Sample records for h3 antagonist binding

  1. Binding of [3H]MSX-2 (3-(3-hydroxypropyl)-7-methyl-8-(m-methoxystyryl)-1-propargylxanthine) to rat striatal membranes--a new, selective antagonist radioligand for A(2A) adenosine receptors.

    PubMed

    Müller, C E; Maurinsh, J; Sauer, R

    2000-01-01

    The present study describes the preparation and binding properties of a new, potent, and selective A(2A) adenosine receptor (AR) antagonist radioligand, [3H]3-(3-hydroxypropyl)-7-methyl-8-(m-methoxystyryl)-1-propargy lxanth ine ([3H]MSX-2). [3H]MSX-2 binding to rat striatal membranes was saturable and reversible. Saturation experiments showed that [3H]MSX-2 labeled a single class of binding sites with high affinity (K(d)=8.0 nM) and limited capacity (B(max)=1.16 fmol.mg(-1) of protein). The presence of 100 microM GTP, or 10 mM magnesium chloride, respectively, had no effect on [3H]MSX-2 binding. AR agonists competed with the binding of 1 nM [3H]MSX-2 with the following order of potency: 5'-N-ethylcarboxamidoadenosine (NECA)>2-[4-(carboxyethyl)phenylethylamino]-5'-N-ethylcarboxami doaden osine (CGS-21680)>2-chloroadenosine (2-CADO)>N(6)-cyclopentyladenosine (CPA). AR antagonists showed the following order of potency: 8-(m-bromostyryl)-3, 7-dimethyl-1-propargylxanthine (BS-DMPX)>1, 3-dipropyl-8-cyclopentylxanthine (DPCPX)>(R)-5, 6-dimethyl-7-(1-phenylethyl)-2-(4-pyridyl)-7H-pyrrolo[2, 3-d]pyrimidine-4-amine (SH-128)>3,7-dimethyl-1-propargylxanthine (DMPX)>caffeine. The K(i) values for antagonists were in accordance with data from binding studies with the agonist radioligand [3H]CGS21680, while agonist affinities were 3-7-fold lower. [3H]MSX-2 is a highly selective A(2A) AR antagonist radioligand exhibiting a selectivity of at least two orders of magnitude versus all other AR subtypes. The new radioligand shows high specific radioactivity (85 Ci/mmol, 3150 GBq/mmol) and acceptable nonspecific binding at rat striatal membranes of 20-30%, at 1 nM.

  2. Binding of [3H] SR 49059, a potent nonpeptide vasopressin V1a antagonist, to rat and human liver membranes.

    PubMed

    Serradeil-Le Gal, C; Raufaste, D; Marty, E; Garcia, C; Maffrand, J P; Le Fur, G

    1994-02-28

    The new potent and selective nonpeptide vasopressin V1a antagonist, SR 49059, was tritiated and used for the characterization of rat and human liver AVP V1a receptors. Binding of [3H] SR 49059 was time-dependent, reversible and saturable. A single class of high affinity binding sites was identified with Kd values of 0.63 +/- 0.13 and 2.95 +/- 0.64 nM, in rat and human liver membranes, respectively. The maximal binding capacity (Bmax) was about 7 times higher in rat than in human liver preparations. The relative potencies of several AVP/oxytocin agonists or antagonists to inhibit [3H] SR 49059 binding confirmed that this ligand labeled a homogeneous population of sites with the expected AVP V1a profile. Furthermore, [3H] SR 49059 or unlabeled SR 49059 displayed only slight species differences between rat and human V1a receptors, whereas OPC-21268, another nonpeptide V1a antagonist, exhibited a high species-related potency with more than 500 fold higher affinity for rat than for human liver V1a receptors. Thus, [3H] SR 49059 is the first nonpeptide AVP V1a ligand reported having highly specific activity, stability, specificity and affinity. This makes it a suitable probe for labeling AVP V1a receptors in rat and also in human tissues.

  3. Differential binding of /sup 3/H-imipramine and /sup 3/H-mianserin in rat cerebral cortex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumbrille-Ross, A.; Tang, S.W.; Coscina, D.V.

    1981-11-16

    Drug competition profiles, effect of raphe lesion, and sodium dependency of the binding of two antidepressant drugs /sup 3/H-imipramine and /sup 3/H-mianserin to rat cerebral cortex homogenate were compared to examine whether the drugs bound to a common ''antidepressant receptor.'' Of the neurotransmitters tested, only serotonin displaced binding of both /sup 3/H-imipramine and /sup 3/H-mianserin. /sup 3/H-Mianserin binding was potently displaced by serotonin S/sub 2/ antagonists and exhibited a profile similar to that of /sup 3/H-spiperone binding. In the presence of the serotonin S/sub 2/ antagonist spiperone, antihistamines (H/sub 1/) potently displaced /sup 3/H-mianserin binding. /sup 3/H-Imipramine binding was displacedmore » potently by serotonin uptake inhibitors. The order of potency of serotonergic drugs in displacing /sup 3/H-imipramine binding was not similar to their order in displacing /sup 3/H-spiperone or -3H-serotonin binding. Prior midbrain raphe lesions greatly decreased the binding of /sup 3/H-imipramine but did not alter binding of /sup 3/H-mianserin. Binding of /sup 3/H-imipramine but not /sup 3/H-mianserin was sodium dependent. These results show that /sup 3/H-imipramine and /sup 3/H-mianserin bind to different receptors. /sup 3/H-Imipramine binds to a presynaptic serotonin receptor which is probably related to a serotonin uptake recognition site, the binding of which is sodium dependent. /sup 3/H-Mianserin binds to postsynaptic receptors, possibly both serotonin S/sub 2/ and histamine H/sub 1/ receptors, the binding of which is sodium independent.« less

  4. CC12, A High Affinity Ligand for 3H-Cimetidine Binding, is an Improgan Antagonist

    PubMed Central

    Hough, Lindsay B.; Nalwalk, Julia W.; Phillips, James G.; Kern, Brian; Shan, Zhixing; Wentland, Mark P.; de Esch, Iwan J.P.; Janssen, Elwin; Barr, Travis; Stadel, Rebecca

    2007-01-01

    Summary Improgan, a chemical congener of cimetidine, is a highly effective non-opioid analgesic when injected into the CNS. Despite extensive characterization, neither the improgan receptor, nor a pharmacological antagonist of improgan has been previously described. Presently, the specific binding of 3H-cimetidine (3HCIM) in brain fractions was used to discover 4(5)-((4-iodobenzyl)thiomethyl)-1H-imidazole, which behaved in vivo as the first improgan antagonist. The synthesis and pharmacological properties of this drug (named CC12) are described herein. In rats, CC12 (50 – 500 nmol, icv) produced dose-dependent inhibition of improgan (200 – 400 nmol) antinociception on the tail flick and hot plate tests. When given alone to rats, CC12 had no effects on nociceptive latencies, or on other observable behavioral or motor functions. Maximal inhibitory effects of CC12 (500 nmol) were fully surmounted with a large icv dose of improgan (800 nmol), demonstrating competitive antagonism. In mice, CC12 (200-400 nmol, icv) behaved as a partial agonist, producing incomplete improgan antagonism, but also limited antinociception when given alone. Radioligand binding, receptor autoradiography, and electrophysiology experiments showed that CC12's antagonist properties are not explained by activity at 25 sites relevant to analgesia, including known receptors for cannabinoids, opioids or histamine. The use of CC12 as an improgan antagonist will facilitate the characterization of improgan analgesia. Furthermore, because CC12 was also found presently to inhibit opioid and cannabinoid antinociception, it is suggested that this drug modifies a biochemical mechanism shared by several classes of analgesics. Elucidation of this mechanism will enhance understanding of the biochemistry of pain relief. PMID:17336343

  5. Inhibition of /sup 3/H-leukotriene D4 binding to guinea pig lung receptors by the novel leukotriene antagonist ICI 198,615

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aharony, D.; Falcone, R.C.; Krell, R.D.

    1987-12-01

    The specific binding of (/sup 3/H)5(S)hydroxy-6(R)-S-cysteinylglycyl -7(E),9(E),11(Z),14(Z)-eicosatetraenoic acid ((/sup 3/H)LTD4) to receptors on guinea pig lung parenchymal membranes and its inhibition by ICI 198,615, a representative example of a new class of leukotriene antagonists, was characterized by a receptor-ligand binding assay. (/sup 3/H)LTD4 bound specifically and rapidly (Kon = 0.29 +/- 0.6 nM-1.min-1) reaching equilibrium within 15 min. The rate of binding was greatly inhibited in the presence of ICI 198,615. Excess LTD4 or ICI 198,615 slowly (t1/2 = 20 min) dissociated about 70% of the receptor-bound (/sup 3/H)LTD4, whereas in combination with GTP analogs, both induced a rapid (t1/2more » less than 5 min) and full dissociation. Equilibrium saturation analysis of (/sup 3/H)LTD4 binding demonstrated a saturable (Bmax = 1014 +/- 174 fmol/mg) and high affinity (Kd = 0.43 +/- 0.09 nM) binding site. A high degree of stereoselectivity was demonstrated with inhibition of binding by the stereoisomers of LTD4: S,R much greater than R,R greater than R,S much greater than S,S. The rank order for inhibition of binding by peptide leukotriene was: LTD4 greater than 5(S)-hydroxy-6(R)-S-cysteinyl-7(E),9(E),11(Z),14(Z)-eicosatetraenoic acid much greater than 5(S)hydroxy-6(R)-S-glutathionyl-7(E),9(E),11(Z),14(Z)-eicosatetraenoic acid (potency ratios were: 1:4:590). In competition assays, ICI 198,615 competitively inhibited binding of (/sup 3/H)LTD4 (Ki = 0.27 +/- 0.16 nM) and was 2300-fold and 3100-fold more potent than LY171883 or FPL55712. These data, together with results obtained previously in functional receptor assays, illustrate that this new class of leukotriene antagonists are the most potent and selective competitive antagonists of LTD4 receptors yet described.« less

  6. Heterogeneity of binding of muscarinic receptor antagonists in rat brain homogenates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, J.H.; el-Fakahany, E.E.

    1985-06-01

    The binding properties of (-)-(/sup 3/H)quinuclidinyl benzilate and (/sup 3/H) N-methylscopolamine to muscarinic acetylcholine receptors have been investigated in rat brain homogenates. The binding of both antagonists demonstrated high affinity and saturability. Analysis of the binding data resulted in linear Scatchard plots. However, (-)-(/sup 3/H)quinuclidinyl benzilate showed a significantly higher maximal binding capacity than that of (/sup 3/H)N-methylscopolamine. Displacement of both ligands with several muscarinic receptor antagonists resulted in competition curves in accordance with the law of mass-action for quinuclidinyl benzilate, atropine and scopolamine. A similar profile was found for the quaternary ammonium analogs of atropine and scopolamine when (/supmore » 3/H)N-methylscopolamine was used to label the receptors. However, when these hydrophilic antagonists were used to displace (-)-(/sup 3/H) quinuclidinyl benzilate binding, they showed interaction with high- and low-affinity binding sites. On the other hand, the nonclassical muscarinic receptor antagonist, pirenzepine, was able to displace both ligands from two binding sites. The present data are discussed in terms of the relationship of this anomalous heterogenity of binding of these hydrophilic muscarinic receptor antagonists and the proposed M1 and M2 receptor subtypes.« less

  7. Identification of amino acids in the nicotinic acetylcholine receptor agonist binding site and ion channel photolabeled by 4-[(3-trifluoromethyl)-3H-diazirin-3-yl]benzoylcholine, a novel photoaffinity antagonist.

    PubMed

    Chiara, David C; Trinidad, Jonathan C; Wang, Dong; Ziebell, Michael R; Sullivan, Deirdre; Cohen, Jonathan B

    2003-01-21

    [(3)H]4-[(3-trifluoromethyl)-3H-diazirin-3-yl]benzoylcholine (TDBzcholine) was synthesized and used as a photoaffinity probe to map the orientation of an aromatic choline ester within the agonist binding sites of the Torpedo nicotinic acetylcholine receptor (nAChR). TDBzcholine acts as a nAChR competitive antagonist that binds at equilibrium with equal affinity to both agonist sites (K(D) approximately 10 microM). Upon UV irradiation (350 nm), nAChR-rich membranes equilibrated with [(3)H]TDBzcholine incorporate (3)H into the alpha, gamma, and delta subunits in an agonist-inhibitable manner. The specific residues labeled by [(3)H]TDBzcholine were determined by N-terminal sequence analysis of subunit fragments produced by enzymatic cleavage and purified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and/or reversed-phase high-performance liquid chromatography. For the alpha subunit, [(3)H]TDBzcholine photoincorporated into alphaCys-192, alphaCys-193, and alphaPro-194. For the gamma and delta subunits, [(3)H]TDBzcholine incorporated into homologous leucine residues, gammaLeu-109 and deltaLeu-111. The photolabeling of these amino acids suggests that when the antagonist TDBzcholine occupies the agonist binding sites, the Cys-192-193 disulfide and Pro-194 from the alpha subunit Segment C are oriented toward the agonist site and are in proximity to gammaLeu-109/deltaLeu-111 in Segment E, a conclusion consistent with the structure of the binding site in the molluscan acetylcholine binding protein, a soluble protein that is homologous to the nAChR extracellular domain.

  8. Characterization of bradykinin receptors in human lung fibroblasts using the binding of 3[H][Des-Arg10,Leu9]kallidin and [3H]NPC17731.

    PubMed

    Zhang, S P; Codd, E E

    1998-01-01

    Bradykinin (BK) receptors are involved in pain and inflammation. Two BK receptor subtypes, B1 and B2, have been defined based on their pharmacological properties. Both B1 and B2 receptors are G-protein coupled membrane receptors. B1 receptors are present in smooth muscle tissue, whereas B2 receptors are found in both smooth muscle tissue and neurons. [Des-Arg10,Leu9]kallidin (DALKD) is a selective B1 receptor antagonist, and NPC17731 is a selective B2 receptor antagonist. To develop binding assays for the two known BK receptor subtypes, [3H]DALKD and [3H]NPC17731 were used as selective ligands for B1 and B2 receptors respectively. Both ligands bound to the CCD-16 human lung fibroblast membranes reaching equilibrium at 25 degrees C within 30 min. Binding was stable for at least 60 min. The Kd of [3H]DALKD was 0.33 nM and Bmax was 52 fmol/mg membrane protein. The Kd of [3H]NPC17731 was 0.39 nM and Bmax was 700 fmol/mg membrane protein. Competition for [3H]DALKD binding with BK receptor agonists was in the order: [des-Arg10]KD (DAKD) > KD > [des-Arg9]BK (DABK) > BK, and competition for [3H]DALKD binding with BK receptor antagonists was in the order: DALKD > [des-Arg10]Hoe 140 (DAHoe 140) > [des-Arg9,Leu8]BK (DALBK) > NPC17731 > Hoe 140 > DNMFBK, suggesting that [3H]DALKD bound selectively to B1 receptors. By contrast, competition for [3H]NPC17731 binding by BK agonists was in the order: BK > KD > DAKD > DABK, and competition for [3H]NPC17731 binding by BK antagonists was in the order: NPC17731 = Hoe 140 > DNMFBK > DAHoe 140 > DALBK > DALKD, indicating that [3H]NPC17731 labeled B2 receptors selectively. These results demonstrate that [3H]DALKD and [3H]NPC17731 can be used with CCD-16 human lung fibroblast membranes to provide a pair of binding assays for the simultaneous evaluation of B1 and B2 BK receptor subtypes.

  9. Comparison of (/sup 3/H)pirenzepine and (/sup 3/H)quinuclidinylbenzilate binding to muscarinic cholinergic receptors in rat brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luthin, G.R.; Wolfe, B.B.

    The properties of (/sup 3/H)quinuclidinylbenzilate ( (/sup 3/H)QNB) binding and (/sup 3/H)pirenzepine ( (/sup 3/H)PZ) binding to various regions of rat brain were compared. (/sup 3/H)PZ appeared to bind with high affinity to a single site, with a Kd value of approximately 15 nM in the cerebral cortex. The rank order of potencies of muscarinic drugs to inhibit binding of either (/sup 3/H)QNB or (/sup 3/H)PZ was QNB greater than atropine . scopolamine greater than pirenzepine greater than oxotremorine greater than bethanechol. Muscarinic antagonists (except PZ) inhibited both (/sup 3/H)PZ and (/sup 3/H)QNB binding with Hill coefficients of approximately 1.more » PZ inhibited (/sup 3/H)QNB binding in cortex with a Hill coefficient of 0.7, but inhibited (/sup 3/H)PZ binding with a Hill coefficient of 1.0. Hill coefficients for agonists were less than 1. The density of (/sup 3/H)PZ binding sites was approximately half the density of (/sup 3/H)QNB binding sites in cortex, striatum and hippocampus. In pons-medulla and cerebellum, the densities of (/sup 3/H)PZ binding sites were 20 and 0%, respectively, relative to the densities of (/sup 3/H)QNB binding sites. When unlabeled PZ was used to compete for (/sup 3/H)QNB binding, the relative number of high-affinity PZ binding sites in cortex, pons and cerebellum agreed with the relative number of (/sup 3/H)PZ binding sites in those regions. The binding of (/sup 3/H)PZ and (/sup 3/H)QNB was nonadditive in cortex. GTP inhibited high-affinity oxotremorine binding, but not PZ binding. Together, these data suggest that (/sup 3/H)PZ binds to a subset of (/sup 3/H)QNB binding sites. Whether this subset reflects the existence of subtypes of muscarinic receptors or is a consequence of coupling to another membrane protein remains to be seen.« less

  10. Sodium ion modulates D2 receptor characteristics of dopamine agonist and antagonist binding sites in striatum and retina

    PubMed Central

    Makman, Maynard H.; Dvorkin, B.; Klein, Patrice N.

    1982-01-01

    Sodium ion (Na+) influences binding of both dopamine agonists and antagonists to D2 receptors in striatum and retina. Also, Na+ markedly potentiates the loss of high-affinity agonist binding due to the GTP analogue p[NH]ppG. 2-Amino-6, 7-dihydroxy-1,2,3,4-tetrahydro[5,8-3H]naphthalene ([3H]ADTN) binds exclusively to an agonist conformation of D2 receptor in both striatum and retina, distinct from the antagonist conformation labeled by [3H]spiroperidol or [3H]domperidone in striatum or by [3H]spiroperidol in retina. Na+ is not required for interaction of [3H]ADTN or antagonist radioligand sites with the selective D2 agonist LY-141865, the D2 antagonist domperidone, or nonselective dopamine agonists or antagonists; however, Na+ is necessary for high affinity interaction of those radioligand sites with the D2 antagonists molindone and metoclopramide. With Na+ present, striatal sites for [3H]ADTN, [3H]spiroperidol, and [3H]domperidone have similar affinities for antagonists but only [3H]ADTN sites have high affinity for agonists. Na+ further decreases the low affinity of dopamine agonists for [3H]spiroperidol binding sites. Also, Na+ enhances [3H]spiroperidol and decreases [3H]ADTN binding. Na+ alone causes bound [3H]ADTN to dissociate from at least 30% of striatal and 50% of retinal sites, and with Na+ present [3H]ADTN rapidly dissociates from the remaining sites upon addition of p[NH]ppG. It is proposed that D2 receptors in striatum and retina exist in distinct but interconvertible conformational states, with different properties depending on the presence or absence of Na+ and of guanine nucleotide. PMID:6213964

  11. Characterization of (/sup 3/H)pirenzepine binding to muscarinic cholinergic receptors solubilized from rat brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luthin, G.R.; Wolfe, B.B.

    Membranes prepared from rat cerebral cortex were solubilized in buffer containing 1% digitonin. Material present in the supernatant after centrifugation at 147,000 X g was shown to contain binding sites for both (/sup 3/H)quinuclidinyl benzilate ((/sup 3/H)QNB) and (/sup 3/H)pirenzepine ((/sup 3/H)PZ). Recovery of binding sites was approximately 25% of the initial membrane-bound (/sup 3/H)QNB binding sites. The Kd values for (/sup 3/H)QNB and (/sup 3/H)PZ binding to solubilized receptors were 0.3 nM and 0.1 microM, respectively. As has been observed previously in membrane preparations, (/sup 3/H)PZ appeared to label fewer solubilized binding sites than did (/sup 3/H)QNB. Maximum bindingmore » values for (/sup 3/H)PZ and (/sup 3/H)QNB binding to solubilized receptors were approximately 400 and 950 fmol/mg of protein, respectively. Competition curves for PZ inhibiting the binding of (/sup 3/H)QNB, however, had Hill slopes of 1, with a Ki value of 0.24 microM. The k1 and k-1 for (/sup 3/H)PZ binding were 3.5 X 10(6) M-1 min-1 and 0.13 min-1, respectively. The muscarinic receptor antagonists atropine, scopolamine and PZ inhibited the binding of (/sup 3/H)QNB and (/sup 3/H)PZ to solubilized receptors with Hill slopes of 1, as did the muscarinic receptor agonist oxotremorine. The muscarinic receptor agonist carbachol competed for (/sup 3/H)QNB and (/sup 3/H)PZ binding with a Hill slope of less than 1 in cerebral cortex, but not in cerebellum. GTP did not alter the interactions of carbachol or oxotremorine with the solubilized receptor. Together, these data suggest that muscarinic receptor sites solubilized from rat brain retain their abilities to interact selectively with muscarinic receptor agonists and antagonists.« less

  12. Stereoselective L-(3H)quinuclidinyl benzilate-binding sites in nervous tissue of Aplysia californica: evidence for muscarinic receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, T.F.; Mpitsos, G.J.; Siebenaller, J.F.

    The muscarinic antagonist L-(/sup 3/H)quinuclidinyl benzilate (L-(/sup 3/H)QNB) binds with a high affinity (Kd = 0.77 nM) to a single population of specific sites (Bmax = 47 fmol/mg of protein) in nervous tissue of the gastropod mollusc, Aplysia. The specific L-(/sup 3/H)QNB binding is displaced stereoselectively by the enantiomers of benzetimide, dexetimide, and levetimide. The pharmacologically active enantiomer, dexetimide, is more potent than levetimide as an inhibitor of L-(/sup 3/H)QNB binding. Moreover, the muscarinic cholinergic ligands, scopolamine, atropine, oxotremorine, and pilocarpine are effective inhibitors of the specific L-(/sup 3/H)QNB binding, whereas nicotinic receptor antagonists, decamethonium and d-tubocurarine, are considerably lessmore » effective. These pharmacological characteristics of the L-(/sup 3/H)QNB-binding site provide evidence for classical muscarinic receptors in Aplysia nervous tissue. The physiological relevance of the dexetimide-displaceable L-(/sup 3/H)QNB-binding site was supported by the demonstration of the sensitivity of the specific binding to thermal denaturation. Specific binding of L-(/sup 3/H)QNB was also detected in nervous tissue of another marine gastropod, Pleurobranchaea californica. The characteristics of the Aplysia L-(/sup 3/H)QNB-binding site are in accordance with studies of numerous vertebrate and invertebrate tissues indicating that the muscarinic cholinergic receptor site has been highly conserved through evolution.« less

  13. Two nucleotide binding sites modulate ( sup 3 H) glyburide binding to rat cortex membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, D.E.; Gopalakrishnan, M.; Triggle, D.J.

    1991-03-11

    The effects of nucleotides on the binding of the ATP-dependent K{sup +}-channel antagonist ({sup 3}H)glyburide (GLB) to rat cortex membranes were examined. Nucleotide triphosphates (NTPs) and nucleotide diphosphate (NDPs) inhibited the binding of GLB. This effect was dependent on the presence of dithiothreitol (DTT). Inhibition of binding by NTPs, with the exception of ATP{gamma}S, was dependent on the presence of Mg{sup 2+}. GLB binding showed a biphasic response to ADP: up to 3 mM, ADP inhibited binding, and above this concentration GLB binding increased rapidly, and was restored to normal levels by 10 mM ADP. In the presence of Mg{supmore » 2+}, ADP did not stimulate binding. Saturation analysis in the presence of Mg{sup 2+} and increasing concentrations of ADP showed that ADP results primarily in a change of the B{sub max} for GLB binding. The differential effects of NTPS and NDPs indicate that two nucleotide binding sites regulate GLB binding.« less

  14. Mapping of the acetylcholine binding site of the nicotinic acetylcholine receptor: ( sup 3 H)nicotine as an agonist photoaffinity label

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Middleton, R.E.; Cohen, J.B.

    1991-07-16

    The agonist ({sup 3}H)nicotine was used as a photoaffinity label for the acetylcholine binding sties on the Torpedo nicotinic acetylcholine receptor (AChR). ({sup 3}H)Nicotine binds at equilibrium with K{sub eq} = 0.6 {mu}M to the agonist binding sites. Irradiation with 254-nm light of AChR-rich membranes equilibrated with ({sup 3}H)nicotine resulted in covalent incorporation into the {alpha}- and {gamma}-subunits, which was inhibited by agonists and competitive antagonists but not by noncompetitive antagonists. Inhibition of labeling by d-tubocurarine demonstrated that the {alpha}-subunit was labeled via both agonist sites but the {gamma}-subunit was labeled only via the site that binds d-tubocurarine with highmore » affinity. Chymotryptic digestion of the {alpha}-subunit confirmed that Try-198 was the principal amino acid labeled by ({sup 3}H)nicotine. This confirmation required a novel radiosequencing strategy employing o-phthalaldehyde ({sup 3}H)Nicotine, which is the first photoaffinity agonist used, labels primarily Tyr-198 in contrast to competitive antagonist affinity labels, which label primarily Tyr-190 and Cys-192/Cys-193.« less

  15. Antagonistic targeting of the histamine H3 receptor decreases caloric intake in higher mammalian species.

    PubMed

    Malmlöf, Kjell; Hastrup, Sven; Wulff, Birgitte Schellerup; Hansen, Barbara C; Peschke, Bernd; Jeppesen, Claus Bekker; Hohlweg, Rolf; Rimvall, Karin

    2007-04-15

    The main purpose of this study was to examine the effects of a selective histamine H(3) receptor antagonist, NNC 38-1202, on caloric intake in pigs and in rhesus monkeys. The compound was given intragastrically (5 or 15 mg/kg), to normal pigs (n=7) and subcutaneously (1 or 0.1mg/kg) to obese rhesus monkeys (n=9). The energy intake recorded following administration of vehicle to the same animals served as control for the effect of the compound. In addition, rhesus monkey and pig histamine H(3) receptors were cloned from hypothalamic tissues and expressed in mammalian cell lines. The in vitro antagonist potencies of NNC 38-1202 at the H(3) receptors were determined using a functional GTPgammaS binding assay. Porcine and human H(3) receptors were found to have 93.3% identity at the amino acid level and the close homology between the monkey and human H(3) receptors (98.4% identity) was confirmed. The antagonist potencies of NNC 38-1202 at the porcine, monkey and human histamine H(3) receptors were high as evidenced by K(i)-values being clearly below 20 nM, whereas the K(i)-value on the rat H(3) receptor was significantly higher (56+/-6.0 nM). NNC 38-1202, given to pigs in a dose of 15 mg/kg, produced a significant (p<0.05) reduction (55%) of calorie intake compared with vehicle alone, (132.6+/-10.0 kcal/kgday versus 59.7+/-10.2 kcal/kgday). In rhesus monkeys administration of 0.1 and 1mg/kg decreased (p<0.05) average calorie intakes by 40 and 75%, respectively. In conclusion, the present study demonstrates that antagonistic targeting of the histamine H(3) receptor decreases caloric intake in higher mammalian species.

  16. [(3)H]8-Ethyl-4-methyl-2-phenyl-(8R)-4,5,7,8-tetrahydro-1H-imidazo[2,1-i]-purin-5-one ([(3)H]PSB-11), a novel high-affinity antagonist radioligand for human A(3) adenosine receptors.

    PubMed

    Müller, Christa E; Diekmann, Martina; Thorand, Mark; Ozola, Vita

    2002-02-11

    This study describes the preparation and binding properties of [(3)H]PSB-11, a novel, potent, and selective antagonist radioligand for human A(3) adenosine receptors (ARs). [(3)H]PSB-11 binding to membranes of Chinese hamster ovary (CHO) cells expressing the human A(3) AR was saturable and reversible. Saturation experiments showed that [(3)H]PSB-11 labeled a single class of binding sites with high affinity (K(D)=4.9 nM) and limited capacity (B(max)=3500 fmol/mg of protein). PSB-11 is highly selective versus the other adenosine receptor subtypes. The new radioligand shows an extraordinarily low degree of non-specific binding rendering it a very useful tool for studying the (patho)physiological roles of A(3 )ARs.

  17. Identification of two H3-histamine receptor subtypes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, R.E. Jr.; Zweig, A.; Shih, N.Y.

    The H3-histamine receptor provides feedback inhibition of histamine synthesis and release as well as inhibition of other neurotransmitter release. We have characterized this receptor by radioligand binding studies with the H3 agonist N alpha-(3H)methylhistamine ((3H)NAMHA). The results of (3H)NAMHA saturation binding and NAMHA inhibition of (3H)NAMHA binding were consistent with an apparently single class of receptors (KD = 0.37 nM, Bmax = 73 fmol/mg of protein) and competition assays with other agonists and the antagonists impromidine and dimaprit disclosed only a single class of sites. In contrast, inhibition of (3H)NAMHA binding by the specific high affinity H3 antagonist thioperamide revealedmore » two classes of sites (KiA = 5 nM, BmaxA = 30 fmol/mg of protein; KiB = 68 nM, BmaxB = 48 fmol/mg of protein). Burimamide, another antagonist that, like thioperamide, contains a thiourea group, likewise discriminated between two classes of sites. In addition to differences between some antagonist potencies for the two receptors, there is a differential guanine nucleotide sensitivity of the two. The affinity of the H3A receptor for (3H) NAMHA was reduced less than 2-fold, whereas (3H)NAMHA binding to the H3B receptor was undetectable in the presence of guanosine 5'-O-(3-thiotriphosphate). The distinction between H3A and H3B receptor subtypes, the former a high affinity and the latter a low affinity thioperamide site, draws support from published in vitro data.« less

  18. Structure-based prediction of subtype selectivity of histamine H3 receptor selective antagonists in clinical trials.

    PubMed

    Kim, Soo-Kyung; Fristrup, Peter; Abrol, Ravinder; Goddard, William A

    2011-12-27

    Histamine receptors (HRs) are excellent drug targets for the treatment of diseases, such as schizophrenia, psychosis, depression, migraine, allergies, asthma, ulcers, and hypertension. Among them, the human H(3) histamine receptor (hH(3)HR) antagonists have been proposed for specific therapeutic applications, including treatment of Alzheimer's disease, attention deficit hyperactivity disorder (ADHD), epilepsy, and obesity. However, many of these drug candidates cause undesired side effects through the cross-reactivity with other histamine receptor subtypes. In order to develop improved selectivity and activity for such treatments, it would be useful to have the three-dimensional structures for all four HRs. We report here the predicted structures of four HR subtypes (H(1), H(2), H(3), and H(4)) using the GEnSeMBLE (GPCR ensemble of structures in membrane bilayer environment) Monte Carlo protocol, sampling ∼35 million combinations of helix packings to predict the 10 most stable packings for each of the four subtypes. Then we used these 10 best protein structures with the DarwinDock Monte Carlo protocol to sample ∼50 000 × 10(20) poses to predict the optimum ligand-protein structures for various agonists and antagonists. We find that E206(5.46) contributes most in binding H(3) selective agonists (5, 6, 7) in agreement with experimental mutation studies. We also find that conserved E5.46/S5.43 in both of hH(3)HR and hH(4)HR are involved in H(3)/ H(4) subtype selectivity. In addition, we find that M378(6.55) in hH(3)HR provides additional hydrophobic interactions different from hH(4)HR (the corresponding amino acid of T323(6.55) in hH(4)HR) to provide additional subtype bias. From these studies, we developed a pharmacophore model based on our predictions for known hH(3)HR selective antagonists in clinical study [ABT-239 1, GSK-189,254 2, PF-3654746 3, and BF2.649 (tiprolisant) 4] that suggests critical selectivity directing elements are: the basic proton

  19. Differential inhibition of [3H]-oxotremorine-M and [3H]-quinuclinidyl benzilate binding to muscarinic receptors in rat brain membranes with acetylcholinesterase inhibitors.

    PubMed

    Lockhart, B; Closier, M; Howard, K; Steward, C; Lestage, P

    2001-04-01

    The potential interaction of acetylcholinesterase inhibitors with cholinergic receptors may play a significant role in the therapeutic and/or side-effects associated with this class of compound. In the present study, the capacity of acetylcholinesterase inhibitors to interact with muscarinic receptors was assessed by their ability to displace both [3H]-oxotremorine-M and [3H]-quinuclinidyl benzilate binding in rat brain membranes. The [3H]-quinuclinidyl benzilate/[3H]-oxotremorine-M affinity ratios permitted predictions to be made of either the antagonist or agonist properties of the different compounds. A series of compounds, representative of the principal classes of acetylcholinesterase inhibitors, displaced [3H]-oxotremorine-M binding with high-to-moderate potency (ambenonium>neostigmine=pyridostigmine=tacrine>physostigmine> edrophonium=galanthamine>desoxypeganine) whereas only ambenonium and tacrine displaced [3H]-quinuclinidyl benzilate binding. Inhibitors such as desoxypeganine, parathion and gramine demonstrated negligible inhibition of the binding of both radioligands. Scatchard plots constructed from the inhibition of [3H]-oxotremorine-M binding in the absence and presence of different inhibitors showed an unaltered Bmax and a reduced affinity constant, indicative of potential competitive or allosteric mechanisms. The capacity of acetylcholinesterase inhibitors, with the exception of tacrine and ambenonium, to displace bound [3H]-oxotremorine-M in preference to [3H]quinuclinidyl benzilate predicts that the former compounds could act as potential agonists at muscarinic receptors. Moreover, the rank order for potency in inhibiting acetylcholinesterase (ambenonium>neostigmine=physostigmine =tacrine>pyridostigmine=edrophonium=galanthamine >desoxypeganine>parathion>gramine) indicated that the most effective inhibitors of acetylcholinesterase also displaced [3H]-oxotremorine-M to the greatest extent. The capacity of these inhibitors to displace [3H

  20. Characterization of the slow calcium channel binding sites for ( sup 3 H)SR 33557 in rat heart sarcolemmal membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatelain, P.; Beaufort, P.; Meysmans, L.

    1991-01-01

    SR 33557 represents a new class of compounds (indolizine sulfone) that inhibit L-type Ca2+ channels. ({sup 3}H)SR 33557 has been shown to bind with high affinity (Kd congruent to 0.36 nM, calculated from saturation isotherms and association/dissociation kinetics) to a single class of sites in a purified preparation of rat cardiac sarcolemmal membranes. The binding was found to be saturable and reversible. The maximal binding capacity was in approximately 1:1 stoichiometry with that of other Ca2+ channel antagonists. Various divalent cations (Mg2+, Mn2+, Ca2+, Ba2+, and Cd2+) were shown to inhibit specific ({sup 3}H)SR 33557 binding, with Cd2+ being themore » most potent. Among several receptor or channel ligands (including omega-conotoxin and Na+ and K+ channel modulators), only the L-type Ca2+ channel antagonists were found to displace ({sup 3}H)SR 33557. However, dihydropyridines, phenylalkylamines, benzothiazepines, and diphenylbutylpiperidines were found to inhibit ({sup 3}H)SR 33557 in a noncompetitive manner as demonstrated by displacement and saturation experiments in addition to dissociation kinetics. From these results, we suggest that SR 33557 binds with high affinity to a unique site on the L-type Ca2+ channel found in rat cardiac sarcolemmal membranes.« less

  1. New H1/H3 antagonists for treating allergic rhinitis: WO2010094643.

    PubMed

    Norman, Peter

    2011-03-01

    This application claims dual receptor specificity antihistamines, active as H(1) and H(3) antagonists, which additionally have a long duration of action that renders them suitable for once daily administration via inhalation for the treatment of allergic rhinitis. The compounds lack CNS penetration and have a high affinity for both histamine receptors.

  2. In vitro histamine H/sub 2/-antagonist activity of the novel compound HUK 978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coombes, J.D.; Norris, D.B.; Rising, T.J.

    1985-11-04

    Histamine stimulated adenylate cyclase from guinea-pig fundic mucosa and /sup 3/H-tiotidine binding in guinea-pig cerebral cortex were used to assess the in-vitro histamine H/sub 2/-activity of the novel H/sub 2/-antagonist HUK 978. The results showed that HUK 978 was a more potent H/sub 2/-antagonist than either cimetidine or ranitidine. HUK 978 was also shown to be devoid of activity at the histamine H-/sub 1/-receptor, the muscarinic receptor and the ..cap alpha.. and ..beta..-adrenergic receptors.

  3. Quantitative analysis of rat brain alpha 2-receptors discriminated by [3H]clonidine and [3H]rauwolscine.

    PubMed

    Asakura, M; Tsukamoto, T; Imafuku, J; Matsui, H; Ino, M; Hasegawa, K

    1984-10-30

    Quantitative analysis of direct ligand binding of both [3H]clonidine and [3H]rauwolscine to the rat cerebral cortex alpha 2-receptors indicates the existence of two affinity states of the same receptor populations. In the presence of Mn2+, the high affinity state of [3H]clonidine binding was increased, whereas the high affinity state of [3H]rauwolscine binding was reduced. By contrast, GTP in micromolar ranges caused a decrease of the agonist high affinity state and an increase of the antagonist high affinity state. The total receptor sites and the respective separate affinities for both radioligands were approximately equal to their control values under all conditions, indicating that Mn2+ and GTP modulate the proportion of the two affinity states of the receptor. These results can be incorporated into a two-step, ternary complex model involving a guanine nucleotide binding protein (N protein) for the agonist and antagonist interaction with the alpha 2-receptor. Furthermore, the effects of GTP on the interaction of both ligands with the two affinity states can be mimicked by EDTA. It is suggested that divalent cations induce the formation of the receptor-N protein binary complex showing high affinity for agonists and low affinity for antagonists.

  4. Inhibition of (/sup 3/H)nitrendipine binding by phospholipase A/sub 2/

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldman, M.E.; Pisano, J.J.

    Phospholipase A/sub 2/ from several sources inhibited (/sup 3/H)nitrendipine binding to membranes from brain, heart and ileal longitudinal muscle. The enzymes from bee venom and Russell's viper venom were most potent, having IC/sub 50/ values of approximately 5 and 14 ng/ml, respectively, in all three membrane preparations. Inhibition of binding by bee venom phospholipase A/sub 2/ was time- and dose-dependent. Mastoparan, a known facilitator of phospholipase A/sub 2/ enzymatic activity, shifted the bee venom phospholipase A/sub 2/ dose-response curve to the left. Pretreatment of brain membranes with bee venom phospholipase A/sub 2/ (10 ng/ml) for 15 min caused a 2-foldmore » increase in the K/sub d/ without changing the B/sub max/ compared with untreated membranes. Extension of the preincubation period to 30 min caused no further increase in the K/sub d/ but significantly decreased the B/sub max/ to 71% the value for untreated membranes. (/sup 3/H)Nitrendipine, preincubated with bee venom phospholipase A/sub 2/, was recovered and found to be fully active, indicating that the phospholipase A/sub 2/ did not modify the ligand. It is concluded that phospholipase A/sub 2/ acts on the membrane at or near the (/sup 3/H)nitrendipine binding site and that phospholipids play a key role in the interactions of 1,4 dihydropyridine calcium channel antagonists with the dihydropyridine binding site. 33 references, 3 figures, 1 table.« less

  5. Synthesis and preliminary evaluation of [3H]PSB-0413, a selective antagonist radioligand for platelet P2Y12 receptors.

    PubMed

    El-Tayeb, Ali; Griessmeier, Kerstin J; Müller, Christa E

    2005-12-15

    The selective antagonist radioligand [(3)H]2-propylthioadenosine-5'-adenylic acid (1,1-dichloro-1-phosphonomethyl-1-phosphonyl) anhydride ([(3)H]PSB-0413) was prepared by catalytic hydrogenation of its propargyl precursor with a high specific radioactivity of 74Ci/mmol. In preliminary saturation binding studies, [(3)H]PSB-0413 showed high affinity for platelet P2Y(12) receptors with a K(D) value of 4.57nM. Human platelets had a high density of P2Y(12) receptors exhibiting a B(max) value of 7.66pmol/mg of protein.

  6. Dopamine Transporter-Dependent and -Independent Striatal Binding of the Benztropine Analog JHW 007, a Cocaine Antagonist with Low Abuse Liability

    PubMed Central

    Kopajtic, Theresa A.; Liu, Yi; Surratt, Christopher K.; Donovan, David M.; Newman, Amy H.; Katz, Jonathan L.

    2010-01-01

    The benztropine analog N-(n-butyl)-3α-[bis(4′-fluorophenyl)methoxy]-tropane (JHW 007) displays high affinity for the dopamine transporter (DAT), but unlike typical DAT ligands, has relatively low abuse liability and blocks the effects of cocaine, including its self-administration. To determine sites responsible for the cocaine antagonist effects of JHW 007, its in vitro binding was compared with that of methyl (1R,2S,3S,5S)-3-(4-fluorophenyl)-8-methyl-8-azabicyclo[3.2.1]octane-2-carboxylate (WIN 35428) in rats, mice, and human DAT (hDAT)-transfected cells. A one-site model, with Kd values of 4.21 (rat) and 8.99 nM (mouse) best fit the [3H]WIN 35428 data. [3H]JHW 007 binding best fit a two-site model (rat, 7.40/4400 nM; mouse, 8.18/2750 nM), although a one-site fit was observed with hDAT membranes (43.7 nM). Drugs selective for the norepinephrine and serotonin transporters had relatively low affinity in competition with [3H]JHW 007 binding, as did drugs selective for other sites identified previously as potential JHW 007 binding sites. The association of [3H]WIN 35428 best fit a one-phase model, whereas the association of [3H]JHW 007 best fit a two-phase model in all tissues. Because cocaine antagonist effects of JHW 007 have been observed previously soon after injection, its rapid association observed here may contribute to those effects. Multiple [3H]JHW 007 binding sites were obtained in tissue from mice lacking the DAT, suggesting these as yet unidentified sites as potential contributors to the cocaine antagonist effects of JHW 007. Unlike WIN 35428, the binding of JHW 007 was Na+-independent. This feature of JHW 007 has been linked to the conformational status of the DAT, which in turn may contribute to the antagonism of cocaine. PMID:20855444

  7. Agonist and antagonist actions of antipsychotic agents at 5-HT1A receptors: a [35S]GTPgammaS binding study.

    PubMed

    Newman-Tancredi, A; Gavaudan, S; Conte, C; Chaput, C; Touzard, M; Verrièle, L; Audinot, V; Millan, M J

    1998-08-21

    Recombinant human (h) 5-HT1A receptor-mediated G-protein activation was characterised in membranes of transfected Chinese hamster ovary (CHO) cells by use of guanosine-5'-O-(3-[35S]thio)-triphosphate ([35S]GTPgammaS binding). The potency and efficacy of 21 5-HT receptor agonists and antagonists was determined. The agonists, 5-CT (carboxamidotryptamine) and flesinoxan displayed high affinity (subnanomolar Ki values) and high efficacy (Emax > 90%, relative to 5-HT = 100%). In contrast, ipsapirone, zalospirone and buspirone displayed partial agonist activity. EC50s for agonist stimulation of [35S]GTPgammaS binding correlated well with Ki values from competition binding (r = +0.99). Among the compounds tested for antagonist activity, methiothepin and (+)butaclamol exhibited 'inverse agonist' behaviour, inhibiting basal [35S]GTPgammaS binding. The actions of 17 antipsychotic agents were investigated. Clozapine and several putatively 'atypical' antipsychotic agents, including ziprasidone, quetiapine and tiospirone, exhibited partial agonist activity and marked affinity at h5-HT1A receptors, similar to their affinity at hD2 dopamine receptors. In contrast, risperidone and sertindole displayed low affinity at h5-HT1A receptors and behaved as 'neutral' antagonists, inhibiting 5-HT-stimulated [35S]GTPgammaS binding. Likewise the 'typical' neuroleptics, haloperidol, pimozide, raclopride and chlorpromazine exhibited relatively low affinity and 'neutral' antagonist activity at h5-HT1A receptors with Ki values which correlated with their respective Kb values. The present data show that (i) [35S]GTPgammaS binding is an effective method to evaluate the efficacy and potency of agonists and antagonists at recombinant human 5-HT1A receptors. (ii) Like clozapine, several putatively 'atypical' antipsychotic drugs display balanced serotonin h5-HT1A/dopamine hD2 receptor affinity and partial agonist activity at h5-HT1A receptors. (iii) Several 'typical' and some putatively 'atypical

  8. Temperature-sensitive high affinity (/sup 3/H)serotonin binding: characterization and effects of antidepressant treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helmeste, D.M.; Tang, S.W.

    1984-08-13

    Characterization of temperature-sensitive (/sup 3/H)serotonin (5-HT) binding sites (1 and 4 nM Kd sites) revealed complex inhibition by neuroleptics and serotonin antagonists. There was no simple correlation with affinities for S/sub 1/ and S/sub 2/ receptors. In vivo pretreatment (48 h before) with mianserin did not alter B/sub max/ or Kd for the 1 nM Kd (/sup 3/H)5-HT site, although (/sup 3/H)ketanserin (S/sub 2/) densities were decreased by 50%. This suggested that possible S/sub 2/ components of (/sup 3/H)5-HT binding must be negligible, even though ketanserin competed with high affinity (IC/sub 50/ = 3 nM) for a portion of themore » 1 nM Kd (/sup 3/H)5-HT site. Low concentrations of mianserin inhibited the 1 nM Kd (/sup 3/H)5-HT site in a non-competitive manner, as shown by a decrease in B/sub max/ with no change in Kd after in vitro incubation. The complex inhibition data may therefore represent indirect interactions through another site.« less

  9. GBR-12909 and fluspirilene potently inhibited binding of ( sup 3 H) (+) 3-PPP to sigma receptors in rat brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Contreras, P.C.; Bremer, M.E.; Rao, T.S.

    1990-01-01

    Fluspirilene and GBR-12909, two compounds structurally similar to BMY-14802 and haloperidol, were assessed for their ability to interact with sigma receptors. Fluspirilene, an antipsychotic agent that interacts potently with dopamine receptors, inhibited the binding of ({sup 3}H)-(+)3-PPP (IC{sub 50} = 380 nM) more potently than rimcazole, a putative sigma antagonist that was tested clinically for antipsychotic activity. GBR-12909, a potent dopamine uptake blocker, also inhibited the binding of ({sup 3}H)-(+)3-PPP with an IC{sub 50} of 48 nM. However, other compounds that block the re-uptake of catecholamines, such as nomifensine, desipramine, imipramine, xylamine, benztropine and cocaine, were much weaker than GBR-12909asmore » sigma ligands. Thus, GBR-12909 and fluspirilene, compounds structurally similar to BMY-14802, are potent sigma ligands.« less

  10. Binding, Thermodynamics, and Selectivity of a Non-peptide Antagonist to the Melanocortin-4 Receptor

    PubMed Central

    Saleh, Noureldin; Kleinau, Gunnar; Heyder, Nicolas; Clark, Timothy; Hildebrand, Peter W.; Scheerer, Patrick

    2018-01-01

    The melanocortin-4 receptor (MC4R) is a potential drug target for treatment of obesity, anxiety, depression, and sexual dysfunction. Crystal structures for MC4R are not yet available, which has hindered successful structure-based drug design. Using microsecond-scale molecular-dynamics simulations, we have investigated selective binding of the non-peptide antagonist MCL0129 to a homology model of human MC4R (hMC4R). This approach revealed that, at the end of a multi-step binding process, MCL0129 spontaneously adopts a binding mode in which it blocks the agonistic-binding site. This binding mode was confirmed in subsequent metadynamics simulations, which gave an affinity for human hMC4R that matches the experimentally determined value. Extending our simulations of MCL0129 binding to hMC1R and hMC3R, we find that receptor subtype selectivity for hMC4R depends on few amino acids located in various structural elements of the receptor. These insights may support rational drug design targeting the melanocortin systems.

  11. Comparison of (/sup 3/H)nicotine and (/sup 3/H)acetylcholine binding in mouse brain: regional distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sershen, H.; Reith, M.E.; Hashim, A.

    1985-06-01

    In a continuing study of nicotine binding sites, the authors determined the relative amount of nicotine binding and acetylcholine binding in various brain regions of C57/BL and of DBA mice. Although midbrain showed the highest and cerebellum the lowest binding for both (/sup 3/H)nicotine and (/sup 3/H)acetylcholine, the ratio of nicotine to acetylcholine binding showed a three-fold regional variation. Acetylcholine inhibition of (/sup 3/H)nicotine binding indicated that a portion of nicotine binding was not inhibited by acetylcholine. These results indicate important differences between the binding of (+/-)-(/sup 3/H)nicotine and that of (/sup 3/H)acetylcholine.

  12. Evidence that the atypical 5-HT3 receptor ligand, [3H]-BRL46470, labels additional 5-HT3 binding sites compared to [3H]-granisetron.

    PubMed Central

    Steward, L. J.; Ge, J.; Bentley, K. R.; Barber, P. C.; Hope, A. G.; Lambert, J. J.; Peters, J. A.; Blackburn, T. P.; Barnes, N. M.

    1995-01-01

    1. The radioligand binding characteristics of the 3H-derivative of the novel 5-HT3 receptor antagonist BRL46470 were investigated and directly compared to the well characterized 5-HT3 receptor radioligand [3H]-granisetron, in tissue homogenates prepared from rat cerebral cortex/hippocampus, rat ileum, NG108-15 cells, HEK-5-HT3As cells and human putamen. 2. In rat cerebral cortex/hippocampus, rat ileum, NG108-15 cell and HEK-5-HT3As cell homogenates, [3H]-BRL46470 bound with high affinity (Kd (nM): 1.57 +/- 0.18, 2.49 +/- 0.30, 1.84 +/- 0.27, 3.46 +/- 0.36, respectively; mean +/- s.e. mean, n = 3-4) to an apparently homogeneous saturable population of sites (Bmax (fmol mg-1 protein): 102 +/- 16, 44 +/- 4, 968 +/- 32 and 2055 +/- 105, respectively; mean +/- s.e. mean, n = 3-4) but failed to display specific binding in human putamen homogenates. 3. In the same homogenates of rat cerebral cortex/hippocampus, rat ileum, NG108-15 cells, HEK-5-HT3As cells and human putamen as used for the [3H]-BRL46470 studies, [3H]-granisetron also bound with high affinity (Kd (nM): 1.55 +/- 0.61, 2.31 +/- 0.44, 1.89 +/- 0.36, 2.03 +/- 0.42 and 6.46 +/- 2.58 respectively; mean +/- s.e. mean, n = 3-4) to an apparently homogeneous saturable population of sites (Bmax (fmol mg-1 protein): 39 +/- 4, 20 +/- 2, 521 +/- 47, 870 +/- 69 and 18 +/- 2, respectively; mean +/- s.e. mean, n = 3-4).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8528560

  13. Structural Changes Due to Antagonist Binding in Ligand Binding Pocket of Androgen Receptor Elucidated Through Molecular Dynamics Simulations.

    PubMed

    Sakkiah, Sugunadevi; Kusko, Rebecca; Pan, Bohu; Guo, Wenjing; Ge, Weigong; Tong, Weida; Hong, Huixiao

    2018-01-01

    When a small molecule binds to the androgen receptor (AR), a conformational change can occur which impacts subsequent binding of co-regulator proteins and DNA. In order to accurately study this mechanism, the scientific community needs a crystal structure of the Wild type AR (WT-AR) ligand binding domain, bound with antagonist. To address this open need, we leveraged molecular docking and molecular dynamics (MD) simulations to construct a structure of the WT-AR ligand binding domain bound with antagonist bicalutamide. The structure of mutant AR (Mut-AR) bound with this same antagonist informed this study. After molecular docking analysis pinpointed the suitable binding orientation of a ligand in AR, the model was further optimized through 1 μs of MD simulations. Using this approach, three molecular systems were studied: (1) WT-AR bound with agonist R1881, (2) WT-AR bound with antagonist bicalutamide, and (3) Mut-AR bound with bicalutamide. Our structures were very similar to the experimentally determined structures of both WT-AR with R1881 and Mut-AR with bicalutamide, demonstrating the trustworthiness of this approach. In our model, when WT-AR is bound with bicalutamide, Val716/Lys720/Gln733, or Met734/Gln738/Glu897 move and thus disturb the positive and negative charge clumps of the AF2 site. This disruption of the AF2 site is key for understanding the impact of antagonist binding on subsequent co-regulator binding. In conclusion, the antagonist induced structural changes in WT-AR detailed in this study will enable further AR research and will facilitate AR targeting drug discovery.

  14. Identification and characterization of (/sup 3/H)-rauwolscine binding to alpha2-adrenoceptors in the canine saphenous vein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gout, B.

    1988-01-01

    The biochemical exploration of the alpha2-adrenergic receptors was investigated in the canine saphenous vein using the highly selective alpha2-adrenergic antagonist rauwolscine as a tritiated ligand. Following an enzymatic digestive pretreatment, the authors isolated a purified smooth muscle cell membranes fraction from saphenous veins in quantity sufficient to permit them to study the venous alpha2-adrenoreceptor content. The binding of tritiated rauwolscine was rapid, specific, saturable and reversible. The presence of high affinity sites with a density of binding Bmax of 125.2 /+ -/ 43.1 fmol/mg protein was demonstrated on a unique class of non interacting sites. The kinetically derived Kd wasmore » 1.28 nM, in good agreement with the value obtained from saturation isotherms. The pharmacological profile of these sites was assessed by the comparison of the potency of alpha-adrenergic agonists and antagonists to inhibit 1 nM (/sup 3/H)-rauwolscine. Their efficacy was respectively: rauwolscine > phentolamine > RX 781094 > clonidine >> prazosin > (-)-phenylephrine > (-)-noradrenaline. The results showed that (/sup 3/H)-rauwolscine bound specifically to sites in their membranal preparation, which had the pharmacological characteristics of the alpha2-adrenoceptors. The correlation between biochemical and pharmacological data revealed the usefulness of binding methods in the further study of adrenergic mechanisms in the canine saphenous vein.« less

  15. Chemokine CCR3 ligands-binding peptides derived from a random phage-epitope library.

    PubMed

    Houimel, Mehdi; Mazzucchelli, Luca

    2013-01-01

    Eosinophils are major effectors cells implicated in a number of chronic inflammatory diseases in humans, particularly bronchial asthma and allergic rhinitis. The human chemokine receptor C-C receptor 3 (hCCR3) provides a mechanism for the recruitment of eosinophils into tissue and thus has recently become an attractive biological target for therapeutic intervention. In order to develop peptides antagonists of hCCR3-hCCL11 (human eotaxin) interactions, a random bacteriophage hexapeptide library was used to map structural features of hCCR3 by determining the epitopes of neutralizing anti-hCCR3 mAb 7B11. This mAb t is selective for hCCR3 and exhibit potent antagonist activity in receptor binding and functional assays. After three rounds of biopanning, four mAb7B11-binding peptides were identified from a 6-mer linear peptide library. The phage bearing the peptides showed specific binding to immobilized mAb 7B11 with over 94% of phages bound being competitively inhibited by free synthetic peptides. In FACScan analysis all selected phage peptides were able to strongly inhibit the binding of mAb 7B11 to hCCR3-transfected preB-300-19 murine cells. Furthermore, synthetic peptides of the corresponding phage epitopes were effective in blocking the antibody-hCCR3 interactions and to inhibit the binding of hCCL11 to hCCR3 transfectants. Chemically synthesized peptides CKGERF, FERKGK, SSMKVK and RHVSSQ, effectively competed for (125)I-hCCL11 binding to hCCR3 with IC(50) ranging from 3.5 to 9.7μM. Calcium release and chemotaxis of hCCR3 transfectants or human eosinophils were inhibited by all peptides in a dose-dependent manner. Furthermore, they showed inhibitory effects on chemotaxis of human eosinophils induced by hCCL11, hCCL5, hCCL7, hCCL8, and hCCL24. Specificities of all selected peptides were assessed with hCXCR1, hCXCR2, hCXCR3, and hCCR5 receptors. Peptides CKGERF and FERKGK showed inhibitory effects on eosinophil chemotaxis in a murine model of mCCL11-induced

  16. Lead identification of acetylcholinesterase inhibitors-histamine H3 receptor antagonists from molecular modeling.

    PubMed

    Bembenek, Scott D; Keith, John M; Letavic, Michael A; Apodaca, Richard; Barbier, Ann J; Dvorak, Lisa; Aluisio, Leah; Miller, Kirsten L; Lovenberg, Timothy W; Carruthers, Nicholas I

    2008-03-15

    Currently, the only clinically effective treatment for Alzheimer's disease (AD) is the use of acetylcholinesterase (AChE) inhibitors. These inhibitors have limited efficacy in that they only treat the symptoms and not the disease itself. Additionally, they often have unpleasant side effects. Here we consider the viability of a single molecule having the actions of both an AChE inhibitor and histamine H(3) receptor antagonist. Both histamine H(3) receptor antagonists and AChE inhibitors improve and augment cholinergic neurotransmission in the cortex. However, whereas an AChE inhibitor will impart its effect everywhere, a histamine H(3) antagonist will raise acetylcholine levels mostly in the brain as its mode of action will primarily be on the central nervous system. Therefore, the combination of both activities in a single molecule could be advantageous. Indeed, studies suggest an appropriate dual-acting compound may offer the desired therapeutic effect with fewer unpleasant side effects [CNS Drugs2004, 18, 827]. Further, recent studies(2) indicate the peripheral anionic site (PAS) of AChE interacts with the beta-amyloid (betaA) peptide. Consequently, a molecule capable of disrupting this interaction may have a significant impact on the production of or the aggregation of betaA. This may result in slowing down the progression of the disease rather than only treating the symptoms as current therapies do. Here, we detail how the use of the available crystal structure information, pharmacophore modeling and docking (automated, manual, classical, and QM/MM) lead to the identification of an AChE inhibitor-histamine H(3) receptor antagonist. Further, based on our models we speculate that this dual-acting compound may interact with the PAS. Such a dual-acting compound may be able to affect the pathology of AD in addition to providing symptomatic relief.

  17. Commercial valerian interactions with [3H]Flunitrazepam and [3H]MK-801 binding to rat synaptic membranes.

    PubMed

    Ortiz, José G; Rassi, Nicole; Maldonado, Patricia M; González-Cabrera, Silvia; Ramos, Igmeris

    2006-09-01

    Valeriana officinalis extracts are used in folkloric medicine for their sedative, hypnotic and tranquilizer effects. Using [3H]flunitrazepam binding as an indicator, the interactions of commercial Valerian extracts with GABA(A) receptors were examined. There was considerable fluctuation among the different extracts, some mildly enhanced [3H]flunitrazepam binding, others had no effect and others had inhibitory effects, independent of standardization by valerenic acid. Central depression can also be accomplished by a reduction of excitatory transmission. Valerian extracts had modest inhibitory effects on [3H]MK-801 binding, an indicator of NMDA-Valerian interactions. Spectral analyses (UV region) did not show marked differences among the different extracts. The inhibitory effects of one of the extracts on [3H]flunitrazepam binding was somewhat stable, while on [3H]MK-801 binding the inhibitory effects were lost within months. These results suggest that particular care should be taken in analysing and interpreting results from commercial Valerian preparations. Copyright (c) 2006 John Wiley & Sons, Ltd.

  18. Preclinical pharmacology of bilastine, a new selective histamine H1 receptor antagonist: receptor selectivity and in vitro antihistaminic activity.

    PubMed

    Corcóstegui, Reyes; Labeaga, Luis; Innerárity, Ana; Berisa, Agustin; Orjales, Aurelio

    2005-01-01

    This study aimed to establish the receptor selectivity and antihistaminic activity of bilastine, a new selective antihistamine receptor antagonist. In vitro experiments were conducted using a receptor binding screening panel and guinea-pig and rat tissues. Antihistaminic activity was determined using H1 receptor binding studies and in vitro H1 antagonism studies conducted in guinea-pig tissues and human cell lines. Receptor selectivity was established using a receptor binding screening panel and a receptor antagonism screening conducted in guinea-pig, rat and rabbit tissues. Inhibition of inflammatory mediators was determined through the Schultz-Dale reaction in sensitised guinea-pig ileum. Bilastine binds to histamine H1-receptors as indicated by its displacement of [3H]-pyrilamine from H1-receptors expressed in guinea-pig cerebellum and human embryonic kidney (HEK) cell lines. The studies conducted on guinea-pig smooth muscle demonstrated the capability of bilastine to antagonise H1-receptors. Bilastine is selective for histamine H1-receptors as shown in receptor-binding screening conducted to determine the binding capacity of bilastine to 30 different receptors. The specificity of its H1-receptor antagonistic activity was also demonstrated in a series of in vitro experiments conducted on guinea-pig and rat tissues. The results of these studies confirmed the lack of significant antagonism against serotonin, bradykinin, leukotriene D4, calcium, muscarinic M3-receptors, alpha1-adrenoceptors, beta2-adrenoceptors, and H2- and H3-receptors. The results of the in vitro Schultz-Dale reaction demonstrated that bilastine also has anti-inflammatory activity. These preclinical studies provide evidence that bilastine has H1- antihistamine activity, with high specificity for H1-receptors, and poor or no affinity for other receptors. Bilastine has also been shown to have anti-inflammatory properties.

  19. Clinical and treatment effects on /sup 3/H-clonidine and /sup 3/H-imipramine binding in elderly depressed patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Georgotas, A.; Schweitzer, J.; McCue, R.E.

    1987-06-01

    /sup 3/H-clonidine and /sup 3/H-imipramine binding were measured in depressed patients, 55 years and older. There was no significant difference in either /sup 3/H-clonidine or /sup 3/H-imipramine binding between depressed patients and age- and sex-matched controls. There was no significant correlation between /sup 3/H-clonidine or /sup 3/H-imipramine binding and severity of depression before treatment. There was a significant negative correlation between the K/sub D/ of /sup 3/H-imipramine binding sites and Hamilton score over seven weeks of antidepressant treatment. There was no significant difference between receptor data of responders and nonresponders to antidepressant treatment. 19 references, 2 tables.

  20. Angiotensin AT1 and AT2 receptor antagonists modulate nicotine-evoked [³H]dopamine and [³H]norepinephrine release.

    PubMed

    Narayanaswami, Vidya; Somkuwar, Sucharita S; Horton, David B; Cassis, Lisa A; Dwoskin, Linda P

    2013-09-01

    Tobacco smoking is the leading preventable cause of death in the United States. A major negative health consequence of chronic smoking is hypertension. Untoward addictive and cardiovascular sequelae associated with chronic smoking are mediated by nicotine-induced activation of nicotinic receptors (nAChRs) within striatal dopaminergic and hypothalamic noradrenergic systems. Hypertension involves both brain and peripheral angiotensin systems. Activation of angiotensin type-1 receptors (AT1) release dopamine and norepinephrine. The current study determined the role of AT1 and angiotensin type-2 (AT2) receptors in mediating nicotine-evoked dopamine and norepinephrine release from striatal and hypothalamic slices, respectively. The potential involvement of nAChRs in mediating effects of AT1 antagonist losartan and AT2 antagonist, 1-[[4-(dimethylamino)-3-methylphenyl]methyl]-5-(diphenylacetyl)-4,5,6,7-tetrahydro-1H-imidazo[4,5-c]pyridine-6-carboxylic acid (PD123319) was evaluated by determining their affinities for α4β2* and α7* nAChRs using [³H]nicotine and [³H]methyllycaconitine binding assays, respectively. Results show that losartan concentration-dependently inhibited nicotine-evoked [³H]dopamine and [³H]norepinephrine release (IC₅₀: 3.9 ± 1.2 and 2.2 ± 0.7 μM; Imax: 82 ± 3 and 89 ± 6%, respectively). In contrast, PD123319 did not alter nicotine-evoked norepinephrine release, and potentiated nicotine-evoked dopamine release. These results indicate that AT1 receptors modulate nicotine-evoked striatal dopamine and hypothalamic norepinephrine release. Furthermore, AT1 receptor activation appears to be counteracted by AT2 receptor activation in striatum. Losartan and PD123319 did not inhibit [³H]nicotine or [³H]methyllycaconitine binding, indicating that these AT1 and AT2 antagonists do not interact with the agonist recognition sites on α4β2* and α7* nAChRs to mediate these effects of nicotine. Thus, angiotensin receptors contribute to the effects of

  1. The MTA family proteins as novel histone H3 binding proteins.

    PubMed

    Wu, Meng; Wang, Lina; Li, Qian; Li, Jiwen; Qin, Jun; Wong, Jiemin

    2013-01-03

    The nucleosome remodeling and histone deacetylase complex (Mi2/NRD/NuRD/NURD) has a broad role in regulation of transcription, DNA repair and cell cycle. Previous studies have revealed a specific interaction between NURD and histone H3N-terminal tail in vitro that is not observed for another HDAC1/2-containing complex, Sin3A. However, the subunit(s) responsible for specific binding of H3 by NURD has not been defined. In this study, we show among several class I HDAC-containing corepressor complexes only NURD exhibits a substantial H3 tail-binding activity in vitro. We present the evidence that the MTA family proteins within the NURD complex interact directly with H3 tail. Extensive in vitro binding assays mapped the H3 tail-binding domain to the C-terminal region of MTA1 and MTA2. Significantly, although the MTA1 and MTA2 mutant proteins with deletion of the C-terminal H3 tail binding domain were assembled into the endogenous NURD complex when expressed in mammalian cells, the resulting NURD complexes were deficient in binding H3 tail in vitro, indicating that the MTA family proteins are required for the observed specific binding of H3 tail peptide by NURD in vitro. However, chromatin fractionation experiments show that the NURD complexes with impaired MTA1/2-H3 tail binding activity remained to be associated with chromatin in cells. Together our study reveals a novel histone H3-binding activity for the MTA family proteins and provides evidence that the MTA family proteins mediate the in vitro specific binding of H3 tail peptide by NURD complex. However, multiple mechanisms are likely to contribute to the chromatin association of NURD complex in cells. Our finding also raises the possibility that the MTA family proteins may exert their diverse biological functions at least in part through their direct interaction with H3 tail.

  2. The MTA family proteins as novel histone H3 binding proteins

    PubMed Central

    2013-01-01

    Background The nucleosome remodeling and histone deacetylase complex (Mi2/NRD/NuRD/NURD) has a broad role in regulation of transcription, DNA repair and cell cycle. Previous studies have revealed a specific interaction between NURD and histone H3N-terminal tail in vitro that is not observed for another HDAC1/2-containing complex, Sin3A. However, the subunit(s) responsible for specific binding of H3 by NURD has not been defined. Results In this study, we show among several class I HDAC-containing corepressor complexes only NURD exhibits a substantial H3 tail-binding activity in vitro. We present the evidence that the MTA family proteins within the NURD complex interact directly with H3 tail. Extensive in vitro binding assays mapped the H3 tail-binding domain to the C-terminal region of MTA1 and MTA2. Significantly, although the MTA1 and MTA2 mutant proteins with deletion of the C-terminal H3 tail binding domain were assembled into the endogenous NURD complex when expressed in mammalian cells, the resulting NURD complexes were deficient in binding H3 tail in vitro, indicating that the MTA family proteins are required for the observed specific binding of H3 tail peptide by NURD in vitro. However, chromatin fractionation experiments show that the NURD complexes with impaired MTA1/2-H3 tail binding activity remained to be associated with chromatin in cells. Conclusions Together our study reveals a novel histone H3-binding activity for the MTA family proteins and provides evidence that the MTA family proteins mediate the in vitro specific binding of H3 tail peptide by NURD complex. However, multiple mechanisms are likely to contribute to the chromatin association of NURD complex in cells. Our finding also raises the possibility that the MTA family proteins may exert their diverse biological functions at least in part through their direct interaction with H3 tail. PMID:23286669

  3. (/sup 3/H)Batrachotoxinin A 20 alpha-benzoate binding to voltage-sensitive sodium channels: a rapid and quantitative assay for local anesthetic activity in a variety of drugs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNeal, E.T.; Lewandowski, G.A.; Daly, J.W.

    1985-03-01

    (/sup 3/H)Batrachotoxinin A benzoate ((/sup 3/H)BTX-B) binds with high affinity to sites on voltage-dependent sodium channels in a vesicular preparation from guinea pig cerebral cortex. In this preparation, local anesthetics competitively antagonize the binding of (/sup 3/H)BTX-B. The potencies of some 40 classical local anesthetics and a variety of catecholamine, histamine, serotonin, adenosine, GABA, glycine, acetylcholine, and calcium antagonists, tranquilizers, antidepressants, barbiturates, anticonvulsants, steroids, vasodilators, antiinflammatories, anticoagulants, analgesics, and other agents have been determined. An excellent correlation with the known local anesthetic activity of many of these agents indicate that antagonism of binding of (/sup 3/H)BTX-B binding provides a rapid,more » quantitative, and facile method for the screening and investigation of local anesthetic activity.« less

  4. Anticonvulsant effects of isomeric nonimidazole histamine H3 receptor antagonists

    PubMed Central

    Sadek, Bassem; Saad, Ali; Schwed, Johannes Stephan; Weizel, Lilia; Walter, Miriam; Stark, Holger

    2016-01-01

    Phenytoin (PHT), valproic acid, and modern antiepileptic drugs (AEDs), eg, remacemide, loreclezole, and safinamide, are only effective within a maximum of 70%–80% of epileptic patients, and in many cases the clinical use of AEDs is restricted by their side effects. Therefore, a continuous need remains to discover innovative chemical entities for the development of active and safer AEDs. Ligands targeting central histamine H3 receptors (H3Rs) for epilepsy might be a promising therapeutic approach. To determine the potential of H3Rs ligands as new AEDs, we recently reported that no anticonvulsant effects were observed for the (S)-2-(4-(3-(piperidin-1-yl)propoxy)benzylamino)propanamide (1). In continuation of our research, we asked whether anticonvulsant differences in activities will be observed for its R-enantiomer, namely, (R)-2-(4-(3-(piperidin-1-yl)propoxy)benzylamino)propaneamide (2) and analogs thereof, in maximum electroshock (MES)-, pentylenetetrazole (PTZ)-, and strychnine (STR)-induced convulsion models in rats having PHT and valproic acid (VPA) as reference AEDs. Unlike the S-enantiomer (1), the results show that animals pretreated intraperitoneally (ip) with the R-enantiomer 2 (10 mg/kg) were moderately protected in MES and STR induced models, whereas proconvulsant effect was observed for the same ligand in PTZ-induced convulsion models. However, animals pretreated with intraperitoneal doses of 5, 10, or 15 mg/kg of structurally bulkier (R)-enantiomer (3), in which 3-piperidinopropan-1-ol in ligand 2 was replaced by (4-(3-(piperidin-1-yl)propoxy)phenyl)methanol, and its (S)-enantiomer (4) significantly and in a dose-dependent manner reduced convulsions or exhibited full protection in MES and PTZ convulsions model, respectively. Interestingly, the protective effects observed for the (R)-enantiomer (3) in MES model were significantly greater than those of the standard H3R inverse agonist/antagonist pitolisant, comparable with those observed for PHT, and

  5. Anticonvulsant effects of isomeric nonimidazole histamine H3 receptor antagonists.

    PubMed

    Sadek, Bassem; Saad, Ali; Schwed, Johannes Stephan; Weizel, Lilia; Walter, Miriam; Stark, Holger

    2016-01-01

    Phenytoin (PHT), valproic acid, and modern antiepileptic drugs (AEDs), eg, remacemide, loreclezole, and safinamide, are only effective within a maximum of 70%-80% of epileptic patients, and in many cases the clinical use of AEDs is restricted by their side effects. Therefore, a continuous need remains to discover innovative chemical entities for the development of active and safer AEDs. Ligands targeting central histamine H 3 receptors (H 3 Rs) for epilepsy might be a promising therapeutic approach. To determine the potential of H 3 Rs ligands as new AEDs, we recently reported that no anticonvulsant effects were observed for the ( S )-2-(4-(3-(piperidin-1-yl)propoxy)benzylamino)propanamide ( 1 ). In continuation of our research, we asked whether anticonvulsant differences in activities will be observed for its R -enantiomer, namely, ( R )-2-(4-(3-(piperidin-1-yl)propoxy)benzylamino)propaneamide ( 2 ) and analogs thereof, in maximum electroshock (MES)-, pentylenetetrazole (PTZ)-, and strychnine (STR)-induced convulsion models in rats having PHT and valproic acid (VPA) as reference AEDs. Unlike the S -enantiomer ( 1 ), the results show that animals pretreated intraperitoneally (ip) with the R -enantiomer 2 (10 mg/kg) were moderately protected in MES and STR induced models, whereas proconvulsant effect was observed for the same ligand in PTZ-induced convulsion models. However, animals pretreated with intraperitoneal doses of 5, 10, or 15 mg/kg of structurally bulkier ( R )-enantiomer ( 3 ), in which 3-piperidinopropan-1-ol in ligand 2 was replaced by (4-(3-(piperidin-1-yl)propoxy)phenyl)methanol, and its ( S )-enantiomer ( 4 ) significantly and in a dose-dependent manner reduced convulsions or exhibited full protection in MES and PTZ convulsions model, respectively. Interestingly, the protective effects observed for the ( R )-enantiomer ( 3 ) in MES model were significantly greater than those of the standard H 3 R inverse agonist/antagonist pitolisant, comparable with

  6. Histamine H{sub 3} receptor antagonist OUP-186 attenuates the proliferation of cultured human breast cancer cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Satoshi; Sakaguchi, Minoru; Yoneyama, Hiroki

    Histamine is involved in various physiological functions, including its neurotransmitter actions in the central nervous system and its action as a causative agent of inflammation, allergic reactions, and gastric acid secretions. Histamine expression and biosynthesis have been detected in breast cancer cells. It was recently suggested that the histamine H{sub 3} receptor (H{sub 3}R) plays a role in the proliferation of breast cancer cells. We recently developed the non-imidazole H{sub 3}R antagonist OUP-186 which exhibited a potent and selective human H{sub 3}R antagonistic activity as well as no activity against the human histamine H{sub 4} receptor (H{sub 4}R). In thismore » study, we compared the effects of OUP-186 on the proliferation of estrogen receptor negative (ER−) breast cancer cells (MDA-MB-231) and ER+ breast cancer cells (MCF7) to the effects of clobenpropit (potent imidazole-containing H{sub 3}R antagonist). OUP-186 and clobenpropit suppressed the proliferation of breast cancer cells. The IC{sub 50} values at 48 h for OUP-186 and clobenpropit were approximately 10 μM and 50 μM, respectively. Furthermore, OUP-186 potently induced cell death by activating caspase-3/7, whereas cell death was only slightly induced by clobenpropit. In addition, OUP-186 treatment blocked the proliferation increase triggered by 100 μM (R)-(-)-α-methylhistamine (H{sub 3}R agonist). The use of 4-methylhistamine (H{sub 4}R agonist) and JNJ10191584 (selective H{sub 4}R antagonist) did not affect breast cancer proliferation. These results indicate that OUP-186 potently suppresses proliferation and induces caspase-dependent apoptotic death in both ER+ and ER-breast cancer cells. - Highlights: • OUP-186, a histamine H{sub 3} receptor antagonist, effects breast cancer cell growth. • OUP-186 potently suppressed proliferation and induced caspase-dependent apoptosis. • OUP-186 may be an effective drug against ER+ and ER− breast cancers.« less

  7. Progress in the development of histamine H3 receptor antagonists/inverse agonists: a patent review (2013-2017).

    PubMed

    Łażewska, Dorota; Kieć-Kononowicz, Katarzyna

    2018-03-01

    Since years, ligands blocking histamine H 3 receptor (H 3 R) activity (antagonists/inverse agonists) are interesting targets in the search for new cures for CNS disorders. Intensive works done by academic and pharmaceutical company researchers have led to many potent and selective H 3 R antagonists/inverse agonists. Some of them have reached to clinical trials. Areas covered: Patent applications from January 2013 to September 2017 and the most important topics connected with H 3 R field are analysed. Espacenet, Patentscope, Pubmed, GoogleScholar or Cochrane Library online databases were principially used to collect all the materials. Expert opinion: The research interest in histamine H 3 R field is still high although the number of patent applications has decreased during the past 4 years (around 20 publications). Complexity of histamine H 3 R biology e.g. many isoforms, constitutive activity, heteromerization with other receptors (dopamine D 2 , D 1 , adenosine A 2A ) and pharmacology make not easy realization and evaluation of therapeutic potential of anti-H 3 R ligands. First results from clinical trials have verified potential utility of histamine H 3 R antagonist/inverse agonists in some diseases. However, more studies are necessary for better understanding of an involvement of the histaminergic system in CNS-related disorders and helping more ligands approach to clinical trials and the market. Lists of abbreviations: hAChEI - human acetylcholinesterase inhibitor; hBuChEI - human butyrylcholinesterase inhibitor; hMAO - human monoamine oxidase; MAO - monoamine oxidase.

  8. [3H]aniracetam binds to specific recognition sites in brain membranes.

    PubMed

    Fallarino, F; Genazzani, A A; Silla, S; L'Episcopo, M R; Camici, O; Corazzi, L; Nicoletti, F; Fioretti, M C

    1995-08-01

    [3H]Aniracetam bound to specific and saturable recognition sites in membranes prepared from discrete regions of rat brain. In crude membrane preparation from rat cerebral cortex, specific binding was Na+ independent, was still largely detectable at low temperature (4 degrees C), and underwent rapid dissociation. Scatchard analysis of [3H]aniracetam binding revealed a single population of sites with an apparent KD value of approximately 70 nM and a maximal density of 3.5 pmol/mg of protein. Specifically bound [3H]aniracetam was not displaced by various metabolites of aniracetam, nor by other pyrrolidinone-containing nootropic drugs such as piracetam or oxiracetam. Subcellular distribution studies showed that a high percentage of specific [3H]aniracetam binding was present in purified synaptosomes or mitochondria, whereas specific binding was low in the myelin fraction. The possibility that at least some [3H]aniracetam binding sites are associated with glutamate receptors is supported by the evidence that specific binding was abolished when membranes were preincubated at 37 degrees C under fast shaking (a procedure that substantially reduced the amount of glutamate trapped in the membranes) and could be restored after addition of either glutamate or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) but not kainate. The action of AMPA was antagonized by DNQX, which also reduced specific [3H]aniracetam binding in unwashed membranes. High levels of [3H]aniracetam binding were detected in hippocampal, cortical, or cerebellar membranes, which contain a high density of excitatory amino acid receptors.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Characterization of ( sup 3 H)alprazolam binding to central benzodiazepine receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, R.T.; Mahan, D.R.; Smith, R.B.

    1990-10-01

    The binding of the triazolobenzodiazepine ({sup 3}H)alprazolam was studied to characterize the in vitro interactions with benzodiazepine receptors in membrane preparations of rat brain. Studies using nonequilibrium and equilibrium binding conditions for ({sup 3}H)alprazolam resulted in high specific to nonspecific (signal to noise) binding ratios. The binding of ({sup 3}H)alprazolam was saturable and specific with a low nanomolar affinity for benzodiazepine receptors in the rat brain. The Kd was 4.6 nM and the Bmax was 2.6 pmol/mg protein. GABA enhanced ({sup 3}H)alprazolam binding while several benzodiazepine receptor ligands were competitive inhibitors of this drug. Compounds that bind to other receptormore » sites had a very weak or negligible effect on ({sup 3}H)alprazolam binding. Alprazolam, an agent used as an anxiolytic and in the treatment of depression, acts in vitro as a selective and specific ligand for benzodiazepine receptors in the rat brain. The biochemical binding profile does not appear to account for the unique therapeutic properties which distinguish this compound from the other benzodiazepines in its class.« less

  10. Highly Increased 125I-JR11 Antagonist Binding In Vitro Reveals Novel Indications for sst2 Targeting in Human Cancers.

    PubMed

    Reubi, Jean Claude; Waser, Beatrice; Mäcke, Helmut; Rivier, Jean

    2017-02-01

    There is recent in vitro and in vivo evidence that somatostatin receptor subtype 2 (sst 2 ) antagonists are better tools to target neuroendocrine tumors (NETs) than sst 2 agonists. Indeed, antagonists bind to a greater number of sst 2 sites than agonists. Whether sst 2 antagonists could be used successfully to target non-NETs, expressing low sst 2 density, is unknown. Here, we compare quantitatively 125 I-JR11 sst 2 antagonist binding in vitro with that of the sst 2 agonist 125 I-Tyr 3 -octreotide in large varieties of non-NET and NET. In vitro receptor autoradiography was performed with 125 I-JR11 and 125 I-Tyr 3 -octreotide in cancers from prostate, breast, colon, kidney, thyroid, and lymphoid tissues as well as NETs as reference. In general, 125 I-JR11 binds to many more sst 2 sites than 125 I-Tyr 3 -octreotide. In 13 breast cancers, 8 had a low binding (mean density, 844 ± 168 dpm/mg of tissue) with the agonist whereas 12 had a high binding (mean density, 4,447 ± 1,128 dpm/mg of tissue) with the antagonist. All 12 renal cell cancers showed a low binding of sst 2 with the agonist (mean density, 348 ± 49 dpm/mg of tissue) whereas all cases had a high sst 2 binding with the antagonist (mean density, 3,777 ± 582 dpm/mg of tissue). One of 5 medullary thyroid cancers was positive with the agonist, whereas 5 of 5 were positive with the antagonist. In 15 non-Hodgkin lymphomas, many more sst 2 sites were labeled with the antagonist than with the agonist. In 14 prostate cancers, none had sst 2 binding with the agonist and only 4 had a weak binding with the antagonist. None of 17 colon cancers showed sst 2 sites with the agonist, and only 3 cases were weakly positive with the antagonist. In the various tumor types, adjacent sst 2 -expressing tissues such as vessels, lymphocytes, nerves, mucosa, or stroma were more strongly labeled with the antagonist than with the agonist. The reference NET cases, incubated with a smaller amount of tracer, were also found to have many

  11. Stereochemistry of quinoxaline antagonist binding to a glutamate receptor investigated by Fourier transform infrared spectroscopy.

    PubMed

    Madden, D R; Thiran, S; Zimmermann, H; Romm, J; Jayaraman, V

    2001-10-12

    The stereochemistry of the interactions between quinoxaline antagonists and the ligand-binding domain of the glutamate receptor 4 (GluR4) have been investigated by probing their vibrational modes using Fourier transform infrared spectroscopy. In solution, the electron-withdrawing nitro groups of both compounds establish a resonance equilibrium that appears to stabilize the keto form of one of the cyclic amide carbonyl bonds. Changes in the 6,7-dinitro-2,3-dihydroxyquinoxaline vibrational spectra on binding to the glutamate receptor, interpreted within the framework of a published crystal structure, illuminate the stereochemistry of the interaction and suggest that the binding site imposes a more polarized electronic bonding configuration on this antagonist. Similar spectral changes are observed for 6-cyano-7-dinitro-2,3-dihydroxyquinoxaline, confirming that its interactions with the binding site are highly similar to those of 6,7-dinitro-2,3-dihydroxyquinoxaline and leading to a model of the 6-cyano-7-dinitro-2,3-dihydroxyquinoxaline-S1S2 complex, for which no crystal structure is available. Conformational changes within the GluR ligand binding domain were also monitored. Compared with the previously reported spectral changes seen on binding of the agonist glutamate, only a relatively small change is detected on antagonist binding. This correlation between the functional effects of different classes of ligand and the magnitude of the spectroscopic changes they induce suggests that the spectral data reflect physiologically relevant conformational processes.

  12. Amine-free melanin-concentrating hormone receptor 1 antagonists: Novel 1-(1H-benzimidazol-6-yl)pyridin-2(1H)-one derivatives and design to avoid CYP3A4 time-dependent inhibition.

    PubMed

    Igawa, Hideyuki; Takahashi, Masashi; Shirasaki, Mikio; Kakegawa, Keiko; Kina, Asato; Ikoma, Minoru; Aida, Jumpei; Yasuma, Tsuneo; Okuda, Shoki; Kawata, Yayoi; Noguchi, Toshihiro; Yamamoto, Syunsuke; Fujioka, Yasushi; Kundu, Mrinalkanti; Khamrai, Uttam; Nakayama, Masaharu; Nagisa, Yasutaka; Kasai, Shizuo; Maekawa, Tsuyoshi

    2016-06-01

    Melanin-concentrating hormone (MCH) is an attractive target for antiobesity agents, and numerous drug discovery programs are dedicated to finding small-molecule MCH receptor 1 (MCHR1) antagonists. We recently reported novel pyridine-2(1H)-ones as aliphatic amine-free MCHR1 antagonists that structurally featured an imidazo[1,2-a]pyridine-based bicyclic motif. To investigate imidazopyridine variants with lower basicity and less potential to inhibit cytochrome P450 3A4 (CYP3A4), we designed pyridine-2(1H)-ones bearing various less basic bicyclic motifs. Among these, a lead compound 6a bearing a 1H-benzimidazole motif showed comparable binding affinity to MCHR1 to the corresponding imidazopyridine derivative 1. Optimization of 6a afforded a series of potent thiophene derivatives (6q-u); however, most of these were found to cause time-dependent inhibition (TDI) of CYP3A4. As bioactivation of thiophenes to form sulfoxide or epoxide species was considered to be a major cause of CYP3A4 TDI, we introduced electron withdrawing groups on the thiophene and found that a CF3 group on the ring or a Cl adjacent to the sulfur atom helped prevent CYP3A4 TDI. Consequently, 4-[(5-chlorothiophen-2-yl)methoxy]-1-(2-cyclopropyl-1-methyl-1H-benzimidazol-6-yl)pyridin-2(1H)-one (6s) was identified as a potent MCHR1 antagonist without the risk of CYP3A4 TDI, which exhibited a promising safety profile including low CYP3A4 inhibition and exerted significant antiobesity effects in diet-induced obese F344 rats. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Estrogen Receptor α L543A,L544A Mutation Changes Antagonists to Agonists, Correlating with the Ligand Binding Domain Dimerization Associated with DNA Binding Activity*

    PubMed Central

    Arao, Yukitomo; Hamilton, Katherine J.; Coons, Laurel A.; Korach, Kenneth S.

    2013-01-01

    A ligand-dependent nuclear transcription factor, ERα has two transactivating functional domains (AF), AF-1 and AF-2. AF-1 is localized in the N-terminal region, and AF-2 is distributed in the C-terminal ligand-binding domain (LBD) of the ERα protein. Helix 12 (H12) in the LBD is a component of the AF-2, and the configuration of H12 is ligand-inducible to an active or inactive form. We demonstrated previously that the ERα mutant (AF2ER) possessing L543A,L544A mutations in H12 disrupts AF-2 function and reverses antagonists such as fulvestrant/ICI182780 (ICI) or 4-hydoxytamoxifen (OHT) into agonists in the AF2ER knock-in mouse. Our previous in vitro studies suggested that the mode of AF2ER activation is similar to the partial agonist activity of OHT for WT-ERα. However, it is still unclear how antagonists activate ERα. To understand the molecular mechanism of antagonist reversal activity, we analyzed the correlation between the ICI-dependent estrogen-responsive element-mediated transcription activity of AF2ER and AF2ER-LBD dimerization activity. We report here that ICI-dependent AF2ER activation correlated with the activity of AF2ER-LBD homodimerization. Prevention of dimerization impaired the ICI-dependent ERE binding and transcription activity of AF2ER. The dislocation of H12 caused ICI-dependent LBD homodimerization involving the F-domain, the adjoining region of H12. Furthermore, F-domain truncation also strongly depressed the dimerization of WT-ERα-LBD with antagonists but not with E2. AF2ER activation levels with ICI, OHT, and raloxifene were parallel with the degree of AF2ER-LBD homodimerization, supporting a mechanism that antagonist-dependent LBD homodimerization involving the F-domain results in antagonist reversal activity of H12-mutated ERα. PMID:23733188

  14. Platelet-activating factor (PAF) receptor-binding antagonist activity of Malaysian medicinal plants.

    PubMed

    Jantan, I; Rafi, I A A; Jalil, J

    2005-01-01

    Forty-nine methanol extracts of 37 species of Malaysian medicinal plants were investigated for their inhibitory effects on platelet-activating factor (PAF) binding to rabbit platelets, using 3H-PAF as a ligand. Among them, the extracts of six Zingiberaceae species (Alpinia galanga Swartz., Boesenbergia pandurata Roxb., Curcuma ochorrhiza Val., C. aeruginosa Roxb., Zingiber officinale Rosc. and Z. zerumbet Koenig.), two Cinnamomum species (C. altissimum Kosterm. and C. pubescens Kochummen.), Goniothalamus malayanus Hook. f. Momordica charantia Linn. and Piper aduncum L. are potential sources of new PAF antagonists, as they showed significant inhibitory effects with IC50 values ranging from 1.2 to 18.4 microg ml(-1).

  15. Psychotomimetic opiate receptors labeled and visualized with (+)-(/sup 3/H)3-(3-hydroxyphenyl)-N-(1-propyl)piperidine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Largent, B.L.; Gundlach, A.L.; Snyder, S.H.

    1984-08-01

    3-(3-Hydroxyphenyl)-N-(1-propyl)piperidine (3-PPP) has been proposed as a selective dopamine autoreceptor agonist in the central nervous system. This report describes the pharmacology and localization of specific high-affinity binding sites for (+)-(/sup 3/H)3-PPP in brain. The drug specificity of (+)-(/sup 3/H)3-PPP binding is identical to that of sigma receptors, which may mediate psychotomimetic effects of some opiates. Haloperidol and the opioid derivatives, pentazocine, cyclazocine, and SKF 10,047 are potent inhibitors of (+)-(/sup 3/H)3-PPP binding. Stereoselectivity is exhibited for the (+) isomers of cyclazocine and SKF 10.047 at the sigma site, opposite to the stereoselectivity seen at ..mu.., sigma, and k opiate receptors.more » (+)-(/sup 3/H)3-PPP does not label dopamine receptors, as potent dopamine agonists and antagonists are weak inhibitors of binding and the localization of specific (+)-(/sup 3/H)3-PPP binding sites does not parallel that of dopamine neurons. Discrete localizations of (+)-(/sup 3/H)3-PPP binding sites in many brain areas including limbic, midbrain, brainstem, and cerebellar regions may explain psychotomimetic actions of opiates and behavior effects of 3-PPP. 41 references, 2 figures, 1 table.« less

  16. Binding of (/sup 3/H)forskolin to solubilized preparations of adenylate cyclase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, C.A.; Seamon, K.B.

    1988-01-01

    The binding of (/sup 3/H)forskolin to proteins solubilized from bovine brain membranes was studied by precipitating proteins with polyethylene glycol and separating (/sup 3/H)forskolin bound to protein from free (/sup 3/H)forskolin by rapid filtration. The K/sub d/ for (/sup 3/H)forskolin binding to solubilized proteins was 14 nM which was similar to that for (/sup 3/H)forskolin binding sites in membranes from rat brain and human platelets. Forskolin analogs competed for (/sup 3/H)forskolin binding sites with the same rank potency in both brain membranes and in proteins solubilized from brain membranes. (/sup 3/H)forskolin bound to proteins solubilized from membranes with a Bmaxmore » of 38 fmolmg protein which increased to 94 fmolmg protein when GppNHp was included in the binding assay. In contrast, GppNHp had no effect on (/sup 3/H)forskolin binding to proteins solubilized from membranes preactivated with GppNHp. Solubilized adenylate cyclase from non-preactivated membranes had a basal activity of 130 pmolmgmin which was increased 7-fold by GppNHp. In contrast, adenylate cyclase from preactivated membranes had a basal activity of 850 pmolmgmin which was not stimulated by GppNHp or forskolin« less

  17. Ethanol intake and sup 3 H-serotonin uptake II: A study in alcoholic patients using platelets sup 3 H-paroxetine binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daoust, M.; Boucly, P.; Ernouf, D.

    1991-01-01

    The kinetic parameters of {sup 3}H-paroxetine binding and {sup 3}H-serotonin uptake were studied in platelets of alcoholic patients. There was no difference between alcoholic and non alcoholic subjects in {sup 3}H-paroxetine binding. When binding and {sup 3}H-serotonin uptake were studied, in the same plasma of the same subjects, the Vmax of serotonin uptake was increased in alcoholics. The data confirm the involvement of serotonin uptake system in alcohol dependance and suggest that serotonin uptake and paroxetine binding sites may be regulated independently in this pathology.

  18. The platelet P2Y(12) receptor under normal and pathological conditions. Assessment with the radiolabeled selective antagonist [(3)H]PSB-0413.

    PubMed

    Ohlmann, Philippe; Lecchi, Anna; El-Tayeb, Ali; Müller, Christa E; Cattaneo, Marco; Gachet, Christian

    2013-03-01

    Various radioligands have been used to characterize and quantify the platelet P2Y(12) receptor, which share several weaknesses: (a) they are metabolically unstable and substrates for ectoenzymes, (b) they are agonists, and (c) they do not discriminate between P2Y(1) and P2Y(12). We used the [(3)H]PSB-0413 selective P2Y(12) receptor antagonist radioligand to reevaluate the number of P2Y(12) receptors in intact platelets and in membrane preparations. Studies in humans showed that: (1) [(3)H]PSB-0413 bound to 425 ± 50 sites/platelet (K (D) = 3.3 ± 0.6 nM), (2) 0.5 ± 0.2 pmol [(3)H]PSB-0413 bound to 1 mg protein of platelet membranes (K (D) = 6.5 ± 3.6 nM), and (3) competition studies confirmed the known features of P2Y(12), with the expected rank order of potency: AR-C69931MX > 2MeSADP ≫ ADPβS > ADP, while the P2Y(1) ligand MRS2179 and the P2X(1) ligand α,β-Met-ATP did not displace [(3)H]PSB-0413 binding. Patients with severe P2Y(12) deficiency displayed virtually no binding of [(3)H]PSB-0413 to intact platelets, while a patient with a dysfunctional P2Y(12) receptor had normal binding. Studies in mice showed that: (1) [(3)H]PSB-0413 bound to 634 ± 87 sites/platelet (K (D) = 14 ± 4.5 nM) and (2) 0.7 pmol ± 0.3 [(3)H]PSB-0413 bound to 1 mg protein of platelet membranes (K (D) = 9.1 ± 5.3 nM). Clopidogrel and other thiol reagents like pCMBS or DTT abolished the binding both to intact platelets and membrane preparations. Therefore, [(3)H]PSB-0413 is an accurate and selective tool for radioligand binding studies aimed at quantifying P2Y(12) receptors, to identify patients with P2Y(12) deficiencies or quantify the effect of P2Y(12) targeting drugs.

  19. Effects of nucleotides on [3H]bradykinin binding in guinea pig: further evidence for multiple B2 receptor subtypes.

    PubMed

    Seguin, L; Widdowson, P S

    1993-02-01

    We have suggested recently the existence of three subtypes of B2 bradykinin receptors in tissues of guinea pigs. We have classified these B2 bradykinin receptors into B2a, B2b, and B2c subtypes depending on their affinity for various bradykinin antagonists. Because the actions of bradykinin in different cell systems appear to be both dependent on and independent of G proteins, we sought to determine whether the binding of [3H]bradykinin to the B2 subtypes is sensitive to guanine nucleotides and, therefore, possibly coupled to G proteins. In the ileum, where we have demonstrated B2a and B2b subtypes, specific [3H]bradykinin binding was reduced with GDP (100 microM) and the nonmetabolized analogue of GTP, guanyl-5'-yl-imidodiphosphate (GppNHp; 100 microM). Competition studies with bradykinin and with [Hyp3]bradykinin, which shows approximately 20-fold greater selectivity for the B2a subtype than bradykinin, were performed in the presence or absence of GppNHp (100 microM). The competition experiments demonstrated that binding to the B2a subtype, which has higher affinity for [Hyp3]bradykinin and bradykinin than the B2b subtype, was lost in the presence of GppNHp, whereas binding to the B2b subtype was unaffected. In contrast, GppNHp (100 microM) and GDP (100 microM) failed to alter specific [3H]bradykinin binding to B2b and B2c subtypes in lung. [3H]Bradykinin binding was unaffected by AMP, ADP, ATP, and GMP (100 microM each). Based on this evidence, we suggest that the B2a bradykinin subtype is coupled to G proteins. The B2b and B2c subtypes are either not coupled to G proteins, or may be coupled to the Go-type GTP binding proteins, which have been suggested to be less sensitive to guanine nucleotides.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Histamine H3 receptors aggravate cerebral ischaemic injury by histamine-independent mechanisms

    PubMed Central

    Yan, Haijing; Zhang, Xiangnan; Hu, Weiwei; Ma, Jing; Hou, Weiwei; Zhang, Xingzhou; Wang, Xiaofen; Gao, Jieqiong; Shen, Yao; Lv, Jianxin; Ohtsu, Hiroshi; Han, Feng; Wang, Guanghui; Chen, Zhong

    2014-01-01

    The role of the histamine H3 receptor (H3R) in cerebral ischaemia/reperfusion (I/R) injury remains unknown. Here we show that H3R expression is upregulated after I/R in two mouse models. H3R antagonists and H3R knockout attenuate I/R injury, which is reversed by an H3R-selective agonist. Interestingly, H1R and H2R antagonists, a histidine decarboxylase (HDC) inhibitor and HDC knockout all fail to compromise the protection by H3R blockade. H3R blockade inhibits mTOR phosphorylation and reinforces autophagy. The neuroprotection by H3R antagonism is reversed by 3-methyladenine and siRNA for Atg7, and is diminished in Atg5−/− mouse embryonic fibroblasts. Furthermore, the peptide Tat-H3RCT414-436, which blocks CLIC4 binding with H3Rs, or siRNA for CLIC4, further increases I/R-induced autophagy and protects against I/R injury. Therefore, H3R promotes I/R injury while its antagonism protects against ischaemic injury via histamine-independent mechanisms that involve suppressing H3R/CLIC4 binding-activated autophagy, suggesting that H3R inhibition is a therapeutic target for cerebral ischaemia. PMID:24566390

  1. Sigma opiates and certain antipsychotic drugs mutually inhibit (+)-[3H] SKF 10,047 and [3H]haloperidol binding in guinea pig brain membranes.

    PubMed Central

    Tam, S W; Cook, L

    1984-01-01

    The relationship between binding of antipsychotic drugs and sigma psychotomimetic opiates to binding sites for the sigma agonist (+)-[3H]SKF 10,047 (N-allylnormetazocine) and to dopamine D2 sites was investigated. In guinea pig brain membranes, (+)-[3H]SKF 10,047 bound to a single class of sites with a Kd of 4 X 10(-8) M and a Bmax of 333 fmol/mg of protein. This binding was different from mu, kappa, or delta opiate receptor binding. It was inhibited by opiates that produce psychotomimetic activities but not by opiates that lack such activities. Some antipsychotic drugs inhibited (+)-[3H]SKF 10,047 binding with high to moderate affinities in the following order of potency: haloperidol greater than perphenazine greater than fluphenazine greater than acetophenazine greater than trifluoperazine greater than molindone greater than or equal to pimozide greater than or equal to thioridazine greater than or equal to chlorpromazine greater than or equal to triflupromazine. However, there were other antipsychotic drugs such as spiperone and clozapine that showed low affinity for the (+)-[3H]SKF 10,047 binding sites. Affinities of antipsychotic drugs for (+)-[3H]SKF 10,047 binding sites did not correlate with those for [3H]spiperone (dopamine D2) sites. [3H]-Haloperidol binding in whole brain membranes was also inhibited by the sigma opiates pentazocine, cyclazocine, and (+)-SKF 10,047. In the striatum, about half of the saturable [3H]haloperidol binding was to [3H]spiperone (D2) sites and the other half was to sites similar to (+)-[3H]SKF 10,047 binding sites. PMID:6147851

  2. Characterization of [(3)H]harmane binding to rat whole brain membranes.

    PubMed

    Anderson, N J; Robinson, E S J; Husbands, S M; Delagrange, P; Nutt, D J; Hudson, A L

    2003-12-01

    This study investigates the binding of [(3)H]harmane to rat whole brain homogenates. Saturation studies revealed [(3)H]harmane labels a single, saturable, high-capacity population with high affinity. All the test compounds displaced [(3)H]harmane completely and in an apparently monophasic manner. The displacement profile of the test ligands indicated labeling of MAO-A. Given the high level of MAO-A binding, it is unlikely that a low-capacity I(2) site would be distinguishable from the total [(3)H]harmane population.

