC) as packing materials had a good potential when used to eliminate H(2)S. The sulfur oxidizing bacteria were stimulated from concentrated latex wastewater with sulfur supplement under aerobic condition. Afterward, it was immobilized on GAC to test the performance of cell-immobilized GAC biofilter. In this study, the effect of inlet H(2)S concentration, H(2)S gas flow rate, air gas flow rate and long-term operation on the H(2)S removal efficiency was investigated. In addition, the comparative performance of sulfide oxidizing bacterium immobilized on GAC (biofilter A) and GAC without cell immobilization (biofilter B) systems was studied. It was found that the efficiency of the H(2)S removal was more than 98% even at high concentrations (200-4000 ppm) and the maximum elimination capacity was about 125 g H(2)S/m(3)of GAC/h in the biofilter A. However, the H(2)S flow rate of 15-35 l/h into both biofilters had little influence on the efficiency of H(2)S removal. Moreover, an air flow rate of 5.86 l/h gave complete removal of H(2)S (100%) in biofilter A. During the long-term operation, the complete H(2)S removal was achieved after 3-days operation in biofilter A and remained stable up to 60-days.

  3. A neural network potential energy surface for the NaH2 system and dynamics studies on the H(2S) + NaH(X1Σ+) → Na(2S) + H2(X1Σg+) reaction.

    PubMed

    Wang, Shufen; Yuan, Jiuchuang; Li, Huixing; Chen, Maodu

    2017-08-02

    In order to study the dynamics of the reaction H( 2 S) + NaH(X 1 Σ + ) → Na( 2 S) + H 2 (X 1 Σ g + ), a new potential energy surface (PES) for the ground state of the NaH 2 system is constructed based on 35 730 ab initio energy points. Using basis sets of quadruple zeta quality, multireference configuration interaction calculations with Davidson correction were carried out to obtain the ab initio energy points. The neural network method is used to fit the PES, and the root mean square error is very small (0.00639 eV). The bond lengths, dissociation energies, zero-point energies and spectroscopic constants of H 2 (X 1 Σ g + ) and NaH(X 1 Σ + ) obtained on the new NaH 2 PES are in good agreement with the experiment data. On the new PES, the reactant coordinate-based time-dependent wave packet method is applied to study the reaction dynamics of H( 2 S) + NaH(X 1 Σ + ) → Na( 2 S) + H 2 (X 1 Σ g + ), and the reaction probabilities, integral cross-sections (ICSs) and differential cross-sections (DCSs) are obtained. There is no threshold in the reaction due to the absence of an energy barrier on the minimum energy path. When the collision energy increases, the ICSs decrease from a high value at low collision energy. The DCS results show that the angular distribution of the product molecules tends to the forward direction. Compared with the LiH 2 system, the NaH 2 system has a larger mass and the PES has a larger well at the H-NaH configuration, which leads to a higher ICS value in the H( 2 S) + NaH(X 1 Σ + ) → Na( 2 S) + H 2 (X 1 Σ g + ) reaction. Because the H( 2 S) + NaH(X 1 Σ + ) → Na( 2 S) + H 2 (X 1 Σ g + ) reaction releases more energy, the product molecules can be excited to a higher vibrational state.

  4. Tunneling Rate Constants for H2CO+H on Amorphous Solid Water Surfaces

    NASA Astrophysics Data System (ADS)

    Song, Lei; Kästner, Johannes

    2017-12-01

    Formaldehyde (H2CO) is one of the most abundant molecules observed in the icy mantle covering interstellar grains. Studying its evolution can contribute to our understanding of the formation of complex organic molecules in various interstellar environments. In this work, we investigated the hydrogenation reactions of H2CO yielding CH3O, CH2OH, and the hydrogen abstraction resulting in H2+HCO on an amorphous solid water (ASW) surface using a quantum mechanics/molecular mechanics (QM/MM) model. The binding energies of H2CO on the ASW surface vary broadly, from 1000 to 9370 K. No correlation was found between binding energies and activation energies of hydrogenation reactions. Combining instanton theory with QM/MM modeling, we calculated rate constants for the Langmuir-Hinshelwood and the Eley-Rideal mechanisms for the three product channels of H+H2CO surface reactions down to 59 K. We found that the channel producing CH2OH can be ignored, owing to its high activation barrier leading to significantly lower rates than the other two channels. The ASW surface influences the reactivity in favor of formation of CH3O (branching ratio ˜80%) and hinders the H2CO dissociation into H2+HCO. In addition, kinetic isotope effects are strong in all reaction channels and vary strongly between the channels. Finally, we provide fits of the rate constants to be used in astrochemical models.

  5. Removal of H2S pollutant from gasifier syngas by a multistage dual-flow sieve plate column wet scrubber.

    PubMed

    Kurella, Swamy; Bhukya, Pawan Kishan; Meikap, B C

    2017-05-12

    The objective of this study was to observe the performance of a lab-scale three-stage dual-flow sieve plate column scrubber for hydrogen sulfide (H 2 S) gas removal from a gas stream, in which the H 2 S concentration was similar to that of gasifier syngas. The tap water was used as scrubbing liquid. The gas and liquid were operated at flow rates in the range of 16.59 × 10 -4 -27.65 × 10 -4 Nm 3 /s and 20.649 × 10 -6 -48.183 × 10 -6 m 3 /s, respectively. The effects of gas and liquid flow rates on the percentage removal of H 2 S were studied at 50-300 ppm inlet concentrations of H 2 S. The increase in liquid flow rate, gas flow rate and inlet H 2 S concentration increased the percentage removal of H 2 S. The maximum of 78.88% removal of H 2 S was observed at 27.65 × 10 -4 Nm 3 /s gas flow rate and 48.183 × 10 -6 m 3 /s liquid flow rate for 300 ppm inlet concentration of H 2 S. A model has also been developed to predict the H 2 S gas removal by using the results from the experiments and adding the parameters that affect the scrubber's performance. The deviations between experimental and predicted H 2 S percentage removal values were observed as less than 16%.

  6. Passive emission colorimetric sensor (PECS) for measuring emission rates of formaldehyde based on an enzymatic reaction and reflectance photometry.

    PubMed

    Shinohara, Naohide; Kajiwara, Tomohisa; Ohnishi, Masato; Kodama, Kenichi; Yanagisawa, Yukio

    2008-06-15

    A coin-sized passive emission colorimetric sensor (PECS) based on an enzymatic reaction and a portable reflectance photometry device were developed to determine the emission rates of formaldehyde from building materials and other materials found indoors in only 30 minutes on-site. The color change of the PECS linearly correlated to the concentration of formaldehyde aqueous solutions up to 28 microg/mL. The correlation between the emission rates measured by using the PECS and those measured by using a desiccator method or by using a chamber method was fitted with a linear function and a power function, and the determination coefficients were more than 0.98. The reproducible results indicate that the emission rates could be obtained with the correlation equations from the data measured by using the PECS and the portable reflectance photometry device. Limits of detection (LODs) were 0.051 mg/L for the desiccator method and 3.1 microg/m2/h for the chamber method. Thus, it was confirmed that the emission rates of formaldehyde from the building materials classified as F four-star (< 0.3 mg/L (desiccator method) or < 5.0 microg/m2/h (chamber method)), based on Japanese Industrial Standards (JIS), could be measured with the PECS. The measurement with PECS was confirmed to be precise (RSD < 10%). Other chemicals emitted from indoor materials, such as methanol, ethanol, acetone, toluene, and xylene, interfered little with the measurement of formaldehyde emission rates by using the PECS.

  7. Halocarbon emissions by selected tropical seaweeds: species-specific and compound-specific responses under changing pH.

    PubMed

    Mithoo-Singh, Paramjeet Kaur; Keng, Fiona S-L; Phang, Siew-Moi; Leedham Elvidge, Emma C; Sturges, William T; Malin, Gill; Abd Rahman, Noorsaadah

    2017-01-01

    Five tropical seaweeds, Kappaphycus alvarezii (Doty) Doty ex P.C. Silva, Padina australis Hauck, Sargassum binderi Sonder ex J. Agardh (syn. S. aquifolium (Turner) C. Agardh), Sargassum siliquosum J. Agardh and Turbinaria conoides (J. Agardh) Kützing, were incubated in seawater of pH 8.0, 7.8 (ambient), 7.6, 7.4 and 7.2, to study the effects of changing seawater pH on halocarbon emissions. Eight halocarbon species known to be emitted by seaweeds were investigated: bromoform (CHBr 3 ), dibro-momethane (CH 2 Br 2 ), iodomethane (CH 3 I), diiodomethane (CH 2 I 2 ), bromoiodomethane (CH 2 BrI), bromochlorometh-ane (CH 2 BrCl), bromodichloromethane (CHBrCl 2 ), and dibro-mochloromethane (CHBr 2 Cl). These very short-lived halocarbon gases are believed to contribute to stratospheric halogen concentrations if released in the tropics. It was observed that the seaweeds emit all eight halocarbons assayed, with the exception of K. alvarezii and S. binderi for CH 2 I 2 and CH 3 I respectively, which were not measurable at the achievable limit of detection. The effect of pH on halocarbon emission by the seaweeds was shown to be species-specific and compound specific. The highest percentage changes in emissions for the halocarbons of interest were observed at the lower pH levels of 7.2 and 7.4 especially in Padina australis and Sargassum spp., showing that lower seawater pH causes elevated emissions of some halocarbon compounds. In general the seaweed least affected by pH change in terms of types of halocarbon emission, was P. australis . The commercially farmed seaweed K. alvarezii was very sensitive to pH change as shown by the high increases in most of the compounds in all pH levels relative to ambient. In terms of percentage decrease in maximum quantum yield of photosynthesis ( F v ∕ F m ) prior to and after incubation, there were no significant correlations with the various pH levels tested for all seaweeds. The correlation between percentage decrease in the maximum

  8. Halocarbon emissions by selected tropical seaweeds: species-specific and compound-specific responses under changing pH

    PubMed Central

    Leedham Elvidge, Emma C.; Sturges, William T.; Malin, Gill; Abd Rahman, Noorsaadah

    2017-01-01

    Five tropical seaweeds, Kappaphycus alvarezii (Doty) Doty ex P.C. Silva, Padina australis Hauck, Sargassum binderi Sonder ex J. Agardh (syn. S. aquifolium (Turner) C. Agardh), Sargassum siliquosum J. Agardh and Turbinaria conoides (J. Agardh) Kützing, were incubated in seawater of pH 8.0, 7.8 (ambient), 7.6, 7.4 and 7.2, to study the effects of changing seawater pH on halocarbon emissions. Eight halocarbon species known to be emitted by seaweeds were investigated: bromoform (CHBr3), dibro­momethane (CH2Br2), iodomethane (CH3I), diiodomethane (CH2I2), bromoiodomethane (CH2BrI), bromochlorometh­ane (CH2BrCl), bromodichloromethane (CHBrCl2), and dibro­mochloromethane (CHBr2Cl). These very short-lived halocarbon gases are believed to contribute to stratospheric halogen concentrations if released in the tropics. It was observed that the seaweeds emit all eight halocarbons assayed, with the exception of K. alvarezii and S. binderi for CH2I2 and CH3I respectively, which were not measurable at the achievable limit of detection. The effect of pH on halocarbon emission by the seaweeds was shown to be species-specific and compound specific. The highest percentage changes in emissions for the halocarbons of interest were observed at the lower pH levels of 7.2 and 7.4 especially in Padina australis and Sargassum spp., showing that lower seawater pH causes elevated emissions of some halocarbon compounds. In general the seaweed least affected by pH change in terms of types of halocarbon emission, was P. australis. The commercially farmed seaweed K. alvarezii was very sensitive to pH change as shown by the high increases in most of the compounds in all pH levels relative to ambient. In terms of percentage decrease in maximum quantum yield of photosynthesis (Fv∕Fm) prior to and after incubation, there were no significant correlations with the various pH levels tested for all seaweeds. The correlation between percentage decrease in the maximum quantum yield of photosynthesis

  9. Effect of H2O on the NO emission characteristics of pulverized coal during oxy-fuel combustion.

    PubMed

    Lei, Ming; Sun, Cen; Zou, Chan; Mi, Hang; Wang, Chunbo

    2018-04-01

    The NO emission characteristics of Datong bituminous coal and Yangquan anthracite in O 2 /H 2 O/CO 2 atmospheres were investigated by using a fixed-bed reactor system, and the emission characteristics were compared with the experimental results from O 2 /N 2 and O 2 /CO 2 atmospheres, especially at low O 2 concentrations and high temperatures. The results showed that NO emissions of pulverized coal in O 2 /CO 2 environments were less than those in the O 2 /N 2 environments, regardless of the O 2 concentration and the furnace temperature. Adding H 2 O decreased the possibility of reactions between the reductive groups (NH) and the oxygen radical during devolatilization, which led to a decrease in NO emissions at 1000 °C. However, as the furnace temperature increased, "additional" nitrogen precursors (HCN and NH 3 ) generated by enhanced char-H 2 O gasification were quickly oxidized to generate a large amount of NO during char oxidation that exceeded the amount of NO reduced by NH during devolatilization. Thus, the NO emissions in O 2 /CO 2 /H 2 O atmosphere were higher than those in O 2 /CO 2 atmosphere at a low O 2 concentration. However, as the O 2 concentration increased, the NO emissions in O 2 /CO 2 /H 2 O atmosphere became lower than those in O 2 /CO 2 atmosphere because the effect of H 2 O gasification became weaker. The NO emissions of Yangquan anthracite (YQ) were higher than those of DT, but the changing trend of YQ was similar to that of DT.

  10. Seasonal variations in VOC emission rates from gorse (Ulex europaeus)

    NASA Astrophysics Data System (ADS)

    Boissard, C.; Cao, X.-L.; Juan, C.-Y.; Hewitt, C. N.; Gallagher, M.

    Seasonal variations of biogenic volatile organic compound (VOC) emission rates and standardised emission factors from gorse (Ulex europaeus) have been measured at two sites in the United Kingdom, from October 1994 to September 1995, within temperature and PAR conditions ranging from 3 to 34°C and 10-1300 μmol m-2 s-1, respectively. Isoprene was the dominant emitted compound with a relative composition fluctuating from 7% of the total VOC (winter) to 97% (late summer). The monoterpenes α-pinene, camphene, sabinene, β-pinene, myrcene, limonene, trans-ocimene and γ-terpinene were also emitted, with α-pinene being the dominant monoterpene during most the year. Trans-ocimene represented 33-66% of the total monoterpene during the hottest months from June to September. VOC emissions were found to be accurately predicted using existing algorithms. Standard (normalised) emission factors of VOCs from gorse were calculated using experimental parameters measured during the experiment and found to fluctuate with season, from 13.3±2.1 to 0.1±0.1 μg C (g dwt)-1 h-1 in August 1995 and January 1995, respectively, for isoprene, and from 2.5±0.2 to 0.4±0.2 μg C (g dwt)-1 h-1 in July and November 1995, respectively, for total monoterpenes. No simple clear relation was found to allow prediction of these seasonal variations with respect to temperature and light intensity. The effects of using inappropriate algorithms to derive VOC fluxes from gorse were assessed for isoprene and monoterpenes. Although on an annual basis the discrepancies are not significant, monthly estimation of isoprene were found to be overestimated by more than a factor of 50 during wintertime when the seasonality of emission factors is not considered.

  11. Simultaneous absorption of CO2 and H2S into aqueous blends of N-methyldiethanolamine and diethanolamine.

    PubMed

    Mandald, Bishnupada; Bandyopadhyay, Shyamalendu S

    2006-10-01

    Removal of CO2 from gaseous streams by absorption with chemical reaction in the liquid phase is usually employed in industry as a method to retain atmospheric CO2 to combat the greenhouse effect. A broad spectrum of alkanolamines and, more recently, their mixtures are being employed for the removal of acid gases such as CO2, H2S, and COS from natural and industrial gas streams. In this research, simultaneous absorption of CO2 and H2S into aqueous blends of N-methyldiethanolamine and diethanolamine is studied theoretically and experimentally. The effect of contact time, temperature, and amine concentration on the rate of absorption and the selectivity were studied by absorption experiments in a wetted wall column at atmospheric pressure and constant feed gas ratio. The diffusion-reaction processes for CO2 and H2S mass transfer in blended amines are modeled according to Higbie's penetration theory with the assumption that all reactions are reversible. A rigorous parametric sensitivity test is done to quantify the effects of possible errors in the pertinent model parameters on the prediction accuracy of the absorption rates and enhancement factors. Model results based on the kinetics-equilibrium-mass transfer coupled model developed in this work are found to be in good agreement with the experimental results of rates of absorption of CO2 and H2S into (MDEA + DEA + H2O).

  12. High resolution emission Fourier transform infrared spectra of the 4p-5s and 5p-6s bands of ArH.

    PubMed

    Baskakov, O I; Civis, S; Kawaguchi, K

    2005-03-15

    In the 2500-8500 cm(-1) region several strong emission bands of (40)ArH were observed by Fourier transform spectroscopy through a dc glow discharge in a mixture of argon and hydrogen. Rotational-electronic transitions of the two previously unstudied 4p-5s and 5p-6s,v = 0-0, bands of (40)ArH were measured and assigned in the 6060 and 3770 cm(-1) regions, respectively. A simultaneous fit of the emission transitions of the 4p-5s and 5p-6s bands and an extended set of transitions of the 6s-4p band observed by Dabrowski, Tokaryk, and Watson [J. Mol. Spectrosc. 189, 95 (1998)] and remeasured in the present work yielded consistent values of the spectroscopic parameters of the electronic states under investigation. In the branch of the 4p-5s band with transitions of type (Q)Q(f(3)e) we observed a narrowing in the linewidths with increasing rotational quantum number N. The rotational dependence of the linewidth is caused by predissociation of the 5s state by the repulsive ground 4s state through homogeneous coupling and changes in overlap integrals of the vibrational wave functions with the rotational level. Analysis was based on the Fermi's golden rule approximation model. In the 4p-5s band region a vibrational sequence ofv(')-v(")=1-1, 2-2, and 3-3 were recorded and a number of transitions belonging to the strongest (Q)Q(f(3)e) form branch of the 1-1 band were analyzed.

  13. Species-to-species rate coefficients for the H3+ + H2 reacting system

    NASA Astrophysics Data System (ADS)

    Sipilä, O.; Harju, J.; Caselli, P.

    2017-10-01

    Aims: We study whether or not rotational excitation can make a large difference to chemical models of the abundances of the H3+ isotopologs, including spin states, in physical conditions corresponding to starless cores and protostellar envelopes. Methods: We developed a new rate coefficient set for the chemistry of the H3+ isotopologs, allowing for rotational excitation, using previously published state-to-state rate coefficients. These new so-called species-to-species rate coefficients are compared with previously-used ground-state-to-species rate coefficients by calculating chemical evolution in variable physical conditions using a pseudo-time-dependent chemical code. Results: We find that the new species-to-species model produces different results to the ground state-to-species model at high density and toward increasing temperatures (T> 10 K). The most prominent difference is that the species-to-species model predicts a lower H3+ deuteration degree at high density owing to an increase of the rate coefficients of endothermic reactions that tend to decrease deuteration. For example at 20 K, the ground-state-to-species model overestimates the abundance of H2D+ by a factor of about two, while the abundance of D3+ can differ by up to an order of magnitude between the models. The spin-state abundance ratios of the various H3+ isotopologs are also affected, and the new model better reproduces recent observations of the abundances of ortho and para H2D+ and D2H+. The main caveat is that the applicability regime of the new rate coefficients depends on the critical densities of the various rotational transitions which vary with the abundances of the species and the temperature in dense clouds. Conclusions: The difference in the abundances of the H3+ isotopologs predicted by the species-to-species and ground state-to-species models is negligible at 10 K corresponding to physical conditions in starless cores, but inclusion of the excited states is very important in studies

  14. Microwave-assisted synthesis of NiS2 nanostructures for supercapacitors and cocatalytic enhancing photocatalytic H2 production

    PubMed Central

    Pang, Huan; Wei, Chengzhen; Li, Xuexue; Li, Guochang; Ma, Yahui; Li, Sujuan; Chen, Jing; Zhang, Jiangshan

    2014-01-01

    Uniform NiS2 nanocubes are successfully synthesized with a microwave-assisted method. Interestingly, NiS2 nanocubes, nanospheres and nanoparticles are obtained by controlling microwave reaction time. NiS2 nanomaterials are primarily applied to supercapacitors and cocatalytic enhancing photocatalytic H2 production. Different morphologies of NiS2 nanostructures show different electrochemical and cocatalytic enhancing H2 production activities. Benefited novel nanostructures, NiS2 nanocube electrodes show a large specific capacitance (695 F g−1 at 1.25 A g−1) and excellent cycling performance (the retention 93.4% of initial specific capacitance after 3000 cycles). More importantly, NiS2 nanospheres show highly cocatalytic enhancing photocatalytic for H2 evolution, in which the photocatalytic H2 production is up to 3400 μmol during 12 hours under irradiation of visible light (λ>420 nm) with an average H2 production rate of 283 μmol h−1. PMID:24389929

  15. Explanation of the unusual temperature dependence of the atmospherically important OH + H(2)S --> H(2)O + HS reaction and prediction of the rate constant at combustion temperatures.

    PubMed

    Ellingson, Benjamin A; Truhlar, Donald G

    2007-10-24

    Rate constants for the OH + H2S --> H2O + HS reaction, which is important for both atmospheric chemistry and combustion, are calculated by direct dynamics with the M06-2X density functional using the MG3S basis set. Energetics are compared to high-level MCG3/3//MC-QCISD/3 wave function theory and to results obtained by other density functionals. We employ canonical variational transition-state theory with multidimensional tunneling contributions and scaled generalized normal-mode frequencies evaluated in redundant curvilinear coordinates with anharmonicity included in the torsion. The transition state has a quantum mechanically distinguishable, nonsuperimposable mirror image that corresponds to a separate classical reaction path; the effect of the multiple paths is examined through use of a symmetry number and by torsional methods. Calculations with the reference-potential Pitzer-Gwinn treatment of the torsional mode agree with experiment, within experimental scatter, and predict a striking temperature dependence of the activation energy, increasing from -0.1 kcal/mol at 200 K to 0.2, 1.0, 3.4, and 9.8 kcal/mol at 300, 500, 1000, and 2400 K. The unusual temperature dependence arises from a dynamical bottleneck at an energy below reactants, following an addition complex on the reaction path with a classical binding energy of 4.4 kcal/mol. As a way to check the mechanism, kinetic isotope effects of the OH + D2S and OD + D2S reactions have been predicted.

  16. Update on CO2 emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedingstein, P.; Houghton, R.A.; Marland, Gregg

    2010-12-01

    Emissions of CO2 are the main contributor to anthropogenic climate change. Here we present updated information on their present and near-future estimates. We calculate that global CO2 emissions from fossil fuel burning decreased by 1.3% in 2009 owing to the global financial and economic crisis that started in 2008; this is half the decrease anticipated a year ago1. If economic growth proceeds as expected2, emissions are projected to increase by more than 3% in 2010, approaching the high emissions growth rates that were observed from 2000 to 20081, 3, 4. We estimate that recent CO2 emissions from deforestation and othermore » land-use changes (LUCs) have declined compared with the 1990s, primarily because of reduced rates of deforestation in the tropics5 and a smaller contribution owing to forest regrowth elsewhere.« less

  17. A SPITZER SURVEY OF MID-INFRARED MOLECULAR EMISSION FROM PROTOPLANETARY DISKS. I. DETECTION RATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pontoppidan, Klaus M.; Blake, Geoffrey A.; Meijerink, Rowin

    2010-09-01

    We present a Spitzer InfraRed Spectrometer search for 10-36 {mu}m molecular emission from a large sample of protoplanetary disks, including lines from H{sub 2}O, OH, C{sub 2}H{sub 2}, HCN, and CO{sub 2}. This paper describes the sample and data processing and derives the detection rate of mid-infrared molecular emission as a function of stellar mass. The sample covers a range of spectral type from early M to A, and is supplemented by archival spectra of disks around A and B stars. It is drawn from a variety of nearby star-forming regions, including Ophiuchus, Lupus, and Chamaeleon. Spectra showing strong emissionmore » lines are used to identify which lines are the best tracers of various physical and chemical conditions within the disks. In total, we identify 22 T Tauri stars with strong mid-infrared H{sub 2}O emission. Integrated water line luminosities, where water vapor is detected, range from 5 x 10{sup -4} to 9 x 10{sup -3} L{sub sun}, likely making water the dominant line coolant of inner disk surfaces in classical T Tauri stars. None of the five transitional disks in the sample show detectable gaseous molecular emission with Spitzer upper limits at the 1% level in terms of line-to-continuum ratios (apart from H{sub 2}), but the sample is too small to conclude whether this is a general property of transitional disks. We find a strong dependence on detection rate with spectral type; no disks around our sample of 25 A and B stars were found to exhibit water emission, down to 1%-2% line-to-continuum ratios, in the mid-infrared, while more than half of disks around late-type stars (M-G) show sufficiently intense water emission to be detected by Spitzer, with a detection rate approaching 2/3 for disks around K stars. Some Herbig Ae/Be stars show tentative H{sub 2}O/OH emission features beyond 20 {mu}m at the 1%-2% level, however, and one of them shows CO{sub 2} in emission. We argue that the observed differences between T Tauri disks and Herbig Ae/Be disks are

  18. Broad N2H+ Emission toward the Protostellar Shock L1157-B1

    NASA Astrophysics Data System (ADS)

    Codella, C.; Viti, S.; Ceccarelli, C.; Lefloch, B.; Benedettini, M.; Busquet, G.; Caselli, P.; Fontani, F.; Gómez-Ruiz, A.; Podio, L.; Vasta, M.

    2013-10-01

    We present the first detection of N2H+ toward a low-mass protostellar outflow, namely, the L1157-B1 shock, at ~0.1 pc from the protostellar cocoon. The detection was obtained with the IRAM 30 m antenna. We observed emission at 93 GHz due to the J = 1-0 hyperfine lines. Analysis of this emission coupled with HIFI CHESS multiline CO observations leads to the conclusion that the observed N2H+(1-0) line originated from the dense (>=105 cm-3) gas associated with the large (20''-25'') cavities opened by the protostellar wind. We find an N2H+ column density of a few 1012 cm-2 corresponding to an abundance of (2-8) × 10-9. The N2H+ abundance can be matched by a model of quiescent gas evolved for more than 104 yr, i.e., for more than the shock kinematical age (sime2000 yr). Modeling of C-shocks confirms that the abundance of N2H+ is not increased by the passage of the shock. In summary, N2H+ is a fossil record of the pre-shock gas, formed when the density of the gas was around 104 cm-3, and then further compressed and accelerated by the shock.

  19. Evaluation of Stress Corrosion Resistance Properties of 15CrMoR(H) in H2S Environment

    NASA Astrophysics Data System (ADS)

    Zhang, Yiliang; Wang, Jing; Wu, Mingyao; Li, Shurui; Liu, Wenbin

    To evaluate the hydrogen resistant properties of the 15CrMoR(H) with new smelting process, according to NACE and National Standards, three tests including NACE standard tensile test, NACE standard bent-beam test and hydrogen induced cracking test are executed in saturated hydrogen sulfide(H2S) environment. Stress-life mathematical model of this material is given by analyzing and fitting the results of tensile test. Test results show that the threshold sth of tensile test is 0.7R eL(252MPa); the threshold nominal stress SC of bent-beam is higher than 4.5 R eL (1620MPa); for HIC test, the crack length rate CLR is 4.40%, the crack thickness rate CTR is 0.87% and the crack sensitive rate CSR is 0.04%. Compare with EFC standard, the safety margin of HIC test is 3.4, 3.4 and 37.5 times respectively. All the experimental results show that the new 15CrMoR(H) material has excellent H2S environmental cracking resistance properties.

  20. Working with "H2S": facts and apparent artifacts.

    PubMed

    Wedmann, Rudolf; Bertlein, Sarah; Macinkovic, Igor; Böltz, Sebastian; Miljkovic, Jan Lj; Muñoz, Luis E; Herrmann, Martin; Filipovic, Milos R

    2014-09-15

    Hydrogen sulfide (H2S) is an important signaling molecule with physiological endpoints similar to those of nitric oxide (NO). Growing interest in its physiological roles and pharmacological potential has led to large sets of contradictory data. The principle cause of these discrepancies can be the common neglect of some of the basic H2S chemistry. This study investigates how the experimental outcome when working with H2S depends on its source and dose and the methodology employed. We show that commercially available NaHS should be avoided and that traces of metal ions should be removed because these can reduce intramolecular disulfides and change protein structure. Furthermore, high H2S concentrations may lead to a complete inhibition of cell respiration, mitochondrial membrane potential depolarization and superoxide generation, which should be considered when discussing the biological effects observed upon treatment with high concentrations of H2S. In addition, we provide chemical evidence that H2S can directly react with superoxide. H2S is also capable of reducing cytochrome c(3+) with the concomitant formation of superoxide. H2S does not directly react with nitrite but with NO electrodes that detect H2S. In addition, H2S interferes with the Griess reaction and should therefore be removed from the solution by Cd(2+) or Zn(2+) precipitation prior to nitrite quantification. 2-Phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO) is reduced by H2S, and its use should be avoided in combination with H2S. All these constraints must be taken into account when working with H2S to ensure valid data. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Ultraviolet continuum and H2 fluorescent emission in Herbig-Haro objects 43 and 47

    NASA Technical Reports Server (NTRS)

    Schwartz, R. D.

    1983-01-01

    IUE short wavelength spectra are presented for the low excitation Herbig-Haro objects HH 43 and HH 47. In the former, several emission lines in the Lyman band of H2 from an excited state are observed which are due to fluorescence from the H Ly-alpha line pumping a lower state (that is in turn excited by a low-velocity shock wave). No evidence of highly ionized gas emission is found in the UV spectra, and both objects exhibit a UV continuum which peaks in the vicinity of 1500 A and is probably caused by H two-photon emission enhanced by low velocity shock collisional excitation.

  2. Line Profile of H Lyman-Beta Emission from Dissociative Excitation of H2

    NASA Technical Reports Server (NTRS)

    Ajello, Joseph M.; Ahmed, Syed M.; Liu, Xian-Ming

    1996-01-01

    A high-resolution ultraviolet spectrometer was employed for a measurement of the H Lyman-Beta(H L(sub Beta)) emission Doppler line profile at 1025.7 A from dissociative excitation of H2 by electron impact. Analysis of the deconvolved line profile reveals the existence of a narrow central peak, less than 30 mA full width at half maximum (FWHM), and a broad pedestal base about 260 mA FWHM. Analysis of the red wing of the line profile is complicated by a group of Wemer and Lyman rotational lines 160-220 mA from the line center. Analysis of the blue wing of the line profile gives the kinetic-energy distribution. There are two main kinetic-energy components to the H(3p) distribution: (1) a slow distribution with a peak value near 0 eV from singly excited states, and (2) a fast distribution with a peak contribution near 7 eV from doubly excited states. Using two different techniques, the absolute cross section of H L(sub Beta)p is found to be 3.2+/-.8 x 10(exp -19)sq cm at 100-eV electron impact energy. The experimental cross-section and line-profile results can be compared to previous studies of H(alpha) (6563.7 A) for principal quantum number n=3 and L(sub alpha)(1215.7 A) for n=2.

  3. Soil efflux and total emission rates of magmatic CO2 at the horseshoe lake tree kill, mammoth mountain, California, 1995-1999

    USGS Publications Warehouse

    Gerlach, T.M.; Doukas, M.P.; McGee, K.A.; Kessler, R.

    2001-01-01

    We report the results of eight soil CO2 efflux surveys by the closed circulation chamber method at the Horseshoe Lake tree kill (HLTK) - the largest tree kill on Mammoth Mountain. The surveys were undertaken from 1995 to 1999 to constrain total HLTK CO2 emissions and to evaluate occasional efflux surveys as a surveillance tool for the tree kills. HLTK effluxes range from 1 to > 10,000 g m -2 day -1 (grams CO2 per square meter per day); they are not normally distributed. Station efflux rates can vary by 7-35% during the course of the 8- to 16-h surveys. Disturbance of the upper 2 cm of ground surface causes effluxes to almost double. Semivariograms of efflux spatial covariance fit exponential or spherical models; they lack nugget effects. Efflux contour maps and total CO2 emission rates based on exponential, spherical, and linear kriging models of survey data are nearly identical; similar results are also obtained with triangulation models, suggesting that the kriging models are not seriously distorted by the lack of normal efflux distributions. In addition, model estimates of total CO2 emission rates are relatively insensitive to the measurement precision of the efflux rates and to the efflux value used to separate magmatic from forest soil sources of CO2. Surveys since 1997 indicate that, contrary to earlier speculations, a termination of elevated CO2 emissions at the HLTK is unlikely anytime soon. The HLTK CO2 efflux anomaly fluctuated greatly in size and intensity throughout the 1995-1999 surveys but maintained a N-S elongation, presumably reflecting fault control of CO2 transport from depth. Total CO2 emission rates also fluctuated greatly, ranging from 46 to 136 t day-1 (metric tons CO2 per day) and averaging 93 t day-1. The large inter-survey variations are caused primarily by external (meteorological) processes operating on time scales of hours to days. The externally caused variations can mask significant changes occurring at depth; a striking example is

  4. Emission of Volatile Sulfur Compounds from Spruce Trees 1

    PubMed Central

    Rennenberg, Heinz; Huber, Beate; Schröder, Peter; Stahl, Klaus; Haunold, Werner; Georgii, Hans-Walter; Slovik, Stefan; Pfanz, Hardy

    1990-01-01

    Spruce (Picea Abies L.) trees from the same clone were supplied with different, but low, amounts of plant available sulfate in the soil (9.7-18.1 milligrams per 100 grams of soil). Branches attached to the trees were enclosed in a dynamic gas exchange cuvette and analyzed for the emission of volatile sulfur compounds. Independent of the sulfate supply in the soil, H2S was the predominant reduced sulfur compound continuously emitted from the branches with high rates during the day and low rates in the night. In the light, as well as in the dark, the rates of H2S emission increased exponentially with increasing water vapor flux from the needles. Approximately 1 nanomole of H2S was found to be emitted per mole of water. When stomata were closed completely, only minute emission of H2S was observed. Apparently, H2S emission from the needles is highly dependent on stromatal aperture, and permeation through the cuticle is negligible. In several experiments, small amounts of dimethylsulfide and carbonylsulfide were also detected in a portion of the samples. However, SO2 was the only sulfur compound consistently emitted from branches of spruce trees in addition to H2S. Emission of SO2 mainly proceeded via an outburst starting before the beginning of the light period. The total amount of SO2 emitted from the needles during this outburst was correlated with the plant available sulfate in the soil. The diurnal changes in sulfur metabolism that may result in an outburst of SO2 are discussed. PMID:16667315

  5. Room-temperature H2S Gas Sensor Based on Au-doped ZnFe2O4 Yolk-shell Microspheres.

    PubMed

    Yan, Yin; Nizamidin, Patima; Turdi, Gulmira; Kari, Nuerguli; Yimit, Abliz

    2017-01-01

    Room-temperature type H 2 S sensing devices that use Au-doped ZnFe 2 O 4 yolk-shell microspheres as the active material have been fabricated using a solvothermal method as well as subsequent annealing and a chemical etching process. The samples are characterized using X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), field-emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscopy (XPS). The results demonstrate that the doping of Au does not change the spinel structure of the products, which were yolk-shell microspheres, while the particle size varied with the Au doping concentration. Also, the as-fabricated sensor device exhibited excellent selectivity toward H 2 S gas at the room temperature; the gas-sensing property of 2 wt% Au-doped ZnFe 2 O 4 microspheres was the best. The Au-doped ZnFe 2 O 4 yolk-shell microspheres can be promising as a sensing material for H 2 S gas detecting at room temperature.

  6. Rates of proton transfer to Fe-S-based clusters: comparison of clusters containing {MFe(mu(2)-S)(2)}n+ and {MFe(3)(mu(3)-S)(4)}n+ (M = Fe, Mo, or W) cores.

    PubMed

    Bates, Katie; Garrett, Brendan; Henderson, Richard A

    2007-12-24

    The rates of proton transfer from [pyrH]+ (pyr = pyrrolidine) to the binuclear complexes [Fe2S2Cl4]2- and [S2MS2FeCl2]2- (M = Mo or W) are reported. The reactions were studied using stopped-flow spectrophotometry, and the rate constants for proton transfer were determined from analysis of the kinetics of the substitution reactions of these clusters with the nucleophiles Br- or PhS- in the presence of [pyrH]+. In general, Br- is a poor nucleophile for these clusters, and proton transfer occurs before Br- binds, allowing direct measure of the rate of proton transfer from [pyrH]+ to the cluster. In contrast, PhS- is a better nucleophile, and a pathway in which PhS- binds preferentially to the cluster prior to proton transfer from [pyrH]+ usually operates. For the reaction of [Fe2S2Cl4]2- with PhS- in the presence of [pyrH]+ both pathways are observed. Comparison of the results presented in this paper with analogous studies reported earlier on cuboidal Fe-S-based clusters allows discussion of the factors which affect the rates of proton transfer in synthetic clusters including the nuclearity of the cluster core, the metal composition, and the nature of the terminal ligands. The possible relevance of these findings to the protonation sites of natural Fe-S-based clusters, including FeMo-cofactor from nitrogenase, are presented.

  7. 40 CFR 74.22 - Actual SO 2 emissions rate.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... calculations under this section based on data submitted under § 74.20 for the following calendar year: (1) For combustion sources that commenced operation prior to January 1, 1985, the calendar year for calculating the... January 1, 1985, the calendar year for calculating the actual SO2 emissions rate shall be the first year...

  8. 40 CFR 74.22 - Actual SO2 emissions rate.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... calculations under this section based on data submitted under § 74.20 for the following calendar year: (1) For combustion sources that commenced operation prior to January 1, 1985, the calendar year for calculating the... January 1, 1985, the calendar year for calculating the actual SO2 emissions rate shall be the first year...

  9. 40 CFR 74.22 - Actual SO2 emissions rate.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... calculations under this section based on data submitted under § 74.20 for the following calendar year: (1) For combustion sources that commenced operation prior to January 1, 1985, the calendar year for calculating the... January 1, 1985, the calendar year for calculating the actual SO2 emissions rate shall be the first year...

  10. 40 CFR 74.22 - Actual SO 2 emissions rate.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... calculations under this section based on data submitted under § 74.20 for the following calendar year: (1) For combustion sources that commenced operation prior to January 1, 1985, the calendar year for calculating the... January 1, 1985, the calendar year for calculating the actual SO2 emissions rate shall be the first year...

  11. Ozone depletion caused by NO and H2O emissions from hydrazine-fueled rockets

    NASA Astrophysics Data System (ADS)

    Ross, M. N.; Danilin, M. Y.; Weisenstein, D. K.; Ko, M. K. W.

    2004-11-01

    Rockets using unsymmetrical dimethyl hydrazine (N(CH3)2NH2) and dinitrogen tetroxide (N2O4) propellants account for about one third of all stratospheric rocket engine emissions, comparable to the solid-fueled rocket emissions. We use plume and global atmosphere models to provide the first estimate of the local and global ozone depletion caused by NO and H2O emissions from the Proton rocket, the largest hydrazine-fueled launcher in use. NO and H2O emission indices are assumed to be 20 and 350 g/kg (propellant), respectively. Predicted maximum ozone loss in the plume of the Proton rocket is 21% at 44 km altitude. Plume ozone loss at 20 km equals 8% just after launch and steadily declines to 2% by model sunset. Predicted steady state global ozone loss from ten Proton launches annually is 1.2 × 10-4%, with nearly all of the loss due to the NO component of the emission. Normalized by stratospheric propellant consumption, the global ozone depletion efficiency of the Proton is approximately 66-90 times less than that of solid-fueled rockets. In situ Proton plume measurements are required to validate assumed emission indices and to assess the role of rocket emissions not considered in these calculations. Such future studies would help to establish a formalism to evaluate the relative ozone depletion caused by different rocket engines using different propellants.

  12. Observation of temperatures and emission rates from the OH and O 2 nightglow over a southern high latitude station

    NASA Astrophysics Data System (ADS)

    Chung, J.-K.; Kim, Y. H.; Won, Y.-I.; Moon, B. K.; Oh, T. H.

    2006-01-01

    A Spectral Airglow Temperature Imager (SATI) was operated at King Sejong Station (62°13'S, 58°47'W), Korea Antarctic Research Station during the period of March, 2002-September, 2003. We analyze rotational temperatures and emission rates of the O 2 (0-1) and OH (6-2) nightglows obtained at 67 nights with clear sky lasting more than 4 h. A spectral analysis of the dataset shows two dominant oscillations with periods of 4 and 6 h. The 6-h oscillations have a nearly constant phase, whereas the 4-h oscillations have nearly random phases. Although the harmonic periods of both oscillations are suggestive of tidal origin, the 4-h oscillation may have interference by other sources such as gravity waves. The 6-h oscillations could be interpreted as zonally symmetric non-migrating tides because migrating tides except high order modes have very weak amplitudes at high latitudes according to the classical tidal theory. For most cases of the observed oscillations the temperature peak leads the intensity peak, which is consistent with theoretical models for zonally symmetric tides, but contrary to other theoretical models for waves. It is needed to resolve among theoretical models whether or not zonally symmetric tide cause temperature variation prior to intensity variation in mesospheric airglows.

  13. Electro-Chemical Behavior of Low Carbon Steel Under H2S Influence

    NASA Astrophysics Data System (ADS)

    Zaharia, M. G.; Stanciu, S.; Cimpoesu, R.; Nejneru, C.; Savin, C.; Manole, V.; Cimpoeșu, N.

    2017-06-01

    Abstract A commercial low carbon steel material (P265GH) with application at industrial scale for natural gas delivery and transportation systems was analyzed in H2S atmosphere. The article proposed a new experimental cell in order to establish the behavior of the material in sulfur contaminated environment. In most of the industrial processes for gas purification the corrosion rate is speed up by the presence of S (sulfur) especially as ions or species like H2S. The H2S (hydrogen sulfide) is, beside a very toxic compound, a very active element in the acceleration of metallic materials deterioration especially in complex solicitations like pressure and temperature in the same time. For experiments we used a three electrodes cell with Na2SO4 + Na2S solution at pH 3 at room temperature (∼ 25 °C) to realize EIS (electrochemical impedance spectroscopy) and potentio-dynamic polarization experiments. Scanning electron microscopy and X-ray dispersive energy spectroscopy were used to characterize the metallic material surface exposed to experimental environment.

  14. Stibiconite (Sb3O6OH), senarmontite (Sb2O3) and valentinite (Sb2O3): Dissolution rates at pH 2-11 and isoelectric points

    NASA Astrophysics Data System (ADS)

    Biver, M.; Shotyk, W.

    2013-05-01

    Batch reactor experiments were carried out in order to derive rate laws for the proton promoted dissolution of the main natural antimony oxide phases, namely stibiconite (idealized composition SbSb2O6OH), senarmontite (cubic Sb2O3) and (metastable) valentinite (orthorhombic Sb2O3) over the range 2 ⩽ pH ⩽ 11, under standard conditions and ionic strength I = 0.01 mol l-1. The rates of antimony release by stibiconite were r = (2.2 ± 0.2) × 10-9 a(H+)0.11±0.01 mol m-2 s-1 for 2.00 ⩽ pH ⩽ 4.74 and r = (4.3 ± 0.2) × 10-10 a(H+)-0.030±0.003 mol m-2 s-1 for 4.74 ⩽ pH ⩽ 10.54. The rates of dissolution of senarmontite were r = (5.3 ± 2.2) × 10-7 a(H+)0.54±0.05 mol m-2 s-1 for 2.00 ⩽ pH ⩽ 6.93 and r = (1.4 ± 0.3) × 10-14 a(H+)-0.53±0.07 mol m-2 s-1 for 6.93 ⩽ pH ⩽ 10.83. The rates of dissolution of valentinite were r = (6.3 ± 0.2) × 10-8 a(H+)0.052±0.003 mol m-2 s-1 for 1.97 ⩽ pH ⩽ 6.85. Above pH = 6.85, valentinite was found to dissolve at a constant rate of r = (2.79 ± 0.05) × 10-8 mol m-2 s-1. Activation energies were determined at selected pH values in the acidic and basic domain, over the temperature range 25-50 °C. The values for stibiconite are -10.6 ± 1.9 kJ mol-1 (pH = 2.00) and 53 ± 14 kJ mol-1 (pH = 8.7). For senarmontite, we found 46.6 ± 4.7 kJ mol-1 (pH = 3.0) and 68.1 ± 6.1 kJ mol-1 (pH = 9.9) and for valentinite 41.9 ± 1.1 kJ mol-1 (pH = 3.0) and 39.0 ± 4.6 kJ mol-1 (pH = 9.9). These activation energies are interpreted in the text. The solubility of stibiconite at 25 °C in the pH domain from 2 to 10 was determined; solubilities decrease from 452.0 μg l-1 (as Sb) at pH = 2.00 to 153.2 μg l-1 at pH = 7.55 and increase again in the basic region, up to 176.6 μg l-1 at pH = 9.92. A graphical synopsis of all the kinetic results, including those of stibnite (Sb2S3) from earlier work, is presented. This allows an easy comparison between the dissolution rates of stibnite and the minerals examined in the present work

  15. H- and He-like Charge-Exchange Induced X-ray Emission due to Ion Collisions with H, He, and H2

    NASA Astrophysics Data System (ADS)

    Cumbee, Renata; Mullen, Patrick; Miller, Ansley; Lyons, David; Shelton, Robin L.; Schultz, David R.; Stancil, Phillip C.; Leutenegger, Maurice A.

    2017-08-01

    When a hot plasma collides with a cold neutral gas interactions occur between the microscopic constituents including charge exchange (CX). CX is a process in which an electron can be transferred from a neutral atom or molecule into an excited energy level of an ion. Following this transfer, the excited electron relaxes to lower energy levels, emitting X-rays. This process has been established as a primary source of X-ray emission within our solar system, such as when the solar wind interacts with cometary and planetary atmospheres, and outside of our solar system, such as in the hot outflows of starburst galaxies.Since the CX X-ray emission spectrum varies greatly with collision velocity, it is critical that realistic CX data are included in X-ray spectral models of astrophysical environments in which CX might be significant in order to correctly estimate the ion abundance and plasma velocities. Here, line ratios and spectra are computed using theoretical CX cross sections obtained with the multi-channel Landau-Zener, atomic-orbital close-coupling, and classical-trajectory Monte Carlo methods for a variety of collision energies relevant to various astrophysical environments. Collisions of bare and H-like C, N, O, Ne, Mg, Al, Si, P, S, and Cl ions are shown with H, He, and H2 as the neutral collision targets. An X-ray model using line ratios for C-Si ions is then performed within XSPEC for a region of the Cygnus Loop supernova remnant for 8 collision energies in order to highlight the variation in CX spectral models with collision energy.R. Cumbee’s research was partially supported by an appointment to the NASA Postdoctoral Program at NASA GSFC, administered by Universities Space Research Association under contract with NASA. Work at UGA was partially supported by NASA grants NNX09AC46G and NNG09WF24I.

  16. Laser Measurements of the H Atom + Ozone Rate Constant at Atmospheric Temperatures

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Smith, G. P.; Peng, J.; Reppert, K. J.; Callahan, S. L.

    2015-12-01

    The exothermic H + O3 reaction produces OH(v) Meinel band emissions, used to derive mesospheric H concentrations and chemical heating rates. We have remeasured its rate constant to reduce resulting uncertainties and the measurement extend to lower mesospheric temperatures using modern laser techniques. H atoms are produced by pulsed ultraviolet laser trace photolysis of O3, followed by reaction of O(D) with added H2. A second, delayed, frequency-mixed dye laser measures the reaction decay rate with the remaining ozone by laser induced fluorescence. We monitor either the H atom decay by 2 photon excitation at 205 nm and detection of red fluorescence, or the OH(v=9) product time evolution with excitation of the B-X (0,9) band at 237 nm and emission in blue B-A bands. By cooling the enclosed low pressure flow cell we obtained measurements from 146-305 K. Small kinetic modeling corrections are made for secondary regeneration of H atoms. The results fully confirm the current NASA JPL recommendation for this rate constant, and establish its extrapolation down to the lower temperatures of the mesosphere. This work was supported by the NSF Aeronomy Program and an NSF Physics summer REU student grant.

  17. Mapping High-Velocity H-alpha and Lyman-alpha Emission from Supernova 1987A

    NASA Technical Reports Server (NTRS)

    France, Kevin; McCray, Richard; Fransson, Claes; Larsson, Josefin; Frank, Kari A.; Burrows, David N.; Challis, Peter; Kirshner, Robert P.; Chevalier, Roger A.; Garnavich, Peter; hide

    2015-01-01

    We present new Hubble Space Telescope images of high-velocity H-alpha and Lyman-alpha emission in the outer debris of SN 1987A. The H-alpha images are dominated by emission from hydrogen atoms crossing the reverse shock. For the first time we observe emission from the reverse shock surface well above and below the equatorial ring, suggesting a bipolar or conical structure perpendicular to the ring plane. Using the H-alpha imaging, we measure the mass flux of hydrogen atoms crossing the reverse shock front, in the velocity intervals (-7,500 < V(sub obs) < -2,800 km/s) and (1,000 < V(sub obs) < 7,500 km/s), ?M(sub H) = 1.2 × 10(exp -3) M/ y. We also present the first Lyman-alpha imaging of the whole remnant and new Chandra X-ray observations. Comparing the spatial distribution of the Lyman-alpha and X-ray emission, we observe that the majority of the high-velocity Lyman-alpha emission originates interior to the equatorial ring. The observed Lyman-alpha/H-alpha photon ratio, R(L-alpha/H-alpha) approx. = 17, is significantly higher than the theoretically predicted ratio of approx. = 5 for neutral atoms crossing the reverse shock front. We attribute this excess to Lyman-alpha emission produced by X-ray heating of the outer debris. The spatial orientation of the Lyman-alpha and X-ray emission suggests that X-ray heating of the outer debris is the dominant Lyman-alpha production mechanism in SN 1987A at this phase in its evolution.

  18. Investigation of H2S separation from H2S/CH4 mixtures using functionalized and non-functionalized vertically aligned carbon nanotube membranes

    NASA Astrophysics Data System (ADS)

    Gilani, Neda; Towfighi, Jafar; Rashidi, Alimorad; Mohammadi, Toraj; Omidkhah, Mohammad Reza; Sadeghian, Ahmad

    2013-04-01

    Separation of H2S from binary mixtures of H2S/CH4 using vertically aligned carbon nanotube membranes fabricated in anodic aluminum oxide (AAO) template was studied experimentally. Carbon nanotubes (CNTs) were grown in five AAO templates with different pore diameters using chemical vapor deposition, and CNT/AAO membranes with tubular carbon nanotube structure and open caps were selected for separation of H2S. For this, two tubular CNT/AAO membranes were fabricated with the CNT inner diameters of 23 and 8 nm. It was found that permeability and selectivity of the membrane with inner diameter of 23 nm for CNT were independent of upstream feed pressure and H2S feed concentration unlike that of CNT having an inner diameter of 8 nm. Selectivity of these membranes for separation of H2S was obtained in the ranges of 1.36-1.58 and 2.11-2.86, for CNTs with internal diameters of 23 and 8 nm, respectively. In order to enhance the separation of H2S from H2S/CH4 mixtures, dodecylamine was used to functionalize the CNT/AAO membrane with higher selectivity. The results showed that for amido-functionalized membrane, both upstream feed pressure and H2S partial pressure in the feed significantly increased H2S permeability, and selectivity for H2S being in the range of 3.0-5.57 respectively.

  19. Mid-infrared emissions of Pr{sup 3+}-doped GeS{sub 2}–Ga{sub 2}S{sub 3}–CdI{sub 2} chalcohalide glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Chunfeng; Guo, Haitao, E-mail: guoht_001@opt.ac.cn; Xu, Yantao

    2014-12-15

    Graphical abstract: ∼4.6 μm mid-infrared fluorescence emission from Pr{sup 3+} in the sulfide glass is successfully observed at room temperature excited by a 2.01 μm Tm{sup 3+}:YAG ceramic laser system. - Highlights: • Serial Pr{sup 3+}-doped GeS{sub 2}–Ga{sub 2}S{sub 3}–CdI{sub 2} chalcohalide glasses were synthesized. • ∼4.6 μm mid-infrared fluorescence from Pr{sup 3+} was observed at room temperature. • The compositional dependence of luminescence properties was studied. • Radiative properties have been determined using the Judd–Ofelt theory. - Abstract: For elucidation of the glass composition’s influence on the spectroscopic properties in the chalcohalide system and the discovery of a newmore » material for applications in mid-infrared fiber-lasers, a serial Pr{sup 3+}-doped (100 − x)(0.8GeS{sub 2}·0.2Ga{sub 2}S{sub 3})xCdI{sub 2} (x = 5, 10, 15 and 20) chalcohalide glasses were prepared. ∼4.6 μm mid-infrared fluorescence emission from Pr{sup 3+} in the sulfide glass is successfully observed at room temperature excited by a 2.01 μm Tm{sup 3+}:YAG ceramic laser system, and the effective line-width of fluorescence band is 106–227 nm. Intense compositional dependence of mid-infrared emissions is found. The radiative rates of Pr{sup 3+} ions in these glasses were calculated by using the Judd–Ofelt theory.« less

  20. Emission rates of organics from vegetation in California's Central Valley

    NASA Astrophysics Data System (ADS)

    Winer, Arthur M.; Arey, Janet; Atkinson, Roger; Aschmann, Sara M.; Long, William D.; Morrison, C. Lynn; Olszyk, David M.

    Rates of emission of speciated hydrocarbons have been determined for more than 30 of the most dominant (based on acreage) agricultural and natural plant types found in California's Central Valley. These measurements employed flow-through Teflon chambers, sample collection on solid adsorbent and thermal desorption gas chromatography (GC) and GC-mass spectrometry analysis to identify more than 40 individual organic compounds. In addition to isoprene and the monoterpenes, we observed sesquiterpenes, alcohols, acetates, aldehydes, ketones, ethers, esters, alkanes, alkenes and aromatics as emissions from these plant species. Mean emission rates for total monoterpenes ranged from none detected in the case of beans, grapes, rice and wheat, to as high as 12-30 μg h -1 g -1 for pistachio and tomato (normalized to dry leaf and total biomass, respectively). Other agricultural species exhibiting substantial rates of emission of monoterpenes included carrot, cotton, lemon, orange and walnut. All of the plant species studied showed total assigned compound emission rates in the range between 0.1 and 36 νg h -1 g -1.

  1. Photodegradation of 4-tert-butylphenol in aqueous solution by UV-C, UV/H2O2 and UV/S2O8(2-) system.

    PubMed

    Wu, Yanlin; Zhu, Xiufen; Chen, Hongche; Dong, Wenbo; Zhao, Jianfu

    2016-01-01

    The photolytic degradation of 4-tert-butylphenol (4-t-BP) in aqueous solution was investigated using three kinds of systems: UV-C directly photodegradation system, UV/H2O2 and UV/S2O8(2-) system. Under experimental conditions, the degradation rate of 4-t-BP was in the order: UV/S2O8(2-) > UV/H2O2 > UV-C. The reaction kinetics of UV/S2O8(2-) system were thoroughly investigated. The increase of S2O8(2-) concentration enhanced the 4-t-BP degradation rate, which was inhibited when the concentration of S2O8(2-) exceeded 4.0 mM. The highest efficacy in 4-t-BP degradation was obtained at pH 6.5. The oxidation rate of 4-t-BP could be accelerated by increasing the reaction temperature and irradiation intensity. The highest rate constant (kobs = 8.4 × 10(-2) min(-1)) was acquired when the reaction temperature was 45 °C. The irradiation intensity was measured by irradiation distance, and the optimum irradiation distance was 10 cm. Moreover, the preliminary mechanism of 4-t-BP degradation was studied. The bond scission of the 4-t-BP molecule occurred by the oxidation of SO4(•-), which dimerized and formed two main primary products. Under the conditions of room temperature (25 °C ± 1 °C) and low concentration of K2S2O8 (0.5 mM), 35.4% of total organic carbon (TOC) was removed after 8.5-h irradiation. The results showed that UV/S2O8(2-) system was effective for the degradation of 4-t-BP.

  2. Molecular structure studies of (1S,2S)-2-benzyl-2,3-dihydro-2-(1H-inden-2-yl)-1H-inden-1-ol

    PubMed Central

    Zhang, Tao; Paluch, Krzysztof; Scalabrino, Gaia; Frankish, Neil; Healy, Anne-Marie; Sheridan, Helen

    2015-01-01

    The single enantiomer (1S,2S)-2-benzyl-2,3-dihydro-2-(1H-inden-2-yl)-1H-inden-1-ol (2), has recently been synthesized and isolated from its corresponding diastereoisomer (1). The molecular and crystal structures of this novel compound have been fully analyzed. The relative and absolute configurations have been determined by using a combination of analytical tools including X-ray crystallography, X-ray Powder Diffraction (XRPD) analysis and Nuclear Magnetic Resonance (NMR) spectroscopy. PMID:25750458

  3. Enhancement of durability of NIR emission of Ag2S@ZnS QDs in water

    NASA Astrophysics Data System (ADS)

    Karimipour, M.; Bagheri, M.; Molaei, M.

    2017-11-01

    Stability of Ag2S@ZnS QDs in water is a crucial concern for their application in biology. In this work, both physical sustainability and emission stability of Ag2S QDs were enhanced using parameter optimization of a pulsed microwave irradiation (MI) method up to 105 days after their preparation. UV-Vis and photoluminescence spectroscopies depicted an absorption and emission about 817 nm and 878 nm, respectively. X-ray diffraction (XRD) analysis showed a growth of Ag2S acanthite phase. Transmission Electron Microscopy (TEM) images revealed a clear formation of Ag2S@ZnS core-shell structure.

  4. Emission of 2-methyl-3-buten-2-ol by pines: A potentially large natural source of reactive carbon to the atmosphere

    NASA Astrophysics Data System (ADS)

    Harley, Peter; Fridd-Stroud, Verity; Greenberg, James; Guenther, Alex; Vasconcellos, PéRola

    1998-10-01

    High rates of emission of 2-methyl-3-buten-2-ol (MBO) were measured from needles of several pine species. Emissions of MBO in the light were 1 to 2 orders of magnitude higher than emissions of monoterpenes and, in contrast to monoterpene emissions from pines, were absent in the dark. MBO emissions were strongly dependent on incident light, behaving similarly to net photosynthesis. Emission rates of MBO increased exponentially with temperature up to approximately 35°C. Above approximately 42°C, emission rates declined rapidly. Emissions could be modeled using existing algorithms for isoprene emission. We propose that emissions of MBO from lodgepole and ponderosa pine are the primary source of high concentrations of this compound, averaging 1-3 ppbv, found in ambient air samples collected in Colorado at an isolated mountain site approximately 3050 m above sea level. Subsequent field studies in a ponderosa pine plantation in California confirmed high MBO emissions, which averaged 25 μg C g-1 h-1 for 1-year-old needles, corrected to 30°C and photon flux of 1000 μmol m-2 s-1. A total of 34 pine species growing at Eddy Arboretum in Placerville, California, were investigated, of which 11 exhibited high emissions of MBO (>5 μg C g-1 h-1), and 6 emitted small but detectable amounts. All the emitting species are of North American origin, and most are restricted to western North America. These results indicate that MBO emissions from pines may constitute a significant source of reactive carbon and a significant source of acetone, to the atmosphere, particularly in the western United States.

  5. VizieR Online Data Catalog: Rate coefficients for H2(v,j)+H2(v',j'

    NASA Astrophysics Data System (ADS)

    Mandy, M. E.

    2016-11-01

    State-specific rate coefficients for the dissociation of H2 result of collisions with H2 were calculated for all combinations of (v,j) with an internal energy below 1eV. Full-dimensional quasiclassical trajectories were calculated using the BMKP2 interaction potential with a minimum of 80000 trajectories at each translational energy. Additional large batches of trajectories were carried out to calculate the cross sections near the threshold to dissociation to attain the desired precision of the rate coefficients. A piecewise linear excitation function was used to calculate the rate coefficient between 100 and 100000K. The resulting state-specific rate coefficients, γ, were parametrized as a function of temperature over the range 600-10000K using: log10γ(t)=a+bz+cz2-d(1/t-1) where t=T/4500K and z=log10t. The values of the resulting rate coefficients were sensitive to the internal energy of both molecules, with initial vibrational energy having a slightly greater effect than rotational energy. This effect diminished as temperature increased. (15 data files).

  6. How well does CO emission measure the H2 mass of MCs?

    NASA Astrophysics Data System (ADS)

    Szűcs, László; Glover, Simon C. O.; Klessen, Ralf S.

    2016-07-01

    We present numerical simulations of molecular clouds (MCs) with self-consistent CO gas-phase and isotope chemistry in various environments. The simulations are post-processed with a line radiative transfer code to obtain 12CO and 13CO emission maps for the J = 1 → 0 rotational transition. The emission maps are analysed with commonly used observational methods, I.e. the 13CO column density measurement, the virial mass estimate and the so-called XCO (also CO-to-H2) conversion factor, and then the inferred quantities (I.e. mass and column density) are compared to the physical values. We generally find that most methods examined here recover the CO-emitting H2 gas mass of MCs within a factor of 2 uncertainty if the metallicity is not too low. The exception is the 13CO column density method. It is affected by chemical and optical depth issues, and it measures both the true H2 column density distribution and the molecular mass poorly. The virial mass estimate seems to work the best in the considered metallicity and radiation field strength range, even when the overall virial parameter of the cloud is above the equilibrium value. This is explained by a systematically lower virial parameter (I.e. closer to equilibrium) in the CO-emitting regions; in CO emission, clouds might seem (sub-)virial, even when, in fact, they are expanding or being dispersed. A single CO-to-H2 conversion factor appears to be a robust choice over relatively wide ranges of cloud conditions, unless the metallicity is low. The methods which try to take the metallicity dependence of the conversion factor into account tend to systematically overestimate the true cloud masses.

  7. Interactions Between Temperature and Intercellular CO2 Concentration in Controlling Leaf Isoprene Emission Rates

    NASA Technical Reports Server (NTRS)

    Monson, Russell K.; Neice, Amberly A.; Trahan, Nicole A.; Shiach, Ian; McCorkel, Joel T.; Moore, David J. P.

    2016-01-01

    Plant isoprene emissions have been linked to several reaction pathways involved in atmospheric photochemistry. Evidence exists from a limited set of past observations that isoprene emission rate (I(sub s)) decreases as a function of increasing atmospheric CO2 concentration, and that increased temperature suppresses the CO2 effect. We studied interactions between intercellular CO2 concentration (C(sub I)) and temperature as they affect I(sub s) in field-grown hybrid poplar trees in one of the warmest climates on earth - the Sonoran Desert of the southwestern United States. We observed an unexpected midsummer down regulation of I(sub s) despite the persistence of relatively high temperatures. High temperature suppression of the I(sub s):C(sub I) relation occurred at all times during the growing season, but sensitivity of I(sub s) to increased C(sub I) was greatest during the midsummer period when I(subs) was lowest. We interpret the seasonal down regulation of I(sub s) and increased sensitivity of I(sub s) to C(sub I) as being caused by weather changes associated with the onset of a regional monsoon system. Our observations on the temperature suppression of the I(sub s):C(sub I) relation are best explained by the existence of a small pool of chloroplastic inorganic phosphate, balanced by several large, connected metabolic fluxes, which together, determine the C(sub I) and temperature dependencies of phosphoenolpyruvate import into the chloroplast.

  8. Measuring H2O and CO2 Emissions in the Mud Volcano region of Yellowstone using Open Path FTIR

    NASA Astrophysics Data System (ADS)

    Moyer, D. K.; Sealing, C. R.; Carn, S. A.; Vanderkluysen, L.

