Sample records for h3k4 demethylase lid

  1. H3K4 demethylase activities repress proliferative and postmitotic aging

    PubMed Central

    Alvares, Stacy M; Mayberry, Gaea A; Joyner, Ebony Y; Lakowski, Bernard; Ahmed, Shawn

    2014-01-01

    Homeostasis of postmitotic and proliferating cells is maintained by pathways that repress stress. We found that the Caenorhabditis elegans histone 3 lysine 4 (H3K4) demethylases RBR-2 and SPR-5 promoted postmitotic longevity of stress-resistant daf-2 adults, altered pools of methylated H3K4, and promoted silencing of some daf-2 target genes. In addition, RBR-2 and SPR-5 were required for germ cell immortality at a high temperature. Transgenerational proliferative aging was enhanced for spr-5; rbr-2 double mutants, suggesting that these histone demethylases may function sequentially to promote germ cell immortality by targeting distinct H3K4 methyl marks. RBR-2 did not play a comparable role in the maintenance of quiescent germ cells in dauer larvae, implying that it represses stress that occurs as a consequence of germ cell proliferation, rather than stress that accumulates in nondividing cells. We propose that H3K4 demethylase activities promote the maintenance of chromatin states during stressful growth conditions, thereby repressing postmitotic aging of somatic cells as well as proliferative aging of germ cells. PMID:24134677

  2. RNA-dependent chromatin localization of KDM4D lysine demethylase promotes H3K9me3 demethylation

    PubMed Central

    Zoabi, Muhammad; Nadar-Ponniah, Prathamesh T.; Khoury-Haddad, Hanan; Usaj, Marko; Budowski-Tal, Inbal; Haran, Tali; Henn, Arnon; Mandel-Gutfreund, Yael; Ayoub, Nabieh

    2014-01-01

    The JmjC-containing lysine demethylase, KDM4D, demethylates di-and tri-methylation of histone H3 on lysine 9 (H3K9me3). How KDM4D is recruited to chromatin and recognizes its histone substrates remains unknown. Here, we show that KDM4D binds RNA independently of its demethylase activity. We mapped two non-canonical RNA binding domains: the first is within the N-terminal spanning amino acids 115 to 236, and the second is within the C-terminal spanning amino acids 348 to 523 of KDM4D. We also demonstrate that RNA interactions with KDM4D N-terminal region are critical for its association with chromatin and subsequently for demethylating H3K9me3 in cells. This study implicates, for the first time, RNA molecules in regulating the levels of H3K9 methylation by affecting KDM4D association with chromatin. PMID:25378304

  3. Inhibition of H3K27me3 Histone Demethylase Activity Prevents the Proliferative Regeneration of Zebrafish Lateral Line Neuromasts

    PubMed Central

    Bao, Beier; He, Yingzi; Tang, Dongmei; Li, Wenyan; Li, Huawei

    2017-01-01

    The H3K27 demethylases are involved in a variety of biological processes, including cell differentiation, proliferation, and cell death by regulating transcriptional activity. However, the function of H3K27 demethylation in the field of hearing research is poorly understood. Here, we investigated the role of H3K27me3 histone demethylase activity in hair cell regeneration using an in vivo animal model. Our data showed that pharmacologic inhibition of H3K27 demethylase activity with the specific small-molecule inhibitor GSK-J4 decreased the number of regenerated hair cells in response to neomycin damage. Furthermore, inhibition of H3K27me3 histone demethylase activity dramatically suppressed cell proliferation and activated caspase-3 levels in the regenerating neuromasts of the zebrafish lateral line. GSK-J4 administration also increased the expression of p21 and p27 in neuromast cells and inhibited the ERK signaling pathway. Collectively, our findings indicate that H3K27me3 demethylation is a key epigenetic regulator in the process of hair cell regeneration in zebrafish and suggest that H3K27me3 histone demethylase activity might be a novel therapeutic target for the treatment of hearing loss. PMID:28348517

  4. Inhibition of histone H3K27 demethylases selectively modulates inflammatory phenotypes of natural killer cells.

    PubMed

    Cribbs, Adam; Hookway, Edward S; Wells, Graham; Lindow, Morten; Obad, Susanna; Oerum, Henrik; Prinjha, Rab K; Athanasou, Nick; Sowman, Aneka; Philpott, Martin; Penn, Henry; Soderstrom, Kalle; Feldmann, Marc; Oppermann, Udo

    2018-02-16

    Natural killer (NK) cells are innate lymphocytes, important in immune surveillance and elimination of stressed, transformed, or virus-infected cells. They critically shape the inflammatory cytokine environment to orchestrate interactions of cells of the innate and adaptive immune systems. Some studies have reported that NK cell activation and cytokine secretion are controlled epigenetically but have yielded only limited insight into the mechanisms. Using chemical screening with small-molecule inhibitors of chromatin methylation and acetylation, further validated by knockdown approaches, we here identified Jumonji-type histone H3K27 demethylases as key regulators of cytokine production in human NK cell subsets. The prototypic JMJD3/UTX (Jumonji domain-containing protein 3) H3K27 demethylase inhibitor GSK-J4 increased global levels of the repressive H3K27me3 mark around transcription start sites of effector cytokine genes. Moreover, GSK-J4 reduced IFN-γ, TNFα, granulocyte-macrophage colony-stimulating factor (GM-CSF), and interleukin-10 levels in cytokine-stimulated NK cells while sparing their cytotoxic killing activity against cancer cells. The anti-inflammatory effect of GSK-J4 in NK cell subsets, isolated from peripheral blood or tissue from individuals with rheumatoid arthritis (RA), coupled with an inhibitory effect on formation of bone-resorbing osteoclasts, suggested that histone demethylase inhibition has broad utility for modulating immune and inflammatory responses. Overall, our results indicate that H3K27me3 is a dynamic and important epigenetic modification during NK cell activation and that JMJD3/UTX-driven H3K27 demethylation is critical for NK cell function. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. H3K9me3 demethylase Kdm4d facilitates the formation of pre-initiative complex and regulates DNA replication

    PubMed Central

    Wu, Rentian; Wang, Zhiquan; Zhang, Honglian; Gan, Haiyun; Zhang, Zhiguo

    2017-01-01

    DNA replication is tightly regulated to occur once and only once per cell cycle. How chromatin, the physiological substrate of DNA replication machinery, regulates DNA replication remains largely unknown. Here we show that histone H3 lysine 9 demethylase Kdm4d regulates DNA replication in eukaryotic cells. Depletion of Kdm4d results in defects in DNA replication, which can be rescued by the expression of H3K9M, a histone H3 mutant transgene that reverses the effect of Kdm4d on H3K9 methylation. Kdm4d interacts with replication proteins, and its recruitment to DNA replication origins depends on the two pre-replicative complex components (origin recognition complex [ORC] and minichromosome maintenance [MCM] complex). Depletion of Kdm4d impairs the recruitment of Cdc45, proliferating cell nuclear antigen (PCNA), and polymerase δ, but not ORC and MCM proteins. These results demonstrate a novel mechanism by which Kdm4d regulates DNA replication by reducing the H3K9me3 level to facilitate formation of pre-initiative complex. PMID:27679476

  6. H3K9me3 demethylase Kdm4d facilitates the formation of pre-initiative complex and regulates DNA replication.

    PubMed

    Wu, Rentian; Wang, Zhiquan; Zhang, Honglian; Gan, Haiyun; Zhang, Zhiguo

    2017-01-09

    DNA replication is tightly regulated to occur once and only once per cell cycle. How chromatin, the physiological substrate of DNA replication machinery, regulates DNA replication remains largely unknown. Here we show that histone H3 lysine 9 demethylase Kdm4d regulates DNA replication in eukaryotic cells. Depletion of Kdm4d results in defects in DNA replication, which can be rescued by the expression of H3K9M, a histone H3 mutant transgene that reverses the effect of Kdm4d on H3K9 methylation. Kdm4d interacts with replication proteins, and its recruitment to DNA replication origins depends on the two pre-replicative complex components (origin recognition complex [ORC] and minichromosome maintenance [MCM] complex). Depletion of Kdm4d impairs the recruitment of Cdc45, proliferating cell nuclear antigen (PCNA), and polymerase δ, but not ORC and MCM proteins. These results demonstrate a novel mechanism by which Kdm4d regulates DNA replication by reducing the H3K9me3 level to facilitate formation of pre-initiative complex. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Histone H3K9 Demethylase JMJD2B Activates Adipogenesis by Regulating H3K9 Methylation on PPARγ and C/EBPα during Adipogenesis

    PubMed Central

    Jang, Min-Kyung; Kim, Ji-Hyun; Jung, Myeong Ho

    2017-01-01

    Previous studies have shown that tri- or di-methylation of histone H3 at lysine 9 (H3K9me3/me2) on the promoter of the peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα) contribute to the repression of PPARγ and C/EBPα and inhibition of adipogenesis in 3T3-L1 preadipocytes. The balance of histone methylation is regulated by histone methyltransferases and demethylases. However, it is poorly understood which demethylases are responsible for removing H3K9me3/me2 on the promoter of PPARγ and C/EBPα. JMJD2B is a H3K9me3/me2 demethylase that was previously shown to activate adipogenesis by promoting mitotic clonal expansion. Nevertheless, it remains unclear whether JMJD2B plays a role in the regulation of adipogenesis by removing H3K9me3/me2 on the promoter of PPARγ and C/EBPα and subsequently activating PPARγ and C/EBPα expression. Here, we showed that JMJD2B decreased H3K9me3/me2 on the promoter of PPARγ and C/EBPα, which in turn stimulated the expression of PPARγ and C/EBPα. JMJD2B knockdown using siRNA in 3T3-L1 preadipocytes repressed the expression of PPARγ and C/EBPα, resulting in inhibition of adipogenesis. This was accompanied by increased enrichment of H3K9me3/me2 on the promoter of PPARγ and C/EBPα. In contrast, overexpression of JMJD2B increased the expression of PPARγ and C/EBPα, which was accompanied by decreased enrichment of H3K9me3/me2 on the promoter and activated adipogenesis. Together, these results indicate that JMJD2B regulates PPARγ and C/EBPα during adipogenesis. PMID:28060835

  8. 8-Substituted Pyrido[3,4-d]pyrimidin-4(3H)-one Derivatives As Potent, Cell Permeable, KDM4 (JMJD2) and KDM5 (JARID1) Histone Lysine Demethylase Inhibitors

    PubMed Central

    2016-01-01

    We report the discovery of N-substituted 4-(pyridin-2-yl)thiazole-2-amine derivatives and their subsequent optimization, guided by structure-based design, to give 8-(1H-pyrazol-3-yl)pyrido[3,4-d]pyrimidin-4(3H)-ones, a series of potent JmjC histone N-methyl lysine demethylase (KDM) inhibitors which bind to Fe(II) in the active site. Substitution from C4 of the pyrazole moiety allows access to the histone peptide substrate binding site; incorporation of a conformationally constrained 4-phenylpiperidine linker gives derivatives such as 54j and 54k which demonstrate equipotent activity versus the KDM4 (JMJD2) and KDM5 (JARID1) subfamily demethylases, selectivity over representative exemplars of the KDM2, KDM3, and KDM6 subfamilies, cellular permeability in the Caco-2 assay, and, for 54k, inhibition of H3K9Me3 and H3K4Me3 demethylation in a cell-based assay. PMID:26741168

  9. The histone demethylase Jarid1b ensures faithful mouse development by protecting developmental genes from aberrant H3K4me3.

    PubMed

    Albert, Mareike; Schmitz, Sandra U; Kooistra, Susanne M; Malatesta, Martina; Morales Torres, Cristina; Rekling, Jens C; Johansen, Jens V; Abarrategui, Iratxe; Helin, Kristian

    2013-04-01

    Embryonic development is tightly regulated by transcription factors and chromatin-associated proteins. H3K4me3 is associated with active transcription and H3K27me3 with gene repression, while the combination of both keeps genes required for development in a plastic state. Here we show that deletion of the H3K4me2/3 histone demethylase Jarid1b (Kdm5b/Plu1) results in major neonatal lethality due to respiratory failure. Jarid1b knockout embryos have several neural defects including disorganized cranial nerves, defects in eye development, and increased incidences of exencephaly. Moreover, in line with an overlap of Jarid1b and Polycomb target genes, Jarid1b knockout embryos display homeotic skeletal transformations typical for Polycomb mutants, supporting a functional interplay between Polycomb proteins and Jarid1b. To understand how Jarid1b regulates mouse development, we performed a genome-wide analysis of histone modifications, which demonstrated that normally inactive genes encoding developmental regulators acquire aberrant H3K4me3 during early embryogenesis in Jarid1b knockout embryos. H3K4me3 accumulates as embryonic development proceeds, leading to increased expression of neural master regulators like Pax6 and Otx2 in Jarid1b knockout brains. Taken together, these results suggest that Jarid1b regulates mouse development by protecting developmental genes from inappropriate acquisition of active histone modifications.