  3. Purification of L-( sup 3 H) Nicotine eliminates low affinity binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romm, E.; Marks, M.J.; Collins, A.C.

    1990-01-01

    Some studies of L-({sup 3}H) nicotine binding to rodent and human brain tissue have detected two binding sites as evidenced by nonlinear Scatchard plots. Evidence presented here indicated that the low affinity binding site is not stereospecific, is not inhibited by low concentrations of cholinergic agonists and is probably due to breakdown products of nicotine since purification of the L-({sup 3}H)nicotine eliminates the low affinity site.

  4. Presynaptic imidazoline receptors and non-adrenoceptor[3H]-idazoxan binding sites in human cardiovascular tissues

    PubMed Central

    Molderings, G J; Likungu, J; Jakschik, J; Göthert, M

    1997-01-01

    In segments of human right atrial appendages and pulmonary arteries preincubated with [3H]-noradrenaline and superfused with physiological salt solution containing desipramine and corticosterone, the involvement of imidazoline receptors in the modulation of [3H]-noradrenaline release was investigated. In human atrial appendages, the guanidines aganodine and DTG (1,3-di(2-tolyl)guanidine) which activate presynaptic imidazoline receptors, inhibited electrically-evoked [3H]-noradrenaline release. The inhibition was not affected by blockade of α2-adrenoceptors with 1 μM rauwolscine, but antagonized by extremely high concentrations of this drug (10 and/or 30 μM; apparent pA2 against aganodine and DTG: 5.55 and 5.21, respectively). In the presence of 1 μM rauwolscine, [3H]-noradrenaline release in human atrial appendages was also inhibited by the imidazolines idazoxan and cirazoline, but not by agmatine and noradrenaline. The inhibitory effects of 100 μM idazoxan and 30 μM cirazoline were abolished by 30 μM rauwolscine. In the atrial appendages, the rank order of potency of all guanidines and imidazolines for their inhibitory effect on electrically-evoked [3H]-noradrenaline release in the presence of 1 μM rauwolscine was: aganodine⩾BDF 6143 [4-chloro-2-(2-imidazolin-2-yl-amino)-isoindoline]>DTG⩾clonidine>cirazoline>idazoxan (BDF 6143 and clonidine were previously studied under identical conditions). This potency order corresponded to that previously determined at the presynaptic imidazoline receptors in the rabbit aorta. When, in the experiments in the human pulmonary artery, rauwolscine was absent from the superfusion fluid, the concentration-response curve for BDF 6143 (a mixed α2-adrenoceptor antagonist/imidazoline receptor agonist) for its facilitatory effect on electrically-evoked [3H]-noradrenaline release was bell-shaped. In the presence of 1 μM rauwolscine, BDF 6143 and cirazoline concentration-dependently inhibited the

  5. The muscarinic antagonists scopolamine and atropine are competitive antagonists at 5-HT3 receptors.

    PubMed

    Lochner, Martin; Thompson, Andrew J

    2016-09-01

    Scopolamine is a high affinity muscarinic antagonist that is used for the prevention of post-operative nausea and vomiting. 5-HT3 receptor antagonists are used for the same purpose and are structurally related to scopolamine. To examine whether 5-HT3 receptors are affected by scopolamine we examined the effects of this drug on the electrophysiological and ligand binding properties of 5-HT3A receptors expressed in Xenopus oocytes and HEK293 cells, respectively. 5-HT3 receptor-responses were reversibly inhibited by scopolamine with an IC50 of 2.09 μM. Competitive antagonism was shown by Schild plot (pA2 = 5.02) and by competition with the 5-HT3 receptor antagonists [(3)H]granisetron (Ki = 6.76 μM) and G-FL (Ki = 4.90 μM). The related molecule, atropine, similarly inhibited 5-HT evoked responses in oocytes with an IC50 of 1.74 μM, and competed with G-FL with a Ki of 7.94 μM. The reverse experiment revealed that granisetron also competitively bound to muscarinic receptors (Ki = 6.5 μM). In behavioural studies scopolamine is used to block muscarinic receptors and induce a cognitive deficit, and centrally administered concentrations can exceed the IC50 values found here. It is therefore possible that 5-HT3 receptors are also inhibited. Studies that utilise higher concentrations of scopolamine should be mindful of these potential off-target effects. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Structure-5-HT/D2 Receptor Affinity Relationship in a New Group of 1-Arylpiperazynylalkyl Derivatives of 8-Dialkylamino-3,7-dimethyl-1H-purine-2,6(3H,7H)-dione.

    PubMed

    Żmudzki, Paweł; Satała, Grzegorz; Chłoń-Rzepa, Grażyna; Bojarski, Andrzej J; Kazek, Grzegorz; Siwek, Agata; Gryboś, Anna; Głuch-Lutwin, Monika; Wesołowska, Anna; Pawłowski, Maciej

    2016-10-01

    In our previous papers, we have reported that some 8-amino-1,3-dimethyl-1H-purine-2,6(3H,7H)-dione derivatives possessed high affinity and displayed agonistic, partial agonistic, or antagonistic activity for serotonin 5-HT 1A and dopamine D 2 receptors. In order to examine further the influence of the substituent in the position 8 of the purine moiety and the influence of the xanthine core on the affinity for serotonin 5-HT 1A , 5-HT 2A , 5-HT 6 , 5-HT 7 , and dopamine D 2 receptors, two series of 1-arylpiperazynylalkyl derivatives of 8-amino-3,7-dimethyl-1H-purine-2,6(3H,7H)-dione were synthesized. All the final compounds were investigated in in vitro competition binding experiments for the serotonin 5-HT 1A , 5-HT 2A , 5-HT 6 , 5-HT 7 , and dopamine D 2 receptors. The structure-affinity relationships for this group of compounds were discussed. For selected compounds, the functional assays for the 5-HT 1A and D 2 receptors were carried out. The results of the assays indicated that these groups of derivatives possessed antagonistic activity for 5-HT 1A receptors and agonistic, partial agonistic, or antagonistic activity for D 2 receptors. In total, 26 new compounds were synthesized, 20 of which were tested in in vitro binding experiments and 5 were tested in in vitro functional assays. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Implementation of a Fluorescence-Based Screening Assay Identifies Histamine H3 Receptor Antagonists Clobenpropit and Iodophenpropit as Subunit-Selective N-Methyl-d-Aspartate Receptor Antagonists

    PubMed Central

    Hansen, Kasper B.; Mullasseril, Praseeda; Dawit, Sara; Kurtkaya, Natalie L.; Yuan, Hongjie; Vance, Katie M.; Orr, Anna G.; Kvist, Trine; Ogden, Kevin K.; Le, Phuong; Vellano, Kimberly M.; Lewis, Iestyn; Kurtkaya, Serdar; Du, Yuhong; Qui, Min; Murphy, T. J.; Snyder, James P.; Bräuner-Osborne, Hans

    2010-01-01

    N-Methyl-d-aspartate (NMDA) receptors are ligand-gated ion channels that mediate a slow, Ca2+-permeable component of excitatory synaptic transmission in the central nervous system and play a pivotal role in synaptic plasticity, neuronal development, and several neurological diseases. We describe a fluorescence-based assay that measures NMDA receptor-mediated changes in intracellular calcium in a BHK-21 cell line stably expressing NMDA receptor NR2D with NR1 under the control of a tetracycline-inducible promoter (Tet-On). The assay selectively identifies allosteric modulators by using supramaximal concentrations of glutamate and glycine to minimize detection of competitive antagonists. The assay is validated by successfully identifying known noncompetitive, but not competitive NMDA receptor antagonists among 1800 screened compounds from two small focused libraries, including the commercially available library of pharmacologically active compounds. Hits from the primary screen are validated through a secondary screen that used two-electrode voltage-clamp recordings on recombinant NMDA receptors expressed in Xenopus laevis oocytes. This strategy identified several novel modulators of NMDA receptor function, including the histamine H3 receptor antagonists clobenpropit and iodophenpropit, as well as the vanilloid receptor transient receptor potential cation channel, subfamily V, member 1 (TRPV1) antagonist capsazepine. These compounds are noncompetitive antagonists and the histamine H3 receptor ligand showed submicromolar potency at NR1/NR2B NMDA receptors, which raises the possibility that compounds can be developed that act with high potency on both glutamate and histamine receptor systems simultaneously. Furthermore, it is possible that some actions attributed to histamine H3 receptor inhibition in vivo may also involve NMDA receptor antagonism. PMID:20197375

  8. Modulation of [3H]DAGO binding by substance P (SP) and SP fragments in the mouse brain and spinal cord via MU1 interactions.

    PubMed

    Krumins, S A; Kim, D C; Seybold, V S; Larson, A A

    1989-01-01

    Binding of [3H]DAGO to fresh, frozen or beta-funaltrexamine (beta-FNA) pretreated membranes of mouse brain and spinal cord was extensively studied using substance P (SP) or SP fragments as potential competitors and/or modulators. The objective was to determine whether SP exerts its analgesic effect by interacting with mu opioid receptors. The affinity of DAGO was reduced and binding capacity was increased in the presence of SP or the N-terminal SP fragments SP(1-9) and SP(1-4) but not the C-terminal SP fragment SP(5-11). Because sub-nanomolar concentrations of SP or N-terminal SP fragments displaced [3H] DAGO binding to a minor but detectable degree, it is suggested that SP interacts with mu 1 sites through its N-terminus portion. The effect of SP on DAGO binding was less in the spinal cord compared to the rest of the brain. Modulation of DAGO binding by SP was enhanced in the brain after pretreatment of membranes with the narcotic antagonist beta-FNA. These results suggest a novel mechanism for the analgesic action of SP.

  9. RPA binds histone H3-H4 and functions in DNA replication-coupled nucleosome assembly.

    PubMed

    Liu, Shaofeng; Xu, Zhiyun; Leng, He; Zheng, Pu; Yang, Jiayi; Chen, Kaifu; Feng, Jianxun; Li, Qing

    2017-01-27

    DNA replication-coupled nucleosome assembly is essential to maintain genome integrity and retain epigenetic information. Multiple involved histone chaperones have been identified, but how nucleosome assembly is coupled to DNA replication remains elusive. Here we show that replication protein A (RPA), an essential replisome component that binds single-stranded DNA, has a role in replication-coupled nucleosome assembly. RPA directly binds free H3-H4. Assays using a synthetic sequence that mimics freshly unwound single-stranded DNA at replication fork showed that RPA promotes DNA-(H3-H4) complex formation immediately adjacent to double-stranded DNA. Further, an RPA mutant defective in H3-H4 binding exhibited attenuated nucleosome assembly on nascent chromatin. Thus, we propose that RPA functions as a platform for targeting histone deposition to replication fork, through which RPA couples nucleosome assembly with ongoing DNA replication. Copyright © 2017, American Association for the Advancement of Science.

  10. [3H]MK-801 binding sites in post-mortem human frontal cortex.

    PubMed

    Kornhuber, J; Mack-Burkhardt, F; Kornhuber, M E; Riederer, P

    1989-03-29

    The binding of [3H]MK-801 ((+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate) was investigated in extensively washed homogenates of post-mortem human frontal cortex. The association of [3H]MK-801 proceeded slowly (t1/2 = 553 min) and reached equilibrium only after a prolonged incubation (greater than 24 h). The dissociation of [3H]MK-801 from the binding site was also slow (t1/2 = 244 min). Glutamate, glycine and magnesium markedly increased the rate of association (t1/2 = 14.8 min) and dissociation (t1/2 = 36.5 min). At equilibrium, the binding was not altered by these substances. Specific binding was linear with protein concentration, was saturable, reversible, stereoselective, heat-labile and was nearly absent in the white matter. Scatchard analysis of the saturation curves obtained at equilibrium indicated that there was a high-affinity (Kd1 1.39 +/- 0.21 nM, Bmax1 0.483 +/- 0.084 pmol/mg protein) and a low-affinity (Kd2 116.25 +/- 50.79 nM, Bmax2 3.251 +/- 0.991 pmol/mg protein) binding site. All competition curves obtained with (+)-MK-801, (-)-MK-801, phencyclidine and ketamine had Hill coefficients of less than unity and were best explained by a two-site model. Thus, our results demonstrate the presence of binding sites for MK-801 in post-mortem human brains and provide evidence for binding site heterogeneity. Furthermore, glutamate, glycine and magnesium accelerate the association and dissociation of [3H]MK-801 to and from its binding sites. The results add support to the hypothesis that MK-801, glutamate, glycine and magnesium all bind to different sites on the NMDA receptor-ion channel complex.

  11. Characteristics of recombinantly expressed rat and human histamine H3 receptors.

    PubMed

    Wulff, Birgitte S; Hastrup, Sven; Rimvall, Karin

    2002-10-18

    Human and rat histamine H(3) receptors were recombinantly expressed and characterized using receptor binding and a functional cAMP assay. Seven of nine agonists had similar affinities and potencies at the rat and human histamine H(3) receptor. S-alpha-methylhistamine had a significantly higher affinity and potency at the human than rat receptor, and for 4-[(1R*,2R*)-2-(5,5-dimethyl-1-hexynyl)cyclopropyl]-1H-imidazole (Perceptin) the preference was the reverse. Only two of six antagonists had similar affinities and potencies at the human and the rat histamine H(3) receptor. Ciproxifan, thioperamide and (1R*,2R*)-trans-2-imidazol-4 ylcyclopropyl) (cyclohexylmethoxy) carboxamide (GT2394) had significantly higher affinities and potencies at the rat than at the human histamine H(3) receptor, while for N-(4-chlorobenzyl)-N-(7-pyrrolodin-1-ylheptyl)guanidine (JB98064) the preference was the reverse. All antagonists also showed potent inverse agonism properties. Iodoproxyfan, Perceptin, proxyfan and GR175737, compounds previously described as histamine H(3) receptor antagonists, acted as full or partial agonists at both the rat and the human histamine H(3) receptor. Copyright 2002 Elsevier Science B.V.

  12. /sup 3/H)pirenzepine and (-)-(/sup 3/H)quinuclidinyl benzilate binding to rat cerebral cortical and cardiac muscarinic cholinergic sites. I. Characterization and regulation of agonist binding to putative muscarinic subtypes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, M.; Yamamura, H.I.; Roeske, W.R.

    The binding and regulation of selected muscarinic agonists to putative subtypes in rat cerebral cortex and heart were studied. Parallel inhibition studies of (/sup 3/H)pirenzepine ((/sup 3/H)PZ) and (-)-(/sup 3/H)quinuclidinylbenzilate ((-)-(/sup 3/H)QNB)-labeled membranes were done with and without 30 microM guanyl-5'-yl imidodiphosphate (Gpp(NH)p) at 25 degrees C in 10 mM Na-K-phosphate buffer which enhances PZ binding affinity and in modified Krebs-phosphate buffer, which mimics physiological conditions. Classical agonists such as carbachol, oxotremorine and acetylcholine inhibited (-)-(/sup 3/H)QNB binding to membranes with shallow Hill values (nH less than 1), were better fit to a 2-state model, were Gpp(NH)p-regulated and showed lowermore » affinity in modified Krebs-phosphate buffer than in 10 mM Na-K-phosphate buffer. Some agonists were not significantly better fit to a 2-state model in (/sup 3/H)PZ-labeled cortical membranes, especially in 10 mM Na-K-phosphate buffer. Whereas putative M1 and M2 binding sites distinguished by PZ possessed multiple agonist affinity states, as judged by carbachol, and agonist binding to (/sup 3/H)PZ-labeled sites were Gpp(NH)p modulated, the partial agonist pilocarpine and nonclassical agonist McN-A-343 (3-(m-chlorophenylcarbamoyloxy)-2-butynyl trimethylammonium chloride) showed little Gpp(NH)p-induced shift in (/sup 3/H)PZ-labeled cortical membranes in physiological conditions. Agonist binding to (-)-(/sup 3/H)QNB-labeled putative M2 cardiac sites was more sensitive to Gpp(NH)p than (-)-(/sup 3/H)QNB-labeled cortical sites. Carbachol and acetylcholine showed significant selectivity for putative M2 sites.« less

  13. Structural Insights into Selective Ligand-Receptor Interactions Leading to Receptor Inactivation Utilizing Selective Melanocortin 3 Receptor Antagonists.

    PubMed

    Cai, Minying; Marelli, Udaya Kiran; Mertz, Blake; Beck, Johannes G; Opperer, Florian; Rechenmacher, Florian; Kessler, Horst; Hruby, Victor J

    2017-08-15

    Systematic N-methylated derivatives of the melanocortin receptor ligand, SHU9119, lead to multiple binding and functional selectivity toward melanocortin receptors. However, the relationship between N-methylation-induced conformational changes in the peptide backbone and side chains and melanocortin receptor selectivity is still unknown. We conducted comprehensive conformational studies in solution of two selective antagonists of the third isoform of the melanocortin receptor (hMC3R), namely, Ac-Nle-c[Asp-NMe-His 6 -d-Nal(2') 7 -NMe-Arg 8 -Trp 9 -Lys]-NH 2 (15) and Ac-Nle-c[Asp-His 6 -d-Nal(2') 7 -NMe-Arg 8 -NMe-Trp 9 -NMe-Lys]-NH 2 (17). It is known that the pharmacophore (His 6 -DNal 7 -Arg 8 -Trp 9 ) of the SHU-9119 peptides occupies a β II-turn-like region with the turn centered about DNal 7 -Arg 8 . The analogues with hMC3R selectivity showed distinct differences in the spatial arrangement of the Trp 9 side chains. In addition to our NMR studies, we also carried out molecular-level interaction studies of these two peptides at the homology model of hMC3R. Earlier chimeric human melanocortin 3 receptor studies revealed insights regarding the binding and functional sites of hMC3R selectivity. Upon docking of peptides 15 and 17 to the binding pocket of hMC3R, it was revealed that Arg 8 and Trp 9 side chains are involved in a majority of the interactions with the receptor. While Arg 8 forms polar contacts with D154 and D158 of hMC3R, Trp 9 utilizes π-π stacking interactions with F295 and F298, located on the transmembrane domain of hMC3R. It is hypothesized that as the frequency of Trp 9 -hMC3R interactions decrease, antagonistic activity increases. The absence of any interactions of the N-methyl groups with hMC3R suggests that their primary function is to modulate backbone conformations of the ligands.

  14. Autoradiographic analysis of the in vivo distribution of 3H-imipramine and 3H-desipramine in brain: Comparison to in vitro binding patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, G.E.; Paul, I.A.; Fassberg, J.B.

    1991-03-01

    Using high resolution autoradiographic techniques, the distribution of radioactivity in forebrain and brainstem was assessed after 4 injection of 3H-impramine or 3H-desipramine. Results were compared with regional binding of the drugs to brain sections in vitro. Similar topographic binding of 3H-imipramine and 3H-desipramine was observed in vitro among brain regions, except in the paraventricular nucleus of the hypothalamus and locus coeruleus, where binding was greater for 3H-desipramine. For both 3H-desipramine and 3H-imipramine, some brain regions that exhibited high binding in vitro also showed high accumulation after in vivo injection. However, certain regions that contained high densities of binding sites formore » the antidepressant drugs as measured by in vitro binding showed very low accumulation of radioactivity after in vivo treatment. Such regions included the dentate gyrus of the hippocampus, layer 1 of piriform cortex, caudate-putamen, pontine and midbrain central gray, and cerebellar granular layer. Compared to in vitro binding of the drugs, the distribution of imipramine and desipramine in vivo appears more anatomically selective. For imipramine, primary sites of action in vivo, as indicated by the topographic distribution in brain, appear to be the locus coeruleus, hippocampus, lateral septal nucleus, and amygdala. For desipramine, the greatest accumulation in vivo was found in the locus coeruleus, paraventricular nucleus of the hypothalamus, and anterior thalamic nuclei.« less

  15. Predicting the relative binding affinity of mineralocorticoid receptor antagonists by density functional methods

    NASA Astrophysics Data System (ADS)

    Roos, Katarina; Hogner, Anders; Ogg, Derek; Packer, Martin J.; Hansson, Eva; Granberg, Kenneth L.; Evertsson, Emma; Nordqvist, Anneli

    2015-12-01

    In drug discovery, prediction of binding affinity ahead of synthesis to aid compound prioritization is still hampered by the low throughput of the more accurate methods and the lack of general pertinence of one method that fits all systems. Here we show the applicability of a method based on density functional theory using core fragments and a protein model with only the first shell residues surrounding the core, to predict relative binding affinity of a matched series of mineralocorticoid receptor (MR) antagonists. Antagonists of MR are used for treatment of chronic heart failure and hypertension. Marketed MR antagonists, spironolactone and eplerenone, are also believed to be highly efficacious in treatment of chronic kidney disease in diabetes patients, but is contra-indicated due to the increased risk for hyperkalemia. These findings and a significant unmet medical need among patients with chronic kidney disease continues to stimulate efforts in the discovery of new MR antagonist with maintained efficacy but low or no risk for hyperkalemia. Applied on a matched series of MR antagonists the quantum mechanical based method gave an R2 = 0.76 for the experimental lipophilic ligand efficiency versus relative predicted binding affinity calculated with the M06-2X functional in gas phase and an R2 = 0.64 for experimental binding affinity versus relative predicted binding affinity calculated with the M06-2X functional including an implicit solvation model. The quantum mechanical approach using core fragments was compared to free energy perturbation calculations using the full sized compound structures.

  16. Autoradiographic localization of specific (/sup 3/H)dexamethasone binding in fetal lung

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beer, D.G.; Butley, M.S.; Cunha, G.R.

    1984-10-01

    The cellular and subcellular localization of specific (/sup 3/H)dexamethasone binding was examined in fetal mouse lung at various stages of development and in human fetal lung at 8 weeks of gestation using a rapid in vitro steroid incubation technique followed by thaw-mount autoradiography. Competition studies with unlabeled steroids demonstrate the specificity of (/sup 3/H)dexamethasone labeling, and indicate that fetal lung mesenchyme is a primary glucocorticoid target during lung development. Autoradiographs of (/sup 3/H)dexamethasone binding in lung tissue at early stages of development demonstrate that the mesenchyme directly adjacent to the more proximal portions of the bronchiolar network is heavily labeled.more » In contrast, the epithelium which will later differentiate into bronchi and bronchioles, is relatively unlabeled. Distal portions of the growing epithelium, destined to become alveolar ducts and alveoli, do show nuclear localization of (/sup 3/H)dexamethasone. In addition, by utilizing a technique which allows the simultaneous examination of extracellular matrix components and (/sup 3/H)dexamethasone binding, a relationship is observed between extensive mesenchymal (/sup 3/H)dexamethasone binding and extensive extracellular matrix accumulation. Since glucocorticoids stimulate the synthesis of many extracellular matrix components, these results suggest a role for these hormones in affecting mesenchymal-epithelial interactions during lung morphogenesis.« less

  17. sigma opiates and certain antipsychotic drugs mutually inhibit (+)-(/sup 3/H)SKF 10,047 and (/sup 3/H)haloperidol binding in guinea pig brain membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tam, S.W.; Cook, L.

    1984-09-01

    The relationship between binding of antipsychotic drugs and sigma psychotomimetic opiates to binding sites for the sigma agonist (+)-(/sup 3/H)SKF 10,047 (N-allylnormetazocine) and to dopamine D/sub 2/ sites was investigated. In guinea pig brain membranes, (+)-(/sup 3/H)SKF 10,047 bound to single class of sites with a K/sub d/ of 4 x 10/sup -8/ M and a B/sub max/ of 333 fmol/mg of protein. This binding was different from ..mu.., kappa, or delta opiate receptor binding. It was inhibited by opiates that produce psychotomimetic activities but not by opiates that lack such activities. Some antipsychotic drugs inhibited (+)-(/sup 3/H)SKF 10,047 bindingmore » with high to moderate affinities in the following order of potency: haloperidol > perphenazine > fluphenazine > acetophenazine > trifluoperazine > molindone greater than or equal to pimozide greater than or equal to thioridazine greater than or equal to chlorpromazine greater than or equal to triflupromazine. However, there were other antipsychotic drugs such as spiperone and clozapine that showed low affinity for the (+)-(/sup 3/H)SKF 10,047 binding sites. Affinities of antipsychotic drugs for (+)-(/sup 3/H)SKF 10,047 binding sites did not correlate with those for (/sup 3/H)spiperone (dopamine D/sub 2/) sites. (/sup 3/H)-Haloperidol binding in whole brain membranes was also inhibited by the sigma opiates pentazocine, cyclazocine, and (+)-(/sup 3/H)SKF 10,047. In the striatum, about half of the saturable (/sup 3/H)haloperidol binding was to (/sup 3/H)spiperone (D/sub 2/) sites and the other half was to sites similar to (+)-(/sup 3/H)SKF 10,047 binding sites. 15 references, 4 figures, 1 table.« less

  18. Ciproxifan, an H3 receptor antagonist, improves short-term recognition memory impaired by isoflurane anesthesia.

    PubMed

    Ding, Fang; Zheng, Limin; Liu, Min; Chen, Rongfa; Leung, L Stan; Luo, Tao

    2016-08-01

    Exposure to volatile anesthetics has been reported to cause temporary or sustained impairments in learning and memory in pre-clinical studies. The selective antagonists of the histamine H3 receptors (H3R) are considered to be a promising group of novel therapeutic agents for the treatment of cognitive disorders. The aim of this study was to evaluate the effect of H3R antagonist ciproxifan on isoflurane-induced deficits in an object recognition task. Adult C57BL/6 J mice were exposed to isoflurane (1.3 %) or vehicle gas for 2 h. The object recognition tests were carried at 24 h or 7 days after exposure to anesthesia to exploit the tendency of mice to prefer exploring novel objects in an environment when a familiar object is also present. During the training phase, two identical objects were placed in two defined sites of the chamber. During the test phase, performed 1 or 24 h after the training phase, one of the objects was replaced by a new object with a different shape. The time spent exploring each object was recorded. A robust deficit in object recognition memory occurred 1 day after exposure to isoflurane anesthesia. Isoflurane-treated mice spent significantly less time exploring a novel object at 1 h but not at 24 h after the training phase. The deficit in short-term memory was reversed by the administration of ciproxifan 30 min before behavioral training. Isoflurane exposure induces reversible deficits in object recognition memory. Ciproxifan appears to be a potential therapeutic agent for improving post-anesthesia cognitive memory performance.

  19. Discovery of Tertiary Sulfonamides as Potent Liver X Receptor Antagonists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuercher, William J.; Buckholz†, Richard G.; Campobasso, Nino

    2010-08-12

    Tertiary sulfonamides were identified in a HTS as dual liver X receptor (LXR, NR1H2, and NR1H3) ligands, and the binding affinity of the series was increased through iterative analogue synthesis. A ligand-bound cocrystal structure was determined which elucidated key interactions for high binding affinity. Further characterization of the tertiary sulfonamide series led to the identification of high affinity LXR antagonists. GSK2033 (17) is the first potent cell-active LXR antagonist described to date. 17 may be a useful chemical probe to explore the cell biology of this orphan nuclear receptor.

  20. Discovery of tertiary sulfonamides as potent liver X receptor antagonists.

    PubMed

    Zuercher, William J; Buckholz, Richard G; Campobasso, Nino; Collins, Jon L; Galardi, Cristin M; Gampe, Robert T; Hyatt, Stephen M; Merrihew, Susan L; Moore, John T; Oplinger, Jeffrey A; Reid, Paul R; Spearing, Paul K; Stanley, Thomas B; Stewart, Eugene L; Willson, Timothy M

    2010-04-22

    Tertiary sulfonamides were identified in a HTS as dual liver X receptor (LXR, NR1H2, and NR1H3) ligands, and the binding affinity of the series was increased through iterative analogue synthesis. A ligand-bound cocrystal structure was determined which elucidated key interactions for high binding affinity. Further characterization of the tertiary sulfonamide series led to the identification of high affinity LXR antagonists. GSK2033 (17) is the first potent cell-active LXR antagonist described to date. 17 may be a useful chemical probe to explore the cell biology of this orphan nuclear receptor.

  1. Crystal structure of human glycine receptor-α3 bound to antagonist strychnine.

    PubMed

    Huang, Xin; Chen, Hao; Michelsen, Klaus; Schneider, Stephen; Shaffer, Paul L

    2015-10-08

    Neurotransmitter-gated ion channels of the Cys-loop receptor family are essential mediators of fast neurotransmission throughout the nervous system and are implicated in many neurological disorders. Available X-ray structures of prokaryotic and eukaryotic Cys-loop receptors provide tremendous insights into the binding of agonists, the subsequent opening of the ion channel, and the mechanism of channel activation. Yet the mechanism of inactivation by antagonists remains unknown. Here we present a 3.0 Å X-ray structure of the human glycine receptor-α3 homopentamer in complex with a high affinity, high-specificity antagonist, strychnine. Our structure allows us to explore in detail the molecular recognition of antagonists. Comparisons with previous structures reveal a mechanism for antagonist-induced inactivation of Cys-loop receptors, involving an expansion of the orthosteric binding site in the extracellular domain that is coupled to closure of the ion pore in the transmembrane domain.

  2. Label-Free, LC-MS-Based Assays to Quantitate Small-Molecule Antagonist Binding to the Mammalian BLT1 Receptor.

    PubMed

    Chen, Xun; Stout, Steven; Mueller, Uwe; Boykow, George; Visconti, Richard; Siliphaivanh, Phieng; Spencer, Kerrie; Presland, Jeremy; Kavana, Michael; Basso, Andrea D; McLaren, David G; Myers, Robert W

    2017-08-01

    We have developed and validated label-free, liquid chromatography-mass spectrometry (LC-MS)-based equilibrium direct and competition binding assays to quantitate small-molecule antagonist binding to recombinant human and mouse BLT1 receptors expressed in HEK 293 cell membranes. Procedurally, these binding assays involve (1) equilibration of the BLT1 receptor and probe ligand, with or without a competitor; (2) vacuum filtration through cationic glass fiber filters to separate receptor-bound from free probe ligand; and (3) LC-MS analysis in selected reaction monitoring mode for bound probe ligand quantitation. Two novel, optimized probe ligands, compounds 1 and 2, were identified by screening 20 unlabeled BLT1 antagonists for direct binding. Saturation direct binding studies confirmed the high affinity, and dissociation studies established the rapid binding kinetics of probe ligands 1 and 2. Competition binding assays were established using both probe ligands, and the affinities of structurally diverse BLT1 antagonists were measured. Both binding assay formats can be executed with high specificity and sensitivity and moderate throughput (96-well plate format) using these approaches. This highly versatile, label-free method for studying ligand binding to membrane-associated receptors should find broad application as an alternative to traditional methods using labeled ligands.

  3. [3H]-nitrendipine binding in membranes obtained from hypoxic and reoxygenated heart.

    PubMed

    Matucci, R; Bennardini, F; Sciammarella, M L; Baccaro, C; Stendardi, I; Franconi, F; Giotti, A

    1987-04-01

    We compared the binding properties of [3H]-nitrendipine in heart membranes from normal guinea-pig heart and from hypoxic or hypoxic and reoxygenated heart. The [3H]-nitrendipine binds a single class of high capacity (Bmax 667.2 +/- 105.2) with high affinity (KD 0.14 +/- 0.02) binding sites. By contrast, in membranes of hypoxic and reoxygenated heart the Bmax decreases significantly while it remains unaffected during hypoxia. Xanthinoxidase activity is increased in hypoxic-reoxygenated hearts.

  4. Functional antagonistic properties of clozapine at the 5-HT3 receptor.

    PubMed

    Hermann, B; Wetzel, C H; Pestel, E; Zieglgänsberger, W; Holsboer, F; Rupprecht, R

    1996-08-23

    The atypical neuroleptic clozapine is thought to exert its psychopharmacological actions through a variety of neurotransmitter receptors. It binds preferentially to D4 and 5-HT2 receptors; however, little is known on it's interaction with the 5-HT3 receptor. Using a cell line stably expressing the 5-HT3 receptor, whole-cell voltage-clamp analysis revealed functional antagonistic properties of clozapine at low nanomolar concentrations in view of a binding affinity in the upper nanomolar range. Because the concentration of clozapine required for an interaction with the 5-HT3 receptor can be achieved with therapeutical doses, functional antagonistic properties at this ligand-gated ion channel may contribute to its unique psychopharmacological profile.

  5. Effects of the H3 Antagonist, Thioperamide, on Behavioral Alterations Induced by Systemic MK-801 Administration in Rats

    PubMed Central

    Bardgett, Mark E.; Points, Megan; Roflow, John; Blankenship, Meredith; Griffith, Molly S.

    2009-01-01

    Rationale Recent studies have raised the possibility that antagonists of H3 histamine receptors possess cognitive-enhancing and antipsychotic properties. However, little work has assessed these compounds in classic animal models of schizophrenia. Objectives The purpose of this study was to determine if a prototypical H3 antagonist, thioperamide, could alter behavioral deficits caused by the NMDA receptor antagonist, MK-801, in adult male rats. MK-801 was chosen for study since it produces a state of NMDA receptor hypofunction in rats that may be analogous to the one hypothesized to occur in schizophrenia. Methods The interaction between thioperamide and MK-801 was measured in three behavioral tests: locomotor activity, prepulse inhibition (PPI), and delayed spatial alternation. In each test, rats received a subcutaneous injection of saline or thioperamide (3.0 & 10 mg/kg) followed 20 minutes later by a subcutaneous injection of saline or MK-801 (0.05, 0.10, & 0.30 mg/kg). Results Locomotor activity was significantly elevated by MK-801 in a dose-dependent manner. Thioperamide pretreatment alone did not alter locomotor activity, however its impact on MK-801 was dose-dependent. Each thioperamide dose enhanced the effects of two lower doses of MK801 but reduced the effect of a higher MK-801 dose. Clear deficits in PPI and delayed spatial alternation were produced by MK-801 treatment, but neither impairment was significantly modified by thioperamide pretreatment. Conclusions H3 receptors modulate responses to NMDA antagonists in behaviorally-specific ways and dependent upon the level of NMDA receptor blockade. PMID:19466392

  6. Histamine H3 receptor antagonists display antischizophrenic activities in rats treated with MK-801.

    PubMed

    Mahmood, Danish; Akhtar, Mohd; Jahan, Kausar; Goswami, Dipanjan

    2016-09-01

    Animal models based on N-methyl-d-aspartate receptor blockade have been extensively used for schizophrenia. Ketamine and MK-801 produce behaviors related to schizophrenia and exacerbated symptoms in patients with schizophrenia, which led to the use of PCP (phencyclidine)- and MK-801 (dizocilpine)-treated animals as models for schizophrenia. The study investigated the effect of subchronic dosing (once daily, 7 days) of histamine H3 receptor (H3R) antagonists, ciproxifan (CPX) (3 mg/kg, i.p.), and clobenpropit (CBP) (15 mg/kg, i.p.) on MK-801 (0.2 mg/kg, i.p.)-induced locomotor activity and also measured dopamine and histamine levels in rat's brain homogenates. The study also included clozapine (CLZ) (3.0 mg/kg, i.p.) and chlorpromazine (CPZ) (3.0 mg/kg, i.p.), the atypical and typical antipsychotic, respectively. Atypical and typical antipsychotic was used to serve as clinically relevant reference agents to compare the effects of the H3R antagonists. MK-801 significantly increased horizontal locomotor activity, which was reduced with CPX and CBP. MK-801-induced locomotor hyperactivity attenuated by CPX and CBP was comparable to CLZ and CPZ. MK-801 raised striatal dopamine level, which was reduced in rats pretreated with CPX and CBP. CPZ also significantly lowered striatal dopamine levels, although the decrease was less robust compared to CLZ, CPX, and CBP. MK-801 increased histamine content although to a lesser degree. Subchronic treatment with CPX and CBP exhibited further increased histamine levels in the hypothalamus compared to MK-801 treatment alone. Histamine H3 receptor agonist, R-α methylhistamine (10 mg/kg, i.p.), counteracted the effect of CPX and CBP. The present study shows the positive effects of CPX and CBP on MK-801-induced schizophrenia-like behaviors in rodents.

  7. Binding of /sup 3/H-acetylcholine to cholinergic receptors in bovine cerebral arteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimohama, S.; Tsukahara, T.; Taniguchi, T.

    Cholinergic receptor sites in bovine cerebral arteries were analyzed using radioligand binding techniques with the cholinergic agonist, /sup 3/H-acetylcholine (ACh), as the ligand. Specific binding of /sup 3/H-ACh to membrane preparations of bovine cerebral arteries was saturable, of two binding sites, with dissociation constant (K/sub D/) values of 0.32 and 23.7 nM, and maximum binding capacity (Bmax) values of 67 and 252 fmol/mg protein, respectively. Specific binding of /sup 3/H-ACh was displaced effectively by muscarinic cholinergic agents and less effectively by nicotinic cholinergic agents. IC/sub 50/ values of cholinergic drugs for /sup 3/H-ACh binding were as follows: atropine, 38.5 nM;more » ACh, 59.8 nM; oxotremorine, 293 nM; scopolamine 474 nM; carbamylcholine, 990 nM. IC/sub 50/ values of nicotinic cholinergic agents such as nicotine, cytisine and ..cap alpha..-bungarotoxin exceeded 50 ..mu..M. Choline acetyltransferase activity was 1.09 nmol/mg protein/hour in the cerebral arteries. These findings suggest that the cholinergic nerves innervate the bovine cerebral arteries and that there are at least two classes of ACh binding sites of different affinities on muscarinic reporters in these arteries. 18 references, 2 figures, 2 tables.« less

  8. Two classes of binding sites for [3H]substance P in rat cerebral cortex.

    PubMed

    Geraghty, D P; Burcher, E

    1993-01-22

    The binding characteristics of [3H]substance P ([3H]SP) were investigated in membranes prepared from rat cerebral cortex. Binding of [3H]SP reached equilibrium after 50 min at 25 degrees C and was saturable at 8 nM. Saturation data could be resolved into high affinity (equilibrium dissociation constant, Kd, 0.22 nM) and low affinity sites (Kd, 2.65 nM). The low affinity sites were more numerous than the high affinity sites, with a ratio of 4:1. The non-hydrolyzable GTP analogue GppNHp had no effect on binding, indicating that the high and low affinity sites are not guanine nucleotide-regulated states of the same (NK-1) receptor. The low affinity sites are unlikely to represent NK-3 receptors since coincubation with the selective NK-3 receptor agonist senktide did not alter the biphasic nature of [3H]SP binding. The rank order of potency for inhibition of [3H]SP (2 nM) binding was SP > or = [Sar9, Met(O2)11]-SP > or = physalaemin > SP(3-11) > NP gamma = [Ala3]-SP > or = SP(4-11) > or = NPK > or = SP(5-11) > or = NKB approximately NKA > SP(1-9), compatible with binding to an NK-1 site. N-terminal fragments and non-amidated analogues were ineffective competitors for [3H]SP binding. However, competition data for several peptides including substance P (SP) and the NK-1 selective agonist [Sar9, Met(O2)11]-SP could be resolved into two components.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Guanidine-acylguanidine bioisosteric approach in the design of radioligands: synthesis of a tritium-labeled N(G)-propionylargininamide ([3H]-UR-MK114) as a highly potent and selective neuropeptide Y Y1 receptor antagonist.

    PubMed

    Keller, Max; Pop, Nathalie; Hutzler, Christoph; Beck-Sickinger, Annette G; Bernhardt, Günther; Buschauer, Armin

    2008-12-25

    Synthesis and characterization of (R)-N(alpha)-(2,2-diphenylacetyl)-N-(4-hydroxybenzyl)-N(omega)-([2,3-(3)H]-propanoyl)argininamide ([(3)H]-UR-MK114), an easily accessible tritium-labeled NPY Y(1) receptor (Y(1)R) antagonist (K(B): 0.8 nM, calcium assay, HEL cells) derived from the (R)-argininamide BIBP 3226, is reported. The radioligand binds with high affinity (K(D), saturation: 1.2 nM, kinetic experiments: 1.1 nM, SK-N-MC cells) and selectivity for Y(1)R over Y(2), Y(4), and Y(5) receptors. The title compound is a useful pharmacological tool for the determination of Y(1)R ligand affinities, quantification of Y(1)R binding sites, and autoradiography.

  10. 3H[2-(2-benzofuranyl)-2-imidazoline] (BFI) binding in human platelets: modulation by tranylcypromine.

    PubMed

    Wiest, S A; Steinberg, M I

    1999-08-01

    2-(2-Benzofuranyl)-2-imidazoline (BFI) is a highly selective ligand for imidazoline-type 2 (I2) binding sites that are known to be associated with monoamine oxidase (MAO). Recently we demonstrated a potentiation of 3H-BFI binding in human but not in rat brain by the nonselective MAO inhibitor tranylcypromine. In the present studies, we evaluated the effect of tranylcypromine on the binding of 3H-BFI to human platelet inner membranes. Membranes were incubated with 3H-BFI at 22 degrees C in 50 mM Tris, 1.5 mM EDTA, pH 7.5. Saturation experiments with 3H-BFI (0.5-80 nM) were analyzed using non-linear curve fitting. Addition of tranylcypromine (0.1 mM) increased the number of 3H-BFI binding sites (Bmax=0.35+/-0.06 vs. 1.87+/-0.15 pmol/mg protein for vehicle and tranylcypromine, respectively) and increased 3H-BFI affinity slightly (KD =16.0+/-4.1 vs. 6.5+/-0.3 nM for vehicle and tranylcypromine, respectively). In competitive binding experiments using the less selective I2 ligand, 3H-idazoxan, tranylcypromine only weakly inhibited binding. Preincubation of platelet membranes with tranylcypromine (1 nM-10 microM) enhanced the Bmax of 3H-BFI binding in a concentration-dependent manner peaking at 1 microM (13 x control) and returning to near baseline at 100 microM. 3H-BFI binding was displaced monophasically (in order of decreasing potency) by BFI > or = 2-(4,5-dihydroimidazol-2-yl)quinoline (BU224) > or = cirazoline >idazoxan >(1,4-benzodioxan-2-methoxy-2-yl)-2-imidazoline (RX821002)= moxonidine. Amiloride, clorgyline, guanabenz and clonidine displayed biphasic curves with nanomolar high affinity components. Tranylcypromine altered the competition curves for all ligands (except BFI) by increasing the affinities for clonidine and RX821002 and decreasing affinities for BU224, cirazoline, guanabenz, idazoxan, clorgyline, moxonidine, and amiloride. Thus, in human platelets tranylcypromine exposes a high capacity 3H-BFI binding site distinct from previously described I2 sites

  11. Characterization of a novel non-peptide vasopressin V1 receptor antagonist (OPC-21268) in the rat.

    PubMed

    Burrell, L M; Phillips, P A; Stephenson, J; Risvanis, J; Hutchins, A M; Johnston, C I

    1993-08-01

    A non-peptide, orally effective, vasopressin (AVP) V1 receptor antagonist 1-(1-[4-(3-acetylaminopropoxy) benzoyl]-4-piperidyl)-3,4-dihydro-2(1H)-quinolinone (OPC-21268) has recently been described. This paper reports the in-vitro and in-vivo characterization of OPC-21268 binding to vasopressin receptors in rat liver and kidney. OPC-21268 caused a concentration-dependent displacement of the selective V1 receptor antagonist radioligand, 125I-labelled [d(CH2)5,sarcosine7]AVP to V1 receptors in both rat liver and kidney medulla membranes. The concentration of OPC-21268 that displaced 50% of specific AVP binding (IC50) was 40 +/- 3 nmol/l for liver V1 and 15 +/- 2 nmol/l for kidney V1 receptors (mean +/- S.E.M.; n = 3). OPC-21268 had little effect on the selective V2 antagonist radioligand [3H]desGly-NH2(9)]d(CH2)5,D-Ile2,Ile4] AVP binding to V2 receptors in renal medulla membranes (IC50 > 0.1 mmol/l). After oral administration to rats, OPC-21268 was an effective V1 antagonist in a time- and dose-dependent manner. Binding kinetic studies showed that OPC-21268 acted as a competitive antagonist at the liver V1 receptor in vitro and in vivo, in addition to its in-vitro competitive effects at the renal V1 receptor. OPC-21268 shows promise as an orally active V1 antagonist.

  12. Computational study of the binding mechanism between farnesoid X receptor α and antagonist N-benzyl-N-(3-(tertbutyl)-4-hydroxyphenyl)-2,6-dichloro-4-(dimethylamino) benzamide.

    PubMed

    Du, Juan; Qiu, Miaoxue; Guo, Lizhong; Yao, Xiaojun

    2018-05-02

    Farnesoid X receptor α (FXRα) is a bile acid-activated transcription factor, which plays important roles in the regulation of multiple metabolic processes. Development of FXR antagonist has revealed great potential for the treatment of metabolic disorders. The compound N-Benzyl-N-(3-(tertbutyl)-4-hydroxyphenyl)-2,6-dichloro-4-(dimethylamino). Benzamide (NDB) was recently determined as a selective antagonist of FXRα, while the detailed interaction mechanism is not well understood. In this study, the combined computational methods including molecular dynamics simulations, binding free energy calculation, and principal component analysis were utilized to investigate the effect of NDB on the dynamics behaviors and dimerization of FXRα The binding free energy calculation indicated that the protein dimerization increases NDB affinity and the binding of NDB also stabilizes the interaction between two subunits of FXRα. Further decomposition of the overall binding free energies into individual residues identifies several residues significant for NDB binding, including Leu291, Met294, Ala295, His298, Met332, Ser336, Ala452, and Leu455. It also suggests that the interactions of L289(A)-W458(B), W458(A)-L289(B), R459(A)-N461(B), and N461(A)-R459(B) are important for the dimer stabilization. This study provides a molecular basis for the understanding of binding mechanism between antagonist NDB and FXRα and valuable information for the novel FXR modulators design for the treatment of metabolic syndrome.

  13. Generation of cell lines for drug discovery through random activation of gene expression: application to the human histamine H3 receptor.

    PubMed

    Song, J; Doucette, C; Hanniford, D; Hunady, K; Wang, N; Sherf, B; Harrington, J J; Brunden, K R; Stricker-Krongrad, A

    2005-06-01

    Target-based high-throughput screening (HTS) plays an integral role in drug discovery. The implementation of HTS assays generally requires high expression levels of the target protein, and this is typically accomplished using recombinant cDNA methodologies. However, the isolated gene sequences to many drug targets have intellectual property claims that restrict the ability to implement drug discovery programs. The present study describes the pharmacological characterization of the human histamine H3 receptor that was expressed using random activation of gene expression (RAGE), a technology that over-expresses proteins by up-regulating endogenous genes rather than introducing cDNA expression vectors into the cell. Saturation binding analysis using [125I]iodoproxyfan and RAGE-H3 membranes revealed a single class of binding sites with a K(D) value of 0.77 nM and a B(max) equal to 756 fmol/mg of protein. Competition binding studies showed that the rank order of potency for H3 agonists was N(alpha)-methylhistamine approximately (R)-alpha- methylhistamine > histamine and that the rank order of potency for H3 antagonists was clobenpropit > iodophenpropit > thioperamide. The same rank order of potency for H3 agonists and antagonists was observed in the functional assays as in the binding assays. The Fluorometic Imaging Plate Reader assays in RAGE-H3 cells gave high Z' values for agonist and antagonist screening, respectively. These results reveal that the human H3 receptor expressed with the RAGE technology is pharmacologically comparable to that expressed through recombinant methods. Moreover, the level of expression of the H3 receptor in the RAGE-H3 cells is suitable for HTS and secondary assays.

  14. Binding of (/sup 3/H)Forskolin to rat brain membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seamon, K.B.; Vaillancourt, R.; Edwards, M.

    1984-08-01

    (12-/sup 3/H)Forskolin (27 Ci/mmol) has been used to study binding sites in rat brain tissue by using both centrifugation and filtration assays. The binding isotherm measured in the presence of 5 mM MgCl/sub 2/ by using the centrifugation assay is described best by a two-site model: K/sub d1/ = 15 nM, B/sub max/sub 1// (maximal binding) = 270 fmol/mg of protein; K/sub d2/ = 1.1 ..mu..M; B/sub max/sub 2// = 4.2 pmol/mg of protein. Only the high-affinity binding sites are detected when the binding is determined by using a filtration assay; K/sub d/ = 26 nM, B/sub max/ = 400more » fmol/mg of protein. Analogs of forskolin that do not activate adenylate cyclase (EC 4.6.1.1) do not compete effectively for (/sup 3/H)forskolin binding sites. Analogs of forskolin that are less potent than forskolin in activating adenylate cyclase are also less potent in competing for forskolin binding sites. The presence of 5 mM MgCl/sub 2/ or MnCl/sub 2/ was found to enhance binding. In the presence of 1 mM EDTA the amount of high-affinity binding is reduced to 110 fmol/mg of protein with no change in K/sub d/. There is no effect of CaCl/sub 2/ (20 mM) or NaCl (100 mM) on the binding. No high-affinity binding can be detected in membranes from ram sperm, which contains an adenylate cyclase that is not activated by forskolin. It is proposed that the high-affinity binding sites for forskolin are associated with the activated complex of catalytic subunit and stimulatory guanine nucleotide binding protein. 23 references, 5 figures, 2 tables.« less

  15. H3.Y discriminates between HIRA and DAXX chaperone complexes and reveals unexpected insights into human DAXX-H3.3-H4 binding and deposition requirements

    PubMed Central

    Zink, Lisa-Maria; Delbarre, Erwan; Eberl, H. Christian; Keilhauer, Eva C.; Bönisch, Clemens; Pünzeler, Sebastian; Bartkuhn, Marek; Collas, Philippe; Mann, Matthias

    2017-01-01

    Abstract Histone chaperones prevent promiscuous histone interactions before chromatin assembly. They guarantee faithful deposition of canonical histones and functionally specialized histone variants into chromatin in a spatial- and temporally-restricted manner. Here, we identify the binding partners of the primate-specific and H3.3-related histone variant H3.Y using several quantitative mass spectrometry approaches, and biochemical and cell biological assays. We find the HIRA, but not the DAXX/ATRX, complex to recognize H3.Y, explaining its presence in transcriptionally active euchromatic regions. Accordingly, H3.Y nucleosomes are enriched in the transcription-promoting FACT complex and depleted of repressive post-translational histone modifications. H3.Y mutational gain-of-function screens reveal an unexpected combinatorial amino acid sequence requirement for histone H3.3 interaction with DAXX but not HIRA, and for H3.3 recruitment to PML nuclear bodies. We demonstrate the importance and necessity of specific H3.3 core and C-terminal amino acids in discriminating between distinct chaperone complexes. Further, chromatin immunoprecipitation sequencing experiments reveal that in contrast to euchromatic HIRA-dependent deposition sites, human DAXX/ATRX-dependent regions of histone H3 variant incorporation are enriched in heterochromatic H3K9me3 and simple repeat sequences. These data demonstrate that H3.Y's unique amino acids allow a functional distinction between HIRA and DAXX binding and its consequent deposition into open chromatin. PMID:28334823

  16. Structure-guided design of a high-affinity platelet integrin αIIbβ3 receptor antagonist that disrupts Mg²⁺ binding to the MIDAS.

    PubMed

    Zhu, Jieqing; Choi, Won-Seok; McCoy, Joshua G; Negri, Ana; Zhu, Jianghai; Naini, Sarasija; Li, Jihong; Shen, Min; Huang, Wenwei; Bougie, Daniel; Rasmussen, Mark; Aster, Richard; Thomas, Craig J; Filizola, Marta; Springer, Timothy A; Coller, Barry S

    2012-03-14

    An integrin found on platelets, α(IIb)β(3) mediates platelet aggregation, and α(IIb)β(3) antagonists are effective antithrombotic agents in the clinic. Ligands bind to integrins in part by coordinating a magnesium ion (Mg(2+)) located in the β subunit metal ion-dependent adhesion site (MIDAS). Drugs patterned on the integrin ligand sequence Arg-Gly-Asp have a basic moiety that binds the α(IIb) subunit and a carboxyl group that coordinates the MIDAS Mg(2+) in the β(3) subunits. They induce conformational changes in the β(3) subunit that may have negative consequences such as exposing previously hidden epitopes and inducing the active conformation of the receptor. We recently reported an inhibitor of α(IIb)β(3) (RUC-1) that binds exclusively to the α(IIb) subunit; here, we report the structure-based design and synthesis of RUC-2, a RUC-1 derivative with a ~100-fold higher affinity. RUC-2 does not induce major conformational changes in β(3) as judged by monoclonal antibody binding, light scattering, gel chromatography, electron microscopy, and a receptor priming assay. X-ray crystallography of the RUC-2-α(IIb)β(3) headpiece complex in 1 mM calcium ion (Ca(2+))/5 mM Mg(2+) at 2.6 Å revealed that RUC-2 binds to α(IIb) the way RUC-1 does, but in addition, it binds to the β(3) MIDAS residue glutamic acid 220, thus displacing Mg(2+) from the MIDAS. When the Mg(2+) concentration was increased to 20 mM, however, Mg(2+) was identified in the MIDAS and RUC-2 was absent. RUC-2's ability to inhibit ligand binding and platelet aggregation was diminished by increasing the Mg(2+) concentration. Thus, RUC-2 inhibits ligand binding by a mechanism different from that of all other α(IIb)β(3) antagonists and may offer advantages as a therapeutic agent.

  17. Thermodynamics of antagonist binding to rat muscarinic M2 receptors: antimuscarinics of the pridinol, sila-pridinol, diphenidol and sila-diphenidol type.

    PubMed Central

    Waelbroeck, M.; Camus, J.; Tastenoy, M.; Lambrecht, G.; Mutschler, E.; Kropfgans, M.; Sperlich, J.; Wiesenberger, F.; Tacke, R.; Christophe, J.

    1993-01-01

    1. We studied the effect of temperature on the binding to rat heart M2 muscarinic receptors of antagonists related to the carbon/silicon pairs pridinol/sila-pridinol and diphenidol/sila-diphenidol (including three germanium compounds) and six structurally related pairs of enantiomers [(R)- and (S)-procyclidine, (R)- and (S)-trihexyphenidyl, (R)- and (S)-tricyclamol, (R)- and (S)-trihexyphenidyl methiodide, (R)- and (S)-hexahydro-diphenidol and (R)- and (S)-hexbutinol]. Binding affinities were determined in competition experiments using [3H]-N-methyl-scopolamine chloride as radioligand. The reference drugs were scopolamine and N-methyl-scopolamine bromide. 2. The affinity of the antagonists either increased or decreased with temperature. van't Hoff plots were linear in the 278-310 degrees K temperature range. Binding of all antagonists was entropy driven. Enthalpy changes varied from large negative values (down to -29 kJ mol-1) to large positive values (up to +30 kJ mol-1). 3. (R)-configurated drugs had a 10 to 100 fold greater affinity for M2 receptors than the corresponding (S)-enantiomers. Enthalpy and entropy changes of the respective enantiomers were different but no consistent pattern was observed. 4. When silanols (R3SiOH) were compared to carbinols (R3COH), the affinity increase caused by C/Si exchange varied between 3 and 10 fold for achiral drugs but was negligible in the case of chiral drugs. Silanols induced more favourable enthalpy and less favourable entropy changes than the corresponding carbinols when binding. Organogermanium compounds (R4Ge) when compared to their silicon counterparts (R4Si) showed no significant difference in affinity as well as in enthalpy and entropy changes. 5. Exchange of a cyclohexyl by a phenyl moiety was associated with an increase or a decrease in drug affinity (depending on the absolute configuration in the case of chiral drugs) and generally also with a more favourable enthalpy change and a less favourable entropy change

  18. Complex Actions of Thyroid Hormone Receptor Antagonist NH-3 on Gene Promoters in Different Cell Lines

    PubMed Central

    Shah, Vanya; Nguyen, Phuong; Nguyen, Ngoc-Ha; Togashi, Marie; Scanlan, Thomas S.; Baxter, John D.; Webb, Paul

    2014-01-01

    It is desirable to obtain new antagonists for thyroid hormone (TRs) and other nuclear receptors (NRs). We previously used X-ray structural models of TR ligand binding domains (LBDs) to design compounds, such as NH-3, that impair coactivator binding to activation function 2 (AF-2) and block thyroid hormone (triiodothyronine, T3) actions. However, TRs bind DNA and are transcriptionally active without ligand. Thus, NH-3 could modulate TR activity via effects on other coregulator interaction surfaces, such as activation function (AF-1) and corepressor binding sites. Here, we find that NH-3 blocks TR-LBD interactions with coactivators and corepressors and also inhibits activities of AF-1 and AF-2 in transfections. While NH-3 lacks detectable agonist activity at T3-activated genes in GC pituitary cells it nevertheless activates spot 14 (S14) in HTC liver cells with the latter effect accompanied by enhanced histone H4 acetylation and coactivator recruitment at the S14 promoter. Surprisingly, T3 promotes corepressor recruitment to target promoters. NH-3 effects vary; we observe transient recruitment of N-CoR to S14 in GC cells and dismissal and rebinding of N-CoR to the same promoter in HTC cells. We propose that NH-3 will generally behave as an antagonist by blocking AF-1 and AF-2 but that complex effects on coregulator recruitment may result in partial/mixed agonist effects that are independent of blockade of T3 binding in some contexts. These properties could ultimately be utilized in drug design and development of new selective TR modulators. PMID:18930112

  19. Novel Yeast-based Strategy Unveils Antagonist Binding Regions on the Nuclear Xenobiotic Receptor PXR*

    PubMed Central

    Li, Hao; Redinbo, Matthew R.; Venkatesh, Madhukumar; Ekins, Sean; Chaudhry, Anik; Bloch, Nicolin; Negassa, Abdissa; Mukherjee, Paromita; Kalpana, Ganjam; Mani, Sridhar

    2013-01-01

    The pregnane X receptor (PXR) is a master regulator of xenobiotic metabolism, and its activity is critical toward understanding the pathophysiology of several diseases, including inflammation, cancer, and steatosis. Previous studies have demonstrated that ketoconazole binds to ligand-activated PXR and antagonizes receptor control of gene expression. Structure-function as well as computational docking analysis suggested a putative binding region containing critical charge clamp residues Gln-272, and Phe-264 on the AF-2 surface of PXR. To define the antagonist binding surface(s) of PXR, we developed a novel assay to identify key amino acid residues on PXR based on a yeast two-hybrid screen that examined mutant forms of PXR. This screen identified multiple “gain-of-function” mutants that were “resistant” to the PXR antagonist effects of ketoconazole. We then compared our screen results identifying key PXR residues to those predicted by computational methods. Of 15 potential or putative binding residues based on docking, we identified three residues in the yeast screen that were then systematically verified to functionally interact with ketoconazole using mammalian assays. Among the residues confirmed by our study was Ser-208, which is on the opposite side of the protein from the AF-2 region critical for receptor regulation. The identification of new locations for antagonist binding on the surface or buried in PXR indicates novel aspects to the mechanism of receptor antagonism. These results significantly expand our understanding of antagonist binding sites on the surface of PXR and suggest new avenues to regulate this receptor for clinical applications. PMID:23525103

  20. Labeling by ( sup 3 H)1,3-di(2-tolyl)guanidine of two high affinity binding sites in guinea pig brain: Evidence for allosteric regulation by calcium channel antagonists and pseudoallosteric modulation by sigma ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rothman, R.B.; Reid, A.; Mahboubi, A.

    1991-02-01

    Equilibrium binding studies with the sigma receptor ligand ({sup 3}H)1,3-di(2-tolyl)guanidine (({sup 3}H)DTG) demonstrated two high affinity binding sites in membranes prepared from guinea pig brain. The apparent Kd values of DTG for sites 1 and 2 were 11.9 and 37.6 nM, respectively. The corresponding Bmax values were 1045 and 1423 fmol/mg of protein. Site 1 had high affinity for (+)-pentazocine, haloperidol, (R)-(+)-PPP, carbepentane, and other sigma ligands, suggesting a similarity with the dextromethorphan/sigma 1 binding site described by Musacchio et al. (Life Sci. 45:1721-1732 (1989)). Site 2 had high affinity for DTG and haloperidol (Ki = 36.1 nM) and lowmore » affinity for most other sigma ligands. Kinetic experiments demonstrated that ({sup 3}H)DTG dissociated in a biphasic manner from both site 1 and site 2. DTG and haloperidol increased the dissociation rate of ({sup 3}H)DTG from site 1 and site 2, demonstrating the presence of pseudoallosteric interactions. Inorganic calcium channel blockers such as Cd2+ selectively increased the dissociation rate of ({sup 3}H)DTG from site 2, suggesting an association of this binding site with calcium channels.« less

  1. Glucose-independent inhibition of yeast plasma-membrane H+-ATPase by calmodulin antagonists.

    PubMed

    Romero, I; Maldonado, A M; Eraso, P

    1997-03-15

    Glucose metabolism causes activation of the yeast plasma-membrane H+-ATPase. The molecular mechanism of this regulation is not known, but it is probably mediated by phosphorylation of the enzyme. The involvement in this process of several kinases has been suggested but their actual role has not been proved. The physiological role of a calmodulin-dependent protein kinase in glucose-induced activation was investigated by studying the effect of specific calmodulin antagonists on the glucose-induced ATPase kinetic changes in wild-type and two mutant strains affected in the glucose regulation of the enzyme. Preincubation of the cells with calmidazolium or compound 48/80 impeded the increase in ATPase activity by reducing the Vmax of the enzyme without modifying the apparent affinity for ATP in the three strains. In one mutant, pma1-T912A, the putative calmodulin-dependent protein kinase-phosphorylatable Thr-912 was eliminated, and in the other, pma1-P536L, H+-ATPase was constitutively activated, suggesting that the antagonistic effect was not mediated by a calmodulin-dependent protein kinase and not related to glucose regulation. This was corroborated when the in vitro effect of the calmodulin antagonists on H+-ATPase activity was tested. Purified plasma membranes from glucose-starved or glucose-fermenting cells from both pma1-P890X, another constitutively activated ATPase mutant, and wild-type strains were preincubated with calmidazolium or melittin. In all cases, ATP hydrolysis was inhibited with an IC50 of approximately 1 microM. This inhibition was reversed by calmodulin. Analysis of the calmodulin-binding protein pattern in the plasma-membrane fraction eliminates ATPase as the calmodulin target protein. We conclude that H+-ATPase inhibition by calmodulin antagonists is mediated by an as yet unidentified calmodulin-dependent membrane protein.

  2. Investigating the binding mechanism of novel 6-aminonicotinate-based antagonists with P2Y12 by 3D-QSAR, docking and molecular dynamics simulations.

    PubMed

    Zhou, Shengfu; Fang, Danqing; Tan, Shepei; Lin, Weicong; Wu, Wenjuan; Zheng, Kangcheng

    2017-10-01

    P2Y 12 receptor is an attractive target for the anti-platelet therapies, treating various thrombotic diseases. In this work, a total of 107 6-aminonicotinate-based compounds as potent P2Y 12 antagonists were studies by a molecular modeling study combining three-dimensional quantitative structure-activity relationship (3D-QSAR), molecular docking and molecular dynamics (MD) simulations to explore the decisive binding conformations of these antagonists with P2Y 12 and the structural features for the activity. The optimum CoMFA and CoMSIA models identified satisfactory robustness and good predictive ability, with R 2  = .983, q 2  = .805, [Formula: see text] = .881 for CoMFA model, and R 2  = .935, q 2  = .762, [Formula: see text] = .690 for CoMSIA model, respectively. The probable binding modes of compounds and key amino acid residues were revealed by molecular docking. MD simulations and MM/GBSA free energy calculations were further performed to validate the rationality of docking results and to compare the binding modes of several compound pairs with different activities, and the key residues (Val102, Tyr105, Tyr109, His187, Val190, Asn191, Phe252, His253, Arg256, Tyr259, Thr260, Val279, and Lys280) for the higher activity were pointed out. The binding energy decomposition indicated that the hydrophobic and hydrogen bond interactions play important roles for the binding of compounds to P2Y 12 . We hope these results could be helpful in design of potent and selective P2Y 12 antagonists.

  3. Characterization of high affinity (/sup 3/H)triazolam binding in rat brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Earle, M.; Concas, A.; Yamamura, H.I.

    1986-03-01

    The hypnotic Triazolam (TZ), a triazolo (1,4)-benzodiazepine, displays a short physiological half life and has been used for the treatment of insomnia related to anxiety states. Specific binding properties of this recently tritiated TZ were characterized. The authors major objectives were the direct measurement of the temperature dependence and the GABA effect on (/sup 3/H)TZ binding. Saturation studies showed a shift to lower affinity at 37/sup 0/C (K/sub d/ = 0.25 +/- 0.01 nM at O/sup 0/C; K/sub d/ = 1.46 +/- 0.03 nM at 37/sup 0/C) while the B/sub max/ values remained unchanged (1003 +/- 37 fmoles/mg prot. atmore » 0/sup 0/C and 1001 +/- 43 fmoles/mg prot. at 37/sup 0/C). Inhibition studies showed that (/sup 3/H)TZ binding displayed no GABA shift at 0/sup 0/C(K/sub i/ 0.37 +/- 0.03 nM/- GABA and K/sub i/ = 0.55 +/- 0.13 nM/+GABA) but a nearly two-fold shift was apparent at 37/sup 0/C (K/sub i/ = 2.92 +/- 0.2 nM/-GABA; K/sub i/ = 1.37 +/- 0.11 mM/+GABA). These results were also confirmed by saturation studies in the presence or absence of GABA showing a shift to higher affinity in the presence of GABA only at 37/sup 0/C. In Ro 15-1788/(/sup 3/H)TZ competition experiments the presence of GABA did not affect the inhibitory potency of Ro 15-1788 on (/sup 3/H)TZ binding at both temperatures. In conclusion (/sup 3/H)TZ binding showed an extremely high affinity for benzodiazepine receptors. In contrast to reported literature, the findings suggest that TZ interacts with benzodiazepine receptors similar to other benzodiazepine agonists.« less

  4. Pharmacology and expression analysis of glycine transporter GlyT1 with [3H]-(N-[3-(4'-fluorophenyl)-3-(4'phenylphenoxy)propyl])sarcosine.

    PubMed

    Mallorga, Pierre J; Williams, Jacinta B; Jacobson, Marlene; Marques, Rosemary; Chaudhary, Ashok; Conn, P Jeffrey; Pettibone, Douglas J; Sur, Cyrille

    2003-10-01

    In the central nervous system, re-uptake of the neurotransmitter glycine is mediated by two different glycine transporters, GlyT1 and GlyT2. GlyT2 is found in brainstem and spinal cord, whereas GlyT1 is expressed in rat forebrain regions where it is responsible for most glycine transport activity. Initially, GlyT1 and GlyT2 were pharmacologically differentiated by sarcosine, a weak selective inhibitor of GlyT1. The recently described selective and potent GlyT1 antagonist, NFPS/ALX-5407 provided an important additional tool to further characterize GlyT1 pharmacology. In the present study, we have radiolabeled the racemic form of NFPS (N-[3-(4'-fluorophenyl)-3-(4'-phenylphenoxy)propyl])sarcosine (also known as ALX-5407) to investigate its interaction with GlyT1, as well as define GlyT1 expression in the rat central nervous system. Kinetic studies indicated that [3H]NFPS binds rapidly to rat forebrain membranes and dissociates with a t(1/2) of 28 +/- 5 min. [3H]NFPS labeled a saturable population of sites in rat forebrain with a Kd of 7.1+/-1.3 nM and a B(max) of 3.14 +/- 0.26 pmol/mg protein. Bound [3H]NFPS was fully and potently displaced by unlabeled NFPS, whereas glycine and sarcosine were weak, Na+-dependent inhibitors with IC50 of 1,008 and 190 microM, respectively. Additional saturation experiments indicated that glycine and sarcosine were non-competitive antagonists of [3H]NFPS binding. Functional studies revealed that NFPS was a non-competitive inhibitor of [3H]glycine uptake and does not interact with Na+ and Cl- binding sites of GlyT1. Overall, this work shows that [3H]NFPS is a valuable tool in studying GlyT1 expression and pharmacology and that NFPS interacts with GlyT1 at a site different from the transporter translocation and ion binding sites.

  5. Specific binding of (/sup 3/H-Tyr8)physalaemin to rat submaxillary gland substance P receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahouth, S.W.; Lazaro, D.M.; Brundish, D.E.

    1985-01-01

    (/sup 3/H)Physalaemin ((/sup 3/H)PHY) binds to a single class of noninteracting sites on rat submaxillary gland membranes suspended in high ionic strength media with a KD of 2.7 nM, a Bmax of 240 fmol/mg of protein, and low nonspecific binding. The relative potencies of substance P (SP) and its fragments in competing with (/sup 3/H)PHY correlate with their relative salivation potencies. This indicates that (/sup 3/H)PHY interacts with a physiologically relevant SP receptor. In low ionic strength media, the KD of (/sup 3/H)PHY does not change, but SP and some of its fragments are more potent than PHY in competingmore » with (/sup 3/H) PHY. Computer-assisted analysis of (/sup 3/H)PHY and (/sup 3/H)SP binding in high and low ionic strength media demonstrated that both peptides are equipotent in high ionic strength but that the affinity of SP increases by 70-fold in low ionic strength. The SP fragments that contain a basic residue in positions 1 and/or 3 also display an increased affinity in low ionic strength. These findings document that (/sup 3/H)PHY binding in high ionic strength (mu . 0.6) accurately reflects the pharmacological potencies of agonists on the SP-P receptor. The binding of (/sup 3/H)PHY, like that of (/sup 3/H)SP, increases by the addition of divalent cations (Mg2+ greater than Ca2+ greater than Mn2+). Guanine nucleotides decrease (/sup 3/H)PHY binding by decreasing the Bmax to the same level (160 fmol/mg of protein), in the presence or absence of Mg2+.« less

  6. The antimalarial drugs quinine, chloroquine and mefloquine are antagonists at 5-HT3 receptors

    PubMed Central

    Thompson, A J; Lochner, M; Lummis, S C R

    2007-01-01

    Background and Purpose: The antimalarial compounds quinine, chloroquine and mefloquine affect the electrophysiological properties of Cys-loop receptors and have structural similarities to 5-HT3 receptor antagonists. They may therefore act at 5-HT3 receptors. Experimental Approach: The effects of quinine, chloroquine and mefloquine on electrophysiological and ligand binding properties of 5-HT3A receptors expressed in HEK 293 cells and Xenopus oocytes were examined. The compounds were also docked into models of the binding site. Key Results: 5-HT3 responses were blocked with IC 50 values of 13.4 μM, 11.8 μM and 9.36 μM for quinine, chloroquine and mefloquine. Schild plots indicated quinine and chloroquine behaved competitively with pA 2 values of 4.92 (K B=12.0 μM) and 4.97 (K B=16.4 μM). Mefloquine displayed weakly voltage-dependent, non-competitive inhibition consistent with channel block. On and off rates for quinine and chloroquine indicated a simple bimolecular reaction scheme. Quinine, chloroquine and mefloquine displaced [3H]granisetron with K i values of 15.0, 24.2 and 35.7 μ M. Docking of quinine into a homology model of the 5-HT3 receptor binding site located the tertiary ammonium between W183 and Y234, and the quinoline ring towards the membrane, stabilised by a hydrogen bond with E129. For chloroquine, the quinoline ring was positioned between W183 and Y234 and the tertiary ammonium stabilised by interactions with F226. Conclusions and Implications: This study shows that quinine and chloroquine competitively inhibit 5-HT3 receptors, while mefloquine inhibits predominantly non-competitively. Both quinine and chloroquine can be docked into a receptor binding site model, consistent with their structural homology to 5-HT3 receptor antagonists. PMID:17502851

  7. Synthesis, biological evaluation, and computational studies of Tri- and tetracyclic nitrogen-bridgehead compounds as potent dual-acting AChE inhibitors and hH3 receptor antagonists.

    PubMed

    Darras, Fouad H; Pockes, Steffen; Huang, Guozheng; Wehle, Sarah; Strasser, Andrea; Wittmann, Hans-Joachim; Nimczick, Martin; Sotriffer, Christoph A; Decker, Michael

    2014-03-19

    Combination of AChE inhibiting and histamine H3 receptor antagonizing properties in a single molecule might show synergistic effects to improve cognitive deficits in Alzheimer's disease, since both pharmacological actions are able to enhance cholinergic neurotransmission in the cortex. However, whereas AChE inhibitors prevent hydrolysis of acetylcholine also peripherally, histamine H3 antagonists will raise acetylcholine levels mostly in the brain due to predominant occurrence of the receptor in the central nervous system. In this work, we designed and synthesized two novel classes of tri- and tetracyclic nitrogen-bridgehead compounds acting as dual AChE inhibitors and histamine H3 antagonists by combining the nitrogen-bridgehead moiety of novel AChE inhibitors with a second N-basic fragment based on the piperidinylpropoxy pharmacophore with different spacer lengths. Intensive structure-activity relationships (SARs) with regard to both biological targets led to compound 41 which showed balanced affinities as hAChE inhibitor with IC50 = 33.9 nM, and hH3R antagonism with Ki = 76.2 nM with greater than 200-fold selectivity over the other histamine receptor subtypes. Molecular docking studies were performed to explain the potent AChE inhibition of the target compounds and molecular dynamics studies to explain high affinity at the hH3R.

  8. The pure estrogen receptor antagonist ICI 182,780 promotes a novel interaction of estrogen receptor-alpha with the 3',5'-cyclic adenosine monophosphate response element-binding protein-binding protein/p300 coactivators.

    PubMed

    Jaber, Basem M; Gao, Tong; Huang, Luping; Karmakar, Sudipan; Smith, Carolyn L

    2006-11-01

    Estrogen receptor-alpha (ERalpha) is a member of the nuclear receptor superfamily of ligand-activated transcription factors. Abundant evidence demonstrates that ERalpha agonists promote, whereas antagonists inhibit, receptor binding to coactivators. In this report we demonstrate that binding of the ICI 182,780 (ICI) pure antiestrogen to ERalpha promotes its interaction with the cAMP response element-binding protein-binding protein (CBP)/p300 but not the p160 family of coactivators, demonstrating the specificity of this interaction. Amino acid mutations within the coactivator binding surface of the ERalpha ligand-binding domain revealed that CBP binds to this region of the ICI-liganded receptor. The carboxy-terminal cysteine-histidine rich domain 3 of CBP, rather than its amino-terminal nuclear interacting domain, shown previously to mediate agonist-dependent interactions of CBP with nuclear receptors, is required for binding to ICI-liganded ERalpha. Chromatin immunoprecipitation assays revealed that ICI but not the partial agonist/antagonist 4-hydroxytamoxifen is able to recruit CBP to the pS2 promoter, and this distinguishes ICI from this class of antiestrogens. Chromatin immunoprecipitation assays for pS2 and cytochrome P450 1B1 promoter regions revealed that ICI-dependent recruitment of CBP, but not receptor, to ERalpha targets is gene specific. ICI treatment did not recruit the steroid receptor coactivator 1 to the pS2 promoter, and it failed to induce the expression of this gene. Taken together, these data indicate that recruitment of the CBP coactivator/cointegrator without steroid receptor coactivator 1 to ERalpha is insufficient to promote transcription of ERalpha target genes.

  9. Differential affinities of molindone, metoclopramide and domperidone for classes of [3H]spiroperidol binding sites in rat striatum: evidence for pharmacologically distinct classes of receptors.

    PubMed

    Rosenfeld, M R; Dvorkin, B; Klein, P N; Makman, M H

    1982-03-04

    Rat striatum contains two populations of dopaminergic [3H]spiroperidol binding sites. The two populations are similar in their affinities for chlorpromazine and dopamine. Only one population, that with a somewhat higher affinity for spiroperidol itself, exhibits high affinity for the selective D2 antagonists molindone, metoclopramide and domperidone. Hence, this population may represent D2 receptor sites. The other larger population may represent either a separate class of receptor sites or a different form of D2 receptor sites.

  10. The novel non-imidazole histamine H3 receptor antagonist DL77 reduces voluntary alcohol intake and ethanol-induced conditioned place preference in mice.

    PubMed

    Bahi, Amine; Sadek, Bassem; Nurulain, Syed M; Łażewska, Dorota; Kieć-Kononowicz, Katarzyna

    2015-11-01

    It has become clear that histamine H3 receptors (H3R) have been implicated in modulating ethanol intake and preference in laboratory animals. The novel non-imidazole H3R antagonist DL77 with excellent selectivity profile shows high in-vivo potency as well as in-vitro antagonist affinity with ED50 of 2.1 ± 0.2 mg/kg and pKi=8.08, respectively. In the present study, and applying an unlimited access two-bottle choice procedure, the anti-alcohol effects of the H3R antagonist, DL77 (0, 3, 10 and 30 mg/kg; i.p.), were investigated in adult mice. In this C57BL/6 line, effects of DL77 on voluntary alcohol intake and preference, as well as on total fluid intake were evaluated. Results have shown that DL77, dose-dependently, reduced both ethanol intake and preference. These effects were very selective as both saccharin and quinine, used to control for taste sensitivity, and intakes were not affected following DL77 pre-application. More importantly, systemic administration of DL77 (10 mg/kg) during acquisition inhibited ethanol-induced conditioned-place preference (EtOH-CPP) as measured using an unbiased protocol. The anti-alcohol activity observed for DL77 was abrogated when mice were pretreated with the selective H3R agonist R-(α)-methyl-histamine (RAMH) (10 mg/kg), or with the CNS penetrant H1R antagonist pyrilamine (PYR) (10mg/kg). These results suggest that DL77 has a predominant role in two in vivo effects of ethanol. Therefore, signaling via H3R is essential for ethanol-related consumption and conditioned reward and may represent a novel therapeutic pharmacological target to tackle ethanol abuse and alcoholism. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Ciproxifan, a histamine H3 receptor antagonist, reversibly inhibits monoamine oxidase A and B

    PubMed Central

    Hagenow, S.; Stasiak, A.; Ramsay, R. R.; Stark, H.

    2017-01-01

    Ciproxifan is a well-investigated histamine H3 receptor (H3R) inverse agonist/antagonist, showing an exclusively high species-specific affinity at rodent compared to human H3R. It is well studied as reference compound for H3R in rodent models for neurological diseases connected with neurotransmitter dysregulation, e.g. attention deficit hyperactivity disorder or Alzheimer’s disease. In a screening for potential monoamine oxidase A and B inhibition ciproxifan showed efficacy on both enzyme isoforms. Further characterization of ciproxifan revealed IC50 values in a micromolar concentration range for human and rat monoamine oxidases with slight preference for monoamine oxidase B in both species. The inhibition by ciproxifan was reversible for both human isoforms. Regarding inhibitory potency of ciproxifan on rat brain MAO, these findings should be considered, when using high doses in rat models for neurological diseases. As the H3R and monoamine oxidases are all capable of affecting neurotransmitter modulation in brain, we consider dual targeting ligands as interesting approach for treatment of neurological disorders. Since ciproxifan shows only moderate activity at human targets, further investigations in animals are not of primary interest. On the other hand, it may serve as starting point for the development of dual targeting ligands. PMID:28084411

  12. High Affinity Binding of Epibatidine to Serotonin Type 3 Receptors*

    PubMed Central

    Drisdel, Renaldo C.; Sharp, Douglas; Henderson, Tricia; Hales, Tim G.; Green, William N.

    2008-01-01

    Epibatidine and mecamylamine are ligands used widely in the study of nicotinic acetylcholine receptors (nAChRs) in the central and peripheral nervous systems. In the present study, we find that nicotine blocks only 75% of 125I-epibatidine binding to rat brain membranes, whereas ligands specific for serotonin type 3 receptors (5-HT3Rs) block the remaining 25%. 125I-Epibatidine binds with a high affinity to native 5-HT3Rs of N1E-115 cells and to receptors composed of only 5-HT3A subunits expressed in HEK cells. In these cells, serotonin, the 5-HT3R-specific antagonist MDL72222, and the 5-HT3R agonist chlorophenylbiguanide readily competed with 125I-epibatidine binding to 5-HT3Rs. Nicotine was a poor competitor for 125I-epibatidine binding to 5-HT3Rs. However, the noncompetitive nAChR antagonist mecamylamine acted as a potent competitive inhibitor of 125I-epibatidine binding to 5-HT3Rs. Epibatidine inhibited serotonin-induced currents mediated by endogenous 5-HT3Rs in neuroblastoma cell lines and 5-HT3ARs expressed in HEK cells in a competitive manner. Our results demonstrate that 5-HT3Rs are previously uncharacterized high affinity epibatidine binding sites in the brain and indicate that epibatidine and mecamylamine act as 5-HT3R antagonists. Previous studies that depended on epibatidine and mecamylamine as nAChR-specific ligands, in particular studies of analgesic properties of epibatidine, may need to be reinterpreted with respect to the potential role of 5-HT3Rs. PMID:17702741

  13. Autoradiographic localization of sigma receptor binding sites in guinea pig and rat central nervous system with (+)3H-3-(3-hydroxyphenyl)-N-(1-propyl)piperidine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gundlach, A.L.; Largent, B.L.; Snyder, S.H.

    1986-06-01

    (+)3H-3-PPP ((+)3H-3-(3-Hydroxyphenyl)-N-(1-propyl)-piperidine) binds with high affinity to brain membranes with a pharmacological profile consistent with that of sigma receptors. The distribution of (+)3H-3-PPP binding sites in brain and spinal cord of both guinea pig and rat has been determined by in vitro autoradiography with binding densities quantitated by computer-assisted densitometry. (+)3H-3-PPP binding to slide-mounted brain sections is saturable and displays high affinity and a pharmacological specificity very similar to sites labeled in homogenates. (+)3H-3-PPP binding sites are heterogeneously distributed. Highest concentrations of binding sites occur in spinal cord, particularly the ventral horn and dorsal root ganglia; the pons-medulla, associated withmore » the cranial nerve and pontine nuclei and throughout the brain stem reticular formation; the cerebellum, over the Purkinje cell layer; the midbrain, particularly the central gray and red nucleus; and hippocampus, over the pyramidal cell layer. Lowest levels are seen in the basal ganglia and parts of the thalamus, while all other areas, including hypothalamus and cerebral cortex, exhibit moderate grain densities. Quinolinic acid-induced lesions of the hippocampus indicate that (+)3H-3-PPP labels hippocampal pyramidal cells and granule cells in the dentate gyrus. Intrastriatal injection of ibotenic acid dramatically reduces (+)3H-3-PPP binding in this area, while injection of 6-hydroxydopamine produces a relatively slight decrease. The distribution of (+)3H-3-PPP binding sites does not correlate with the receptor distribution of any recognized neurotransmitter or neuropeptide, including dopamine. However, there is a notable similarity between the distribution of (+)3H-3-PPP sites and high-affinity binding sites for psychotomimetic opioids, such as the benzomorphan (+)SKF 10,047.« less

  14. Distribution and properties of GABA(B) antagonist [3H]CGP 62349 binding in the rhesus monkey thalamus and basal ganglia and the influence of lesions in the reticular thalamic nucleus.

    PubMed

    Ambardekar, A V; Ilinsky, I A; Forestl, W; Bowery, N G; Kultas-Ilinsky, K

    1999-01-01

    GABA(B) receptors are believed to be associated with the efferents of the nucleus reticularis thalami, which is implicated in the regulation of activity in the thalamocortical-corticothalamic circuit and plays a role in absence seizures. Yet, the distribution of GABA(B) receptors in the thalamus has only been studied in the rat, and there is no comparable information in primates. The potent GABA(B) receptor antagonist [3H]CGP 62349 was used to study the distribution and binding properties of the receptor in control monkeys and those with small ibotenic acid lesions in the anterodorsal segment of the nucleus reticularis thalami. Eight-micrometer-thick cryostat sections of the fresh frozen brains were incubated in the presence of varying concentrations of the ligand. Autoradiographs were analysed using a quantitative image analysis technique, and binding parameters were calculated for select thalamic nuclei as well as basal ganglia structures present in the same sections. The overall number of GABA(B) binding sites in the monkey thalamus and basal ganglia was several-fold higher than previously reported values for the rat. In the thalamus, the receptors were distributed rather uniformly and the binding densities and affinities were high (Bmax range of 245.5-437.9 fmol/ mg of tissue, Kd range of 0.136-0.604 nM). In the basal ganglia, the number of binding sites and the affinities were lower (Bmax range of 51.1-244.2 fmol/mg of tissue; K(d) range of 0.416-1.394 nM), and the differences between nuclei were more pronounced, with striatum and substantia nigra pars compacta displaying the highest binding densities. Seven days post-lesion, a 20-30% decrease in Bmax values (P < 0.05) was found in the nuclei receiving input from the lesioned nucleus reticularis thalami sector (the mediodorsal nucleus and densicellular and magnocellular parts of the ventral anterior nucleus) without changes in affinity. No significant changes were detected in any other structures. The results

  15. Reversibly Switchable, pH-Dependent Peptide Ligand Binding via 3,5-Diiodotyrosine Substitutions.

    PubMed

    Ngambenjawong, Chayanon; Sylvestre, Meilyn; Gustafson, Heather H; Pineda, Julio Marco B; Pun, Suzie H

    2018-04-20

    Cell type-specific targeting ligands utilized in drug delivery applications typically recognize receptors that are overexpressed on the cells of interest. Nonetheless, these receptors may also be expressed, to varying extents, on off-target cells, contributing to unintended side effects. For the selectivity profile of targeting ligands in cancer therapy to be improved, stimuli-responsive masking of these ligands with acid-, redox-, or enzyme-cleavable molecules has been reported, whereby the targeting ligands are exposed in specific environments, e.g., acidic tumor hypoxia. One possible drawback of these systems lies in their one-time, permanent trigger, which enables the "demasked" ligands to bind off-target cells if released back into the systemic circulation. A promising strategy to address the aforementioned problem is to design ligands that show selective binding based on ionization state, which may be microenvironment-dependent. In this study, we report a systematic strategy to engineer low pH-selective targeting peptides using an M2 macrophage-targeting peptide (M2pep) as an example. 3,5-Diiodotyrosine mutagenesis into native tyrosine residues of M2pep confers pH-dependent binding behavior specific to acidic environment (pH 6) when the amino acid is protonated into the native tyrosine-like state. At physiological pH of 7.4, the hydroxyl group of 3,5-diiodotyrosine on the peptide is deprotonated leading to interruption of the peptide native binding property. Our engineered pH-responsive M2pep (Ac-Y-Î-Î) binds target M2 macrophages more selectively at pH 6 than at pH 7.4. In addition, 3,5-diiodotyrosine substitutions also improve serum stability of the peptide. Finally, we demonstrate pH-dependent reversibility in target binding via a postbinding peptide elution study. The strategy presented here should be applicable for engineering pH-dependent functionality of other targeting peptides with potential applications in physiology-dependent in vivo targeting

  16. ( sup 3 H)-DOB(4-bromo-2,5-dimethoxyphenylisopropylamine) and ( sup 3 H) ketanserin label two affinity states of the cloned human 5-hydroxytryptamine2 receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branchek, T.; Adham, N.; Macchi, M.

    1990-11-01

    The binding properties of the 5-hydroxytryptamine2 (5-HT2) receptor have been the subject of much interest and debate in recent years. The hallucinogenic amphetamine derivative 4-bromo-2,5-dimethoxyphenylisopropylamine (DOB) has been shown to bind to a small number of binding sites with properties very similar to (3H)ketanserin-labeled 5-HT2 receptors, but with much higher agonist affinities. Some researchers have interpreted this as evidence for the existence of a new subtype of 5-HT2 receptor (termed 5-HT2A), whereas others have interpreted these data as indicative of agonist high affinity and agonist low affinity states for the 5-HT2 receptor. In this investigation, a cDNA clone encoding themore » serotonin 5-HT2 receptor was transiently transfected into monkey kidney Cos-7 cells and stably transfected into mouse fibroblast L-M(TK-) cells. In both systems, expression of this single serotonin receptor cDNA led to the appearance of both (3H)DOB and (3H)ketanserin binding sites with properties that matched their binding characteristics in mammalian brain homogenates. Addition of guanosine 5'-(beta, gamma-imido) triphosphate (Gpp(NH)p) to this system caused a rightward shift and steepening of agonist competition curves for (3H) ketanserin binding, converting a two-site binding curve to a single low affinity binding state. Gpp(NH)p addition also caused a 50% decrease in the number of high affinity (3H)DOB binding sites, with no change in the dissociation constant of the remaining high affinity states. These data on a single human 5-HT2 receptor cDNA expressed in two different transfection host cells indicate that (3H)DOB and (3H)ketanserin binding reside on the same gene product, apparently interacting with agonist and antagonist conformations of a single human 5-HT2 receptor protein.« less

  17. Binding of (/sup 3/H)forskolin to platelet membranes and solubilized proteins from bovine brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, C.A.; Seamon, K.B.

    1986-05-01

    (/sup 3/H)Forskolin ((/sup 3/H)FSK) bound to platelet membranes with a Kd of 20 nM and a Bmax of 125 fmol/mg protein. The Bmax was increased to 400 fmol/mg protein in the presence of GppNHp (or NaF) and MgCl/sub 2/ with no change in Kd. PGE/sub 1/ decreased the EC50 of GppNHp to increase the Bmax for (/sup 3/H)FSK binding from 600 nM to 35 nM. In contrast, PGE/sub 1/ had no effect on the EC50 of NaF to increase (/sup 3/H)FSK binding. (/sup 3/H)FSK binding increased slowly over 60 min when forskolin and GppNHp were added to membranes simultaneously atmore » 20/sup 0/C. Preincubation of membranes with GppNHp at 20/sup 5/C also caused a linear increase in adenylate cyclase specific activity over 60 minutes. (/sup 3/H)FSK bound to solubilized protein from bovine brain membrane with a Kd of 22 nM. GppNHp increased the number of binding sites in solubilized proteins only if membranes were not preincubated with GppNHp prior to solubilization. In conclusion the number of binding sites for (/sup 3/H)FSK is increased by agents that activate adenylate cyclase through the Ns protein. These sites appear to be associated with an activated complex of the Ns protein and adenylate cyclase.« less

  18. Characterization of [3H] oxymorphone binding sites in mouse brain: Quantitative autoradiography in opioid receptor knockout mice.

    PubMed

    Yoo, Ji Hoon; Borsodi, Anna; Tóth, Géza; Benyhe, Sándor; Gaspar, Robert; Matifas, Audrey; Kieffer, Brigitte L; Metaxas, Athanasios; Kitchen, Ian; Bailey, Alexis

    2017-03-16

    Oxymorphone, one of oxycodone's metabolic products, is a potent opioid receptor agonist which is thought to contribute to the analgesic effect of its parent compound and may have high potential abuse liability. Nonetheless, the in vivo pharmacological binding profile of this drug is still unclear. This study uses mice lacking mu (MOP), kappa (KOP) or delta (DOP) opioid receptors as well as mice lacking all three opioid receptors to provide full characterisation of oxymorphone binding sites in the brain. Saturation binding studies using [ 3 H]oxymorphone revealed high affinity binding sites in mouse brain displaying Kd of 1.7nM and Bmax of 147fmol/mg. Furthermore, we performed quantitative autoradiography binding studies using [ 3 H]oxymorphone in mouse brain. The distribution of [ 3 H]oxymorphone binding sites was found to be similar to the selective MOP agonist [ 3 H]DAMGO in the mouse brain. [ 3 H]Oxymorphone binding was completely abolished across the majority of the brain regions in mice lacking MOP as well as in mice lacking all three opioid receptors. DOP and KOP knockout mice retained [ 3 H]oxymorphone binding sites suggesting oxymorphone may not target DOP or KOP. These results confirm that the MOP, and not the DOP or the KOP is the main high affinity binding target for oxymorphone. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. ( sup 3 H)QNB binding and contraction of rabbit colonic smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ringer, M.J.; Hyman, P.E.; Kao, H.W.

    The authors used radioligand binding and studies of cell contraction to characterize muscarinic receptors on dispersed smooth muscle cells from rabbit proximal and distal colon. Cells obtained after serial incubations in collagenase were used to measure binding of tritiated quinuclidinyl benzilate (({sup 3}H)QNB). At 37{degree}C, specific ({sup 3}H)QNB binding was saturable and linearly related to cell number. Nonlinear regression analysis was used to determine the affinity of ({sup 3}H)QNB for its receptor. The IC{sub 50} for the muscarinic agonists bethanechol and oxotremorine were 80 and 0.57 {mu}M, respectively. Hill coefficients were 0.67 for both, suggesting more complex interaction involving receptorsmore » of different affinities. In studies of cell contraction, bethanechol stimulated a dose-dependent decrease in cell length with half the maximal contraction occurring at 100 pM. These results suggest that (1) contraction is mediated by binding of bethanechol to M{sub 2}-muscarinic receptors and that (2) there are a large number of spare receptors in colonic smooth muscle.« less

  20. Effects of an orally active vasopressin V1 receptor antagonist.

    PubMed

    Burrell, L M; Phillips, P A; Stephenson, J; Risvanis, J; Hutchins, A M; Johnston, C I

    1993-05-01

    1. This paper reports on the in vitro and in vivo characteristics of a non-peptide vasopressin V1 receptor antagonist 1-(1-[4-(3-acetylaminopropoxy)benzoyl]-4-piperidyl)-3,4-dihydro-2( 1H)- quinolinone (OPC-21268). 2. OPC-21268 caused a concentration-dependent displacement of the selective V1 receptor antagonist radioligand, [125I]-[d(CH2)5, sarcosine7]AVP from vasopressin V1 receptors in rat liver and kidney membranes, inhibitory concentration of 50% (IC50) 4 x 10(-8), 0.3 mol/L liver and 1.5 x 10(-8), 0.2 mol/L kidney. OPC-21268 had little effect on the selective V2 antagonist radioligand [3H]desGly-NH2(9)-d(CH2)5[D-Ileu2, Ileu4]AVP binding to V2 receptors in renal membranes (IC50 > 10(-4) mol/L). 3. After oral administration to rats, OPC-21268 was an effective V1 antagonist to both liver and kidney V1 receptors, in a dose-dependent manner. 4. These studies confirm that OPC-21268 is a potent non-peptide, orally effective V1 vasopressin receptor antagonist.

  1. Novel long‐acting antagonists of muscarinic ACh receptors

    PubMed Central

    Randáková, Alena; Rudajev, Vladimír; Doležal, Vladimír; Boulos, John

    2018-01-01

    Background and Purpose The aim of this study was to develop potent and long‐acting antagonists of muscarinic ACh receptors. The 4‐hexyloxy and 4‐butyloxy derivatives of 1‐[2‐(4‐oxidobenzoyloxy)ethyl]‐1,2,3,6‐tetrahydropyridin‐1‐ium were synthesized and tested for biological activity. Antagonists with long‐residence time at receptors are therapeutic targets for the treatment of several neurological and psychiatric human diseases. Their long‐acting effects allow for reduced daily doses and adverse effects. Experimental Approach The binding and antagonism of functional responses to the agonist carbachol mediated by 4‐hexyloxy compounds were investigated in CHO cells expressing individual subtypes of muscarinic receptors and compared with 4‐butyloxy analogues. Key Results The 4‐hexyloxy derivatives were found to bind muscarinic receptors with micromolar affinity and antagonized the functional response to carbachol with a potency ranging from 30 nM at M1 to 4 μM at M3 receptors. Under washing conditions to reverse antagonism, the half‐life of their antagonistic action ranged from 1.7 h at M2 to 5 h at M5 receptors. Conclusions and Implications The 4‐hexyloxy derivatives were found to be potent long‐acting M1‐preferring antagonists. In view of current literature, M1‐selective antagonists may have therapeutic potential for striatal cholinergic dystonia, delaying epileptic seizure after organophosphate intoxication or relieving depression. These compounds may also serve as a tool for research into cognitive deficits. PMID:29498041

  2. The H3 Antagonist, Ciproxifan, Alleviates the Memory Impairment but Enhances the Motor Effects of MK-801 (Dizocilpine) in Rats.

    PubMed Central

    Bardgett, Mark E.; Points, Megan; Kleier, Jennifer; Blankenship, Meredith; Griffith, Molly S.

    2010-01-01

    Summary Antagonists of H3-type histamine receptors exhibit cognitive-enhancing properties in various memory paradigms as well as evidence of antipsychotic activity in normal animals. The present study determined if a prototypical H3 antagonist, ciproxifan, could reverse the behavioral effects of MK-801, a drug used in animals to mimic the hypoglutamatergic state suspected to exist in schizophrenia. Four behaviors were chosen for study, locomotor activity, ataxia, prepulse inhibition (PPI), and delayed spatial alternation, since their modification by dizocilpine (MK-801) has been well characterized. Adult male Long-Evans rats were tested after receiving a subcutaneous injection of ciproxifan or vehicle followed twenty minutes later by a subcutaneous injection of MK-801 or vehicle. Three doses of MK-801 (0.05, 0.1, & 0.3 mg/kg) increased locomotor activity. Each dose of ciproxifan (1.0 & 3.0 mg/kg) enhanced the effect of the moderate dose of MK-801, but suppressed the effect of the high dose. Ciproxifan (3.0 mg/kg) enhanced the effects of MK-801 (0.1 & 0.3 mg/kg) on fine movements and ataxia. Deficits in PPI were observed after treatment with MK-801 (0.05 & 0.1 mg/kg), but ciproxifan did not alter these effects. Delayed spatial alternation was significantly impaired by MK-801 (0.1 mg/kg) at a longer delay, and ciproxifan (3.0 mg/kg) alleviated this impairment. These results indicate that some H3 antagonists can alleviate the impact of NMDA receptor hypofunction on some forms of memory, but may exacerbate its effect on other behaviors. PMID:20621107

  3. The 3D Structure of the Binding Pocket of the Human Oxytocin Receptor for Benzoxazine Antagonists, Determined by Molecular Docking, Scoring Functions and 3D-QSAR Methods

    NASA Astrophysics Data System (ADS)

    Jójárt, Balázs; Martinek, Tamás A.; Márki, Árpád

    2005-05-01

    Molecular docking and 3D-QSAR studies were performed to determine the binding mode for a series of benzoxazine oxytocin antagonists taken from the literature. Structural hypotheses were generated by docking the most active molecule to the rigid receptor by means of AutoDock 3.05. The cluster analysis yielded seven possible binding conformations. These structures were refined by using constrained simulated annealing, and the further ligands were aligned in the refined receptor by molecular docking. A good correlation was found between the estimated Δ G bind and the p K i values for complex F. The Connolly-surface analysis, CoMFA and CoMSIA models q CoMFA 2 = 0.653, q CoMSA 2 = 0.630 and r pred,CoMFA 2 = 0.852 , r pred,CoMSIA 2 = 0.815) confirmed the scoring function results. The structural features of the receptor-ligand complex and the CoMFA and CoMSIA fields are in closely connected. These results suggest that receptor-ligand complex F is the most likely binding hypothesis for the studied benzoxazine analogs.

  4. H3K9me2/3 Binding of the MBT Domain Protein LIN-61 Is Essential for Caenorhabditis elegans Vulva Development

    PubMed Central

    Koester-Eiserfunke, Nora; Fischle, Wolfgang

    2011-01-01

    MBT domain proteins are involved in developmental processes and tumorigenesis. In vitro binding and mutagenesis studies have shown that individual MBT domains within clustered MBT repeat regions bind mono- and dimethylated histone lysine residues with little to no sequence specificity but discriminate against the tri- and unmethylated states. However, the exact function of promiscuous histone methyl-lysine binding in the biology of MBT domain proteins has not been elucidated. Here, we show that the Caenorhabditis elegans four MBT domain protein LIN-61, in contrast to other MBT repeat factors, specifically interacts with histone H3 when methylated on lysine 9, displaying a strong preference for di- and trimethylated states (H3K9me2/3). Although the fourth MBT repeat is implicated in this interaction, H3K9me2/3 binding minimally requires MBT repeats two to four. Further, mutagenesis of residues conserved with other methyl-lysine binding MBT regions in the fourth MBT repeat does not abolish interaction, implicating a distinct binding mode. In vivo, H3K9me2/3 interaction of LIN-61 is required for C. elegans vulva development within the synMuvB pathway. Mutant LIN-61 proteins deficient in H3K9me2/3 binding fail to rescue lin-61 synMuvB function. Also, previously identified point mutant synMuvB alleles are deficient in H3K9me2/3 interaction although these target residues that are outside of the fourth MBT repeat. Interestingly, lin-61 genetically interacts with two other synMuvB genes, hpl-2, an HP1 homologous H3K9me2/3 binding factor, and met-2, a SETDB1 homologous H3K9 methyl transferase (H3K9MT), in determining C. elegans vulva development and fertility. Besides identifying the first sequence specific and di-/trimethylation binding MBT domain protein, our studies imply complex multi-domain regulation of ligand interaction of MBT domains. Our results also introduce a mechanistic link between LIN-61 function and biology, and they establish interplay of the H3K9me2/3

  5. Characterization of (/sup 3/H)forskolin binding sites in the iris-ciliary body of the albino rabbit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldman, M.E.; Mallorga, P.; Pettibone, D.J.