    2017-12-01

    Magma degassing is an important factor in many aspects of monitoring active volcanic zones and mitigating associated hazards. The monitoring of these emissions in concentration, flux, and species ratios is important for detecting signs of unrest as well as understanding the natural cycle and budget of volatile species. However, standard gas measurement methods suffer from either low temporal resolution (e.g., direct sampling of fumaroles) or are limited to measuring a small range of species (e.g., MiniDOAS, MultiGAS). In order to establish a carbon budget of active gas sources at a volcano with a dynamic hydrothermal system, we carried out a survey of mud pots and fumaroles at Yellowstone National Park using Open-Path Fourier Transform Infrared Spectroscopy, or OP-FTIR, which allows for a temporal resolution as low as one measurement every 10 seconds. We placed an active infrared (IR) source behind the target gas plume and identified gas species from the presence of their absorption feature in measured spectra in the 2.5 to 25 µm range. From these, we derived pathlength concentrations for a wide range of gases, including: water vapor, carbon dioxide, and methane. During our September 2016 campaign in the Mud Volcano thermal area, we measured CO2 concentrations of 400 ppm in emissions from the Churning Cauldron acid-sulfate mud pot, with an H2O/CO2 ratio of 8; at Sulphur Cauldron and One Hundred Springs Plain, CO2 concentrations reached 200 ppm above background atmospheric values. We derived a CO2 flux of 8.15 T/d, 0.43 T/d and .00025 T/d, respectively, at these three acid-sulfate sources, within range of gas channeling-based estimates from the late 1990s. Previous accumulation chamber studies estimate the CO2 soil diffuse degassing in the Mud Volcano thermal region at 283.15 T/d, indicating that mud pots are minor contributors of CO2 emissions in this area, representing 3% of diffuse emissions. Due to the high acquisition rate and the abundance of water droplets

  9. Decomposition reaction rate of BCl3-C3H6(propene)-H2 in the gas phase.

    PubMed

    Xiao, Jun; Su, Kehe; Liu, Yan; Ren, Hongjiang; Zeng, Qingfeng; Cheng, Laifei; Zhang, Litong

    2012-07-05

    The decomposition reaction rate in the BCl(3)-C(3)H(6)-H(2) gas phase reaction system in preparing boron carbides was investigated based on the most favorable reaction pathways proposed by Jiang et al. [Theor. Chem. Accs. 2010, 127, 519] and Yang et al. [J. Theor. Comput. Chem. 2012, 11, 53]. The rate constants of all the elementary reactions were evaluated with the variational transition state theory. The vibrational frequencies for the stationary points as well as the selected points along the minimum energy paths (MEPs) were calculated with density functional theory at the B3PW91/6-311G(d,p) level and the energies were refined with the accurate model chemistry method G3(MP2). For the elementary reaction associated with a transition state, the MEP was obtained with the intrinsic reaction coordinates, while for the elementary reaction without transition state, the relaxed potential energy surface scan was employed to obtain the MEP. The rate constants were calculated for temperatures within 200-2000 K and fitted into three-parameter Arrhenius expressions. The reaction rates were investigated by using the COMSOL software to solve numerically the coupled differential rate equations. The results show that the reactions are, consistent with the experiments, appropriate at 1100-1500 K with the reaction time of 30 s for 1100 K, 1.5 s for 1200 K, 0.12 s for 1300 K, 0.011 s for 1400 K, or 0.001 s for 1500 K, for propene being almost completely consumed. The completely dissociated species, boron carbides C(3)B, C(2)B, and CB, have very low concentrations, and C(3)B is the main product at higher temperatures, while C(2)B is the main product at lower temperatures. For the reaction time 1 s, all these concentrations approach into a nearly constant. The maximum value (in mol/m(3)) is for the highest temperature 1500 K with the orders of -13, -17, and -23 for C(3)B, C(2)B, and CB, respectively. It was also found that the logarithm of the overall reaction rate and reciprocal

  10. Measuring SO2 ship emissions with an ultraviolet imaging camera

    NASA Astrophysics Data System (ADS)

    Prata, A. J.

    2014-05-01

    Over the last few years fast-sampling ultraviolet (UV) imaging cameras have been developed for use in measuring SO2 emissions from industrial sources (e.g. power plants; typical emission rates ~ 1-10 kg s-1) and natural sources (e.g. volcanoes; typical emission rates ~ 10-100 kg s-1). Generally, measurements have been made from sources rich in SO2 with high concentrations and emission rates. In this work, for the first time, a UV camera has been used to measure the much lower concentrations and emission rates of SO2 (typical emission rates ~ 0.01-0.1 kg s-1) in the plumes from moving and stationary ships. Some innovations and trade-offs have been made so that estimates of the emission rates and path concentrations can be retrieved in real time. Field experiments were conducted at Kongsfjord in Ny Ålesund, Svalbard, where SO2 emissions from cruise ships were made, and at the port of Rotterdam, Netherlands, measuring emissions from more than 10 different container and cargo ships. In all cases SO2 path concentrations could be estimated and emission rates determined by measuring ship plume speeds simultaneously using the camera, or by using surface wind speed data from an independent source. Accuracies were compromised in some cases because of the presence of particulates in some ship emissions and the restriction of single-filter UV imagery, a requirement for fast-sampling (> 10 Hz) from a single camera. Despite the ease of use and ability to determine SO2 emission rates from the UV camera system, the limitation in accuracy and precision suggest that the system may only be used under rather ideal circumstances and that currently the technology needs further development to serve as a method to monitor ship emissions for regulatory purposes. A dual-camera system or a single, dual-filter camera is required in order to properly correct for the effects of particulates in ship plumes.

  11. Quick and Selective Dual Mode Detection of H2S Gas by Mobile App Employing Silver Nanorods Array.

    PubMed

    Gahlaut, Shashank Kumar; Yadav, Kavita; Sharan, Chandrashekhar; Singh, Jitendra Pratap

    2017-12-19

    Hydrogen sulfide (H 2 S) is a hazardous gas, which not only harms living beings but also poses a significant risk to damage materials placed in culture and art museums, due to its corrosive nature. We demonstrate a novel approach for selective rapid detection of H 2 S gas using silver nanorods (AgNRs) arrays on glass substrates at ambient conditions. The arrays were prepared by glancing angle deposition method. The colorimetric and water wetting properties of as-fabricated arrays were found to be highly sensitive toward the sulfurization, in the presence of H 2 S gas with a minimal concentration in ppm range. The performance of AgNRs as H 2 S gas sensor is investigated by its sensing ability of 5 ppm of gas with an exposure time of only 30 s. We have developed an android-based mobile app to monitor real-time colorimetric detection of H 2 S. The wettability detection has been carried out by a mobile camera. A comparative analysis for different gases reveals the highest sensitivity and selectivity of the array AgNRs toward H 2 S. The rapid detection has also been demonstrated for H 2 S emission from aged wool fabric. Thus, high sensing ability of AgNRs toward H 2 S gas may have potential applications in health monitoring and art conservation.

  12. Upper limits for the rate constant for the reaction Br + H2O2 yields HB2 + HO2

    NASA Technical Reports Server (NTRS)

    Leu, M.-T.

    1980-01-01

    Upper limits for the rate constant for the reaction Br + H2O2 yields HBr + HO2 have been measured over the temperature range 298 to 417 K in a discharge flow system using a mass spectrometer as a detector. Results are k sub 1 less than 1.5 x 10 to the -15th power cu cm/s at 298 K and k sub 1 less than 3.0 x 10 to the -15th power cu cm/s at 417 K, respectively. The implication to stratospheric chemistry is discussed.

  13. Mineralization of Basalts in the CO 2-H 2O-H 2S System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaef, Herbert T.; McGrail, B. Peter; Owen, Antionette T.

    2013-05-10

    Basalt samples representing five different formations were immersed in water equilibrated with supercritical carbon dioxide containing 1% hydrogen sulfide (H2S) at reservoir conditions (100 bar, 90°C) for up to 3.5 years. Surface coatings in the form of pyrite and metal cation substituted carbonates were identified as reaction products associated with all five basalts. In some cases, high pressure tests contained excess H2S, which produced the most corroded basalts and largest amount of secondary products. In comparison, tests containing limited amounts of H2S appeared least reacted with significantly less concentrations of reaction products. In all cases, pyrite appeared to precede carbonation,more » and in some instances, was observed in the absence of carbonation such as in cracks, fractures, and within the porous glassy mesostasis. Armoring reactions from pyrite surface coatings observed in earlier shorter duration tests were found to be temporary with carbonate mineralization observed with all the basalts tested in these long duration experiments. Geochemical simulations conducted with the geochemical code EQ3/6 accurately predicted early pyrite precipitation followed by formation of carbonates. Reactivity with H2S was correlated with measured Fe(II)/Fe(III) ratios in the basalts with more facile pyrite formation occurring with basalts containing more Fe(III) phases. These experimental and modeling results confirm potential for long term sequestration of acid gas mixtures in continental flood basalt formations.« less

  14. Calculations of rate constants for the three-body recombination of H2 in the presence of H2

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.

    1988-01-01

    A new global potential energy hypersurface for H2 + H2 is constructed and quasiclassical trajectory calculations performed using the resonance complex theory and energy transfer mechanism to estimate the rate of three body recombination over the temperature range 100 to 5000 K. The new potential is a faithful representation of ab initio electron structure calculations, is unchanged under the operation of exchanging H atoms, and reproduces the accurate H3 potential as one H atom is pulled away. Included in the fitting procedure are geometries expected to be important when one H2 is near or above the dissociation limit. The dynamics calculations explicitly include the motion of all four atoms and are performed efficiently using a vectorized variable-stepsize integrator. The predicted rate constants are approximately a factor of two smaller than experimental estimates over a broad temperature range.

  15. Characterizing reduced sulfur compounds emissions from a swine concentrated animal feeding operation

    NASA Astrophysics Data System (ADS)

    Rumsey, Ian C.; Aneja, Viney P.; Lonneman, William A.

    2014-09-01

    Reduced sulfur compounds (RSCs) emissions from concentrated animal feeding operations (CAFOs) have become a potential environmental and human health concern, as a result of changes in livestock production methods. RSC emissions were determined from a swine CAFO in North Carolina. RSC measurements were made over a period of ≈1 week from both the barn and lagoon during each of the four seasonal periods from June 2007 to April 2008. During sampling, meteorological and other environmental parameters were measured continuously. Seasonal hydrogen sulfide (H2S) barn concentrations ranged from 72 to 631 ppb. Seasonal dimethyl sulfide (DMS; CH3SCH3) and dimethyl disulfide (DMDS; CH3S2CH3) concentrations were 2-3 orders of magnitude lower, ranging from 0.18 to 0.89 ppb and 0.47 to 1.02 ppb, respectively. The overall average barn emission rate was 3.3 g day-1 AU-1 (AU (animal unit) = 500 kg of live animal weight) for H2S, which was approximately two orders of magnitude higher than the DMS and DMDS overall average emissions rates, determined as 0.017 g day-1 AU-1 and 0.036 g day-1 AU-1, respectively. The overall average lagoon flux was 1.33 μg m-2 min-1 for H2S, which was approximately an order of magnitude higher than the overall average DMS (0.12 μg m-2 min-1) and DMDS (0.09 μg m-2 min-1) lagoon fluxes. The overall average lagoon emission for H2S (0.038 g day-1 AU-1) was also approximately an order of magnitude higher than the overall average DMS (0.0034 g day-1 AU-1) and DMDS (0.0028 g day-1 AU-1) emissions. H2S, DMS and DMDS have offensive odors and low odor thresholds. Over all four sampling seasons, 77% of 15 min averaged H2S barn concentrations were an order of magnitude above the average odor threshold. During these sampling periods, however, DMS and DMDS concentrations did not exceed their odor thresholds. The overall average barn and lagoon emissions from this study were used to help estimate barn, lagoon and total (barn + lagoon) RSC emissions from swine CAFOs

  16. Calculated hydroxyl A2 sigma --> X2 pi (0, 0) band emission rate factors applicable to atmospheric spectroscopy

    NASA Technical Reports Server (NTRS)

    Cageao, R. P.; Ha, Y. L.; Jiang, Y.; Morgan, M. F.; Yung, Y. L.; Sander, S. P.

    1997-01-01

    A calculation of the A2 sigma --> X2 pi (0, 0) band emission rate factors and line center absorption cross sections of OH applicable to its measurement using solar resonant fluorescence in the terrestrial atmosphere is presented in this paper. The most accurate available line parameters have been used. Special consideration has been given to the solar input flux because of its highly structured Fraunhofer spectrum. The calculation for the OH atmospheric emission rate factor in the solar resonant fluorescent case is described in detail with examples and intermediate results. Results of this calculation of OH emission rate factors for individual rotational lines are on average 30% lower than the values obtained in an earlier work.

  17. C3H7NO2S effect on concrete steel-rebar corrosion in 0.5 M H2SO4 simulating industrial/microbial environment

    NASA Astrophysics Data System (ADS)

    Okeniyi, Joshua Olusegun; Nwadialo, Christopher Chukwuweike; Olu-Steven, Folusho Emmanuel; Ebinne, Samaru Smart; Coker, Taiwo Ebenezer; Okeniyi, Elizabeth Toyin; Ogbiye, Adebanji Samuel; Durotoye, Taiwo Omowunmi; Badmus, Emmanuel Omotunde Oluwasogo

    2017-02-01

    This paper investigates C3H7NO2S (Cysteine) effect on the inhibition of reinforcing steel corrosion in concrete immersed in 0.5 M H2SO4, for simulating industrial/microbial environment. Different C3H7NO2S concentrations were admixed, in duplicates, in steel-reinforced concrete samples that were partially immersed in the acidic sulphate environment. Electrochemical monitoring techniques of open circuit potential, as per ASTM C876-91 R99, and corrosion rate, by linear polarization resistance, were then employed for studying anticorrosion effect in steel-reinforced concrete samples by the organic hydrocarbon admixture. Analyses of electrochemical test-data followed ASTM G16-95 R04 prescriptions including probability distribution modeling with significant testing by Kolmogorov-Smirnov and student's t-tests statistics. Results established that all datasets of corrosion potential distributed like the Normal, the Gumbel and the Weibull distributions but that only the Weibull model described all the corrosion rate datasets in the study, as per the Kolmogorov-Smirnov test-statistics. Results of the student's t-test showed that differences of corrosion test-data between duplicated samples with the same C3H7NO2S concentrations were not statistically significant. These results indicated that 0.06878 M C3H7NO2S exhibited optimal inhibition efficiency η = 90.52±1.29% on reinforcing steel corrosion in the concrete samples immersed in 0.5 M H2SO4, simulating industrial/microbial service-environment.

  18. H2S adsorption on chromium, chromia, and gold/chromia surfaces: Photoemission studies

    NASA Astrophysics Data System (ADS)

    Rodriguez, J. A.; Chaturvedi, S.; Kuhn, M.; van Ek, J.; Diebold, U.; Robbert, P. S.; Geisler, H.; Ventrice, C. A., Jr.

    1997-12-01

    The reaction of H2S with chromium, chromia, and Au/chromia films grown on a Pt(111) crystal has been investigated using synchrotron-based high-resolution photoemission spectroscopy. At 300 K, H2S completely decomposes on polycrystalline chromium producing a chemisorbed layer of S that attenuates the Cr 3d valence features. No evidence was found for the formation of CrSx species. The dissociation of H2S on Cr3O4 and Cr2O3 films at room temperature produces a decrease of 0.3-0.8 eV in the work function of the surface and significant binding-energy shifts (0.2-0.6 eV) in the Cr 3p core levels and Cr 3d features in the valence region. The rate of dissociation of H2S increases following the sequence: Cr2O3H2S than the valence and conduction bands of the chromium oxides. This leads to a large dissociation probability for H2S on the metal, and a low dissociation probability for the molecule on the oxides. In the case of Cr3O4 and Cr2O3, there is a correlation between the size of the band gap in the oxide and its reactivity toward H2S. The uptake of sulfur by the oxides significantly increases when they are "promoted" with gold. The Au/Cr2O3 surfaces exhibit a unique electronic structure in the valence region and a larger ability to dissociate H2S than polycrystalline Au or pure Cr2O3. The results of ab initio SCF calculations for the adsorption of H2S on AuCr4O6 and AuCr10O15 clusters show a shift of electrons from the gold toward the oxide unit that enhances the strength of the Au(6s)↔H2S(5a1,2b1) bonding interactions and facilitates the decomposition of the molecule.

  19. The discovery of five new H2O megamasers in active galaxies

    NASA Technical Reports Server (NTRS)

    Braatz, J. A.; Wilson, A. S.; Henkel, C.

    1994-01-01

    H2O megamasers with (isotropic) luminosities between 60 and 200 solar luminosity (H(sub 0) = 75 km/s/Mpc) have been detected in the Seyfert 2 galaxies Mrk 1, Mrk 1210, and NGC 5506 and in the LINERs NGC 1052 and NGC 2639. No megamasers have been found in Seyfert 1's. The galaxies have redshifts between 1500 and 4800 km/s and are the most distant H2O sources reported to date. NGC 1052 is also the first elliptical galaxy known to contain an H2O maser. The intensity distribution of an H2O five-point map obtained toward NGC 5506 shows that the H2O emission is pointlike compared to the 40 sec telescope beam. The lack of CO emission in NGC 1052 implies a conservative lower limit to the H2O brightness temperature of 1000 K, thus ruling out a thermal origin for the H2O emission. The success of this survey relative to other recent searches makes it evident that H2O megamasers are preferentially found in galaxies with active nuclei.

  20. Tunneling chemical reactions D+H{sub 2}{yields}DH+H and D+DH{yields}D{sub 2}+H in solid D{sub 2}-H{sub 2} and HD-H{sub 2} mixtures: An electron-spin-resonance study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumada, Takayuki

    2006-03-07

    Tunneling chemical reactions D+H{sub 2}{yields}DH+H and D+DH{yields}D{sub 2}+H in solid HD-H{sub 2} and D{sub 2}-H{sub 2} mixtures were studied in the temperature range between 4 and 8 K. These reactions were initiated by UV photolysis of DI molecules doped in these solids for 30 s and followed by measuring the time course of electron-spin-resonance (ESR) intensities of D and H atoms. ESR intensity of D atoms produced by the photolysis decreases but that of H atoms increases with time. Time course of the D and H intensities has the fast and slow processes. The fast process, which finishes within {approx}300more » s after the photolysis, is assigned to the reaction of D atom with one of its nearest-neighboring H{sub 2} molecules, D(H{sub 2}){sub n}(HD){sub 12-n}{yields}H(H{sub 2}){sub n-1}(HD){sub 13-n} or D(H{sub 2}){sub n}(D{sub 2}){sub 12-n}{yields}H(HD)(H{sub 2}){sub n-1}(D{sub 2}){sub 12-n} for 12{>=}n{>=}1. Rate constant for the D+H{sub 2} reaction between neighboring D atom-H{sub 2} molecule pair is determined to be (7.5{+-}0.7)x10{sup -3} s{sup -1} in solid HD-H{sub 2} and (1.3{+-}0.3)x10{sup -2} s{sup -1} in D{sub 2}-H{sub 2} at 4.1 K, which is very close to that calculated based on the theory of chemical reaction in gas phase by Hancock et al. [J. Chem. Phys. 91, 3492 (1989)] and Takayanagi and Sato [J. Chem. Phys. 92, 2862 (1990)]. This rate constant was found to be independent of temperature up to 7 K within experimental error of {+-}30%. The slow process is assigned to the reaction of D atom produced in a cage fully surrounded by HD or D{sub 2} molecules, D(HD){sub 12} or D(D{sub 2}){sub 12}. This D atom undergoes the D+DH reaction with one of its nearest-neighboring HD molecules in solid HD-H{sub 2} or diffuses to the neighbor of H{sub 2} molecules to allow the D+H{sub 2} reaction in solid HD-H{sub 2} and D{sub 2}-H{sub 2}. The former is the main channel in solid HD-H{sub 2} below 6 K where D atoms diffuse very slowly, whereas the latter dominates

  1. Quantum dynamics of the reaction H((2)S) + HeH(+)(X(1)Σ(+)) → H2(+)(X(2)Σg(+)) + He((1)S) from cold to hyperthermal energies: time-dependent wavepacket study and comparison with time-independent calculations.

    PubMed

    Gamallo, Pablo; Akpinar, Sinan; Defazio, Paolo; Petrongolo, Carlo

    2014-08-21

    We present the adiabatic quantum dynamics of the proton-transfer reaction H((2)S) + HeH(+)(X(1)Σ(+)) → H2(+)(X(2)Σg(+)) + He((1)S) on the HeH2(+) X̃(2)Σ(+) RMRCI6 (M = 6) PES of C. N. Ramachandran et al. ( Chem. Phys. Lett. 2009, 469, 26). We consider the HeH(+) molecule in the ground vibrational–rotational state and obtain initial-state-resolved reaction probabilities and the ground-state cross section σ0 and rate constant k0 by propagating time-dependent, coupled-channel, real wavepackets (RWPs) and performing a flux analysis. Three different wavepackets are propagated to describe the wide range of energies explored, from cold (0.0001 meV) to hyperthermal (1000 meV) collision energies, and in a temperature range from 0.01 to 2000 K. We compare our time-dependent results with the time-independent ones by D. De Fazio and S. Bovino et al., where De Fazio carried out benchmark coupled-channel calculations whereas Bovino et al. employed the negative imaginary potential and the centrifugal-sudden approximations. The RWP cross section is in good agreement with that by De Fazio, except at the lowest collision energies below ∼0.01 meV, where the former is larger than the latter. However, neither the RWP and De Fazio results possess the huge resonance in probability and cross section at 0.01 meV, found by Bovino et al., who also obtained a too low σ0 at high energies. Therefore, the RWP and De Fazio rate constants compare quite well, whereas that by Bovino et al. is in general lower.

  2. H2/O2 three-body rates at high temperatures

    NASA Technical Reports Server (NTRS)

    Marinelli, William J.; Kessler, William J.; Piper, Lawrence G.; Rawlins, W. Terry

    1990-01-01

    The extraction of thrust from air breathing hypersonic propulsion systems is critically dependent on the degree to which chemical equilibrium is reached in the combustion process. In the combustion of H2/Air mixtures, slow three-body chemical reactions involving H-atoms, O-atoms, and the OH radical play an important role in energy extraction. A first-generation high temperature and pressure flash-photolysis/laser-induced fluorescence reactor was designed and constructed to measure these important three-body rates. The system employs a high power excimer laser to produce these radicals via the photolysis of stable precursors. A novel two-photon laser-induced fluorescence technique is employed to detect H-atoms without optical thickness or O2 absorption problems. To demonstrate the feasibility of the technique the apparatus in the program is designed to perform preliminary measurements on the H + O2 + M reaction at temperatures from 300 to 835 K.

  3. Comparing N2O emissions at varying N rates from irrigated and rainfed corn in the US Midwest

    NASA Astrophysics Data System (ADS)

    Millar, N.; Kahmark, K.; Basso, B.; Robertson, G. P.

    2011-12-01

    Global N2O emissions from agriculture are estimated to be ~2.8 Pg CO2e yr-1 accounting for 60% of total anthropogenic emissions. N2O is the largest contributor to the GHG burden of cropping systems in the US, with annual estimated emissions of ~0.5 Tg primarily due to N fertilizer inputs and other soil management activities. Currently 23 million acres of corn, soybean and wheat are irrigated annually in the US with increased N2O emissions due to the practice likely under-reported in GHG inventories. Here we compare N2O emissions and yield from irrigated and rainfed corn at varying N rates between 0 and 246 kg N ha-1 from the Kellogg Biological Station in SW Michigan. Initial results show that N2O emissions increase with increasing N rate and are significantly higher from irrigated corn compared to rainfed corn at the same N rate. At increasing N rates daily emissions following an irrigation event were between 2.4 - 77.5 g N2O-N ha-1 from irrigated corn and 1.6 - 13.0 g N2O-N ha-1 from rainfed corn. Emissions data from automated and static chambers will be presented and trade-offs between N2O emissions, N fertilizer rate, crop yield and irrigation practice will be evaluated from an environmental and economic standpoint.

  4. Effect of migration and transformation of iron on the endogenous reduction of H2S in anaerobic landfill.

    PubMed

    Long, Yu-Yang; Du, Yao; Fang, Yuan; Xu, Jing; He, Yan-Ni; Shen, Dong-Sheng

    2016-07-01

    Hydrogen sulfide (H2S) is a major odor in landfill gas and needs urgent treatment. In this study, the effect of migration and transformation of iron on the endogenous reduction of H2S was investigated in two simulated landfills. The results showed that the H2S emission concentration from the landfill cover of conventional anaerobic landfill (CL) and anaerobic landfill with leachate recirculation (RL) could reach 19.4mgm(-3) and 24.1mgm(-3), respectively. However, the migration and transformation of iron in anaerobic landfill with different operational modes results in different endogenous reduction mechanism for H2S. The proportion of precipitation-reduction mechanism and oxidation-reduction mechanism in CL was 73.3% and 26.3%, respectively. But for RL, the function of oxidation was enhanced, and the sulfide content was reduced 23.1% compared with CL. The iron in landfill with leachate recirculation revealed good endogenous reduction effect on H2S control after a period of time landfilling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Solar UV irradiation-induced production of N2O from plant surfaces - low emissions rates but all over the world.

    NASA Astrophysics Data System (ADS)

    Mikkelsen, T. N.; Bruhn, D.; Ambus, P.

    2016-12-01

    Nitrous oxide (N2O) is an important long-lived greenhouse gas and precursor of stratospheric ozone depleting mono-nitrogen oxides. The atmospheric concentration of N2O is persistently increasing; however, large uncertainties are associated with the distinct source strengths. Here we investigate for the first time N2O emission from terrestrial vegetation in response to natural solar ultra violet radiation. We conducted field site measurements to investigate N2O atmosphere exchange from grass vegetation exposed to solar irradiance with and without UV-screening. Further laboratory tests were conducted with a range of species to study the controls and possible loci of UV-induced N2O emission from plants. Plants released N2O in response to natural sunlight at rates of c. 20-50 nmol m-2 h-1, mostly due to the UV component. The emission rate is temperature dependent with a rather high activation energy indicative for an abiotic process. The prevailing zone for the N2O formation appears to be at the very surface of leaves. However, only c. 26% of the UV-induced N2O appears to originate from plant-N. Further, the process is dependent on atmospheric oxygen concentration. Our work demonstrates that ecosystem emission of the important greenhouse gas, N2O, may be up to c. 30% higher than hitherto assumed.

  6. Does Size Matter? Scaling of CO2 Emissions and U.S. Urban Areas

    PubMed Central

    Fragkias, Michail; Lobo, José; Strumsky, Deborah; Seto, Karen C.

    2013-01-01

    Urban areas consume more than 66% of the world’s energy and generate more than 70% of global greenhouse gas emissions. With the world’s population expected to reach 10 billion by 2100, nearly 90% of whom will live in urban areas, a critical question for planetary sustainability is how the size of cities affects energy use and carbon dioxide (CO2) emissions. Are larger cities more energy and emissions efficient than smaller ones? Do larger cities exhibit gains from economies of scale with regard to emissions? Here we examine the relationship between city size and CO2 emissions for U.S. metropolitan areas using a production accounting allocation of emissions. We find that for the time period of 1999–2008, CO2 emissions scale proportionally with urban population size. Contrary to theoretical expectations, larger cities are not more emissions efficient than smaller ones. PMID:23750213

  7. Fate of H2S during the cultivation of Chlorella sp. deployed for biogas upgrading.

    PubMed

    González-Sánchez, Armando; Posten, Clemens

    2017-04-15

    The H 2 S may play a key role in the sulfur cycle among the biogas production by the anaerobic digestion of wastes and the biogas upgrading by a microalgae based technology. The biogas is upgraded by contacting with slightly alkaline aqueous microalgae culture, then CO 2 and H 2 S are absorbed. The dissolved H 2 S could limit or inhibit the microalgae growth. This paper evaluated the role of dissolved H 2 S and other sulfured byproducts under prevailing biogas upgrading conditions using a microalgal technology. At initial stages of batch cultivation the growth of Chlorella sp. was presumably inhibited by dissolved H 2 S. After 2 days, the sulfides were oxidized mainly by oxic chemical reactions to sulfate, which was later rapidly assimilated by Chlorella sp., allowing high growing rates. The fate of H 2 S during the microalgae cultivation at pH > 8.5 was assessed by a mathematical model where the pentasulfide, thiosulfate and sulfite were firstly produced and converted finally to sulfate for posterior assimilation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Deep magmatic degassing versus scrubbing: Elevated CO2 emissions and C/S in the lead-up to the 2009 eruption of Redoubt Volcano, Alaska

    USGS Publications Warehouse

    Werner, Cynthia A.; Evans, William C.; Kelly, Peter; McGimsey, Robert G.; Pfeffer, Melissa; Doukas, Michael P.; Neal, Christina

    2012-01-01

    We report CO2, SO2, and H2S emission rates and C/S ratios during the five months leading up to the 2009 eruption of Redoubt Volcano, Alaska. CO2emission rates up to 9018 t/d and C/S ratios ≥30 measured in the months prior to the eruption were critical for fully informed forecasting efforts. Observations of ice-melt rates, meltwater discharge, and water chemistry suggest that surface waters represented drainage from surficial, perched reservoirs of condensed magmatic steam and glacial meltwater. These fluids scrubbed only a few hundred tonnes/day of SO2, not the >2100 t/d SO2expected from degassing of magma in the mid- to upper crust (3–6.5 km), where petrologic analysis shows the final magmatic equilibration occurred. All data are consistent with upflow of a CO2-rich magmatic gas for at least 5 months prior to eruption, and minimal scrubbing of SO2by near-surface groundwater. The high C/S ratios observed could reflect bulk degassing of mid-crustal magma followed by nearly complete loss of SO2in a deep magmatic-hydrothermal system. Alternatively, high C/S ratios could be attributed to decompressional degassing of low silica andesitic magma that intruded into the mid-crust in the 5 months prior to eruption, thereby mobilizing the pre-existing high silica andesite magma or mush in this region. The latter scenario is supported by several lines of evidence, including deep long-period earthquakes (−28 to −32 km) prior to and during the eruption, and far-field deformation following the onset of eruptive activity.

  9. Photochemical Generation of H_{2}NCNX, H_{2}NNCX, H_{2}NC(NX) (x = O, s) in Low-Temperature Matrices

    NASA Astrophysics Data System (ADS)

    Voros, Tamas; Lajgut, Gyozo Gyorgy; Magyarfalvi, Gabor; Tarczay, Gyorgy

    2017-06-01

    The [NH_{2}, C, N, O] and the [NH_{2}, C, N, S] systems were investigated by quantum-chemical computations and matrix-isolation spectroscopic methods. The equilibrium structures of the isomers and their relative energies were determined by CCSD(T) method. This was followed by the computation of the harmonic and anharmonic vibrational wavenumbers, infrared intensities, relative Raman activities and UV excitation energies. These computed data were used to assist the identification of products obtained by UV laser photolysis of 3,4-diaminofurazan, 3,4-diaminothiadiazole and 1,2,4-thiadiazole-3,5-diamine in low-temperature Ar and Kr matrices. Experimentally, first the precursors were studied by matrix-isolation IR and UV spectroscopic methods. Based on these UV spectra, different wavelengths were selected for photolysis. The irradiations, carried out by a tunable UV laser-light source, resulted in the decomposition of the precursors, and in the appearance of new bands in the IR spectra. Some of these bands were assigned to cyanamide (H_{2}NCN) and its isomer, the carbodiimide molecule (HNCNH), generated from H_{2}NCN. By the analysis of the relative absorbance vs. photolysis time curves, the other bands were grouped to three different species both for the O- and the S-containing systems. In the case of the O-containing isomers, these bands were assigned to the H_{2}NNCO:H_{2}NCN, and H_{2}NCNO:H_{2}NCN complexes, and to the ring-structure H_{2}NC(NO) isomer. In a similar way, the complexes of H_{2}NNCS and H_{2}NCNS with the H_{2}NCN, and H_{2}NC(NS) were also identified. 1,2,4-thiadiazole-3,5-diamine was also investigated in similar way like the above mentioned precursors. The results of this study also support the identification of the new S-containing isomers. Except for H_{2}NNCO and H_{2}NCNS, these molecules were not identified previously. It is expected that at least some of these species, like the methyl isocyanate (CH_{3}CNO) isomer, are present and could be

  10. Rates of volcanic CO2 degassing from airborne determinations of SO2 Emission rates and plume CO2SO2: test study at Pu′u ′O′o Cone, Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Gerlach, Terrence M.; McGee, Kenneth A.; Sutton, A. Jefferson; Elias, Tamar

    1998-01-01

    We present an airborne method that eliminates or minimizes several disadvantages of the customary plume cross-section sampling method for determining volcanic CO2 emission rates. A LI-COR CO2analyzer system (LICOR), a Fourier transform infrared spectrometer system (FTIR), and a correlation spectrometer (COSPEC) were used to constrain the plume CO2/SO2 and the SO2 emission rate. The method yielded a CO2 emission rate of 300 td−1 (metric tons per day) for Pu′u ′O′o cone, Kilauea volcano, on 19 September 1995. The CO2/SO2 of 0.20 determined from airborne LICOR and FTIR plume measurements agreed with the CO2/SO2 of 204 ground-based samples collected from vents over a 14-year period since the Pu′u ′O′o eruption began in January 1983.

  11. Functionalization of liquid-exfoliated two-dimensional 2H-MoS2.

    PubMed

    Backes, Claudia; Berner, Nina C; Chen, Xin; Lafargue, Paul; LaPlace, Pierre; Freeley, Mark; Duesberg, Georg S; Coleman, Jonathan N; McDonald, Aidan R

    2015-02-23

    Layered two-dimensional (2D) inorganic transition-metal dichalchogenides (TMDs) have attracted great interest as a result of their potential application in optoelectronics, catalysis, and medicine. However, methods to functionalize and process such 2D TMDs remain scarce. We have established a facile route towards functionalized layered MoS2 . We found that the reaction of liquid-exfoliated 2D MoS2 , with M(OAc)2 salts (M=Ni, Cu, Zn; OAc=acetate) yielded functionalized MoS2 -M(OAc)2 materials. Importantly, this method furnished the 2H-polytype of MoS2 which is a semiconductor. X-ray photoelectron spectroscopy (XPS), diffuse reflectance infrared Fourier transform spectroscopy (DRIFT-IR), and thermogravimetric analysis (TGA) provide strong evidence for the coordination of MoS2 surface sulfur atoms to the M(OAc)2 salt. Interestingly, functionalization of 2H-MoS2 allows for its dispersion/processing in more conventional laboratory solvents. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. VizieR Online Data Catalog: H2, D2, and HD c3Πu;

    NASA Astrophysics Data System (ADS)

    Liu, X.; Shemansky, D. E.; Yoshii, J.; Liu, M. J.; Johnson, P. V.; Malone, C. P.; Khakoo, M. A.

    2017-11-01

    The c3{Pi}u state of the hydrogen molecule has the triplet-state excitation cross-section, and plays an important role in the heating of the upper thermospheres of outer planets by electron excitation. Precise energies of the H2, D2, and HD c3{Pi}u-(v,N) levels are calculated from highly accurate ab initio potential energy curves that include relativistic, radiative, and empirical non-adiabatic corrections. The emission yields are determined from predissociation rates and refined radiative transition probabilities. The excitation function and excitation cross-section of the c3{Pi}u state are extracted from previous theoretical calculations and experimental measurements. The emission cross-section is determined from the calculated emission yield and the extracted excitation cross-section. The kinetic energy (Ek) distributions of H atoms produced via the predissociation of the c3{Pi}u state, the c3{Pi}u--b3{Sigma}u+ dissociative emission by the magnetic dipole and electric quadrupole, and the c3{Pi}u-a3{Sigma}g+-b3{Sigma}u+ cascade dissociative emission by the electric dipole are obtained. The predissociation of the c3{Pi}u+ and c3{Pi}u- states both produce H(1s) atoms with an average Ek of ~4.1eV/atom, while the c3{Pi}u--b3{Sigma}u+ dissociative emissions by the magnetic dipole and electric quadrupole give an average Ek of ~1.0 and ~0.8eV/atom, respectively. The c3{Pi}u-a3{Sigma}g+-b3{Sigma}u+ cascade and dissociative emission gives an average Ek of ~1.3 eV/atom. On average, each H2 excited to the c3{Pi}u state in an H2-dominated atmosphere deposits ~7.1eV into the atmosphere while each H2 directly excited to the a3{Sigma}g+ and d3{Pi}u states contribute ~2.3 and ~3.3eV, respectively, to the atmosphere. The spectral distribution of the calculated continuum emission arising from the X1{Sigma}g+-c3{Pi}u excitation is significantly different from that of direct a3{Sigma}g+ or d3{Pi}u excitations. (5 data files).

  13. Continued observations of the H Ly alpha emission from Uranus

    NASA Technical Reports Server (NTRS)

    Clarke, J.; Durrance, S.; Moos, W.; Murthy, J.; Atreya, S.; Barnes, A.; Mihalov, J.; Belcher, J.; Festou, M.; Imhoff, C.

    1986-01-01

    Observations of Uranus obtained over four years with the IUE Observatory supports the initial identification of a bright H Ly alpha flux which varies independently of the solar H Ly alpha flux, implying a largely self-excited emission. An average brightness of 1400 Rayleighs is derived, and limits for the possible contribution by reflected solar H Ly alpha emission, estimated to be about 200 Rayleighs, suggest that the remaining self-excited emission is produced by an aurora. Based on comparison with solar wind measurements obtained in the vicinity of Uranus by Voyager 2 and Pioneer 11, no evidence for correlation between the solar wind density and the H Ly alpha brightness is found. The upper limit to H2 emission gives a lower limit to the ratio of H Ly alpha/H2 emissions of about 2.4, suggesting that the precipitating particles may be significantly less energetic on Uranus than those responsible for the aurora on Jupiter. The average power in precipitating particles is estimated to be of the order of 10 to the 12th W.

  14. Biofiltration of high concentration of H2S in waste air under extreme acidic conditions.

    PubMed

    Ben Jaber, Mouna; Couvert, Annabelle; Amrane, Abdeltif; Rouxel, Franck; Le Cloirec, Pierre; Dumont, Eric

    2016-01-25

    Removal of high concentrations of hydrogen sulfide using a biofilter packed with expanded schist under extreme acidic conditions was performed. The impact of various parameters such as H2S concentration, pH changes and sulfate accumulation on the performances of the process was evaluated. Elimination efficiency decreased when the pH was lower than 1 and the sulfate accumulation was more than 12 mg S-SO4(2-)/g dry media, due to a continuous overloading by high H2S concentrations. The influence of these parameters on the degradation of H2S was clearly underlined, showing the need for their control, performed through an increase of watering flow rate. A maximum elimination capacity (ECmax) of 24.7 g m(-3) h(-1) was recorded. As a result, expanded schist represents an interesting packing material to remove high H2S concentration up to 360 ppmv with low pressure drops. In addition, experimental data were fitted using both Michaelis-Menten and Haldane models, showing that the Haldane model described more accurately experimental data since the inhibitory effect of H2S was taken into account. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. H2S and polysulfide metabolism: Conventional and unconventional pathways.

    PubMed

    Olson, Kenneth R

    2018-03-01

    It is now well established that hydrogen sulfide (H 2 S) is an effector of a wide variety of physiological processes. It is also clear that many of the effects of H 2 S are mediated through reactions with cysteine sulfur on regulatory proteins and most of these are not mediated directly by H 2 S but require prior oxidation of H 2 S and the formation of per- and polysulfides (H 2 S n , n = 2-8). Attendant with understanding the regulatory functions of H 2 S and H 2 S n is an appreciation of the mechanisms that control, i.e., both increase and decrease, their production and catabolism. Although a number of standard "conventional" pathways have been described and well characterized, novel "unconventional" pathways are continuously being identified. This review summarizes our current knowledge of both the conventional and unconventional. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. The solubility of gold in H 2 O-H 2 S vapour at elevated temperature and pressure

    NASA Astrophysics Data System (ADS)

    Zezin, Denis Yu.; Migdisov, Artashes A.; Williams-Jones, Anthony E.

    2011-09-01

    This experimental study sheds light on the complexation of gold in reduced sulphur-bearing vapour, specifically, in H 2O-H 2S gas mixtures. The solubility of gold was determined in experiments at temperatures of 300, 350 and 365 °C and reached 2.2, 6.6 and 6.3 μg/kg, respectively. The density of the vapour varied from 0.02 to 0.22 g/cm 3, the mole fraction of H 2S varied from 0.03 to 0.96, and the pressure in the cell reached 263 bar. Statistically significant correlations of the amount of gold dissolved in the fluid with the fugacity of H 2O and H 2S permit the experimental data to be fitted to a solvation/hydration model. According to this model, the solubility of gold in H 2O-H 2S gas mixtures is controlled by the formation of sulphide or bisulphide species solvated by H 2S or H 2O molecules. Formation of gold sulphide species is favoured statistically over gold bisulphide species and thus the gold is interpreted to dissolve according to reactions of the form: Au(s)+(n+1)HS(g)=AuS·(HS)n(g)+H(g) Au(s)+HS(g)+mHO(g)=AuS·(HO)m(g)+H(g) Equilibrium constants for Reaction (A1) and the corresponding solvation numbers ( K A1 and n) were evaluated from the study of Zezin et al. (2007). The equilibrium constants as well as the hydration numbers for Reaction (A2) ( K A2 and m) were adjusted simultaneously by a custom-designed optimization algorithm and were tested statistically. The resulting values of log K A2 and m are -15.3 and 2.3 at 300 and 350 °C and -15.1 and 2.2 at 365 °C, respectively. Using the calculated stoichiometry and stability of Reactions (A1) and (A2), it is now possible to quantitatively evaluate the contribution of reduced sulphur species to the transport of gold in aqueous vapour at temperatures up to 365 °C. This information will find application in modelling gold ore-forming processes in vapour-bearing magmatic hydrothermal systems, notably those of epithermal environments.

  17. Reactivity and dynamics of H2S, NO, and O2 interacting with hemoglobins from Lucina pectinata.

    PubMed

    Ramos-Alvarez, Cacimar; Yoo, Byung-Kuk; Pietri, Ruth; Lamarre, Isabelle; Martin, Jean-Louis; Lopez-Garriga, Juan; Negrerie, Michel

    2013-10-08

    Hemoglobin HbI from the clam Lucina pectinata is involved in H2S transport, whereas homologous heme protein HbII/III is involved in O2 metabolism. Despite similar tertiary structures, HbI and HbII/III exhibit very different reactivity toward heme ligands H2S, O2, and NO. To investigate this reactivity at the heme level, we measured the dynamics of ligand interaction by time-resolved absorption spectroscopy in the picosecond to nanosecond time range. We demonstrated that H2S can be photodissociated from both ferric and ferrous HbI. H2S geminately rebinds to ferric and ferrous out-of-plane iron with time constants (τgem) of 12 and 165 ps, respectively, with very different proportions of photodissociated H2S exiting the protein (24% in ferric and 80% in ferrous HbI). The Gln(E7)His mutation considerably changes H2S dynamics in ferric HbI, indicating the role of Gln(E7) in controling H2S reactivity. In ferric HbI, the rate of diffusion of H2S from the solvent into the heme pocket (kentry) is 0.30 μM(-1) s(-1). For the HbII/III-O2 complex, we observed mainly a six-coordinate vibrationally excited heme-O2 complex with O2 still bound to the iron. This explains the low yield of O2 photodissociation and low koff from HbII/III, compared with those of HbI and Mb. Both isoforms behave very differently with regard to NO and O2 dynamics. Whereas the amplitude of geminate rebinding of O2 to HbI (38.5%) is similar to that of myoglobin (34.5%) in spite of different distal heme sites, it appears to be much larger for HbII/III (77%). The distal Tyr(B10) side chain present in HbII/III increases the energy barrier for ligand escape and participates in the stabilization of bound O2 and NO.

  18. Comparison of the metabolic and ventilatory response to hypoxia and H2S in unsedated mice and rats.

    PubMed

    Haouzi, Philippe; Bell, Harold J; Notet, Veronique; Bihain, Bernard

    2009-07-31

    Hypoxia alters the control of breathing and metabolism by increasing ventilation through the arterial chemoreflex, an effect which, in small-sized animals, is offset by a centrally mediated reduction in metabolism and respiration. We tested the hypothesis that hydrogen sulfide (H(2)S) is involved in transducing these effects in mammals. The rationale for this hypothesis is twofold. Firstly, inhalation of a 20-80 ppm H(2)S reduces metabolism in small mammals and this effect is analogous to that of hypoxia. Secondly, endogenous H(2)S appears to mediate some of the cardio-vascular effects of hypoxia in non-mammalian species. We, therefore, compared the ventilatory and metabolic effects of exposure to 60 ppm H(2)S and to 10% O(2) in small and large rodents (20g mice and 700g rats) wherein the metabolic response to hypoxia has been shown to differ according to body mass. H(2)S and hypoxia produced profound depression in metabolic rate in the mice, but not in the large rats. The depression was much faster with H(2)S than with hypoxia. The relative hyperventilation produced by hypoxia in the mice was replaced by a depression with H(2)S, which paralleled the drop in metabolic rate. In the larger rats, ventilation was stimulated in hypoxia, with no change in metabolism, while H(2)S affected neither breathing nor metabolism. When mice were simultaneously exposed to H(2)S and hypoxia, the stimulatory effects of hypoxia on breathing were abolished, and a much larger respiratory and metabolic depression was observed than with H(2)S alone. H(2)S had, therefore, no stimulatory effect on the arterial chemoreflex. The ventilatory depression during hypoxia and H(2)S in small mammals appears to be dependent upon the ability to decrease metabolism.

  19. ORION’S VEIL. IV. H{sub 2} EXCITATION AND GEOMETRY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abel, N. P.; Ferland, G. J.; Troland, T. H.

    2016-03-10

    The foreground Veil of material that lies in front of the Orion Nebula is the best studied sample of the interstellar medium because we know where it is located, how it is illuminated, and the balance of thermal and magnetic energy. In this work, we present high-resolution STIS observations toward the Trapezium, with the goal of better understanding the chemistry and geometry of the two primary Veil layers, along with ionized gas along the line of sight. The most complete characterization of the rotational/vibrational column densities of H{sub 2} in the almost purely atomic components of the Veil are presented,more » including updates to the Cloudy model for H{sub 2} formation on grain surfaces. The observed H{sub 2} is found to correlate almost exclusively with Component B. The observed H{sub 2}, observations of CI, CI*, and CI**, and theoretical calculations using Cloudy allow us to place the tightest constraints yet on the distance, density, temperature, and other physical characteristics for each cloud component. We find the H{sub 2} excitation spectrum observed in the Veil is incompatible with a recent study that argued that the Veil was quite close to the Trapezium. The nature of a layer of ionized gas lying between the Veil and the Trapezium is characterized through the emission and absorption lines it produces, which we find to be the blueshifted component observed in S iii and P iii absorption. We deduce that, within the next 30–60 thousand years, the blueshifted ionized layer and Component B will merge, which will subsequently merge with Component A in the next one million years.« less

  20. Fabrication of NiS modified CdS nanorod p-n junction photocatalysts with enhanced visible-light photocatalytic H2-production activity.

    PubMed

    Zhang, Jun; Qiao, Shi Zhang; Qi, Lifang; Yu, Jiaguo

    2013-08-07

    Production of hydrogen from photocatalytic water splitting has become an attractive research area due to the possibility of converting solar energy into green chemical energy. In this study, novel NiS nanoparticle (NP) modified CdS nanorod (NR) p-n junction photocatalysts were prepared by a simple two-step hydrothermal method. Even without the Pt co-catalyst, the as-prepared NiS NP-CdS NR samples exhibited enhanced visible-light photocatalytic activity and good stability for H2-production. The optimal NiS loading content was determined to be 5 mol%, and the corresponding H2-production rate reached 1131 μmol h(-1) g(-1), which is even higher than that of the optimized Pt-CdS NRs. It is believed that the assembly of p-type NiS NPs on the surface of n-type CdS NRs could form a large number of p-n junctions, which could effectively reduce the recombination rates of electrons and holes, thus greatly enhancing the photocatalytic activity. This work not only shows a possibility for the utilization of low cost NiS nanoparticles as a substitute for noble metals (such as Pt) in the photocatalytic H2-production but also provides a new insight into the design and fabrication of other new p-n junction photocatalysts for enhancing H2-production activity.

  1. Comparison of real-world and certification emission rates for light duty gasoline vehicles.

    PubMed

    Khan, Tanzila; Frey, H Christopher

    2018-05-01

    U.S. light duty vehicles are subject to the U.S. Environmental Protection Agency (EPA) emission standards. Emission compliance is determined by certification testing of selected emissions from representative vehicles on standard driving cycles using chassis dynamometers. Test results are also used in many emission inventories. The dynamometer based emission rates are adjusted to provide the certification levels (CL), which must be lower than the standards for compliance. Although standard driving cycles are based on specific observations of real-world driving, they are not necessarily real-world representative. A systematic comparison of the real-world emission rates of U.S. light duty gasoline vehicles (LDGVs) versus CL, and emission standards has not been previously reported. The purpose of this work is to compare regulatory limits (both CLs and emission standards) and the real-world emissions of LDGVs. The sensitivity of the comparisons to cold start emission was assessed. Portable Emission Measurement Systems (PEMS) were used to measure hot stabilized exhaust emissions of 122 LDGVs on a specified 110 mile test route. Cold start emissions were measured with PEMS for a selected vehicle sample of 32 vehicles. Emissions were measured for carbon dioxide (CO 2 ), carbon monoxide (CO), hydrocarbons (HC) and nitrogen oxides (NO x ). For each vehicle, a Vehicle Specific Power (VSP) modal emission rate model was developed. The VSP modal rates were weighted by the standard driving cycles and real-world driving cycles to estimate the respective cycle average emission rates (CAERs). Measured vehicles were matched with certification test vehicles for comparison. For systematic trends in comparison, vehicles were classified into four groups based on the Tier 1 and Tier 2 emission regulation, and the vehicle type such as passenger car and passenger truck. Depending on the cycle-pollutant and the vehicle groups, hot stabilized CAERs are on average either statistically

  2. Variability of O2, H2S, and pH in intertidal sediments measured on a highly resolved spatial and temporal scale

    NASA Astrophysics Data System (ADS)

    Walpersdorf, E.; Werner, U.; Bird, P.; de Beer, D.

    2003-04-01

    We investigated the variability of O_2, pH, and H_2S in intertidal sediments to assess the time- and spatial scales of changes in environmental conditions and their effects on bacterial activities. Measurements were performed over the tidal cycle and at different seasons by the use of microsensors attached to an autonomous in-situ measuring device. This study was carried out at a sand- and a mixed flat in the backbarrier area of Spiekeroog (Germany) within the frame of the DFG research group "Biogeochemistry of the Wadden Sea". Results showed that O_2 variability was not pronounced in the coastal mixed flat, where only extreme weather conditions could increase O_2 penetration. In contrast, strong dynamics in O_2 availability, pH and maximum penetration depths of several cm were found at the sandflat. In these highly permeable sediments, we directly observed tidal pumping: at high tide O_2-rich water was forced into the plate and at low tide anoxic porewater drained off the sediment. From the lower part of the plate where organic rich clayey layers were embedded in the sediment anoxic water containing H_2S leaked out during low tide. Thus advective processes, driven by the tidal pump, waves and currents, control O_2 penetration and depth distribution of H_2S and pH. The effects of the resulting porewater exchange on mineralization rates and microbial activities will be discussed.

  3. OH+ and H2O+: Probes of the Molecular Hydrogen Fraction and Cosmic-Ray Ionization Rate

    NASA Astrophysics Data System (ADS)

    Indriolo, Nick; Neufeld, D. A.; Gerin, M.; PRISMAS; WISH

    2014-01-01

    The fast ion-molecule chemistry that occurs in the interstellar medium (ISM) is initiated by cosmic-ray ionization of both atomic and molecular hydrogen. Species that are near the beginning of the network of interstellar chemistry such as the oxygen-bearing ions OH+ and H2O+ can be useful probes of the cosmic-ray ionization rate. This parameter is of particular interest as, to some extent, it controls the abundances of several molecules. Using observations of OH+ and H2O+ made with HIFI on board Herschel, we have inferred the cosmic-ray ionization rate of atomic hydrogen in multiple distinct clouds along 12 Galactic sight lines. These two molecules also allow us to determine the molecular hydrogen fraction (amount of hydrogen nuclei in H2 versus H) as OH+ and H2O+ abundances are dependent on the competition between dissociative recombination with electrons and hydrogen abstraction reactions involving H2. Our observations of OH+ and H2O+ indicate environments where H2 accounts for less than 10% of the available hydrogen nuclei, suggesting that these species primarily reside in the diffuse, atomic ISM. Average ionization rates in this gas are on the order of a few times 10-16 s-1, with most values in specific clouds above or below this average by a factor of 3 or so. This result is in good agreement with the most up-to-date determination of the distribution of cosmic-ray ionization rates in diffuse molecular clouds as inferred from observations of H3+.

  4. Interstellar absorption in the Mg II resonance line k2 and h2 emissions

    NASA Technical Reports Server (NTRS)

    Boehm-Vitense, E.

    1981-01-01

    High-resolution (0.2 A) IUE spectra for the long wavelength range (1800-3000 A) have been studied. It is shown that narrow interstellar Mg II lines are seen in the center of the k2 and h2 emissions from nearby stars with large rotational velocities. For all observed stars, the radial velocity of the central k3 absorption component in the rest system of the star is strongly correlated with the mirror image of the radial velocity of the stars; this shows that a major fraction if not all of the k3 absorption is due to interstellar absorption in the solar neighborhood. The violet to red asymmetry of the k2 emission also correlates with the radial velocities of the star; this shows that the shift of k3 is due to the velocity shift of the local interstellar cloud with respect to the star.

  5. Characterization of Photochemical Processes for H2 Production by CdS Nanorod-[FeFe] Hydrogenase Complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, K. A.; Wilker, M. B.; Boehm, M.

    2012-03-28

    We have developed complexes of CdS nanorods capped with 3-mercaptopropionic acid (MPA) and Clostridium acetobutylicum [FeFe]-hydrogenase I (CaI) that photocatalyze reduction of H{sup +} to H{sub 2} at a CaI turnover frequency of 380-900 s{sup -1} and photon conversion efficiencies of up to 20% under illumination at 405 nm. In this paper, we focus on the compositional and mechanistic aspects of CdS:CaI complexes that control the photochemical conversion of solar energy into H{sub 2}. Self-assembly of CdS with CaI was driven by electrostatics, demonstrated as the inhibition of ferredoxin-mediated H{sub 2} evolution by CaI. Production of H{sub 2} by CdS:CaImore » was observed only under illumination and only in the presence of a sacrificial donor. We explored the effects of the CdS:CaI molar ratio, sacrificial donor concentration, and light intensity on photocatalytic H{sub 2} production, which were interpreted on the basis of contributions to electron transfer, hole transfer, or rate of photon absorption, respectively. Each parameter was found to have pronounced effects on the CdS:CaI photocatalytic activity. Specifically, we found that under 405 nm light at an intensity equivalent to total AM 1.5 solar flux, H{sub 2} production was limited by the rate of photon absorption ({approx}1 ms{sup -1}) and not by the turnover of CaI. Complexes were capable of H{sub 2} production for up to 4 h with a total turnover number of 106 before photocatalytic activity was lost. This loss correlated with inactivation of CaI, resulting from the photo-oxidation of the CdS capping ligand MPA.« less

  6. The Galactic Center observed with H.E.S.S.

    NASA Astrophysics Data System (ADS)

    Jouvin, Lea

    2017-08-01

    The Galactic Center region has been a prime target region for the H.E.S.S. Imaging Atmospheric Cherenkov Telescope Array observations since da ta taking started in 2003. H.E.S.S. has revealed the presence of a very high energy gamma-ray diffuse emission in the central 200 pc, in addition to the detection of a point like source coincident with the supermassive black hole SgrA*. With more than 250 hours of H.E.S.S. data and the continuous improvement of the analysis techniques, a detailed morphology and spectral analysis of the region is now possible. We will report on the new characterisation of the spectrum of the central source down to 100 GeV energies taking advantage of the H.E.S.S. II data, obtained after the inclusion of the large 28-meter CT5 telescope in the array centre. We will present the recent discovery of a powerful cosmic PeVatron accelerator at the center of our Galaxy as well as a new characterization of the diffuse gamma-ray emission in the central 200 pc of our Galaxy through a detailed morphology study. By analysing the nature of the various components of this emission, the existence of a strong cosmic-ray gradient and thus the presence of a strong cosmic-ray accelerator at the very centre of our Galaxy was found. We will also report on the discovery of an additional point-like source HESS J1746-285 in this region possibly associated with the pulsar wind nebula candidate G0.13-0.11.

  7. H2S-induced S-sulfhydration of pyruvate carboxylase contributes to gluconeogenesis in liver cells.

    PubMed

    Ju, YoungJun; Untereiner, Ashley; Wu, Lingyun; Yang, Guangdong

    2015-11-01

    Cystathionine gamma-lyase (CSE)-derived hydrogen sulfide (H(2)S) possesses diverse roles in the liver, affecting lipoprotein synthesis, insulin sensitivity, and mitochondrial biogenesis. H(2)S S-sulfhydration is now proposed as a major mechanism for H(2)S-mediated signaling. Pyruvate carboxylase (PC) is an important enzyme for gluconeogenesis. S-sulfhydration regulation of PC by H(2)S and its implication in gluconeogenesis in the liver have been unknown. Gene expressions were analyzed by real-time PCR and western blotting, and protein S-sulfhydration was assessed by both modified biotin switch assay and tag switch assay. Glucose production and PC activity was measured with coupled enzyme assays, respectively. Exogenously applied H(2)S stimulates PC activity and gluconeogenesis in both HepG2 cells and mouse primary liver cells. CSE overexpression enhanced but CSE knockout reduced PC activity and gluconeogenesis in liver cells, and blockage of PC activity abolished H(2)S-induced gluconeogenesis. H(2)S had no effect on the expressions of PC mRNA and protein, while H(2)S S-sulfhydrated PC in a dithiothreitol-sensitive way. PC S-sulfhydration was significantly strengthened by CSE overexpression but attenuated by CSE knockout, suggesting that H(2)S enhances glucose production through S-sulfhydrating PC. Mutation of cysteine 265 in human PC diminished H(2)S-induced PC S-sulfhydration and activity. In addition, high-fat diet feeding of mice decreased both CSE expression and PC S-sulfhydration in the liver, while glucose deprivation of HepG2 cells stimulated CSE expression. CSE/H(2)S pathway plays an important role in the regulation of glucose production through S-sulfhydrating PC in the liver. Tissue-specific regulation of CSE/H(2)S pathway might be a promising therapeutic target of diabetes and other metabolic syndromes. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Steady- and transient-state H2S biofiltration using expanded schist as packing material.

    PubMed

    Romero Hernandez, A C; Rodríguez Susa, M S; Andrès, Y; Dumont, E

    2013-01-25

    The performances of three laboratory-scale biofilters (BF1, BF2, BF3) packed with expanded schist for H(2)S removal were studied at different empty bed residence times (EBRT=35, 24 and 16s) in terms of elimination capacity (EC) and removal efficiency (RE). BF1 and BF2 were filled with expanded schist while BF3 was filled with both expanded schist and a nutritional material (UP20; 12% vol). BF1 and BF3 were inoculated with activated sludge, whereas BF2 was not inoculated. A maximum EC of 42 g m(-3) h(-1) was recorded for BF3 at EBRT=35 s demonstrating the ability of schist to treat high H(2)S loading rates, and the ability of UP20 to improve H(2)S removal. Michaelis-Menten and Haldane models were fitted to the experimental elimination capacities while biofilter responses to transient-state conditions in terms of removal efficiency during shock load events were also evaluated for BF1 and BF3. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Rapid fluctuations in the northern Baltic Sea H2S layer

    NASA Astrophysics Data System (ADS)

    Kankaanpää, Harri T.; Virtasalo, Joonas J.

    2017-12-01

    Hydrogen sulfide (H2S) is linked to water quality deterioration in the Baltic Sea, with widespread seafloor hypoxia. We examined the vertical and temporal variability of in situ [H2S], oxygen concentration ([O2]), temperature (T) and pH at weekly, hourly and minute intervals at 13 locations in the western Gulf of Finland in 2013-2014. The main target was the 60-100 m water depth range, containing 3.2-290 μM O2 and 6.3-22.6 μM H2S. Where gas was detected by acoustic surveys, the structure of the H2S layer was more complex compared to stations devoid of gas. Local minima and maxima in pH frequently occurred near the H2S upper boundary (redox transition zone). Except for the homogeneous, tranquil zone above the seafloor at some stations, substantial rapid changes in hydrographic conditions were common. Typically, a layer of marked temporal T variability was present atop or within the topmost H2S layers. The largest temporal changes over a weekly period were - 0.44 °C/- 10.8 μM H2S/- 0.12 pH units (at seafloor level), + 0.18 °C/+7.9 μM H2S between casts (1 h) and + 0.03 °C/- 2.5 μM H2S per minute (high resolution logging). Abrupt [H2S] changes were recorded at two stations with sediments containing free gas. The T and [H2S] changes were synchronous at several layers, reflecting water movement. We conclude that rapid changes occur in hydrographic conditions in the near-bottom H2S layer in the northern Baltic Sea, especially at locations where free gas is present in the underlying sediments.

  10. Temperature-Dependent Kinetics Studies of the Reactions Br((sup 2)P3/2) + H2S yields SH + HBr and Br((sup 2)P3/2) + CH3SH yields CH3S + HBr. Heats of Formation of SH and CH3S Radicals

    NASA Technical Reports Server (NTRS)

    Nicovich, J. M.; Kreutter, K. D.; vanDijk, C. A.; Wine, P. H.

    1997-01-01

    Time resolved resonance fluorescence detection of Br(sup 2)P3/2) atom disappearance or appearance following 266-nm laser flash photolysis of CF2Br2/H2S/H2/N2, CF2Br2/CH3SH/H2/N2, Cl2CO/H2S/HBr/N2, and CH3SSCH3/HBr/H2/N2 mixtures has been employed to study the kinetics of the reactions Br((sup 2)P3/2) + H2S = SH + HBr (1,-1) and Br((sup2)P3/2) + CH3SH = CH3S + HBr (2, -2) as a function of temperature over the range 273-431K. Arrhenius expressions in units of 10(exp -12) cu cm/molecule/s which describe the results are k1 = (14.2 +/- 3.4) exp[(-2752 +/- 90)/T],(k-1) = (4.40 +/- 0.92) exp[(-971 +/- 73)/T],k(2) = (9.24 +/- 1.15) exp[(-386 +/- 41)/T], and k(-2) = (1.46 +/-0.21) exp[(-399 +/-41)/T; errors are 2 sigma and represent precision only. By examining Br((sup 2)P3/2) equilibrium kinetics following 355nm laser flash photolysis of Br2/CH3SH/H2/N2 mixtures, a 298 K rate coefficient of (1.7 +/- 0.5) x 10(exp -10) cu cm/molecule/s has been obtained for the reaction CH3S + Br2 yields CH3SBr + Br. To our knowledge, these are the first kinetic data reported for each of the reactions studied. Measured rate coefficients, along with known rate coefficients for similar radical + H2S, CH3SH, HBr,Br2 reactions are considered in terms of possible correlations of reactivity with reaction thermochemistry and with IP - EA, the difference between the ionization potential of the electron donor and the electron affinity of the electron acceptor. Both thermochemical and charge-transfer effects appear to be important in controlling observed reactivities. Second and third law analyses of the equilibrium data for reactions 1 and 2 have been employed to obtain the following enthalpies of reaction in units of kcal/mol: for reaction 1, Delta-H(298) = 3.64 +/- 0.43 and Delta-H(0) = 3.26 +/-0.45; for reaction 2, Delta-H(298) = -0.14 +/- 0.28 and Delta-H(0) = -0.65 +/- 0.36. Combining the above enthalpies of reaction with the well-known heats of formation of Br, HBr, H2S, and CH3SH gives the

  11. Lithium Sulfide (Li2S)/Graphene Oxide Nanospheres with Conformal Carbon Coating as a High-Rate, Long-Life Cathode for Li/S Cells.

    PubMed

    Hwa, Yoon; Zhao, Juan; Cairns, Elton J

    2015-05-13

    In recent years, lithium/sulfur (Li/S) cells have attracted great attention as a candidate for the next generation of rechargeable batteries due to their high theoretical specific energy of 2600 W·h kg(-1), which is much higher than that of Li ion cells (400-600 W·h kg(-1)). However, problems of the S cathode such as highly soluble intermediate species (polysulfides Li2Sn, n = 4-8) and the insulating nature of S cause poor cycle life and low utilization of S, which prevents the practical use of Li/S cells. Here, a high-rate and long-life Li/S cell is proposed, which has a cathode material with a core-shell nanostructure comprising Li2S nanospheres with an embedded graphene oxide (GO) sheet as a core material and a conformal carbon layer as a shell. The conformal carbon coating is easily obtained by a unique CVD coating process using a lab-designed rotating furnace without any repetitive steps. The Li2S/GO@C cathode exhibits a high initial discharge capacity of 650 mA·h g(-1) of Li2S (corresponding to the 942 mA·h g(-1) of S) and very low capacity decay rate of only 0.046% per cycle with a high Coulombic efficiency of up to 99.7% for 1500 cycles when cycled at the 2 C discharge rate.

  12. Saturn’s Ring Rain: Initial Estimates of Ring Mass Loss Rates

    NASA Astrophysics Data System (ADS)

    Moore, Luke; O'Donoghue, J.; Mueller-Wodarg, I.; Mendillo, M.

    2013-10-01

    We estimate rates of mass loss from Saturn’s rings based on ionospheric model reproductions of derived H3+ column densities. On 17 April 2011 over two hours of near-infrared spectral data were obtained of Saturn using the Near InfraRed Spectrograph (NIRSPEC) instrument on the 10-m Keck II telescope. The intensity of two bright H3+ rotational-vibrational emission lines was visible from nearly pole to pole, allowing low-latitude ionospheric emissions to be studied for the first time, and revealing significant latitudinal structure, with local extrema in one hemisphere being mirrored at magnetically conjugate latitudes in the opposite hemisphere. Even more striking, those minima and maxima mapped to latitudes of increased or increased density in Saturn’s rings, implying a direct ring-atmosphere connection in which charged water group particles from the rings are guided by magnetic field lines as they “rain” down upon the atmosphere. Water products act to quench the local ionosphere, and therefore modify the observed H3+ densities. Using the Saturn Thermosphere Ionosphere Model (STIM), a 3-D model of Saturn’s upper atmosphere, we derive the rates of water influx required from the rings in order to reproduce the observed H3+ column densities. As a unique pair of conjugate latitudes map to a specific radial distance in the ring plane, the derived water influxes can equivalently be described as rates of ring mass erosion as a function of radial distance in the ring plane, and therefore also allow for an improved estimate of the lifetime of Saturn’s rings.