  10. The Histone Demethylase Jarid1b Ensures Faithful Mouse Development by Protecting Developmental Genes from Aberrant H3K4me3

    PubMed Central

    Kooistra, Susanne M.; Malatesta, Martina; Morales Torres, Cristina; Rekling, Jens C.; Johansen, Jens V.; Abarrategui, Iratxe; Helin, Kristian

    2013-01-01

    Embryonic development is tightly regulated by transcription factors and chromatin-associated proteins. H3K4me3 is associated with active transcription and H3K27me3 with gene repression, while the combination of both keeps genes required for development in a plastic state. Here we show that deletion of the H3K4me2/3 histone demethylase Jarid1b (Kdm5b/Plu1) results in major neonatal lethality due to respiratory failure. Jarid1b knockout embryos have several neural defects including disorganized cranial nerves, defects in eye development, and increased incidences of exencephaly. Moreover, in line with an overlap of Jarid1b and Polycomb target genes, Jarid1b knockout embryos display homeotic skeletal transformations typical for Polycomb mutants, supporting a functional interplay between Polycomb proteins and Jarid1b. To understand how Jarid1b regulates mouse development, we performed a genome-wide analysis of histone modifications, which demonstrated that normally inactive genes encoding developmental regulators acquire aberrant H3K4me3 during early embryogenesis in Jarid1b knockout embryos. H3K4me3 accumulates as embryonic development proceeds, leading to increased expression of neural master regulators like Pax6 and Otx2 in Jarid1b knockout brains. Taken together, these results suggest that Jarid1b regulates mouse development by protecting developmental genes from inappropriate acquisition of active histone modifications. PMID:23637629

  11. Enhancer-associated H3K4 monomethylation by Trithorax-related, the Drosophila homolog of mammalian Mll3/Mll4.

    PubMed

    Herz, Hans-Martin; Mohan, Man; Garruss, Alexander S; Liang, Kaiwei; Takahashi, Yoh-Hei; Mickey, Kristen; Voets, Olaf; Verrijzer, C Peter; Shilatifard, Ali

    2012-12-01

    Monomethylation of histone H3 on Lys 4 (H3K4me1) and acetylation of histone H3 on Lys 27 (H3K27ac) are histone modifications that are highly enriched over the body of actively transcribed genes and on enhancers. Although in yeast all H3K4 methylation patterns, including H3K4me1, are implemented by Set1/COMPASS (complex of proteins associated with Set1), there are three classes of COMPASS-like complexes in Drosophila that could carry out H3K4me1 on enhancers: dSet1, Trithorax, and Trithorax-related (Trr). Here, we report that Trr, the Drosophila homolog of the mammalian Mll3/4 COMPASS-like complexes, can function as a major H3K4 monomethyltransferase on enhancers in vivo. Loss of Trr results in a global decrease of H3K4me1 and H3K27ac levels in various tissues. Assays with the cut wing margin enhancer implied a functional role for Trr in enhancer-mediated processes. A genome-wide analysis demonstrated that Trr is required to maintain the H3K4me1 and H3K27ac chromatin signature that resembles the histone modification patterns described for enhancers. Furthermore, studies in the mammalian system suggested a role for the Trr homolog Mll3 in similar processes. Since Trr and mammalian Mll3/4 complexes are distinguished by bearing a unique subunit, the H3K27 demethylase UTX, we propose a model in which the H3K4 monomethyltransferases Trr/Mll3/Mll4 and the H3K27 demethylase UTX cooperate to regulate the transition from inactive/poised to active enhancers.

  12. Enhancer-associated H3K4 monomethylation by Trithorax-related, the Drosophila homolog of mammalian Mll3/Mll4

    PubMed Central

    Herz, Hans-Martin; Mohan, Man; Garruss, Alexander S.; Liang, Kaiwei; Takahashi, Yoh-hei; Mickey, Kristen; Voets, Olaf; Verrijzer, C. Peter; Shilatifard, Ali

    2012-01-01

    Monomethylation of histone H3 on Lys 4 (H3K4me1) and acetylation of histone H3 on Lys 27 (H3K27ac) are histone modifications that are highly enriched over the body of actively transcribed genes and on enhancers. Although in yeast all H3K4 methylation patterns, including H3K4me1, are implemented by Set1/COMPASS (complex of proteins associated with Set1), there are three classes of COMPASS-like complexes in Drosophila that could carry out H3K4me1 on enhancers: dSet1, Trithorax, and Trithorax-related (Trr). Here, we report that Trr, the Drosophila homolog of the mammalian Mll3/4 COMPASS-like complexes, can function as a major H3K4 monomethyltransferase on enhancers in vivo. Loss of Trr results in a global decrease of H3K4me1 and H3K27ac levels in various tissues. Assays with the cut wing margin enhancer implied a functional role for Trr in enhancer-mediated processes. A genome-wide analysis demonstrated that Trr is required to maintain the H3K4me1 and H3K27ac chromatin signature that resembles the histone modification patterns described for enhancers. Furthermore, studies in the mammalian system suggested a role for the Trr homolog Mll3 in similar processes. Since Trr and mammalian Mll3/4 complexes are distinguished by bearing a unique subunit, the H3K27 demethylase UTX, we propose a model in which the H3K4 monomethyltransferases Trr/Mll3/Mll4 and the H3K27 demethylase UTX cooperate to regulate the transition from inactive/poised to active enhancers. PMID:23166019

  13. UTX regulates mesoderm differentiation of embryonic stem cells independent of H3K27 demethylase activity.

    PubMed

    Wang, Chaochen; Lee, Ji-Eun; Cho, Young-Wook; Xiao, Ying; Jin, Qihuang; Liu, Chengyu; Ge, Kai

    2012-09-18

    To investigate the role of histone H3K27 demethylase UTX in embryonic stem (ES) cell differentiation, we have generated UTX knockout (KO) and enzyme-dead knock-in male ES cells. Deletion of the X-chromosome-encoded UTX gene in male ES cells markedly decreases expression of the paralogous UTY gene encoded by Y chromosome, but has no effect on global H3K27me3 level, Hox gene expression, or ES cell self-renewal. However, UTX KO cells show severe defects in mesoderm differentiation and induction of Brachyury, a transcription factor essential for mesoderm development. Surprisingly, UTX regulates mesoderm differentiation and Brachyury expression independent of its enzymatic activity. UTY, which lacks detectable demethylase activity, compensates for the loss of UTX in regulating Brachyury expression. UTX and UTY bind directly to Brachyury promoter and are required for Wnt/β-catenin signaling-induced Brachyury expression in ES cells. Interestingly, male UTX KO embryos express normal levels of UTY and survive until birth. In contrast, female UTX KO mice, which lack the UTY gene, show embryonic lethality before embryonic day 11.5. Female UTX KO embryos show severe defects in both Brachyury expression and embryonic development of mesoderm-derived posterior notochord, cardiac, and hematopoietic tissues. These results indicate that UTX controls mesoderm differentiation and Brachyury expression independent of H3K27 demethylase activity, and suggest that UTX and UTY are functionally redundant in ES cell differentiation and early embryonic development.

  14. Histone demethylase JMJD3 regulates CD11a expression through changes in histone H3K27 tri-methylation levels in CD4+ T cells of patients with systemic lupus erythematosus.

    PubMed

    Yin, Heng; Wu, Haijing; Zhao, Ming; Zhang, Qing; Long, Hai; Fu, Siqi; Lu, Qianjin

    2017-07-25

    Aberrant CD11a overexpression in CD4+ T cells induces T cell auto-reactivity, which is an important factor for systemic lupus erythematosus (SLE) pathogenesis. Although many studies have focused on CD11a epigenetic regulation, little is known about histone methylation. JMJD3, as a histone demethylase, is capable of specifically removing the trimethyl group from the H3K27 lysine residue, triggering target gene activation. Here, we examined the expression and function of JMJD3 in CD4+ T cells from SLE patients. Significantly decreased H3K27me3 levels and increased JMJD3 binding were detected within the ITGAL (CD11a) promoter locus in SLE CD4+ T cells compared with those in healthy CD4+ T cells. Moreover, overexpressing JMJD3 through the transfection of pcDNA3.1-JMJD3 into healthy donor CD4+ T cells increased JMJD3 enrichment and decreased H3K27me3 enrichment within the ITGAL (CD11a) promoter and up-regulated CD11a expression, leading to T and B cell hyperactivity. Inhibition of JMJD3 via JMJD3-siRNA in SLE CD4+ T cells showed the opposite effects. These results demonstrated that histone demethylase JMJD3 regulates CD11a expression in lupus T cells by affecting the H3K27me3 levels in the ITGAL (CD11a) promoter region, and JMJD3 might thereby serve as a potential therapeutic target for SLE.

  15. FOXP3 Orchestrates H4K16 Acetylation and H3K4 Tri-Methylation for Activation of Multiple Genes through Recruiting MOF and Causing Displacement of PLU-1

    PubMed Central

    Katoh, Hiroto; Qin, Zhaohui S.; Liu, Runhua; Wang, Lizhong; Li, Weiquan; Li, Xiangzhi; Wu, Lipeng; Du, Zhanwen; Lyons, Robert; Liu, Chang-Gong; Liu, Xiuping; Dou, Yali; Zheng, Pan; Liu, Yang

    2011-01-01

    SUMMARY Both H4K16 acetylation and H3K4 tri-methylation are required for gene activation. However, it is still largely unclear how these modifications are orchestrated by transcriptional factors. Here we analyzed the mechanism of the transcriptional activation by FOXP3, an X-linked suppressor of autoimmune diseases and cancers. FOXP3 binds near transcriptional start sites of its target genes. By recruiting MOF and displacing histone H3K4 demethylase PLU-1, FOXP3 increases both H4K16 acetylation and H3K4 tri-methylation at the FOXP3-associated chromatins of multiple FOXP3-activated genes. RNAi-mediated silencing of MOF reduced both gene activation and tumor suppression by FOXP3, while both somatic mutations in clinical cancer samples and targeted mutation of FOXP3 in mouse prostate epithelial disrupted nuclear localization of MOF. Our data demonstrate a pull-push model in which a single transcription factor orchestrates two epigenetic alterations necessary for gene activation and provide a mechanism for somatic inactivation of the FOXP3 protein function in cancer cells. PMID:22152480

  16. The H3K27me3-demethylase KDM6A is suppressed in breast cancer stem-like cells, and enables the resolution of bivalency during the mesenchymal-epithelial transition

    PubMed Central

    Taube, Joseph H.; Sphyris, Nathalie; Johnson, Kelsey S.; Reisenauer, Keighley N.; Nesbit, Taylor A.; Joseph, Robiya; Vijay, Geraldine V.; Sarkar, Tapasree R.; Bhangre, Neeraja A.; Song, Joon Jin; Chang, Jeffrey T.; Lee, Min Gyu; Soundararajan, Rama; Mani, Sendurai A.

    2017-01-01

    The deposition of the activating H3K4me3 and repressive H3K27me3 histone modifications within the same promoter, forming a so-called bivalent domain, maintains gene expression in a repressed but transcription-ready state. We recently reported a significantly increased incidence of bivalency following an epithelial-mesenchymal transition (EMT), a process associated with the initiation of the metastatic cascade. The reverse process, known as the mesenchymal-epithelial transition (MET), is necessary for efficient colonization. Here, we identify numerous genes associated with differentiation, proliferation and intercellular adhesion that are repressed through the acquisition of bivalency during EMT, and re-expressed following MET. The majority of EMT-associated bivalent domains arise through H3K27me3 deposition at H3K4me3-marked promoters. Accordingly, we show that the expression of the H3K27me3-demethylase KDM6A is reduced in cells that have undergone EMT, stem-like subpopulations of mammary cell lines and stem cell-enriched triple-negative breast cancers. Importantly, KDM6A levels are restored following MET, concomitant with CDH1/E-cadherin reactivation through H3K27me3 removal. Moreover, inhibition of KDM6A, using the H3K27me3-demethylase inhibitor GSK-J4, prevents the re-expression of bivalent genes during MET. Our findings implicate KDM6A in the resolution of bivalency accompanying MET, and suggest KDM6A inhibition as a viable strategy to suppress metastasis formation in breast cancer. PMID:29029452

  17. Metformin directly targets the H3K27me3 demethylase KDM6A/UTX.

    PubMed

    Cuyàs, Elisabet; Verdura, Sara; Llorach-Pares, Laura; Fernández-Arroyo, Salvador; Luciano-Mateo, Fedra; Cabré, Noemí; Stursa, Jan; Werner, Lukas; Martin-Castillo, Begoña; Viollet, Benoit; Neuzil, Jiri; Joven, Jorge; Nonell-Canals, Alfons; Sanchez-Martinez, Melchor; Menendez, Javier A

    2018-05-08

    Metformin, the first drug chosen to be tested in a clinical trial aimed to target the biology of aging per se, has been clinically exploited for decades in the absence of a complete understanding of its therapeutic targets or chemical determinants. We here outline a systematic chemoinformatics approach to computationally predict biomolecular targets of metformin. Using several structure- and ligand-based software tools and reference databases containing 1,300,000 chemical compounds and more than 9,000 binding sites protein cavities, we identified 41 putative metformin targets including several epigenetic modifiers such as the member of the H3K27me3-specific demethylase subfamily, KDM6A/UTX. AlphaScreen and AlphaLISA assays confirmed the ability of metformin to inhibit the demethylation activity of purified KDM6A/UTX enzyme. Structural studies revealed that metformin might occupy the same set of residues involved in H3K27me3 binding and demethylation within the catalytic pocket of KDM6A/UTX. Millimolar metformin augmented global levels of H3K27me3 in cultured cells, including reversion of global loss of H3K27me3 occurring in premature aging syndromes, irrespective of mitochondrial complex I or AMPK. Pharmacological doses of metformin in drinking water or intraperitoneal injection significantly elevated the global levels of H3K27me3 in the hepatic tissue of low-density lipoprotein receptor-deficient mice and in the tumor tissues of highly aggressive breast cancer xenograft-bearing mice. Moreover, nondiabetic breast cancer patients receiving oral metformin in addition to standard therapy presented an elevated level of circulating H3K27me3. Our biocomputational approach coupled to experimental validation reveals that metformin might directly regulate the biological machinery of aging by targeting core chromatin modifiers of the epigenome. © 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  18. Trithorax monomethylates histone H3K4 and interacts directly with CBP to promote H3K27 acetylation and antagonize Polycomb silencing

    PubMed Central

    Tie, Feng; Banerjee, Rakhee; Saiakhova, Alina R.; Howard, Benny; Monteith, Kelsey E.; Scacheri, Peter C.; Cosgrove, Michael S.; Harte, Peter J.