    1988-01-01

    (/sup 3/H)forskolin binding sites were identified using membranes prepared from the iris-ciliary body of adult, albino rabbits. Scatchard analysis of saturation binding experiments demonstrated that (/sup 3/H)forskolin bound to a single population of high affinity sites. The K/sub d/ and B/sub max/ values were 8.7 +- 0.9 nM and 119.0 +- 30.9 fmolmg prot. using membranes prepared from frozen tissue and 17.0 +- 6.2 nM and 184.4 +- 47.2 fmolmg prot. using fresh tissue. The binding of (/sup 3/H)forskolin was magnesium-dependent. The B/sub max/ was enhanced by sodium fluoride and Gpp(NH)p, a nonhydrolyzable guanine nucleotide analog. Forskolin was the mostmore » potent inhibitor of (/sup 3/H)forskolin binding; two commercially-available analogs were weaker inhibitors. In an adenylate cyclase assay, there was the same rank order of potency to enhance enzyme activity. Based upon binding affinities, magnesium-dependence, sensitivity to sodium fluoride and Gpp(NH)p, rank order of potencies of analogs and correlation of binding with adenylate cyclase activity, these studies suggest that the (/sup 3/H)forskolin binding site in the iris-ciliary body is similar to the binding site in other tissues« less

  6. High-affinity 3H-substance P binding to longitudinal muscle membranes of the guinea pig small intestine.

    PubMed

    Buck, S H; Maurin, Y; Burks, T F; Yamamura, H I

    1984-01-30

    The binding of 3H-substance P (3H-SP) to longitudinal muscle membranes of the guinea pig small intestine has been characterized. The binding of 3H-SP exhibited a high affinity (Kd = 0.5nM). It was saturable (Bmax = 2 fmoles/mg tissue), reversible, and temperature-dependent. Kinetic studies and competition of 3H-SP binding by unlabeled SP yielded Kd and Ki values, respectively, which were in good agreement with the Kd calculated from saturation studies. The binding of 3H-SP appeared to be dependent on the presence of divalent cations in the incubation buffer. It was displaced by SP and various analogs and fragments in the rank order of SP greater than SP-(2-11) = SP-(3-11) greater than Nle11- SP = physalaemin greater than SP-(4-11) greater than SP-(5-11) greater than eledoisin much greater than SP-(7-11). Our results indicate that 3H-SP binds in longitudinal muscle of the guinea pig small intestine to a biologically relevant receptor which in many respects resembles the SP receptor characterized in the brain and the salivary gland of the rat.

  7. The H3 antagonist, ciproxifan, alleviates the memory impairment but enhances the motor effects of MK-801 (dizocilpine) in rats.

    PubMed

    Bardgett, Mark E; Points, Megan; Kleier, Jennifer; Blankenship, Meredith; Griffith, Molly S

    2010-11-01

    Antagonists of H(3)-type histamine receptors exhibit cognitive-enhancing properties in various memory paradigms as well as evidence of antipsychotic activity in normal animals. The present study determined if a prototypical H(3) antagonist, ciproxifan, could reverse the behavioral effects of MK-801, a drug used in animals to mimic the hypoglutamatergic state suspected to exist in schizophrenia. Four behaviors were chosen for study, locomotor activity, ataxia, prepulse inhibition (PPI), and delayed spatial alternation, since their modification by dizocilpine (MK-801) has been well characterized. Adult male Long-Evans rats were tested after receiving a subcutaneous injection of ciproxifan or vehicle followed 20 min later by a subcutaneous injection of MK-801 or vehicle. Three doses of MK-801 (0.05, 0.1, & 0.3 mg/kg) increased locomotor activity. Each dose of ciproxifan (1.0 & 3.0 mg/kg) enhanced the effect of the moderate dose of MK-801, but suppressed the effect of the high dose. Ciproxifan (3.0 mg/kg) enhanced the effects of MK-801 (0.1 & 0.3 mg/kg) on fine movements and ataxia. Deficits in PPI were observed after treatment with MK-801 (0.05 & 0.1 mg/kg), but ciproxifan did not alter these effects. Delayed spatial alternation was significantly impaired by MK-801 (0.1 mg/kg) at a longer delay, and ciproxifan (3.0 mg/kg) alleviated this impairment. These results indicate that some H(3) antagonists can alleviate the impact of NMDA receptor hypofunction on some forms of memory, but may exacerbate its effect on other behaviors. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Harmaline competitively inhibits [3H]MK-801 binding to the NMDA receptor in rabbit brain.

    PubMed

    Du, W; Aloyo, V J; Harvey, J A

    1997-10-03

    Harmaline, a beta-carboline derivative, is known to produce tremor through a direct activation of cells in the inferior olive. However, the receptor(s) through which harmaline acts remains unknown. It was recently reported that the tremorogenic actions of harmaline could be blocked by the noncompetitive NMDA channel blocker, MK-801. This study examined whether the blockade of harmaline's action, in the rabbit, by MK-801 was due to a pharmacological antagonism at the MK-801 binding site. This was accomplished by measurement of [3H]MK-801 binding in membrane fractions derived from tissue containing the inferior olivary nucleus and from cerebral cortex. Harmaline completely displaced saturable [3H]MK-801 binding in both the inferior olive and cortex with apparent IC50 values of 60 and 170 microM, respectively. These IC50 values are consistent with the high doses of harmaline required to produce tremor, e.g., 10-30 mg/kg. Non-linear curve fitting analysis of [3H]MK-801 saturation experiments indicated that [3H]MK-801 bound to a single site and that harmaline's displacement of [3H]MK-801 binding to the NMDA receptor was competitive as indicated by a shift in Kd but not in Bmax. In addition, a Schild plot gave a slope that was not significantly different from 1 indicating that harmaline was producing a displacement of [3H]MK-801 from its binding site within the NMDA cation channel and not through an action at the glutamate or other allosteric sites on the NMDA receptor. These findings provide in vitro evidence that the competitive blockade of harmaline-induced tremor by MK-801 occurs within the calcium channel coupled to the NMDA receptor. Our hypothesis is that harmaline produces tremor by acting as an inverse agonist at the MK-801 binding site and thus opening the cation channel.

  9. Ropizine concurrently enhances and inhibits ( sup 3 H) dextromethorpan binding to different structures of the guinea pig brain: Autoradiographic evidence for multiple binding sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Canoll, P.D.; Smith, P.R.; and Musacchio, J.M.

    1990-01-01

    Ropizine produces a simultaneous enhancement and inhibition of ({sup 3}H) dextromethorphan (DM) high-affinity binding to different areas of the guinea pig brain. These results imply that there are two distinct types of high-affinity ({sup 3}H)DM binding sites, which are present in variable proportions in different brain structures. The ropizine-enhances ({sup 3}H)DM binding type was preferentially inhibited by (+)-pentazocine. This is consistent with the presumption that the (+)-pentazocine-sensitive site is identical with the common site for DM and 3-(-3-Hydroxphenyl)-N-(1-propyl)piperidine ((+)-3-PPP). The second binding type, which is inhibited by ropizine and is not so sensitive to (+){minus} pentazocine, has not been fullymore » characterized. This study demonstrates that the biphasic effects to ropizine are due, at least in part, to the effects of ropizine on two different types of ({sup 3}H)DM binding sites. However, this study does not rule out that the common DM/(+)-3-PPP site also might be inhibited by higher concentrations of ropizine.« less

  10. Down-regulation of sup 3 H-imipramine binding sites in rat cerebral cortex prenatal exposure to antidepressants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montero, D.; de Ceballos, M.L.; Del Rio, J.

    1990-01-01

    Several antidepressant drugs were given to pregnant rats in the last 15 days of gestation and {sup 3}H-imipramine binding ({sup 3}H-IMI) was subsequently measured in the cerebral cortex of the offspring. The selective serotonin (5-HT) uptake blockers chlorimipramine and fluoxetine as well as the selective monoamine oxidase (MAO) inhibitors clorgyline and deprenyl induced, after prenatal exposure, a down-regulation of {sup 3}H-IMI binding sites at postnatal day 25. The density of these binding sites was still reduced at postnatal day 90 in rats exposed in utero to the MAO inhibitors. The antidepressants desipramine and nomifensine were ineffective in this respect. Aftermore » chronic treatment of adult animals, only chlorimipramine was able to down-regulate the {sup 3}H-IMI binding sites. Consequently, prenatal exposure of rats to different antidepressant drugs affecting predominantly the 5-HT systems induces more marked and long-lasting effects on cortical {sup 3}H-IMI binding sites. The results suggest that the developing brain is more susceptible to the actions of antidepressants.« less

  11. Characterization and localization of /sup 3/H-arginine8-vasopressin binding to rat kidney and brain tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorsa, D.M.; Majumdar, L.A.; Petracca, F.M.

    Anatomic, behavioral and pharmacologic evidence suggests that arginine8-vasopressin (AVP) serves as a CNS neurotransmitter or neuromodulator. AVP binding to membrane and tissue slice preparations from brain and kidney was characterized, and the anatomical distribution of these binding sites was examined. Conditions for the binding assay were optimized using kidney medullary tissue. Binding of /sup 3/H-AVP (S.A. . 30-51 Ci/mmol, NEN) to brain and kidney membranes and tissue slices was saturable, temperature dependent, linearly related to protein concentration (or number of tissue slices), reversible, and specific since the ability of cold AVP to displace /sup 3/H-AVP from binding was greater thanmore » oxytocin and other related peptide fragments. Autoradiographic localization of /sup 3/H-AVP binding was restricted to kidney medullary tissue. In brain tissue, /sup 3/H-AVP binding was found to occur in concentrated foci. Brainstem areas such as the nucleus tractus solitarius (NTS) showed a high density of AVP binding sites. Since local injections of AVP into the NTS have been shown to influence blood pressure, the present study presents the first anatomical evidence for the presence of AVP specific binding sites which might mediate this effect.« less

  12. Glucostatic regulation of (+)-(/sup 3/H)amphetamine binding in the hypothalamus: correlation with Na/sup +/, K/sup +/-ATPase activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angel, I.; Hauger, R.L.; Luu, M.D.

    1985-09-01

    Preincubation of rat hypothalamic slices in glucose-free Krebs-Ringer buffer (37/sup 0/C) resulted in a time-dependent decrease in specific (+)-(/sup 3/H)amphetamine binding in the crude synaptosomal fraction prepared from these slices. The addition of D-glucose resulted in a dose- and time-dependent stimulation of (+)-(/sup 3/H)amphetamine binding, whereas incubations with L-glucose, 2-deoxy-D-glucose, or 3-O-methyl-D-glucose failed to increase the number of (+)-(/sup 3/H)amphetamine binding sites. Ouabain potently inhibited the glucose-induced stimulation of (+)-(/sup 3/H)amphetamine binding, suggesting the involvement of Na/sup +/, K/sup +/-ATPase. Preincubation of hypothalamic slices with glucose also resulted in an increase in Na/sup +/,K/sup +/-ATPase activity and the number ofmore » specific high-affinity binding sites for (/sup 3/H)ouabain, and a good correlation was observed between the glucose-stimulated increase in (+)-(/sup 3/H)amphetamine and (/sup 3/H)ouabain binding. These data suggest that the (+)-(/sup 3/H)amphetamine binding site in hypothalamus, previously linked to the anorectic actions of various phenylethylamines, is regulated both in vitro and in vivo by physiological concentrations of glucose. Glucose and amphetamine appear to interact at common sites in the hypothalamus to stimulate Na/sup +/,K/sup +/-ATPase activity, and the latter may be involved in the glucostatic regulation of appetite.« less

  13. Prenatal ethanol exposure decreases hippocampal /sup 3/H-vinylidene kainic acid binding in 45-day-old rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farr, K.L.; Montano, C.Y.; Paxton, L.L.

    1988-11-01

    The effect of prenatal ethanol exposure on the kainate-sensitive subtype of glutamate receptor binding sites was studied using in vitro /sup 3/H-vinylidene kainic acid (VKA) autoradiography. Pregnant Sprague-Dawley rats were fed a liquid diet containing either 3.35% or 6.7% ethanol throughout gestation. Pair-fed dams received isocalorically matched liquid diets and a lab chow ad lib group served as control for paired feeding. At 45 days of age, the offspring were sacrificed and their brains analyzed for specific /sup 3/H-VKA binding. Compared to pair-fed controls, specific /sup 3/H-VKA binding was reduced by 13% to 32% in dorsal and ventral hippocampal CA3more » stratum lucidum, entorhinal cortex and cerebellum of 45-day-old rats whose mothers consumed either 3.35% or 6.7% ethanol diets. The binding site reductions were statistically significant only in the ventral hippocampal formation and entorhinal cortex of the 3.35% ethanol diet group rats. Saturation of binding studies in the ventral hippocampal formation of 3.35% ethanol rats indicated that the decrease in specific /sup 3/H-VKA binding was due to a decrease in the total number of binding sites. Given the excitatory effect of kainic acid on the spontaneous firing rate of hippocampal CA3 pyramidal neurons, the reduction of kainate-sensitive glutamate binding in this region is consistent with the electrophysiological observation of decreased spontaneous activity of CA3 pyramidal neurons in fetal alcohol rats.« less

  14. Multiple sup 3 H-oxytocin binding sites in rat myometrial plasma membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crankshaw, D.; Gaspar, V.; Pliska, V.

    1990-01-01

    The affinity spectrum method has been used to analyse binding isotherms for {sup 3}H-oxytocin to rat myometrial plasma membranes. Three populations of binding sites with dissociation constants (Kd) of 0.6-1.5 x 10(-9), 0.4-1.0 x 10(-7) and 7 x 10(-6) mol/l were identified and their existence verified by cluster analysis based on similarities between Kd, binding capacity and Hill coefficient. When experimental values were compared to theoretical curves constructed using the estimated binding parameters, good fits were obtained. Binding parameters obtained by this method were not influenced by the presence of GTP gamma S (guanosine-5'-O-3-thiotriphosphate) in the incubation medium. The bindingmore » parameters agree reasonably well with those found in uterine cells, they support the existence of a medium affinity site and may allow for an explanation of some of the discrepancies between binding and response in this system.« less

  15. The diversity of H3 loops determines the antigen-binding tendencies of antibody CDR loops.

    PubMed

    Tsuchiya, Yuko; Mizuguchi, Kenji

    2016-04-01

    Of the complementarity-determining regions (CDRs) of antibodies, H3 loops, with varying amino acid sequences and loop lengths, adopt particularly diverse loop conformations. The diversity of H3 conformations produces an array of antigen recognition patterns involving all the CDRs, in which the residue positions actually in contact with the antigen vary considerably. Therefore, for a deeper understanding of antigen recognition, it is necessary to relate the sequence and structural properties of each residue position in each CDR loop to its ability to bind antigens. In this study, we proposed a new method for characterizing the structural features of the CDR loops and obtained the antigen-binding ability of each residue position in each CDR loop. This analysis led to a simple set of rules for identifying probable antigen-binding residues. We also found that the diversity of H3 loop lengths and conformations affects the antigen-binding tendencies of all the CDR loops. © 2016 The Protein Society.

  16. Cocaine Disrupts Histamine H3 Receptor Modulation of Dopamine D1 Receptor Signaling: σ1-D1-H3 Receptor Complexes as Key Targets for Reducing Cocaine's Effects

    PubMed Central

    Moreno, Estefanía; Moreno-Delgado, David; Navarro, Gemma; Hoffmann, Hanne M.; Fuentes, Silvia; Rosell-Vilar, Santi; Gasperini, Paola; Rodríguez-Ruiz, Mar; Medrano, Mireia; Mallol, Josefa; Cortés, Antoni; Casadó, Vicent; Lluís, Carme; Ferré, Sergi; Ortiz, Jordi; Canela, Enric

    2014-01-01

    The general effects of cocaine are not well understood at the molecular level. What is known is that the dopamine D1 receptor plays an important role. Here we show that a key mechanism may be cocaine's blockade of the histamine H3 receptor-mediated inhibition of D1 receptor function. This blockade requires the σ1 receptor and occurs upon cocaine binding to σ1-D1-H3 receptor complexes. The cocaine-mediated disruption leaves an uninhibited D1 receptor that activates Gs, freely recruits β-arrestin, increases p-ERK 1/2 levels, and induces cell death when over activated. Using in vitro assays with transfected cells and in ex vivo experiments using both rats acutely treated or self-administered with cocaine along with mice depleted of σ1 receptor, we show that blockade of σ1 receptor by an antagonist restores the protective H3 receptor-mediated brake on D1 receptor signaling and prevents the cell death from elevated D1 receptor signaling. These findings suggest that a combination therapy of σ1R antagonists with H3 receptor agonists could serve to reduce some effects of cocaine. PMID:24599455

  17. Anorectic activities of serotonin uptake inhibitors: correlation with their potencies at inhibiting serotonin uptake in vivo and /sup 3/H-mazindol binding in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angel, I.; Taranger, M.A.; Claustre, Y.

    1988-01-01

    The mechanism of anorectic action of several serotonin uptake inhibitors was investigated by comparing their anorectic potencies with several biochemical and pharmacological properties and in reference to the novel compound SL 81.0385. The anorectic effect of the potent serotonin uptake inhibitor SL 81.0385 was potentiated by pretreatment with 5-hydroxytryptophan and blocked by the serotonin receptor antagonist metergoline. A good correlation was obtained between the ED/sub 50/ values of anorectic action and the ED/sub 50/ values of serotonin uptake inhibition in vivo (but not in vitro) for several specific serotonin uptake inhibitors. Most of the drugs tested displaced (/sup 3/H)-mazindol frommore » its binding to the anorectic recognition site in the hypothalamus, except the pro-drug zimelidine which was inactive. Excluding zimelidine, a good correlation was obtained between the affinities of these drugs for (/sup 3/H)-mazindol binding and their anorectic action indicating that their anorectic activity may be associated with an effect mediated through this site. Taken together these results suggest that the anorectic action of serotonin uptake inhibitors is directly associated to their ability to inhibit serotonin uptake and thus increasing the synaptic levels of serotonin. The interactions of these drugs with the anorectic recognition site labelled with (/sup 3/H)-mazindol is discussed in connection with the serotonergic regulation of carbohydrate intake.« less

  18. Quantitative pharmacological analysis of antagonist binding kinetics at CRF1 receptors in vitro and in vivo

    PubMed Central

    Ramsey, Simeon J; Attkins, Neil J; Fish, Rebecca; van der Graaf, Piet H

    2011-01-01

    BACKGROUND AND PURPOSE A series of novel non-peptide corticotropin releasing factor type-1 receptor (CRF1) antagonists were found to display varying degrees of insurmountable and non-competitive behaviour in functional in vitro assays. We describe how we attempted to relate this behaviour to ligand receptor-binding kinetics in a quantitative manner and how this resulted in the development and implementation of an efficient pharmacological screening method based on principles described by Motulsky and Mahan. EXPERIMENTAL APPROACH A non-equilibrium binding kinetic assay was developed to determine the receptor binding kinetics of non-peptide CRF1 antagonists. Nonlinear, mixed-effects modelling was used to obtain estimates of the compounds association and dissociation rates. We present an integrated pharmacokinetic–pharmacodynamic (PKPD) approach, whereby the time course of in vivo CRF1 receptor binding of novel compounds can be predicted on the basis of in vitro assays. KEY RESULTS The non-competitive antagonist behaviour appeared to be correlated to the CRF1 receptor off-rate kinetics. The integrated PKPD model suggested that, at least in a qualitative manner, the in vitro assay can be used to triage and select compounds for further in vivo investigations. CONCLUSIONS AND IMPLICATIONS This study provides evidence for a link between ligand offset kinetics and insurmountable/non-competitive antagonism at the CRF1 receptor. The exact molecular pharmacological nature of this association remains to be determined. In addition, we have developed a quantitative framework to study and integrate in vitro and in vivo receptor binding kinetic behaviour of CRF1 receptor antagonists in an efficient manner in a drug discovery setting. PMID:21449919

  19. Unbinding Pathways of an Agonist and an Antagonist from the 5-HT3 Receptor

    PubMed Central

    Thompson, A. J.; Chau, P.-L.; Chan, S. L.; Lummis, S. C. R.

    2006-01-01

    The binding sites of 5-HT3 and other Cys-loop receptors have been extensively studied, but there are no data on the entry and exit routes of ligands for these sites. Here we have used molecular dynamics simulations to predict the pathway for agonists and antagonists exiting from the 5-HT3 receptor binding site. The data suggest that the unbinding pathway follows a tunnel at the interface of two subunits, which is ∼8 Å long and terminates ∼20 Å above the membrane. The exit routes for an agonist (5-HT) and an antagonist (granisetron) were similar, with trajectories toward the membrane and outward from the ligand binding site. 5-HT appears to form many hydrogen bonds with residues in the unbinding pathway, and experiments show that mutating these residues significantly affects function. The location of the pathway is also supported by docking studies of granisetron, which show a potential binding site for granisetron on the unbinding route. We propose that leaving the binding pocket along this tunnel places the ligands close to the membrane and prevents their immediate reentry into the binding pocket. We anticipate similar exit pathways for other members of the Cys-loop receptor family. PMID:16387779

  20. Imipramine treatment differentially affects platelet /sup 3/H-imipramine binding and serotonin uptake in depressed patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suranyi-Cadotte, B.E.; Quirion, R.; Nair, N.P.V.

    1985-02-25

    Uptake of serotonin and /sup 3/H-imipramine binding in platelets of depressed patients were investigated simultaneously with changes in clinical state. Both V/sub max/ for serotonin uptake and B/sub max/ for /sup 3/H-imipramine binding were significantly lower in unmedicated depressed patients with respect to normal subjects. Successful treatment with imipramine led to a significant increase in B/sub max/ for /sup 3/H-imipramine binding, without significant change in V/sub max/ for serotonin uptake. B/sub max/ values increased to the normal range following complete, rather than partial clinical improvement. These data indicate that successful antidepressant treatment may increase the density of /sup 3/H-imipramine bindingmore » sites on platelets by a process which is independent of the uptake of serotonin. 29 references, 1 table.« less

  1. Desformylflustrabromine (dFBr) and [3H]dFBr-Labeled Binding Sites in a Nicotinic Acetylcholine Receptor

    PubMed Central

    Hamouda, Ayman K.; Wang, Ze-Jun; Stewart, Deirdre S.; Jain, Atul D.; Glennon, Richard A.

    2015-01-01

    Desformylflustrabromine (dFBr) is a positive allosteric modulator (PAM) of α4β2 and α2β2 nAChRs that, at concentrations >1 µM, also inhibits these receptors and α7 nAChRs. However, its interactions with muscle-type nAChRs have not been characterized, and the locations of its binding site(s) in any nAChR are not known. We report here that dFBr inhibits human muscle (αβεδ) and Torpedo (αβγδ) nAChR expressed in Xenopus oocytes with IC50 values of ∼1 μM. dFBr also inhibited the equilibrium binding of ion channel blockers to Torpedo nAChRs with higher affinity in the nAChR desensitized state ([3H]phencyclidine; IC50 = 4 μM) than in the resting state ([3H]tetracaine; IC50 = 60 μM), whereas it bound with only very low affinity to the ACh binding sites ([3H]ACh, IC50 = 1 mM). Upon irradiation at 312 nm, [3H]dFBr photoincorporated into amino acids within the Torpedo nAChR ion channel with the efficiency of photoincorporation enhanced in the presence of agonist and the agonist-enhanced photolabeling inhibitable by phencyclidine. In the presence of agonist, [3H]dFBr also photolabeled amino acids in the nAChR extracellular domain within binding pockets identified previously for the nonselective nAChR PAMs galantamine and physostigmine at the canonical α-γ interface containing the transmitter binding sites and at the noncanonical δ-β subunit interface. These results establish that dFBr inhibits muscle-type nAChR by binding in the ion channel and that [3H]dFBr is a photoaffinity probe with broad amino acid side chain reactivity. PMID:25870334

  2. Rational Design of Potent Antagonists to the Human Growth Hormone Receptor

    NASA Astrophysics Data System (ADS)

    Fuh, Germaine; Cunningham, Brian C.; Fukunaga, Rikiro; Nagata, Shigekazu; Goeddel, David V.; Wells, James A.

    1992-06-01

    A hybrid receptor was constructed that contained the extracellular binding domain of the human growth hormone (hGH) receptor linked to the transmembrane and intracellular domains of the murine granulocyte colony-stimulating factor receptor. Addition of hGH to a myeloid leukemia cell line (FDC-P1) that expressed the hybrid receptor caused proliferation of these cells. The mechanism for signal transduction of the hybrid receptor required dimerization because monoclonal antibodies to the hGH receptor were agonists whereas their monovalent fragments were not. Receptor dimerization occurs sequentially-a receptor binds to site 1 on hGH, and then a second receptor molecule binds to site 2 on hGH. On the basis of this sequential mechanism, which may occur in many other cytokine receptors, inactive hGH analogs were designed that were potent antagonists to hGH-induced cell proliferation. Such antagonists could be useful for treating clinical conditions of hGH excess, such as acromegaly.

  3. [High non-specific binding of the beta(1) -selective radioligand 2-(125)I-ICI-H].

    PubMed

    Riemann, B; Law, M P; Kopka, K; Wagner, St; Luthra, S; Pike, V W; Neumann, J; Kirchhefer, U; Schmitz, W; Schober, O; Schäfers, M

    2003-08-01

    As results of cardiac biopsies suggest, myocardial beta(1) -adrenoceptor density is reduced in patients with chronic heart failure. However, changes in cardiac beta(2)-adrenoceptors vary. With suitable radiopharmaceuticals single photon emission computed tomography (SPECT) and positron emission tomography (PET) offer the opportunity to assess beta-adrenoceptors non-invasively. Among the novel racemic analogues of the established beta(1)-selective adrenoceptor antagonist ICI 89.406 the iodinated 2-I-ICI-H showed high affinity and selectivity to beta(1)-adrenoceptors in murine ventricular membranes. The aim of this study was its evaluation as a putative sub-type selective beta(1)-adrenergic radioligand in cardiac imaging. Competition studies in vitro and in vivo were used to investigate the kinetics of 2-I-ICI-H binding to cardiac beta-adrenoceptors in mice and rats. In addition, the radiosynthesis of 2-(125)I-ICI-H from the silylated precursor 2-SiMe(3)-ICI-H was established. The specific activity was 80 GBq/ micro mol, the radiochemical yield ranged from 70 to 80%. The unlabelled compound 2-I-ICI-H showed high beta(1)-selectivity and -affinity in the in vitro competition studies. In vivo biodistribution studies apparently showed low affinity to cardiac beta-adrenoceptors. The radiolabelled counterpart 2-(125)I-ICI-H showed a high degree of non-specific binding in vitro and no specific binding to cardiac beta(1)-adrenoceptors in vivo. Because of its high non-specific binding 2-(125)I-ICI-H is no suitable radiotracer for imaging in vivo.

  4. Mapping the Complement Factor H-Related Protein 1 (CFHR1):C3b/C3d Interactions

    PubMed Central

    Laskowski, Jennifer; Thurman, Joshua M.; Hageman, Gregory S.; Holers, V. Michael

    2016-01-01

    Complement factor H-related protein 1 (CFHR1) is a complement regulator which has been reported to regulate complement by blocking C5 convertase activity and interfering with C5b surface association. CFHR1 also competes with complement factor H (CFH) for binding to C3b, and may act as an antagonist of CFH-directed regulation on cell surfaces. We have employed site-directed mutagenesis in conjunction with ELISA-based and functional assays to isolate the binding interaction that CFHR1 undertakes with complement components C3b and C3d to a single shared interface. The C3b/C3d:CFHR1 interface is identical to that which occurs between the two C-terminal domains (SCR19-20) of CFH and C3b. Moreover, we have been able to corroborate that dimerization of CFHR1 is necessary for this molecule to bind effectively to C3b and C3d, or compete with CFH. Finally, we have established that CFHR1 competes with complement factor H-like protein 1 (CFHL-1) for binding to C3b. CFHL-1 is a CFH gene splice variant, which is almost identical to the N-terminal 7 domains of CFH (SCR1-7). CFHR1, therefore, not only competes with the C-terminus of CFH for binding to C3b, but also sterically blocks the interaction that the N-terminus of CFH undertakes with C3b, and which is required for CFH-regulation. PMID:27814381

  5. Synthesis and SAR of highly potent and selective dopamine D3-receptor antagonists: variations on the 1H-pyrimidin-2-one theme.

    PubMed

    Geneste, Hervé; Amberg, Wilhelm; Backfisch, Gisela; Beyerbach, Armin; Braje, Wilfried M; Delzer, Jürgen; Haupt, Andreas; Hutchins, Charles W; King, Linda L; Sauer, Daryl R; Unger, Liliane; Wernet, Wolfgang

    2006-04-01

    In our efforts to further pursue one of the most selective dopamine D(3)-receptor antagonists reported to date, we now describe the synthesis and SAR of novel and highly selective dopamine D(3) antagonists based on a 1H-pyridin-2-one or on a urea scaffold. The most potent compounds exhibited K(i) values toward the D(3) receptor in the nano- to subnanomolar range and high selectivity versus the related D(2) dopamine receptor. Thus, 1H-pyridin-2-one 7b displays oral bioavailability (F=37%) as well as brain penetration (brain plasma ratio 3.7) in rat. Within the urea series, an excellent D(3) versus D(2) selectivity (>100-fold) could be achieved by removal of one NH group (compound 6), although bioavailability (rat) was suboptimal (F<10%). These data significantly enhance our understanding of the D(3) pharmacophore and are expected to lead to novel approaches for the treatment of schizophrenia.

  6. Interaction of a vasopressin antagonist with vasopressin receptors in the septum of the rat brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorsa, D.M.; Brot, M.D.; Shewey, L.M.

    1988-01-01

    The ability of d(CH2)5-Tyr(Me)-arginine-8-vasopressin, an antagonist of peripheral pressoric (V1-type) vasopressin receptors, to label vasopressin binding sites in the septum of the rat brain was evaluated. Using crude membrane preparations from the septum, /sup 3/H-arginine-8-vasopressin (AVP) specifically labels a single class of binding sites with a Kd of 2.9 nM and maximum binding site concentration of 19.8 fmole/mg protein. /sup 3/H-Antag also labels a single class of membrane sites but with higher affinity (Kd = 0.47 nM) and lower capacity (10.1 fmole/mg protein) than /sup 3/H-AVP. The rank order of potency of various competitor peptides for /sup 3/H-AVP and /supmore » 3/H-Antag binding was similar. Oxytocin was 100-1,000 fold less potent than AVP in competing for binding with both ligands. /sup 3/H-AVP and /sup 3/H-Antag showed similar labeling patterns when incubated with septal tissue slices. Unlabeled Antag also effectively antagonized vasopressin-stimulated phosphatidylinositol hydrolysis in septal tissue slices.« less

  7. Identification and characterization of amino-piperidinequinolones and quinazolinones as MCHr1 antagonists.

    PubMed

    Blackburn, Christopher; LaMarche, Matthew J; Brown, James; Che, Jennifer Lee; Cullis, Courtney A; Lai, Sujen; Maguire, Martin; Marsilje, Thomas; Geddes, Bradley; Govek, Elizabeth; Kadambi, Vivek; Doherty, Colleen; Dayton, Brian; Brodjian, Sevan; Marsh, Kennan C; Collins, Christine A; Kym, Philip R

    2006-05-15

    Several potent, functionally active MCHr1 antagonists derived from quinolin-2(1H)-ones and quinazoline-2(1H)-ones have been synthesized and evaluated. Pyridylmethyl substitution at the quinolone 1-position results in derivatives with low-nM binding potency and good selectivity with respect to hERG binding.

  8. Agonist and antagonist modulation of [35S]-GTPγS binding in transfected CHO cells expressing the neurotensin receptor

    PubMed Central

    Hermans, Emmanuel; Geurts, Muriel; Maloteaux, Jean-Marie

    1997-01-01

    The functional interaction of the cloned rat neurotensin receptor with intracellular G-proteins was investigated by studying the binding of the radiolabelled guanylyl nucleotide analogue [35S]-GTPγS induced by neurotensin to membranes prepared from transfected Chinese hamster ovary (CHO) cells. The agonist-induced binding of [35S]-GTPγS was only detected in the presence of NaCl in the incubation buffer. However, it was also demonstrated that the binding of [3H]-neurotensin to its receptor was inhibited by NaCl. In the presence of 50 mM NaCl, the binding of the labelled nucleotide was about 2 fold increased by stimulation with saturating concentrations of neurotensin (EC50 value of 2.3±0.9 nM). The stimulation of [35S]-GTPγS binding by neurotensin was mimicked by the stable analogue of neurotensin, JMV-449 (EC50 value of 1.7±0.4 nM) and the neurotensin related peptide neuromedin N (EC50 value of 21±6 nM). The NT-induced [35S]-GTPγS binding was competitively inhibited by SR48692 (pA2 value of 9.55±0.28), a non-peptide neurotensin receptor antagonist. SR48692 alone had no effect on the specific binding of [35S]-GTPγS. The response to neurotensin was found to be inhibited by the aminosteroid U-73122, a putative inhibitor of phospholipase C-dependent processes, indicating that this drug may act at the G-protein level. Taken together, these results constitute the first characterization of the exchange of guanylyl nucleotides at the G-protein level that is induced by the neuropeptide neurotensin after binding to its receptor. PMID:9283723

  9. Tc-labeling of Peptidomimetic Antagonist to Selectively Target alpha(v)beta(3) Receptor-Positive Tumor: Comparison of PDA and EDDA as co-Ligands.

    PubMed

    Shin, In Soo; Maeng, Jin Soo; Jang, Beom-Su; You, Eric; Cheng, Kenneth; Li, King C P; Wood, Bradford; Carrasquillo, Jorge A; Danthi, S Narasimhan; Paik, Chang H

    2010-01-01

    OBJECTIVES: The aim of this research was to synthesize radiolabeled peptidomimetic integrin alpha(v)beta(3) antagonist with (99m)Tc for rapid targeting of integrin alpha(v)beta(3) receptors in tumor to produce a high tumor to background ratio. METHODS: The amino terminus of 4-[2-(3,4,5,6-tetra-hydropyrimidin-2-ylamino)-ethyloxy]benzoyl-2-(S)-[N-(3-amino-neopenta-1-carbamyl)]-aminoethylsulfonyl-amino-beta-alanine hydrochloride (IAC) was conjugated with N-hydroxysuccinimide ester of HYNIC and labeled with (99m)Tc using tricine with either 1,5-pyridinedicarboxylic acid (PDA) or ethylenediamine-N,N'-diacetic acid (EDDA) as the co-ligand. The products, (99m)Tc EDDA(2)/HYNIC-IAC (P1) and (99m)Tc PDA (tricin)/HYNIC-IAC (P2) were subjected to in vitro serum stability, receptor-binding, biodistribution and imaging studies. RESULTS: P1 and P2 were synthesized with an overall yield of >80%. P1 was slightly more stable than P2 when incubated in serum at 37 degrees C for 18 hrs (84 vs 77% intact). The In vitro receptor-binding of P1 was higher than that of P2 (78.02 +/- 13.48 vs 51.05 +/- 14.05%) when incubated with alpha(v)beta(3) at a molar excess (0.8 muM). This receptor binding was completely blocked by a molar excess of an unlabeled peptidomimetic antagonist. Their differences shown in serum stability and the receptor-binding appeared to be related to their biological behaviors in tumor uptake and retention; the 1 h tumor uptakes of P1 and P2 were 3.17+/-0.52 and 2.13+/-0.17 % ID/g, respectively. P1 was retained in the tumor longer than P2. P1 was excreted primarily through the renal system whereas P2 complex was excreted equally via both renal and hepatobiliary systems. Thus, P1 was retained in the whole-body with 27.25 +/- 3.67% ID at 4 h whereas 54.04 +/- 3.57% ID of P2 remained in the whole-body at 4 h. This higher whole-body retention of P2 appeared to be resulted from a higher amount of radioactivity retained in liver and intestine. These findings were supported by

  10. ``In silico'' study of the binding of two novel antagonists to the nociceptin receptor

    NASA Astrophysics Data System (ADS)

    Della Longa, Stefano; Arcovito, Alessandro

    2018-02-01

    Antagonists of the nociceptin receptor (NOP) are raising interest for their possible clinical use as antidepressant drugs. Recently, the structure of NOP in complex with some piperidine-based antagonists has been revealed by X-ray crystallography. In this study, a multi-flexible docking (MF-docking) procedure, i.e. docking to multiple receptor conformations extracted by preliminary molecular dynamics trajectories, together with hybrid quantum mechanics/molecular mechanics (QM/MM) simulations have been carried out to provide the binding mode of two novel NOP antagonists, one of them selective (BTRX-246040, formerly named LY-2940094) and one non selective (AT-076), i.e. able to inactivate NOP as well as the classical µ- k- and δ-opioid receptors (MOP KOP and DOP). According to our results, the pivotal role of residue D1303,32 (upper indexes are Ballesteros-Weinstein notations) is analogous to that enlighten by the already known X-ray structures of opioid receptors: binding of the molecules are predicted to require a slight readjustment of the hydrophobic pocket (residues Y1313,33, M1343,36, I2195,43, Q2806,52 and V2836,55) in the orthosteric site of NOP, accommodating either the pyridine-pyrazole (BTRX-246040) or the isoquinoline (AT-076) moiety of the ligand, in turn allowing the protonated piperidine nitrogen to maximize interaction (salt-bridge) with residue D1303,32 of the NOP, and the aromatic head to be sandwiched in optimal π-stacking between Y1313,33 and M1343,36. The QM/MM optimization after the MF-docking procedure has provided the more likely conformations for the binding to the NOP receptor of BTRX-246040 and AT-076, based on different pharmacophores and exhibiting different selectivity profiles. While the high selectivity for NOP of BTRX-246040 can be explained by interactions with NOP specific residues, the lack of selectivity of AT-076 could be associated to its ability to penetrate into the deep hydrophobic pocket of NOP, while retaining a

  11. Determination of the binding mode for the cyclopentapeptide CXCR4 antagonist FC131 using a dual approach of ligand modifications and receptor mutagenesis

    PubMed Central

    Thiele, S; Mungalpara, J; Steen, A; Rosenkilde, M M; Våbenø, J

    2014-01-01

    Background and Purpose The cyclopentapeptide FC131 (cyclo(-L-Arg1-L-Arg2-L-2-Nal3-Gly4-D-Tyr5-)) is an antagonist at the CXC chemokine receptor CXCR4, which plays a role in human immunodeficiency virus infection, cancer and stem cell recruitment. Binding modes for FC131 in CXCR4 have previously been suggested based on molecular docking guided by structure–activity relationship (SAR) data; however, none of these have been verified by in vitro experiments. Experimental Approach Heterologous 125I-12G5-competition binding and functional assays (inhibition of CXCL12-mediated activation) of FC131 and three analogues were performed on wild-type CXCR4 and 25 receptor mutants. Computational modelling was used to rationalize the experimental data. Key Results The Arg2 and 2-Nal3 side chains of FC131 interact with residues in TM-3 (His113, Asp171) and TM-5 (hydrophobic pocket) respectively. Arg1 forms charge-charge interactions with Asp187 in ECL-2, while D-Tyr5 points to the extracellular side of CXCR4. Furthermore, the backbone of FC131 interacts with the chemokine receptor-conserved Glu288 via two water molecules. Intriguingly, Tyr116 and Glu288 form a H-bond in CXCR4 crystal structures and mutation of either residue to Ala abolishes CXCR4 activity. Conclusions and Implications Ligand modification, receptor mutagenesis and computational modelling approaches were used to identify the binding mode of FC131 in CXCR4, which was in agreement with binding modes suggested from previous SAR studies. Furthermore, insights into the mechanism for CXCR4 activation by CXCL12 were gained. The combined findings will facilitate future design of novel CXCR4 antagonists. PMID:25039237

  12. Down-regulation of pituitary receptors for luteinizing hormone-releasing hormone (LH-RH) in rats by LH-RH antagonist Cetrorelix.

    PubMed Central

    Halmos, G; Schally, A V; Pinski, J; Vadillo-Buenfil, M; Groot, K

    1996-01-01

    Antagonists of luteinizing hormone-releasing hormone (LH-RH), unlike the LH-RH agonists, suppress gonadotropins and sex steroid secretion immediately after administration, without initial stimulatory effects. [Ac-D-Nal(2)1,D-Ph(4Cl)2,D-Pal(3)3,D-Cit6,D-Ala10]LH-R H (SB-75; Cetrorelix) is a modern, potent antagonistic analog of LH-RH. In this study, the binding characteristics of receptors for LH-RH in membrane fractions from rat anterior pituitaries were investigated after a single injection of Cetrorelix at a dose of 100 microg per rat. To determine whether the treatment with Cetrorelix can affect the concentration of measurable LH-RH binding sites, we applied an in vitro method to desaturate LH-RH receptors by chaotropic agents such as manganous chloride (MnCl2) and ammonium thiocyanate (NH4SCN). Our results show that the percentages of occupied LH-RH receptors at 1, 3, and 6 h after administration of Cetrorelix were approximately 28%, 14%, and 10%, respectively, of total receptors. At later time intervals, we could not detect occupied LH-RH binding sites. Ligand competition assays, following in vitro desaturation, demonstrated that rat pituitary LH-RH receptors were significantly (P < 0.01) down-regulated for at least 72 h after administration of Cetrorelix. The lowest receptor concentration was found 3-6 h after Cetrorelix treatment and a recovery in receptor number began within approximately 24 h. The down-regulation of LH-RH binding sites induced by Cetrorelix was accompanied by serum LH and testosterone suppression. Higher LH-RH receptor concentrations coincided with elevated serum hormone levels at later time intervals. Our results indicate that administration of LH-RH antagonist Cetrorelix produces a marked down-regulation of pituitary receptors for LH-RH and not merely an occupancy of binding sites. PMID:8637885

  13. Complement-mediated bactericidal activity of anti-factor H binding protein monoclonal antibodies against the meningococcus relies upon blocking factor H binding.

    PubMed

    Giuntini, Serena; Reason, Donald C; Granoff, Dan M

    2011-09-01

    Binding of the complement-downregulating protein factor H (fH) to the surface of the meningococcus is important for survival of the organism in human serum. The meningococcal vaccine candidate factor H binding protein (fHbp) is an important ligand for human fH. While some fHbp-specific monoclonal antibodies (MAbs) block binding of fH to fHbp, the stoichiometry of blocking in the presence of high serum concentrations of fH and its effect on complement-mediated bactericidal activity are unknown. To investigate this question, we constructed chimeric antibodies in which the human IgG1 constant region was paired with three murine fHbp-specific binding domains designated JAR 3, JAR 5, and MAb502. By surface plasmon resonance, the association rates for binding of all three MAbs to immobilized fHbp were >50-fold higher than that for binding of fH to fHbp, and the MAb dissociation rates were >500-fold lower than that for fH. While all three MAbs elicited similar C1q-dependent C4b deposition on live bacteria (classical complement pathway), only those antibodies that inhibited binding of fH to fHbp (JAR 3 and JAR 5) had bactericidal activity with human complement. MAb502, which did not inhibit fH binding, had complement-mediated bactericidal activity only when tested with fH-depleted human complement. When an IgG1 anti-fHbp MAb binds to sparsely exposed fHbp on the bacterial surface, there appears to be insufficient complement activation for bacteriolysis unless fH binding also is inhibited. The ability of fHbp vaccines to elicit protective antibodies, therefore, is likely to be enhanced if the antibody repertoire is of high avidity and includes fH-blocking activity.

  14. H3K4me3 induces allosteric conformational changes in the DNA-binding and catalytic regions of the V(D)J recombinase

    PubMed Central

    Bettridge, John; Na, Chan Hyun; Desiderio, Stephen

    2017-01-01

    V(D)J recombination is initiated by the recombination-activating gene (RAG) recombinase, consisting of RAG-1 and RAG-2 subunits. The susceptibility of gene segments to cleavage by RAG is associated with histone modifications characteristic of active chromatin, including trimethylation of histone H3 at lysine 4 (H3K4me3). Binding of H3K4me3 by a plant homeodomain (PHD) in RAG-2 stimulates substrate binding and catalysis, which are functions of RAG-1. This has suggested an allosteric mechanism in which information regarding occupancy of the RAG-2 PHD is transmitted to RAG-1. To determine whether the conformational distribution of RAG is altered by H3K4me3, we mapped changes in solvent accessibility of cysteine thiols by differential isotopic chemical footprinting. Binding of H3K4me3 to the RAG-2 PHD induces conformational changes in RAG-1 within a DNA-binding domain and in the ZnH2 domain, which acts as a scaffold for the catalytic center. Thus, engagement of H3K4me3 by the RAG-2 PHD is associated with dynamic conformational changes in RAG-1, consistent with allosteric control by active chromatin. PMID:28174273

  15. /sup 3/H-PAF-acether displacement and inhibition of binding in intact human platelets by BN 52021

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korth, R.; Le Couedic, J.P.; Benveniste, J.

    1986-03-05

    Intact washed human platelets incubated at 20/sup 0/C in Tyrode's buffer containing 0.25% (w/v) bovine serum albumin bound /sup 3/H paf-acether in a concentration (0-6.5 nM) and time (0-60 min) dependent manner (n=3). BN 52021 (60 ..mu..M) a chemically defined extract from Ginkgo biloba inhibited the binding of increasing concentrations of /sup 3/H paf-acether. Calculated differences between /sup 3/H paf-acether binding in the presence or absence of BN 52021 (60 ..mu..M) reached nearly a plateau in concentrations higher than 0.65 nM /sup 3/H paf-acether. Increasing concentrations of BN 52021 (0-60 ..mu..M) as well as of unlabelled paf-acether (0-50 nM) preventedmore » within 15 min /sup 3/H paf-acether binding (0.65 nM) to platelets in a concentration-dependent way. Increasing BN 52021 concentrations (0-60 ..mu..M) also displaced platelet-bound /sup 3/H paf-acether (0.65 nM) in a concentration-dependent way. Displacement increased with the time length of platelet incubation with BN 52021 and reached a plateau at 15 min. Platelet-bound /sup 3/H paf-acether displacement of 28.3 +/- 6.3%, 31.1 +/- 4.0% and 26.7 +/- 5.6% was observed using 50 nM unlabelled paf-acether, 60 ..mu..M BN 52021 or both substances together (vs 4.3 +/- 7.2% for vehicle alone). No degradation of /sup 3/H paf-acether occurred as assessed by high pressure liquid chromatography. These results demonstrate that BN 52021 competes directly with paf-acether binding sites on human platelets.« less

  16. Antivirulence Isoquinolone Mannosides: Optimization of the Biaryl Aglycone for FimH Lectin Binding Affinity and Efficacy in the Treatment of Chronic UTI.

    PubMed

    Jarvis, Cassie; Han, Zhenfu; Kalas, Vasilios; Klein, Roger; Pinkner, Jerome S; Ford, Bradley; Binkley, Jana; Cusumano, Corinne K; Cusumano, Zachary; Mydock-McGrane, Laurel; Hultgren, Scott J; Janetka, James W

    2016-02-17

    Uropathogenic E. coli (UPEC) employ the mannose-binding adhesin FimH to colonize the bladder epithelium during urinary tract infection (UTI). Previously reported FimH antagonists exhibit good potency and efficacy, but low bioavailability and a short half-life in vivo. In a rational design strategy, we obtained an X-ray structure of lead mannosides and then designed mannosides with improved drug-like properties. We show that cyclizing the carboxamide onto the biphenyl B-ring aglycone of biphenyl mannosides into a fused heterocyclic ring, generates new biaryl mannosides such as isoquinolone 22 (2-methyl-4-(1-oxo-1,2-dihydroisoquinolin-7-yl)phenyl α-d-mannopyranoside) with enhanced potency and in vivo efficacy resulting from increased oral bioavailability. N-Substitution of the isoquinolone aglycone with various functionalities produced a new potent subseries of FimH antagonists. All analogues of the subseries have higher FimH binding affinity than unsubstituted lead 22, as determined by thermal shift differential scanning fluorimetry assay. Mannosides with pyridyl substitution on the isoquinolone group inhibit bacteria-mediated hemagglutination and prevent biofilm formation by UPEC with single-digit nanomolar potency, which is unprecedented for any FimH antagonists or any other antivirulence compounds reported to date. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Elevation of naloxone-sensitive /sup 3/H-dihydromorphine binding in hippocampal formation of genetically epilepsy-prone rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savage, D.D.; Mills, S.A.; Jobe, P.C.

    1988-01-01

    /sup 3/H-Dihydromorphine (DHM) binding sites were measured in the brain of non-epileptic control and GEPR rats using in vitro autoradiographic techniques. The number of naloxone-sensitive /sup 3/H-DHM binding sites was increased 38-57% in the pyramidal cell layer of ventral hippocampal CA/sub 3/ and CA/sub 1/ of GEPR-3 and GEPR-9 rats compared to non-epileptic controls. No significant differences in /sup 3/H-DHM binding were observed in dorsal hippocampal formation, lateral entorhinal cortex, lateral geniculate or cerebellum. The results suggest that an increase in the number of opioid receptors in ventral hippocampus of GEPR rats may be one factor contributing to the enhancedmore » sensitivity of GEPR-9 rats to the proconvulsant effects of morphine.« less

  18. Pharmacology of JB-9315, a new selective histamine H2-receptor antagonist.

    PubMed

    Palacios, B; Montero, M J; Sevilla, M A; San Román, L

    1998-02-01

    1. The histamine H2-receptor antagonistic activity and antisecretory and antiulcer effects of JB-9315 were studied in comparison with the standard H2 blocker ranitidine. 2. In vitro, JB-9315 is a competitive antagonist of histamine H2 receptors in the isolated, spontaneously beating guinea-pig right atrium, with a pA2 value of 7.30 relative to a value of 7.36 for ranitidine. JB-9315 was specific for the histamine H2 receptor because, at high concentration, it did not affect histamine- or acetylcholine-induced contractions in guinea-pig isolated ileum or rat isolated duodenum, respectively. 3. JB-9315 dose dependently inhibited histamine-, pentagastrin- or carbachol-stimulated acid secretion and basal secretion in the perfused stomach preparation of the anesthetized rat. In the pylorus-ligated rat after intraperitoneal administration, total acid output over 4 h was inhibited by JB-9315 with an ID50 of 32.8 mg/kg, confirming its H2-receptor antagonist properties. 4. JB-9315 showed antiulcer activity against cold stress plus indomethacin-induced lesions with an ID50 of 6.8 mg/kg. 5. JB-9315, 50 and 100 mg/kg, inhibited macroscopic gastric hemorrhagic lesions induced by ethanol. In contrast, ranitidine (50 mg/kg) failed to reduce these lesions. 6. These results indicate that JB-9315 is a new antiulcer drug that exerts a cytoprotective effect in addition to its gastric antisecretory activity.

  19. Fate of wastewater effluent hER-agonists and hER-antagonists during soil aquifer treatment.

    PubMed

    Otakuye, Conroy; Quanrud, David M; Ela, Wendell P; Wicke, Daniel; Lansey, Kevin E; Arnold, Robert G

    2005-04-01

    Estrogen activity was measured in wastewater effluent before and after polishing via soil-aquifer treatment (SAT) using both a (hER-beta) competitive binding assay and a transcriptional activation (yeast estrogen screen, YES) assay. From the competitive binding assay, the equivalent 17alpha-ethinylestradiol (EE2) concentration in secondary effluent was 4.7 nM but decreased to 0.22 nM following SAT. The YES assay indicated that the equivalent EE2 concentration in the same effluent sample was below the method-detection limit (<2.5 x 10(-3) nM) but increased to 0.68 nM in effluent polished via SAT processes. It was hypothesized thattest-dependent differences arose because the competitive binding assay responds positively to both estrogen mimics and anti-estrogens; the YES assay responds to estrogen mimics, but test response is inhibited by anti-estrogens. The hypothesis was supported when organics extracted from wastewater effluent inhibited the YES test response to EE2 (anti-estrogenic effect). A similar extract prepared from SAT-polished effluent augmented the EE2 curve (agonist response). When hydrophobic organics in secondary effluent were fractionated, assay results indicated that several physically distinct anti-estrogens were present in the sample. From this work, it is evident that transcription-activation bioassays alone should not be relied upon to measure estrogenic activity in complex environmental samples because the simultaneous presence of both agonists and antagonist compounds can yield false negatives. Multiple in vitro bioassays, sample fractionation or tests designed to measure anti-estrogenic activity can be used to overcome this problem. It is also clear that there are circumstances under which SAT does not completely remove estrogenic activity during municipal wastewater effluent polishing.

  20. Fas Binding to Calmodulin Regulates Apoptosis in Osteoclasts*

    PubMed Central

    Wu, Xiaojun; Ahn, Eun-Young; McKenna, Margaret A.; Yeo, Hyeonju; McDonald, Jay M.

    2005-01-01

    Promotion of osteoclast apoptosis is one therapeutic approach to osteoporosis. Calmodulin, the major intracellular Ca2+ receptor, modulates both osteoclastogenesis and bone resorption. The calmodulin antagonist, trifluoperazine, rescues bone loss in ovariectomized mice (Zhang, L., Feng, X., and McDonald, J. M. (2003) Endocrinology 144, 4536–4543). We show here that a 3-h treatment of mouse osteoclasts with either of the calmodulin antagonists, tamoxifen or trifluoperazine, induces osteoclast apoptosis dose-dependently. Tamoxifen, 10 μm, and trifluoperazine, 10 μm, induce 7.3 ± 1.8-fold and 5.3 ± 0.9-fold increases in osteoclast apoptosis, respectively. In Jurkat cells, calmodulin binds to Fas, the death receptor, and this binding is regulated during Fas-mediated apoptosis (Ahn, E. Y., Lim, S. T., Cook, W. J., and McDonald, J. M. (2004) J. Biol. Chem. 279, 5661–5666). In osteoclasts, calmodulin also binds Fas. When osteoclasts are treated with 10 μm trifluoperazine, the binding between Fas and calmodulin is dramatically decreased at 15 min and gradually recovers by 60 min. A point mutation of the Fas death domain in the Lpr−cg mouse renders Fas inactive. Using glutathione S-transferase fusion proteins, the human Fas cytoplasmic domain is shown to bind calmodulin, whereas a point mutation (V254N) comparable with the Lpr−cg mutation in mice has markedly reduced calmodulin binding. Osteoclasts derived from Lpr−cg mice have diminished calmodulin/Fas binding and are more sensitive to calmodulin antagonist-induced apoptosis than those from wild-type mice. Both tamoxifen- and trifluoperazine-induced apoptosis are increased 1.6 ± 0.2-fold in Lpr−cg-derived osteoclasts compared with osteoclasts derived from wild-type mice. In summary, calmodulin antagonists induce apoptosis in osteoclasts by a mechanism involving interference with calmodulin binding to Fas. The effects of calmodulin/Fas binding on calmodulin antagonist-induced apoptosis may open a new

  1. Pharmacophore-based virtual screening, biological evaluation and binding mode analysis of a novel protease-activated receptor 2 antagonist

    NASA Astrophysics Data System (ADS)

    Cho, Nam-Chul; Seo, Seoung-Hwan; Kim, Dohee; Shin, Ji-Sun; Ju, Jeongmin; Seong, Jihye; Seo, Seon Hee; Lee, Iiyoun; Lee, Kyung-Tae; Kim, Yun Kyung; No, Kyoung Tai; Pae, Ae Nim

    2016-08-01

    Protease-activated receptor 2 (PAR2) is a G protein-coupled receptor, mediating inflammation and pain signaling in neurons, thus it is considered to be a potential therapeutic target for inflammatory diseases. In this study, we performed a ligand-based virtual screening of 1.6 million compounds by employing a common-feature pharmacophore model and two-dimensional similarity search to identify a new PAR2 antagonist. The common-feature pharmacophore model was established based on the biological screening results of our in-house library. The initial virtual screening yielded a total number of 47 hits, and additional biological activity tests including PAR2 antagonism and anti-inflammatory effects resulted in a promising candidate, compound 43, which demonstrated an IC50 value of 8.22 µM against PAR2. In next step, a PAR2 homology model was constructed using the crystal structure of the PAR1 as a template to explore the binding mode of the identified ligands. A molecular docking method was optimized by comparing the binding modes of a known PAR2 agonist GB110 and antagonist GB83, and applied to predict the binding mode of our hit compound 43. In-depth docking analyses revealed that the hydrophobic interaction with Phe2435.39 is crucial for PAR2 ligands to exert antagonistic activity. MD simulation results supported the predicted docking poses that PAR2 antagonist blocked a conformational rearrangement of Na+ allosteric site in contrast to PAR2 agonist that showed Na+ relocation upon GPCR activation. In conclusion, we identified new a PAR2 antagonist together with its binding mode, which provides useful insights for the design and development of PAR2 ligands.

  2. Design and synthesis of novel sulfonamide-containing bradykinin hB2 receptor antagonists. 1. Synthesis and SAR of alpha,alpha-dimethylglycine sulfonamides.

    PubMed

    Fattori, Daniela; Rossi, Cristina; Fincham, Christopher I; Berettoni, Marco; Calvani, Federico; Catrambone, Fernando; Felicetti, Patrizia; Gensini, Martina; Terracciano, Rosa; Altamura, Maria; Bressan, Alessandro; Giuliani, Sandro; Maggi, Carlo A; Meini, Stefania; Valenti, Claudio; Quartara, Laura

    2006-06-15

    We recently published the extensive in vivo pharmacological characterization of MEN 16132 (J. Pharmacol. Exp. Ther. 2005, 616-623; Eur. J. Pharmacol. 2005, 528, 7), a member of the sulfonamide-containing human B(2) receptor (hB(2)R) antagonists. Here we report, in detail, how this family of compounds was designed, synthesized, and optimized to provide a group of products with subnanomolar affinity for the hB(2)R and high in vivo potency after topical administration to the respiratory tract. The series was designed on the basis of indications from the X-ray structures of the key structural motifs A and B present in known antagonists and is characterized by the presence of an alpha,alpha-dialkyl amino acid. The first lead (17) of the series was submitted to extensive chemical work to elucidate the structural requirements to increase hB(2) receptor affinity and antagonist potency in bioassays expressing the human B(2) receptor (hB(2)R). The following structural features were selected: a 2,4-dimethylquinoline moiety and a piperazine linker acylated with a basic amino acid. The representative lead compound 68 inhibited the specific binding of [(3)H]BK to hB(2)R with a pKi of 9.4 and antagonized the BK-induced inositolphosphate (IP) accumulation in recombinant cell systems expressing the hB(2)R with a pA(2) of 9.1. Moreover, compound 68 when administered (300 nmol/kg) intratracheally in the anesthetized guinea pig, was able to significantly inhibit BK-induced bronchoconstriction for up to 120 min after its administration, while having a lower and shorter lasting effect on hypotension.

  3. Highly Pathogenic Influenza A(H5Nx) Viruses with Altered H5 Receptor-Binding Specificity

    PubMed Central

    Guo, Hongbo; de Vries, Erik; McBride, Ryan; Dekkers, Jojanneke; Peng, Wenjie; Bouwman, Kim M.; Nycholat, Corwin; Verheije, M. Helene; Paulson, James C.; van Kuppeveld, Frank J.M.

    2017-01-01

    Emergence and intercontinental spread of highly pathogenic avian influenza A(H5Nx) virus clade 2.3.4.4 is unprecedented. H5N8 and H5N2 viruses have caused major economic losses in the poultry industry in Europe and North America, and lethal human infections with H5N6 virus have occurred in Asia. Knowledge of the evolution of receptor-binding specificity of these viruses, which might affect host range, is urgently needed. We report that emergence of these viruses is accompanied by a change in receptor-binding specificity. In contrast to ancestral clade 2.3.4 H5 proteins, novel clade 2.3.4.4 H5 proteins bind to fucosylated sialosides because of substitutions K222Q and S227R, which are unique for highly pathogenic influenza virus H5 proteins. North American clade 2.3.4.4 virus isolates have retained only the K222Q substitution but still bind fucosylated sialosides. Altered receptor-binding specificity of virus clade 2.3.4.4 H5 proteins might have contributed to emergence and spread of H5Nx viruses. PMID:27869615

  4. Alpha-2 adrenergic activity of bromocriptine and quinpirole in chicken pineal gland. Effects on melatonin synthesis and ( sup 3 H)rauwolscine binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zawilska, J.; Iuvone, P.M.

    In the pineal gland and retina of chickens, serotonin N-acetyl-transferase (NAT) activity and melatonin content are modulated by different receptors, alpha-2 adrenergic receptors in pineal gland and D2-dopamine receptors in retina. The effect of two D2-dopamine receptor agonists, bromocriptine and quinpirole (LY 171555), on melatonin synthesis in these tissues was investigated. Systemic administrations of bromocriptine and quinpirole decreased nocturnal NAT activity and melatonin content of both pineal gland and retina. Bromocriptine was equipotent in the two tissues, whereas quinpirole was approximately 100-fold more potent in retina than in pineal gland. In pineal gland, the suppressive effects of bromocriptine and quinpirolemore » on NAT activity were blocked by yohimbine, a selective alpha-2 adrenergic receptor antagonist, but not by spiperone, a D2-dopamine receptor antagonist. In contrast, bromocriptine- and quinpirole-induced decreases of the enzyme activity in retina were antagonized by spiperone, and not affected by yohimbine. The nocturnal increase of NAT activity of pineal glands in vitro was inhibited with an order of potency clonidine greater than bromocriptine greater than quinpirole. Additionally, bromocriptine and quinpirole displaced the specific binding of (3H)rauwolscine, an alpha-2 adrenergic receptor antagonist, to membranes from chicken pineal gland, with potencies comparable to those observed for inhibition of NAT activity in vitro. It is suggested that bromocriptine and quinpirole, in addition to their D2-dopaminergic activity, can stimulate alpha-2 adrenergic receptors in pineal gland of chicken.« less

  5. Differential effect of N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) on (/sup 3/H)SCH23390 and (/sup numberH/)forskolin binding in rat striatum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norman, A.B.; Wachendorf, T.J.; Sanberg, P.R.

    1989-01-01

    The binding of (/sup 3/H)forskolin to a homogeneous population of binding sites in rat striatum was enhanced by NaF, guanine nucleotides and MgCl/sub 2/. These effects of NaF and guanylylimidodiphosphate (Gpp(NH)p) were synergistic with MgCl/sub 2/, but NaF and Gpp(NH)p together elicited no greater enhancement of (/sup 3/H)forskolin binding. These data suggest that (/sup 3/H)forskolin may label a site which is modulated by the guanine nucleotide regulatory subunit which mediates the stimulation of adenylate cyclase (N/sub S/). The D/sub 1/ dopamine receptor is known to stimulate adenylate cyclase via N/sub S/. In rat striatum, the B/sub max/ of (/sup 3/H)forskolinmore » binding sites in the presence of MgCl/sub 2/ and NaF was approximately two fold greater than the B/sub max/ of (/sup 3/H)SCH23390-labeled D/sub 1/ dopamine receptors. Incubation of striatal homogenates with the protein modifying reagent EEDQ elicited a concentration-dependent decrease in the binding of both (/sup 3/H)SCH23390 and (/sup 3/H)forskolin, although EEDQ was approximately 14 fold more potent at inactivating the D/sub 1/ dopamine receptor. Following in vivo administration of EEDQ there was no significant effect on (/sup 3/H)forskolin binding sites using a dose of EEDQ that irreversibly inactivated greater than 90% of D/sub 1/ dopamine receptors. These data suggest that EEDQ is a suitable tool for investigating changes in the stoichiometry of receptors and their second messenger systems.« less

  6. Residues remote from the binding pocket control the antagonist selectivity towards the corticotropin-releasing factor receptor-1

    NASA Astrophysics Data System (ADS)

    Sun, Xianqiang; Cheng, Jianxin; Wang, Xu; Tang, Yun; Ågren, Hans; Tu, Yaoquan

    2015-01-01

    The corticotropin releasing factors receptor-1 and receptor-2 (CRF1R and CRF2R) are therapeutic targets for treating neurological diseases. Antagonists targeting CRF1R have been developed for the potential treatment of anxiety disorders and alcohol addiction. It has been found that antagonists targeting CRF1R always show high selectivity, although CRF1R and CRF2R share a very high rate of sequence identity. This has inspired us to study the origin of the selectivity of the antagonists. We have therefore built a homology model for CRF2R and carried out unbiased molecular dynamics and well-tempered metadynamics simulations for systems with the antagonist CP-376395 in CRF1R or CRF2R to address this issue. We found that the side chain of Tyr6.63 forms a hydrogen bond with the residue remote from the binding pocket, which allows Tyr6.63 to adopt different conformations in the two receptors and results in the presence or absence of a bottleneck controlling the antagonist binding to or dissociation from the receptors. The rotameric switch of the side chain of Tyr3566.63 allows the breaking down of the bottleneck and is a perquisite for the dissociation of CP-376395 from CRF1R.

  7. Residues remote from the binding pocket control the antagonist selectivity towards the corticotropin-releasing factor receptor-1

    PubMed Central

    Sun, Xianqiang; Cheng, Jianxin; Wang, Xu; Tang, Yun; Ågren, Hans; Tu, Yaoquan

    2015-01-01

    The corticotropin releasing factors receptor-1 and receptor-2 (CRF1R and CRF2R) are therapeutic targets for treating neurological diseases. Antagonists targeting CRF1R have been developed for the potential treatment of anxiety disorders and alcohol addiction. It has been found that antagonists targeting CRF1R always show high selectivity, although CRF1R and CRF2R share a very high rate of sequence identity. This has inspired us to study the origin of the selectivity of the antagonists. We have therefore built a homology model for CRF2R and carried out unbiased molecular dynamics and well-tempered metadynamics simulations for systems with the antagonist CP-376395 in CRF1R or CRF2R to address this issue. We found that the side chain of Tyr6.63 forms a hydrogen bond with the residue remote from the binding pocket, which allows Tyr6.63 to adopt different conformations in the two receptors and results in the presence or absence of a bottleneck controlling the antagonist binding to or dissociation from the receptors. The rotameric switch of the side chain of Tyr3566.63 allows the breaking down of the bottleneck and is a perquisite for the dissociation of CP-376395 from CRF1R. PMID:25628267

  8. Residues remote from the binding pocket control the antagonist selectivity towards the corticotropin-releasing factor receptor-1.

    PubMed

    Sun, Xianqiang; Cheng, Jianxin; Wang, Xu; Tang, Yun; Ågren, Hans; Tu, Yaoquan

    2015-01-28

    The corticotropin releasing factors receptor-1 and receptor-2 (CRF1R and CRF2R) are therapeutic targets for treating neurological diseases. Antagonists targeting CRF1R have been developed for the potential treatment of anxiety disorders and alcohol addiction. It has been found that antagonists targeting CRF1R always show high selectivity, although CRF1R and CRF2R share a very high rate of sequence identity. This has inspired us to study the origin of the selectivity of the antagonists. We have therefore built a homology model for CRF2R and carried out unbiased molecular dynamics and well-tempered metadynamics simulations for systems with the antagonist CP-376395 in CRF1R or CRF2R to address this issue. We found that the side chain of Tyr(6.63) forms a hydrogen bond with the residue remote from the binding pocket, which allows Tyr(6.63) to adopt different conformations in the two receptors and results in the presence or absence of a bottleneck controlling the antagonist binding to or dissociation from the receptors. The rotameric switch of the side chain of Tyr356(6.63) allows the breaking down of the bottleneck and is a perquisite for the dissociation of CP-376395 from CRF1R.

  9. SSR126768A (4-chloro-3-[(3R)-(+)-5-chloro-1-(2,4-dimethoxybenzyl)-3-methyl-2-oxo-2,3-dihydro-1H-indol-3-yl]-N-ethyl-N-(3-pyridylmethyl)-benzamide, hydrochloride): a new selective and orally active oxytocin receptor antagonist for the prevention of preterm labor.

    PubMed

    Serradeil-Le Gal, Claudine; Valette, Gérard; Foulon, Loïc; Germain, Guy; Advenier, Charles; Naline, Emmanuel; Bardou, Marc; Martinolle, Jean-Pierre; Pouzet, Brigitte; Raufaste, Danielle; Garcia, Corinne; Double-Cazanave, Eléonore; Pauly, Maxime; Pascal, Marc; Barbier, Alain; Scatton, Bernard; Maffrand, Jean-Pierre; Le Fur, Gérard

    2004-04-01

    4-chloro-3-[(3R)-(+)-5-chloro-1-(2,4-dimethoxybenzyl)-3-methyl-2-oxo-2,3-dihydro-1H-indol-3-yl]-N-ethyl-N-(3-pyridylmethyl)benzamide, hydrochloride (SSR126768A), a new potent and selective, orally active oxytocin (OT) receptor antagonist was characterized in several biochemical and pharmacological models. In binding studies, SSR126768A showed nanomolar affinity for rat and human recombinant and native OT receptors (K(i) = 0.44 nM) and exhibited much lower affinity for V(1a), V(1b), and V(2) receptors. In addition, it did not interact with a large number of other receptors, enzymes, and ion channels (1 microM). In autoradiographic experiments performed on at-term human pregnant uterus sections, SSR126768A dose dependently displaced [I(125)]d(CH(2))(5)[Tyr(Me)(2), Thr(4), Orn(8) (125)I-Tyr-NH(2)(9)]VT in situ labeling to OT receptors highly expressed in these tissues. In functional studies, SSR126768A behaved as a full antagonist and potently antagonized OT-induced intracellular Ca(2+) increase (K(i) = 0.50 nM) and prostaglandin release (K(i) = 0.45 nM) in human uterine smooth muscle cells. In rat isolated myometrium, OT-induced uterine contractions were competitively antagonized by SSR126768A (pA(2) = 8.47). Similarly, in human pregnant myometrial strips, SSR126768A inhibited the contractile uterine response to OT. In conscious telemetrated rats, oral administration of SSR126768A (1-10 mg/kg) produced a competitive inhibition of the dose response to OT on uterine contractions up to 24 h at 3 mg/kg p.o.; no tachyphylaxis was observed after 4-day repeated treatment. Finally, SSR126768A (30 mg/kg p.o.) significantly delayed parturition in pregnant rats in labor similar to ritodrine (10 mg/kg p.o.). Thus, SSR126768A is a potent, highly selective, orally active OT receptor antagonist with a long duration of action. This molecule could find therapeutic application as a tocolytic agent for acute and chronic oral management of preterm labor.

  10. Solubilization and characterization of haloperidol-sensitive (+)-( sup 3 H)SKF-10,047 binding sites (sigma sites) from rat liver membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCann, D.J.; Su, T.P.

    1991-05-01

    The zwitterionic detergent 3-((3-cholamidopropyl)dimethylamino)-1-propanesulfonate (CHAPS) produced optimal solubilization of (+)-({sup 3}H)SKF-10,047 binding sites from rat liver membranes at a concentration of 0.2%, well below the critical micellular concentration of the detergent. The pharmacological selectivity of the liver (+)-({sup 3}H)SKF-10,047 binding sites corresponds to that of sigma sites from rat and guinea pig brain. When the affinities of 18 different drugs at (+)-({sup 3}H)SKF-10,047 binding sites in membranes and solubilized preparations were compared, a correlation coefficient of 0.99 and a slope of 1.03 were obtained, indicating that the pharmacological selectivity of rat liver sigma sites is retained after solubilization. In addition,more » the binding of 20 nM ({sup 3}H)progesterone to solubilized rat liver preparations was found to exhibit a pharmacological selectivity appropriate for sigma sites. A stimulatory effect of phenytoin on (+)-({sup 3}H)SKF-10,047 binding to sigma sites persisted after solubilization. When the solubilized preparation was subjected to molecular sizing chromatography, a single peak exhibiting specific (+)-({sup 3}H)SKF-10,047 binding was obtained. The binding activity of this peak was stimulated symmetrically when assays were performed in the presence of 300 microM phenytoin. The molecular weight of the CHAPS-solubilized sigma site complex was estimated to be 450,000 daltons. After solubilization with CHAPS, rat liver sigma sites were enriched to 12 pmol/mg of protein. The present results demonstrate a successful solubilization of sigma sites from rat liver membranes and provide direct evidence that the gonadal steroid progesterone binds to sigma sites. The results also suggest that the anticonvulsant phenytoin binds to an associated allosteric site on the sigma site complex.« less

  11. Structural Modifications to Tetrahydropyridine-3-Carboxylate Esters en route to the Discovery of M5-Preferring Muscarinic Receptor Orthosteric Antagonists

    PubMed Central

    Zheng, Guangrong; Smith, Andrew M.; Huang, Xiaoqin; Subramanian, Karunai L.; Siripurapu, Kiran B.; Deaciuc, Agripina; Zhan, Chang-Guo; Dwoskin, Linda P.

    2013-01-01

    The M5 muscarinic acetylcholine receptor is suggested to be a potential pharmacotherapeutic target for the treatment of drug abuse. We describe herein the discovery of a series of M5-preferring orthosteric antagonists based on the scaffold of 1,2,5,6-tetrahydropyridine-3-carboxylic acid. Compound 56, the most selective compound in this series, possesses an 11-fold selectivity for the M5 over M1 receptor, and shows little activity at M2–M4. This compound, although exhibiting modest affinity (Ki = 2.24 μM) for the [3H]N-methylscopolamine binding site on the M5 receptor, is potent (IC50 = 0.45 nM) in inhibiting oxotremorine-evoked [3H]DA release from rat striatal slices. Further, a homology model of human M5 receptor based on the crystal structure of the rat M3 receptor was constructed, and docking studies of compounds 28 and 56 were performed in an attempt to understand the possible binding mode of these novel analogues to the receptor. PMID:23379472

  12. A DFT approach to discriminate the antagonist and partial agonist activity of ligands binding to the NMDA receptor

    NASA Astrophysics Data System (ADS)

    Haslak, Zeynep Pinar; Bozkurt, Esra; Dutagaci, Bercem; De Proft, Frank; Aviyente, Viktorya; De Vleeschouwer, Freija

    2018-02-01

    The activation of N-methyl-D-aspartate receptors is found to be intimately associated with neurodegenerative diseases which make them promising therapeutic targets. Despite the significantly increasing multidisciplinary interests centred on this ionotropic channel, design of new ligands with intended functional activity remains a great challenge. In this article, a computational study based on density functional theory is presented to understand the structural factors of ligands determining their function as antagonists and partial agonists. With this aim, the GluN1 subunit is chosen as being one of the essential components in the activation mechanism, and quantum chemical calculations are implemented for 30 antagonists and 30 partial agonists known to bind to this subunit with different binding affinities. Several quantum chemical descriptors are investigated which might unlock the difference between antagonists and partial agonists.

  13. 2-(3-Fluoro-4-methylsulfonylaminophenyl) Propanamides as Potent Transient Receptor Potential Vanilloid 1 (TRPV1) Antagonists: Structure Activity Relationships of 2-Amino Derivatives in the N-(6-trifluoromethyl-pyridin-3-ylmethyl) C-region

    PubMed Central

    Kim, Myeong Seop; Ryu, HyungChul; Kang, Dong Wook; Cho, Seong-Hee; Seo, Sejin; Park, Young Soo; Kim, Mi-Yeon; Kwak, Eun Joo; Kim, Yong Soo; Bhondwe, Rahul S.; Kim, Ho Shin; Park, Seul-gi; Son, Karam; Choi, Sun; DeAndrea-Lazarus, Ian; Pearce, Larry V.; Blumberg, Peter M.; Frank, Robert; Bahrenberg, Gregor; Stockhausen, Hannelore; Kögel, Babette Y.; Schiene, Klaus; Christoph, Thomas; Lee, Jeewoo

    2012-01-01

    A series of N-(2-amino-6-trifluoromethyl-pyridin-3-ylmethyl) 2-(3-fluoro-4-methylsulfonylaminophenyl) propanamides were designed combining previously identified pharmacophoric elements and evaluated as hTRPV1 antagonists. The SAR analysis indicated that specific hydrophobic interactions of the 2-amino substituents in the C-region of the ligand were critical for high hTRPV1binding potency. In particular, compound 49S was an excellent TRPV1 antagonist (Ki(CAP) = 0.2 nM; IC50(pH) = 6.3 nM) and was thus ca. 100- and 20-fold more potent, respectively, than the parent compounds 2 and 3 for capsaicin antagonism. Furthermore, it demonstrated strong analgesic activity in the rat neuropathic model superior to 2 with almost no side effects. Compound 49S antagonized capsaicin induced hypothermia in mice, but showed TRPV1-related hyperthermia. The basis for the high potency of 49S compared to 2 is suggested by docking analysis with our hTRPV1 homology model in which the 4-methylpiperidinyl group in the C-region of 49S made additional hydrophobic interactions with the hydrophobic region. PMID:22957803

  14. Muscarinic binding sites in cultured bovine pulmonary arterial endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aronstam, R.S.; Catravas, J.D.; Ryan, U.S.

    The authors have previously reported a) the presence of muscarinic binding sites on cultured bovine pulmonary arterial endothelial cells (BPAE; 2,000 sites/cell) and b) that acetylcholine inhibits the release of thromboxane B/sub 2/ fro BPAE. Since the authors findings could reflect muscarinic receptors (mAChR) on BPAE, they have further investigated the nature of BPAE muscarinic binding sites and contrast them to those of known functional mAChR. Muscarinic binding sites on BPAE resembled mAChR in that a) the binding of 3 nM /sup 3/H QNB was inhibited by muscarinic agonists and antagonists; b) /sup 3/H QNB binding was 30 times moremore » sensitive to R(-)- than to S(+)-QNB; c) carbamylcholine binding was resolved into high and low affinity components (IC50's = 0.04 and 2 ..mu..M; d) 5'-guanylylimidodiphosphate (100 ..mu..M) shifted agonist binding curves to the right by a factor of 3; 4) the atropine-sensitive binding of /sup 3/H oxotremorine-M (/sup 3/H-OXO-M) was depressed by the guanine nucleotide (IC50 + 60 ..mu..M). However, although gallamine allosterically regulates mAChR binding in other tissues, it did not affect the rates of dissociation of /sup 3/H QNB, /sup 3/H methylscopolamine or /sup 3/H OXO-M from BPAE binding sites. Thus, BPAE muscarinic binding sites posses many but not all of the properties associated with functional mAChR.« less

  15. Arabidopsis Histone Reader EMSY-LIKE 1 Binds H3K36 and Suppresses Geminivirus Infection.

    PubMed

    Coursey, Tami; Milutinovic, Milica; Regedanz, Elizabeth; Brkljacic, Jelena; Bisaro, David M

    2018-06-06

    Histone post-translational modifications (PTMs) impart information that regulates chromatin structure and activity. Their effects are mediated by histone reader proteins that bind specific PTMs to modify chromatin and/or recruit appropriate effectors to alter the chromatin landscape. Despite their crucial juxtaposition between information and functional outcome, relatively few plant histone readers have been identified, and nothing is known about their impact on viral chromatin and pathogenesis. We used the geminivirus Cabbage leaf curl virus (CaLCuV) as a model to functionally characterize two recently identified reader proteins, EMSY-LIKE 1 and 3 (EML1 and EML3), which contain Tudor-like Agenet domains predictive of histone PTM binding function. Here, we show that mutant Arabidopsis plants exhibit contrasting hypersusceptible ( eml1 ) and tolerant ( eml3 ) responses to CaLCuV infection, and that EML1 deficiency correlates with RNA polymerase II (Pol II) enrichment on viral chromatin and upregulated viral gene expression. Consistent with reader activity, EML1 and EML3 associate with nucleosomes and with CaLCuV chromatin, suggesting a direct impact on pathogenesis. We also demonstrate that EML1 and EML3 bind peptides containing histone H3 lysine 36 (H3K36), a PTM usually associated with active gene expression. The interaction encompasses multiple H3K36 PTMs, including methylation and acetylation, suggesting nuanced regulation. Further, EML1 and EML3 associate with similar regions of viral chromatin, implying possible competition between the two readers. Regions of EML1 and EML3 association correlate with sites of trimethylated H3K36 (H3K36me3) enrichment, consistent with regulation of geminivirus chromatin by direct EML targeting. IMPORTANCE Histone PTMs convey information that regulates chromatin compaction and DNA accessibility. Histone reader proteins bind specific PTMs and translate their effects by modifying chromatin and/or by recruiting effectors that alter

  16. Increased /sup 3/H-spiperone binding sites in mesolimbic area related to methamphetamine-induced behavioral hypersensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akiyama, K.; Sato, M.; Otsuki, S.

    1982-02-01

    The specific /sup 3/H-spiperone binding to membrane homogenates of the striatum, mesolimbic area, and frontal cortex was examined in two groups of rats pretreated once daily with saline or 4 mg/kg of methamphetamine (MAP) for 14 days. At 7 days following cessation of chronic pretreatment, all rats received an injection of 4 mg/kg of MAP and were decapitated 1 hr after the injection. In the chronic saline-pretreatment group, the single administration of MAP induced significant changes in the number (Bmax) of specific /sup 3/H-spiperone binding sites (a decrease in the striatum and an increase in the mesolimbic area and frontalmore » cortex), but no significant changes in the affinity (KD) in any brain area. The chronic MAP pretreatment markedly augmented the changes in Bmax in the striatum and mesolimbic area. The increase in specific /sup 3/H-spiperone binding sites in the mesolimbic area is discussed in relation to MAP-induced behavioral hypersensitivity.« less

  17. Comparison of the effect of the antacid Rennie versus low-dose H2-receptor antagonists (ranitidine, famotidine) on intragastric acidity.

    PubMed

    Netzer, P; Brabetz-Höfliger, A; Bründler, R; Flogerzi, B; Hüsler, J; Halter, F

    1998-04-01

    Symptoms of functional dyspepsia are common and patients often self-medicate with antacids, or with low-dose H2-antagonists which are available as over-the-counter medications. To date, there has been limited information available comparing the effects on intragastric acidity of these two types of over-the-counter medication. Therefore we studied the effect of the antacid Rennie and two H2-antagonists on the intragastric pH of fasting volunteers. Sixteen healthy, fasting volunteers were randomized into a double-blind, placebo-controlled, four-way crossover study comparing Rennie (calcium-magnesium carbonate) 1360 mg, ranitidine 75 mg, famotidine 10 mg and placebo. Their effect on gastric pH was monitored by a 4-h gastric pH-metry. The primary efficacy parameter was the time lag before an intragastric pH > 3.0 was reached after drug administration. The median time lag before pH > 3.0 was reached after drug administration was 5.8 min for Rennie, 64.9 min for ranitidine, 70.1 min for famotidine and 240.0 min for placebo. The percentage of time with values of pH > 3.0 was 10.4% for Rennie, 61.4% for ranitidine, 56.6% for famotidine and 1.4% for placebo. The onset of action in fasting volunteers was significantly faster with the antacid than with the two H2-antagonists. The duration of action was significantly longer with an H2-antagonist than with the antacid. This suggests that the two products should be used for different indications: antacids are superior for rapid pain relief, whereas H2-antagonists might be better for symptom prophylaxis--for example for nocturnal dyspepsia.

  18. Efficacy of antipsychotic agents at human 5-HT(1A) receptors determined by [3H]WAY100,635 binding affinity ratios: relationship to efficacy for G-protein activation.

    PubMed

    Newman-Tancredi, A; Verrièle, L; Touzard, M; Millan, M J

    2001-10-05

    5-HT(1A) receptors are implicated in the aetiology of schizophrenia. Herein, the influence of 15 antipsychotics on the binding of the selective 'neutral' antagonist, [3H]WAY100,635 ([3H]N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)-cyclo-hexanecarboxamide), was examined at human 5-HT(1A) receptors expressed in Chinese Hamster Ovary cells. In competition binding experiments, 5-HT displayed biphasic isotherms which were shifted to the right in the presence of the G-protein uncoupling agent, GTPgammaS (100 microM). In analogy, the isotherms of ziprasidone, quetiapine and S16924 (((R-2-[1-[2-(2,3-dihydro-benzo[1,4]dioxin-5-yloxy)-ethyl]-pyrrolidin-3yl]-1-(4-fluoro-phenyl)-ethanone), were displaced to the right by GTPgammaS, consistent with agonist actions. Binding of several other antipsychotics, such as ocaperidone, olanzapine and risperidone, was little influenced by GTPgammaS. Isotherms of the neuroleptics, haloperidol, chlorpromazine and thioridazine were shifted to the left in the presence of GTPgammaS, suggesting inverse agonist properties. For most ligands, the magnitude of affinity changes induced by GTPgammaS (alteration in pK(i) values) correlated well with their previously determined efficacies in [35S]GTPgammaS binding studies [Eur. J. Pharmacol. 355 (1998) 245]. In contrast, the affinity of the 'atypical' antipsychotic agent, clozapine, which is a known partial agonist at 5-HT(1A) receptors, was less influenced by GTPgammaS. When the ratio of high-/low-affinity values was plotted against efficacy, hyperbolic isotherms were obtained, consistent with a modified ternary complex model which assumes that receptors can adopt active conformations in the absence of agonist. In conclusion, modulation of [3H]-WAY100,635 binding by GTPgammaS differentiated agonist vs. inverse agonist properties of antipsychotics at 5-HT(1A) receptors. These may contribute to differing profiles of antipsychotic activity.

  19. Receptor mimicry by antibody F045–092 facilitates universal binding to the H3 subtype of influenza virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Peter S.; Ohshima, Nobuko; Stanfield, Robyn L.

    Influenza viruses present a significant health challenge each year, as in the H3N2 epidemic of 2012–2013. Here we describe an antibody, F045–092, that possesses broadly neutralizing activity against the entire H3 subtype and accommodates the natural variation and additional glycosylation in all strains tested from 1963 to 2011. Crystal structures of F045–092 in complex with HAs from 1975 and 2011 H3N2 viruses reveal the structural basis for its neutralization breadth through insertion of its 23-residue HCDR3 into the receptor-binding site that involves striking receptor mimicry. F045–092 extends its recognition to divergent subtypes, including H1, H2 and H13, using the enhancedmore » avidity of its IgG to overcome lower-affinity Fab binding, as observed with other antibodies that target the receptor-binding site. This unprecedented level of antibody cross-reactivity against the H3 subtype can potentially inform on development of a pan-H3 vaccine or small-molecule therapeutics.« less

  20. Can human allergy drug fexofenadine, an antagonist of histamine (H1) receptor, be used to treat dog and cat? Homology modeling, docking and molecular dynamic Simulation of three H1 receptors in complex with fexofenadine.

    PubMed

    Sader, Safaa; Cai, Jun; Muller, Anna C G; Wu, Chun

    2017-08-01

    Fexofenadine, a potent antagonist to human histamine 1 (H 1 ) receptor, is a non-sedative third generation antihistamine that is widely used to treat various human allergic conditions such as allergic rhinitis, conjunctivitis and atopic dermatitis. Encouragingly, it's been successfully used to treat canine atopic dermatitis, this supports the notion that it might have a great potential for treating other canine allergic conditions and other mammal pets such as dog. Regrettably, while there is a myriad of studies conducted on the interactions of antihistamines with human H 1 receptor, the similar studies on non-human pet H 1 are considerably scarce. The published studies using the first and second generation antihistamines drugs have shown that the antihistamine response is varied and unpredictable. Thus, to probe its efficacy on pet, the homology models of dog and cat H 1 receptors were built based on the crystal structure of human H 1 receptor bound to antagonist doxepin (PDB 3RZE) and fexofenadine was subsequently docked to human, dog and cat H 1 receptors. The docked complexes are then subjected to 1000ns molecular dynamics (MD) simulations with explicit membrane. Our calculated MM/GBSA binding energies indicated that fexofenadine binds comparably to the three receptors; and our MD data also showed the binding poses, structural and dynamic features among three receptors are very similar. Therefore, our data supported the application of fexofenadine to the H 1 related allergic conditions of dog and cat. Nonetheless, subtle systemic differences among human, dog and cat H 1 receptors were also identified. Clearly, there is still a space to develop a more selective, potent and safe antihistamine alternatives such as Fexofenadine for dog or cat based on these differences. Our computation approach might provide a fast and economic way to predict if human antihistamine drugs can also be safely and efficaciously administered to animals. Copyright © 2017 Elsevier Inc

  1. (/sup 3/H)forskolin- and (/sup 3/H)dihydroalprenolol-binding sites and adenylate cyclase activity in heart of rats fed diets containing different oils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alam, S.Q.; Ren, Y.F.; Alam, B.S.

    1988-03-01

    The characteristics of the cardiac adenylate cyclase system were studied in rats fed diets containing fish oil (menhaden oil) and other oils. Adenylate cyclase activity generally was higher in cardiac homogenates and membranes of rats fed diet containing 10% menhaden oil than in the other oils. The increase in enzyme activity, especially in forskolin-stimulated activity, was associated with an increase in the concentration of the (/sup 3/H) forskolin-binding sites in cardiac membranes of rats fed menhaden oil. The beta-adrenergic receptor concentration was not significantly altered although the affinity for (/sup 3/H)dihydroalprenolol-binding was lower in membranes of rats fed menhaden oilmore » than those fed the other oils. omega-3 fatty acids from menhaden oil were incorporated into the cardiac membrane phospholipids. The results suggest that the observed increase in myocardial adenylate cyclase activity of rats fed menhaden oil may be due to an increase in the number of the catalytic subunits of the enzyme or due to a greater availability of the forskolin-binding sites.« less

  2. The sodium channel in membranes of electroplax. Binding of batrachotoxinin-a [(3)H]benzoate to particulate preparations from electric eel (electrophorus).

    PubMed

    McNeal, E T; Daly, J W

    1986-01-01

    Batrachotoxinin-A [(3)H]benzoate ([(3)H]BTX-B) binds specifically and with high affinity (K(D) 48 nM) to sites (B(max) 2.1 pmol/mg protein) associated with voltage-dependent sodium channels in rodent brain vesicular preparations. High affinity binding requires the presence of scorpion (Leiurus) venom and a membrane potential. Local anesthetics antagonize the binding. Nonspecific binding is defined in the presence of veratridine. In particulate preparations from electroplax of the eel Electrophorus electricus, [(3)H]BTX-B binds with a K(D) of about 140 nM and a B(max) of 2.5 pmol/mg protein in the presence of scorpion venom. Higher concentrations of scorpion venom are required to enhance binding in Electrophorus preparations than in brain preparations. Local anesthetics antagonize binding in Electrophorus preparations with potencies similar to those in brain preparations. Veratridine and batrachotoxin are less potent in blocking binding in Electrophorus than in brain preparations. It appears likely that binding in Electrophorus preparations is primarily to membrane fragments rather than vesicular entities as in brain. Binding of [(3)H]BTX-B to particulate preparations from electroplax of the ray Torpedo californica and the catfish Malapterurus electricus is mainly nonspecific. Scorpion venom does not enhance total binding and local anesthetics are not effective in antagonizing binding.

  3. Super-high-affinity binding site for [3H]diazepam in the presence of Co2+, Ni2+, Cu2+, or Zn2+.

    PubMed

    Mizuno, S; Ogawa, N; Mori, A

    1982-12-01

    Chloride salts of Li+, Na+, K+, Mg2+, Ca2+, Cr3+, Mn2+, Fe2+, and Fe3+ had no effect on [3H]diazepam binding. Chloride salts of Co2+, Ni2+, Cu2+, and Zn2+ increased [3H]diazepam binding by 34 to 68% in a concentration-dependent fashion. Since these divalent cations potentiated the GABA-enhanced [3H]diazepam binding and the effect of each divalent cation was nearly additive with GABA, these cations probably act at a site different from the GABA recognition site in the benzodiazepine-receptor complex. Scatchard plots of [3H]diazepam binding without an effective divalent cation showed a single class of binding, with a Kd value of 5.3 nM. In the presence of 1 mM Co2+, Ni2+, Cu2+, or Zn2+, two distinct binding sites were evident with apparent Kd values of 1.0 nM and 5.7 nM. The higher-affinity binding was not detected in the absence of an effective divalent cation and is probably a novel, super-high-affinity binding site.

  4. Exploring the binding energy profiles of full agonists, partial agonists, and antagonists of the α7 nicotinic acetylcholine receptor.

    PubMed

    Tabassum, Nargis; Ma, Qianyun; Wu, Guanzhao; Jiang, Tao; Yu, Rilei

    2017-09-01

    Nicotinic acetylcholine receptors (nAChRs) belong to the Cys-loop receptor family and are important drug targets for the treatment of neurological diseases. However, the precise determinants of the binding efficacies of ligands for these receptors are unclear. Therefore, in this study, the binding energy profiles of various ligands (full agonists, partial agonists, and antagonists) were quantified by docking those ligands with structural ensembles of the α7 nAChR exhibiting different degrees of C-loop closure. This approximate treatment of interactions suggested that full agonists, partial agonists, and antagonists of the α7 nAChR possess distinctive binding energy profiles. Results from docking revealed that ligand binding efficacy may be related to the capacity of the ligand to stabilize conformational states with a closed C loop.

  5. Pharmacological lineage analysis revealed the binding affinity of broad-spectrum substance P antagonists to receptors for gonadotropin-releasing peptide.

    PubMed

    Arai, Kazune; Kashiwazaki, Aki; Fujiwara, Yoko; Tsuchiya, Hiroyoshi; Sakai, Nobuya; Shibata, Katsushi; Koshimizu, Taka-aki

    2015-02-15

    A group of synthetic substance P (SP) antagonists, such as [Arg(6),D-Trp(7,9),N(Me)Phe(8)]-substance P(6-11) and [D-Arg(1),D-Phe(5),D-Trp(7,9),Leu(11)]-substance P, bind to a range of distinct G-protein-coupled receptor (GPCR) family members, including V1a vasopressin receptors, and they competitively inhibit agonist binding. This extended accessibility enabled us to identify a GPCR subset with a partially conserved binding site structure. By combining pharmacological data and amino acid sequence homology matrices, a pharmacological lineage of GPCRs that are sensitive to these two SP antagonists was constructed. We found that sensitivity to the SP antagonists was not limited to the Gq-protein-coupled V1a and V1b receptors; Gs-coupled V2 receptors and oxytocin receptors, which couple with both Gq and Gi, also demonstrated sensitivity. Unexpectedly, a dendrogram based on the amino acid sequences of 222 known GPCRs showed that a group of receptors sensitive to the SP antagonists are located in close proximity to vasopressin/oxytocin receptors. Gonadotropin-releasing peptide receptors, located near the vasopressin receptors in the dendrogram, were also sensitive to the SP analogs, whereas α1B adrenergic receptors, located more distantly from the vasopressin receptors, were not sensitive. Our finding suggests that pharmacological lineage analysis is useful in selecting subsets of candidate receptors that contain a conserved binding site for a ligand with broad-spectrum binding abilities. The knowledge that the binding site of the two broad-spectrum SP analogs partially overlaps with that of distinct peptide agonists is valuable for understanding the specificity/broadness of peptide ligands. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. 5-HT1A receptor antagonists reduce food intake and body weight by reducing total meals with no conditioned taste aversion.

    PubMed

    Dill, M Joelle; Shaw, Janice; Cramer, Jeff; Sindelar, Dana K

    2013-11-01

    Serotonin acts through receptors controlling several physiological functions, including energy homeostasis regulation and food intake. Recent experiments demonstrated that 5-HT1A receptor antagonists reduce food intake. We sought to examine the microstructure of feeding with 5-HT1A receptor antagonists using a food intake monitoring system. We also examined the relationship between food intake, inhibition of binding and pharmacokinetic (PK) profiles of the antagonists. Ex vivo binding revealed that, at doses used in this study to reduce food intake, inhibition of binding of a 5-HT1A agonist by ~40% was reached in diet-induced obese (DIO) mice with a trend for higher binding in DIO vs. lean animals. Additionally, PK analysis detected levels from 2 to 24h post-compound administration. Male DIO mice were administered 5-HT1A receptor antagonists LY439934 (10 or 30 mg/kg, p.o.), WAY100635 (3 or 10mg/kg, s.c.), SRA-333 (10 or 30 mg/kg, p.o.), or NAD-299 (3 or 10mg/kg, s.c.) for 3 days and meal patterns were measured. Analyses revealed that for each antagonist, 24-h food intake was reduced through a specific decrease in the total number of meals. Compared to controls, meal number was decreased 14-35% in the high dose. Average meal size was not changed by any of the compounds. The reduction in food intake reduced body weight 1-4% compared to Vehicle controls. Subsequently, a conditioned taste aversion (CTA) assay was used to determine whether the feeding decrease might be an indicator of aversion, nausea, or visceral illness caused by the antagonists. Using a two bottle preference test, it was found that none of the compounds produced a CTA. The decrease in food intake does not appear to be a response to nausea or malaise. These results indicate that 5-HT1A receptor antagonist suppresses feeding, specifically by decreasing the number of meals, and induce weight loss without an aversive side effect. © 2013 Elsevier Inc. All rights reserved.

  7. Studies of New Fused Benzazepine as Selective Dopamine D3 Receptor Antagonists Using 3D-QSAR, Molecular Docking and Molecular Dynamics

    PubMed Central

    Liu, Jing; Li, Yan; Zhang, Shuwei; Xiao, Zhengtao; Ai, Chunzhi

    2011-01-01

    In recent years, great interest has been paid to the development of compounds with high selectivity for central dopamine (DA) D3 receptors, an interesting therapeutic target in the treatment of different neurological disorders. In the present work, based on a dataset of 110 collected benzazepine (BAZ) DA D3 antagonists with diverse kinds of structures, a variety of in silico modeling approaches, including comparative molecular field analysis (CoMFA), comparative similarity indices analysis (CoMSIA), homology modeling, molecular docking and molecular dynamics (MD) were carried out to reveal the requisite 3D structural features for activity. Our results show that both the receptor-based (Q2 = 0.603, R2ncv = 0.829, R2pre = 0.690, SEE = 0.316, SEP = 0.406) and ligand-based 3D-QSAR models (Q2 = 0.506, R2ncv =0.838, R2pre = 0.794, SEE = 0.316, SEP = 0.296) are reliable with proper predictive capacity. In addition, a combined analysis between the CoMFA, CoMSIA contour maps and MD results with a homology DA receptor model shows that: (1) ring-A, position-2 and R3 substituent in ring-D are crucial in the design of antagonists with higher activity; (2) more bulky R1 substituents (at position-2 of ring-A) of antagonists may well fit in the binding pocket; (3) hydrophobicity represented by MlogP is important for building satisfactory QSAR models; (4) key amino acids of the binding pocket are CYS101, ILE105, LEU106, VAL151, PHE175, PHE184, PRO254 and ALA251. To our best knowledge, this work is the first report on 3D-QSAR modeling of the new fused BAZs as DA D3 antagonists. These results might provide information for a better understanding of the mechanism of antagonism and thus be helpful in designing new potent DA D3 antagonists. PMID:21541053

  8. Studies of new fused benzazepine as selective dopamine D3 receptor antagonists using 3D-QSAR, molecular docking and molecular dynamics.

    PubMed

    Liu, Jing; Li, Yan; Zhang, Shuwei; Xiao, Zhengtao; Ai, Chunzhi

    2011-02-18

    In recent years, great interest has been paid to the development of compounds with high selectivity for central dopamine (DA) D3 receptors, an interesting therapeutic target in the treatment of different neurological disorders. In the present work, based on a dataset of 110 collected benzazepine (BAZ) DA D3 antagonists with diverse kinds of structures, a variety of in silico modeling approaches, including comparative molecular field analysis (CoMFA), comparative similarity indices analysis (CoMSIA), homology modeling, molecular docking and molecular dynamics (MD) were carried out to reveal the requisite 3D structural features for activity. Our results show that both the receptor-based (Q(2) = 0.603, R(2) (ncv) = 0.829, R(2) (pre) = 0.690, SEE = 0.316, SEP = 0.406) and ligand-based 3D-QSAR models (Q(2) = 0.506, R(2) (ncv) =0.838, R(2) (pre) = 0.794, SEE = 0.316, SEP = 0.296) are reliable with proper predictive capacity. In addition, a combined analysis between the CoMFA, CoMSIA contour maps and MD results with a homology DA receptor model shows that: (1) ring-A, position-2 and R(3) substituent in ring-D are crucial in the design of antagonists with higher activity; (2) more bulky R(1) substituents (at position-2 of ring-A) of antagonists may well fit in the binding pocket; (3) hydrophobicity represented by MlogP is important for building satisfactory QSAR models; (4) key amino acids of the binding pocket are CYS101, ILE105, LEU106, VAL151, PHE175, PHE184, PRO254 and ALA251. To our best knowledge, this work is the first report on 3D-QSAR modeling of the new fused BAZs as DA D3 antagonists. These results might provide information for a better understanding of the mechanism of antagonism and thus be helpful in designing new potent DA D3 antagonists.