  13. The indium oxide micro and nanopyramids: Morphology materializing and H2S sensing properties

    NASA Astrophysics Data System (ADS)

    Shariati, Mohsen

    2015-07-01

    Indium oxide (In2O3) pyramidal nano and microstructures were prepared by a thermal evaporation and condensation method. The preannealing step affected the nanostructures morphologies and their sensing capability. The nanosize structures have been fabricated in nucleated preorganized situation. By changing from prepared sites to undesired sites, the morphology was deteriorated. The synthesized In2O3 structures were characterized by field emission scanning electron microscopy (FESEM) and the X-ray diffraction (XRD) measurements. The FESEM images showed that nanostructures with 100-250 nm in size were fabricated. The XRD patterns indicated that most of the samples are crystalline. Then, the fabricated structures were investigated for H2S gas sensing. The nanocrystal pyramids were found to be sensitive to as low as 100 ppb of H2S gas at room temperature and microcrystal ones to 300 ppb. The nanopyramids demonstrated that they were very sensitive to gas presence and their response and recovery time were in a few seconds.

  14. Isotopic exchange in mineral-fluid systems. IV. The crystal chemical controls on oxygen isotope exchange rates in carbonate-H 2O and layer silicate-H 2O systems

    NASA Astrophysics Data System (ADS)

    Cole, David R.

    2000-03-01

    Oxygen isotope exchange between minerals and water in systems far from chemical equilibrium is controlled largely by surface reactions such as dissolution-precipitation. In many cases, this behavior can be modeled adequately by a simple pseudo-first order rate model that accounts for changes in surface area of the solid. Previous modeling of high temperature isotope exchange data for carbonates, sulfates, and silicates indicated that within a given mineral group there appears to be a systematic relationship between rate and mineral chemistry. We tested this idea by conducting oxygen isotope exchange experiments in the systems, carbonate-H 2O and layer silicate-H 2O at 300 and 350°C, respectively. Witherite (BaCO 3), strontianite (SrCO 3) and calcite (CaCO 3) were reacted with pure H 2O for different lengths of time (271-1390 h) at 300°C and 100 bars. The layer silicates, chlorite, biotite and muscovite were reacted with H 2O for durations ranging from 132 to 3282 h at 350°C and 250 bars. A detailed survey of grain sizes and grain habits using scanning electron microscopy (SEM) indicated that grain regrowth occurred in all experiments to varying extents. Changes in the mean grain diameters were particularly significant in experiments involving withertite, strontianite and biotite. The variations in the extent of oxygen isotope exchange were measured as a function of time, and fit to a pseudo-first order rate model that accounted for the change in surface area of the solid during reaction. The isotopic rates (ln r) for the carbonate-H 2O system are -20.75 ± 0.44, -18.95 ± 0.62 and -18.51 ± 0.48 mol O m -2 s -1 for calcite, strontianite and witherite, respectively. The oxygen isotope exchange rates for layer silicate-H 2O systems are -23.99 ± 0.89, -23.14 ± 0.74 and -22.40 ± 0.66 mol O m -2 s -1 for muscovite, biotite and chlorite, respectively. The rates for the carbonate-H 2O systems increase in order from calcite to strontianite to witherite. This order

  15. A new global analytical potential energy surface of NaH2+ system and dynamical calculation for H(2S) + NaH+(X2Σ+) → Na+(1S) + H2(X1Σg+) reaction

    NASA Astrophysics Data System (ADS)

    Yuan, Meiling; Li, Wentao; Yuan, Jiuchuang

    2018-05-01

    A new global potential energy surface (PES) of the NaH2+ system is constructed by fitting 27,621 ab initio energy points with the neural network method. The root mean square error of the new PES is only 4.1609 × 10-4 eV. Based on the new PES, dynamical calculations have been performed using the time-dependent quantum wave packet method. These results are then compared with the H(2S) + LiH+(X2Σ+) → Li+(1S) + H2(X1Σg+) reaction. The direct abstract mechanism is found to play an important role in the reaction because only forward scattering signals on the differential cross section results for all calculated collision energies.

  16. Search for extended γ-ray emission around AGN with H.E.S.S. and Fermi-LAT

    NASA Astrophysics Data System (ADS)

    H. E. S. S. Collaboration; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Angüner, E.; Anton, G.; Backes, M.; Balenderan, S.; Balzer, A.; Barnacka, A.; Becherini, Y.; Becker Tjus, J.; Bernlöhr, K.; Birsin, E.; Bissaldi, E.; Biteau, J.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Carrigan, S.; Casanova, S.; Chadwick, P. M.; Chalme-Calvet, R.; Chaves, R. C. G.; Cheesebrough, A.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Conrad, J.; Couturier, C.; Cui, Y.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; deWilt, P.; Dickinson, H. J.; Djannati-Atäı, A.; Domainko, W.; Drury, L. O'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Espigat, P.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Grondin, M.-H.; Grudzińska, M.; Häffner, S.; Hahn, J.; Harris, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Jacholkowska, A.; Jahn, C.; Jamrozy, M.; Janiak, M.; Jankowsky, F.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Khélifi, B.; Kieffer, M.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lefaucheur, J.; Lemie`re, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Méhault, J.; Meintjes, P. J.; Menzler, U.; Meyer, M.; Moderski, R.; Mohamed, M.; Moulin, E.; Murach, T.; Naumann, C. L.; de Naurois, M.; Niemiec, J.; Nolan, S. J.; Oakes, L.; Odaka, H.; Ohm, S.; de Oña Wilhelmi, E.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perez, J.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Raue, M.; Reichardt, I.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Rob, L.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sol, H.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tluczykont, M.; Trichard, C.; Valerius, K.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Venter, C.; Viana, A.; Vincent, P.; Völk, H. J.; Volpe, F.; Vorster, M.; Vuillaume, T.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; Ward, M.; Weidinger, M.; Weitzel, Q.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zacharias, M.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.; Malyshev, D.

    2014-02-01

    Context. Very-high-energy (VHE; E > 100 GeV) γ-ray emission from blazars inevitably gives rise to electron-positron pair production through the interaction of these γ-rays with the extragalactic background light (EBL). Depending on the magnetic fields in the proximity of the source, the cascade initiated from pair production can result in either an isotropic halo around an initially beamed source or a magnetically broadened cascade flux. Aims: Both extended pair-halo (PH) and magnetically broadened cascade (MBC) emission from regions surrounding the blazars 1ES 1101-232, 1ES 0229+200, and PKS 2155-304 were searched for using VHE γ-ray data taken with the High Energy Stereoscopic System (H.E.S.S.) and high-energy (HE; 100 MeV < E < 100 GeV) γ-ray data with the Fermi Large Area Telescope (LAT). Methods: By comparing the angular distributions of the reconstructed γ-ray events to the angular profiles calculated from detailed theoretical models, the presence of PH and MBC was investigated. Results: Upper limits on the extended emission around 1ES 1101-232, 1ES 0229+200, and PKS 2155-304 are found to be at a level of a few per cent of the Crab nebula flux above 1 TeV, depending on the assumed photon index of the cascade emission. Assuming strong extra-Galactic magnetic field (EGMF) values, >10-12 G, this limits the production of pair haloes developing from electromagnetic cascades. For weaker magnetic fields, in which electromagnetic cascades would result in MBCs, EGMF strengths in the range (0.3-3)× 10-15 G were excluded for PKS 2155-304 at the 99% confidence level, under the assumption of a 1 Mpc coherence length.

  17. Summit CO2 emission rates by the CO2/SO2 ratio method at Kīlauea Volcano, Hawaiʻi, during a period of sustained inflation

    USGS Publications Warehouse

    Hager, S.A.; Gerlach, T.M.; Wallace, P.J.

    2008-01-01

    The emission rate of carbon dioxide escaping from the summit of Kīlauea Volcano, Hawaiʻi, proved highly variable, averaging 4900 ± 2000 metric tons per day (t/d) in June–July 2003 during a period of summit inflation. These results were obtained by combining over 90 measurements of COSPEC-derived SO2emission rates with synchronous CO2/SO2 ratios of the volcanic gas plume along the summit COSPEC traverse. The results are lower than the CO2 emission rate of 8500 ± 300 t/d measured by the same method in 1995–1999 during a period of long-term summit deflation [Gerlach, T.M., McGee, K.A., Elias, T., Sutton, A.J. and Doukas, M.P., 2002. Carbon dioxide emission rate of Kīlauea Volcano: Implications for primary magma and the summit reservoir. Journal of Geophysical Research-Solid Earth, 107(B9): art. no.-2189.]. Analysis of the data indicates that the emission rates of the present study likely reflect changes in the magma supply rate and residence time in the summit reservoir. It is also likely that emission rates during the inflation period were heavily influenced by SO2 pulses emitted adjacent to the COSPEC traverse, which biased CO2/SO2 ratios towards low values that may be unrepresentative of the global summit gas plume. We conclude that the SO2 pulses are consequences of summit re-inflation under way since 2003 and that CO2 emission rates remain comparable to, but more variable than, those measured prior to re-inflation.

  18. Rate constant for the H˙ + H2O → ˙OH + H2 reaction at elevated temperatures measured by pulse radiolysis.

    PubMed

    Muroya, Y; Yamashita, S; Lertnaisat, P; Sanguanmith, S; Meesungnoen, J; Jay-Gerin, J-P; Katsumura, Y

    2017-11-22

    Maintaining the structural integrity of materials in nuclear power plants is an essential issue associated with safe operation. Hydrogen (H 2 ) addition or injection to coolants is a powerful technique that has been widely applied such that the reducing conditions in the coolant water avoid corrosion and stress corrosion cracking (SCC). Because the radiation-induced reaction of ˙OH + H 2 → H˙ + H 2 O plays a crucial role in these systems, the rate constant has been measured at operation temperatures of the reactors (285-300 °C) by pulse radiolysis, generating sufficient data for analysis. The reverse reaction H˙ + H 2 O → ˙OH + H 2 is negligibly slow at ambient temperature; however, it accelerates considerably quickly at elevated temperatures. Although the reverse reaction reduces the effectiveness of H 2 addition, reliable rate constants have not yet been measured. In this study, the rate constants have been determined in a temperature range of 250-350 °C by pulse radiolysis in an aqueous I - solution.

  19. [Determination of H2S in Rat Intestinal Perfusion Solution Based on Fluorescence Analysis].

    PubMed

    Hou, Jun-feng; Li, Xin-xia; Shen, Xue-ru; Huojia, Miliban; Guan, Ming

    2015-08-01

    Under alkaline conditions, Fluorescein mercury has strong fluorescence, however, when it met S(2-), its fluorescence would quench, in view of the above, a fluorescence method for determination of H2S in biological samples was established. In the 0.1 mol · L(-1) NaOH dilution, when the concentration of fluorescein Mercury and Na2S was 5.0 × 10(-5) and 1.0 × 10(-5) mol · L(-1) respectively, the fluorescence intensity of system was determined at 522 nm. The results showed that, at the range of 4.0 × 10(-7)~2.0 × 10(-6) mol · L(-1), the concentration decreasing of H2S and fluorescence intensity had good linear relationship, r=0.9980, the RSD of precision test was 4.59% (n=7), the detection limit was 3.5 × 10(-8) mol · L(-1), the content of H2S in the sample were 1.01 × 10(-6) and 1.15 × 10(-6) mol · L(-1), and the recovery rate was 95.8%~101.0%, the method has the advantages of simple operation, high sensitivity, good selectivity, can accurately determine of H2S in intestinal perfused solution, and provides the basis for the determination of endogenous H2S.

  20. Quenching of para-H{sub 2} with an ultracold antihydrogen atom H{sub 1s}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sultanov, Renat A.; Guster, Dennis; Adhikari, Sadhan K.

    2010-02-15

    In this work we report the results of calculation for quantum-mechanical rotational transitions in molecular hydrogen, H{sub 2}, induced by an ultracold ground-state antihydrogen atom H{sub 1s}. The calculations are accomplished using a nonreactive close-coupling quantum-mechanical approach. The H{sub 2} molecule is treated as a rigid rotor. The total elastic-scattering cross section {sigma}{sub el}({epsilon}) at energy {epsilon}, state-resolved rotational transition cross sections {sigma}{sub jj}{sup '}({epsilon}) between states j and j{sup '}, and corresponding thermal rate coefficients k{sub jj}{sup '}(T) are computed in the temperature range 0.004 K < or approx. T < or approx. 4 K. Satisfactory agreement with othermore » calculations (variational) has been obtained for {sigma}{sub el}({epsilon}).« less

  1. Herschel Survey of Galactic OH+, H2O+, and H3O+: Probing the Molecular Hydrogen Fraction and Cosmic-Ray Ionization Rate

    NASA Astrophysics Data System (ADS)

    Indriolo, Nick; Neufeld, D. A.; Gerin, M.; Schilke, P.; Benz, A. O.; Winkel, B.; Menten, K. M.; Chambers, E. T.; Black, John H.; Bruderer, S.; Falgarone, E.; Godard, B.; Goicoechea, J. R.; Gupta, H.; Lis, D. C.; Ossenkopf, V.; Persson, C. M.; Sonnentrucker, P.; van der Tak, F. F. S.; van Dishoeck, E. F.; Wolfire, Mark G.; Wyrowski, F.

    2015-02-01

    In diffuse interstellar clouds the chemistry that leads to the formation of the oxygen-bearing ions OH+, H2O+, and H3O+ begins with the ionization of atomic hydrogen by cosmic rays, and continues through subsequent hydrogen abstraction reactions involving H2. Given these reaction pathways, the observed abundances of these molecules are useful in constraining both the total cosmic-ray ionization rate of atomic hydrogen (ζH) and molecular hydrogen fraction (f_H_2). We present observations targeting transitions of OH+, H2O+, and H3O+ made with the Herschel Space Observatory along 20 Galactic sight lines toward bright submillimeter continuum sources. Both OH+ and H2O+ are detected in absorption in multiple velocity components along every sight line, but H3O+ is only detected along 7 sight lines. From the molecular abundances we compute f_H_2 in multiple distinct components along each line of sight, and find a Gaussian distribution with mean and standard deviation 0.042 ± 0.018. This confirms previous findings that OH+ and H2O+ primarily reside in gas with low H2 fractions. We also infer ζH throughout our sample, and find a lognormal distribution with mean log (ζH) = -15.75 (ζH = 1.78 × 10-16 s-1) and standard deviation 0.29 for gas within the Galactic disk, but outside of the Galactic center. This is in good agreement with the mean and distribution of cosmic-ray ionization rates previously inferred from H_3^+ observations. Ionization rates in the Galactic center tend to be 10-100 times larger than found in the Galactic disk, also in accord with prior studies. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  2. Ethanol emission from loose corn silage and exposed silage particles

    NASA Astrophysics Data System (ADS)

    Hafner, Sasha D.; Montes, Felipe; Rotz, C. Alan; Mitloehner, Frank

    2010-11-01

    Silage on dairy farms has been identified as a major source of volatile organic compound (VOC) emissions. However, rates of VOC emission from silage are not accurately known. In this work, we measured ethanol (a dominant silage VOC) emission from loose corn silage and exposed corn silage particles using wind tunnel systems. Flux of ethanol was highest immediately after exposing loose silage samples to moving air (as high as 220 g m -2 h -1) and declined by as much as 76-fold over 12 h as ethanol was depleted from samples. Emission rate and cumulative 12 h emission increased with temperature, silage permeability, exposed surface area, and air velocity over silage samples. These responses suggest that VOC emission from silage on farms is sensitive to climate and management practices. Ethanol emission rates from loose silage were generally higher than previous estimates of total VOC emission rates from silage and mixed feed. For 15 cm deep loose samples, mean cumulative emission was as high as 170 g m -2 (80% of initial ethanol mass) after 12 h of exposure to an air velocity of 5 m s -1. Emission rates measured with an emission isolation flux chamber were lower than rates measured in a wind tunnel and in an open setting. Results show that the US EPA emission isolation flux chamber method is not appropriate for estimating VOC emission rates from silage in the field.

  3. Optimization of operating parameters for gas-phase photocatalytic splitting of H2S by novel vermiculate packed tubular reactor.

    PubMed

    Preethi, V; Kanmani, S

    2016-10-01

    Hydrogen production by gas-phase photocatalytic splitting of Hydrogen Sulphide (H2S) was investigated on four semiconductor photocatalysts including CuGa1.6Fe0.4O2, ZnFe2O3, (CdS + ZnS)/Fe2O3 and Ce/TiO2. The CdS and ZnS coated core shell particles (CdS + ZnS)/Fe2O3 shows the highest rate of hydrogen (H2) production under optimized conditions. Packed bed tubular reactor was used to study the performance of prepared photocatalysts. Selection of the best packing material is a key for maximum removal efficiency. Cheap, lightweight and easily adsorbing vermiculate materials were used as a novel packing material and were found to be effective in splitting H2S. Effect of various operating parameters like flow rate, sulphide concentration, catalyst dosage, light irradiation were tested and optimized for maximum H2 conversion of 92% from industrial waste H2S. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Low-Temperature Rate Coefficients of C2H with CH4 and CD4 from 154 to 359 K

    NASA Technical Reports Server (NTRS)

    Opansky, Brian J.; Leone, Stephen R.

    1996-01-01

    Rate coefficients for the reaction C2H + CH4 yields C2H2 + CH3 and C2H + CD4 yields C2HD + CD3 are measured over the temperature range 154-359 K using transient infrared laser absorption spectroscopy. Ethynyl radicals are produced by pulsed laser photolysis of C2H2 in a variable temperature flow cell, and a tunable color center laser probes the transient removal of C2H (Chi(exp 2) Sigma(+) (0,0,0)) in absorption. The rate coefficients for the reactions of C2H with CH4 and CD4 both show a positive temperature dependence over the range 154-359 K, which can be expressed as k(sub CH4) = (1.2 +/- 0.1) x 10(exp -11) exp((-491 +/- 12)/T) and k(sub CD4) = (8.7 +/- 1.8) x 10(exp -12) exp((-650 +/- 61)/T) cm(exp 3) molecule(exp -1) s(exp -1), respectively. The reaction of C2H + CH4 exhibits a significant kinetic isotope effect at 300 K of k(sub CH4)/k(sub CD4) = 2.5 +/- 0.2. Temperature dependent rate constants for C2H + C2H2 were also remeasured over an increased temperature range from 143 to 359 K and found to show a slight negative temperature dependence, which can be expressed as k(sub C2H2) = 8.6 x 10(exp -16) T(exp 1.8) exp((474 +/- 90)/T) cm(exp 3) molecule(exp -1) s(exp -1).

  5. Volatile Emissions from Hot Spring Basin, Yellowstone National Park, USA

    NASA Astrophysics Data System (ADS)

    Werner, C.; Hurwitz, S.; Bergfeld, D.; Evans, W. C.; Lowenstern, J. B.; Jaworowski, C.; Heasler, H.

    2007-12-01

    The flux and composition of magmatic volatiles were characterized for Hot Spring Basin (HSB), Yellowstone National Park, in August 2006. Diffuse fluxes of CO2 (228 sites) from thermal soil were elevated, with a population distribution similar to that of other acid-sulfate areas in Yellowstone. Thus the estimated diffuse emission rate at HSB is proportionately larger than other areas due to its large area, and could be as high as 1000 td-1 CO2. The diffuse flux of H2S was only above detection limits at 20 of the 31 sites measured. The estimated diffuse H2S emission rate was ~ 4 td-1. Good correlation exists between the log of CO2 flux and shallow soil temperatures, indicating linked steam and gas upflow in the subsurface. The correlation between CO2 and H2S fluxes is weak, and the CO2 / H2S diffuse flux ratio was higher than in fumarolic ratios of CO2 to H2S. This suggests that various reactions, e.g., native sulfur deposition, act to remove H2S from the original gas stream in the diffuse low- temperature environment. Dissolved sulfate flux through Shallow Creek, which drains part of HSB, was ~ 4 td-1. Comparing dissolved sulfate flux to estimates of primary emission of H2S based on fumarolic gas geochemistry gives first order estimates of the sulfur consumed in surficial or subsurface mineral deposition. Total C and S outputs from HSB are comparable to other active volcanic systems.

  6. Investigation on the removal of H2S from microwave pyrolysis of sewage sludge by an integrated two-stage system.

    PubMed

    Zhang, Jun; Tian, Yu; Yin, Linlin; Zuo, Wei; Gong, Zhenlong; Zhang, Jie

    2017-08-01

    In this study, an integrated two-stage system, including the in-situ catalytic microwave pyrolysis (ICMP) and subsequent catalytic wet oxidation (CWO) processes, was proposed to remove H 2 S released from microwave-induced pyrolysis of sewage sludge. The emission profile and H 2 S removal from the pyrolysis of raw sewage sludge (SS) and sewage sludge spiked with conditioner CaO (SS-CaO) were investigated. The results showed that CaO played a positive role on sulfur fixation during the pyrolysis process. It was found that SS-CaO (10 wt.%) contributed to about 35% of H 2 S removal at the first stage (ICMP process). Additionally, the CWO process was demonstrated to have promising potential for posttreatment of remaining H 2 S gas. At the Fe 3+ concentration of 30 g/L, the maximum H 2 S removal efficiency of 94.8% was obtained for a single Fe 3+ /Cu 2+ solution. Finally, at the pyrolysis temperature of 800 °C, 99.7% of H 2 S was eliminated by the integrated two-stage system meeting the discharge standard of China. Therefore, the integrated two-stage system of ICMP + CWO may provide a promising strategy to remove H 2 S dramatically for the biomass pyrolysis industry.

  7. ON THE ORIGINS OF THE DIFFUSE H{alpha} EMISSION: IONIZED GAS OR DUST-SCATTERED H{alpha} HALOS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seon, Kwang-Il; Witt, Adolf N., E-mail: kiseon@kasi.re.kr

    2012-10-20

    It is known that the diffuse H{alpha} emission outside of bright H II regions not only are very extended, but also can occur in distinct patches or filaments far from H II regions, and the line ratios of [S II] {lambda}6716/H{alpha} and [N II] {lambda}6583/H{alpha} observed far from bright H II regions are generally higher than those in the H II regions. These observations have been regarded as evidence against the dust-scattering origin of the diffuse H{alpha} emission (including other optical lines), and the effect of dust scattering has been neglected in studies on the diffuse H{alpha} emission. In thismore » paper, we reexamine the arguments against dust scattering and find that the dust-scattering origin of the diffuse H{alpha} emission cannot be ruled out. As opposed to the previous contention, the expected dust-scattered H{alpha} halos surrounding H II regions are, in fact, in good agreement with the observed H{alpha} morphology. We calculate an extensive set of photoionization models by varying elemental abundances, ionizing stellar types, and clumpiness of the interstellar medium (ISM) and find that the observed line ratios of [S II]/H{alpha}, [N II]/H{alpha}, and He I {lambda}5876/H{alpha} in the diffuse ISM accord well with the dust-scattered halos around H II regions, which are photoionized by late O- and/or early B-type stars. We also demonstrate that the H{alpha} absorption feature in the underlying continuum from the dust-scattered starlight ({sup d}iffuse galactic light{sup )} and unresolved stars is able to substantially increase the [S II]/H{alpha} and [N II]/H{alpha} line ratios in the diffuse ISM.« less

  8. Modeling emission rates and exposures from outdoor cooking

    NASA Astrophysics Data System (ADS)

    Edwards, Rufus; Princevac, Marko; Weltman, Robert; Ghasemian, Masoud; Arora, Narendra K.; Bond, Tami

    2017-09-01

    Approximately 3 billion individuals rely on solid fuels for cooking globally. For a large portion of these - an estimated 533 million - cooking is outdoors, where emissions from cookstoves pose a health risk to both cooks and other household and village members. Models that estimate emissions rates from stoves in indoor environments that would meet WHO air quality guidelines (AQG), explicitly don't account for outdoor cooking. The objectives of this paper are to link health based exposure guidelines with emissions from outdoor cookstoves, using a Monte Carlo simulation of cooking times from Haryana India coupled with inverse Gaussian dispersion models. Mean emission rates for outdoor cooking that would result in incremental increases in personal exposure equivalent to the WHO AQG during a 24-h period were 126 ± 13 mg/min for cooking while squatting and 99 ± 10 mg/min while standing. Emission rates modeled for outdoor cooking are substantially higher than emission rates for indoor cooking to meet AQG, because the models estimate impact of emissions on personal exposure concentrations rather than microenvironment concentrations, and because the smoke disperses more readily outdoors compared to indoor environments. As a result, many more stoves including the best performing solid-fuel biomass stoves would meet AQG when cooking outdoors, but may also result in substantial localized neighborhood pollution depending on housing density. Inclusion of the neighborhood impact of pollution should be addressed more formally both in guidelines on emissions rates from stoves that would be protective of health, and also in wider health impact evaluation efforts and burden of disease estimates. Emissions guidelines should better represent the different contexts in which stoves are being used, especially because in these contexts the best performing solid fuel stoves have the potential to provide significant benefits.

  9. Mineralogical changes of a well cement in various H2S-CO2(-brine) fluids at high pressure and temperature.

    PubMed

    Jacquemet, Nicolas; Pironon, Jacques; Saint-Marc, Jérémie

    2008-01-01

    The reactivity of a crushed well cement in contact with (1) a brine with dissolved H2S-CO2; (2) a dry H2S-CO2 supercritical phase; (3) a two-phase fluid associating a brine with dissolved H2S-CO2 and a H2S-CO2 supercritical phase was investigated in batch experiments at 500 bar and 120, 200 degrees C. All of the experiments showed that following 15-60 days cement carbonation occurred. The H2S reactivity with cement is limited since it only transformed the ferrites (minor phases) by sulfidation. It appeared that the primary parameter controlling the degree of carbonation (i.e., the rate of calcium carbonates precipitation and CSH (Calcium Silicate Hydrates) decalcification) is the physical state of the fluid phase contacting the minerals. The carbonation degree is complete when the minerals contact at least the dry H2S-CO2 supercritical phase and partial when they contactthe brine with dissolved H2S-CO2. Aragonite (calcium carbonate polymorph) precipitated specifically within the dry H2S-CO2 supercritical phase. CSH cristallinity is improved by partial carbonation while CSH are amorphized by complete carbonation. However, the features evidenced in this study cannot be directly related to effective features of cement as a monolith. Further studies involving cement as a monolith are necessary to ascertain textural, petrophysical, and mechanical evolution of cement.

  10. H.E.S.S. detection of TeV emission from the interaction region between the supernova remnant G349.7+0.2 and a molecular cloud

    NASA Astrophysics Data System (ADS)

    H. E. S. S. Collaboration; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Angüner, E. O.; Backes, M.; Balenderan, S.; Balzer, A.; Barnacka, A.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Birsin, E.; Biteau, J.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Bulik, T.; Carrigan, S.; Casanova, S.; Chadwick, P. M.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Conrad, J.; Couturier, C.; Cui, Y.; Davids, I. D.; Degrange, B.; Deil, C.; deWilt, P.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; O'C. Drury, L.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Espigat, P.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Grondin, M.-H.; Grudzińska, M.; Hadasch, D.; Häffner, S.; Hahn, J.; Harris, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Ivascenko, A.; Jacholkowska, A.; Jahn, C.; Jamrozy, M.; Janiak, M.; Jankowsky, F.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Khélifi, B.; Kieffer, M.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Méhault, J.; Meintjes, P. J.; Menzler, U.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Morå, K.; Moulin, E.; Murach, T.; de Naurois, M.; Niemiec, J.; Nolan, S. J.; Oakes, L.; Odaka, H.; Ohm, S.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Arribas, M. Paz; Pekeur, N. W.; Pelletier, G.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reichardt, I.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tluczykont, M.; Trichard, C.; Valerius, K.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Völk, H. J.; Volpe, F.; Vorster, M.; Vuillaume, T.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; Ward, M.; Weidinger, M.; Weitzel, Q.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.

    2015-01-01

    G349.7+0.2 is a young Galactic supernova remnant (SNR) located at the distance of 11.5 kpc and observed across the entire electromagnetic spectrum from radio to high energy (HE; 0.1 GeV 100 GeV) γ-ray emission coincident with this SNR with the High Energy Stereoscopic System (H.E.S.S.) is reported. This makes it one of the farthest Galactic SNR ever detected in this domain. An integral flux F(E> 400 GeV) = (6.5 ± 1.1stat ± 1.3syst) × 10-13 ph cm-2 s-1 corresponding to ~0.7% of that of the Crab Nebula and to a luminosity of ~1034 erg s-1 above the same energy threshold, and a steep photon index ΓVHE = 2.8 ± 0.27stat ± 0.20syst are measured. The analysis of more than 5 yr of Fermi-LAT data towards this source shows a power-law like spectrum with a best-fit photon index ΓHE = 2.2 ± 0.04stat+0.13-0.31 sys. The combined γ-ray spectrum of G349.7+0.2 can be described by either a broken power-law (BPL) or a power-law with exponential (or sub-exponential) cutoff (PLC). In the former case, the photon break energy is found at Ebr,γ = 55+70-30 GeV, slightly higher than what is usually observed in the HE/VHE γ-ray emitting middle-aged SNRs known to be interacting with molecular clouds. In the latter case, the exponential (respectively sub-exponential) cutoff energy is measured at Ecut,γ = 1.4+1.6-0.55 (respectively 0.35+0.75-0.21) TeV. A pion-decay process resulting from the interaction of the accelerated protons and nuclei with the dense surrounding medium is clearly the preferred scenario to explain the γ-ray emission. The BPL with a spectral steepening of 0.5-1 and the PLC provide equally good fits to the data. The product of the average gas density and the total energy content of accelerated protons and nuclei amounts to nHWp ~ 5 × 1051 erg cm-3.

  11. Improved optical flow velocity analysis in SO2 camera images of volcanic plumes - implications for emission-rate retrievals investigated at Mt Etna, Italy and Guallatiri, Chile

    NASA Astrophysics Data System (ADS)

    Gliß, Jonas; Stebel, Kerstin; Kylling, Arve; Sudbø, Aasmund

    2018-02-01

    Accurate gas velocity measurements in emission plumes are highly desirable for various atmospheric remote sensing applications. The imaging technique of UV SO2 cameras is commonly used to monitor SO2 emissions from volcanoes and anthropogenic sources (e.g. power plants, ships). The camera systems capture the emission plumes at high spatial and temporal resolution. This allows the gas velocities in the plume to be retrieved directly from the images. The latter can be measured at a pixel level using optical flow (OF) algorithms. This is particularly advantageous under turbulent plume conditions. However, OF algorithms intrinsically rely on contrast in the images and often fail to detect motion in low-contrast image areas. We present a new method to identify ill-constrained OF motion vectors and replace them using the local average velocity vector. The latter is derived based on histograms of the retrieved OF motion fields. The new method is applied to two example data sets recorded at Mt Etna (Italy) and Guallatiri (Chile). We show that in many cases, the uncorrected OF yields significantly underestimated SO2 emission rates. We further show that our proposed correction can account for this and that it significantly improves the reliability of optical-flow-based gas velocity retrievals. In the case of Mt Etna, the SO2 emissions of the north-eastern crater are investigated. The corrected SO2 emission rates range between 4.8 and 10.7 kg s-1 (average of 7.1 ± 1.3 kg s-1) and are in good agreement with previously reported values. For the Guallatiri data, the emissions of the central crater and a fumarolic field are investigated. The retrieved SO2 emission rates are between 0.5 and 2.9 kg s-1 (average of 1.3 ± 0.5 kg s-1) and provide the first report of SO2 emissions from this remotely located and inaccessible volcano.

  12. Etude des mécanismes d'ionisation de H{2}O par interaction He^{*}(2 ^1S, 2 ^3S)/Ne^{*}(^3P{0}, ^3P{2})+H{2}O

    NASA Astrophysics Data System (ADS)

    Le Nadan, André; Sinou, Guillaume; Tuffin, Firmin

    1993-06-01

    Experimental observations of Penning ionisation of H{2}O by the helium metastables 21S and 23S and by the neon metastables ^3P{0} and ^3P{2} are reported. The kinetic energies of the ions created during the collision process (both parent and fragment) are analysed. Certain particularities of the experimental results are explained by involving the hypothesis of transfers of vibrational energy to kinetic energy. Furthermore, the forms of the energy distributions of the fragment ions are explained by th predissociation of the ^2B{2} state of H{2}O+. Nous avons étudié l'ionisation Penning de H{2}O par des métastables 21S et 23S de l'hélium, ainsi que ^3P{0} et ^3P{2} du néon. Nous avons analysé l'énergie cinétique des ions créés au cours de la collision (parents et fragments). Afin d'interpréter certaines particularités expérimentales, l'hypothèse de transferts d'énergie de vibration en énergie cinétique est proposées. Par ailleurs, les caractéristiques des distributions en énergie des ions fragments sont expliquées par la prédissociation de l'état ^2B{2} de H{2}O+.

  13. Determination of Summertime VOC Emission Rates from Produced Water Ponds in the Uintah Basin

    NASA Astrophysics Data System (ADS)

    Martin, R. S.; Woods, C.; Lyman, S.

    2013-12-01

    The observance of excess ozone concentrations in Utah's Uintah Basin over past several years has prompted several investigations into the extent and causes of the elevated ozone. Among these is the assessment of potential emissions of reactive VOCs. Evaporation ponds, used a remediation technique for treatment of contaminated production and other waters, are one potential source of significant VOC emissions and is estimated that there are around 160 such ponds within the Uintah Basin's oil and gas production areas. In June 2012 VOC emission rates for several reactive VOCs were derived for an evaporation facility consisting of a small inlet pond (≈0.03 acres) and two larger, serial ponds (≈4.3 acres each). The emission rates were determined over three sampling periods using an inverse modeling approach. Under this methodology, ambient VOC concentrations are determined at several downwind locations through whole-air collection into SUMMA canisters, followed by GC/MS quantification and compared with predicted concentrations using an EPA-approved dispersion model, AERMOD. The presumed emission rates used within the model were then adjusted until the modeled concentrations approach the observed concentrations. The derived emission rates for the individual VOCs were on the order of 10-3 g/s/m2 from the inlet pond and 10-6 g/s/m2 from the larger ponds. The emissions from the 1st pond in series after the inlet pond were about 3-4x the emissions from the 2nd pond. These combined emission rates are about an order of magnitude those reported for a single study in Colorado (Thoma, 2009). It should be noted, however, that the variability about each of the VOC emission rates was significant (often ×100% at the 95% confidence interval). Extrapolating these emission rates to the estimated total areas of all the evaporation ponds within Basin resulted in calculated Basin-wide VOC emissions 292,835 tons/yr. However, Bar-Ilan et al. (2009) estimated 2012 VOC oil and gas related

  14. [Effect of endogenous H2S on platelet L-Arg transport].

    PubMed

    Duan, Wen-zhuo; Wang, Yi-peng; Gong, Hai-min

    2010-05-01

    To observe the effect of novel air neuromodulator H2S on platelet function of L-Arg transport for discussing H2S of effect on platelet function. Saturate H2S solution as donate made rat rich platelet plasma and pre-incubation rat platelet with different density of H2S. To measure the velocity of L-Arg transport in platelet by radioactivity technique. At different concentrations of H2S (6.25, 12.5, 25, 50, 100 micromol/L), the velocity of L-Arg transport was lower than that in control. H2S reduced rapidly the Vmax and velocity of L-Arg transport in platelet (P < 0.05) and this effect had no effect to Km. H2S can affect platelet function by changing rapidly platelet L-Arg transport system function.

  15. Photolysis of low concentration H2S under UV/VUV irradiation emitted from microwave discharge electrodeless lamps.

    PubMed

    Xia, Lan-Yan; Gu, Ding-Hong; Tan, Jing; Dong, Wen-Bo; Hou, Hui-Qi

    2008-04-01

    The photolysis of simulating low concentration of hydrogen sulfide malodorous gas was studied under UV irradiation emitted by self-made microwave discharge electrodeless lamps (i.e. microwave UV electrodeless mercury lamp (185/253.7 nm) and iodine lamp (178.3/180.1/183/184.4/187.6/206.2 nm)). Experiments results showed that the removal efficiency (eta H2S) of hydrogen sulfide was decreased with increasing initial H2S concentration and increased slightly with gas residence time; H2S removal efficiency was decreased dramatically with enlarged pipe diameter. Under the experimental conditions with pipe diameter of 36 mm, gas flow rate of 0.42 standard l s(-1), eta H2S was 52% with initial H2S concentration of 19.5 mg m(-3) by microwave mercury lamp, the absolute removal amount (ARA) was 4.30 microg s(-1), and energy yield (EY) was 77.3 mg kW h(-1); eta H2S was 56% with initial H2S concentration of 18.9 mg m(-3) by microwave iodine lamp, the ARA was 4.48 microg s(-1), and the EY was 80.5mg kW h(-1). The main photolysis product was confirmed to be SO4(2-) with IC.

  16. First-principles characterization of potassium intercalation in the hexagonal 2H-MoS2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersen, Amity; Kathmann, Shawn M.; Lilga, Michael A.

    2012-01-12

    Periodic density functional theory calculations were performed to study the structural and electronic properties of potassium intercalated into hexagonal MoS{sub 2} (2H-MoS{sub 2}). Metallic potassium (K) atoms are incrementally loaded in the hexagonal sites of the interstitial spaces between MoS2 sheets of the 2H-MoS{sub 2} bulk structure generating 2H-KxMoS2 (0.125 {<=} x {<=} 1.0) structures. To accommodate the potassium atoms, the interstitial spacing c parameter in the 2H-MoS{sub 2} bulk expands from 12.816 {angstrom} in 2H-MoS{sub 2} to 16.086 {angstrom} in 2H-K{sub 0.125}MoS{sub 2}. The second lowest potassium loading concentration (K{sub 0.25}MoS{sub 2}) results in the largest interstitial spacing expansionmore » (to c = 16.726 {angstrom}). Our calculations show that there is a small gradual contraction of the interstitial spacing as the potassium loading increases with c = 14.839 {angstrom} for KMoS{sub 2}. This interstitial contraction is correlated with an in-plane expansion of the MoS{sub 2} sheets, which is in good agreement with experimental X-ray diffraction (XRD) measurements. The electronic analysis shows that potassium readily donates its 4s electron to the conduction band of the 2H-K{sub x}MoS{sub 2}, and is largely ionic in character. As a result of the electron donation, the 2H-K{sub x}MoS{sub 2} system changes from a semiconductor to a more metallic system with increasing potassium intercalation. For loadings 0.25 {<=} x {<=} 0.625, triangular Mo-Mo-Mo moieties are prominent and tend to form rhombitrihexagonal motifs. Intercalation of H{sub 2}O molecules that solvate the K atoms is likely to occur in catalytic conditions. The inclusion of two H{sub 2}O molecules per K atom in the K{sub 0.25}MoS{sub 2} structure shows good agreement with XRD measurements.« less

  17. Rate coefficient for H + O2 + M = HO2 + M evaluated from shock tube measurements of induction times

    NASA Technical Reports Server (NTRS)

    Slack, M. W.

    1977-01-01

    Shock tube experiments measured hydrogen-air induction times near the second explosion limit. By matching these experimental results with numerically predicted induction times, the rate coefficient for the reaction H + O2 + M = HO2 + M was evaluated as k-sub 4,N2 = 3.3 (plus or minus .6) x 10 to the 15 cm to the 6th/sq mole/s.

  18. SHOCK-ENHANCED C{sup +} EMISSION AND THE DETECTION OF H{sub 2}O FROM THE STEPHAN'S QUINTET GROUP-WIDE SHOCK USING HERSCHEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Appleton, P. N.; Lord, S.; Lu, N.

    2013-11-01

    We present the first Herschel spectroscopic detections of the [O I] 63 μm and [C II] 158 μm fine-structure transitions, and a single para-H{sub 2}O line from the 35 × 15 kpc{sup 2} shocked intergalactic filament in Stephan's Quintet. The filament is believed to have been formed when a high-speed intruder to the group collided with a clumpy intergroup gas. Observations with the PACS spectrometer provide evidence for broad (>1000 km s{sup –1}) luminous [C II] line profiles, as well as fainter [O I] 63 μm emission. SPIRE FTS observations reveal water emission from the p-H{sub 2}O (1{sub 11}-0{sub 00})more » transition at several positions in the filament, but no other molecular lines. The H{sub 2}O line is narrow and may be associated with denser intermediate-velocity gas experiencing the strongest shock-heating. The [C II]/PAH{sub tot} and [C II]/FIR ratios are too large to be explained by normal photo-electric heating in photodissociation regions. H II region excitation or X-ray/cosmic-ray heating can also be ruled out. The observations lead to the conclusion that a large fraction the molecular gas is diffuse and warm. We propose that the [C II], [O I], and warm H{sub 2} line emission is powered by a turbulent cascade in which kinetic energy from the galaxy collision with the intergalactic medium is dissipated to small scales and low velocities, via shocks and turbulent eddies. Low-velocity magnetic shocks can help explain both the [C II]/[O I] ratio, and the relatively high [C II]/H{sub 2} ratios observed. The discovery that [C II] emission can be enhanced, in large-scale turbulent regions in collisional environments, has implications for the interpretation of [C II] emission in high-z galaxies.« less

  19. Enhancement of Exciton Emission from Multilayer MoS2 at High Temperatures: Intervalley Transfer versus Interlayer Decoupling.

    PubMed

    Li, Yuanzheng; Xu, Haiyang; Liu, Weizhen; Yang, Guochun; Shi, Jia; Liu, Zheng; Liu, Xinfeng; Wang, Zhongqiang; Tang, Qingxin; Liu, Yichun

    2017-05-01

    It is very important to obtain a deeper understand of the carrier dynamics for indirect-bandgap multilayer MoS 2 and to make further improvements to the luminescence efficiency. Herein, an anomalous luminescence behavior of multilayer MoS 2 is reported, and its exciton emission is significantly enhanced at high temperatures. Temperature-dependent Raman studies and electronic structure calculations reveal that this experimental observation cannot be fully explained by a common mechanism of thermal-expansion-induced interlayer decoupling. Instead, a new model involving the intervalley transfer of thermally activated carriers from Λ/Γ point to K point is proposed to understand the high-temperature luminescence enhancement of multilayer MoS 2 . Steady-state and transient-state fluorescence measurements show that both the lifetime and intensity of the exciton emission increase relatively to increasing temperature. These two experimental evidences, as well as a calculation of carrier population, provide strong support for the proposed model. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The condensation and vaporization behavior of ices containing SO2, H2S, and CO2: Implications for Io

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Allamandola, Louis J.

    1993-01-01

    In an extension of previously reported work on ices containing CO, CO2, H2O, CH3OH, NH3, and H2, measurements of the physical and infrared spectral properties of ices containing molecules relevant to Jupiter's moon Io are presented. These include studies on ice systems containing SO2, H2S, and CO2. The condensation and sublimation behaviors of each ice system and surface binding energies of their components are discussed. The surface binding energies can be used to calculate the residence times of the molecules on a surface as a function of temperature and thus represent important parameters for any calculation that attempts to model the transport of these molecules on Io's surface. The derived values indicate that SO2 frosts on Io are likely to anneal rapidly, resulting in less fluffy, 'glassy' ices and that H2S can be trapped in the SO2 ices of Io during night-time hours provided that SO2 deposition rates are on the order of 5 micrometers/hr or larger.

  1. Reduction in soil N2O emissions by pH manipulation and enhanced nosZ gene transcription under different water regimes.

    PubMed

    Shaaban, Muhammad; Wu, Yupeng; Khalid, Muhammad Salman; Peng, Qi-An; Xu, Xiangyu; Wu, Lei; Younas, Aneela; Bashir, Saqib; Mo, Yongliang; Lin, Shan; Zafar-Ul-Hye, Muhammad; Abid, Muhammad; Hu, Ronggui

    2018-04-01

    Several studies have been carried out to examine nitrous oxide (N 2 O) emissions from agricultural soils in the past. However, the emissions of N 2 O particularly during amelioration of acidic soils have been rarely studied. We carried out the present study using a rice-rapeseed rotation soil (pH 5.44) that was amended with dolomite (0, 1 and 2 g kg -1 soil) under 60% water filled pore space (WFPS) and flooding. N 2 O emissions and several soil properties (pH, NH 4 + N, NO 3 - -N, and nosZ gene transcripts) were measured throughout the study. The increase in soil pH with dolomite application triggered soil N transformation and transcripts of nosZ gene controlling N 2 O emissions under both water regimes (60% WFPS and flooding). The 60% WFPS produced higher soil N 2 O emissions than that of flooding, and dolomite largely reduced N 2 O emissions at higher pH under both water regimes through enhanced transcription of nosZ gene. The results suggest that ameliorating soil acidity with dolomite can substantially mitigate N 2 O emissions through promoting nosZ gene transcription. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Highly selective and sensitive near-infrared-fluorescent probes for the detection of cellular hydrogen sulfide and the imaging of H2S in mice.

    PubMed

    Wu, Haixia; Krishnakumar, Saarangan; Yu, Jie; Liang, Dong; Qi, Hongyi; Lee, Zheng-Wei; Deng, Lih-Wen; Huang, Dejian

    2014-12-01

    Herein, we report the development of two fluorescent probes for the highly selective and sensitive detection of H2S. The probes take advantage of a Cu(II)-cyclen complex, which acts as a reaction center for H2S and as a quencher of BODIPY (boron-dipyrromethene)-based fluorophores with emissions at 765 and 680 nm, respectively. These non-fluorescent probes could only be turned on by the addition of H2 S, and not by other potentially interfering biomolecules, including reactive oxygen species, cysteine, and glutathione. In a chemical system, both probes detected H2S with a detection limit of 80 nM. The probes were successfully used for the endogenous detection of H2S in HEK 293 cells, for measuring the H2S-release activity of dietary organosulfides in MCF-7 cells, and for the in vivo imaging of H2S in mice. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Herschel Observations of EXtra-Ordinary Sources: H2S as a Probe of Dense Gas and Possibly Hidden Luminosity Toward the Orion KL Hot Core

    NASA Astrophysics Data System (ADS)

    Crockett, N. R.; Bergin, E. A.; Neill, J. L.; Black, J. H.; Blake, G. A.; Kleshcheva, M.

    2014-02-01

    We present Herschel/HIFI observations of the light hydride H2S obtained from the full spectral scan of the Orion Kleinmann-Low nebula (Orion KL) taken as part of the Herschel Observations of EXtra-Ordinary Sources GT (guaranteed time) key program. In total, we observe 52, 24, and 8 unblended or slightly blended features from H2 32S, H2 34S, and H2 33S, respectively. We only analyze emission from the so-called hot core, but emission from the plateau, extended ridge, and/or compact ridge are also detected. Rotation diagrams for ortho and para H2S follow straight lines given the uncertainties and yield T rot = 141 ± 12 K. This indicates H2S is in local thermodynamic equilibrium and is well characterized by a single kinetic temperature or an intense far-IR radiation field is redistributing the population to produce the observed trend. We argue the latter scenario is more probable and find that the most highly excited states (E up >~ 1000 K) are likely populated primarily by radiation pumping. We derive a column density, N tot(H2 32S) = 9.5 ± 1.9 × 1017 cm-2, gas kinetic temperature, T kin = 120+/- ^{13}_{10} K, and constrain the H2 volume density, n_H_2 >~ 9 × 10 7 cm-3, for the H2S emitting gas. These results point to an H2S origin in markedly dense, heavily embedded gas, possibly in close proximity to a hidden self-luminous source (or sources), which are conceivably responsible for Orion KL's high luminosity. We also derive an H2S ortho/para ratio of 1.7 ± 0.8 and set an upper limit for HDS/H2S of <4.9 × 10 -3. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  4. Regulated deficit irrigation can decrease soil CO2 emissions in fruit orchards

    NASA Astrophysics Data System (ADS)

    Zornoza, Raul; Acosta, José Alberto; Martínez-Martínez, Silvia; De la Rosa, Jose M.°; Faz, Angel; Pérez-Pastor, Alejandro

    2016-04-01

    Irrigation water restrictions in the Mediterranean area have created a growing interest in water conservation. Apart from environmental and economic benefits by water savings, regulated deficit irrigation (RDI) may contribute to reduce soil CO2 emissions and enhance C sequestration in soils, by decreasing microbial and root activity in response to decreased soil moisture levels. An experiment was established in four orchards (peach, apricot, Saturn peach and grape) to investigate the effects of regulated deficit irrigation (RDI) on soil CO2 emissions. Two irrigation treatments were assayed: full irrigation (FI), and RDI, irrigated as FI except for postharvest period (peach, apricot, Saturn peach) or post-veraison period (grape) were 50% of FI was applied. The application of deficit caused a significant decrease in CO2 emission rates, with rates in average of 90 mg CO2-C m-2 h-1, 120 mg CO2-C m-2 h-1, 60 mg CO2-C m-2 h-1 and 60 mg CO2-C m-2 h-1 lower than FI during the period when deficit was applied for peach, apricot, Saturn peach and grape. This confirms the high effectiveness of the RDI strategies not only to save water consumption but also to decrease soil CO2 emissions. However, monitoring during longer periods is needed to verify that this trend is long-term maintained, and assess if soil carbon stocks are increase or most CO2 emissions derive from root respiration. Acknowledgements This work has been funded by the European Union LIFE+ project IRRIMAN (LIFE13 ENV/ES/000539).

  5. H2S, a novel therapeutic target in renal-associated diseases?

    PubMed

    Pan, Wen-Jun; Fan, Wen-Jing; Zhang, Chi; Han, Dan; Qu, Shun-Lin; Jiang, Zhi-Sheng

    2015-01-01

    For more than a century, hydrogen sulfide (H2S) has been regarded as a toxic gas. Recently, the understanding of the biological effects of H2S has been changed. This review surveys the growing recognition of H2S as an endogenous signaling molecule in mammals, with emphasis on its physiological and pathological pathways in the urinary system. This article reviews recent progress of basic and pharmacological researches related to endogenous H2S in urinary system, including the regulatory effects of H2S in the process of antioxidant, inflammation, cellular matrix remodeling and ion channels, and the role of endogenous H2S pathway in the pathogenesis of renal and urogenital disorders. Copyright © 2014. Published by Elsevier B.V.

  6. Robustly photogenerating H2 in water using FeP/CdS catalyst under solar irradiation

    NASA Astrophysics Data System (ADS)

    Cheng, Huanqing; Lv, Xiao-Jun; Cao, Shuang; Zhao, Zong-Yan; Chen, Yong; Fu, Wen-Fu

    2016-01-01

    Photosplitting water for H2 production is a promising, sustainable approach for solar-to-chemical energy conversion. However, developing low-cost, high efficient and stable photocatalysts remains the major challenge. Here we report a composite photocatalyst consisting of FeP nanoparticles and CdS nanocrystals (FeP/CdS) for photogenerating H2 in aqueous lactic acid solution under visible light irradiation. Experimental results demonstrate that the photocatalyst is highly active with a H2-evolution rate of 202000 μmol h-1 g-1 for the first 5 h (106000 μmol h-1 g-1 under natural solar irradiation), which is the best H2 evolution activity, even 3-fold higher than the control in situ photo-deposited Pt/CdS system, and the corresponding to an apparent quantum efficiency of over 35% at 520 nm. More important, we found that the system exhibited excellent stability and remained effective after more than 100 h in optimal conditions under visible light irradiation. A wide-ranging analysis verified that FeP effectively separates the photoexcited charge from CdS and showed that the dual active sites in FeP enhance the activity of FeP/CdS photocatalysts.

  7. 40 CFR 60.84 - Emission monitoring.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... velocities or production rate. Continuous emission monitoring systems for measuring SO2, O2, and CO2 (if... H2SO4 produced. Cs=concentration of SO2, kg/dscm (lb/dscf). S=acid production rate factor, 368 dscm.... A=auxiliary fuel factor, =0.00 for no fuel. =0.0226 for methane. =0.0217 for natural gas. =0.0196...

  8. 40 CFR 60.84 - Emission monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... velocities or production rate. Continuous emission monitoring systems for measuring SO2, O2, and CO2 (if... H2SO4 produced. Cs=concentration of SO2, kg/dscm (lb/dscf). S=acid production rate factor, 368 dscm.... A=auxiliary fuel factor, =0.00 for no fuel. =0.0226 for methane. =0.0217 for natural gas. =0.0196...

  9. 40 CFR 60.84 - Emission monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... velocities or production rate. Continuous emission monitoring systems for measuring SO2, O2, and CO2 (if... H2SO4 produced. Cs=concentration of SO2, kg/dscm (lb/dscf). S=acid production rate factor, 368 dscm.... A=auxiliary fuel factor, =0.00 for no fuel. =0.0226 for methane. =0.0217 for natural gas. =0.0196...

  10. 40 CFR 60.84 - Emission monitoring.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... velocities or production rate. Continuous emission monitoring systems for measuring SO2, O2, and CO2 (if... H2SO4 produced. Cs=concentration of SO2, kg/dscm (lb/dscf). S=acid production rate factor, 368 dscm.... A=auxiliary fuel factor, =0.00 for no fuel. =0.0226 for methane. =0.0217 for natural gas. =0.0196...

  11. 40 CFR 60.84 - Emission monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... velocities or production rate. Continuous emission monitoring systems for measuring SO2, O2, and CO2 (if... of H2SO4 produced. Cs = concentration of SO2, kg/dscm (lb/dscf). S = acid production rate factor, 368... dry basis. A = auxiliary fuel factor, = 0.00 for no fuel. = 0.0226 for methane. = 0.0217 for natural...

  12. Orientation and temperature dependent adsorption of H 2S on GaAs: Valence band photoemission

    NASA Astrophysics Data System (ADS)

    Ranke, W.; Kuhr, H. J.; Finster, J.

    A cylindrically shaped GaAs single crystal was used to study the adsorption of H 2S on the six inequivalent orientations (001), (113), (111), (110), (111) and (113) by angle resolved valence band photoelectron spectroscopy and surface dipole measurements. Adsorption at 150 K on the surface prepared by molecular beam epitaxy (MBE) yields similar adsorbate induced emission on all orientations which were ascribed to SH radicals. On (110), where preferential adsorption occurs additional features from molecular H 2S are observed. The adsorbate spectra at 720 K are ascribed to atomic sulphur. On the surface prepared by ion bombardment and annealing, defect enhanced adsorption occurs in the range (111)-(113). The adsorbate spectra are very similar to those on the MBE surface at 720 K. Thus, no new species are adsorbed on defects but only sticking probability and penetration capability are increased.

  13. Emissions of ammonia, carbon dioxide, and hydrogen sulfide from swine wastewater during and after acidification treatment: effect of pH, mixing and aeration.

    PubMed

    Dai, X R; Blanes-Vidal, V

    2013-01-30

    This study aimed at evaluating the effect of swine slurry acidification and acidification-aeration treatments on ammonia (NH(3)), carbon dioxide (CO(2)) and hydrogen sulfide (H(2)S) emissions during slurry treatment and subsequent undisturbed storage. The study was conducted in an experimental setup consisting of nine dynamic flux chambers. Three pH levels (pH = 6.0, pH = 5.8 and pH = 5.5), combined with short-term aeration and venting (with an inert gas) treatments were studied. Acidification reduced average NH(3) emissions from swine slurry stored after acidification treatment compared to emissions during storage of non-acidified slurry. The reduction were 50%, 62% and 77% when pH was reduce to 6.0, 5.8 and 5.5, respectively. However, it had no significant effect on average CO(2) and H(2)S emissions during storage of slurry after acidification. Aeration of the slurry for 30 min had no effect on average NH(3), CO(2) and H(2)S emissions both during the process and from stored slurry after venting treatments. During aeration treatment, the NH(3), CO(2) and H(2)S release pattern observed was related to the liquid turbulence caused by the gas bubbles rather than to biological oxidation processes in this study. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Evidence for the η(b)(2S) and observation of h(b)(1P)→η(b)(1S)γ and h(b)(2P)→η(b)(1S)γ.

    PubMed

    Mizuk, R; Asner, D M; Bondar, A; Pedlar, T K; Adachi, I; Aihara, H; Arinstein, K; Aulchenko, V; Aushev, T; Aziz, T; Bakich, A M; Bay, A; Belous, K; Bhardwaj, V; Bhuyan, B; Bischofberger, M; Bonvicini, G; Bozek, A; Bračko, M; Brodzicka, J; Browder, T E; Chekelian, V; Chen, A; Chen, P; Cheon, B G; Chilikin, K; Chistov, R; Cho, I-S; Cho, K; Choi, S-K; Choi, Y; Dalseno, J; Danilov, M; Doležal, Z; Drásal, Z; Drutskoy, A; Eidelman, S; Epifanov, D; Fast, J E; Gaur, V; Gabyshev, N; Garmash, A; Golob, B; Haba, J; Hara, T; Hayasaka, K; Hayashii, H; Horii, Y; Hoshi, Y; Hou, W-S; Hsiung, Y B; Hyun, H J; Iijima, T; Ishikawa, A; Itoh, R; Iwabuchi, M; Iwasaki, Y; Iwashita, T; Jaegle, I; Julius, T; Kang, J H; Kapusta, P; Kawasaki, T; Kim, H J; Kim, H O; Kim, J H; Kim, K T; Kim, M J; Kim, Y J; Kinoshita, K; Ko, B R; Koblitz, S; Kodyš, P; Korpar, S; Kouzes, R T; Križan, P; Krokovny, P; Kuhr, T; Kumita, T; Kuzmin, A; Kwon, Y-J; Lange, J S; Lee, S-H; Li, J; Libby, J; Liu, C; Liu, Y; Liu, Z Q; Liventsev, D; Louvot, R; Matvienko, D; McOnie, S; Miyabayashi, K; Miyata, H; Mohanty, G B; Mohapatra, D; Moll, A; Muramatsu, N; Mussa, R; Nakao, M; Natkaniec, Z; Ng, C; Nishida, S; Nishimura, K; Nitoh, O; Nozaki, T; Ohshima, T; Okuno, S; Olsen, S L; Onuki, Y; Pakhlov, P; Pakhlova, G; Park, C W; Park, H; Pestotnik, R; Petrič, M; Piilonen, L E; Poluektov, A; Röhrken, M; Sakai, Y; Sandilya, S; Santel, D; Sanuki, T; Sato, Y; Schneider, O; Schwanda, C; Senyo, K; Seon, O; Sevior, M E; Shapkin, M; Shen, C P; Shibata, T-A; Shiu, J-G; Shwartz, B; Sibidanov, A; Simon, F; Smerkol, P; Sohn, Y-S; Sokolov, A; Solovieva, E; Stanič, S; Starič, M; Sumihama, M; Sumiyoshi, T; Tanida, K; Tatishvili, G; Teramoto, Y; Tikhomirov, I; Trabelsi, K; Tsuboyama, T; Uchida, M; Uehara, S; Uglov, T; Unno, Y; Uno, S; Vanhoefer, P; Varner, G; Varvell, K E; Vinokurova, A; Vorobyev, V; Wang, C H; Wang, M-Z; Wang, P; Wang, X L; Watanabe, M; Watanabe, Y; Williams, K M; Won, E; Yabsley, B D; Yamaoka, J; Yamashita, Y; Yuan, C Z; Zhang, Z P; Zhilich, V

    2012-12-07

    We report the first evidence for the η(b)(2S) using the h(b)(2P)→η(b)(2S)γ transition and the first observation of the h(b)(1P)→η(b)(1S)γ and h(b)(2P)→η(b)(1S)γ transitions. The mass and width of the η(b)(1S) and η(b)(2S) are measured to be m(η(b)(1S))=(9402.4±1.5±1.8) MeV/c(2), m(η(b)(2S))=(9999.0±3.5(-1.9)(+2.8)) MeV/c(2), and Γ(η(b)(1S))=(10.8(-3.7-2.0)(+4.0+4.5)) MeV. We also update the h(b)(1P) and h(b)(2P) mass measurements. We use a 133.4 fb(-1) data sample collected at energies near the Υ(5S) resonance with the Belle detector at the KEKB asymmetric-energy e(+)e(-) collider.

  15. FLYING-WATER Renewables-H2-H2O TERRAFORMING: PERMANENT ETERNAL Drought(s)-Elimination FOREVER!!!

    NASA Astrophysics Data System (ADS)

    Wignall, J.; Lyons, Marv; Ertl, G.; Alefeld, Georg; Youdelis, W.; Radd, H.; Oertle, G.; Siegel, Edward

    2013-03-01

    ''H2O H2O everywhere; ne'er a drop to drink''[Coleridge(1798)] now: ''H2 H2 everywhere; STILL ne'er a drop to drink'': ONLY H2 (or methane CH4) can be FLYING-WATER(F-W) chemical-rain-in-pipelines Hindenberg-effect (H2-UP;H2O-DOWN): { ∖{}O/H2O{ ∖}} =[16]/[18] ∖sim 90{ ∖%} O already in air uphill; NO H2O pumping need! In global-warming driven H2O-starved glacial-melting world, rescue is possible ONLY by Siegel [ ∖underline {3rd Intl. Conf. Alt.-Energy }(1980)-vol.5/p.459!!!] Renewables-H2-H2O purposely flexible versatile agile customizable scaleable retrofitable integrated operating-system. Rosenfeld[Science 315,1396(3/9/2007)]-Biello [Sci.Am.(3/9 /2007)] crucial geomorphology which ONLY maximal-buoyancy H2 can exploit, to again make ''Mountains into Fountains'', ``upthrust rocks trapping the clouds to precipitate their rain/snow/H2O'': ''terraforming''(and ocean-rebasificaton!!!) ONLY VIA Siegel[APS March MTGS.:1960s-2000ss) DIFFUSIVE-MAGNETORESISTANCE (DMR) proprietary MAGNETIC-HYDROGEN-VALVE(MHV) ALL-IMPORTANT PRECLUDED RADIAL-diffusion, permitting ONLY AXIAL-H2-BALLISTIC-flow (``G.A''.''/DoE''/''Terrapower''/''Intellectual-Ventures''/ ''Gileland''/ ''Myhrvold''/''Gates'' ``ARCHIMEDES'') in ALREADY IN-ground dense BCC/ferritic-steels pipelines-network (NO new infrastructure) counters Tromp[Science 300,1740(2003)] dire warning of global-pandemics (cancers/ blindness/ famine)

  16. Carbon stars with alpha-C:H emission

    NASA Technical Reports Server (NTRS)

    Gerbault, Florence; Goebel, John H.

    1989-01-01

    Many carbon stars in the IRS low resolution spectra (LRS) catalog were found which display emission spectra that compare favorable with the absorption spectrum of alpha-C:H. These stars have largely been classified as 4X in the LRS which has led to their interpretation by others in terms of displaying a mixture of the UIRF's 8.6 micron band and SiC at 11.5 microns. It was also found that many of these stars have a spectral upturn at 20+ microns which resembles the MgS band seen in carbon stars and planetary nebulae. It was concluded that this group of carbon stars will evolve into planetary nebulae like NGC 7027 and IC 418. In the presence of hard ultraviolet radiation the UIRF's will light up and be displayed as narrow emission bands on top of the broad alpha-C:H emission bands.

  17. Modeling CO{sub 2} and H{sub 2}S solubility in MDEA and DEA: Design implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rochelle, G.T.; Posey, M.

    1996-12-31

    The solubility of H{sub 2}S and CO{sub 2} in aqueous alkanolamines affects solution capacity and the required circulation rate for acid gas absorption. These thermodynamics also determine the relationship of steam rate and the lean loading of the solution which in turn sets the leak of acid gas from the top of the absorber. Finally, the mechanisms of mass transfer and the role of kinetics, especially in stripping, depend on the vapor/liquid equilibria. Published measurements of CO{sub 2} and H{sub 2}S solubility in methyldiethanolamine (MDEA) and diethanolamine (DEA) are not in general agreement, especially at low loading of acid gas.more » The available sets of solubility data have been regressed with the AspenPlus electrolyte/NRTL model. All of the parameters and constants that make up this model have been carefully evaluated. Independent thermodynamic data such as freezing point and heat of mixing have been included in the regression to strengthen the estimates of model parameters. The parameters for each set of solubility data have been evaluated in an attempt to determine which set is correct. Each evaluated model has been used to calculate the acid gas capacity and minimum stripping steam rate for several industrial cases of acid gas absorption/stripping.« less

  18. H{sub 2}S does not regulate proliferation via T-type Ca{sup 2+} channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elies, Jacobo; Johnson, Emily; Boyle, John P.

    T-type Ca{sup 2+} channels (Cav3.1, 3.2 and 3.3) strongly influence proliferation of various cell types, including vascular smooth muscle cells (VSMCs) and certain cancers. We have recently shown that the gasotransmitter carbon monoxide (CO) inhibits T-type Ca{sup 2+} channels and, in so doing, attenuates proliferation of VSMC. We have also shown that the T-type Ca{sup 2+} channel Cav3.2 is selectively inhibited by hydrogen sulfide (H{sub 2}S) whilst the other channel isoforms (Cav3.1 and Cav3.3) are unaffected. Here, we explored whether inhibition of Cav3.2 by H{sub 2}S could account for the anti-proliferative effects of this gasotransmitter. H{sub 2}S suppressed proliferation inmore » HEK293 cells expressing Cav3.2, as predicted by our previous observations. However, H{sub 2}S was similarly effective in suppressing proliferation in wild type (non-transfected) HEK293 cells and those expressing the H{sub 2}S insensitive channel, Cav3.1. Further studies demonstrated that T-type Ca{sup 2+} channels in the smooth muscle cell line A7r5 and in human coronary VSMCs strongly influenced proliferation. In both cell types, H{sub 2}S caused a concentration-dependent inhibition of proliferation, yet by far the dominant T-type Ca{sup 2+} channel isoform was the H{sub 2}S-insensitive channel, Cav3.1. Our data indicate that inhibition of T-type Ca{sup 2+} channel-mediated proliferation by H{sub 2}S is independent of the channels’ sensitivity to H{sub 2}S. - Highlights: • T-type Ca{sup 2+} channels regulate proliferation and are sensitive to the gasotransmitters CO and H{sub 2}S. • H{sub 2}S reduced proliferation in HEK293 cells expressing the H{sub 2}S sensitive Cav3.2 channel. • H{sub 2}S also inhibited proliferation in non-transfected cells and HEK293 cells expressing Cav3.1. • Native smooth muscle cells primarily express Cav3.1. Their proliferation was also inhibited by H{sub 2}S. • Unlike CO, H{sub 2}S does not regulate smooth muscle proliferation via T-type Ca

  19. Rate constants for the quenching of metastable O2 (1Sigma g +) molecules

    NASA Technical Reports Server (NTRS)

    Kwang, Y. C.; Leu, M.-T.