    2014-01-01

    Trithorax (TRX) antagonizes epigenetic silencing by Polycomb group (PcG) proteins, stimulates enhancer-dependent transcription, and establishes a ‘cellular memory’ of active transcription of PcG-regulated genes. The mechanisms underlying these TRX functions remain largely unknown, but are presumed to involve its histone H3K4 methyltransferase activity. We report that the SET domains of TRX and TRX-related (TRR) have robust histone H3K4 monomethyltransferase activity in vitro and that Tyr3701 of TRX and Tyr2404 of TRR prevent them from being trimethyltransferases. The trxZ11 missense mutation (G3601S), which abolishes H3K4 methyltransferase activity in vitro, reduces the H3K4me1 but not the H3K4me3 level in vivo. trxZ11 also suppresses the impaired silencing phenotypes of the Pc3 mutant, suggesting that H3K4me1 is involved in antagonizing Polycomb silencing. Polycomb silencing is also antagonized by TRX-dependent H3K27 acetylation by CREB-binding protein (CBP). We show that perturbation of Polycomb silencing by TRX overexpression requires CBP. We also show that TRX and TRR are each physically associated with CBP in vivo, that TRX binds directly to the CBP KIX domain, and that the chromatin binding patterns of TRX and TRR are highly correlated with CBP and H3K4me1 genome-wide. In vitro acetylation of H3K27 by CBP is enhanced on K4me1-containing H3 substrates, and independently altering the H3K4me1 level in vivo, via the H3K4 demethylase LSD1, produces concordant changes in H3K27ac. These data indicate that the catalytic activities of TRX and CBP are physically coupled and suggest that both activities play roles in antagonizing Polycomb silencing, stimulating enhancer activity and cellular memory. PMID:24550119

  19. JMJ27, an Arabidopsis H3K9 histone demethylase, modulates defense against Pseudomonas syringae and flowering time.

    PubMed

    Dutta, Aditya; Choudhary, Pratibha; Caruana, Julie; Raina, Ramesh

    2017-09-01

    Histone methylation is known to dynamically regulate diverse developmental and physiological processes. Histone methyl marks are written by methyltransferases and erased by demethylases, and result in modification of chromatin structure to repress or activate transcription. However, little is known about how histone methylation may regulate defense mechanisms and flowering time in plants. Here we report characterization of JmjC DOMAIN-CONTAINING PROTEIN 27 (JMJ27), an Arabidopsis JHDM2 (JmjC domain-containing histone demethylase 2) family protein, which modulates defense against pathogens and flowering time. JMJ27 is a nuclear protein containing a zinc-finger motif and a catalytic JmjC domain with conserved Fe(II) and α-ketoglutarate binding sites, and displays H3K9me1/2 demethylase activity both in vitro and in vivo. JMJ27 is induced in response to virulent Pseudomonas syringae pathogens and is required for resistance against these pathogens. JMJ27 is a negative modulator of WRKY25 (a repressor of defense) and a positive modulator of several pathogenesis-related (PR) proteins. Additionally, loss of JMJ27 function leads to early flowering. JMJ27 negatively modulates the major flowering regulator CONSTANS (CO) and positively modulates FLOWERING LOCUS C (FLC). Taken together, our results indicate that JMJ27 functions as a histone demethylase to modulate both physiological (defense) and developmental (flowering time) processes in Arabidopsis. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  20. Dynamics of H3K27me3 methylation and demethylation in plant development

    PubMed Central

    Gan, Eng-Seng; Xu, Yifeng; Ito, Toshiro

    2015-01-01

    Epigenetic regulation controls multiple aspects of the plant development. The N-terminal tail of histone can be differently modified to regulate various chromatin activities. One of them, the trimethylation of histone H3 lysine 27 (H3K27me3) confers a repressive chromatin state with gene silencing. H3K27me3 is dynamically deposited and removed throughout development. While components of the H3K27me3 writer, Polycomb repressive complex 2 (PRC2), have been reported for almost 2 decades, it is only recently that JUMONJI (JMJ) proteins are reported as H3K27me3 demethylases, affirming the dynamic nature of histone modifications. This review highlights recent progress in plant epigenetic research, focusing on the H3K27me3 demethylases. PMID:26313233

  1. ERRα induces H3K9 demethylation by LSD1 to promote cell invasion

    PubMed Central

    Carnesecchi, Julie; Forcet, Christelle; Zhang, Ling; Tribollet, Violaine; Barenton, Bruno; Boudra, Rafik; Cerutti, Catherine; Billas, Isabelle M. L.; Sérandour, Aurélien A.; Carroll, Jason S.; Beaudoin, Claude; Vanacker, Jean-Marc

    2017-01-01

    Lysine Specific Demethylase 1 (LSD1) removes mono- and dimethyl groups from lysine 4 of histone H3 (H3K4) or H3K9, resulting in repressive or activating (respectively) transcriptional histone marks. The mechanisms that control the balance between these two antagonist activities are not understood. We here show that LSD1 and the orphan nuclear receptor estrogen-related receptor α (ERRα) display commonly activated genes. Transcriptional activation by LSD1 and ERRα involves H3K9 demethylation at the transcriptional start site (TSS). Strikingly, ERRα is sufficient to induce LSD1 to demethylate H3K9 in vitro. The relevance of this mechanism is highlighted by functional data. LSD1 and ERRα coregulate several target genes involved in cell migration, including the MMP1 matrix metallo-protease, also activated through H3K9 demethylation at the TSS. Depletion of LSD1 or ERRα reduces the cellular capacity to invade the extracellular matrix, a phenomenon that is rescued by MMP1 reexpression. Altogether our results identify a regulatory network involving a direct switch in the biochemical activities of a histone demethylase, leading to increased cell invasion. PMID:28348226

  2. ERRα induces H3K9 demethylation by LSD1 to promote cell invasion.

    PubMed

    Carnesecchi, Julie; Forcet, Christelle; Zhang, Ling; Tribollet, Violaine; Barenton, Bruno; Boudra, Rafik; Cerutti, Catherine; Billas, Isabelle M L; Sérandour, Aurélien A; Carroll, Jason S; Beaudoin, Claude; Vanacker, Jean-Marc

    2017-04-11

    Lysine Specific Demethylase 1 (LSD1) removes mono- and dimethyl groups from lysine 4 of histone H3 (H3K4) or H3K9, resulting in repressive or activating (respectively) transcriptional histone marks. The mechanisms that control the balance between these two antagonist activities are not understood. We here show that LSD1 and the orphan nuclear receptor estrogen-related receptor α (ERRα) display commonly activated genes. Transcriptional activation by LSD1 and ERRα involves H3K9 demethylation at the transcriptional start site (TSS). Strikingly, ERRα is sufficient to induce LSD1 to demethylate H3K9 in vitro. The relevance of this mechanism is highlighted by functional data. LSD1 and ERRα coregulate several target genes involved in cell migration, including the MMP1 matrix metallo-protease, also activated through H3K9 demethylation at the TSS. Depletion of LSD1 or ERRα reduces the cellular capacity to invade the extracellular matrix, a phenomenon that is rescued by MMP1 reexpression. Altogether our results identify a regulatory network involving a direct switch in the biochemical activities of a histone demethylase, leading to increased cell invasion.

  3. Somatic mutations of the histone H3K27 demethylase, UTX, in human cancer

    PubMed Central

    van Haaften, Gijs; Dalgliesh, Gillian L; Davies, Helen; Chen, Lina; Bignell, Graham; Greenman, Chris; Edkins, Sarah; Hardy, Claire; O’Meara, Sarah; Teague, Jon; Butler, Adam; Hinton, Jonathan; Latimer, Calli; Andrews, Jenny; Barthorpe, Syd; Beare, Dave; Buck, Gemma; Campbell, Peter J; Cole, Jennifer; Dunmore, Rebecca; Forbes, Simon; Jia, Mingming; Jones, David; Kok, Chai Yin; Leroy, Catherine; Lin, Meng-Lay; McBride, David J; Maddison, Mark; Maquire, Simon; McLay, Kirsten; Menzies, Andrew; Mironenko, Tatiana; Lee, Mulderrig; Mudie, Laura; Pleasance, Erin; Shepherd, Rebecca; Smith, Raffaella; Stebbings, Lucy; Stephens, Philip; Tang, Gurpreet; Tarpey, Patrick S; Turner, Rachel; Turrell, Kelly; Varian, Jennifer; West, Sofie; Widaa, Sara; Wray, Paul; Collins, V Peter; Ichimura, Koichi; Law, Simon; Wong, John; Yuen, Siu Tsan; Leung, Suet Yi; Tonon, Giovanni; DePinho, Ronald A; Tai, Yu-Tzu; Anderson, Kenneth C; Kahnoski, Richard J.; Massie, Aaron; Khoo, Sok Kean; Teh, Bin Tean; Stratton, Michael R; Futreal, P Andrew

    2010-01-01

    Somatically acquired epigenetic changes are present in many cancers. Epigenetic regulation is maintained via post-translational modifications of core histones. Here, we describe inactivating somatic mutations in the histone lysine demethylase, UTX, pointing to histone H3 lysine methylation deregulation in multiple tumour types. UTX reintroduction into cancer cells with inactivating UTX mutations resulted in slowing of proliferation and marked transcriptional changes. These data identify UTX as a new human cancer gene. PMID:19330029

  4. Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer.

    PubMed

    van Haaften, Gijs; Dalgliesh, Gillian L; Davies, Helen; Chen, Lina; Bignell, Graham; Greenman, Chris; Edkins, Sarah; Hardy, Claire; O'Meara, Sarah; Teague, Jon; Butler, Adam; Hinton, Jonathan; Latimer, Calli; Andrews, Jenny; Barthorpe, Syd; Beare, Dave; Buck, Gemma; Campbell, Peter J; Cole, Jennifer; Forbes, Simon; Jia, Mingming; Jones, David; Kok, Chai Yin; Leroy, Catherine; Lin, Meng-Lay; McBride, David J; Maddison, Mark; Maquire, Simon; McLay, Kirsten; Menzies, Andrew; Mironenko, Tatiana; Mulderrig, Lee; Mudie, Laura; Pleasance, Erin; Shepherd, Rebecca; Smith, Raffaella; Stebbings, Lucy; Stephens, Philip; Tang, Gurpreet; Tarpey, Patrick S; Turner, Rachel; Turrell, Kelly; Varian, Jennifer; West, Sofie; Widaa, Sara; Wray, Paul; Collins, V Peter; Ichimura, Koichi; Law, Simon; Wong, John; Yuen, Siu Tsan; Leung, Suet Yi; Tonon, Giovanni; DePinho, Ronald A; Tai, Yu-Tzu; Anderson, Kenneth C; Kahnoski, Richard J; Massie, Aaron; Khoo, Sok Kean; Teh, Bin Tean; Stratton, Michael R; Futreal, P Andrew

    2009-05-01

    Somatically acquired epigenetic changes are present in many cancers. Epigenetic regulation is maintained via post-translational modifications of core histones. Here, we describe inactivating somatic mutations in the histone lysine demethylase gene UTX, pointing to histone H3 lysine methylation deregulation in multiple tumor types. UTX reintroduction into cancer cells with inactivating UTX mutations resulted in slowing of proliferation and marked transcriptional changes. These data identify UTX as a new human cancer gene.

  5. Mutation of C. elegans demethylase spr-5 extends transgenerational longevity

    PubMed Central

    Greer, Eric Lieberman; Becker, Ben; Latza, Christian; Antebi, Adam; Shi, Yang

    2016-01-01

    Complex organismal properties such as longevity can be transmitted across generations by non-genetic factors. Here we demonstrate that deletion of the C. elegans histone H3 lysine 4 dimethyl (H3K4me2) demethylase, spr-5, causes a trans-generational increase in lifespan. We identify a chromatin-modifying network, which regulates this lifespan extension. We further show that this trans-generational lifespan extension is dependent on a hormonal signaling pathway involving the steroid dafachronic acid, an activator of the nuclear receptor DAF-12. These findings suggest that loss of the demethylase SPR-5 causes H3K4me2 mis-regulation and activation of a known lifespan-regulating signaling pathway, leading to trans-generational lifespan extension. PMID:26691751

  6. Comparative Analyses of H3K4 and H3K27 Trimethylations Between the Mouse Cerebrum and Testis

    PubMed Central

    Cui, Peng; Liu, Wanfei; Zhao, Yuhui; Lin, Qiang; Zhang, Daoyong; Ding, Feng; Xin, Chengqi; Zhang, Zhang; Song, Shuhui; Sun, Fanglin; Yu, Jun; Hu, Songnian

    2012-01-01

    The global features of H3K4 and H3K27 trimethylations (H3K4me3 and H3K27me3) have been well studied in recent years, but most of these studies were performed in mammalian cell lines. In this work, we generated the genome-wide maps of H3K4me3 and H3K27me3 of mouse cerebrum and testis using ChIP-seq and their high-coverage transcriptomes using ribominus RNA-seq with SOLiD technology. We examined the global patterns of H3K4me3 and H3K27me3 in both tissues and found that modifications are closely-associated with tissue-specific expression, function and development. Moreover, we revealed that H3K4me3 and H3K27me3 rarely occur in silent genes, which contradicts the findings in previous studies. Finally, we observed that bivalent domains, with both H3K4me3 and H3K27me3, existed ubiquitously in both tissues and demonstrated an invariable preference for the regulation of developmentally-related genes. However, the bivalent domains tend towards a “winner-takes-all” approach to regulate the expression of associated genes. We also verified the above results in mouse ES cells. As expected, the results in ES cells are consistent with those in cerebrum and testis. In conclusion, we present two very important findings. One is that H3K4me3 and H3K27me3 rarely occur in silent genes. The other is that bivalent domains may adopt a “winner-takes-all” principle to regulate gene expression. PMID:22768982