  9. AHR-16303B, a novel antagonist of 5-HT2 receptors and voltage-sensitive calcium channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrett, R.J.; Appell, K.C.; Kilpatrick, B.F.

    1991-01-01

    In vivo and in vitro methods were used to characterize AHR-16303B, a novel compound with antagonistic action at 5-HT2 receptors and voltage-sensitive calcium channels. The 5-HT2 receptor-antagonistic properties of AHR-16303B were demonstrated by inhibition of (a) (3H)ketanserin binding to rat cerebral cortical membranes (IC50 = 165 nM); (b) 5-hydroxytryptamine (5-HT)-induced foot edema in rats (minimum effective dose, (MED) = 0.32 mg/kg orally, p.o.); (c) 5-HT-induced vasopressor responses in spontaneously hypertensive rats (SHR) (ID50 = 0.18 mg/kg intravenously (i.v.), 1.8 mg/kg p.o.), (d) 5-HT-induced antidiuresis in rats (MED = 1 mg/kg p.o.), and (e) platelet aggregation induced by 5-HT + ADPmore » (IC50 = 1.5 mM). The calcium antagonist properties of AHR-16303B were demonstrated by inhibition of (a) (3H)nimodipine binding to voltage-sensitive calcium channels on rabbit skeletal muscle membranes (IC50 = 15 nM), (b) KCl-stimulated calcium flux into cultured PC12 cells (IC50 = 81 nM), and (c) CaCl2-induced contractions of rabbit thoracic aortic strips (pA2 = 8.84). AHR-16303B had little or no effect on binding of radioligands to dopamine2 (DA2) alpha 1, alpha 2, H1, 5-HT1 alpha, beta 2, muscarinic M1, or sigma opioid receptors; had no effect on 5-HT3 receptor-mediated vagal bradycardia; and had only minor negative inotropic, chronotropic, and dromotropic effects on isolated guinea pig atria. In conscious SHR, 30 mg/kg p.o. AHR-16303B completely prevented the vasopressor responses to i.v. 5-HT, and decreased blood pressure (BP) by 24% 3 h after dosing.« less

  10. Endogenous dopamine (DA) modulates (3H)spiperone binding in vivo in rat brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bischoff, S.; Krauss, J.; Grunenwald, C.

    1991-01-01

    (3H)spiperone (SPI) binding in vivo, biochemical parameters and behavior were measured after modulating DA levels by various drug treatments. DA releasers and uptake inhibitors increased SPI binding in rat striatum. In other brain areas, the effects were variable, but only the pituitary remained unaffected. Surprisingly, nomifensine decreased SPI binding in frontal cortex. The effects of these drugs were monitored by measuring DA, serotonin (5-HT) and their metabolites in the same rats. The increased SPI binding in striatum was parallel to the locomotor stimulation with the following rank order: amfonelic acid greater than nomifensine greater than D-amphetamine greater than or equalmore » to methylphenidate greater than amineptine greater than bupropion. Decreasing DA levels with reserpine or alpha-methyl-para-tyrosine reduced SPI binding by 45% in striatum only when both drugs were combined. In contrast, reserpine enhanced SPI binding in pituitary. Thus, the amount of releasable DA seems to modulate SPI binding characteristics. It is suggested that in vivo, DA receptors are submitted to dynamic regulation in response to changes in intrasynaptic concentrations of DA.« less

  11. Nucleosome eviction along with H3K9ac deposition enhances Sox2 binding during human neuroectodermal commitment

    PubMed Central

    Du, Yanhua; Liu, Zhenping; Cao, Xinkai; Chen, Xiaolong; Chen, Zhenyu; Zhang, Xiaobai; Zhang, Xiaoqing; Jiang, Cizhong

    2017-01-01

    Neuroectoderm is an important neural precursor. However, chromatin remodeling and its epigenetic regulatory roles during the differentiation of human neuroectodermal cells (hNECs) from human embryonic stem cells (hESCs) remain largely unexplored. Here, we obtained hNECs through directed differentiation from hESCs, and determined chromatin states in the two cell types. Upon differentiation, H2A.Z-mediated nucleosome depletion leads to an open chromatin structure in promoters and upregulates expression of neuroectodermal genes. Increase in H3K9ac signals and decrease in H3K27me3 signals in promoters result in an active chromatin state and activate neuroectodermal genes. Conversely, decrease in H3K9ac signals and increase in H3K27me3 signals in promoters repress pluripotency genes. Moreover, H3K9ac signals facilitate the pluripotency factor Sox2 binding to target sites unique to hNECs. Knockdown of the acetyltransferase Kat2b erases H3K9ac signals, disrupts Sox2 binding, and fails the differentiation. Our results demonstrate a hierarchy of epigenetic regulation of gene expression during the differentiation of hNECs from hESCs through chromatin remodeling. PMID:28475175

  12. Dopamine D(3) receptor antagonists. 1. Synthesis and structure-activity relationships of 5,6-dimethoxy-N-alkyl- and N-alkylaryl-substituted 2-aminoindans.

    PubMed

    Haadsma-Svensson, S R; Cleek, K A; Dinh, D M; Duncan, J N; Haber, C L; Huff, R M; Lajiness, M E; Nichols, N F; Smith, M W; Svensson, K A; Zaya, M J; Carlsson, A; Lin, C H

    2001-12-20

    5,6-Dimethoxy-2-(N-dipropyl)-aminoindan (3, PNU-99194A) was found to be a selective dopamine D(3) receptor antagonist with potential antipsychotic properties in animal models. To investigate the effects of nitrogen substitution on structure-activity relationships, a series of 5,6-dimethoxy-N-alkyl- and N-alkylaryl-substituted 2-aminoindans were synthesized and evaluated in vitro for binding affinity and metabolic stability. The results indicate that substitution at the amine nitrogen of the 2-aminoindans is fairly limited to the di-N-propyl group in order to achieve selective D(3) antagonists. Thus, combinations of various alkyl groups were generally inactive at the D(3) receptor. Although substitution with an N-alkylaryl or N-alkylheteroaryl group yields compounds with potent D(3) binding affinity, the D(2) affinity is also enhanced, resulting in a less than 4-fold preference for the D(3) receptor site, and no improvements in metabolic stability were noted. A large-scale synthesis of the D(3) antagonist 3 has been developed that has proven to be reproducible with few purification steps. The improvements include the use of 3,4-dimethoxybenzaldehyde as a low-cost starting material to provide the desired 5,6-dimethoxy-1-indanone 5c in good overall yield (65%) and the formation of a soluble silyl oxime 17 that was reduced efficiently with BH(3).Me(2)S. The resulting amino alcohol was alkylated and then deoxygenated using a Lewis acid and Et(3)SiH to give the desired product 3 in good overall yield of ( approximately 65%) from the indanone 5c.

  13. The effect of betahistine, a histamine H1 receptor agonist/H3 antagonist, on olanzapine-induced weight gain in first-episode schizophrenia patients.

    PubMed

    Poyurovsky, Michael; Pashinian, Artashes; Levi, Aya; Weizman, Ronit; Weizman, Abraham

    2005-03-01

    Histamine antagonism has been implicated in antipsychotic drug-induced weight gain. Betahistine, a histamine enhancer with H1 agonistic/H3 antagonistic properties (48 mg t.i.d.), was coadministered with olanzapine (10 mg/day) in three first-episode schizophrenia patients for 6 weeks. Body weight was measured at baseline and weekly thereafter. Clinical rating scales were completed at baseline and at week 6. All participants gained weight (mean weight gain 3.1+/-0.9 kg) and a similar pattern of weight gain was observed: an increase during the first 2 weeks and no additional weight gain (two patients) or minor weight loss (one patient) from weeks 3 to 6. None gained 7% of baseline weight, which is the cut-off for clinically significant weight gain. Betahistine was safe and well tolerated and did not interfere with the antipsychotic effect of olanzapine. Our findings justify a placebo-controlled evaluation of the putative weight-attenuating effect of betahistine in olanzapine-induced weight gain.

  14. Use of chimeras, point mutants, and molecular modeling to map the antagonist-binding site of 4,4',4″,4‴-(carbonylbis-(imino-5,1,3-benzenetriylbis(carbonylimino)))tetrakisbenzene-1,3-disulfonic acid (NF449) at P2X1 receptors for ATP.

    PubMed

    Farmer, Louise K; Schmid, Ralf; Evans, Richard J

    2015-01-16

    P2X receptor subtype-selective antagonists are promising candidates for treatment of a range of pathophysiological conditions. However, in contrast to high resolution structural understanding of agonist action in the receptors, comparatively little is known about the molecular basis of antagonist binding. We have generated chimeras and point mutations in the extracellular ligand-binding loop of the human P2X1 receptor, which is inhibited by NF449, suramin, and pyridoxal-phosphate-6-azophenyl-2,4-disulfonate, with residues from the rat P2X4 receptor, which is insensitive to these antagonists. There was little or no effect on sensitivity to suramin and pyridoxal-phosphate-6-azophenyl-2,4-disulfonate in chimeric P2X1/4 receptors, indicating that a significant number of residues required for binding of these antagonists are present in the P2X4 receptor. Sensitivity to the P2X1 receptor-selective antagonist NF449 was reduced by ∼60- and ∼135-fold in chimeras replacing the cysteine-rich head, and the dorsal fin region below it in the adjacent subunit, respectively. Point mutants identified the importance of four positively charged residues at the base of the cysteine-rich head and two variant residues in the dorsal fin for high affinity NF449 binding. These six residues were used as the starting area for molecular docking. The four best potential NF449-binding poses were then discriminated by correspondence with the mutagenesis data and an additional mutant to validate the binding of one lobe of NF449 within the core conserved ATP-binding pocket and the other lobes coordinated by positive charge on the cysteine-rich head region and residues in the adjacent dorsal fin. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Design of novel neurokinin 1 receptor antagonists based on conformationally constrained aromatic amino acids and discovery of a potent chimeric opioid agonist-neurokinin 1 receptor antagonist.

    PubMed

    Ballet, Steven; Feytens, Debby; Buysse, Koen; Chung, Nga N; Lemieux, Carole; Tumati, Suneeta; Keresztes, Attila; Van Duppen, Joost; Lai, Josephine; Varga, Eva; Porreca, Frank; Schiller, Peter W; Vanden Broeck, Jozef; Tourwé, Dirk

    2011-04-14

    A screening of conformationally constrained aromatic amino acids as base cores for the preparation of new NK1 receptor antagonists resulted in the discovery of three new NK1 receptor antagonists, 19 [Ac-Aba-Gly-NH-3',5'-(CF(3))(2)-Bn], 20 [Ac-Aba-Gly-NMe-3',5'-(CF(3))(2)-Bn], and 23 [Ac-Tic-NMe-3',5'-(CF(3))(2)-Bn], which were able to counteract the agonist effect of substance P, the endogenous ligand of NK1R. The most active NK1 antagonist of the series, 20 [Ac-Aba-Gly-NMe-3',5'-(CF(3))(2)-Bn], was then used in the design of a novel, potent chimeric opioid agonist-NK1 receptor antagonist, 35 [Dmt-D-Arg-Aba-Gly-NMe-3',5'-(CF(3))(2)-Bn], which combines the N terminus of the established Dmt(1)-DALDA agonist opioid pharmacophore (H-Dmt-D-Arg-Phe-Lys-NH(2)) and 20, the NK1R ligand. The opioid component of the chimeric compound 35, that is, Dmt-D-Arg-Aba-Gly-NH(2) (36), also proved to be an extremely potent and balanced μ and δ opioid receptor agonist with subnanomolar binding and in vitro functional activity.

  16. Design of novel neurokinin 1 receptor antagonists based on conformationally constrained aromatic amino acids and discovery of a potent chimeric opioid agonist-neurokinin 1 receptor antagonist

    PubMed Central

    Ballet, Steven; Feytens, Debby; Buysse, Koen; Chung, Nga N.; Lemieux, Carole; Tumati, Suneeta; Keresztes, Attila; Van Duppen, Joost; Lai, Josephine; Varga, Eva; Porreca, Frank; Schiller, Peter W.; Broeck, Jozef Vanden; Tourwé, Dirk

    2011-01-01

    A screening of conformationally constrained aromatic amino acids as base cores for the preparation of new NK1 receptor antagonists resulted in the discovery of three new NK1 receptor antagonists, 19 [Ac-Aba-Gly-NH-3′,5′-(CF3)2-Bn], 20 [Ac-Aba-Gly-NMe-3′,5′-(CF3)2-Bn] and 23 [Ac-Tic-NMe-3′,5′-(CF3)2-Bn], which were able to counteract the agonist effect of substance P, the endogenous ligand of NK1R. The most active NK1 antagonist of the series, 20 [Ac-Aba-Gly-NMe-3′,5′-(CF3)2-Bn], was then used in the design of a novel, potent chimeric opioid agonist-NK1 receptor antagonist, 35 [Dmt-D-Arg-Aba-Gly-NMe-3′,5′-(CF3)2-Bn], which combines the N-terminus of the established Dmt1-DALDA agonist opioid pharmacophore (H-Dmt-D-Arg-Phe-Lys-NH2) and 20, the NK1R ligand. The opioid component of the chimeric compound 35, i.e. Dmt-D-Arg-Aba-Gly-NH2 36, also proved to be an extremely potent and balanced μ- and δ opioid receptor agonist with subnanomolar binding and in vitro functional activity. PMID:21413804

  17. 99mTc-labeling of Peptidomimetic Antagonist to Selectively Target αvβ3 Receptor-Positive Tumor: Comparison of PDA and EDDA as co-Ligands

    PubMed Central

    Shin, In Soo; Maeng, Jin Soo; Jang, Beom-Su; You, Eric; Cheng, Kenneth; Li, King C.P; Wood, Bradford; Carrasquillo, Jorge A.; Danthi, S. Narasimhan; Paik, Chang H.

    2010-01-01

    Objectives The aim of this research was to synthesize radiolabeled peptidomimetic integrin αvβ3 antagonist with 99mTc for rapid targeting of integrin αvβ3 receptors in tumor to produce a high tumor to background ratio. Methods The amino terminus of 4-[2-(3,4,5,6-tetra-hydropyrimidin-2-ylamino)-ethyloxy]benzoyl-2-(S)-[N-(3-amino-neopenta-1-carbamyl)]-aminoethylsulfonyl-amino-β-alanine hydrochloride (IAC) was conjugated with N-hydroxysuccinimide ester of HYNIC and labeled with 99mTc using tricine with either 1,5-pyridinedicarboxylic acid (PDA) or ethylenediamine-N,N′-diacetic acid (EDDA) as the co-ligand. The products, 99mTc EDDA2/HYNIC-IAC (P1) and 99mTc PDA (tricin)/HYNIC-IAC (P2) were subjected to in vitro serum stability, receptor-binding, biodistribution and imaging studies. Results P1 and P2 were synthesized with an overall yield of >80%. P1 was slightly more stable than P2 when incubated in serum at 37 °C for 18 hrs (84 vs 77% intact). The In vitro receptor-binding of P1 was higher than that of P2 (78.02 ± 13.48 vs 51.05 ± 14.05%) when incubated with αvβ3 at a molar excess (0.8 μM). This receptor binding was completely blocked by a molar excess of an unlabeled peptidomimetic antagonist. Their differences shown in serum stability and the receptor-binding appeared to be related to their biological behaviors in tumor uptake and retention; the 1 h tumor uptakes of P1 and P2 were 3.17±0.52 and 2.13±0.17 % ID/g, respectively. P1 was retained in the tumor longer than P2. P1 was excreted primarily through the renal system whereas P2 complex was excreted equally via both renal and hepatobiliary systems. Thus, P1 was retained in the whole-body with 27.25 ± 3.67% ID at 4 h whereas 54.04 ± 3.57% ID of P2 remained in the whole-body at 4 h. This higher whole-body retention of P2 appeared to be resulted from a higher amount of radioactivity retained in liver and intestine. These findings were supported by imaging studies showing higher tumor

  18. Characterization of nicotine binding in mouse brain and comparison with the binding of alpha-bungarotoxin and quinuclidinyl benzilate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marks, M.J.; Collins, A.C.

    1982-11-01

    The binding of (/sup 3/H)nicotine to mouse brain has been measured and subsequently compared with the binding of (/sup 125/I)alpha-bungarotoxin (alpha-BTX) and L-(/sup 3/H)quinuclidinyl benzilate (QNB). The binding of nicotine was saturable, reversible, and stereospecific. Although the rates of association and dissociation of nicotine were temperature-dependent, the incubation temperature had no effect on either KD or Bmax. Nicotine binding was unaffected by the addition of NaCl, KCl, CaCl/sub 2/, or MgSO/sub 4/ to the incubation medium. Nicotinic cholinergic agonists were potent inhibitors of nicotine binding; however, nicotinic antagonists were poor inhibitors. The regional distribution of binding was not uniform: midbrainmore » and striatum contained the highest number of receptors, whereas cerebellum had the fewest. Differences in site densities, regional distribution, inhibitor potencies, and thermal denaturation indicated that nicotine binding was not the same as either QNB or alpha-BTX binding, and therefore that receptors for nicotine may represent a unique population of cholinergic receptors.« less

  19. Discovery of 2-(3,5-difluoro-4-methylsulfonaminophenyl)propanamides as potent TRPV1 antagonists.

    PubMed

    Kim, Changhoon; Ann, Jihyae; Lee, Sunho; Sun, Wei; Blumberg, Peter M; Frank-Foltyn, Robert; Bahrenberg, Gregor; Stockhausen, Hannelore; Christoph, Thomas; Lee, Jeewoo

    2018-05-23

    A series of A-region analogues of 2-(3-fluoro-4-methylsufonamidophenyl) propanamide 1 were investigated as TRPV1 antagonists. The analysis of structure-activity relationship indicated that a fluoro group at the 3- (or/and) 5-position and a methylsulfonamido group at the 4-position were optimal for antagonism of TRPV1 activation by capsaicin. The most potent antagonist 6 not only exhibited potent antagonism of activation of hTRPV1 by capsaicin, low pH and elevated temperature but also displayed highly potent antagonism of activation of rTRPV1 by capsaicin. Further studies demonstrated that antagonist 6 blocked the hypothermic effect of capsaicin in vivo, consistent with its in vitro mechanism, and it showed promising analgesic activity in the formalin animal model. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Structural basis of subunit selectivity for competitive NMDA receptor antagonists with preference for GluN2A over GluN2B subunits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lind, Genevieve E.; Mou, Tung-Chung; Tamborini, Lucia

    NMDA-type glutamate receptors are ligand-gated ion channels that contribute to excitatory neurotransmission in the central nervous system (CNS). Most NMDA receptors comprise two glycine-binding GluN1 and two glutamate-binding GluN2 subunits (GluN2A–D). We describe highly potent (S)-5-[(R)-2-amino-2-carboxyethyl]-4,5-dihydro-1H-pyrazole-3-carboxylic acid (ACEPC) competitive GluN2 antagonists, of which ST3 has a binding affinity of 52 nM at GluN1/2A and 782 nM at GluN1/2B receptors. This 15-fold preference of ST3 for GluN1/2A over GluN1/2B is improved compared with NVP-AAM077, a widely used GluN2A-selective antagonist, which we show has 11-fold preference for GluN1/2A over GluN1/2B. Crystal structures of the GluN1/2A agonist binding domain (ABD) heterodimer with boundmore » ACEPC antagonists reveal a binding mode in which the ligands occupy a cavity that extends toward the subunit interface between GluN1 and GluN2A ABDs. Mutational analyses show that the GluN2A preference of ST3 is primarily mediated by four nonconserved residues that are not directly contacting the ligand, but positioned within 12 Å of the glutamate binding site. Two of these residues influence the cavity occupied by ST3 in a manner that results in favorable binding to GluN2A, but occludes binding to GluN2B. Thus, we reveal opportunities for the design of subunit-selective competitive NMDA receptor antagonists by identifying a cavity for ligand binding in which variations exist between GluN2A and GluN2B subunits. This structural insight suggests that subunit selectivity of glutamate-site antagonists can be mediated by mechanisms in addition to direct contributions of contact residues to binding affinity.« less

  1. Structural basis of subunit selectivity for competitive NMDA receptor antagonists with preference for GluN2A over GluN2B subunits

    PubMed Central

    Lind, Genevieve E.; Mou, Tung-Chung; Tamborini, Lucia; Pomper, Martin G.; De Micheli, Carlo; Conti, Paola; Pinto, Andrea

    2017-01-01

    NMDA-type glutamate receptors are ligand-gated ion channels that contribute to excitatory neurotransmission in the central nervous system (CNS). Most NMDA receptors comprise two glycine-binding GluN1 and two glutamate-binding GluN2 subunits (GluN2A–D). We describe highly potent (S)-5-[(R)-2-amino-2-carboxyethyl]-4,5-dihydro-1H-pyrazole-3-carboxylic acid (ACEPC) competitive GluN2 antagonists, of which ST3 has a binding affinity of 52 nM at GluN1/2A and 782 nM at GluN1/2B receptors. This 15-fold preference of ST3 for GluN1/2A over GluN1/2B is improved compared with NVP-AAM077, a widely used GluN2A-selective antagonist, which we show has 11-fold preference for GluN1/2A over GluN1/2B. Crystal structures of the GluN1/2A agonist binding domain (ABD) heterodimer with bound ACEPC antagonists reveal a binding mode in which the ligands occupy a cavity that extends toward the subunit interface between GluN1 and GluN2A ABDs. Mutational analyses show that the GluN2A preference of ST3 is primarily mediated by four nonconserved residues that are not directly contacting the ligand, but positioned within 12 Å of the glutamate binding site. Two of these residues influence the cavity occupied by ST3 in a manner that results in favorable binding to GluN2A, but occludes binding to GluN2B. Thus, we reveal opportunities for the design of subunit-selective competitive NMDA receptor antagonists by identifying a cavity for ligand binding in which variations exist between GluN2A and GluN2B subunits. This structural insight suggests that subunit selectivity of glutamate-site antagonists can be mediated by mechanisms in addition to direct contributions of contact residues to binding affinity. PMID:28760974

  2. The binding of [3H]-propylbenzilylcholine mustard by longitudinal muscle strips from guinea-pig small intestine

    PubMed Central

    Burgen, A.S.V.; Hiley, C.R.; Young, J.M.

    1974-01-01

    1 The synthesis of tritium labelled propylbenzilylcholine mustard ([3H]-PrBCM; N-2′-chloroethyl-N-[2″, 3″-3H2] propyl-2-aminoethyl benzilate) is described. 2 The uptake by muscle strips was measured and shown to be considerably increased by previous immersion of the muscle in distilled water. 3 A considerable part of the uptake is inhibited selectively by atropine, but not by nicotinic antagonists. A number of muscarinic agonists also inhibit uptake and their apparent affinity constants have been determined. 4 The uptake by atropine-sensitive sites is temperature-insensitive, whereas the other sites are temperature-sensitive. Recovery is highly temperature-sensitive and there is good agreement between recovery of sensitivity to agonists and loss of radioactivity from the muscle. PMID:4150888

  3. Pharmacological analysis of [3H]-senktide binding to NK3 tachykinin receptors in guinea-pig ileum longitudinal muscle-myenteric plexus and cerebral cortex membranes.

    PubMed Central

    Guard, S.; Watson, S. P.; Maggio, J. E.; Too, H. P.; Watling, K. J.

    1990-01-01

    1. The binding properties and pharmacological specificity of the selective NK3 tachykinin receptor agonist [3H))-senktide [( 3H]-succinyl[Asp6,MePhe8] substance P (6-11] have been examined in homogenates of guinea-pig ileum longitudinal muscle-myenteric plexus (LM/MP) and cerebral cortex. 2. Scatchard analysis of saturation binding studies in guinea-pig ileum LM/MP and cerebral cortex membranes indicated that [3H]-senktide bound to a single site with apparent high affinity, KD = 2.21 +/- 0.65 nM; Bmax = 13.49 +/- 0.04 fmol mg-1 protein in ileum and KD = 8.52 +/- 0.45 nM; Bmax = 76.3 +/- 1.6 fmol mg-1 protein in cortex (values are means +/- ranges; n = 2). 3. The pharmacological profile for tachykinins and analogues in displacing [3H]-senktide from ileum membranes was: [MePhe7] neurokinin B greater than neurokinin B (NKB) congruent to senktide greater than eledoisin greater than substance P (SP) greater than neurokinin A(NKA) greater than physalaemin greater than [Sar9,Met(O2)11]SP greater than [Nle10]NKA(4-10) = [Glp6,L-Pro9]-SP(6-11) greater than substance P methyl ester, consistent with [3H]-senktide binding to an NK3 subtype of tachykinin receptor. A similar rank order of affinity was obtained for these peptides in displacing [3H]-senktide from cortex membranes. 4. Several tachykinin receptor agonists were tested for their ability to displace [3H]-senktide from ileal and cortical NK3 binding sites and were found to be either weak displacers (pIC50 less than 5.00) or inactive.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1694464

  4. A computational study to identify the key residues of peroxisome proliferator-activated receptor gamma in the interactions with its antagonists.

    PubMed

    Sharifi, Tayebeh; Ghayeb, Yousef

    2018-05-01

    Peroxisome proliferator-activated receptors (PPARs) compose a family of nuclear receptors, PPARα, PPARβ, and PPARγ, which mediate the effects of lipidic ligands at the transcriptional level. Among these, the PPARγ has been known to regulate adipocyte differentiation, fatty acid storage and glucose metabolism, and is a target of antidiabetic drugs. In this work, the interactions between PPARγ and its six known antagonists were investigated using computational methods such as molecular docking, molecular dynamics (MD) simulations, and the hybrid quantum mechanics/molecular mechanics (QM/MM). The binding energies evaluated by molecular docking varied between -22.59 and -35.15 kJ mol - 1 . In addition, MD simulations were performed to investigate the binding modes and PPARγ conformational changes upon binding of antagonists. Analysis of the root-mean-square fluctuations (RMSF) of backbone atoms shows that H3 of PPARγ has a higher mobility in the absence of antagonists and moderate conformational changes were observed. The interaction energies between antagonists and each PPARγ residue involved in the interactions were studied by QM/MM calculations. These calculations reveal that antagonists with different structures show different interaction energies with the same residue of PPARγ. Therefore, it can be concluded that the key residues vary depending on the structure of the ligand, which binds to PPARγ.

  5. Binding of phosphatidic acid to 14-3-3 proteins hampers their ability to activate the plant plasma membrane H+-ATPase.

    PubMed

    Camoni, Lorenzo; Di Lucente, Cristina; Pallucca, Roberta; Visconti, Sabina; Aducci, Patrizia

    2012-08-01

    Phosphatidic acid is a phospholipid second messenger implicated in various cellular processes in eukaryotes. In plants, production of phosphatidic acid is triggered in response to a number of biotic and abiotic stresses. Here, we show that phosphatidic acid binds to 14-3-3 proteins, a family of regulatory proteins which bind client proteins in a phosphorylation-dependent manner. Binding of phosphatidic acid involves the same 14-3-3 region engaged in protein target binding. Consequently, micromolar phosphatidic acid concentrations significantly hamper the interaction of 14-3-3 proteins with the plasma membrane H(+)-ATPase, a well characterized plant 14-3-3 target, thus inhibiting the phosphohydrolitic enzyme activity. Moreover, the proton pump is inhibited when endogenous PA production is triggered by phospholipase D and the G protein agonist mastoparan-7. Hence, our data propose a possible mechanism involving PA that regulates 14-3-3-mediated cellular processes in response to stress. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  6. Antagonistic Rgg regulators mediate quorum sensing via competitive DNA binding in Streptococcus pyogenes.

    PubMed

    Lasarre, Breah; Aggarwal, Chaitanya; Federle, Michael J

    2013-01-02

    Recent studies have established the fact that multiple members of the Rgg family of transcriptional regulators serve as key components of quorum sensing (QS) pathways that utilize peptides as intercellular signaling molecules. We previously described a novel QS system in Streptococcus pyogenes which utilizes two Rgg-family regulators (Rgg2 and Rgg3) that respond to neighboring signaling peptides (SHP2 and SHP3) to control gene expression and biofilm formation. We have shown that Rgg2 is a transcriptional activator of target genes, whereas Rgg3 represses expression of these genes, and that SHPs function to activate the QS system. The mechanisms by which Rgg proteins regulate both QS-dependent and QS-independent processes remain poorly defined; thus, we sought to further elucidate how Rgg2 and Rgg3 mediate gene regulation. Here we provide evidence that S. pyogenes employs a unique mechanism of direct competition between the antagonistic, peptide-responsive proteins Rgg2 and Rgg3 for binding at target promoters. The highly conserved, shared binding sites for Rgg2 and Rgg3 are located proximal to the -35 nucleotide in the target promoters, and the direct competition between the two regulators results in concentration-dependent, exclusive occupation of the target promoters that can be skewed in favor of Rgg2 in vitro by the presence of SHP. These results suggest that exclusionary binding of target promoters by Rgg3 may prevent Rgg2 binding under SHP-limiting conditions, thereby preventing premature induction of the quorum sensing circuit. Rgg-family transcriptional regulators are widespread among low-G+C Gram-positive bacteria and in many cases contribute to bacterial physiology and virulence. Only recently was it discovered that several Rgg proteins function in cell-to-cell communication (quorum sensing [QS]) via direct interaction with signaling peptides. The mechanism(s) by which Rgg proteins mediate regulation is poorly understood, and further insight into Rgg

  7. Selective Interactions of Valeriana officinalis Extracts and Valerenic Acid with [3H]Glutamate Binding to Rat Synaptic Membranes

    PubMed Central

    Del Valle-Mojica, Lisa M.; Ayala-Marín, Yoshira M.; Ortiz-Sanchez, Carmen M.; Torres-Hernández, Bianca A.; Abdalla-Mukhaimer, Safa; Ortiz, José G.

    2011-01-01

    Although GABA neurotransmission has been suggested as a mechanism for Valeriana officinalis effects, CNS depression can also be evoked by inhibition of ionotropic (iGluR) and metabotropic glutamate receptors (mGluR). In this study, we examined if aqueous valerian extract interacted with glutamatergic receptors. Freshly prepared aqueous valerian extract was incubated with rat cortical synaptic membranes in presence of 20 nM [3H]Glutamate. Aqueous valerian extract increased [3H]Glutamate binding from 1 × 10−7 to 1 × 10−3 mg/mL. In the presence of (2S,1′S,2′S)-2-(Carboxycyclopropyl)glycine (LCCG-I) and (2S,2′R,3′R)-2-(2′,3′-Dicarboxycyclopropyl)glycine (DCG-IV), Group II mGluR agents, valerian extract markedly decreased [3H]Glutamate binding, while (2S)-2-amino-3-(3,5-dioxo-1,2,4-oxadiazolidin-2-yl) propanoic acid) (quisqualic acid, QA), Group I mGluR agonist, increased [3H]Glutamate binding. At 0.05 mg/mL aqueous valerian extract specifically interacted with kainic acid NMDA and AMPA receptors. Valerenic acid, a marker compound for Valeriana officinalis, increased the [3H]Glutamate binding after 1.6 × 10−2 mg/mL, and at 0.008 mg/mL it interacted only with QA (Group I mGluR). The selective interactions of valerian extract and valerenic acid with Group I and Group II mGluR may represent an alternative explanation for the anxiolytic properties of this plant. PMID:21584239

  8. Ligand binding to the human MT2 melatonin receptor: The role of residues in transmembrane domains 3, 6, and 7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazna, Petr; Berka, Karel; Jelinkova, Irena

    To better understand the mechanism of interactions between G-protein-coupled melatonin receptors and their ligands, our previously reported homology model of human MT2 receptor with docked 2-iodomelatonin was further refined and used to select residues within TM3, TM6, and TM7 potentially important for receptor-ligand interactions. Selected residues were mutated and radioligand-binding assay was used to test the binding affinities of hMT2 receptors transiently expressed in HEK293 cells. Our data demonstrate that residues N268 and A275 in TM6 as well as residues V291 and L295 in TM7 are essential for 2-iodomelatonin binding to the hMT2 receptor, while TM3 residues M120, G121, V124,more » and I125 may participate in binding of other receptor agonists and/or antagonists. Presented data also hint at possible specific interaction between the side-chain of Y188 in second extracellular loop and N-acetyl group of 2-iodomelatonin.« less

  9. Nonpeptidic urotensin-II receptor antagonists I: in vitro pharmacological characterization of SB-706375

    PubMed Central

    Douglas, Stephen A; Behm, David J; Aiyar, Nambi V; Naselsky, Diane; Disa, Jyoti; Brooks, David P; Ohlstein, Eliot H; Gleason, John G; Sarau, Henry M; Foley, James J; Buckley, Peter T; Schmidt, Dulcie B; Wixted, William E; Widdowson, Katherine; Riley, Graham; Jin, Jian; Gallagher, Timothy F; Schmidt, Stanley J; Ridgers, Lance; Christmann, Lisa T; Keenan, Richard M; Knight, Steven D; Dhanak, Dashyant

    2005-01-01

    SB-706375 potently inhibited [125I]hU-II binding to both mammalian recombinant and ‘native' UT receptors (Ki 4.7±1.5 to 20.7±3.6 nM at rodent, feline and primate recombinant UT receptors and Ki 5.4±0.4 nM at the endogenous UT receptor in SJRH30 cells). Prior exposure to SB-706375 (1 μM, 30 min) did not alter [125I]hU-II binding affinity or density in recombinant cells (KD 3.1±0.4 vs 5.8±0.9 nM and Bmax 3.1±1.0 vs 2.8±0.8 pmol mg−1) consistent with a reversible mode of action. The novel, nonpeptidic radioligand [3H]SB-657510, a close analogue of SB-706375, bound to the monkey UT receptor (KD 2.6±0.4 nM, Bmax 0.86±0.12 pmol mg−1) in a manner that was inhibited by both U-II isopeptides and SB-706375 (Ki 4.6±1.4 to 17.6±5.4 nM) consistent with the sulphonamides and native U-II ligands sharing a common UT receptor binding domain. SB-706375 was a potent, competitive hU-II antagonist across species with pKb 7.29–8.00 in HEK293-UT receptor cells (inhibition of [Ca2+]i-mobilization) and pKb 7.47 in rat isolated aorta (inhibition of contraction). SB-706375 also reversed tone established in the rat aorta by prior exposure to hU-II (Kapp∼20 nM). SB-706375 was a selective U-II antagonist with ⩾100-fold selectivity for the human UT receptor compared to 86 distinct receptors, ion channels, enzymes, transporters and nuclear hormones (Ki/IC50>1 μM). Accordingly, the contractile responses induced in isolated aortae by KCl, phenylephrine, angiotensin II and endothelin-1 were unaltered by SB-706375 (1 μM). In summary, SB-706375 is a high-affinity, surmountable, reversible and selective nonpeptide UT receptor antagonist with cross-species activity that will assist in delineating the pathophysiological actions of U-II in mammals. PMID:15852036

  10. Structure-based virtual screening and characterization of a novel IL-6 antagonistic compound from synthetic compound database.

    PubMed

    Wang, Jing; Qiao, Chunxia; Xiao, He; Lin, Zhou; Li, Yan; Zhang, Jiyan; Shen, Beifen; Fu, Tinghuan; Feng, Jiannan

    2016-01-01

    According to the three-dimensional (3D) complex structure of (hIL-6⋅hIL-6R⋅gp 130) 2 and the binding orientation of hIL-6, three compounds with high affinity to hIL-6R and bioactivity to block hIL-6 in vitro were screened theoretically from the chemical databases, including 3D-Available Chemicals Directory (ACD) and MDL Drug Data Report (MDDR), by means of the computer-guided virtual screening method. Using distance geometry, molecular modeling and molecular dynamics trajectory analysis methods, the binding mode and binding energy of the three compounds were evaluated theoretically. Enzyme-linked immunosorbent assay analysis demonstrated that all the three compounds could block IL-6 binding to IL-6R specifically. However, only compound 1 could effectively antagonize the function of hIL-6 and inhibit the proliferation of XG-7 cells in a dose-dependent manner, whereas it showed no cytotoxicity to SP2/0 or L929 cells. These data demonstrated that the compound 1 could be a promising candidate of hIL-6 antagonist.

  11. Different components of /sup 3/H-imipramine binding in rat brain membranes: relation to serotonin uptake sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gobbi, M.; Taddei, C.; Mennini, T.

    1988-01-01

    In the present paper, the authors confirm and extend previous studies showing heterogeneous /sup 3/H-imipramine (/sup 3/H-IMI) binding sites. Inhibition curves of various drugs (serotonin, imipramine, desmethyl-imipramine, d-fenfluramine, d-norfenfluramine and indalpine, a potent serotonin uptake inhibitor) obtained using 2 nM /sup 3/H-IMI and in presence of 120 mM NaCl, confirmed the presence of at least three /sup 3/H-IMI binding sites: two of these were serotonin-insensitive while the third one was selectively inhibited by serotonin and indalpine with nanomolar affinities. Moreover this last component was found to be selectively modulated by chronic imipramine treatment thus suggesting a close relation to serontoninmore » uptake mechanism. These data indicate that the use of a more selective inhibitors of the serotonin-sensitive component (like indalpine or serotonin itself) to define non specific /sup 3/H-IMI, may be of help in understanding its relation with serotonin uptake system. 22 references, 2 figures, 2 tables.« less

  12. Use of Chimeras, Point Mutants, and Molecular Modeling to Map the Antagonist-binding Site of 4,4′,4″,4‴-(Carbonylbis-(imino-5,1,3-benzenetriylbis(carbonylimino)))tetrakisbenzene-1,3-disulfonic Acid (NF449) at P2X1 Receptors for ATP*

    PubMed Central

    Farmer, Louise K.; Schmid, Ralf; Evans, Richard J.

    2015-01-01

    P2X receptor subtype-selective antagonists are promising candidates for treatment of a range of pathophysiological conditions. However, in contrast to high resolution structural understanding of agonist action in the receptors, comparatively little is known about the molecular basis of antagonist binding. We have generated chimeras and point mutations in the extracellular ligand-binding loop of the human P2X1 receptor, which is inhibited by NF449, suramin, and pyridoxal-phosphate-6-azophenyl-2,4-disulfonate, with residues from the rat P2X4 receptor, which is insensitive to these antagonists. There was little or no effect on sensitivity to suramin and pyridoxal-phosphate-6-azophenyl-2,4-disulfonate in chimeric P2X1/4 receptors, indicating that a significant number of residues required for binding of these antagonists are present in the P2X4 receptor. Sensitivity to the P2X1 receptor-selective antagonist NF449 was reduced by ∼60- and ∼135-fold in chimeras replacing the cysteine-rich head, and the dorsal fin region below it in the adjacent subunit, respectively. Point mutants identified the importance of four positively charged residues at the base of the cysteine-rich head and two variant residues in the dorsal fin for high affinity NF449 binding. These six residues were used as the starting area for molecular docking. The four best potential NF449-binding poses were then discriminated by correspondence with the mutagenesis data and an additional mutant to validate the binding of one lobe of NF449 within the core conserved ATP-binding pocket and the other lobes coordinated by positive charge on the cysteine-rich head region and residues in the adjacent dorsal fin. PMID:25425641

  13. An antagonistic monoclonal antibody (B-N6) specific for the human neurotensin receptor-1.

    PubMed

    Ovigne, J M; Vermot-Desroches, C; Lecron, J C; Portier, M; Lupker, J; Pecceu, F; Wijdenes, J

    1998-06-01

    The neuropeptide neurotensin (NT) interacts with two types of human receptors (hNTR) termed hNTR-1 and hNTR-2. This study describes a monoclonal antibody (MAb) specific for hNTR-1, B-N6. This MAb binds specifically to hNTR-1, but not to hNTR-2 transfected CHO cells. B-N6 and NT display a reciprocal competition and react in a similar way to trypsin, suggesting that the B-N6 epitope is at or close to the NT binding site on the third extracellular loop. Unlike B-N6, NT induces hNTR-1 internalization. Although neither NT-FITC nor B-N6 binding was detected by flow cytometry on different human cells, specific mRNA expression for hNTR-1 was detected in these cells. In CHO cells expressing hNTR-1 and a luciferase gene coupled to the krox24 reporter, B-N6 and the antagonist SR 48692 inhibited NT-induced intracellular activation of krox24 in a dose-dependent manner. From these results it is concluded that B-N6 is an antagonistic anti-hNTR-1 MAb.

  14. Discovery and SAR of muscarinic receptor subtype 1 (M1) allosteric activators from a molecular libraries high throughput screen. Part 1: 2,5-dibenzyl-2H-pyrazolo[4,3-c]quinolin-3(5H)-ones as positive allosteric modulators.

    PubMed

    Han, Changho; Chatterjee, Arindam; Noetzel, Meredith J; Panarese, Joseph D; Smith, Emery; Chase, Peter; Hodder, Peter; Niswender, Colleen; Conn, P Jeffrey; Lindsley, Craig W; Stauffer, Shaun R

    2015-01-15

    Results from a 2012 high-throughput screen of the NIH Molecular Libraries Small Molecule Repository (MLSMR) against the human muscarinic receptor subtype 1 (M1) for positive allosteric modulators is reported. A content-rich screen utilizing an intracellular calcium mobilization triple-addition protocol allowed for assessment of all three modes of pharmacology at M1, including agonist, positive allosteric modulator, and antagonist activities in a single screening platform. We disclose a dibenzyl-2H-pyrazolo[4,3-c]quinolin-3(5H)-one hit (DBPQ, CID 915409) and examine N-benzyl pharmacophore/SAR relationships versus previously reported quinolin-3(5H)-ones and isatins, including ML137. SAR and consideration of recently reported crystal structures, homology modeling, and structure-function relationships using point mutations suggests a shared binding mode orientation at the putative common allosteric binding site directed by the pendant N-benzyl substructure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Effects of egg-adaptation on receptor-binding and antigenic properties of recent influenza A (H3N2) vaccine viruses.

    PubMed

    Parker, Lauren; Wharton, Stephen A; Martin, Stephen R; Cross, Karen; Lin, Yipu; Liu, Yan; Feizi, Ten; Daniels, Rodney S; McCauley, John W

    2016-06-01

    Influenza A virus (subtype H3N2) causes seasonal human influenza and is included as a component of influenza vaccines. The majority of vaccine viruses are isolated and propagated in eggs, which commonly results in amino acid substitutions in the haemagglutinin (HA) glycoprotein. These substitutions can affect virus receptor-binding and alter virus antigenicity, thereby, obfuscating the choice of egg-propagated viruses for development into candidate vaccine viruses. To evaluate the effects of egg-adaptive substitutions seen in H3N2 vaccine viruses on sialic acid receptor-binding, we carried out quantitative measurement of virus receptor-binding using surface biolayer interferometry with haemagglutination inhibition (HI) assays to correlate changes in receptor avidity with antigenic properties. Included in these studies was a panel of H3N2 viruses generated by reverse genetics containing substitutions seen in recent egg-propagated vaccine viruses and corresponding cell culture-propagated wild-type viruses. These assays provide a quantitative approach to investigating the importance of individual amino acid substitutions in influenza receptor-binding. Results show that viruses with egg-adaptive HA substitutions R156Q, S219Y, and I226N, have increased binding avidity to α2,3-linked receptor-analogues and decreased binding avidity to α2,6-linked receptor-analogues. No measurable binding was detected for the viruses with amino acid substitution combination 156Q+219Y and receptor-binding increased in viruses where egg-adaptation mutations were introduced into cell culture-propagated virus. Substitutions at positions 156 and 190 appeared to be primarily responsible for low reactivity in HI assays with post-infection ferret antisera raised against 2012-2013 season H3N2 viruses. Egg-adaptive substitutions at position 186 caused substantial differences in binding avidity with an insignificant effect on antigenicity.

  16. In vitro binding affinities of a series of flavonoids for μ-opioid receptors. Antinociceptive effect of the synthetic flavonoid 3,3-dibromoflavanone in mice.

    PubMed

    Higgs, Josefina; Wasowski, Cristina; Loscalzo, Leonardo M; Marder, Mariel

    2013-09-01

    The pharmacotherapy for the treatment of pain is an active area of investigation. There are effective drugs to treat this problem, but there is also a need to find alternative treatments free of undesirable side effects. In the present work the capacity of a series of flavonoids to bind to the μ opioid receptor was evaluated. The most active compound, 3,3-dibromoflavanone (31), a synthetic flavonoid, presented a significant inhibition of the binding of the selective μ opioid ligand [(3)H]DAMGO, with a Ki of 0.846 ± 0.263 μM. Flavanone 31 was further synthesized using a simple and cheap procedure with good yield. Its in vivo effects in mice, after acute treatments, were studied using antinociceptive and behavioral assays. It showed no sedative, anxiolytic, motor incoordination effects or inhibition of the gastrointestinal transit in mice at the doses tested. It evidenced antinociceptive activity on the acetic acid-induced nociception, hot plate and formalin tests (at 10 mg/kg and 30 mg/kg). The results showed that the 5-HT2 receptor and the adrenoceptors seem unlikely to be involved in its antinociceptive effects. Naltrexone, a nonselective opioid receptors antagonist, totally blocked compound 31 antinociceptive effects on the hot plate test, but naltrindole (δ opioid antagonist) and nor-binaltorphimine (κ opioid antagonist) did not. These findings demonstrated that 3,3-dibromoflavanone (31), at doses that did not interfere with the motor performance, exerted clear dose dependent antinociception when assessed in the chemical and thermal models of nociception in mice and it seems that its action is related to the activation of the μ opioid receptor. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Protective effect of histamine H2 receptor antagonist ranitidine against rotenone-induced apoptosis.

    PubMed

    Park, Hae Jeong; Kim, Hak Jae; Park, Hyun-Kyung; Chung, Joo-Ho

    2009-11-01

    Histamine H(2) receptor antagonists have been reported to improve the motor symptoms of Parkinson's disease (PD) patients and to exert neuroprotective effects. In this study, we investigated the protective effects of the H(2) receptor antagonist ranitidine on rotenone-induced apoptosis in human dopaminergic SH-SY5Y cells, focusing on mitogen-activated protein kinases (MAPKs) and caspases (CASPs)-mediated apoptotic events. Ranitidine blocked the rotenone-induced phosphorylation of c-Jun NH(2)-terminal protein kinase (JNK) and P38 MAPK (P38), and promoted the phosphorylation of extracellular signal-regulated protein kinase (ERK). Ranitidine also prevented the down-regulation of B-cell CLL/lymphoma 2 (BCL2) and the up-regulation of BCL2-associated X protein (BAX) by rotenone. Furthermore, ranitidine not only attenuated rotenone-induced cleavages of CASP9, poly(ADP-ribose) polymerase-1 (PARP) and CASP3, but also suppressed CASP3 enzyme activity. These results indicate that ranitidine protects against rotenone-induced apoptosis, inhibiting phosphorylation of JNK and P38, and activation of CASPs in human dopaminergic SH-SY5Y cells.

  18. Beta-methyl substitution of cyclohexylalanine in Dmt-Tic-Cha-Phe peptides results in highly potent delta opioid antagonists.

    PubMed

    Tóth, Géza; Ioja, Eniko; Tömböly, Csaba; Ballet, Steven; Tourwé, Dirk; Péter, Antal; Martinek, Tamás; Chung, Nga N; Schiller, Peter W; Benyhe, Sándor; Borsodi, Anna

    2007-01-25

    The opioid peptide TIPP (H-Tyr-Tic-Phe-Phe-OH, Tic:1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid) was substituted with Dmt (2',6'-dimethyltyrosine) and a new unnatural amino acid, beta-MeCha (beta-methyl-cyclohexylalanine). This double substitution led to a new series of opioid peptides displaying subnanomolar delta antagonist activity and mu agonist or antagonist properties depending on the configuration of the beta-MeCha residue. The most promising analog, H-Dmt-Tic-(2S,3S)-beta-MeCha-Phe-OH was a very selective delta antagonist both in the mouse vas deferens (MVD) assay (Ke = 0.241 +/- 0.05 nM) and in radioligand binding assay (K i delta = 0.48 +/- 0.05 nM, K i mu/K i delta = 2800). The epimeric peptide H-Dmt-Tic-(2S,3R)-beta-MeCha-Phe-OH and the corresponding peptide amide turned out to be mixed partial mu agonist/delta antagonists in the guinea pig ileum and MVD assays. Our results constitute further examples of the influence of Dmt and beta-methyl substitution as well as C-terminal amidation on the potency, selectivity, and signal transduction properties of TIPP related peptides. Some of these compounds represent valuable pharmacological tools for opioid research.

  19. Vasopressin and a nonpeptide antidiuretic hormone receptor antagonist (OPC-31260).

    PubMed

    Burrell, L M; Phillips, P A; Stephenson, J M; Risvanis, J; Johnston, C I

    1994-03-01

    The development of nonpeptide orally active AVP analogues has provided a new tool with which to assess the physiological and pathophysiological role of vasopressin (AVP). We have previously characterised the nonpeptide vasopressin V1 receptor antagonist OPC-21268, and now report the in vitro characterisation of the nonpeptide V2 receptor antagonist OPC-31260 in the rat. OPC-31260 caused a concentration-dependent displacement of the selective AVP V2 receptor antagonist radioligand, [3H]desGly-NH2(9)[d(CH2)5, D-Ile2,Ile4]AVP from V2 receptors in rat kidney medulla membranes. The concentration of OPC-31260 that displaced 50% of specific AVP binding (IC50) was 20 +/- 2 nmol/l for renal V2 receptors. OPC-31260 also caused a concentration-dependent displacement of the selective AVP V1 receptor antagonist radioligand, [125I]-[d(CH2)5,sarcosine7]AVP from V1 receptors in both rat liver and kidney medulla membranes. The IC50 was 500 +/- 30 nmol/l for both renal and liver V1 receptors. After oral administration to rats, OPC-31260 was an effective inhibitor of AVP at renal V2 and liver V1 receptors in a time-dependent manner. In vitro binding kinetic studies showed that OPC-31260 was a competitive antagonist at both the renal V2 receptor and the hepatic V1 receptor. OPC-31260 is a nonpeptide, orally effective competitive inhibitor of AVP with a V2:V1 receptor selectivity ratio of 25:1 indicating relative V2 receptor selectivity.

  20. Overcoming hERG affinity in the discovery of maraviroc; a CCR5 antagonist for the treatment of HIV.

    PubMed

    Price, David A; Armour, Duncan; de Groot, Marcel; Leishman, Derek; Napier, Carolyn; Perros, Manos; Stammen, Blanda L; Wood, Anthony

    2008-01-01

    Avoiding cardiac liability associated with blockade of hERG (human ether a go-go) is key for successful drug discovery and development. This paper describes the work undertaken in the discovery of a potent CCR5 antagonist, maraviroc 34, for the treatment of HIV. In particular the use of a pharmacophore model of the hERG channel and a high throughput binding assay for the hERG channel are described that were critical to elucidate SAR to overcome hERG liabilities. The key SAR involves the introduction of polar substituents into regions of the molecule where it is postulated to undergo hydrophobic interactions with the ion channel. Within the CCR5 project there appeared to be no strong correlation between hERG affinity and physiochemical parameters such as pKa or lipophilicity. It is believed that chemists could apply these same strategies early in drug discovery to remove hERG interactions associated with lead compounds while retaining potency at the primary target.

  1. SSTR-Mediated Imaging in Breast Cancer: Is There a Role for Radiolabeled Somatostatin Receptor Antagonists?

    PubMed

    Dalm, Simone U; Haeck, Joost; Doeswijk, Gabriela N; de Blois, Erik; de Jong, Marion; van Deurzen, Carolien H M

    2017-10-01

    Recent studies have shown enhanced tumor targeting by novel somatostatin receptor (SSTR) antagonists compared with clinically widely used agonists. However, these results have been obtained mostly in neuroendocrine tumors, and only limited data are available for cancer types with lower SSTR expression, including breast cancer (BC). To date, two studies have reported higher binding of the antagonist than the agonist in BC, but in both studies only a limited number of cases were evaluated. In this preclinical study, we further investigated whether the application of an SSTR antagonist can improve SSTR-mediated BC imaging in a large panel of BC specimens. We also generated an in vivo BC mouse model and performed SPECT/MRI and biodistribution studies. Methods: Binding of 111 In-DOTA-Tyr 3 -octreotate (SSTR agonist) and 111 In-DOTA-JR11 (SSTR antagonist) to 40 human BC specimens was compared using in vitro autoradiography. SSTR2 immunostaining was performed to confirm SSTR2 expression of the tumor cells. Furthermore, binding of the radiolabeled SSTR agonist and antagonist was analyzed in tissue material from 6 patient-derived xenografts. One patient-derived xenograft, the estrogen receptor-positive model T126, was chosen to generate in vivo mouse models containing orthotopic breast tumors for in vivo SPECT/MRI and biodistribution studies after injection with 177 Lu-DOTA-Tyr 3 -octreotate or 177 Lu-DOTA-JR11. Results: 111 In-DOTA-JR11 binding to human BC tissue was significantly higher than 111 In-DOTA-Tyr 3 -octreotate binding ( P < 0.001). The median ratio of antagonist binding versus agonist binding was 3.39 (interquartile range, 2-5). SSTR2 immunostaining confirmed SSTR2 expression on the tumor cells. SPECT/MRI of the mouse model found better tumor visualization with the antagonist. This result was in line with the significantly higher tumor uptake of the radiolabeled antagonist than of the agonist as measured in biodistribution studies 285 min after radiotracer

  2. Structural insight into the antagonistic action of diarylheptanoid on human estrogen receptor alpha.

    PubMed

    Geetha Rani, Yuvaraj; Lakshmi, Baddireddi Subhadra

    2018-03-30

    Estrogen receptor α (ER α) is an important therapeutic target in the regulation of ligand dependent signaling in breast cancer. The current study investigates the anti-estrogenic potential of the Diarylheptanoid, 5-hydroxy-7-(4-hydroxy-3 methoxyphenyl)-1-phenyl-3-heptanone (DAH) in silico. Rigid Docking analysis of DAH at the ligand binding domain (LBD) of ER α showed hydrogen bond interactions with Arg394 and Glu353 at the active site, similar to the positive controls 4-Hydroxy Tamoxifen (4-OHT) and Fulvestrant (FUL). The protein and the protein-DAH complexes were further analyzed using molecular dynamics simulations for a time scale of 50 ns using GROMACS. Root mean square fluctuation (RMSF) analysis showed large fluctuations at the N-terminal region of Helices (H) 3, 9 and at the C-terminal region of H11, which could be involved in the antagonistic conformational change. Interestingly, H12 appeared to move away from the ligand binding pocket and occupy the co-activator binding groove at the LBD of ER α. Secondary structure analysis of the protein upon binding of DAH and CUR showed structural change from α-helix to Turn conformation at H4. We hypothesize that this structural change at H4, similar to the positive control, could hinder the activity of AF-2 by blocking the binding of co-activator. These conformational changes in ER α indicate an anti-estrogenic and therapeutic potential of the DAH.

  3. Design of Phthalazinone Amide Histamine H1 Receptor Antagonists for Use in Rhinitis

    PubMed Central

    2017-01-01

    The synthesis of potent amide-containing phthalazinone H1 histamine receptor antagonists is described. Three analogues 3e, 3g, and 9g were equipotent with azelastine and were longer-acting in vitro. Amide 3g had low oral bioavailability, low brain-penetration, high metabolic clearance, and long duration of action in vivo, and it was suitable for once-daily dosing intranasally, with a predicted dose for humans of approximately 0.5 mg per day. PMID:28523114

  4. ( sup 3 H)opipramol labels a novel binding site and sigma receptors in rat brain membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferris, C.D.; Hirsch, D.J.; Brooks, B.P.

    1991-02-01

    Opipramol (OP), a clinically effective antidepressant with a tricyclic structure, is inactive as an inhibitor of biogenic amine uptake. ({sup 3}H)Opipramol binds saturably to rat brain membranes (apparent KD = 4 nM, Bmax = 3 pmol/mg of protein). ({sup 3}H)Opipramol binding can be differentiated into haloperidol-sensitive and -resistant components, with Ki values for haloperidol of 1 nM (Bmax = 1 pmol/mg of protein) and 350 nM (Bmax = 1.9 pmol/mg of protein), respectively. The drug specificity of the haloperidol-sensitive component is the same as that of sigma receptors labeled with (+)-({sup 3}H)3-(3-hydroxyphenyl)-N-(1-propyl)piperdine. The haloperidol-resistant component does not correspond to anymore » known neurotransmitter receptor or uptake recognition site. It displays high affinity for phenothiazines and related structures such as perphenazine, clopenthixol, and flupenthixol, whose potencies are comparable to that of opipramol. Because certain of these drugs are more potent at the haloperidol-resistant opipramol site than in exerting any other action, it is possible that this opipramol-selective site may mediate their therapeutic effects.« less

  5. Biological half-life and organ distribution of [3H]8-arginine vasopressin following administration of vasopressin receptor antagonist OPC-31260.

    PubMed

    Molnár, Andor H; Varga, Csaba; Janáky, Tamás; Tóth, Gábor; Tóth, Géza; Farkas, Judit; László, Ferenc; László, Ferenc A

    2007-06-07

    The effects of the antidiuretic (V(2)) non-peptide receptor antagonist OPC-31260 on the plasma vasopressin level and the biological half-life and organ distribution of radiochemically pure, biologically active [(3)H]8-arginine vasopressin [spec. act.: 15.9 mCi/mmol (588 GBq/mmol)] were studied in Wistar rats. The plasma vasopressin level increased significantly throughout the whole experimental period (24 h). There was no change in the fast phase of the curves of total radioactivity disappearance from the plasma after the administration of [(3)H]arginine vasopressin (control: 1.51+/-0.17 min, OPC-31260-treated: 1.42+/-0.12 min, n=10). The fast phase of the disappearance curves of intact [(3)H]arginine vasopressin did not change either following the administration of OPC-31260 in a dose of 30 mg/kg p.o. (control: 1.06+/-0.19 min, OPC-31260-treated: 1.00+/-0.15 min, n=6). The slow phase of the biological half-life, which is characteristic for the examined compound, proved to be significantly longer (total radioactivity control: 9.29+/-0.61 min, OPC-31260-treated: 12.33+/-0.42 min, P<0.05, n=10; [(3)H]arginine vasopressin radioactivity: control: 5.96+/-0.58 min, OPC-31260-treated: 8.90+/-0.37 min, P<0.05, n=6). In the control rats, the radioactivity was accumulated to the greatest extent in the neurohypophysis, adenohypophysis and kidney. Following OPC-31260 administration, significantly more radioactive compounds accumulated in the kidney (control: 0.30+/-0.052 total radioactivity %/100 mg organ weight, OPC-31260-treated: 0.50+/-0.133 total radioactivity %/100 mg organ weight, P<0.05, n=10) and neurohypophysis (control: 0.37+/-0.053 total radioactivity %/100 mg organ weight, OPC-31260-treated: 0.52+/-0.076 total radioactivity %/100 mg organ weight, P<0.05, n=10). Our results permit the conclusion that the antidiuretic antagonist OPC-31260 not only blocks the V(2) receptors, but also increases the biological half-life of vasopressin. The longer biological half-life of

  6. [The effects of epinephrine and adrenergic antagonists on adenosine 3', 5'-monophosphate level of bovine trabecular cells in vitro].

    PubMed

    Lu, Y; Li, M; Shen, Y

    1998-03-01

    To determine the effects of epinephrine (EPI) and adrenergic antagonists on adenosine 3', 5'-monophosphate (cAMP) level of bovine trabecular cells (BTC) in vitro. (3)H-cAMP was used in protein binding assay for measuring the intracellular level of cAMP. (1) 10(-5) mol/L EPI induced a fold increase of cAMP in cultured BTC in vitro; (2) Timilol and ICI 118, 551 blocked efficiently the effect of EPI at a lower concentration (10(-6) mol/L). (3) Bisoprolol did not efficiently block the effect of EPI unless at high concentrations (>or= 10(-5) mol/L). The effects of EPI increasing outflow facility may be associated with its increase of cAMP in trabecular cells; BTC contains beta-adrenergic receptors, and beta(2)-adrenergic receptors are dominant.

  7. Studies of tricyclic piperazine/piperidine furnished molecules as novel integrin αvβ3/αIIbβ3 dual antagonists using 3D-QSAR and molecular docking.

    PubMed

    Yan, Yulian; Li, Yan; Zhang, Shuwei; Ai, Chunzhi

    2011-02-01

    The development of injectable integrin α(v)β(3)/α(IIb)β(3) dual antagonists attracts much attention of research for treating of acute ischemic diseases in recent years. In this work, based on a dataset composed of 102 tricyclic piperazine/piperidine furnished dual α(v)β(3) and α(IIb)β(3) antagonists, a variety of in silico modeling approaches including the comparative molecular field analysis (CoMFA), comparative similarity indices analysis (CoMSIA), and molecular docking were applied to reveal the requisite 3D structural features impacting the biological activities. Our statistical results show that the ligand-based 3D-QSAR models for both the α(v)β(3) and α(IIb)β(3) studies exhibited satisfactory internal and external predictability, i.e., for the CoMFA models, results of Q(2)=0.48, R(ncv)(2)=0.87, R(pred)(2)=0.71 for α(v)β(3) and Q(2)=0.50, R(ncv)(2)=0.85, R(pred)(2)=0.72 for α(IIb)β(3) analysis were obtained, and for the CoMSIA ones, the outcomes of Q(2)=0.55, R(ncv)(2)=0.90, R(pred)(2)=0.72 for α(v)β(3) and Q(2)=0.52, R(ncv)(2)=0.88, R(pred)(2)=0.74 for α(IIb)β(3) were achieved respectively. In addition, through a comparison between 3D-QSAR contour maps and docking results, it is revealed that that the most crucial interactions occurring between the tricyclic piperazine/piperidine derivatives and α(v)β(3)/α(IIb)β(3) receptor ligand binding pocket are H-bonding, and the key amino acids impacting the interactions are Arg214, Asn215, Ser123, and Lys253 for α(v)β(3), but Arg214, Asn215, Ser123 and Tyr190 for α(IIb)β(3) receptors, respectively. Halogen-containing groups at position 15 and 16, benzene sulfonamide substituent at position 23, and the replacement of piperazine with 4-aminopiperidine of ring B may increase the α(v)β(3)/α(IIb)β(3) antagonistic activity. The potencies for antagonists to inhibit isolated α(v)β(3) and α(IIb)β(3) are linear correlated, indicating that similar interaction mechanisms may exist for the series

  8. Interaction of ( sup 3 H)MK-801 with multiple states of the N-methyl-D-aspartate receptor complex of rat brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Javitt, D.C.; Zukin, S.R.

    1989-01-01

    N-Methyl-D-aspartate (N-Me-D-Asp) and phencyclidine receptors interactively mediate central nervous system processes including psychotomimetic effects of drugs as well as neurodegenerative, cognitive, and developmental events. To elucidate the mechanism of this interaction, effects of N-Me-D-Asp agonists and antagonists and of glycine-like agents upon binding of the radiolabeled phencyclidine receptor ligand ({sup 3}H)MK-801 were determined in rat brain. Scatchard analysis revealed two discrete components of ({sup 3}H)MK-801 binding after 4 hr of incubation. Incubation in the presence of L-glutamate led to an increase in apparent densities but not in affinities of both components of ({sup 3}H)MK-801 binding as well as conversion ofmore » sites from apparent low to high affinity. Incubation in the presence of combined D-serine and L-glutamate led to an increase in the apparent density of high-affinity ({sup 3}H)MK-801 binding compared with incubation in the presence of either L-glutamate or D-serine alone. These data support a model in which phencyclidine receptor ligands bind differentially to closed as well as open conformations of the N-Me-D-Asp receptor complex and in which glycine-like agents permit or facilitate agonist-induced conversion of N-Me-D-Asp receptors from closed to open conformations.« less

  9. Design of fluorinated 5-HT(4)R antagonists: influence of the basicity and lipophilicity toward the 5-HT(4)R binding affinities.

    PubMed

    Fontenelle, Clement Q; Wang, Zhong; Fossey, Christine; Cailly, Thomas; Linclau, Bruno; Fabis, Frederic

    2013-12-01

    Analogues of potent 5-HT(4)R antagonists possessing a fluorinated N-alkyl chain have been synthesized in order to investigate the effect of the resulting change in basicity and lipophilicity on the affinity and selectivity profile. We demonstrate that for this series, the affinity is decreased with decreased basicity of the piperidine's nitrogen atom. In contrast, the resulting increase in lipophilicity has minimal impact on binding affinity and selectivity. 3,3,3-Trifluoropropyl and 4,4,4-trifluorobutyl derivatives 6d and 6e have shown to bind to the 5-HT(4)R while maintaining their pharmacological profile and selectivity toward other 5-HT receptors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Nigral dopamine type-1 receptors are reduced in Huntington's disease: A postmortem autoradiographic study using ( sup 3 H)SCH 23390 and correlation with ( sup 3 H)forskolin binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filloux, F.; Wagster, M.V.; Folstein, S.

    1990-11-01

    Intrastriatal injection of excitatory amino acids, particularly quinolinic acid, has been proposed as an animal model of Huntington's disease. Such neurotoxic lesions of caudate-putamen result in marked dopamine type-1 (D1) receptor losses in the injected nuclei as well as in the ipsilateral substantia nigra pars reticulata. Postmortem human substantia nigra from Huntington's disease brains and from control brains were examined using in vitro autoradiography. A marked reduction in ({sup 3}H)SCH 23390 binding (labeling D1 receptors) in the substantia nigra of postmortem brains of Huntington's patients was identified, thus paralleling the alterations seen in the animal models. A positive, statistically significantmore » correlation was also encountered between D1 receptor binding (labeled by ({sup 3}H)SCH 23390) and ({sup 3}H)forskolin binding (which identifies adenylate cyclase, a second messenger system linked to D1 receptor activation). The results suggest that in the human--as in lower vertebrates--D1 receptors are located on striatonigral terminals and that D1 receptor loss tends to be paralleled by a reduction in adenylate cyclase. Radioactive agents selective for the D1 receptor may prove useful in future studies of Huntington's disease using positron emission tomography scanning.« less

  11. Molecular dynamics simulation on HP1 protein binding by histone H3 tail methylation and phosphorylation

    NASA Astrophysics Data System (ADS)

    Jiang, Yan-Ke; Zou, Jian-Wei; Wu, Yu-Qian; Zhang, Na; Yu, Qing-Sen; Jiang, Yong-Jun

    Trimethylation of histone H3 lysine 9 is important for recruiting heterochromatin protein 1 (HP1) to discrete regions of the genome, thereby regulating gene expression, chromatin packaging, and heterochromatin formation. Phosphorylation of histone H3 has been linked with mitotic chromatin condensation. During mitosis in vivo, H3 lysine 9 methylation and serine 10 phosphorylation can occur concomitantly on the same histone tail, whereas the influence of phosphorylation to trimethylation H3 tail recruiting HP1 remains controversial. In this work, molecular dynamics simulation of HP1 complexed with both trimethylated and phosphorylated H3 tail were performed and compared with the results from the previous methylated H3-HP1 trajectory. It is clear from the 10-ns dynamics simulation that two adjacent posttranslational modifications directly increase the flexibility of the H3 tail and weaken HP1 binding to chromatin. A combinatorial readout of two adjacent posttranslational modifications-a stable methylation and a dynamic phosphorylation mark-establish a regulatory mechanism of protein-protein interactions.

  12. Kinetics and equilibria of cyanide binding to prostaglandin H synthase.

    PubMed

    MacDonald, I D; Dunford, H B

    1989-09-01

    Cyanide binding to prostaglandin H (PGH) synthase results in a spectral shift in the Soret region. This shift was exploited to determine equilibrium and kinetic parameters of the cyanide binding process. At pH 8.0, ionic strength 0.22 M, 4 degrees C, the cyanide dissociation constant, determined from equilibrium experiments, is (65 +/- 10) microM. The binding rate constant is (2.8 +/- 0.2) x 10(3) M-1 s-1, and the dissociation rate constant is zero within experimental error. Through a kinetic study of the binding process as a function of pH, from pH 3.96 to 8.00, it was possible to determine the pKa of a heme-linked acid group on the enzyme of 4.15 +/- 0.10 with citrate buffer. An apparent pKa of 4.75 +/- 0.03 was determined with acetate buffer; this different value is attributed to complexation of the enzyme with one of the components of the acetate buffer.

  13. PSNCBAM-1, a novel allosteric antagonist at cannabinoid CB1 receptors with hypophagic effects in rats.

    PubMed

    Horswill, J G; Bali, U; Shaaban, S; Keily, J F; Jeevaratnam, P; Babbs, A J; Reynet, C; Wong Kai In, P

    2007-11-01

    Rimonabant (Acomplia, SR141716A), a cannabinoid CB1 receptor inverse agonist, has recently been approved for the treatment of obesity. There are, however, concerns regarding its side effect profile. Developing a CB1 antagonist with a different pharmacological mechanism may lead to a safer alternative. To this end we have screened a proprietary small molecule library and have discovered a novel class of allosteric antagonist at CB1 receptors. Herein, we have characterized an optimized prototypical molecule, PSNCBAM-1, and its hypophagic effects in vivo. A CB1 yeast reporter assay was used as a primary screen. PSNCBAM-1 was additionally characterized in [35S]-GTPgammaS, cAMP and radioligand binding assays. An acute rat feeding model was used to evaluate its effects on food intake and body weight in vivo. In CB1 receptor yeast reporter assays, PSNCBAM-1 blocked the effects induced by agonists such as CP55,940, WIN55212-2, anandamide (AEA) or 2-arachidonoyl glycerol (2-AG). The antagonist characteristics of PSNCBAM-1 were confirmed in [35S]-GTPgammaS binding and cAMP assays and was shown to be non-competitive by Schild analyses. PSNCBAM-1 did not affect CB2 receptors. In radioligand binding assays, PSNCBAM-1 increased the binding of [3H]CP55,940 despite its antagonist effects. In an acute rat feeding model, PSNCBAM-1 decreased food intake and body weight. PSNCBAM-1 exerted its effects through selective allosteric modulation of the CB1 receptor. The acute effects on food intake and body weight induced in rats provide a first report of in vivo activity for an allosteric CB1 receptor antagonist.

  14. ( sup 3 H)RO15-4513 binding to cerebellar diazepam-sensitive and insensitive GABAA receptors is unchanged by one week of ethanol intake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, M.W.; Chen, J.P.; Wallis, C.

    1992-02-26

    ({sup 3}H)RO15-4513, a partial inverse agonist at GABAA receptors, binds to two sites in cerebellar membranes, one sensitive (DZ-S) and one insensitive (DZ-IS) to inhibition by diazepam. These binding sites may represent different isoforms of the GABAA receptor and may play a role in ethanol (EtOH) dependence. The authors tested the hypothesis that chronic intake of EtOH induces changes in the binding properties of one or both of these putative GABBA receptors. Rats were fed a liquid diet of 4.5% EtOH for 7 d, gavaged with a 3g/kg dose of EtOH, and then sacrificed after 2 h, 12 h, ormore » 4.5 d. Binding of ({sup 3}H)RO15-4513 to cerebellar membranes was performed in the absence or presence of 10{mu}M diazepam (DZ-IS binding); DZ-S binding was calculated as the difference between total and DZ-IS. Nonlinear regression analysis showed that each class of binding site fit a model of mass action binding to a single, noninteractive population of sites. No significant difference was observed between any of the treatment groups in the apparent affinity (Kd) for ({sup 3}H)RO15-4513 at total, DZ-S, or DZ-IS sites following chronic EtOH intake or withdrawal. In addition, no significant difference was observed in the apparent number of DZ-S or DZ-IS binding sites or the ratio of DZ-S to DZ-IS.« less

  15. Selective labeling of serotonin uptake sites in rat brain by (/sup 3/H)citalopram contrasted to labeling of multiple sites by (/sup 3/H)imipramine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Amato, R.J.; Largent, B.L.; Snowman, A.M.

    1987-07-01

    Citalopram is a potent and selective inhibitor of neuronal serotonin uptake. In rat brain membranes (/sup 3/H)citalopram demonstrates saturable and reversible binding with a KD of 0.8 nM and a maximal number of binding sites (Bmax) of 570 fmol/mg of protein. The drug specificity for (/sup 3/H)citalopram binding and synaptosomal serotonin uptake are closely correlated. Inhibition of (/sup 3/H)citalopram binding by both serotonin and imipramine is consistent with a competitive interaction in both equilibrium and kinetic analyses. The autoradiographic pattern of (/sup 3/H)citalopram binding sites closely resembles the distribution of serotonin. By contrast, detailed equilibrium-saturation analysis of (/sup 3/H)imipramine bindingmore » reveals two binding components, i.e., high affinity (KD = 9 nM, Bmax = 420 fmol/mg of protein) and low affinity (KD = 553 nM, Bmax = 8560 fmol/mg of protein) sites. Specific (/sup 3/H)imipramine binding, defined as the binding inhibited by 100 microM desipramine, is displaced only partially by serotonin. Various studies reveal that the serotonin-sensitive portion of binding corresponds to the high affinity sites of (/sup 3/H)imipramine binding whereas the serotonin-insensitive binding corresponds to the low affinity sites. Lesioning of serotonin neurons with p-chloroamphetamine causes a large decrease in (/sup 3/H)citalopram and serotonin-sensitive (/sup 3/H)imipramine binding with only a small effect on serotonin-insensitive (/sup 3/H)imipramine binding. The dissociation rate of (/sup 3/H)imipramine or (/sup 3/H)citalopram is not altered by citalopram, imipramine or serotonin up to concentrations of 10 microM. The regional distribution of serotonin sensitive (/sup 3/H)imipramine high affinity binding sites closely resembles that of (/sup 3/H)citalopram binding.« less

  16. Studies on molecular properties prediction and histamine H3 receptor affinities of novel ligands with uracil-based motifs.

    PubMed

    Lipani, Luca; Odadzic, Dalibor; Weizel, Lilia; Schwed, Johannes-Stephan; Sadek, Bassem; Stark, Holger

    2014-10-30

    The histamine H3 receptor (H3R) plays a role in cognitive and memory processes and is involved in different neurological disorders, including Alzheimer's disease, schizophrenia, and narcolepsy. Therefore, several hH3R antagonists/inverse agonists entered clinical phases for a broad spectrum of mainly centrally occurring diseases. However, many other promising candidates failed due to their pharmacokinetic profile, mostly because of their strong lipophilicity accompanied with low solubility. Analysis of previous potential H3R selective antagonists/inverse agonists, e.g. pitolisant, revealed promising results concerning physicochemical properties and drug-likeness. Herein, a series of new hH3R ligands 8-20 consisting of piperidin-1-yl or piperidin-1-yl-propoxyphenyl coupled to different uracil, thymine, and 5,6-dimethyluracil related moieties, were synthesized, evaluated on their binding properties at the hH3R and the estimation of different physicochemical and drug-likeness properties. Due to the coupling to various positions at pyrimidine-2,4-(1H,3H)-dione, affinity at hH3Rs and drug-likeness parameters have been improved. For instance, compound 9 showed in addition to high affinity at the hH3R (pKi (hH3R) = 8.14) clog S, clog P, LE, LipE, and drug-likeness score values of -4.36, 3.47, 0.34, 4.63, and 1.54, respectively. Also, the methyl substituted analog 17 (pKi (hH3R) = 8.15) revealed LE, LipE and drug-likeness score values of -3.29, 2.47, 0.49, 5.52, and 1.76, respectively. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  17. Comparison of cannabinoid binding sites in guinea-pig forebrain and small intestine

    PubMed Central

    Ross, Ruth A; Brockie, Heather C; Fernando, Susanthi R; Saha, Bijali; Razdan, Raj K; Pertwee, Roger G

    1998-01-01

    We have investigated the nature of cannabinoid receptors in guinea-pig small intestine by establishing whether this tissue contains cannabinoid receptors with similar binding properties to those of brain CB1 receptors. The cannabinoids used were the CB1-selective antagonist SR141716A, the CB2-selective antagonist SR144528, the novel cannabinoid receptor ligand, 6′-azidohex-2′-yne-Δ8-tetrahydrocannabinol (O-1184), and the agonists CP55940, which binds equally well to CB1 and CB2 receptors, and WIN55212-2, which shows marginal CB2 selectivity.[3H]-CP55940 (1 nM) underwent extensive specific binding both to forebrain membranes (76.3%) and to membranes obtained by sucrose density gradient fractionation of homogenates of myenteric plexus-longitudinal muscle of guinea-pig small intestine (65.2%).Its binding capacity (Bmax) was higher in forebrain (4281 fmol mg−1) than in intestinal membranes (2092 fmol mg−1). However, the corresponding KD values were not significantly different from each other (2.29 and 1.75 nM respectively). Nor did the Ki values for its displacement by CP55940, WIN55212-2, O-1184, SR141716A and SR144528 from forebrain membranes (0.87, 4.15, 2.85, 5.32 and 371.9 respectively) differ significantly from the corresponding Ki values determined in experiments with intestinal membranes (0.99, 5.03, 3.16, 4.95 and 361.5 nM respectively).The Bmax values of [3H]-CP55940 and [3H]-SR141716A in forebrain membranes did not differ significantly from each other (4281 and 5658 fmol mg−1) but were both greater than the Bmax of [3H]-WIN55212-2 (2032 fmol mg−1).O-1184 (10 or 100 nM) produced parallel dextral shifts in the log concentration-response curves of WIN55212-2 and CP55940 for inhibition of electrically-evoked contractions of the myenteric plexus-longitudinal muscle preparation, its KD values being 0.20 nM (against WIN55212-2) and 0.89 nM (against CP55940).We conclude that cannabinoid binding sites in guinea-pig small

  18. Use of molecular modeling aided design to dial out hERG liability in adenosine A(2A) receptor antagonists.

    PubMed

    Deng, Qiaolin; Lim, Yeon-Hee; Anand, Rajan; Yu, Younong; Kim, Jae-hun; Zhou, Wei; Zheng, Junying; Tempest, Paul; Levorse, Dorothy; Zhang, Xiaoping; Greene, Scott; Mullins, Deborra; Culberson, Chris; Sherborne, Brad; Parker, Eric M; Stamford, Andrew; Ali, Amjad

    2015-08-01

    Molecular modeling was performed on a triazolo quinazoline lead compound to help develop a series of adenosine A2A receptor antagonists with improved hERG profile. Superposition of the lead compound onto MK-499, a benchmark hERG inhibitor, combined with pKa calculations and measurement, identified terminal fluorobenzene to be responsible for hERG activity. Docking of the lead compound into an A2A crystal structure suggested that this group is located at a flexible, spacious, and solvent-exposed opening of the binding pocket, making it possible to tolerate various functional groups. Transformation analysis (MMP, matched molecular pair) of in-house available experimental data on hERG provided suggestions for modifications in order to mitigate this liability. This led to the synthesis of a series of compounds with significantly reduced hERG activity. The strategy used in the modeling work can be applied to other medicinal chemistry programs to help improve hERG profile. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Effect of antemortem and postmortem factors on ( sup 3 H)MK-801 binding in the human brain: Transient elevation during early childhood

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kornhuber, J.; Mack-Burkhardt, F.; Konradi, C.

    1989-01-01

    The effect of a number of antemortem and postmortem factors on ({sup 3}H)MK-801 binding was investigated under equilibrium conditions in the frontal cortex of human brains of 38 controls. Binding values transiently increased during the early postnatal period reaching a maximum at the age of about 2 years. After age 10 years ({sup 3}H)MK-801 binding sites disappeared at 5.7% per decade. The storage time of brain tissue had a reducing effect on these binding sites. There was no effect of gender, brain weight or postmortem time interval and the binding sites were bilaterally symmetrically distributed in the frontal cortex.

  20. Editor's Highlight: Structure-Based Investigation on the Binding and Activation of Typical Pesticides With Thyroid Receptor.

    PubMed

    Xiang, Dandan; Han, Jian; Yao, Tingting; Wang, Qiangwei; Zhou, Bingsheng; Mohamed, Abou Donia; Zhu, Guonian

    2017-12-01

    A broad range of pesticides have been reported to interfere with the normal function of the thyroid endocrine system. However, the precise mechanism(s) of action has not yet been thoroughly elucidated. In this study, 21 pesticides were assessed for their binding interactions and the potential to disrupt thyroid homeostasis. In the GH3 luciferase reporter gene assays, 5 of the pesticides tested had agonistic effects in the order of procymidone > imidacloprid > mancozeb > fluroxypyr > atrazine. 11 pesticides inhibited luciferase activity of T3 to varying degrees, demonstrating their antagonistic activity. And there are 4 pesticides showed mixed effects when treated with different concentrations. Surface plasmon resonance (SPR) biosensor technique was used to directly measure the binding interactions of these pesticides to the human thyroid hormone receptor (hTR). 13 pesticides were observed to bind directly with TR, with a KD ranging from 4.80E-08 M to 9.44E-07 M. The association and disassociation of the hTR/pesticide complex revealed 2 distinctive binding modes between the agonists and antagonists. At the same time, a different binding mode was displayed by the pesticides showed mix agonist and antagonist activity. In addition, the molecular docking simulation analyses indicated that the interaction energy calculated by CDOCKER for the agonists and antagonists correlated well with the KD values measured by the surface plasmon resonance assay. These results help to explain the differences of the TR activities of these tested pesticides. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Cu(II) binding by a pH-fractionated fulvic acid

    USGS Publications Warehouse

    Brown, G.K.; Cabaniss, S.E.; MacCarthy, P.; Leenheer, J.A.

    1999-01-01

    The relationship between acidity, Cu(II) binding and sorption to XAD resin was examined using Suwannee River fulvic acid (SRFA). The work was based on the hypothesis that fractions of SRFA eluted from an XAD column at various pH's from 1.0 to 12.0 would show systematic variations in acidity and possibly aromaticity which in turn would lead to different Cu(II) binding properties. We measured equilibrium Cu(II) binding to these fractions using Cu2+ ion-selective electrode (ISE) potentiometry at pH 6.0. Several model ligands were also examined, including cyclopentane-1,2,3,4-tetracarboxylic acid (CP-TCA) and tetrahydrofuran-2,3,4,5-tetracarboxylic acid (THF-TCA), the latter binding Cu(II) much more strongly as a consequence of the ether linkage. The SRFA Cu(II) binding properties agreed with previous work at high ionic strength, and binding was enhanced substantially at lower ionic strength, in agreement with Poisson-Boltzmann predictions for small spheres. Determining Cu binding constants (K(i)) by non-linear regression with total ligand concentrations (L(Ti)) taken from previous work, the fractions eluted at varying pH had K(i) similar to the unfractionated SRFA, with a maximum enhancement of 0.50 log units. We conclude that variable-pH elution from XAD does not isolate significantly strong (or weak) Cu(II)-binding components from the SRFA mixture. Copyright (C) 1999 Elsevier Science B.V.

  2. A Unique Human Chorionic Gonadotropin Antagonist Suppresses Ovarian Hyperstimulation Syndrome in Rats

    PubMed Central

    Vardhana, Pratibhasri A.; Julius, Martin A.; Pollak, Susan V.; Lustbader, Evan G.; Trousdale, Rhonda K.; Lustbader, Joyce W.

    2009-01-01

    Ovarian hyperstimulation syndrome (OHSS) is a complication of in vitro fertilization associated with physiological changes after hCG administration to induce final oocyte maturation. It presents as widespread increases in vascular permeability and, in rare cases, results in cycle cancellation, multi-organ dysfunction, and pregnancy termination. These physiological changes are due primarily to activation of the vascular endothelial growth factor (VEGF) system in response to exogenous human chorionic gonadotropin (hCG). An hCG antagonist (hCG-Ant) could attenuate these effects by competitively binding to the LH/CG receptor, thereby blocking LH activity in vivo. We expressed a form of hCG that lacks three of its four N-linked glycosylation sites and tested its efficacy as an antagonist. The hCG-Ant binds the LH receptor with an affinity similar to native hCG and inhibits cAMP response in vitro. In a rat model for ovarian stimulation, hCG-Ant dramatically reduces ovulation and steroid hormone production. In a well-established rat OHSS model, vascular permeability and vascular endothelial growth factor (VEGF) expression are dramatically reduced after hCG-Ant treatment. Finally, hCG-Ant does not appear to alter blastocyst development when given after hCG in mice. These studies demonstrate that removing specific glycosylation sites on native hCG can produce an hCG-Ant that is capable of binding without activating the LH receptor and blocking the actions of hCG. Thus hCG-Ant will be investigated as a potential therapy for OHSS. PMID:19443574

  3. Structure-Activity Relationship Study of Ionotropic Glutamate Receptor Antagonist (2S,3R)-3-(3-Carboxyphenyl)pyrrolidine-2-carboxylic Acid.

    PubMed

    Krogsgaard-Larsen, Niels; Storgaard, Morten; Møller, Charlotte; Demmer, Charles S; Hansen, Jeanette; Han, Liwei; Monrad, Rune N; Nielsen, Birgitte; Tapken, Daniel; Pickering, Darryl S; Kastrup, Jette S; Frydenvang, Karla; Bunch, Lennart

    2015-08-13

    Herein we describe the first structure-activity relationship study of the broad-range iGluR antagonist (2S,3R)-3-(3-carboxyphenyl)pyrrolidine-2-carboxylic acid (1) by exploring the pharmacological effect of substituents in the 4, 4', or 5' positions and the bioisosteric substitution of the distal carboxylic acid for a phosphonic acid moiety. Of particular interest is a hydroxyl group in the 4' position 2a which induced a preference in binding affinity for homomeric GluK3 over GluK1 (Ki = 0.87 and 4.8 μM, respectively). Two X-ray structures of ligand binding domains were obtained: 2e in GluA2-LBD and 2f in GluK1-LBD, both at 1.9 Å resolution. Compound 2e induces a D1-D2 domain opening in GluA2-LBD of 17.3-18.8° and 2f a domain opening in GluK1-LBD of 17.0-17.5° relative to the structures with glutamate. The pyrrolidine-2-carboxylate moiety of 2e and 2f shows a similar binding mode as kainate. The 3-carboxyphenyl ring of 2e and 2f forms contacts comparable to those of the distal carboxylate in kainate.

  4. hLARP7 C-terminal domain contains an xRRM that binds the 3' hairpin of 7SK RNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eichhorn, Catherine D.; Chug, Rahul; Feigon, Juli

    The 7SK small nuclear ribonucleoprotein (snRNP) sequesters and inactivates the positive transcription elongation factor b (P-TEFb), an essential eukaryotic mRNA transcription factor. The human La-related protein group 7 (hLARP7) is a constitutive component of the 7SK snRNP and localizes to the 3' terminus of the 7SK long noncoding RNA. hLARP7, and in particular its C-terminal domain (CTD), is essential for 7SK RNA stability and assembly with P-TEFb. The hLARP7 N-terminal Lamodule binds and protects the 3' end from degradation, but the structural and functional role of its CTD is unclear.We report the solution NMR structure of the hLARP7 CTD andmore » show that this domain contains an xRRM, a class of atypical RRM first identified in the Tetrahymena thermophila telomerase LARP7 protein p65. The xRRM binds the 3' end of 7SK RNA at the top of stem-loop 4 (SL4) and interacts with both unpaired and base-paired nucleotides. This study thus confirms that the xRRM is general to the LARP7 family of proteins and defines the binding site for hLARP7 on the 7SK RNA, providing insight into function.« less

  5. hLARP7 C-terminal domain contains an xRRM that binds the 3' hairpin of 7SK RNA

    DOE PAGES

    Eichhorn, Catherine D.; Chug, Rahul; Feigon, Juli

    2016-09-26

    The 7SK small nuclear ribonucleoprotein (snRNP) sequesters and inactivates the positive transcription elongation factor b (P-TEFb), an essential eukaryotic mRNA transcription factor. The human La-related protein group 7 (hLARP7) is a constitutive component of the 7SK snRNP and localizes to the 3' terminus of the 7SK long noncoding RNA. hLARP7, and in particular its C-terminal domain (CTD), is essential for 7SK RNA stability and assembly with P-TEFb. The hLARP7 N-terminal Lamodule binds and protects the 3' end from degradation, but the structural and functional role of its CTD is unclear.We report the solution NMR structure of the hLARP7 CTD andmore » show that this domain contains an xRRM, a class of atypical RRM first identified in the Tetrahymena thermophila telomerase LARP7 protein p65. The xRRM binds the 3' end of 7SK RNA at the top of stem-loop 4 (SL4) and interacts with both unpaired and base-paired nucleotides. This study thus confirms that the xRRM is general to the LARP7 family of proteins and defines the binding site for hLARP7 on the 7SK RNA, providing insight into function.« less

  6. (3H)WB4101 labels the 5-HT1A serotonin receptor subtype in rat brain. Guanine nucleotide and divalent cation sensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norman, A.B.; Battaglia, G.; Creese, I.

    1985-12-01

    In the presence of a 30 nM prazosin mask, (/sup 3/H)-2-(2,6-dimethoxyphenoxyethyl) aminomethyl-1,4-benzodioxane ((/sup 3/H)WB4101) can selectively label 5-HT1 serotonin receptors. Serotonin exhibits high affinity (Ki = 2.5 nM) and monophasic competition for (/sup 3/H) WB4101 binding in cerebral cortex. We have found a significant correlation (r = 0.96) between the affinities of a number of serotonergic and nonserotonergic compounds at (/sup 3/H)WB4101-binding sites in the presence of 30 nM prazosin and (/sup 3/H) lysergic acid diethylamide ((/sup 3/H)LSD)-labeled 5-HT1 serotonin receptors in homogenates of rat cerebral cortex. Despite similar pharmacological profiles, distribution studies indicate that, in the presence of 5more » mM MgSO4, the Bmax of (/sup 3/H)WB4101 is significantly lower than the Bmax of (/sup 3/H)LSD in various brain regions. WB4101 competition for (/sup 3/H) LSD-labeled 5-HT1 receptors fits best to a computer-derived model assuming two binding sites, with the KH for WB4101 being similar to the KD of (/sup 3/H)WB4101 binding derived from saturation experiments. This suggests that (/sup 3/H)WB4101 labels only one of the subtypes of the 5-HT1 serotonin receptors labeled by (/sup 3/H)LSD. The selective 5-HT1A serotonin receptor antagonist, spiperone, and the selective 5-HT1A agonist, 8-hydroxy-2-(di-n-propylamino) tetraline, exhibit high affinity and monophasic competition for (/sup 3/H)WB4101 but compete for multiple (/sup 3/H)LSD 5-HT1 binding sites. These data indicate that (/sup 3/H)WB4101 selectively labels the 5-HT1A serotonin receptor, whereas (/sup 3/H) LSD appears to label both the 5-HT1A and the 5-HT1B serotonin receptor subtypes. The divalent cations, Mn2+, Mg2+, and Ca2+ were found to markedly increase the affinity and Bmax of (/sup 3/H)WB4101 binding in cerebral cortex. Conversely, the guanine nucleotides guanylylimidodiphosphate and GTP, but not the adenosine nucleotide ATP, markedly reduce the Bmax of (/sup 3/H)WB4101 binding.« less

  7. Behavioral characterization of mice lacking histamine H(3) receptors.

    PubMed

    Toyota, Hiroshi; Dugovic, Christine; Koehl, Muriel; Laposky, Aaron D; Weber, China; Ngo, Karen; Wu, Ying; Lee, Doo Hyun; Yanai, Kazuhiko; Sakurai, Eiko; Watanabe, Takehiko; Liu, Changlu; Chen, Jingcai; Barbier, Ann J; Turek, Fred W; Fung-Leung, Wai-Ping; Lovenberg, Timothy W

    2002-08-01

    Brain histamine H(3) receptors are predominantly presynaptic and serve an important autoregulatory function for the release of histamine and other neurotransmitters. They have been implicated in a variety of brain functions, including arousal, locomotor activity, thermoregulation, food intake, and memory. The recent cloning of the H(3) receptor in our laboratory has made it possible to create a transgenic line of mice devoid of H(3) receptors. This paper provides the first description of the H(3) receptor-deficient mouse (H(3)(-/-)), including molecular and pharmacologic verification of the receptor deletion as well as phenotypic screens. The H(3)(-/-) mice showed a decrease in overall locomotion, wheel-running behavior, and body temperature during the dark phase but maintained normal circadian rhythmicity. H(3)(-/-) mice were insensitive to the wake-promoting effects of the H(3) receptor antagonist thioperamide. We also observed a slightly decreased stereotypic response to the dopamine releaser, methamphetamine, and an insensitivity to the amnesic effects of the cholinergic receptor antagonist, scopolamine. These data indicate that the H(3) receptor-deficient mouse represents a valuable model for studying histaminergic regulation of a variety of behaviors and neurotransmitter systems, including dopamine and acetylcholine.

  8. Characterization of nicotine binding in mouse brain and comparison with the binding of alpha-bungarotoxin and quinuclidinyl benzilate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marks, M.J.; Collins, A.C.

    1982-11-01

    The binding of (/sup 3/H)nicotine to mouse brain has been measured and subsequently compared with the binding of (/sup 125/I)alpha-bungarotoxin (alpha-BTX) and L-(/sup 3/H)quinuclidinyl benzilate (QNB). The binding of nicotine was saturable, reversible, and stereospecific. The average KD and Bmax were 59 nM and 88 fmoles/mg of protein, respectively. Although the rates of association and dissociation of nicotine were temperature-dependent, the incubation temperature had no effect on either KD or Bmax. When measured at 20 degrees or 37 degrees, nicotine appeared to bind to a single class of binding sites, but a second, very low-affinity, binding site was observed atmore » 4 degrees. Nicotine binding was unaffected by the addition of NaCl, KCl, CaCl/sub 2/, or MgSO/sub 4/ to the incubation medium. Nicotinic cholinergic agonists were potent inhibitors of nicotine binding; however, nicotinic antagonists were poor inhibitors. The regional distribution of binding was not uniform: midbrain and striatum contained the highest number of receptors, whereas cerebellum had the fewest. Differences in site densities, regional distribution, inhibitor potencies, and thermal denaturation indicated that nicotine binding was not the same as either QNB or alpha-BTX binding, and therefore that receptors for nicotine may represent a unique population of cholinergic receptors.« less

  9. In Vitro Binding of [³H]PSB-0413 to P2Y₁₂ Receptors.

    PubMed

    Dupuis, Arnaud; Heim, Véronique; Ohlmann, Philippe; Gachet, Christian

    2015-12-08

    The P2Y₁₂/ADP receptor plays a central role in platelet activation. Characterization of this receptor is mandatory for studying disorders associated with a P2Y₁₂ receptor defect and for evaluating P2Y₁₂ receptor agonists and antagonists. In the absence of suitable anti-P2Y₁₂ antibodies, radioligand binding assays are the only way to conduct such studies. While various radioligands were employed in the past for this purpose, none were found to be suitable for routine use. Described in this unit are protocols for quantitatively and qualitatively assessing P2Y₁₂ receptors with [³H]PSB-0413, a selective antagonist for this site. The saturation and competition assays described herein make possible the determination of P2Y₁₂ receptor density on cells, as well as the potencies and affinities of test agents at this site. Copyright © 2015 John Wiley & Sons, Inc.

  10. Receptor-Binding Profiles of H7 Subtype Influenza Viruses in Different Host Species

    PubMed Central

    Gambaryan, Alexandra S.; Matrosovich, Tatyana Y.; Philipp, Jennifer; Munster, Vincent J.; Fouchier, Ron A. M.; Cattoli, Giovanni; Capua, Ilaria; Krauss, Scott L.; Webster, Robert G.; Banks, Jill; Bovin, Nicolai V.; Klenk, Hans-Dieter

    2012-01-01

    Influenza viruses of gallinaceous poultry and wild aquatic birds usually have distinguishable receptor-binding properties. Here we used a panel of synthetic sialylglycopolymers and solid-phase receptor-binding assays to characterize receptor-binding profiles of about 70 H7 influenza viruses isolated from aquatic birds, land-based poultry, and horses in Eurasia and America. Unlike typical duck influenza viruses with non-H7 hemagglutinin (HA), all avian H7 influenza viruses, irrespective of the host species, displayed a poultry-virus-like binding specificity, i.e., preferential binding to sulfated oligosaccharides Neu5Acα2-3Galβ1-4(6-O-HSO3)GlcNAc and Neu5Acα2-3Galβ1-4(Fucα1-3)(6-O-HSO3)GlcNAc. This phenotype correlated with the unique amino acid sequence of the amino acid 185 to 189 loop of H7 HA and seemed to be dependent on ionic interactions between the sulfate group of the receptor and Lys193 and on the lack of sterical clashes between the fucose residue and Gln222. Many North American and Eurasian H7 influenza viruses displayed weak but detectable binding to the human-type receptor moiety Neu5Acα2-6Galβ1-4GlcNAc, highlighting the potential of H7 influenza viruses for avian-to-human transmission. Equine H7 influenza viruses differed from other viruses by preferential binding to the N-glycolyl form of sialic acid. Our data suggest that the receptor-binding site of contemporary H7 influenza viruses in aquatic and terrestrial birds was formed after the introduction of their common precursor from ducks to a new host, presumably, gallinaceous poultry. The uniformity of the receptor-binding profile of H7 influenza viruses in various wild and domestic birds indicates that there is no strong receptor-mediated host range restriction in birds on viruses with this HA subtype. This notion agrees with repeated interspecies transmission of H7 influenza viruses from aquatic birds to poultry. PMID:22345462

  11. A pharmacokinetic evaluation of five H(1) antagonists after an oral and intravenous microdose to human subjects.

    PubMed

    Madan, Ajay; O'Brien, Zhihong; Wen, Jianyun; O'Brien, Chris; Farber, Robert H; Beaton, Graham; Crowe, Paul; Oosterhuis, Berend; Garner, R Colin; Lappin, Graham; Bozigian, Haig P

    2009-03-01

    To evaluate the pharmacokinetics (PK) of five H(1) receptor antagonists in human volunteers after a single oral and intravenous (i.v.) microdose (0.1 mg). Five H(1) receptor antagonists, namely NBI-1, NBI-2, NBI-3, NBI-4 and diphenhydramine, were administered to human volunteers as a single 0.1-mg oral and i.v. dose. Blood samples were collected up to 48 h, and the parent compound in the plasma extract was quantified by high-performance liquid chromatography and accelerator mass spectroscopy. The median clearance (CL), apparent volume of distribution (V(d)) and apparent terminal elimination half-life (t(1/2)) of diphenhydramine after an i.v. microdose were 24.7 l h(-1), 302 l and 9.3 h, and the oral C(max) and AUC(0-infinity) were 0.195 ng ml(-1) and 1.52 ng h ml(-1), respectively. These data were consistent with previously published diphenhydramine data at 500 times the microdose. The rank order of oral bioavailability of the five compounds was as follows: NBI-2 > NBI-1 > NBI-3 > diphenhydramine > NBI-4, whereas the rank order for CL was NBI-4 > diphenhydramine > NBI-1 > NBI-3 > NBI-2. Human microdosing provided estimates of clinical PK of four structurally related compounds, which were deemed useful for compound selection.

  12. Combined 3D-QSAR modeling and molecular docking study on azacycles CCR5 antagonists

    NASA Astrophysics Data System (ADS)

    Ji, Yongjun; Shu, Mao; Lin, Yong; Wang, Yuanqiang; Wang, Rui; Hu, Yong; Lin, Zhihua

    2013-08-01

    The beta chemokine receptor 5 (CCR5) is an attractive target for pharmaceutical industry in the HIV-1, inflammation and cancer therapeutic areas. In this study, we have developed quantitative structure activity relationship (QSAR) models for a series of 41 azacycles CCR5 antagonists using comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA), and Topomer CoMFA methods. The cross-validated coefficient q2 values of 3D-QASR (CoMFA, CoMSIA, and Topomer CoMFA) methods were 0.630, 0.758, and 0.852, respectively, the non-cross-validated R2 values were 0.979, 0.978, and 0.990, respectively. Docking studies were also employed to determine the most probable binding mode. 3D contour maps and docking results suggested that bulky groups and electron-withdrawing groups on the core part would decrease antiviral activity. Furthermore, docking results indicated that H-bonds and π bonds were favorable for antiviral activities. Finally, a set of novel derivatives with predicted activities were designed.

  13. Additional sex combs interacts with enhancer of zeste and trithorax and modulates levels of trimethylation on histone H3K4 and H3K27 during transcription of hsp70.