    1985-01-01

    The O2 (1Sigma g +) rates for CO2, H2, N2, Cl2, CO, O3, and 2,3 DMB-2 are determined by monitoring the 762-nm emission in a fast-flow-discharge chemiluminescence detection system (Leu, 1984; Leu and Smith, 1981). The results are presented in tables and graphs and briefly characterized. The rate constants (in cu cm/s x 10 to the -16th) are 4600 + or - 500 for CO2, 7000 + or - 300 for H2, 17 + or - 1 for N2, 4.5 + or - 0.8 for Cl2, 45 + or - 5 for CO, 220,000 + or - 30,000 for O3, and 6000 + or - 100 for 2,3 DMB-2. The temperature dependence of the CO2 and O3 quenching reactions at 245-362 K is found to be negligible.

  20. Predicting possible effects of H2S impurity on CO2 transportation and geological storage.

    PubMed

    Ji, Xiaoyan; Zhu, Chen

    2013-01-02

    For CO(2) geological storage, permitting impurities, such as H(2)S, in CO(2) streams can lead to a great potential for capital and energy savings for CO(2) capture and separation, but it also increases costs and risk management for transportation and storage. To evaluate the cost-benefits, using a recently developed model (Ji, X.; Zhu, C. Geochim. Cosmochim. Acta 2012, 91, 40-59), this study predicts phase equilibria and thermodynamic properties of the system H(2)S-CO(2)-H(2)O-NaCl under transportation and storage conditions and discusses potential effects of H(2)S on transportation and storage. The prediction shows that inclusion of H(2)S in CO(2) streams may lead to two-phase flow. For H(2)S-CO(2) mixtures, at a given temperature, the bubble and dew pressures decrease with increasing H(2)S content, while the mass density increases at low pressures and decreases at high pressures. For the CO(2)-H(2)S-H(2)O system, the total gas solubility increases while the mass density of the aqueous solution with dissolved gas decreases. For the CO(2)-H(2)S-H(2)O-NaCl system, at a given temperature, pressure and NaCl concentration, the solubility of the gas mixture in aqueous phase increases with increasing H(2)S content and then decreases, while the mass density of aqueous solution decreases and may be lower than the mass density of the solution without gas dissolution.

  1. Gas-phase hydrogen atom abstraction reactions of S- with H2, CH4, and C2H6

    NASA Astrophysics Data System (ADS)

    Angel, Laurence A.; Dogbevia, Moses K.; Rempala, Katarzyna M.; Ervin, Kent M.

    2003-11-01

    Reaction cross sections, product axial velocity distributions, and potential energy surfaces are presented for the hydrogen atom abstraction reactions S-+RH→R+HS- (R=H, CH3, C2H5) as a function of collision energy. The observed threshold energy, E0, for S-+H2H+HS- agrees with the reaction endothermicity, ΔrH0. At low collision energies, the H+HS- products exhibit symmetric, low-recoil-velocity scattering, consistent with statistical reaction behavior. The S-+CH4→CH3+HS- and S-+C2H6→C2H5+HS reactions, in contrast, show large excess threshold energies when compared to ΔrH0. The excess energies are partly explained by a potential energy barrier separating products from reactants. However, additional dynamical constraints must account for more than half of the excess threshold energy. The observed behavior seems to be general for collisional activation of anion-molecule reactions that proceed through a tight, late transition state. For RH=CH4 and C2H6, the HS- velocity distributions show anisotropic backward scattering at low collision energies indicating small impact parameters and a direct rebound reaction mechanism. At higher collision energies, there is a transition to HS- forward scattering and high velocities consistent with grazing collisions and a stripping mechanism.

  2. Quantifying Diurnal and Seasonal Variation in On-road CO2 Emissions Across the Northeastern U.S.

    NASA Astrophysics Data System (ADS)

    Gately, C.; Hutyra, L.

    2014-12-01

    On-road emissions comprised 29% of U.S. fossil fuel carbon dioxide emissions in 2012, with 64% of those emissions occurring in urban areas. Understanding the social, economic and technological factors that influence urban emissions requires the development of emissions inventories that are resolved at fine spatial and temporal scales. As city governments are increasingly at the forefront of developing policies to mitigate greenhouse gas emissions from vehicles, high-resolution, bottom-up inventories will support local and regional emissions benchmarking, as well as the monitoring, reporting, and verification of trends in emissions across time and space. To that end, we combine a large regional dataset of hourly traffic counts with the 1km gridded estimates of on-road CO2 emissions from the Database of Road Transportation Emissions (DARTE) to develop hourly CO2 emissions estimates for the year 2012 that cover 12 northeastern states. The inventory scope covers several large metropolitan regions as well as many small- and medium-sized urban, suburban and exurban population centers, altogether representing 20% of urban and 17% of total U.S. on-road CO2 emissions in 2012. We identify significant variation in the time structure of vehicle emissions across the urban-suburban gradients of the Boston, New York, and Washington, D.C. metropolitan areas. In particular we note considerable spatial variation between morning and evening peak periods, both within and between cities, as well as variations in the duration of peak periods, depending on time of year and spatial location. We also examine the relationship between the temporal and spatial structure of morning and evening peak period emissions and the spatial distribution of population and employment density across urban to rural gradients. Finally we utilize data on minute-by-minute vehicle speeds to quantify the effect of traffic congestion on vehicle CO2 emission rates across the Boston metro area, and we highlight the

  3. Long-lived and Well-resolved Mn2+ Ion Emissions in CuInS-ZnS Quantum Dots

    PubMed Central

    Cao, Sheng; Li, Chengming; Wang, Lin; Shang, Minghui; Wei, Guodong; Zheng, Jinju; Yang, Weiyou

    2014-01-01

    CuInS2 (CIS) quantum dots (QDs) have tunable photoluminescence (PL) behaviors in the visible and near infrared spectral range with markedly lower toxicity than the cadmium-based counterparts, making them very promising applications in light emitting and solar harvesting. However, there still remain material- and fabrication- related obstacles in realizing the high-performance CIS-based QDs with well-resolved Mn2+ d-d emission, long emission lifetimes as well as high efficiencies. Here, we demonstrate the growth of high-quality Mn2+-doped CuInS-ZnS (CIS-ZnS) QDs based on a multi-step hot-injection strategy. The resultant QDs exhibit a well-resolved Mn2+ d-d emission with a high PL quantum yield (QY) up to 66% and an extremely long excited state lifetime up to ~3.78 ms, which is nearly two times longer than the longest one of “green” QDs ever reported. It is promising that the synthesized Mn2+-doped CIS-ZnS QDs might open new doors for their practical applications in bioimaging and opto/electronic devices. PMID:25515207

  4. Two years monitoring of soil N_{2}O emissions on durum wheat in a Mediterranean area: the effect of tillage intensity and N-fertilizer rate.

    NASA Astrophysics Data System (ADS)

    Volpi, Iride; Bosco, Simona; Triana, Federico; Di Nasso, Nicoletta Nassi o.; Laville, Patricia; Virgili, Giorgio; Bonari, Enrico

    2016-04-01

    partially attributed to a huge difference in the rainfall amount during the two growing seasons, equal to 810 mm in the 2013-14 growing season and 441 mm in 2014-15. Emission factors for each N rate was calculated through the whole monitoring period and resulted to be in the range of 0.5-0.9% in 2013-14, while between 0.2-0.3% in 2014-15, considerably lower than the IPCC Tier 1 EF (1%). References: Bosco S., Volpi I., Nassi o Di Nasso N., Triana F., Roncucci N., Tozzini C., Villani R., Laville P., Mattei F., Virgili G., Nuvoli S., Fabbrini L., Bonari E., 2015. LIFE+IPNOA mobile prototype for the monitoring of soil N2O emissions from arable crops: first year results on durum wheat. Italian Journal of Agronomy Vol 10:669, pp 124-131. Laville P., Neri S., Continanza D., Ferrante Vero L., Bosco S., Virgili G., 2015. Cross-Validation of a mobile N2O flux prototype (IPNOA) using Micrometeorological and Chamber methods. Journal of Energy and Power Engineering 9 (2015) 375-385. Syakila A, Kroeze C., 2011. The global nitrogen budget revisited. Greenhouse Gas Meas. Manage. 1, 17-26.

  5. Mass transfer inside a flux hood for the sampling of gaseous emissions from liquid surfaces - Experimental assessment and emission rate rescaling

    NASA Astrophysics Data System (ADS)

    Prata, Ademir A.; Lucernoni, Federico; Santos, Jane M.; Capelli, Laura; Sironi, Selena; Le-Minh, Nhat; Stuetz, Richard M.

    2018-04-01

    This study assesses the mass transfer of compounds inside the US EPA flux hood, one of the enclosure devices most commonly employed for the direct measurement of atmospheric emissions from liquid surfaces in wastewater treatment plants (WWTPs). Experiments comprised the evaporation of water and the volatilisation of a range of volatile organic compounds (VOCs). Special attention was given to the evaluation of the mass transfer coefficients in the microenvironment created by the flux hood and the effects of concentration build up in the hood's headspace. The VOCs emission rates and the water evaporation rates generally increased with the sweep air flow rate, as did the mass transfer coefficients for all compounds. The emission of compounds whose volatilisation is significantly influenced by the gas phase was greatly affected by concentration build up, whereas this effect was not significant for liquid phase-controlled compounds. The gas-film mass transfer coefficient (kG) estimated inside the US EPA flux hood was of the same order as the respective kG reported in the literature for wind tunnel-type devices, but the emission rates measured by the flux hood can be expected to be lower, due to the concentration build-up. Compared against an emission model for the passive surfaces in WWTPs, the mass transfer of acetic acid (representing a gas phase-dominated compound) inside the US EPA flux hood was equivalent to conditions of wind speeds at 10 m height (U10) of 0.27, 0.51 and 0.99 m s-1, respectively, for sweep air flow rates of 2, 5 and 10 L min-1. On the other hand, for higher wind speeds, the emission rates of gas phase-controlled compounds obtained with the flux hood can be considerably underestimated: for instance, at U10 = 5 m s-1, the emission rates of acetic acid inside the flux hood would be approximately 23, 12 and 6 times lower than the emission rates in the field, for sweep air flow rates of 2, 5 and 10 L min-1, respectively. A procedure is presented in

  6. H2S in Shallow Groundwater: Hydrogeochemical Processes, Degassing Experiments and Health Impacts

    NASA Astrophysics Data System (ADS)

    Broers, H. P.; Weert, J. D.; Bouma, R.

    2016-12-01

    Hydrogen sulfide is known to be a hazardous gas even at rather low concentrations and may pose a serious health risk. Occurrences of H2S in groundwater and degassing into the atmosphere are known for volcanic or tectonic active regions, coal mining or gypsum dissolution regions. We studied the occurrence and origin of H2S in shallow groundwater and its degassing into air after pumping in a setting of shallow unconsolidated deposits in the south of the Netherlands, where the sulfate source is antropogenic. We measured H2S concentrations in water using a field photo spectrometer and the degassing into air with a Jerome 631. We analyzed for macro-ions and determined the apparent 3H/3He age to assess the origin of the sulfide in the groundwater. H2S was formed in-situ within organic-rich and carbonate free sediments and peat layers of a fluvio-glacial sediment series in groundwater that infiltrated approximately 15 years ago. Sulfate is omnipresent in Dutch shallow groundwater due to historical atmospheric inputs of SOx, sulfur inputs from intensive livestock farming and subsurface production of sulfate from pyrite oxidation following nitrate leaching from agricultural fields (Zhang et al. 2009 GCA, 2012 AppGeochem). The co-existence of H2S and sulfate in our groundwater appears to be determined by the low pH of the water (4.8-5.5) which limits the precipitation of mackinawite or amorphous FeS. Mapping the combination of observations wells with pH < 5.5, sulfate > 75 mg/L and Fe > 10 mg/l delineated large areas where H2S appeared to be present in concentration between 0.1 and 1.0 mg/L S2- in water. Degassing of groundwater with 0.7 mg S2-/L into a contained volume of air yielded concentrations > 50 ppmv within 15 minutes. Using the degassing rates observed in the experiments and assuming equilibrium degassing, we calibrated a simple model which describes the inflow of water, the degassing and the export of gas in relation to wind velocity. We used the model to evaluate

  7. Upper limits to the reaction rate coefficients of C(n)(-) and C(n)H(-) (n = 2, 4, 6) with molecular hydrogen.

    PubMed

    Endres, Eric S; Lakhmanskaya, Olga; Hauser, Daniel; Huber, Stefan E; Best, Thorsten; Kumar, Sunil S; Probst, Michael; Wester, Roland

    2014-08-21

    In the interstellar medium (ISM) ion–molecule reactions play a key role in forming complex molecules. Since 2006, after the radioastronomical discovery of the first of by now six interstellar anions, interest has grown in understanding the formation and destruction pathways of negative ions in the ISM. Experiments have focused on reactions and photodetachment of the identified negatively charged ions. Hints were found that the reactions of CnH(–) with H2 may proceed with a low (<10(–13) cm(3) s(–1)), but finite rate [Eichelberger, B.; et al. Astrophys. J. 2007, 667, 1283]. Because of the high abundance of molecular hydrogen in the ISM, a precise knowledge of the reaction rate is needed for a better understanding of the low-temperature chemistry in the ISM. A suitable tool to analyze rare reactions is the 22-pole radiofrequency ion trap. Here, we report on reaction rates for Cn(–) and CnH(–) (n = 2, 4, 6) with buffer gas temperatures of H2 at 12 and 300 K. Our experiments show the absence of these reactions with an upper limit to the rate coefficients between 4 × 10(–16) and 5 × 10(–15) cm(3) s(–1), except for the case of C2(–), which does react with a finite rate with H2 at low temperatures. For the cases of C2H(–) and C4H(–), the experimental results were confirmed with quantum chemical calculations. In addition, the possible influence of a residual reactivity on the abundance of C4H(–) and C6H(–) in the ISM were estimated on the basis of a gas-phase chemical model based on the KIDA database. We found that the simulated ion abundances are already unaffected if reaction rate coefficients with H2 were below 10(–14) cm(3) s(–1).

  8. Cumulative carbon emissions, emissions floors and short-term rates of warming: implications for policy.

    PubMed

    Bowerman, Niel H A; Frame, David J; Huntingford, Chris; Lowe, Jason A; Allen, Myles R

    2011-01-13

    A number of recent studies have found a strong link between peak human-induced global warming and cumulative carbon emissions from the start of the industrial revolution, while the link to emissions over shorter periods or in the years 2020 or 2050 is generally weaker. However, cumulative targets appear to conflict with the concept of a 'floor' in emissions caused by sectors such as food production. Here, we show that the introduction of emissions floors does not reduce the importance of cumulative emissions, but may make some warming targets unachievable. For pathways that give a most likely warming up to about 4°C, cumulative emissions from pre-industrial times to year 2200 correlate strongly with most likely resultant peak warming regardless of the shape of emissions floors used, providing a more natural long-term policy horizon than 2050 or 2100. The maximum rate of CO(2)-induced warming, which will affect the feasibility and cost of adapting to climate change, is not determined by cumulative emissions but is tightly aligned with peak rates of emissions. Hence, cumulative carbon emissions to 2200 and peak emission rates could provide a clear and simple framework for CO(2) mitigation policy.

  9. Concentrations and emission rates of aerial ammonia, nitrous oxide, methane, carbon dioxide, dust and endotoxin in UK broiler and layer houses.

    PubMed

    Wathes, C M; Holden, M R; Sneath, R W; White, R P; Phillips, V R

    1997-03-01

    1. A survey of the concentration and emission rates of aerial ammonia, nitrous oxide, methane, carbon dioxide, dust and endotoxin was undertaken in 4 examples each of typical UK broiler, cage and perchery houses over 24 h during winter and summer. 2. Overall the air quality within the poultry houses was unsatisfactory as judged by the dual criteria of farmer health and bird performance. 3. Mean concentrations of ammonia ranged from 12.3 to 24.2 ppm while concentrations of methane and nitrous oxide were close to ambient levels. Mass concentrations of aerial dust ranged from 2 to 10 mg/m3 and 0.3 to 1.2 mg/m3 for inspirable and respirable fractions respectively, while endotoxin concentration was typically about 0.1 microgram/m3 (inspirable fraction). 4. Emission rates of gaseous ammonia were rapid (9.2 g (NH3)/h per 500 kg live body weight) and uniform across the three types of building, while emissions of methane and nitrous oxide were slow. Rates of dust emission ranged from 0.86 to 8.24 g/h per 500 kg live body weight in the inspirable size fraction.

  10. Quantum-tunneling isotope-exchange reaction H2+D-→HD +H-

    NASA Astrophysics Data System (ADS)

    Yuen, Chi Hong; Ayouz, Mehdi; Endres, Eric S.; Lakhamanskaya, Olga; Wester, Roland; Kokoouline, Viatcheslav

    2018-02-01

    The tunneling reaction H2+D-→HD +H- was studied in a recent experimental work at low temperatures (10, 19, and 23 K) by Endres et al. [Phys. Rev. A 95, 022706 (2017), 10.1103/PhysRevA.95.022706]. An upper limit of the rate coefficient was found to be about 10-18cm3 /s. In the present study, reaction probabilities are determined using the ABC program developed by Skouteris et al. [Comput. Phys. Commun. 133, 128 (2000), 10.1016/S0010-4655(00)00167-3]. The probabilities for ortho-H2 and para-H2 in their ground rovibrational states are obtained numerically at collision energies above 50 meV with the total angular momentum J =0 -15 and extrapolated below 50 meV using a WKB approach. Thermally averaged rate coefficients for ortho- and para-H2 are obtained; the largest one, for ortho-H2, is about 3.1 ×10-20cm3 /s, which agrees with the experimental results.

  11. Rates of zinc and trace metal release from dissolving sphalerite at pH 2.0-4.0

    USGS Publications Warehouse

    Stanton, M.R.; Gemery-Hill, P. A.; Shanks, Wayne C.; Taylor, C.D.

    2008-01-01

    High-Fe and low-Fe sphalerite samples were reacted under controlled pH conditions to determine nonoxidative rates of release of Zn and trace metals from the solid-phase. The release (solubilization) of trace metals from dissolving sphalerite to the aqueous phase can be characterized by a kinetic distribution coefficient, (Dtr), which is defined as [(Rtr/X(tr)Sph)/(RZn/X(Zn) Sph)], where R is the trace metal or Zn release rate, and X is the mole fraction of the trace metal or Zn in sphalerite. This coefficient describes the relationship of the sphalerite dissolution rate to the trace metal mole fraction in the solid and its aqueous concentration. The distribution was used to determine some controls on metal release during the dissolution of sphalerite. Departures from the ideal Dtr of 1.0 suggest that some trace metals may be released via different pathways or that other processes (e.g., adsorption, solubility of trace minerals such as galena) affect the observed concentration of metals. Nonoxidative sphalerite dissolution (mediated by H+) is characterized by a "fast" stage in the first 24-30 h, followed by a "slow" stage for the remainder of the reaction. Over the pH range 2.0-4.0, and for similar extent of reaction (reaction time), sphalerite composition, and surface area, the rates of release of Zn, Fe, Cd, Cu, Mn and Pb from sphalerite generally increase with lower pH. Zinc and Fe exhibit the fastest rates of release, Mn and Pb have intermediate rates of release, and Cd and Cu show the slowest rates of release. The largest variations in metal release rates occur at pH 2.0. At pH 3.0 and 4.0, release rates show less variation and appear less dependent on the metal abundance in the solid. For the same extent of reaction (100 h), rates of Zn release range from 1.53 ?? 10-11 to 5.72 ?? 10-10 mol/m2/s; for Fe, the range is from 4.59 ?? 10-13 to 1.99 ?? 10-10 mol/m2/s. Trace metal release rates are generally 1-5 orders of magnitude slower than the Zn or Fe rates

  12. Analytic H I-to-H2 Photodissociation Transition Profiles

    NASA Astrophysics Data System (ADS)

    Bialy, Shmuel; Sternberg, Amiel

    2016-05-01

    We present a simple analytic procedure for generating atomic (H I) to molecular ({{{H}}}2) density profiles for optically thick hydrogen gas clouds illuminated by far-ultraviolet radiation fields. Our procedure is based on the analytic theory for the structure of one-dimensional H I/{{{H}}}2 photon-dominated regions, presented by Sternberg et al. Depth-dependent atomic and molecular density fractions may be computed for arbitrary gas density, far-ultraviolet field intensity, and the metallicity-dependent H2 formation rate coefficient, and dust absorption cross section in the Lyman-Werner photodissociation band. We use our procedure to generate a set of {{H}} {{I}}{-}{to}{-}{{{H}}}2 transition profiles for a wide range of conditions, from the weak- to strong-field limits, and from super-solar down to low metallicities. We show that if presented as functions of dust optical depth, the {{H}} {{I}} and {{{H}}}2 density profiles depend primarily on the Sternberg “α G parameter” (dimensionless) that determines the dust optical depth associated with the total photodissociated {{H}} {{I}} column. We derive a universal analytic formula for the {{H}} {{I}}{-}{to}{-}{{{H}}}2 transition points as a function of just α G. Our formula will be useful for interpreting emission-line observations of H I/{{{H}}}2 interfaces, for estimating star formation thresholds, and for sub-grid components in hydrodynamics simulations.

  13. TeV Gamma-Ray Observations of the Binary Neutron Star Merger GW170817 with H.E.S.S.

    NASA Astrophysics Data System (ADS)

    Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Angüner, E. O.; Arakawa, M.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bonnefoy, S.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Capasso, M.; Caroff, S.; Carosi, A.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Colafrancesco, S.; Condon, B.; Conrad, J.; Davids, I. D.; Decock, J.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Donath, A.; O'C. Drury, L.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Emery, G.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Funk, S.; Füssling, M.; Gabici, S.; Gallant, Y. A.; Garrigoux, T.; Gaté, F.; Giavitto, G.; Giebels, B.; Glawion, D.; Glicenstein, J. F.; Gottschall, D.; Grondin, M.-H.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holch, T. L.; Holler, M.; Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Kerszberg, D.; Khangulyan, D.; Khélifi, B.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Malyshev, D.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Ndiyavala, H.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poireau, V.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Rauth, R.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Rinchiuso, L.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Saito, S.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Shiningayamwe, K.; Simoni, R.; Sol, H.; Spanier, F.; Spir-Jacob, M.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Steppa, C.; Sushch, I.; Takahashi, T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsirou, M.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Zorn, J.; Zywucka, N.; H. E. S. S. Collaboration

    2017-12-01

    We search for high-energy gamma-ray emission from the binary neutron star merger GW170817 with the H.E.S.S. Imaging Air Cherenkov Telescopes. The observations presented here have been obtained starting only 5.3 hr after GW170817. The H.E.S.S. target selection identified regions of high probability to find a counterpart of the gravitational-wave event. The first of these regions contained the counterpart SSS17a that has been identified in the optical range several hours after our observations. We can therefore present the first data obtained by a ground-based pointing instrument on this object. A subsequent monitoring campaign with the H.E.S.S. telescopes extended over several days, covering timescales from 0.22 to 5.2 days and energy ranges between 270 {GeV} to 8.55 {TeV}. No significant gamma-ray emission has been found. The derived upper limits on the very-high-energy gamma-ray flux for the first time constrain non-thermal, high-energy emission following the merger of a confirmed binary neutron star system.

  14. H2S: a universal defense against antibiotics in bacteria.

    PubMed

    Shatalin, Konstantin; Shatalina, Elena; Mironov, Alexander; Nudler, Evgeny

    2011-11-18

    Many prokaryotic species generate hydrogen sulfide (H(2)S) in their natural environments. However, the biochemistry and physiological role of this gas in nonsulfur bacteria remain largely unknown. Here we demonstrate that inactivation of putative cystathionine β-synthase, cystathionine γ-lyase, or 3-mercaptopyruvate sulfurtransferase in Bacillus anthracis, Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli suppresses H(2)S production, rendering these pathogens highly sensitive to a multitude of antibiotics. Exogenous H(2)S suppresses this effect. Moreover, in bacteria that normally produce H(2)S and nitric oxide, these two gases act synergistically to sustain growth. The mechanism of gas-mediated antibiotic resistance relies on mitigation of oxidative stress imposed by antibiotics.

  15. Vibrational mode frequencies of H2S and H2O adsorbed on Ge(0 0 1)-(2 × 1) surfaces

    NASA Astrophysics Data System (ADS)

    Hartnett, M.; Fahy, S.

    2015-02-01

    The equilibrium geometry and vibrational modes of H2S and H2O-terminated Ge(0 0 1)-(2 × 1) surfaces are calculated in a supercell approach using first-principles density functional theory in the local density (LDA), generalized gradient (GGA) approximations and van der Waals (vdW) interactions. Mode frequencies are found using the frozen phonon method. For the H2S-passivated surface, the calculated frequencies in LDA (GGA) are 2429 cm-1 (2490) for the Hsbnd S stretch mode, 712 cm-1 (706) for the Hsbnd S bond bending mode, 377 cm-1 (36) for the Gesbnd S stretch mode and 328 cm-1 (337) for Hsbnd S wag mode. Frequencies for the H2O passivated surface are 3590 cm-1 (3600) for the Hsbnd O stretch mode, 921 cm-1 (947) for the bending mode, 609 cm-1 (559) for the Gesbnd O stretch, 1995 cm-1 (1991) for the Gesbnd H stretch mode, 498 cm-1 (478) for the Gesbnd H bending mode and 342 cm-1 (336) for the Hsbnd O wag mode. The differences between the functionals including vdW terms and the LDA or GGA are less than the differences between LDA and GGA for the vibrational mode frequencies.

  16. Nitrous oxide emissions from high rate algal ponds treating domestic wastewater.

    PubMed

    Alcántara, Cynthia; Muñoz, Raúl; Norvill, Zane; Plouviez, Maxence; Guieysse, Benoit

    2015-02-01

    This study investigated the generation of N2O by microcosms withdrawn from 7-L high rate algal ponds (HRAPs) inoculated with Chlorella vulgaris and treating synthetic wastewater. Although HRAPs microcosms demonstrated the ability to generate algal-mediated N2O when nitrite was externally supplied under darkness in batch assays, negligible N2O emissions rates were consistently recorded in the absence of nitrite during 3.5-month monitoring under 'normal' operation. Thereafter, HRAP A and HRAP B were overloaded with nitrate and ammonium, respectively, in an attempt to stimulate N2O emissions via nitrite in situ accumulation. Significant N2O production (up to 5685±363 nmol N2O/g TSS h) was only recorded from HRAP B microcosms externally supplied with nitrite in darkness. Although confirmation under full-scale outdoors conditions is needed, this study provides the first evidence that the ability of microalgae to synthesize N2O does not affect the environmental performance of wastewater treatment in HRAPs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Estimates on the production of CO and H2 from the oxidation of hydrocarbon emissions from vegetation

    NASA Technical Reports Server (NTRS)

    Zimmerman, P. R.; Chatfield, R. B.; Fishman, J.; Crutzen, P. J.; Hanst, P. L.

    1978-01-01

    Extrapolating from extensive field measurements on foliar emissions in the U.S. approximate global inputs of isoprene and terpenes of 3.5 times 10 to the 14th power and 4.8 times 10 to the 14th power g(C)/yr, respectively, are obtained. The oxidation of these hydrocarbons could contribute in an important way to the atmospheric sources of CO (4.2-13.3 times 10 to the 14th power g/yr) and H2 (10-35 times 10 to the 12th power g/yr), and to organic species soluble in rainwater

  18. Metal Oxide/Zeolite Combination Absorbs H2S

    NASA Technical Reports Server (NTRS)

    Voecks, Gerald E.; Sharma, Pramod K.

    1989-01-01

    Mixed copper and molybdenum oxides supported in pores of zeolite found to remove H2S from mixture of gases rich in hydrogen and steam, at temperatures from 256 to 538 degree C. Absorber of H2S needed to clean up gas streams from fuel processors that incorporate high-temperature steam reformers or hydrodesulfurizing units. Zeolites chosen as supporting materials because of their high porosity, rigidity, alumina content, and variety of both composition and form.

  19. Application rate affects the degradation rate and hence emissions of chloropicrin in soil.

    PubMed

    Ashworth, Daniel J; Yates, Scott R; Stanghellini, Mike; van Wesenbeeck, Ian J

    2018-05-01

    Increasingly stringent regulations to control soil-air emissions of soil fumigants has led to much research effort aimed at reducing emission potential. Using laboratory soil columns, we aimed to investigate the relationship between chloropicrin (CP) application rate and its emissions from soil across a wide range of CP applications (equivalent to 56-392kgha -1 ). In contrast to the known behavior of other fumigants, total emission percentages were strongly and positively related to application rate (i.e., initial mass), ranging from 4 to 34% across the application rate range. When combined, data from a previous study and the present study showed good overall comparability in terms of CP application rate vs. emission percentage, yielding a second-order polynomial relationship with an R 2 value of 0.93 (n=12). The study revealed that mass losses of CP were strongly disproportional to application rate, also showing a polynomial relationship. Based on degradation studies, we consider that a shorter half-life (faster degradation) at lower application rates limited the amount of CP available for emission. The non-linear relationship between CP application rate and CP emissions (both as % of that applied and as total mass) suggests that low application rates likely lead to disproportionally low emission losses compared with higher application rates; such a relationship could be taken into account when assessing/mitigating risk, e.g., in the setting of buffer zone distances. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Comparison of trapped charges and hysteresis behavior in hBN encapsulated single MoS2 flake based field effect transistors on SiO2 and hBN substrates.

    PubMed

    Lee, Changhee; Rathi, Servin; Khan, Muhammad Atif; Lim, Dongsuk; Kim, Yunseob; Yun, Sun Jin; Youn, Doo-Hyeb; Watanabe, Kenji; Taniguchi, Takashi; Kim, Gil-Ho

    2018-08-17

    Molybdenum disulfide (MoS 2 ) based field effect transistors (FETs) are of considerable interest in electronic and opto-electronic applications but often have large hysteresis and threshold voltage instabilities. In this study, by using advanced transfer techniques, hexagonal boron nitride (hBN) encapsulated FETs based on a single, homogeneous and atomic-thin MoS 2 flake are fabricated on hBN and SiO 2 substrates. This allows for a better and a precise comparison between the charge traps at the semiconductor-dielectric interfaces at MoS 2 -SiO 2 and hBN interfaces. The impact of ambient environment and entities on hysteresis is minimized by encapsulating the active MoS 2 layer with a single hBN on both the devices. The device to device variations induced by different MoS 2 layer is also eliminated by employing a single MoS 2 layer for fabricating both devices. After eliminating these additional factors which induce variation in the device characteristics, it is found from the measurements that the trapped charge density is reduced to 1.9 × 10 11 cm -2 on hBN substrate as compared to 1.1 × 10 12 cm -2 on SiO 2 substrate. Further, reduced hysteresis and stable threshold voltage are observed on hBN substrate and their dependence on gate sweep rate, sweep range, and gate stress is also studied. This precise comparison between encapsulated devices on SiO 2 and hBN substrates further demonstrate the requirement of hBN substrate and encapsulation for improved and stable performance of MoS 2 FETs.

  1. Multi-decadal satellite measurements of passive and eruptive volcanic SO2 emissions

    NASA Astrophysics Data System (ADS)

    Carn, Simon; Yang, Kai; Krotkov, Nickolay; Prata, Fred; Telling, Jennifer

    2015-04-01

    Periodic injections of sulfur gas species (SO2, H2S) into the stratosphere by volcanic eruptions are among the most important, and yet unpredictable, drivers of natural climate variability. However, passive (lower tropospheric) volcanic degassing is the major component of total volcanic emissions to the atmosphere on a time-averaged basis, but is poorly constrained, impacting estimates of global emissions of other volcanic gases (e.g., CO2). Stratospheric volcanic emissions are very well quantified by satellite remote sensing techniques, and we report ongoing efforts to catalog all significant volcanic SO2 emissions into the stratosphere and troposphere since 1978 using measurements from the ultraviolet (UV) Total Ozone Mapping Spectrometer (TOMS; 1978-2005), Ozone Monitoring Instrument (OMI; 2004 - present) and Ozone Mapping and Profiler Suite (OMPS; 2012 - present) instruments, supplemented by infrared (IR) data from HIRS, MODIS and AIRS. The database, intended for use as a volcanic forcing dataset in climate models, currently includes over 600 eruptions releasing a total of ~100 Tg SO2, with a mean eruption discharge of ~0.2 Tg SO2. Sensitivity to SO2 emissions from smaller eruptions greatly increased following the launch of OMI in 2004, but uncertainties remain on the volcanic flux of other sulfur species other than SO2 (H2S, OCS) due to difficulty of measurement. Although the post-Pinatubo 1991 era is often classified as volcanically quiescent, many smaller eruptions (Volcanic Explosivity Index [VEI] 3-4) since 2000 have injected significant amounts of SO2 into the upper troposphere - lower stratosphere (UTLS), peaking in 2008-2011. We also show how even smaller (VEI 2) tropical eruptions can impact the UTLS and sustain above-background stratospheric aerosol optical depth, thus playing a role in climate forcing on short timescales. To better quantify tropospheric volcanic degassing, we use ~10 years of operational SO2 measurements by OMI to identify the

  2. Photolysis of H2O-H2O2 Mixtures: The Destruction of H2O2

    NASA Technical Reports Server (NTRS)

    Loeffler, M. J.; Fama, M.; Baragiola, R. A.; Carlson, R. W.

    2013-01-01

    We present laboratory results on the loss of H2O2 in solid H2O + H2O2 mixtures at temperatures between 21 and 145 K initiated by UV photolysis (193 nm). Using infrared spectroscopy and microbalance gravimetry, we measured the decrease of the 3.5 micrometer infrared absorption band during UV irradiation and obtained a photodestruction cross section that varies with temperature, being lowest at 70 K. We use our results, along with our previously measured H2O2 production rates via ionizing radiation and ion energy fluxes from the spacecraft to compare H2O2 creation and destruction at icy satellites by ions from their planetary magnetosphere and from solar UV photons. We conclude that, in many cases, H2O2 is not observed on icy satellite surfaces because the H2O2 photodestruction rate is much higher than the production rate via energetic particles, effectively keeping the H2O2 infrared signature at or below the noise level.

  3. Robustly photogenerating H2 in water using FeP/CdS catalyst under solar irradiation

    PubMed Central

    Cheng, Huanqing; Lv, Xiao-Jun; Cao, Shuang; Zhao, Zong-Yan; Chen, Yong; Fu, Wen-Fu

    2016-01-01

    Photosplitting water for H2 production is a promising, sustainable approach for solar-to-chemical energy conversion. However, developing low-cost, high efficient and stable photocatalysts remains the major challenge. Here we report a composite photocatalyst consisting of FeP nanoparticles and CdS nanocrystals (FeP/CdS) for photogenerating H2 in aqueous lactic acid solution under visible light irradiation. Experimental results demonstrate that the photocatalyst is highly active with a H2-evolution rate of 202000 μmol h−1 g−1 for the first 5 h (106000 μmol h−1 g−1 under natural solar irradiation), which is the best H2 evolution activity, even 3-fold higher than the control in situ photo-deposited Pt/CdS system, and the corresponding to an apparent quantum efficiency of over 35% at 520 nm. More important, we found that the system exhibited excellent stability and remained effective after more than 100 h in optimal conditions under visible light irradiation. A wide-ranging analysis verified that FeP effectively separates the photoexcited charge from CdS and showed that the dual active sites in FeP enhance the activity of FeP/CdS photocatalysts. PMID:26818001

  4. Effects of dissolved oxygen and pH on nitrous oxide production rates in autotrophic partial nitrification granules.

    PubMed

    Rathnayake, Rathnayake M L D; Oshiki, Mamoru; Ishii, Satoshi; Segawa, Takahiro; Satoh, Hisashi; Okabe, Satoshi

    2015-12-01

    The effects of dissolved oxygen (DO) and pH on nitrous oxide (N2O) production rates and pathways in autotrophic partial nitrification (PN) granules were investigated at the granular level. N2O was primarily produced by betaproteobacterial ammonia-oxidizing bacteria, mainly Nitrosomonas europaea, in the oxic surface layer (<200μm) of the autotrophic PN granules. N2O production increased with increasing bulk DO concentration owing to activation of the ammonia (i.e., hydroxylamine) oxidation in this layer. The highest N2O emissions were observed at pH 7.5, although the ammonia oxidation rate was unchanged between pH 6.5 and 8.5. Overall, the results of this study suggest that in situ analyses of PN granules are essential to gaining insight into N2O emission mechanisms in a granule. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Calibration of H-alpha/H-beta Indexes for Emission Line Objects

    NASA Astrophysics Data System (ADS)

    Hintz, Eric G.; Joner, Michael D.

    2016-01-01

    In Joner and Hintz (2015) they report on a standard star system for calibration of H-alpha and H-beta observations. This work was based on data obtained with the Dominion Astrophysical Observatory 1.2-m telescope. As part of the data acquisition for that project, a large number of emission line objects were also observed. We will report on the preliminary results for the emission line data set. This will include a comparison of equivalent width measurements of each line with the matching index. We will also examine the relation between the absorption line objects previously published and the emission line objects, along with a discussion of the transition point. Object types included are Be stars, high mass x-ray binaries, one low mass x-ray binary, Herbig Ae/Be stars, pre-main sequence stars, T Tauri stars, young stellar objects, and one BY Draconis star. Some of these objects come from Cygnus OB-2, NGC 659, NGC 663, NGC 869 and NGC 884.

  6. Xenobiotic metal-induced autoimmunity: mercury and silver differentially induce antinucleolar autoantibody production in susceptible H-2s, H-2q and H-2f mice

    PubMed Central

    Hansson, M; Abedi-Valugerdi, M

    2003-01-01

    Xenobiotic-metals such as mercury (Hg) and silver (Ag) induce an H-2 linked antinucleolar autoantibody (ANolA) production in susceptible mice. The mechanism for induction of ANolA synthesis is not well understood. However, it has been suggested that both metals interact with nucleolar proteins and reveal cryptic self-peptides to nontolerant autoreactive T cells, which in turn stimulate specific autoreactive B cells. In this study, we considered this suggestion and asked if mercury and silver display, if not identical, similar cryptic self-peptides, they would induce comparable ANolA responses in H-2 susceptible mice. We analysed the development of ANolA production in mercury- and/or silver-treated mice of H-2s, H-2q and H-2f genotypes. We found that while mercury stimulated ANolA synthesis in all strains tested, silver induced ANolA responses of lower magnitudes in only H-2s and H-2q mice, but not in H-2f mice. Resistance to silver in H-2f mice was independent of the dosage/time-period of silver-treatment and non-H-2 genes. Further studies showed that F1 hybrid crosses between silver-susceptible A.SW (H-2s) and -resistant A.CA (H-2f) mice were resistant to silver, but not mercury with regard to ANolA production. Additionally, the magnitudes of mercury-induced ANolA responses in the F1 hybrids were lower than those of their parental strains. The above differential ANolA responses to mercury and silver can be explained by various factors, including the different display of nucleolar cryptic peptides by these xenobiotics, determinant capture and coexistence of different MHC molecules. Our findings also suggest that the ability of a xenobiotic metal merely to create cryptic self-peptides may not be sufficient for the induction of an ANolA response. PMID:12605692

  7. Reflected shock tube studies of high-temperature rate constants for OH + NO2 --> HO2 + NO and OH + HO2 --> H2O + O2.

    PubMed

    Srinivasan, Nanda K; Su, Meng-Chih; Sutherland, James W; Michael, Joe V; Ruscic, Branko

    2006-06-01

    The motivation for the present study comes from the preceding paper where it is suggested that accepted rate constants for OH + NO2 --> NO + HO2 are high by approximately 2. This conclusion was based on a reevaluation of heats of formation for HO2, OH, NO, and NO2 using the Active Thermochemical Table (ATcT) approach. The present experiments were performed in C2H5I/NO2 mixtures, using the reflected shock tube technique and OH-radical electronic absorption detection (at 308 nm) and using a multipass optical system. Time-dependent profile decays were fitted with a 23-step mechanism, but only OH + NO2, OH + HO2, both HO2 and NO2 dissociations, and the atom molecule reactions, O + NO2 and O + C2H4, contributed to the decay profile. Since all of the reactions except the first two are known with good accuracy, the profiles were fitted by varying only OH + NO2 and OH + HO2. The new ATcT approach was used to evaluate equilibrium constants so that back reactions were accurately taken into account. The combined rate constant from the present work and earlier work by Glaenzer and Troe (GT) is k(OH+NO2) = 2.25 x 10(-11) exp(-3831 K/T) cm3 molecule(-1) s(-1), which is a factor of 2 lower than the extrapolated direct value from Howard but agrees well with NO + HO2 --> OH + NO2 transformed with the updated equilibrium constants. Also, the rate constant for OH + HO2 suitable for combustion modeling applications over the T range (1200-1700 K) is (5 +/- 3) x 10(-11) cm3 molecule(-1) s(-1). Finally, simulating previous experimental results of GT using our updated mechanism, we suggest a constant rate for k(HO2+NO2) = (2.2 +/- 0.7) x 10(-11) cm3 molecule(-1) s(-1) over the T range 1350-1760 K.

  8. Urban emissions of water vapor in winter

    NASA Astrophysics Data System (ADS)

    Salmon, Olivia E.; Shepson, Paul B.; Ren, Xinrong; Marquardt Collow, Allison B.; Miller, Mark A.; Carlton, Annmarie G.; Cambaliza, Maria O. L.; Heimburger, Alexie; Morgan, Kristan L.; Fuentes, Jose D.; Stirm, Brian H.; Grundman, Robert; Dickerson, Russell R.

    2017-09-01

    Elevated water vapor (H2Ov) mole fractions were occasionally observed downwind of Indianapolis, IN, and the Washington, D.C.-Baltimore, MD, area during airborne mass balance experiments conducted during winter months between 2012 and 2015. On days when an urban H2Ov excess signal was observed, H2Ov emission estimates range between 1.6 × 104 and 1.7 × 105 kg s-1 and account for up to 8.4% of the total (background + urban excess) advected flow of atmospheric boundary layer H2Ov from the urban study sites. Estimates of H2Ov emissions from combustion sources and electricity generation facility cooling towers are 1-2 orders of magnitude smaller than the urban H2Ov emission rates estimated from observations. Instances of urban H2Ov enhancement could be a result of differences in snowmelt and evaporation rates within the urban area, due in part to larger wintertime anthropogenic heat flux and land cover differences, relative to surrounding rural areas. More study is needed to understand why the urban H2Ov excess signal is observed on some days, and not others. Radiative transfer modeling indicates that the observed urban enhancements in H2Ov and other greenhouse gas mole fractions contribute only 0.1°C d-1 to the urban heat island at the surface. This integrated warming through the boundary layer is offset by longwave cooling by H2Ov at the top of the boundary layer. While the radiative impacts of urban H2Ov emissions do not meaningfully influence urban heat island intensity, urban H2Ov emissions may have the potential to alter downwind aerosol and cloud properties.

  9. Urban Emissions of Water Vapor in Winter.

    PubMed

    Salmon, Olivia E; Shepson, Paul B; Ren, Xinrong; Marquardt Collow, Allison B; Miller, Mark A; Carlton, Annmarie G; Cambaliza, Maria O L; Heimburger, Alexie; Morgan, Kristan L; Fuentes, Jose D; Stirm, Brian H; Grundman, Robert; Dickerson, Russell R

    2017-09-16

    Elevated water vapor (H 2 O v ) mole fractions were occassionally observed downwind of Indianapolis, IN, and the Washington, D.C.-Baltimore, MD, area during airborne mass balance experiments conducted during winter months between 2012 and 2015. On days when an urban H 2 O v excess signal was observed, H 2 O v emissions estimates range between 1.6 × 10 4 and 1.7 × 10 5 kg s -1 , and account for up to 8.4% of the total (background + urban excess) advected flow of atmospheric boundary layer H 2 O v from the urban study sites. Estimates of H 2 O v emissions from combustion sources and electricity generation facility cooling towers are 1-2 orders of magnitude smaller than the urban H 2 O v emission rates estimated from observations. Instances of urban H 2 O v enhancement could be a result of differences in snowmelt and evaporation rates within the urban area, due in part to larger wintertime anthropogenic heat flux and land cover differences, relative to surrounding rural areas. More study is needed to understand why the urban H 2 O v excess signal is observed on some days, and not others. Radiative transfer modeling indicates that the observed urban enhancements in H 2 O v and other greenhouse gas mole fractions contribute only 0.1°C day -1 to the urban heat island at the surface. This integrated warming through the boundary layer is offset by longwave cooling by H 2 O v at the top of the boundary layer. While the radiative impacts of urban H 2 O v emissions do not meaningfully influence urban heat island intensity, urban H 2 O v emissions may have the potential to alter downwind aerosol and cloud properties.

  10. Carbon dioxide emission rate of Kīlauea Volcano: Implications for primary magma and the summit reservoir

    USGS Publications Warehouse

    Gerlach, T.M.; McGee, K.A.; Elias, T.; Sutton, A.J.; Doukas, M.P.

    2002-01-01

     We report a CO2 emission rate of 8500 metric tons per day (t d−1) for the summit of Kīlauea Volcano, several times larger than previous estimates. It is based on three sets of measurements over 4 years of synchronous SO2 emission rates and volcanic CO2/SO2concentration ratios for the summit correlation spectrometer (COSPEC) traverse. Volcanic CO2/SO2 for the traverse is representative of the global ratio for summit emissions. The summit CO2 emission rate is nearly constant, despite large temporal variations in summit CO2/SO2 and SO2 emission rates. Summit CO2 emissions comprise most of Kīlauea's total CO2 output (∼9000 t d−1). The bulk CO2 content of primary magma determined from CO2emission and magma supply rate data is ∼0.70 wt %. Most of the CO2 is present as exsolved vapor at summit reservoir depths, making the primary magma strongly buoyant. Turbulent mixing with resident reservoir magma, however, prevents frequent eruptions of buoyant primary magma in the summit region. CO2 emissions confirm that the magma supply enters the edifice through the summit reservoir. A persistent several hundred parts per million CO2 anomaly arises from the entry of magma into the summit reservoir beneath a square kilometer area east of Halemaumau pit crater. Since most of the CO2 in primary magma is degassed in the summit, the summit CO2 emission rate is an effective proxy for the magma supply rate. Both scrubbing of SO2 and solubility controls on CO2and S in basaltic melt cause high CO2/SO2 in summit emissions and spatially uncorrelated distributions of CO2 and SO2 in the summit plume.

  11. H2S-mediated thermal and photochemical methane activation.

    PubMed

    Baltrusaitis, Jonas; de Graaf, Coen; Broer, Ria; Patterson, Eric V

    2013-12-02

    Sustainable, low-temperature methods for natural gas activation are critical in addressing current and foreseeable energy and hydrocarbon feedstock needs. Large portions of natural gas resources are still too expensive to process due to their high content of hydrogen sulfide gas (H2S) mixed with methane, deemed altogether as sub-quality or "sour" gas. We propose a unique method of activation to form a mixture of sulfur-containing hydrocarbon intermediates, CH3SH and CH3SCH3 , and an energy carrier such as H2. For this purpose, we investigated the H2S-mediated methane activation to form a reactive CH3SH species by means of direct photolysis of sub-quality natural gas. Photoexcitation of hydrogen sulfide in the CH4 + H2S complex resulted in a barrierless relaxation by a conical intersection to form a ground-state CH3SH + H2 complex. The resulting CH3SH could further be coupled over acidic catalysts to form higher hydrocarbons, and the resulting H2 used as a fuel. This process is very different from conventional thermal or radical-based processes and can be driven photolytically at low temperatures, with enhanced control over the conditions currently used in industrial oxidative natural gas activation. Finally, the proposed process is CO2 neutral, as opposed to the current industrial steam methane reforming (SMR). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Diffuse CO 2 soil degassing and CO 2 and H 2S concentrations in air and related hazards at Vulcano Island (Aeolian arc, Italy)

    NASA Astrophysics Data System (ADS)

    Carapezza, M. L.; Barberi, F.; Ranaldi, M.; Ricci, T.; Tarchini, L.; Barrancos, J.; Fischer, C.; Perez, N.; Weber, K.; Di Piazza, A.; Gattuso, A.

    2011-10-01

    La Fossa crater on Vulcano Island is quiescent since 1890. Periodically it undergoes "crises" characterized by marked increase of temperature (T), gas output and concentration of magmatic components in the crater fumaroles (T may exceed 600 °C). During these crises, which so far did not lead to any eruptive reactivation, the diffuse CO 2 soil degassing also increases and in December 2005 an anomalous CO 2 flux of 1350 tons/day was estimated by 1588 measurements over a surface of 1.66 km 2 extending from La Fossa crater to the inhabited zone of Vulcano Porto. The crater area and two other anomalously degassing sites (Levante Beach and Palizzi) have been periodically investigated from December 2004 to August 2010 for diffuse CO 2 soil flux. They show a marked variation with time of the degassing rate, with synchronous maxima in December 2005. Carbon dioxide soil flux and environmental parameters have been also continuously monitored for over one year by an automatic station at Vulcano Porto. In order to assess the hazard of the endogenous gas emissions, CO 2 and H 2S air concentrations have been measured by Tunable Diode Laser profiles near the fumaroles of the crater rim and of the Levante Beach area, where also the viscous gas flux has been estimated. In addition, CO 2 air concentration has been measured both indoor and outdoor in an inhabited sector of Vulcano Porto. Results show that in some sites usually frequented by tourists there is a dangerous H 2S air concentration and CO 2 exceeds the hazardous thresholds in some Vulcano houses. These zones should be immediately monitored for gas hazard should a new crisis arise.

  13. Loss Process for the C2H5 Radical in the Atmospheres of Jupiter and Saturn: First Direct, Absolute Measurement of the Rate Constant for the Reaction H + C2H5 at Low Pressure and Temperature

    NASA Astrophysics Data System (ADS)

    Stief, L. J.; Pimentel, A. S.; Payne, W. A.; Nesbitt, F. L.; Cody, R. J.

    2003-05-01

    Photochemical models of the atmospheres of Jupiter and Saturn predict the reaction H + C2H5 to be the most important loss process for C2H5 in these atmospheres. In addition, the reaction channel H + C2H5 -> 2 CH3 is a significant source of the methyl radical. There are only two relatively modern studies of the H + C2H5 reaction, both of which depend on extensive modeling involving eight elementary reactions. The motivation for the present study is the lack of direct, absolute measurements of the rate constant for the H + C2H5 reaction at low pressures and temperatures appropriate for outer planet models. In the present experiments the reactants H and C2H5 are rapidly and simultaneously generated by reaction of F with appropriate mixtures of H2 and C2H6. Using the technique of discharge-flow with collision-free sampling to a mass spectrometer, we monitor the decay of C2H5 in excess H. In contrast to previous studies of this reaction, the primary H + C2H5 reaction is isolated and the radical decays only by reaction with H and by loss at the wall. Secondary reactions such as the self-reaction of C2H5 are negligible. At P = 1 Torr He we measure k (298K) = 1.13 x 10-10 cm3 molecule-1 s-1 and k (202K) = 1.18 x 10-10 cm3 molecule-1 s-1. Experiments at T = 155 K are in progress. The reaction is temperature independent as expected based on studies of other atom-radical reactions. Our result at T = 298 K lies between those of the two relatively modern but complex studies of this reaction. The present total rate constant data and planned product yield studies at low pressures and temperatures will then be available for use in future photochemical models of the atmospheres of the outer planets. The Planetary Atmospheres Program of NASA Headquarters is supporting this research.

  14. Methylene blue counteracts H2S toxicity-induced cardiac depression by restoring L-type Ca channel activity

    PubMed Central

    Zhang, Xue-Qian; Sonobe, Takashi; Song, Jianliang; Rannals, Matthew D.; Wang, JuFang; Tubbs, Nicole; Cheung, Joseph Y.; Haouzi, Philippe

    2016-01-01

    We have previously reported that methylene blue (MB) can counteract hydrogen sulfide (H2S) intoxication-induced circulatory failure. Because of the multifarious effects of high concentrations of H2S on cardiac function, as well as the numerous properties of MB, the nature of this interaction, if any, remains uncertain. The aim of this study was to clarify 1) the effects of MB on H2S-induced cardiac toxicity and 2) whether L-type Ca2+ channels, one of the targets of H2S, could transduce some of the counteracting effects of MB. In sedated rats, H2S infused at a rate that would be lethal within 5 min (24 μM·kg−1·min−1), produced a rapid fall in left ventricle ejection fraction, determined by echocardiography, leading to a pulseless electrical activity. Blood concentrations of gaseous H2S reached 7.09 ± 3.53 μM when cardiac contractility started to decrease. Two to three injections of MB (4 mg/kg) transiently restored cardiac contractility, blood pressure, and V̇o2, allowing the animals to stay alive until the end of H2S infusion. MB also delayed PEA by several minutes following H2S-induced coma and shock in unsedated rats. Applying a solution containing lethal levels of H2S (100 μM) on isolated mouse cardiomyocytes significantly reduced cell contractility, intracellular calcium concentration ([Ca2+]i) transient amplitudes, and L-type Ca2+ currents (ICa) within 3 min of exposure. MB (20 mg/l) restored the cardiomyocyte function, ([Ca2+]i) transient, and ICa. The present results offer a new approach for counteracting H2S toxicity and potentially other conditions associated with acute inhibition of L-type Ca2+ channels. PMID:26962024

  15. Structural stability of coplanar 1T-2H superlattice MoS2 under high energy electron beam.

    PubMed

    Reshmi, S; Akshaya, M V; Satpati, Biswarup; Basu, Palash Kumar; Bhattacharjee, K

    2018-05-18

    Coplanar heterojunctions composed of van der Waals layered materials with different structural polymorphs have drawn immense interest recently due to low contact resistance and high carrier injection rate owing to low Schottky barrier height. Present research has largely focused on efficient exfoliation of these layered materials and their restacking to achieve better performances. We present here a microwave assisted easy, fast and efficient route to induce high concentration of metallic 1T phase in the original 2H matrix of exfoliated MoS 2 layers and thus facilitating the formation of a 1T-2H coplanar superlattice phase. High resolution transmission electron microscopy (HRTEM) investigations reveal formation of highly crystalline 1T-2H hybridized structure with sharp interface and disclose the evidence of surface ripplocations within the same exfoliated layer of MoS 2 . In this work, the structural stability of 1T-2H superlattice phase during HRTEM measurements under an electron beam of energy 300 keV is reported. This structural stability could be either associated to the change in electronic configuration due to induction of the restacked hybridized phase with 1T- and 2H-regions or to the formation of the surface ripplocations. Surface ripplocations can act as an additional source of scattering centers to the electron beam and also it is possible that a pulse train of propagating ripplocations can sweep out the defects via interaction from specific areas of MoS 2 sheets.

  16. Structural stability of coplanar 1T-2H superlattice MoS2 under high energy electron beam

    NASA Astrophysics Data System (ADS)

    Reshmi, S.; Akshaya, M. V.; Satpati, Biswarup; Basu, Palash Kumar; Bhattacharjee, K.

    2018-05-01

    Coplanar heterojunctions composed of van der Waals layered materials with different structural polymorphs have drawn immense interest recently due to low contact resistance and high carrier injection rate owing to low Schottky barrier height. Present research has largely focused on efficient exfoliation of these layered materials and their restacking to achieve better performances. We present here a microwave assisted easy, fast and efficient route to induce high concentration of metallic 1T phase in the original 2H matrix of exfoliated MoS2 layers and thus facilitating the formation of a 1T-2H coplanar superlattice phase. High resolution transmission electron microscopy (HRTEM) investigations reveal formation of highly crystalline 1T-2H hybridized structure with sharp interface and disclose the evidence of surface ripplocations within the same exfoliated layer of MoS2. In this work, the structural stability of 1T-2H superlattice phase during HRTEM measurements under an electron beam of energy 300 keV is reported. This structural stability could be either associated to the change in electronic configuration due to induction of the restacked hybridized phase with 1T- and 2H-regions or to the formation of the surface ripplocations. Surface ripplocations can act as an additional source of scattering centers to the electron beam and also it is possible that a pulse train of propagating ripplocations can sweep out the defects via interaction from specific areas of MoS2 sheets.

  17. Catalytic activity of Cu4-cluster to adsorb H2S gas: h-BN nanosheet

    NASA Astrophysics Data System (ADS)

    Kansara, Shivam; Gupta, Sanjeev K.; Sonvane, Yogesh

    2018-05-01

    We have investigated the electronic properties, adsorptions strength and charge transfer using first principles calculations using density functional theory (DFT). The hexagonal boron nitride (h-BN) substrate shows metallic behavior, which helps to enhance the absorption process. The adsorption of three different orientations (S, D and T) of the H2S gas molecules to analyze the maximum adsorption strength from them onto a copper cluster (Cu4) based on h-BN nanosheet. The maximum adsorption energy of the H2S gas molecule is -1.50 eV for the S orientation and for D and U, it is -0.71 eV and -0.78 eV, respectively. The results show that Cu4 cluster helps to capture H2S gas from the environment and results are useful for the cleaning environment from the toxic gases.

  18. Exciton Emission Intensity Modulation of Monolayer MoS2 via Au Plasmon Coupling

    PubMed Central

    Mukherjee, B.; Kaushik, N.; Tripathi, Ravi P. N.; Joseph, A. M.; Mohapatra, P. K.; Dhar, S.; Singh, B. P.; Kumar, G. V. Pavan; Simsek, E.; Lodha, S.

    2017-01-01

    Modulation of photoluminescence of atomically thin transition metal dichalcogenide two-dimensional materials is critical for their integration in optoelectronic and photonic device applications. By coupling with different plasmonic array geometries, we have shown that the photoluminescence intensity can be enhanced and quenched in comparison with pristine monolayer MoS2. The enhanced exciton emission intensity can be further tuned by varying the angle of polarized incident excitation. Through controlled variation of the structural parameters of the plasmonic array in our experiment, we demonstrate modulation of the photoluminescence intensity from nearly fourfold quenching to approximately threefold enhancement. Our data indicates that the plasmonic resonance couples to optical fields at both, excitation and emission bands, and increases the spontaneous emission rate in a double spacing plasmonic array structure as compared with an equal spacing array structure. Furthermore our experimental results are supported by numerical as well as full electromagnetic wave simulations. This study can facilitate the incorporation of plasmon-enhanced transition metal dichalcogenide structures in photodetector, sensor and light emitter applications. PMID:28134260

  19. Emissions of sulfur gases from wetlands

    NASA Technical Reports Server (NTRS)

    Hines, Mark E.

    1992-01-01

    Data on the emissions of sulfur gases from marine and freshwater wetlands are summarized with respect to wetland vegetation type and possible formation mechanisms. The current data base is largest for salt marshes inhabited by Spartina alterniflora. Both dimethyl sulfide (DMS) and hydrogen sulfide (H2S) dominate emissions from salt marshes, with lesser quantities of methyl mercaptan (MeSH), carbonyl sulfide (COS), carbon disulfide (CS2) and dimethyl disulfide (DMDS) being emitted. High emission rates of DMS are associated with vegetation that produces the DMS precursor dimethylsulfonionpropionate (DMSP). Although large quantities of H2S are produced in marshes, only a small percentage escapes to the atmosphere. High latitude marshes emit less sulfur gases than temperate ones, but DMS still dominates. Mangrove-inhabited wetlands also emit less sulfur than temperate S. alterniflora marshes. Few data are available on sulfur gas emissions from freshwater wetlands. In most instances, sulfur emissions from temperate freshwater sites are low. However, some temperate and subtropical freshwater sites are similar in magnitude to those from marine wetlands which do not contain vegetation that produces DMSP. Emissions are low in Alaskan tundra but may be considerably higher in some bogs and fens.

  20. Options for lowering U.S. carbon dioxide emissions

    NASA Astrophysics Data System (ADS)

    Bierbaum, Rosina M.; Friedman, Robert M.; Levenson, Howard; Rapoport, Richard D.; Sundt, Nick

    1992-03-01

    The United States can decrease its emissions of carbon dioxide (CO2) to as much as 35 percent below 1987 levels within the next 25 years by adopting an aggressive package of policies crossing all sectors of the economy. Such emissions reductions will be difficult to achieve and may be costly, but no major technological breakthroughs are needed. In this paper, we identify a ``Tough'' package of energy conservation, energy supply, and forest managment practices to accomplish this level of emissions reductions. We also present a package of cost-effective, ``Moderate'' technical options, which if adopted, would hold CO2 emissions to about 15-percent increase over 1987 levels by 2015. In constrast, if the United State takes not new actions to curb energy use, CO2 emissions will likely rise 50 percent during that time. A variety of Federal policy initiatives will be required to achieve large reductions in U.S. CO2 emissions. Such policy actions will have to include both regulatory ``push'' and market ``pull'' mechanisms--including performance standards, tax incentive programs, carbon-emission or energy taxes, labeling and efficiency ratings, and research, development, and demostration activities.

  1. Estimation of hydrogen sulfide emission rates at several wastewater treatment plants through experimental concentration measurements and dispersion modeling.

    PubMed

    Llavador Colomer, Fernando; Espinós Morató, Héctor; Mantilla Iglesias, Enrique

    2012-07-01

    The management and operation of wastewater treatment plants (WWTP) usually involve the release into the atmosphere of malodorous substances with the potential to reduce the quality of life of people living nearby. In this type of facility, anaerobic degradation processes contribute to the generation of hydrogen sulfide (H2S), often at quite high concentrations; thus, the presence of this chemical compound in the atmosphere can be a good indicator of the occurrence and intensity of the olfactory impact in a specific area. The present paper describes the experimental and modelling work being carried out by CEAM-UMH in the surroundings of several wastewater treatment plants located in the Valencia Autonomous Community (Spain). This work has permitted the estimation of H2S emission rates at different WWTPs under different environmental and operating conditions. Our methodological approach for analyzing and describing the most relevant aspects of the olfactory impact consisted of several experimental campaigns involving intensive field measurements using passive samplers in the vicinity of several WWTPs, in combination with numerical simulation results from a diagnostic dispersion model. A meteorological tower at each WWTP provided the input values for the dispersion code, ensuring a good fit of the advective component and therefore more confidence in the modelled concentration field in response to environmental conditions. Then, comparisons between simulated and experimental H2S concentrations yielded estimates of the global emission rate for this substance at several WWTPs at different time periods. The results obtained show a certain degree of temporal and spatial (between-plant) variability (possibly due to both operational and environmental conditions). Nevertheless, and more importantly, the results show a high degree of uniformity in the estimates, which consistently stay within the same order of magnitude.

  2. Development of cotton gin PM2.5 emission factors for EPA’S AP-42

    USDA-ARS?s Scientific Manuscript database

    The Compilation of Air Pollution Emission Factors (AP-42) emission factors are assigned ratings, from A (Excellent) to E (Poor), based on the quality of data used to develop them. AP-42 currently contains no PM2.5 cotton gin emission factors. In an effort to develop science-based data for regulating...

  3. The Effect of N2 Photoabsorption Cross Section Resolution on C2H6 Production in Titan’s Ionosphere

    NASA Astrophysics Data System (ADS)

    Luspay-Kuti, Adrienn; Mandt, Kathleen E.; Plessis, Sylvain; Greathouse, Thomas K.

    2014-11-01

    Titan’s rich organic chemistry begins with the photochemistry of only two molecules: N2 and CH4. The details on how higher-order hydrocarbons and nitriles are formed from these molecules have key implications for both the structure and evolution of Titan’s atmosphere, and for its surface-atmosphere interactions. Of high importance is the production of C2H6, which is a sink for CH4, and a main component in the polar lakes. Results of photochemical models, though, may be sensitive to the choice of input parameters, such as the N2 photoabsorption cross section resolution, as previously shown for nitrogen (Liang et al. (2007) ApJL 664, 115-118), and CH4 (Lavvas et al. (2011) Icarus 213, 233-251). Here we investigate the possibility of the same effect on the production rates of C2H6. We modeled production and loss rates, as well as mixing ratio and density profiles between an altitude of 600 and 1600 km for low and high resolution N2 cross sections via a coupled ion-neutral-thermal model (De La Haye et al. (2008) Icarus 197, 110-136; Mandt et al. (2012) JGR 117, E10006). Our results show a clear impact of photoabsorption cross section resolution used on all neutral and ion species contributing to C2H6 production. The magnitude of the influence varies amongst species. Ethane production profiles exhibit a significant increase with better resolution; a factor of 1.2 between 750 and 950 km, and a factor of 1.1 in the total column-integrated production rate. These values are lower limits, as additional reactions involving C2H5 not included in the model may also contribute to the production rates. The clear effect on C2H6 (which is not a parent molecule, nor does it bear nitrogen) may have important implications for other molecules in Titan’s atmosphere as well. The possible non-negligible impact of an isotope of nitrogen may argue for the inclusion of isotopes in photochemical models. For future analysis, development of a more efficient and streamlined model called

  4. Ternary recombination of H3+, H2D+, HD2+, and D3+ with electrons in He/Ar/H2/D2 gas mixtures

    NASA Astrophysics Data System (ADS)

    Kalosi, Abel; Dohnal, Petr; Plasil, Radek; Johnsen, Rainer; Glosik, Juraj

    2016-09-01

    The temperature dependence of the ternary recombination rate coefficients of H2D+ and HD2+ ions has been studied in the temperature range of 80-150 K at pressures from 500 to 1700 Pa in a stationary afterglow apparatus equipped with a cavity ring-down spectrometer. Neutral gas mixtures consisting of He/Ar/H2/D2 (with typical number densities 1017 /1014 /1014 /1014 cm-3) were employed to produce the desired ionic species and their fractional abundances were monitored as a function of helium pressure and the [D2]/[H2] ratio of the neutral gas. In addition, the translational and the rotational temperature and the ortho to para ratio were monitored for both H2D+ and HD2+ ions. A fairly strong pressure dependence of the effective recombination rate coefficient was observed for both ion species, leading to ternary recombination rate coefficients close to those previously found for (helium assisted) ternary recombination of H3+ and D3+. Work supported by: Czech Science Foundation projects GACR 14-14649P, GACR 15-15077S, GACR P209/12/0233, and by Charles University in Prague Project Nr. GAUK 692214.