  7. Targeted inhibition of histone H3K27 demethylation is effective in high-risk neuroblastoma.

    PubMed

    Lochmann, Timothy L; Powell, Krista M; Ham, Jungoh; Floros, Konstantinos V; Heisey, Daniel A R; Kurupi, Richard I J; Calbert, Marissa L; Ghotra, Maninderjit S; Greninger, Patricia; Dozmorov, Mikhail; Gowda, Madhu; Souers, Andrew J; Reynolds, C Patrick; Benes, Cyril H; Faber, Anthony C

    2018-05-16

    High-risk neuroblastoma is often distinguished by amplification of MYCN and loss of differentiation potential. We performed high-throughput drug screening of epigenetic-targeted therapies across a large and diverse tumor cell line panel and uncovered the hypersensitivity of neuroblastoma cells to GSK-J4, a small-molecule dual inhibitor of lysine 27 of histone 3 (H3K27) demethylases ubiquitously transcribed tetratricopeptide repeat, X chromosome (UTX), and histone demethylase Jumonji D3 (JMJD3). Mechanistically, GSK-J4 induced neuroblastoma differentiation and endoplasmic reticulum (ER) stress, with accompanying up-regulation of p53 up-regulated modulator of apoptosis (PUMA) and induction of cell death. Retinoic acid (RA)-resistant neuroblastoma cells were sensitive to GSK-J4. In addition, GSK-J4 was effective at blocking the growth of chemorefractory and patient-derived xenograft models of high-risk neuroblastoma in vivo. Furthermore, GSK-J4 and RA combination increased differentiation and ER stress over GSK-J4 effects and limited the growth of neuroblastomas resistant to either drug alone. In MYCN -amplified neuroblastoma, PUMA induction by GSK-J4 sensitized tumors to the B cell lymphoma 2 (BCL-2) inhibitor venetoclax, demonstrating that epigenetic-targeted therapies and BCL-2 homology domain 3 mimetics can be rationally combined to treat this high-risk subset of neuroblastoma. Therefore, H3K27 demethylation inhibition is a promising therapeutic target to treat high-risk neuroblastoma, and H3K27 demethylation can be part of rational combination therapies to induce robust antineuroblastoma activity. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  8. Characterization of a Linked Jumonji Domain of the KDM5/JARID1 Family of Histone H3 Lysine 4 Demethylases.

    PubMed

    Horton, John R; Engstrom, Amanda; Zoeller, Elizabeth L; Liu, Xu; Shanks, John R; Zhang, Xing; Johns, Margaret A; Vertino, Paula M; Fu, Haian; Cheng, Xiaodong

    2016-02-05

    The KDM5/JARID1 family of Fe(II)- and α-ketoglutarate-dependent demethylases remove methyl groups from tri- and dimethylated lysine 4 of histone H3. Accumulating evidence from primary tumors and model systems supports a role for KDM5A (JARID1A/RBP2) and KDM5B (JARID1B/PLU1) as oncogenic drivers. The KDM5 family is unique among the Jumonji domain-containing histone demethylases in that there is an atypical insertion of a DNA-binding ARID domain and a histone-binding PHD domain into the Jumonji domain, which separates the catalytic domain into two fragments (JmjN and JmjC). Here we demonstrate that internal deletion of the ARID and PHD1 domains has a negligible effect on in vitro enzymatic kinetics of the KDM5 family of enzymes. We present a crystal structure of the linked JmjN-JmjC domain from KDM5A, which reveals that the linked domain fully reconstitutes the cofactor (metal ion and α-ketoglutarate) binding characteristics of other structurally characterized Jumonji domain demethylases. Docking studies with GSK-J1, a selective inhibitor of the KDM6/KDM5 subfamilies, identify critical residues for binding of the inhibitor to the reconstituted KDM5 Jumonji domain. Further, we found that GSK-J1 inhibited the demethylase activity of KDM5C with 8.5-fold increased potency compared with that of KDM5B at 1 mm α-ketoglutarate. In contrast, JIB-04 (a pan-inhibitor of the Jumonji demethylase superfamily) had the opposite effect and was ~8-fold more potent against KDM5B than against KDM5C. Interestingly, the relative selectivity of JIB-04 toward KDM5B over KDM5C in vitro translates to a ~10-50-fold greater growth-inhibitory activity against breast cancer cell lines. These data define the minimal requirements for enzymatic activity of the KDM5 family to be the linked JmjN-JmjC domain coupled with the immediate C-terminal helical zinc-binding domain and provide structural characterization of the linked JmjN-JmjC domain for the KDM5 family, which should prove useful in the

  9. Genome-wide Analysis of the H3K4 Histone Demethylase RBP2 Reveals a Transcriptional Program Controlling Differentiation

    PubMed Central

    Lopez-Bigas, Nuria; Kisiel, Tomasz A.; DeWaal, Dannielle C.; Holmes, Katie B.; Volkert, Tom L.; Gupta, Sumeet; Love, Jennifer; Murray, Heather L.; Young, Richard A.; Benevolenskaya, Elizaveta V.

    2010-01-01

    SUMMARY Retinoblastoma protein (pRB) mediates cell-cycle withdrawal and differentiation by interacting with a variety of proteins. RB-Binding Protein 2 (RBP2) has been shown to be a key effector. We sought to determine transcriptional regulation by RBP2 genome-wide by using location analysis and gene expression profiling experiments. We describe that RBP2 shows high correlation with the presence of H3K4me3 and its target genes are separated into two functionally distinct classes: differentiation-independent and differentiation-dependent genes. The former class is enriched by genes that encode mitochondrial proteins, while the latter is represented by cell-cycle genes. We demonstrate the role of RBP2 in mitochondrial biogenesis, which involves regulation of H3K4me3-modified nucleosomes. Analysis of expression changes upon RBP2 depletion depicted genes with a signature of differentiation control, analogous to the changes seen upon reintroduction of pRB. We conclude that, during differentiation, RBP2 exerts inhibitory effects on multiple genes through direct interaction with their promoters. PMID:18722178

  10. Stage-dependent and locus-specific role of histone demethylase Jumonji D3 (JMJD3) in the embryonic stages of lung development.

    PubMed

    Li, Qingtian; Wang, Helen Y; Chepelev, Iouri; Zhu, Qingyuan; Wei, Gang; Zhao, Keji; Wang, Rong-Fu

    2014-07-01

    Histone demethylases have emerged as important players in developmental processes. Jumonji domain containing-3 (Jmjd3) has been identified as a key histone demethylase that plays a critical role in the regulation of gene expression; however, the in vivo function of Jmjd3 in embryonic development remains largely unknown. To this end, we generated Jmjd3 global and conditional knockout mice. Global deletion of Jmjd3 induces perinatal lethality associated with defective lung development. Tissue and stage-specific deletion revealed that Jmjd3 is dispensable in the later stage of embryonic lung development. Jmjd3 ablation downregulates the expression of genes critical for lung development and function, including AQP-5 and SP-B. Jmjd3-mediated alterations in gene expression are associated with locus-specific changes in the methylation status of H3K27 and H3K4. Furthermore, Jmjd3 is recruited to the SP-B promoter through interactions with the transcription factor Nkx2.1 and the epigenetic protein Brg1. Taken together, these findings demonstrate that Jmjd3 plays a stage-dependent and locus-specific role in the mouse lung development. Our study provides molecular insights into the mechanisms by which Jmjd3 regulates target gene expression in the embryonic stages of lung development.

  11. H3K27me3 and H3K4me3 chromatin environment at super-induced dehydration stress memory genes of Arabidopsis thaliana.

    PubMed

    Liu, Ning; Fromm, Michael; Avramova, Zoya

    2014-03-01

    Pre-exposure to a stress may alter the plant's cellular, biochemical, and/or transcriptional responses during future encounters as a 'memory' from the previous stress. Genes increasing transcription in response to a first dehydration stress, but producing much higher transcript levels in a subsequent stress, represent the super-induced 'transcription memory' genes in Arabidopsis thaliana. The chromatin environment (histone H3 tri-methylations of Lys 4 and Lys 27, H3K4me3, and H3K27me3) studied at five dehydration stress memory genes revealed existence of distinct memory-response subclasses that responded differently to CLF deficiency and displayed different transcriptional activities during the watered recovery periods. Among the most important findings is the novel aspect of the H3K27me3 function observed at specific dehydration stress memory genes. In contrast to its well-known role as a chromatin repressive mechanism at developmentally regulated genes, H3K27me3 did not prevent transcription from the dehydration stress-responding genes. The high H3K27me3 levels present during transcriptionally inactive states did not interfere with the transition to active transcription and with H3K4me3 accumulation. H3K4me3 and H3K27me3 marks function independently and are not mutually exclusive at the dehydration stress-responding memory genes.

  12. The Meiotic Recombination Activator PRDM9 Trimethylates Both H3K36 and H3K4 at Recombination Hotspots In Vivo.

    PubMed

    Powers, Natalie R; Parvanov, Emil D; Baker, Christopher L; Walker, Michael; Petkov, Petko M; Paigen, Kenneth

    2016-06-01

    In many mammals, including humans and mice, the zinc finger histone methyltransferase PRDM9 performs the first step in meiotic recombination by specifying the locations of hotspots, the sites of genetic recombination. PRDM9 binds to DNA at hotspots through its zinc finger domain and activates recombination by trimethylating histone H3K4 on adjacent nucleosomes through its PR/SET domain. Recently, the isolated PR/SET domain of PRDM9 was shown capable of also trimethylating H3K36 in vitro, raising the question of whether this reaction occurs in vivo during meiosis, and if so, what its function might be. Here, we show that full-length PRDM9 does trimethylate H3K36 in vivo in mouse spermatocytes. Levels of H3K4me3 and H3K36me3 are highly correlated at hotspots, but mutually exclusive elsewhere. In vitro, we find that although PRDM9 trimethylates H3K36 much more slowly than it does H3K4, PRDM9 is capable of placing both marks on the same histone molecules. In accord with these results, we also show that PRDM9 can trimethylate both K4 and K36 on the same nucleosomes in vivo, but the ratio of K4me3/K36me3 is much higher for the pair of nucleosomes adjacent to the PRDM9 binding site compared to the next pair further away. Importantly, H3K4me3/H3K36me3-double-positive nucleosomes occur only in regions of recombination: hotspots and the pseudoautosomal (PAR) region of the sex chromosomes. These double-positive nucleosomes are dramatically reduced when PRDM9 is absent, showing that this signature is PRDM9-dependent at hotspots; the residual double-positive nucleosomes most likely come from the PRDM9-independent PAR. These results, together with the fact that PRDM9 is the only known mammalian histone methyltransferase with both H3K4 and H3K36 trimethylation activity, suggest that trimethylation of H3K36 plays an important role in the recombination process. Given the known requirement of H3K36me3 for double strand break repair by homologous recombination in somatic cells, we

  13. The Meiotic Recombination Activator PRDM9 Trimethylates Both H3K36 and H3K4 at Recombination Hotspots In Vivo

    PubMed Central

    Powers, Natalie R.; Parvanov, Emil D.; Baker, Christopher L.; Walker, Michael; Petkov, Petko M.; Paigen, Kenneth

    2016-01-01

    In many mammals, including humans and mice, the zinc finger histone methyltransferase PRDM9 performs the first step in meiotic recombination by specifying the locations of hotspots, the sites of genetic recombination. PRDM9 binds to DNA at hotspots through its zinc finger domain and activates recombination by trimethylating histone H3K4 on adjacent nucleosomes through its PR/SET domain. Recently, the isolated PR/SET domain of PRDM9 was shown capable of also trimethylating H3K36 in vitro, raising the question of whether this reaction occurs in vivo during meiosis, and if so, what its function might be. Here, we show that full-length PRDM9 does trimethylate H3K36 in vivo in mouse spermatocytes. Levels of H3K4me3 and H3K36me3 are highly correlated at hotspots, but mutually exclusive elsewhere. In vitro, we find that although PRDM9 trimethylates H3K36 much more slowly than it does H3K4, PRDM9 is capable of placing both marks on the same histone molecules. In accord with these results, we also show that PRDM9 can trimethylate both K4 and K36 on the same nucleosomes in vivo, but the ratio of K4me3/K36me3 is much higher for the pair of nucleosomes adjacent to the PRDM9 binding site compared to the next pair further away. Importantly, H3K4me3/H3K36me3-double-positive nucleosomes occur only in regions of recombination: hotspots and the pseudoautosomal (PAR) region of the sex chromosomes. These double-positive nucleosomes are dramatically reduced when PRDM9 is absent, showing that this signature is PRDM9-dependent at hotspots; the residual double-positive nucleosomes most likely come from the PRDM9-independent PAR. These results, together with the fact that PRDM9 is the only known mammalian histone methyltransferase with both H3K4 and H3K36 trimethylation activity, suggest that trimethylation of H3K36 plays an important role in the recombination process. Given the known requirement of H3K36me3 for double strand break repair by homologous recombination in somatic cells, we

  14. Vitamin C induces specific demethylation of H3K9me2 in mouse embryonic stem cells via Kdm3a/b.

    PubMed

    Ebata, Kevin T; Mesh, Kathryn; Liu, Shichong; Bilenky, Misha; Fekete, Alexander; Acker, Michael G; Hirst, Martin; Garcia, Benjamin A; Ramalho-Santos, Miguel

    2017-01-01

    Histone methylation patterns regulate gene expression and are highly dynamic during development. The erasure of histone methylation is carried out by histone demethylase enzymes. We had previously shown that vitamin C enhances the activity of Tet enzymes in embryonic stem (ES) cells, leading to DNA demethylation and activation of germline genes. We report here that vitamin C induces a remarkably specific demethylation of histone H3 lysine 9 dimethylation (H3K9me2) in naïve ES cells. Vitamin C treatment reduces global levels of H3K9me2, but not other histone methylation marks analyzed, as measured by western blot, immunofluorescence and mass spectrometry. Vitamin C leads to widespread loss of H3K9me2 at large chromosomal domains as well as gene promoters and repeat elements. Vitamin C-induced loss of H3K9me2 occurs rapidly within 24 h and is reversible. Importantly, we found that the histone demethylases Kdm3a and Kdm3b are required for vitamin C-induced demethylation of H3K9me2. Moreover, we show that vitamin C-induced Kdm3a/b-mediated H3K9me2 demethylation and Tet-mediated DNA demethylation are independent processes at specific loci. Lastly, we document Kdm3a/b are partially required for the upregulation of germline genes by vitamin C. These results reveal a specific role for vitamin C in histone demethylation in ES cells and document that DNA methylation and H3K9me2 cooperate to silence germline genes in pluripotent cells.