    PubMed

    Li, Taosui; Hodgson, Jacob W; Petruk, Svetlana; Mazo, Alexander; Brock, Hugh W

    2017-09-19

    Maintenance of cell fate determination requires the Polycomb group for repression; the trithorax group for gene activation; and the enhancer of trithorax and Polycomb (ETP) group for both repression and activation. Additional sex combs (Asx) is a genetically identified ETP for the Hox loci, but the molecular basis of its dual function is unclear. We show that in vitro, Asx binds directly to the SET domains of the histone methyltransferases (HMT) enhancer of zeste [E(z)] (H3K27me3) and Trx (H3K4me3) through a bipartite interaction site separated by 846 amino acid residues. In Drosophila S2 cell nuclei, Asx interacts with E(z) and Trx in vivo. Drosophila Asx is required for repression of heat-shock gene hsp70 and is recruited downstream of the hsp70 promoter. Changes in the levels of H3K4me3 and H3K27me3 downstream of the hsp70 promoter in Asx mutants relative to wild type show that Asx regulates H3K4 and H3K27 trimethylation. We propose that during transcription Asx modulates the ratio of H3K4me3 to H3K27me3 by selectively recruiting the antagonistic HMTs, E(z) and Trx or other nucleosome-modifying enzymes to hsp70.

  14. Discovery of sodium R-(+)-4-{2-[5-(2-fluoro-3-methoxyphenyl)-3-(2-fluoro-6-[trifluoromethyl]benzyl)-4-methyl-2,6-dioxo-3,6-dihydro-2H-pyrimidin-1-yl]-1-phenylethylamino}butyrate (elagolix), a potent and orally available nonpeptide antagonist of the human gonadotropin-releasing hormone receptor.

    PubMed

    Chen, Chen; Wu, Dongpei; Guo, Zhiqiang; Xie, Qiu; Reinhart, Greg J; Madan, Ajay; Wen, Jenny; Chen, Takung; Huang, Charles Q; Chen, Mi; Chen, Yongsheng; Tucci, Fabio C; Rowbottom, Martin; Pontillo, Joseph; Zhu, Yun-Fei; Wade, Warren; Saunders, John; Bozigian, Haig; Struthers, R Scott

    2008-12-11

    The discovery of novel uracil phenylethylamines bearing a butyric acid as potent human gonadotropin-releasing hormone receptor (hGnRH-R) antagonists is described. A major focus of this optimization was to improve the CYP3A4 inhibition liability of these uracils while maintaining their GnRH-R potency. R-4-{2-[5-(2-fluoro-3-methoxyphenyl)-3-(2-fluoro-6-[trifluoromethyl]benzyl)-4-methyl-2,6-dioxo-3,6-dihydro-2H-pyrimidin-1-yl]-1-phenylethylamino}butyric acid sodium salt, 10b (elagolix), was identified as a potent and selective hGnRH-R antagonist. Oral administration of 10b suppressed luteinizing hormone in castrated macaques. These efforts led to the identification of 10b as a clinical compound for the treatment of endometriosis.

  15. The interaction of substituted benzamides with brain benzodiazepine binding sites in vitro.

    PubMed

    Horton, R W; Lowther, S; Chivers, J; Jenner, P; Marsden, C D; Testa, B

    1988-08-01

    1. The interaction of substituted benzamides with brain benzodiazepine (BDZ) binding sites was examined by their ability to displace [3H]-flunitrazepam ([3H]-FNM) from specific binding sites in bovine cortical membranes in vitro. 2. Clebopride, Delagrange 2674, Delagrange 2335 and BRL 20627 displayed concentration-dependent displacement of [3H]-FNM with IC50 values of 73 nM, 132 nM, 7.7 microM and 5.9 microM, respectively. Other substituted benzamides including metoclopramide, sulpiride, tiapride, sultopride and cisapride were inactive at 10(-5) M. 3. Inhibition by clebopride and Delagrange 2674 of [3H]-FNM binding was apparently competitive and readily reversible. 4. In the presence of gamma-aminobutyric acid (GABA), the ability of diazepam and Delagrange 2674 to displace [3H]-Ro 15-1788 binding was increased 3.6 and 1.6 fold respectively, compared to the absence of GABA, while ethyl beta-carboline-3-carboxylate (beta CCE) and clebopride were less potent in the presence of GABA. 5. Diazepam was 30 fold less potent at displacing [3H]-Ro 15-1788 in membranes that had been photoaffinity labelled with FNM than in control membranes, whereas the potency of beta CCE did not differ. Clebopride and Delagrange 2674 showed a less than two fold loss of potency in photoaffinity labelled membranes. 6. The pattern of binding of clebopride and Delagrange 2674 in these in vitro tests is similar to that found previously with partial agonists or antagonists at BDZ binding sites. 7. Clebopride and Delagrange 2674 inhibited [3H]-FNM binding with similar potency in rat cerebellar and hippocampal membranes, suggesting they have no selectivity for BDZ1 and BDZ2 binding sites. 8. Clebopride and Delagrange 2674 are structurally dissimilar to other BDZ ligands and represent another chemical structure to probe brain BDZ binding sites.

  16. The Conformational Variability of FimH: Which Conformation Represents the Therapeutic Target?

    PubMed

    Eris, Deniz; Preston, Roland C; Scharenberg, Meike; Hulliger, Fabian; Abgottspon, Daniela; Pang, Lijuan; Jiang, Xiaohua; Schwardt, Oliver; Ernst, Beat

    2016-06-02

    FimH is a bacterial lectin found at the tips of type 1 pili of uropathogenic Escherichia coli (UPEC). It mediates shear-enhanced adhesion to mannosylated surfaces. Binding of UPEC to urothelial cells initiates the infection cycle leading to urinary tract infections (UTIs). Antiadhesive glycomimetics based on α-d-mannopyranose offer an attractive alternative to the conventional antibiotic treatment because they do not induce a selection pressure and are therefore expected to have a reduced resistance potential. Genetic variation of the fimH gene in clinically isolated UPEC has been associated with distinct mannose binding phenotypes. For this reason, we investigated the mannose binding characteristics of four FimH variants with mannose-based ligands under static and hydrodynamic conditions. The selected FimH variants showed individually different binding behavior under both sets of conditions as a result of the conformational variability of FimH. Clinically relevant FimH variants typically exist in a dynamic conformational equilibrium. Additionally, we evaluated inhibitory potencies of four FimH antagonists representing different structural classes. Inhibitory potencies of three of the tested antagonists were dependent on the binding phenotype and hence on the conformational equilibrium of the FimH variant. However, the squarate derivative was the notable exception and inhibited FimH variants irrespective of their binding phenotype. Information on antagonist affinities towards various FimH variants has remained largely unconsidered despite being essential for successful antiadhesion therapy. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Effects of H2-receptor antagonists and anticholinoceptor drugs on gastric and salivary secretion induced by bethanechol in the anaesthetized dog.

    PubMed Central

    Daly, M. J.; Humphray, J. M.; Stables, R.

    1982-01-01

    1 The H2-receptor antagonists, ranitidine and cimetidine, have been compared with atropine and pirenzepine for their effects on gastric acid output, and on salivary secretion from the left parotid gland in the anaesthetized dog. Gastric and salivary secretions were elicited by intravenous infusion of bethanechol. 2 Atropine (0.3-1 microgram/kg) or pirenzepine (3-10 micrograms/kg) reduced both gastric and salivary secretions, pirenzepine showing little evidence of any selectivity for gastric secretion. 3 The H2-receptor antagonists, ranitidine (30-1000 micrograms/kg) and cimetidine (100-3000 micrograms/kg), selectively inhibited gastric secretion and even at relatively high dose levels did not alter salivary volume. PMID:6125223

  18. Synthesis and Characterization of New Bivalent Agents as Melatonin- and Histamine H3-Ligands

    PubMed Central

    Pala, Daniele; Scalvini, Laura; Lodola, Alessio; Mor, Marco; Flammini, Lisa; Barocelli, Elisabetta; Lucini, Valeria; Scaglione, Francesco; Bartolucci, Silvia; Bedini, Annalida; Rivara, Silvia; Spadoni, Gilberto

    2014-01-01

    Melatonin is an endogenous molecule involved in many pathophysiological processes. In addition to the control of circadian rhythms, its antioxidant and neuroprotective properties have been widely described. Thus far, different bivalent compounds composed by a melatonin molecule linked to another neuroprotective agent were synthesized and tested for their ability to block neurodegenerative processes in vitro and in vivo. To identify a novel class of potential neuroprotective compounds, we prepared a series of bivalent ligands, in which a prototypic melatonergic ligand is connected to an imidazole-based H3 receptor antagonist through a flexible linker. Four imidazolyl-alkyloxy-anilinoethylamide derivatives, characterized by linkers of different length, were synthesized and their binding affinity for human MT1, MT2 and H3 receptor subtypes was evaluated. Among the tested compounds, 14c and 14d, bearing a pentyl and a hexyl linker, respectively, were able to bind to all receptor subtypes at micromolar concentrations and represent the first bivalent melatonergic/histaminergic ligands reported so far. These preliminary results, based on binding affinity evaluation, pave the way for the future development of new dual-acting compounds targeting both melatonin and histamine receptors, which could represent promising therapeutic agents for the treatment of neurodegenerative pathologies. PMID:25222552

  19. Bisquaternary dimers of strychnine and brucine. A new class of potent enhancers of antagonist binding to muscarinic M2 receptors.

    PubMed

    Zlotos, D P; Buller, S; Holzgrabe, U; Mohr, K

    2003-06-12

    Bisquaternary dimers of strychnine and brucine were synthesized and their allosteric effect on muscarinic acetylcholine M(2) receptors was examined. The compounds retarded the dissociation of the antagonist [(3)H]N-methylscopolamine ([(3)H]NMS) from porcine cardiac cholinoceptors. This action indicated ternary complex formation. All compounds exhibited higher affinity to the allosteric site of [(3)H]NMS-occupied M(2) receptors than the monomeric strychnine and brucine, while the positive cooperativity with NMS was fully maintained. SAR studies revealed the unchanged strychnine ring as an important structural feature for high allosteric potency.

  20. PSNCBAM-1, a novel allosteric antagonist at cannabinoid CB1 receptors with hypophagic effects in rats

    PubMed Central

    Horswill, J G; Bali, U; Shaaban, S; Keily, J F; Jeevaratnam, P; Babbs, A J; Reynet, C; Wong Kai In, P

    2007-01-01

    Background and purpose: Rimonabant (AcompliaTM, SR141716A), a cannabinoid CB1 receptor inverse agonist, has recently been approved for the treatment of obesity. There are, however, concerns regarding its side effect profile. Developing a CB1 antagonist with a different pharmacological mechanism may lead to a safer alternative. To this end we have screened a proprietary small molecule library and have discovered a novel class of allosteric antagonist at CB1 receptors. Herein, we have characterized an optimized prototypical molecule, PSNCBAM-1, and its hypophagic effects in vivo. Experimental approach: A CB1 yeast reporter assay was used as a primary screen. PSNCBAM-1 was additionally characterized in [35S]-GTPγS, cAMP and radioligand binding assays. An acute rat feeding model was used to evaluate its effects on food intake and body weight in vivo. Key results: In CB1 receptor yeast reporter assays, PSNCBAM-1 blocked the effects induced by agonists such as CP55,940, WIN55212-2, anandamide (AEA) or 2-arachidonoyl glycerol (2-AG). The antagonist characteristics of PSNCBAM-1 were confirmed in [35S]-GTPγS binding and cAMP assays and was shown to be non-competitive by Schild analyses. PSNCBAM-1 did not affect CB2 receptors. In radioligand binding assays, PSNCBAM-1 increased the binding of [3H]CP55,940 despite its antagonist effects. In an acute rat feeding model, PSNCBAM-1 decreased food intake and body weight. Conclusions and implications: PSNCBAM-1 exerted its effects through selective allosteric modulation of the CB1 receptor. The acute effects on food intake and body weight induced in rats provide a first report of in vivo activity for an allosteric CB1 receptor antagonist. PMID:17592509

  1. The SUVR4 Histone Lysine Methyltransferase Binds Ubiquitin and Converts H3K9me1 to H3K9me3 on Transposon Chromatin in Arabidopsis

    PubMed Central

    Veiseth, Silje V.; Rahman, Mohummad A.; Yap, Kyoko L.; Fischer, Andreas; Egge-Jacobsen, Wolfgang; Reuter, Gunter; Zhou, Ming-Ming; Aalen, Reidunn B.; Thorstensen, Tage

    2011-01-01

    Chromatin structure and gene expression are regulated by posttranslational modifications (PTMs) on the N-terminal tails of histones. Mono-, di-, or trimethylation of lysine residues by histone lysine methyltransferases (HKMTases) can have activating or repressive functions depending on the position and context of the modified lysine. In Arabidopsis, trimethylation of lysine 9 on histone H3 (H3K9me3) is mainly associated with euchromatin and transcribed genes, although low levels of this mark are also detected at transposons and repeat sequences. Besides the evolutionarily conserved SET domain which is responsible for enzyme activity, most HKMTases also contain additional domains which enable them to respond to other PTMs or cellular signals. Here we show that the N-terminal WIYLD domain of the Arabidopsis SUVR4 HKMTase binds ubiquitin and that the SUVR4 product specificity shifts from di- to trimethylation in the presence of free ubiquitin, enabling conversion of H3K9me1 to H3K9me3 in vitro. Chromatin immunoprecipitation and immunocytological analysis showed that SUVR4 in vivo specifically converts H3K9me1 to H3K9me3 at transposons and pseudogenes and has a locus-specific repressive effect on the expression of such elements. Bisulfite sequencing indicates that this repression involves both DNA methylation–dependent and –independent mechanisms. Transcribed genes with high endogenous levels of H3K4me3, H3K9me3, and H2Bub1, but low H3K9me1, are generally unaffected by SUVR4 activity. Our results imply that SUVR4 is involved in the epigenetic defense mechanism by trimethylating H3K9 to suppress potentially harmful transposon activity. PMID:21423664

  2. Trimethylation of histone H3 lysine 4 impairs methylation of histone H3 lysine 9

    PubMed Central

    LeRoy, Gary; Bua, Dennis J; Garcia, Benjamin A; Gozani, Or; Richard, Stéphane

    2010-01-01

    Chromatin is broadly compartmentalized in two defined states: euchromatin and heterochromatin. Generally, euchromatin is trimethylated on histone H3 lysine 4 (H3K4me3) while heterochromatin contains the H3K9me3 mark. The H3K9me3 modification is added by lysine methyltransferases (KMTs) such as SETDB1. Herein, we show that SETDB1 interacts with its substrate H3, but only in the absence of the euchromatic mark H3K4me3. In addition, we show that SETDB1 fails to methylate substrates containing the H3K4me3 mark. Likewise, the functionally related H3K9 KMTs G9A, GLP and SUV39H1 also fail to bind and to methylate H3K4me3 substrates. Accordingly, we provide in vivo evidence that H3K9me2-enriched histones are devoid of H3K4me2/3 and that histones depleted of H3K4me2/3 have elevated H3K9me2/3. The correlation between the loss of interaction of these KMTs with H3K4me3 and concomitant methylation impairment leads to the postulate that at least these four KMTs require stable interaction with their respective substrates for optimal activity. Thus, novel substrates could be discovered via the identification of KMT interacting proteins. Indeed, we find that SETDB1 binds to and methylates a novel substrate, the inhibitor of growth protein ING2, while SUV39H1 binds to and methylates the heterochromatin protein HP1α. Thus, our observations suggest a mechanism of post-translational regulation of lysine methylation and propose a potential mechanism for the segregation of the biologically opposing marks, H3K4me3 and H3K9me3. Furthermore, the correlation between H3-KMTs interaction and substrate methylation highlights that the identification of novel KMT substrates may be facilitated by the identification of interaction partners. PMID:21124070

  3. A pharmacokinetic evaluation of five H1 antagonists after an oral and intravenous microdose to human subjects

    PubMed Central

    Madan, Ajay; O'Brien, Zhihong; Wen, Jianyun; O'Brien, Chris; Farber, Robert H; Beaton, Graham; Crowe, Paul; Oosterhuis, Berend; Garner, R Colin; Lappin, Graham; Bozigian, Haig P

    2009-01-01

    AIMS To evaluate the pharmacokinetics (PK) of five H1 receptor antagonists in human volunteers after a single oral and intravenous (i.v.) microdose (0.1 mg). METHODS Five H1 receptor antagonists, namely NBI-1, NBI-2, NBI-3, NBI-4 and diphenhydramine, were administered to human volunteers as a single 0.1-mg oral and i.v. dose. Blood samples were collected up to 48 h, and the parent compound in the plasma extract was quantified by high-performance liquid chromatography and accelerator mass spectroscopy. RESULTS The median clearance (CL), apparent volume of distribution (Vd) and apparent terminal elimination half-life (t1/2) of diphenhydramine after an i.v. microdose were 24.7 l h−1, 302 l and 9.3 h, and the oral Cmax and AUC0–∞ were 0.195 ng ml−1 and 1.52 ng h ml−1, respectively. These data were consistent with previously published diphenhydramine data at 500 times the microdose. The rank order of oral bioavailability of the five compounds was as follows: NBI-2 > NBI-1 > NBI-3 > diphenhydramine > NBI-4, whereas the rank order for CL was NBI-4 > diphenhydramine > NBI-1 > NBI-3 > NBI-2. CONCLUSIONS Human microdosing provided estimates of clinical PK of four structurally related compounds, which were deemed useful for compound selection. PMID:19523012

  4. 3-Arylpiperazinylethyl-1H-pyrrolo[2,3-d]pyrimidine-2,4(3H,7H)-dione derivatives as novel, high-affinity and selective alpha(1)-adrenoceptor ligands.

    PubMed

    Pittalà, Valeria; Romeo, Giuseppe; Salerno, Loredana; Siracusa, Maria Angela; Modica, Maria; Materia, Luisa; Mereghetti, Ilario; Cagnotto, Alfredo; Mennini, Tiziana; Marucci, Gabriella; Angeli, Piero; Russo, Filippo

    2006-01-01

    The discovery of a new series of selective and high-affinity alpha(1)-adrenoceptor (alpha(1)-AR) ligands, characterized by a 1H-pyrrolo[2,3-d]-pyrimidine-2,4(3H,7H)-dione system, is described in this paper. Some synthesized compounds, including 20, 22, and 30, displayed affinity in the nanomolar range for alpha(1)-ARs and substantial selectivity with respect to 5-HT(1A) and dopaminergic D(1) and D(2) receptors. Functional assays, performed on selected derivatives, showed antagonistic properties.

  5. Enhanced protective antibody to a mutant meningococcal factor H-binding protein with low-factor H binding

    PubMed Central

    Granoff, Dan M.; Giuntini, Serena; Gowans, Flor A.; Lujan, Eduardo; Sharkey, Kelsey; Beernink, Peter T.

    2016-01-01

    Meningococcal factor H-binding protein (FHbp) is an antigen in 2 serogroup B meningococcal vaccines. FHbp specifically binds human and some nonhuman primate complement FH. To investigate the effect of binding of FH to FHbp on protective antibody responses, we immunized infant rhesus macaques with either a control recombinant FHbp antigen that bound macaque FH or a mutant antigen with 2 amino acid substitutions and >250-fold lower affinity for FH. The mutant antigen elicited 3-fold higher serum IgG anti-FHbp titers and up to 15-fold higher serum bactericidal titers than the control FHbp vaccine. When comparing sera with similar IgG anti-FHbp titers, the antibodies elicited by the mutant antigen gave greater deposition of complement component C4b on live meningococci (classical complement pathway) and inhibited binding of FH, while the anti-FHbp antibodies elicited by the control vaccine enhanced FH binding. Thus, the mutant FHbp vaccine elicited an anti-FHbp antibody repertoire directed at FHbp epitopes within the FH binding site, which resulted in greater protective activity than the antibodies elicited by the control vaccine, which targeted FHbp epitopes outside of the FH combining site. Binding of a host protein to a vaccine antigen impairs protective antibody responses, which can be overcome with low-binding mutant antigens. PMID:27668287

  6. Pharmacologically relevant receptor binding characteristics and 5alpha-reductase inhibitory activity of free Fatty acids contained in saw palmetto extract.

    PubMed

    Abe, Masayuki; Ito, Yoshihiko; Oyunzul, Luvsandorj; Oki-Fujino, Tomomi; Yamada, Shizuo

    2009-04-01

    Saw palmetto extract (SPE), used widely for the treatment of benign prostatic hyperplasia (BPH) has been shown to bind alpha(1)-adrenergic, muscarinic and 1,4-dihydropyridine (1,4-DHP) calcium channel antagonist receptors. Major constituents of SPE are lauric acid, oleic acid, myristic acid, palmitic acid and linoleic acid. The aim of this study was to investigate binding affinities of these fatty acids for pharmacologically relevant (alpha(1)-adrenergic, muscarinic and 1,4-DHP) receptors. The fatty acids inhibited specific [(3)H]prazosin binding in rat brain in a concentration-dependent manner with IC(50) values of 23.8 to 136 microg/ml, and specific (+)-[(3)H]PN 200-110 binding with IC(50) values of 24.5 to 79.5 microg/ml. Also, lauric acid, oleic acid, myristic acid and linoleic acid inhibited specific [(3)H]N-methylscopolamine ([(3)H]NMS) binding in rat brain with IC(50) values of 56.4 to 169 microg/ml. Palmitic acid had no effect on specific [(3)H]NMS binding. The affinity of oleic acid, myristic acid and linoleic acid for each receptor was greater than the affinity of SPE. Scatchard analysis revealed that oleic acid and lauric acid caused a significant decrease in the maximal number of binding sites (B(max)) for [(3)H]prazosin, [(3)H]NMS and (+)-[(3)H]PN 200-110. The results suggest that lauric acid and oleic acid bind noncompetitively to alpha(1)-adrenergic, muscarinic and 1,4-DHP calcium channel antagonist receptors. We developed a novel and convenient method of determining 5alpha-reductase activity using LC/MS. With this method, SPE was shown to inhibit 5alpha-reductase activity in rat liver with an IC(50) of 101 microg/ml. Similarly, all the fatty acids except palmitic acid inhibited 5alpha-reductase activity, with IC(50) values of 42.1 to 67.6 microg/ml. In conclusion, lauric acid, oleic acid, myristic acid, and linoleic acid, major constituents of SPE, exerted binding activities of alpha(1)-adrenergic, muscarinic and 1,4-DHP receptors and inhibited 5

  7. Effect of single point mutations of the human tachykinin NK1 receptor on antagonist affinity.

    PubMed

    Lundstrom, K; Hawcock, A B; Vargas, A; Ward, P; Thomas, P; Naylor, A

    1997-10-15

    Molecular modelling and site-directed mutagenesis were used to identify eleven amino acid residues which may be involved in antagonist binding of the human tachykinin NK1 receptor. Recombinant receptors were expressed in mammalian cells using the Semliki Forest virus system. Wild type and mutant receptors showed similar expression levels in BHK and CHO cells, verified by metabolic labelling. Binding affinities were determined for a variety of tachykinin NK1 receptor antagonists in SFV-infected CHO cells. The binding affinity for GR203040, CP 99,994 and CP 96,345 was significantly reduced by mutant Q165A. The mutant F268A significantly reduced the affinity for GR203040 and CP 99,994 and the mutant H197A had reduced affinity for CP 96,345. All antagonists seemed to bind in a similar region of the receptor, but do not all rely on the same binding site interactions. Functional coupling to G-proteins was assayed by intracellular Ca2+ release in SFV-infected CHO cells. The wild type receptor and all mutants except A162L and F268A responded to substance P stimulation.

  8. Characterization of R5020 and RU486 binding to progesterone receptor from calf uterus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurd, C.; Moudgil, V.K.

    1988-05-17

    The authors have examined and compared the binding characteristics of the progesterone agonist R5020 (promegestrone, 17,21-dimethylpregna-4,9(10)-diene-3,20-dione) and the progesterone antagonist RU486 (mifepristone, 17..beta..-hydroxy-11..beta..-(4-(dimethylamino)phenyl)-17..cap alpha..-(prop-1-ynyl)-estra-4,9-dien-3-one) in calf uterine cytosol. Both steroids bound cytosol macromolecule(s) with high affinity, exhibiting K/sub d/ values of 5.6 and 3.6 nM for R5020 and RU486 binding, respectively. The binding of the steroids to the macromolecule(s) was rapid at 4/sup 0/C, showing saturation of binding sites at 1-2 h for (/sup 3/H)progesterone and 2-4 h for both (/sup 3/H)R5020 and (/sup 3/H)RU486. Addition of molybdate and glycerol to cytosol increased the extent of (/sup 3/H)R5020 binding. Themore » extent of (/sup 3/H)RU486 binding remained unchanged in the presence of molybdate, whereas glycerol had an inhibitory effect. Molybdate alone or in combination with glycerol stabilized the (/sup 3/H)R5020- and (/sup 3/H)RU486-receptor complexes at 37/sup 0/C. Competitive steroid binding analysis revealed that (/sup 3/H)progesterone, (/sup 3/H)R5020, and (/sup 3/H)RU486 compete for the same site(s) in the uterine cytosol, suggesting that all three bind to the progesterone receptor (PR). Sedimentation rate analysis showed that both steroids were bound to a molecule that sediments in the 8S region. The 8S (/sup 3/H)R5020 and (/sup 3/H)RU486 peaks were abolished by excess radioinert progesterone, RU486, or R5020. The results of this study suggest that, although there are some differences in the nature of their interaction with the PR, both R5020 and RU486 bind to the same 8S receptor in calf uterine cytosol.« less

  9. The interaction of substituted benzamides with brain benzodiazepine binding sites in vitro.

    PubMed Central

    Horton, R. W.; Lowther, S.; Chivers, J.; Jenner, P.; Marsden, C. D.; Testa, B.

    1988-01-01

    1. The interaction of substituted benzamides with brain benzodiazepine (BDZ) binding sites was examined by their ability to displace [3H]-flunitrazepam ([3H]-FNM) from specific binding sites in bovine cortical membranes in vitro. 2. Clebopride, Delagrange 2674, Delagrange 2335 and BRL 20627 displayed concentration-dependent displacement of [3H]-FNM with IC50 values of 73 nM, 132 nM, 7.7 microM and 5.9 microM, respectively. Other substituted benzamides including metoclopramide, sulpiride, tiapride, sultopride and cisapride were inactive at 10(-5) M. 3. Inhibition by clebopride and Delagrange 2674 of [3H]-FNM binding was apparently competitive and readily reversible. 4. In the presence of gamma-aminobutyric acid (GABA), the ability of diazepam and Delagrange 2674 to displace [3H]-Ro 15-1788 binding was increased 3.6 and 1.6 fold respectively, compared to the absence of GABA, while ethyl beta-carboline-3-carboxylate (beta CCE) and clebopride were less potent in the presence of GABA. 5. Diazepam was 30 fold less potent at displacing [3H]-Ro 15-1788 in membranes that had been photoaffinity labelled with FNM than in control membranes, whereas the potency of beta CCE did not differ. Clebopride and Delagrange 2674 showed a less than two fold loss of potency in photoaffinity labelled membranes. 6. The pattern of binding of clebopride and Delagrange 2674 in these in vitro tests is similar to that found previously with partial agonists or antagonists at BDZ binding sites. 7. Clebopride and Delagrange 2674 inhibited [3H]-FNM binding with similar potency in rat cerebellar and hippocampal membranes, suggesting they have no selectivity for BDZ1 and BDZ2 binding sites.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2850059

  10. The alternative complement pathway control protein H binds to immune complexes and serves their detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nydegger, U.E.; Corvetta, A.; Spaeth, P.J.

    1983-01-01

    During solubilization of immune complexes C3b becomes fixed to the immunoglobulin part and serves as a receptor for the alternative complement pathway control protein H. The H-C3b immune complex interaction can be made detectable using 4% polyethyleneglycol to separate free from bound /sup 125/I-H. Tetanus toxoid (Te)/anti-Te complexes kept soluble with fresh serum and containing 125 IU of specific antibody bound 18% of /sup 125/I-H; when fresh serum was chelated with 10 mM EDTA, /sup 125/I-H binding was only 5%. On sucrose density gradients, the H-binding material sedimented in the range of 12 to 30 S. In 36 serum samplesmore » from rheumatoid arthritis (RA) patients and in 12 serum samples from patients with systemic lupus erythematosus (SLE), /sup 125/I-H binding was significantly elevated to 9.5 +/- 4.7% (mean +/- 1 SD) and 13.3 +/- 5.6%, respectively, while /sup 125/I-H binding by 36 normal human sera was 4 +/- 2%. RA samples (17/36, 47%) and SLE samples (9/12, 75%) had H-binding values increased by more than 2 SD above the normal mean. The serum samples were also assessed for conglutinin- and C1q-binding activities; a significant correlation between H and C1q binding was observed (P less than 0.001); there was no correlation between H and conglutinin binding. Although binding to immune complexes through its interaction with C3b, H clearly detects a population of complexes other than conglutinin, thus expanding the possibilities of further characterizing pathological complexes.« less

  11. Design and Synthesis of Benzimidazoles As Novel Corticotropin-Releasing Factor 1 Receptor Antagonists.

    PubMed

    Mochizuki, Michiyo; Kori, Masakuni; Kobayashi, Katsumi; Yano, Takahiko; Sako, Yuu; Tanaka, Maiko; Kanzaki, Naoyuki; Gyorkos, Albert C; Corrette, Christopher P; Cho, Suk Young; Pratt, Scott A; Aso, Kazuyoshi

    2016-03-24

    Benzazole derivatives with a flexible aryl group bonded through a one-atom linker as a new scaffold for a corticotropin-releasing factor 1 (CRF1) receptor antagonist were designed, synthesized, and evaluated. We expected that structural diversity could be expanded beyond that of reported CRF1 receptor antagonists. In a structure-activity relationship study, 4-chloro-N(2)-(4-chloro-2-methoxy-6-methylphenyl)-1-methyl-N(7),N(7)-dipropyl-1H-benzimidazole-2,7-diamine 29g had the most potent binding activity against a human CRF1 receptor and the antagonistic activity (IC50 = 9.5 and 88 nM, respectively) without concerns regarding cytotoxicity at 30 μM. Potent CRF1 receptor-binding activity in brain in an ex vivo test and suppression of stress-induced activation of the hypothalamus-pituitary-adrenocortical (HPA) axis were also observed at 138 μmol/kg of compound 29g after oral administration in mice. Thus, the newly designed benzimidazole 29g showed in vivo CRF1 receptor antagonistic activity and good brain penetration, indicating that it is a promising lead for CRF1 receptor antagonist drug discovery research.

  12. Peptide-nucleic acids (PNAs) with pyrimido[4,5-d]pyrimidine-2,4,5,7-(1H,3H,6H,8H)-tetraone (PPT) as a universal base: their synthesis and binding affinity for oligodeoxyribonucleotides.

    PubMed

    Hirano, Taisuke; Kuroda, Kenji; Kataoka, Masanori; Hayakawa, Yoshihiro

    2009-07-21

    Peptide-nucleic acids (PNAs) including pyrimido[4,5-d]pyrimidine-2,4,5,7-(1H,3H,6H,8H)-tetraone (PPT) as a nucleobase were synthesized, and their binding affinity for the complementary oligodeoxyribonucleotides was investigated. We found that PNAs with one or two PPT(s) and natural nucleobases (i.e., adenine, cytosine, guanine, or thymine) have excellent binding affinity for oligodeoxyribonucleotides with complementary bases at the positions facing the natural nucleobases, and with adenine, cytosine, guanine, and thymine at the positions opposite PPT in PNAs. The binding affinity of the PPT-containing PNA is higher than or comparable to that of a PNA consisting of all complementary natural nucleobases, viz. a PNA with a suitable natural nucleobase in place of PPT in the PPT-containing PNA. Consequently, it was concluded that PPT serves as a useful universal base that can recognize all natural nucleobases.

  13. Characterization of the adenosine receptor in cultured embryonic chick atrial myocytes: Coupling to modulation of contractility and adenylate cyclase activity and identification by direct radioligand binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, B.T.

    1989-06-01

    Adenosine receptors in a spontaneously contracting atrial myocyte culture from 14-day chick embryos were characterized by radioligand binding studies and by examining the involvement of G-protein in coupling these receptors to a high-affinity state and to the adenylate cyclase and the myocyte contractility. Binding of the antagonist radioligand (3H)-8-cyclopentyl-1,3-diproylxanthine ((3H)CPX) was rapid, reversible and saturable and was to a homogeneous population of sites with a Kd value of 2.1 +/- 0.2 nM and an apparent maximum binding of 26.2 +/- 3 fmol/mg of protein (n = 10, +/- S.E.). Guanyl-5-yl-(beta, gamma-imido)diphosphate had no effect on either the Kd or themore » maximum binding and CPX reversed the N6-R-phenyl-2-propyladenosine-induced inhibition of adenylate cyclase activity and contractility, indicating that (3H) CPX is an antagonist radioligand. Competition curves for (3H) CPX binding by a series of reference adenosine agonists were consistent with labeling of an A1 adenosine receptor and were better fit by a two-site model than by a one-site model. ADP-ribosylation of the G-protein by the endogenous NAD+ in the presence of pertussis toxin shifted the competition curves from bi to monophasic with Ki values similar to those of the KL observed in the absence of prior pertussis intoxication. The adenosine agonists were capable of inhibiting both the adenylate cyclase activity and myocyte contractility in either the absence or the presence of isoproterenol. The A1 adenosine receptor-selective antagonist CPX reversed these agonist effects. The order of ability of the reference adenosine receptor agonists in causing these inhibitory effects was similar to the order of potency of the same agonists in inhibiting the specific (3H)CPX binding (N6-R-phenyl-2-propyladenosine greater than N6-S-phenyl-2-propyladenosine or N-ethyladenosine-5'-uronic acid).« less

  14. New approaches for the reliable in vitro assessment of binding affinity based on high-resolution real-time data acquisition of radioligand-receptor binding kinetics.

    PubMed

    Zeilinger, Markus; Pichler, Florian; Nics, Lukas; Wadsak, Wolfgang; Spreitzer, Helmut; Hacker, Marcus; Mitterhauser, Markus

    2017-12-01

    Resolving the kinetic mechanisms of biomolecular interactions have become increasingly important in early-phase drug development. Since traditional in vitro methods belong to dose-dependent assessments, binding kinetics is usually overlooked. The present study aimed at the establishment of two novel experimental approaches for the assessment of binding affinity of both, radiolabelled and non-labelled compounds targeting the A 3 R, based on high-resolution real-time data acquisition of radioligand-receptor binding kinetics. A novel time-resolved competition assay was developed and applied to determine the K i of eight different A 3 R antagonists, using CHO-K1 cells stably expressing the hA 3 R. In addition, a new kinetic real-time cell-binding approach was established to quantify the rate constants k on and k off , as well as the dedicated K d of the A 3 R agonist [ 125 I]-AB-MECA. Furthermore, lipophilicity measurements were conducted to control influences due to physicochemical properties of the used compounds. Two novel real-time cell-binding approaches were successfully developed and established. Both experimental procedures were found to visualize the kinetic binding characteristics with high spatial and temporal resolution, resulting in reliable affinity values, which are in good agreement with values previously reported with traditional methods. Taking into account the lipophilicity of the A 3 R antagonists, no influences on the experimental performance and the resulting affinity were investigated. Both kinetic binding approaches comprise tracer administration and subsequent binding to living cells, expressing the dedicated target protein. Therefore, the experiments resemble better the true in vivo physiological conditions and provide important markers of cellular feedback and biological response.

  15. FMRFamide: low affinity inhibition of opioid binding to rabbit brain membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, X.Z.; Raffa, R.B.

    1986-03-05

    FMRFamide (Phe-Met-Arg-Phe-NH/sub 2/) was first isolated from the ganglia of molluscs by Price and Greenberg in 1977. The peptide was subsequently shown to have diverse actions on various types of molluscan and mammalian tissues. The presence of immunoreactive FMRFamide-like material (irFMRF) in multiple areas of rat brain, spinal cord, and gastrointestinal tract suggests that irFMRF may have a physiological role in mammals. Tang, Yang and Costa recently demonstrated that FMRFamide attenuates morphine antinociception in rats and postulated, based on this and several other lines of evidence, that irFMRF might be an endogenous opioid antagonist. In the present study, they testedmore » the ability of FMRFamide to inhibit the binding of opioid receptor ligands to rabbit membrane preparations. FMRFamide inhibited the specific binding of both /sup 3/(H)-dihydromorphine and /sup 3/(H)-ethylketocyclazocine (IC/sub 50/ = 14 ..mu..M and 320 ..mu..M, respectively) in a dose-related manner, suggesting that FMRFamide may affect binding to at least two types of opioid receptors (mu and kappa). These data are consistent with the concept that irFMRF might act as an endogenous opioid antagonist. However, the low affinity of FMRFamide leaves open the possibility of another mechanism of opioid antagonism, such as neuromodulation.« less

  16. The methyltransferase NSD3 has chromatin-binding motifs, PHD5-C5HCH, that are distinct from other NSD (nuclear receptor SET domain) family members in their histone H3 recognition.

    PubMed

    He, Chao; Li, Fudong; Zhang, Jiahai; Wu, Jihui; Shi, Yunyu

    2013-02-15

    The NSD (nuclear receptor SET domain-containing) family members, consisting of NSD1, NSD2 (MMSET/WHSC1), and NSD3 (WHSC1L1), are SET domain-containing methyltransferases and aberrant expression of each member has been implicated in multiple diseases. They have specific mono- and dimethylase activities for H3K36, whereas play nonredundant roles during development. Aside from the well characterized catalytic SET domain, NSD proteins have multiple potential chromatin-binding motifs that are clinically relevant, including the fifth plant homeodomain (PHD5) and the adjacent Cys-His-rich domain (C5HCH) located at the C terminus. Herein, we report the crystal structures of the PHD5-C5HCH module of NSD3, in the free state and in complex with H3(1-7) (H3 residues 1-7), H3(1-15) (H3 residues 1-15), and H3(1-15)K9me3 (H3 residues 1-15 with trimethylation on K9) peptides. These structures reveal that the PHD5 and C5HCH domains fold into a novel integrated PHD-PHD-like structural module with H3 peptide bound only on the surface of PHD5 and provide the molecular basis for the recognition of unmodified H3K4 and trimethylated H3K9 by NSD3 PHD5. Structural studies and binding assays show that differences exist in histone binding specificity of the PHD5 domain between three members of the NSD family. For NSD2, the PHD5-C5HCH:H3 N terminus interaction is largely conserved, although with a stronger preference for unmethylated H3K9 (H3K9me0) than trimethylated H3K9 (H3K9me3), and NSD1 PHD5-C5HCH does not bind to H3 peptides. Our results shed light on how NSD proteins that mediate H3K36 methylation are localized to specific genomic sites and provide implications for the mechanism of functional diversity of NSD proteins.

  17. Novel spirotetracyclic zwitterionic dual H(1)/5-HT(2A) receptor antagonists for the treatment of sleep disorders.

    PubMed

    Gianotti, Massimo; Botta, Maurizio; Brough, Stephen; Carletti, Renzo; Castiglioni, Emiliano; Corti, Corrado; Dal-Cin, Michele; Delle Fratte, Sonia; Korajac, Denana; Lovric, Marija; Merlo, Giancarlo; Mesic, Milan; Pavone, Francesca; Piccoli, Laura; Rast, Slavko; Roscic, Maja; Sava, Anna; Smehil, Mario; Stasi, Luigi; Togninelli, Andrea; Wigglesworth, Mark J

    2010-11-11

    Histamine H(1) and serotonin 5-HT(2A) receptors mediate two different mechanisms involved in sleep regulation: H(1) antagonists are sleep inducers, while 5-HT(2A) antagonists are sleep maintainers. Starting from 9'a, a novel spirotetracyclic compound endowed with good H(1)/5-HT(2A) potency but poor selectivity, very high Cli, and a poor P450 profile, a specific optimization strategy was set up. In particular, we investigated the possibility of introducing appropriate amino acid moieties to optimize the developability profile of the series. Following this zwitterionic approach, we were able to identify several advanced leads (51, 65, and 73) with potent dual H(1)/5-HT(2A) activity and appropriate developability profiles. These compounds exhibited efficacy as hypnotic agents in a rat telemetric sleep model with minimal effective doses in the range 3-10 mg/kg po.

  18. High-affinity binding of (/sup 3/H)estradiol-17 beta by an estrogen receptor in the liver of the turtle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, S.M.; Fehrer, S.; Yu, M.

    1988-06-01

    Specific (3H)estradiol-17 beta ((3H)E2) binding activity (EBA) with characteristics of an estrogen receptor (ER) was demonstrated in cytosols and nuclear extracts of the female turtle, Chrysemys picta. Three different receptor assays (dextran-coated charcoal assay, hydroxylapatite batch procedure, and DNA-cellulose chromatography) were evaluated in terms of their applicability in analyzing large numbers of samples. For the measurement of cytosolic EBA, the hydroxylapatite batch procedure was found to be the most reliable assay. On the other hand, the dextran-coated charcoal assay was found to be the most appropriate method for the measurement of nuclear EBA. Turtle hepatic EBA binds (3H)E2 with highmore » affinity (cytosolic, 17.4 +/- 2.8 X 10(9) M-1; nuclear, 17.7 +/- 1.9 X 10(9) M-1), limited capacity (cytosolic, 133.7 +/- 4.6 fmol/g tissue; nuclear, 81.1 +/- 9.0 fmol/g tissue), and strict steroid specificity. The EBA bound natural estrogens (E2, estrone, estriol) as well as the nonsteroidal estrogen, diethylstilbestrol, but exhibited little affinity for androgens, progesterone, or corticosterone. The turtle hepatic EBA resembled mammalian and avian ERs in terms of binding characteristics; however, unlike mammalian and avian ERs it was shown to be heat-labile. Incubation at 30 degrees caused rapid loss of (3H)E2 binding activity in both cytosolic and nuclear fractions. The exchange between (3H)E2 and the endogenously bound estrogen was slow at 4 and 15 degrees, but the exchange process was facilitated in the presence of the chaotropic salt, NaSCN. Establishment of quantitation methods for both cytosolic and nuclear forms of EBA will enable future investigation of the mechanism and regulation of estrogen action in the liver of this turtle species.« less

  19. Blastocyst transfer does not improve cycle outcome as compared to D3 transfer in antagonist cycles with an elevated progesterone level on the day of hCG.

    PubMed

    Demirel, Cem; Aydoğdu, Serkan; Özdemir, Arzu İlknur; Keskin, Gülşah; Baştu, Ercan; Buyru, Faruk

    2017-09-01

    To evaluate the association between progesterone elevation on the day of human chorionic gonadotropin (hCG) administration and clinical pregnancy rates of gonadotropin-releasing hormone (GnRH) antagonist in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) cycles with the transfer of embryos at different developmental stages (day-3 versus day-5 ETs). This is a retrospective analysis of fresh IVF/ICSI; 194 cycles out of 2676 conducted in a single center. A total of 2676 cycles were analyzed, of which 386 had no progesterone measurements available. Two hundred eighteen cycles had progesterone elevation (p>1.5 ng/mL) giving an overall incidence of 9.5%. Twenty-four cycles were excluded from further analysis. Of the remaining 194 cycles, 151 had day-3 transfers and 43 had blastocyst transfers. There was no statistically significant difference in pregnancy and clinical pregnancy rates per transfer between the D3-ET and D5-ET groups (46% vs. 49%, and 39% vs. 35%, respectively). The results of this study suggest that blastocyst transfer does not improve cycle outcomes compared with D3 transfer in GnRH antagonist cycles with an elevated progesterone level on the day of hCG.

  20. 3D-QSAR comparative molecular field analysis on opioid receptor antagonists: pooling data from different studies.

    PubMed

    Peng, Youyi; Keenan, Susan M; Zhang, Qiang; Kholodovych, Vladyslav; Welsh, William J

    2005-03-10

    Three-dimensional quantitative structure-activity relationship (3D-QSAR) models were constructed using comparative molecular field analysis (CoMFA) on a series of opioid receptor antagonists. To obtain statistically significant and robust CoMFA models, a sizable data set of naltrindole and naltrexone analogues was assembled by pooling biological and structural data from independent studies. A process of "leave one data set out", similar to the traditional "leave one out" cross-validation procedure employed in partial least squares (PLS) analysis, was utilized to study the feasibility of pooling data in the present case. These studies indicate that our approach yields statistically significant and highly predictive CoMFA models from the pooled data set of delta, mu, and kappa opioid receptor antagonists. All models showed excellent internal predictability and self-consistency: q(2) = 0.69/r(2) = 0.91 (delta), q(2) = 0.67/r(2) = 0.92 (mu), and q(2) = 0.60/r(2) = 0.96 (kappa). The CoMFA models were further validated using two separate test sets: one test set was selected randomly from the pooled data set, while the other test set was retrieved from other published sources. The overall excellent agreement between CoMFA-predicted and experimental binding affinities for a structurally diverse array of ligands across all three opioid receptor subtypes gives testimony to the superb predictive power of these models. CoMFA field analysis demonstrated that the variations in binding affinity of opioid antagonists are dominated by steric rather than electrostatic interactions with the three opioid receptor binding sites. The CoMFA steric-electrostatic contour maps corresponding to the delta, mu, and kappa opioid receptor subtypes reflected the characteristic similarities and differences in the familiar "message-address" concept of opioid receptor ligands. Structural modifications to increase selectivity for the delta over mu and kappa opioid receptors have been predicted on the

  1. MIBE acts as antagonist ligand of both estrogen receptor α and GPER in breast cancer cells

    PubMed Central

    2012-01-01

    Introduction The multiple biological responses to estrogens are mainly mediated by the classical estrogen receptors ERα and ERβ, which act as ligand-activated transcription factors. ERα exerts a main role in the development of breast cancer; therefore, the ER antagonist tamoxifen has been widely used although its effectiveness is limited by de novo and acquired resistance. Recently, GPR30/GPER, a member of the seven-transmembrane G protein-coupled receptor family, has been implicated in mediating the effects of estrogens in various normal and cancer cells. In particular, GPER triggered gene expression and proliferative responses induced by estrogens and even ER antagonists in hormone-sensitive tumor cells. Likewise, additional ER ligands showed the ability to bind to GPER eliciting promiscuous and, in some cases, opposite actions through the two receptors. We synthesized a novel compound (ethyl 3-[5-(2-ethoxycarbonyl-1-methylvinyloxy)-1-methyl-1H-indol-3-yl]but-2-enoate), referred to as MIBE, and investigated its properties elicited through ERα and GPER in breast cancer cells. Methods Molecular modeling, binding experiments and functional assays were performed in order to evaluate the biological action exerted by MIBE through ERα and GPER in MCF7 and SkBr3 breast cancer cells. Results MIBE displayed the ability to act as an antagonist ligand for ERα and GPER as it elicited inhibitory effects on gene transcription and growth effects by binding to both receptors in breast cancer cells. Moreover, GPER was required for epidermal growth factor receptor (EGFR) and ERK activation by EGF as ascertained by using MIBE and performing gene silencing experiments. Conclusions Our findings provide novel insights on the functional cross-talk between GPER and EGFR signaling. Furthermore, the exclusive antagonistic activity exerted by MIBE on ERα and GPER could represent an innovative pharmacological approach targeting breast carcinomas which express one or both receptors at

  2. MIBE acts as antagonist ligand of both estrogen receptor α and GPER in breast cancer cells.

    PubMed

    Lappano, Rosamaria; Santolla, Maria Francesca; Pupo, Marco; Sinicropi, Maria Stefania; Caruso, Anna; Rosano, Camillo; Maggiolini, Marcello

    2012-01-17

    The multiple biological responses to estrogens are mainly mediated by the classical estrogen receptors ERα and ERβ, which act as ligand-activated transcription factors. ERα exerts a main role in the development of breast cancer; therefore, the ER antagonist tamoxifen has been widely used although its effectiveness is limited by de novo and acquired resistance. Recently, GPR30/GPER, a member of the seven-transmembrane G protein-coupled receptor family, has been implicated in mediating the effects of estrogens in various normal and cancer cells. In particular, GPER triggered gene expression and proliferative responses induced by estrogens and even ER antagonists in hormone-sensitive tumor cells. Likewise, additional ER ligands showed the ability to bind to GPER eliciting promiscuous and, in some cases, opposite actions through the two receptors. We synthesized a novel compound (ethyl 3-[5-(2-ethoxycarbonyl-1-methylvinyloxy)-1-methyl-1H-indol-3-yl]but-2-enoate), referred to as MIBE, and investigated its properties elicited through ERα and GPER in breast cancer cells. Molecular modeling, binding experiments and functional assays were performed in order to evaluate the biological action exerted by MIBE through ERα and GPER in MCF7 and SkBr3 breast cancer cells. MIBE displayed the ability to act as an antagonist ligand for ERα and GPER as it elicited inhibitory effects on gene transcription and growth effects by binding to both receptors in breast cancer cells. Moreover, GPER was required for epidermal growth factor receptor (EGFR) and ERK activation by EGF as ascertained by using MIBE and performing gene silencing experiments. Our findings provide novel insights on the functional cross-talk between GPER and EGFR signaling. Furthermore, the exclusive antagonistic activity exerted by MIBE on ERα and GPER could represent an innovative pharmacological approach targeting breast carcinomas which express one or both receptors at the beginning and/or during tumor

  3. Hydrogen-Deuterium Exchange Mass Spectrometry Reveals Calcium Binding Properties and Allosteric Regulation of Downstream Regulatory Element Antagonist Modulator (DREAM).

    PubMed

    Zhang, Jun; Li, Jing; Craig, Theodore A; Kumar, Rajiv; Gross, Michael L

    2017-07-18

    Downstream regulatory element antagonist modulator (DREAM) is an EF-hand Ca 2+ -binding protein that also binds to a specific DNA sequence, downstream regulatory elements (DRE), and thereby regulates transcription in a calcium-dependent fashion. DREAM binds to DRE in the absence of Ca 2+ but detaches from DRE under Ca 2+ stimulation, allowing gene expression. The Ca 2+ binding properties of DREAM and the consequences of the binding on protein structure are key to understanding the function of DREAM. Here we describe the application of hydrogen-deuterium exchange mass spectrometry (HDX-MS) and site-directed mutagenesis to investigate the Ca 2+ binding properties and the subsequent conformational changes of full-length DREAM. We demonstrate that all EF-hands undergo large conformation changes upon calcium binding even though the EF-1 hand is not capable of binding to Ca 2+ . Moreover, EF-2 is a lower-affinity site compared to EF-3 and -4 hands. Comparison of HDX profiles between wild-type DREAM and two EF-1 mutated constructs illustrates that the conformational changes in the EF-1 hand are induced by long-range structural interactions. HDX analyses also reveal a conformational change in an N-terminal leucine-charged residue-rich domain (LCD) remote from Ca 2+ -binding EF-hands. This LCD domain is responsible for the direct interaction between DREAM and cAMP response element-binding protein (CREB) and regulates the recruitment of the co-activator, CREB-binding protein. These long-range interactions strongly suggest how conformational changes transmit the Ca 2+ signal to CREB-mediated gene transcription.

  4. Effects of muscarinic receptor agonists and antagonists on alpha 2-adrenoceptors in rat brain.

    PubMed

    Hollingsworth, P J; Smith, C B

    1989-09-13

    The specific binding of [3H]clonidine to alpha 2-adrenoceptors on neural membranes isolated from six brain areas was determined with rats treated for various periods of time with the muscarinic agonists, oxotremorine or pilocarpine, or with the muscarinic antagonists atropine, atropine methyl nitrate, scopolamine and scopolamine methyl bromide. Administration of pilocarpine, 10 mg/kg, twice daily i.p. for 1 and 14 days increased markedly the number of alpha 2-adrenoceptors on neural membranes from all six brain areas. In contrast, oxotremorine, 0.3 mg/kg, twice daily i.p., for 7 days decreased the number of alpha 2-adrenoceptors on membranes from all brain areas except the brainstem and caudate nucleus. Both atropine and scopolamine increased the density of alpha 2-adrenoceptors in specific brain areas. Neither atropine methyl nitrate nor scopolamine methyl bromide had an appreciable effect upon the specific binding of [3H]clonidine to neural membranes from most brain areas.

  5. Regional Differential Effects of the Novel Histamine H3 Receptor Antagonist 6-[(3-Cyclobutyl-2,3,4,5-tetrahydro-1H-3-benzazepin-7-yl)oxy]-N-methyl-3-pyridinecarboxamide hydrochloride (GSK189254) on Histamine Release in the Central Nervous System of Freely Moving Rats

    PubMed Central

    Giannoni, Patrizia; Medhurst, Andrew D.; Passani, Maria Beatrice; Giovannini, Maria Grazia; Ballini, Chiara; Corte, Laura Della

    2010-01-01

    After oral administration, the nonimidazole histamine H3 receptor antagonist, 6-[(3-cyclobutyl-2,3,4,5-tetrahydro-1H-3-benzazepin-7-yl)oxy]-N-methyl-3-pyridinecarboxamide hydrochloride (GSK189254), increased histamine release from the tuberomammillary nucleus, where all histaminergic somata are localized, and from where their axons project to the entire brain. To further understand functional histaminergic circuitry in the brain, dual-probe microdialysis was used to pharmacologically block H3 receptors in the tuberomammillary nucleus, and monitor histamine release in projection areas. Perfusion of the tuberomammillary nucleus with GSK189254 increased histamine release from the tuberomammillary nucleus, nucleus basalis magnocellularis, and cortex, but not from the striatum or nucleus accumbens. Cortical acetylcholine (ACh) release was also increased, but striatal dopamine release was not affected. When administered locally, GSK189254 increased histamine release from the nucleus basalis magnocellularis, but not from the striatum. Thus, defined by their sensitivity to GSK189254, histaminergic neurons establish distinct pathways according to their terminal projections, and can differentially modulate neurotransmitter release in a brain region-specific manner. Consistent with its effects on cortical ACh release, systemic administration of GSK189254 antagonized the amnesic effects of scopolamine in the rat object recognition test, a cognition paradigm with important cortical components. PMID:19815811

  6. Structural requirements of the human sodium-dependent bile acid transporter (hASBT): Role of 3- and 7-OH moieties on binding and translocation of bile acids

    PubMed Central

    González, Pablo M.; Lagos, Carlos F.; Ward, Weslyn C.; Polli, James E.

    2014-01-01

    Bile acids (BAs) are the end products of cholesterol metabolism. One of the critical steps in their biosynthesis involves the isomerization of the 3β-hydroxyl (-OH) group on the cholestane ring to the common 3α-configuration on BAs. BAs are actively recaptured from the small intestine by the human Apical Sodium-dependent Bile Acid Transporter (hASBT) with high affinity and capacity. Previous studies have suggested that no particular hydroxyl group on BAs is critical for binding or transport by hASBT, even though 3β-hydroxylated BAs were not examined. The aim of this study was to elucidate the role of the 3α-OH group on BAs binding and translocation by hASBT. Ten 3β-hydroxylated BAs (Iso-bile acids, iBAs) were synthesized, characterized, and subjected to hASBT inhibition and uptake studies. hASBT inhibition and uptake kinetics of iBAs were compared to that of native 3α-OH BAs. Glycine conjugates of native and isomeric BAs were subjected to molecular dynamics simulations in order to identify topological descriptors related to binding and translocation by hASBT. Iso-BAs bound to hASBT with lower affinity and exhibited reduced translocation than their respective 3α-epimers. Kinetic data suggests that, in contrast to native BAs where hASBT binding is the rate-limiting step, iBAs transport was rate-limited by translocation and not binding. Remarkably, 7-dehydroxylated iBAs were not hASBT substrates, highlighting the critical role of 7-OH group on BA translocation by hASBT, especially for iBAs. Conformational analysis of gly-iBAs and native BAs identified topological features for optimal binding as: concave steroidal nucleus, 3-OH “on-” or below-steroidal plane, 7-OH below-plane, and 12-OH moiety towards-plane. Our results emphasize the relevance of the 3α-OH group on BAs for proper hASBT binding and transport and revealed the critical role of 7-OH group on BA translocation, particularly in the absence of a 3α-OH group. Results have implications for BA

  7. Potentiation of the gastric antisecretory activity of histamine H2-receptor antagonists by clebopride.

    PubMed

    Fernández, A G; Massingham, R; Roberts, D J

    1988-05-01

    The substituted benzamide, clebopride, at doses (0.03-3 mg kg-1 i.p.) that were without effect per se on the secretion of gastric acid in pylorus ligated (Shay) rats, potentiated the antisecretory effects of the histamine H2 receptor antagonists cimetidine and ranitidine in this model but not those of the muscarine receptor antagonist pirenzepine nor those of the proton pump inhibitor omeprazole. By contrast, clebopride was without influence on the inhibitory effects of cimetidine on pentagastrin-induced secretion in perfused stomach (Ghosh and Schild) preparations in anaesthetized rats. The significance of these findings is discussed in relation to the previously described potentiating effects of clebopride on the anti-ulcer activity of cimetidine in various experimental models, and the potential beneficial effects of such combined therapy in the clinic.

  8. 3-(Fur-2-yl)-10-(2-phenylethyl)-[1,2,4]triazino[4,3-a]benzimidazol-4(10H)-one, a novel adenosine receptor antagonist with A(2A)-mediated neuroprotective effects.

    PubMed

    Scatena, Alessia; Fornai, Francesco; Trincavelli, Maria Letizia; Taliani, Sabrina; Daniele, Simona; Pugliesi, Isabella; Cosconati, Sandro; Martini, Claudia; Da Settimo, Federico

    2011-09-21

    In this study, compound FTBI (3-(2-furyl)-10-(2-phenylethyl)[1,2,4]triazino[4,3-a]benzimidazol-4(10H)-one) was selected from a small library of triazinobenzimidazole derivatives as a potent A(2A) adenosine receptor (AR) antagonist and tested for its neuroprotective effects against two different kinds of dopaminergic neurotoxins, 1-methyl-4-phenylpyridinium (MPP+) and methamphetamine (METH), in rat PC12 and in human neuroblastoma SH-SY5Y cell lines. FTBI, in a concentration range corresponding to its affinity for A(2A) AR subtype, significantly increased the number of viable PC12 cells after their exposure to METH and, to a similar extent, to MPP+, as demonstrated in both trypan blue exclusion assay and in cytological staining. These neuroprotective effects were also observed with a classical A(2A) AR antagonist, ZM241385, and appeared to be completely counteracted by the AR agonist, NECA, supporting A(2A) ARs are directly involved in FTBI-mediated effects. Similarly, in human SH-SY5Y cells, FTBI was able to prevent cell toxicity induced by MPP+ and METH, showing that this A(2A) AR antagonist has a neuroprotective effect independently by the specific cell model. Altogether these results demonstrate that the A(2A) AR blockade mediates cell protection against neurotoxicity induced by dopaminergic neurotoxins in dopamine containing cells, supporting the potential use of A(2A) AR antagonists in dopaminergic degenerative diseases including Parkinson's disease.

  9. New insights into the stereochemical requirements of the bradykinin B2 receptor antagonists binding

    NASA Astrophysics Data System (ADS)

    Lupala, Cecylia S.; Gomez-Gutierrez, Patricia; Perez, Juan J.

    2016-01-01

    Bradykinin (BK) is a member of the kinin family, released in response to inflammation, trauma, burns, shock, allergy and some cardiovascular diseases, provoking vasodilatation and increased vascular permeability among other effects. Their actions are mediated through at least two G-protein coupled receptors, B1 a receptor up-regulated during inflammation episodes or tissue trauma and B2 that is constitutively expressed in a variety of cell types. The goal of the present work is to carry out a structure-activity study of BK B2 antagonism, taking into account the stereochemical features of diverse non-peptide antagonists and the way these features translate into ligand anchoring points to complementary regions of the receptor, through the analysis of the respective ligand-receptor complex. For this purpose an atomistic model of the BK B2 receptor was built by homology modeling and subsequently refined embedded in a lipid bilayer by means of a 600 ns molecular dynamics trajectory. The average structure from the last hundred nanoseconds of the molecular dynamics trajectory was energy minimized and used as model of the receptor for docking studies. For this purpose, a set of compounds with antagonistic profile, covering maximal diversity were selected from the literature. Specifically, the set of compounds include Fasitibant, FR173657, Anatibant, WIN64338, Bradyzide, CHEMBL442294, and JSM10292. Molecules were docked into the BK B2 receptor model and the corresponding complexes analyzed to understand ligand-receptor interactions. The outcome of this study is summarized in a 3D pharmacophore that explains the observed structure-activity results and provides insight into the design of novel molecules with antagonistic profile. To prove the validity of the pharmacophore hypothesized a virtual screening process was also carried out. The pharmacophore was used as query to identify new hits using diverse databases of molecules. The results of this study revealed a set of new

  10. Comparative effects of chlordecone and mirex on rat cardiac ATPases and binding of 3H-catecholamines.

    PubMed

    Desaiah, D

    1980-08-01

    The effects of chlordecone and mirex on the rat myocardial ATPases and binding of 3H-dopamine and 3H-norepinephrine to the NAK-fraction were determined both by in vitro and in vivo treatment. The in vitro data showed that chlordecone significantly inhibited mitochondrial Mg2+ ATPase and Na+--K+ ATPase in a concentration dependent manner with ID50 values of 5 x 10(-8) and 2 x 10(-6) M, respectively. Mitrex, a close structural analog of chlordecone did not inhibit mitochondrial Mg2+ ATPase but inhibited about 15% of N+--K+ ATPase activity. Rats treated with symptomatogenic doses of chlordecone showed a marked and significant decrease of myocardial Na+--K+ ATPase and the residual Mg2+ ATPase activities. The decrease in the enzyme activities was dose dependent and significant. However, mirex treated rats showed a slight decrease in the myocardial Na+--K+ ATPase. The potency of chlordecone to inhibit the ATPase system was parallel to its ability to decrease the dopamine and norepinephrine binding of the myocardial NAK-fraction. Preincubation of the NAK-fraction with various concentrations of chlordecone resulted in a decreased binding of dopamine and norepinephrine. The decrease was significant and concentration dependent. Similar findings were observed in rats pretreated with chlordecone. Mirex did not show any effect, either in vitro or in vivo treatment, on the binding of dopamine or norepinephrine to the myocardial NAK-fraction. These results suggest that chlordecone may be altering the sodium pump activity by inhibiting both ATP hydrolysis and ATP synthesis and thus reducing other cellular events such as catecholamine uptake.

  11. New antagonists of LHRH. II. Inhibition and potentiation of LHRH by closely related analogues.

    PubMed

    Bajusz, S; Csernus, V J; Janaky, T; Bokser, L; Fekete, M; Schally, A V

    1988-12-01

    Modifications of the previously described LHRH antagonists, [Ac-D-Nal(2)1, D-Phe(4Cl)2, D-Trp3, D-Cit6, D-Ala10]LHRH and the corresponding D-Hci6 analogue, have been made to alter the hydrophobicity of the N-terminal acetyl-tripeptide portion. Substitution of D-Trp3 with the less hydrophobic D-Pal(3) had only marginal effects on the antagonistic activities and receptor binding potencies of the D-Cit/D-Hci6 analogues, but it appeared to further improve the toxicity lowering effect of D-Cit/D-Hci6 substitution. Antagonists containing D-Pal(3)3 and D-Cit/D-Hci6 residues, i.e. [Ac-D-Nal(2)1, D-Phe(4Cl)2, D-Pal(3)3, D-Cit6, D-Ala10]LHRH (SB-75) and [Ac-D-Nal(2)1, D-Phe(4Cl)2, D-Pal(3)3, D-Hci6, D-Ala10]LHRH (SB-88), were completely free of the toxic effects, such as cyanosis and respiratory depression leading to death, which have been observed in rats with the D-Trp3, D-Arg6 antagonist and related antagonists. Replacement of the N-acetyl group with the hydrophilic carbamoyl group caused a slight decrease in antagonistic activities, particularly in vitro. Introduction of urethane type acyl group such as methoxycarbonyl (Moc) or t-butoxycarbonyl (Boc) led to analogues that showed LHRH-potentiating effect. The increase in potency induced by these analogues, e.g. [Moc-D-Nal(2)1, D-Phe(4Cl)2, D-Trp3, D-Cit6, D-Ala10]LHRH and [Boc-D-Phe1, D-Phe(4Cl)2, D-Pal(3)3, D-Cit6, D-Ala10]LHRH, was 170-260% and persisted for more than 2 h when studied in a superfused rat pituitary system.

  12. Pharmacological characterization of the cysteinyl-leukotriene antagonists CGP 45715A (iralukast) and CGP 57698 in human airways in vitro

    PubMed Central

    Capra, Valérie; Bolla, Manlio; Angelo Belloni, Pier; Mezzetti, Maurizio; Carlo Folco, G; Nicosia, Simonetta; Enrico Rovati, G

    1998-01-01

    Cysteinyl-leukotrienes (cysteinyl-LTs) are important mediators in the pathogenesis of asthma. They cause bronchoconstriction, mucus hypersecretion, increase in microvascular permeability, plasma extravasation and eosinophil recruitment. We investigated the pharmacological profile of the cysteinyl-LT antagonists CGP 45715A (iralukast), a structural analogue of LTD4 and CGP 57698, a quinoline type antagonist, in human airways in vitro, by performing binding studies on human lung parenchyma membranes and functional studies on human isolated bronchial strips. Competition curves vs [3H]-LTD4 on human lung parenchyma membranes demonstrated that: (a) both antagonists were able to compete for the two sites labelled by [3H]-LTD4; (b) as in all the G-protein coupled receptors, iralukast and CGP 57698 did not discriminate between the high and the low affinity states of the CysLT receptor labelled by LTD4 (Ki1=Ki2=16.6 nM±36% CV and Ki1= Ki2=5.7 nM±19% CV, respectively); (c) iralukast, but not CGP 57698, displayed a slow binding kinetic, because preincubation (15 min) increased its antagonist potency. In functional studies: (a) iralukast and CGP 57698 antagonized LTD4-induced contraction of human bronchi, with pA2 values of 7.77±4.3% CV and 8.51±1.6% CV, respectively, and slopes not significantly different from unity; (b) the maximal LTD4 response in the presence of CGP 57698 was actually increased, thus clearly deviating from apparent simple competition. Both antagonists significantly inhibited antigen-induced contraction of human isolated bronchial strips in a concentration-dependent manner, lowering the upper plateau of the anti-IgE curves. In conclusion, the results of the present in vitro investigation indicate that iralukast and CGP 57698 are potent antagonists of LTD4 in human airways, with affinities in the nanomolar range, similar to those obtained for ICI 204,219 and ONO 1078, two of the most clinically advanced CysLT receptor antagonists. Thus, these

  13. Novel Analogues of (R)-5-(Methylamino)-5,6-dihydro-4H-imidazo[4,5,1-ij]quinolin-2(1H)-one (Sumanirole) Provide Clues to Dopamine D2/D3 Receptor Agonist Selectivity

    PubMed Central

    2016-01-01

    Novel 1-, 5-, and 8-substituted analogues of sumanirole (1), a dopamine D2/D3 receptor (D2R/D3R) agonist, were synthesized. Binding affinities at both D2R and D3R were higher when determined in competition with the agonist radioligand [3H]7-hydroxy-N,N-dipropyl-2-aminotetralin (7-OH-DPAT) than with the antagonist radioligand [3H]N-methylspiperone. Although 1 was confirmed as a D2R-preferential agonist, its selectivity in binding and functional studies was lower than previously reported. All analogues were determined to be D2R/D3R agonists in both GoBRET and mitogenesis functional assays. Loss of efficacy was detected for the N-1-substituted analogues at D3R. In contrast, the N-5-alkyl-substituted analogues, and notably the n-butyl-arylamides (22b and 22c), all showed improved affinity at D2R over 1 with neither a loss of efficacy nor an increase in selectivity. Computational modeling provided a structural basis for the D2R selectivity of 1, illustrating how subtle differences in the highly homologous orthosteric binding site (OBS) differentially affect D2R/D3R affinity and functional efficacy. PMID:27035329

  14. Effects of hypoxia-ischemia and MK-801 treatment on the binding of a phencyclidine analogue in the developing rat brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silverstein, F.S.; McDonald, J.W. III; Bommarito, M.

    1990-02-01

    The phencyclidine analogue ({sup 3}H)(1-(2-thienyl)cyclohexyl)piperidine ({sup 3}H-TCP) binds to the ion channel associated with the N-methyl-D-aspartate receptor channel complex. In vitro autoradiography indicates that the distribution of {sup 3}H-TCP binding in brain closely parallels that of ({sup 3}H)glutamate binding to the N-methyl-D-aspartate receptor. In nine 7-day-old rats, an acute focal hypoxic-ischemic insult produced by unilateral carotid artery ligation and subsequent exposure to 8% oxygen acutely reduced {sup 3}H-TCP binding ipsilateral to the ligation by 30% in the CA1, by 27% in the CA3, by 26% in the dentate gyrus, and by 17% in the striatum compared with values from themore » contralateral hemisphere. In 10 littermates that received 1 mg/kg of the neuroprotective noncompetitive N-methyl-D-aspartate antagonist MK-801 immediately before hypoxic exposure, the regional distribution of {sup 3}H-TCP binding in hypoxic-ischemic brain was relatively preserved and there were no interhemispheric asymmetries in {sup 3}H-TCP binding densities. In addition, in three unoperated rats decapitated 24 hours after MK-801 treatment, {sup 3}H-TCP binding was reduced by 15-35%; similar bilateral suppression of {sup 3}H-TCP binding was detected in MK-801-treated ligates. Our data indicate that {sup 3}H-TCP autoradiography can be used to assay the efficacy of neuroprotective agents in this experimental model of perinatal stroke.« less

  15. The PR-Set7 binding domain of Riz1 is required for the H4K20me1-H3K9me1 trans-tail 'histone code' and Riz1 tumor suppressor function.

    PubMed

    Congdon, Lauren M; Sims, Jennifer K; Tuzon, Creighton T; Rice, Judd C

    2014-04-01

    PR-Set7/Set8/KMT5a is the sole histone H4 lysine 20 monomethyltransferase (H4K20me1) in metazoans and is essential for proper cell division and genomic stability. We unexpectedly discovered that normal cellular levels of monomethylated histone H3 lysine 9 (H3K9me1) were also dependent on PR-Set7, but independent of its catalytic activity. This observation suggested that PR-Set7 interacts with an H3K9 monomethyltransferase to establish the previously reported H4K20me1-H3K9me1 trans-tail 'histone code'. Here we show that PR-Set7 specifically and directly binds the C-terminus of the Riz1/PRDM2/KMT8 tumor suppressor and demonstrate that the N-terminal PR/SET domain of Riz1 preferentially monomethylates H3K9. The PR-Set7 binding domain was required for Riz1 nuclear localization and maintenance of the H4K20me1-H3K9me1 trans-tail 'histone code'. Although Riz1 can function as a repressor, Riz1/H3K9me1 was dispensable for the repression of genes regulated by PR-Set7/H4K20me1. Frameshift mutations resulting in a truncated Riz1 incapable of binding PR-Set7 occur frequently in various aggressive cancers. In these cancer cells, expression of wild-type Riz1 restored tumor suppression by decreasing proliferation and increasing apoptosis. These phenotypes were not observed in cells expressing either the Riz1 PR/SET domain or PR-Set7 binding domain indicating that Riz1 methyltransferase activity and PR-Set7 binding domain are both essential for Riz1 tumor suppressor function.

  16. Discovery and evaluation of a series of 3-acylindole imidazopyridine platelet-activating factor antagonists.

    PubMed

    Curtin, M L; Davidsen, S K; Heyman, H R; Garland, R B; Sheppard, G S; Florjancic, A S; Xu, L; Carrera, G M; Steinman, D H; Trautmann, J A; Albert, D H; Magoc, T J; Tapang, P; Rhein, D A; Conway, R G; Luo, G; Denissen, J F; Marsh, K C; Morgan, D W; Summers, J B

    1998-01-01

    Studies conducted with the goal of discovering a second-generation platelet-activating factor (PAF) antagonist have identified a novel class of potent and orally active antagonists which have high aqueous solubility and long duration of action in animal models. The compounds arose from the combination of the lipophilic indole portion of Abbott's first-generation PAF antagonist ABT-299 (2) with the methylimidazopyridine heterocycle moiety of British Biotechnology's BB-882 (1) and possess the positive attributes of both of these clinical candidates. Structure-activity relationship (SAR) studies indicated that modification of the indole and benzoyl spacer of lead compound 7b gave analogues that were more potent, longer-lived, and bioavailable and resulted in the identification of 1-(N, N-dimethylcarbamoyl)-4-ethynyl-3-[3-fluoro-4-[(1H-2-methylimidazo[4,5-c] pyrid-1-yl)methyl]benzoyl]indole hydrochloride (ABT-491, 22 m.HCl) which has been evaluated extensively and is currently in clinical development.

  17. Development of [3H]2-Carboxy-4,6-dichloro-1H-indole-3-propionic Acid ([3H]PSB-12150): A Useful Tool for Studying GPR17

    PubMed Central

    2014-01-01

    The recently described synthetic GPR17 agonist 2-carboxy-4,6-dichloro-1H-indole-3-propionic acid (1) was prepared in tritium-labeled form by catalytic hydrogenation of the corresponding propenoic acid derivative 8 with tritium gas. The radioligand [3H]PSB-12150 (9) was obtained with a specific activity of 17 Ci/mmol (629 GBq/mmol). It showed specific and saturable binding to a single binding site in membrane preparations from Chinese hamster ovary cells recombinantly expressing the human GPR17. A competition assay procedure was established, which allows the determination of ligand binding affinities. PMID:24900835

  18. Development of [(3)H]2-Carboxy-4,6-dichloro-1H-indole-3-propionic Acid ([(3)H]PSB-12150): A Useful Tool for Studying GPR17.

    PubMed

    Köse, Meryem; Ritter, Kirsten; Thiemke, Katharina; Gillard, Michel; Kostenis, Evi; Müller, Christa E

    2014-04-10

    The recently described synthetic GPR17 agonist 2-carboxy-4,6-dichloro-1H-indole-3-propionic acid (1) was prepared in tritium-labeled form by catalytic hydrogenation of the corresponding propenoic acid derivative 8 with tritium gas. The radioligand [(3)H]PSB-12150 (9) was obtained with a specific activity of 17 Ci/mmol (629 GBq/mmol). It showed specific and saturable binding to a single binding site in membrane preparations from Chinese hamster ovary cells recombinantly expressing the human GPR17. A competition assay procedure was established, which allows the determination of ligand binding affinities.

  19. Contributions of Torpedo nicotinic acetylcholine receptor gamma Trp-55 and delta Trp-57 to agonist and competitive antagonist function.

    PubMed

    Xie, Y; Cohen, J B

    2001-01-26

    Results of affinity-labeling studies and mutational analyses provide evidence that the agonist binding sites of the nicotinic acetylcholine receptor (nAChR) are located at the alpha-gamma and alpha-delta subunit interfaces. For Torpedo nAChR, photoaffinity-labeling studies with the competitive antagonist d-[(3)H]tubocurarine (dTC) identified two tryptophans, gammaTrp-55 and deltaTrp-57, as the primary sites of photolabeling in the non-alpha subunits. To characterize the importance of gammaTrp-55 and deltaTrp-57 to the interactions of agonists and antagonists, Torpedo nAChRs were expressed in Xenopus oocytes, and equilibrium binding assays and electrophysiological recordings were used to examine the functional consequences when either or both tryptophans were mutated to leucine. Neither substitution altered the equilibrium binding of dTC. However, the deltaW57L and gammaW55L mutations decreased acetylcholine (ACh) binding affinity by 20- and 7,000-fold respectively. For the wild-type, gammaW55L, and deltaW57L nAChRs, the concentration dependence of channel activation was characterized by Hill coefficients of 1.8, 1.1, and 1.7. For the gammaW55L mutant, dTC binding at the alpha-gamma site acts not as a competitive antagonist but as a coactivator or partial agonist. These results establish that interactions with gamma Trp-55 of the Torpedo nAChR play a crucial role in agonist binding and in the agonist-induced conformational changes that lead to channel opening.

  20. Design, Synthesis, and Evaluation of Nonretinoid Retinol Binding Protein 4 Antagonists for the Potential Treatment of Atrophic Age-Related Macular Degeneration and Stargardt Disease

    PubMed Central

    2015-01-01

    Accumulation of lipofuscin in the retina is associated with pathogenesis of atrophic age-related macular degeneration and Stargardt disease. Lipofuscin bisretinoids (exemplified by N-retinylidene-N-retinylethanolamine) seem to mediate lipofuscin toxicity. Synthesis of lipofuscin bisretinoids depends on the influx of retinol from serum to the retina. Compounds antagonizing the retinol-dependent interaction of retinol-binding protein 4 (RBP4) with transthyretin in the serum would reduce serum RBP4 and retinol and inhibit bisretinoid formation. We recently showed that A1120 (3), a potent carboxylic acid based RBP4 antagonist, can significantly reduce lipofuscin bisretinoid formation in the retinas of Abca4–/– mice. As part of the NIH Blueprint Neurotherapeutics Network project we undertook the in vitro exploration to identify novel conformationally flexible and constrained RBP4 antagonists with improved potency and metabolic stability. We also demonstrate that upon acute and chronic dosing in rats, 43, a potent cyclopentyl fused pyrrolidine antagonist, reduced circulating plasma RBP4 protein levels by approximately 60%. PMID:25210858

  1. Design, synthesis, and evaluation of nonretinoid retinol binding protein 4 antagonists for the potential treatment of atrophic age-related macular degeneration and Stargardt disease.

    PubMed

    Cioffi, Christopher L; Dobri, Nicoleta; Freeman, Emily E; Conlon, Michael P; Chen, Ping; Stafford, Douglas G; Schwarz, Daniel M C; Golden, Kathy C; Zhu, Lei; Kitchen, Douglas B; Barnes, Keith D; Racz, Boglarka; Qin, Qiong; Michelotti, Enrique; Cywin, Charles L; Martin, William H; Pearson, Paul G; Johnson, Graham; Petrukhin, Konstantin

    2014-09-25

    Accumulation of lipofuscin in the retina is associated with pathogenesis of atrophic age-related macular degeneration and Stargardt disease. Lipofuscin bisretinoids (exemplified by N-retinylidene-N-retinylethanolamine) seem to mediate lipofuscin toxicity. Synthesis of lipofuscin bisretinoids depends on the influx of retinol from serum to the retina. Compounds antagonizing the retinol-dependent interaction of retinol-binding protein 4 (RBP4) with transthyretin in the serum would reduce serum RBP4 and retinol and inhibit bisretinoid formation. We recently showed that A1120 (3), a potent carboxylic acid based RBP4 antagonist, can significantly reduce lipofuscin bisretinoid formation in the retinas of Abca4(-/-) mice. As part of the NIH Blueprint Neurotherapeutics Network project we undertook the in vitro exploration to identify novel conformationally flexible and constrained RBP4 antagonists with improved potency and metabolic stability. We also demonstrate that upon acute and chronic dosing in rats, 43, a potent cyclopentyl fused pyrrolidine antagonist, reduced circulating plasma RBP4 protein levels by approximately 60%.

  2. GPR17: molecular modeling and dynamics studies of the 3-D structure and purinergic ligand binding features in comparison with P2Y receptors.

    PubMed

    Parravicini, Chiara; Ranghino, Graziella; Abbracchio, Maria P; Fantucci, Piercarlo

    2008-06-04

    GPR17 is a G-protein-coupled receptor located at intermediate phylogenetic position between two distinct receptor families: the P2Y and CysLT receptors for extracellular nucleotides and cysteinyl-LTs, respectively. We previously showed that GPR17 can indeed respond to both classes of endogenous ligands and to synthetic compounds active at the above receptor families, thus representing the first fully characterized non-peptide "hybrid" GPCR. In a rat brain focal ischemia model, the selective in vivo knock down of GPR17 by anti-sense technology or P2Y/CysLT antagonists reduced progression of ischemic damage, thus highlighting GPR17 as a novel therapeutic target for stroke. Elucidation of the structure of GPR17 and of ligand binding mechanisms are the necessary steps to obtain selective and potent drugs for this new potential target. On this basis, a 3-D molecular model of GPR17 embedded in a solvated phospholipid bilayer and refined by molecular dynamics simulations has been the first aim of this study. To explore the binding mode of the "purinergic" component of the receptor, the endogenous agonist UDP and two P2Y receptor antagonists demonstrated to be active on GPR17 (MRS2179 and cangrelor) were then modeled on the receptor. Molecular dynamics simulations suggest that GPR17 nucleotide binding pocket is similar to that described for the other P2Y receptors, although only one of the three basic residues that have been typically involved in ligand recognition is conserved (Arg255). The binding pocket is enclosed between the helical bundle and covered at the top by EL2. Driving interactions are H-bonds and salt bridges between the 6.55 and 6.52 residues and the phosphate moieties of the ligands. An "accessory" binding site in a region formed by the EL2, EL3 and the Nt was also found. Nucleotide binding to GPR17 occurs on the same receptor regions identified for already known P2Y receptors. Agonist/antagonist binding mode are similar, but not identical. An accessory

  3. Discovery of Natural Products as Novel and Potent FXR Antagonists by Virtual Screening

    NASA Astrophysics Data System (ADS)

    Diao, Yanyan; Jiang, Jing; Zhang, Shoude; Li, Shiliang; Shan, Lei; Huang, Jin; Zhang, Weidong; Li, Honglin

    2018-04-01

    Farnesoid X receptor (FXR) is a member of nuclear receptor family involved in multiple physiological processes through regulating specific target genes. The critical role of FXR as a transcriptional regulator makes it a promising target for diverse diseases, especially those related to metabolic disorders such as diabetes and cholestasis. However, the underlying activation mechanism of FXR is still a blur owing to the absence of proper FXR modulators. To identify potential FXR modulators, an in-house natural product database (NPD) containing over 4000 compounds was screened by structure-based virtual screening strategy and subsequent hit-based similarity searching method. After the yeast two-hybrid (Y2H) assay, six natural products were identified as FXR antagonists which blocked the CDCA-induced SRC-1 association. The IC50 values of compounds 2a, a diterpene bearing polycyclic skeleton, and 3a, named daphneone with chain scaffold, are as low as 1.29 μM and 1.79 μM, respectively. Compared to the control compound guggulsterone (IC50 = 6.47 μM), compounds 2a and 3a displayed 5-fold and 3-fold higher antagonistic activities against FXR, respectively. Remarkably, the two representative compounds shared low topological similarities with other reported FXR antagonists. According to the putative binding poses, the molecular basis of these antagonists against FXR was also elucidated in this report.

  4. Hyperekplexia mutation R271L of alpha1 glycine receptors potentiates allosteric interactions of nortropeines, propofol and glycine with [3H]strychnine binding.

    PubMed

    Maksay, Gábor; Bíró, Tímea; Laube, Bodo; Nemes, Péter

    2008-01-01

    Human alpha1 and hyperekplexia mutant alpha1(R271L) glycine receptors (GlyRs) were transiently expressed in human embryonic kidney 293 cells for [3H]strychnine binding. Binding parameters were determined using a ternary allosteric model. The hyperekplexia mutation increased the positive cooperativity of 0.3 mM propofol and glycine binding by about six times: the cooperativity factor beta was 0.26 for alpha1 GlyRs and 0.04 for alpha1(R271L) GlyRs. Thus, propofol restored the potency of glycine impaired by the mutation. Five nortropeines, i.e. substituted benzoates of nortropine and a new compound, nortropisetron were prepared and also examined on [3H]strychnine binding. They showed nanomolar displacing potencies amplified by the hyperekplexia mutation. The affinity of nor-O-zatosetron (2.6 nM) is one of the highest reported for GlyRs. This binding test offers an in vitro method to evaluate agents against neurological disorders associated with inherited mutations of GlyRs.

  5. Pharmacological characterization of the bradykinin B2 receptor: inter-species variability and dissociation between binding and functional responses

    PubMed Central

    Paquet, J -L; Luccarini, J -M; Fouchet, C; Defrêne, E; Loillier, B; Robert, C; Bélichard, P; Cremers, B; Pruneau, D

    1999-01-01

    The present study addresses the differences in binding profiles and functional properties of the human and rat bradykinin (BK) B2 receptor using various kinin receptor peptide derivatives as well as the non-peptide receptor antagonists WIN 64338 (phosphonium, [[4-[[2-[[bis(cyclohexylamino)methylene]amino]-3-(2-naphtalenyl)1-oxopropyl]amino]-phenyl]-methyl]tributyl, chloride, monohydro-chloride), and FR173657 (E)-3-(6-acetamido-3-pyridyl)-N-[-N-[2,4-dichloro-3-[(2-methyl-8-quinolinyl)oxymethyl]-phenyl]N-methylamino carbonyl methyl] acrylamide. [3H]-BK bound with a similar affinity to membranes of Chinese hamster ovary cells (CHO-K1) expressing the cloned human (hB2-CHO) or rat (rB2-CHO) B2 receptor, human embryonic intestine cells (INT407) expressing the native B2 receptor, human umbilical vein (HUV) and rat uterus (RU). WIN 64338 and FR173657 bound with a 3.8–6.6 fold and 7.0–16.3 fold higher affinity the rat than the human B2 receptor, respectively. The affinity values of BK derivatives as well as non-peptide antagonists were reduced by 6–23 fold in physiological HBSS compared to low ionic strength TES binding buffer. BK (0.01–3000 nM) increased inositol triphosphates (IP3) levels in hB2-CHO, rB2-CHO and INT407 cells. The B2 receptor antagonist, Hoe 140 (D-Arg0-[ Hyp3, Thi5, D-Tic7, Oic8]-BK) at 10−7 M, significantly shifted to the right the IP3 response curves to BK giving apparent pKB values of 8.56, 9.79 and 8.84 for hB2-CHO, rB2-CHO and INT407 cells, respectively. In human isolated umbilical vein, Hoe 140, D-Arg0-[Hyp3, D-Phe7, Leu8]-BK and NPC 567 had a lower potency in functional assays (pKB 8.18, 5.77 and 5.60, respectively) than expected from their affinity in binding studies (pKi 10.52, 8.64 and 8.27, respectively). FR173657 behaved as a high affinity ligand with pKi values of 8.59 and 9.81 and potent competitive antagonist with pKB values of 7.80 and 8.17 in HUV and RU, respectively. FR173657 bound with a similar affinity the cloned and

  6. SKF 525-A and cytochrome P-450 ligands inhibit with high affinity the binding of ( sup 3 H)dextromethorphan and. sigma. ligands to guinea pig brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, M.; Canoll, P.D.; Musacchio, J.M.

    1991-01-01

    The DM{sub 1}/{sigma}{sub 1} site binds dextromethorphan (DM) and {sigma} receptor ligands. The broad binding specificity of this site and its peculiar subcellular distribution prompted us to explore the possibility that this site is a member of the cytochrome P-450 superfamily of enzymes. We tested the effects of the liver microsomal monooxygenase inhibitor SKF 525-A (Proadifen), and other P-450 substrates on the binding of ({sup 3}H)dextromethorphan, ({sup 3}H)3- (3-Hydroxyphenyl) -N- (1-propyl) piperidine and (+)-({sup 3}H)1,3-Di-o-tolyl-guanidine (({sup 3}H)DTG) to the guinea pig brain. SKF 525-A, l-lobeline and GBR-12909 inhibited the binding of the three labeled ligands with nM affinity. Each drugmore » has identical nM K{sub i} values for the high-affinity site labeled by the three ligands. This indicated that they displaced the labeled ligands from the common DM{sub 1}{sigma}{sub 1} site. Debrisoquine and sparteine, prototypical substrates for liver debrisoquine 4-hydroxylase, displayed K{sub i} values of 9-13 and 3-4 {mu}M respectively against the three labeled ligands. These results, the broad specificity of the DM{sub 1}/{sigma}{sub 1} binding site, and its peculiar subcellular distribution, raises the possibility that this binding site is a member of the cytochrome P-450 superfamily of isozymes, rather than a neurotransmitter receptor.« less

  7. The involvement of the sodium-potassium pump in postjunctional supersensitivity of the guinea-pig vas deferens as assessed by [3H]ouabain binding.

    PubMed

    Wong, S K; Westfall, D P; Fedan, J S; Fleming, W W

    1981-10-01

    Previous evidence has suggested that postjunctional supersensitivity of the guinea-pig vas deferens results, in part, from partial depolarization of the cell membrane. The depolarization is believed to result from a reduction in the activity of the Na-K pump. Indeed, the Na, K+ -adenosine triphosphatase activity of subcellular fractions from supersensitive vas deferens is reduced. In order to determine whether the biochemical alteration seen in subcellular fractions correlate with Na-K pump sites in intact tissues, we have studied the binding of [3H] ouabain to intact vas deferens. [3H]ouabain binds to membrane sites which have the characteristics expected of Na+, K+ - adenosine triphosphatase. Specific binding was saturable and reversible. Scatchard analysis of ouabain-binding in control tissues yielded a single class of binding sites with a dissociation constant (KD) of 156 +/- 7 nM and a maximum number of binding sites (Bmax) of 558.7 +/- 15.6 fmol/mg wet wt. [3H]Ouabain binding was displaceable by several cardiac glycosides and aglycones, but not by steroid hormones or sodium vanadate. Alteration of concentrations of Na+ and K+ markedly affected ouabain binding. Denervation (with 6-hydroxydopamine), decentralization or reserpine treatment for 1 day, which do not produce supersensitivity, did not alter the Bmax, whereas 5 to 7 days after these procedures, when supersensitivity was present, the Bmax was significantly reduced by 20 to 40%. The KD was not changed by any of the treatments. These data provide additional support for the concept that a reduction in the NaK pump sites contributes to postjunctional supersensitivity.

  8. Influence of binding pH and protein solubility on the dynamic binding capacity in hydrophobic interaction chromatography.

    PubMed

    Baumann, Pascal; Baumgartner, Kai; Hubbuch, Jürgen

    2015-05-29

    Hydrophobic interaction chromatography (HIC) is one of the most frequently used purification methods in biopharmaceutical industry. A major drawback of HIC, however, is the rather low dynamic binding capacity (DBC) obtained when compared to e.g. ion exchange chromatography (IEX). The typical purification procedure for HIC includes binding at neutral pH, independently of the proteins nature and isoelectric point. Most approaches to process intensification are based on resin and salt screenings. In this paper a combination of protein solubility data and varying binding pH leads to a clear enhancement of dynamic binding capacity. This is shown for three proteins of acidic, neutral, and alkaline isoelectric points. High-throughput solubility screenings as well as miniaturized and parallelized breakthrough curves on Media Scout RoboColumns (Atoll, Germany) were conducted at pH 3-10 on a fully automated robotic workstation. The screening results show a correlation between the DBC and the operational pH, the protein's isoelectric point and the overall solubility. Also, an inverse relationship of DBC in HIC and the binding kinetics was observed. By changing the operational pH, the DBC could be increased up to 30% compared to the standard purification procedure performed at neutral pH. As structural changes of the protein are reported during HIC processes, the applied samples and the elution fractions were proven not to be irreversibly unfolded. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Ciproxifan, a histamine H{sub 3} receptor antagonist and inverse agonist, presynaptically inhibits glutamate release in rat hippocampus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Cheng-Wei; Lin, Tzu-Yu

    2017-03-15

    Ciproxifan is an H{sub 3} receptor antagonist and inverse agonist with antipsychotic effects in several preclinical models; its effect on glutamate release has been investigated in the rat hippocampus. In a synaptosomal preparation, ciproxifan reduced 4-aminopyridine (4-AP)-evoked Ca{sup 2+}-dependent glutamate release and cytosolic Ca{sup 2+} concentration elevation but did not affect the membrane potential. The inhibitory effect of ciproxifan on 4-AP-evoked glutamate release was prevented by the Gi/Go-protein inhibitor pertussis toxin and Ca{sub v}2.2 (N-type) and Ca{sub v}2.1 (P/Q-type) channel blocker ω-conotoxin MVIIC, but was not affected by the intracellular Ca{sup 2+}-release inhibitors dantrolene and CGP37157. Furthermore, the phospholipase A{submore » 2} (PLA{sub 2}) inhibitor OBAA, prostaglandin E{sub 2} (PGE{sub 2}), PGE2 subtype 2 (EP{sub 2}) receptor antagonist PF04418948, and extracellular signal-regulated kinase (ERK) inhibitor FR180204 eliminated the inhibitory effect of ciproxifan on glutamate release. Ciproxifan reduced the 4-AP-evoked phosphorylation of ERK and synapsin I, a presynaptic target of ERK. The ciproxifan-mediated inhibition of glutamate release was prevented in synaptosomes from synapsin I-deficient mice. Moreover, ciproxifan reduced the frequency of miniature excitatory postsynaptic currents without affecting their amplitude in hippocampal slices. Our data suggest that ciproxifan, acting through the blockade of Gi/Go protein-coupled H{sub 3} receptors present on hippocampal nerve terminals, reduces voltage-dependent Ca{sup 2+} entry by diminishing PLA{sub 2}/PGE{sub 2}/EP{sub 2} receptor pathway, which subsequently suppresses the ERK/synapsin I cascade to decrease the evoked glutamate release. - Highlights: • Ciproxifan presynaptically reduces glutamate release in the hippocampus in vitro. • Decrease in voltage-dependent Ca{sup 2+} influx is involved. • A role for the PLA{sub 2}/PGE{sub 2}/EP{sub 2} pathway in the action of

  10. MEN16132, a novel potent and selective nonpeptide antagonist for the human bradykinin B2 receptor. In vitro pharmacology and molecular characterization.

    PubMed

    Cucchi, Paola; Meini, Stefania; Bressan, Alessandro; Catalani, Claudio; Bellucci, Francesca; Santicioli, Paolo; Lecci, Alessandro; Faiella, Angela; Rotondaro, Luigi; Giuliani, Sandro; Giolitti, Alessandro; Quartara, Laura; Maggi, Carlo Alberto

    2005-12-28

    The pharmacological characterization of the novel nonpeptide antagonist for the B2 receptor, namely MEN16132 (4-(S)-Amino-5-(4-{4-[2,4-dichloro-3-(2,4-dimethyl-8-quinolyloxymethyl)phenylsulfonamido]-tetrahydro-2H-4-pyranylcarbonyl}piperazino)-5-oxopentyl](trimethyl)ammonium chloride hydrochloride) is presented. The affinity of MEN16132 for the bradykinin B2 receptor has been investigated by means of competition studies at [3H]bradykinin binding to membranes prepared from Chinese Hamster Ovary (CHO) cells expressing the human bradykinin B2 receptor (pKi 10.5), human lung fibroblasts (pKi 10.5), guinea pig airways (pKi 10.0), guinea pig ileum longitudinal smooth muscle (pKi 10.2), or guinea pig cultured colonic myocytes (pKi 10.3). In all assays MEN16132 was as potent as the peptide antagonist Icatibant, and from 3- to 100-fold more potent than the reference nonpeptide antagonists FR173657 or LF16-0687. The selectivity for the bradykinin B2 receptor was checked at the human bradykinin B1 receptor (pKi<5), and at a panel of 26 different receptors and channels. The antagonist potency was measured in functional assays, i.e., in blocking the bradykinin induced inositolphosphates (IP) accumulation at the human (CHO: pKB 10.3) and guinea pig (colonic myocytes: pKB 10.3) B2 receptor, or in antagonizing the bradykinin induced contractile responses in human (detrusor smooth muscle: pKB 9.9) and guinea pig (ileum longitudinal smooth muscle: pKB 10.1) tissues. In both functional assay types MEN16132 exerted a different antagonist pattern, i.e., surmountable at the human and insurmountable at the guinea pig bradykinin B2 receptors. Moreover, the receptor determinants important for the high affinity interaction of MEN16132 with the human bradykinin B2 receptor were investigated by means of radioligand binding studies performed at 24 point-mutated receptors. The results obtained revealed that residues in transmembrane segment 2 (W86A), 3 (I110A), 6 (W256A), and 7 (Y295A, Y295F but

  11. Orally active, nonpeptide vasopressin V1 antagonists. A novel series of 1-(1-substituted 4-piperidyl)-3,4-dihdyro-2(1H)-quinolinone.

    PubMed

    Ogawa, H; Yamamura, Y; Miyamoto, H; Kondo, K; Yamashita, H; Nakaya, K; Chihara, T; Mori, T; Tominaga, M; Yabuuchi, Y

    1993-07-09

    A series of compounds has been synthesized and demonstrated to be antagonists of V1 receptors both in vitro and in vivo. These compounds are structurally related to the 1-(4-piperidyl)-2(1H)-quinolinones, including OPC-21268, an orally bioavailable AVP V1 antagonist with high V1 specificity. It has been found that the introduction of an acetamide group on the terminal alkoxy chain of 41-44 leads to an increase in oral activity. Certain of these compounds may have efficacy in the study of AVP V1 receptors.

  12. Radioligand binding characterization of the bradykinin B(2) receptor in the rabbit and pig ileal smooth muscle.

    PubMed

    Meini, Stefania; Cucchi, Paola; Catalani, Claudio; Bellucci, Francesca; Santicioli, Paolo; Giuliani, Sandro; Maggi, Carlo Alberto

    2010-06-10

    Several species-related differences have been reported in kinin B(2) receptor pharmacology. The present study aimed to evaluate the affinity of the bradykinin B(2) receptor antagonist MEN16132 for the rabbit and pig B(2) receptor, and radioligand binding experiments using [(3)H]bradykinin and membranes of rabbit and pig ileum smooth muscle were conducted. The [(3)H]bradykinin binding was characterized by homologous displacement curves indicating K(d) values of 0.65 and 0.33nM in rabbit and pig, respectively. The B(2) receptor specificity of [(3)H]bradykinin binding was shown by the low affinity (>microM) displayed by agonists ([desArg(9)]bradykinin and Lys[desArg(9)]bradykinin) and antagonists [Leu(8),desArg(9)]bradykinin and Lys[Leu(8),desArg(9)]bradykinin) selective for the B(1) receptor. The affinity of MEN16132 and other antagonists was determined by inhibition curves (pK(i) values in the rabbit and pig assay, respectively): MEN16132 (10.4 and 10.3) and peptide compounds such as icatibant (10.1 and 9.9) and MEN11270 (10.3 and 10.1) displayed subnanomolar potency in both assays; the nonpeptide LF16-0687 (8.4 and 8.5) and FR173657 (8.2 and 9.1) exhibited a different affinity pattern, whereas WIN64338 displayed low affinity (5.7 and

  13. Effect of the C3a-receptor antagonist SB 290157 on anti-OVA polyclonal antibody-induced arthritis.

    PubMed

    Hutamekalin, Pilaiwanwadee; Takeda, Kohei; Tani, Mitsuhiro; Tsuga, Yuko; Ogawa, Naoki; Mizutani, Nobuaki; Yoshino, Shin

    2010-01-01

    It was investigated whether the C3a-receptor antagonist (C3aRA) SB 290157 was involved in the suppression of anti-OVA pAb-induced arthritis because it is well known that anaphylatoxin C3a plays a crucial role in the development of an effective inflammatory response during complement activation. Anti-OVA pAb-induced arthritis was induced in DBA/1J mice by administration of anti-OVA pAb 0.5 h prior to intra-articular (i.a.) injection of OVA (0 h). Two peaks of joint swelling were observed at 0.5 and 3 h. The role of C3aRA in arthritis was investigated by injection of SB 290157 at concentrations of 10 and 30 mg/kg at 0 and 2 h. The antagonist was able to reduce joint swelling only at 3 h, and about 50% inhibition of joint swelling was observed with the concentration of 30 mg/kg. The C3 level was significantly decreased at 3 h compared with naïve mice showing complement consumption. Furthermore, the C3 activation was observed and increased corresponding to the graded concentration of anti-OVA pAb. The results also revealed that the C3aRA was able to reduce the expression of IL-1beta in synovial tissue. Taken together, the results suggested that C3aRA may be effective in the inhibition of arthritis.

  14. Molecular mechanism of R-bicalutamide switching from androgen receptor antagonist to agonist induced by amino acid mutations using molecular dynamics simulations and free energy calculation

    NASA Astrophysics Data System (ADS)

    Liu, Hongli; Han, Rui; Li, Jiazhong; Liu, Huanxiang; Zheng, Lifang

    2016-12-01

    R-bicalutamide, a first generation antiandrogen, was used to treat prostate cancer for decades. Although it is very effective at the beginning, resistance appears after 2-3 years of treatment. Mutation of androgen receptor (AR) is considered a main reason for drug resistance. It is reported that AR W741C, W741L, W741C_T877A, T877A, F876L, F876L_T877A and L701H mutations can convert R-bicalutamide from AR antagonist to agonist, but the switching mechanisms are not clear. In this study, molecular dynamics simulations and molecular mechanics generalized Born surface area (MM-GBSA) calculations were performed to analyze the interaction mechanisms between R-bicalutamide and wild type/mutant ARs. The results indicate that helix H12, which lies on the top of AR LBD like a cover, plays a vital role in R-bicalutamide binding. When interacting with AR, the B-ring of R-bicalutamide pushes H12 aside, distorting the coactivator binding site (AF2) resulting in the inactivation of transcription. Several residue mutations appear to enlarge the distance between the B-ring of R-bicalutamide and H12, reducing steric clash, which is conducive to a closed H12 conformation, leading to the formation of the coactivator binding site AF2 and increased transcription. Hydrogen bond and per-residue free energy decomposition analyses are also investigated to explore the interacting mechanisms, and M895 is found to be a key residue in the antagonist mechanism. The obtained molecular mechanisms will aid rational screening and design of novel AR antagonists, even to mutant AR.