  5. Life cycle greenhouse gas emissions from U.S. liquefied natural gas exports: implications for end uses.

    PubMed

    Abrahams, Leslie S; Samaras, Constantine; Griffin, W Michael; Matthews, H Scott

    2015-03-03

    This study analyzes how incremental U.S. liquefied natural gas (LNG) exports affect global greenhouse gas (GHG) emissions. We find that exported U.S. LNG has mean precombustion emissions of 37 g CO2-equiv/MJ when regasified in Europe and Asia. Shipping emissions of LNG exported from U.S. ports to Asian and European markets account for only 3.5-5.5% of precombustion life cycle emissions, hence shipping distance is not a major driver of GHGs. A scenario-based analysis addressing how potential end uses (electricity and industrial heating) and displacement of existing fuels (coal and Russian natural gas) affect GHG emissions shows the mean emissions for electricity generation using U.S. exported LNG were 655 g CO2-equiv/kWh (with a 90% confidence interval of 562-770), an 11% increase over U.S. natural gas electricity generation. Mean emissions from industrial heating were 104 g CO2-equiv/MJ (90% CI: 87-123). By displacing coal, LNG saves 550 g CO2-equiv per kWh of electricity and 20 g per MJ of heat. LNG saves GHGs under upstream fugitive emissions rates up to 9% and 5% for electricity and heating, respectively. GHG reductions were found if Russian pipeline natural gas was displaced for electricity and heating use regardless of GWP, as long as U.S. fugitive emission rates remain below the estimated 5-7% rate of Russian gas. However, from a country specific carbon accounting perspective, there is an imbalance in accrued social costs and benefits. Assuming a mean social cost of carbon of $49/metric ton, mean global savings from U.S. LNG displacement of coal for electricity generation are $1.50 per thousand cubic feet (Mcf) of gaseous natural gas exported as LNG ($.028/kWh). Conversely, the U.S. carbon cost of exporting the LNG is $1.80/Mcf ($.013/kWh), or $0.50-$5.50/Mcf across the range of potential discount rates. This spatial shift in embodied carbon emissions is important to consider in national interest estimates for LNG exports.

  6. Diffuse H_{2} emission: a useful geochemical tool to monitor the volcanic activity at El Hierro volcano system

    NASA Astrophysics Data System (ADS)

    Pérez, Nemesio M.; Melián, Gladys; González-Santana, Judit; Barrancos, José; Padilla, Germán; Rodríguez, Fátima; Padrón, Eleazar; Hernández, Pedro A.

    2016-04-01

    The occurrence of interfering processes affecting reactive gases as CO2 during its ascent from magmatic bodies or hydrothermal systems toward the surface environment hinders the interpretation of their enrichments in the soil atmosphere and fluxes for volcano monitoring purposes (Marini and Gambardella, 2005). These processes include gas scrubbing by ground-waters and interaction with rocks, decarbonatation processes, biogenic production, etc. Within the rest of the soil gases, particularly interest has been addressed to light and highly mobile gases. They offer important advantages for the detection of vertical permeability structures, because their interaction with the surrounding rocks or fluids during the ascent toward the surface is minimum. H2 is one of the most abundant trace species in volcano-hydrothermal systems and is a key participant in many redox reactions occurring in the hydrothermal reservoir gas (Giggenbach, 1987). Although H2 can be produced in soils by N2-fixing and fertilizing bacteria, soils are considered nowadays as sinks of molecular hydrogen (Smith-Downey et al., 2006). Because of its chemical and physical characteristics, H2 generated within the crust moves rapidly and escapes to the atmosphere. These characteristics make H2 one of the best geochemical indicators of magmatic and geothermal activity at depth. El Hierro is the youngest and the SW-most of the Canary Islands and the scenario of the last volcanic eruption of the archipelago, a submarine eruption that took place 2 km off the southern coast of the island from October 2011 to March 2012. Since at El Hierro Island there are not any surface geothermal manifestations (fumaroles, etc), we have focused our studies on soil degassing surveys. Here we show the results of soil H2 emission surveys that have been carried out regularly since mid-2012. Soil gas samples were collected in ˜600 sites selected based on their accessibility and geological criteria. Soil gases were sampled at ˜40

  7. Experimental and theoretical investigation of homogeneous gaseous reaction of CO2(g) + nH2O(g) + nNH3(g) → products (n = 1, 2).

    PubMed

    Li, Zhuangjie; Zhang, Baoquan

    2012-09-13

    Decreasing CO2 emissions into the atmosphere is key for reducing global warming. To facilitate the CO2 emission reduction efforts, our laboratory conducted experimental and theoretical investigations of the homogeneous gaseous reaction of CO2(g) + nH2O(g) + nNH3(g) → (NH4)HCO3(s)/(NH4)2CO3(s) (n = 1 and 2) using Fourier transform infrared attenuated total reflectance (FTIR-ATR) spectroscopy and ab initio molecular orbital theory. Our FTIR-ATR experimental results indicate that (NH4)2CO3(s) and (NH4)HCO3(s) are formed as aerosol particulate matter when carbon dioxide reacts with ammonia and water in the gaseous phase at room temperature. Ab initio study of this chemical system suggested that the reaction may proceed through formation of NH3·H2O(g), NH3·CO2(g), and CO2·H2O(g) complexes. Subsequent complexes, NH3·H2O·CO2 and (NH3)2·H2O·CO2, can be formed by adding gaseous reactants to the NH3·H2O(g), NH3·CO2(g), and CO2·H2O(g) complexes, respectively. The NH3·H2O·CO2 and (NH3)2·H2O·CO2 complexes can then be rearranged to produce (NH4)HCO3 and (NH4)2CO3 as final products via a transition state, and the NH3 molecule acts as a medium accepting and donating hydrogen atoms in the rearrangement process. Our computational results also reveal that the presence of an additional water molecule can reduce the activation energy of the rearrangement process. The high activation energy predicted in the present work suggests that the reaction is kinetically not favored, and our experimental observation of (NH4)HCO3(s) and (NH4)2CO3(s) may be attributed to the high concentrations of reactants increasing the reaction rate of the title reactions in the reactor.

  8. Hyperfine excitation of linear molecules by para- and ortho-H{sub 2}: Application to the HCl–H{sub 2} system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lanza, Mathieu; Lique, François, E-mail: francois.lique@univ-lehavre.fr

    The determination of hyperfine structure resolved excitation cross sections and rate coefficients due to H{sub 2} collisions is required to interpret astronomical spectra. In this paper, we present several theoretical approaches to compute these data. An almost exact recoupling approach and approximate sudden methods are presented. We apply these different approaches to the HCl–H{sub 2} collisional system in order to evaluate their respective accuracy. HCl–H{sub 2} hyperfine structure resolved cross sections and rate coefficients are then computed using recoupling and approximate sudden methods. As expected, the approximate sudden approaches are more accurate when the collision energy increases and the resultsmore » suggest that these approaches work better for para-H{sub 2} than for ortho-H{sub 2} colliding partner. For the first time, we present HCl–H{sub 2} hyperfine structure resolved rate coefficients, computed here for temperatures ranging from 5 to 300 K. The usual Δj{sub 1} = ΔF{sub 1} propensity rules are observed for the hyperfine transitions. The new rate coefficients will significantly help the interpretation of interstellar HCl emission lines observed with current and future telescopes. We expect that these new data will allow a better determination of the HCl abundance in the interstellar medium, that is crucial to understand the interstellar chlorine chemistry.« less

  9. Poisoning of Ni-Based anode for proton conducting SOFC by H2S, CO2, and H2O as fuel contaminants

    NASA Astrophysics Data System (ADS)

    Sun, Shichen; Awadallah, Osama; Cheng, Zhe

    2018-02-01

    It is well known that conventional solid oxide fuel cells (SOFCs) based on oxide ion conducting electrolyte (e.g., yttria-stabilized zirconia, YSZ) and nickel (Ni) - ceramic cermet anodes are susceptible to poisoning by trace amount of hydrogen sulfide (H2S) while not significantly impacted by the presence of carbon dioxide (CO2) and moisture (H2O) in the fuel stream unless under extreme operating conditions. In comparison, the impacts of H2S, CO2, and H2O on proton-conducting SOFCs remain largely unexplored. This study aims at revealing the poisoning behaviors caused by H2S, CO2, and H2O for proton-conducting SOFCs. Anode-supported proton-conducting SOFCs with BaZe0.1Ce0.7Y0.1Yb0.1O3 (BZCYYb) electrolyte and Ni-BZCYYb anode and La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) cathode as well as Ni-BZCYYb/BZCYYb/Ni-BZCYYb anode symmetrical cells were subjected to low ppm-level H2S or low percentage-level CO2 or H2O in the hydrogen fuel, and the responses in cell electrochemical behaviors were recorded. The results suggest that, contrary to conventional SOFCs that show sulfur poisoning and CO2 and H2O tolerance, such proton-conducting SOFCs with Ni-BZCYYb cermet anode seem to be poisoned by all three types of "contaminants". Beyond that, the implications of the experimental observations on understanding the fundamental mechanism of anode hydrogen electrochemical oxidation reaction in proton conducting SOFCs are also discussed.

  10. Abundances and Excitation of H2, H3+ & CO in Star-Forming Regions

    NASA Astrophysics Data System (ADS)

    Kulesa, Craig A.

    Although most of the 123 reported interstellar molecules to date have been detected through millimeter-wave emission-line spectroscopy, this technique is inapplicable to non-polar molecules like H2 and H3+, which are central to our understanding of interstellar chemistry. Thus high resolution infrared absorption-line spectroscopy bears an important role in interstellar studies: chemically important non-polar molecules can be observed, and their abundances and excitation conditions can be referred to the same ``pencil beam'' absorbing column. In particular, through a weak quadrupole absorption line spectrum at near-infrared wavelengths, the abundance of cold H2 in dark molecular clouds and star forming regions can now be accurately measured and compared along the same ``pencil beam'' line of sight with the abundance of its most commonly cited surrogate, CO, and its rare isotopomers. Also detected via infrared line absorption is the pivotal molecular ion H3+, whose abundance provides the most direct measurement of the cosmic ray ionization rate in dark molecular clouds, a process that initiates the formation of many other observed molecules there. Our growing sample of H2 and CO detections now includes detailed multi-beam studies of the ρ Ophiuchi molecular cloud and NGC 2024 in Orion. We explore the excitation and degree of ortho- and para-H2 thermalization in dark clouds, variation of the CO abundance over a cloud, and the relation of H2 column density to infrared extinction mapping, far-infrared/submillimeter dust continuum emission, and large scale submillimeter CO, [C I] and HCO+ line emission -- all commonly invoked to indirectly trace H2 during the past 30+ years. For each of the distinct velocity components seen toward some embedded young stellar objects, we are also able to determine the temperature, density, and a CO/H2 abundance ratio, thus unraveling some of the internal structure of a star-forming cloud. H2 and H3+ continue to surprise and delight us

  11. TeV Gamma-Ray Observations of the Binary Neutron Star Merger GW170817 with H.E.S.S.

    DOE PAGES

    Abdalla, H.; Abramowski, A.; Aharonian, F.; ...

    2017-11-22

    Here, we search for high-energy gamma-ray emission from the binary neutron star merger GW170817 with the H.E.S.S. Imaging Air Cherenkov Telescopes. The observations presented here have been obtained starting only 5.3 hr after GW170817. The H.E.S.S. target selection identified regions of high probability to find a counterpart of the gravitational-wave event. The first of these regions contained the counterpart SSS17a that has been identified in the optical range several hours after our observations. We can therefore present the first data obtained by a ground-based pointing instrument on this object. A subsequent monitoring campaign with the H.E.S.S. telescopes extended over several days, covering timescales from 0.22 to 5.2 days and energy ranges betweenmore » $$270\\,\\mathrm{GeV}$$ to $$8.55\\,\\mathrm{TeV}$$. No significant gamma-ray emission has been found. The derived upper limits on the very-high-energy gamma-ray flux for the first time constrain non-thermal, high-energy emission following the merger of a confirmed binary neutron star system.« less

  12. TeV Gamma-Ray Observations of the Binary Neutron Star Merger GW170817 with H.E.S.S.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdalla, H.; Abramowski, A.; Aharonian, F.

    Here, we search for high-energy gamma-ray emission from the binary neutron star merger GW170817 with the H.E.S.S. Imaging Air Cherenkov Telescopes. The observations presented here have been obtained starting only 5.3 hr after GW170817. The H.E.S.S. target selection identified regions of high probability to find a counterpart of the gravitational-wave event. The first of these regions contained the counterpart SSS17a that has been identified in the optical range several hours after our observations. We can therefore present the first data obtained by a ground-based pointing instrument on this object. A subsequent monitoring campaign with the H.E.S.S. telescopes extended over several days, covering timescales from 0.22 to 5.2 days and energy ranges betweenmore » $$270\\,\\mathrm{GeV}$$ to $$8.55\\,\\mathrm{TeV}$$. No significant gamma-ray emission has been found. The derived upper limits on the very-high-energy gamma-ray flux for the first time constrain non-thermal, high-energy emission following the merger of a confirmed binary neutron star system.« less

  13. H2S mediated thermal and photochemical methane activation

    PubMed Central

    Baltrusaitis, Jonas; de Graaf, Coen; Broer, Ria; Patterson, Eric

    2013-01-01

    Sustainable, low temperature methods of natural gas activation are critical in addressing current and foreseeable energy and hydrocarbon feedstock needs. Large portions of natural gas resources are still too expensive to process due to their high content of hydrogen sulfide gas (H2S) in mixture with methane, CH4, altogether deemed as sub-quality or “sour” gas. We propose a unique method for activating this “sour” gas to form a mixture of sulfur-containing hydrocarbon intermediates, CH3SH and CH3SCH3, and an energy carrier, such as H2. For this purpose, we computationally investigated H2S mediated methane activation to form a reactive CH3SH species via direct photolysis of sub-quality natural gas. Photoexcitation of hydrogen sulfide in the CH4+H2S complex results in a barrier-less relaxation via a conical intersection to form a ground state CH3SH+H2 complex. The resulting CH3SH can further be heterogeneously coupled over acidic catalysts to form higher hydrocarbons while the H2 can be used as a fuel. This process is very different from a conventional thermal or radical-based processes and can be driven photolytically at low temperatures, with enhanced controllability over the process conditions currently used in industrial oxidative natural gas activation. Finally, the proposed process is CO2 neutral, as opposed to the currently industrially used methane steam reforming (SMR). PMID:24150813

  14. Collisional Quenching of Highly-Excited H2 due to H2 Collisions

    NASA Astrophysics Data System (ADS)

    Wan, Yier; Yang, Benhui H.; Stancil, Phillip C.; Naduvalath, Balakrishnan; Forrey, Robert C.; This work was partially support by Hubble grant HST-AT-13899. We thank Kyle Walkerassistance with vrrmm.

    2017-06-01

    Collision-induced energy transfer involving H2 molecules are of significant interest, since H2 is the most abundant molecular species in the universe. Collisional de-excitation rate coefficients of the H2-H2 system are necessary to produce accurate models of astrophysical environments. However, accurate calculations of collisional energy transfer are still a challenging problem, especially for highly-excited H2 because a large number of levels must be included in the calculation.Currently, most data are limited to initial rotational levels j up to 8 or initial vibrational levels up to 3. The vast majority of these results involve some form of a reduced-dimensional approach which may be of questionable accuracy. A reliable and accurate four-dimensional PES computed by Patkowski et al. is used in this work along with two quantum scattering programs (MOLSCAT and vrrmm). Another accurate full-dimensional PES has been reported for the H2-H2 system by Hinde.Not all transitions will be explicitly calculated. A zero-energy scaling technique (ZEST) is used to estimate some intermediate transitions from calculated rate coefficients. New inelastic quenching cross section for para-H2+para-H2 collisions with initial level j= 10, 12, 14, 18, 24 are calculated. Calculations for other de-excitation transitions from higher initial levels and collisions involving other spin isomer of hydrogen, ortho-H2+para-H2, ortho-H2+ortho-H2 and para-H2+ortho-H2 are in progress. The coupled- states approximation is also applied to obtain cross sections at high energy.K. Patkowski, et al., J. Chem. Phys. 129, 094304 (2008).J. M. Hutson and S. Green, MOLSCAT Computer code, v14 (1994).K. Walker, 2013, VRRMM: Vibrational/Rotational Rich Man’s MOLSCAT v3.1.K. Walker, Song, L., Yang, B. H.,et al. 2015, ApJ, \\811,27.S. Green, J. Chem. Phys. 62, 2271 (1975).Flower, D. R., Roueff, E. 1998, J. Phys. B, 31, 2935.T. -G. Lee, N. Balakrishnan, R. C. Forrey, P. C. Stancil, G. Shaw, D. R. Schultz, and G. J

  15. The Ratio of Ortho- to Para-H2 in Photodissociation Regions

    NASA Technical Reports Server (NTRS)

    Sternberg, Amiel; Neufeld, David A.

    1999-01-01

    We discuss the ratio of ortho- to para-H2 in photodissociation regions (PDRs). We draw attention to an apparent confusion in the literature between the ortho-to-para ratio of molecules in FUV-pumped vibrationally excited states and the total H2 ortho-to-para abundance ratio. These ratios are not the same because the process of FUV pumping of fluorescent H2 emission in PDRs occurs via optically thick absorption lines. Thus gas with an equilibrium ratio of ortho- to para-H2 equal to 3 will yield FUV-pumped vibrationally excited ortho-to-para ratios smaller than 3, because the ortho-H2 pumping rates are preferentially reduced by optical depth effects. Indeed, if the ortho and para pumping lines are on the "square root" part of the curve of growth, then the expected ratio of ortho and para vibrational line strengths is 3(sup 1/2) approximately 1.7, close to the typically observed value. Thus, contrary to what has sometimes been stated in the literature, most previous measurements of the ratio of ortho- to para-H2 in vibrationally excited states are entirely consistent with a total ortho-to-para ratio of 3, the equilibrium value for temperatures greater than 200 K. We present an analysis and several detailed models that illustrate the relationship between the total ratios of ortho- to para-H2 and the vibrationally excited ortho-to-para ratios in PDRs. Recent Infrared Space Observatory measurements of pure rotational and vibrational H2 emissions from the PDR in the star-forming region S140 provide strong observational support for our conclusions.

  16. Specific IgE to peanut 2S albumin Ara h 7 has a discriminative ability comparable to Ara h 2 and 6.

    PubMed

    Blankestijn, M A; Otten, H G; Suer, W; Weimann, A; Knol, E F; Knulst, A C

    2018-01-01

    Little is known on the clinical relevance of peanut 2S albumin Ara h 7. To investigate the discriminative ability of Ara h 7 in peanut allergy and assess the role of cross-reactivity between Ara h 2, 6 and Ara h 7 isoforms. Sensitization to recombinant peanut storage proteins Ara h 1, 2, 3, 6, and 7 was assessed using a line blot in sera from 40 peanut-tolerant and 40 peanut-allergic patients, based on food challenge outcome. A dose-dependent ELISA inhibition experiment was performed with recombinant Ara h 2, 6 and Ara h 7 isoforms. For Ara h 7.0201, an area under the ROC curve was found of 0.83, comparable to Ara h 2 (AUC 0.81) and Ara h 6 (AUC 0.85). Ara h 7 intensity values strongly correlated with those from Ara h 2 and 6 (r s = 0.81). Of all patients sensitized to 2S albumins Ara h 2, 6, or 7, the majority was co-sensitized to all three (n = 24, 68%), although mono-sensitization to either 2S albumin was also observed in selected patients (Ara h 2: n = 6, 17%; Ara h 6: n = 2, 6%; Ara h 7: n = 2, 6%). Binding to Ara h 7.0101 could be strongly inhibited by Ara h 7.0201, but not the other way around. Specific IgE against Ara h 7.0201 has a predictive ability for peanut allergy similar to Ara h 2 and 6 and possesses unique IgE epitopes as well as epitopes shared between the other Ara h 7 isoform and Ara h 2 and 6. While co-sensitization to all three 2S albumins is most common, mono-sensitization to either Ara h 2, 6, or 7 occurs in selected patients, leading to a risk of misdiagnosis when testing for a single 2S albumin. © 2017 John Wiley & Sons Ltd.

  17. Studies on the contributions of steric and polarity effects to the H2S-binding properties of Vitreoscilla hemoglobin

    NASA Astrophysics Data System (ADS)

    Wang, Dandan; Wang, Hui; Li, Haichao; Liu, Li; Li, Zhengqiang

    2017-01-01

    We have reported recently that Vitreoscilla hemoglobin (VHb) is a potential H2S receptor and storage molecule in bacterial metabolism. In this study, molecular cloning and site-directed mutagenesis were employed to investigate the structural basis for H2S binding. Association and dissociation rate constants (kon and koff) were determined using stopped-flow rapid-scanning spectrophotometry and compared with those for wild type VHb. Several unanticipated factors were found to govern H2S binding properties, due to the distinct structure of VHb. The results presented in this paper show that: i) bulkier residues at positions E7 and E11 decrease H2S binding accessibility, while the residue located at position B10 blocks bound H2S from escaping. ii) hydroxyl sidechains within the distal heme pocket reduce H2S reactivity to VHb; iii) Pro(E8) is involved in moving the E7-E10 loop region to trigger opening of the distal heme pocket to facilitate H2S binding.

  18. Tests of star formation metrics in the low-metallicity galaxy NGC 5253 using ALMA observations of H30α line emission

    NASA Astrophysics Data System (ADS)

    Bendo, G. J.; Miura, R. E.; Espada, D.; Nakanishi, K.; Beswick, R. J.; D'Cruze, M. J.; Dickinson, C.; Fuller, G. A.

    2017-11-01

    We use Atacama Large Millimeter/submillimeter Array (ALMA) observations of H30α (231.90 GHz) emission from the low-metallicity dwarf galaxy NGC 5253 to measure the star formation rate (SFR) within the galaxy and to test the reliability of SFRs derived from other commonly used metrics. The H30α emission, which originates mainly from the central starburst, yields a photoionizing photon production rate of (1.9 ± 0.3) × 1052 s-1 and an SFR of 0.087 ± 0.013 M⊙ yr-1 based on conversions that account for the low metallicity of the galaxy and for stellar rotation. Among the other star formation metrics we examined, the SFR calculated from the total infrared flux was statistically equivalent to the values from the H30α data. The SFR based on a previously published version of the H α flux that was extinction corrected using Paα and Paβ lines was lower than but also statistically similar to the H30α value. The mid-infrared (22 μm) flux density and the composite star formation tracer based on H α and mid-infrared emission give SFRs that were significantly higher because the dust emission appears unusually hot compared to typical spiral galaxies. Conversely, the 70 and 160 μm flux densities yielded SFRs lower than the H30α value, although the SFRs from the 70 μm and H30α data were within 1σ-2σ of each other. While further analysis on a broader range of galaxies is needed, these results are instructive of the best and worst methods to use when measuring SFR in low-metallicity dwarf galaxies like NGC 5253.

  19. Indoor aldehydes concentration and emission rate of formaldehyde in libraries and private reading rooms

    NASA Astrophysics Data System (ADS)

    Kim, Jeonghoon; Kim, Seojin; Lee, Kiyoung; Yoon, Dongwon; Lee, Jiryang; Ju, DaeYoung

    2013-06-01

    Aldehydes are of particularly interest due to their potential adverse impact on human health. Formaldehyde is one of the most abundant indoor pollutants. To improve indoor air quality, identifying and removing the major emission sources of formaldehyde would be desirable. The purposes of this study were to determine aldehyde concentrations in libraries and reading rooms and to identify emission sources of formaldehyde in private reading rooms. Indoor aldehyde concentrations were quantified at 66 facilities, including public libraries, children's libraries, public reading rooms, and private reading rooms, in the Seoul metropolitan area. Emission fluxes of formaldehyde from the surfaces of desks, chairs, floors, walls, and ceilings in 19 private reading rooms were measured using a passive emission colorimetric sensor. Indoor aldehyde (formaldehyde, acetaldehyde, propioaldehyde, benzaldehyde, and hexaldehyde) levels were significantly higher than outdoor levels. Indoor formaldehyde geometric mean concentrations in private reading rooms (119.3 μg m-3) were significantly higher than in public libraries (29.2 μg m-3), children's libraries (29.3 μg m-3), and public reading rooms (40.8 μg m-3). Indoor formaldehyde levels were associated with relative humidity. In private reading rooms, the emission rates from desks (255.5 ± 214.8 μg h-1) and walls (231.7 ± 192.3 μg h-1) were significantly higher than that from chairs (79.6 ± 88.5 μg h-1). Desks (31%) and walls (29%) were the major emission sources of formaldehyde in 14 facilities in which measurements exceeded the indoor standard of 100 μg m-3. The age of interior materials was a significant factor for indoor formaldehyde emission flux. Controlling the emission rates of desks and walls is recommended to improve formaldehyde concentrations in private reading rooms.

  20. Satellite Boreal Measurements over Alaska and Canada During June-July 2004: Simultaneous Measurements of Upper Tropospheric CO, C2H6, HCN, CH3Cl, CH4, C2H2, CH2OH, HCOOH, OCS, and SF6 Mixing Ratios

    NASA Technical Reports Server (NTRS)

    Rinsland, Curtis P.; Dufour, Gaelle; Boone, Chris D.; Bernath, Peter F.; Chiou, Linda; Coheur, Pierre-Francois; Turquety, Solene; Clerbaux, Cathy

    2007-01-01

    Simultaneous ACE (Atmospheric Chemistry Experiment) upper tropospheric CO, C2H6, HCN, CH3Cl, CH4 , C2H2 , CH30H, HCOOH, and OCS measurements show plumes up to 185 ppbv (10 (exp -9) per unit volume) for CO, 1.36 ppbv for C2H6, 755 pptv (10(exp -12) per unit volume) for HCN, 1.12 ppbv for CH3C1, 1.82 ppmv, (10(exp -6) per unit volume) for CH4, 0.178 ppbv for C2H2, 3.89 ppbv for CH30H, 0.843 ppbv for HCOOH, and 0.48 ppbv for OCS in western Canada and Alaska at 50 deg N-68 deg N latitude between 29 June and 23 July 2004. Enhancement ratios and emission factors for HCOOH, CH30H, HCN, C2H6, and OCS relative to CO at 250-350 hPa are inferred from measurements of young plumes compared with lower mixing ratios assumed to represent background conditions based on a CO emission factor derived from boreal measurements. Results are generally consistent with the limited data reported for various vegetative types and emission phases measured in extratropical forests including boreal forests. The low correlation between fire product emission mixing ratios and the S176 mixing ratio is consistent with no significant SF6 emissions from the biomass fires.

  1. Little evidence for significant increases of methane emissions from oil and gas operations in the U.S.

    NASA Astrophysics Data System (ADS)

    Lan, X.; Tans, P. P.; Sweeney, C.; Andrews, A. E.; Dlugokencky, E. J.; Lang, P. M.; Crotwell, M.; Miller, B.; Kofler, J.; Newberger, T.; McKain, K.; Wolter, S.; Montzka, S. A.

    2016-12-01

    Recent studies on whether methane (CH4) emissions from oil and natural gas (ONG) operations in the U.S. have increased are still inconclusive. To provide observational evidence we carefully analyzed the in-situ CH4 measurements from the NOAA/ESRL Global Greenhouse Gas Reference Network (GGGRN) for the best estimates of CH4 trends for 2006-2016. Methane data from more than 20 surface and aircraft sites across the U.S. were included in this study. Variations of sampling frequencies in different seasons were taken into account for accurate trend detection. Correlations among measurements within short sampling intervals were also considered for uncertainty estimates. We found that most of our sites had similar CH4 trends of 6 ppb/yr, which was comparable with the recent global background CH4 trend. Substantially higher growth rates were found at the Southern Great Plain site in Oklahoma (SGP, downwind of the Eagle Ford, Barnett Shale and Woodford ONG fields) and the Dahlen sites in North Dakota (DND, downwind of the Bakken ONG field), which indicated influences from regional ONG activities. Ethane (C2H6) measurements from SGP (C2H6 measurements were not available from DND) and propane (C3H8) measurements from both SPG and DND exhibited significant increasing trends, while trends at other sites were either non-significant (trend < 2*S.D.) or only marginally significant. Linear correlations were well identified for surface C3H8 and CH4 enhancements at these two sites, relative to observations at higher altitudes. However, by applying the observed enhancement ratios of surface C3H8 /CH4 and the C3H8 trends (as indicator for ONG emissions) on CH4 trend estimates, we would infer much larger surface CH4 trends than what we actually observed at these two sites. This discrepancy suggests that using enhancement ratios of C3H8 /CH4 is not likely a reliable approach to compute CH4 emission trends.

  2. Prodigious emission rates and magma degassing budget of major, trace and radioactive volatile species from Ambrym basaltic volcano, Vanuatu island Arc

    NASA Astrophysics Data System (ADS)

    Allard, P.; Aiuppa, A.; Bani, P.; Métrich, N.; Bertagnini, A.; Gauthier, P.-J.; Shinohara, H.; Sawyer, G.; Parello, F.; Bagnato, E.; Pelletier, B.; Garaebiti, E.

    2016-08-01

    Ambrym volcano, in the Vanuatu arc, is one of the most active volcanoes of the Southwest Pacific region, where persistent lava lake and/or Strombolian activity sustains voluminous gas plume emissions. Here we report on the first comprehensive budget for the discharge of major, minor, trace and radioactive volatile species from Ambrym volcano, as well as the first data for volatiles dissolved in its basaltic magma (olivine-hosted melt inclusions). In situ MultiGAS analysis of H2O, CO2, SO2 and H2S in crater rim emissions, coupled with filter-pack determination of SO2, halogens, stable and radioactive metals demonstrates a common magmatic source for volcanic gases emitted by its two main active craters, Benbow and Marum. These share a high water content ( 93 mol%), similar S/Cl, Cl/F, Br/Cl molar ratios, similar (210Po/210Pb) and (210Bi/210Pb) activity ratios, as well as comparable proportions in most trace metals. Their difference in CO2/SO2 ratio (1.0 and 5.6-3.0, respectively) is attributed to deeper gas-melt separation at Marum (Strombolian explosions) than Benbow (lava lake degassing) during our measurements in 2007. Airborne UV sensing of the SO2 plume flux (90 kg s- 1 or 7800 tons d- 1) demonstrates a prevalent degassing contribution ( 65%) of Benbow crater in that period and allows us to quantify the total volatile fluxes during medium-level eruptive activity of the volcano. Results reveal that Ambrym ranks among the most powerful volcanic gas emitters on Earth, producing between 5% and 9% of current estimates for global subaerial volcanic emissions of H2O, CO2, HCl, Cu, Cr, Cd, Au, Cs and Tl, between 10% and 17% of SO2, HF, HBr, Hg, 210Po and 210Pb, and over 30% of Ag, Se and Sn. Global flux estimates thus need to integrate its contribution and be revised accordingly. Prodigious gas emission from Ambrym does not result from an anomalous volatile enrichment nor a differential excess degassing of its feeding basalt: this latter contains relatively modest

  3. A Study on the Corrosion Behavior of Carbon Steel Exposed to a H2S-Containing NH4Cl Medium

    NASA Astrophysics Data System (ADS)

    Wang, Hai-bo; Li, Yun; Cheng, Guang-xu; Wu, Wei; Zhang, Yao-heng

    2018-05-01

    NH4Cl corrosion failure often occurs in the overhead systems of hydrotreaters, and this failure is always accompanied by the appearance of H2S. A combination of electrochemical and surface spectroscopic (SEM/EDS, AFM, XRD) techniques was used to investigate the effect of different factors, including the surface roughness, temperature, dissolved oxygen, pH and H2S concentration, on the corrosion behavior of carbon steel in an NH4Cl environment with the presence of H2S. The effect of H2S concentrations (at the ppm level) on the corrosion behavior of carbon steel was systematically revealed. The experimental results clearly indicated that the corrosion rate reached a minimum value at 10 ppm H2S. The steel surface was covered by a uniform corrosion product film in a 10 ppm H2S environment, and the corrosion product film was tight and protective. The ammonia from NH4Cl helped maintaining the protectiveness of the corrosion films in this environment. Dissolved oxygen mainly accelerated the cathodic reaction. The cathodic limiting current density increased with increasing temperature, and the anodic branch polarization curves were similar at different temperatures. The anodic current density decreased as the pH decreased, and the cathodic current density increased as the pH decreased. The absolute surface roughness ( R a) of carbon steel increased from 132.856 nm at 72 h to 153.973 nm at 144 h, and the rougher surface resulted in a higher corrosion rate. The critical innovation in this research was that multiple influential factors were revealed in the NH4Cl environment with the presence of H2S.

  4. A Study on the Corrosion Behavior of Carbon Steel Exposed to a H2S-Containing NH4Cl Medium

    NASA Astrophysics Data System (ADS)

    Wang, Hai-bo; Li, Yun; Cheng, Guang-xu; Wu, Wei; Zhang, Yao-heng

    2018-04-01

    NH4Cl corrosion failure often occurs in the overhead systems of hydrotreaters, and this failure is always accompanied by the appearance of H2S. A combination of electrochemical and surface spectroscopic (SEM/EDS, AFM, XRD) techniques was used to investigate the effect of different factors, including the surface roughness, temperature, dissolved oxygen, pH and H2S concentration, on the corrosion behavior of carbon steel in an NH4Cl environment with the presence of H2S. The effect of H2S concentrations (at the ppm level) on the corrosion behavior of carbon steel was systematically revealed. The experimental results clearly indicated that the corrosion rate reached a minimum value at 10 ppm H2S. The steel surface was covered by a uniform corrosion product film in a 10 ppm H2S environment, and the corrosion product film was tight and protective. The ammonia from NH4Cl helped maintaining the protectiveness of the corrosion films in this environment. Dissolved oxygen mainly accelerated the cathodic reaction. The cathodic limiting current density increased with increasing temperature, and the anodic branch polarization curves were similar at different temperatures. The anodic current density decreased as the pH decreased, and the cathodic current density increased as the pH decreased. The absolute surface roughness (R a) of carbon steel increased from 132.856 nm at 72 h to 153.973 nm at 144 h, and the rougher surface resulted in a higher corrosion rate. The critical innovation in this research was that multiple influential factors were revealed in the NH4Cl environment with the presence of H2S.

  5. Emissions of particulate matter from animal houses in the Netherlands

    NASA Astrophysics Data System (ADS)

    Winkel, Albert; Mosquera, Julio; Groot Koerkamp, Peter W. G.; Ogink, Nico W. M.; Aarnink, André J. A.

    2015-06-01

    In the Netherlands, emissions from animal houses represent a major source of ambient particulate matter (PM). The objective of the present paper was to provide accurate and up to date concentrations and emission rates of PM10 and PM2.5 for commonly used animal housing systems, under representative inside and outside climate conditions and ventilation rates. We set up a national survey which covered 13 housing systems for poultry, pigs, and dairy cattle, and included 36 farms. In total, 202 24-h measurements were carried out, which included concentrations of inhalable PM, PM10, PM2.5, and CO2, ventilation rate, temperature, and relative humidity. On an animal basis, geometric mean emission rates of PM10 ranged from 2.2 to 12.0 mg h-1 in poultry and from 7.3 to 22.5 mg h-1 in pigs. The mean PM10 emission rate in dairy cattle was 8.5 mg h-1. Geometric mean emission rates of PM2.5 ranged from 0.11 to 2.41 mg h-1 in poultry and from 0.21 to 1.56 mg h-1 in pigs. The mean PM2.5 emission rate in dairy cattle was 1.65 mg h-1. Emissions are also reported per Livestock Unit and Heat Production Unit. PM emission rates increased exponentially with increasing age in broilers and turkeys and increased linearly with increasing age in weaners and fatteners. In laying hens, broiler breeders, sows, and dairy cattle, emission levels were variable throughout the year.

  6. Resolving shocked and UV excited components of H2 emission in planetary nebulae with high-resolution near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Kaplan, Kyle; Dinerstein, Harriet L.; Jaffe, Daniel Thomas

    2016-06-01

    Planetary nebulae (PNe) form when low and intermediate-mass stars eject their outer layers into the ISM at the end of the AGB phase. Many PNe exhibit near-infrared (NIR) emission from molecular hydrogen (H2). This NIR emission arises from radiative decay out of excited rotation-vibration (rovibrational) states. The rovibrational states can be populated by excitation to higher electronic states through absorption of a far-UV photon followed by a radiative cascade to the electronic ground state, or by collisions (e.g., in a hot gas). The two processes populate the rovibrational levels of H2 differently, so the observed emergent emission spectrum provides an effective probe of the mechanisms that excite the H2. Many PNe display line intensity ratios that are intermediate between these two processes (Otsuka et al. 2013). With the advantages of the high spectral resolution (R~40000), broad wavelength coverage (1.45-2.45 μm), and high spatial resolution of the Immersion GRating Infrared Spectrometer (IGRINS, Park et al. 2014), we are able to differentiate components in position-velocity space: we see a slowly expanding UV-excited H2 shell in the PN M 1-11 and two faster moving “bullets” of thermalized H2 that we interpret as shocked gas from a bipolar outflow. We also present observations of several other PNe that exhibit similar morphologies of thermalized and UV-excited H2 components.

  7. [CII] observations of H2 molecular layers in transition clouds

    NASA Astrophysics Data System (ADS)

    Velusamy, T.; Langer, W. D.; Pineda, J. L.; Goldsmith, P. F.; Li, D.; Yorke, H. W.

    2010-10-01

    We present the first results on the diffuse transition clouds observed in [CII] line emission at 158 μm (1.9 THz) towards Galactic longitudes near 340° (5 LOSs) & 20° (11 LOSs) as part of the HIFI tests and GOT C+ survey. Out of the total 146 [CII] velocity components detected by profile fitting we identify 53 as diffuse molecular clouds with associated 12CO emission but without 13CO emission and characterized by AV < 5 mag. We estimate the fraction of the [CII] emission in the diffuse HI layer in each cloud and then determine the [CII] emitted from the molecular layers in the cloud. We show that the excess [CII] intensities detected in a few clouds is indicative of a thick H2 layer around the CO core. The wide range of clouds in our sample with thin to thick H2 layers suggests that these are at various evolutionary states characterized by the formation of H2 and CO layers from HI and C+, respectively. In about 30% of the clouds the H2 column densities (“dark gas”) traced by the [CII] is 50% or more than that traced by 12CO emission. On the average ~25% of the total H2 in these clouds is in an H2 layer which is not traced by CO. We use the HI, [CII], and 12CO intensities in each cloud along with simple chemical models to obtain constraints on the FUV fields and cosmic ray ionization rates. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  8. 26 CFR 1.430(h)(2)-1 - Interest rates used to determine present value.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... 1.430(h)(2)-1 Section 1.430(h)(2)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Certain Stock Options § 1.430(h)(2)-1 Interest... to the interest rates to be applied for a plan year under section 430(h)(2). Section 430(h)(2) and...

  9. PDR MODEL MAPPING OF OBSCURED H{sub 2} EMISSION AND THE LINE-OF-SIGHT STRUCTURE OF M17-SW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheffer, Y.; Wolfire, M. G.

    2013-09-01

    We observed H{sub 2} line emission with Spitzer-IRS toward M17-SW and modeled the data with our photon-dominated region (PDR) code. Derived gas density values of up to few times 10{sup 7} cm{sup -3} indicate that H{sub 2} emission originates in high-density clumps. We discover that the PDR code can be utilized to map the amount of intervening extinction obscuring the H{sub 2} emission layers, and thus we obtain the radial profile of A{sub V} relative to the central ionizing cluster NGC 6618. The extinction has a positive radial gradient, varying between 15-47 mag over the projected distance of 0.9-2.5 pcmore » from the primary ionizer, CEN 1. These high extinction values are in good agreement with previous studies of A{sub V} toward stellar targets in M17-SW. The ratio of data to PDR model values is used to infer the global line-of-sight structure of the PDR surface, which is revealed to resemble a concave surface relative to NGC 6618. Such a configuration confirms that this PDR can be described as a bowl-shaped boundary of the central H II region in M17. The derived structure and physical conditions are important for interpreting the fine-structure and rotational line emission from the PDR.« less

  10. Cold cathode emission studies on topographically modified few layer and single layer MoS2 films

    NASA Astrophysics Data System (ADS)

    Gaur, Anand P. S.; Sahoo, Satyaprakash; Mendoza, Frank; Rivera, Adriana M.; Kumar, Mohit; Dash, Saroj P.; Morell, Gerardo; Katiyar, Ram S.

    2016-01-01

    Nanostructured materials, such as carbon nanotubes, are excellent cold cathode emitters. Here, we report comparative field emission (FE) studies on topographically tailored few layer MoS2 films consisting of ⟨0001⟩ plane perpendicular (⊥) to c-axis (i.e., edge terminated vertically aligned) along with planar few layer and monolayer (1L) MoS2 films. FE measurements exhibited lower turn-on field Eto (defined as required applied electric field to emit current density of 10 μA/cm2) ˜4.5 V/μm and higher current density ˜1 mA/cm2, for edge terminated vertically aligned (ETVA) MoS2 films. However, Eto magnitude for planar few layer and 1L MoS2 films increased further to 5.7 and 11 V/μm, respectively, with one order decrease in emission current density. The observed differences in emission behavior, particularly for ETVA MoS2 is attributed to the high value of geometrical field enhancement factor (β), found to be ˜1064, resulting from the large confinement of localized electric field at edge exposed nanograins. Emission behavior of planar few layers and 1L MoS2 films are explained under a two step emission mechanism. Our studies suggest that with further tailoring the microstructure of ultra thin ETVA MoS2 films would result in elegant FE properties.

  11. H.E.S.S. discovery of VHE γ-rays from the quasar PKS 1510-089

    NASA Astrophysics Data System (ADS)

    H.E.S.S. Collaboration; Abramowski, A.; Acero, F.; Aharonian, F.; Akhperjanian, A. G.; Anton, G.; Balenderan, S.; Balzer, A.; Barnacka, A.; Becherini, Y.; Becker Tjus, J.; Behera, B.; Bernlöhr, K.; Birsin, E.; Biteau, J.; Bochow, A.; Boisson, C.; Bolmont, J.; Bordas, P.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Carrigan, S.; Casanova, S.; Cerruti, M.; Chadwick, P. M.; Chaves, R. C. G.; Cheesebrough, A.; Colafrancesco, S.; Cologna, G.; Conrad, J.; Couturier, C.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; deWilt, P.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; O'C. Drury, L.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Egberts, K.; Eger, P.; Espigat, P.; Fallon, L.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Gast, H.; Giebels, B.; Glicenstein, J. F.; Glück, B.; Göring, D.; Grondin, M.-H.; Grudzińska, M.; Häffner, S.; Hague, J. D.; Hahn, J.; Hampf, D.; Harris, J.; Hauser, M.; Heinz, S.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Jacholkowska, A.; Jahn, C.; Jamrozy, M.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Khélifi, B.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Kossakowski, R.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lefaucheur, J.; Lemoine-Goumard, M.; Lenain, J.-P.; Lennarz, D.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Masbou, J.; Maurin, G.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Medina, M. C.; Méhault, J.; Menzler, U.; Moderski, R.; Mohamed, M.; Moulin, E.; Naumann, C. L.; Naumann-Godo, M.; de Naurois, M.; Nedbal, D.; Nguyen, N.; Niemiec, J.; Nolan, S. J.; Ohm, S.; de Oña Wilhelmi, E.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perez, J.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Raue, M.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Ripken, J.; Rob, L.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sheidaei, F.; Skilton, J. L.; Sol, H.; Spengler, G.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Szostek, A.; Tavernet, J.-P.; Terrier, R.; Tluczykont, M.; Trichard, C.; Valerius, K.; van Eldik, C.; Vasileiadis, G.; Venter, C.; Viana, A.; Vincent, P.; Völk, H. J.; Volpe, F.; Vorobiov, S.; Vorster, M.; Wagner, S. J.; Ward, M.; White, R.; Wierzcholska, A.; Wouters, D.; Zacharias, M.; Zajczyk, A.; Zdziarski, A. A.; Zech, A.; Zechlin, H. S.

    2013-06-01

    The quasar PKS 1510-089 (z = 0.361) was observed with the H.E.S.S. array of imaging atmospheric Cherenkov telescopes during high states in the optical and GeV bands, to search for very high energy (VHE, defined as E ≥ 0.1 TeV) emission. VHE γ-rays were detected with a statistical significance of 9.2 standard deviations in 15.8 h of H.E.S.S. data taken during March and April 2009. A VHE integral flux of I(0.15 TeV < E < 1.0 TeV)= (1.0 ± 0.2stat ± 0.2sys) × 10-11 cm-2 s-1 is measured. The best-fit power law to the VHE data has a photon index of Γ = 5.4 ± 0.7stat ± 0.3sys. The GeV and optical light curves show pronounced variability during the period of H.E.S.S. observations. However, there is insufficient evidence to claim statistically significant variability in the VHE data. Because of its relatively high redshift, the VHE flux from PKS 1510-089 should suffer considerable attenuation in the intergalactic space due to the extragalactic background light (EBL). Hence, the measured γ-ray spectrum is used to derive upper limits on the opacity due to EBL, which are found to be comparable with the previously derived limits from relatively-nearby BL Lac objects. Unlike typical VHE-detected blazars where the broadband spectrum is dominated by nonthermal radiation at all wavelengths, the quasar PKS 1510-089 has a bright thermal component in the optical to UV frequency band. Among all VHE detected blazars, PKS 1510-089 has the most luminous broad line region. The detection of VHE emission from this quasar indicates a low level of γ - γ absorption on the internal optical to UV photon field.

  12. Extended analysis of the 5g. -->. 4f emissions in H/sub 2/

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, E.S.; Pulchtopek, S.; Eyler, E.E.

    1984-01-15

    An analysis starting from Hund's case d has been used to extend the work of Herzberg and Jungen on the 5g..-->..4f emissions in H/sub 2/. A simple analytical expression for the line intensities is presented that agrees with their calculations is about 1%. All of the experimentally observed lines have been accounted for by including higher vibrational levels in our calculations.

  13. Fabrication of 2D SnS2/g-C3N4 heterojunction with enhanced H2 evolution during photocatalytic water splitting.

    PubMed

    Liu, Enzhou; Chen, Jibing; Ma, Yongning; Feng, Juan; Jia, Jia; Fan, Jun; Hu, Xiaoyun

    2018-08-15

    In this work, the 2D SnS 2 /g-C 3 N 4 heterojunctions were successfully prepared by heating the homogeneous dispersion of SnS 2 nanosheets and g-C 3 N 4 nanosheets using a microwave muffle. SEM, TEM and HRTEM images indicated that the SnS 2 nanosheets were loaded on the surface of the g-C 3 N 4 nanosheets. The UV-vis spectra show that the absorption intensity of the as-prepared samples was increased and the absorption range was also extended from 420 nm to approximately 600 nm. The H 2 production rate over 5 wt% SnS 2 /g-C 3 N 4 can reach 972.6 μmol·h -1 ·g -1 under visible light irradiation (λ > 420 nm) using TEOA as the sacrifice agent and Pt as the electron trap, which is 2.9 and 25.6 times higher than those of the pristine g-C 3 N 4 and SnS 2 , respectively. According to the obtained PL spectra, photocurrent and EIS spectra, the enhanced performance for H 2 generation over the heterojunctions is primarily ascribed to the rapid charge transfer arising from the suitable band gap positions leading to an improved photocatalytic performance. The recycling experiments indicated that the as-prepared composites exhibit good stability in H 2 production. Additionally, a possible enhanced mechanism for H 2 evolution was deduced based on the results obtained by various characterization techniques. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Comparison of biological H2S removal characteristics between a composite packing material with and without functional microorganisms

    NASA Astrophysics Data System (ADS)

    Zhu, Rencheng; Li, Shunyi; Bao, Xiaofeng; Dumont, Éric

    2017-02-01

    The performances of two identical biofilters, filled with a new composite packing material (named CM-5) embedded with functional microorganisms or sterilized CM-5 without microorganisms, were investigated for H2S treatment. Running parameters in terms of microbial counts, pressure drops, and inlet and outlet H2S concentrations were measured. The results show that the microbial count of the CM-5 was approximately ×105 CFU/g before being filled into the biofilter, while that of the sterilized CM-5 was negligible. The functional microorganisms embedded in CM-5 adapted to the environment containing H2S quickly. In most cases, pressure drops of the CM-5 biofilter were slightly higher than those of the sterilized CM-5 biofilter when the gas flow rate was 0.6-2.5 m3/h. The maximum elimination capacity (EC) of the CM-5 biofilter in treating H2S could reach up to 65 g/(m3·h) when the loading rate (LR) was approximately 80 g/(m3·h). If the LR was much higher, the measured EC showed a slight downward trend. The experimental ECs of biofilters were fitted by two typical dynamic models: the Michaelis-Menten model and the Haldane model. Compared with the Michaelis-Menten model, the Haldane model fit the experimental ECs better for the two biofilters because of the presence of the substrate inhibition behaviour.

  15. Comparison of biological H2S removal characteristics between a composite packing material with and without functional microorganisms

    PubMed Central

    Zhu, Rencheng; Li, Shunyi; Bao, Xiaofeng; Dumont, Éric

    2017-01-01

    The performances of two identical biofilters, filled with a new composite packing material (named CM-5) embedded with functional microorganisms or sterilized CM-5 without microorganisms, were investigated for H2S treatment. Running parameters in terms of microbial counts, pressure drops, and inlet and outlet H2S concentrations were measured. The results show that the microbial count of the CM-5 was approximately ×105 CFU/g before being filled into the biofilter, while that of the sterilized CM-5 was negligible. The functional microorganisms embedded in CM-5 adapted to the environment containing H2S quickly. In most cases, pressure drops of the CM-5 biofilter were slightly higher than those of the sterilized CM-5 biofilter when the gas flow rate was 0.6–2.5 m3/h. The maximum elimination capacity (EC) of the CM-5 biofilter in treating H2S could reach up to 65 g/(m3·h) when the loading rate (LR) was approximately 80 g/(m3·h). If the LR was much higher, the measured EC showed a slight downward trend. The experimental ECs of biofilters were fitted by two typical dynamic models: the Michaelis-Menten model and the Haldane model. Compared with the Michaelis-Menten model, the Haldane model fit the experimental ECs better for the two biofilters because of the presence of the substrate inhibition behaviour. PMID:28198800

  16. Effect of heat treatment on ethylene and CO2 emissions rates during papaya (Carica papaya L.) fruit ripening

    NASA Astrophysics Data System (ADS)

    da Silva, M. G.; Santos, E. O.; Sthel, M. S.; Cardoso, S. L.; Cavalli, A.; Monteiro, A. R.; de Oliveira, J. G.; Pereira, M. G.; Vargas, H.

    2003-01-01

    Ripening studies of nontreated and treated papaya (papaya L) are accomplished by monitoring the ethylene and CO2 emission rates of that climacteric fruit, to evaluate its shelf life. The treatments simulate the commercial Phitosanitarian process used to avoid the fly infestation. Ethylene emission was measured using a commercial CO2 laser driven photoacoustic setup and CO2, using a commercial gas analysis also based on the photothermal effect. The results show a marked change in ethylene and CO2 emission rate pattern for treated fruits when compared to the ones obtained for nontreated fruits and a displacement of the climacteric pick shown that the treatment causes a decrease of shelf life of fruit.

  17. Modeling global annual N2O and NO emissions from fertilized fields

    NASA Astrophysics Data System (ADS)

    Bouwman, A. F.; Boumans, L. J. M.; Batjes, N. H.

    2002-12-01

    Information from 846 N2O emission measurements in agricultural fields and 99 measurements for NO emissions was used to describe the influence of various factors regulating emissions from mineral soils in models for calculating global N2O and NO emissions. Only those factors having a significant influence on N2O and NO emissions were included in the models. For N2O these were (1) environmental factors (climate, soil organic C content, soil texture, drainage and soil pH); (2) management-related factors (N application rate per fertilizer type, type of crop, with major differences between grass, legumes and other annual crops); and (3) factors related to the measurements (length of measurement period and frequency of measurements). The most important controls on NO emission include the N application rate per fertilizer type, soil organic-C content and soil drainage. Calculated global annual N2O-N and NO-N emissions from fertilized agricultural fields amount to 2.8 and 1.6 Mtonne, respectively. The global mean fertilizer-induced emissions for N2O and NO amount to 0.9% and 0.7%, respectively, of the N applied. These overall results account for the spatial variability of the main N2O and NO emission controls on the landscape scale.

  18. Metallic 1T-LixMoS2 Cocatalyst Significantly Enhanced the Photocatalytic H2 Evolution over Cd0.5Zn0.5S Nanocrystals under Visible Light Irradiation.

    PubMed

    Du, Hong; Guo, Hong-Li; Liu, Ya-Nan; Xie, Xiao; Liang, Kuang; Zhou, Xiao; Wang, Xin; Xu, An-Wu

    2016-02-17

    In the present work, metallic 1T-LixMoS2 is utilized as a novel cocatalyst for Cd0.5Zn0.5S photocatalyst. The obtained LixMoS2/Cd0.5Zn0.5S hybrids show excellent photocatalytic performance for H2 generation from aqueous solution containing Na2S and Na2SO3 under splitting visible light illumination (λ ≥ 420 nm) without precious metal cocatalysts. It turns out that a certain amount of intercalating Li(+) ions ultimately drives the transition of MoS2 crystal from semiconductor triagonal phase (2H phase) to metallic phase (1T phase). The distinct properties of 1T-LixMoS2 promote the efficient separation of photoexcited electrons and holes when used as cocatalyst for Cd0.5Zn0.5S photocatalyst. As compared to 2H-MoS2 nanosheets only having edge active sites, photoinduced electrons not only transfer to the edge sites of 1T-LixMoS2, but also to the plane active sites of 1T-LixMoS2 nanosheets. The content of LixMoS2 in hybrid photocatalysts influences the photocatalytic activity. The optimal 1T-LixMoS2 (1.0 wt %)/Cd0.5Zn0.5S nanojunctions display the best activity for hydrogen production, achieving a hydrogen evolution rate of 769.9 μmol h(-1), with no use of noble metal loading, which is about 3.5 times higher than that of sole Cd0.5Zn0.5S, and 2 times higher than that of 2H-MoS2 (1.0 wt %)/Cd0.5Zn0.5S samples. Our results demonstrate that Li(+)-intercalated MoS2 nanosheets with high conductivity, high densities of active sites, low cost, and environmental friendliness are a prominent H2 evolution cocatalyst that might substitute for noble metal for potential hydrogen energy applications.

  19. Deeper H.E.S.S. observations of Vela Junior (RX J0852.0-4622): Morphology studies and resolved spectroscopy

    NASA Astrophysics Data System (ADS)

    H.E.S.S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Angüner, E. O.; Arakawa, M.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chrétien, M.; Coffaro, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Cui, Y.; Davids, I. D.; Decock, J.; Degrange, B.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O.'C.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Kerszberg, D.; Khangulyan, D.; Khélifi, B.; Kieffer, M.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Krakau, S.; Kraus, M.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Öttl, S.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Richter, S.; Rieger, F.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Saito, S.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stycz, K.; Sushch, I.; Takahashi, T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.

    2018-04-01

    Aims: We study γ-ray emission from the shell-type supernova remnant (SNR) RX J0852.0-4622 to better characterize its spectral properties and its distribution over the SNR. Methods: The analysis of an extended High Energy Spectroscopic System (H.E.S.S.) data set at very high energies (E > 100 GeV) permits detailed studies, as well as spatially resolved spectroscopy, of the morphology and spectrum of the whole RX J0852.0-4622 region. The H.E.S.S. data are combined with archival data from other wavebands and interpreted in the framework of leptonic and hadronic models. The joint Fermi-LAT-H.E.S.S. spectrum allows the direct determination of the spectral characteristics of the parent particle population in leptonic and hadronic scenarios using only GeV-TeV data. Results: An updated analysis of the H.E.S.S. data shows that the spectrum of the entire SNR connects smoothly to the high-energy spectrum measured by Fermi-LAT. The increased data set makes it possible to demonstrate that the H.E.S.S. spectrum deviates significantly from a power law and is well described by both a curved power law and a power law with an exponential cutoff at an energy of Ecut = (6.7 ± 1.2stat ± 1.2syst) TeV. The joint Fermi-LAT-H.E.S.S. spectrum allows the unambiguous identification of the spectral shape as a power law with an exponential cutoff. No significant evidence is found for a variation of the spectral parameters across the SNR, suggesting similar conditions of particle acceleration across the remnant. A simple modeling using one particle population to model the SNR emission demonstrates that both leptonic and hadronic emission scenarios remain plausible. It is also shown that at least a part of the shell emission is likely due to the presence of a pulsar wind nebula around PSR J0855-4644. A FITS image of the region of interest and two text files describing the H.E.S.S. spectrum of RX J0852.0-4622 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http

  20. Very high energy gamma-ray emission detected from PKS 1440-389 with H.E.S.S.

    NASA Astrophysics Data System (ADS)

    Hofmann, W.

    2012-04-01

    The BL Lac object PKS 1440-389, located at a tentative redshift of z=0.065 (6dF Galaxy Survey, Jones, D.H. et al. MNRAS 355, 747-763, 2004), has been reported as a hard (G=1.75+/-0.05), bright, and steady extragalactic source at GeV energies in the Fermi-LAT catalogue (2FGL J1443.9-3908, P.L. Nolan et al., 2012, ApJS, 199, 31). The extrapolation of the Fermi-LAT spectrum to very high energies (VHE; E> 100 GeV), together with its brightness in the radio and X-ray bands, makes this BL Lac object a good candidate for VHE emission.

  1. State Budgets, Unit Allocations, and Unit Emissions Rates

    EPA Pesticide Factsheets

    This Technical Support Document (TSD) provides information that supports EPA’s determination of state emissions budgets, unit-level allocations, direct control rate limits, and new unit set-asides for the Transport Rule proposal.

  2. Effect of simulated coal-derived gas composition on H{sub 2}S poisoning behavior evaluated using a disaggregation scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, T.S.; Miao, H.; Chen, T.

    2009-07-01

    H{sub 2}S poisoning is an important issue for solid oxide fuel cells (SOFCs) operated with syngas. The effect of simulated coal-derived gas composition on H{sub 2}S poisoning behavior was evaluated using a disaggregation scheme where the influence of H{sub 2} content was determined separately using a typical anode-supported SOFC operated with a N2/H{sub 2} mixture gas, while the effect of other compositions (CO, CO{sub 2}, and H{sub 2}O) was investigated with simulated coal-derived gas having constant H{sub 2} and CO flow rates balanced by a H{sub 2}/N2 mixture gas (83% H{sub 2} and 17% N2). The results indicated that themore » extent of H{sub 2}S poisoning was not pertinent to H{sub 2} content when the cell was tested galvanostatically with a current density of 0.3 A/cm{sup 2} at 800{sup o}C using a N2/H{sub 2} mixture gas containing 10 ppm H{sub 2}S, and the H{sub 2}S poisoning impact can be completely removed by switching to sulfur-free gas. The CO, CO{sub 2}, and high water vapor content aggravated the H{sub 2}S poisoning effect, and the performance was almost irrecoverable when the cell was tested with a 35% H{sub 2}-46% CO-16% N2-3% H{sub 2}O mixture gas containing 12.5 ppm H{sub 2}S. However, the introduction of 10% CO{sub 2} and an increase in H{sub 2}O content from 3 to 10% in the mixture gas can promote the performance recoverability to a larger extent.« less

  3. Kinetics of the R + NO2 reactions (R = i-C3H7, n-C3H7, s-C4H9, and t-C4H9) in the temperature range 201-489 K.

    PubMed

    Rissanen, Matti P; Arppe, Suula L; Eskola, Arkke J; Tammi, Matti M; Timonen, Raimo S

    2010-04-15

    The bimolecular rate coefficients of four alkyl radical reactions with NO(2) have been measured in direct time-resolved experiments. Reactions were studied under pseudo-first-order conditions in a temperature-controlled tubular flow reactor coupled to a laser photolysis/photoionization mass spectrometer (LP-PIMS). The measured reaction rate coefficients are independent of helium bath gas pressure within the experimental ranges covered and exhibit negative temperature dependence. For i-C(3)H(7) + NO(2) and t-C(4)H(9) + NO(2) reactions, the dependence of ordinate (logarithm of reaction rate coefficients) on abscissa (1/T or log(T)) was nonlinear. The obtained results (in cm(3) s(-1)) can be expressed by the following equations: k(n-C(3)H(7) + NO(2)) = ((4.34 +/- 0.08) x 10(-11)) (T/300 K)(-0.14+/-0.08) (203-473 K, 1-7 Torr), k(i-C(3)H(7) + NO(2)) = ((3.66 +/- 2.54) x 10(-12)) exp(656 +/- 201 K/T)(T/300 K)(1.26+/-0.68) (220-489 K, 1-11 Torr), k(s-C(4)H(9) + NO(2)) = ((4.99 +/- 0.16) x 10(-11))(T/300 K)(-1.74+/-0.12) (241-485 K, 2 - 12 Torr) and k(t-C(4)H(9) + NO(2)) = ((8.64 +/- 4.61) x 10(-12)) exp(413 +/- 154 K/T)(T/300 K)(0.51+/-0.55) (201-480 K, 2-11 Torr), where the uncertainties shown refer only to the 1 standard deviations obtained from the fitting procedure. The estimated overall uncertainty in the determined bimolecular rate coefficients is about +/-20%.

  4. Direct and inverse reactions of LiH+ with He(1S) from quantum calculations: mechanisms and rates.

    PubMed

    Tacconi, M; Bovino, S; Gianturco, F A

    2012-01-14

    The gas-phase reaction of LiH(+) (X(2)Σ) with He((1)S) atoms, yielding Li(+)He with a small endothermicity for the rotovibrational ground state of the reagents, is analysed using the quantum reactive approach that employs the Negative Imaginary Potential (NIP) scheme discussed earlier in the literature. The dependence of low-T rates on the initial vibrational state of LiH(+) is analysed and the role of low-energy Feshbach resonances is also discussed. The inverse destruction reaction of LiHe(+), a markedly exothermic process, is also investigated and the rates are computed in the same range of temperatures. The possible roles of these reactions in early universe astrophysical networks, in He droplets environments or in cold traps are briefly discussed.

  5. Polycyclic aromatic hydrocarbons (PAHs) skin permeation rates change with simultaneous exposures to solar ultraviolet radiation (UV-S).

    PubMed

    Hopf, Nancy B; Spring, Philipp; Hirt-Burri, Nathalie; Jimenez, Silvia; Sutter, Benjamin; Vernez, David; Berthet, Aurelie

    2018-05-01

    Road construction workers are simultaneously exposed to two carcinogens; solar ultraviolet (UV-S) radiation and polycyclic aromatic hydrocarbons (PAHs) in bitumen emissions. The combined exposure may lead to photogenotoxicity and enhanced PAH skin permeation rates. Skin permeation rates (J) for selected PAHs in a mixture (PAH-mix) or in bitumen fume condensate (BFC) with and without UV-S co-exposures were measured with in vitro flow-through diffusion cells mounted with human viable skin and results compared. Possible biomarkers were explored. Js were greater with UV-S for naphthalene, anthracene, and pyrene in BFC (0.08-0.1 ng/cm 2 /h) compared to without (0.02-0.26 ng/cm 2 /h). This was true for anthracene, pyrene, and chrysene in the PAH-mix. Naphthalene and benzo(a)pyrene (BaP) in the PAH-mix had greater Js without (0.97-13.01 ng/cm 2 /h) compared to with UV-S (0.40-6.35 ng/cm 2 /h). Time until permeation (T lags ) in the PAH-mix were generally shorter compared to the BFC, and they ranged from 1 to 13 h. The vehicle matrix could potentially be the reason for this discrepancy as BFC contains additional not identified substances. Qualitative interpretation of p53 suggested a dose-response with UV-S, and somewhat with the co-exposures. MMP1, p65 and cKIT were not exploitable. Although not statistically different, PAHs permeate human viable skin faster with simultaneous exposures to UV. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Nanocrystalline ZnCO3-A novel sorbent for low-temperature removal of H2S.