  15. Mitochondrial control through nutritionally regulated global histone H3 lysine-4 demethylation

    PubMed Central

    Soloveychik, Maria; Xu, Mengshu; Zaslaver, Olga; Lee, Kwanyin; Narula, Ashrut; Jiang, River; Rosebrock, Adam P.; Caudy, Amy A.; Meneghini, Marc D.

    2016-01-01

    Histone demethylation by Jumonji-family proteins is coupled with the decarboxylation of α-ketoglutarate (αKG) to yield succinate, prompting hypotheses that their activities are responsive to levels of these metabolites in the cell. Consistent with this paradigm we show here that the Saccharomyces cerevisiae Jumonji demethylase Jhd2 opposes the accumulation of H3K4me3 in fermenting cells only when they are nutritionally manipulated to contain an elevated αKG/succinate ratio. We also find that Jhd2 opposes H3K4me3 in respiratory cells that do not exhibit such an elevated αKG/succinate ratio. While jhd2∆ caused only limited gene expression defects in fermenting cells, transcript profiling and physiological measurements show that JHD2 restricts mitochondrial respiratory capacity in cells grown in non-fermentable carbon in an H3K4me-dependent manner. In association with these phenotypes, we find that JHD2 limits yeast proliferative capacity under physiologically challenging conditions as measured by both replicative lifespan and colony growth on non-fermentable carbon. JHD2’s impact on nutrient response may reflect an ancestral role of its gene family in mediating mitochondrial regulation. PMID:27897198

  16. Structural basis for recognition of H3K56-acetylated histone H3-H4 by the chaperone Rtt106

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Dan; Hu, Qi; Li, Qing

    2013-04-08

    Dynamic variations in the structure of chromatin influence virtually all DNA-related processes in eukaryotes and are controlled in part by post-translational modifications of histones. One such modification, the acetylation of lysine 56 (H3K56ac) in the amino-terminal α-helix (αN) of histone H3, has been implicated in the regulation of nucleosome assembly during DNA replication and repair, and nucleosome disassembly during gene transcription. In Saccharomyces cerevisiae, the histone chaperone Rtt106 contributes to the deposition of newly synthesized H3K56ac-carrying H3-H4 complex on replicating DNA, but it is unclear how Rtt106 binds H3-H4 and specifically recognizes H3K56ac as there is no apparent acetylated lysinemore » reader domain in Rtt106. Here, we show that two domains of Rtt106 are involved in a combinatorial recognition of H3-H4. An N-terminal domain homodimerizes and interacts with H3-H4 independently of acetylation while a double pleckstrin-homology (PH) domain binds the K56-containing region of H3. Affinity is markedly enhanced upon acetylation of K56, an effect that is probably due to increased conformational entropy of the αN helix of H3. Our data support a mode of interaction where the N-terminal homodimeric domain of Rtt106 intercalates between the two H3-H4 components of the (H3-H4) 2 tetramer while two double PH domains in the Rtt106 dimer interact with each of the two H3K56ac sites in (H3-H4) 2. We show that the Rtt106-(H3-H4) 2 interaction is important for gene silencing and the DNA damage response.« less

  17. Both H4K20 mono-methylation and H3K56 acetylation mark transcription-dependent histone turnover in fission yeast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Hanna; Kwon, Chang Seob; Choi, Yoonjung, E-mail: jjungii@kaist.ac.kr

    Nucleosome dynamics facilitated by histone turnover is required for transcription as well as DNA replication and repair. Histone turnover is often associated with various histone modifications such as H3K56 acetylation (H3K56Ac), H3K36 methylation (H3K36me), and H4K20 methylation (H4K20me). In order to correlate histone modifications and transcription-dependent histone turnover, we performed genome wide analyses for euchromatic regions in G2/M-arrested fission yeast. The results show that transcription-dependent histone turnover at 5′ promoter and 3′ termination regions is directly correlated with the occurrence of H3K56Ac and H4K20 mono-methylation (H4K20me1) in actively transcribed genes. Furthermore, the increase of H3K56Ac and H4K20me1 and antisense RNAmore » production was observed in the absence of the histone H3K36 methyltransferase Set2 and histone deacetylase complex (HDAC) that are involved in the suppression of histone turnover within the coding regions. These results together indicate that H4K20me1 as well as H3K56Ac are bona fide marks for transcription-dependent histone turnover in fission yeast.« less

  18. H3K4me3 breadth is linked to cell identity and transcriptional consistency.

    PubMed

    Benayoun, Bérénice A; Pollina, Elizabeth A; Ucar, Duygu; Mahmoudi, Salah; Karra, Kalpana; Wong, Edith D; Devarajan, Keerthana; Daugherty, Aaron C; Kundaje, Anshul B; Mancini, Elena; Hitz, Benjamin C; Gupta, Rakhi; Rando, Thomas A; Baker, Julie C; Snyder, Michael P; Cherry, J Michael; Brunet, Anne

    2014-07-31

    Trimethylation of histone H3 at lysine 4 (H3K4me3) is a chromatin modification known to mark the transcription start sites of active genes. Here, we show that H3K4me3 domains that spread more broadly over genes in a given cell type preferentially mark genes that are essential for the identity and function of that cell type. Using the broadest H3K4me3 domains as a discovery tool in neural progenitor cells, we identify novel regulators of these cells. Machine learning models reveal that the broadest H3K4me3 domains represent a distinct entity, characterized by increased marks of elongation. The broadest H3K4me3 domains also have more paused polymerase at their promoters, suggesting a unique transcriptional output. Indeed, genes marked by the broadest H3K4me3 domains exhibit enhanced transcriptional consistency and [corrected] increased transcriptional levels, and perturbation of H3K4me3 breadth leads to changes in transcriptional consistency. Thus, H3K4me3 breadth contains information that could ensure transcriptional precision at key cell identity/function genes. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Association between H3K4 methylation and cancer prognosis: A meta-analysis.

    PubMed

    Li, Simin; Shen, Luyan; Chen, Ke-Neng

    2018-05-08

    Histone H3 lysine 4 methylation (H3K4 methylation), including mono-methylation (H3K4me1), di-methylation (H3K4me2), or tri-methylation (H3K4me3), is one of the epigenetic modifications to histone proteins, which are related to the transcriptional activation of genes. H3K4 methylation has both tumor inhibiting and promoting effects, and the prognostic value of H3K4 methylation in cancer remains controversial. Therefore, we performed a systematic review and meta-analysis to examine the association between H3K4 methylation and cancer prognosis. A comprehensive search of PubMed, Web of Science, ScienceDirect, Embase, and Ovid databases was conducted to identify studies investigating the association between H3K4 methylation and prognosis of patients with malignant tumors. The data and characteristics of each study were extracted, and the hazard ratio (HR) at a 95% confidence interval (CI) was calculated to estimate the effect. A total of 1474 patients in 10 studies were enrolled in this meta-analysis. The pooled HR of 1.52 (95% CI 1.02-2.26) indicated that patients with a lower level of H3K4me2 expression were expected to have shorter overall survival, while the pooled HR of 0.45 (95% CI 0.27-0.74) indicated that patients with a lower level of H3K4me3 expression were expected to have longer overall survival. This meta-analysis indicates that increased H3K4me3 expression and decreased H3K4me2 expression might be predictive factors of poor prognosis in cancer. Further large cohort studies are needed to confirm these findings. © 2018 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  20. The Histone Demethylase Jhdm1a Regulates Hepatic Gluconeogenesis

    PubMed Central

    Zou, Tie; Yao, Annie Y.; Cooper, Marcus P.; Boyartchuk, Victor; Wang, Yong-Xu

    2012-01-01

    Hepatic gluconeogenesis is required for maintaining blood glucose homeostasis; yet, in diabetes mellitus, this process is unrestrained and is a major contributor to fasting hyperglycemia. To date, the impacts of chromatin modifying enzymes and chromatin landscape on gluconeogenesis are poorly understood. Through catalyzing the removal of methyl groups from specific lysine residues in the histone tail, histone demethylases modulate chromatin structure and, hence, gene expression. Here we perform an RNA interference screen against the known histone demethylases and identify a histone H3 lysine 36 (H3K36) demethylase, Jhdm1a, as a key negative regulator of gluconeogenic gene expression. In vivo, silencing of Jhdm1a promotes liver glucose synthesis, while its exogenous expression reduces blood glucose level. Importantly, the regulation of gluconeogenesis by Jhdm1a requires its demethylation activity. Mechanistically, we find that Jhdm1a regulates the expression of a major gluconeogenic regulator, C/EBPα. This is achieved, at least in part, by its USF1-dependent association with the C/EBPα promoter and its subsequent demethylation of dimethylated H3K36 on the C/EBPα locus. Our work provides compelling evidence that links histone demethylation to transcriptional regulation of gluconeogenesis and has important implications for the treatment of diabetes. PMID:22719268

  1. Trans-tail regulation of MLL4-catalyzed H3K4 methylation by H4R3 symmetric dimethylation is mediated by a tandem PHD of MLL4

    PubMed Central

    Dhar, Shilpa S.; Lee, Sung-Hun; Kan, Pu-Yeh; Voigt, Philipp; Ma, Li; Shi, Xiaobing; Reinberg, Danny; Lee, Min Gyu

    2012-01-01

    Mixed-lineage leukemia 4 (MLL4; also called MLL2 and ALR) enzymatically generates trimethylated histone H3 Lys 4 (H3K4me3), a hallmark of gene activation. However, how MLL4-deposited H3K4me3 interplays with other histone marks in epigenetic processes remains largely unknown. Here, we show that MLL4 plays an essential role in differentiating NT2/D1 stem cells by activating differentiation-specific genes. A tandem plant homeodomain (PHD4–6) of MLL4 recognizes unmethylated or asymmetrically dimethylated histone H4 Arg 3 (H4R3me0 or H4R3me2a) and is required for MLL4's nucleosomal methyltransferase activity and MLL4-mediated differentiation. Kabuki syndrome mutations in PHD4–6 reduce PHD4–6's binding ability and MLL4's catalytic activity. PHD4–6's binding strength is inhibited by H4R3 symmetric dimethylation (H4R3me2s), a gene-repressive mark. The protein arginine methyltransferase 7 (PRMT7), but not PRMT5, represses MLL4 target genes by up-regulating H4R3me2s levels and antagonizes MLL4-mediated differentiation. Consistently, PRMT7 knockdown increases MLL4-catalyzed H3K4me3 levels. During differentiation, decreased H4R3me2s levels are associated with increased H3K4me3 levels at a cohort of genes, including many HOXA and HOXB genes. These findings indicate that the trans-tail inhibition of MLL4-generated H3K4me3 by PRMT7-regulated H4R3me2s may result from H4R3me2s's interference with PHD4–6's binding activity and is a novel epigenetic mechanism that underlies opposing effects of MLL4 and PRMT7 on cellular differentiation. PMID:23249737

  2. Trans-tail regulation of MLL4-catalyzed H3K4 methylation by H4R3 symmetric dimethylation is mediated by a tandem PHD of MLL4.

    PubMed

    Dhar, Shilpa S; Lee, Sung-Hun; Kan, Pu-Yeh; Voigt, Philipp; Ma, Li; Shi, Xiaobing; Reinberg, Danny; Lee, Min Gyu

    2012-12-15

    Mixed-lineage leukemia 4 (MLL4; also called MLL2 and ALR) enzymatically generates trimethylated histone H3 Lys 4 (H3K4me3), a hallmark of gene activation. However, how MLL4-deposited H3K4me3 interplays with other histone marks in epigenetic processes remains largely unknown. Here, we show that MLL4 plays an essential role in differentiating NT2/D1 stem cells by activating differentiation-specific genes. A tandem plant homeodomain (PHD(4-6)) of MLL4 recognizes unmethylated or asymmetrically dimethylated histone H4 Arg 3 (H4R3me0 or H4R3me2a) and is required for MLL4's nucleosomal methyltransferase activity and MLL4-mediated differentiation. Kabuki syndrome mutations in PHD(4-6) reduce PHD(4-6)'s binding ability and MLL4's catalytic activity. PHD(4-6)'s binding strength is inhibited by H4R3 symmetric dimethylation (H4R3me2s), a gene-repressive mark. The protein arginine methyltransferase 7 (PRMT7), but not PRMT5, represses MLL4 target genes by up-regulating H4R3me2s levels and antagonizes MLL4-mediated differentiation. Consistently, PRMT7 knockdown increases MLL4-catalyzed H3K4me3 levels. During differentiation, decreased H4R3me2s levels are associated with increased H3K4me3 levels at a cohort of genes, including many HOXA and HOXB genes. These findings indicate that the trans-tail inhibition of MLL4-generated H3K4me3 by PRMT7-regulated H4R3me2s may result from H4R3me2s's interference with PHD(4-6)'s binding activity and is a novel epigenetic mechanism that underlies opposing effects of MLL4 and PRMT7 on cellular differentiation.

  3. [Distributions of H3K27me3 and its modification enzymes in different tissues of mice].