  15. Molecular mechanism of R-bicalutamide switching from androgen receptor antagonist to agonist induced by amino acid mutations using molecular dynamics simulations and free energy calculation.

    PubMed

    Liu, Hongli; Han, Rui; Li, Jiazhong; Liu, Huanxiang; Zheng, Lifang

    2016-12-01

    R-bicalutamide, a first generation antiandrogen, was used to treat prostate cancer for decades. Although it is very effective at the beginning, resistance appears after 2-3 years of treatment. Mutation of androgen receptor (AR) is considered a main reason for drug resistance. It is reported that AR W741C, W741L, W741C_T877A, T877A, F876L, F876L_T877A and L701H mutations can convert R-bicalutamide from AR antagonist to agonist, but the switching mechanisms are not clear. In this study, molecular dynamics simulations and molecular mechanics generalized Born surface area (MM-GBSA) calculations were performed to analyze the interaction mechanisms between R-bicalutamide and wild type/mutant ARs. The results indicate that helix H12, which lies on the top of AR LBD like a cover, plays a vital role in R-bicalutamide binding. When interacting with AR, the B-ring of R-bicalutamide pushes H12 aside, distorting the coactivator binding site (AF2) resulting in the inactivation of transcription. Several residue mutations appear to enlarge the distance between the B-ring of R-bicalutamide and H12, reducing steric clash, which is conducive to a closed H12 conformation, leading to the formation of the coactivator binding site AF2 and increased transcription. Hydrogen bond and per-residue free energy decomposition analyses are also investigated to explore the interacting mechanisms, and M895 is found to be a key residue in the antagonist mechanism. The obtained molecular mechanisms will aid rational screening and design of novel AR antagonists, even to mutant AR.

  16. Structural basis for recognition of H3K56-acetylated histone H3-H4 by the chaperone Rtt106

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Dan; Hu, Qi; Li, Qing

    2013-04-08

    Dynamic variations in the structure of chromatin influence virtually all DNA-related processes in eukaryotes and are controlled in part by post-translational modifications of histones. One such modification, the acetylation of lysine 56 (H3K56ac) in the amino-terminal α-helix (αN) of histone H3, has been implicated in the regulation of nucleosome assembly during DNA replication and repair, and nucleosome disassembly during gene transcription. In Saccharomyces cerevisiae, the histone chaperone Rtt106 contributes to the deposition of newly synthesized H3K56ac-carrying H3-H4 complex on replicating DNA, but it is unclear how Rtt106 binds H3-H4 and specifically recognizes H3K56ac as there is no apparent acetylated lysinemore » reader domain in Rtt106. Here, we show that two domains of Rtt106 are involved in a combinatorial recognition of H3-H4. An N-terminal domain homodimerizes and interacts with H3-H4 independently of acetylation while a double pleckstrin-homology (PH) domain binds the K56-containing region of H3. Affinity is markedly enhanced upon acetylation of K56, an effect that is probably due to increased conformational entropy of the αN helix of H3. Our data support a mode of interaction where the N-terminal homodimeric domain of Rtt106 intercalates between the two H3-H4 components of the (H3-H4) 2 tetramer while two double PH domains in the Rtt106 dimer interact with each of the two H3K56ac sites in (H3-H4) 2. We show that the Rtt106-(H3-H4) 2 interaction is important for gene silencing and the DNA damage response.« less

  17. [Molecular organization of glutamate-sensitive chemoexcitatory membranes of nerve cells. Binding of L-[3H]glutamate to synaptic membranes of the rat cerebral cortex].

    PubMed

    Dambinova, S A; Gorodinskiĭ, A I

    1984-01-01

    The binding of L-[3H]glutamate to rat cerebral cortex synaptic membranes was investigated. Two types of binding sites, a Na+-independent (Kd = 140-160 nm; Bmax = 3.8-4.5 pmol-mg of protein) and a Na+-dependent (Kd = 2.0 microM; Bmax = 45-50 pmol/mg of protein) ones, were detected. The dependence of Na+-insensitive binding on time and temperature and membrane content in a sample was determined. Mono- and divalent cations (5-10 mM) potentiated specific binding by 2.1-3.3 times. The Na+-dependent binding is associated with active transport systems, while the Na+-independent one-with true receptor binding. The relationship between CNS glutamate receptors and Na+-independent binding sites is discussed.

  18. Direct labelling of the human P2X7 receptor and identification of positive and negative cooperativity of binding.

    PubMed

    Michel, A D; Chambers, L J; Clay, W C; Condreay, J P; Walter, D S; Chessell, I P

    2007-05-01

    The P2X(7) receptor exhibits complex pharmacological properties. In this study, binding of a [(3)H]-labelled P2X(7) receptor antagonist to human P2X(7) receptors has been examined to further understand ligand interactions with this receptor. The P2X(7) receptor antagonist, N-[2-({2-[(2-hydroxyethyl)amino]ethyl}amino)-5-quinolinyl]-2-tricyclo[3.3.1.1(3,7)]dec-1-ylacetamide (compound-17), was radiolabelled with tritium and binding studies were performed using membranes prepared from U-2 OS or HEK293 cells expressing human recombinant P2X(7) receptors. Binding of [(3)H]-compound-17 was higher in membranes prepared from cells expressing P2X(7) receptors than from control cells and was inhibited by ATP suggesting labelled sites represented human P2X(7) receptors. Binding was reversible, saturable and modulated by P2X(7) receptor ligands (Brilliant Blue G, KN62, ATP, decavanadate). Furthermore, ATP potency was reduced in the presence of divalent cations or NaCl. Radioligand binding exhibited both positive and negative cooperativity. Positive cooperativity was evident from bell shaped Scatchard plots, reduction in radioligand dissociation rate by unlabelled compound-17 and enhancement of radioligand binding by KN62 and unlabelled compound-17. ATP and decavanadate inhibited binding in a negative cooperative manner as they enhanced radioligand dissociation. These data demonstrate that human P2X(7) receptors can be directly labelled and provide novel insights into receptor function. The positive cooperativity observed suggests that binding of compound-17 to one subunit in the P2X(7) receptor complex enhances subsequent binding to other P2X(7) subunits in the same complex. The negative cooperative effects of ATP suggest that ATP and compound-17 bind at separate, interacting, sites on the P2X(7) receptor.

  19. Molecular determinants of ligand binding modes in the histamine H(4) receptor: linking ligand-based three-dimensional quantitative structure-activity relationship (3D-QSAR) models to in silico guided receptor mutagenesis studies.

    PubMed

    Istyastono, Enade P; Nijmeijer, Saskia; Lim, Herman D; van de Stolpe, Andrea; Roumen, Luc; Kooistra, Albert J; Vischer, Henry F; de Esch, Iwan J P; Leurs, Rob; de Graaf, Chris

    2011-12-08

    The histamine H(4) receptor (H(4)R) is a G protein-coupled receptor (GPCR) that plays an important role in inflammation. Similar to the homologous histamine H(3) receptor (H(3)R), two acidic residues in the H(4)R binding pocket, D(3.32) and E(5.46), act as essential hydrogen bond acceptors of positively ionizable hydrogen bond donors in H(4)R ligands. Given the symmetric distribution of these complementary pharmacophore features in H(4)R and its ligands, different alternative ligand binding mode hypotheses have been proposed. The current study focuses on the elucidation of the molecular determinants of H(4)R-ligand binding modes by combining (3D) quantitative structure-activity relationship (QSAR), protein homology modeling, molecular dynamics simulations, and site-directed mutagenesis studies. We have designed and synthesized a series of clobenpropit (N-(4-chlorobenzyl)-S-[3-(4(5)-imidazolyl)propyl]isothiourea) derivatives to investigate H(4)R-ligand interactions and ligand binding orientations. Interestingly, our studies indicate that clobenpropit (2) itself can bind to H(4)R in two distinct binding modes, while the addition of a cyclohexyl group to the clobenpropit isothiourea moiety allows VUF5228 (5) to adopt only one specific binding mode in the H(4)R binding pocket. Our ligand-steered, experimentally supported protein modeling method gives new insights into ligand recognition by H(4)R and can be used as a general approach to elucidate the structure of protein-ligand complexes.

  20. Amino Acids in Hemagglutinin Antigenic Site B Determine Antigenic and Receptor Binding Differences between A(H3N2)v and Ancestral Seasonal H3N2 Influenza Viruses

    PubMed Central

    Wang, Xiaoquan; Ilyushina, Natalia A.; Lugovtsev, Vladimir Y.; Bovin, Nicolai V.; Couzens, Laura K.; Gao, Jin

    2016-01-01

    ABSTRACT Influenza A H3N2 variant [A(H3N2)v] viruses, which have caused human infections in the United States in recent years, originated from human seasonal H3N2 viruses that were introduced into North American swine in the mid-1990s, but they are antigenically distinct from both the ancestral and current circulating H3N2 strains. A reference A(H3N2)v virus, A/Minnesota/11/2010 (MN/10), and a seasonal H3N2 strain, A/Beijing/32/1992 (BJ/92), were chosen to determine the molecular basis for the antigenic difference between A(H3N2)v and the ancestral viruses. Viruses containing wild-type and mutant MN/10 or BJ/92 hemagglutinins (HAs) were constructed and probed for reactivity with ferret antisera against MN/10 and BJ/92 in hemagglutination inhibition assays. Among the amino acids that differ between the MN/10 and BJ/92 HAs, those in antigenic site A had little impact on the antigenic phenotype. Within antigenic site B, mutations at residues 156, 158, 189, and 193 of MN/10 HA to those in BJ/92 switched the MN/10 antigenic phenotype to that of BJ/92. Mutations at residues 156, 157, 158, 189, and 193 of BJ/92 HA to amino acids present in MN/10 were necessary for BJ/92 to become antigenically similar to MN/10. The HA amino acid substitutions responsible for switching the antigenic phenotype also impacted HA binding to sialyl receptors that are usually present in the human respiratory tract. Our study demonstrates that antigenic site B residues play a critical role in determining both the unique antigenic phenotype and receptor specificity of A(H3N2)v viruses, a finding that may facilitate future surveillance and risk assessment of novel influenza viruses. IMPORTANCE Influenza A H3N2 variant [A(H3N2)v] viruses have caused hundreds of human infections in multiple states in the United States since 2009. Most cases have been children who had contact with swine in agricultural fairs. These viruses originated from human seasonal H3N2 viruses that were introduced into the U

  1. Computation of pH-Dependent Binding Free Energies

    PubMed Central

    Kim, M. Olivia; McCammon, J. Andrew

    2015-01-01

    Protein-ligand binding accompanies changes in the surrounding electrostatic environments of the two binding partners and may lead to changes in protonation upon binding. In cases where the complex formation results in a net transfer of protons, the binding process is pH-dependent. However, conventional free energy computations or molecular docking protocols typically employ fixed protonation states for the titratable groups in both binding partners set a priori, which are identical for the free and bound states. In this review, we draw attention to these important yet largely ignored binding-induced protonation changes in protein-ligand association by outlining physical origins and prevalence of the protonation changes upon binding. Following a summary of various theoretical methods for pKa prediction, we discuss the theoretical framework to examine the pH dependence of protein-ligand binding processes. PMID:26202905

  2. Protocols Utilizing Constant pH Molecular Dynamics to Compute pH-Dependent Binding Free Energies

    PubMed Central

    2015-01-01

    In protein–ligand binding, the electrostatic environments of the two binding partners may vary significantly in bound and unbound states, which may lead to protonation changes upon binding. In cases where ligand binding results in a net uptake or release of protons, the free energy of binding is pH-dependent. Nevertheless, conventional free energy calculations and molecular docking protocols typically do not rigorously account for changes in protonation that may occur upon ligand binding. To address these shortcomings, we present a simple methodology based on Wyman’s binding polynomial formalism to account for the pH dependence of binding free energies and demonstrate its use on cucurbit[7]uril (CB[7]) host–guest systems. Using constant pH molecular dynamics and a reference binding free energy that is taken either from experiment or from thermodynamic integration computations, the pH-dependent binding free energy is determined. This computational protocol accurately captures the large pKa shifts observed experimentally upon CB[7]:guest association and reproduces experimental binding free energies at different levels of pH. We show that incorrect assignment of fixed protonation states in free energy computations can give errors of >2 kcal/mol in these host–guest systems. Use of the methods presented here avoids such errors, thus suggesting their utility in computing proton-linked binding free energies for protein–ligand complexes. PMID:25134690

  3. Computational studies of H5N1 hemagglutinin binding with SA-{alpha}-2, 3-Gal and SA-{alpha}-2, 6-Gal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Minyong; Wang Binghe

    2006-09-01

    For influenza H5N1 hemagglutinin, a switch from SA-{alpha}-2, 3-Gal to SA-{alpha}-2, 6-Gal receptor specificity is a critical step leading to the conversion from avian-to-human to human-to-human infection. Therefore, the understanding of the binding modes of SA-{alpha}-2, 3-Gal and SA-{alpha}-2, 6-Gal to H5N1 hemagglutinin will be very important for the examination of possible mutations needed for going from an avian to a human flu virus. Based on the available H5N1 hemagglutinin crystal structure, the binding profiles between H5N1 hemagglutinin and two saccharide ligands, SA-{alpha}-2, 3-Gal and SA-{alpha}-2, 6-Gal, were investigated by ab initio quantum mechanics, molecular docking, molecular mechanics, and molecularmore » dynamics simulations. It was found that SA-{alpha}-2, 3-Gal has strong multiple hydrophobic and hydrogen bond interactions in its trans conformation with H5N1 hemagglutinin, whereas the SA-{alpha}-2, 6-Gal only shows weak interactions in a different conformation (cis type)« less

  4. Functionalized Congeners of P2Y1 Receptor Antagonists:

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Castro, Sonia; Maruoka, Hiroshi; Hong, Kunlun

    2010-01-01

    The P2Y{sub 1} receptor is a prothrombotic G protein-coupled receptor (GPCR) activated by ADP. Preference for the North (N) ring conformation of the ribose moiety of adenine nucleotide 3',5'-bisphosphate antagonists of the P2Y{sub 1} receptor was established by using a ring-constrained methanocarba (a bicyclo[3.1.0]hexane) ring as a ribose substitute. A series of covalently linkable N{sup 6}-methyl-(N)-methanocarba-2'-deoxyadenosine-3',5'-bisphosphates containing extended 2-alkynyl chains was designed, and binding affinity at the human (h) P2Y{sub 1} receptor determined. The chain of these functionalized congeners contained hydrophilic moieties, a reactive substituent, or biotin, linked via an amide. Variation of the chain length and position of anmore » intermediate amide group revealed high affinity of carboxylic congener 8 (K{sub i} 23 nM) and extended amine congener 15 (K{sub i} 132 nM), both having a 2-(1-pentynoyl) group. A biotin conjugate 18 containing an extended {epsilon}-aminocaproyl spacer chain exhibited higher affinity than a shorter biotinylated analogue. Alternatively, click coupling of terminal alkynes of homologous 2-dialkynyl nucleotide derivatives to alkyl azido groups produced triazole derivatives that bound to the P2Y{sub 1} receptor following deprotection of the bisphosphate groups. The preservation of receptor affinity of the functionalized congeners was consistent with new P2Y{sub 1} receptor modeling and ligand docking. Attempted P2Y{sub 1} antagonist conjugation to PAMAM dendrimer carriers by amide formation or palladium-catalyzed reaction between an alkyne on the dendrimer and a 2-iodopurine-derivatized nucleotide was unsuccessful. A dialkynyl intermediate containing the chain length favored in receptor binding was conjugated to an azide-derivatized dendrimer, and the conjugate inhibited ADP-promoted human platelet aggregation. This is the first example of attaching a strategically functionalized P2Y receptor antagonist to a PAMAM

  5. Thermodynamics and docking of agonists to the β(2)-adrenoceptor determined using [(3)H](R,R')-4-methoxyfenoterol as the marker ligand.

    PubMed

    Toll, Lawrence; Pajak, Karolina; Plazinska, Anita; Jozwiak, Krzysztof; Jimenez, Lucita; Kozocas, Joseph A; Tanga, Mary J; Bupp, James E; Wainer, Irving W

    2012-06-01

    G protein-coupled receptors (GPCRs) are integral membrane proteins that change conformation after ligand binding so that they can transduce signals from an extracellular ligand to a variety of intracellular components. The detailed interaction of a molecule with a G protein-coupled receptor is a complicated process that is influenced by the receptor conformation, thermodynamics, and ligand conformation and stereoisomeric configuration. To better understand the molecular interactions of fenoterol analogs with the β(2)-adrenergic receptor, we developed a new agonist radioligand for binding assays. [(3)H](R,R')-methoxyfenoterol was used to probe the binding affinity for a series of fenoterol stereoisomers and derivatives. The results suggest that the radioligand binds with high affinity to an agonist conformation of the receptor, which represents approximately 25% of the total β(2)-adrenoceptor (AR) population as determined with the antagonist [(3)H]CGP-12177. The β(2)-AR agonists tested in this study have considerably higher affinity for the agonist conformation of the receptor, and K(i) values determined for fenoterol analogs model much better the cAMP activity of the β(2)-AR elicited by these ligands. The thermodynamics of binding are also different when interacting with an agonist conformation, being purely entropy-driven for each fenoterol isomer, rather than a mixture of entropy and enthalpy when the fenoterol isomers binding was determined using [(3)H]CGP-12177. Finally, computational modeling identified the molecular interactions involved in agonist binding and allow for the prediction of additional novel β(2)-AR agonists. The study underlines the possibility of using defined radioligand structure to probe a specific conformation of such shape-shifting system as the β(2)-adrenoceptor.

  6. Thermodynamics and Docking of Agonists to the β2-Adrenoceptor Determined Using [3H](R,R′)-4-Methoxyfenoterol as the Marker Ligand

    PubMed Central

    Pajak, Karolina; Plazinska, Anita; Jozwiak, Krzysztof; Jimenez, Lucita; Kozocas, Joseph A.; Tanga, Mary J.; Bupp, James E.; Wainer, Irving W.

    2012-01-01

    G protein-coupled receptors (GPCRs) are integral membrane proteins that change conformation after ligand binding so that they can transduce signals from an extracellular ligand to a variety of intracellular components. The detailed interaction of a molecule with a G protein-coupled receptor is a complicated process that is influenced by the receptor conformation, thermodynamics, and ligand conformation and stereoisomeric configuration. To better understand the molecular interactions of fenoterol analogs with the β2-adrenergic receptor, we developed a new agonist radioligand for binding assays. [3H](R,R′)-methoxyfenoterol was used to probe the binding affinity for a series of fenoterol stereoisomers and derivatives. The results suggest that the radioligand binds with high affinity to an agonist conformation of the receptor, which represents approximately 25% of the total β2-adrenoceptor (AR) population as determined with the antagonist [3H]CGP-12177. The β2-AR agonists tested in this study have considerably higher affinity for the agonist conformation of the receptor, and Ki values determined for fenoterol analogs model much better the cAMP activity of the β2-AR elicited by these ligands. The thermodynamics of binding are also different when interacting with an agonist conformation, being purely entropy-driven for each fenoterol isomer, rather than a mixture of entropy and enthalpy when the fenoterol isomers binding was determined using [3H]CGP-12177. Finally, computational modeling identified the molecular interactions involved in agonist binding and allow for the prediction of additional novel β2-AR agonists. The study underlines the possibility of using defined radioligand structure to probe a specific conformation of such shape-shifting system as the β2-adrenoceptor. PMID:22434858

  7. Interaction of SR 33557 with skeletal muscle calcium channel blocker receptors in the baboon: characterization of its binding sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sol-Rolland, J.; Joseph, M.; Rinaldi-Carmona, M.

    1991-05-01

    A procedure for the isolation of primate skeletal microsomal membranes was initiated. Membranes exhibited specific enzymatic markers such as 5'-nucleotidase, Ca{sup 2}{sup +},Mg({sup 2}{sup +})-adenosine triphosphatase and an ATP-dependent calcium uptake. Baboon skeletal microsomes bound specifically with high-affinity potent Ca{sup 2}{sup +} channel blockers such as dihydropyridine, phenylalkylamine and benzothiazepine derivatives. Scatchard analysis of equilibrium binding assays with ({sup 3}H)(+)-PN 200-110, ({sup 3}H)(-)-desmethoxyverapamil (( {sup 3}H)(-)-D888) and ({sup 3}H)-d-cis-dilitiazem were consistent with a single class of binding sites for the three radioligands. The pharmacological profile of SR 33557, an original compound with calcium antagonist properties, was investigated using radioligand bindingmore » studies. SR 33557 totally inhibited the specific binding of the three main classes of Ca{sup 2}{sup +} channel effectors and interacted allosterically with them. In addition, SR 33557 bound with high affinity to a homogeneous population of binding sites in baboon skeletal muscle.« less

  8. Potassium and the K+/H+ Exchanger Kha1p Promote Binding of Copper to ApoFet3p Multi-copper Ferroxidase*

    PubMed Central

    Wu, Xiaobin; Kim, Heejeong; Seravalli, Javier; Barycki, Joseph J.; Hart, P. John; Gohara, David W.; Di Cera, Enrico; Jung, Won Hee; Kosman, Daniel J.; Lee, Jaekwon

    2016-01-01

    Acquisition and distribution of metal ions support a number of biological processes. Here we show that respiratory growth of and iron acquisition by the yeast Saccharomyces cerevisiae relies on potassium (K+) compartmentalization to the trans-Golgi network via Kha1p, a K+/H+ exchanger. K+ in the trans-Golgi network facilitates binding of copper to the Fet3p multi-copper ferroxidase. The effect of K+ is not dependent on stable binding with Fet3p or alteration of the characteristics of the secretory pathway. The data suggest that K+ acts as a chemical factor in Fet3p maturation, a role similar to that of cations in folding of nucleic acids. Up-regulation of KHA1 gene in response to iron limitation via iron-specific transcription factors indicates that K+ compartmentalization is linked to cellular iron homeostasis. Our study reveals a novel functional role of K+ in the binding of copper to apoFet3p and identifies a K+/H+ exchanger at the secretory pathway as a new molecular factor associated with iron uptake in yeast. PMID:26966178

  9. Oxime Ethers of (E)-11-Isonitrosostrychnine as Highly Potent Glycine Receptor Antagonists.

    PubMed

    Mohsen, Amal M Y; Mandour, Yasmine M; Sarukhanyan, Edita; Breitinger, Ulrike; Villmann, Carmen; Banoub, Maha M; Breitinger, Hans-Georg; Dandekar, Thomas; Holzgrabe, Ulrike; Sotriffer, Christoph; Jensen, Anders A; Zlotos, Darius P

    2016-12-23

    A series of (E)-11-isonitrosostrychnine oxime ethers, 2-aminostrychnine, (strychnine-2-yl)propionamide, 18-oxostrychnine, and N-propylstrychnine bromide were synthesized and evaluated pharmacologically at human α1 and α1β glycine receptors in a functional fluorescence-based and a whole-cell patch-clamp assay and in [ 3 H]strychnine binding studies. 2-Aminostrychnine and the methyl, allyl, and propargyl oxime ethers were the most potent α1 and α1β antagonists in the series, displaying IC 50 values similar to those of strychnine at the two receptors. Docking experiments to the strychnine binding site of the crystal structure of the α3 glycine receptor indicated the same orientation of the strychnine core for all analogues. For the most potent oxime ethers, the ether substituent was accommodated in a lipophilic receptor binding pocket. The findings identify the oxime hydroxy group as a suitable attachment point for linking two strychnine pharmacophores by a polymethylene spacer and are, therefore, important for the design of bivalent ligands targeting glycine receptors.

  10. Interaction of fenoterol stereoisomers with β2-adrenoceptor-G sα fusion proteins: antagonist and agonist competition binding.

    PubMed

    Reinartz, Michael T; Kälble, Solveig; Wainer, Irving W; Seifert, Roland

    2015-05-01

    The specific interaction between G-protein-coupled receptors and ligand is the starting point for downstream signaling. Fenoterol stereoisomers were successfully used to probe ligand-specific activation (functional selectivity) of the β2-adrenoceptor (β2AR) (Reinartz et al. 2015). In the present study, we extended the pharmacological profile of fenoterol stereoisomers using β2AR-Gsα fusion proteins in agonist and antagonist competition binding assays. Dissociations between binding affinities and effector potencies were found for (R,S')- and (S,S')-isomers of 4'-methoxy-1-naphthyl-fenoterol. Our data corroborate former studies on the importance of the aminoalkyl moiety of fenoterol derivatives for functional selectivity.

  11. Solid-phase receptor binding assay for /sup 125/I-hCG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bortolussi, M.; Selmin, O.; Colombatti, A.

    1987-01-01

    A solid-phase radioligand-receptor assay (RRA) to measure the binding of /sup 125/I-labelled human chorionic gonadotropin (/sup 125/I-hCG) to target cell membranes has been developed. The binding of /sup 125/I-hCG to membranes immobilized on the wells of microtitration plates reached a maximum at about 3 hours at 37 degrees C, was saturable, displayed a high affinity (Ka = 2.4 X 10(9) M-1) and was specifically inhibited by unlabelled hCG. In comparison with RRAs carried out with membranes in suspension, the solid-phase RRA is significantly simpler and much faster to perform as it avoids centrifugation or filtration procedures. The solid-phase RRA wasmore » adapted profitably to process large numbers of samples at the same time. It proved particularly useful as a screening assay to detect anti-hCG monoclonal antibodies with high inhibitory activity for binding of /sup 125/I-hCG to its receptors.« less

  12. Sex difference in κ-opioid receptor (KOPR)-mediated behaviors, brain region KOPR level and KOPR-mediated guanosine 5'-O-(3-[35S]thiotriphosphate) binding in the guinea pig.

    PubMed

    Wang, Yu-Jun; Rasakham, Khampaseuth; Huang, Peng; Chudnovskaya, Darina; Cowan, Alan; Liu-Chen, Lee-Yuan

    2011-11-01

    We examined whether sex differences in κ-opioid receptor (KOPR) pharmacology exist in guinea pigs, which are more similar to humans in the expression level and distribution of KOPR in the brain than rats and mice. The KOPR agonist trans-(±)-3,4-dichloro-N-methyl-N-(2-[1-pyrrolidinyl]-cyclohexyl)benzeneacetamide methanesulfonate (U50,488H) produced a dose-dependent increase in abnormal postures and immobility with more effects in males than females. Males also showed more U50,488H-induced antinociception in the paw pressure test than females. Pretreatment with the KOPR antagonist norbinaltorphimine blocked U50,488H-induced abnormal body postures and antinociception. In contrast, inhibition of cocaine-induced hyperambulation by U50,488H was more effective in females than males. Thus, sex differences in the effects of U50,488H are endpoint-dependent. We then examined whether sex differences in KOPR levels and KOPR-mediated G protein activation in brain regions may contribute to the observed differences using quantitative in vitro autoradiography of [(3)H](5a,7a,8b)-(-)-N-methyl-N-(7-(1-pyrrolidinyl)1-oxaspiro(4,5)dec-8-yl)benzeacetamide ([(3)H]U69,593) binding to the KOPR and U50,488H-stimulated guanosine 5'-O-(3-[(35)S]thiotriphosphate ([(35)S]GTPγS) binding. Compared with females, males exhibited more [(3)H]U69,593 binding in the deep layers of somatosensory and insular cortices, claustrum, endopiriform nucleus, periaqueductal gray, and substantial nigra. Concomitantly, U50,488H-stimulated [(35)S]GTPγS binding was greater in males than females in the superficial and deep layers of somatosensory and insular cortices, caudate putamen, claustrum, medial geniculate nucleus, and cerebellum. In contrast, compared with males, females showed more U50,488H-stimulated [(35)S]GTPγS binding in the dentate gyrus and a trend of higher [(35)S]GTPγS binding in the hypothalamus. These data demonstrate that males and females differ in KOPR expression and KOPR-mediated G protein

  13. Characterization of diverse subvariants of the meningococcal factor H (fH) binding protein for their ability to bind fH, to mediate serum resistance, and to induce bactericidal antibodies.

    PubMed

    Seib, Kate L; Brunelli, Brunella; Brogioni, Barbara; Palumbo, Emmanuelle; Bambini, Stefania; Muzzi, Alessandro; DiMarcello, Federica; Marchi, Sara; van der Ende, Arie; Aricó, Beatrice; Savino, Silvana; Scarselli, Maria; Comanducci, Maurizio; Rappuoli, Rino; Giuliani, Marzia M; Pizza, Mariagrazia

    2011-02-01

    Neisseria meningitidis is a commensal of the human nasopharynx but is also a major cause of septicemia and meningitis. The meningococcal factor H binding protein (fHbp) binds human factor H (fH), enabling downregulation of complement activation on the bacterial surface. fHbp is a component of two serogroup B meningococcal vaccines currently in clinical development. Here we characterize 12 fHbp subvariants for their level of surface exposure and ability to bind fH, to mediate serum resistance, and to induce bactericidal antibodies. Flow cytometry and Western analysis revealed that all strains examined expressed fHbp on their surface to different extents and bound fH in an fHbp-dependent manner. However, differences in fH binding did not always correlate with the level of fHbp expression, indicating that this is not the only factor affecting the amount of fH bound. To overcome the issue of strain variability in fHbp expression, the MC58ΔfHbp strain was genetically engineered to express different subvariants from a constitutive heterologous promoter. These recombinant strains were characterized for fH binding, and the data confirmed that each subvariant binds different levels of fH. Surface plasmon resonance revealed differences in the stability of the fHbp-fH complexes that ranged over 2 orders of magnitude, indicating that differences in residues between and within variant groups can influence fH binding. Interestingly, the level of survival in human sera of recombinant MC58 strains expressing diverse subvariants did not correlate with the level of fH binding, suggesting that the interaction of fHbp with fH is not the only function of fHbp that influences serum resistance. Furthermore, cross-reactive bactericidal activity was seen within each variant group, although the degree of activity varied, suggesting that amino acid differences within each variant group influence the bactericidal antibody response.

  14. Antagonist interaction with the human 5-HT7 receptor mediates the rapid and potent inhibition of non-G-protein-stimulated adenylate cyclase activity: a novel GPCR effect

    PubMed Central

    Klein, MT; Teitler, M

    2011-01-01

    BACKGROUND AND PURPOSE The human 5-hydroxytryptamine7 (h5-HT7) receptor is Gs-coupled and stimulates the production of the intracellular signalling molecule cAMP. Previously, we reported a novel property of the h5-HT7 receptor: pseudo-irreversible antagonists irreversibly inhibit forskolin-stimulated (non-receptor-mediated) cAMP production. Herein, we sought to determine if competitive antagonists also affect forskolin-stimulated activity and if this effect is common among other Gs-coupled receptors. EXPERIMENTAL APPROACH Recombinant cell lines expressing h5-HT7 receptors or other receptors of interest were briefly exposed to antagonists; cAMP production was then stimulated by forskolin and quantified by an immunocompetitive assay. KEY RESULTS In human embryonic kidney 293 cells stably expressing h5-HT7 receptors, all competitive antagonists inhibited nearly 100% of forskolin-stimulated cAMP production. This effect was insensitive to pertussis toxin, that is, not Gi/o-mediated. Potency to inhibit forskolin-stimulated activity strongly correlated with h5-HT7 binding affinity (r2= 0.91), indicating that the antagonists acted through h5-HT7 receptors to inhibit forskolin. Potency and maximal effects of clozapine, a prototypical competitive h5-HT7 antagonist, were unaffected by varying forskolin concentration. Antagonist interaction with h5-HT6, human β1, β2, and β3 adrenoceptors did not inhibit forskolin's activity. CONCLUSIONS AND IMPLICATIONS The inhibition of adenylate cyclase, as measured by forskolin's activity, is an underlying property of antagonist interaction with h5-HT7 receptors; however, this is not a common property of other Gs-coupled receptors. This phenomenon may be involved in the roles played by h5-HT7 receptors in human physiology. Development of h5-HT7 antagonists that do not elicit this effect would aid in the elucidation of its mechanisms and shed light on its possible physiological relevance. PMID:21198551

  15. Conserved Binding Mode of Human [beta subscript 2] Adrenergic Receptor Inverse Agonists and Antagonist Revealed by X-ray Crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wacker, Daniel; Fenalti, Gustavo; Brown, Monica A.

    2010-11-15

    G protein-coupled receptors (GPCRs) represent a large fraction of current pharmaceutical targets, and of the GPCRs, the {beta}{sub 2} adrenergic receptor ({beta}{sub 2}AR) is one of the most extensively studied. Previously, the X-ray crystal structure of {beta}{sub 2}AR has been determined in complex with two partial inverse agonists, but the global impact of additional ligands on the structure or local impacts on the binding site are not well-understood. To assess the extent of such ligand-induced conformational differences, we determined the crystal structures of a previously described engineered {beta}{sub 2}AR construct in complex with two inverse agonists: ICI 118,551 (2.8 {angstrom}),more » a recently described compound (2.8 {angstrom}) (Kolb et al, 2009), and the antagonist alprenolol (3.1 {angstrom}). The structures show the same overall fold observed for the previous {beta}{sub 2}AR structures and demonstrate that the ligand binding site can accommodate compounds of different chemical and pharmacological properties with only minor local structural rearrangements. All three compounds contain a hydroxy-amine motif that establishes a conserved hydrogen bond network with the receptor and chemically diverse aromatic moieties that form distinct interactions with {beta}{sub 2}AR. Furthermore, receptor ligand cross-docking experiments revealed that a single {beta}{sub 2}AR complex can be suitable for docking of a range of antagonists and inverse agonists but also indicate that additional ligand-receptor structures may be useful to further improve performance for in-silico docking or lead-optimization in drug design.« less

  16. Structure-activity relationships studies on weakly basic N-arylsulfonylindoles with an antagonistic profile in the 5-HT6 receptor

    NASA Astrophysics Data System (ADS)

    Mella, Jaime; Villegas, Francisco; Morales-Verdejo, César; Lagos, Carlos F.; Recabarren-Gajardo, Gonzalo

    2017-07-01

    We recently reported a series of 39 weakly basic N-arylsulfonylindoles as novel 5-HT6 antagonists. Eight of the compounds exhibited moderate to high binding affinities, with 2-(4-(2-Methoxyphenyl)piperazin-1-yl)-1-(1-tosyl-1H-indol-3-yl)ethanol 16 showing the highest binding affinity (pKi = 7.87). Given these encouraging results and as a continuation of our research, we performed an extensive step-by-step search for the best 3D-QSAR model that allows us to rationally propose novel molecules with improved 5-HT6 affinity based on our previously reported series. A comparative molecular similarity indices analysis (CoMSIA) model built on a docking-based alignment was developed, wherein steric, electrostatic, hydrophobic and hydrogen bond properties are correlated with biological activity. The model was validated internally and externally (q2 = 0.721; r2pred = 0.938), and identified the sulfonyl and hydroxyl groups and the piperazine ring among the main regions of the molecules that can be modified to create new 5-HT6 antagonists.

  17. Several down, a few to go: histamine H3 receptor ligands making the final push towards the market?

    PubMed

    Kuhne, Sebastiaan; Wijtmans, Maikel; Lim, Herman D; Leurs, Rob; de Esch, Iwan J P

    2011-12-01

    The histamine H(3) receptor (H(3)R) plays a pivotal role in a plethora of therapeutic areas. Blocking the H(3)R with antagonists/inverse agonists has been postulated to be of broad therapeutic use. Indeed, H(3)R antagonists/inverse agonists have been extensively evaluated in the clinic. Here, we address new developments, insights obtained and challenges encountered in the clinical evaluations. For recent H(3)R clinical candidates, the status and results of the corresponding clinical trial(s) will be discussed along with preclinical data. In all, it becomes evident that clinical evaluation of H(3)R antagonists/inverse agonists is characterized by mixed results. On one hand, Pitolisant has successfully passed several Phase II trials and seems to be the most advanced compound in the clinic now, being in Phase III. On the other hand, some compounds (e.g., PF-03654647 and MK-0249) failed at Phase II clinical level for several indications. A challenging feature in H(3)R research is the multifaceted role of the receptor at a molecular/biochemical level, which can complicate targeting by small molecules at several (pre)clinical levels. Accordingly, H(3)R antagonists/inverse agonists require further testing to pinpoint the determinants for clinical efficacy and to aid in the final push towards the market.

  18. Effects of autoshaping procedures on 3H-8-OH-DPAT-labeled 5-HT1a binding and 125I-LSD-labeled 5-HT2a binding in rat brain.

    PubMed

    Tomie, Arthur; Di Poce, Jason; Aguado, Allison; Janes, Amy; Benjamin, Daniel; Pohorecky, Larissa

    2003-06-13

    Effects of experience with Pavlovian autoshaping procedures on lever-press autoshaping conditioned response (CR) performance and 3H-8-OH-DPAT-labeled binding of 5-HT(1a) receptors as well as 125I-LSD-labeled binding of 5-HT(2a) receptors were evaluated in four groups of male Long-Evans hooded rats. Two groups of rats (Group Paired High CR and Group Paired Low CR) received Pavlovian autoshaping procedures wherein the presentation of a lever (conditioned stimulus, CS) was followed by the response-independent presentation of food (unconditioned stimulus, US). Rats in Group Paired High CR (n=12) showed more rapid CR acquisition and higher asymptotic levels of lever-press autoshaping CR performance relative to rats in Group Low CR (n=12). Group Omission (n=9) received autoshaping with an omission contingency, such that performing the lever-press autoshaping CR resulted in the cancellation the food US, while Group Random (n=9) received presentations of lever CS and food US randomly with respect to one another. Though Groups Omission and Random did not differ in lever-press autoshaping CR performance, Group Omission showed significantly lower levels of 3H-8-OH-DPAT-labeled 5-HT(1a) binding in post-synaptic areas (frontal cortex, septum, caudate putamen), as well as significantly higher plasma corticosterone levels than Group Random. In addition, Group Random showed higher levels of 3H-8-OH-DPAT-labeled 5-HT(1a) binding in pre-synaptic somatodendritic autoreceptors on dorsal raphe nucleus relative to each of the other three groups. Autoradiographic analysis of 125I-LSD-labeled 5-HT(2a) receptor binding revealed no significant differences between Groups Paired High CR and Paired Low CR or between Groups Omission and Random in any brain regions.

  19. A novel BLyS antagonist peptide designed based on the 3-D complex structure of BCMA and BLyS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun Jian; Feng Jiannan; Li Yan

    2006-08-11

    B lymphocyte stimulator (BLyS) is a member of tumor necrosis factor (TNF) family. Because of its roles in autoimmune diseases such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and Sjogren syndrome (SS), BLyS antagonists have been tested to treat SLE- and RA-like symptoms in mice and obtained optimistic results. So far, reported BLyS antagonists were mostly decoyed BLyS receptors or anti-BLyS antibodies. In this study, a novel BLyS antagonist peptide, PT, was designed based on the modeling 3-D complex structure of BCMA and BLyS. The interaction mode of PT with BLyS was analyzed theoretically. The results of competitive ELISAmore » demonstrated that PT could inhibit the binding of BCMA-Fc and anti-BLyS antibody to BLyS in vitro. In addition, PT could partly block the proliferating activity of BLyS on mice splenocytes. The BLyS antagonizing activity of PT was significant (p < 0.05). This study highlights the possibility of using BLyS antagonist peptide to neutralize BLyS activity. Further optimization of PT with computer-guided molecular design method to enhance its biopotency may be useful in developing new BLyS antagonists to treat BLyS-related autoimmune diseases.« less

  20. Effects of S 38093, an antagonist/inverse agonist of histamine H3 receptors, in models of neuropathic pain in rats.

    PubMed

    Chaumette, T; Chapuy, E; Berrocoso, E; Llorca-Torralba, M; Bravo, L; Mico, J A; Chalus, M; Eschalier, A; Ardid, D; Marchand, F; Sors, A

    2018-01-01

    Histamine H3 receptors are mainly expressed on CNS neurons, particularly along the nociceptive pathways. The potential involvement of these receptors in pain processing has been suggested using H3 receptor inverse agonists. The antinociceptive effect of S 38093, a novel inverse agonist of H3 receptors, has been evaluated in several neuropathic pain models in rat and compared with those of gabapentin and pregabalin. While S 38093 did not change vocalization thresholds to paw pressure in healthy rats, it exhibited a significant antihyperalgesic effect in the Streptozocin-induced diabetic (STZ) neuropathy model after acute and chronic administration and, in the chronic constriction injury (CCI) model only after chronic administration, submitted to the paw-pressure test. Acute S 38093 administration at all doses tested displayed a significant cold antiallodynic effect in a model of acute or repeated administration of oxaliplatin-induced neuropathy submitted to cold tail immersion, cold allodynia being the main side effect of oxaliplatin in patients. The effect of S 38093 increased following chronic administration (i.e. twice a day during 5 days) in the CCI and STZ models except in the oxaliplatin models where its effect was already maximal from the first administration The kinetics and size of effect of S 38093 were similar to gabapentin and/or pregabalin. Finally, the antinociceptive effect of S 38093 could be partially mediated by α2 adrenoreceptors desensitization in the locus coeruleus. These results highlight the interest of S 38093 to relieve neuropathic pain and warrant clinical trials especially in chemotherapeutic agent-induced neuropathic pain. S 38093, a new H3 antagonist/inverse agonist, displays antiallodynic and antihyperalgesic effect in neuropathic pain, especially in oxaliplatin-induced neuropathy after chronic administration. This effect of S 38093 in neuropathic pain could be partly mediated by α2 receptors desensitization in the locus coeruleus

  1. Fevipiprant (QAW039), a Slowly Dissociating CRTh2 Antagonist with the Potential for Improved Clinical Efficacy.

    PubMed

    Sykes, David A; Bradley, Michelle E; Riddy, Darren M; Willard, Elizabeth; Reilly, John; Miah, Asadh; Bauer, Carsten; Watson, Simon J; Sandham, David A; Dubois, Gerald; Charlton, Steven J

    2016-05-01

    Here we describe the pharmacologic properties of a series of clinically relevant chemoattractant receptor-homologous molecules expressed on T-helper type 2 (CRTh2) receptor antagonists, including fevipiprant (NVP-QAW039 or QAW039), which is currently in development for the treatment of allergic diseases. [(3)H]-QAW039 displayed high affinity for the human CRTh2 receptor (1.14 ± 0.44 nM) expressed in Chinese hamster ovary cells, the binding being reversible and competitive with the native agonist prostaglandin D2(PGD2). The binding kinetics of QAW039 determined directly using [(3)H]-QAW039 revealed mean kinetic on (kon) and off (koff) values for QAW039 of 4.5 × 10(7)M(-1)min(-1)and 0.048 minute(-1), respectively. Importantly, thekoffof QAW039 (half-life = 14.4 minutes) was >7-fold slower than the slowest reference compound tested, AZD-1981. In functional studies, QAW039 behaved as an insurmountable antagonist of PGD2-stimulated [(35)S]-GTPγS activation, and its effects were not fully reversed by increasing concentrations of PGD2after an initial 15-minute incubation period. This behavior is consistent with its relatively slow dissociation from the human CRTh2 receptor. In contrast for the other ligands tested this time-dependent effect on maximal stimulation was fully reversed by the 15-minute time point, whereas QAW039's effects persisted for >180 minutes. All CRTh2 antagonists tested inhibited PGD2-stimulated human eosinophil shape change, but importantly QAW039 retained its potency in the whole-blood shape-change assay relative to the isolated shape change assay, potentially reflective of its relatively slower off rate from the CRTh2 receptor. QAW039 was also a potent inhibitor of PGD2-induced cytokine release in human Th2 cells. Slow CRTh2 antagonist dissociation could provide increased receptor coverage in the face of pathologic PGD2concentrations, which may be clinically relevant. Copyright © 2016 by The American Society for Pharmacology and Experimental

  2. Synthesis and SAR studies of novel 2-(6-aminomethylaryl-2-aryl-4-oxo-quinazolin-3(4H)-yl)acetamide vasopressin V1b receptor antagonists.

    PubMed

    Napier, Susan E; Letourneau, Jeffrey J; Ansari, Nasrin; Auld, Douglas S; Baker, James; Best, Stuart; Campbell-Wan, Leigh; Chan, Ray; Craighead, Mark; Desai, Hema; Ho, Koc-Kan; MacSweeney, Cliona; Milne, Rachel; Richard Morphy, J; Neagu, Irina; Ohlmeyer, Michael H J; Pick, Jack; Presland, Jeremy; Riviello, Chris; Zanetakos, Heather A; Zhao, Jiuqiao; Webb, Maria L

    2011-06-15

    Synthesis and structure-activity relationships (SAR) of a novel series of vasopressin V(1b) antagonists are described. 2-(6-Aminomethylaryl-2-aryl-4-oxo-quinazolin-3(4H)-yl)acetamide have been identified with low nanomolar affinity for the V(1b) receptor and good selectivity with respect to related receptors V(1a), V(2) and OT. Optimised compound 16 shows a good pharmacokinetic profile and activity in a mechanistic model of HPA dysfunction. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. AM-37 and ST-36 Are Small Molecule Bombesin Receptor Antagonists.

    PubMed

    Moody, Terry W; Tashakkori, Nicole; Mantey, Samuel A; Moreno, Paola; Ramos-Alvarez, Irene; Leopoldo, Marcello; Jensen, Robert T

    2017-01-01

    While peptide antagonists for the gastrin-releasing peptide receptor (BB 2 R), neuromedin B receptor (BB 1 R), and bombesin (BB) receptor subtype-3 (BRS-3) exist, there is a need to develop non-peptide small molecule inhibitors for all three BBR. The BB agonist (BA)1 binds with high affinity to the BB 1 R, BB 2 R, and BRS-3. In this communication, small molecule BBR antagonists were evaluated using human lung cancer cells. AM-37 and ST-36 inhibited binding to human BB 1 R, BB 2 R, and BRS-3 with similar affinity ( K i = 1.4-10.8 µM). AM-13 and AM-14 were approximately an order of magnitude less potent than AM-37 and ST-36. The ability of BA1 to elevate cytosolic Ca 2+ in human lung cancer cells transfected with BB 1 R, BB 2 R, and BRS-3 was antagonized by AM-37 and ST-36. BA1 increased tyrosine phosphorylation of the EGFR and ERK in lung cancer cells, which was blocked by AM-37 and ST-36. AM-37 and ST-36 reduced the growth of lung cancer cells that have BBR. The results indicate that AM-37 and ST-36 function as small molecule BB receptor antagonists.

  4. Impaired locomotor activity and exploratory behavior in mice lacking histamine H1 receptors

    PubMed Central

    Inoue, Isao; Yanai, Kazuhiko; Kitamura, Daisuke; Taniuchi, Ichiro; Kobayashi, Takashi; Niimura, Kaku; Watanabe, Takehiko; Watanabe, Takeshi

    1996-01-01

    From pharmacological studies using histamine antagonists and agonists, it has been demonstrated that histamine modulates many physiological functions of the hypothalamus, such as arousal state, locomotor activity, feeding, and drinking. Three kinds of receptors (H1, H2, and H3) mediate these actions. To define the contribution of the histamine H1 receptors (H1R) to behavior, mutant mice lacking the H1R were generated by homologous recombination. In brains of homozygous mutant mice, no specific binding of [3H]pyrilamine was seen. [3H]Doxepin has two saturable binding sites with higher and lower affinities in brains of wild-type mice, but H1R-deficient mice showed only the weak labeling of [3H]doxepin that corresponds to lower-affinity binding sites. Mutant mice develop normally, but absence of H1R significantly increased the ratio of ambulation during the light period to the total ambulation for 24 hr in an accustomed environment. In addition, mutant mice significantly reduced exploratory behavior of ambulation and rearings in a new environment. These results indicate that through H1R, histamine is involved in circadian rhythm of locomotor activity and exploratory behavior as a neurotransmitter. PMID:8917588

  5. Effect of SR-49059, a vasopressin V1a antagonist, on human vascular smooth muscle cells.

    PubMed

    Serradeil-Le Gal, C; Herbert, J M; Delisee, C; Schaeffer, P; Raufaste, D; Garcia, C; Dol, F; Marty, E; Maffrand, J P; Le Fur, G

    1995-01-01

    The effects of SR-49059, a new nonpeptide and selective arginine vasopressin (AVP) V1a antagonist, were investigated in binding and functional studies on cultured human aortic vascular smooth muscle cells (VSMC). Characterization of human vascular V1a receptors, using a specific V1a radioiodinated ligand, showed that [125I]-linear AVP antagonist binding to human VSMC membranes was time dependent, reversible, and saturable. A single population of high-affinity binding sites (apparent equilibrium dissociation constant = 15 +/- 6 pM; maximum binding density = 36 +/- 5 fmol/mg protein, i.e., approximately 3,000 sites/cell) with the expected V1a profile was identified. Exposure of these cells to AVP dose-dependently produced cytosolic free [Ca2+] increase [AVP concentration required to obtain a half-maximal response (EC50) = 23 +/- 9 nM] and proliferation (EC50 = 3.2 +/- 0.5 nM). SR-49059 strongly and stereospecifically inhibited [125I]-linear AVP antagonist binding to VSMC V1a receptors [inhibition constant (Ki) = 1.4 +/- 0.3 nM], AVP-evoked Ca2+ increase [concentration of inhibitor required to obtain 50% inhibition of specific binding (IC50) = 0.41 +/- 0.06 nM], and the mitogenic effects induced by 100 nM AVP (IC50 = 0.83 +/- 0.04 nM). OPC-21268, another nonpeptide V1a antagonist, was more than two orders of magnitude less potent than SR-49059 in these models. However, the consistent affinity (Ki = 138 +/- 21 nM) and activity found with OPC-21268 on human VSMC in comparison with the inactivity already observed for other human V1a receptors (liver, platelets, adrenals, and uterus) strongly suggested the existence of human AVP V1a-receptor subtypes.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Design, synthesis and biological activity of 6-substituted carbamoyl benzimidazoles as new nonpeptidic angiotensin II AT₁ receptor antagonists.

    PubMed

    Zhang, Jun; Wang, Jin-Liang; Zhou, Zhi-Ming; Li, Zhi-Huai; Xue, Wei-Zhe; Xu, Di; Hao, Li-Ping; Han, Xiao-Feng; Fei, Fan; Liu, Ting; Liang, Ai-Hua

    2012-07-15

    A series of 6-substituted carbamoyl benzimidazoles were designed and synthesised as new nonpeptidic angiotensin II AT(1) receptor antagonists. The preliminary pharmacological evaluation revealed a nanomolar AT(1) receptor binding affinity for all compounds in the series, and a potent antagonistic activity in an isolated rabbit aortic strip functional assay for compounds 6f, 6g, 6h and 6k was also demonstrated. Furthermore, evaluation in spontaneous hypertensive rats and a preliminary toxicity evaluation showed that compound 6g is an orally active AT(1) receptor antagonist with low toxicity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Structural determinants for antagonist pharmacology that distinguish the rho1 GABAC receptor from GABAA receptors.

    PubMed

    Zhang, Jianliang; Xue, Fenqin; Chang, Yongchang

    2008-10-01

    GABA receptor (GABAR) types C (GABACR) and A (GABAAR) are both GABA-gated chloride channels that are distinguished by their distinct competitive antagonist properties. The structural mechanism underlying these distinct properties is not well understood. In this study, using previously identified binding residues as a guide, we made individual or combined mutations of nine binding residues in the rho1 GABACR subunit to their counterparts in the alpha1beta2gamma2 GABAAR or reverse mutations in alpha1 or beta2 subunits. The mutants were expressed in Xenopus laevis oocytes and tested for sensitivities of GABA-induced currents to the GABAA and GABAC receptor antagonists. The results revealed that bicuculline insensitivity of the rho1 GABACR was mainly determined by Tyr106, Phe138 and Phe240 residues. Gabazine insensitivity of the rho1 GABACR was highly dependent on Tyr102, Tyr106, and Phe138. The sensitivity of the rho1 GABACR to 3-aminopropyl-phosphonic acid and its analog 3-aminopropyl-(methyl)phosphinic acid mainly depended on residues Tyr102, Val140, FYS240-242, and Phe138. Thus, the residues Tyr102, Tyr106, Phe138, and Phe240 in the rho1 GABACR are major determinants for its antagonist properties distinct from those in the GABAAR. In addition, Val140 in the GABACR contributes to 3-APA binding. In conclusion, we have identified the key structural elements underlying distinct antagonist properties for the GABACR. The mechanistic insights were further extended and discussed in the context of antagonists docking to the homology models of GABAA or GABAC receptors.

  8. H3K27 methylation and H3S28 phosphorylation-dependent transcriptional regulation by INHAT subunit SET/TAF-Iβ.

    PubMed

    Kim, Ji-Young; Kim, Kee-Beom; Son, Hye-Ju; Chae, Yun-Cheol; Oh, Si-Taek; Kim, Dong-Wook; Pak, Jhang Ho; Seo, Sang-Beom

    2012-09-21

    Significant progress has been made in understanding the relationship between histone modifications and 'reader' molecules and their effects on transcriptional regulation. A previously identified INHAT complex subunit, SET/TAF-Iβ, binds to histones and inhibits histone acetylation. To investigate the binding specificities of SET/TAF-Iβ to various histone modifications, we employed modified histone tail peptide array analyses. SET/TAF-Iβ strongly recognized PRC2-mediated H3K27me1/2/3; however, the bindings were completely disrupted by H3S28 phosphorylation. We have demonstrated that SET/TAF-Iβ is sequentially recruited to the target gene promoter ATF3 after the PRC2 complex via H3K27me recognition and may offer additive effects in the repression of the target gene. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  9. Interaction of LY171883 and other peroxisome proliferators with fatty-acid-binding protein isolated from rat liver.

    PubMed Central

    Cannon, J R; Eacho, P I

    1991-01-01

    Fatty-acid-binding protein (FABP) is a 14 kDa protein found in hepatic cytosol which binds and transports fatty acids and other hydrophobic ligands throughout the cell. The purpose of this investigation was to determine whether LY171883, a leukotriene D4 antagonist, and other peroxisome proliferators bind to FABP and displace an endogenous fatty acid. [3H]Oleic acid was used to monitor the elution of FABP during chromatographic purification. [14C]LY171883 had a similar elution profile when substituted in the purification, indicating a common interaction with FABP. LY171883 and its structural analogue, LY189585, as well as the hypolipidaemic peroxisome proliferators clofibric acid, ciprofibrate, bezafibrate and WY14,643, displaced [3H]oleic acid binding to FABP. Analogues of LY171883 that do not induce peroxisome proliferation only weakly displaced oleate binding. [3H]Ly171883 bound directly to FABP with a Kd of 10.8 microM, compared with a Kd of 0.96 microM for [3H]oleate. LY171883 binding was inhibited by LY189585, clofibric acid, ciprofibrate and bezafibrate. These findings demonstrate that peroxisome proliferators, presumably due to their structural similarity to fatty acids, are able to bind to FABP and displace an endogenous ligand from its binding site. Interaction of peroxisome proliferators with FABP may be involved in perturbations of fatty acid metabolism caused by these agents as well as in the development of the pleiotropic response of peroxisome proliferation. Images Fig. 2. PMID:1747111

  10. Investigation on the pH-dependent binding of benzocaine and lysozyme by fluorescence and absorbance

    NASA Astrophysics Data System (ADS)

    Li, Shihui; Li, Daojin

    2011-11-01

    The interaction mechanism between benzocaine (BZC) and lysozyme (Lys) has been investigated by fluorescence, synchronous fluorescence, ultraviolet-vis (UV) absorption spectra, and three-dimensional fluorescence (3-D) in various pH medium. The observations of fluorescence spectra were mainly rationalized in terms of a static quenching process at lower concentration of BZC ( CBZC/ CLys < 9) and a combined quenching process at higher concentration of BZC ( CBZC/ CLys > 9) at pH 7.4 and 8.4. However, the fluorescence quenching was mainly arisen from static quenching by complex formation in all studied drug concentrations at pH 3.5. The structural characteristics of BZC and Lys were probed, and their binding affinities were determined under different pH conditions (pH 3.5, 7.4, and 8.4). The results indicated that the binding abilities of BZC to Lys decreased at the pH below and above the simulative physiological condition (pH 7.4) due to the alterations of the protein secondary and tertiary structures or the structural change of BZC. The effect of BZC on the conformation of Lys was analyzed using UV, synchronous fluorescence and three-dimensional fluorescence under different pH conditions. These results indicate that the binding of BZC to Lys causes apparent change in the secondary and tertiary structures of Lys. The effect of Zn 2+ on the binding constant of BZC with Lys under various pH conditions (pH 3.5, 7.4, and 8.4) was also studied.

  11. A selective and potent CXCR3 antagonist SCH 546738 attenuates the development of autoimmune diseases and delays graft rejection

    PubMed Central

    2012-01-01

    Background The CXCR3 receptor and its three interferon-inducible ligands (CXCL9, CXCL10 and CXCL11) have been implicated as playing a central role in directing a Th1 inflammatory response. Recent studies strongly support that the CXCR3 receptor is a very attractive therapeutic target for treating autoimmune diseases, such as rheumatoid arthritis, multiple sclerosis and psoriasis, and to prevent transplant rejection. We describe here the in vitro and in vivo pharmacological characterizations of a novel and potent small molecule CXCR3 antagonist, SCH 546738. Results In this study, we evaluated in vitro pharmacological properties of SCH 546738 by radioligand receptor binding and human activated T cell chemotaxis assays. In vivo efficacy of SCH 546738 was determined by mouse collagen-induced arthritis, rat and mouse experimental autoimmune encephalomyelitis, and rat cardiac transplantation models. We show that SCH 546738 binds to human CXCR3 with a high affinity of 0.4 nM. In addition, SCH 546738 displaces radiolabeled CXCL10 and CXCL11 from human CXCR3 with IC50 ranging from 0.8 to 2.2 nM in a non-competitive manner. SCH 546738 potently and specifically inhibits CXCR3-mediated chemotaxis in human activated T cells with IC90 about 10 nM. SCH 546738 attenuates the disease development in mouse collagen-induced arthritis model. SCH 546738 also significantly reduces disease severity in rat and mouse experimental autoimmune encephalomyelitis models. Furthermore, SCH 546738 alone achieves dose-dependent prolongation of rat cardiac allograft survival. Most significantly, SCH 546738 in combination with CsA supports permanent engraftment. Conclusions SCH 546738 is a novel, potent and non-competitive small molecule CXCR3 antagonist. It is efficacious in multiple preclinical disease models. These results demonstrate that therapy with CXCR3 antagonists may serve as a new strategy for treatment of autoimmune diseases, including rheumatoid arthritis and multiple sclerosis, and to

  12. Regulation by divalent cations of /sup 3/H-baclofen binding to GABA/sub B/ sites in rat cerebellar membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kato, K.; Goto, M.; Fukuda, H.

    1983-02-21

    When investigating the effects of divalent cations (Mg/sup 2 +/, Ca/sup 2 +/, Sr/sup 2 +/, Ba/sup 2 +/, Mn/sup 2 +/ and Ni/sup 2 +/) on /sup 3/H-baclofen binding to rat cerebellar synaptic membranes, we found that the specific binding of /sup 3/H-baclofen was not only dependent on divalent cations, but was increased dose-dependently in the presence of these cations. The effects were in the following order of potency: Mn/sup 2 +/ approx. = Ni/sup 2 +/ > Mg/sup 2 +/ > Ca/sup 2 +/ > Sr/sup 2 +/ > Ba/sup 2 +/. Scatchard analysis of the binding datamore » revealed a single component of the binding sites in the presence of 2.5 mM MgCl/sub 2/, 2.5 mM CaCl/sub 2/ or 0.3 mM MnCl/sub 2/ whereas two components appeared in the presence of 2.5 mM MnCl/sub 2/ or 1 mM NiCl/sub 2/. In the former, divalent cations altered the apparent affinity (K/sub d/) without affecting density of the binding sites (B/sub max/). In the latter, the high-affinity sites showed a higher affinity and lower density of the binding sites than did the single component of the former. As the maximal effects of four cations (Mg/sup 2 +/, Ca/sup 2 +/, Mn/sup 2 +/, and Ni/sup 2 +/) were not additive, there are probably common sites of action of these divalent cations. Among the ligands for GABA/sub B/ sites, the affinity for (-), (+) and (+/-)baclofen, GABA and ..beta..-phenyl GABA increased 2 - 6 fold in the presence of 2.5 mM MnCl/sub 2/, in comparison with that in HEPES-buffered Krebs solution (containing 2.5 mM CaCl/sub 2/ and 1.2 mM MgSO/sub 4/), whereas that for muscimol was decreased to one-fifth. Thus, the affinity of GABA/sub B/ sites for its ligands is probably regulated by divalent cations, through common sites of action.« less

  13. ATRX binds to atypical chromatin domains at the 3′ exons of zinc finger genes to preserve H3K9me3 enrichment

    PubMed Central

    Chowdhury, Asif H.; Hasson, Dan; Dyer, Michael A.

    2016-01-01

    ABSTRACT ATRX is a SWI/SNF chromatin remodeler proposed to govern genomic stability through the regulation of repetitive sequences, such as rDNA, retrotransposons, and pericentromeric and telomeric repeats. However, few direct ATRX target genes have been identified and high-throughput genomic approaches are currently lacking for ATRX. Here we present a comprehensive ChIP-sequencing study of ATRX in multiple human cell lines, in which we identify the 3′ exons of zinc finger genes (ZNFs) as a new class of ATRX targets. These 3′ exonic regions encode the zinc finger motifs, which can range from 1–40 copies per ZNF gene and share large stretches of sequence similarity. These regions often contain an atypical chromatin signature: they are transcriptionally active, contain high levels of H3K36me3, and are paradoxically enriched in H3K9me3. We find that these ZNF 3′ exons are co-occupied by SETDB1, TRIM28, and ZNF274, which form a complex with ATRX. CRISPR/Cas9-mediated loss-of-function studies demonstrate (i) a reduction of H3K9me3 at the ZNF 3′ exons in the absence of ATRX and ZNF274 and, (ii) H3K9me3 levels at atypical chromatin regions are particularly sensitive to ATRX loss compared to other H3K9me3-occupied regions. As a consequence of ATRX or ZNF274 depletion, cells with reduced levels of H3K9me3 show increased levels of DNA damage, suggesting that ATRX binds to the 3′ exons of ZNFs to maintain their genomic stability through preservation of H3K9me3. PMID:27029610

  14. Characterization of [3H]LS-3-134, a Novel Arylamide Phenylpiperazine D3 Dopamine Receptor Selective Radioligand

    PubMed Central

    Rangel-Barajas, Claudia; Malik, Maninder; Taylor, Michelle; Neve, Kim A.; Mach, Robert H.; Luedtke, Robert R.

    2014-01-01

    LS-3-134 is a substituted N-phenylpiperazine derivative that has been reported to exhibit a) high-affinity binding (Ki value 0.2 nM) at human D3 dopamine receptors, b) >100-fold D3 vs. D2 dopamine receptor subtype binding selectivity and c) low-affinity binding (Ki values >5,000 nM) at sigma 1 and sigma 2 receptors. Based upon a forskolin-dependent activation of the adenylyl cyclase inhibition assay, LS-3-134 is a weak partial agonist at both D2 and D3 dopamine receptor subtypes (29% and 35% of full agonist activity, respectively). In this study, [3H]-labeled LS-3-134 was prepared and evaluated to further characterize its use as a D3 dopamine receptor selective radioligand. Kinetic and equilibrium radioligand binding studies were performed. This radioligand rapidly reaches equilibrium (10-15 min at 37°C) and binds with high affinity to both human (Kd = 0.06 ± 0.01 nM) and rat (Kd = 0.2 ± 0.02 nM) D3 receptors expressed in HEK-293 cells. Direct and competitive radioligand binding studies using rat caudate and nucleus accumbens tissue indicate that [3H]LS-3-134 selectively binds a homogeneous population of binding sites with a dopamine D3 receptor pharmacological profile. Based upon these studies we propose that [3H]LS-3-134 represents a novel D3 dopamine receptor selective radioligand that can be used for studying the expression and regulation of the D3 dopamine receptor subtype. PMID:25041389

  15. Melanocortin Antagonist Tetrapeptides with Minimal Agonist Activity at the Mouse Melanocortin-3 Receptor

    PubMed Central

    2014-01-01

    The melanocortin system regulates many important functions in the body. There are five melanocortin G protein-coupled receptor subtypes known to date. Herein, we report a structure–activity relationship (SAR) study of a tetrapeptide lead discovered through a double substitution strategy at the melanocortin core His-Phe-Arg-Trp sequence. Several compounds were identified with micromolar agonist activity at the mouse melanocortin-1 (mMC1R) and mouse melanocortin-5 receptor (mMC5R) subtypes, weak antagonist activity at the mouse melanocortin-3 receptor (mMC3R), and potent antagonist activity at the mouse melanocortin-4 receptor (mMC4R). Two compounds (2 and 3) were nanomolar mMC4R antagonists with no mMC3R antagonist activity observed. Additionally, we identified three tetrapeptide MC3R antagonists (1, 6, and 7) that possess minimal mMC3R agonist activity only at 100 μM, not commonly observed for mMC3R/mMC4R antagonists. These novel molecular templates have the potential as molecular probes to better differentiate the roles of the centrally expressed MC3 and MC4 receptors. PMID:25699138

  16. Discovery of a Manduca sexta Allatotropin Antagonist from a Manduca sexta Allatotropin Receptor Homology Model.

    PubMed

    Kai, Zhen-Peng; Zhu, Jing-Jing; Deng, Xi-Le; Yang, Xin-Ling; Chen, Shan-Shan

    2018-04-03

    Insect G protein coupled receptors (GPCRs) have important roles in modulating biology, physiology and behavior. They have been identified as candidate targets for next-generation insecticides, yet these targets have been relatively poorly exploited for insect control. In this study, we present a pipeline of novel Manduca sexta allatotropin (Manse-AT) antagonist discovery with homology modeling, docking, molecular dynamics simulation and structure-activity relationship. A series of truncated and alanine-replacement analogs of Manse-AT were assayed for the stimulation of juvenile hormone biosynthesis. The minimum sequence required to retain potent biological activity is the C -terminal amidated octapeptide Manse-AT (6-13). We identified three residues essential for bioactivity (Thr⁴, Arg6 and Phe⁸) by assaying alanine-replacement analogs of Manse-AT (6-13). Alanine replacement of other residues resulted in reduced potency but bioactivity was retained. The 3D structure of the receptor (Manse-ATR) was built and the binding pocket was identified. The binding affinities of all the analogs were estimated by calculating the free energy of binding. The calculated binding affinities corresponded to the biological activities of the analogs, which supporting our localization of the binding pocket. Then, based on the docking and molecular dynamics studies of Manse-AT (10-13), we described it can act as a potent Manse-AT antagonist. The antagonistic effect on JH biosynthesis of Manse-AT (10-13) validated our hypothesis. The IC 50 value of antagonist Manse-AT (10-13) is 0.9 nM. The structure-activity relationship of antagonist Manse-AT (10-13) was also studied for the further purpose of investigating theoretically the structure factors influencing activity. These data will be useful for the design of new Manse-AT agonist and antagonist as potential pest control agents.

  17. Characterization of a Novel Small Molecule Subtype Specific Estrogen-Related Receptor α Antagonist in MCF-7 Breast Cancer Cells

    PubMed Central

    Chisamore, Michael J.; Cunningham, Michael E.; Flores, Osvaldo; Wilkinson, Hilary A.; Chen, J. Don

    2009-01-01

    Background The orphan nuclear receptor estrogen-related receptor α (ERRα) is a member of the nuclear receptor superfamily. It was identified through a search for genes encoding proteins related to estrogen receptor α (ERα). An endogenous ligand has not been found. Novel ERRα antagonists that are highly specific for binding to the ligand binding domain (LBD) of ERRα have been recently reported. Research suggests that ERRα may be a novel drug target to treat breast cancer and/or metabolic disorders and this has led to an effort to characterize the mechanisms of action of N-[(2Z)-3-(4,5-dihydro-1,3-thiazol-2-yl)-1,3-thiazolidin-2-yl idene]-5H dibenzo[a,d][7]annulen-5-amine, a novel ERRα specific antagonist. Methodology/Principal Findings We demonstrate this ERRα ligand inhibits ERRα transcriptional activity in MCF-7 cells by luciferase assay but does not affect mRNA levels measured by real-time RT-PCR. Also, ERα (ESR1) mRNA levels were not affected upon treatment with the ERRα antagonist, but other ERRα (ESRRA) target genes such as pS2 (TFF1), osteopontin (SPP1), and aromatase (CYP19A1) mRNA levels decreased. In vitro, the ERRα antagonist prevents the constitutive interaction between ERRα and nuclear receptor coactivators. Furthermore, we use Western blots to demonstrate ERRα protein degradation via the ubiquitin proteasome pathway is increased by the ERRα-subtype specific antagonist. We demonstrate by chromatin immunoprecipitation (ChIP) that the interaction between ACADM, ESRRA, and TFF1 endogenous gene promoters and ERRα protein is decreased when cells are treated with the ligand. Knocking-down ERRα (shRNA) led to similar genomic effects seen when MCF-7 cells were treated with our ERRα antagonist. Conclusions/Significance We report the mechanism of action of a novel ERRα specific antagonist that inhibits transcriptional activity of ERRα, disrupts the constitutive interaction between ERRα and nuclear coactivators, and induces proteasome

  18. The neuraminidases of MDCK grown human influenza A(H3N2) viruses isolated since 1994 can demonstrate receptor binding.

    PubMed

    Mohr, Peter G; Deng, Yi-Mo; McKimm-Breschkin, Jennifer L

    2015-04-22

    The neuraminidases (NAs) of MDCK passaged human influenza A(H3N2) strains isolated since 2005 are reported to have dual functions of cleavage of sialic acid and receptor binding. NA agglutination of red blood cells (RBCs) can be inhibited by neuraminidase inhibitors (NAIs), thus distinguishing it from haemagglutinin (HA) binding. We wanted to know if viruses prior to 2005 can demonstrate this property. Pairs of influenza A(H3N2) isolates ranging from 1993-2008 passaged in parallel only in eggs or in MDCK cells were tested for inhibition of haemagglutination by various NAIs. Only viruses isolated since 1994 and cultured in MDCK cells bound chicken RBCs solely through their NA. NAI inhibition of agglutination of turkey RBCs was seen for some, but not all of these same MDCK grown viruses. Efficacy of inhibition of enzyme activity and haemagglutination differed between NAIs. For many viruses lower concentrations of oseltamivir could inhibit agglutination compared to zanamivir, although they could both inhibit enzyme activity at comparable concentrations. An E119V mutation reduced sensitivity to oseltamivir and 4-aminoDANA for both the enzyme assay and inhibition of agglutination. Sequence analysis of the NAs and HAs of some paired viruses revealed mutations in the haemagglutinin of all egg passaged viruses. For many of the paired egg and MDCK cultured viruses we found no differences in their NA sequences by Sanger sequencing. However, deep sequencing of MDCK grown isolates revealed low levels of variant populations with mutations at either D151 or T148 in the NA, suggesting mutations at either site may be able to confer this property. The NA active site of MDCK cultured human influenza A(H3N2) viruses isolated since 1994 can express dual enzyme and receptor binding functions. Binding correlated with either D151 or T148 mutations. The catalytic and receptor binding sites do not appear to be structurally identical since relative concentrations of the NAIs to inhibit

  19. Three classes of ligands each bind to distinct sites on the orphan G protein-coupled receptor GPR84.

    PubMed

    Mahmud, Zobaer Al; Jenkins, Laura; Ulven, Trond; Labéguère, Frédéric; Gosmini, Romain; De Vos, Steve; Hudson, Brian D; Tikhonova, Irina G; Milligan, Graeme

    2017-12-20

    Medium chain fatty acids can activate the pro-inflammatory receptor GPR84 but so also can molecules related to 3,3'-diindolylmethane. 3,3'-Diindolylmethane and decanoic acid acted as strong positive allosteric modulators of the function of each other and analysis showed the affinity of 3,3'-diindolylmethane to be at least 100 fold higher. Methyl decanoate was not an agonist at GPR84. This implies a key role in binding for the carboxylic acid of the fatty acid. Via homology modelling we predicted and confirmed an integral role of arginine 172 , located in the 2nd extracellular loop, in the action of decanoic acid but not of 3,3'-diindolylmethane. Exemplars from a patented series of GPR84 antagonists were able to block agonist actions of both decanoic acid and 3,3'-diindolylmethane at GPR84. However, although a radiolabelled form of a related antagonist, [ 3 H]G9543, was able to bind with high affinity to GPR84, this was not competed for by increasing concentrations of either decanoic acid or 3,3'-diindolylmethane and was not affected adversely by mutation of arginine 172 . These studies identify three separable ligand binding sites within GPR84 and suggest that if medium chain fatty acids are true endogenous regulators then co-binding with a positive allosteric modulator would greatly enhance their function in physiological settings.

  20. Dopamine D3 and D2 Receptor Mechanisms in the Abuse-Related Behavioral Effects of Cocaine: Studies with Preferential Antagonists in Squirrel Monkeys

    PubMed Central

    Grundt, Peter; Cao, Jianjing; Platt, Donna M.; Newman, Amy Hauck; Spealman, Roger D.

    2010-01-01

    Dopamine (DA) D3 and D2 receptor mechanisms are implicated in cocaine's abuse-related behavioral effects, but the relative contribution of the two receptor subtypes is only partially characterized. This study investigated the role of D3 and D2 subtype mechanisms by determining the degree to which the D3-preferring antagonist PG01037 [N-{4-[4-(2,3-dichlorophenyl)-piperazin- 1-yl]-trans-but-2-enyl}-4-pyridine-2-yl-benzamide HCl] and the D2-preferring antagonist L-741626 [3-[4-(4-chlorophenyl)-4- hydroxypiperidin-1-yl]methyl-1H-indole] attenuated several behavioral effects of cocaine in squirrel monkeys. Quantitative observational studies established doses of each antagonist that did not produce untoward effects, which were used in subsequent comparisons. In addition, the ability of the D3-preferring agonist PD128907 [(R-(+)-trans-3,4a,10b-tetrahydro-4-propyl-2H,5H-[1]benzopyrano[4,3-b]-1,4-oxazin-9-ol)] and the D2-preferring agonist sumanirole [(R)-5,6-dihydro-5-(methylamino)-4H- imidazo[4,5,1-ij]quinolin-2(1H)-one(Z)-2-butenedioate] to reproduce cocaine's discriminative stimulus (DS) and priming effects were compared. In monkeys trained to discriminate cocaine from vehicle, both DA antagonists attenuated and both DA agonists partially reproduced cocaine's DS effects. PG01037 also selectively attenuated the cocaine-like DS effects of PD128907, whereas L-741626 attenuated the cocaine-like DS effects of both agonists. In self-administration studies, L-741626 nonselectively reduced cocaine- and food-maintained responding, whereas PG01037 was ineffective against either reinforcer. In studies involving reinstatement of extinguished cocaine seeking, both antagonists attenuated cocaine-induced reinstatement of responding, and both agonists induced at least partial reinstatement of cocaine seeking. L-741626 also attenuated sumanirole-induced, but not PD128907-induced, reinstatement of responding, whereas PG01037 was ineffective against either DA agonist. The results are

  1. Surface-mediated delivery of siRNA from fibrin hydrogels for knockdown of the BMP-2 binding antagonist noggin.

    PubMed

    Kowalczewski, Christine J; Saul, Justin M

    2015-10-01

    Antagonists and inhibitory molecules responsible for maintaining tissue homeostasis can present a significant barrier to healing when tissue engineering/regenerative medicine strategies are employed. One example of this situation is the up-regulation of antagonists such as noggin in response to increasing concentrations of bone morphogenetic protein-2 (BMP-2) present from endogenous bone repair processes or delivered exogenously from biomaterials (synthetic bone grafts). While recombinant human (rh)BMP-2 delivered from synthetic bone grafts has been shown to be an effective alternative to autografts and allografts, the supraphysiological doses of rhBMP-2 have led to clinically-adverse side effects. The high rhBMP-2 dosage may be required, in part, to overcome the presence of antagonists such as noggin. Small interfering RNA (siRNA) is an appealing approach to overcome this problem because it can knock-down antagonists or inhibitory molecules in a temporary manner. Here, we conducted fundamental studies on the delivery of siRNA from material surfaces as a means to knock-down antagonists like noggin. Non-viral cationic lipid (Lipofectamine)-siRNA complexes were delivered from a fibrin hydrogel surface to MC3T3-E1 preosteoblasts that were treated with a supraphysiological dose of rhBMP-2 to achieve noggin mRNA expression levels higher than cells naïve to rhBMP-2. Confocal microscopy and flow cytometry showed intracellular uptake of siRNA in over 98% of MC3T3-E1 cells after 48 h. Doses of 0.5 and 1 μg noggin siRNA were able to significantly reduce noggin mRNA to levels equivalent to those in MC3T3-E1 cells not exposed to rhBMP-2 with no effects on cell viability. Small interfering RNA (siRNA) has been considered for treatment of diseases ranging from Alzheimer's to cancer. However, the ability to use siRNA in conjunction with biomaterials to direct tissue regeneration processes has received relatively little attention. Using the bone morphogenetic protein 2

  2. [Preparation of anti-hCG single domain antibody by antibody grafting technique using an antigen-binding peptide].

    PubMed

    Peng, Jing; Wang, Qiong; Cheng, Xiaoling; Liu, Mengwen; Wang, Mei; Xin, Huawei

    2018-04-25

    We used the antibody grafting technology to prepare anti-hCG single-domain antibodies on the basis of antigen-binding peptide to simplify the single-domain antibody preparation process and improving the biochemical stability of peptide. By using a universal single-domain antibody backbone (cAbBCII10), CDR1 or CDR3 was replaced by the hCG-binding peptide, and the grafted antibody gene sequences were synthesized and cloned into the prokaryotic expression vector pET30a(+) in fusion with a C-terminal sfGFP gene, i.e. pET30a-(His6)-cAbBCII10-CDR1/hCGBP1-sfGFP and pET30a-(His6)-cAbBCII10-CDR3/hCGBP3-sfGFP. The recombinant plasmids were transformed into E. coli BL21(DE3), and the fusion proteins were induced by IPTG. Highly soluble recombinant fusion proteins were obtained and purified by Ni-NTA affinity column. SDS-PAGE confirmed the purified protein as the target protein. The antigen-antibody binding assay showed that both the CDR1 and CDR3 grafted antibodies have hCG-binding activities. While the titers of the two grafted antibodies were similar, the binding affinity of CDR3 grafted antibody was higher than that of CDR1 grafted protein (about 2-3 times). The grafted antibodies retained the relatively high biochemical stability of the single-domain antibody backbone and were relatively thermostable and alkaline tolerant. The obtained antibodies also had a relatively high antigen-binding specificity to hCG. This study provided a reliable experimental basis for further optimization of anti-hCG single domain antibody by antibody grafting technology using antigen-binding peptide.

  3. 3-(2-Benzofuranyl)quinuclidin-2-ene derivatives: novel muscarinic antagonists.

    PubMed

    Nordvall, G; Sundquist, S; Johansson, G; Glas, G; Nilvebrant, L; Hacksell, U

    1996-08-16

    A series of 26 derivatives of the novel muscarinic antagonist 3-(2-benzofuranyl)quinuclidin-2-ene (1) has been synthesized and evaluated for muscarinic and antimuscarinic properties. The affinity of the compounds was determined by competition experiments in homogenates of cerebral cortex, heart, parotid gland, and urinary bladder from guinea pigs using (-)-[3H]-3-quinuclidinyl benzilate as the radioligand, and the antimuscarinic-potency was determined in a functional assay on isolated guinea pig urinary bladder using carbachol as the agonist. The 5-fluorobenzofuranyl derivative was slightly more potent than 1. The 7-bromo-substituted 8 displayed a 14-fold tissue selectivity ratio for muscarinic receptors in the cortex versus the parotid gland. Comparative molecular field analysis and quantitative structure-activity relationship models were developed for this series of substituted benzofuranyl derivatives.

  4. Staphylococcal enterotoxins bind H-2Db molecules on macrophages

    NASA Technical Reports Server (NTRS)

    Beharka, A. A.; Iandolo, J. J.; Chapes, S. K.; Spooner, B. S. (Principal Investigator)

    1995-01-01

    We screened a panel of monoclonal antibodies against selected macrophage cell surface molecules for their ability to inhibit enterotoxin binding to major histocompatibility complex class II-negative C2D (H-2b) macrophages. Two monoclonal antibodies, HB36 and TIB126, that are specific for the alpha 2 domain of major histocompatibility complex class I, blocked staphylococcal enterotoxins A and B (SEA and SEB, respectively) binding to C2D macrophages in a specific and concentration-dependent manner. Inhibitory activities were haplotype-specific in that SEA and SEB binding to H-2k or H-2d macrophages was not inhibited by either monoclonal antibody. HB36, but not TIB126, inhibited enterotoxin-induced secretion of cytokines by H-2b macrophages. Lastly, passive protection of D-galactosamine-sensitized C2D mice by injection with HB36 antibody prevented SEB-induced death. Therefore, SEA and SEB binding to the alpha 2 domain of the H-2Db molecule induces biological activity and has physiological consequences.

  5. pH-Dependence of Binding Constants and Desorption Rates of Phosphonate- and Hydroxamate-Anchored [Ru(bpy)3]2+ on TiO2 and WO3.

    PubMed

    Esarey, Samuel L; Bartlett, Bart M

    2018-04-17

    The binding constants and rate constants for desorption of the modified molecular dye [Ru(bpy) 3 ] 2+ anchored by either phosphonate or hydroxamate on the bipyridine ligand to anatase TiO 2 and WO 3 have been measured. In aqueous media at pH 1-10, repulsive electrostatic interactions between the negatively charged anchor and the negatively charged surface govern phosphonate desorption under neutral and basic conditions for TiO 2 anatase due to the high acidity of phosphonic acid (p K a,4 = 5.1). In contrast, the lower acidity of hydroxamate (p K a,1 = 6.5, p K a,2 = 9.1) leads to little change in adsorption/desorption properties as a function of pH from 1 to 7. The binding constant for hydroxamate is 10 3 in water, independent of pH in this range. These results are true for WO 3 as well, but are not reported at pH > 4 due to its Arrhenius acidity. Kinetics for desorption as a function of pH are reported, with a proposed mechanism for phosphonate desorption at high pH being the electrostatic repulsion of negative charges between the surface and the anionic anchor. Further, the hydroxamic acid anchor itself is likely the site of quasi-reversible redox activity in [Ru(bpy) 2 (2,2'-bpy-4,4'-(C(O)N(OH)) 2 )] 2+ , which does not lead to any measurable deterioration of the complex within 2 h of dark cyclic voltammogram scans in aqueous media. These results posit phosphonate as the preferred anchoring group under acidic conditions and hydroxamate for neutral/basic conditions.

  6. Benzimidazoles as benzamide replacements within cyclohexane-based CC chemokine receptor 2 (CCR2) antagonists.

    PubMed

    Cherney, Robert J; Mo, Ruowei; Meyer, Dayton T; Pechulis, Anthony D; Guaciaro, Michael A; Lo, Yvonne C; Yang, Gengjie; Miller, Persymphonie B; Scherle, Peggy A; Zhao, Qihong; Cvijic, Mary Ellen; Barrish, Joel C; Decicco, Carl P; Carter, Percy H

    2012-10-01

    We describe the design, synthesis, and evaluation of benzimidazoles as benzamide replacements within a series of trisubstituted cyclohexane CCR2 antagonists. 7-Trifluoromethylbenzimidazoles displayed potent binding and functional antagonism of CCR2 while being selective over CCR3. These benzimidazoles were also incorporated into lactam-containing antagonists, thus completely eliminating the customary bis-amide. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Ligand binding and functional characterization of muscarinic acetylcholine receptors on the TE671/RD human cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bencherif, M.; Lukas, R.J.

    1991-06-01

    Cells of the TE671/RD human clonal line express a finite number ((Bmax) of about 350 fmol/mg of membrane protein) of apparently noninteracting, high-affinity binding sites (KD of 0.07 nM and a Hill coefficient close to unity, nH = 0.94) for the muscarinic acetylcholine receptor (mAChR) radio antagonist, tritium-labeled quinuclidinyl benzilate ({sup 3}H-QNB). The rank order potency of selective antagonists that inhibit specific {sup 3}HQNB binding is: atropine greater than 4-DAMP (4-diphenylacetoxy-N-methylpiperidine methiodide) greater than pirenzepine greater than methoctramine greater than AFDx-116 (11-2(2-((diethylamino)methyl)-1-(piperidinyl) acetyl)-5,11-dihydro-6H-pyrido(2,3-b)(1,4)benzodiazepin-6-one). Functional studies indicate that phosphoinositide (PIns) hydrolysis in TE671/RD cells is increased by carbachol (EC50 of 10more » microM), but not by nicotine (to concentrations as high as 1 mM). Agonist-stimulated PIns metabolism is inhibited by antagonists with the same rank order potency as for inhibition of {sup 3}HQNB binding. Functional responses are augmented in the presence of a nonhydrolyzable GTP analog, are strongly inhibited after 24-hr exposure to cholera toxin, but are only slightly inhibited after long-term exposure to pertussis toxin or forskolin. These studies identify a pharmacologically-defined M3-subtype of mAChR strongly coupled via a cholera toxin-sensitive mechanism to PIns hydrolysis in these cells. Within 1 hr of treatment of TE671/RD cells with 1 mM dibutyryl cyclic AMP or with 10 microM phorbol-12-myristate-13-acetate (PMA), there is a 30 to 50% decrease in carbachol-stimulated PIns responsiveness that recovers to control values after 5 days of continued drug treatment. However, a comparable and more persistent inhibition of mAChR function is observed on cell treatment with 20 nM PMA.« less

  8. Experimentally Determined Binding Energies of Astrophysically Relevant Hydrocarbons in Pure and H2O-Layered Ices

    NASA Astrophysics Data System (ADS)

    Behmard, Aida; Graninger, Dawn; Fayolle, Edith; Oberg, Karin I.

    2017-01-01

    Small hydrocarbons represent an important organic reservoir in a variety of interstellar environments. Constraints on desorption temperatures and binding energies of hydrocarbons are thus necessary for accurate predictions of where and in which phase these molecules exist. Through a series of temperature programmed desorption experiments, we determined binding energies of 1, 2, and 3-carbon interstellar hydrocarbons (CH4, C2H2, C2H4, C2H6, C3H4, C3H6, and C3H8) in pure ices and in relation to water ice, the dominant ice constituent during star and planet formation. These empirically determined values can be used to inform observations and models of the molecular spatial distribution in protoplanetary disks, thus providing insight into planetesimal composition. In addition, knowledge of hydrocarbon binding energies will refine simulations of grain surface chemistry, allowing for better predictions of the chemical conditions that lead to the production of complex organic molecules vital for life.

  9. Investigation on the pH-dependent binding of benzocaine and lysozyme by fluorescence and absorbance.

    PubMed

    Li, Shihui; Li, Daojin

    2011-11-01

    The interaction mechanism between benzocaine (BZC) and lysozyme (Lys) has been investigated by fluorescence, synchronous fluorescence, ultraviolet-vis (UV) absorption spectra, and three-dimensional fluorescence (3-D) in various pH medium. The observations of fluorescence spectra were mainly rationalized in terms of a static quenching process at lower concentration of BZC (C(BZC)/C(Lys)<9) and a combined quenching process at higher concentration of BZC (C(BZC)/C(Lys)>9) at pH 7.4 and 8.4. However, the fluorescence quenching was mainly arisen from static quenching by complex formation in all studied drug concentrations at pH 3.5. The structural characteristics of BZC and Lys were probed, and their binding affinities were determined under different pH conditions (pH 3.5, 7.4, and 8.4). The results indicated that the binding abilities of BZC to Lys decreased at the pH below and above the simulative physiological condition (pH 7.4) due to the alterations of the protein secondary and tertiary structures or the structural change of BZC. The effect of BZC on the conformation of Lys was analyzed using UV, synchronous fluorescence and three-dimensional fluorescence under different pH conditions. These results indicate that the binding of BZC to Lys causes apparent change in the secondary and tertiary structures of Lys. The effect of Zn(2+) on the binding constant of BZC with Lys under various pH conditions (pH 3.5, 7.4, and 8.4) was also studied. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Safety, tolerability and pharmacokinetics of the histamine H3 receptor antagonist, ABT-288, in healthy young adults and elderly volunteers

    PubMed Central

    Othman, Ahmed A; Haig, George; Florian, Hana; Locke, Charles; Zhang, Jun; Dutta, Sandeep

    2013-01-01

    Aim The objective of this work was to characterize the safety, tolerability and pharmacokinetics of ABT-288, a highly selective histamine H3 receptor antagonist, in healthy young adults and elderly subjects following single and multiple dosing in a phase 1 setting. Methods Single doses (0.1, 0.3, 1, 3, 10, 20 and 40 mg ABT-288) and multiple doses (0.5, 1.5, 3 and 6 mg ABT-288 once-daily for 14 days) were evaluated in young adults and multiple doses (0.5, 1.5, 3 and 5 mg ABT-288 once-daily for 12 days) were evaluated in elderly subjects using randomized, double-blind, placebo-controlled, dose-escalating study designs. The effect of food on ABT-288 pharmacokinetics (5 mg single dose) was evaluated using an open label, randomized, crossover design. Results ABT-288 safety, tolerability and pharmacokinetics were comparable in young and elderly subjects. Single doses up to 40 mg and multiple doses up to 3 mg once-daily were generally safe and well tolerated. The most frequently reported adverse events were hot flush, headache, abnormal dreams, insomnia, nausea and dizziness. ABT-288 exposure (AUC) was dose-proportional over the evaluated dose ranges. The mean elimination half-life ranged from 40 to 61 h across dose groups. Steady state was achieved by day 10 of once-daily dosing with 3.4- to 4.2-fold accumulation. Food did not have a clinically meaningful effect on ABT-288 exposure. Conclusions Based on the above results, 1 and 3 mg once-daily doses of ABT-288 were advanced to phase 2 evaluation in Alzheimer's patients. PMID:23016924

  11. Characterization of binding affinity of CJ-023,423 for human prostanoid EP4 receptor.

    PubMed

    Murase, Akio; Nakao, Kazunari; Takada, Junji

    2008-01-01

    In order to characterize the receptor binding pharmacology of CJ-023,423, a potent and selective EP4 antagonist, we performed a radioligand receptor binding assay under various assay conditions. An acidic (pH 6) and hypotonic buffer is a conventional, well-known buffer for prostaglandin E2 receptor binding assays. CJ-023,423 showed moderate binding affinity for human EP4 receptor under conventional buffer conditions. However, its binding affinity was greatly increased under neutral (pH 7.4) and isotonic buffer conditions. In this report, the binding mechanism between CJ-023,423 and human EP4 receptor is discussed based on the binding affinities determined under various assay conditions. Copyright 2008 S. Karger AG, Basel.

  12. Exploring the mechanism how AF9 recognizes and binds H3K9ac by molecular dynamics simulations and free energy calculations.

    PubMed

    Wang, Quan; Zheng, Qing-Chuan; Zhang, Hong-Xing

    2016-11-01

    Histone acetylation is a very important regulatory mechanism in gene expression in the chromatin context. A new protein family-YEATS domains have been found as a novel histone acetylation reader, which could specific recognize the histone lysine acetylation. AF9 is an important one in the YEATS family. Focused on the AF9-H3K9ac (K9 acetylation) complex (ALY) (PDB code: 4TMP) and a serials of mutants, MUT (the acetyllsine of H3K9ac was mutated to lysine), F59A, G77A, and D103A, we applied molecular dynamics simulation and molecular mechanics Poisson-Boltzmann (MM-PBSA) free energy calculations to examine the role of AF9 protein in recognition interaction. The simulation results and analysis indicate that some residues of the protein have significant influence on recognition and binding to H3K9ac peptides and hydrophobic surface show the hydrophobic interactions play an important role in the binding. Our work can give important information to understand how the protein AF9 recognizes the peptides H3K9ac. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 779-786, 2016. © 2016 Wiley Periodicals, Inc.

  13. [[superscript 3]H]-Flunitrazepam-Labeled Benzodiazepine Binding Sites in the Hippocampal Formation in Autism: A Multiple Concentration Autoradiographic Study

    ERIC Educational Resources Information Center

    Guptill, Jeffrey T.; Booker, Anne B.; Gibbs, Terrell T.; Kemper, Thomas L.; Bauman, Margaret L.; Blatt, Gene J.

    2007-01-01

    Increasing evidence indicates that the GABAergic system in cerebellar and limbic structures is affected in autism. We extended our previous study that found reduced [[superscript 3]H] flunitrazepam-labeled benzodiazepine sites in the autistic hippocampus to determine whether this reduction was due to a decrease in binding site number (B [subscript…

  14. Reconstitution of high affinity. cap alpha. /sub 2/ adrenergic agonist binding by fusion with a pertussis toxin substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, M.H.; Neubig, R.R.

    1986-03-05

    High affinity ..cap alpha../sub 2/ adrenergic agonist binding is thought to occur via a coupling of the ..cap alpha../sub 2/ receptor with N/sub i/, the inhibitory guanyl nucleotide binding protein. Human platelet membranes pretreated at pH 11.5 exhibit a selective inactivation of agonist binding and N/sub i/. To further study the mechanism of agonist binding, alkali treated membranes (ATM) were mixed with membranes pretreated with 10 ..mu..M phenoxybenzamine to block ..cap alpha../sub 2/ receptors (POB-M). The combined membrane pellet was incubated in 50% polyethylene glycol (PEG) to promote membrane-membrane fusion and assayed for binding to the ..cap alpha../sub 2/ agonistmore » (/sup 3/H)UK 14,304 (UK) and the antagonist (/sup 3/H) yohimbine. PEG treatment resulted in a 2-4 fold enhancement of UK binding whereas yohimbine binding was unchanged. No enhancement of UK binding was observed in the absence of PEG treatment. The reconstitution was dependent on the addition of POB-M. They found that a 1:1 ratio of POB-M:ATM was optimal. Reconstituted binding was inhibited by GppNHp. Fusion of rat C6 glioma cell membranes, which do not contain ..cap alpha../sub 2/ receptors, also enhanced agonist binding to ATM. Fusion of C6 membranes from cells treated with pertussis toxin did not enhance (/sup 3/H) UK binding. These data show that a pertussis toxin sensitive membrane component, possibly N/sub i/, can reconstitute high affinity ..cap alpha../sub 2/ agonist binding.« less

  15. AM-37 and ST-36 Are Small Molecule Bombesin Receptor Antagonists

    PubMed Central

    Moody, Terry W.; Tashakkori, Nicole; Mantey, Samuel A.; Moreno, Paola; Ramos-Alvarez, Irene; Leopoldo, Marcello; Jensen, Robert T.

    2017-01-01

    While peptide antagonists for the gastrin-releasing peptide receptor (BB2R), neuromedin B receptor (BB1R), and bombesin (BB) receptor subtype-3 (BRS-3) exist, there is a need to develop non-peptide small molecule inhibitors for all three BBR. The BB agonist (BA)1 binds with high affinity to the BB1R, BB2R, and BRS-3. In this communication, small molecule BBR antagonists were evaluated using human lung cancer cells. AM-37 and ST-36 inhibited binding to human BB1R, BB2R, and BRS-3 with similar affinity (Ki = 1.4–10.8 µM). AM-13 and AM-14 were approximately an order of magnitude less potent than AM-37 and ST-36. The ability of BA1 to elevate cytosolic Ca2+ in human lung cancer cells transfected with BB1R, BB2R, and BRS-3 was antagonized by AM-37 and ST-36. BA1 increased tyrosine phosphorylation of the EGFR and ERK in lung cancer cells, which was blocked by AM-37 and ST-36. AM-37 and ST-36 reduced the growth of lung cancer cells that have BBR. The results indicate that AM-37 and ST-36 function as small molecule BB receptor antagonists. PMID:28785244

  16. Plant cell pH-static circuit mediated by fusicoccin-binding proteins.

    PubMed

    Drabkin, A V; Trofimova, M S; Smolenskaya, I N; Klychnikov, O I; Chelysheva, V V; Babakov, A V

    1997-03-24

    On sugar beet protoplasts that carry two types of fusicoccin-binding sites, a pH downshift in a physiological range (7.0-6.6) markedly enhanced the efficiency of fusicoccin (FC) binding, mainly owing to increased avidity of low-affinity FC-binding sites. This may allow the FC-binding proteins to act as pH-sensitive modulators of cell activity, for instance, via plasma membrane H+-ATPase or potassium channels.

  17. Variability in H9N2 haemagglutinin receptor-binding preference and the pH of fusion.

    PubMed

    Peacock, Thomas P; Benton, Donald J; Sadeyen, Jean-Remy; Chang, Pengxiang; Sealy, Joshua E; Bryant, Juliet E; Martin, Stephen R; Shelton, Holly; McCauley, John W; Barclay, Wendy S; Iqbal, Munir

    2017-03-22

    H9N2 avian influenza viruses are primarily a disease of poultry; however, they occasionally infect humans and are considered a potential pandemic threat. Little work has been performed to assess the intrinsic biochemical properties related to zoonotic potential of H9N2 viruses. The objective of this study, therefore, was to investigate H9N2 haemagglutinins (HAs) using two well-known correlates for human adaption: receptor-binding avidity and pH of fusion. Receptor binding was characterized using bio-layer interferometry to measure virus binding to human and avian-like receptor analogues and the pH of fusion was assayed by syncytium formation in virus-infected cells at different pHs. We characterized contemporary H9N2 viruses of the zoonotic G1 lineage, as well as representative viruses of the zoonotic BJ94 lineage. We found that most contemporary H9N2 viruses show a preference for sulphated avian-like receptor analogues. However, the 'Eastern' G1 H9N2 viruses displayed a consistent preference in binding to a human-like receptor analogue. We demonstrate that the presence of leucine at position 226 of the HA receptor-binding site correlated poorly with the ability to bind a human-like sialic acid receptor. H9N2 HAs also display variability in their pH of fusion, ranging between pH 5.4 and 5.85 which is similar to that of the first wave of human H1N1pdm09 viruses but lower than the pH of fusion seen in zoonotic H5N1 and H7N9 viruses. Our results suggest possible molecular mechanisms that may underlie the relatively high prevalence of human zoonotic infection by particular H9N2 virus lineages.

  18. Variability in H9N2 haemagglutinin receptor-binding preference and the pH of fusion

    PubMed Central

    Peacock, Thomas P; Benton, Donald J; Sadeyen, Jean-Remy; Chang, Pengxiang; Sealy, Joshua E; Bryant, Juliet E; Martin, Stephen R; Shelton, Holly; McCauley, John W; Barclay, Wendy S; Iqbal, Munir

    2017-01-01

    H9N2 avian influenza viruses are primarily a disease of poultry; however, they occasionally infect humans and are considered a potential pandemic threat. Little work has been performed to assess the intrinsic biochemical properties related to zoonotic potential of H9N2 viruses. The objective of this study, therefore, was to investigate H9N2 haemagglutinins (HAs) using two well-known correlates for human adaption: receptor-binding avidity and pH of fusion. Receptor binding was characterized using bio-layer interferometry to measure virus binding to human and avian-like receptor analogues and the pH of fusion was assayed by syncytium formation in virus-infected cells at different pHs. We characterized contemporary H9N2 viruses of the zoonotic G1 lineage, as well as representative viruses of the zoonotic BJ94 lineage. We found that most contemporary H9N2 viruses show a preference for sulphated avian-like receptor analogues. However, the ‘Eastern' G1 H9N2 viruses displayed a consistent preference in binding to a human-like receptor analogue. We demonstrate that the presence of leucine at position 226 of the HA receptor-binding site correlated poorly with the ability to bind a human-like sialic acid receptor. H9N2 HAs also display variability in their pH of fusion, ranging between pH 5.4 and 5.85 which is similar to that of the first wave of human H1N1pdm09 viruses but lower than the pH of fusion seen in zoonotic H5N1 and H7N9 viruses. Our results suggest possible molecular mechanisms that may underlie the relatively high prevalence of human zoonotic infection by particular H9N2 virus lineages. PMID:28325922

  19. Small Molecule Ligands of Methyl-Lysine Binding Proteins

    PubMed Central

    Herold, J. Martin; Wigle, Tim J.; Norris, Jacqueline L.; Lam, Robert; Korboukh, Victoria K.; Gao, Cen; Ingerman, Lindsey A.; Kireev, Dmitri B.; Senisterra, Guillermo; Vedadi, Masoud; Tripathy, Ashutosh; Brown, Peter J.; Arrowsmith, Cheryl H.; Jin, Jian; Janzen, William P.; Frye, Stephen V.