    PubMed

    Balichard, Kevin; Nyikeine, Camille; Bezverkhyy, Igor

    2014-01-15

    The reactivity of a nanocrystalline ZnCO3 toward H2S (0.2vol% in N2/H2 mixture) at 140-180°C was characterized by thermal gravimetric analysis and by breakthrough curves measurements. We have found that under used conditions transformation of ZnCO3 into ZnS is complete and the rate determining step of the sulfidation is the surface reaction. Such behavior is in strike contrast with that of ZnO whose sulfidation is severely limited by diffusion. The higher reactivity of ZnCO3 in comparison with ZnO is attributed to the different microstructure of ZnS layer formed in these materials after a partial sulfidation. As in ZnO-ZnS transformation the molar volume increases (from 14.5 to 23.8cm(3)/mol), a continuous protective ZnS layer is formed hampering the access of H2S to the non reacted ZnO core. By contrast, in ZnCO3-ZnS transformation the molar volume decreases (from 27.9 to 23.8cm(3)/mol), which produces a discontinuous non-protective ZnS layer enabling a complete transformation of ZnCO3 even at 140°C. The higher reactivity of ZnCO3 results in a considerable increase of the breakthrough sulfur capacity of the carbonate in comparison with oxide. The material has therefore a good potential for being used as a disposable sorbent for H2S capture at low temperature. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Meridional Variations of C2H2 and C2H6 in Jupiter's Atmosphere from Cassini CIRS Infrared Spectra

    NASA Technical Reports Server (NTRS)

    Nixon, C. A.; Achterberg, R. K.; Conrath, B. J.; Irwin, P. G. J.; Fouchet, T.; Parrish, P. D.; Romani, P. N.; Abbas, M.; LeClair, A.; Strobel, D.

    2004-01-01

    Hydrocarbons such as acetylene (C2H2) and ethane (C2H6) are important tracers in Jupiter's atmosphere, constraining our models of the chemical and dynamical processes. However, our knowledge of the vertical and meridional variations of their abundances has remained sparse. During the flyby of the Cassini spacecraft in December 2000, the Composite Infrared Spectrometer (CIRS) instrument was used to map the spatial variation of emissions from 10-1400 cm(sup -1) (1000-7 microns). In this paper we analyze a zonally-averaged set of CIRS spectra taken at the highest (0.5 cm(sup -1)) resolution, to infer atmospheric temperatures in the stratosphere at 0.5-20 mbar via the v4 band of CH4, and in the troposphere at 150-400 mbar, via the H2 absorption at 600-800 cm(sup -1). Simultaneously, we retrieve the abundances of C2H2 and C2H6 via the v5 and vg bands respectively. Tropospheric absorption and stratospheric emission are highly anti-correlated at the CIRS resolution, introducing a non-uniqueness into the retrievals, such that vertical gradient and column abundance cannot both be found without additional constraints. Assuming profile gradients from photochemical calculations, we show that the column abundance of C2H2 decreases sharply towards the poles by a factor approximately 4, while C2H6 is unchanged in the north and increasing in the south, by a factor approximately 1.8. An explanation for the meridional trends is proposed in terms of a combination of photochemistry and dynamics. Poleward, the decreasing UV flux is predicted to decrease the abundances of C2H2 and C2H6 by factors 2.7 and 3.5 respectively at a latitude 70 deg. However, the lifetime of C2H6 in the stratosphere (5 x 10(exp 9)) is much longer than the dynamical timescale for meridional motions inferred from SL-9 debris (5 x 10(exp 8 s)), and therefore the constant or rising abundance towards high latitudes likely indicates that meridional mixing dominates over photochemical effects. For C2H2, the opposite

  8. Updating soil CO2 emission experiments to assess climate change effects and extracellular soil respiration

    NASA Astrophysics Data System (ADS)

    Vidal Vazquez, Eva; Paz Ferreiro, Jorge

    2014-05-01

    emissions from sterilized soils and their unsterilized counterparts are compared. Moreover, different pH treatments are compared to analyze how soil pH affects extracellular CO2 release. Students benefit from experimental learning. Practical courses, being either in the field or indoors are of vital importance to bring soil processes to life and to evaluate implications for environment and climate change. IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.). Cambridge University Press, Cambridge, United Kingdom, 996 pp. Maire, V., G. Alvarez, J. Colombet, A. Comby, R. Despinasse, E. Dubreucq, M. Joly, A.-C. Lehours, V. Perrier, T. Shahzad, and S. Fontaine. 2013. An unknown oxidative metabolism substantially contributes to soil CO2 emissions. Biogeochemistry, 10, 1155-1167, 2013

  9. U.S. broiler housing ammonia emissions inventory

    NASA Astrophysics Data System (ADS)

    Gates, R. S.; Casey, K. D.; Wheeler, E. F.; Xin, H.; Pescatore, A. J.

    Using recently published baseline ammonia emissions data for U.S. broiler chicken housing, we present a method of estimating their contribution to an annual ammonia budget that is different from that used by USEPA. Emission rate increases in a linear relationship with flock age from near zero at the start of the flock to a maximum at the end of the flock, 28-65 days later. Market weight of chickens raised for meat varies from "broilers" weighing about 2 kg to "roasters" weighing about 3 kg. Multiple flocks of birds are grown in a single house annually, with variable downtime to prepare the house between flocks. The method takes into account weight and number of chickens marketed. Uncertainty in baseline emissions estimates is used so that inventory estimates are provided with error estimates. The method also incorporates the condition of litter that birds are raised upon and the varying market weight of birds grown. Using 2003 USDA data on broiler production numbers, broiler housing is estimated to contribute 8.8-11.7 kT ammonia for new and built-up litter, respectively, in Kentucky and 240-324 kT ammonia for new and built-up litter, respectively, nationally. Results suggest that a 10% uncertainty in annual emission rate is expected for the market weight categories of broilers, heavy broilers, and roasters. A 27-47% reduction in annual housing emission rate is predicted if new rather than built-up litter were used for every flock. The estimating method can be adapted to other meat bird building emissions and future ammonia emission strategies, with suitable insertion of an age-dependent emission factor or slope into a predictive model equation. The method can be readily applied and is an alternative to that used by USEPA.

  10. On the Search for Mid-IR and Pure Rotational H3+ Emission in Jupiter's Northern Aurora

    NASA Astrophysics Data System (ADS)

    Trafton, Laurence M.; Miller, Steve; Lacy, John H.; Greathouse, Thomas K.

    2017-06-01

    The first identification of astronomical spectral emission from the H3+ ion was made in Jupiter’s southern auroral region in the first overtone band near 2 μm (Drossart et al. 1989; Nature 340, 539). Trafton et al. (1989; ApJ 343, L73) also detected H3+ emission from this band near each of Jupiter’s auroral poles, but without identifying it. Shortly thereafter, Maillard et al (1990; ApJ 363, L37) detected the fundamental band emission near 4 μm. In order to determine the non-LTE column abundance of H3+, which is Jupiter’s primary ionospheric coolant, we searched in 2001-2002, initially above 10 μm, for emission lines from the H3+ pure rotational and ν1 -> ν2 difference band. This was done near the northern auroral “hot spot” at System III longitude 180 deg based on predicted theoretical frequencies. The results were reported by Trafton et al. (2009; Icarus 203, 189). No pure rotational lines were detected but there were marginal detections of two metastable difference band lines. The IR-inactive ν1 levels are populated in thermal equilibrium so these difference band lines are proxies for the pure rotational lines in establishing the total H3+ column. These marginal results are consistent with a vibrational relaxation of the ν2 level by a factor of ~6, consistent with the non-LTE calculation of Melin et al. (2005; Icarus 178, 97).We report here results from subsequent observations of Jupiter’s H3+ hot spot spectrum below 10 μm, where better detectivity was expected from the lower thermal background. However, this was offset by the reduced availability of emission from known hydrocarbons, leading to acquisition and guiding difficulty, which was resolved by offsetting from a Galilean satellite. The observations were made with the TEXES high-resolution mid-IR spectrograph at the IRTF telescope on Oct 1, 6, and 8 of 2012. Of the 18 lines predicted for this wavelength regime, half avoided blending with lines apparent in Jupiter’s auroral spectrum or

  11. Ultrathin MoS2 and WS2 layers on silver nano-tips as electron emitters

    NASA Astrophysics Data System (ADS)

    Loh, Tamie A. J.; Tanemura, Masaki; Chua, Daniel H. C.

    2016-09-01

    2-dimensional (2D) inorganic analogues of graphene such as MoS2 and WS2 present interesting opportunities for field emission technology due to their high aspect ratio and good electrical conductivity. However, research on 2D MoS2 and WS2 as potential field emitters remains largely undeveloped compared to graphene. Herein, we present an approach to directly fabricate ultrathin MoS2 and WS2 onto Ag nano-tips using pulsed laser deposition at low temperatures of 450-500 °C. In addition to providing a layer of chemical and mechanical protection for the Ag nano-tips, the growth of ultrathin MoS2 and WS2 layers on Ag led to enhanced emission properties over that of pristine nano-tips due to a reduction of the effective barrier height arising from charge injection from Ag to the overlying MoS2 or WS2. For WS2 on Ag nano-tips, the phasic mixture was also an important factor influencing the field emission performance. The presence of 1T-WS2 at the metal-WS2 interface in a hybrid film of 2H/1T-WS2 leads to improvement in the field emission capabilities as compared to pure 2H-WS2 on Ag nano-tips.

  12. Investigation of the N2O emission strength in the U. S. Corn Belt

    NASA Astrophysics Data System (ADS)

    Fu, Congsheng; Lee, Xuhui; Griffis, Timothy J.; Dlugokencky, Edward J.; Andrews, Arlyn E.

    2017-09-01

    Nitrous oxide (N2O) has a high global warming potential and depletes stratospheric ozone. The U. S. Corn Belt plays an important role in the global anthropogenic N2O budget. To date, studies on local surface N2O emissions and the atmospheric N2O budget have commonly used Lagrangian models. In the present study, we used an Eulerian model - Weather Research and Forecasting Chemistry (WRF-Chem) model to investigate the relationships between N2O emissions in the Corn Belt and observed atmospheric N2O mixing ratios. We derived a simple equation to relate the emission strengths to atmospheric N2O mixing ratios, and used the derived equation and hourly atmospheric N2O measurements at the KCMP tall tower in Minnesota to constrain agricultural N2O emissions. The modeled spatial patterns of atmospheric N2O were evaluated against discrete observations at multiple tall towers in the NOAA flask network. After optimization of the surface flux, the model reproduced reasonably well the hourly N2O mixing ratios monitored at the KCMP tower. Agricultural N2O emissions in the EDGAR42 database needed to be scaled up by 19.0 to 28.1 fold to represent the true emissions in the Corn Belt for June 1-20, 2010 - a peak emission period. Optimized mean N2O emissions were 3.00-4.38, 1.52-2.08, 0.61-0.81 and 0.56-0.75 nmol m- 2 s- 1 for June 1-20, August 1-20, October 1-20 and December 1-20, 2010, respectively. The simulated spatial patterns of atmospheric N2O mixing ratios after optimization were in good agreement with the NOAA discrete observations during the strong emission peak in June. Such spatial patterns suggest that the underestimate of emissions using IPCC (Inter-governmental Panel on Climate Change) inventory methodology is not dependent on tower measurement location.

  13. Synthesis of TiO2-CNT hybrid nanocatalyst and its application in direct oxidation of H2S to S

    NASA Astrophysics Data System (ADS)

    Daraee, Maryam; Baniadam, Majid; Rashidi, Alimorad; Maghrebi, Morteza

    2018-07-01

    In this study, a TiO2-CNT hybrid catalyst has been synthesized and its catalytic activity in the oxidation of H2S to S has been investigated and compared with those of TiO2 nanoparticles and pyrolyzed TiO2-CNT hybrid (P-TiO2-CNT). The optimum catalyst amount was determined using central composite design (CCD) method. Catalysts were characterized by various analytical techniques. The H2S conversion, sulfur selectivity and yield at the optimal temperature of 200 °C and O2/H2S ratio of 0.5 were 98.3, 99.5 and 97%, respectively. TiO2-CNT16% catalyst has a higher surface area than TiO2 nanoparticles and P-TiO2-CNT. In addition, the former catalyst gives a high conversion of H2S and sulfur selectivity at 200 °C and O2/H2S ratio of 0.5 compared with the latter two catalysts. The superior conversion (over 10%) of TiO2-CNT16% hybrid compared to TiO2 nanoparticles can be attributed to the synergistic effects of TiO2 and CNT, the reduced band gap of TiO2-CNT16% hybrid and high specific surface area of the catalyst.

  14. Oxidation of alloys for energy applications in supercritical CO 2 and H 2O

    DOE PAGES

    Holcomb, Gordon R.; Carney, Casey; Doğan, Ömer N.

    2016-03-19

    To facilitate development of supercritical CO 2 (sCO 2) power plants, a comparison of the oxidation behavior of austenitic stainless steels and Ni-base alloys in sH 2O and sCO 2 were made. Experiments were conducted at 730 °C/207 bar (sCO 2) and 726 °C/208 bar (sH 2O). Ni-base alloys in sCO 2 did not exhibit much change with pressure. Ni-base alloys in sH 2O had an increase in corrosion rate and the log of the parabolic rate constant was proportional to pressure. Lastly, fine-grain austenitic stainless steels in sCO 2 and sH 2O were both less protective with pressure asmore » the dense protective chromia scale was replaced with faster growing Fe-oxide rich scales.« less

  15. Materials emission of chemicals--PVC flooring materials.

    PubMed

    Lundgren, B; Jonsson, B; Ek-Olausson, B

    1999-09-01

    Data of chemical emissions from flooring materials have been collected and investigated in a database known as METS. The emission tests are performed using the Field and Laboratory Emission Cell (FLEC). The emission rates of total volatile organic compounds (TVOC) in the boiling point range of hexane to octadecane varies from around 4,000 micrograms/(m2.h) to less than 10 micrograms/(m2.h). Results obtained 1994/95 are presented and compared with the results obtained in 1992 for similar materials. The tests are performed 4 weeks and 26 weeks after the manufacturing of the material. The emission rates of TVOC decrease on the average approximately 60% from 4 to 26 weeks. The differences and trends in emission rates of individual chemicals and their use are discussed. For many VOCs emission rates decrease rapidly and become near to or below 2 micrograms/(m2.h) (the detection limit) after 26 weeks. For a small number of individual compounds the emission rate decrease little over 26 weeks. A small number of chemicals are singled out for particular interest in a health and comfort evaluation based on the emission results.

  16. Impacts of Aging Emission Control Systems on In-Use Heavy-Duty Diesel Truck Emission Rates

    NASA Astrophysics Data System (ADS)

    Preble, C.; Cados, T.; Harley, R.; Kirchstetter, T.

    2017-12-01

    Heavy-duty diesel trucks are a major source of nitrogen oxides (NOx) and black carbon (BC) in urban environments, contributing to persistent ozone and particulate matter air quality problems. Recently, diesel particle filter (DPF) and selective catalytic reduction (SCR) emission control systems have become standard equipment on new trucks. Particle filters can also be installed as a retrofit on older engines. Prior work has shown that exhaust filters and SCR systems effectively reduce BC and NOx emission rates by up to 90 and 80%, respectively (Preble et al., ES&T 2015). There is concern, however, that DPFs may promote the formation of ultrafine particles (UFP) and increase tailpipe emissions of nitrogen dioxide (NO2). Additionally, urea-based SCR systems for NOx control may form nitrous oxide (N2O), an important contributor to stratospheric ozone depletion. The effectiveness of these emission controls has been thoroughly evaluated in the laboratory, but the long-term durability of in-use systems and their impacts on co-emitted species have not been well characterized. To evaluate the in-use performance of DPF and SCR systems, pollutant emissions from thousands of diesel trucks were measured over several years at the Port of Oakland and the Caldecott Tunnel in the San Francisco Bay Area. Pollutants present in the exhaust plumes of individual trucks were measured at high time resolution (≥1 Hz) as trucks passed under a mobile lab stationed on an overpass. Fuel-based emission factors (g pollutant emitted per kg fuel burned) were calculated for individual trucks and linked via recorded license plates to vehicle attributes, including engine model year and installed emission control systems. Use of DPFs reduced the BC emission rate by up to 95% at both locations. SCR systems were more effective at reducing NOx emissions under the uphill, highway driving conditions at the Caldecott Tunnel. The emission rates of co-emitted species NO2, UFP, and N2O depended on driving

  17. Emission rates of sulfur dioxide, trace gases and metals from Mount Erebus, Antartica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kyle, P.R.; Meeker, K.; Finnegan, D.

    1990-11-01

    SO{sub 2} emission rates have been measured annually since 1983 at Mount Erebus, Antarctica by correlation spectrometer (COSPEC V). Following a 4 month period of sustained strombolian activity in late 1984, SO{sub 2} emissions declined from 230 Mg/day in 1983 to 25 Mg/day and then slowly increased from 16 Mg/day in 1985 to 51 Mg/day in 1987. Nine sets of filter packs containing partcle and {sup 7}LiOH treated filters were collected in the plume in 1986 and analyzed by neutron activation. Using the COSPEC data and measured element/S ratios on the filters, emission rates have been determined for trace gasesmore » and metals. The authors infer HCl and HF emissions in 1983 to be about 1200 and 500 Mg/day, respectively. Mt Erebus has therefore been an important source of halogens to the Anarctic atmosphere and could be responsible for excess Cl found in Central Antarctica snow.« less

  18. Direct and indirect light emissions from layered ReS2-x Se x (0 ≤ x ≤ 2)

    NASA Astrophysics Data System (ADS)

    Ho, Ching-Hwa; Liu, Zhan-Zhi; Lin, Min-Han

    2017-06-01

    ReS2 and ReSe2 have recently been enthusiastically studied owing to the specific in-plane electrical, optical and structural anisotropy caused by their distorted one-layer trigonal (1 T) phase, whereas other traditional transition-metal dichalcogenides (TMDCs, e.g. MoS2 and WSe2) have a hexagonal structure. Because of this special property, more and versatile nano-electronics and nano-optoelectronics devices can be developed. In this work, 2D materials in the series ReS2-x Se x (0 ≤ x ≤ 2) have been successfully grown by the method of chemical vapor transport. The direct and indirect resonant emissions of the complete series of layers can be simultaneously detected by polarized micro-photoluminescence (μPL) spectroscopy when the thickness of the ReS2-x Se x is greater than ˜70 nm. When it is less than 70 nm, only three direct excitonic emissions—E 1 ex, E 2 ex and E S ex—are detected. For the thick (bulk) ReS2-x Se x , more stacking of the ReX2 monolayers even flattens and shifts the valence-band maximum from Γ to the other K- or M-related points, thus leading to the coexistence of direct and indirect resonant light emissions from the c-plane ReX2. The transmittance absorption edge of each bulk ReX2 (a few microns thick) usually has a lower energy than those of the direct E 1 ex and E 2 ex excitonic emissions to form indirect absorption. The coexistence of direct and indirect emissions in ReX2 is a unique characteristic of a 2D layered semiconductor possessing triclinic low symmetry.

  19. Promotion effect of nickel loaded on CdS for photocatalytic H2 production in lactic acid solution

    NASA Astrophysics Data System (ADS)

    Chen, Shu; Chen, Xiaoping; Jiang, Qizhong; Yuan, Jian; Lin, Caifang; Shangguan, Wenfeng

    2014-10-01

    Low-cost Ni modified CdS was prepared via a hydrothermal reduction method. The hydrogen production activity of CdS loaded with 5 wt% Ni under visible light was even higher than that of the one loaded with 0.5 wt% Pt. The highest H2 evolution rate (3004.8 μmol h-1) occurred when the concentration of sacrificial agent (lactic acid) was 50 vol%. The nickel can quickly transfer excited electrons and enhance the photocatalytic H2 production activity. It was also found that the hydrogen evolution in this system was generated steadily from both water and lactic acid.

  20. The rate of aucubin, a secondary metabolite in Plantago lanceolata and potential nitrification inhibitor, needed to reduce ruminant urine patch nitrous oxide emissions

    NASA Astrophysics Data System (ADS)

    Gardiner, C. A.; Clough, T.; Cameron, K.; Di, H.; Edwards, G. R.

    2017-12-01

    Nitrous oxide (N2O) losses derived from grazing ruminant livestock urine patches account for 40% of global N2O emissions. It has been shown that Plantago lanceolata, an herb species used in grazed pastures, contains an active secondary metabolite (aucubin) that has the potential to be excreted by grazing ruminants and inhibit nitrification in the urine patch, a key step in soil N2O production. However, the urinary excretion rate of aucubin needed to significantly reduce urine patch N2O emissions remains unknown. Aucubin was dissolved in bovine urine at three rates (47, 243, and 486 kg ha-1), based on rates used in Dietz et al. (2013) and the calculated highest potential aucubin application rate, from Gardiner et al. (2017). A control, along with a urine treatment and the three aucubin treatments (all urine applied at 700 kg N ha-1), was applied to 20 g soil and incubated in the laboratory for 35 d. Soils were monitored for surface pH, inorganic N concentration (NH4+/NO3-), and gas (N2O and CO2) fluxes. This experiment is currently underway and the results will be presented at the conference. Dietz M, Machill S, Hoffmann H, Schmidtke K 2013. Inhibitory effects of Plantago lanceolata L. on soil N mineralization. Plant and Soil 368: 445-458. Gardiner CA, Clough TJ, Cameron KC, Di HJ, Edwards GR, de Klein CAM 2017. The potential inhibitory effects of Plantago lanceolata and its active secondary metabolite aucubin on soil nitrification and nitrous oxide emissions under ruminant urine patch conditions. Manuscript submitted for publication.

  1. C-H Hot Bands in the Near-IR Emission Spectra of Leonids

    NASA Technical Reports Server (NTRS)

    Freund, F. T.; Scoville, J.; Holm, R.; Seelemann, R.; Freund, M. M.

    2002-01-01

    The reported infrared (IR) emission spectra from 1999 Leonid fireballs show a 3.4 micron C-H emission band and unidentified bands at longer wavelengths. Upon atmospheric entry, the Leonid meteorites were flash-heated to temperatures around 2400K, which would destroy any organics on the surface of the meteorite grains. We propose that the nu(sub )CH emission band in the Leonid emission spectra arises from matrix-embedded C(sub n)-H-O entities that are protected from instant pyrolysis. Our model is based on IR absorption nu(sub )CH bands, which we observed in laboratory-grown MgO and natural olivine single crystals, where they arise from C(sub n)-H-O units imbedded in the mineral matrix, indicative of aliphatic -CH2- and -CH3 organics. Instead of being pyrolyzed, the C(sub n)-H-O entities in the Leonid trails become vibrationally excited to higher levels n = 1, 2, 3 etc. During de-excitation they emit at 3.4 microns, due to the (0 => 1) transition, and at longer wavelengths, due to hot bands. As a first step toward verifying this hypothesis we measured the C-H vibrational manifold of hexane (C6H14). The calculated positions of the (2 => l ) , (3 => 2), and possibly (4 => 3) hot bands agree with the Leonid emission bands at 3.5, 3.8 and 4.l microns.

  2. 2S protein Ara h 7.0201 has unique epitopes compared to other Ara h 7 isoforms and is comparable to 2S proteins Ara h 2 and 6 in basophil degranulation capacity.

    PubMed

    Hayen, S M; Ehlers, A M; den Hartog Jager, C F; Garssen, J; Knol, E F; Knulst, A C; Suer, W; Willemsen, L E M; Otten, H G

    2018-07-01

    Screening for specific IgE against 2S albumin proteins Ara h 2 and 6 has good positive predictive value in diagnosing peanut allergy. From the third 2S member Ara h 7, 3 isoforms have been identified. Their allergenicity has not been elucidated. This study investigated the allergenicity of Ara h 7 isoforms compared to Ara h 2 and 6. Sensitization of 15 DBPCFC-confirmed peanut-allergic patients to recombinant Ara h 2.0201, Ara h 6.01 and isoforms of recombinant Ara h 7 was determined by IgE immunoblotting strips. A basophil activation test (BAT) was performed in 9 patients to determine IgE-cross-linking capacities of the allergens. Sensitivity to the allergens was tested in 5 patients who were sensitized to at least 1 Ara h 7 isoform, by a concentration range in the BAT. 3D prediction models and sequence alignments were used to visualize differences between isoforms and to predict allergenic epitope regions. Sensitization to Ara h 7.0201 was most frequent (80%) and showed to be equally potent as Ara h 2.0201 and 6.01 in inducing basophil degranulation. Sensitization to Ara h 7.0201 together with Ara h 2.0201 and/or 6.01 was observed, indicating the presence of unique epitopes compared to the other 2 isoforms. Differences between the 3 Ara h 7 isoforms were observed in C-terminal cysteine residues, pepsin and trypsin cleavage sites and 3 single amino acid substitutions. The majority of peanut-allergic patients are sensitized to isoform Ara h 7.0201, which is functionally as active as Ara h 2.0201 and 6.01. Unique epitopes are most likely located in the C-terminus or an allergenic loop region which is a known allergenic epitope region for Ara h 2.0201 and 6.01. Due to its unique epitopes and allergenicity, it is an interesting candidate to improve the diagnostic accuracy for peanut allergy. © 2018 The Authors. Clinical & Experimental Allergy Published by John Wiley & Sons Ltd.

  3. Protein kinase G–regulated production of H2S governs oxygen sensing

    PubMed Central

    Yuan, Guoxiang; Vasavda, Chirag; Peng, Ying-Jie; Makarenko, Vladislav V.; Raghuraman, Gayatri; Nanduri, Jayasri; Gadalla, Moataz M.; Semenza, Gregg L.; Kumar, Ganesh K.; Snyder, Solomon H.; Prabhakar, Nanduri R.

    2015-01-01

    Reflexes initiated by the carotid body, the principal O2-sensing organ, are critical for maintaining cardio-respiratory homeostasis during hypoxia. O2 sensing by the carotid body requires carbon monoxide (CO) generation by heme oxygenase-2 (HO-2) and hydrogen sulfide (H2S) synthesis by cystathionine-γ-lyase (CSE). We report that O2 stimulated the generation of CO, but not that of H2S, and required two cysteine residues in the heme regulatory motif (Cys265 and Cys282) of HO-2. CO stimulated protein kinase G (PKG)–dependent phosphorylation of Ser377 of CSE, inhibiting the production of H2S. Hypoxia decreased the inhibition of CSE by reducing CO generation resulting in increased H2S, which stimulated carotid body neural activity. In carotid bodies from mice lacking HO-2, compensatory increased abundance of nNOS (neuronal nitric oxide synthase) mediated O2 sensing through PKG-dependent regulation of H2S by nitric oxide. These results provide a mechanism for how three gases work in concert in the carotid body to regulate breathing. PMID:25900831

  4. Rate Coefficients for Reactions of Ethynyl Radical (C2H) With HCN and CH3CN: Implications for the Formation of Comples Nitriles on Titan

    NASA Technical Reports Server (NTRS)

    Hoobler, Ray J.; Leone, Stephen R.

    1997-01-01

    Rate coefficients for the reactions of C2H + HCN yields products and C2H + CH3CN yields products have been measured over the temperature range 262-360 K. These experiments represent an ongoing effort to accurately measure reaction rate coefficients of the ethynyl radical, C2H, relevant to planetary atmospheres such as those of Jupiter and Saturn and its satellite Titan. Laser photolysis of C2H2 is used to produce C2H, and transient infrared laser absorption is employed to measure the decay of C2H to obtain the subsequent reaction rates in a transverse flow cell. Rate constants for the reaction C2H + HCN yields products are found to increase significantly with increasing temperature and are measured to be (3.9-6.2) x 10(exp 13) cm(exp 3) molecules(exp -1) s(exp -1) over the temperature range of 297-360 K. The rate constants for the reaction C2H + CH3CN yields products are also found to increase substantially with increasing temperature and are measured to be (1.0-2.1) x 10(exp -12) cm(exp 3) molecules(exp -1) s(exp -1) over the temperature range of 262-360 K. For the reaction C2H + HCN yields products, ab initio calculations of transition state structures are used to infer that the major products form via an addition/elimination pathway. The measured rate constants for the reaction of C2H + HCN yields products are significantly smaller than values currently employed in photochemical models of Titan, which will affect the HC3N distribution.

  5. Sulphur dioxide (SO2) emissions during the 2014-15 Fogo eruption, Cape Verde

    NASA Astrophysics Data System (ADS)

    Barrancos, José; Dionis, Samara; Quevedo, Roberto; Fernandes, Paulo; Rodríguez, Fátima; Pérez, Nemesio M.; Silva, Sónia; Cardoso, Nadir; Hernández, Pedro A.; Melián, Gladys V.; Padrón, Eleazar; Padilla, Germán; Asensio-Ramos, María; Calvo, David; Semedo, Helio; Alfama, Vera

    2015-04-01

    A new eruption started at Fogo volcanic island on November 23, 2014, an active stratovolcano, located in the SW of the Cape Verde Archipelago; rising over 6 km from the 4000m deep seafloor to the Pico do Fogo summit at 2829m above sea level (m.a.s.l.). Since settlement in the 15th century, 27 eruptions have been identified through analysis of incomplete written records (Ribeiro, 1960), with average time intervals of 20 yr and average duration of two months. The eruptions were mostly effusive (Hawaiian to Strombolian), with rare occurrences of highly explosive episodes including phreatomagmatic events (Day et al., 1999). This study reports sulphur dioxide (SO2) emission rate variations observed throughout the 2014-15 Fogo eruption, Cape Verde. More than 100 measurements of SO2 emission rate have been carried out in a daily basis by ITER/INVOLCAN/UNICV/OVCV/SNPC research team since November 28, 2014, five days after the eruption onset, by means of a miniDOAS using the traverse method with a car. The daily deviation obtained of the data is around 15%. Estimated SO2 emission rates ranged from 12,476 ± 981 to 492 ± 27 tons/day during the 2014-15 Fogo eruption until January 1, 2015. During this first five days of measurements, the observed SO2 emission rates were high with an average rate of 11,100 tons/day. On December 3, 2014 the SO2 emission rate dropped to values close to 4,000 tons/day, whereas few days later, on December 10, 2014, an increase to values close to 11,000 tons/day was recorded. Since then, SO2 emission rate has shown decrease trend to values close to 1,300 tons/day until December 21, 2014. The average of the observed SO2 emission rate was about 2,000 tons/day from December 21, 2014 to January 1, 2015, without detecting a specific either increasing or decreasing trend of the SO2 emission rate. The objective of this report is to clarify relations between the SO2 emission rate and surface eruptive activity during the 2014-15 Fogo eruption. Day, S. J

  6. H2S and volatile fatty acids elimination by biofiltration: clean-up process for biogas potential use.

    PubMed

    Ramírez-Sáenz, D; Zarate-Segura, P B; Guerrero-Barajas, C; García-Peña, E I

    2009-04-30

    In the present work, the main objective was to evaluate a biofiltration system for removing hydrogen sulfide (H(2)S) and volatile fatty acids (VFAs) contained in a gaseous stream from an anaerobic digestor (AD). The elimination of these compounds allowed the potential use of biogas while maintaining the methane (CH(4)) content throughout the process. The biodegradation of H(2)S was determined in the lava rock biofilter under two different empty bed residence times (EBRT). Inlet loadings lower than 200 g/m(3)h at an EBRT of 81 s yielded a complete removal, attaining an elimination capacity (EC) of 142 g/m(3)h, whereas at an EBRT of 31 s, a critical EC of 200 g/m(3)h was reached and the EC obtained exhibited a maximum value of 232 g/m(3)h. For 1500 ppmv of H(2)S, 99% removal was maintained during 90 days and complete biodegradation of VFAs was observed. A recovery of 60% as sulfate was obtained due to the constant excess of O(2) concentration in the system. Acetic and propionic acids as a sole source of carbon were also evaluated in the bioreactor at different inlet loadings (0-120 g/m(3)h) obtaining a complete removal (99%) for both. Microcosms biodegradation experiments conducted with VFAs demonstrated that acetic acid provided the highest biodegradation rate.

  7. Stark shift and electric-field-induced dissociation of excitons in monolayer MoS2 and h BN /MoS2 heterostructures

    NASA Astrophysics Data System (ADS)

    Haastrup, Sten; Latini, Simone; Bolotin, Kirill; Thygesen, Kristian S.

    2016-07-01

    Efficient conversion of photons into electrical current in two-dimensional semiconductors requires, as a first step, the dissociation of the strongly bound excitons into free electrons and holes. Here we calculate the dissociation rates and energy shift of excitons in monolayer MoS2 as a function of an applied in-plane electric field. The dissociation rates are obtained as the inverse lifetime of the resonant states of a two-dimensional hydrogenic Hamiltonian which describes the exciton within the Mott-Wannier model. The resonances are computed using complex scaling, and the effective masses and screened electron-hole interaction defining the hydrogenic Hamiltonian are computed from first principles. For field strengths above 0.1 V/nm the dissociation lifetime is shorter than 1 ps, which is below the lifetime associated with competing decay mechanisms. Interestingly, encapsulation of the MoS2 layer in just two layers of hexagonal boron nitride (h BN ), enhances the dissociation rate by around one order of magnitude due to the increased screening. This shows that dielectric engineering is an effective way to control exciton lifetimes in two-dimensional materials.

  8. H2 Fluorescence in M Dwarf Systems: A Stellar Origin

    NASA Astrophysics Data System (ADS)

    Kruczek, Nicholas; France, Kevin; Evonosky, William; Loyd, R. O. Parke; Youngblood, Allison; Roberge, Aki; Wittenmyer, Robert A.; Stocke, John T.; Fleming, Brian; Hoadley, Keri

    2017-08-01

    Observations of molecular hydrogen (H2) fluorescence are a potentially useful tool for measuring the H2 abundance in exoplanet atmospheres. This emission was previously observed in {{M}} dwarfs with planetary systems. However, low signal-to-noise prevented a conclusive determination of its origin. Possible sources include exoplanetary atmospheres, circumstellar gas disks, and the stellar surface. We use observations from the “Measurements of the Ultraviolet Spectral Characteristics of Low-mass Exoplanet Host Stars” Treasury Survey to study H2 fluorescence in {{M}} dwarfs. We detect fluorescence in Hubble Space Telescope spectra of 8/9 planet-hosting and 5/6 non-planet-hosting {{M}} dwarfs. The detection statistics, velocity centroids, and line widths of the emission suggest a stellar origin. We calculate H2-to-stellar-ion flux ratios to compare flux levels between stars. For stars with planets, we find an average ratio of 1.7+/- 0.9, using the fluxes of the brightest H2 feature and two stellar C IV lines. This is compared to 0.9+/- 0.4 for stars without planets, showing that the planet-hosting {{M}} dwarfs do not have significant excess H2 emission. This claim is supported by the direct FUV imaging of GJ 832, where no fluorescence is observed at the expected star-planet separation. Additionally, the 3σ upper limit of 4.9 × 10-17 erg cm-2 s-1 from these observations is two orders of magnitude below the spectroscopically observed H2 flux. We constrain the location of the fluorescing H2 using 1D radiative transfer models, and find that it could reside in starspots or a ˜2500-3000 {{K}} region in the lower chromosphere. The presence of this emission could complicate efforts to quantify the atmospheric abundance of H2 in exoplanets orbiting {{M}} dwarfs.

  9. MONITORING H{alpha} EMISSION AND CONTINUUM OF UXORs: RR Tauri

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bedell, Megan; Villaume, Alexa; Weiss, Lauren

    2011-11-15

    The Maria Mitchell Observatory, in collaboration with the Astrokolkhoz Observatory, started a program of photometric monitoring of UX Ori-type stars (UXORs) with narrowband interference filters (IFs; augmented with the traditional broadband filters) aimed at separating the H{alpha} emission variations from those of the continuum. We present the method of separation and the first results for RR Tau obtained in two seasons, each roughly 100 days long (2010 Winter-Spring and 2010 Fall-2011 Spring). We confirm the conclusion from previous studies that the H{alpha} emission in this star is less variable than the continuum. Although some correlation between the two is notmore » excluded, the amplitude of H{alpha} variations is much smaller (factors of 3-5) than that of the continuum. These results are compatible with Grinin's model of UXORs, which postulates the presence of small obscuring circumstellar clouds as the cause of the continuum fading, as well as the presence of a circumstellar reflection/emission nebula, larger than the star and the obscuring clouds, which is responsible for H{alpha} emission and the effect of the 'color reversal' in deep minima. However, the results of both our broadband and narrowband photometry indicate that the obscuration model may be insufficient to explain all of the observations. Disk accretion, the presence of stellar or (proto) planetary companion(s), as well as the intrinsic variations of the star, may contribute to the observed light variations. We argue, in particular, that the H{alpha} emission may be more closely correlated with the intrinsic variations of the star than with the much stronger observed variations caused by the cloud obscuration. If this hypothesis is correct, the close monitoring of H{alpha} emission with IFs, accessible to small-size telescopes, may become an important tool in studying the physical nature of the UXORs' central stars.« less

  10. Warm H2O and OH Disk Emission in V1331 Cyg

    NASA Astrophysics Data System (ADS)

    Doppmann, Greg W.; Najita, Joan R.; Carr, John S.; Graham, James R.

    2011-09-01

    We present high-resolution (R = 24, 000) L-band spectra of the young intermediate-mass star V1331 Cyg obtained with NIRSPEC on the Keck II telescope. The spectra show strong, rich emission from water and OH that likely arises from the warm surface region of the circumstellar disk. We explore the use of the new BT2 water line list in fitting the spectra, and we find that it does a much better job than the well-known HITRAN water line list in the observed wavelength range and for the warm temperatures probed by our data. By comparing the observed spectra with synthetic disk emission models, we find that the water and OH emission lines have similar widths (FWHM ~= 18 km s-1). If the line widths are set by disk rotation, the OH and water emission lines probe a similar range of disk radii in this source. The water and OH emission are consistent with thermal emission for both components at a temperature ~1500 K. The column densities of the emitting water and OH are large, ~1021 cm-2 and ~1020 cm-2, respectively. Such a high column density of water is more than adequate to shield the disk midplane from external UV irradiation in the event of complete dust settling out of the disk atmosphere, enabling chemical synthesis to continue in the midplane despite a harsh external UV environment. The large OH-to-water ratio is similar to expectations for UV irradiated disks, although the large OH column density is less easily accounted for. Data presented herein were obtained at the W. M. Keck Observatory from telescope time allocated to the National Aeronautics and Space Administration through the agency's scientific partnership with the California Institute of Technology and the University of California. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  11. Chlorobium limicola forma thiosulfatophilum: Biocatalyst in the Production of Sulfur and Organic Carbon from a Gas Stream Containing H2S and CO2

    PubMed Central

    Cork, Douglas J.; Garunas, Ruta; Sajjad, Ashfaq

    1983-01-01

    Chlorobium limicola forma thiosulfatophilum (ATCC 17092) was grown in a 1-liter continuously stirred tank reactor (800-ml liquid volume) at pH 6.8, 30°C, saturated light intensity, and a gas flow rate of 23.6 ml/min from a gas cylinder blend consisting of 3.9 mol% H2S, 9.2 mol% CO2, 86.4 mol% N2, and 0.5 mol% H2. This is the first demonstration of photoautotrophic growth of a Chlorobium sp. on a continuous inorganic gas feed. A significant potential exists for applying this photoautotrophic process to desulfurization and CO2 fixation of gases containing acidic components (H2S and CO2). PMID:16346255

  12. Isoprene emission from Indian trees

    NASA Astrophysics Data System (ADS)

    Varshney, C. K.; Singh, Abhai Pratap

    2003-12-01

    Isoprene is the most dominant non-methane volatile organic compound (NMVOC) emitted by plants. NMVOCs play an important role in regulating the composition of atmospheric trace gases including global concentration of tropospheric ozone. Our present knowledge about NMVOCs emission is mainly from studies on temperate tree species. So far information on biogenic NMVOCs emission from tropical tree species is limited. In this study, isoprene emission rates from 40 tropical Indian tree species belonging to 33 genera and 17 families were measured for the first time using a dynamic flow through enclosure chamber technique. The isoprene emission rate from plants (30°C and PAR 1000 μmolm-2s-1) ranged from undetectable to 81.5 μg g-1 h-1 and values were found to be comparable with other studies on tropical tree species. Tree species screened for isoprene emission in the present study may be grouped into the four categories, proposed by [2001], namely, 18 species were negligible or BDL isoprene emitting (<1 μg g-1 h-1), 6 species were low emitting (1 ≤ to <10 μg g-1 h-1), 5 species were moderate emitting (10≤ to <25 μg g-1 h-1), and 11 species were high isoprene emitting (≥25 μg g-1 h-1). Maximum isoprene emission rate (81.5 μg g-1 h-1) was observed in the case of Dalbergia sissoo Linn. It was interesting to find that Citrus limon Linn., Citrus reticulata Linn., Citrus sinensis Linn., Grevillea robusta A. Cunn., and Morus alba Linn., which were earlier reported as BDL or non isoprene emitters in US [, 1998; , 2001] were found to be appreciably high isoprene emitters (0.61-21.60 μg g-1 h-1) in the present study.

  13. Polarisation observations of VY Canis Majoris H2O 532-441 620.701 GHz maser emission with HIFI

    NASA Astrophysics Data System (ADS)

    Harwit, M.; Houde, M.; Sonnentrucker, P.; Boogert, A. C. A.; Cernicharo, J.; De Beck, E.; Decin, L.; Henkel, C.; Higgins, R. D.; Jellema, W.; Kraus, A.; McCoey, C.; Melnick, G. J.; Menten, K. M.; Risacher, C.; Teyssier, D.; Vaillancourt, J. E.; Alcolea, J.; Bujarrabal, V.; Dominik, C.; Justtanont, K.; de Koter, A.; Marston, A. P.; Olofsson, H.; Planesas, P.; Schmidt, M.; Schöier, F. L.; Szczerba, R.; Waters, L. B. F. M.

    2010-10-01

    Context. Water vapour maser emission from evolved oxygen-rich stars remains poorly understood. Additional observations, including polarisation studies and simultaneous observation of different maser transitions may ultimately lead to greater insight. Aims: We have aimed to elucidate the nature and structure of the VY CMa water vapour masers in part by observationally testing a theoretical prediction of the relative strengths of the 620.701 GHz and the 22.235 GHz maser components of ortho H2O. Methods: In its high-resolution mode (HRS) the Herschel Heterodyne Instrument for the Far Infrared (HIFI) offers a frequency resolution of 0.125 MHz, corresponding to a line-of-sight velocity of 0.06 km s-1, which we employed to obtain the strength and linear polarisation of maser spikes in the spectrum of VY CMa at 620.701 GHz. Simultaneous ground based observations of the 22.235 GHz maser with the Max-Planck-Institut für Radioastronomie 100-m telescope at Effelsberg, provided a ratio of 620.701 GHz to 22.235 GHz emission. Results: We report the first astronomical detection to date of H2O maser emission at 620.701 GHz. In VY CMa both the 620.701 and the 22.235 GHz polarisation are weak. At 620.701 GHz the maser peaks are superposed on what appears to be a broad emission component, jointly ejected from the star. We observed the 620.701 GHz emission at two epochs 21 days apart, both to measure the potential direction of linearly polarised maser components and to obtain a measure of the longevity of these components. Although we do not detect significant polarisation levels in the core of the line, they rise up to approximately 6% in its wings. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Appendix (page 5) is only available in electronic form at http://www.aanda.org

  14. Monitoring so2 emission at the Soufriere Hills volcano: Implications for changes in eruptive conditions

    USGS Publications Warehouse

    Young, S.R.; Francis, P.W.; Barclay, J.; Casadevall, T.J.; Gardner, C.A.; Darroux, B.; Davies, M.A.; Delmelle, P.; Norton, G.E.; Maciejewski, A.J.H.; Oppenheimer, C.M.M.; Stix, J.; Watson, I.M.

    1998-01-01

    Correlation spectrometer measurements of sulfur dioxide (SO2) emission rates during the current eruption of the Soufriere Hills volcano, Montserrat, have contributed towards identifying different phases of volcanic activity. SO2 emission rate has increased from 550 td-1 (>6.4 kgs-1) after July 1996, with the uncertainty associated with any individual measurement ca. 30%. Significantly enhanced SO2 emission rates have been identified in association with early phreatic eruptions (800 td-1 (9.3 kgs-1)) and episodes of vigorous dome collapse and pyroclastic flow generation (900 to 1500 td-1 (10.4 to 17.4 kgs-1)). SO2 emission rate has proved a useful proxy measurement for magma production rate. Observed SO2 emission rates are significantly higher than those inferred from analyses of glass inclusions in phenocrysts, implying the existence of a S-rich magmatic vapour phase.

  15. Investigation into the disparate origin of CO 2 and H 2O outgassing for comet 67P

    NASA Astrophysics Data System (ADS)

    Fink, Uwe; Doose, Lyn; Rinaldi, Giovanna; Capaccioni, Fabrizio; Bockelee-Morvan, Dominique; VIRTIS Team

    2016-10-01

    We present an investigation of the emission intensity of CO2 and H2O and their distribution in the coma of 67P/ Churyumov-Gerasimenko obtained by the VIRTIS-M imaging spectrometer on the Rosetta mission. We analyze 4 data cubes from Feb. 28, and 7 data cubes from April 27, 2015. For both data sets the spacecraft was at a sufficiently large distance from the comet to allow images of the whole nucleus and the surrounding coma.We find that unlike water which has a reasonably predictable behavior and correlates well with the solar illumination, CO2 outgasses mostly in local regions or spots. Furthermore for the data on April 27, the CO2 evolves almost exclusively from the southern hemisphere, a region of the comet that has not received solar illumination since the comet's last perihelion passage. Because CO2 and H2O have such disparate origins, deriving mixing ratios from local column density measurements cannot provide a meaningful measurement of the CO2/H2O ratio in the coma of the comet. We obtain total production rates of H2O and CO2 by integrating the band intensity in an annulus surrounding the nucleus and obtain pro-forma production rate CO2/H2O mixing ratios of ~5.0% and ~2.5% for Feb. 28 and April 27 respectively. Because of the highly variable nature of the CO2 evolution we do not believe that these numbers are diagnostic of the comets bulk CO2/H2O composition. We believe that our investigation provides an explanation for the large observed variations reported in the literature for the CO2/H2O production rate ratios. Our mixing ratio maps indicate that, besides the difference in vapor pressure of the two gases, this ratio depends on the comet's geometric shape, illumination and past orbital history.Our annulus measurement for the total water production for Feb. 28 at 2.21AU from the sun is 2.5x1026 molecules/s while for April 27 at 1.76 AU it is 4.65x1026. We find that about 83% of the H2O resides in the illuminated portion of our annulus and about 17% on the

  16. Competition kinetics using the UV/H2O2 process: a structure reactivity correlation for the rate constants of hydroxyl radicals toward nitroaromatic compounds.

    PubMed

    García Einschlag, Fernando S; Carlos, Luciano; Capparelli, Alberto L

    2003-10-01

    The rate constants for hydroxyl radical reaction toward a set of nitroaromatic substrates kS, have been measured at 25 degrees C using competition experiments in the UV/H2O2 process. For a given pair of substrates S1 and S2, the relative reactivity beta (defined as kS1/kS2) was calculated from the slope of the corresponding double logarithmic plot, i.e., of ln[S1] vs. ln[S2]. This method is more accurate and remained linear for larger conversions in comparison with the plots of ln[S1] and ln[S2] against time. The rate constants measured ranged from 0.33 to 8.6 x 10(9) M(-1)s(-1). A quantitative structure-reactivity relationship was found using the Hammett equation. Assuming sigma values to be additive, a value of -0.60 was obtained for the reaction constant rho. This value agrees with the high reactivity and the electrophilic nature of HO* radical.

  17. Photosynthetic photon flux, photoperiod, and temperature effects on emissions of (Z)-3-hexenal, (Z)-3-hexenol, and (Z)-3-hexenyl acetate from lettuce

    NASA Technical Reports Server (NTRS)

    Charron, C. S.; Cantliffe, D. J.; Wheeler, R. M.; Manukian, A.; Heath, R. R.

    1996-01-01

    To investigate the effects of environment on plant volatile emissions, 'Waldmann's Green' leaf lettuce was cultivated under different levels of photosynthetic photon flux (PPF), photoperiod, and temperature. A modified growth chamber was used to sample plant volatile emissions nondestructively, over time, and under controlled conditions. Total volatile emission rates were significantly higher from lettuce cultivated under PPF of 360 or 200 micromoles m-2 s-1 compared to 105 micromoles m-2 s-1, and significantly higher under a 16-h photoperiod than an 8-h photoperiod. No differences were detected among emission rates from different temperature treatments. In controlled environments, emissions could be regulated by adjusting environmental conditions accordingly.

  18. Estimate Of The Decay Rate Constant of Hydrogen Sulfide Generation From Landfilled Drywall

    EPA Science Inventory

    Research was conducted to investigate the impact of particle size on H2S gas emissions and estimate a decay rate constant for H2S gas generation from the anaerobic decomposition of drywall. Three different particle sizes of regular drywall and one particle size of paperless drywa...

  19. Effect of dolomite and biochar addition on N2O and CO2 emissions from acidic tea field soil

    PubMed Central

    Win, Khin Thuzar; Shibata, Akira; Yamamoto, Akinori; Sano, Tomohito; Hirono, Yuhei

    2018-01-01

    A laboratory study was conducted to study the effects of liming and different biochar amendments on N2O and CO2 emissions from acidic tea field soil. The first experiment was done with three different rates of N treatment; N 300 (300 kg N ha-1), N 600 (600 kg N ha-1) and N 900 (900 kg N ha-1) and four different rates of bamboo biochar amendment; 0%, 0.5%, 1% and 2% biochar. The second experiment was done with three different biochars at a rate of 2% (rice husk, sawdust, and bamboo) and a control and lime treatment (dolomite) and control at two moisture levels (50% and 90% water filled pore space (WFPS)). The results showed that dolomite and biochar amendment significantly increased soil pH. However, only biochar amendment showed a significant increase in total carbon (C), C/N (the ratio of total carbon and total nitrogen), and C/IN ratio (the ratio of total carbon and inorganic nitrogen) at the end of incubation. Reduction in soil NO3--N concentration was observed under different biochar amendments. Bamboo biochar with the rates of 0.5, 1 and 2% reduced cumulative N2O emission by 38%, 48% and 61%, respectively, compare to the control soil in experiment 1. Dolomite and biochar, either alone or combined significantly reduced cumulative N2O emission by 4.6% to 32.7% in experiment 2. Reduction in N2O production under biochar amendment was due to increases in soil pH and decreases in the magnitude of mineral-N in soil. Although, both dolomite and biochar increased cumulative CO2 emission, only biochar amendment had a significant effect. The present study suggests that application of dolomite and biochar to acidic tea field soil can mitigate N2O emissions. PMID:29394272

  20. Effect of dolomite and biochar addition on N2O and CO2 emissions from acidic tea field soil.

    PubMed

    Oo, Aung Zaw; Sudo, Shigeto; Akiyama, Hiroko; Win, Khin Thuzar; Shibata, Akira; Yamamoto, Akinori; Sano, Tomohito; Hirono, Yuhei

    2018-01-01

    A laboratory study was conducted to study the effects of liming and different biochar amendments on N2O and CO2 emissions from acidic tea field soil. The first experiment was done with three different rates of N treatment; N 300 (300 kg N ha-1), N 600 (600 kg N ha-1) and N 900 (900 kg N ha-1) and four different rates of bamboo biochar amendment; 0%, 0.5%, 1% and 2% biochar. The second experiment was done with three different biochars at a rate of 2% (rice husk, sawdust, and bamboo) and a control and lime treatment (dolomite) and control at two moisture levels (50% and 90% water filled pore space (WFPS)). The results showed that dolomite and biochar amendment significantly increased soil pH. However, only biochar amendment showed a significant increase in total carbon (C), C/N (the ratio of total carbon and total nitrogen), and C/IN ratio (the ratio of total carbon and inorganic nitrogen) at the end of incubation. Reduction in soil NO3--N concentration was observed under different biochar amendments. Bamboo biochar with the rates of 0.5, 1 and 2% reduced cumulative N2O emission by 38%, 48% and 61%, respectively, compare to the control soil in experiment 1. Dolomite and biochar, either alone or combined significantly reduced cumulative N2O emission by 4.6% to 32.7% in experiment 2. Reduction in N2O production under biochar amendment was due to increases in soil pH and decreases in the magnitude of mineral-N in soil. Although, both dolomite and biochar increased cumulative CO2 emission, only biochar amendment had a significant effect. The present study suggests that application of dolomite and biochar to acidic tea field soil can mitigate N2O emissions.

  1. A fluorescent turn-on H2S-responsive probe: design, synthesis and application.

    PubMed

    Zhang, Yufeng; Chen, Haiyan; Chen, Dan; Wu, Di; Chen, Xiaoqiang; Liu, Sheng Hua; Yin, Jun

    2015-10-14

    Hydrogen sulfide (H2S) is considered as the third signaling molecule in vivo and it plays an important role in various physiological processes and pathological processes in vivo, such as vasodilation, apoptosis, neurotransmission, ischemia/reperfusion-induced injury, insulin secretion and inflammation. Developing a highly selective and sensitive method that can detect H2S in the biological system is very important. In this work, a colorimetric and "turn-on" fluorescent probe is developed. Furthermore, this probe displays a highly selective response to H2S in aqueous solution and possesses good capability for bioimaging H2S without interference in living cells. The results suggest that a H2S-selective probe has good water-solubility, biocompatibility and cell-penetrability and can serve as an efficient tool for probing H2S in the cell level.

  2. Atmospheric Implications of Light Alkane Emissions From the U.S. Oil and Natural Gas Sector

    NASA Astrophysics Data System (ADS)

    Fischer, E. V.; Tzompa Sosa, Z. A.; Henderson, B.; Travis, K.; Keller, C.; Sive, B. C.; Helmig, D.; Fried, A.; Herndon, S. C.; Yacovitch, T. I.; Mahieu, E.; Franco, B.

    2017-12-01

    New efficient drilling techniques triggered a massive growth of unconventional oil and natural gas production in North America starting in 2005. Emissions of a variety of volatile organic compounds (VOCs) from the oil and gas sector occur during well development and production phases, and emissions to the atmosphere also continue when wells are abandoned. Determining VOC emission fluxes in the context of rapid growth of the oil and natural gas industry presents a big challenge for emission inventories. In the U.S., the latest version of the 2011 National Emission Inventory (NEI2011v6.3) includes updates over important oil and natural gas basins and speciation profiles based on the Western Regional Air Partnership. We incorporated the NEI2011v6.3 into the GEOS-Chem chemical transport model to simulate the atmospheric abundances of C2-C5 alkanes over the U.S. attributed to emissions from the oil and gas sector. We present results from a nested high-resolution (0.5 degree x 0.667 degree) simulation over North America. C2-C5 alkane emissions from NEI 2011v6.3 increase across the U.S. compared to the previous NEI 2011 v2 incorporated as default in GEOS-Chem. Ethane (C2H6) and propane (C3H8) emission fluxes increased over important oil and natural gas basins. We compare our simulation to a suite of surface observations, column measurements, and aircraft profiles. Finally, we estimate the contribution that C2-C5 alkanes make to the abundance and production of important secondary species including ozone, peroxy acetyl nitrate, and several ketones.

  3. Effects of mass airflow rate through an open-circuit gas quantification system when measuring carbon emissions.

    PubMed

    Gunter, Stacey A; Bradford, James A; Moffet, Corey A

    2017-01-01

    Methane (CH) and carbon dioxide (CO) represent 11 and 81%, respectively, of all anthropogenic greenhouse gas emissions. Agricultural CH emissions account for approximately 43% of all anthropogenic CH emissions. Most agricultural CH emissions are attributed to enteric fermentation within ruminant livestock; hence, the heightened interest in quantifying and mitigating this source. The automated, open-circuit gas quantification system (GQS; GreenFeed, C-Lock, Inc., Rapid City, SD) evaluated here can be placed in a pasture with grazing cattle and can measure their CH and CO emissions with spot sampling. However, improper management of the GQS can have an erroneous effect on emission estimates. One factor affecting the quality of emission estimates is the airflow rates through the GQS to ensure a complete capture of the breath cloud emitted by the animal. It is hypothesized that at lower airflow rates this cloud will be incompletely captured. To evaluate the effect of airflow rate through the GQS on emission estimates, a data set was evaluated with 758 CO and CH emission estimates with a range in airflows of 10.7 to 36.6 L/s. When airflow through the GQS was between 26.0 and 36.6 L/s, CO and CH emission estimates were not affected ( = 0.14 and 0.05, respectively). When airflow rates were less than 26.0 L/s, CO and CH emission estimates were lower and decreased as airflow rate decreased ( < 0.0001). We hypothesize that when airflow through the GQS decreases below 26 L/s, breath capture was incomplete and CO and CH emissions are underestimated. Maintaining mass airflow through a GQS at rates greater than 26 L/s is important for producing high quality CO and CH emission estimates.

  4. Hydrothermal fabrication of few-layer MoS2 nanosheets within nanopores on TiO2 derived from MIL-125(Ti) for efficient photocatalytic H2 evolution

    NASA Astrophysics Data System (ADS)

    Ye, Fei; Li, Houfen; Yu, Hongtao; Chen, Shuo; Quan, Xie

    2017-12-01

    Protons tend to bond strongly with unsaturated-coordinate S element located at the edge of nano-MoS2 and are consequently reduced to H2. Therefore, increasing the active S atoms quantity will be a feasible approach to enhance hydrogen evolution. Herein we developed a porous TiO2 derived from metal organic frameworks (MOFs) as scaffold to restrict the growth and inhibit the aggregation of MoS2 nanosheets. As a result, the thickness of the prepared MoS2 nanosheets was less than 3 nm (1-4 layers), with more edges and active S atoms being exposed. This few-layer MoS2-porous TiO2 exhibits a H2 evolution rate of 897.5 μmol h-1 g-1, which is nearly twice as much as free-stand MoS2 nanosheets and twenty times more than physical mixture of MoS2 with porous TiO2. The high performance is attributed to that more active edge sites in few-layer MoS2-porous TiO2 are exposed than pure MoS2. This work provides a new method to construct MOFs derived porous structures for controlling MoS2 to expose active sites for HER.

  5. Photoabsorption and photoionization cross sections of NH3, PH3, H2S, C2H2, and C2H4 in the VUV region

    NASA Technical Reports Server (NTRS)

    Xia, T. J.; Chien, T. S.; Wu, C. Y. Robert; Judge, D. L.

    1991-01-01

    Using synchrotron radiation as a continuum light source, the photoabsorption and photoionization cross sections of NH3, PH3, H2S, C2H2, and C2H4 have been measured from their respective ionization thresholds to 1060 A. The vibrational constants associated with the nu(2) totally symmetric, out-of-plane bending vibration of the ground electronic state of PH3(+) have been obtained. The cross sections and quantum yields for producing neutral products through photoexcitation of these molecules in the given spectral regions have also been determined. In the present work, autoionization processes were found to be less important than dissociation and predissociation processes in NH3, PH3, and C2H4. Several experimental techniques have been employed in order to examine the various possible systematic errors critically.

  6. Rotational quenching of H2CO by molecular hydrogen: cross-sections, rates and pressure broadening

    NASA Astrophysics Data System (ADS)

    Wiesenfeld, L.; Faure, A.

    2013-07-01

    We compute the rotational quenching rates of the first 81 rotational levels of ortho- and para-H2CO in collision with ortho- and para-H2, for a temperature range of 10-300 K. We make use of the quantum close-coupling and coupled-state scattering methods combined with the high accuracy potential energy surface of Troscompt et al. Rates are significantly different from the scaled rates of H2CO in collision with He; consequently, critical densities are notably lower. We compare a full close-coupling computation of pressure broadening cross-sections with experimental data and show that our results are compatible with the low-temperature measurements of Mengel & De Lucia, for a spin temperature of H2 around 50 K.

  7. TeV γ-ray observations of the young synchrotron-dominated SNRs G1.9+0.3 and G330.2+1.0 with H.E.S.S.

    NASA Astrophysics Data System (ADS)

    H.E.S.S. Collaboration; Abramowski, A.; Aharonian, F.; Benkhali, F. Ait; Akhperjanian, A. G.; Angüner, E.; Anton, G.; Balenderan, S.; Balzer, A.; Barnacka, A.; Becherini, Y.; Becker Tjus, J.; Bernlöhr, K.; Birsin, E.; Bissaldi, E.; Biteau, J.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Carrigan, S.; Casanova, S.; Cerruti, M.; Chadwick, P. M.; Chalme-Calvet, R.; Chaves, R. C. G.; Cheesebrough, A.; Chrétien, M.; Colafrancesco, S.; Cologna, G.; Conrad, J.; Couturier, C.; Cui, Y.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; deWilt, P.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; O'C. Drury, L.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Edwards, T.; Egberts, K.; Eger, P.; Espigat, P.; Farnier, C.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fernandez, D.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Grondin, M.-H.; Grudzińska, M.; Häffner, S.; Hahn, J.; Harris, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Jacholkowska, A.; Jahn, C.; Jamrozy, M.; Janiak, M.; Jankowsky, F.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Khélifi, B.; Kieffer, M.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Krayzel, F.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lefaucheur, J.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Lennarz, D.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Méhault, J.; Meintjes, P. J.; Menzler, U.; Meyer, M.; Moderski, R.; Mohamed, M.; Moulin, E.; Murach, T.; Naumann, C. L.; de Naurois, M.; Niemiec, J.; Nolan, S. J.; Oakes, L.; Ohm, S.; Wilhelmi, E. de Oña; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Parsons, R. D.; Arribas, M. Paz; Pekeur, N. W.; Pelletier, G.; Perez, J.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Poon, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Raue, M.; Reimer, A.; Reimer, O.; Renaud, M.; Reyes, R. de los; Rieger, F.; Rob, L.; Romoli, C.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sol, H.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Szostek, A.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tluczykont, M.; Trichard, C.; Valerius, K.; van Eldik, C.; van Soelen, B.; Vasileiadis, G.; Venter, C.; Viana, A.; Vincent, P.; Völk, H. J.; Volpe, F.; Vorster, M.; Vuillaume, T.; Wagner, S. J.; Wagner, P.; Ward, M.; Weidinger, M.; Weitzel, Q.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Zabalza, V.; Zacharias, M.; Zajczyk, A.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.

    2014-06-01

    The non-thermal nature of the X-ray emission from the shell-type supernova remnants (SNRs) G1.9+0.3 and G330.2+1.0 is an indication of intense particle acceleration in the shock fronts of both objects. This suggests that the SNRs are prime candidates for very-high-energy (VHE; E > 0.1 TeV) γ-ray observations. G1.9+0.3, recently established as the youngest known SNR in the Galaxy, also offers a unique opportunity to study the earliest stages of SNR evolution in the VHE domain. The purpose of this work is to probe the level of VHE γ-ray emission from both SNRs and use this to constrain their physical properties. Observations were conducted with the H.E.S.S. (High Energy Stereoscopic System) Cherenkov Telescope Array over a more than six-year period spanning 2004-2010. The obtained data have effective livetimes of 67 h for G1.9+0.3 and 16 h for G330.2+1.0. The data are analysed in the context of the multiwavelength observations currently available and in the framework of both leptonic and hadronic particle acceleration scenarios. No significant γ-ray signal from G1.9+0.3 or G330.2+1.0 was detected. Upper limits (99 per cent confidence level) to the TeV flux from G1.9+0.3 and G330.2+1.0 for the assumed spectral index Γ = 2.5 were set at 5.6 × 10-13 cm-2 s-1 above 0.26 TeV and 3.2 × 10-12 cm-2 s-1 above 0.38 TeV, respectively. In a one-zone leptonic scenario, these upper limits imply lower limits on the interior magnetic field to BG1.9 ≳ 12 μG for G1.9+0.3 and to BG330 ≳ 8 μG for G330.2+1.0. In a hadronic scenario, the low ambient densities and the large distances to the SNRs result in very low predicted fluxes, for which the H.E.S.S. upper limits are not constraining.

  8. Biohydrogen production from microalgal biomass: energy requirement, CO2 emissions and scale-up scenarios.

    PubMed

    Ferreira, Ana F; Ortigueira, Joana; Alves, Luís; Gouveia, Luísa; Moura, Patrícia; Silva, Carla

    2013-09-01

    This paper presents a life cycle inventory of biohydrogen production by Clostridium butyricum through the fermentation of the whole Scenedesmus obliquus biomass. The main purpose of this work was to determine the energy consumption and CO2 emissions during the production of hydrogen. This was accomplished through the fermentation of the microalgal biomass cultivated in an outdoor raceway pond and the preparation of the inoculum and culture media. The scale-up scenarios are discussed aiming for a potential application to a fuel cell hybrid taxi fleet. The H2 yield obtained was 7.3 g H2/kg of S. obliquus dried biomass. The results show that the production of biohydrogen required 71-100 MJ/MJ(H2) and emitted about 5-6 kg CO2/MJ(H2). Other studies and production technologies were taken into account to discuss an eventual process scale-up. Increased production rates of microalgal biomass and biohydrogen are necessary for bioH2 to become competitive with conventional production pathways. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. A Calibrated H-alpha Index to Monitor Emission Line Objects

    NASA Astrophysics Data System (ADS)

    Hintz, Eric G.; Joner, M. D.

    2013-06-01

    Over an 8 year period we have developed a calibrated H-alpha index, similar to the more traditional H-beta index, based on spectrophotometric observations (Joner & Hintz, 2013) from the DAO 1.2-m Telescope. While developing the calibration for this filter set we also obtained spectra of a number of emission line systems such as high mass x-ray binaries (HMXB), Be stars, and young stellar objects. From this work we find that the main sequence stars fill a very tight relation in the H-alpha/H-beta plane and that the emission line objects are easily detected. We will present the overall location of these emission line objects. We will also present the changes experiences by these objects over the course of the years of the project.