    PubMed

    Wang, Yuying; Wang, Xinli; Zhang, Ran; Zhang, Zhiyan; Wang, Yu; Yang, Bo; Wang, Guanjie; Zhang, Xin; Ma, Fuhao; Xu, Hongye; Wu, Xiaohui; Zhang, Feng; Li, Qing

    2017-11-01

    Objective To investigate the levels of trimethylated histone 3 at lysine residue 27 (H3K27me3) and its modification enzymes Zeste gene enhancer homolog 2 (EZH2), lysine-specific demethylase 6B (Kdm6B/JMJD3) and lysine-specific demethylase 6A (Kdm6A/UTX) in tissues and organs of 7-day and 2-month postnatal mice. Methods Immunohistochemistry was used to detect the expressions of H3K27me3 and its modification enzymes EZH2, JMJD3 and UTX in the brain, salivary glands, back fat, thymus, lung, heart, stomach, intestines, liver, testes, and skin of 7-day and 2-month mice. Real-time quantitative PCR was used to confirm the results. The relationships between H3K27me3 and its modification enzymes were analyzed statistically. Results Immunohistochemistry showed H3K27me3 persistently present in all examined tissues of 7-day and 2-month mice. EZH2 was persistently expressed in the brain, heart, liver, and skin of 7-day and 2-month mice, but only expressed in the salivary glands, adipose tissues, thymus, lung, intestines, and testes of 2-month mice. JMJD3 was expressed in the brain, salivary glands, adipose tissues, lung, heart, stomach, intestines, testes, skin of 7-day mice, but was not expressed in the lung, adipose tissues and stomach of 2-month mice. UTX was expressed in the brain, salivary glands, adipose tissues, lung, heart, testes, skin of 7-day mice, but only expressed in the testes of 2-month mice. Most mRNA of H3K27 modification enzymes were moderately or highly expressed as their immunohistochemical results were positive. Conclusion There was H3K27me3 persistently present in the all examined tissues at different stages. EZH2 was mostly expressed in the brain, salivary glands, adipose tissues, thymus, lung, heart, intestines, liver, testes and skin of 2-month-old mice. JMJD3 and UTX were mostly expressed in the brain, salivary glands, adipose tissues, lung, heart, skin and testes of 7-day-old mice. No significant association was found between the distribution of H3K

  4. The SUVR4 Histone Lysine Methyltransferase Binds Ubiquitin and Converts H3K9me1 to H3K9me3 on Transposon Chromatin in Arabidopsis

    PubMed Central

    Veiseth, Silje V.; Rahman, Mohummad A.; Yap, Kyoko L.; Fischer, Andreas; Egge-Jacobsen, Wolfgang; Reuter, Gunter; Zhou, Ming-Ming; Aalen, Reidunn B.; Thorstensen, Tage

    2011-01-01

    Chromatin structure and gene expression are regulated by posttranslational modifications (PTMs) on the N-terminal tails of histones. Mono-, di-, or trimethylation of lysine residues by histone lysine methyltransferases (HKMTases) can have activating or repressive functions depending on the position and context of the modified lysine. In Arabidopsis, trimethylation of lysine 9 on histone H3 (H3K9me3) is mainly associated with euchromatin and transcribed genes, although low levels of this mark are also detected at transposons and repeat sequences. Besides the evolutionarily conserved SET domain which is responsible for enzyme activity, most HKMTases also contain additional domains which enable them to respond to other PTMs or cellular signals. Here we show that the N-terminal WIYLD domain of the Arabidopsis SUVR4 HKMTase binds ubiquitin and that the SUVR4 product specificity shifts from di- to trimethylation in the presence of free ubiquitin, enabling conversion of H3K9me1 to H3K9me3 in vitro. Chromatin immunoprecipitation and immunocytological analysis showed that SUVR4 in vivo specifically converts H3K9me1 to H3K9me3 at transposons and pseudogenes and has a locus-specific repressive effect on the expression of such elements. Bisulfite sequencing indicates that this repression involves both DNA methylation–dependent and –independent mechanisms. Transcribed genes with high endogenous levels of H3K4me3, H3K9me3, and H2Bub1, but low H3K9me1, are generally unaffected by SUVR4 activity. Our results imply that SUVR4 is involved in the epigenetic defense mechanism by trimethylating H3K9 to suppress potentially harmful transposon activity. PMID:21423664

  5. Epigenetic regulation of facultative heterochromatinisation in Planococcus citri via the Me(3)K9H3-HP1-Me(3)K20H4 pathway.

    PubMed

    Bongiorni, Silvia; Pasqualini, Barbara; Taranta, Monia; Singh, Prim B; Prantera, Giorgio

    2007-03-15

    Using RNA interference (RNAi) we have conducted a functional analysis of the HP1-like chromobox gene pchet2 during embryogenesis of the mealybug Planococcus citri. Knocking down pchet2 expression results in decondensation of the male-specific chromocenter that normally arises from the developmentally-regulated facultative heterochromatinisation of the paternal chromosome complement. Together with the disappearance of the chromocenter the staining levels of two associated histone modifications, tri-methylated lysine 9 of histone H3 [Me(3)K9H3] and tri-methylated lysine 20 of histone H4 [Me(3)K20H4], are reduced to undetectable levels. Embryos treated with double-stranded RNA (dsRNA) targeting pchet2 also exhibit chromosome abnormalities, such as aberrant chromosome condensation, and also the presence of metaphases that contain 'lagging' chromosomes. We conclude that PCHET2 regulates chromosome behavior during metaphase and is a crucial component of a Me(3)K9H3-HP1-Me(3)K20H4 pathway involved in the facultative heterochromatinisation of the (imprinted) paternal chromosome set.

  6. Shifts in podocyte histone H3K27me3 regulate mouse and human glomerular disease

    PubMed Central

    Majumder, Syamantak; Thieme, Karina; Batchu, Sri N.; Alghamdi, Tamadher A.; Bowskill, Bridgit B.; Kabir, M. Golam; Liu, Youan; Advani, Suzanne L.; White, Kathryn E.; Geldenhuys, Laurette; Tennankore, Karthik K.; Poyah, Penelope; Siddiqi, Ferhan S.

    2017-01-01

    Histone protein modifications control fate determination during normal development and dedifferentiation during disease. Here, we set out to determine the extent to which dynamic changes to histones affect the differentiated phenotype of ordinarily quiescent adult glomerular podocytes. To do this, we examined the consequences of shifting the balance of the repressive histone H3 lysine 27 trimethylation (H3K27me3) mark in podocytes. Adriamycin nephrotoxicity and subtotal nephrectomy (SNx) studies indicated that deletion of the histone methylating enzyme EZH2 from podocytes decreased H3K27me3 levels and sensitized mice to glomerular disease. H3K27me3 was enriched at the promoter region of the Notch ligand Jag1 in podocytes, and derepression of Jag1 by EZH2 inhibition or knockdown facilitated podocyte dedifferentiation. Conversely, inhibition of the Jumonji C domain–containing demethylases Jmjd3 and UTX increased the H3K27me3 content of podocytes and attenuated glomerular disease in adriamycin nephrotoxicity, SNx, and diabetes. Podocytes in glomeruli from humans with focal segmental glomerulosclerosis or diabetic nephropathy exhibited diminished H3K27me3 and heightened UTX content. Analogous to human disease, inhibition of Jmjd3 and UTX abated nephropathy progression in mice with established glomerular injury and reduced H3K27me3 levels. Together, these findings indicate that ostensibly stable chromatin modifications can be dynamically regulated in quiescent cells and that epigenetic reprogramming can improve outcomes in glomerular disease by repressing the reactivation of developmental pathways. PMID:29227285

  7. Epigenetic signatures of autism: trimethylated H3K4 landscapes in prefrontal neurons.

    PubMed

    Shulha, Hennady P; Cheung, Iris; Whittle, Catheryne; Wang, Jie; Virgil, Daniel; Lin, Cong L; Guo, Yin; Lessard, Andree; Akbarian, Schahram; Weng, Zhiping

    2012-03-01

    Neuronal dysfunction in cerebral cortex and other brain regions could contribute to the cognitive and behavioral defects in autism. To characterize epigenetic signatures of autism in prefrontal cortex neurons. We performed fluorescence-activated sorting and separation of neuronal and nonneuronal nuclei from postmortem prefrontal cortex, digested the chromatin with micrococcal nuclease, and deeply sequenced the DNA from the mononucleosomes with trimethylated H3K4 (H3K4me3), a histone mark associated with transcriptional regulation. Approximately 15 billion base pairs of H3K4me3-enriched sequences were collected from 32 brains. Academic medical center. A total of 16 subjects diagnosed as having autism and 16 control subjects ranging in age from 0.5 to 70 years. Identification of genomic loci showing autism-associated H3K4me3 changes in prefrontal cortex neurons. Subjects with autism showed no evidence for generalized disruption of the developmentally regulated remodeling of the H3K4me3 landscape that defines normal prefrontal cortex neurons in early infancy. However, excess spreading of H3K4me3 from the transcription start sites into downstream gene bodies and upstream promoters was observed specifically in neuronal chromatin from 4 of 16 autism cases but not in controls. Variable subsets of autism cases exhibit altered H3K4me3 peaks at numerous genes regulating neuronal connectivity, social behaviors, and cognition, often in conjunction with altered expression of the corresponding transcripts. Autism-associated H3K4me3 peaks were significantly enriched in genes and loci implicated in neurodevelopmental diseases. Prefrontal cortex neurons from subjects with autism show changes in chromatin structures at hundreds of loci genome-wide, revealing considerable overlap between genetic and epigenetic risk maps of developmental brain disorders.

  8. Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail.

    PubMed

    Brasacchio, Daniella; Okabe, Jun; Tikellis, Christos; Balcerczyk, Aneta; George, Prince; Baker, Emma K; Calkin, Anna C; Brownlee, Michael; Cooper, Mark E; El-Osta, Assam

    2009-05-01

    Results from the Diabetes Control Complications Trial (DCCT) and the subsequent Epidemiology of Diabetes Interventions and Complications (EDIC) Study and more recently from the U.K. Prospective Diabetes Study (UKPDS) have revealed that the deleterious end-organ effects that occurred in both conventional and more aggressively treated subjects continued to operate >5 years after the patients had returned to usual glycemic control and is interpreted as a legacy of past glycemia known as "hyperglycemic memory." We have hypothesized that transient hyperglycemia mediates persistent gene-activating events attributed to changes in epigenetic information. Models of transient hyperglycemia were used to link NFkappaB-p65 gene expression with H3K4 and H3K9 modifications mediated by the histone methyltransferases (Set7 and SuV39h1) and the lysine-specific demethylase (LSD1) by the immunopurification of soluble NFkappaB-p65 chromatin. The sustained upregulation of the NFkappaB-p65 gene as a result of ambient or prior hyperglycemia was associated with increased H3K4m1 but not H3K4m2 or H3K4m3. Furthermore, glucose was shown to have other epigenetic effects, including the suppression of H3K9m2 and H3K9m3 methylation on the p65 promoter. Finally, there was increased recruitment of the recently identified histone demethylase LSD1 to the p65 promoter as a result of prior hyperglycemia. These studies indicate that the active transcriptional state of the NFkappaB-p65 gene is linked with persisting epigenetic marks such as enhanced H3K4 and reduced H3K9 methylation, which appear to occur as a result of effects of the methyl-writing and methyl-erasing histone enzymes.

  9. Hyperglycemia Induces a Dynamic Cooperativity of Histone Methylase and Demethylase Enzymes Associated With Gene-Activating Epigenetic Marks That Coexist on the Lysine Tail

    PubMed Central

    Brasacchio, Daniella; Okabe, Jun; Tikellis, Christos; Balcerczyk, Aneta; George, Prince; Baker, Emma K.; Calkin, Anna C.; Brownlee, Michael; Cooper, Mark E.; El-Osta, Assam

    2009-01-01

    OBJECTIVE Results from the Diabetes Control Complications Trial (DCCT) and the subsequent Epidemiology of Diabetes Interventions and Complications (EDIC) Study and more recently from the U.K. Prospective Diabetes Study (UKPDS) have revealed that the deleterious end-organ effects that occurred in both conventional and more aggressively treated subjects continued to operate >5 years after the patients had returned to usual glycemic control and is interpreted as a legacy of past glycemia known as “hyperglycemic memory.” We have hypothesized that transient hyperglycemia mediates persistent gene-activating events attributed to changes in epigenetic information. RESEARCH DESIGN AND METHODS Models of transient hyperglycemia were used to link NFκB-p65 gene expression with H3K4 and H3K9 modifications mediated by the histone methyltransferases (Set7 and SuV39h1) and the lysine-specific demethylase (LSD1) by the immunopurification of soluble NFκB-p65 chromatin. RESULTS The sustained upregulation of the NFκB-p65 gene as a result of ambient or prior hyperglycemia was associated with increased H3K4m1 but not H3K4m2 or H3K4m3. Furthermore, glucose was shown to have other epigenetic effects, including the suppression of H3K9m2 and H3K9m3 methylation on the p65 promoter. Finally, there was increased recruitment of the recently identified histone demethylase LSD1 to the p65 promoter as a result of prior hyperglycemia. CONCLUSIONS These studies indicate that the active transcriptional state of the NFκB-p65 gene is linked with persisting epigenetic marks such as enhanced H3K4 and reduced H3K9 methylation, which appear to occur as a result of effects of the methyl-writing and methyl-erasing histone enzymes. PMID:19208907

  10. Effects of Nickel Treatment on H3K4 Trimethylation and Gene Expression

    PubMed Central

    Tchou-Wong, Kam-Meng; Kluz, Thomas; Arita, Adriana; Smith, Phillip R.; Brown, Stuart; Costa, Max