    2011-01-01

    Proteins which bind methylated lysines (“readers” of the histone code) are important components in the epigenetic regulation of gene expression and can also modulate other proteins that contain methyl-lysine such as p53 and Rb. Recognition of methyl-lysine marks by MBT domains leads to compaction of chromatin and a repressed transcriptional state. Antagonists of MBT domains would serve as probes to interrogate the functional role of these proteins and initiate the chemical biology of methyl-lysine readers as a target class. Small molecule MBT antagonists were designed based on the structure of histone peptide-MBT complexes and their interaction with MBT domains determined using a chemiluminescent assay and ITC. The ligands discovered antagonize native histone peptide binding, exhibiting 5-fold stronger binding affinity to L3MBTL1 than its preferred histone peptide. The first co-crystal structure of a small molecule bound to L3MBTL1 was determined and provides new insights into binding requirements for further ligand design. PMID:21417280

  20. Cofilin is a pH sensor for actin free barbed end formation: role of phosphoinositide binding.

    PubMed

    Frantz, Christian; Barreiro, Gabriela; Dominguez, Laura; Chen, Xiaoming; Eddy, Robert; Condeelis, John; Kelly, Mark J S; Jacobson, Matthew P; Barber, Diane L

    2008-12-01

    Newly generated actin free barbed ends at the front of motile cells provide sites for actin filament assembly driving membrane protrusion. Growth factors induce a rapid biphasic increase in actin free barbed ends, and we found both phases absent in fibroblasts lacking H(+) efflux by the Na-H exchanger NHE1. The first phase is restored by expression of mutant cofilin-H133A but not unphosphorylated cofilin-S3A. Constant pH molecular dynamics simulations and nuclear magnetic resonance (NMR) reveal pH-sensitive structural changes in the cofilin C-terminal filamentous actin binding site dependent on His133. However, cofilin-H133A retains pH-sensitive changes in NMR spectra and severing activity in vitro, which suggests that it has a more complex behavior in cells. Cofilin activity is inhibited by phosphoinositide binding, and we found that phosphoinositide binding is pH-dependent for wild-type cofilin, with decreased binding at a higher pH. In contrast, phosphoinositide binding by cofilin-H133A is attenuated and pH insensitive. These data suggest a molecular mechanism whereby cofilin acts as a pH sensor to mediate a pH-dependent actin filament dynamics.

  1. Monoclonal antibodies to meningococcal factor H binding protein with overlapping epitopes and discordant functional activity.

    PubMed

    Giuntini, Serena; Beernink, Peter T; Reason, Donald C; Granoff, Dan M

    2012-01-01

    Meningococcal factor H binding protein (fHbp) is a promising vaccine candidate. Anti-fHbp antibodies can bind to meningococci and elicit complement-mediated bactericidal activity directly. The antibodies also can block binding of the human complement down-regulator, factor H (fH). Without bound fH, the organism would be expected to have increased susceptibility to bacteriolysis. Here we describe bactericidal activity of two anti-fHbp mAbs with overlapping epitopes in relation to their different effects on fH binding and bactericidal activity. Both mAbs recognized prevalent fHbp sequence variants in variant group 1. Using yeast display and site-specific mutagenesis, binding of one of the mAbs (JAR 1, IgG3) to fHbp was eliminated by a single amino acid substitution, R204A, and was decreased by K143A but not by R204H or D142A. The JAR 1 epitope overlapped that of previously described mAb (mAb502, IgG2a) whose binding to fHbp was eliminated by R204A or R204H substitutions, and was decreased by D142A but not by K143A. Although JAR 1 and mAb502 appeared to have overlapping epitopes, only JAR 1 inhibited binding of fH to fHbp and had human complement-mediated bactericidal activity. mAb502 enhanced fH binding and lacked human complement-mediated bactericidal activity. To control for confounding effects of different mouse IgG subclasses on complement activation, we created chimeric mAbs in which the mouse mAb502 or JAR 1 paratopes were paired with human IgG1 constant regions. While both chimeric mAbs showed similar binding to fHbp, only JAR 1, which inhibited fH binding, had human complement-mediated bactericidal activity. The lack of human complement-mediated bactericidal activity by anti-fHbp mAb502 appeared to result from an inability to inhibit binding of fH. These results underscore the importance of inhibition of fH binding for anti-fHbp mAb bactericidal activity.

  2. Direct labelling of the human P2X7 receptor and identification of positive and negative cooperativity of binding

    PubMed Central

    Michel, A D; Chambers, L J; Clay, W C; Condreay, J P; Walter, D S; Chessell, I P

    2007-01-01

    Background and Purpose: The P2X7 receptor exhibits complex pharmacological properties. In this study, binding of a [3H]-labelled P2X7 receptor antagonist to human P2X7 receptors has been examined to further understand ligand interactions with this receptor. Experimental Approach: The P2X7 receptor antagonist, N-[2-({2-[(2-hydroxyethyl)amino]ethyl}amino)-5-quinolinyl]-2-tricyclo[3.3.1.13,7]dec-1-ylacetamide (compound-17), was radiolabelled with tritium and binding studies were performed using membranes prepared from U-2 OS or HEK293 cells expressing human recombinant P2X7 receptors. Key Results: Binding of [3H]-compound-17 was higher in membranes prepared from cells expressing P2X7 receptors than from control cells and was inhibited by ATP suggesting labelled sites represented human P2X7 receptors. Binding was reversible, saturable and modulated by P2X7 receptor ligands (Brilliant Blue G, KN62, ATP, decavanadate). Furthermore, ATP potency was reduced in the presence of divalent cations or NaCl. Radioligand binding exhibited both positive and negative cooperativity. Positive cooperativity was evident from bell shaped Scatchard plots, reduction in radioligand dissociation rate by unlabelled compound-17 and enhancement of radioligand binding by KN62 and unlabelled compound-17. ATP and decavanadate inhibited binding in a negative cooperative manner as they enhanced radioligand dissociation. Conclusions: These data demonstrate that human P2X7 receptors can be directly labelled and provide novel insights into receptor function. The positive cooperativity observed suggests that binding of compound-17 to one subunit in the P2X7 receptor complex enhances subsequent binding to other P2X7 subunits in the same complex. The negative cooperative effects of ATP suggest that ATP and compound-17 bind at separate, interacting, sites on the P2X7 receptor. PMID:17339830

  3. Characterization and regulation of (/sup 3/H)-serotonin uptake and release in rodent spinal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stauderman, K.A.

    1986-01-01

    The uptake and release of (/sup 3/H)-serotonin were investigated in rat spinal cord synaptosomes. In the uptake experiments, sodium-dependent and sodium-independent (/sup 3/H)-serotonin accumulation processes were found. Sodium-dependent (/sup 3/H)-serotonin accumulation was: linear with sodium concentrations up to 180 mM; decreased by disruption of membrane integrity or ionic gradients; associated with purified synaptosomal fractions; and reduced after description of descending serotonergic neurons in the spinal cord. Of the uptake inhibitors tested, the most potent was fluoxetine (IC/sub 50/ 75 nM), followed by desipramine (IC/sub 50/ 430 nM) and nomifensine (IC/sub 50/ 950 nM). The sodium-independent (/sup 3/H)-serotonin accumulation process wasmore » insensitive to most treatments and probably represents nonspecific membrane binding. Thus, only sodium-dependent (/sup 3/H)-serotonin uptake represents the uptake process of serotonergic nerve terminals in rat spinal cord homogenates. In the release experiments, K/sup +/-induced release of previously accumulated (/sup 3/H)-serotonin was Ca/sup 2 +/-dependent, and originated from serotonergic synaptosomes. Exogenous serotonin and 5-methyoxy-N,N-dimethyltryptamine inhibited (/sup 3/H)-serotonin release in a concentration-dependent way. Of the antagonists tested, only methiothepin effectively blocked the effect of serotonin. These data support the existence of presynaptic serotonin autoreceptors on serotonergic nerve terminals in the rat spinal cord that act to inhibit a voltage and Ca/sup 2 +/-sensitive process linked to serotonin release. Alteration of spinai cord serotonergic function may therefore be possible by drugs acting on presynaptic serotonin autoreceptors in the spinal cord.« less

  4. Mitigating hERG Inhibition: Design of Orally Bioavailable CCR5 Antagonists as Potent Inhibitors of R5 HIV-1 Replication

    PubMed Central

    2012-01-01

    A series of CCR5 antagonists representing the thiophene-3-yl-methyl ureas were designed that met the pharmacological criteria for HIV-1 inhibition and mitigated a human ether-a-go-go related gene (hERG) inhibition liability. Reducing lipophilicity was the main design criteria used to identify compounds that did not inhibit the hERG channel, but subtle structural modifications were also important. Interestingly, within this series, compounds with low hERG inhibition prolonged the action potential duration (APD) in dog Purkinje fibers, suggesting a mixed effect on cardiac ion channels. PMID:24900457

  5. Safety, tolerability and pharmacokinetics of the histamine H3 receptor antagonist, ABT-288, in healthy young adults and elderly volunteers.

    PubMed

    Othman, Ahmed A; Haig, George; Florian, Hana; Locke, Charles; Zhang, Jun; Dutta, Sandeep

    2013-05-01

    The objective of this work was to characterize the safety, tolerability and pharmacokinetics of ABT-288, a highly selective histamine H3 receptor antagonist, in healthy young adults and elderly subjects following single and multiple dosing in a phase 1 setting. Single doses (0.1, 0.3, 1, 3, 10, 20 and 40 mg ABT-288) and multiple doses (0.5, 1.5, 3 and 6 mg ABT-288 once-daily for 14 days) were evaluated in young adults and multiple doses (0.5, 1.5, 3 and 5 mg ABT-288 once-daily for 12 days) were evaluated in elderly subjects using randomized, double-blind, placebo-controlled, dose-escalating study designs. The effect of food on ABT-288 pharmacokinetics (5 mg single dose) was evaluated using an open label, randomized, crossover design. ABT-288 safety, tolerability and pharmacokinetics were comparable in young and elderly subjects. Single doses up to 40 mg and multiple doses up to 3 mg once-daily were generally safe and well tolerated. The most frequently reported adverse events were hot flush, headache, abnormal dreams, insomnia, nausea and dizziness. ABT-288 exposure (AUC) was dose-proportional over the evaluated dose ranges. The mean elimination half-life ranged from 40 to 61 h across dose groups. Steady state was achieved by day 10 of once-daily dosing with 3.4- to 4.2-fold accumulation. Food did not have a clinically meaningful effect on ABT-288 exposure. Based on the above results, 1 and 3 mg once-daily doses of ABT-288 were advanced to phase 2 evaluation in Alzheimer's patients. © 2012 Abbott Laboratories. British Journal of Clinical Pharmacology © 2012 The British Pharmacological Society.

  6. TNF binding protein of variola virus acts as a TNF antagonist at epicutaneous application.

    PubMed

    Gileva, Irina P; Viazovaia, Elena A; Toporkova, Ludmila B; Tsyrendorzhiev, Dondok D; Shchelkunov, Sergei N; Orlovskaya, Irina A

    2015-01-01

    VARV-CrmB is a TNF binding protein of variola virus. VARV-CrmB protein was previously shown to be active as a TNF-antagonist in a number of in vivo and in vitro models. Here we investigated the epicutaneous effect of recombinant VARV-CrmB protein using an experimental model of muTNFinduced migration of skin leukocytes as well as colony forming activity of bone marrow cells (BMC). Epiсutaneous applications of muTNF enhanced the number of cells migrating from skin flaps of BALB/c mice, whereas subsequent applications of VARV-CrmB protein in 30 min after muTNF, abolished that effect. Epicutaneously applied muTNF influenced the activity of committed hematopoietic progenitors causing a reduction of erythroid (BFUe+CFUe) colonies and increase of granulocyte-macrophage (CFU-GM) colonies in the colony-forming tests. VARV-CrmB, applied in combination with muTNF, demonstrated an ability to reverse this effect, namely, to increase BFUe+CFUe and reduce CFU-GM back to the control levels. Taking together, these data demonstrate the TNF-blocking properties of VARV-CrmB in vivo at epicutaneous applications. As effective TNF antagonist VARV-CrmB protein might be conceded as a beneficial candidate for future research and development of therapeutic approaches in the field of inflammatory skin diseases.

  7. The role of H2 receptor antagonist premedication in pregnant day care patients.

    PubMed

    Stock, J G; Sutherland, A D

    1985-09-01

    In a randomised study of 132 pregnant outpatients, the effect on gastric volume and pH of oral premedication with a single dose of an H2 antagonist was investigated. Either cimetidine 400 mg (n = 33), or ranitidine 150 mg (n = 33), were given 90 to 120 minutes before scheduled surgery. Mean pH was significantly higher in cimetidine (5.0) and ranitidine (5.2) groups, and mean volume was significantly lower in cimetidine (13.2 ml) and ranitidine (11.1 ml) groups compared with 66 untreated patients (pH 1.6, volume 22.1 ml). A gastric pH less than or equal to 2.5 was found in 97 per cent of unpremedicated patients and 35 per cent of these patients also had a gastric volume greater than or equal to 25 ml. Eighty-three per cent of patients received their premedication within 75-200 minutes of surgery. Patients premedicated within that range had a significantly lower incidence of either a gastric pH less than or equal to 2.5 or a volume greater than or equal to 25 ml (p less than 0.01). Both cimetidine and ranitidine significantly reduced the number of patients with these risk factors. Four patients, however, in the cimetidine group had both a pH less than or equal to 2.5 and a volume greater than or equal to 25 ml. Pharmacological manipulation of the gastric environment does not prevent aspiration and clearly cannot be substituted for careful airway management and vigilance on the part of the anaesthetist. However, premedication of pregnant outpatients with a single, oral dose of an H2 antagonist is a simple, inexpensive, safe and effective way of reducing the risk of a severe aspiration pneumonitis.

  8. GW627368X ((N-{2-[4-(4,9-diethoxy-1-oxo-1,3-dihydro-2H-benzo[f]isoindol-2-yl)phenyl]acetyl} benzene sulphonamide): a novel, potent and selective prostanoid EP4 receptor antagonist

    PubMed Central

    Wilson, Richard J; Giblin, Gerard M P; Roomans, Susan; Rhodes, Sharron A; Cartwright, Kerri-Ann; Shield, Vanessa J; Brown, Jason; Wise, Alan; Chowdhury, Jannatara; Pritchard, Sara; Coote, Jim; Noel, Lloyd S; Kenakin, Terry; Burns-Kurtis, Cynthia L; Morrison, Valerie; Gray, David W; Giles, Heather

    2006-01-01

    N-{2-[4-(4,9-diethoxy-1-oxo-1,3-dihydro-2H-benzo[f]isoindol-2-yl)phenyl]acetyl}benzene sulphonamide (GW627368X) is a novel, potent and selective competitive antagonist of prostanoid EP4 receptors with additional human TP receptor affinity. At recombinant human prostanoid EP4 receptors expressed in HEK293 cells, GW627368X produced parallel rightward shifts of PGE2 concentration–effect (E/[A]) curves resulting in an affinity (pKb) estimate of 7.9±0.4 and a Schild slpoe not significantly different from unity. The affinity was independent of the agonist used. In rings of phenylephrine precontracted piglet saphenous vein, GW627368X (30–300 nM) produced parallel rightward displacement of PGE2 E/[A] curves (pKb=9.2±0.2; slope=1). GW627368X appears to bind to human prostanoid TP receptors but not the TP receptors of other species. In human washed platelets, GW627368X (10 μM) produced 100% inhibition of U-46619 (EC100)-induced aggregation (approximate pA2 ∼7.0). However, in rings of rabbit and piglet saphenous vein and of guinea-pig aorta GW627368X (10 μM) did not displace U-46619 E/[A] curves indicating an affinity of <5.0 for rabbit and guinea-pig prostanoid TP receptors. In functional assays GW627368X is devoid of both agonism and antagonist affinity for prostanoid CRTH2, EP2, EP3, IP and FP receptors. At prostanoid EP1 receptors, GW627368X was an antagonist with a pA2 of 6.0, and at prostanoid IP receptors the compound increased the maximum effect of iloprost by 55%. At rabbit prostanoid EP2 receptors the pA2 of GW627368X was <5.0. In competition radioligand bioassays, GW627368X had affinity for human prostanoid EP4 and TP receptors (pKi=7.0±0.2 (n=10) and 6.8 (n=2), respectively). Affinity for all other human prostanoid receptors was <5.3. GW627368X will be a valuable tool to explore the role of the prostanoid EP4 receptor in many physiological and pathological settings. PMID:16604093

  9. Synthesis, Modeling, and Pharmacological Evaluation of UMB 425, a Mixed μ Agonist/δ Antagonist Opioid Analgesic with Reduced Tolerance Liabilities

    PubMed Central

    2013-01-01

    Opioid narcotics are used for the treatment of moderate-to-severe pain and primarily exert their analgesic effects through μ receptors. Although traditional μ agonists can cause undesired side effects, including tolerance, addition of δ antagonists can attenuate said side effects. Herein, we report 4a,9-dihydroxy-7a-(hydroxymethyl)-3-methyl-2,3,4,4a,5,6-hexahydro-1H-4,12-methanobenzofuro[3,2-e]isoquinolin-7(7aH)-one (UMB 425) a 5,14-bridged morphinan-based orvinol precursor synthesized from thebaine. Although UMB 425 lacks δ-specific motifs, conformationally sampled pharmacophore models for μ and δ receptors predict it to have efficacy similar to morphine at μ receptors and similar to naltrexone at δ receptors, due to the compound sampling conformations in which the hydroxyl moiety interacts with the receptors similar to orvinols. As predicted, UMB 425 exhibits a mixed μ agonist/δ antagonist profile as determined in receptor binding and [35S]GTPγS functional assays in CHO cells. In vivo studies in mice show that UMB 425 displays potent antinociception in the hot plate and tail-flick assays. The antinociceptive effects of UMB 425 are blocked by naloxone, but not by the κ-selective antagonist norbinaltorphimine. During a 6-day tolerance paradigm, UMB 425 maintains significantly greater antinociception compared to morphine. These studies thus indicate that, even in the absence of δ-specific motifs fused to the C-ring, UMB 425 has mixed μ agonist/δ antagonist properties in vitro that translate to reduced tolerance liabilities in vivo. PMID:23713721

  10. High-Throughput Screening based Identification of Small Molecule Antagonists of Integrin CD11b/CD18 Ligand Binding

    PubMed Central

    Faridi, Mohd Hafeez; Maiguel, Dony; Brown, Brock T.; Suyama, Eigo; Barth, Constantinos J.; Hedrick, Michael; Vasile, Stefan; Sergienko, Eduard; Schürer, Stephan; Gupta, Vineet

    2010-01-01

    Binding of leukocyte specific integrin CD11b/CD18 to its physiologic ligands is important for the development of normal immune response in vivo. Integrin CD11b/CD18 is also a key cellular effector of various inflammatory and autoimmune diseases. However, small molecules selectively inhibiting the function of integrin CD11b/CD18 are currently lacking. We used a newly described cell-based high throughput screening assay to identify a number of highly potent antagonists of integrin CD11b/CD18 from chemical libraries containing >100,000 unique compounds. Computational analyses suggest that the identified compounds cluster into several different chemical classes. A number of the newly identified compounds blocked adhesion of wild-type mouse neutrophils to CD11b/CD18 ligand fibrinogen. Mapping the most active compounds against chemical fingerprints of known antagonists of related integrin CD11a/CD18 shows little structural similarity, suggesting that the newly identified compounds are novel and unique. PMID:20188705

  11. Involvement of histidine residues in the pH-dependent β-galactoside binding activity of human galectin-1.

    PubMed

    Hiramatsu, Hirotsugu; Takeuchi, Katsuyuki; Takeuchi, Hideo

    2013-04-02

    The pH dependence of the β-galactoside binding activity of human galectin-1 (hGal-1) was investigated by fluorescence spectroscopy using lactose as a ligand. The obtained binding constant Kb was 2.94 ± 0.10 mM(-1) at pH 7.5. The Kb value decreased at acidic pH with a midpoint of transition at pH 6.0 ± 0.1. To elucidate the molecular mechanism of the pH dependence, we investigated the structures of hGal-1 and its two His mutants (H44Q and H52Q) using fluorescence, circular dichroism, UV absorption, and UV resonance Raman spectroscopy. Analysis of the spectra has shown that the pKa values of His44 and His52 are 5.7 ± 0.2 and 6.3 ± 0.1, respectively. The protonation of His52 below pH 6.3 induces a small change in secondary structure and partly reduces the galactoside binding activity. On the other hand, the protonation of His44 below pH 5.7 exerts a cation-π interaction with Trp68 and largely diminishes the galactoside binding activity. With reference to the literature X-ray structures at pH 7.0 and 5.6, protonated His52 is proposed to move slightly away from the galactoside-binding region with a partial unfolding of the β-strand containing His52. On the other hand, protonated His44 becomes unable to form a hydrogen bond with galactoside and additionally induces a reorientation and/or displacement of Trp68 through cation-π interaction, leading to a loosening of the galactoside-binding pocket. These structural changes associated with His protonation are likely to be the origin of the pH dependence of the galactoside binding activity of hGal-1.

  12. A monoclonal antibody against PDGF B-chain inhibits PDGF-induced DNA synthesis in C3H fibroblasts and prevents binding of PDGF to its receptor.

    PubMed

    Vassbotn, F S; Langeland, N; Hagen, I; Holmsen, H

    1990-09-01

    A monoclonal antibody (MAb 6D11) against platelet-derived growth factor (PDGF) was studied. We found that the MAb 6D11 in concentrations equimolar to PDGF blocked the [3H]thymidine incorporation in C3H/10T1/2 C18 fibroblasts stimulated by PDGF B-B and PDGF A-B. This inhibition was overcome by high doses of PDGF. The [3H]thymidine incorporation stimulated by other growth factors (aFGF, bFGF and bombesin) was not inhibited by the antibody. The MAb 6D11 blocked receptor binding of PDGF B-B, but not PDGF A-A. These findings suggest that the MAb 6D11 abolishes PDGF-induced DNA synthesis by blocking PDGF receptor binding. In this communication we demonstrate an isoform-specific monoclonal antibody against PDGF.

  13. Exploring PHD fingers and H3K4me0 interactions with molecular dynamics simulations and binding free energy calculations: AIRE-PHD1, a comparative study.

    PubMed

    Spiliotopoulos, Dimitrios; Spitaleri, Andrea; Musco, Giovanna

    2012-01-01

    PHD fingers represent one of the largest families of epigenetic readers capable of decoding post-translationally modified or unmodified histone H3 tails. Because of their direct involvement in human pathologies they are increasingly considered as a potential therapeutic target. Several PHD/histone-peptide structures have been determined, however relatively little information is available on their dynamics. Studies aiming to characterize the dynamic and energetic determinants driving histone peptide recognition by epigenetic readers would strongly benefit from computational studies. Herein we focus on the dynamic and energetic characterization of the PHD finger subclass specialized in the recognition of histone H3 peptides unmodified in position K4 (H3K4me0). As a case study we focused on the first PHD finger of autoimmune regulator protein (AIRE-PHD1) in complex with H3K4me0. PCA analysis of the covariance matrix of free AIRE-PHD1 highlights the presence of a "flapping" movement, which is blocked in an open conformation upon binding to H3K4me0. Moreover, binding free energy calculations obtained through Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) methodology are in good qualitative agreement with experiments and allow dissection of the energetic terms associated with native and alanine mutants of AIRE-PHD1/H3K4me0 complexes. MM/PBSA calculations have also been applied to the energetic analysis of other PHD fingers recognizing H3K4me0. In this case we observe excellent correlation between computed and experimental binding free energies. Overall calculations show that H3K4me0 recognition by PHD fingers relies on compensation of the electrostatic and polar solvation energy terms and is stabilized by non-polar interactions.

  14. Computational design of a pH-sensitive IgG binding protein.

    PubMed

    Strauch, Eva-Maria; Fleishman, Sarel J; Baker, David

    2014-01-14

    Computational design provides the opportunity to program protein-protein interactions for desired applications. We used de novo protein interface design to generate a pH-dependent Fc domain binding protein that buries immunoglobulin G (IgG) His-433. Using next-generation sequencing of naïve and selected pools of a library of design variants, we generated a molecular footprint of the designed binding surface, confirming the binding mode and guiding further optimization of the balance between affinity and pH sensitivity. In biolayer interferometry experiments, the optimized design binds IgG with a Kd of ∼ 4 nM at pH 8.2, and approximately 500-fold more weakly at pH 5.5. The protein is extremely stable, heat-resistant and highly expressed in bacteria, and allows pH-based control of binding for IgG affinity purification and diagnostic devices.

  15. Modulation of food consumption and sleep-wake cycle in mice by the neutral CB1 antagonist ABD459.

    PubMed

    Goonawardena, Anushka V; Plano, Andrea; Robinson, Lianne; Ross, Ruth; Greig, Iain; Pertwee, Roger G; Hampson, Robert E; Platt, Bettina; Riedel, Gernot

    2015-04-01

    The brain endocannabinoid system is a potential target for the treatment of psychiatric and metabolic conditions. Here, a novel CB1 receptor antagonist (ABD459) was synthesized and assayed for pharmacological efficacy in vitro and for modulation of food consumption, vigilance staging and cortical electroencephalography in the mouse. ABD459 completely displaced the CB1 agonist CP99540 at a Ki of 8.6 nmol/l, and did not affect basal, but antagonized CP55940-induced GTPγS binding with a KB of 7.7 nmol/l. Acute ABD459 (3-20 mg/kg) reliably inhibited food consumption in nonfasted mice, without affecting motor activity. Active food seeking was reduced for 5-6 h postdrug, with no rebound after washout. Epidural recording of electroencephalogram confirmed that ABD459 (3 mg/kg) robustly reduced rapid eye movement (REM) sleep, with no alterations of wakefulness or non-REM sleep. Effects were strongest during 3h postdrug, followed by a progressive washout period. The CB1 antagonist AM251 (3 mg/kg) and agonist WIN-55,212-2 (WIN-2: 3 mg/kg) also reduced REM, but variously affected other vigilance stages. WIN-2 caused a global suppression of normalized spectral power. AM251 and ABD459 lowered delta power and increased power in the theta band in the hippocampus, but not the prefrontal cortex. The neutral antagonist ABD459 thus showed a specific role of endocannabinoid release in attention and arousal, possibly through modulation of cholinergic activity.

  16. Antiviral activity of formyl peptide receptor 2 antagonists against influenza viruses.

    PubMed

    Courtin, Noémie; Fotso, Aurélien Fotso; Fautrad, Pierre; Mas, Floriane; Alessi, Marie-Christine; Riteau, Béatrice

    2017-07-01

    Influenza viruses are one of the most important respiratory pathogens worldwide, causing both epidemic and pandemic infections. The aim of the study was to evaluate the effect of FPR2 antagonists PBP10 and BOC2 on influenza virus replication. We determined that these molecules exhibit antiviral effects against influenza A (H1N1, H3N2, H6N2) and B viruses. FPR2 antagonists used in combination with oseltamivir showed additive antiviral effects. Mechanistically, the antiviral effect of PBP10 and BOC2 is mediated through early inhibition of virus-induced ERK activation. Finally, our preclinical studies showed that FPR2 antagonists protected mice from lethal infections induced by influenza, both in a prophylactic and therapeutic manner. Thus, FPR2 antagonists might be explored for novel treatments against influenza. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Synthesis of Zn-MOF incorporating titanium-hydrides as active sites binding H{sub 2} molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jongsik, E-mail: jkim40@nd.edu; Ok Kim, Dong; Wook Kim, Dong

    2015-10-15

    This paper describes the synthetic effort for a Zn-MOF imparting Ti-H as a preferential binding site potentially capturing H{sub 2} molecules via Kubas-type interaction. The formation mechanism of Ti-H innate to the final material was potentially demonstrated to follow a radical dissociation rather than a β-hydrogen elimination and a C-H reductive elimination. - Graphical abstract: This study details the synthesis and the formation mechanism of Zn-MOF adsorbent site-isolating TiH{sub 3} that can potentially capture H{sub 2} molecules via Kubas-binding mechanism. - Highlights: • OH-functionalized Zn-MOF was employed as a reactive template to site-isolate TiH{sub 3}. • This MOF was post-syntheticallymore » modified using a tetracyclohexyl titanium (IV). • This intermediate was hydrogenolyzed to change ligand from cyclohexyl to hydride. • Formation mechanism of TiH{sub 3} was investigated via two control GC–MS experiments. • Final Zn-MOF potentially site-isolating TiH{sub 3} species was used as a H{sub 2} adsorbent.« less

  18. The Polyadenosine RNA-binding Protein, Zinc Finger Cys3His Protein 14 (ZC3H14), Regulates the Pre-mRNA Processing of a Key ATP Synthase Subunit mRNA*

    PubMed Central

    Wigington, Callie P.; Morris, Kevin J.; Newman, Laura E.; Corbett, Anita H.

    2016-01-01

    Polyadenosine RNA-binding proteins (Pabs) regulate multiple steps in gene expression. This protein family includes the well studied Pabs, PABPN1 and PABPC1, as well as the newly characterized Pab, zinc finger CCCH-type containing protein 14 (ZC3H14). Mutations in ZC3H14 are linked to a form of intellectual disability. To probe the function of ZC3H14, we performed a transcriptome-wide analysis of cells depleted of either ZC3H14 or the control Pab, PABPN1. Depletion of PABPN1 affected ∼17% of expressed transcripts, whereas ZC3H14 affected only ∼1% of expressed transcripts. To assess the function of ZC3H14 in modulating target mRNAs, we selected the gene encoding the ATP synthase F0 subunit C (ATP5G1) transcript. Knockdown of ZC3H14 significantly reduced ATP5G1 steady-state mRNA levels. Consistent with results suggesting that ATP5G1 turnover increases upon depletion of ZC3H14, double knockdown of ZC3H14 and the nonsense-mediated decay factor, UPF1, rescues ATP5G1 transcript levels. Furthermore, fractionation reveals an increase in the amount of ATP5G1 pre-mRNA that reaches the cytoplasm when ZC3H14 is depleted and that ZC3H14 binds to ATP5G1 pre-mRNA in the nucleus. These data support a role for ZC3H14 in ensuring proper nuclear processing and retention of ATP5G1 pre-mRNA. Consistent with the observation that ATP5G1 is a rate-limiting component for ATP synthase activity, knockdown of ZC3H14 decreases cellular ATP levels and causes mitochondrial fragmentation. These data suggest that ZC3H14 modulates pre-mRNA processing of select mRNA transcripts and plays a critical role in regulating cellular energy levels, observations that have broad implications for proper neuronal function. PMID:27563065

  19. Structure and Receptor Binding of the Hemagglutinin from a Human H6N1 Influenza Virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tzarum, Netanel; de Vries, Robert P.; Zhu, Xueyong

    Avian influenza viruses that cause infection and are transmissible in humans involve changes in the receptor binding site (RBS) of the viral hemagglutinin (HA) that alter receptor preference from α2-3-linked (avian-like) to α2-6-linked (human-like) sialosides. A human case of avian-origin H6N1 influenza virus was recently reported, but the molecular mechanisms contributing to it crossing the species barrier are unknown. We find that, although the H6 HA RBS contains D190V and G228S substitutions that potentially promote human receptor binding, recombinant H6 HA preferentially binds α2-3-linked sialosides, indicating no adaptation to human receptors. Crystal structures of H6 HA with avian and humanmore » receptor analogs reveal that H6 HA preferentially interacts with avian receptor analogs. Lastly, this binding mechanism differs from other HA subtypes due to a unique combination of RBS residues, highlighting additional variation in HA-receptor interactions and the challenges in predicting which influenza strains and subtypes can infect humans and cause pandemics.« less

  20. Structure and Receptor Binding of the Hemagglutinin from a Human H6N1 Influenza Virus

    DOE PAGES

    Tzarum, Netanel; de Vries, Robert P.; Zhu, Xueyong; ...

    2015-03-11

    Avian influenza viruses that cause infection and are transmissible in humans involve changes in the receptor binding site (RBS) of the viral hemagglutinin (HA) that alter receptor preference from α2-3-linked (avian-like) to α2-6-linked (human-like) sialosides. A human case of avian-origin H6N1 influenza virus was recently reported, but the molecular mechanisms contributing to it crossing the species barrier are unknown. We find that, although the H6 HA RBS contains D190V and G228S substitutions that potentially promote human receptor binding, recombinant H6 HA preferentially binds α2-3-linked sialosides, indicating no adaptation to human receptors. Crystal structures of H6 HA with avian and humanmore » receptor analogs reveal that H6 HA preferentially interacts with avian receptor analogs. Lastly, this binding mechanism differs from other HA subtypes due to a unique combination of RBS residues, highlighting additional variation in HA-receptor interactions and the challenges in predicting which influenza strains and subtypes can infect humans and cause pandemics.« less

  1. A Computational Study of Chalcogen-containing H2 X…YF and (CH3 )2 X…YF (X=O, S, Se; Y=F, Cl, H) and Pnicogen-containing H3 X'…YF and (CH3 )3 X'…YF (X'=N, P, As) Complexes.

    PubMed

    McDowell, Sean A C; Buckingham, A David

    2018-04-20

    A computational study was undertaken for the model complexes H 2 X…YF and (CH 3 ) 2 X…YF (X=O, S, Se; Y=F, Cl, H), and H 3 X'…YF and (CH 3 ) 3 X'…YF (X'=N, P, As), at the MP2/6-311++G(d,p) level of theory. For H 2 X…YF and H 3 X'…YF, noncovalent interactions dominate the binding in order of increasing YF dipole moment, except for H 3 As…F 2 , and possibly H 3 As…ClF. However, for the methyl-substituted complexes (CH 3 ) 2 X…YF and (CH 3 ) 3 X'…YF the binding is especially strong for the complexes containing F 2 , implying significant chemical bonding between the interacting molecules. The relative stability of these complexes can be rationalized by the difference in the electronegativity of the X or X' and Y atoms. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. From Chemotherapy-Induced Emesis to Neuroprotection: Therapeutic Opportunities for 5-HT3 Receptor Antagonists.

    PubMed

    Fakhfouri, Gohar; Mousavizadeh, Kazem; Mehr, Sharam Ejtemaei; Dehpour, Ahmad Reza; Zirak, Mohammad Reza; Ghia, Jean-Eric; Rahimian, Reza

    2015-12-01

    5-HT3 receptor antagonists are extensively used as efficacious agents in counteracting chemotherapy-induced emesis. Recent investigations have shed light on other potential effects (analgesic, anxiolytic, and anti-psychotic). Some studies have reported neuroprotective properties for the 5-HT3 receptor antagonists in vitro and in vivo. When administered to Aβ-challenged rat cortical neurons, 5-HT3 receptor antagonists substantially abated apoptosis, elevation of cytosolic Ca(2), glutamate release, reactive oxygen species (ROS) generation, and caspase-3 activity. In addition, in vivo studies show that 5-HT3 receptor antagonists possess, alongside their anti-emetic effects, notable immunomodulatory properties in CNS. We found that pretreatment with tropisetron significantly improved neurological deficits and diminished leukocyte transmigration into the brain, TNF-α level, and brain infarction in a murine model of embolic stroke. Our recent investigation revealed that tropisetron protects against Aβ-induced neurotoxicity in vivo through both 5-HT3 receptor-dependent and -independent pathways. Tropisetron, in vitro, was found to be an efficacious inhibitor of the signaling pathway leading to the activation of pro-inflammatory NF-κB, a transcription factor pivotal to the upregulation of several neuroinflammatory mediators in brain. This mini review summarizes novel evidence concerning effects of 5-HT3 antagonists and their possible mechanisms of action in ameliorating neurodegenerative diseases including Alzheimer, multiple sclerosis, and stroke. Further, we discuss some newly synthesized 5-HT3 receptor antagonists with dual properties of 5-HT3 receptor blockade/alpha-7 nicotinic receptor activator and their potential in management of memory impairment. Since 5-HT3 receptor antagonists possess a large therapeutic window, they can constitute a scaffold for design and synthesis of new neuroprotective medications.

  3. Autoradiographic localization of /sup 3/H-paroxetine-labeled serotonin uptake sites in rat brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Souza, E.B.; Kuyatt, B.L.

    1987-01-01

    Paroxetine is a potent and selective inhibitor of serotonin uptake into neurons. Serotonin uptake sites have been identified, localized, and quantified in rat brain by autoradiography with 3H-paroxetine; 3H-paroxetine binding in slide-mounted sections of rat forebrain was of high affinity (KD = 10 pM) and the inhibition affinity constant (Ki) values of various drugs in competing 3H-paroxetine binding significantly correlated with their reported potencies in inhibiting synaptosomal serotonin uptake. Serotonin uptake sites labeled by 3H-paroxetine were highly concentrated in the dorsal and median raphe nuclei, central gray, superficial layer of the superior colliculus, lateral septal nucleus, paraventricular nucleus of themore » thalamus, and the islands of Calleja. High concentrations of 3H-paroxetine binding sites were found in brainstem areas containing dopamine (substantia nigra and ventral tegmental area) and norepinephrine (locus coeruleus) cell bodies. Moderate concentrations of 3H-paroxetine binding sites were present in laminae I and IV of the frontal parietal cortex, primary olfactory cortex, olfactory tubercle, regions of the basal ganglia, septum, amygdala, thalamus, hypothalamus, hippocampus, and some brainstem areas including the interpeduncular, trigeminal, and parabrachial nuclei. Lower densities of 3H-paroxetine binding sites were found in other regions of the neocortex and very low to nonsignificant levels of binding were present in white matter tracts and in the cerebellum. Lesioning of serotonin neurons with 3,4-methylenedioxyamphetamine caused large decreases in 3H-paroxetine binding. The autoradiographic distribution of 3H-paroxetine binding sites in rat brain corresponds extremely well to the distribution of serotonin terminals and cell bodies as well as with the pharmacological sites of action of serotonin.« less

  4. Palonosetron (Aloxi): a second-generation 5-HT3 receptor antagonist for chemotherapy-induced nausea and vomiting

    PubMed Central

    2006-01-01

    In July 2003, the Food and Drug Administration approved palonosetron hydrochloride injection for the treatment of chemotherapy-induced nausea and vomiting (CINV). The newest agent in the class of 5-HT3 receptor antagonists (5-HT3RAs), palonosetron differs from other agents in its class by its higher receptor-binding affinity and longer half-life. These pharmacological properties have resulted in improved antiemetic activity in clinical trials, particularly in the treatment of delayed CINV following moderate emetogenic chemotherapy. Based on the results of these clinical studies, palonosetron is the only 5-HT3RA approved for delayed CINV. Palonosetron is given as a single 0.25-mg intravenous dose 30 minutes before the initial dose of chemotherapy. Headache and constipation were the most common adverse events reported with palonosetron therapy. PMID:17106506

  5. Structure-based nuclear import mechanism of histones H3 and H4 mediated by Kap123

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, Sojin; Yoon, Jungmin; Kim, Hanseong

    Kap123, a major karyopherin protein of budding yeast, recognizes the nuclear localization signals (NLSs) of cytoplasmic histones H3 and H4 and translocates them into the nucleus during DNA replication. Mechanistic questions include H3- and H4-NLS redundancy toward Kap123 and the role of the conserved diacetylation of cytoplasmic H4 (K5ac and K12ac) in Kap123-mediated histone nuclear translocation. Here, we report crystal structures of full-length Kluyveromyces lactis Kap123 alone and in complex with H3- and H4-NLSs. Structures reveal the unique feature of Kap123 that possesses two discrete lysine-binding pockets for NLS recognition. Structural comparison illustrates that H3- and H4-NLSs share at leastmore » one of two lysine-binding pockets, suggesting that H3- and H4-NLSs are mutually exclusive. Additionally, acetylation of key lysine residues at NLS, particularly H4-NLS diacetylation, weakens the interaction with Kap123. These data support that cytoplasmic histone H4 diacetylation weakens the Kap123-H4-NLS interaction thereby facilitating histone Kap123-H3-dependent H3:H4/Asf1 complex nuclear translocation.« less

  6. Actions of alpha2 adrenoceptor ligands at alpha2A and 5-HT1A receptors: the antagonist, atipamezole, and the agonist, dexmedetomidine, are highly selective for alpha2A adrenoceptors.

    PubMed

    Newman-Tancredi, A; Nicolas, J P; Audinot, V; Gavaudan, S; Verrièle, L; Touzard, M; Chaput, C; Richard, N; Millan, M J

    1998-08-01

    This study examined the activity of chemically diverse alpha2 adrenoceptor ligands at recombinant human (h) and native rat (r) alpha2A adrenoceptors compared with 5-HT1A receptors. First, in competition binding experiments at h alpha2A and h5-HT1A receptors expressed in CHO cells, several compounds, including the antagonists 1-(2-pyrimidinyl)piperazine (1-PP), (+/-)-idazoxan, benalfocin (SKF 86466), yohimbine and RX 821,002, displayed preference for h alpha2A versus h5-HT1A receptors of only 1.4-, 3.6-, 4-, 10- and 11-fold, respectively (based on differences in pKi values). Clonidine, brimonidine (UK 14304), the benzopyrrolidine fluparoxan and the guanidines guanfacine and guanabenz exhibited intermediate selectivity (22- to 31-fold) for h alpha2A receptors. Only the antagonist atipamezole and the agonist dexmedetomidine (DMT) displayed high preference for alpha2 adrenoceptors (1290- and 91-fold, respectively). Second, the compounds were tested for their ability to induce h5-HT1A receptor-mediated G-protein activation, as indicated by the stimulation of [35S]GTPgammaS binding. All except atipamezole and RX 821,002 exhibited agonist activity, with potencies which correlated with their affinity for h5-HT1A receptors. Relative efficacies (Emax values) were 25-35% for guanabenz, guanfacine, WB 4101 and benalfocin, 50-65% for 1-PP, (+/-)-idazoxan and clonidine, and over 70% for fluparoxan, oxymetazoline and yohimbine (relative to 5-HT = 100%). Yohimbine-induced [35S]GTPgammaS binding was inhibited by the selective 5-HT1A receptor antagonist WAY 100,635. In contrast, RX 821,002 was the only ligand which exhibited antagonist activity at h5-HT1A receptors, inhibiting 5-HT-stimulated [35S]GTPgammaS binding. Atipamezole, which exhibited negligeable affinity for 5-HT1A receptors, was inactive. Third, the affinities for r alpha2A differed considerably from the affinities for h alpha2A receptors whereas the affinities for r5-HT1A differed much less from the affinities for h5-HT

  7. CEP-26401 (irdabisant), a potent and selective histamine H₃ receptor antagonist/inverse agonist with cognition-enhancing and wake-promoting activities.

    PubMed

    Raddatz, Rita; Hudkins, Robert L; Mathiasen, Joanne R; Gruner, John A; Flood, Dorothy G; Aimone, Lisa D; Le, Siyuan; Schaffhauser, Hervé; Duzic, Emir; Gasior, Maciej; Bozyczko-Coyne, Donna; Marino, Michael J; Ator, Mark A; Bacon, Edward R; Mallamo, John P; Williams, Michael

    2012-01-01

    CEP-26401 [irdabisant; 6-{4-[3-((R)-2-methyl-pyrrolidin-1-yl)-propoxy]-phenyl}-2H-pyridazin-3-one HCl] is a novel, potent histamine H₃ receptor (H₃R) antagonist/inverse agonist with drug-like properties. High affinity of CEP-26401 for H₃R was demonstrated in radioligand binding displacement assays in rat brain membranes (K(i) = 2.7 ± 0.3 nM) and recombinant rat and human H₃R-expressing systems (K(i) = 7.2 ± 0.4 and 2.0 ± 1.0 nM, respectively). CEP-26401 displayed potent antagonist and inverse agonist activities in [³⁵S]guanosine 5'-O-(γ-thio)triphosphate binding assays. After oral dosing of CEP-26401, occupancy of H₃R was estimated by the inhibition of ex vivo binding in rat cortical slices (OCC₅₀ = 0.1 ± 0.003 mg/kg), and antagonism of the H₃R agonist R-α-methylhistamine- induced drinking response in the rat dipsogenia model was demonstrated in a similar dose range (ED₅₀ = 0.06 mg/kg). CEP-26401 improved performance in the rat social recognition model of short-term memory at doses of 0.01 to 0.1 mg/kg p.o. and was wake-promoting at 3 to 30 mg/kg p.o. In DBA/2NCrl mice, CEP-26401 at 10 and 30 mg/kg i.p. increased prepulse inhibition (PPI), whereas the antipsychotic risperidone was effective at 0.3 and 1 mg/kg i.p. Coadministration of CEP-26401 and risperidone at subefficacious doses (3 and 0.1 mg/kg i.p., respectively) increased PPI. These results demonstrate potent behavioral effects of CEP-26401 in rodent models and suggest that this novel H₃R antagonist may have therapeutic utility in the treatment of cognitive and attentional disorders. CEP-26401 may also have therapeutic utility in treating schizophrenia or as adjunctive therapy to approved antipsychotics.

  8. Does alpha 1-acid glycoprotein act as a non-functional receptor for alpha 1-adrenergic antagonists?

    PubMed

    Qin, M; Oie, S

    1994-11-01

    The ability of a variety of alpha 1-acid glycoproteins (AAG) to affect the intrinsic activity of the alpha 1-adrenergic antagonist prazosin was studied in rabbit aortic strip preparations. From these studies, the activity of AAG appears to be linked to their ability to bind the antagonist. However, a capability to bind prazosin was not the only requirement for this effect. The removal of sialic acid and partial removal of the galactose and mannose residues by periodate oxidation of human AAG all but eliminated the ability of AAG to affect the intrinsic pharmacologic activity of prazosin, although the binding of prazosin was not significantly affected. The presence of bovine AAG, a protein that has a low ability to bind prazosin, reduced the effect of human AAG on prazosin activity. Based upon these results, we propose that AAG is able to bind in the vicinity of the alpha 1-adrenoceptors, therefore extending the binding region for antagonists in such a way as to decrease the ability of the antagonist to interact with the receptor. The carbohydrate side-chains are important for the binding of AAG in the region of the adrenoceptor.

  9. MMPP Attenuates Non-Small Cell Lung Cancer Growth by Inhibiting the STAT3 DNA-Binding Activity via Direct Binding to the STAT3 DNA-Binding Domain.

    PubMed

    Son, Dong Ju; Zheng, Jie; Jung, Yu Yeon; Hwang, Chul Ju; Lee, Hee Pom; Woo, Ju Rang; Baek, Song Yi; Ham, Young Wan; Kang, Min Woong; Shong, Minho; Kweon, Gi Ryang; Song, Min Jong; Jung, Jae Kyung; Han, Sang-Bae; Kim, Bo Yeon; Yoon, Do Young; Choi, Bu Young; Hong, Jin Tae

    2017-01-01

    Rationale: Signal transducer and activator of transcription-3 (STAT3) plays a pivotal role in cancer biology. Many small-molecule inhibitors that target STAT3 have been developed as potential anticancer drugs. While designing small-molecule inhibitors that target the SH2 domain of STAT3 remains the leading focus for drug discovery, there has been a growing interest in targeting the DNA-binding domain (DBD) of the protein. Methods: We demonstrated the potential antitumor activity of a novel, small-molecule (E)-2-methoxy-4-(3-(4-methoxyphenyl)prop-1-en-1-yl)phenol (MMPP) that directly binds to the DBD of STAT3, in patient-derived non-small cell lung cancer (NSCLC) xenograft model as well as in NCI-H460 cell xenograft model in nude mice. Results: MMPP effectively inhibited the phosphorylation of STAT3 and its DNA binding activity in vitro and in vivo . It induced G1-phase cell cycle arrest and apoptosis through the regulation of cell cycle- and apoptosis-regulating genes by directly binding to the hydroxyl residue of threonine 456 in the DBD of STAT3. Furthermore, MMPP showed a similar or better antitumor activity than that of docetaxel or cisplatin. Conclusion: MMPP is suggested to be a potential candidate for further development as an anticancer drug that targets the DBD of STAT3.

  10. Design, synthesis and biological evaluation of novel 3-oxo-4-oxa-5α-androst-17β-amide derivatives as dual 5α-reductase inhibitors and androgen receptor antagonists.

    PubMed

    Lao, Kejing; Sun, Jie; Wang, Chong; Wang, Ying; You, Qidong; Xiao, Hong; Xiang, Hua

    2017-09-01

    Prostate cancer (PCa) is the second leading cause of death in men. Recently, some researches have showed that 5α-reductase inhibitors were beneficial in PCa treatment as well. In this study, a series of novel 3-oxo-4-oxa-5α-androst-17β-amide derivatives have been designed and synthesized in a more simple and convenient method. Most of the synthesized compounds displayed good 5α-reductase inhibitory activities and androgen receptor binding affinities. Their anti-proliferation activities in PC-3 and LNCaP cell lines were also evaluated and the results indicated that most of the synthesized compounds exhibited potent anti-proliferative activities. It is obvious that the androgen-dependent cell line LNCaP was much more sensitive than the androgen-independent cell line PC-3. Among all the synthesized compounds, 11d and 11k displayed the best inhibition activity with 4-fold more sensitive toward LNCaP than PC-3, which was consistent with their high affinities observed in AR binding assay. Molecular modeling studies suggested that 11k could bind to AR in a manner similar to the binding of dihydrotestosterone to AR. Compared to the finasteride, 11k showed a longer plasma half-life (4h) and a better bioavailability. Overall, based on biological activities data, compound 11d and 11k can be identified as potential dual 5α-reductase inhibitors and AR antagonists which might be of therapeutic importance for prostate cancer treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. SSR240612 [(2R)-2-[((3R)-3-(1,3-benzodioxol-5-yl)-3-[[(6-methoxy-2-naphthyl)sulfonyl]amino]propanoyl)amino]-3-(4-[[2R,6S)-2,6-dimethylpiperidinyl]methyl]phenyl)-N-isopropyl-N-methylpropanamide hydrochloride], a new nonpeptide antagonist of the bradykinin B1 receptor: biochemical and pharmacological characterization.

    PubMed

    Gougat, Jean; Ferrari, Bernard; Sarran, Lionel; Planchenault, Claudine; Poncelet, Martine; Maruani, Jeanne; Alonso, Richard; Cudennec, Annie; Croci, Tiziano; Guagnini, Fabio; Urban-Szabo, Katalin; Martinolle, Jean-Pierre; Soubrié, Philippe; Finance, Olivier; Le Fur, Gérard

    2004-05-01

    The biochemical and pharmacological properties of a novel non-peptide antagonist of the bradykinin (BK) B(1) receptor, SSR240612 [(2R)-2-[((3R)-3-(1,3-benzodioxol-5-yl)-3-[[(6-methoxy-2-naphthyl)sulfonyl]amino]propanoyl)amino]-3-(4-[[2R,6S)-2,6-dimethylpiperidinyl]methyl]phenyl)-N-isopropyl-N-methylpropanamide hydrochloride] were evaluated. SSR240612 inhibited the binding of [(3)H]Lys(0)-des-Arg(9)-BK to the B(1) receptor in human fibroblast MRC5 and to recombinant human B(1) receptor expressed in human embryonic kidney cells with inhibition constants (K(i)) of 0.48 and 0.73 nM, respectively. The compound selectivity for B(1) versus B(2) receptors was in the range of 500- to 1000-fold. SSR240612 inhibited Lys(0)-desAr(9)-BK (10 nM)-induced inositol monophosphate formation in human fibroblast MRC5, with an IC(50) of 1.9 nM. It also antagonized des-Arg(9)-BK-induced contractions of isolated rabbit aorta and mesenteric plexus of rat ileum with a pA(2) of 8.9 and 9.4, respectively. Antagonistic properties of SSR240612 were also demonstrated in vivo. SSR240612 inhibited des-Arg(9)-BK-induced paw edema in mice (3 and 10 mg/kg p.o. and 0.3 and 1 mg/kg i.p.). Moreover, SSR240612 reduced capsaicin-induced ear edema in mice (0.3, 3 and 30 mg/kg p.o.) and tissue destruction and neutrophil accumulation in the rat intestine following splanchnic artery occlusion/reperfusion (0.3 mg/kg i.v.). The compound also inhibited thermal hyperalgesia induced by UV irradiation (1 and 3 mg/kg p.o.) and the late phase of nociceptive response to formalin in rats (10 and 30 mg/kg p.o.). Finally, SSR240612 (20 and 30 mg/kg p.o.) prevented neuropathic thermal pain induced by sciatic nerve constriction in the rat. In conclusion, SSR240612 is a new, potent, and orally active specific non-peptide bradykinin B(1) receptor antagonist.

  12. The effect of stereochemistry on the thermodynamic characteristics of the binding of fenoterol stereoisomers to the beta(2)-adrenoceptor.

    PubMed

    Jozwiak, Krzysztof; Toll, Lawrence; Jimenez, Lucita; Woo, Anthony Yiu-Ho; Xiao, Rui-Ping; Wainer, Irving W

    2010-06-01

    The binding thermodynamics of the stereoisomers of fenoterol, (R,R')-, (S,S')-, (R,S')-, and (S,R')-fenoterol, to the beta(2)-adrenergic receptor (beta(2)-AR) have been determined. The experiments utilized membranes obtained from HEK cells stably transfected with cDNA encoding human beta(2)-AR. Competitive displacement studies using [(3)H]CGP-12177 as the marker ligand were conducted at 4, 15, 25, 30 and 37 degrees C, the binding affinities calculated and the standard enthalpic (DeltaH degrees ) and standard entropic (DeltaS degrees ) contribution to the standard free energy change (DeltaG degrees ) associated with the binding process determined through the construction of van't Hoff plots. The results indicate that the binding of (S,S')- and (S,R')-fenoterol were predominately enthalpy-driven processes while the binding of (R,R')- and (R,S')-fenoterol were entropy-driven. All of the fenoterol stereoisomers are full agonists of the beta(2)-AR, and, therefore, the results of this study are inconsistent with the previously described "thermodynamic agonist-antagonist discrimination", in which the binding of an agonist to the beta-AR is entropy-driven and the binding of an antagonist is enthalpy-driven. In addition, the data demonstrate that the chirality of the carbon atom containing the beta-hydroxyl group of the fenoterol molecule (the beta-OH carbon) is a key factor in the determination of whether the binding process will be enthalpy-driven or entropy-driven. When the configuration at the beta-OH carbon is S the binding process is enthalpy-driven while the R configuration produces an entropy-driven process. Published by Elsevier Inc.

  13. Synergistic and Antagonistic Effects of Salinity and pH on Germination in Switchgrass (Panicum virgatum L.)

    PubMed Central

    Liu, Yuan; Wang, Quanzhen; Zhang, Yunwei; Cui, Jian; Chen, Guo; Xie, Bao; Wu, Chunhui; Liu, Haitao

    2014-01-01

    The effects of salt-alkaline mixed stress on switchgrass were investigated by evaluating seed germination and the proline, malondialdehyde (MDA) and soluble sugar contents in three switchgrass (Panicum virgatum L.) cultivars in order to identify which can be successfully produced on marginal lands affected by salt-alkaline mixed stress. The experimental conditions consisted of four levels of salinity (10, 60, 110 and 160 mM) and four pH levels (7.1, 8.3, 9.5 and 10.7). The effects of salt-alkaline mixed stress with equivalent coupling of the salinity and pH level on the switchgrass were explored via model analyses. Switchgrass was capable of germinating and surviving well in all treatments under low-alkaline pH (pH≤8.3), regardless of the salinity. However, seed germination and seedling growth were sharply reduced at higher pH values in conjunction with salinity. The salinity and pH had synergetic effects on the germination percentage, germination index, plumular length and the soluble sugar and proline contents in switchgrass. However, these two factors exhibited antagonistic effects on the radicular length of switchgrass. The combined effects of salinity and pH and the interactions between them should be considered when evaluating the strength of salt-alkaline mixed stress. PMID:24454834

  14. The chromatin-binding protein HMGN3 stimulates histone acetylation and transcription across the Glyt1 gene

    PubMed Central

    Barkess, Gráinne; Postnikov, Yuri; Campos, Chrisanne D.; Mishra, Shivam; Mohan, Gokula; Verma, Sakshi; Bustin, Michael; West, Katherine L.

    2013-01-01

    HMGNs are nucleosome-binding proteins that alter the pattern of histone modifications and modulate the binding of linker histones to chromatin. The HMGN3 family member exists as two splice forms, HMGN3a which is full-length and HMGN3b which lacks the C-terminal RD (regulatory domain). In the present study, we have used the Glyt1 (glycine transporter 1) gene as a model system to investigate where HMGN proteins are bound across the locus in vivo, and to study how the two HMGN3 splice variants affect histone modifications and gene expression. We demonstrate that HMGN1, HMGN2, HMGN3a and HMGN3b are bound across the Glyt1 gene locus and surrounding regions, and are not enriched more highly at the promoter or putative enhancer. We conclude that the peaks of H3K4me3 (trimethylated Lys4 of histone H3) and H3K9ac (acetylated Lys9 of histone H3) at the active Glyt1a promoter do not play a major role in recruiting HMGN proteins. HMGN3a/b binding leads to increased H3K14 (Lys14 of histone H3) acetylation and stimulates Glyt1a expression, but does not alter the levels of H3K4me3 or H3K9ac enrichment. Acetylation assays show that HMGN3a stimulates the ability of PCAF [p300/CREB (cAMP-response-element-binding protein)-binding protein-associated factor] to acetylate nucleosomal H3 in vitro, whereas HMGN3b does not. We propose a model where HMGN3a/b-stimulated H3K14 acetylation across the bodies of large genes such as Glyt1 can lead to more efficient transcription elongation and increased mRNA production. PMID:22150271

  15. Dihydroergocryptine: a pseudo-irreversible alpha-adrenergic antagonist in the guinea pig vas deferens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilberding, C.A.; Marks, B.H.

    1981-03-01

    The ergot alkaloid, dihydroergocryptine, exhibits some of the characteristics of a competitive alpha-adrenergic antagonist. Dihydroergocryptine physiological antagonism is surmountable by high concentrations of alpha-adrenergic agonists and (/sup 3/H)-dihydroergocryptine readily binds and dissociates from crude membranes with the characteristics expected of an alpha-adrenoreceptor ligand. However, during physiological studies, dihydroergocryptine antagonism is not readily reversible by washing. To explain this apparently paradoxical behavior of dihydroergocryptine, the characteristic of (/sup 3/H)-dihydroergocryptine accumulation and efflux in the guinea pig vas deferens were studied. Vas deferens segments accumulated 0.99 pmol (/sup 3/H)-dihydroergocryptine/mg protein. Most of the radioligand was extractable by acid-ethanol. About 5-6% of themore » radioligand remained bound to extracted tissue residues and appeared to be associated with crude membrane fractions prepared from vas deferens segments. Kinetic analysis of (/sup 3/H)-dihydroergocryptine efflux from vas deferens segments indicated the presence of three compartments of radioligand in this tissue. A large compartment of (/sup 3/H)-dihydroergocryptine emptied slowly and may represent radioligand accumulated into the intracellular space. (/sup 3/H)-Dihydroergocryptine also was released from a compartment which exhibited the size and kinetics characteristic of alpha-adrenoreceptor sites on guinea pig vas deferens crude membranes. A small compartment of (/sup 3/H)-dihydroergocryptine was nonexchangeable and nonextractable by acid-ethanol; this nonextractable radioligand may be bound covalently to membrane sites and/or other tissue components.« less

  16. 3D-QSAR studies on 1,2,4-triazolyl 5-azaspiro [2.4]-heptanes as D3R antagonists

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Zhang, Hui

    2018-07-01

    Dopamine D3 receptor has become an attractive target in the treatment of abused drugs. 3D-QSAR studies were performed on a novel series of D3 receptor antagonists, 1,2,4-triazolyl 5-azaspiro [2.4]-heptanes, using CoMFA and CoMSIA methods. Two predictive 3D-QSAR models have been generated for the modified design of D3R antagonists. Based on the steric, electrostatic, hydrophobic and hydrogen-bond acceptor information of contour maps, key structural factors affecting the bioactivity were explored. This work gives helpful suggestions on the design of novel D3R antagonists with increased activities.

  17. [Analgesic effects of ionotropic glutamate receptor antagonists MK-801 and NBQX on collagen-induced arthritis rats].

    PubMed

    Zhu, H; Zhu, R; Deng, Z D; Feng, Y C; Shen, H L

    2016-12-18

    The ionotropic glutamate receptorantagonists include two types: MK-801, antagonist of N-methyl-D-asparticacid (NMDA) receptor, and NBQX, antagonist of non-NMDA receptor.The above-mentioned ionotropic antagonists can block the glutamate and its corresponding receptor binding to produce analgesic effect. The objective of this research was to study two antagonists in analgesic effect on rat behavior,as well as to investigate the down-regulation and up-regulation of cyclooxygenase-2 (COX-2) and Janus-activated kinase (Jak3) in collagen-induced arthritis (CIA) rat serum and tissue fluid after the application of these antagonists, that is, the effect on molecular biology. This study used the ionotropic glutamate receptors as the target and established CIA rat model. Vivo studies were used to observe changes in behavior and molecular biology of the CIA rat.Behavioral assessment includedmechanical allodynia and joint swelling in the CIA rat,where themechanical allodynia was measured using the paw-withdrawal threshold (PWT) with VonFrey filaments according to the "Up-Down" method,and the drainage volume was used to assess joint swelling. Then the blood samples taken from the heart of the rat and the tissue homogenate were collected to detect the down-regulation and up-regulation of COX-2 and Jak3 in the serum and tissue fluid after the antagonists wereused. Using MK-801, NBQX alone or using the combination of these two antagonists,these three methods all could alleviate pain(P<0.01).The analgesic effect lasted more than 24 h.Both antagonists reached the peak of analgesia at the end of 4 hours post-injection. NBQX had stronger analgesic effect than MK-801 (P<0.05).Whether alone or combined use of these two antagonists,could not change the CIA rats' swelling of the joint (P>0.05). MK-801 could decrease the expression of COX-2 (P<0.01).At the same time, NBQX did not have this effect (P>0.05). Using MK-801, NBQX alone or combination of these two antagonists could not affect the

  18. Relationship between inhibition of cyclic AMP production in Chinese hamster ovary cells expressing the rat D2(444) receptor and antagonist/agonist binding ratios.

    PubMed Central

    Harley, E. A.; Middlemiss, D. N.; Ragan, C. I.

    1995-01-01

    1. Radioligand binding assays using [3H]-(-)-sulpiride, in the presence of 1 mM ethylenediaminetetraacetic acid (EDTA) and 100 microM guanylylimidodiphosphate (GppNHp) and [3H]-N0437 were developed to label the low and high agonist affinity states of the rD2(444) receptor (long form of the rat D2 receptor) respectively. The ratios of the affinities of compounds in these two assays (Kapp [3H]-(-)-supiride/Kapp [3H]-N-0437) were then calculated. 2. The prediction that the binding ratio reflected the functional efficacy of a compound was supported by measurement of the ability of a number of compounds acting at dopamine receptors to inhibit rD2(444)-mediated inhibition of cyclic AMP production. When the rank order of the ratios of a number of these compounds was compared to their ability to inhibit the production of cyclic AMP, a significant correlation was seen (Spearman rank correlation coefficient = 0.943, P = 0.01). 3. In conclusion, the sulpiride/N-0437 binding ratio reliably predicted the efficacy of compounds acting at dopamine receptors to inhibit cyclic AMP production mediated by the rD2(444) receptor. PMID:7582561

  19. Effect of the novel histamine H2-antagonist 5,6-dimethyl-2-[4-[3-(1- piperidinomethyl)phenoxy]-(z)-2-butenylamino]-4(1H)-pyrimidine dihydrochloride on histamine-induced gastric acid secretion in Heidenhain pouch dogs.

    PubMed

    Uchida, M; Ohba, S; Ikarashi, Y; Misaki, N; Kawano, O

    1993-08-01

    Effects of IGN-2098 (5,6-dimethyl-2-[4-[3-(1-piperidinomethyl)phenoxy]- (z)-2-butenylamino]-4(1H)-pyrimidone dihydrochloride, CAS 126869-04-3) a novel histamine H2-antagonist, on histamine-induced gastric acid secretion were investigated in Heidenhain pouch dogs in comparison with those of famotidine, roxatidine acetate HCl and cimetidine. Orally administered IGN-2098 (0.03-1.0 mg/kg), famotidine (0.01-0.3 mg/kg), roxatidine acetate HCl (0.1-1.0 mg/kg) and cimetidine (0.3-3.0 mg/kg) showed dose-dependent inhibition on histamine-induced gastric acid secretion, and ED50 values of IGN-2098, famotidine, roxatidine acetate HCl and cimetidine were 0.077, 0.024, 0.200 and 0.585 mg/kg, respectively. IGN-2098 was effective even at 6 h after administration and ED50 value was 0.315 mg/kg. IGN-2098 was effective also by intravenous route. The inhibitory effect of IGN-2098 on histamine-induced gastric secretion was not affected by the repeated administration of IGN-2098 (1 mg/kg b.i.d. for 14 days). These results show that IGN-2098 is a potent and long acting antisecretory agent and is a useful antisecretory drug for the treatment of peptic ulcer disease.

  20. Neurotensin is an antagonist of the human neurotensin NT2 receptor expressed in Chinese hamster ovary cells.

    PubMed

    Vita, N; Oury-Donat, F; Chalon, P; Guillemot, M; Kaghad, M; Bachy, A; Thurneyssen, O; Garcia, S; Poinot-Chazel, C; Casellas, P; Keane, P; Le Fur, G; Maffrand, J P; Soubrie, P; Caput, D; Ferrara, P

    1998-11-06

    The human levocabastine-sensitive neurotensin NT2 receptor was cloned from a cortex cDNA library and stably expressed in Chinese hamster ovary (CHO) cells in order to study its binding and signalling characteristics. The receptor binds neurotensin as well as several other ligands already described for neurotensin NT1 receptor. It also binds levocabastine, a histamine H1 receptor antagonist that is not recognised by neurotensin NT1 receptor. Neurotensin binding to recombinant neurotensin NT2 receptor expressed in CHO cells does not elicit a biological response as determined by second messenger measurements. Levocabastine, and the peptides neuromedin N and xenin were also ineffective on neurotensin NT2 receptor activation. Experiments with the neurotensin NT1 receptor antagonists SR48692 and SR142948A, resulted in the unanticipated discovery that both molecules are potent agonists on neurotensin NT2 receptor. Both compounds, following binding to neurotensin NT2 receptor, enhance inositol phosphates (IP) formation with a subsequent [Ca2+]i mobilisation; induce arachidonic acid release; and stimulate mitogen-activated protein kinase (MAPK) activity. Interestingly, these activities are antagonised by neurotensin and levocabastine in a concentration-dependent manner. These activities suggest that the human neurotensin NT2 receptor may be of physiological importance and that a natural agonist for the receptor may exist.

  1. Comparative receptor mapping of serotoninergic 5-HT3 and 5-HT4 binding sites*

    NASA Astrophysics Data System (ADS)

    López-Rodríguez, María L.; Morcillo, María José; Benhamú, Bellinda; Rosado, María Luisa

    1997-11-01

    The clinical use of currently available drugs acting at the5-HT4 receptor has been hampered by their lack of selectivityover 5-HT3 binding sites. For this reason, there is considerableinterest in the medicinal chemistry of these serotonin receptor subtypes, andsignificant effort has been made towards the discovery of potent and selectiveligands. Computer-aided conformational analysis was used to characterizeserotoninergic 5-HT3 and 5-HT4 receptorrecognition. On the basis of the generally accepted model of the5-HT3 antagonist pharmacophore, we have performed a receptormapping of this receptor binding site, following the active analog approach(AAA) defined by Marshall. The receptor excluded volume was calculated as theunion of the van der Waals density maps of nine active ligands(pKi ≥ 8.9), superimposed in pharmacophoric conformations.Six inactive analogs (pKi < 7.0) were subsequently used todefine the essential volume, which in its turn can be used to define theregions of steric intolerance of the 5-HT3 receptor. Five activeligands (pKi ≥ 9.3) at 5-HT4 receptors wereused to construct an antagonist pharmacophore for this receptor, and todetermine its excluded volume by superimposition of pharmacophoricconformations. The volume defined by the superimposition of five inactive5-HT4 receptor analogs that possess the pharmacophoric elements(pKi ≤ 6.6) did not exceed the excluded volume calculated forthis receptor. In this case, the inactivity may be due to the lack of positiveinteraction of the amino moiety with a hypothetical hydrophobic pocket, whichwould interact with the voluminous substituents of the basic nitrogen ofactive ligands. The difference between the excluded volumes of both receptorshas confirmed that the main difference is indeed in the basic moiety. Thus,the 5-HT3 receptor can only accommodate small substituents inthe position of the nitrogen atom, whereas the 5-HT4 receptorrequires more voluminous groups. Also, the basic nitrogen is located at ca

  2. In vitro pharmacological characterization of CJ-042794, a novel, potent, and selective prostaglandin EP(4) receptor antagonist.

    PubMed

    Murase, Akio; Taniguchi, Yasuhito; Tonai-Kachi, Hiroko; Nakao, Kazunari; Takada, Junji

    2008-01-16

    Activation of the prostaglandin E(2) (PGE(2)) EP(4) receptor, a G-protein-coupled receptor (GPCR), results in increases in intracellular cyclic AMP (cAMP) levels via stimulation of adenylate cyclase. Here we describe the in vitro pharmacological characterization of a novel EP(4) receptor antagonist, CJ-042794 (4-{(1S)-1-[({5-chloro-2-[(4-fluorophenyl)oxy]phenyl}carbonyl)amino]ethyl}benzoic acid). CJ-042794 inhibited [(3)H]-PGE(2) binding to the human EP(4) receptor with a mean pK(i) of 8.5, a binding affinity that was at least 200-fold more selective for the human EP(4) receptor than other human EP receptor subtypes (EP(1), EP(2), and EP(3)). CJ-042794 did not exhibit any remarkable binding to 65 additional proteins, including GPCRs, enzymes, and ion channels, suggesting that CJ-042794 is highly selective for the EP(4) receptor. CJ-042794 competitively inhibited PGE(2)-evoked elevations of intracellular cAMP levels in HEK293 cells overexpressing human EP(4) receptor with a mean pA(2) value of 8.6. PGE(2) inhibited the lipopolysaccharide (LPS)-induced production of tumor necrosis factor alpha (TNFalpha) in human whole blood (HWB); CJ-042794 reversed the inhibitory effects of PGE(2) on LPS-induced TNFalpha production in a concentration-dependent manner. These results suggest that CJ-042794, a novel, potent, and selective EP(4) receptor antagonist, has excellent pharmacological properties that make it a useful tool for exploring the physiological role of EP(4) receptors.

  3. Roles of threonine 192 and asparagine 382 in agonist and antagonist interactions with M1 muscarinic receptors

    PubMed Central

    Huang, Xi-Ping; Nagy, Peter I; Williams, Frederick E; Peseckis, Steven M; Messer, William S

    1999-01-01

    Conserved amino acids, such as Thr in transmembrane domains (TM) V and Asn in TM VI of muscarinic receptors, may be important in agonist binding and/or receptor activation. In order to determine the functional roles of Thr192 and Asn382 in human M1 receptors in ligand binding and receptor activation processes, we created and characterized mutant receptors with Thr192 or Asn382 substituted by Ala.HM1 wild-type (WT) and mutant receptors [HM1(Thr192Ala) and HM1(Asn382Ala)] were stably expressed in A9 L cells. The Kd values for 3H-(R)-QNB and Ki values for other classical muscarinic antagonists were similar at HM1(WT) and HM1(Thr192Ala) mutant receptors, yet higher at HM1(Asn382Ala) mutant receptors. Carbachol exhibited lower potency and efficacy in stimulating PI hydrolysis via HM1(Thr192Ala) mutant receptors, and intermediate agonist activity at the HM1(Asn382Ala) mutant receptors.The Asn382 residue in TM VI but not the Thr192 residue in TM V of the human M1 receptor appears to participate directly in antagonist binding. Both Thr192 and Asn382 residues are involved differentially in agonist binding and/or receptor activation processes, yet the Asn382 residue is less important than Thr192 in agonist activation of M1 receptors.Molecular modelling studies indicate that substitution of Thr192 or Asn382 results in the loss of hydrogen-bond interactions and changes in the agonist binding mode associated with an increase in hydrophobic interactions between ligand and receptor. PMID:10188986

  4. Interaction of Tl +3 with mononucleotides: metal ion binding and sugar conformation

    NASA Astrophysics Data System (ADS)

    Nafisi, Sh.; Mohajerani, N.; Hadjiakhoondi, A.; Monajemi, M.; Garib, F.

    2001-05-01

    The interaction of Tl 3+ with sodium salts of adenosine-5'-monophosphate (5'-AMP), guanosine-5'-monophosphate (5'-GMP), cytidine-5'-monophosphate (5'-CMP), thymidine 5'-monophosphate (5'-dTMP) in ratios 1 and 2 have been studied in neutral pH. The solid complexes were isolated and characterized by Fourier transform infrared (FTIR) and 1H NMR spectroscopy. In the Tl 2(AMP) 3, Tl 3+ binds directly to N-7 and indirectly to the N-1 position of the pyrimidine ring and phosphate group with sugar moiety in C2'-endoanti. The crystalline salt of Tl 2(GMP) 3 show direct Tl-N-7 and Tl-PO 3(inner-sphere) binding. The conformation of ribose moiety in Tl 2(GMP) 3 is C3'-endoanti. In the Tl 2(CMP) 3, Tl 3+ bind directly to N-3 and PO32- (inner-sphere). The conformation of ribose moiety in Tl 2(CMP) 3 is C2'-endoanti. In the Tl 2(dTMP) 3, Tl 3+ bind indirectly to carbonyl group. The sugar moiety in Tl 2(dTMP) 3 is C3'-endoanti.

  5. Selective Interactions of Valeriana officinalis Extracts and Valerenic Acid with [H]Glutamate Binding to Rat Synaptic Membranes.

    PubMed

    Del Valle-Mojica, Lisa M; Ayala-Marín, Yoshira M; Ortiz-Sanchez, Carmen M; Torres-Hernández, Bianca A; Abdalla-Mukhaimer, Safa; Ortiz, José G

    2011-01-01

    Although GABA neurotransmission has been suggested as a mechanism for Valeriana officinalis effects, CNS depression can also be evoked by inhibition of ionotropic (iGluR) and metabotropic glutamate receptors (mGluR). In this study, we examined if aqueous valerian extract interacted with glutamatergic receptors. Freshly prepared aqueous valerian extract was incubated with rat cortical synaptic membranes in presence of 20 nM [(3)H]Glutamate. Aqueous valerian extract increased [(3)H]Glutamate binding from 1 × 10(-7) to 1 × 10(-3) mg/mL. In the presence of (2S,1'S,2'S)-2-(Carboxycyclopropyl)glycine (LCCG-I) and (2S,2'R,3'R)-2-(2',3'-Dicarboxycyclopropyl)glycine (DCG-IV), Group II mGluR agents, valerian extract markedly decreased [(3)H]Glutamate binding, while (2S)-2-amino-3-(3,5-dioxo-1,2,4-oxadiazolidin-2-yl) propanoic acid) (quisqualic acid, QA), Group I mGluR agonist, increased [(3)H]Glutamate binding. At 0.05 mg/mL aqueous valerian extract specifically interacted with kainic acid NMDA and AMPA receptors. Valerenic acid, a marker compound for Valeriana officinalis, increased the [(3)H]Glutamate binding after 1.6 × 10(-2) mg/mL, and at 0.008 mg/mL it interacted only with QA (Group I mGluR). The selective interactions of valerian extract and valerenic acid with Group I and Group II mGluR may represent an alternative explanation for the anxiolytic properties of this plant.

  6. Trithorax monomethylates histone H3K4 and interacts directly with CBP to promote H3K27 acetylation and antagonize Polycomb silencing

    PubMed Central

    Tie, Feng; Banerjee, Rakhee; Saiakhova, Alina R.; Howard, Benny; Monteith, Kelsey E.; Scacheri, Peter C.; Cosgrove, Michael S.; Harte, Peter J.

    2014-01-01

    Trithorax (TRX) antagonizes epigenetic silencing by Polycomb group (PcG) proteins, stimulates enhancer-dependent transcription, and establishes a ‘cellular memory’ of active transcription of PcG-regulated genes. The mechanisms underlying these TRX functions remain largely unknown, but are presumed to involve its histone H3K4 methyltransferase activity. We report that the SET domains of TRX and TRX-related (TRR) have robust histone H3K4 monomethyltransferase activity in vitro and that Tyr3701 of TRX and Tyr2404 of TRR prevent them from being trimethyltransferases. The trxZ11 missense mutation (G3601S), which abolishes H3K4 methyltransferase activity in vitro, reduces the H3K4me1 but not the H3K4me3 level in vivo. trxZ11 also suppresses the impaired silencing phenotypes of the Pc3 mutant, suggesting that H3K4me1 is involved in antagonizing Polycomb silencing. Polycomb silencing is also antagonized by TRX-dependent H3K27 acetylation by CREB-binding protein (CBP). We show that perturbation of Polycomb silencing by TRX overexpression requires CBP. We also show that TRX and TRR are each physically associated with CBP in vivo, that TRX binds directly to the CBP KIX domain, and that the chromatin binding patterns of TRX and TRR are highly correlated with CBP and H3K4me1 genome-wide. In vitro acetylation of H3K27 by CBP is enhanced on K4me1-containing H3 substrates, and independently altering the H3K4me1 level in vivo, via the H3K4 demethylase LSD1, produces concordant changes in H3K27ac. These data indicate that the catalytic activities of TRX and CBP are physically coupled and suggest that both activities play roles in antagonizing Polycomb silencing, stimulating enhancer activity and cellular memory. PMID:24550119

  7. A 3D QSAR CoMFA study of non-peptide angiotensin II receptor antagonists

    NASA Astrophysics Data System (ADS)

    Belvisi, Laura; Bravi, Gianpaolo; Catalano, Giovanna; Mabilia, Massimo; Salimbeni, Aldo; Scolastico, Carlo

    1996-12-01

    A series of non-peptide angiotensin II receptor antagonists was investigated with the aim of developing a 3D QSAR model using comparative molecular field analysis descriptors and approaches. The main goals of the study were dictated by an interest in methodologies and an understanding of the binding requirements to the AT1 receptor. Consistency with the previously derived activity models was always checked to contemporarily test the validity of the various hypotheses. The specific conformations chosen for the study, the procedures invoked to superimpose all structures, the conditions employed to generate steric and electrostatic field values and the various PCA/PLS runs are discussed in detail. The effect of experimental design techniques to select objects (molecules) and variables (descriptors) with respect to the predictive power of the QSAR models derived was especially analysed.

  8. Multi-Step Fibrinogen Binding to the Integrin αIIbβ3 Detected Using Force Spectroscopy

    PubMed Central

    Litvinov, Rustem I.; Bennett, Joel S.; Weisel, John W.; Shuman, Henry

    2005-01-01

    The regulated ability of integrin αIIbβ3 to bind fibrinogen plays a crucial role in platelet aggregation and hemostasis. We have developed a model system based on laser tweezers, enabling us to measure specific rupture forces needed to separate single receptor-ligand complexes. First of all, we performed a thorough and statistically representative analysis of nonspecific protein-protein binding versus specific αIIbβ3-fibrinogen interactions in combination with experimental evidence for single-molecule measurements. The rupture force distribution of purified αIIbβ3 and fibrinogen, covalently attached to underlying surfaces, ranged from ∼20 to 150 pN. This distribution could be fit with a sum of an exponential curve for weak to moderate (20–60 pN) forces, and a Gaussian curve for strong (>60 pN) rupture forces that peaked at 80–90 pN. The interactions corresponding to these rupture force regimes differed in their susceptibility to αIIbβ3 antagonists or Mn2+, an αIIbβ3 activator. Varying the surface density of fibrinogen changed the total binding probability linearly >3.5-fold but did not affect the shape of the rupture force distribution, indicating that the measurements represent single-molecule binding. The yield strength of αIIbβ3-fibrinogen interactions was independent of the loading rate (160–16,000 pN/s), whereas their binding probability markedly correlated with the duration of contact. The aggregate of data provides evidence for complex multi-step binding/unbinding pathways of αIIbβ3 and fibrinogen revealed at the single-molecule level. PMID:16040750

  9. Effects of antidepressant drugs on histamine-H/sub 1/ receptors in the brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, H.; Oegren, S.O.

    1984-02-06

    The histamine-H/sub 1/ receptor blocking properties of a number of structurally different antidepressant drugs have been evaluated using a /sup 3/H-mepyramine binding assay and a guinea-pig ileum preparation. The tricyclic antidepressants all inhibited the histamine-H/sub 1/ receptor. Some newer antidepressant drugs, such as zimeldine and nomifensine were devoid of activity while others, such as iprindole and mianserin were very potent. It is concluded that antagonistic effects on the histamine-H/sub 1/ receptor is not associated with the therapeutic efficacy in depression, but may contribute to the sedative effects of the antidepressant drugs.

  10. Pharmacological characterization of BR-A-657, a highly potent nonpeptide angiotensin II receptor antagonist.

    PubMed

    Chi, Yong Ha; Lee, Joo Han; Kim, Je Hak; Tan, Hyun Kwang; Kim, Sang Lin; Lee, Jae Yeol; Rim, Hong-Kun; Paik, Soo Heui; Lee, Kyung-Tae

    2013-01-01

    The pharmacological profile of BR-A-657, 2-n-butyl-5-dimethylamino-thiocarbonyl-methyl-6-methyl-3-{[2-(1H-tetrazole-5-yl)biphenyl-4-yl]methyl}-pyrimidin-4(3H)-one, a new nonpeptide AT1-selective angiotensin receptor antagonist, has been investigated in a variety of in vitro and in vivo experimental models. In the present study, BR-A-657 displaced [(125)I][Sar(1)-Ile(8)]angiotensin II (Ang II) from its specific binding sites to AT1 subtype receptors in membrane fractions of HEK-293 cells with an IC50 of 0.16 nM. In a functional assay using isolated rabbit thoracic aorta, BR-A-657 inhibited the contractile response to Ang II (pD'2: 9.15) with a significant reduction in the maximum. In conscious rats, BR-A-657 (0.01, 0.1, 1 mg/kg; intravenously (i.v.)) dose-dependently antagonized Ang II-induced pressor responses. In addition, BR-A-657 dose-dependently decreased mean arterial pressure in furosemide-treated rats and renal hypertensive rats. Moreover, BR-A-657 given orally at 1 and 3 mg/kg reduced blood pressure in conscious renal hypertensive rats. Taken together, these findings indicate that BR-A-657 is a potent and specific antagonist of Ang II at the AT1 receptor subtype, and reveal the molecular basis responsible for the marked lowering of blood pressure in conscious rats.

  11. CAF-1-induced oligomerization of histones H3/H4 and mutually exclusive interactions with Asf1 guide H3/H4 transitions among histone chaperones and DNA

    PubMed Central

    Liu, Wallace H.; Roemer, Sarah C.; Port, Alex M.; Churchill, Mair E. A.

    2012-01-01

    Anti-silencing function 1 (Asf1) and Chromatin Assembly Factor 1 (CAF-1) chaperone histones H3/H4 during the assembly of nucleosomes on newly replicated DNA. To understand the mechanism of histone H3/H4 transfer among Asf1, CAF-1 and DNA from a thermodynamic perspective, we developed and employed biophysical approaches using full-length proteins in the budding yeast system. We find that the C-terminal tail of Asf1 enhances the interaction of Asf1 with CAF-1. Surprisingly, although H3/H4 also enhances the interaction of Asf1 with the CAF-1 subunit Cac2, H3/H4 forms a tight complex with CAF-1 exclusive of Asf1, with an affinity weaker than Asf1–H3/H4 or H3/H4–DNA interactions. Unlike Asf1, monomeric CAF-1 binds to multiple H3/H4 dimers, which ultimately promotes the formation of (H3/H4)2 tetramers on DNA. Thus, transition of H3/H4 from the Asf1-associated dimer to the DNA-associated tetramer is promoted by CAF-1-induced H3/H4 oligomerization. PMID:23034810

  12. Stability of tramadol with three 5-HT3 receptor antagonists in polyolefin bags for patient-controlled delivery systems.

    PubMed

    Chen, Fu-Chao; Zhu, Jun; Li, Bin; Yuan, Fang-Jun; Wang, Lin-Hai

    2016-01-01

    Mixing 5-hydroxytryptamine-3 (5-HT3) receptor antagonists with patient-controlled analgesia (PCA) solutions of tramadol has been shown to decrease the incidence of nausea and vomiting associated with the use of tramadol PCA for postoperative pain. However, such mixtures are not commercially available, and the stability of the drug combinations has not been duly studied. The study aimed to evaluate the stability of tramadol with three 5-HT3 receptor antagonists in 0.9% sodium chloride injection for PCA administration. Test samples were prepared by adding 1,000 mg tramadol hydrochloride, 8 mg ondansetron hydrochloride, and 6 mg granisetron hydrochloride or 5 mg tropisetron hydrochloride to 100 mL of 0.9% sodium chloride injection in polyolefin bags. The samples were prepared in triplicates, stored at either 25°C or 4°C for 14 days, and assessed using the following compatibility parameters: precipitation, cloudiness, discoloration, and pH. Chemical stability was also determined using a validated high-pressure liquid chromatography method. All of the mixtures were clear and colorless throughout the initial observation period. No change in the concentration of tramadol hydrochloride occurred with any of the 5-HT3 receptor antagonists during the 14 days. Similarly, little or no loss of the 5-HT3 receptor antagonists occurred over the 14-day period. Our results suggest that mixtures of tramadol hydrochloride, ondansetron hydrochloride, granisetron hydrochloride, or tropisetron hydrochloride in 0.9% sodium chloride injection were physically and chemically stable for 14 days when stored in polyolefin bags at both 4°C and 25°C.

  13. Selective labeling of serotonin receptors by d-[3H]lysergic acid diethylamide in calf caudate.

    PubMed Central

    Whitaker, P M; Seeman, P

    1978-01-01

    Since it was known that d-lysergic acid diethylamide (LSD) affected catecholaminergic as well as serotoninergic neurons, the objective in this study was to enhance the selectivity of [3H]LSD binding to serotonin receptors in vitro by using crude homogenates of calf caudate. In the presence of a combination of 50 nM each of phentolamine (added to preclude the binding of [3H]LSD to alpha-adrenoceptors), apomorphine, and spiperone (added to preclude the binding of [3H]LSD to dopamine receptors), it was found by Scatchard analysis that the total number of [3H]LSD sites went down to 300 fmol/mg, compared to 1100 fmol/mg in the absence of the catecholamine-blocking drugs. The IC50 values (concentrations to inhibit binding by 50%) for various drugs were tested on the binding of [3H]LSD in the presence of 50 nM each of apomorphine (A), phentolamine (P) and spiperone (S). With this combination, the IC50 for serotonin was 35 nM (compared to 1000 nM without it), indicating that [3H]LSD had become considerably more selectively displaceable by serotonin under these conditions whereas the effects of norepinephrine and dopamine on [3H]LSD binding were eliminated. Various ergots had approximately equal IC50 values against [3H]serotonin and [3H]LSD but tryptamines were much more selective against [3H]serotonin; the data may indicate the existence of the two types of serotonin receptors. PMID:32537

  14. The 5-HT1A Receptor PET Radioligand 11C-CUMI-101 Has Significant Binding to α1-Adrenoceptors in Human Cerebellum, Limiting Its Use as a Reference Region.

    PubMed

    Shrestha, Stal S; Liow, Jeih-San; Jenko, Kimberly; Ikawa, Masamichi; Zoghbi, Sami S; Innis, Robert B

    2016-12-01

    Prazosin, a potent and selective α 1 -adrenoceptor antagonist, displaces 25% of 11 C-CUMI-101 ([O-methyl- 11 C]2-(4-(4-(2-methoxyphenyl)piperazin-1-yl)butyl)-4-methyl-1,2,4-triazine-3,5(2H,4H)dione) binding in monkey cerebellum. We sought to estimate the percentage contamination of 11 C-CUMI-101 binding to α 1 -adrenoceptors in human cerebellum under in vivo conditions. In vitro receptor-binding techniques were used to measure α 1 -adrenoceptor density and the affinity of CUMI-101 for these receptors in human, monkey, and rat cerebellum. Binding potential (maximum number of binding sites × affinity [(1/dissociation constant]) was determined using in vitro homogenate binding assays in human, monkey, and rat cerebellum. 3 H-prazosin was used to determine the maximum number of binding sites, as well as the dissociation constant of 3 H-prazosin and the inhibition constant of CUMI-101. α 1 -adrenoceptor density and the affinity of CUMI-101 for these receptors were similar across species. Cerebellar binding potentials were 3.7 for humans, 2.3 for monkeys, and 3.4 for rats. Reasoning by analogy, 25% of 11 C-CUMI-101 uptake in human cerebellum reflects binding to α 1 -adrenoceptors, suggesting that the cerebellum is of limited usefulness as a reference tissue for quantification in human studies. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  15. beta. -Adrenoceptors in human tracheal smooth muscle: characteristics of binding and relaxation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Koppen, C.J.; Hermanussen, M.W.; Verrijp, K.N.

    1987-06-29

    Specific binding of (/sup 125/I)-(-)-cyanopindolol to human tracheal smooth muscle membranes was saturable, stereo-selective and of high affinity (K/sub d/ = 5.3 +/- 0.9 pmol/l and R/sub T/ = 78 +/- 7 fmol/g tissue). The ..beta../sub 1/-selective antagonists atenolol and LK 203-030 inhibited specific (/sup 125/I)-(-)-cyanopindolol binding according to a one binding site model with low affinity in nearly all subjects, pointing to a homogeneous BETA/sub 2/-adrenoceptor population. In one subject using LK 203-030 a small ..beta../sub 1/-adrenoceptor subpopulation could be demonstrated. The beta-mimetics isoprenaline, fenoterol, salbutamol and terbutaline recognized high and low affinity agonist binding sites. Isoprenaline's pK/sub H/-more » and pK/sub L/-values for the high and low affinity sites were 8.0 +/- 0.2 and 5.9 +/- 0.3 respectively. In functional experiments isoprenaline relaxed tracheal smooth muscle strips having intrinsic tone with a pD/sub 2/-value of 6.63 +/- 0.19. 32 references, 4 figures, 2 tables.« less

  16. Pharmacologic properties of KT2-962 (6-isopropyl-3-[4-(p- chlorobenzenesulfonylamino)-butyl]-azulene-1-sulfonic acid sodium salt); a new TXA2/prostaglandin endoperoxide receptor antagonist.

    PubMed

    Kosakai, K; Wakabayashi, S; Sato, T; Mochizuki, S; Tomiyama, A; Zhou, Q; Satake, N; Shibata, S

    1993-03-01

    Pharmacologic properties of KT2-962 (6-isopropyl-3-[4-(p-chlorobenzenesulfonylamino)butyl]-azulene+ ++-1-sulfonic acid sodium salt, KT) were studied in isolated rat aorta, rat tail artery, rabbit aorta, rabbit renal artery, and pig coronary artery. KT competitively inhibited the contractions induced by thromboxane A2 (TXA2) mimetic, U46619 (pA2 values 9.95, 8.85, 7.87, 8.49, and 9.12, respectively). KT also inhibited the contraction of rabbit aorta induced by prostaglandin2 alpha (PGF2 alpha, pA2 value 7.85) and the contraction of guinea pig ileum induced by LTD4 (pA2 value 5.48) but did not alter the contractions induced by norepinephrine (NE), Ca2+, serotonin, and histamine. KT did not alter the contractions of guinea pig ileum, which did not contract with U46619, induced by PGE2 and PGF2 alpha. KT inhibited the aggregations of rabbit platelets induced by U46619, arachidonic acid, and collagen (IC50 values 7.9, 140, and 16 microM, respectively) but not those induced by ADP. It also inhibited the specific binding of TXA2/PGH2 receptor antagonist, [3H]SQ29,548, to rabbit gel-filtered platelets with an IC50 value of 1.5 x 10(-8) M. In in vivo experiments with mice, oral administration of KT protected the U46619-induced sudden death with the minimum effective dose of 0.3 mg/kg and provided such protection for > 8 h at 1.0 mg/kg. These results indicate that KT is a new nonprostanoid type TXA2/PGH2 receptor antagonist that is orally effective and long acting.

  17. Use of the mouse jumping test for estimating antagonistic potencies of morphine antagonists.

    PubMed

    Cowan, A

    1976-03-01

    The potencies of 19 reference morphine antagonists have been compared in a modified version of the mouse jumping test. Mice were each implanted subcutaneously with one 75 mg pellet of morphine. Antagonist challenge took place 72 h later and the incidence of repetitive vertical-jumping was monitored over 1 h. A high Pearson correlation coefficient (r = 0.997) was found between quantitative assays based on the total number of jumps per mouse and quantal assays based on mice jumping at least 6 times. A comparison of relative potencies obtained with the mouse test and with non-withdrawn morphine-dependent monkeys gave a Spearman rank order coefficient of 0.91 while a similar comparison with values obtained with the guinea-pig isolated ileum preparation also gave a high correlation coefficient (r= 0.92). Whereas it is difficult to assess the antagonistic component of buprenorphine and cyclorphan with the ileum preparation, both compounds can be satisfactorily assayed in the mouse jumping test. The reported antagonistic properties of ketocyclazocine and profadol could not be confirmed in the mouse model.

  18. The amphiphilic peptide adenoregulin enhances agonist binding to A1-adenosine receptors and [35S]GTP gamma S to brain membranes.

    PubMed

    Moni, R W; Romero, F S; Daly, J W

    1995-08-01

    1. Adenoregulin is an amphilic peptide isolated from skin mucus of the tree frog, Phyllomedusa bicolor. Synthetic adenoregulin enhanced the binding of agonists to several G-protein-coupled receptors in rat brain membranes. 2. The maximal enhancement of agonist binding, and in parentheses, the concentration of adenoregulin affording maximal enhancement were as follows: 60% (20 microM) for A1-adenosine receptors, 30% (100 microM) for A2a-adenosine receptors, 20% (2 microM) for alpha 2-adrenergic receptors, and 30% (10 microM) for 5HT1A receptors. High affinity agonist binding for A1-, alpha 2-, and 5HT1A-receptors was virtually abolished by GTP gamma S in the presence of adenoregulin, but was only partially abolished in its absence. Magnesium ions increased the binding of agonists to receptors and reduced the enhancement elicited by adenoregulin. 3. The effect of adenoregulin on binding of N6-cyclohexyladenosine ([3H]CHA) to A1-receptors was relatively slow and was irreversible. Adenoregulin increased the Bmax value for [3H]CHA binding sites, and the proportion of high affinity states, and slowed the rate of [3H]CHA dissociation. Binding of the A1-selective antagonist, [3H]DPCPX, was maximally enhanced by only 13% at 2 microM adenoregulin. Basal and A1-adenosine receptor-stimulated binding of [35S]GTP gamma S were maximally enhanced 45% and 23%, respectively, by 50 microM adenoregulin. In CHAPS-solubilized membranes from rat cortex, the binding of both [3H]CHA and [3H]DPCPX were enhanced by adenoregulin. Binding of [3H]CHA to membranes from DDT1 MF-2 cells was maximally enhanced 17% at 20 microM adenoregulin. In intact DDT1 MF-2 cells, 20 microM adenoregulin did not potentiate the inhibition of cyclic AMP accumulation mediated via the adenosine A1 receptor. 4. It is proposed that adenoregulin enhances agonist binding through a mechanism involving enhancement of guanyl nucleotide exchange at G-proteins, resulting in a conversion of receptors into a high affinity state

  19. Nucleoplasmin Binds Histone H2A-H2B Dimers through Its Distal Face*

    PubMed Central

    Ramos, Isbaal; Martín-Benito, Jaime; Finn, Ron; Bretaña, Laura; Aloria, Kerman; Arizmendi, Jesús M.; Ausió, Juan; Muga, Arturo; Valpuesta, José M.; Prado, Adelina

    2010-01-01

    Nucleoplasmin (NP) is a pentameric chaperone that regulates the condensation state of chromatin extracting specific basic proteins from sperm chromatin and depositing H2A-H2B histone dimers. It has been proposed that histones could bind to either the lateral or distal face of the pentameric structure. Here, we combine different biochemical and biophysical techniques to show that natural, hyperphosphorylated NP can bind five H2A-H2B dimers and that the amount of bound ligand depends on the overall charge (phosphorylation level) of the chaperone. Three-dimensional reconstruction of NP/H2A-H2B complex carried out by electron microscopy reveals that histones interact with the chaperone distal face. Limited proteolysis and mass spectrometry indicate that the interaction results in protection of the histone fold and most of the H2A and H2B C-terminal tails. This structural information can help to understand the function of NP as a histone chaperone. PMID:20696766

  20. Autoradiographic evidence for two classes of mu opioid binding sites in rat brain using (/sup 125/I)FK33824

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rothman, R.B.; Jacobson, A.E.; Rice, K.C.

    1987-11-01

    Previous studies demonstrated that pretreatment of brain membranes with the irreversible mu antagonist, beta-funaltrexamine (beta-FNA), partially eliminated mu binding sites (25,35), consistent with the existence of two mu binding sites distinguished by beta-FNA. This paper tests the hypothesis that the FNA-sensitive and FNA-insensitive mu binding sites have different anatomical distributions in rat brain. Prior to autoradiographic visualization of mu binding sites, (/sup 3/H)oxymorphone, (/sup 3/H)D-ala2-MePhe4, Gly-ol5-enkephalin (DAGO), and (/sup 125/I)D-ala2-Me-Phe4-met(o)-ol)enkephalin (FK33824) were shown to selectively label mu binding sites using slide mounted sections of molded minced rat brain. As found using membranes, beta-FNA eliminated only a portion of mu bindingmore » sites. Autoradiographic visualization of mu binding sites using the mu-selective ligand (/sup 125/I)FK33824 in control and FNA-treated sections of rat brain demonstrated that the proportion of mu binding sites sensitive to beta-FNA varied across regions of the brain, particularly the dorsal thalamus, ventrobasal complex and the hypothalamus, providing anatomical data supporting the existence of two classes of mu binding sites in rat brain.« less

  1. Pharmacological characterization of ATPM [(-)-3-aminothiazolo[5,4-b]-N-cyclopropylmethylmorphinan hydrochloride], a novel mixed kappa-agonist and mu-agonist/-antagonist that attenuates morphine antinociceptive tolerance and heroin self-administration behavior.

    PubMed

    Wang, Yu-Jun; Tao, Yi-Min; Li, Fu-Ying; Wang, Yu-Hua; Xu, Xue-Jun; Chen, Jie; Cao, Ying-Lin; Chi, Zhi-Qiang; Neumeyer, John L; Zhang, Ao; Liu, Jing-Gen

    2009-04-01

    ATPM [(-)-3-amino-thiazolo[5,4-b]-N-cyclopropylmethylmorphinan hydrochloride] was found to have mixed kappa- and mu-opioid activity and identified to act as a full kappa-agonist and a partial mu-agonist by in vitro binding assays. The present study was undertaken to characterize its in vivo effects on morphine antinociceptive tolerance in mice and heroin self-administration in rats. ATPM was demonstrated to yield more potent antinociceptive effects than (-)U50,488H (trans-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]benzeneacetamide). It was further found that the antinociceptive effects of ATPM were mediated by kappa- and mu-, but not delta-opioid, receptors. In addition to its agonist profile on the mu-receptor, ATPM also acted as a mu-antagonist, as measured by its inhibition of morphine-induced antinociception. It is more important that ATPM had a greater ratio of the ED(50) value of sedation to that of antinociception than (-)U50,488 (11.8 versus 3.7), indicative of a less sedative effect than (-)U50,488H. In addition, ATPM showed less potential to develop antinociceptive tolerance relative to (-)U50,488H and morphine. Moreover, it dose-dependently inhibited morphine-induced antinociceptive tolerance. Furthermore, it was found that chronic treatment of rats for 8 consecutive days with ATPM (0.5 mg/kg s.c.) produced sustained decreases in heroin self-administration. (-)U50,488H (2 mg/kg s.c.) also produced similar inhibitory effect. Taken together, our findings demonstrated that ATPM, a novel mixed kappa-agonist and mu-agonist/-antagonist, could inhibit morphine-induced antinociceptive tolerance, with less potential to develop tolerance and reduce heroin self-administration with less sedative effect. kappa-Agonists with some mu-activity appear to offer some advantages over selective kappa-agonists for the treatment of heroin abuse.