  10. Enhanced NH3 emission from swine liquid waste

    NASA Astrophysics Data System (ADS)

    Lee, S.; Robarge, W. P.; Walker, J. T.

    2010-12-01

    Swine animal feeding operations are sources of emissions for various gases [ammonia (NH3), hydrogen sulfide (H2S), carbon dioxide (CO2), volatile organic carbons (VOCs)], and fine particulate matter. Gaseous emissions from simple aqueous systems are typically controlled by temperature, pH, wind speed, total dissolved concentration of the chemical species of interest (e.g. NH3+NH4+ = TAN), and the Henry’s law constant. Ammonia emissions from three different sources [ammonium sulfate (AS), swine anaerobic lagoon liquid (SLL), and pit liquid (SPL) from swine housing units] were evaluated using a small flow-through teflon-lined chamber (SFTC; 0.3m × 0.2m × 0.15m) under controlled laboratory conditions. The SFTC was designed for 100% collection efficiency of NH3 gas emitted from the liquids. The internal volume of the chamber, 9 L, was exchanged 1.1 times per minute. All three liquid formulations exhibit the expected response in emissions with changes in temperature and pH. However, NH3 emissions from the SPL and SLL are ~5 times those from pure solutions of AS. Furthermore, the enhancement in NH3 emissions was a function of TAN concentration, decreasing in intensity at higher TAN and approaching rates comparable to the pure solutions of AS. The difference in emissions with solutions of equivalent TAN suggests a synergistic mechanism that is enhancing NH3 emissions in SPL and SLL. Concurrent measurements as part of the National Air Emissions Monitoring Study at the swine operations originally sampled for SPL and SLL document the emissions of CO2, H2S and VOCs (primarily acetic, propionic and butyric acids) at levels that are comparable to observed NH3 emissions. To date, only additions of NaHCO3 to the SPL and SLL have been found to enhance NH3 emissions and exhibit the same response to increasing TAN as exhibited by the original SPL and SLL solutions. Possible reactions that could enhance emissions will be discussed.

  11. Origin, Emission, and Propagation of P-H Pulses

    NASA Astrophysics Data System (ADS)

    Kikuchi, H.

    2007-05-01

    Origin, Emission, and Propagation of P-H Pulses H. Kikuchi Institute for Environmental Electromagnetics 3-8-18, Komagome, Toshima-ku, Tokyo 170, Japan e-mail: hkikuchi@mars.dti.ne.jp Abstract According to Pulinets, characters of P-H pulses is following. The registered emission has not continuous but pulsed character and has very wide frequency spectrum from kHz to more than hundred MHz. These two facts imply that should be the electric discharge-like emission similar to thunderstorm flashes emission. The emission is connected in some way with seismic activity and the emission intensity increases 12-24 hour before the seismic shock. Another intriguing factor is that emission is registered at large distances up to 500 km (some witness claim up to 1500 km). Taking into account that emission is registered at VHF band also, the source of emission cannot be situated on the ground. This paper puts forwards a model of P-H pulses generation based on "dust dynamics". Rotating ions ascending, for instance erupped metalic ions in the earth's crust into the atmosphere incorporating aerosols might be captured by diffuse dust layers which may exist below or beyond the electric mirror point produced by quadrupole-like thunder- cloud configurations or even form a portion of dust layers and could be a source-origin of P-H pulses that might be emitted by local electric discharges within diffuse dust layers somewhat similar to thundercloud discharges, though emission frequencies and characters are quite different, namely P-H pulses are over a wide range of frequencies, say from kHz to more than hundred MHz with pulsed character in contrast to lightning emission with more continuous character whose frequencies are 1 to 10 kHz. Such diffuse dust layers could be formed over a wide range of height in the troposphere, stratosphere, mesosphere and the thermosphere. Propagation distance of P-H pulses are very large up to 500-1500 km.

  12. Excitation rate coefficients and line ratios for the optical and ultraviolet transitions in S II

    NASA Technical Reports Server (NTRS)

    Cai, Wei; Pradhan, Anil K.

    1993-01-01

    New calculations are reported for electron excitation collision strengths, rate coefficients, transition probabilities, and line ratios for the astrophysically important optical and UV lines in S II. The collision strengths are calculated in the close coupling approximation using the R-matrix method. The present calculations are more extensive than previous ones, including all transitions among the 12 lowest LS terms and the corresponding 28 fine-structure levels in the collisional-radiative model for S II. While the present rate coefficients for electron impact excitation are within 10-30 percent of the previous values for the low-lying optical transitions employed as density diagnostics of H II regions and nebulae, the excitation rates for the UV transitions 4S super 0 sub 3/2 - 4Psub 1/2,3/2,5/2 differ significantly from earlier calculations, by up to factor of 2. We describe temperature and density sensitive flux ratios for a number of UV lines. The present UV results are likely to be of interest in a more accurate interpretation of S II emission from the Io plasma torus in the magnetosphere of Jupiter, as well as other UV sources observed from the IUE, ASTRO 1, and the HST.

  13. High temperature kinetic study of the reactions H + O2 = OH + O and O + H2 = OH + H in H2/O2 system by shock tube-laser absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Ryu, Si-Ok; Hwang, Soon Muk; Dewitt, Kenneth J.

    1995-01-01

    The reactions: (1) H + O2 = OH + O; and (2) O + H2 = OH + H are the most important elementary reactions in gas phase combustion. They are the main chain-branching reaction in the oxidation of H2 and hydrocarbon fuels. In this study, rate coefficients of the reactions and have been measured over a wide range of composition, pressure, density and temperature behind the reflected shock waves. The experiments were performed using the shock tube - laser absorption spectroscopic technique to monitor OH radicals formed in the shock-heated H2/O2/Ar mixtures. The OH radicals were detected using the P(1)(5) line of (0,0) band of the A(exp 2) Sigma(+) from X(exp 2) Pi transition of OH at 310.023 nm (air). The data were analyzed with the aid of computer modeling. In the experiments great care was exercised to obtain high time resolution, linearity and signal-to-noise. The results are well represented by the Arrhenius expressions. The rate coefficient expression for reaction (1) obtained in this study is k(1) = (7.13 +/- 0.31) x 10(exp 13) exp(-6957+/- 30 K/T) cu cm/mol/s (1050 K less than or equal to T less than or equal to 2500 K) and a consensus expression for k(1) from a critical review of the most recent evaluations of k(1) (including our own) is k(1) = 7.82 x 10(exp 13) exp(-7105 K/T) cu cm/mol/s (960 K less than or equal to T less than or equal to 5300 K). The rate coefficient expression of k(2) is given by k(2) = (1.88 +/- 0.07) x 10(exp 14) exp(-6897 +/- 53 K/T) cu cm/mol/s (1424 K less than or equal to T less than or equal to 2427 K). For k(1), the temperature dependent A-factor and the correlation between the values of k(1) and the inverse reactant densities were not found. In the temperature range of this study, non-Arrhenius expression of k(2) which shows the upward curvature was not supported.

  14. An Integrated Modeling Study for Coordinated Observations of H, O, OH, and H2O(+) Emissions in the Coma and Ion Tail of the Comet Hale-Bopp

    NASA Technical Reports Server (NTRS)

    Smyth, William H.

    2001-01-01

    This project has two overall objectives. One objective is to advance our general understanding of both the comet neutral atmosphere and the cometary plasma in the atmosphere and ion tall. The other objective is to obtain specific key information about comet Hale-Bopp that is generally important for Hale-Bopp studies. The primary emphasis in this project is to analyze, in a self-consistent manner, excellent quality high resolution image and line profile observations obtained by the University of Wisconsin for H, O, OH, and H2O+ emissions from the inner coma, outer coma, and ion tail of Hale-Bopp. The information on the spatial and velocity distributions of H2O neutral and ionized photo-products in the inner coma, outer coma, and in the H2O+ ion tail is of substantial and direct importance in the development of an integrated understanding of the complex structure and dynamics of the neutral and plasma species in the atmosphere of Hale-Bopp in particular and comets in general. The H2O production rate of Hale-Bopp is determined and, together with the other information related to the structure and dynamics of the neutral and plasma atmospheres obtained in this study, provide critical information important for a wide variety of research conducted by other groups.

  15. Modes of physiologic H2S signaling in the brain and peripheral tissues.

    PubMed

    Paul, Bindu D; Snyder, Solomon H

    2015-02-10

    Hydrogen sulfide (H2S), once associated with rotten eggs and sewers, is now recognized as a gasotransmitter that is synthesized in vivo in a regulated fashion. This ancient gaseous molecule has been retained throughout evolution to perform various roles in different life forms. H2S modulates important signaling functions in diverse cellular processes ranging from regulation of blood pressure to redox homeostasis. One of the modes by which H2S signals is by post-translational modification of reactive cysteine residues in a process designated as sulfhydration, resulting in conversion of the -SH groups of target cysteine residues to -SSH. Using the modified biotin-switch assay and a fluorescent maleimide-based analysis, sulfhydration of several proteins has been detected in various cell types. Aberrant sulfhydration patterns occur in neurodegenerative conditions such as Parkinson's disease. The exact concentration, source of H2S, and conditions under which various stores of H2S are utilized have not been fully elucidated. Currently, available inhibitors of the biosynthetic enzymes of H2S lack sufficient specificity to shed light on detailed mechanisms of H2S action. Probes with a higher sensitivity that can reliably detect cellular and tissue H2S levels are yet to be developed. Availability of advanced probes and biosynthesis inhibitors would help in the measurement of real-time changes of endogenous H2S levels in an in vivo context. The study of the dynamics of sulfhydration and nitrosylation of critical cysteine residues of regulatory proteins involved in physiology and pathophysiology is an area of interest for the future.

  16. Mechanisms and rates of proton transfer to coordinated carboxydithioates: studies on [Ni(S2CR){PhP(CH2CH2PPh2)2}](+) (R = Me, Et, Bu(n) or Ph).

    PubMed

    Alwaaly, Ahmed; Clegg, William; Henderson, Richard A; Probert, Michael R; Waddell, Paul G

    2015-02-21

    The complexes [Ni(S2CR)(triphos)]BPh4 (R = Me, Et, Bu(n) or Ph; triphos = PhP{CH2CH2PPh2}2) have been prepared and characterised. X-ray crystallography (for R = Et, Ph, C6H4Me-4, C6H4OMe-4 and C6H4Cl-4) shows that the geometry of the five-coordinate nickel in the cation is best described as distorted trigonal bipyramidal, containing a bidentate carboxydithioate ligand with the two sulfur atoms spanning axial and equatorial sites, the other axial site being occupied by the central phosphorus of triphos. The reactions of [Ni(S2CR)(triphos)](+) with mixtures of HCl and Cl(-) in MeCN to form equilibrium solutions containing [Ni(SH(S)CR)(triphos)](2+) have been studied using stopped-flow spectrophotometry. The kinetics show that proton transfer is slower than the diffusion-controlled limit and involves at least two coupled equilibria. The first step involves the rapid association between [Ni(S2CR)(triphos)](+) and HCl to form the hydrogen-bonded precursor, {[Ni(S2CR)(triphos)](+)HCl} (K) and this is followed by the intramolecular proton transfer (k) to produce [Ni(SH(S)CR)(triphos)](2+). In the reaction of [Ni(S2CMe)(triphos)](+) the rate law is consistent with the carboxydithioate ligand undergoing chelate ring-opening after protonation. It seems likely that chelate ring-opening occurs for all [Ni(S2CR)(triphos)](+), but only with [Ni(S2CMe)(triphos)](+) is the protonation step sufficiently fast that chelate ring-opening is rate-limiting. With all other systems, proton transfer is rate-limiting. DFT calculations indicate that protonation can occur at either sulfur atom, but only protonation at the equatorial sulfur results in chelate ring-opening. The ways in which protonation of either sulfur atom complicates the analyses and interpretation of the kinetics are discussed.

  17. ZnO-carbon nanofibers for stable, high response, and selective H2S sensors.

    PubMed

    Zhang, Jitao; Zhu, Zijian; Chen, Changmiao; Chen, Zhi; Cai, Mengqiu; Qu, Baihua; Wang, Taihong; Zhang, Ming

    2018-07-06

    Hydrogen sulfide (H 2 S), as a typical atmospheric pollutant, is neurotoxic and flammable even at a very low concentration. In this study, we design stable H 2 S sensors based on ZnO-carbon nanofibers. Nanofibers with 30.34 wt% carbon are prepared by a facial electrospinning route followed by an annealing treatment. The resulting H 2 S sensors show excellent selectivity and response compared to the pure ZnO nanofiber H 2 S sensors, particularly the response in the range of 102-50 ppm of H 2 S. Besides, they exhibited a nearly constant response of approximately 40-20 ppm of H 2 S over 60 days. The superior performance of these H 2 S sensors can be attributed to the protection of carbon, which ensures the high stability of ZnO, and oxygen vacancies that improve the response and selectivity of H 2 S. The good performance of ZnO-carbon H 2 S sensors suggests that composites with oxygen vacancies prepared by a facial electrospinning route may provide a new research strategy in the field of gas sensors, photocatalysts, and semiconductor devices.

  18. H2S adsorption and dissociation on NH-decorated graphene: A first principles study

    NASA Astrophysics Data System (ADS)

    Faye, Omar; Eduok, Ubong; Szpunar, Jerzy; Samoura, Almoustapha; Beye, Aboubaker

    2018-02-01

    The removal of H2S gas poses an emerging environmental concern because of the lack of knowledge of an efficient adsorbent. A detailed theoretical study of H2S adsorption and dissociation on NH-doped graphene (GNH) has been carried out by means of density theory calculations. Our results reveal that the adsorption of H2S molecule on GNH composite is enhanced by the presence of active site such as the NH radicals. These NH radical sites formed NHsbnd H bonds and increase the charge transfer from H2S to GNH. The dissociation of the adsorbed H2S molecule leads the chemisorption of SH radical via H-transfer to GNH, while the formation of GNH2 at a weight percent of 3.76 wt% of NH radical is an endothermic process with an energy of 0.299 eV and 0.358 eV for ortho and para-position respectively. However, at 7.25 wt% NH radical, we observed a complete dissociation of H2S molecule with an energy released of 0.711 eV for the chemisorbed S atom on GN2H4. Moreover, the H-transfer of the second H atom of H2S molecule at 3.76 wt% was energetic unfavorable. The trend of predicted results within this study reveals that NH-doped graphene (GNH) successfully adsorbed and eliminated of H2S molecule; this work unveils definitive theoretical procedures which can be tested and validated experimentally.

  19. Studies on two-gap superconductivity in 2H-NbS2

    NASA Astrophysics Data System (ADS)

    Kačmarčík, J.; Pribulová, Z.; Marcenat, C.; Klein, T.; Rodière, P.; Cario, L.; Samuely, P.

    2010-12-01

    We present the ac-calorimetry measurements of superconducting 2H-NbS2 in the temperature range down to 0.6 K and magnetic fields up to 8 T. The temperature and magnetic field dependence of the electronic specific heat consistently indicate existence of two superconducting energy gaps in the system - one of them with the coupling ratio below the BCS weak-coupling limit and the other above that value. These results support previous findings by scanning tunneling microscopy and spectroscopy measurements [I. Guillamón, H. Suderow, S. Vieira, L. Cario, et al., Phys. Rev. Lett. 101 (2008) 166407] of two pronounced features in density of states related to a two-gap superconductivity in this system.

  20. The rate of sulfide oxidation by δMnO 2 in seawater

    NASA Astrophysics Data System (ADS)

    Yao, Wensheng; Millero, Frank J.

    1993-07-01

    The rate of oxidation of hydrogen sulfide by manganese dioxide in seawater was determined as a function of pH (2.0-9.0), temperature (5-45°C), and ionic strength (0-4 M). The overall rate constant, k, in seawater at pH = 8.17 was found to be first order with respect to both sulfide and manganese dioxide: - d[H 2S] T/dt = k[H 2S] τ[MnO 2] . The rate constant, k, for seawater (S = 35.8, pH = 8.17) at 25°C was found to be 436 M -1 min -1, or 0.0244 m -2 1 min -1 when [MnO 2] is expressed in surface area (m 2/L). The energies of activation were found to be 14 ± 1 KJ mol -1 and 10 ± 1 KJ mol -1, respectively, for pH = 8.2 and pH = 5.0 in seawater (S = 35). The rate increased from pH 2.0 to a maximum at a pH of about 5.0 and decreased at higher pH. This pH dependence was attributed to formation of a surface complex between >MnO - and H 2S. As the concentration of HS - increases above pH = 5 the rate of the reaction decreases. The rate of sulfide oxidation by MnO 2 is not strongly dependent on ionic strength. The rates in 0.57 M NaCl were found to be slightly higher than the rates in seawater. Measurements made in solutions of the major sea salts indicated that Ca 2+ and Mg 2+ caused the rates to decrease, apparently by absorbing on the surface of manganese dioxide. Measurements made in artificial seawater (Na +, Mg 2+, Ca 2+, Cl -, and SO 2-4) were found to be in good agreement with the measurements in actual seawater. Phosphate was found to inhibit the reaction significantly.

  1. EFFECTS OF INSTILLED EMISSION PARTICULATE MATTER ON ELECTROCARDIOGRAPHIC INDICES AND HEART RATE VARIABILITY (HRV) IN SPONTANEOUSLY HYPERTENSIVE RATS

    EPA Science Inventory

    EFFECTS OF INSTILLED EMISSION PARTICULATE MATTER (EPM) ON ELECTROCARDIOGRAPHIC INDICES AND HEART RATE VARIABILITY (HRV) IN SPONTANEOUSLY HYPERTENSIVE (SH) RATS. L.B. Wichers1, J.P. Nolan2, W.H. Rowan2, M.J. Campen3, T.P. Jenkins4, D.L. Costa2, and W.P. Watkinson2. 1UNC SPH, Chap...

  2. Aqueous synthesis of Ag and Mn co-doped In2S3/ZnS quantum dots with tunable emission for dual-modal targeted imaging.

    PubMed

    Lai, Pei-Yu; Huang, Chih-Ching; Chou, Tzung-Han; Ou, Keng-Liang; Chang, Jia-Yaw

    2017-03-01

    Here, we present the microwave-assisted synthesis of In 2 S 3 /ZnS core/shell quantum dots (QDs) co-doped with Ag + and Mn 2+ (referred to as AgMn:In 2 S 3 /ZnS). Ag + altered the optical properties of the host QDs, whereas the spin magnetic moment (S=5/2) of Mn 2+ efficiently induced the longitudinal relaxation of water protons. To the best of our knowledge, this is the first report of the aqueous synthesis of color-tunable AgMn:In 2 S 3 /ZnS core/shell QDs with magnetic properties. The synthetic procedure is rapid, facile, reproducible, and scalable. The obtained QDs offered a satisfactory quantum yield (45%), high longitudinal relaxivity (6.84s -1 mM -1 ), and robust photostability. In addition, they exhibited excellent stability over a wide pH range (5-12) and high ionic strength (0.15-2.0M NaCl). As seen by confocal microscopy and magnetic resonance imaging, AgMn:In 2 S 3 /ZnS conjugated to hyaluronic acid (referred to as AgMn:In 2 S 3 /ZnS@HA) efficiently and specifically targeted cluster determinant 44, a receptor overexpressed on cancer cells. Moreover, AgMn:In 2 S 3 /ZnS@HA showed negligible cytotoxicity in vitro and in vivo, rendering it a promising diagnostic probe for dual-modal imaging in clinical applications. In this manuscript, we reported a facial and rapid method to prepare In 2 S 3 /ZnS core/shell quantum dots (QDs) co-doped with Ag + and Mn 2+ (referred to as AgMn:In 2 S 3 /ZnS). Ag + dopants were used to alter the optical properties of the In 2 S 3 host, whereas Mn 2+ co-dopants with their unpaired electrons provided paramagnetic properties. The emission wavelength of the core/shell QDs could be tuned from 550 to 743nm with a maximum PL quantum yield of 45%. The resulting core/shell QDs also maintained a stable emission in aqueous solution at broad ranges of pH (5-12) and ionic strength (0.15-2.0M NaCl), as well as a high photostability under continuous irradiation. In vivo cytotoxicity experiments showed that up to 500μg/mL AgMn:In 2 S 3 /ZnS

  3. Rate Controlling Step in the Reduction of Iron Oxides; Kinetics and Mechanism of Wüstite-Iron Step in H2, CO and H2/CO Gas Mixtures

    NASA Astrophysics Data System (ADS)

    El-Geassy, Abdel-Hady A.

    2017-09-01

    Wüstite (W1 and W2) micropellets (150-50 μm) were prepared from the reduction of pure Fe2O3 and 2.1% SiO2-doped Fe2O3 in 40%CO/CO2 gas mixture at 1000°C which were then isothermally reduced in H2, CO and H2/CO gas mixtures at 900-1100°C. The reduction reactions was followed by Thermogravimetric Analysis (TG) technique. The effect of gas composition, gas pressure and temperature on the rate of reduction was investigated. The different phases formed during the reduction were chemically and physically characterized. In SiO2-doped wüstite, fayalite (Fe2SiO3) was identified. At the initial reduction stages, the highest rate was obtained in H2 and the lowest was in CO gas. In H2/CO gas mixtures, the measured rate did not follow a simple additive equation. The addition of 5% H2 to CO led to a measurable increase in the rate of reduction compared with that in pure CO. Incubation periods were observed at the early reduction stages of W1 in CO at lower gas pressure (<0.25 atm). In SiO2-doped wüstite, reaction rate minimum was detected in H2 and H2-rich gas mixtures at 925-950°C. The influence of addition of H2 to CO or CO to H2 on the reduction reactions, nucleation and grain growth of iron was intensively studied. Unlike in pure wüstite, the presence of fayalite enhances the reduction reactions with CO and CO-rich gas mixtures. The chemical reaction equations of pure wüstite with CO are given showing the formation of carbonyl-like compound [Fem(CO2)n]*. The apparent activation energy values, at the initial stages, ranged from 53.75 to 133.97 kJ/mole indicating different reaction mechanism although the reduction was designed to proceed by the interfacial chemical reaction.

  4. Effects of dicyandiamide and acetylene on N2O emissions and ammonia oxidizers in a fluvo-aquic soil applied with urea.

    PubMed

    Wang, Qing; Zhang, Li-Mei; Shen, Ju-Pei; Du, Shuai; Han, Li-Li; He, Ji-Zheng

    2016-11-01

    Ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) are crucial for N 2 O emission as they carry out the key step of nitrification. Dicyandiamide (DCD) and acetylene (C 2 H 2 ) are typical nitrification inhibitors (NIs), while the comparative effects of these NIs on N 2 O production and ammonia oxidizers' (AOB and AOA) growth are unclear. Four treatments including a control, urea, urea + DCD, and urea + C 2 H 2 were set up to investigate their effect of inhibiting soil nitrification, nitrification-related N 2 O emission as well as the growth of ammonia oxidizers with a fluvo-aquic soil using microcosms for 28 days. N 2 O emission and net nitrification rate increased after the application of urea, but were significantly restrained in urea + NI treatments, while C 2 H 2 was more effective in reducing N 2 O emission and nitrification rate than DCD. The abundance of AOB, which was significantly correlated with N 2 O emission and net nitrification rate, was more inhibited by C 2 H 2 than DCD. Furthermore, the application of urea in all the soils had little impact on the AOA community, while obvious shifts of AOB community structure were found compared with the control. All AOB sequences fell within Nitrosospira cluster 3, and the AOA community was clustered to group 1.1b. Collectively, it indicated that application of urea combined with NIs (DCD or C 2 H 2 ) could potentially alter N 2 O emission, mainly through regulating the growth of AOB but not AOA in this fluvo-aquic soil.

  5. A pilot study to determine medical laser generated air contaminant emission rates for a simulated surgical procedure.

    PubMed

    Lippert, Julia F; Lacey, Steven E; Lopez, Ramon; Franke, John; Conroy, Lorraine; Breskey, John; Esmen, Nurtan; Liu, Li

    2014-01-01

    The U.S. Occupational Safety and Health Administration (OSHA) estimates that half a million health-care workers are exposed to laser surgical smoke each year. The purpose of this study was to establish a methodology to (1) estimate emission rates of laser-generated air contaminants (LGACs) using an emission chamber, and to (2) perform a screening study to differentiate the effects of three laser operational parameters. An emission chamber was designed, fabricated, and assessed for performance to estimate the emission rates of gases and particles associated with LGACs during a simulated surgical procedure. Two medical lasers (Holmium Yttrium Aluminum Garnet [Ho:YAG] and carbon dioxide [CO2]) were set to a range of plausible medical laser operational parameters in a simulated surgery to pyrolyze porcine skin generating plume in the emission chamber. Power, pulse repetition frequency (PRF), and beam diameter were evaluated to determine the effect of each operational parameter on emission rate using a fractional factorial design. The plume was sampled for particulate matter and seven gas phase combustion byproduct contaminants (benzene, ethylbenzene, toluene, formaldehyde, hydrogen cyanide, carbon dioxide, and carbon monoxide): the gas phase emission results are presented here. Most of the measured concentrations of gas phase contaminants were below their limit of detection (LOD), but detectable measurements enabled us to determine laser operation parameter influence on CO2 emissions. Confined to the experimental conditions of this screening study, results indicated that beam diameter was statistically significantly influential and power was marginally statistically significant to emission rates of CO2 when using the Ho:YAG laser but not with the carbon dioxide laser; PRF was not influential vis-a-vis emission rates of these gas phase contaminants.

  6. Evaluation of H2S sensing characteristics of metals-doped graphene and metals-decorated graphene: Insights from DFT study

    NASA Astrophysics Data System (ADS)

    Khodadadi, Zahra

    2018-05-01

    The high tendency of graphene to adsorb H2S gas has made it a good choice for the purpose of separating H2S gas from industrial waste streams, and it can also be used as a good H2S sensor. In this research, the adsorption of H2S molecule on pristine, transition metal (Ni, Cu and Zn)-doped graphene and metal-decorated graphene nanosheets have been investigated via first-principles approach based on Density Functional Theory (DFT). The most stable adsorption geometry, rate of adsorption energy and charge transfer of H2S molecule on pristine, metal-doped, and metal-decorated graphene nanosheets have been discussed. The adsorption of H2S gas on several kinds of graphene nanosheets was studied by three different models. As H2S molecule adsorbed on metal-doped graphene nanosheets, we found that the configuration with two hydrogen atoms towards the metal-doped graphene nanosheet as most desirable situation. Moreover, the calculations show that the adsorption energy of H2S on Cu-doped graphene nanosheet is the highest among all the other metal-doped graphene nanosheet systems. We also investigated the H2S capability to bind to Ni, Cu and Zn-decorated graphene nanosheets. It was found that after adsorption, the configuration of the sulfur atom, which was located close to the metal-decorated graphene nanosheets was stable thermodynamically. The Ni-decorated graphene nanosheet with large adsorption energy and short binding distance is suitable for chemisorptions. The unfilled d-shells Ni-decorated graphene nanosheets are primarily responsible for increase in the reactivity.

  7. VHE gamma-ray Emitting Pulsar Wind Nebulae Discovered by H.E.S.S.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallant, Y.A.; /Montpellier U.; Carrigan, S.

    2008-06-05

    Recent advances in very-high-energy (VHE) gamma-ray astronomy have opened a new observational window on the physics of pulsars. The high sensitivity of current imaging atmospheric Cherenkov telescopes, and in particular of the H.E.S.S. array, has already led to the discovery of about a dozen VHE-emitting pulsar wind nebulae (PWNe) and PWN candidates. These include the plerions in the composite supernova remnants MSH 15-52, G21.5-0.9, Kes 75, and Vela, two sources in the Kookaburra, and the nebula of PSR B1823-13. This VHE emission is generally interpreted as inverse Compton emission from the relativistic electrons and positrons accelerated by the pulsar andmore » its wind; as such, it can yield a more direct spatial and spectral view of the accelerated particles than can be inferred from observations of their synchrotron emission. The VHE-emitting PWNe detected by the H.E.S.S. telescopes are reviewed and the implications for pulsar physics discussed.« less

  8. Impact of a future H2 transportation on atmospheric pollution in Europe

    NASA Astrophysics Data System (ADS)

    Popa, M. E.; Segers, A. J.; Denier van der Gon, H. A. C.; Krol, M. C.; Visschedijk, A. J. H.; Schaap, M.; Röckmann, T.

    2015-07-01

    Hydrogen (H2) is being explored as a fuel for passenger vehicles; it can be used in fuel cells to power electric motors or burned in internal combustion engines. In order to evaluate the potential influence of a future H2-based road transportation on the regional air quality in Europe, we implemented H2 in the atmospheric transport and chemistry model LOTOS-EUROS. We simulated the present and future (2020) air quality, using emission scenarios with different proportions of H2 vehicles and different H2 leakage rates. The reference future scenario does not include H2 vehicles, and assumes that all present and planned European regulations for emissions are fully implemented. We find that, in general, the air quality in 2020 is significantly improved compared to the current situation in all scenarios, with and without H2 cars. In the future scenario without H2 cars, the pollution is reduced due to the strict European regulations: annually averaged CO, NOx and PM2.5 over the model domain decrease by 15%, 30% and 20% respectively. The additional improvement brought by replacing 50% or 100% of traditionally-fueled vehicles by H2 vehicles is smaller in absolute terms. If 50% of vehicles are using H2, the CO, NOx and PM2.5 decrease by 1%, 10% and 1% respectively, compared to the future scenario without H2 cars. When all vehicles run on H2, then additional decreases in CO, NOx and PM2.5 are 5%, 40%, and 5% relative to the no-H2 cars future scenario. Our study shows that H2 vehicles may be an effective pathway to fulfill the strict future EU air quality regulations. O3 has a more complicated behavior - its annual average decreases in background areas, but increases in the high-NOx area in western Europe, with the decrease in NOx. A more detailed analysis shows that the population exposure to high O3 levels decreases nevertheless. In all future scenarios, traffic emissions account for only a small proportion of the total anthropogenic emissions, thus it becomes more important

  9. [County-scale N2O emission inventory of China's manure management system].

    PubMed

    Wang, Chuan; Gao, Wei; Zhou, Feng; Chen, Qing; Ying, Na; Xu, Peng; Hou, Xi-Kang

    2013-10-01

    Manure is one of the two largest contributors to China's N2O emission. By using the county-scale activity data and the regional emission factors and related parameters with spatial differentiation in China in 2008, this paper assessed the N2O emission loading, sources profile, spatial pattern, and uncertainty, aimed to establish a high-resolution N2O emission inventory of China's manure management system in 2008. As compared with the research results based on the IPCC, EDGAR, and other works, the proposed emission inventory was more reliable and comprehensive. The total China' s N2O emission from manure in 2008 was estimated as 572 Gg, among which, the emission from the manure except pasture/range/paddock was 322 Gg (56.3%), from the manure in pasture/range/paddock was 180 Gg (31.5%), and the indirect emission from atmospheric volatilized N deposition and leaching/runoff was 45.8 Gg (8.0%) and 1.23 Gg (0.2%), respectively. The spatial pattern of China's N2O emission from manure was more centralized, and mainly concentrated in Jilin, Shandong, Sichuan, Hunan, Henan, Heilongjiang, and Liaoning provinces, contributing 52.4% of the total emission, and more than 25% being from 84 counties (only < 3% of the whole counties). The proposed emission inventory had a higher spatial resolution and accuracy. Different with this inventory, the IPCC underestimated the direct emission while overestimated the indirect emission, with the regions of higher emission rate being underestimated by -1.5%-6.0% and those of lower emission rate being overestimated by 1.6%-13%. As for the EDGAR, the regions of higher emission rate were underestimated by -18. 8--50.0%, and those of lower emission rate were mostly overestimated by 25%-54.1%.

  10. Role of Elemental Sulfur in Forming Latent Precursors of H2S in Wine.

    PubMed

    Jastrzembski, Jillian A; Allison, Rachel B; Friedberg, Elle; Sacks, Gavin L

    2017-12-06

    The level of hydrogen sulfide (H 2 S) can increase during abiotic storage of wines, and potential latent sources of H 2 S are still under investigation. We demonstrate that elemental sulfur (S 0 ) residues on grapes not only can produce H 2 S during fermentation but also can form precursors capable of generating additional H 2 S after bottle storage for 3 months. H 2 S could be released from S 0 -derived precursors by addition of a reducing agent (TCEP), but not by addition of strong brine to induce release of H 2 S from metal sulfide complexes. The size of the TCEP-releasable pool varied among yeast strains. Using the TCEP assay, multiple polar S 0 -derived precursors were detected following normal-phase preparative chromatography. Using reversed-phase liquid chromatography and high-resolution mass spectrometry, we detected an increase in the levels of diglutathione trisulfane (GSSSG) and glutathione disulfide (GSSG) in S 0 -fermented red wine and an increase in the levels of glutathione S-sulfonate (GSSO 3 - ) and tetrathionate (S 4 O 6 2- ) in S 0 -fermented white wine as compared to controls. GSSSG, but not S 4 O 6 2- , was shown to evolve H 2 S in the presence of TCEP. Pathways for the formation of GSSSG, GSSG, GSSO 3 - , and S 4 O 6 2- from S 0 are proposed.

  11. A surprise at the bottom of the main sequence: Rapid rotation and NO H-alpha emission

    NASA Technical Reports Server (NTRS)

    Basri, Gibor; Marcy, Geoffrey W.

    1995-01-01

    We report Kech Observatory high-resolution echelle spectra from 640-850 nm for eight stars near the faint end of the main sequence. These spectra are the highest resolution spectra of such late-type stars, and clearly resolve the TiO, VO, and atomic lines. The sample includes the field brown-dwarf candidate, BRI 0021-0214 (M9.5+). Very unexpectedly, it shows the most rapid rotation in the entire samples, v sin i approximately 40 km/s, which is 20x faster than typical field nonemission M stars. Equally surprising is that BRI 0021 exhibits no emission or absorptionat H-alpha. We argue that this absence is not simply due to its cool photosphere, but that stellar activity declines in a fundamental way at the end of the main sequence. As it is the first very late M dwarf observed at high spectral resolution, BRI 0021 may be signaling a qualitative change in the angular momentum loss rate among the lowest mass stars. Conventionally, its rapid rotation would have marked BRI 0021 as very young, consistent with the selection effect which arises if the latest-type dwarfs are really brown dwarfs on cooling curves. In any case, it is unprecedented to find no sign of stellar activity in such a rapidly rotating convective star. We also discuss the possible conflict between this observation and the extremely strong H-alpha seen in another very cool star, PC 0025+0447. Extrapolation of M-L relations for BRI 0021 yields M approximately 0.065 solar mass, and the other sample objects have expected masses near the H-burning limit. These include two Pleiades brown-dwarf candidates, four field M6 dwarfs and one late-type T Tauri star. The two Pleiades M6 dwarfs have v sin i of 26 and 37 km/s, H-alpha in emission, and radial velocities consistent with Pleiades M6 dwarfs have v sin i of 26 and 37 km/s, H-alpha in emission, and radial velocities consistent with Pleiades membership. Similarly, the late-type T Tauri star has v sin i approximately 30 km/s and H alpha emission indicate of its

  12. Electronic properties of in-plane phase engineered 1T'/2H/1T' MoS2

    NASA Astrophysics Data System (ADS)

    Thakur, Rajesh; Sharma, Munish; Ahluwalia, P. K.; Sharma, Raman

    2018-04-01

    We present the first principles studies of semi-infinite phase engineered MoS2 along zigzag direction. The semiconducting (2H) and semi-metallic (1T') phases are known to be stable in thin-film MoS2. We described the electronic and structural properties of the infinite array of 1T'/2H/1T'. It has been found that 1T'phase induced semi-metallic character in 2H phase beyond interface but, only Mo atoms in 2H phase domain contribute to the semi-metallic nature and S atoms towards semiconducting state. 1T'/2H/1T' system can act as a typical n-p-n structure. Also high holes concentration at the interface of Mo layer provides further positive potential barriers.

  13. Detailed modelling of the circumstellar molecular line emission of the S-type AGB star W Aquilae

    NASA Astrophysics Data System (ADS)

    Danilovich, T.; Bergman, P.; Justtanont, K.; Lombaert, R.; Maercker, M.; Olofsson, H.; Ramstedt, S.; Royer, P.

    2014-09-01

    Context. S-type AGB stars have a C/O ratio which suggests that they are transition objects between oxygen-rich M-type stars and carbon-rich C-type stars. As such, their circumstellar compositions of gas and dust are thought to be sensitive to their precise C/O ratio, and it is therefore of particular interest to examine their circumstellar properties. Aims: We present new Herschel HIFI and PACS sub-millimetre and far-infrared line observations of several molecular species towards the S-type AGB star W Aql. We use these observations, which probe a wide range of gas temperatures, to constrain the circumstellar properties of W Aql, including mass-loss rate and molecular abundances. Methods: We used radiative transfer codes to model the circumstellar dust and molecular line emission to determine circumstellar properties and molecular abundances. We assumed a spherically symmetric envelope formed by a constant mass-loss rate driven by an accelerating wind. Our model includes fully integrated H2O line cooling as part of the solution of the energy balance. Results: We detect circumstellar molecular lines from CO, H2O, SiO, HCN, and, for the first time in an S-type AGB star, NH3. The radiative transfer calculations result in an estimated mass-loss rate for W Aql of 4.0 × 10-6 M⊙ yr-1 based on the 12CO lines. The estimated 12CO/13CO ratio is 29, which is in line with ratios previously derived for S-type AGB stars. We find an H2O abundance of 1.5 × 10-5, which is intermediate to the abundances expected for M and C stars, and an ortho/para ratio for H2O that is consistent with formation at warm temperatures. We find an HCN abundance of 3 × 10-6, and, although no CN lines are detected using HIFI, we are able to put some constraints on the abundance, 6 × 10-6, and distribution of CN in W Aql's circumstellar envelopeusing ground-based data. We find an SiO abundance of 3 × 10-6, and an NH3 abundance of 1.7 × 10-5, confined to a small envelope. If we include uncertainties

  14. Two's company, three's a crowd: can H2S be the third endogenous gaseous transmitter?

    PubMed

    Wang, Rui

    2002-11-01

    Bearing the public image of a deadly "gas of rotten eggs," hydrogen sulfide (H2S) can be generated in many types of mammalian cells. Functionally, H2S has been implicated in the induction of hippocampal long-term potentiation, brain development, and blood pressure regulation. By acting specifically on KATP channels, H2S can hyperpolarize cell membranes, relax smooth muscle cells, or decrease neuronal excitability. The endogenous metabolism and physiological functions of H2S position this gas well in the novel family of endogenous gaseous transmitters, termed "gasotransmitters." It is hypothesized that H2S is the third endogenous signaling gasotransmitter, besides nitric oxide and carbon monoxide. This positioning of H2S will open an exciting field-H2S physiology-encompassing realization of the interaction of H2S and other gasotransmitters, sulfurating modification of proteins, and the functional role of H2S in multiple systems. It may shed light on the pathogenesis of many diseases related to the abnormal metabolism of H2S.

  15. Impact of elevated CO2 and O3 concentrations on biogenic volatile organic compounds emissions from Ginkgo biloba.

    PubMed

    Li, Dewen; Chen, Ying; Shi, Yi; He, Xingyuan; Chen, Xin

    2009-04-01

    In natural environment with ambient air, ginkgo trees emitted volatile organic compounds 0.18 microg g(-1) h(-1) in July, and 0.92 microg g(-1) h(-1) in September. Isoprene and limonene were the most abundant detected compounds. In September, alpha-pinene accounted for 22.5% of the total. Elevated CO(2) concentration in OTCs increased isoprene emission significantly in July (p<0.05) and September (p<0.05), while the total monoterpenes emission was enhanced in July and decreased in September by elevated CO(2). Exposed to elevated O(3) increased the isoprene and monoterpenes emissions in July and September, and the total volatile organic compounds emission rates were 0.48 microg g(-1) h(-1) (in July) and 2.24 microg g(-1) h(-1) (in September), respectively. The combination of elevated CO(2) and O(3) did not have any effect on biogenic volatile organic compounds emissions, except increases of isoprene and Delta3-carene in September.

  16. Emission Depth Distribution Function of Al 2s Photoelectrons in Al2O3

    NASA Astrophysics Data System (ADS)

    Hucek, S.; Zemek, J.; Jablonski, A.; Tilinin, I. S.

    The escape probability of Al 2s photoelectrons leaving an aluminum oxide sample (Al2O3) has been studied as a function of depth of origin. It has been found that the escape probability (the so-called emission depth distribution function - DDF) depends strongly on the photoelectron emission direction with respect to that of the incident X-ray beam. In particular, in the emission direction close to that of photon propagation, the DDF differs substantially from the simple Beer-Lambert law and exhibits a nonmonotonic behavior with a maximum in the near-surface region at a depth of about 10 Å. Experimental results are in good agreement with theoretical predictions based on Monte Carlo simulations of the electron transport and with analytical solution of the linearized Boltzmann kinetic equation with appropriate boundary conditions. Both theoretical approaches take into account multiple elastic scattering of photoelectrons on their way out of the sample. It is shown that the commonly used straight line approximation (SLA), which neglects elastic scattering effects, fails to describe adequately experimental data at emission directions close to minima of the differential photoelectric cross section.

  17. [Effects of simulated acid rain on respiration rate of cropland system with different soil pH].

    PubMed

    Zhu, Xue-zhu; Zhang, Gao-chuan; Li, Hui

    2009-10-15

    To evaluate the effects of acid rain on the respiration rate of cropland system, an outdoor pot experiment was conducted with paddy soils of pH 5.48 (S1), pH 6.70 (S1) and pH 8.18 (S3) during the 2005-2007 wheat-growing seasons. The cropland system was exposed to acid rain by spraying the wheat foliage and irrigating the soil with simulated rainwater of T1 (pH 6.0), T2 (pH 6.0, ionic concentration was twice as rainwater T1), and T3 (pH 4.4, ionic concentration was twice as rainwater T1), respectively. The static opaque chamber-gas chromatograph method was used to measure CO2 fluxes from cropland system. The results showed that acid rain affected the respiration rate of cropland system through crop plant, and the cropland system could adapt to acid rain. Acid rainwater significantly increased the average respiration rate in alkaline soil (S3) cropland system, while it had no significant effects on the average respiration rate in neutral soil (S2) and acidic soil (S1) cropland systems. During 2005-2006, after the alkaline soil cropland system was treated with rainwater T3, the average respiration rate was 23.6% and 27.6% higher than that of alkaline soil cropland system treated with rainwater T1 and T2, respectively. During March to April, the respiration rate was enhanced with the increase of rainwater ionic concentration, while it was dropped with the decrease of rainwater pH value in acidic soil cropland system. It was demonstrated that soil pH and crop plant played important roles on the respiration rate of cropland system.

  18. Global and regional drivers of accelerating CO2 emissions

    PubMed Central

    Raupach, Michael R.; Marland, Gregg; Ciais, Philippe; Le Quéré, Corinne; Canadell, Josep G.; Klepper, Gernot; Field, Christopher B.

    2007-01-01

    CO2 emissions from fossil-fuel burning and industrial processes have been accelerating at a global scale, with their growth rate increasing from 1.1% y−1 for 1990–1999 to >3% y−1 for 2000–2004. The emissions growth rate since 2000 was greater than for the most fossil-fuel intensive of the Intergovernmental Panel on Climate Change emissions scenarios developed in the late 1990s. Global emissions growth since 2000 was driven by a cessation or reversal of earlier declining trends in the energy intensity of gross domestic product (GDP) (energy/GDP) and the carbon intensity of energy (emissions/energy), coupled with continuing increases in population and per-capita GDP. Nearly constant or slightly increasing trends in the carbon intensity of energy have been recently observed in both developed and developing regions. No region is decarbonizing its energy supply. The growth rate in emissions is strongest in rapidly developing economies, particularly China. Together, the developing and least-developed economies (forming 80% of the world's population) accounted for 73% of global emissions growth in 2004 but only 41% of global emissions and only 23% of global cumulative emissions since the mid-18th century. The results have implications for global equity. PMID:17519334

  19. Gaseous emissions from outdoor concrete yards used by livestock

    NASA Astrophysics Data System (ADS)

    Misselbrook, T. H.; Webb, J.; Chadwick, D. R.; Ellis, S.; Pain, B. F.

    Measurements of ammonia (NH 3), nitrous oxide (N 2O) and methane (CH 4) were made from 11 outdoor concrete yards used by livestock. Measurements of NH 3 emission were made using the equilibrium concentration technique while closed chambers were used to measure N 2O and CH 4 emissions. Outdoor yards used by livestock proved to be an important source of NH 3 emission. Greatest emission rates were measured from dairy cow feeding yards, with a mean of 690 mg NH 3-N m -2 h -1. Smaller emission rates were measured from sheep handling areas, dairy cow collecting yards, beef feeding yards and a pig loading area, with respective mean emission rates of 440, 280, 220 and 140 mg NH 3-N m -2 h -1. Emission rates of N 2O and CH 4 were much smaller and for CH 4, in particular, emission rates were influenced greatly by the presence or absence of dung on the measurement area.

  20. The Jovian atmospheric window at 2.7 microns: A search for H2S

    NASA Technical Reports Server (NTRS)

    Larson, H. P.; Davis, D. S.; Hofmann, R.; Bjoraker, G. L.

    1984-01-01

    The atmospheric transmission window at 2.7 microns in Jupiter's atmosphere was observed at a spectral resolution of 0.1/cm from the Kuiiper Airborne Observatory. From an analysis of the CH4 abundance (80 m-am) and the H2O abundance ( 0.0125 cm-am) it was determined that the penetration depth of solar flux at 2.7 microns is near the base of the NH3 cloud layer. The upper limit to H2O at 2.7 microns and other results suggest that photolytic reactions in Jupiter's lower troposphere may not be as significant as was previously thought. A search for H2S in Jupiter's atmosphere yielded an upper limit of 0.1 cm-am. The corresponding limit to the element abundance ratio S/H was approx. 1.7x10(-8), about 10(-3) times the solar value. Upon modeling the abundance and distribution of H2S in Jupiter's atmosphere it was concluded that, contrary to expectations, sulfur-bearing chromophores are not present in significant amounts in Jupiter's visible clouds. Rather, it appears that most of Jupiter's sulfur is locked up as NH4SH in a lower cloud layer. Alternatively, the global abundance of sulfur in Jupiter may be significantly depleted.

  1. Comparison of pollutant emission rates from unvented kerosene and gas space heaters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apte, M.G.; Traynor, G.W.

    1986-05-01

    In this paper the pollutant emission rates of all five types of unvented space heaters are compared. Pollutant emission rates for carbon dioxide, carbon monoxide (CO), nitric oxide, nitrogen dioxide (NO/sub 2/), formaldehyde, and submicron suspended particles were measured. Special emphasis is placed on CO and NO/sub 2/ emissions. Pollutant measurements were made in a 27-m/sup 3/ environmental chamber and emission rates were calculated using a mass-balance model. Emission rates for propane and natural gas space heaters were similar. Emissions from the various types of heaters fall into three distinct groups. The groups are better characterized by burner design thanmore » by the type of fuel used. Radiant kerosene heaters and infrared UVGSHs constitute one group; convective kerosene heaters and convective UVGSHs the second, and two-stage kerosene heaters the third group. When groups are compared, emission rates vary by an order of magnitude for carbon monoxide and for nitrogen dioxide. The two-stage kerosene heaters emitted the least CO and also the least NO/sub 2/ per unit of fuel energy consumed. The radiant/infrared heaters emitted the most CO, and the convective heaters emitted the most NO/sub 2/. The effects of various operation parameters such as the wick height for kerosene heaters and the air shutter adjustment for gas heaters are discussed. Convective UVGSHs operating at half input were found to have lower emission rates on average than when operating at full input. Some maltuned convective UVGSHs were capable of emitting very high amounts of CO. Kerosene heaters were found to emit more CO and NO/sub 2/ on average when they were operated with lowered wicks.« less

  2. Insight into effects of mature compost recycling on N2O emission and denitrification genes in sludge composting.

    PubMed

    Wang, Ke; Wu, Yiqi; Li, Weiguang; Wu, Chuandong; Chen, Zhiqiang

    2018-03-01

    Mature compost recycling is widely used to reduce the dosage of organic bulking agent in actual composting process. In this study, the effects of mature compost amendment on N 2 O emission and denitrification genes were investigated in 47 days composting of sewage sludge and rice husks. The results showed that mature compost amendment dramatically augmented N 2 O emission rate in mesophilic phase and CO 2 emission rate in thermophilic phase of composting, respectively. The cumulative amount of N 2 O emission increased by more than 23 times compared to the control. Mature compost amendment not only reduced moisture and pH, but also significantly increased NO 3 - -N and NO 2 - -N concentrations. The correlation matrices indicated that NO 3 - -N, narG and norB were the main factors influencing N 2 O emission rate in sludge composting with mature compost recycling, but the N 2 O emission rate was significantly correlated to NO 2 - -N, nirK and norB in the control. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Effect of Chromium on Corrosion Behavior of P110 Steels in CO2-H2S Environment with High Pressure and High Temperature

    PubMed Central

    Sun, Jianbo; Sun, Chong; Lin, Xueqiang; Cheng, Xiangkun; Liu, Huifeng

    2016-01-01

    The novel Cr-containing low alloy steels have exhibited good corrosion resistance in CO2 environment, mainly owing to the formation of Cr-enriched corrosion film. In order to evaluate whether it is applicable to the CO2 and H2S coexistence conditions, the corrosion behavior of low-chromium steels in CO2-H2S environment with high pressure and high temperature was investigated using weight loss measurement and surface characterization. The results showed that P110 steel suffered localized corrosion and both 3Cr-P110 and 5Cr-P110 steels exhibited general corrosion. However, the corrosion rate of 5Cr-P110 was the highest among them. The corrosion process of the steels was simultaneously governed by CO2 and H2S. The outer scales on the three steels mainly consisted of FeS1−x crystals, whereas the inner scales on Cr-containing steels comprised of amorphous FeS1−x, Cr(OH)3 and FeCO3, in contrast with the amorphous FeS1−x and FeCO3 mixture film of P110 steel. The more chromium the steel contains, the more chromium compounds the corrosion products contain. The addition of chromium in steels increases the uniformity of the Cr-enriched corrosion scales, eliminates the localized corrosion, but cannot decrease the general corrosion rates. The formation of FeS1−x may interfere with Cr-enriched corrosion scales and lowering the corrosion performance of 3Cr-P110 and 5Cr-P110 steels. PMID:28773328

  4. Comparison of APSIM and DNDC simulations of nitrogen transformations and N2O emissions.

    PubMed

    Vogeler, I; Giltrap, D; Cichota, R

    2013-11-01

    Various models have been developed to better understand nitrogen (N) cycling in soils, which is governed by a complex interaction of physical, chemical and biological factors. Two process-based models, the Agricultural Production Systems sIMulator (APSIM) and DeNitrification DeComposition (DNDC), were used to simulate nitrification, denitrification and nitrous oxide (N2O) emissions from soils following N input from either fertiliser or excreta deposition. The effect of environmental conditions on N transformations as simulated by the two different models was compared. Temperature had a larger effect in APSIM on nitrification, whereas in DNDC, water content produced a larger response. In contrast, simulated denitrification showed a larger response to temperature and also organic carbon content in DNDC. And while denitrification in DNDC is triggered by rainfall ≥5mm/h, in APSIM, the driving factor is soil water content, with a trigger point at water content at field capacity. The two models also showed different responses to N load, with nearly linearly increasing N2O emission rates with N load simulated by DNDC, and a lower rate by APSIM. Increasing rainfall intensity decreased APSIM-simulated N2O emissions but increased those simulated by DNDC. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Vibrational energy transfer and relaxation in O2 and H2O.

    PubMed

    Huestis, David L

    2006-06-01

    Near-resonant vibrational energy exchange between oxygen and water molecules is an important process in the Earth's atmosphere, combustion chemistry, and the chemical oxygen iodine laser (COIL). The reactions in question are (1) O2(1) + O2(0) --> O2(0) + O2(0); (2) O2(1) + H2O(000) --> O2(0) + H2O(000); (3) O2(1) + H2O(000) <--> O2(0) + H2O(010); (4) H2O(010) + H2O(000) --> H2O(000) + H2O(000); and (5) H2O(010) + O2(0) --> H2O(000) + O2(0). Reanalysis of the data available in the chemical kinetics literature provides reliable values for rate coefficients for reactions 1 and 4 and strong evidence that reactions 2 and 5 are slow in comparison with reaction 3. Analytical solution of the chemical rate equations shows that previous attempts to measure the rate of reaction 3 are unreliable unless the water mole fraction is higher than 1%. Reanalysis of data from the only experiment satisfying this constraint provides a rate coefficient of (5.5 +/- 0.4) x 10(-13) cm3/s at room temperature, between the values favored by the atmospheric and laser modeling communities.

  6. Ab initio rate constants from hyperspherical quantum scattering: Application to H+C2H6 and H+CH3OH

    NASA Astrophysics Data System (ADS)

    Kerkeni, Boutheïna; Clary, David C.

    2004-10-01

    The dynamics and kinetics of the abstraction reactions of H atoms with ethane and methanol have been studied using a quantum mechanical procedure. Bonds being broken and formed are treated with explicit hyperspherical quantum dynamics. The ab initio potential energy surfaces for these reactions have been developed from a minimal number of grid points (average of 48 points) and are given by analytical functionals. All the degrees of freedom except the breaking and forming bonds are optimized using the second order perturbation theory method with a correlation consistent polarized valence triple zeta basis set. Single point energies are calculated on the optimized geometries with the coupled cluster theory and the same basis set. The reaction of H with C2H6 is endothermic by 1.5 kcal/mol and has a vibrationally adiabatic barrier of 12 kcal/mol. The reaction of H with CH3OH presents two reactive channels: the methoxy and the hydroxymethyl channels. The former is endothermic by 0.24 kcal/mol and has a vibrationally adiabatic barrier of 13.29 kcal/mol, the latter reaction is exothermic by 7.87 kcal/mol and has a vibrationally adiabatic barrier of 8.56 kcal/mol. We report state-to-state and state-selected cross sections together with state-to-state rate constants for the title reactions. Thermal rate constants for these reactions exhibit large quantum tunneling effects when compared to conventional transition state theory results. For H+CH3OH, it is found that the CH2OH product is the dominant channel, and that the CH3O channel contributes just 2% at 500 K. For both reactions, rate constants are in good agreement with some measurements.

  7. Preliminary results on effect of H2S on P265GH commercial material for natural gases and petroleum transportation

    NASA Astrophysics Data System (ADS)

    Zaharia, Marius Gabriel; Stanciu, Sergiu; Cimpoesu, Ramona; Ionita, Iulian; Cimpoesu, Nicanor

    2018-04-01

    A commercial Fe-C material (P265GH) used for natural gas delivery and transportation systems was analyzed in H2S atmosphere in order to establish the corrosion resistance. In most of the industrial processes for gas purification the corrosion rate is speed up by the presence of sulphur (S) especially as ions (HS-, SO32-) or different species like H2S. The H2S (hydrogen sulphide) is, beside a very toxic compound, a very active element in the acceleration of metallic materials deterioration. For experiments we used a three electrodes cell with Na2SO4 + Na2S solution at pH 3 for two different temperatures, room temperature ∼ 25 °C (sample 1) and at 60 (sample 2) ±1 °C in order to realize EIS (electrochemical impedance spectroscopy) and potentiodynamic polarization. After electro-chemical tests and corrosion resistance characterisation the material surface was analyzed using scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS).

  8. Quantitative theoretical analysis of lifetimes and decay rates relevant in laser cooling BaH

    NASA Astrophysics Data System (ADS)

    Moore, Keith; Lane, Ian C.

    2018-05-01

    Tiny radiative losses below the 0.1% level can prove ruinous to the effective laser cooling of a molecule. In this paper the laser cooling of a hydride is studied with rovibronic detail using ab initio quantum chemistry in order to document the decays to all possible electronic states (not just the vibrational branching within a single electronic transition) and to identify the most populated final quantum states. The effect of spin-orbit and associated couplings on the properties of the lowest excited states of BaH are analysed in detail. The lifetimes of the A2Π1/2, H2Δ3/2 and E2Π1/2 states are calculated (136 ns, 5.8 μs and 46 ns respectively) for the first time, while the theoretical value for B2 Σ1/2+ is in good agreement with experiments. Using a simple rate model the numbers of absorption-emission cycles possible for both one- and two-colour cooling on the competing electronic transitions are determined, and it is clearly demonstrated that the A2Π - X2Σ+ transition is superior to B2Σ+ - X2Σ+ , where multiple tiny decay channels degrade its efficiency. Further possible improvements to the cooling method are proposed.

  9. Anticorrosion performance of chromized coating prepared by pack cementation in simulated solution with H2S and CO2

    NASA Astrophysics Data System (ADS)

    Wang, Qin-Ying; Behnamian, Yashar; Luo, Hong; Wang, Xian-Zong; Leitch, Michael; Zeng, Hongbo; Luo, Jing-Li

    2017-10-01

    A hash service environment containing H2S and CO2 in oil industry usually causes corrosion of carbon steel. In this study, the chromized coatings with different deposited time were prepared on the surface of carbon steel by the method of pack cementation to enhance its corrosion resistance. Then the microstructure, hardness, corrosion resistance as well as the semiconductor behavior of coatings in the simulated solution with saturated H2S and CO2 were investigated. The results show that the content of Cr in coating was increased by prolonging deposited time, and both chromium carbides and chromium nitrides were formed. Furthermore, coatings display higher polarization resistance, Rp, than that of the substrate, indicating a higher resistance to charge transfer on coating surface. The corrosion rates of coatings with different deposited time were significantly lower than that of substrate. Chemical analysis showed the formation of heavy sulfides on the surface of substrates after corrosion, while the least corrosion products were detected on the surface of coating with deposited time of 12 h. Mott-Schottky results indicated that coating of 12 h displayed less defects than the other two coatings with deposited time of 4 h and 8 h, which will be beneficial to improve corrosion resistance. The investigation showed that chromized coatings exhibited high corrosion resistance and owned a potential application in oil industry for corrosion prevention.

  10. SnS2 /Sb2 S3 Heterostructures Anchored on Reduced Graphene Oxide Nanosheets with Superior Rate Capability for Sodium-Ion Batteries.

    PubMed

    Wang, Shijian; Liu, Shuaishuai; Li, Xuemei; Li, Cong; Zang, Rui; Man, Zengming; Wu, Yuhan; Li, Pengxin; Wang, Guoxiu

    2018-03-12

    Tin disulfide, as a promising high-capacity anode material for sodium-ion batteries, exhibits high theoretical capacity but poor practical electrochemical properties due to its low electrical conductivity. Constructing heterostructures has been considered to be an effective approach to enhance charge transfer and ion-diffusion kinetics. In this work, composites of SnS 2 /Sb 2 S 3 heterostructures with reduced graphene oxide nanosheets were synthesized by a facile one-pot hydrothermal method. When applied as anode material in sodium-ion batteries, the composite showed a high reversible capacity of 642 mA h g -1 at a current density of 0.2 A g -1 and good cyclic stability without capacity loss in 100 cycles. In particular, SnS 2 /Sb 2 S 3 heterostructures exhibited outstanding rate performance with capacities of 593 and 567 mA h g -1 at high current densities of 2 and 4 A g -1 , respectively, which could be ascribed to the dramatically improved Na + diffusion kinetics and electrical conductivity. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Revisiting global fossil fuel and biofuel emissions of ethane

    NASA Astrophysics Data System (ADS)

    Tzompa-Sosa, Z. A.; Mahieu, E.; Franco, B.; Keller, C. A.; Turner, A. J.; Helmig, D.; Fried, A.; Richter, D.; Weibring, P.; Walega, J.; Yacovitch, T. I.; Herndon, S. C.; Blake, D. R.; Hase, F.; Hannigan, J. W.; Conway, S.; Strong, K.; Schneider, M.; Fischer, E. V.

    2017-02-01

    Recent measurements over the Northern Hemisphere indicate that the long-term decline in the atmospheric burden of ethane (C2H6) has ended and the abundance increased dramatically between 2010 and 2014. The rise in C2H6 atmospheric abundances has been attributed to oil and natural gas extraction in North America. Existing global C2H6 emission inventories are based on outdated activity maps that do not account for current oil and natural gas exploitation regions. We present an updated global C2H6 emission inventory based on 2010 satellite-derived CH4 fluxes with adjusted C2H6 emissions over the U.S. from the National Emission Inventory (NEI 2011). We contrast our global 2010 C2H6 emission inventory with one developed for 2001. The C2H6 difference between global anthropogenic emissions is subtle (7.9 versus 7.2 Tg yr-1), but the spatial distribution of the emissions is distinct. In the 2010 C2H6 inventory, fossil fuel sources in the Northern Hemisphere represent half of global C2H6 emissions and 95% of global fossil fuel emissions. Over the U.S., unadjusted NEI 2011 C2H6 emissions produce mixing ratios that are 14-50% of those observed by aircraft observations (2008-2014). When the NEI 2011 C2H6 emission totals are scaled by a factor of 1.4, the Goddard Earth Observing System Chem model largely reproduces a regional suite of observations, with the exception of the central U.S., where it continues to underpredict observed mixing ratios in the lower troposphere. We estimate monthly mean contributions of fossil fuel C2H6 emissions to ozone and peroxyacetyl nitrate surface mixing ratios over North America of 1% and 8%, respectively.

  12. CO2/H2O adsorption equilibrium and rates on metal-organic frameworks: HKUST-1 and Ni/DOBDC.

    PubMed

    Liu, Jian; Wang, Yu; Benin, Annabelle I; Jakubczak, Paulina; Willis, Richard R; LeVan, M Douglas

    2010-09-07

    Metal-organic frameworks (MOFs) have recently attracted intense research interest because of their permanent porous structures, huge surface areas, and potential applications as novel adsorbents and catalysts. In order to provide a basis for consideration of MOFs for removal of carbon dioxide from gases containing water vapor, such as flue gas, we have studied adsorption equilibrium of CO(2), H(2)O vapor, and their mixtures and also rates of CO(2) adsorption in two MOFs: HKUST-1 (CuBTC) and Ni/DOBDC (CPO-27-Ni or Ni/MOF-74). The MOFs were synthesized via solvothermal methods, and the as-synthesized products were solvent exchanged and regenerated before experiments. Pure component adsorption equilibria and CO(2)/H(2)O binary adsorption equilibria were studied using a volumetric system. The effects of H(2)O adsorption on CO(2) adsorption for both MOF samples were determined, and the results for 5A and NaX zeolites were included for comparison. The hydrothermal stabilities for the two MOFs over the course of repetitive measurements of H(2)O and CO(2)/H(2)O mixture equilibria were also studied. CO(2) adsorption rates from helium for the MOF samples were investigated by using a unique concentration-swing frequency response (CSFR) system. Mass transfer into the MOFs is rapid with the controlling resistance found to be macropore diffusion, and rate parameters were established for the mechanism.

  13. Calculations on the rate of the ion-molecule reaction between NH3(+) and H2

    NASA Technical Reports Server (NTRS)

    Herbst, Eric; Defrees, D. J.; Talbi, D.; Pauzat, F.; Koch, W.

    1991-01-01

    The rate coefficient for the ion-molecule reaction NH3(+) + H2 yields NH4(+) + H has been calculated as a function of temperature with the use of the statistical phase space approach. The potential surface and reaction complex and transition state parameters used in the calculation have been taken from ab initio quantum chemical calculations. The calculated rate coefficient has been found to mimic the unusual temperature dependence measured in the laboratory, in which the rate coefficient decreases with decreasing temperature until 50-100 K and then increases at still lower temperatures. Quantitative agreement between experimental and theoretical rate coefficients is satisfactory given the uncertainties in the ab initio results and in the dynamics calculations. The rate coefficient for the unusual three-body process NH3(+) + H2 + He yields NH4(+) + H + He has also been calculated as a function of temperature and the result found to agree well with a previous laboratory determination.

  14. Refining economics of U.S. gasoline: octane ratings and ethanol content.

    PubMed

    Hirshfeld, David S; Kolb, Jeffrey A; Anderson, James E; Studzinski, William; Frusti, James

    2014-10-07

    Increasing the octane rating of the U.S. gasoline pool (currently ∼ 93 Research Octane Number (RON)) would enable higher engine efficiency for light-duty vehicles (e.g., through higher compression ratio), facilitating compliance with federal fuel economy and greenhouse gas (GHG) emissions standards. The federal Renewable Fuels Standard calls for increased renewable fuel use in U.S. gasoline, primarily ethanol, a high-octane gasoline component. Linear programming modeling of the U.S. refining sector was used to assess the effects on refining economics, CO2 emissions, and crude oil use of increasing average octane rating by increasing (i) the octane rating of refinery-produced hydrocarbon blendstocks for oxygenate blending (BOBs) and (ii) the volume fraction (Exx) of ethanol in finished gasoline. The analysis indicated the refining sector could produce BOBs yielding finished E20 and E30 gasolines with higher octane ratings at modest additional refining cost, for example, ∼ 1¢/gal for 95-RON E20 or 97-RON E30, and 3-5¢/gal for 95-RON E10, 98-RON E20, or 100-RON E30. Reduced BOB volume (from displacement by ethanol) and lower BOB octane could (i) lower refinery CO2 emissions (e.g., ∼ 3% for 98-RON E20, ∼ 10% for 100-RON E30) and (ii) reduce crude oil use (e.g., ∼ 3% for 98-RON E20, ∼ 8% for 100-RON E30).