    2011-01-01

    Occupational exposure to nickel compounds has been associated with lung and nasal cancers. We have previously shown that exposure of the human lung adenocarcinoma A549 cells to NiCl2 for 24 hr significantly increased global levels of trimethylated H3K4 (H3K4me3), a transcriptional activating mark that maps to the promoters of transcribed genes. To further understand the potential epigenetic mechanism(s) underlying nickel carcinogenesis, we performed genome-wide mapping of H3K4me3 by chromatin immunoprecipitation and direct genome sequencing (ChIP-seq) and correlated with transcriptome genome-wide mapping of RNA transcripts by massive parallel sequencing of cDNA (RNA-seq). The effect of NiCl2 treatment on H3K4me3 peaks within 5,000 bp of transcription start sites (TSSs) on a set of genes highly induced by nickel in both A549 cells and human peripheral blood mononuclear cells were analyzed. Nickel exposure increased the level of H3K4 trimethylation in both the promoters and coding regions of several genes including CA9 and NDRG1 that were increased in expression in A549 cells. We have also compared the extent of the H3K4 trimethylation in the absence and presence of formaldehyde crosslinking and observed that crosslinking of chromatin was required to observe H3K4 trimethylation in the coding regions immediately downstream of TSSs of some nickel-induced genes including ADM and IGFBP3. This is the first genome-wide mapping of trimethylated H3K4 in the promoter and coding regions of genes induced after exposure to NiCl2. This study may provide insights into the epigenetic mechanism(s) underlying the carcinogenicity of nickel compounds. PMID:21455298

  11. Histone demethylase KDM5A is regulated by its reader domain through a positive-feedback mechanism

    NASA Astrophysics Data System (ADS)

    Torres, Idelisse Ortiz; Kuchenbecker, Kristopher M.; Nnadi, Chimno I.; Fletterick, Robert J.; Kelly, Mark J. S.; Fujimori, Danica Galonić

    2015-02-01

    The retinoblastoma binding protein KDM5A removes methyl marks from lysine 4 of histone H3 (H3K4). Misregulation of KDM5A contributes to the pathogenesis of lung and gastric cancers. In addition to its catalytic jumonji C domain, KDM5A contains three PHD reader domains, commonly recognized as chromatin recruitment modules. It is unknown whether any of these domains in KDM5A have functions beyond recruitment and whether they regulate the catalytic activity of the demethylase. Here using biochemical and nuclear magnetic resonance (NMR)-based structural studies, we show that the PHD1 preferentially recognizes unmethylated H3K4 histone tail, product of KDM5A-mediated demethylation of tri-methylated H3K4 (H3K4me3). Binding of unmodified H3 peptide to the PHD1 stimulates catalytic domain-mediated removal of methyl marks from H3K4me3 peptide and nucleosome substrates. This positive-feedback mechanism—enabled by the functional coupling between a reader and a catalytic domain in KDM5A—suggests a model for the spread of demethylation on chromatin.

  12. Histone H3K36 methylation regulates pre-mRNA splicing in Saccharomyces cerevisiae

    PubMed Central

    Sorenson, Matthew R.; Jha, Deepak K.; Ucles, Stefanie A.; Flood, Danielle M.; Strahl, Brian D.; Stevens, Scott W.; Kress, Tracy L.

    2016-01-01

    ABSTRACT Co-transcriptional splicing takes place in the context of a highly dynamic chromatin architecture, yet the role of chromatin restructuring in coordinating transcription with RNA splicing has not been fully resolved. To further define the contribution of histone modifications to pre-mRNA splicing in Saccharomyces cerevisiae, we probed a library of histone point mutants using a reporter to monitor pre-mRNA splicing. We found that mutation of H3 lysine 36 (H3K36) – a residue methylated by Set2 during transcription elongation – exhibited phenotypes similar to those of pre-mRNA splicing mutants. We identified genetic interactions between genes encoding RNA splicing factors and genes encoding the H3K36 methyltransferase Set2 and the demethylase Jhd1 as well as point mutations of H3K36 that block methylation. Consistent with the genetic interactions, deletion of SET2, mutations modifying the catalytic activity of Set2 or H3K36 point mutations significantly altered expression of our reporter and reduced splicing of endogenous introns. These effects were dependent on the association of Set2 with RNA polymerase II and H3K36 dimethylation. Additionally, we found that deletion of SET2 reduces the association of the U2 and U5 snRNPs with chromatin. Thus, our study provides the first evidence that H3K36 methylation plays a role in co-transcriptional RNA splicing in yeast. PMID:26821844

  13. MLL4 Is Required to Maintain Broad H3K4me3 Peaks and Super-Enhancers at Tumor Suppressor Genes.

    PubMed

    Dhar, Shilpa S; Zhao, Dongyu; Lin, Tao; Gu, Bingnan; Pal, Khusboo; Wu, Sarah J; Alam, Hunain; Lv, Jie; Yun, Kyuson; Gopalakrishnan, Vidya; Flores, Elsa R; Northcott, Paul A; Rajaram, Veena; Li, Wei; Shilatifard, Ali; Sillitoe, Roy V; Chen, Kaifu; Lee, Min Gyu

    2018-06-07

    Super-enhancers are large clusters of enhancers that activate gene expression. Broad trimethyl histone H3 lysine 4 (H3K4me3) often defines active tumor suppressor genes. However, how these epigenomic signatures are regulated for tumor suppression is little understood. Here we show that brain-specific knockout of the H3K4 methyltransferase MLL4 (a COMPASS-like enzyme, also known as KMT2D) in mice spontaneously induces medulloblastoma. Mll4 loss upregulates oncogenic Ras and Notch pathways while downregulating neuronal gene expression programs. MLL4 enhances DNMT3A-catalyzed DNA methylation and SIRT1/BCL6-mediated H4K16 deacetylation, which antagonize expression of Ras activators and Notch pathway components, respectively. Notably, Mll4 loss downregulates tumor suppressor genes (e.g., Dnmt3a and Bcl6) by diminishing broad H3K4me3 and super-enhancers and also causes widespread impairment of these epigenomic signatures during medulloblastoma genesis. These findings suggest an anti-tumor role for super-enhancers and provide a unique tumor-suppressive mechanism in which MLL4 is necessary to maintain broad H3K4me3 and super-enhancers at tumor suppressor genes. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. P110β Inhibition Reduces Histone H3K4 Di-Methylation in Prostate Cancer.

    PubMed

    Pang, Jun; Yang, Yue-Wu; Huang, Yiling; Yang, Jun; Zhang, Hao; Chen, Ruibao; Dong, Liang; Huang, Yan; Wang, Dongying; Liu, Jihong; Li, Benyi

    2017-02-01

    Epigenetic alteration plays a major role in the development and progression of human cancers, including prostate cancer. Histones are the key factors in modulating gene accessibility to transcription factors and post-translational modification of the histone N-terminal tail including methylation is associated with either transcriptional activation (H3K4me2) or repression (H3K9me3). Furthermore, phosphoinositide 3-kinase (PI3K) signaling and the androgen receptor (AR) are the key determinants in prostate cancer development and progression. We recently showed that prostate-targeted nano-micelles loaded with PI3K/p110beta specific inhibitor TGX221 blocked prostate cancer growth in vitro and in vivo. Our objective of this study was to determine the role of PI3K signaling in histone methylation in prostate cancer, with emphasis on histone H3K4 methylation. PI3K non-specific inhibitor LY294002 and p110beta-specific inhibitor TGX221 were used to block PI3K/p110beta signaling. The global levels of H3K4 and H3K9 methylation in prostate cancer cells and tissue specimens were evaluated by Western blot assay and immunohistochemical staining. A synthetic androgen R1881 was used to stimulate AR activity in prostate cancer cells. A castration-resistant prostate cancer (CRPC) specific human tissue microarray (TMA) was used to assess the global levels of H3K4me2 methylation by immunostaining approach. Our data revealed that H3K4me2 levels were significantly elevated after androgen stimulation. With RNA silencing and pharmacology approaches, we further defined that inhibition of PI3K/p110beta activity through gene-specific knocking down and small chemical inhibitor TGX221 abolished androgen-stimulated H3K4me2 methylation. Consistently, prostate cancer-targeted delivery of TGX221 in vivo dramatically reduced the global levels of H3K4me2 as assessed by immunohistochemical staining on tissue section of mouse xenografts from CRPC cell lines 22RV1 and C4-2. Finally

  15. Quantitative analysis of ChIP-seq data uncovers dynamic and sustained H3K4me3 and H3K27me3 modulation in cancer cells under hypoxia.

    PubMed

    Adriaens, Michiel E; Prickaerts, Peggy; Chan-Seng-Yue, Michelle; van den Beucken, Twan; Dahlmans, Vivian E H; Eijssen, Lars M; Beck, Timothy; Wouters, Bradly G; Voncken, Jan Willem; Evelo, Chris T A

    2016-01-01

    A comprehensive assessment of the epigenetic dynamics in cancer cells is the key to understanding the molecular mechanisms underlying cancer and to improving cancer diagnostics, prognostics and treatment. By combining genome-wide ChIP-seq epigenomics and microarray transcriptomics, we studied the effects of oxygen deprivation and subsequent reoxygenation on histone 3 trimethylation of lysine 4 (H3K4me3) and lysine 27 (H3K27me3) in a breast cancer cell line, serving as a model for abnormal oxygenation in solid tumors. A priori, epigenetic markings and gene expression levels not only are expected to vary greatly between hypoxic and normoxic conditions, but also display a large degree of heterogeneity across the cell population. Where traditionally ChIP-seq data are often treated as dichotomous data, the model and experiment here necessitate a quantitative, data-driven analysis of both datasets. We first identified genomic regions with sustained epigenetic markings, which provided a sample-specific reference enabling quantitative ChIP-seq data analysis. Sustained H3K27me3 marking was located around centromeres and intergenic regions, while sustained H3K4me3 marking is associated with genes involved in RNA binding, translation and protein transport and localization. Dynamic marking with both H3K4me3 and H3K27me3 (hypoxia-induced bivalency) was found in CpG-rich regions at loci encoding factors that control developmental processes, congruent with observations in embryonic stem cells. In silico -identified epigenetically sustained and dynamic genomic regions were confirmed through ChIP-PCR in vitro, and obtained results are corroborated by published data and current insights regarding epigenetic regulation.

  16. Super-Enhancers and Broad H3K4me3 Domains Form Complex Gene Regulatory Circuits Involving Chromatin Interactions.

    PubMed

    Cao, Fan; Fang, Yiwen; Tan, Hong Kee; Goh, Yufen; Choy, Jocelyn Yeen Hui; Koh, Bryan Thean Howe; Hao Tan, Jiong; Bertin, Nicolas; Ramadass, Aroul; Hunter, Ewan; Green, Jayne; Salter, Matthew; Akoulitchev, Alexandre; Wang, Wilson; Chng, Wee Joo; Tenen, Daniel G; Fullwood, Melissa J

    2017-05-19

    Stretched histone regions, such as super-enhancers and broad H3K4me3 domains, are associated with maintenance of cell identity and cancer. We connected super-enhancers and broad H3K4me3 domains in the K562 chronic myelogenous leukemia cell line as well as the MCF-7 breast cancer cell line with chromatin interactions. Super-enhancers and broad H3K4me3 domains showed higher association with chromatin interactions than their typical counterparts. Interestingly, we identified a subset of super-enhancers that overlap with broad H3K4me3 domains and show high association with cancer-associated genes including tumor suppressor genes. Besides cell lines, we could observe chromatin interactions by a Chromosome Conformation Capture (3C)-based method, in primary human samples. Several chromatin interactions involving super-enhancers and broad H3K4me3 domains are constitutive and can be found in both cancer and normal samples. Taken together, these results reveal a new layer of complexity in gene regulation by super-enhancers and broad H3K4me3 domains.

  17. Arsenic activates the expression of 3β-HSD in mouse Leydig cells through repression of histone H3K9 methylation.

    PubMed

    Alamdar, Ambreen; Xi, Guochen; Huang, Qingyu; Tian, Meiping; Eqani, Syed Ali Musstjab Akber Shah; Shen, Heqing

    2017-07-01

    Arsenic exposure has been associated with male reproductive dysfunction by disrupting steroidogenesis; however, the roles of epigenetic drivers, especially histone methylation in arsenic-induced steroidogenic toxicity remain not well documented. In this study, we investigated the role of histone H3 lysine 9 (H3K9) methylation in steroidogenesis disturbance in mouse Leydig cells (MLTC-1) due to arsenic exposure. Our results indicated that mRNA and protein expression levels of 3β-hydroxysteroid dehydrogenase (3β-HSD) were both significantly up-regulated while the rest of key genes involved in steroidogenesis were down-regulated. Moreover, arsenic exposure significantly decreased the histone H3K9 di- and tri-methylation (H3K9me2/3) levels in MLTC-1 cells. Since H3K9 demethylation leads to gene activation, we further investigated whether the induction of 3β-HSD expression was ascribed to reduced H3K9 methylation. The results showed that H3K9me2/3 demethylase (JMJD2A) inhibitor, quercetin (Que) significantly attenuated the decrease of H3K9me2/3 and increase of 3β-HSD expression induced by arsenic. To further elucidate the mechanism for the activation of 3β-HSD, we determined the histone H3K9 methylation levels in Hsd3b gene promoter, which also showed significant decrease of H3K9me2/3 in the investigated region after arsenic exposure. Considering these results, we conclude that arsenic exposure induced 3β-HSD up-regulation by suppressing H3K9me2/3 status, which is suggested as a compensatory mechanism for steroidogenic disturbance in MLTC-1 cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Configuration of a high-content imaging platform for hit identification and pharmacological assessment of JMJD3 demethylase enzyme inhibitors.