  2. Internalization of the chemokine receptor CCR4 can be evoked by orthosteric and allosteric receptor antagonists

    PubMed Central

    Ajram, Laura; Begg, Malcolm; Slack, Robert; Cryan, Jenni; Hall, David; Hodgson, Simon; Ford, Alison; Barnes, Ashley; Swieboda, Dawid; Mousnier, Aurelie; Solari, Roberto

    2014-01-01

    The chemokine receptor CCR4 has at least two natural agonist ligands, MDC (CCL22) and TARC (CCL17) which bind to the same orthosteric site with a similar affinity. Both ligands are known to evoke chemotaxis of CCR4-bearing T cells and also elicit CCR4 receptor internalization. A series of small molecule allosteric antagonists have been described which displace the agonist ligand, and inhibit chemotaxis. The aim of this study was to determine which cellular coupling pathways are involved in internalization, and if antagonists binding to the CCR4 receptor could themselves evoke receptor internalization. CCL22 binding coupled CCR4 efficiently to β-arrestin and stimulated GTPγS binding however CCL17 did not couple to β-arrestin and only partially stimulated GTPγS binding. CCL22 potently induced internalization of almost all cell surface CCR4, while CCL17 showed only weak effects. We describe four small molecule antagonists that were demonstrated to bind to two distinct allosteric sites on the CCR4 receptor, and while both classes inhibited agonist ligand binding and chemotaxis, one of the allosteric sites also evoked receptor internalization. Furthermore, we also characterize an N-terminally truncated version of CCL22 which acts as a competitive antagonist at the orthosteric site, and surprisingly also evokes receptor internalization without demonstrating any agonist activity. Collectively this study demonstrates that orthosteric and allosteric antagonists of the CCR4 receptor are capable of evoking receptor internalization, providing a novel strategy for drug discovery against this class of target. PMID:24534492

  3. Pharmacologic characterization of the oxytocin receptor in human uterine smooth muscle cells

    PubMed Central

    Tahara, Atsuo; Tsukada, Junko; Tomura, Yuichi; Wada, Koh-ichi; Kusayama, Toshiyuki; Ishii, Noe; Yatsu, Takeyuki; Uchida, Wataru; Tanaka, Akihiro

    2000-01-01

    [3H]-oxytocin was used to characterize the oxytocin receptor found in human uterine smooth muscle cells (USMC). Specific binding of [3H]-oxytocin to USMC plasma membranes was dependent upon time, temperature and membrane protein concentration. Scatchard plot analysis of equilibrium binding data revealed the existence of a single class of high-affinity binding sites with an apparent equilibrium dissociation constant (Kd) of 0.76 nM and a maximum receptor density (Bmax) of 153 fmol mg−1 protein. The Hill coefficient (nH) did not differ significantly from unity, suggesting binding to homogenous, non-interacting receptor populations. Competitive inhibition of [3H]-oxytocin binding showed that oxytocin and vasopressin (AVP) receptor agonists and antagonists displaced [3H]-oxytocin in a concentration-dependent manner. The order of potencies for peptide agonists and antagonists was: oxytocin>[Asu1,6]-oxytocin>AVP= atosiban>d(CH2)5Tyr(Me)AVP>[Thr4,Gly7]-oxytocin>dDAVP, and for nonpeptide antagonists was: L-371257>YM087>SR 49059>OPC-21268>SR 121463A>OPC-31260. Oxytocin significantly induced concentration-dependent increase in intracellular Ca2+ concentration ([Ca2+]i) and hyperplasia in USMC. The oxytocin receptor antagonists, atosiban and L-371257, potently and concentration-dependently inhibited oxytocin-induced [Ca2+]i increase and hyperplasia. In contrast, the V1A receptor selective antagonist, SR 49059, and the V2 receptor selective antagonist, SR 121463A, did not potently inhibit oxytocin-induced [Ca2+]i increase and hyperplasia. The potency order of antagonists in inhibiting oxytocin-induced [Ca2+]i increase and hyperplasia was similar to that observed in radioligand binding assays. In conclusion, these data provide evidence that the high-affinity [3H]-oxytocin binding site found in human USMC is a functional oxytocin receptor coupled to [Ca2+]i increase and cell growth. Thus human USMC may prove to be a valuable tool in further investigation of the

  4. Pharmacologic characterization of the oxytocin receptor in human uterine smooth muscle cells.

    PubMed

    Tahara, A; Tsukada, J; Tomura, Y; Wada, K i; Kusayama, T; Ishii, N; Yatsu, T; Uchida, W; Tanaka, A

    2000-01-01

    [(3)H]-oxytocin was used to characterize the oxytocin receptor found in human uterine smooth muscle cells (USMC). Specific binding of [(3)H]-oxytocin to USMC plasma membranes was dependent upon time, temperature and membrane protein concentration. Scatchard plot analysis of equilibrium binding data revealed the existence of a single class of high-affinity binding sites with an apparent equilibrium dissociation constant (K(d)) of 0.76 nM and a maximum receptor density (B(max)) of 153 fmol mg(-1) protein. The Hill coefficient (n(H)) did not differ significantly from unity, suggesting binding to homogenous, non-interacting receptor populations. Competitive inhibition of [(3)H]-oxytocin binding showed that oxytocin and vasopressin (AVP) receptor agonists and antagonists displaced [(3)H]-oxytocin in a concentration-dependent manner. The order of potencies for peptide agonists and antagonists was: oxytocin>[Asu(1,6)]-oxytocin>AVP= atosiban>d(CH(2))(5)Tyr(Me)AVP>[Thr(4),Gly(7)]-oxytocin>dDAVP, and for nonpeptide antagonists was: L-371257>YM087>SR 49059>OPC-21268>SR 121463A>OPC-31260. Oxytocin significantly induced concentration-dependent increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) and hyperplasia in USMC. The oxytocin receptor antagonists, atosiban and L-371257, potently and concentration-dependently inhibited oxytocin-induced [Ca(2+)](i) increase and hyperplasia. In contrast, the V(1A) receptor selective antagonist, SR 49059, and the V(2) receptor selective antagonist, SR 121463A, did not potently inhibit oxytocin-induced [Ca(2+)](i) increase and hyperplasia. The potency order of antagonists in inhibiting oxytocin-induced [Ca(2+)](i) increase and hyperplasia was similar to that observed in radioligand binding assays. In conclusion, these data provide evidence that the high-affinity [(3)H]-oxytocin binding site found in human USMC is a functional oxytocin receptor coupled to [Ca(2+)](i) increase and cell growth. Thus human USMC may prove to be a valuable

  5. The polyadenosine RNA-binding protein ZC3H14 interacts with the THO complex and coordinately regulates the processing of neuronal transcripts.

    PubMed

    Morris, Kevin J; Corbett, Anita H

    2018-06-15

    The polyadenosine RNA-binding protein ZC3H14 is important in RNA processing. Although ZC3H14 is ubiquitously expressed, mutation of the ZC3H14 gene causes a non-syndromic form of intellectual disability. Here, we examine the function of ZC3H14 in the brain by identifying ZC3H14-interacting proteins using unbiased mass spectrometry. Through this analysis, we identified physical interactions between ZC3H14 and multiple RNA processing factors. Notably, proteins that comprise the THO complex were amongst the most enriched proteins. We demonstrate that ZC3H14 physically interacts with THO components and that these proteins are required for proper RNA processing, as loss of ZC3H14 or THO components leads to extended bulk poly(A) tail length. Furthermore, we identified the transcripts Atp5g1 and Psd95 as shared RNA targets of ZC3H14 and the THO complex. Our data suggest that ZC3H14 and the THO complex are important for proper processing of Atp5g1 and Psd95 RNA, as depletion of ZC3H14 or THO components leads to decreased steady-state levels of each mature transcript accompanied by accumulation of Atp5g1 and Psd95 pre-mRNA in the cytoplasm. Taken together, this work provides the first unbiased identification of nuclear ZC3H14-interacting proteins from the brain and links the functions of ZC3H14 and the THO complex in the processing of RNA.

  6. Binding modes of dihydroquinoxalinones in a homology model of bradykinin receptor 1.

    PubMed

    Ha, Sookhee N; Hey, Pat J; Ransom, Rick W; Harrell, C Meacham; Murphy, Kathryn L; Chang, Ray; Chen, Tsing-Bau; Su, Dai-Shi; Markowitz, M Kristine; Bock, Mark G; Freidinger, Roger M; Hess, Fred J

    2005-05-27

    We report the first homology model of human bradykinin receptor B1 generated from the crystal structure of bovine rhodopsin as a template. Using an automated docking procedure, two B1 receptor antagonists of the dihydroquinoxalinone structural class were docked into the receptor model. Site-directed mutagenesis data of the amino acid residues in TM1, TM3, TM6, and TM7 were incorporated to place the compounds in the binding site of the homology model of the human B1 bradykinin receptor. The best pose in agreement with the mutation data was selected for detailed study of the receptor-antagonist interaction. To test the model, the calculated antagonist-receptor binding energy was correlated with the experimentally measured binding affinity (K(i)) for nine dihydroquinoxalinone analogs. The model was used to gain insight into the molecular mechanism for receptor function and to optimize the dihydroquinoxalinone analogs.

  7. Binding of /sup 125/I-hCG to rainbow trout (Salmo gairdneri) testis in vitro. [Human Chorionic Gonadotropin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlaghecke, R.

    1983-02-01

    Homogenates of maturing rainbow trout testes show specific binding sites for /sup 125/I-labeled hCG (. /sup 125/I-labeled hCG). The binding is competitively inhibited by unlabeled hCG and by a hypophyseal extract of rainbow trout. It could be demonstrated that the tissue /sup 125/I-hCG binding specificity is restricted to the gonadal preparation. The trout testis was characterized by determining affinity and capacity from Scatchard plot analysis giving a high constant of dissociation Kd 3.65 x 10(-10)/M and a low binding capacity of 0.88 x 10(-15) M/mg tissue. The test system is markedly dependent on temperature, incubation-time, and pH. The maximum bindingmore » was found at 37 degrees during 2 hr of incubation in a buffer of pH 7.5.« less

  8. Identification of spinal 5-HT sub 3 receptors and their role in the modulation of nociceptive responses in the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glaum, S.R.

    1988-01-01

    The project consisted of two related studies: (1) the characterization of serotonin binding sites in crude and purified synaptic membranes prepared from the rat spinal cord, and (2) the association of serotonin binding sites with functional 5-HT receptor responses in the modulation of nociceptive information at the level of the spinal cord. The first series of experiments involved the preparation of membranes from the dorsal and ventral halves of the rat spinal cord and the demonstration of specific ({sup 3}H)serotonin binding to these membranes. High affinity binding sites which conformed to the 5-HT{sub 3} subtype were identified in dorsal, butmore » not ventral spinal cord synaptic membranes. These experiments also confirmed the presence of high affinity ({sup 3}H)5-HT binding sites in dorsal spinal cord synaptic membranes of the 5-HT{sub 1} subtype. The second group of studies demonstrated the ability of selective 5-HT{sub 3} antagonists to inhibit the antinociceptive response to intrathecally administered 5-HT, as measured by a change in tail flick and hot plate latencies. Intrathecal pretreatment with the selective 5-HT{sub 3} antagonists ICS 205-930 or MDL 72222 abolished the antinociceptive effects of 5-HT. Furthermore, the selective 5-HT{sub 3} agonist 2-methyl-5-HT mimicked the antinociceptive effects of 5-HT.« less

  9. Crystal structure of the adenosine A 2A receptor bound to an antagonist reveals a potential allosteric pocket

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Bingfa; Bachhawat, Priti; Chu, Matthew Ling-Hon

    The adenosine A2A receptor (A2AR) has long been implicated in cardiovascular disorders. As more selective A2AR ligands are being identified, its roles in other disorders, such as Parkinson’s disease, are starting to emerge, and A2AR antagonists are important drug candidates for nondopaminergic anti-Parkinson treatment. Here we report the crystal structure of A2A receptor bound to compound 1 (Cmpd-1), a novel A2AR/N-methyl D-aspartate receptor subtype 2B (NR2B) dual antagonist and potential anti-Parkinson candidate compound, at 3.5 Å resolution. The A2A receptor with a cytochrome b562-RIL (BRIL) fusion (A2AR–BRIL) in the intracellular loop 3 (ICL3) was crystallized in detergent micelles using vapor-phasemore » diffusion. Whereas A2AR–BRIL bound to the antagonist ZM241385 has previously been crystallized in lipidic cubic phase (LCP), structural differences in the Cmpd-1–bound A2AR–BRIL prevented formation of the lattice observed with the ZM241385–bound receptor. The crystals grew with a type II crystal lattice in contrast to the typical type I packing seen from membrane protein structures crystallized in LCP. Cmpd-1 binds in a position that overlaps with the native ligand adenosine, but its methoxyphenyl group extends to an exosite not previously observed in other A2AR structures. Structural analysis revealed that Cmpd-1 binding results in the unique conformations of two tyrosine residues, Tyr91.35 and Tyr2717.36, which are critical for the formation of the exosite. The structure reveals insights into antagonist binding that are not observed in other A2AR structures, highlighting flexibility in the binding pocket that may facilitate the development of A2AR-selective compounds for the treatment of Parkinson’s disease.« less

  10. Selective labelling of diazepam-insensitive GABAA receptors in vivo using [3H]Ro 15-4513.

    PubMed

    Pym, Luanda J; Cook, Susan M; Rosahl, Thomas; McKernan, Ruth M; Atack, John R

    2005-11-01

    Classical benzodiazepines (BZs), such as diazepam, bind to GABAA receptors containing alpha1, alpha2, alpha3 or alpha5 subunits that are therefore described as diazepam-sensitive (DS) receptors. However, the corresponding binding site of GABAA receptors containing either an alpha4 or alpha6 subunit do not bind the classical BZs and are therefore diazepam-insensitive (DIS) receptors; a difference attributable to a single amino acid (histidine in alpha1, alpha2, alpha3 and alpha5 subunits and arginine in alpha4 and alpha6). Unlike classical BZs, the imidazobenzodiazepines Ro 15-4513 and bretazenil bind to both DS and DIS populations of GABAA receptors. In the present study, an in vivo assay was developed using lorazepam to fully occupy DS receptors such that [3H]Ro 15-4513 was then only able to bind to DIS receptors. When dosed i.v., [3H]Ro 15-4513 rapidly entered and was cleared from the brain, with approximately 70% of brain radioactivity being membrane-bound. Essentially all membrane binding to DS+DIS receptors could be displaced by unlabelled Ro 15-4513 or bretazenil, with respective ID50 values of 0.35 and 1.2 mg kg(-1). A dose of 30 mg kg(-1) lorazepam was used to block all DS receptors in a [3H]Ro 15-1788 in vivo binding assay. When predosed in a [3H]Ro 15-4513 binding assay, lorazepam blocked [3H]Ro 15-4513 binding to DS receptors, with the remaining binding to DIS receptors accounting for 5 and 23% of the total (DS plus DIS) receptors in the forebrain and cerebellum, respectively. The in vivo binding of [3H]Ro 15-4513 to DIS receptors in the presence of lorazepam was confirmed using alpha1H101R knock-in mice, in which alpha1-containing GABAA receptors are rendered diazepam insensitive by mutation of the histidine that confers diazepam sensitivity to arginine. In these mice, and in the presence of lorazepam, there was an increase of in vivo [3H]Ro 15-4513 binding in the forebrain and cerebellum from 4 and 15% to 36 and 59% of the total (i.e. DS plus DIS) [3H

  11. Pharmacological profile of CS-3150, a novel, highly potent and selective non-steroidal mineralocorticoid receptor antagonist.

    PubMed

    Arai, Kiyoshi; Homma, Tsuyoshi; Morikawa, Yuka; Ubukata, Naoko; Tsuruoka, Hiyoyuki; Aoki, Kazumasa; Ishikawa, Hirokazu; Mizuno, Makoto; Sada, Toshio

    2015-08-15

    The present study was designed to characterize the pharmacological profile of CS-3150, a novel non-steroidal mineralocorticoid receptor antagonist. In the radioligand-binding assay, CS-3150 inhibited (3)H-aldosterone binding to mineralocorticoid receptor with an IC50 value of 9.4nM, and its potency was superior to that of spironolactone and eplerenone, whose IC50s were 36 and 713nM, respectively. CS-3150 also showed at least 1000-fold higher selectivity for mineralocorticoid receptor over other steroid hormone receptors, glucocorticoid receptor, androgen receptor and progesterone receptor. In the reporter gene assay, CS-3150 inhibited aldosterone-induced transcriptional activation of human mineralocorticoid receptor with an IC50 value of 3.7nM, and its potency was superior to that of spironolactone and eplerenone, whose IC50s were 66 and 970nM, respectively. CS-3150 had no agonistic effect on mineralocorticoid receptor and did not show any antagonistic or agonistic effect on glucocorticoid receptor, androgen receptor and progesterone receptor even at the high concentration of 5μM. In adrenalectomized rats, single oral administration of CS-3150 suppressed aldosterone-induced decrease in urinary Na(+)/K(+) ratio, an index of in vivo mineralocorticoid receptor activation, and this suppressive effect was more potent and longer-lasting than that of spironolactone and eplerenone. Chronic treatment with CS-3150 inhibited blood pressure elevation induced by deoxycorticosterone acetate (DOCA)/salt-loading to rats, and this antihypertensive effect was more potent than that of spironolactone and eplerenone. These findings indicate that CS-3150 is a selective and highly potent mineralocorticoid receptor antagonist with long-lasting oral activity. This agent could be useful for the treatment of hypertension, cardiovascular and renal disorders. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. How the Binding of Human Transferrin Primes the Transferrin Receptor Potentiating Iron Release at Endosomal pH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B Eckenroth; A Steere; N Chasteen

    2011-12-31

    Delivery of iron to cells requires binding of two iron-containing human transferrin (hTF) molecules to the specific homodimeric transferrin receptor (TFR) on the cell surface. Through receptor-mediated endocytosis involving lower pH, salt, and an unidentified chelator, iron is rapidly released from hTF within the endosome. The crystal structure of a monoferric N-lobe hTF/TFR complex (3.22-{angstrom} resolution) features two binding motifs in the N lobe and one in the C lobe of hTF. Binding of Fe{sub N}hTF induces global and site-specific conformational changes within the TFR ectodomain. Specifically, movements at the TFR dimer interface appear to prime the TFR to undergomore » pH-induced movements that alter the hTF/TFR interaction. Iron release from each lobe then occurs by distinctly different mechanisms: Binding of His349 to the TFR (strengthened by protonation at low pH) controls iron release from the C lobe, whereas displacement of one N-lobe binding motif, in concert with the action of the dilysine trigger, elicits iron release from the N lobe. One binding motif in each lobe remains attached to the same {alpha}-helix in the TFR throughout the endocytic cycle. Collectively, the structure elucidates how the TFR accelerates iron release from the C lobe, slows it from the N lobe, and stabilizes binding of apohTF for return to the cell surface. Importantly, this structure provides new targets for mutagenesis studies to further understand and define this system.« less

  13. A novel identification approach for discovery of 5-HydroxyTriptamine 2A antagonists: combination of 2D/3D similarity screening, molecular docking and molecular dynamics.

    PubMed

    Kumar, Rakesh; Jade, Dhananjay; Gupta, Dinesh

    2018-03-05

    5-HydroxyTriptamine 2A antagonists are potential targets for treatment of various cerebrovascular and cardiovascular disorders. In this study, we have developed and performed a unique screening pipeline for filtering ZINC database compounds on the basis of similarities to known antagonists to determine novel small molecule antagonists of 5-HydroxyTriptamine 2A. The screening pipeline is based on 2D similarity, 3D dissimilarity and a combination of 2D/3D similarity. The shortlisted compounds were docked to a 5-HydroxyTriptamine 2A homology-based model, and complexes with low binding energies (287 complexes) were selected for molecular dynamics (MD) simulations in a lipid bilayer. The MD simulations of the shortlisted compounds in complex with 5-HydroxyTriptamine 2A confirmed the stability of the complexes and revealed novel interaction insights. The receptor residues S239, N343, S242, S159, Y370 and D155 predominantly participate in hydrogen bonding. π-π stacking is observed in F339, F340, F234, W151 and W336, whereas hydrophobic interactions are observed amongst V156, F339, F234, V362, V366, F340, V235, I152 and W151. The known and potential antagonists shortlisted by us have similar overlapping molecular interaction patterns. The 287 potential 5-HydroxyTriptamine 2A antagonists may be experimentally verified.

  14. Preclinical and first clinical experience with the gastrin-releasing peptide receptor-antagonist [⁶⁸Ga]SB3 and PET/CT.

    PubMed

    Maina, Theodosia; Bergsma, Hendrik; Kulkarni, Harshad R; Mueller, Dirk; Charalambidis, David; Krenning, Eric P; Nock, Berthold A; de Jong, Marion; Baum, Richard P

    2016-05-01

    Gastrin-releasing peptide receptors (GRPR) represent attractive targets for tumor diagnosis and therapy because of their overexpression in major human cancers. Internalizing GRPR agonists were initially proposed for prolonged lesion retention, but a shift of paradigm to GRPR antagonists has recently been made. Surprisingly, radioantagonists, such as [(99m)Tc]DB1 ((99m)Tc-N4'-DPhe(6),Leu-NHEt(13)]BBN(6-13)), displayed better pharmacokinetics than radioagonists, in addition to their higher inherent biosafety. We introduce here [(68)Ga]SB3, a [(99m)Tc]DB1 mimic-carrying, instead of the (99m)Tc-binding tetraamine, the chelator DOTA for labeling with the PET radiometal (68)Ga. Competition binding assays of SB3 and [(nat)Ga]SB3 were conducted against [(125)I-Tyr(4)]BBN in PC-3 cell membranes. Blood samples collected 5 min postinjection (pi) of the [(67)Ga]SB3 surrogate in mice were analyzed using high-performance liquid chromatography (HPLC) for degradation products. Likewise, biodistribution was performed after injection of [(67)Ga]SB3 (37 kBq, 100 μL, 10 pmol peptide) in severe combined immunodeficiency (SCID) mice bearing PC-3 xenografts. Eventually, [(68)Ga]SB3 (283 ± 91 MBq, 23 ± 7 nmol) was injected into 17 patients with breast (8) and prostate (9) cancer. All patients had disseminated disease and had received previous therapies. PET/CT fusion images were acquired 60-115 min pi. SB3 and [(nat)Ga]SB3 bound to the human GRPR with high affinity (IC50: 4.6 ± 0.5 nM and 1.5 ± 0.3 nM, respectively). [(67)Ga]SB3 displayed good in vivo stability (>85 % intact at 5 min pi). [(67)Ga]SB3 showed high, GRPR-specific and prolonged retention in PC-3 xenografts (33.1 ± 3.9%ID/g at 1 h pi - 27.0 ± 0.9%ID/g at 24 h pi), but much faster clearance from the GRPR-rich pancreas (≈160%ID/g at 1 h pi to <17%ID/g at 24 h pi) in mice. In patients, [(68)Ga]SB3 elicited no adverse effects and clearly visualized cancer lesions. Thus, 4 out of 8 (50 %) breast

  15. Exploiting Free-Energy Minima to Design Novel EphA2 Protein-Protein Antagonists: From Simulation to Experiment and Return.

    PubMed

    Russo, Simonetta; Callegari, Donatella; Incerti, Matteo; Pala, Daniele; Giorgio, Carmine; Brunetti, Jlenia; Bracci, Luisa; Vicini, Paola; Barocelli, Elisabetta; Capoferri, Luigi; Rivara, Silvia; Tognolini, Massimiliano; Mor, Marco; Lodola, Alessio

    2016-06-06

    The free-energy surface (FES) of protein-ligand binding contains information useful for drug design. Here we show how to exploit a free-energy minimum of a protein-ligand complex identified by metadynamics simulations to design a new EphA2 antagonist with improved inhibitory potency. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Imaging dopamine D3 receptors in the human brain with positron emission tomography, [11C]PHNO, and a selective D3 receptor antagonist.

    PubMed

    Searle, Graham; Beaver, John D; Comley, Robert A; Bani, Massimo; Tziortzi, Andri; Slifstein, Mark; Mugnaini, Manolo; Griffante, Cristiana; Wilson, Alan A; Merlo-Pich, Emilio; Houle, Sylvain; Gunn, Roger; Rabiner, Eugenii A; Laruelle, Marc

    2010-08-15

    Dopamine D(3) receptors are involved in the pathophysiology of several neuropsychiatric conditions. [(11)C]-(+)-PHNO is a radiolabeled D(2) and D(3) agonist, suitable for imaging the agonist binding sites (denoted D(2HIGH) and D(3)) of these receptors with positron emission tomography (PET). PET studies in nonhuman primates documented that, in vivo, [(11)C]-(+)-PHNO displays a relative selectivity for D(3) compared with D(2HIGH) receptor sites and that the [(11)C]-(+)-PHNO signal is enriched in D(3) contribution compared with conventional ligands such as [(11)C] raclopride. To define the D(3) contribution (f(PHNO)(D3)) to [(11)C]-(+)-PHNO binding potential (BP(ND)) in healthy humans, 52 PET scans were obtained in 19 healthy volunteers at baseline and following oral administration of various doses of the selective D(3) receptor antagonist, GSK598809. The impact of GSK598809 on [(11)C]-(+)-PHNO was regionally selective. In dorsal regions of the striatum, GSK598809 did not significantly affect [(11)C]-(+)-PHNO BP(ND) (f(PHNO)(D3) approximately 0%). Conversely, in the substantia nigra, GSK598809 dose-dependently reduced [(11)C]-(+)-PHNO binding to nonspecific level (f(PHNO)(D3) approximately 100%). In ventral striatum (VST), globus pallidus and thalamus (THA), [(11)C]-(+)-PHNO BP(ND) was attributable to a combination of D(2HIGH) and D(3) receptor sites, with f(PHNO)(D3) of 26%, 67% and 46%, respectively. D(3) receptor binding potential (BP(ND)(D3)) was highest in globus pallidus (1.90) and substantial nigra (1.39), with lower levels in VST (.77) and THA (.18) and negligible levels in dorsal striatum. This study elucidated the pharmacologic nature of the [(11)C]-(+)-PHNO signal in healthy subjects and provided the first quantification of D(3) receptor availability with PET in the living human brain. Copyright 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  17. Central endogenous histamine modulates sympathetic outflow through H3 receptors in the conscious rabbit

    PubMed Central

    Charles, Julian; Angus, James A; Wright, Christine E

    2003-01-01

    This study examined the role of histamine H3 receptors in vagal and sympathetic autonomic reflexes in the conscious rabbit, and in rabbit and guinea-pig isolated right atria. The baroreceptor-heart rate reflex (baroreflex), Bezold-Jarisch-like and nasopharyngeal reflexes were assessed after these treatments (i.v.; with H1 and H2 receptor block): (i) vehicle (saline; n=11); (ii) H3 receptor agonist, (R)-α-methylhistamine (R-α-MH) 100 μg kg−1+100 μg kg−1 h−1 (n=9); (iii) H3 receptor antagonist, thioperamide 1 mg kg−1+1 mg kg−1 h−1 (n=11); (iv) R-α-MH and thioperamide (n=6); and (v) H2 and H3 antagonist, burimamide 6.3 mg kg−1+6.3 mg kg−1 h−1 (n=4). R-α-MH caused a thioperamide-sensitive fall in mean arterial pressure (MAP) of 8±1 mmHg and tachycardia of 18±2 bpm (P<0.0005). Burimamide was without effect, however thioperamide elicited an increase in MAP of 4±1 mmHg (P<0.01), but no change in heart rate (HR). R-α-MH caused a 44% decrease in the average gain of the baroreflex (P=0.0001); this effect was antagonised by thioperamide. Thioperamide caused a parallel rightward shift in the barocurve with an increase in MAP of 5 mmHg (P<0.05). Burimamide had no effect on the baroreflex. The vagally mediated bradycardia elicited by the Bezold-Jarisch and nasopharyngeal reflexes was unaffected by H3 receptor ligand administration. R-α-MH (⩽10 μM) caused a thioperamide-sensitive depression of both sympathetic and vagal responses in guinea-pig atria, but had no effect in rabbit atria. As H3 receptor activation caused a significant decrease in baroreflex gain without affecting HR range, the former is unlikely to be simply due to peripheral sympatholysis (supported by the lack of effect in isolated atria). Central H3 receptors may have a tonic role in the baroreflex as thioperamide caused a rightward resetting of the barocurve. In contrast, the peripherally acting H3 antagonist burimamide was without effect. These findings suggest a role for central

  18. Molecular Basis for Differential Anion Binding and Proton Coupling in the Cl−/H+ Exchanger ClC-ec1

    PubMed Central

    Jiang, Tao; Han, Wei; Maduke, Merritt; Tajkhorshid, Emad

    2016-01-01

    Cl−/H+ transporters of the CLC superfamily form a ubiquitous class of membrane proteins that catalyze stoichiometrically coupled exchange of Cl− and H+ across biological membranes. CLC transporters exchange H+ for halides and certain polyatomic anions, but exclude cations, F−, and larger physiological anions, such as PO43− and SO42−. Despite comparable transport rates of different anions, the H+ coupling in CLC transporters varies significantly depending on the chemical nature of the transported anion. Although the molecular mechanism of exchange remains unknown, studies on bacterial ClC-ec1 transporter revealed that Cl− binding to the central anion-binding site (Scen) is crucial for the anion-coupled H+ transport. Here, we show that Cl−, F−, NO3−, and SCN− display distinct binding coordinations at the Scen site and are hydrated in different manners. Consistent with the observation of differential bindings, ClC-ec1 exhibits markedly variable ability to support the formation of the transient water wires, which are necessary to support the connection of the two H+ transfer sites (Gluin and Gluex), in the presence of different anions. While continuous water wires are frequently observed in the presence of physiologically transported Cl−, binding of F− or NO3− leads to the formation of pseudo-water-wires that are substantially different from the wires formed with Cl−. Binding of SCN−, however, eliminates the water wires altogether. These findings provide structural details of anion binding in ClC-ec1 and reveal a putative atomic-level mechanism for the decoupling of H+ transport to the transport of anions other than Cl−. PMID:26880377

  19. Structure--activity studies for alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropanoic acid receptors: acidic hydroxyphenylalanines.

    PubMed

    Hill, R A; Wallace, L J; Miller, D D; Weinstein, D M; Shams, G; Tai, H; Layer, R T; Willins, D; Uretsky, N J; Danthi, S N

    1997-09-26

    Antagonists of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropanoic acid (AMPA) receptors may have therapeutic potential as psychotropic agents. A series of mononitro- and dinitro-2- and 3-hydroxyphenylalanines was prepared, and their activity compared with willardiine, 5-nitrowillardiine, AMPA, and 2,4,5-trihydroxyphenylalanine (6-hydroxydopa) as inhibitors of specific [3H]AMPA and [3H]kainate binding in rat brain homogenates. The most active compounds were highly acidic (pKa 3-4), namely, 2-hydroxy-3,5-dinitro-DL-phenylalanine (13; [3H]AMPA IC50 approximately equal to 25 microM) and 3-hydroxy-2,4-dinitro-DL-phenylalanine (19; [3H]AMPA IC50 approximately equal to 5 microM). Two other dinitro-3-hydroxyphenylalanines, and 3,5-dinitro-DL-tyrosine, were considerably less active. Various mononitrohydroxyphenylalanines, which are less acidic, were also less active or inactive, and 2- and 3-hydroxyphenylalanine (o- and m-tyrosine) were inactive. Compounds 13 and 19, DL-willardiine (pKa 9.3, [3H]AMPA IC50 = 2 microM), and 5-nitro-DL-willardiine (pKa 6.4, [3H]AMPA IC50 = 0.2 microM) displayed AMPA > kainate selectivity in binding studies. Compound 19 was an AMPA-like agonist, but 13 was an antagonist in an AMPA-evoked norepinephrine release assay in rat hippocampal nerve endings. Also, compound 13 injected into the rat ventral pallidum antagonized the locomotor activity elicited by systemic amphetamine.

  20. The effect of maternal smoking and drinking during pregnancy upon (3)H-nicotine receptor brainstem binding in infants dying of the sudden infant death syndrome: initial observations in a high risk population.

    PubMed

    Duncan, Jhodie R; Randall, Leslie L; Belliveau, Richard A; Trachtenberg, Felicia L; Randall, Bradley; Habbe, Donald; Mandell, Federick; Welty, Thomas K; Iyasu, Solomon; Kinney, Hannah C

    2008-01-01

    The high rate of the sudden infant death syndrome (SIDS) in American Indians in the Northern Plains (3.5/1000) may reflect the high incidence of cigarette smoking and alcohol consumption during pregnancy. Nicotine, a neurotoxic component of cigarettes, and alcohol adversely affect nicotinic receptor binding and subsequent cholinergic development in animals. We measured (3)H-nicotine receptor binding in 16 brainstem nuclei in American Indian SIDS (n = 27) and controls (n = 6). In five nuclei related to cardiorespiratory control, (3)H-nicotinic binding decreased with increasing number of drinks (P < 0.03). There were no differences in binding in SIDS compared with controls, except upon stratification of prenatal exposures. In three mesopontine nuclei critical for arousal there were reductions (P < 0.04) in binding in controls exposed to cigarette smoke compared with controls without exposure; there was no difference between SIDS cases with or without exposure. This study suggests that maternal smoking and alcohol affects (3)H-nicotinic binding in the infant brainstem irrespective of the cause of death. It also suggests that SIDS cases are unable to respond to maternal smoking with the "normal" reduction seen in controls. Future studies are needed to establish the role of adverse prenatal exposures in altered brainstem neurochemistry in SIDS.

  1. [Antagonistic interaction between Clostridium butyricum and enterohemorrhagic Escherichia coli O157:H7].

    PubMed

    Takahashi, M; Taguchi, H; Yamaguchi, H; Osaki, T; Sakazaki, R; Kamiya, S

    1999-01-01

    Antagonistic interaction between Clostridium butyricum strain MIYAIRI 588 and enterohemorrhagic Esherichia coli (EHEC) strain O157:H7 006 was examined using streptomycin-treated SPF mice and germ free mice. All SPF mice pretreated with streptomycin were colonized with EHEC O157:H7. On the other hand, only 20% of the SPF mice pretreated with streptomycin and C. butyricum were colonized with EHEC O157:H7. In addition, germ free mice died within 4-7 days after infection with EHEC O157:H7. In contrast, all gnotobiotic mice mono-associated with C. butyricum survived after the challenge with EHEC O157:H7. Both the number of EHEC and the amounts of shiga-like cytotoxin (SLT, type 1 and type 2) in fecal contents of gnotobiotic mice treated with C. butyricum were less than those of mice infected with only EHEC O157:H7. In conclusion, the probiotic bacterium, C. butyricum strain MIYAIRI 588, has a preventive effect against EHEC O157:H7 infection.

  2. In vitro sensitivity of cholinesterases and [3H]oxotremorine-M binding in heart and brain of adult and aging rats to organophosphorus anticholinesterases.

    PubMed

    Mirajkar, Nikita; Pope, Carey N

    2008-10-15

    Organophosphorus (OP) insecticides elicit toxicity via acetylcholinesterase inhibition, allowing acetylcholine accumulation and excessive stimulation of cholinergic receptors. Some OP insecticides bind to additional macromolecules including butyrylcholinesterase and cholinergic receptors. While neurotoxicity from OP anticholinesterases has been extensively studied, effects on cardiac function have received less attention. We compared the in vitro sensitivity of acetylcholinesterase, butyrylcholinesterase and [(3)H]oxotremorine-M binding to muscarinic receptors in the cortex and heart of adult (3 months) and aging (18 months) rats to chlorpyrifos, methyl parathion and their active metabolites chlorpyrifos oxon and methyl paraoxon. Using selective inhibitors, the great majority of cholinesterase in brain was defined as acetylcholinesterase, while butyrylcholinesterase was the major cholinesterase in heart, regardless of age. In the heart, butyrylcholinesterase was markedly more sensitive than acetylcholinesterase to inhibition by chlorpyrifos oxon, and butyrylcholinesterase in tissues from aging rats was more sensitive than enzyme from adults, possibly due to differences in A-esterase mediated detoxification. Relatively similar differences were noted in brain. In contrast, acetylcholinesterase was more sensitive than butyrylcholinesterase to methyl paraoxon in both heart and brain, but no age-related differences were noted. Both oxons displaced [(3)H]oxotremorine-M binding in heart and brain of both age groups in a concentration-dependent manner. Chlorpyrifos had no effect but methyl parathion was a potent displacer of binding in heart and brain of both age groups. Such OP and age-related differences in interactions with cholinergic macromolecules may be important because of potential for environmental exposures to insecticides as well as the use of anticholinesterases in age-related neurological disorders.

  3. IN VITRO SENSITIVITY OF CHOLINESTERASES AND [3H]OXOTREMORINE-M BINDING IN HEART AND BRAIN OF ADULT AND AGING RATS TO ORGANOPHOSPHORUS ANTICHOLINESTERASES

    PubMed Central

    Mirajkar, Nikita; Pope, Carey N.

    2008-01-01

    Organophosphorus (OP) insecticides elicit toxicity via acetylcholinesterase inhibition, allowing acetylcholine accumulation and excessive stimulation of cholinergic receptors. Some OP insecticides bind to additional macromolecules including butyrylcholinesterase and cholinergic receptors. While neurotoxicity from OP anticholinesterases has been extensively studied, effects on cardiac function have received less attention. We compared the in vitro sensitivity of acetylcholinesterase, butyrylcholinesterase and [3H]oxotremorine-M binding to muscarinic receptors in the cortex and heart of adult (3 months) and aging (18 months) rats to chlorpyrifos, methyl parathion and their active metabolites chlorpyrifos oxon and methyl paraoxon. Using selective inhibitors, the great majority of cholinesterase in brain was defined as acetylcholinesterase, while butyrylcholinesterase was the major cholinesterase in heart, regardless of age. In the heart, butyrylcholinesterase was markedly more sensitive than acetylcholinesterase to inhibition by chlorpyrifos oxon, and butyrylcholinesterase in tissues from aging rats was more sensitive than enzyme from adults, possibly due to differences in A-esterase mediated detoxification. Relatively similar differences were noted in brain. In contrast, acetylcholinesterase was more sensitive than butyrylcholinesterase to methyl paraoxon in both heart and brain, but no age-related differences were noted. Both oxons displaced [3H]oxotremorine-M binding in heart and brain of both age groups in a concentration-dependent manner. Chlorpyrifos had no effect but methyl parathion was a potent displacer of binding in heart and brain of both age groups. Such OP and age-related differences in interactions with cholinergic macromolecules may be important because of potential for environmental exposures to insecticides as well as the use of anticholinesterases in age-related neurological disorders. PMID:18761328

  4. Stability of tramadol with three 5-HT3 receptor antagonists in polyolefin bags for patient-controlled delivery systems

    PubMed Central

    Chen, Fu-chao; Zhu, Jun; Li, Bin; Yuan, Fang-jun; Wang, Lin-hai

    2016-01-01

    Background Mixing 5-hydroxytryptamine-3 (5-HT3) receptor antagonists with patient-controlled analgesia (PCA) solutions of tramadol has been shown to decrease the incidence of nausea and vomiting associated with the use of tramadol PCA for postoperative pain. However, such mixtures are not commercially available, and the stability of the drug combinations has not been duly studied. The study aimed to evaluate the stability of tramadol with three 5-HT3 receptor antagonists in 0.9% sodium chloride injection for PCA administration. Materials and methods Test samples were prepared by adding 1,000 mg tramadol hydrochloride, 8 mg ondansetron hydrochloride, and 6 mg granisetron hydrochloride or 5 mg tropisetron hydrochloride to 100 mL of 0.9% sodium chloride injection in polyolefin bags. The samples were prepared in triplicates, stored at either 25°C or 4°C for 14 days, and assessed using the following compatibility parameters: precipitation, cloudiness, discoloration, and pH. Chemical stability was also determined using a validated high-pressure liquid chromatography method. Results All of the mixtures were clear and colorless throughout the initial observation period. No change in the concentration of tramadol hydrochloride occurred with any of the 5-HT3 receptor antagonists during the 14 days. Similarly, little or no loss of the 5-HT3 receptor antagonists occurred over the 14-day period. Conclusion Our results suggest that mixtures of tramadol hydrochloride, ondansetron hydrochloride, granisetron hydrochloride, or tropisetron hydrochloride in 0.9% sodium chloride injection were physically and chemically stable for 14 days when stored in polyolefin bags at both 4°C and 25°C. PMID:27350741

  5. Binding efficiency of recombinant collagen-binding basic fibroblast growth factors (CBD-bFGFs) and their promotion for NIH-3T3 cell proliferation.

    PubMed

    Wu, Zhenxu; Zhou, Yulai; Chen, Li; Hu, Mingxin; Wang, Yu; Li, Linlong; Wang, Zongliang; Zhang, Peibiao

    2018-03-01

    The recombinant basic fibroblast growth factor (bFGF) containing collagen-binding domain (CBD) has been found to be a potential therapeutic factor in tissue regeneration. However, its binding efficiency and quantification remain uncertain. In this research, massive recombinant bFGFs with good bioactivity for enhancing the proliferation of NIH-3T3 cells were achieved. An ELISA-based quantitative method was set up to investigate the binding efficiency of CBD-bFGFs on collagen films. It indicated that the CBDs significantly increased the collagen-binding ability of bFGF (P < .05), with the optimum binding condition first determined to be in the pH range of 7.5-9.5 (P < .05). Then, the relevant equations to calculate the binding density of bFGF, C-bFGF, and V-bFGF were acquired. Analysis confirmed that the bioactivity of immobilized bFGFs was well correlated with the density of growth factor on collagen films. Based on this research, the density of growth factor is a logical and applicable dosage unit for quantification of binding efficiency of growth factors, rather than traditional concentration of soluble growth factors in tissue engineering applications. © 2018 Wiley Periodicals, Inc.

  6. Structure/function relationships of calcitonin analogues as agonists, antagonists, or inverse agonists in a constitutively activated receptor cell system.

    PubMed

    Pozvek, G; Hilton, J M; Quiza, M; Houssami, S; Sexton, P M

    1997-04-01

    The structure/function relationship of salmon calcitonin (sCT) analogues was investigated in heterologous calcitonin receptor (CTR) expression systems. sCT analogues with progressive amino-terminal truncations intermediate of sCT-(1-32) to sCT-(8-32) were examined for their ability to act as agonists, antagonists, or inverse agonists. Two CTR cell clones, B8-H10 and G12-E12, which express approximately 5 million and 25,000 C1b receptors/cell, respectively, were used for this study. The B8-H10 clone has an approximately 80-fold increase in basal levels of intracellular cAMP due to constitutive activation of the overexpressed receptor. In whole-cell competition binding studies, sCT-(1-32) was more potent than any of its amino-terminally truncated analogues in competition for 125I-sCT binding. In cAMP accumulation studies, sCT-(1-32) and modified analogues sCT-(2-32) and sCT-(3-32) had agonist activities. SDZ-216-710, with an amino-terminal truncation of four amino acids, behaved as a partial agonist/antagonist, whereas amino-terminal truncations of six or seven amino acid residues produced a 16-fold reduction in basal cAMP levels and attenuated the response to the agonist sCT-(1-32) in the constitutively active CTR system. This inverse agonist effect was insensitive to pertussis toxin inhibition. In contrast, the inverse agonist activity of these peptides was not observed in the nonconstitutively active CTR system, in which sCT analogues with amino-terminal truncations of four or more amino acids behaved as neutral competitive antagonists. These results suggest that the inverse agonist activity is mediated by stabilization of the inactive state of the receptor, which does not couple to G protein, and attenuates basal signaling initiated by ligand-independent activation of the effector adenylyl cyclase.

  7. OPC-41061, a highly potent human vasopressin V2-receptor antagonist: pharmacological profile and aquaretic effect by single and multiple oral dosing in rats.

    PubMed

    Yamamura, Y; Nakamura, S; Itoh, S; Hirano, T; Onogawa, T; Yamashita, T; Yamada, Y; Tsujimae, K; Aoyama, M; Kotosai, K; Ogawa, H; Yamashita, H; Kondo, K; Tominaga, M; Tsujimoto, G; Mori, T

    1998-12-01

    The pharmacological profile and the acute and chronic aquaretic effects of OPC-41061, a novel nonpeptide human arginine vasopressin (AVP) V2-receptor antagonist, were respectively characterized in HeLa cells expressing cloned human AVP receptors and in conscious male rats. OPC-41061 antagonized [3H]-AVP binding to human V2-receptors (Ki = 0.43 +/- 0.06 nM) more potently than AVP (Ki = 0. 78 +/- 0.08 nM) or OPC-31260 (Ki = 9.42 +/- 0.90 nM). OPC-41061 also inhibited [3H]-AVP binding to human V1a-receptors (Ki = 12.3 +/- 0.8 nM) but not to human V1b-receptors, indicating that OPC-41061 was 29 times more selective for V2-receptors than for V1a-receptors. OPC-41061 inhibited cAMP production induced by AVP with no intrinsic agonist activity. In rats, OPC-41061 inhibited [3H]-AVP binding to V1a-receptors (Ki = 325 +/- 41 nM) and V2-receptors (Ki = 1.33 +/- 0. 30 nM), showing higher receptor selectivity (V1a/V2 = 244) than with human receptors. A single oral administration of OPC-41061 in rats clearly produced dose-dependent aquaresis. In treatment by multiple OPC-41061 dosing for 28 days at 1 and 10 mg/kg p.o. in rats, significant aquaretic effects were seen throughout the study period. As the result of aquaresis, hemoconcentration was seen at 4 hr postdosing although, no differences were seen in serum osmolality, sodium, creatinine and urea nitrogen concentrations at 24 hr postdosing. Furthermore, there was no difference in serum AVP concentration, pituitary AVP content or the number and affinity of AVP receptors in the kidney and liver at trough throughout the study period. These results demonstrate that OPC-41061 is a highly potent human AVP V2-receptor antagonist and produces clear aquaresis after single and multiple dosing, suggesting the usefulness in the treatment of various water retaining states.

  8. Oral tremor induced by the muscarinic agonist pilocarpine is suppressed by the adenosine A2A antagonists MSX-3 and SCH58261, but not the adenosine A1 antagonist DPCPX.

    PubMed

    Collins, Lyndsey E; Galtieri, Daniel J; Brennum, Lise T; Sager, Thomas N; Hockemeyer, Jörg; Müller, Christa E; Hinman, James R; Chrobak, James J; Salamone, John D

    2010-02-01

    Tremulous jaw movements in rats, which can be induced by dopamine (DA) antagonists, DA depletion, and cholinomimetics, have served as a useful model for studies of tremor. Although adenosine A(2A) antagonists can reduce the tremulous jaw movements induced by DA antagonists and DA depletion, there are conflicting reports about the interaction between adenosine antagonists and cholinomimetic drugs. The present studies investigated the ability of adenosine antagonists to reverse the tremorogenic effect of the muscarinic agonist pilocarpine. While the adenosine A(2A) antagonist MSX-3 was incapable of reversing the tremulous jaw movements induced by the 4.0mg/kg dose of pilocarpine, both MSX-3 and the adenosine A(2A) antagonist SCH58261 reversed the tremulous jaw movements elicited by 0.5mg/kg pilocarpine. Systemic administration of the adenosine A(1) antagonist DPCPX failed to reverse the tremulous jaw movements induced by either an acute 0.5mg/kg dose of the cholinomimetic pilocarpine or the DA D2 antagonist pimozide, indicating that the tremorolytic effects of adenosine antagonists may be receptor subtype specific. Behaviorally active doses of MSX-3 and SCH 58261 showed substantial in vivo occupancy of A(2A) receptors, but DPCPX did not. The results of these studies support the use of adenosine A(2A) antagonists for the treatment of tremor. Copyright 2009 Elsevier Inc. All rights reserved.

  9. Potent and long-acting corticotropin releasing factor (CRF) receptor 2 selective peptide competitive antagonists.

    PubMed

    Rivier, J; Gulyas, J; Kirby, D; Low, W; Perrin, M H; Kunitake, K; DiGruccio, M; Vaughan, J; Reubi, J C; Waser, B; Koerber, S C; Martinez, V; Wang, L; Taché, Y; Vale, W

    2002-10-10

    We present evidence that members of the corticotropin releasing factor (CRF) family assume distinct structures when interacting with the CRF(1) and CRF(2) receptors. Predictive methods, physicochemical measurements, and structure-activity relationship studies have suggested that CRF, its family members, and competitive antagonists such as astressin [cyclo(30-33)[DPhe(12),Nle(21),Glu(30),Lys(33),Nle(38)]hCRF((12-41))] assume an alpha-helical conformation when interacting with their receptors. We had shown that alpha-helical CRF((9-41)) and sauvagine showed some selectivity for CRF receptors other than that responsible for ACTH secretion(1) and later for CRF2.(2) More recently, we suggested the possibility of a helix-turn-helix motif around a turn encompassing residues 30-33(3) that would confer high affinity for both CRF(1) and CRF(2)(2,4) in agonists and antagonists of all members of the CRF family.(3) On the other hand, the substitutions that conferred ca. 100-fold CRF(2) selectivity to the antagonist antisauvagine-30 [[DPhe(11),His(12)]sauvagine((11-40))] did not confer such property to the corresponding N-terminally extended agonists. We find here that a Glu(32)-Lys(35) side chain to side chain covalent lactam constraint in hCRF and the corresponding Glu(31)-Lys(34) side chain to side chain covalent lactam constraint in sauvagine yield potent ligands that are selective for CRF(2). Additionally, we introduced deletions and substitutions known to increase duration of action to yield antagonists such as cyclo(31-34)[DPhe(11),His(12),C(alpha)MeLeu(13,39),Nle(17),Glu(31),Lys(34)]Ac-sauvagine((8-40)) (astressin(2)-B) with CRF(2) selectivities greater than 100-fold. CRF receptor autoradiography was performed in rat tissue known to express CRF(2) and CRF(1) in order to confirm that astressin(2)-B could indeed bind to established CRF(2) but not CRF(1) receptor-expressing tissues. Extended duration of action of astressin(2)-B vs that of antisauvagine-30 is demonstrated in

  10. Classification and virtual screening of androgen receptor antagonists.

    PubMed

    Li, Jiazhong; Gramatica, Paola

    2010-05-24

    Computational tools, such as quantitative structure-activity relationship (QSAR), are highly useful as screening support for prioritization of substances of very high concern (SVHC). From the practical point of view, QSAR models should be effective to pick out more active rather than inactive compounds, expressed as sensitivity in classification works. This research investigates the classification of a big data set of endocrine-disrupting chemicals (EDCs)-androgen receptor (AR) antagonists, mainly aiming to improve the external sensitivity and to screen for potential AR binders. The kNN, lazy IB1, and ADTree methods and the consensus approach were used to build different models, which improve the sensitivity on external chemicals from 57.1% (literature) to 76.4%. Additionally, the models' predictive abilities were further validated on a blind collected data set (sensitivity: 85.7%). Then the proposed classifiers were used: (i) to distinguish a set of AR binders into antagonists and agonists; (ii) to screen a combined estrogen receptor binder database to find out possible chemicals that can bind to both AR and ER; and (iii) to virtually screen our in-house environmental chemical database. The in silico screening results suggest: (i) that some compounds can affect the normal endocrine system through a complex mechanism binding both to ER and AR; (ii) new EDCs, which are nonER binders, but can in silico bind to AR, are recognized; and (iii) about 20% of compounds in a big data set of environmental chemicals are predicted as new AR antagonists. The priority should be given to them to experimentally test the binding activities with AR.

  11. Specific labelling of serotonin 5-HT(1B) receptors in rat frontal cortex with the novel, phenylpiperazine derivative, [3H]GR125,743. A pharmacological characterization.

    PubMed

    Millan, M J; Newman-Tancredi, A; Lochon, S; Touzard, M; Aubry, S; Audinot, V

    2002-04-01

    Although several tritiated agonists have been used for radiolabelling serotonin (5-hydroxytryptamine, 5-HT)(1B) receptors in rats, data with a selective, radiolabelled antagonist have not been presented. Inasmuch as [3H]GR125,743 specifically labels cloned, human and native guinea pig 5-HT(1B) receptors and has been employed for characterization of cerebral 5-HT(1B) receptor in the latter species [Eur. J. Pharmacol. 327 (1997) 247.], the present study evaluated its utility for characterization of native, cerebral 5-HT(1B) sites in the rat. In homogenates of frontal cortex, [3H]GR125,743 (0.8 nM) showed rapid association (t(1/2)=3.4 min), >90% specific binding and high affinity (K(d)=0.6 nM) for a homogeneous population of receptors with a density (B(max)) of 160 fmol/mg protein. In competition binding studies, affinities were determined for 15 chemically diverse 5-HT(1B) agonists, including 2-[5-[3-(4-methylsulphonylamino)benzyl-1,2,4-oxadiazol-5-yl]-1H-indole-3-yl]ethylamine (L694,247; pK(i), 10.4), 5-carboxamidotryptamine (5-CT; 9.7), 3-[3-(2-dimethylamino-ethyl)-1H-indol-6-yl]-N-(4-methoxybenzyl)acrylamide (GR46,611; 9.6), 5-methoxy-3-(1,2,5,6-tetrahydro-4-pyridinyl)-1H-indole (RU24,969; 9.5), dihydroergotamine (DHE; 8.6), 5-H-pyrrolo[3,2-b]pyridin-5-one,1,4-dihydro-3-(1,2,3,6-tetrahydro-4-pyridinyl (CP93,129; 8.4), anpirtoline (7.9), sumatriptan (7.4), 1-[2-(3-fluorophenyl)ethyl]-4-[3-[5-(1,2,4-triazol-4-yl)-1H-indol-3-yl]propyl]piperazine (L775,606; 6.4) and (minus sign)-1(S)-[2-[4-(4-methoxyphenyl)piperazin-1-yl]ethyl]-N-methyl-3,4-dihydro-1H-2-benzopyran-6-carboxamide (PNU109,291; <5.0). Similarly, affinities were established for 13 chemically diverse antagonists, including N-[4-methoxy-3-(4-methylpiperazin-1-yl)phenyl]-3-methyl-4-(4-pyridyl)benzamide (GR125,743; pK(i), 9.1), (-)cyanopindolol (9.0), (-)-tertatolol (8.2), N-(4-methoxy-3-(4-methylpiperazin-1-yl)phenyl]-2'-methyl-4'-(5-methyl-1,2,4-oxadiozol-3-yl)biphenyl-4-carboxamide (GR127,935; 8.2), N-[3

  12. Dopamine D2 receptors in the cerebral cortex: distribution and pharmacological characterization with [3H]raclopride.

    PubMed Central

    Lidow, M S; Goldman-Rakic, P S; Rakic, P; Innis, R B

    1989-01-01

    An apparent involvement of dopamine in the regulation of cognitive functions and the recognition of a widespread dopaminergic innervation of the cortex have focused attention on the identity of cortical dopamine receptors. However, only the presence and distribution of dopamine D1 receptors in the cortex have been well documented. Comparable information on cortical D2 sites is lacking. We report here the results of binding studies in the cortex and neostriatum of rat and monkey using the D2 selective antagonist [3H]raclopride. In both structures [3H]raclopride bound in a sodium-dependent and saturable manner to a single population of sites with pharmacological profiles of dopamine D2 receptors. D2 sites were present in all regions of the cortex, although their density was much lower than in the neostriatum. The density of these sites in both monkey and, to a lesser extent, rat cortex displayed a rostral-caudal gradient with highest concentrations in the prefrontal and lowest concentrations in the occipital cortex, corresponding to dopamine levels in these areas. Thus, the present study establishes the presence and widespread distribution of dopamine D2 receptors in the cortex. PMID:2548214

  13. The Structural Interface between HIV-1 Vif and Human APOBEC3H.

    PubMed

    Ooms, Marcel; Letko, Michael; Simon, Viviana

    2017-03-01

    Human APOBEC3H (A3H) is a cytidine deaminase that inhibits HIV-1 replication. To evade this restriction, the HIV-1 Vif protein binds A3H and mediates its proteasomal degradation. To date, little information on the Vif-A3H interface has been available. To decipher how both proteins interact, we first mapped the Vif-binding site on A3H by functionally testing a large set of A3H mutants in single-cycle infectivity and replication assays. Our data show that the two A3H α-helixes α3 and α4 represent the Vif-binding site of A3H. We next used viral adaptation and a set of Vif mutants to identify novel, reciprocal Vif variants that rescued viral infectivity in the presence of two Vif-resistant A3H mutants. These A3H-Vif interaction points were used to generate the first A3H-Vif structure model, which revealed that the A3H helixes α3 and α4 interact with the Vif β-sheet (β2-β5). This model is in good agreement with previously reported Vif and A3H amino acids important for interaction. Based on the predicted A3H-Vif interface, we tested additional points of contact, which validated our model. Moreover, these experiments showed that the A3H and A3G binding sites on HIV-1 Vif are largely distinct, with both host proteins interacting with Vif β-strand 2. Taken together, this virus-host interface model explains previously reported data and will help to identify novel drug targets to combat HIV-1 infection. IMPORTANCE HIV-1 needs to overcome several intracellular restriction factors in order to replicate efficiently. The human APOBEC3 locus encodes seven proteins, of which A3D, A3F, A3G, and A3H restrict HIV-1. HIV encodes the Vif protein, which binds to the APOBEC3 proteins and leads to their proteasomal degradation. No HIV-1 Vif-APOBEC3 costructure exists to date despite extensive research. We and others previously generated HIV-1 Vif costructure models with A3G and A3F by mapping specific contact points between both proteins. Here, we applied a similar approach to HIV

  14. The pharmacology of GR203040, a novel, potent and selective non-peptide tachykinin NK1 receptor antagonist.

    PubMed Central

    Beattie, D. T.; Beresford, I. J.; Connor, H. E.; Marshall, F. H.; Hawcock, A. B.; Hagan, R. M.; Bowers, J.; Birch, P. J.; Ward, P.

    1995-01-01

    1. The in vitro and in vivo pharmacology of GR203040 ((2S, 3S)-2-methoxy-5-tetrazol-1-yl-benzyl-(2-phenyl-piperidin-3-y l)-amine), a novel, highly potent and selective non-peptide tachykinin NK1 receptor antagonist, was investigated in the present study. 2. GR203040 potently inhibited [3H]-substance P binding to human NK1 receptors expressed in Chinese hamster ovary (CHO) and U373 MG astrocytoma cells, and NK1 receptors in ferret and gerbil cortex (pKi values of 10.3, 10.5, 10.1 and 10.1 respectively). GR203040 had lower affinity at rat NK1 receptors (pKi = 8.6) and little affinity for human NK2 receptors (pKi < 5.0) in CHO cells and NK3 receptors in guinea-pig cortex (pKi < 6.0). With the exception of the histamine H1 receptor (pIC50 = 7.5). GR203040 had little affinity (pIC50 < 6.0) at all non-NK1 receptors and ion channels examined. Furthermore, GR203040 produced only weak inhibition of Na+ currents in SH-SY5Y neuroblastoma and superior cervical ganglion cells (pIC50 values < 4.0). GR203040 produced only weak antagonism of Ca(2+)-evoked contractions of rat isolated portal vein (pKn = 4.1). The enantiomer of GR203040, GR205608 (2R, 3R)-2-methoxy-5-tetrazol-1-yl-benzyl-(2-phenyl-piperidin-3-y l)-amine), had 10,000 fold lower affinity at the human NK1 receptor expressed in CHO cells (pKi = 6.3). 3. In gerbil ex vivo binding experiments, GR203040 produced a dose-dependent inhibition of the binding of [3H]-substance P to cerebral cortical membranes (ED50 = 15 micrograms kg-1 s.c. and 0.42 mg kg-1 p.o.). At 10 micrograms kg-1 s.c., the inhibition of [3H]-substance P binding was maintained for > 6 h. In the rat, GR203040 was less potent (ED50 = 15.4 mg kg-1 s.c.) probably reflecting, at least in part, its lower affinity at the rat NK1 receptor. 4. In guinea-pig isolated ileum and dog isolated middle cerebral and basilar arteries, GR203040 produced a rightward displacement of the concentration-effect curves to substance P methyl ester (SPOMe) with suppression of the

  15. In silico simulations of STAT1 and STAT3 inhibitors predict SH2 domain cross-binding specificity.

    PubMed

    Szelag, Malgorzata; Sikorski, Krzysztof; Czerwoniec, Anna; Szatkowska, Katarzyna; Wesoly, Joanna; Bluyssen, Hans A R

    2013-11-15

    Signal transducers and activators of transcription (STATs) comprise a family of transcription factors that are structurally related and which participate in signaling pathways activated by cytokines, growth factors and pathogens. Activation of STAT proteins is mediated by the highly conserved Src homology 2 (SH2) domain, which interacts with phosphotyrosine motifs for specific contacts between STATs and receptors and for STAT dimerization. By generating new models for human (h)STAT1, hSTAT2 and hSTAT3 we applied comparative in silico docking to determine SH2-binding specificity of the STAT3 inhibitor stattic, and of fludarabine (STAT1 inhibitor). Thus, we provide evidence that by primarily targeting the highly conserved phosphotyrosine (pY+0) SH2 binding pocket stattic is not a specific hSTAT3 inhibitor, but is equally effective towards hSTAT1 and hSTAT2. This was confirmed in Human Micro-vascular Endothelial Cells (HMECs) in vitro, in which stattic inhibited interferon-α-induced phosphorylation of all three STATs. Likewise, fludarabine inhibits both hSTAT1 and hSTAT3 phosphorylation, but not hSTAT2, by competing with the highly conserved pY+0 and pY-X binding sites, which are less well-preserved in hSTAT2. Moreover we observed that in HMECs in vitro fludarabine inhibits cytokine and lipopolysaccharide-induced phosphorylation of hSTAT1 and hSTAT3 but does not affect hSTAT2. Finally, multiple sequence alignment of STAT-SH2 domain sequences confirmed high conservation between hSTAT1 and hSTAT3, but not hSTAT2, with respect to stattic and fludarabine binding sites. Together our data offer a molecular basis that explains STAT cross-binding specificity of stattic and fludarabine, thereby questioning the present selection strategies of SH2 domain-based competitive small inhibitors. © 2013 Elsevier B.V. All rights reserved.

  16. Serotonin storage pools in basophil leukemia and mast cells: characterization of two types of serotonin binding protein and radioautographic analysis of the intracellular distribution of (/sup 3/H)serotonin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamir, H.; Theoharides, T.C.; Gershon, M.D.

    1982-06-01

    The binding of serotonin to protein(s) derived from rat basophil leukemia (RBL) cells and mast cells was studied. Two types of serotonin binding protein in RBL cells was found. These proteins differed from one another in molecular weight and eluted in separate peaks from sephadex G-200 columns. Peak I protein (KD = 1.9 x 10/sup -6/ M) was a glycoprotein that bound to concanavalin A (Con A); Peak II protein (KD/sub 1/ = 4.5 x 10/sup -/8 M; KD/sub 2/ = 3.9 x 10/sup -6/ M) did not bind to Con A. Moreover, binding of (/sup 3/H)serotonin to protein ofmore » Peak I was sensitive to inhibition by reserpine, while binding of (/sup 3/H)serotonin to protein of Peak II resisted inhibition by that drug. Other differences between the two types of binding protein were found, the most significant of which was the far more vigorous conditions of homogenization required to extract Peak I than Peak II protein. Electron microscope radioautographic analysis of the intracellular distribution of (/sup 3/H) serotonin taken up in vitro by RBL cells or in vivo by murine mast cells indicated that essentially all of the labeled amine was located in cytoplasmic granules.No evidence for a pool in the cytosol was found and all granules were capable of becoming labeled. The presence of two types of intracellular serotonin binding proteins in these cells may indicate that there are two intracellular storage compartments for the amine. Both may be intragranular, but Peak I protein may be associated with the granular membrane while Peak II protein may be more free within the granular core. Different storage proteins may help to explain the differential release of amines from mast cell granules.« less

  17. Negative cooperativity in binding of muscarinic receptor agonists and GDP as a measure of agonist efficacy

    PubMed Central

    Jakubík, J; Janíčková, H; El-Fakahany, EE; Doležal, V

    2011-01-01

    BACKGROUND AND PURPOSE Conventional determination of agonist efficacy at G-protein coupled receptors is measured by stimulation of guanosine-5′-γ−thiotriphosphate (GTPγS) binding. We analysed the role of guanosine diphosphate (GDP) in the process of activation of the M2 muscarinic acetylcholine receptor and provide evidence that negative cooperativity between agonist and GDP binding is an alternative measure of agonist efficacy. EXPERIMENTAL APPROACH Filtration and scintillation proximity assays measured equilibrium binding as well as binding kinetics of [35S]GTPγS and [3H]GDP to a mixture of G-proteins as well as individual classes of G-proteins upon binding of structurally different agonists to the M2 muscarinic acetylcholine receptor. KEY RESULTS Agonists displayed biphasic competition curves with the antagonist [3H]-N-methylscopolamine. GTPγS (1 µM) changed the competition curves to monophasic with low affinity and 50 µM GDP produced a similar effect. Depletion of membrane-bound GDP increased the proportion of agonist high-affinity sites. Carbachol accelerated the dissociation of [3H]GDP from membranes. The inverse agonist N-methylscopolamine slowed GDP dissociation and GTPγS binding without changing affinity for GDP. Carbachol affected both GDP association with and dissociation from Gi/o G-proteins but only its dissociation from Gs/olf G-proteins. CONCLUSIONS AND IMPLICATIONS These findings suggest the existence of a low-affinity agonist-receptor conformation complexed with GDP-liganded G-protein. Also the negative cooperativity between GDP and agonist binding at the receptor/G-protein complex determines agonist efficacy. GDP binding reveals differences in action of agonists versus inverse agonists as well as differences in activation of Gi/o versus Gs/olf G-proteins that are not identified by conventional GTPγS binding. PMID:20958290

  18. Circadian and estral changes in the hypothalamic prostaglandin e content and [h]prostaglandin e binding in female rats.

    PubMed

    Bommelaer-Bayet, M C; Wisner, A; Renard, C A; Levi, F A; Dray, F

    1990-04-01

    Abstract Prostaglandin E(2), (PGE(2)) is involved in the luteinizing hormone-releasing hormone-stimulated luteinizing hormone surge in female rats and may act via specific membrane receptors. The following studies were performed to determine whether there were any changes in the hypothalamic PGE(2) binding and/or PGE(2) content which were specific to proestrus and not to the rest of the estrous cycle. Groups of female Wistar rats were sacrificed at 3-h intervals throughout the estrous cycle to determine both the circadian and circaestral changes in the hypothalamic PGE(2) content and [(3)H]PGE(2) binding. The hypothalamic PGE(2) content was maximal at 1700 h on each of the 4 consecutive days of the estrous cycle but was independent of the stage of the cycle. [(3)H]PGE(2) binding also displayed a circadian rhythm; the lowest binding occurred near the circadian peak of PGE(2), suggesting that the PGE(2) binding sites were occupied by endogenous PGE(2). Since such circadian rhythms were not observed in the hypothalamus of male rats, they may be under the control of ovarian steroids. Also, since PGE(2) binding and the PGE(2) content both exhibit a diurnal pattern independent of the day of the cycle, there may be changes in the PGE(2) receptor-mediated process coupled to an adenylyl cyclase which could explain the luteinizing hormone surge in proestrus.

  19. The RNA-binding protein, ZC3H14, is required for proper poly(A) tail length control, expression of synaptic proteins, and brain function in mice.

    PubMed

    Rha, Jennifer; Jones, Stephanie K; Fidler, Jonathan; Banerjee, Ayan; Leung, Sara W; Morris, Kevin J; Wong, Jennifer C; Inglis, George Andrew S; Shapiro, Lindsey; Deng, Qiudong; Cutler, Alicia A; Hanif, Adam M; Pardue, Machelle T; Schaffer, Ashleigh; Seyfried, Nicholas T; Moberg, Kenneth H; Bassell, Gary J; Escayg, Andrew; García, Paul S; Corbett, Anita H

    2017-10-01

    A number of mutations in genes that encode ubiquitously expressed RNA-binding proteins cause tissue specific disease. Many of these diseases are neurological in nature revealing critical roles for this class of proteins in the brain. We recently identified mutations in a gene that encodes a ubiquitously expressed polyadenosine RNA-binding protein, ZC3H14 (Zinc finger CysCysCysHis domain-containing protein 14), that cause a nonsyndromic, autosomal recessive form of intellectual disability. This finding reveals the molecular basis for disease and provides evidence that ZC3H14 is essential for proper brain function. To investigate the role of ZC3H14 in the mammalian brain, we generated a mouse in which the first common exon of the ZC3H14 gene, exon 13 is removed (Zc3h14Δex13/Δex13) leading to a truncated ZC3H14 protein. We report here that, as in the patients, Zc3h14 is not essential in mice. Utilizing these Zc3h14Δex13/Δex13mice, we provide the first in vivo functional characterization of ZC3H14 as a regulator of RNA poly(A) tail length. The Zc3h14Δex13/Δex13 mice show enlarged lateral ventricles in the brain as well as impaired working memory. Proteomic analysis comparing the hippocampi of Zc3h14+/+ and Zc3h14Δex13/Δex13 mice reveals dysregulation of several pathways that are important for proper brain function and thus sheds light onto which pathways are most affected by the loss of ZC3H14. Among the proteins increased in the hippocampi of Zc3h14Δex13/Δex13 mice compared to control are key synaptic proteins including CaMK2a. This newly generated mouse serves as a tool to study the function of ZC3H14 in vivo. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Virtual High-Throughput Screening To Identify Novel Activin Antagonists

    PubMed Central

    Zhu, Jie; Mishra, Rama K.; Schiltz, Gary E.; Makanji, Yogeshwar; Scheidt, Karl A.; Mazar, Andrew P.; Woodruff, Teresa K.

    2015-01-01

    Activin belongs to the TGFβ superfamily, which is associated with several disease conditions, including cancer-related cachexia, preterm labor with delivery, and osteoporosis. Targeting activin and its related signaling pathways holds promise as a therapeutic approach to these diseases. A small-molecule ligand-binding groove was identified in the interface between the two activin βA subunits and was used for a virtual high-throughput in silico screening of the ZINC database to identify hits. Thirty-nine compounds without significant toxicity were tested in two well-established activin assays: FSHβ transcription and HepG2 cell apoptosis. This screening workflow resulted in two lead compounds: NUCC-474 and NUCC-555. These potential activin antagonists were then shown to inhibit activin A-mediated cell proliferation in ex vivo ovary cultures. In vivo testing showed that our most potent compound (NUCC-555) caused a dose-dependent decrease in FSH levels in ovariectomized mice. The Blitz competition binding assay confirmed target binding of NUCC-555 to the activin A:ActRII that disrupts the activin A:ActRII complex’s binding with ALK4-ECD-Fc in a dose-dependent manner. The NUCC-555 also specifically binds to activin A compared with other TGFβ superfamily member myostatin (GDF8). These data demonstrate a new in silico-based strategy for identifying small-molecule activin antagonists. Our approach is the first to identify a first-in-class small-molecule antagonist of activin binding to ALK4, which opens a completely new approach to inhibiting the activity of TGFβ receptor superfamily members. in addition, the lead compound can serve as a starting point for lead optimization toward the goal of a compound that may be effective in activin-mediated diseases. PMID:26098096

  1. Additional regulatory activities of MrkH for the transcriptional expression of the Klebsiella pneumoniae mrk genes: Antagonist of H-NS and repressor.

    PubMed

    Ares, Miguel A; Fernández-Vázquez, José L; Pacheco, Sabino; Martínez-Santos, Verónica I; Jarillo-Quijada, Ma Dolores; Torres, Javier; Alcántar-Curiel, María D; González-Y-Merchand, Jorge A; De la Cruz, Miguel A

    2017-01-01

    Klebsiella pneumoniae is a common opportunistic pathogen causing nosocomial infections. One of the main virulence determinants of K. pneumoniae is the type 3 pilus (T3P). T3P helps the bacterial interaction to both abiotic and biotic surfaces and it is crucial for the biofilm formation. T3P is genetically organized in three transcriptional units: the mrkABCDF polycistronic operon, the mrkHI bicistronic operon and the mrkJ gene. MrkH is a regulatory protein encoded in the mrkHI operon, which positively regulates the mrkA pilin gene and its own expression. In contrast, the H-NS nucleoid protein represses the transcriptional expression of T3P. Here we reported that MrkH and H-NS positively and negatively regulate mrkJ expression, respectively, by binding to the promoter of mrkJ. MrkH protein recognized a sequence located at position -63.5 relative to the transcriptional start site of mrkJ gene. Interestingly, our results show that, in addition to its known function as classic transcriptional activator, MrkH also positively controls the expression of mrk genes by acting as an anti-repressor of H-NS; moreover, our results support the notion that high levels of MrkH repress T3P expression. Our data provide new insights about the complex regulatory role of the MrkH protein on the transcriptional control of T3P in K. pneumoniae.

  2. Additional regulatory activities of MrkH for the transcriptional expression of the Klebsiella pneumoniae mrk genes: Antagonist of H-NS and repressor

    PubMed Central

    Ares, Miguel A.; Fernández-Vázquez, José L.; Pacheco, Sabino; Martínez-Santos, Verónica I.; Jarillo-Quijada, Ma. Dolores; Torres, Javier; Alcántar-Curiel, María D.; González-y-Merchand, Jorge A.; De la Cruz, Miguel A.

    2017-01-01

    Klebsiella pneumoniae is a common opportunistic pathogen causing nosocomial infections. One of the main virulence determinants of K. pneumoniae is the type 3 pilus (T3P). T3P helps the bacterial interaction to both abiotic and biotic surfaces and it is crucial for the biofilm formation. T3P is genetically organized in three transcriptional units: the mrkABCDF polycistronic operon, the mrkHI bicistronic operon and the mrkJ gene. MrkH is a regulatory protein encoded in the mrkHI operon, which positively regulates the mrkA pilin gene and its own expression. In contrast, the H-NS nucleoid protein represses the transcriptional expression of T3P. Here we reported that MrkH and H-NS positively and negatively regulate mrkJ expression, respectively, by binding to the promoter of mrkJ. MrkH protein recognized a sequence located at position -63.5 relative to the transcriptional start site of mrkJ gene. Interestingly, our results show that, in addition to its known function as classic transcriptional activator, MrkH also positively controls the expression of mrk genes by acting as an anti-repressor of H-NS; moreover, our results support the notion that high levels of MrkH repress T3P expression. Our data provide new insights about the complex regulatory role of the MrkH protein on the transcriptional control of T3P in K. pneumoniae. PMID:28278272

  3. Vaccine-elicited antibody that neutralizes H5N1 influenza and variants binds the receptor site and polymorphic sites

    DOE PAGES

    Winarski, Katie L.; Thornburg, Natalie J.; Yu, Yingchun; ...

    2015-07-13

    Antigenic drift of circulating seasonal influenza viruses necessitates an international vaccine effort to reduce the impact on human health. A critical feature of the seasonal vaccine is that it stimulates an already primed immune system to diversify memory B cells to recognize closely related, but antigenically distinct, influenza glycoproteins (hemagglutinins). Influenza pandemics arise when hemagglutinins to which no preexisting adaptive immunity exists acquire the capacity to infect humans. Hemagglutinin 5 is one subtype to which little preexisting immunity exists and is only a few acquired mutations away from the ability to transmit efficiently between ferrets, and possibly humans. In thismore » paper, we describe the structure and molecular mechanism of neutralization by H5.3, a vaccine-elicited antibody that neutralizes hemagglutinin 5 viruses and variants with expanded host range. H5.3 binds in the receptor-binding site, forming contacts that recapitulate many of the sialic acid interactions, as well as multiple peripheral interactions, yet is not sensitive to mutations that alter sialic acid binding. H5.3 is highly specific for a subset of H5 strains, and this specificity arises from interactions to the periphery of the receptor-binding site. Finally, H5.3 is also extremely potent, despite retaining germ line-like conformational flexibility.« less

  4. Vaccine-elicited antibody that neutralizes H5N1 influenza and variants binds the receptor site and polymorphic sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winarski, Katie L.; Thornburg, Natalie J.; Yu, Yingchun

    Antigenic drift of circulating seasonal influenza viruses necessitates an international vaccine effort to reduce the impact on human health. A critical feature of the seasonal vaccine is that it stimulates an already primed immune system to diversify memory B cells to recognize closely related, but antigenically distinct, influenza glycoproteins (hemagglutinins). Influenza pandemics arise when hemagglutinins to which no preexisting adaptive immunity exists acquire the capacity to infect humans. Hemagglutinin 5 is one subtype to which little preexisting immunity exists and is only a few acquired mutations away from the ability to transmit efficiently between ferrets, and possibly humans. In thismore » paper, we describe the structure and molecular mechanism of neutralization by H5.3, a vaccine-elicited antibody that neutralizes hemagglutinin 5 viruses and variants with expanded host range. H5.3 binds in the receptor-binding site, forming contacts that recapitulate many of the sialic acid interactions, as well as multiple peripheral interactions, yet is not sensitive to mutations that alter sialic acid binding. H5.3 is highly specific for a subset of H5 strains, and this specificity arises from interactions to the periphery of the receptor-binding site. Finally, H5.3 is also extremely potent, despite retaining germ line-like conformational flexibility.« less

  5. Quantitative structure-activity relationships (QSAR) of some 2,2-diphenyl propionate (DPP) derivatives of muscarinic antagonists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, R.K.; Breuer, E.; Padilla, F.N.

    1987-05-01

    QSAR between biological activities and molecular-chemical properties were investigated to aid in designing more effective and potent antimuscarinic pharmacophores. A molecular modeling program was used to calculate geometrical and topological values of a series of DPP pharmacophores. The newly synthesized pharmacophores were tested for their antagonist activities by: (1) inhibition of (N-methyl-/sup 3/H)scopolamine binding assay to the muscarinic receptors of N4TG1 neuroblastoma cells; (2) blocking of acetylcholine-induced contraction of guinea pig ileum; and (3) inhibition of carbachol-induced ..cap alpha..-amylase release from rat pancreas. The differences in the log of these biological activities were directly and significantly related to the distancesmore » between the carbonyl oxygen of the DPP and the quaternary nitrogen of the modified pharmacophores. The biological activities, while depending on each particular assay, varied between three and four logs of activity. The charge remained the same in all the pharmacophores. There were no QSAR correlations between molecular volume, molecular connectivity, or principle moments and their antagonistic activities, although multivariate QSAR was not employed. Thus, based on distance geometry, potent muscarinic pharmacophores can be predicted.« less

  6. Hit-to-lead optimization of 2-(1H-pyrazol-1-yl)-thiazole derivatives as a novel class of EP1 receptor antagonists.

    PubMed

    Atobe, Masakazu; Naganuma, Kenji; Kawanishi, Masashi; Morimoto, Akifumi; Kasahara, Ken-ichi; Ohashi, Shigeki; Suzuki, Hiroko; Hayashi, Takahiko; Miyoshi, Shiro

    2013-11-15

    We describe a medicinal chemistry approach to generate a series of 2-(1H-pyrazol-1-yl)thiazole compounds that act as selective EP1 receptor antagonists. The obtained results suggest that compound 12 provides the best EP1 receptor antagonist activity and demonstrates good oral pharmacokinetics. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. L-689,660, a novel cholinomimetic with functional selectivity for M1 and M3 muscarinic receptors.

    PubMed Central

    Hargreaves, R. J.; McKnight, A. T.; Scholey, K.; Newberry, N. R.; Street, L. J.; Hutson, P. H.; Semark, J. E.; Harley, E. A.; Patel, S.; Freedman, S. B.

    1992-01-01

    1. L-689,660, 1-azabicyclo[2.2.2]octane, 3-(6-chloropyrazinyl)maleate, a novel cholinomimetic, demonstrated high affinity binding (pKD (apparent) 7.42) at rat cerebral cortex muscarinic receptors. L-689,660 had a low ratio (34) of pKD (apparent) values for the displacement of binding of the antagonist ([3H]-N-methylscopolamine ([3H]-NMS) compared with the displacement of the agonist [3H]-oxotremorine-M ([3H]-Oxo-M), in rat cerebral cortex. Low NMS/Oxo-M ratios have been shown previously to be a characteristic of compounds that are low efficacy partial agonists with respect to stimulation of phosphatidyl inositol turnover in the cerebral cortex. 2. L-689,660 showed no muscarinic receptor subtype selectivity in radioligand binding assays but showed functional selectivity in pharmacological assays. At M1 muscarinic receptors in the rat superior cervical ganglion, L-689,660 was a potent (pEC50 7.3 +/- 0.2) full agonist in comparison with (+/-)-muscarine. At M3 receptors in the guinea-pig ileum myenteric plexus-longitudinal muscle or in trachea, L-689,660 was again a potent agonist (pEC50 7.5 +/- 0.2 and 7.7 +/- 0.3 respectively) but had a lower maximum response than carbachol. In contrast L-689,660 was an antagonist at M2 receptors in guinea-pig atria (pA2 7.2 (95% confidence limits 7, 7.4)) and at muscarinic autoreceptors in rat hippocampal slices. 3. The putative M1-selective muscarinic agonist, AF102B (cis-2-methylspiro-(1,3-oxathiolane 5,3')-quinuclidine hydrochloride) was found to have a profile similar to L-689,660 but had up to 100 times less affinity in binding and functional assays.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1422595

  8. A Cyclic Tetrapeptide (“Cyclodal”) and Its Mirror-Image Isomer Are Both High-Affinity μ Opioid Receptor Antagonists

    PubMed Central

    Weltrowska, Grazyna; Nguyen, Thi M.-D.; Chung, Nga N.; Wood, JodiAnne; Ma, Xiaoyu; Guo, Jason; Wilkes, Brian C.; Ge, Yang; Laferrière, André; Coderre, Terence J.; Schiller, Peter W.

    2016-01-01

    Head-to-tail cyclization of the μ opioid receptor (MOR) agonist [Dmt1]DALDA (H-Dmt-d-Arg-Phe-Lys-NH2 (9; Dmt = 2′,6′-dimethyltyrosine) resulted in a highly active, selective MOR antagonist, c[-d-Arg-Phe-Lys-Dmt-] (1) (“cyclodal”), with subnanomolar binding affinity. A docking study of cyclodal using the crystal structure of MOR in the inactive form showed a unique binding mode with the two basic residues of the ligand forming salt bridges with the Asp127 and Glu229 receptor residues. Cyclodal showed high plasma stability and was able to cross the blood–brain barrier to reverse morphine-induced, centrally mediated analgesia when given intravenously. Surprisingly, the mirror-image isomer (optical antipode) of cyclodal, c[-Arg-d-Phe-d-Lys-d-Dmt-] (2), also turned out to be a selective MOR antagonist with 1 nM binding affinity, and thus, these two compounds represent the first example of mirror image opioid receptor ligands with both optical antipodes having high binding affinity. Reduction of the Lys-Dmt peptide bond in cyclodal resulted in an analogue, c[-d-Arg-Phe-LysΨ[CH2NH]Dmt-] (8), with MOR agonist activity. PMID:27676089

  9. Discovery of 1-[9-(4-chlorophenyl)-8-(2-chlorophenyl)-9H-purin-6-yl]-4-ethylaminopiperidine-4-carboxylic acid amide hydrochloride (CP-945,598), a novel, potent, and selective cannabinoid type 1 receptor antagonist.

    PubMed

    Griffith, David A; Hadcock, John R; Black, Shawn C; Iredale, Philip A; Carpino, Philip A; DaSilva-Jardine, Paul; Day, Robert; DiBrino, Joseph; Dow, Robert L; Landis, Margaret S; O'Connor, Rebecca E; Scott, Dennis O

    2009-01-22

    We report the structure-activity relationships, design, and synthesis of the novel cannabinoid type 1 (CB1) receptor antagonist 3a (CP-945,598). Compound 3a showed subnanomolar potency at human CB1 receptors in binding (Ki = 0.7 nM) and functional assays (Ki = 0.12 nM). In vivo, compound 3a reversed cannabinoid agonist-mediated responses, reduced food intake, and increased energy expenditure and fat oxidation in rodents.

  10. One pot synthesis of some new substituted hexahydro 2H-1,3-benzoxazine derivatives.

    PubMed

    Safak, C; Simsek, R; Altas, Y; Erol, K; Boydag, S

    1996-09-01

    In this paper, we synthesized nineteen new compounds having 2,4-diaryl-5-oxohexahydro-2H-1,3-benzoxazine structure by the reaction of 1,3-cyclohexanedione, aromatic aldehyde and ammonium acetate. In addition, we evaluated calcium antagonistic activity of these compounds versus nicardipine.

  11. High doses of recombinant mannan-binding lectin inhibit the binding of influenza A(H1N1)pdm09 virus with cells expressing DC-SIGN.

    PubMed

    Yu, Lei; Shang, Shiqiang; Tao, Ran; Wang, Caiyun; Zhang, Li; Peng, Hao; Chen, Yinghu

    2017-07-01

    The pandemic influenza A (H1N1)pdm09 virus continues to be a threat to human health. Low doses of mannan-binding lectin (MBL) (<1 μg/mL) were shown not to protect against influenza A(H1N1)pdm09 infection. However, the effect of high doses of MBL has not been investigated. Dendritic cell-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN) has been proposed as an alternative receptor for influenza A(H1N1)pdm09 virus. In this study, we examined the expression of DC-SIGN on DCs as well as on acute monocytic leukemia cell line, THP-1. High doses of recombinant or human MBL inhibited binding of influenza A(H1N1)pdm09 to both these cell types in the presence of complement derived from bovine serum. Further, anti-DC-SIGN monoclonal antibody inhibited binding of influenza A(H1N1)pdm09 to both DC-SIGN-expressing DCs and THP-1 cells. This study demonstrates that high doses of MBL can inhibit binding of influenza A(H1N1)pdm09 virus to DC-SIGN-expressing cells in the presence of complement. Our results suggest that DC-SIGN may be an alternative receptor for influenza A(H1N1)pdm09 virus. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  12. Structural Basis for a Switch in Receptor Binding Specificity of Two H5N1 Hemagglutinin Mutants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Xueyong; Viswanathan, Karthik; Raman, Rahul

    Avian H5N1 influenza viruses continue to spread in wild birds and domestic poultry with sporadic infection in humans. Receptor binding specificity changes are a prerequisite for H5N1 viruses and other zoonotic viruses to be transmitted among humans. Previous reported hemagglutinin (HA) mutants from ferret-transmissible H5N1 viruses of A/Viet Nam/1203/04 and A/Indonesia/5/05 showed slightly increased, but still very weak, binding to human receptors. From mutagenesis and glycan array studies, we previously identified two H5N1 HA mutants that could more effectively switch receptor specificity to human-like α2-6 linked sialosides with avidity comparable to wild-type H5 HA binding to avian-like α2-3 linked sialosides.more » Here, crystal structures of these two H5 HA mutants free and in complex with human and avian glycan receptor analogues reveal the structural basis for their preferential binding to human receptors. These findings suggest continuous surveillance should be maintained to monitor and assess human-to-human transmission potential of H5N1 viruses.« less

  13. Structural Basis for a Switch in Receptor Binding Specificity of Two H5N1 Hemagglutinin Mutants

    DOE PAGES

    Zhu, Xueyong; Viswanathan, Karthik; Raman, Rahul; ...

    2015-11-01

    Avian H5N1 influenza viruses continue to spread in wild birds and domestic poultry with sporadic infection in humans. Receptor binding specificity changes are a prerequisite for H5N1 viruses and other zoonotic viruses to be transmitted among humans. Previous reported hemagglutinin (HA) mutants from ferret-transmissible H5N1 viruses of A/Viet Nam/1203/04 and A/Indonesia/5/05 showed slightly increased, but still very weak, binding to human receptors. From mutagenesis and glycan array studies, we previously identified two H5N1 HA mutants that could more effectively switch receptor specificity to human-like α2-6 linked sialosides with avidity comparable to wild-type H5 HA binding to avian-like α2-3 linked sialosides.more » Here, crystal structures of these two H5 HA mutants free and in complex with human and avian glycan receptor analogues reveal the structural basis for their preferential binding to human receptors. These findings suggest continuous surveillance should be maintained to monitor and assess human-to-human transmission potential of H5N1 viruses.« less

  14. Pharmacological characterization of the human histamine H2 receptor stably expressed in Chinese hamster ovary cells.

    PubMed Central

    Leurs, R.; Smit, M. J.; Menge, W. M.; Timmerman, H.

    1994-01-01

    1. The gene for the human histamine H2 receptor was stably expressed in Chinese hamster ovary (CHO) cells and characterized by [125I]-iodoaminopotentidine binding studies. In addition, the coupling of the expressed receptor protein to a variety of signal transduction pathways was investigated. 2. After cotransfection of CHO cells with pCMVhumH2 and pUT626, a phleomycine-resistant clonal cell line (CHOhumH2) was isolated that expressed 565 +/- 35 fmol kg-1 protein binding sites with high affinity (0.21 +/- 0.02 nM) for the H2 antagonist, [125I]-iodoaminopotentidine. 3. Displacement studies with a variety of H2 antagonists indicated that the encoded protein was indistinguishable from the H2 receptor identified in human brain membranes and guinea-pig right atrium. The Ki-values observed in the various preparations correlated very well (r2 = 0.996-0.920). 4. Displacement studies with histamine showed that a limited fraction (32 +/- 6%) of the binding sites showed a high affinity for histamine (2 +/- 1.2 microM); the shallow displacement curves were reflected by a Hill-coefficient significantly different from unity (nH = 0.58 +/- 0.09). The addition of 100 microM Gpp(NH)p resulted in a steepening of the displacement curve (nH = 0.79 +/- 0.02) and a loss of high affinity sites for histamine. 5. Displacement studies with other agonists indicated that the recently developed specific H2 agonists, amthamine and amselamine, showed an approximately 4-5 fold higher affinity for the human H2 receptor than histamine. 6. Stimulation of CHOhumH2 cells with histamine resulted in a rapid rise of the intracellular cyclic AMP levels. After 10 min an approximately 10 fold increase in cyclic AMP could be measured.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 4 PMID:7921611

  15. Characterization of hyaluronate binding proteins isolated from 3T3 and murine sarcoma virus transformed 3T3 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turley, E.A.; Moore, D.; Hayden, L.J.

    1987-06-02

    A hyaluronic acid binding fraction was purified from the supernatant media of both 3T3 and murine sarcoma virus (MSV) transformed 3T3 cultures by hyaluronate and immunoaffinity chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis resolved the hyaluronate affinity-purified fraction into three major protein bands of estimated molecular weight (M/sub r,e/) 70K, 66K, and 56K which contained hyaluronate binding activity and which were termed hyaluronate binding proteins (HABP). Hyaluronate affinity chromatography combined with immunoaffinity chromatography, using antibody directed against the larger HABP, allowed a 20-fold purification of HABP. Fractions isolated from 3T3 supernatant medium also contained additional binding molecules in the molecular weightmore » range of 20K. This material was present in vanishingly small amounts and was not detected with a silver stain or with (/sup 35/S)methionine label. The three protein species isolated by hyaluronate affinity chromatography (M/sub r,e/ 70K, 66K, and 56K) were related to one another since they shared antigenic determinants and exhibited similar pI values. In isocratic conditions, HABP occurred as aggregates of up to 580 kilodaltons. Their glycoprotein nature was indicated by their incorporation of /sup 3/H-sugars. Enzyme-linked immunoadsorbent assay showed they were antigenically distinct from other hyaluronate binding proteins such as fibronectin, cartilage link protein, and the hyaluronate binding region of chondroitin sulfate proteoglycan. The results are discussed with regard both to the functional significance of hyaluronate-cell surface interactions in transformed as well as normal cells and to the relationship of HABP to other reported hyaluronate binding proteins.« less

  16. Cortical serotonin-S2 receptor binding in Lewy body dementia, Alzheimer's and Parkinson's diseases.

    PubMed

    Cheng, A V; Ferrier, I N; Morris, C M; Jabeen, S; Sahgal, A; McKeith, I G; Edwardson, J A; Perry, R H; Perry, E K

    1991-11-01

    The binding of the selective 5-HT2 antagonist [3H]ketanserin has been investigated in the temporal cortex of patients with Alzheimer's disease (SDAT), Parkinson's disease (PD), senile dementia of Lewy body type (SDLT) and neuropathologically normal subjects (control). 5-HT2 binding was reduced in SDAT, PD with dementia and SDLT. SDAT showed a 5-HT2 receptor deficit across most of the cortical layers. A significant decrease in 5-HT2 binding in the deep cortical layers was found in those SDLT cases without hallucinations. SDLT cases with hallucinations only showed a deficit in one upper layer. There was a significant difference in cortical layers III and V between SDLT without hallucinations and SDLT with hallucinations. The results confirm an abnormality of serotonin binding in various forms of dementia and suggest that preservation of 5-HT2 receptor in the temporal cortex may differentiate hallucinating from non-hallucinating cases of SDLT.

  17. Structural basis for antagonism of human interleukin 18 by poxvirus interleukin 18-binding protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krumm, Brian; Meng, Xiangzhi; Li, Yongchao

    2009-07-10

    Human interleukin-18 (hIL-18) is a cytokine that plays an important role in inflammation and host defense against microbes. Its activity is regulated in vivo by a naturally occurring antagonist, the human IL-18-binding protein (IL-18BP). Functional homologs of human IL-18BP are encoded by all orthopoxviruses, including variola virus, the causative agent of smallpox. They contribute to virulence by suppressing IL-18-mediated immune responses. Here, we describe the 2.0-{angstrom} resolution crystal structure of an orthopoxvirus IL-18BP, ectromelia virus IL-18BP (ectvIL-18BP), in complex with hIL-18. The hIL-18 structure in the complex shows significant conformational change at the binding interface compared with the structure ofmore » ligand-free hIL-18, indicating that the binding is mediated by an induced-fit mechanism. EctvIL-18BP adopts a canonical Ig fold and interacts via one edge of its {beta}-sandwich with 3 cavities on the hIL-18 surface through extensive hydrophobic and hydrogen bonding interactions. Most of the ectvIL-18BP residues that participate in these interactions are conserved in both human and viral homologs, explaining their functional equivalence despite limited sequence homology. EctvIL-18BP blocks a putative receptor-binding site on IL-18, thus preventing IL-18 from engaging its receptor. Our structure provides insights into how IL-18BPs modulate hIL-18 activity. The revealed binding interface provides the basis for rational design of inhibitors against orthopoxvirus IL-18BP (for treating orthopoxvirus infection) or hIL-18 (for treating certain inflammatory and autoimmune diseases).« less

  18. Blonanserin extensively occupies rat dopamine D3 receptors at antipsychotic dose range.

    PubMed

    Baba, Satoko; Enomoto, Takeshi; Horisawa, Tomoko; Hashimoto, Takashi; Ono, Michiko

    2015-03-01

    Antagonism of the dopamine D3 receptor has been hypothesized to be beneficial for schizophrenia cognitive deficits, negative symptoms and extrapyramidal symptoms. However, recent animal and human studies have shown that most antipsychotics do not occupy D3 receptors in vivo, despite their considerable binding affinity for this receptor in vitro. In the present study, we investigated the D3 receptor binding of blonanserin, a dopamine D2/D3 and serotonin 5-HT2A receptors antagonist, in vitro and in vivo. Blonanserin showed the most potent binding affinity for human D3 receptors among the tested atypical antipsychotics (risperidone, olanzapine and aripiprazole). Our GTPγS-binding assay demonstrated that blonanserin acts as a potent full antagonist for human D3 receptors. All test-drugs exhibited antipsychotic-like efficacy in methamphetamine-induced hyperactivity in rats. Treatment with blonanserin at its effective dose blocked the binding of [(3)H]-(+)-PHNO, a D2/D3 receptor radiotracer, both in the D2 receptor-rich region (striatum) and the D3 receptor-rich region (cerebellum lobes 9 and 10). On the other hand, the occupancies of other test-drugs for D3 receptors were relatively low. In conclusion, we have shown that blonanserin, but not other tested antipsychotics, extensively occupies D3 receptors in vivo in rats. Copyright © 2015 Japanese Pharmacological Society. Production and hosting by Elsevier B.V. All rights reserved.

  19. Differential actions of antiparkinson agents at multiple classes of monoaminergic receptor. III. Agonist and antagonist properties at serotonin, 5-HT(1) and 5-HT(2), receptor subtypes.

    PubMed

    Newman-Tancredi, Adrian; Cussac, Didier; Quentric, Yann; Touzard, Manuelle; Verrièle, Laurence; Carpentier, Nathalie; Millan, Mark J

    2002-11-01

    Although certain antiparkinson agents interact with serotonin (5-HT) receptors, little information is available concerning functional actions. Herein, we characterized efficacies of apomorphine, bromocriptine, cabergoline, lisuride, piribedil, pergolide, roxindole, and terguride at human (h)5-HT(1A), h5-HT(1B), and h5-HT(1D) receptors [guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPgammaS) binding], and at h5-HT(2A), h5-HT(2B), and h5-HT(2C) receptors (depletion of membrane-bound [(3)H]phosphatydilinositol). All drugs stimulated h5-HT(1A) receptors with efficacies (compared with 5-HT, 100%) ranging from modest (apomorphine, 35%) to high (cabergoline, 93%). At h5-HT(1B) receptors, efficacies varied from mild (terguride, 37%) to marked (cabergoline, 102%) and potencies were modest (pEC(50) values of 5.8-7.6): h5-HT(1D) sites were activated with a similar range of efficacies and greater potency (7.1-8.5). Piribedil and apomorphine were inactive at h5-HT(1B) and h5-HT(1D) receptors. At h5-HT(2A) receptors, terguride, lisuride, bromocriptine, cabergoline, and pergolide displayed potent (7.6-8.8) agonist properties (49-103%), whereas apomorphine and roxindole were antagonists and piribedil was inactive. Only pergolide (113%/8.2) and cabergoline (123%/8.6) displayed pronounced agonist properties at h5-HT(2B) receptors. At 5-HT(2C) receptors, lisuride, bromocriptine, pergolide, and cabergoline were efficacious (75-96%) agonists, apomorphine and terguride were antagonists, and piribedil was inactive. MDL100,907 and SB242,084, selective antagonists at 5-HT(2A) and 5-HT(2C) receptors, respectively, abolished these actions of pergolide, cabergoline, and bromocriptine. In conclusion, antiparkinson agents display markedly different patterns of agonist and antagonist properties at multiple 5-HT receptor subtypes. Although all show modest (agonist) activity at 5-HT(1A) sites, their contrasting actions at 5-HT(2A) and 5-HT(2C) sites may be of particular significance to their

  20. Antagonism of human CC-chemokine receptor 4 can be achieved through three distinct binding sites on the receptor

    PubMed Central

    Slack, Robert J; Russell, Linda J; Barton, Nick P; Weston, Cathryn; Nalesso, Giovanna; Thompson, Sally-Anne; Allen, Morven; Chen, Yu Hua; Barnes, Ashley; Hodgson, Simon T; Hall, David A

    2013-01-01

    Chemokine receptor antagonists appear to access two distinct binding sites on different members of this receptor family. One class of CCR4 antagonists has been suggested to bind to a site accessible from the cytoplasm while a second class did not bind to this site. In this report, we demonstrate that antagonists representing a variety of structural classes bind to two distinct allosteric sites on CCR4. The effects of pairs of low-molecular weight and/or chemokine CCR4 antagonists were evaluated on CCL17- and CCL22-induced responses of human CCR4+ T cells. This provided an initial grouping of the antagonists into sets which appeared to bind to distinct binding sites. Binding studies were then performed with radioligands from each set to confirm these groupings. Some novel receptor theory was developed to allow the interpretation of the effects of the antagonist combinations. The theory indicates that, generally, the concentration-ratio of a pair of competing allosteric modulators is maximally the sum of their individual effects while that of two modulators acting at different sites is likely to be greater than their sum. The low-molecular weight antagonists could be grouped into two sets on the basis of the functional and binding experiments. The antagonistic chemokines formed a third set whose behaviour was consistent with that of simple competitive antagonists. These studies indicate that there are two allosteric regulatory sites on CCR4. PMID:25505571