  15. Light Emission Mechanisms in CuInS 2 Quantum Dots Evaluated by Spectral Electrochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuhr, Addis S.; Yun, Hyeong Jin; Makarov, Nikolay S.

    Luminescent CuInS 2 (CIS) quantum dots (QDs) exhibit highly efficient intragap emission and long, hundreds-of-nanoseconds radiative lifetimes. These spectral properties, distinct from structurally similar II–VI QDs, can be explained by the involvement of intragap defect states containing a localized hole capable of coupling with a conduction band electron for a radiative transition. However, the absolute energies of the intragap and band-edge states, the structure of the emissive defect(s), and the role and origin of nonemissive decay channels still remain poorly understood. Here, we address these questions by applying methods of spectral electrochemistry. Cyclic voltammetry measurements reveal a well-defined intragap statemore » whose redox potential is close to that of the Cu x defect state (where x = 1+ or 2+). The energy offset of this state from the valence band accounts well for the apparent photoluminescence Stokes shift observed in optical spectra. These results provide direct evidence that Cu-related defects serve as emission centers responsible for strong intragap emission from CIS QDs. We then use in situ spectroelectrochemistry to reveal two distinct emission pathways based on the differing oxidation states of Cu defects, which can be controlled by altering QD stoichiometry (1+ for stoichiometric QDs and 2+ for Cu-deficient QDs).« less

  16. Light Emission Mechanisms in CuInS 2 Quantum Dots Evaluated by Spectral Electrochemistry

    DOE PAGES

    Fuhr, Addis S.; Yun, Hyeong Jin; Makarov, Nikolay S.; ...

    2017-09-07

    Luminescent CuInS 2 (CIS) quantum dots (QDs) exhibit highly efficient intragap emission and long, hundreds-of-nanoseconds radiative lifetimes. These spectral properties, distinct from structurally similar II–VI QDs, can be explained by the involvement of intragap defect states containing a localized hole capable of coupling with a conduction band electron for a radiative transition. However, the absolute energies of the intragap and band-edge states, the structure of the emissive defect(s), and the role and origin of nonemissive decay channels still remain poorly understood. Here, we address these questions by applying methods of spectral electrochemistry. Cyclic voltammetry measurements reveal a well-defined intragap statemore » whose redox potential is close to that of the Cu x defect state (where x = 1+ or 2+). The energy offset of this state from the valence band accounts well for the apparent photoluminescence Stokes shift observed in optical spectra. These results provide direct evidence that Cu-related defects serve as emission centers responsible for strong intragap emission from CIS QDs. We then use in situ spectroelectrochemistry to reveal two distinct emission pathways based on the differing oxidation states of Cu defects, which can be controlled by altering QD stoichiometry (1+ for stoichiometric QDs and 2+ for Cu-deficient QDs).« less

  17. Integration, photostability and spontaneous emission rate enhancement of colloidal PbS nanocrystals for Si-based photonics at telecom wavelengths.

    PubMed

    Humer, Markus; Guider, Romain; Jantsch, Wolfgang; Fromherz, Thomas

    2013-08-12

    We experimentally investigate PbS nanocrystal (NC) photoluminescence (PL) coupled to all-integrated Si-based ring resonators and waveguides at telecom wavelengths. Dissolving the NCs into Novolak polymer significantly improves their stability in ambient atmosphere. Polymer-NC blends of various NC concentrations can be applied to and removed from the same device. For NC concentrations up to 4vol%, the spontaneous emission rate into ring-resonator modes is enhanced by a factor of ~13 with respect to that into a straight waveguide. The PL intensity shows a linear dependence on the excitation intensity up to 1.64kW/cm(2) and stable quality factors of ~2500.

  18. Comparison of [Ni(PPh2NPh2)2(CH3CN)]2+ and [Pd(PPh2NPh2)2]2+ as Electrocatalysts for H2 Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiedner, Eric S.; Helm, Monte L.

    The complexes [Ni(PPh2NPh2)2(CH3CN)]2+ and [Pd(PPh2NPh2)2]2+, where PPh2NPh2 is 1,5-diphenyl-3,7-diphenyl-1,5-diaza-3,7-diphosphacyclooctane, are compared as electrocatalysts for H2 production under identical experimental conditions. With [(DMF)H]+ as the acid in acetonitrile solution, [Pd(PPh2NPh2)2]2+ afforded a turnover frequency (TOF) of 230 s-1 for formation of H2 under dry conditions and a TOF of 640 s-1 when H2O was added. These rates are similar to the TOF’s of 590 s-1 (dry) and 720 s-1 (wet) that were previously measured for [Ni(PPh2NPh2)2(CH3CN)]2+ using [(DMF)H]+. The [Ni(PPh2NPh2)2(CH3CN)]2+ and [Pd(PPh2NPh2)2]2+ complexes both exhibited large current enhancements when treated with trifluoroacetic acid (TFA). At a TFA concentration of 1.8 M,more » TOF values of 5670 s-1 and 2060 s-1 were measured for [Ni(PPh2NPh2)2(CH3CN)]2+ and [Pd(PPh2NPh2)2]2+, respectively. The fast rates observed using TFA are, in part, attributed to homoconjugation of TFA in acetonitrile solutions, which decreases the effective pKa of the acid. In support of this hypothesis, dramatically lower rates of H2 production were observed using p anisidinium, which has a pKa comparable to TFA but does not homoconjugate significantly in acetonitrile solutions. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is oper-ated by Battelle for the U.S. Department of Energy.« less

  19. Enhanced Synthesis of Alkyl Amino Acids in Miller's 1958 H2S Experiment

    NASA Technical Reports Server (NTRS)

    Parker, Eric T.; Cleaves, H. James; Callahan, Michael P.; Dworkin, James P.; Glavin, Daniel P.; Lazcano, Antonio; Bada, Jeffrey L.

    2011-01-01

    Stanley Miller's 1958 H2S-containing experiment, which included a simulated prebiotic atmosphere of methane (CH4), ammonia (NH3), carbon dioxide (CO2), and hydrogen sulfide (H2S) produced several alkyl amino acids, including the alpha-, beta-, and gamma-isomers of aminobutyric acid (ABA) in greater relative yields than had previously been reported from his spark discharge experiments. In the presence of H2S, aspariic and glutamic acids could yield alkyl amino acids via the formation of thioimide intermediates. Radical chemistry initiated by passing H2S through a spark discharge could have also enhanced alkyl amino acid synthesis by generating alkyl radicals that can help form the aldehyde and ketone precursors to these amino acids. We propose mechanisms that may have influenced the synthesis of certain amino acids in localized environments rich in H2S and lightning discharges, similar to conditions near volcanic systems on the early Earth, thus contributing to the prebiotic chemical inventory of the primordial Earth.

  20. Nanophotonic Devices; Spontaneous Emission Faster than Stimulated Emission

    DTIC Science & Technology

    2016-02-02

    optically pumped spontaneous emission, and electrically pumped spontaneous emission. We have observed a speedup of >300x, and we project a speedup of 2500x...The project has succeeded, both for optically pumped spontaneous emission, and electrically pumped spontaneous emission. We have observed a speedup...Fabricated Plasmonic Optical Transformer”, (with H. Choo, S. Cabrini, P.J. Schuck, X. Liang,) U.S. Patent No. 9,052,450 (Jun. 9, 2015). 2. “ Probes

  1. Preparation and enhanced visible-light photocatalytic H2-production activity of CdS-sensitized Pt/TiO2 nanosheets with exposed (001) facets.

    PubMed

    Qi, Lifang; Yu, Jiaguo; Jaroniec, Mietek

    2011-05-21

    CdS-sensitized Pt/TiO(2) nanosheets with exposed (001) facets were prepared by hydrothermal treatment of a Ti(OC(4)H(9))(4)-HF-H(2)O mixed solution followed by photochemical reduction deposition of Pt nanoparticles (NPs) on TiO(2) nanosheets (TiO(2) NSs) and chemical bath deposition of CdS NPs on Pt/TiO(2) NSs, successively. The UV and visible-light driven photocatalytic activity of the as-prepared samples was evaluated by photocatalytic H(2) production from lactic acid aqueous solution under UV and visible-light (λ ≥ 420 nm) irradiation. It was shown that no photocatalytic H(2)-production activity was observed on the pure TiO(2) NSs under UV and/or visible-light irradiation. Deposition of CdS NPs on Pt/TiO(2) NSs caused significant enhancement of the UV and visible-light photocatalytic H(2)-production rates. The morphology of TiO(2) particles had also significant influence on the visible-light H(2)-production activity. Among TiO(2) NSs, P25 and the NPs studied, the CdS-sensitized Pt/TiO(2) NSs show the highest photocatalytic activity (13.9% apparent quantum efficiency obtained at 420 nm), exceeding that of CdS-sensitized Pt/P25 by 10.3% and that of Pt/NPs by 1.21%, which can be attributed to the combined effect of several factors including the presence of exposed (001) facets, surface fluorination and high specific surface area. After many replication experiments of the photocatalytic hydrogen production in the presence of lactic acid, the CdS-sensitized Pt/TiO(2) NSs did not show great loss in the photocatalytic activity, confirming that the CdS/Pt/TiO(2) NSs system is stable and not photocorroded. © The Owner Societies 2011

  2. Dual-Reactable Fluorescent Probes for Highly Selective and Sensitive Detection of Biological H2 S.

    PubMed

    Wei, Chao; Wang, Runyu; Zhang, Changyu; Xu, Guoce; Li, Yanyan; Zhang, Qiang-Zhe; Li, Lu-Yuan; Yi, Long; Xi, Zhen

    2016-05-06

    Hydrogen sulfide (H2 S) is an important endogenous signaling molecule with a variety of biological functions. Development of fluorescent probes for highly selective and sensitive detection of H2 S is necessary. We show here that dual-reactable fluorescent H2 S probes could react with higher selectivity than single-reactable probes. One of the dual-reactable probes gives more than 4000-fold turn-on response when reacting with H2 S, the largest response among fluorescent H2 S probes reported thus far. In addition, the probe could be used for high-throughput enzymatic assays and for the detection of Cys-induced H2 S in cells and in zebrafish. These dual-reactable probes hold potential for highly selective and sensitive detection of H2 S in biological systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. FLYING-WATER Renewables-H2-H2O TERRAFORMING: PERMANENT Drought(s)-Elimination FOREVER!!!

    NASA Astrophysics Data System (ADS)

    Ertl, G.; Alefeld, G.; Youdelis, W.; Radd, H.; Oertle, G.; Siegel, Edward

    2011-03-01

    "H2O H2O everywhere; ne'er a drop to drink"[Coleridge(1798)]; now: "H2 H2 everywhere; STILL ne'er a drop to drink": ONLY H2 (or methane CH4) can be FLYING-WATER(F-W) chemical-rain-in-pipelines Hindenberg-effect (H2-UP;H2O-DOWN): {O/H2O}=[16]/[18] 90 % ; O already in air uphill; NO H2O pumping need! In global-warming driven H2O-starved glacial-melting world, rescue is possible ONLY by Siegel [{3rd Intl. Conf. Alt.-Energy }(1980)-vol.5/p.459!!!] Renewables-H2-H2O purposely flexible versatile agile customizable scaleable retrofitable integrated operating-system. Rosenfeld[Science 315,1396(3/9/2007)]-Biello [Sci.Am.(3/9/2007)] crucial geomorph-ology which ONLY maximal-buoyancy H2 can exploit, to again make "Mountains into Fountains", ``upthrust rocks trapping the clouds to precipitate their rain/snow/H2O'': "terraforming"(and ocean-rebasificaton!!!) Siegel proprietary magnetic-hydrogen-valve (MHV) permits H2 flow in already in-ground dense BCC/ferritic-steels pipelines-network (NO new infrastructure) counters Tromp[Science 300,1740(2003)] dire warning of global-pandemics (cancers/ blindness/famine) Hydrogen-economy CATASTROPHIC H2 ozone-layer destruction sobering cavat to dangerous H2-automotion-economy panacea hype!!!

  4. Electroactive Au@Ag nanoparticles driven electrochemical sensor for endogenous H2S detection.

    PubMed

    Zhao, Yuan; Yang, Yaxin; Cui, Linyan; Zheng, Fangjie; Song, Qijun

    2018-05-26

    In this work, a novel and facile electrochemical sensor is reported for the highly selective and sensitive detection of dissolved hydrogen sulfide (H 2 S), attributing to the redox reaction between Au@Ag core-shell nanoparticles (Au@Ag NPs) and H 2 S. Electroactive Au@Ag NPs not only possess excellent conductivity, but exhibit great electrochemical reactivity at 0.26 V due to the electrochemical oxidation from Ag° to Ag + . In the presence of H 2 S, the Ag shell of Au@Ag NPs can be oxidized to Ag 2 S, resulting in the decrease of differential pulse voltammetry (DPV) peak at 0.26 V. The electrochemical sensor exhibits a wide linear response range from 0.1 nM to 500 nM. The limit of detection (LOD) for H 2 S is as low as 0.04 nM. The developed sensor shows significant prospects in the study of pathological processes related to the mechanism of H 2 S production. Copyright © 2018. Published by Elsevier B.V.

  5. Influence of future anthropogenic emissions on climate, natural emissions, and air quality

    NASA Astrophysics Data System (ADS)

    Jacobson, Mark Z.; Streets, David G.

    2009-04-01

    This study examines the effects of future anthropogenic emissions on climate, and the resulting feedback to natural emissions and air quality. Speciated sector- and region-specific 2030 emission factors were developed to produce gas and particle emission inventories that followed Special Report on Emission Scenarios (SRES) A1B and B1 emission trajectories. Current and future climate model simulations were run, in which anthropogenic emission changes affected climate, which fed back to natural emissions from lightning (NO, NO2, HONO, HNO3, N2O, H2O2, HO2, CO), soils (dust, bacteria, NO, N2O, H2, CH4, H2S, DMS, OCS, CS2), the ocean (bacteria, sea spray, DMS, N2O, H2, CH4), vegetation (pollen, spores, isoprene, monoterpenes, methanol, other VOCs), and photosynthesis/respiration. New methods were derived to calculate lightning flash rates as a function of size-resolved collisions and other physical principles and pollen, spore, and bacteria emissions. Although the B1 scenario was "cleaner" than the A1B scenario, global warming increased more in the B1 scenario because much A1B warming was masked by additional reflective aerosol particles. Thus neither scenario is entirely beneficial from a climate and health perspective, and the best control measure is to reduce warming gases and warming/cooling particles together. Lightning emissions declined by ˜3% in the B1 scenario and ˜12% in the A1B scenario as the number of ice crystals, thus charge-separating bounceoffs, decreased. Net primary production increased by ˜2% in both scenarios. Emissions of isoprene and monoterpenes increased by ˜1% in the A1B scenario and 4-5% in the B1 scenario. Near-surface ozone increased by ˜14% in the A1B scenario and ˜4% in the B1 scenario, reducing ambient isoprene in the latter case. Gases from soils increased in both scenarios due to higher temperatures. Near-surface PM2.5 mass increased by ˜2% in the A1B scenario and decreased by ˜2% in the B1 scenario. The resulting 1.4% higher

  6. Emission of a pulsed purely rotational transition chemical H{sub 2}-F{sub 2} laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molevich, N E; Pichugin, S Yu

    2008-04-30

    The possibility of obtaining efficient emission at purely rotational transitions of HF molecules in a pulsed chemical hydrogen fluoride laser is studied theoretically. The operation of a H{sub 2}-F{sub 2} laser with a gas pressure of 1.1 atm emitting at the v, j {yields} v, j - 1 (v = 1 - 6, j = 10 - 14) transitions is simulated taking into account resonance VR processes. The total specific laser energy release calculated over all the vibrational levels is 5.5 J L{sup -1} on purely rotational transitions at {lambda}{approx}17 {mu}m (j = 14), 3.5 J L{sup -1} at {lambda}{approx}18.5more » {mu}m (j = 13), and 2.5 J L{sup -1} at {lambda}{approx}20 {mu}m (j = 12). (lasers and amplifiers)« less

  7. Laboratory measurement of the millimeter wave properties of liquid sulfuric acid (H2SO4). [study of microwave emission from Venus

    NASA Technical Reports Server (NTRS)

    Fahd, Antoine K.; Steffes, Paul G.

    1991-01-01

    The methodology and the results of laboratory measurements of the millimeter wave properties of liquid sulfuric acid are presented. Measurements conducted at 30-40 and 90-100 GHz are reported, using different concentrations of liquid H2SO4. The measured data are used to compute the expected opacity of H2SO4 condensates and their effects on the millimeter wave emission from Venus. The cloud condensate is found to have an effect on the emission from Venus. The calculated decrease in brightness temperature is well below the observed decrease in brightness temperature found by de Pater et al. (1991). It is suggested that other constituents such as gaseous H2SO4 also affect the observed variation in the brightness temperature.

  8. Charge Exchange X-Ray Emission due to Highly Charged Ion Collisions with H, He, and H2: Line Ratios for Heliospheric and Interstellar Applications

    NASA Astrophysics Data System (ADS)

    Cumbee, R. S.; Mullen, P. D.; Lyons, D.; Shelton, R. L.; Fogle, M.; Schultz, D. R.; Stancil, P. C.

    2018-01-01

    The fundamental collisional process of charge exchange (CX) has been established as a primary source of X-ray emission from the heliosphere, planetary exospheres, and supernova remnants. In this process, X-ray emission results from the capture of an electron by a highly charged ion from a neutral atom or molecule, to form a highly excited, high-charge state ion. As the captured electron cascades down to the lowest energy level, photons are emitted, including X-rays. To provide reliable CX-induced X-ray spectral models to realistically simulate these environments, line ratios and spectra are computed using theoretical CX cross sections obtained with the multi-channel Landau-Zener, atomic-orbital close-coupling, molecular-orbital close-coupling, and classical trajectory Monte Carlo methods for various collisional velocities relevant to astrophysics. X-ray spectra were computed for collisions of bare and H-like C to Al ions with H, He, and H2 with results compared to available experimental data. Using these line ratios, XSPEC models of CX emission in the northeast rim of the Cygnus Loop supernova remnant and the heliosphere are shown as examples with ion velocity dependence.

  9. Increased Ratio of Electron Transport to Net Assimilation Rate Supports Elevated Isoprenoid Emission Rate in Eucalypts under Drought1[W][OPEN

    PubMed Central

    Dani, Kaidala Ganesha Srikanta; Jamie, Ian McLeod; Prentice, Iain Colin; Atwell, Brian James

    2014-01-01

    Plants undergoing heat and low-CO2 stresses emit large amounts of volatile isoprenoids compared with those in stress-free conditions. One hypothesis posits that the balance between reducing power availability and its use in carbon assimilation determines constitutive isoprenoid emission rates in plants and potentially even their maximum emission capacity under brief periods of stress. To test this, we used abiotic stresses to manipulate the availability of reducing power. Specifically, we examined the effects of mild to severe drought on photosynthetic electron transport rate (ETR) and net carbon assimilation rate (NAR) and the relationship between estimated energy pools and constitutive volatile isoprenoid emission rates in two species of eucalypts: Eucalyptus occidentalis (drought tolerant) and Eucalyptus camaldulensis (drought sensitive). Isoprenoid emission rates were insensitive to mild drought, and the rates increased when the decline in NAR reached a certain species-specific threshold. ETR was sustained under drought and the ETR-NAR ratio increased, driving constitutive isoprenoid emission until severe drought caused carbon limitation of the methylerythritol phosphate pathway. The estimated residual reducing power unused for carbon assimilation, based on the energetic status model, significantly correlated with constitutive isoprenoid emission rates across gradients of drought (r2 > 0.8) and photorespiratory stress (r2 > 0.9). Carbon availability could critically limit emission rates under severe drought and photorespiratory stresses. Under most instances of moderate abiotic stress levels, increased isoprenoid emission rates compete with photorespiration for the residual reducing power not invested in carbon assimilation. A similar mechanism also explains the individual positive effects of low-CO2, heat, and drought stresses on isoprenoid emission. PMID:25139160

  10. Reflected shock tube studies of high-temperature rate constants for OH + CH4 --> CH3 + H2O and CH3 + NO2 --> CH3O + NO.

    PubMed

    Srinivasan, N K; Su, M-C; Sutherland, J W; Michael, J V

    2005-03-10

    The reflected shock tube technique with multipass absorption spectrometric detection of OH radicals at 308 nm has been used to study the reactions OH + CH(4) --> CH(3) + H(2)O and CH(3) + NO(2) --> CH(3)O + NO. Over the temperature range 840-2025 K, the rate constants for the first reaction can be represented by the Arrhenius expression k = (9.52 +/- 1.62) x 10(-11) exp[(-4134 +/- 222 K)/T] cm(3) molecule(-1) s(-1). Since this reaction is important in both combustion and atmospheric chemistry, there have been many prior investigations with a variety of techniques. The present results extend the temperature range by 500 K and have been combined with the most accurate earlier studies to derive an evaluation over the extended temperature range 195-2025 K. A three-parameter expression describes the rate behavior over this temperature range, k = (1.66 x 10(-18))T(2.182) exp[(-1231 K)/T] cm(3) molecule(-1) s(-1). Previous theoretical studies are discussed, and the present evaluation is compared to earlier theoretical estimates. Since CH(3) radicals are a product of the reaction and could cause secondary perturbations in rate constant determinations, the second reaction was studied by OH radical production from the fast reactions CH(3)O --> CH(2)O + H and H + NO(2) --> OH + NO. The measured rate constant is 2.26 x 10(-11) cm(3) molecule(-1) s(-1) and is not dependent on temperature from 233 to 1700 K within experimental error.

  11. Superconducting order from disorder in 2H-TaSe 2-xS x

    DOE PAGES

    Li, Lijun; Deng, Xiaoyu; Wang, Zhen; ...

    2017-02-24

    Here, we report on the emergence of robust superconducting order in single crystal alloys of TaSe 2$ -$x S x (0 ≤ × ≤2). The critical temperature of the alloy is surprisingly higher than that of the two end compounds TaSe2 and TaS2. The evolution of superconducting critical temperature T c(x) correlates with the full width at half maximum of the Bragg peaks and with the linear term of the high-temperature resistivity. The conductivity of the crystals near the middle of the alloy series is higher or similar than that of either one of the end members 2H-TaSe 2 and/ormore » 2H-TaS 2. It is known that in these materials superconductivity is in close competition with charge density wave order. We interpret our experimental findings in a picture where disorder tilts this balance in favor of superconductivity by destroying the charge density wave order.« less

  12. A two-stage aerobic/anaerobic denitrifying horizontal bioreactor designed for treating ammonium and H(2)S simultaneously.

    PubMed

    Chinalia, F A; Garbossa, L H P; Rodriguez, J A; Lapa, K R; Foresti, E

    2012-11-01

    A two-stage bioreactor was operated for a period of 140 days in order to develop a post-treatment process based on anaerobic bioxidation of sulfite. This process was designed for simultaneously treating the effluent and biogas of a full-scale UASB reactor, containing significant concentrations of NH(4) and H(2)S, respectively. The system comprised of two horizontal-flow bed-packed reactors operated with different oxygen concentrations. Ammonium present in the effluent was transformed into nitrates in the first aerobic stage. The second anaerobic stage combined the treatment of nitrates in the liquor with the hydrogen sulfide present in the UASB-reactor biogas. Nitrates were consumed with a significant production of sulfate, resulting in a nitrate removal rate of 0.43 kgNm(3)day(-1) and ≥92 % efficiency. Such a removal rate is comparable to those achieved by heterotrophic denitrifying systems. Polymeric forms of sulfur were not detected (elementary sulfur); sulfate was the main product of the sulfide-based denitrifying process. S-sulfate was produced at a rate of about 0.35 kgm(3)day(-1). Sulfur inputs as S-H(2)S were estimated at about 0.75 kgm(3)day(-1) and Chemical Oxygen Demand (COD) removal rates did not vary significantly during the process. DGGE profiling and 16S rRNA identified Halothiobacillus-like species as the key microorganism supporting this process; such a strain has not yet been previously associated with such bioengineered systems.

  13. UH-1H Flat Rate Manual. Volume 2

    DTIC Science & Technology

    1975-07-01

    o o Ox IA «A IAVO o O O O O rococo co co rococo co co CO CO CO CO CO CO CO CO CO IAIAIA IA IA IT» »A IA UMA i ■ XX o 4» « § « * * ■ 2...OOO O O O O O rococo co co co co co rococo co co co co co 1 WIAIA IA U\\ ITilA IA s If r% ■H fjg X a ! °* i Q i F o M as 1 V. 3 I -372

  14. Tabulated Neutron Emission Rates for Plutonium Oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shores, Erik Frederick

    This work tabulates neutron emission rates for 80 plutonium oxide samples as reported in the literature. Plutonium-­238 and plutonium-­239 oxides are included and such emission rates are useful for scaling tallies from Monte Carlo simulations and estimating dose rates for health physics applications.

  15. 2 μm emission properties and hydroxy groups quenching of Tm3+ in germanate-tellurite glass

    NASA Astrophysics Data System (ADS)

    Cai, Muzhi; Lu, Yu; Cao, Ruijie; Tian, Ying; Xu, Shiqing; Zhang, Junjie

    2016-07-01

    Tm3+ activated germanate-tellurite glasses with good thermal stability and anti-crystallization ability were prepared. Efficient 2 μm fluorescence was observed in the optimal concentration Tm3+ doped glass and the corresponding radiative properties were investigated. For Tm3+: 3F4 → 3H6 transition, high spontaneous radiative transition probability (260.75 s-1) and large emission cross section (7.66 × 10-21 cm2) were obtained from the prepared glass. According to Dexter's and Forster's theory, energy transfer microscopic parameters were computed to elucidate the observed 2 μm emissions in detail. Besides, the effect of hydroxy groups quenching was also quantificationally investigated based on simplified rate equations. Results demonstrate that the optimal concentration Tm3+ doped germanate-tellurite glass possessing excellent spectroscopic properties might be an attractive candidate for 2 μm laser or amplifier.

  16. In Vivo Interactions Between Cobalt or Ferric Compounds and the Pools of Sulphide in the Blood During and After H2S Poisoning

    PubMed Central

    Haouzi, Philippe; Sonobe, Takashi; Torsell-Tubbs, Nicole; Prokopczyk, Bogdan; Chenuel, Bruno; Klingerman, Candice M.

    2014-01-01

    Hydrogen sulphide (H2S), a chemical hazard in oil and gas production, has recently become a dreadful method of suicide, posing specific risks and challenges for the first responders. Currently, there is no proven effective treatment against H2S poisoning and its severe neurological, respiratory or cardiac after-effects. We have recently described that H2S is present in various compartments, or pools, in the body during sulphide exposure, which have different levels of toxicity. The general goals of our study were to (1) determine the concentrations and kinetics of the various pools of hydrogen sulphide in the blood, i.e., gaseous (CgH2S) versus total sulphide, i.e., reacting with monobromobimane (CMBBH2S), during and following H2S exposure in a small and large mammal and (2) establish the interaction between the pools of H2S and a methemoglobin (MetHb) solution or a high dose of hydroxocobalamin (HyCo). We found that CgH2S during and following H2S infusion was similar in sedated sheep and rats at any given rate of infusion/kg and provoked symptoms, i.e., hyperpnea and apnea, at the same CgH2S. After H2S administration was stopped, CgH2S disappeared within 1 min. CMBBH2S also dropped to 2–3μM, but remained above baseline levels for at least 30 min. Infusion of a MetHb solution during H2S infusion produced an immediate reduction in the free/soluble pool of H2S only, whereas CMBBH2S increased by severalfold. HyCo (70 mg/kg) also decreased the concentrations of free/soluble H2S to almost zero; CgH2S returned to pre-HyCo levels within a maximum of 20 min, if H2S infusion is maintained. These results are discussed in the context of a relevant scenario, wherein antidotes can only be administered after H2S exposure. PMID:25015662

  17. CH{sub 4} and N{sub 2}O emissions from China’s beef feedlots with ad libitum and restricted feeding in fall and spring seasons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Zhi; Liao, Wenhua; Yang, Yuanyuan

    Accurately quantifying methane (CH{sub 4}) and nitrous oxide (N{sub 2}O) emissions from beef operations in China is necessary to evaluate the contribution of beef cattle to greenhouse gas budgets at the national and global level. Methane and N{sub 2}O emissions from two intensive beef feedlots in the North China Plain, one with a restricted feeding strategy and high manure collection frequency and the other with an ad libitum feeding strategy and low manure collection frequency, were quantified in the fall and spring seasons using an inverse dispersion technique. The diel pattern of CH{sub 4} from the beef feedlot with anmore » ad libitum feed strategy (single peak during a day) differed from that under a restricted feeding condition (multiple peaks during a day), but little difference in the diel pattern of N{sub 2}O emissions between two feeding strategies was observed. The two-season average CH{sub 4} emission rates of the two intensive feedlots were 230 and 198 g CH{sub 4} animal{sup −1} d{sup −1} and accounted for 6.7% and 6.8% of the gross energy intake, respectively, indicating little impact of the feeding strategy and manure collection frequency on the CH{sub 4} conversion factor at the feedlot level. However, the average N{sub 2}O emission rates (21.2 g N{sub 2}O animal{sup −1} d{sup −1}) and conversion factor (8.5%) of the feedlot with low manure collection frequency were approximately 131% and 174% greater, respectively, than the feedlot under high frequency conditions, which had a N{sub 2}O emission rate and conversion factor of 9.2 g N{sub 2}O animal{sup −1} d{sup −1} and 3.1%, respectively, indicating that increasing manure collection frequency played an important role in reducing N{sub 2}O emissions from beef feedlots. In addition, comparison indicated that China’s beef and dairy cattle in feedlots appeared to have similar CH{sub 4} conversion factors. - Highlights: • CH{sub 4} and N{sub 2}O emissions from China’s beef feedlots

  18. UV and VUV photolysis vs. UV/H2O2 and VUV/H2O2, treatment for removal of clofibric acid from aqueous solution.

    PubMed

    Li, Wenzhen; Lu, Shuguang; Qiu, Zhaofu; Lin, Kuangfei

    2011-07-01

    Clofibric acid (CA), a metabolite of lipid regulators, was investigated in ultra-pure water and sewage treatment plant (STP) effluent at 10 degrees C under UV, vacuum UV (VUV), UV/H2O2 and VUV/H2O2 processes. The influences of NO3-, HCO3- and humic acid (HA) on CA photolysis in all processes were examined. The results showed that all the experimental data well fitted the pseudo-first-order kinetic model, and the apparent rate constant (k(ap)) and half-life time (t(1/2)) were calculated accordingly. Direct photolysis of CA through UV irradiation was the main process, compared with the indirect oxidation of CA due to the slight generation of hydroxyl radicals dissociated from water molecules under UV irradiation below 200 nm monochromatic wavelength emission. In contrast, indirect oxidation was the main CA degradation mechanism in UV/H2O2 and VUV/H2O2, and VUV/H2O2 was the most effective process for CA degradation. The addition of 20 mg L(-1) HA could significantly inhibit CA degradation, whereas, except for UV irradiation, the inhibitive effects of NO3- and HCO3- (1.0 x 10(-3) and 0.1 mol L(-1), respectively) on CA degradation were observed in all processes, and their adverse effects were more significant in UV/H2O2 and VUV/H2O2 processes, particularly at the high NO3- and HCO3- concentrations. The degradation rate decreased 1.8-4.9-fold when these processes were applied to a real STP effluent owing to the presence of complex constituents. Of the four processes, VUV/H2O2 was the most effective, and the CA removal efficiency reached over 99% after 40 min in contrast to 80 min in both the UV/H2O2 and VUV processes and 240 min in the UV process.

  19. HST STIS Images of the H-Lyman Alpha Emission and Disk-Reflected FUV Sunlight from the Upper Atmosphere of Uranus

    NASA Astrophysics Data System (ADS)

    Ballester, G. E.; Ben-Jaffel, L.; Clarke, J. T.; Gladstone, R.; Miller, S.; Trafton, L. M.; Trauger, J. T.

    1998-09-01

    An excess of H-Lyalpha emission from Uranus' sunlit hemisphere was detected by the IUE satellite in 1982, and some excess was confirmed with the Voyager 2 UVS during the 1986 encounter with Uranus. Radiative transfer modeling has shown that the Voyager H-Lyalpha observations did require emission additional to the scattered solar and IPM H-Lyalpha , and thus produced by internal processes in the upper atmosphere, such as aurora or other unidentified mechanisms. Subsequent IUE observations showed very large short- and long-term intensity variations that support an auroral source. However, although Voyager did identify UV auroral emissions by H_2 in the sunlit hemisphere, it did not detect a large H-Lyalpha auroral emission there, making it impossible to provide conclusive evidence that the H-Lyalpha enhancements observed by IUE are due to aurora. Auroral emissions are spatially confined, and resolution of the emission distribution could yield the needed evidence, or could alternatively provide observational clues to other possible causes of dayglow variations in the upper atmosphere. Uranus intrinsically weak H-Lyalpha emission ( ~ 1600 R on average) had not allowed for such an experiment in the past, but the high sensitivity in the FUV of the Space Telescope Imaging Spectrograph (STIS) on HST has now provided first images of Uranus in the FUV. The observations made on 29-30 July 1998 consisted of a FUV MAMA image in the open mode (25MAMA) and a consecutive image filtering out the H-Lyalpha (F25SRF2) to measure and subtract the disk reflected sunlight above 1250 Ang. A quick look at the data shows the H-Lyalpha emission and disk-reflected sunlight, with additional noise from the geocoronal background. We will present the results from these data, taking advantage of the time-tagging information to subtract the geocoronal background, and modeling of the underlying disk background. Four new observations will hopefully be made before October 1998 which will cover the

  20. Exfoliated-SnS2 restacked on graphene as a high-capacity, high-rate, and long-cycle life anode for sodium ion batteries

    NASA Astrophysics Data System (ADS)

    Liu, Yongchang; Kang, Hongyan; Jiao, Lifang; Chen, Chengcheng; Cao, Kangzhe; Wang, Yijing; Yuan, Huatang

    2015-01-01

    Designed as a high-capacity, high-rate, and long-cycle life anode for sodium ion batteries, exfoliated-SnS2 restacked on graphene is prepared by the hydrolysis of lithiated SnS2 followed by a facile hydrothermal method. Structural and morphological characterizations demonstrate that ultrasmall SnS2 nanoplates (with a typical size of 20-50 nm) composed of 2-5 layers are homogeneously decorated on the surface of graphene, while the hybrid structure self-assembles into a three-dimensional (3D) network architecture. The obtained SnS2/graphene nanocomposite delivers a remarkable capacity as high as 650 mA h g-1 at a current density of 200 mA g-1. More impressively, the capacity can reach 326 mA h g-1 even at 4000 mA g-1 and remains stable at ~610 mA h g-1 without fading up to 300 cycles when the rate is brought back to 200 mA g-1. The excellent electrochemical performance is attributed to the synergetic effects between the ultrasmall SnS2 and the highly conductive graphene network. The unique structure can simultaneously facilitate Na+ ion diffusion, provide more reaction sites, and suppress aggregation and volume fluctuation of the active materials during prolonged cycling.Designed as a high-capacity, high-rate, and long-cycle life anode for sodium ion batteries, exfoliated-SnS2 restacked on graphene is prepared by the hydrolysis of lithiated SnS2 followed by a facile hydrothermal method. Structural and morphological characterizations demonstrate that ultrasmall SnS2 nanoplates (with a typical size of 20-50 nm) composed of 2-5 layers are homogeneously decorated on the surface of graphene, while the hybrid structure self-assembles into a three-dimensional (3D) network architecture. The obtained SnS2/graphene nanocomposite delivers a remarkable capacity as high as 650 mA h g-1 at a current density of 200 mA g-1. More impressively, the capacity can reach 326 mA h g-1 even at 4000 mA g-1 and remains stable at ~610 mA h g-1 without fading up to 300 cycles when the rate is

  1. Simple approximation of total emissivity of CO2-H2O mixture used in the zonal method of calculation of heat transfer by radiation

    NASA Astrophysics Data System (ADS)

    Lisienko, V. G.; Malikov, G. K.; Titaev, A. A.

    2014-12-01

    The paper presents a new simple-to-use expression to calculate the total emissivity of a mixture of gases CO2 and H2O used for modeling heat transfer by radiation in industrial furnaces. The accuracy of this expression is evaluated using the exponential wide band model. It is found that the time taken to calculate the total emissivity in this expression is 1.5 times less than in other approximation methods.

  2. Impact of particle emissions of new laser printers on modeled office room

    NASA Astrophysics Data System (ADS)

    Koivisto, Antti J.; Hussein, Tareq; Niemelä, Raimo; Tuomi, Timo; Hämeri, Kaarle

    2010-06-01

    In this study, we present how an indoor aerosol model can be used to characterize particle emitter and predict influence of the source on indoor air quality. Particle size-resolved emission rates were quantified and the source's influence on indoor air quality was estimated by using office model simulations. We measured particle emissions from three modern laser printers in a flow-through chamber. Measured parameters were used as input parameters for an indoor aerosol model, which we then used to quantify the particle emission rates. The same indoor aerosol model was used to simulate the effect of the particle emission source inside an office model. The office model consists of a mechanically ventilated empty room and the particle source. The aerosol from the ventilation air was a filtered urban background aerosol. The effect of the ventilation rate was studied using three different ventilation ratios 1, 2 and 3 h -1. According to the model, peak emission rates of the printers exceeded 7.0 × 10 8 s -1 (2.5 × 10 12 h -1), and emitted mainly ultrafine particles (diameter less than 100 nm). The office model simulation results indicate that a print job increases ultrafine particle concentration to a maximum of 2.6 × 10 5 cm -3. Printer-emitted particles increased 6-h averaged particle concentration over eleven times compared to the background particle concentration.

  3. Endothelium-derived hyperpolarizing factor and protein kinase G Iα activation: H2O2 versus S-nitrosothiols.

    PubMed

    Bautista-Niño, Paula K; van der Stel, Marien; Batenburg, Wendy W; de Vries, René; Roks, Anton J M; Danser, A H Jan

    2018-05-15

    Protein kinase G (PKG) Iα mediates the cyclic guanosine monophosphate-mediated vasodilatory effects induced by NO. Endothelium-derived hyperpolarizing factors (EDHFs), like H 2 O 2 can activate PKGIα in a cyclic guanosine monophosphate-independent manner, but whether this is true for all EDHFs (e.g., S-nitrosothiols) is unknown. Here, we investigated the contribution of PKGIα to bradykinin-, H 2 O 2 -, L-S-nitrosocysteine-, and light-induced relaxation in porcine coronary arteries, making use of the fact that thioredoxin reductase inhibition with auranofin or 1-chloro-2,4-dinitrobenzene potentiates PKGIα. Thioredoxin reductase inhibition potentiated bradykinin and H 2 O 2 , but not L-S-nitrosocysteine or light. The relaxations by the latter 2 and bradykinin, but not those by H 2 O 2 , were prevented by the soluble guanylyl cyclase (sGC) inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one. Yet, after S-nitrosothiol depletion with ethacrynic acid, thioredoxin reductase inhibition also potentiated light-induced relaxation, and this was prevented by the Na + -K + ATPase inhibitor ouabain. This indicates that photorelaxation depends on sGC activation by S-nitrosothiols, while only after S-nitrosothiol depletion oxidized PKGIα comes into play, and acts via Na + -K + ATPase. In conclusion, both bradykinin- and light-induced relaxation of porcine coronary arteries depend, at least partially, on oxidized PKGIα, and this does not involve sGC. H 2 O 2 also acts via oxidized PKGIα in an sGC-independent manner. Yet, S-nitrosothiol-induced relaxation is PKGIα-independent. Clearly, PKG activation does not contribute universally to all EDHF responses, and targeting PKGIα may only mimick EDHF under certain conditions. It is therefore unlikely that PKGIα activators will be universal vasodilators. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Hyperfine excitation of C2H in collisions with ortho- and para-H2

    NASA Astrophysics Data System (ADS)

    Dagdigian, Paul J.

    2018-06-01

    Accurate estimation of the abundance of the ethynyl (C2H) radical requires accurate radiative and collisional rate coefficients. Hyperfine-resolved rate coefficients for (de-)excitation of C2H in collisions with ortho- and para-H2 are presented in this work. These rate coefficients were computed in time-independent close-coupling quantum scattering calculations that employed a potential energy surface recently computed at the coupled-clusters level of theory that describes the interaction of C2H with H2. Rate coefficients for temperatures from 10 to 300 K were computed for all transitions among the first 40 hyperfine energy levels of C2H in collisions with ortho- and para-H2. These rate coefficients were employed in simple radiative transfer calculations to simulate the excitation of C2H in typical molecular clouds.

  5. The Influence of Growth Rate on 2H/1H Fractionation in Continuous Cultures of the Coccolithophorid Emiliania huxleyi and the Diatom Thalassiosira pseudonana

    PubMed Central

    Sachs, Julian P.; Kawka, Orest E.

    2015-01-01

    The hydrogen isotope (2H/1H) ratio of lipids from phytoplankton is a powerful new tool for reconstructing hydroclimate variations in the geologic past from marine and lacustrine sediments. Water 2H/1H changes are reflected in lipid 2H/1H changes with R2 > 0.99, and salinity variations have been shown to cause about a 1‰ change in lipid δ2H values per unit (ppt) change in salinity. Less understood are the effects of growth rate, nutrient limitation and light on 2H/1H fractionation in phytoplankton. Here we present the first published study of growth rate effects on 2H/1H fractionation in the lipids of coccolithophorids grown in continuous cultures. Emiliania huxleyi was cultivated in steady state at four growth rates and the δ2H value of individual alkenones (C37:2, C37:3, C38:2, C38:3), fatty acids (C14:0, C16:0, C18:0), and 24-methyl cholest-5,22-dien-3β-ol (brassicasterol) were measured. 2H/1H fractionation increased in all lipids as growth rate increased by 24‰ to 79‰ (div d-1)-1. We attribute this response to a proportional increase in the fraction of NADPH from Photosystem I (PS1) of photosynthesis relative to NADPH from the cytosolic oxidative pentose phosphate (OPP) pathway in the synthesis of lipids as growth rate increases. A 3-endmember model is presented in which lipid hydrogen comes from NADPH produced in PS1, NADPH produced by OPP, and intracellular water. With published values or best estimates of the fractionation factors for these sources (αPS1 = 0.4, αOPP = 0.75, and αH2O = 0) and half of the hydrogen in a lipid derived from water the model indicates αlipid = 0.79. This value is within the range measured for alkenones (αalkenone = 0.77 to 0.81) and fatty acids (αFA = 0.75 to 0.82) in the chemostat cultures, but is greater than the range for brassicasterol (αbrassicasterol = 0.68 to 0.72). The latter is attributed to a greater proportion of hydrogen from NADPH relative to water in isoprenoid lipids. The model successfully explains

  6. The Influence of Growth Rate on 2H/1H Fractionation in Continuous Cultures of the Coccolithophorid Emiliania huxleyi and the Diatom Thalassiosira pseudonana.

    PubMed

    Sachs, Julian P; Kawka, Orest E

    2015-01-01

    The hydrogen isotope (2H/1H) ratio of lipids from phytoplankton is a powerful new tool for reconstructing hydroclimate variations in the geologic past from marine and lacustrine sediments. Water 2H/1H changes are reflected in lipid 2H/1H changes with R2 > 0.99, and salinity variations have been shown to cause about a 1‰ change in lipid δ2H values per unit (ppt) change in salinity. Less understood are the effects of growth rate, nutrient limitation and light on 2H/1H fractionation in phytoplankton. Here we present the first published study of growth rate effects on 2H/1H fractionation in the lipids of coccolithophorids grown in continuous cultures. Emiliania huxleyi was cultivated in steady state at four growth rates and the δ2H value of individual alkenones (C37:2, C37:3, C38:2, C38:3), fatty acids (C14:0, C16:0, C18:0), and 24-methyl cholest-5,22-dien-3β-ol (brassicasterol) were measured. 2H/1H fractionation increased in all lipids as growth rate increased by 24‰ to 79‰ (div d-1)-1. We attribute this response to a proportional increase in the fraction of NADPH from Photosystem I (PS1) of photosynthesis relative to NADPH from the cytosolic oxidative pentose phosphate (OPP) pathway in the synthesis of lipids as growth rate increases. A 3-endmember model is presented in which lipid hydrogen comes from NADPH produced in PS1, NADPH produced by OPP, and intracellular water. With published values or best estimates of the fractionation factors for these sources (αPS1 = 0.4, αOPP = 0.75, and αH2O = 0) and half of the hydrogen in a lipid derived from water the model indicates αlipid = 0.79. This value is within the range measured for alkenones (αalkenone = 0.77 to 0.81) and fatty acids (αFA = 0.75 to 0.82) in the chemostat cultures, but is greater than the range for brassicasterol (αbrassicasterol = 0.68 to 0.72). The latter is attributed to a greater proportion of hydrogen from NADPH relative to water in isoprenoid lipids. The model successfully explains

  7. The Impact of CO2 Emission Contraints on U.S. Electric Sector Water Use

    EPA Science Inventory

    The U.S. electric power sector’s reliance on water makes it vulnerable to increased water temperature and drought resulting from climate change. Here we analyze how constraints on U.S. energy system carbon dioxide (CO2) emissions could affect water withdrawal and consumpti...

  8. [Experimental investigation of mechanisms of forming RbH by irradiating a Rb+H2 mixture with laser light].

    PubMed

    Shen, Xiao-Yan; Liu, Jing; Dai, Kang; Shen, Yi-Fan

    2008-11-01

    The radiation of a laser photoexcited Rb atoms from the ground state to the 5P3/2 level in a mixture of Rb vapor and hydrogen. The energy-pooling collision 5P3/2 + 5P3/2 --> 5S1/2 + 5D producted 5D state. The Rb (5P3/2) density and spatial distribution were mapped by monitoring the absorption of a counter-propagating laser beam, tuned to the 5P3/2 --> 7S1/2 transition, which could be translated parallel to the pump beam. In the presence of radiation trapping, the spontaneous radiation rate is multiplied by the transmission factor T5P3/2 --> 5S1/2, which describes the average probability that photons emitted within the fluorescence detection region can pass through the optically thick vapor without being absorbed. The T5P3/2 --> 5S1/2 is related to the frequency dependent absorption cross section and the density and spatial distribution of atoms in the level of the transition. The effective radiative rates of the Rb D2 line as a function of the H2 pressure were obtained. These quantities were combined with the measured excited atom density and fluorescence ratio to yield absolute energy-pooling rate coefficient. The quenching collision Rb (5P3/2) + H2 (v = 0) --> Rb(5S) + H2 (v = 2) producted state H2 (v= 2). This process is at least 16 times faster than the Rb (5P3/2) radiative decay rate. The reverse process of this process is relatively unlikely due to their large translational energy defect. The cross section for the process H2 (v = 2) + H2 (v = 0) --> H2 (vn = 1) + H2 (v = 0) + 3 920.2 cm(-1) is 7.7 x 10(-19) cm2. Hence the relaxation rate of this vibrational level is relatively slow and the nuclear spin statistics is conserved. The H2 (v = 2) density was determined by using the cross section for Rb (5P3/2)-H2 quenching. RbH was fromed by the Rb(5D) + H2 and Rb (5P3/2) + H2 (v = 2) reactions and observed by laser absorption. The ratio of 5D --> 5P3/2 to 5P3/2 --> 5S1/2 fluorescence was measured as a function of the H2 density. The absorption of the laser beam

  9. Hot gas, regenerative, supported H.sub.2 S sorbents

    NASA Technical Reports Server (NTRS)

    Voecks, Gerald E. (Inventor); Sharma, Pramod K. (Inventor)

    1993-01-01

    Efficient, regenerable sorbents for removal of H.sub.2 S from moderately high temperature (usually 200.degree. C.-550.degree.C.) gas streams comprise a porous, high surface area aluminosilicate support, suitably a zeolite, and most preferably a sodium deficient zeolite containing 1 to 20 weight percent of binary metal oxides. The binary oxides are a mixture of a Group VB or VIB metal oxide with a Group IB, IIB or VIII metal oxide such as V-Zn-O, V-Cu-O, Cu-Mo-O, Zn-Mo-O or Fe-Mo-O contained in the support. The sorbent effectively removes H.sub.2 S from the host gas stream in high efficiency and can be repetitively regenerated at least 10 times without loss of activity.

  10. Military Aircraft Emissions Research - Case of Hercules Cargo Plane (C-130H) Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Mengdawn; Corporan, E.; DeWitt, M.

    2007-01-01

    Tactical airlifter like C-130H has been in use for more than 50 years, and is expected to serve for many years to come. However, the emission characteristics data of the aircraft are scarce. To increase our understanding of turboprop engine emissions, emissions from a military C-130H cargo aircraft were characterized in field conditions in the fall of 2005. Particulate and gaseous pollutants were measured by conventional and advanced instrumentation platforms that were built with in-situ extractive or remote optical sensing technologies. The measurements performed at the C-130H engine exhaust exit showed increased levels of emissions as the engine power settingmore » increased. In contrast, there was no such a relationship found for the C-130H emitted particulate matter (as a function of engine power setting) measured at about 15-m downstream of the engine exhaust plane. The emitted gaseous species measured at both locations were, however, proportional to the engine power setting and comparable (at both locations) when corrected for ambient dilution indicating the lack of particulate emission-power setting relationship at the far field is unique. The result clearly indicates that the aircraft emission factor or index for particulate matter cannot be experimentally determined at a downstream location away from the exhaust exit and has to be determined right at the engine exhaust plane. Emission indices that are needed for air quality modeling will be presented.« less

  11. Sensible Ozone on Mars based on 2-D Maps of O 2(a 1△ g) Emission for L s=102° Comparison of (0,0) and (1,1) Bands

    NASA Astrophysics Data System (ADS)

    Novak, Robert E.; Mumma, Michael J.; Villanueva, Geronimo Luis

    2016-10-01

    We report 2-D maps of the O2(a1△g) emission rate (a tracer for high-altitude ozone) taken during early northern summer (Ls=102° on 30 January 2016) using CSHELL at NASA's IRTF. The entrance slit of the spectrometer was positioned N-S on Mars and stepped E-W at 0.5 arc-sec increments. Spectral extracts were taken at 0.6 arc-sec intervals along the slit. We also took data to compare the emission rates of the O2(a1△g) (1-1) band (1.28 μm) to the (0-0) band (1.27 μm) with the entrance slit centered at the sub-Earth point. A model consisting of the solar continuum with Fraunhofer lines, two-way transmission through Mars' atmosphere, and a one-way transmission through the Earth's atmosphere was used to isolate and analyze individual spectral emission lines from Mars. Boltzmann analysis of these lines yielded a rotational temperature (~165 K) that was used to determine the total emission rates for the a-X system from the measured line intensities. The line-of-sight emission rates were converted to vertical emission rates and O2(a1△g) column densities after geometric correction. The sensible O3 column implied by these data is compared with maps of total O3 in Mars standard atmosphere models.The 2-D map shows increased emission in the southern hemisphere when compared to previously reported results taken at earlier seasonal points (Ls=72° on 3 April 2010 and Ls=88° on 10 February 2014). Emission results of the O2(a1△g) (0-0) band (Local Time ~ 14:30) will be compared with MARCI results (LT ~ 15:00, Clancy et al., Icarus 266 (2016) 112-113). We searched for the (1-1) band in two adjacent wavelength ranges; (0-0) emissions were detected at these settings, but no (1-1) emissions were noticed above the noise level. An upper limit will be presented, and implications discussed.This work was partially funded by grants from NASA's Mars Fundamental Research Program (11-MFRP11-0066) and the NSF-RUI Program (AST-805540). The NASA Astrobiology Institute supported this work

  12. Reaction of H2 with O2 in Excited Electronic States: Reaction Pathways and Rate Constants.

    PubMed

    Pelevkin, Alexey V; Loukhovitski, Boris I; Sharipov, Alexander S

    2017-12-21

    Comprehensive quantum chemical analysis with the use of the multireference state-averaged complete active space self-consistent field approach was carried out to study the reactions of H 2 with O 2 in a 1 Δ g , b 1 Σ g + , c 1 Σ u - , and A' 3 Δ u electronically excited states. The energetically favorable reaction pathways and possible intersystem crossings have been revealed. The energy barriers were refined employing the extended multiconfiguration quasi-degenerate second-order perturbation theory. It has been shown that the interaction of O 2 (a 1 Δ g ) and O 2 (A' 3 Δ u ) with H 2 occurs through the H-abstraction process with relatively low activation barriers that resulted in the formation of the HO 2 molecule in A″ and A' electronic states, respectively. Meanwhile, molecular oxygen in singlet sigma states (b 1 Σ g + and c 1 Σ u - ) was proved to be nonreactive with respect to the molecular hydrogen. Appropriate rate constants for revealed reaction and quenching channels have been estimated using variational transition-state theory including corrections for the tunneling effect, possible nonadiabatic transitions, and anharmonicity of vibrations for transition states and reactants. It was demonstrated that the calculated reaction rate constant for the H 2 + O 2 (a 1 Δ g ) process is in reasonable agreement with known experimental data. The Arrhenius approximations for these processes have been proposed for the temperature range T = 300-3000 K.

  13. Near-infrared emission bands of TeH and TeD

    NASA Astrophysics Data System (ADS)

    Fink, E. H.; Setzer, K. D.; Ramsay, D. A.; Vervloet, M.

    1989-11-01

    High-resolution emission spectra of TeH and TeD have been obtained in the region 4200 to 3600 cm -1 using a Bomem DA3.002 Fourier transform spectrometer. Analyses are given for the 0-0 and 1-1 bands of the X 22Π{1}/{2}-X 12Π{3}/{2} system of TeH and for the 0-0 band of TeD. In addition the 2-0 vibrational overtone bands of 130TeH, 128TeH, and 126TeH are observed and analyzed. Accurate molecular constants are given for the first time.

  14. CO2 and CO emission rates from three forest fire controlled experiments in Western Amazonia

    NASA Astrophysics Data System (ADS)

    Carvalho, J. A., Jr.; Amaral, S. S.; Costa, M. A. M.; Soares Neto, T. G.; Veras, C. A. G.; Costa, F. S.; van Leeuwen, T. T.; Krieger Filho, G. C.; Tourigny, E.; Forti, M. C.; Fostier, A. H.; Siqueira, M. B.; Santos, J. C.; Lima, B. A.; Cascão, P.; Ortega, G.; Frade, E. F., Jr.

    2016-06-01

    Forests represent an important role in the control of atmospheric emissions through carbon capture. However, in forest fires, the carbon stored during photosynthesis is released into the atmosphere. The carbon quantification, in forest burning, is important for the development of measures for its control. The aim of this study was to quantify CO2 and CO emissions of forest fires in Western Amazonia. In this paper, results are described of forest fire experiments conducted in Cruzeiro do Sul and Rio Branco, state of Acre, and Candeias do Jamari, state of Rondônia, Brazil. These cities are located in the Western portion of the Brazilian Amazon region. The biomass content per hectare, in the virgin forest, was measured by indirect methods using formulas with parameters of forest inventories in the central hectare of the test site. The combustion completeness was estimated by randomly selecting 10% of the total logs and twelve 2 × 2 m2 areas along three transects and examining their consumption rates by the fire. The logs were used to determine the combustion completeness of the larger materials (characteristic diameters larger than 10 cm) and the 2 × 2 m2 areas to determine the combustion completeness of small-size materials (those with characteristic diameters lower than 10 cm) and the. The overall biomass consumption by fire was estimated to be 40.0%, 41.2% and 26.2%, in Cruzeiro do Sul, Rio Branco and Candeias do Jamari, respectively. Considering that the combustion gases of carbon in open fires contain approximately 90.0% of CO2 and 10.0% of CO in volumetric basis, the average emission rates of these gases by the burning process, in the three sites, were estimated as 191 ± 46.7 t ha-1 and 13.5 ± 3.3 t ha-1, respectively.

  15. Exogenous H2S facilitating ubiquitin aggregates clearance via autophagy attenuates type 2 diabetes-induced cardiomyopathy

    PubMed Central

    Wu, Jichao; Tian, Zhiliang; Sun, Yu; Lu, Cuicui; Liu, Ning; Gao, Zhaopeng; Zhang, Linxue; Dong, Shiyun; Yang, Fan; Zhong, Xin; Xu, Changqing; Lu, Fanghao; Zhang, Weihua

    2017-01-01

    Diabetic cardiomyopathy (DCM) is a serious complication of diabetes. Hydrogen sulphide (H2S), a newly found gaseous signalling molecule, has an important role in many regulatory functions. The purpose of this study is to investigate the effects of exogenous H2S on autophagy and its possible mechanism in DCM induced by type II diabetes (T2DCM). In this study, we found that sodium hydrosulphide (NaHS) attenuated the augment in left ventricular (LV) mass and increased LV volume, decreased reactive oxygen species (ROS) production and ameliorated H2S production in the hearts of db/db mice. NaHS facilitated autophagosome content degradation, reduced the expression of P62 (a known substrate of autophagy) and increased the expression of microtubule-associated protein 1 light chain 3 II. It also increased the expression of autophagy-related protein 7 (ATG7) and Beclin1 in db/db mouse hearts. NaHS increased the expression of Kelch-like ECH-associated protein 1 (Keap-1) and reduced the ubiquitylation level in the hearts of db/db mice. 1,4-Dithiothreitol, an inhibitor of disulphide bonds, increased the ubiquitylation level of Keap-1, suppressed the expression of Keap-1 and abolished the effects of NaHS on ubiquitin aggregate clearance and ROS production in H9C2 cells treated with high glucose and palmitate. Overall, we concluded that exogenous H2S promoted ubiquitin aggregate clearance via autophagy, which might exert its antioxidative effect in db/db mouse myocardia. Moreover, exogenous H2S increased Keap-1 expression by suppressing its ubiquitylation, which might have an important role in ubiquitin aggregate clearance via autophagy. Our findings provide new insight into the mechanisms responsible for the antioxidative effects of H2S in the context of T2DCM. PMID:28796243

  16. White LED based on CaAl2Si2O8:Eu2+ Mn2+ phosphor and CdS/ZnS quantum dots

    NASA Astrophysics Data System (ADS)

    Shen, Changyu; Zhong, Chuan; Hou, Qianglong; Li, Ke

    2011-02-01

    Core/shell CdS/ZnS quantum dots (QDs) with the emission wavelength of 610nm, was synthesized by thermal deposition using cadmium oxide and selenium as precursors in a hot lauric acid and hexadecylamine trioctylphosphine oxide hybrid. CaAl2Si2O8:Eu2+ Mn2+ phosphor was synthesized by high-temperature solid state reaction at 1290 °C for 2 hours under the H2 reducing atmosphere, and X-ray powder diffraction analysis confirmed the formation of it. It has two emission bands peaking at 420 nm and 580nm originated from the transition 5d to 4f of Eu2+ and 4T1-6A1 of Mn2+, respectively. Blends of CaAl2Si2O8:Eu2+,Mn2+ phosphor and CdS/ZnS QDs exhibited the prominent spectral evolution with an increasing content of QDs. A hybrid white LED, which combines a blue LED with the blend of CaAl2Si2O8:Eu2+ Mn2+ phosphor and QDs with a weight ratio of 2:1, with the CIE coordinate of (0.3183, 0.3036) and CRI of 85 was obtained.

  17. Modeling Ozone in the Eastern U.S. using a Fuel-Based Mobile Source Emissions Inventory.

    PubMed

    McDonald, Brian C; McKeen, Stuart A; Cui, Yu Yan; Ahmadov, Ravan; Kim, Si-Wan; Frost, Gregory J; Pollack, Ilana B; Peischl, Jeff; Ryerson, Thomas B; Holloway, John S; Graus, Martin; Warneke, Carsten; Gilman, Jessica B; de Gouw, Joost A; Kaiser, Jennifer; Keutsch, Frank N; Hanisco, Thomas F; Wolfe, Glenn M; Trainer, Michael

    2018-06-22

    Recent studies suggest overestimates in current U.S. emission inventories of nitrogen oxides (NO x = NO + NO 2 ). Here, we expand a previously developed fuel-based inventory of motor-vehicle emissions (FIVE) to the continental U.S. for the year 2013, and evaluate our estimates of mobile source emissions with the U.S. Environmental Protection Agency's National Emissions Inventory (NEI) interpolated to 2013. We find that mobile source emissions of NO x and carbon monoxide (CO) in the NEI are higher than FIVE by 28% and 90%, respectively. Using a chemical transport model, we model mobile source emissions from FIVE, and find consistent levels of urban NO x and CO as measured during the Southeast Nexus (SENEX) Study in 2013. Lastly, we assess the sensitivity of ozone (O 3 ) over the Eastern U.S. to uncertainties in mobile source NO x emissions and biogenic volatile organic compound (VOC) emissions. The ground-level O 3 is sensitive to reductions in mobile source NO x emissions, most notably in the Southeastern U.S. and during O 3 exceedance events, under the revised standard proposed in 2015 (>70 ppb, 8 h maximum). This suggests that decreasing mobile source NO x emissions could help in meeting more stringent O 3 standards in the future.

  18. Acidifier application rate impacts on ammonia emissions from US roaster chicken houses

    NASA Astrophysics Data System (ADS)

    Shah, Sanjay B.; Grimes, Jesse L.; Oviedo-Rondón, Edgar O.; Westerman, Philip W.

    2014-08-01

    Due to its potential environmental and public health impacts, emissions of ammonia (NH3) as well as several other gases from US livestock farms may be regulated. Broiler houses are important sources of NH3 emissions. However, there are no emissions data from roaster (8-12 wk old broilers, ˜4 kg ea.) houses. Producers treat the litter in broiler houses with acidifiers, such as sodium bisulfate (SBS, NaHSO4) to reduce ammonia production and protect bird health. However, there is very little data on the effect of acidifiers, particularly at high application rates on ammonia emissions. The impact of different SBS application rates [High (0.95-1.46 kg m-2, whole house), Medium (0.73 kg m-2, whole house), Low (0.37-0.49 kg m-2, whole house), and Control (0.37-0.49 kg m-2, brood chamber)] on ammonia emissions was evaluated in commercial roaster houses over 22 months spanning eight flocks. Ammonia emission from each fan was measured with an acid scrubber that operated only when the fan operated. Emissions were calculated using >95% measured data with the rest being estimated using robust methods. Exhaust ammonia-N concentrations were inversely correlated with the SBS application rates. Emission rates on animal unit (AU, where 1 AU = 500 kg live-mass) basis (ER, g d-1 AU-1) were reduced by 27, 13, and 5%, respectively, in the High, Medium, and Low treatments vs. the Control treatment (mean: 100 g d-1 AU-1, range: 86-114 g d-1 AU-1). Emission rates for the Control treatment measured in this study on roasters were mostly higher than ERs in the literature. Differences in ERs are not only due to diet, environmental and management conditions, but also due to measurement methods.

  19. Energetics and kinetics of the prebiotic synthesis of simple organic acids and amino acids with the FeS-H2S/FeS2 redox couple as reductant

    NASA Technical Reports Server (NTRS)

    Schoonen, M. A.; Xu, Y.; Bebie, J.

    1999-01-01

    The thermodynamics of the FeS-H2S/FeS2 redox couple and a select number of reactions critical to the synthesis of simple carboxylic acids and amino acids have been evaluated as a function of temperature. This thermodynamic evaluation shows that the reducing power of the FeS-H2S/FeS2 redox couple decreases drastically with temperature. By contrast the equilibria describing the reduction of CO2 and the formation of simple carboxylic acids and amino acids require an increasingly higher reducing power with temperature. Given these two opposite trends, the thermodynamic driving force for CO2 reduction and amino acid formation with the FeS-H2S/FeS2 redox couple as reductant diminishes with increasing temperature. An evaluation of the mechanism of CO2 reduction by the FeS-H2S/FeS2 couple suggests that the electron transfer from pyrrhotite to CO2 is hindered by a high activation energy, even though the overall reaction is thermodynamically favorable. By comparison the electron transfer from pyrrhotite to either CS2, CO, or HCOOH are far more facile. This theoretical analysis explains the results of experimental work by Keefe et al. (1995), Heinen and Lauwers (1996) and Huber and Wachtershauser (1997). The implication is that a reaction sequence involving the reduction of CO2 with the FeS-H2S/FeS2 couple as reductant is unlikely to initiate a proposed prebiotic carbon fixation cycle (Wachtershauser, 1988b; 1990b, 1990a, 1992, 1993).

  20. A Unique Blend of 2-Fluorenyl-2-anthracene and 2-Anthryl-2-anthracence Showing White Emission and High Charge Mobility.

    PubMed

    Chen, Mengyun; Zhao, Yang; Yan, Lijia; Yang, Shuai; Zhu, Yanan; Murtaza, Imran; He, Gufeng; Meng, Hong; Huang, Wei

    2017-01-16

    White-light-emitting materials with high mobility are necessary for organic white-light-emitting transistors, which can be used for self-driven OLED displays or OLED lighting. In this study, we combined two materials with similar structures-2-fluorenyl-2-anthracene (FlAnt) with blue emission and 2-anthryl-2-anthracence (2A) with greenish-yellow emission-to fabricate OLED devices, which showed unusual solid-state white-light emission with the CIE coordinates (0.33, 0.34) at 10 V. The similar crystal structures ensured that the OTFTs based on mixed FlAnt and 2A showed high mobility of 1.56 cm 2  V -1  s -1 . This simple method provides new insight into the design of high-performance white-emitting transistor materials and structures. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.