    PubMed

    Mulji, Alpa; Haslam, Carl; Brown, Fiona; Randle, Rebecca; Karamshi, Bhumika; Smith, Julia; Eagle, Robert; Munoz-Muriedas, Jordi; Taylor, Joanna; Sheikh, Arshad; Bridges, Angela; Gill, Kirsty; Jepras, Rob; Smee, Penny; Barker, Mike; Woodrow, Mike; Liddle, John; Thomas, Pamela; Jones, Emma; Gordon, Laurie; Tanner, Rob; Leveridge, Melanie; Hutchinson, Sue; Martin, Margaret; Brown, Murray; Kruidenier, Laurens; Katso, Roy

    2012-01-01

    The biological complexity associated with the regulation of histone demethylases makes it desirable to configure a cellular mechanistic assay format that simultaneously encompasses as many of the relevant cellular processes as possible. In this report, the authors describe the configuration of a JMJD3 high-content cellular mechanistic imaging assay that uses single-cell multiparameter measurements to accurately assess cellular viability and the enzyme-dependent demethylation of the H3K27(Me)3 mark by exogenously expressed JMJD3. This approach couples robust statistical analyses with the spatial resolving power of cellular imaging. This enables segregation of expressing and nonexpressing cells into discrete subpopulations and consequently pharmacological quantification of compounds of interest in the expressing population at varying JMJD3 expression levels. Moreover, the authors demonstrate the utility of this hit identification strategy through the successful prosecution of a medium-throughput focused campaign of an 87 500-compound file, which has enabled the identification of JMJD3 cellular-active chemotypes. This study represents the first report of a demethylase high-content imaging assay with the ability to capture a repertoire of pharmacological tools, which are likely both to inform our mechanistic understanding of how JMJD3 is modulated and, more important, to contribute to the identification of novel therapeutic modalities for this demethylase enzyme.

  19. Two new three-dimensional zinc phosphites templated by piperazine: [H2pip][Zn3(HPO3)4(H2O)2] and K[H2pip]0.5[Zn3(HPO3)4

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Wang, Guo-Ming; Wang, Zong-Hua; Wang, Ying-Xia; Lin, Jian-Hua

    2014-01-01

    Two three-dimensional open-framework zinc phosphites with the same organically templated, [H2pip][Zn3(HPO3)4(H2O)2] (1) and K[H2pip]0.5[Zn3(HPO3)4] (2) (pip = piperazine), have been solvothermally synthesized and structurally characterized by IR, elemental analysis, thermogravimetric analysis, powder and single-crystal X-ray diffractions. Compound 1 consists of ZnO4 tetrahedra, [HPO3] pseudopyramids and [ZnO4(H2O)2] octahedra, which are linked through their vertexes to generate three-dimensional architecture with intersecting 8-membered channels along the [1 0 0], [0 0 1] and [1 0 1] directions. Compound 2 is constructed from strictly alternating ZnO4 tetrahedra and [HPO3] pseudopyramids, and exhibits (3,4)-connected inorganic framework with 8-, and 12-membered channels, in which the K+ and diprotonated H2pip2+ extra-framework cations reside, respectively. The coexistence of inorganic K+ and organic piperazine mixed templates in the structure is unique and, to the best of our knowledge, firstly observed in metal-phosphite materials. In addition, the participation of left-handed and right-handed helical chains in construction of the puckered 4.82 sheet structure in 2 is also noteworthy.

  20. Transient ectopic expression of the histone demethylase JMJD3 accelerates the differentiation of human pluripotent stem cells

    PubMed Central

    Wakabayashi, Shunichi; Soma, Atsumi; Sato, Saeko; Nakatake, Yuhki; Oda, Mayumi; Murakami, Miyako; Sakota, Miki; Chikazawa-Nohtomi, Nana

    2016-01-01

    Harnessing epigenetic regulation is crucial for the efficient and proper differentiation of pluripotent stem cells (PSCs) into desired cell types. Histone H3 lysine 27 trimethylation (H3K27me3) functions as a barrier against cell differentiation through the suppression of developmental gene expression in PSCs. Here, we have generated human PSC (hPSC) lines in which genome-wide reduction of H3K27me3 can be induced by ectopic expression of the catalytic domain of the histone demethylase JMJD3 (called JMJD3c). We found that transient, forced demethylation of H3K27me3 alone triggers the upregulation of mesoendodermal genes, even when the culture conditions for the hPSCs are not changed. Furthermore, transient and forced expression of JMJD3c followed by the forced expression of lineage-defining transcription factors enabled the hPSCs to activate tissue-specific genes directly. We have also shown that the introduction of JMJD3c facilitates the differentiation of hPSCs into functional hepatic cells and skeletal muscle cells. These results suggest the utility of the direct manipulation of epigenomes for generating desired cell types from hPSCs for cell transplantation therapy and platforms for drug screenings. PMID:27802135

  1. Large hydrogen-bonded pre-nucleation (HSO4-)(H2SO4)m(H2O)k and (HSO4-)(NH3)(H2SO4)m(H2O)k clusters in the earth's atmosphere.

    PubMed

    Herb, Jason; Xu, Yisheng; Yu, Fangqun; Nadykto, A B

    2013-01-10

    The importance of pre-nucleation cluster stability as the key parameter controlling nucleation of atmospheric airborne ions is well-established. In this Article, large ternary ionic (HSO(4)(-))(H(2)SO(4))(m)(NH(3))(H(2)O)(n) clusters have been studied using Density Functional Theory (DFT) and composite ab initio methods. Twenty classes of clusters have been investigated, and thermochemical properties of common atmospheric (HSO(4)(-))(H(2)SO(4))(m)(NH(3))(0)(H(2)O)(k) and (HSO(4)(-))(H(2)SO(4))(m)(NH(3))(1)(H(2)O)(n) clusters (with m, k, and n up to 3) have been obtained. A large amount of new themochemical and structural data ready-to-use for constraining kinetic nucleation models has been reported. We have performed a comprehensive thermochemical analysis of the obtained data and have investigated the impacts of ammonia and negatively charged bisulfate ion on stability of binary clusters in some detail. The comparison of theoretical predictions and experiments shows that the PW91PW91/6-311++G(3df,3pd) results are in very good agreement with both experimental data and high level ab initio CCSD(T)/CBS values and suggest that the PW91PW91/6-311++G(3df,3pd) method is a viable alternative to higher level ab initio methods in studying large pre-nucleation clusters, for which the higher level computations are prohibitively expensive. The uncertainties in both theory and experiments have been investigated, and possible ways of their reduction have been proposed.

  2. Inhalable Metal-Rich Air Particles and Histone H3K4 Dimethylation and H3K9 Acetylation in a Cross-sectional Study of Steel Workers

    PubMed Central

    Cantone, Laura; Nordio, Francesco; Hou, Lifang; Apostoli, Pietro; Bonzini, Matteo; Tarantini, Letizia; Angelici, Laura; Bollati, Valentina; Zanobetti, Antonella; Schwartz, Joel; Bertazzi, Pier A.

    2011-01-01

    Background: Epidemiology investigations have linked exposure to ambient and occupational air particulate matter (PM) with increased risk of lung cancer. PM contains carcinogenic and toxic metals, including arsenic and nickel, which have been shown in in vitro studies to induce histone modifications that activate gene expression by inducing open-chromatin states. Whether inhalation of metal components of PM induces histone modifications in human subjects is undetermined. Objectives: We investigated whether the metal components of PM determined activating histone modifications in 63 steel workers with well-characterized exposure to metal-rich PM. Methods: We determined histone 3 lysine 4 dimethylation (H3K4me2) and histone 3 lysine 9 acetylation (H3K9ac) on histones from blood leukocytes. Exposure to inhalable metal components (aluminum, manganese, nickel, zinc, arsenic, lead, iron) and to total PM was estimated for each study subject. Results: Both H3K4me2 and H3K9ac increased in association with years of employment in the plant (p-trend = 0.04 and 0.006, respectively). H3K4me2 increased in association with air levels of nickel [β = 0.16; 95% confidence interval (CI), 0.03–0.3], arsenic (β = 0.16; 95% CI, 0.02–0.3), and iron (β = 0.14; 95% CI, 0.01–0.26). H3K9ac showed nonsignificant positive associations with air levels of nickel (β = 0.24; 95% CI, –0.02 to 0.51), arsenic (β = 0.21; 95% CI, –0.06 to 0.48), and iron (β = 0.22; 95% CI, –0.03 to 0.47). Cumulative exposures to nickel and arsenic, defined as the product of years of employment by metal air levels, were positively correlated with both H3K4me2 (nickel: β = 0.16; 95% CI, 0.01–0.3; arsenic: β = 0.16; 95% CI, 0.03–0.29) and H3K9ac (nickel: β = 0.27; 95% CI, 0.01–0.54; arsenic: β = 0.28; 95% CI, 0.04–0.51). Conclusions: Our results indicate histone modifications as a novel epigenetic mechanism induced in human subjects by long-term exposure to inhalable nickel and arsenic. PMID

  3. DNA Replication Origin Function Is Promoted by H3K4 Di-methylation in Saccharomyces cerevisiae

    PubMed Central

    Rizzardi, Lindsay F.; Dorn, Elizabeth S.; Strahl, Brian D.; Cook, Jeanette Gowen

    2012-01-01

    DNA replication is a highly regulated process that is initiated from replication origins, but the elements of chromatin structure that contribute to origin activity have not been fully elucidated. To identify histone post-translational modifications important for DNA replication, we initiated a genetic screen to identify interactions between genes encoding chromatin-modifying enzymes and those encoding proteins required for origin function in the budding yeast Saccharomyces cerevisiae. We found that enzymes required for histone H3K4 methylation, both the histone methyltransferase Set1 and the E3 ubiquitin ligase Bre1, are required for robust growth of several hypomorphic replication mutants, including cdc6-1. Consistent with a role for these enzymes in DNA replication, we found that both Set1 and Bre1 are required for efficient minichromosome maintenance. These phenotypes are recapitulated in yeast strains bearing mutations in the histone substrates (H3K4 and H2BK123). Set1 functions as part of the COMPASS complex to mono-, di-, and tri-methylate H3K4. By analyzing strains lacking specific COMPASS complex members or containing H2B mutations that differentially affect H3K4 methylation states, we determined that these replication defects were due to loss of H3K4 di-methylation. Furthermore, histone H3K4 di-methylation is enriched at chromosomal origins. These data suggest that H3K4 di-methylation is necessary and sufficient for normal origin function. We propose that histone H3K4 di-methylation functions in concert with other histone post-translational modifications to support robust genome duplication. PMID:22851644

  4. DNA replication origin function is promoted by H3K4 di-methylation in Saccharomyces cerevisiae.

    PubMed

    Rizzardi, Lindsay F; Dorn, Elizabeth S; Strahl, Brian D; Cook, Jeanette Gowen

    2012-10-01

    DNA replication is a highly regulated process that is initiated from replication origins, but the elements of chromatin structure that contribute to origin activity have not been fully elucidated. To identify histone post-translational modifications important for DNA replication, we initiated a genetic screen to identify interactions between genes encoding chromatin-modifying enzymes and those encoding proteins required for origin function in the budding yeast Saccharomyces cerevisiae. We found that enzymes required for histone H3K4 methylation, both the histone methyltransferase Set1 and the E3 ubiquitin ligase Bre1, are required for robust growth of several hypomorphic replication mutants, including cdc6-1. Consistent with a role for these enzymes in DNA replication, we found that both Set1 and Bre1 are required for efficient minichromosome maintenance. These phenotypes are recapitulated in yeast strains bearing mutations in the histone substrates (H3K4 and H2BK123). Set1 functions as part of the COMPASS complex to mono-, di-, and tri-methylate H3K4. By analyzing strains lacking specific COMPASS complex members or containing H2B mutations that differentially affect H3K4 methylation states, we determined that these replication defects were due to loss of H3K4 di-methylation. Furthermore, histone H3K4 di-methylation is enriched at chromosomal origins. These data suggest that H3K4 di-methylation is necessary and sufficient for normal origin function. We propose that histone H3K4 di-methylation functions in concert with other histone post-translational modifications to support robust genome duplication.

  5. Arsenic activates the expression of 3β-HSD in mouse Leydig cells through repression of histone H3K9 methylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alamdar, Ambreen; Xi, Guochen

    Arsenic exposure has been associated with male reproductive dysfunction by disrupting steroidogenesis; however, the roles of epigenetic drivers, especially histone methylation in arsenic-induced steroidogenic toxicity remain not well documented. In this study, we investigated the role of histone H3 lysine 9 (H3K9) methylation in steroidogenesis disturbance in mouse Leydig cells (MLTC-1) due to arsenic exposure. Our results indicated that mRNA and protein expression levels of 3β-hydroxysteroid dehydrogenase (3β-HSD) were both significantly up-regulated while the rest of key genes involved in steroidogenesis were down-regulated. Moreover, arsenic exposure significantly decreased the histone H3K9 di- and tri-methylation (H3K9me2/3) levels in MLTC-1 cells. Sincemore » H3K9 demethylation leads to gene activation, we further investigated whether the induction of 3β-HSD expression was ascribed to reduced H3K9 methylation. The results showed that H3K9me2/3 demethylase (JMJD2A) inhibitor, quercetin (Que) significantly attenuated the decrease of H3K9me2/3 and increase of 3β-HSD expression induced by arsenic. To further elucidate the mechanism for the activation of 3β-HSD, we determined the histone H3K9 methylation levels in Hsd3b gene promoter, which also showed significant decrease of H3K9me2/3 in the investigated region after arsenic exposure. Considering these results, we conclude that arsenic exposure induced 3β-HSD up-regulation by suppressing H3K9me2/3 status, which is suggested as a compensatory mechanism for steroidogenic disturbance in MLTC-1 cells. - Highlights: • Epigenetic mechanisms of arsenic-induced male reproductive toxicity remain unclear. • Arsenic disturbs the expression of key steroidogenic genes in MLTC-1 cells. • Histone H3K9 di- and tri-methylation was suppressed in arsenic-exposed cells. • Arsenic activates 3β-HSD expression through repression of histone H3K9 methylation.« less

  6. Additional sex combs interacts with enhancer of zeste and trithorax and modulates levels of trimethylation on histone H3K4 and H3K27 during transcription of hsp70.

    PubMed

    Li, Taosui; Hodgson, Jacob W; Petruk, Svetlana; Mazo, Alexander; Brock, Hugh W

    2017-09-19

    Maintenance of cell fate determination requires the Polycomb group for repression; the trithorax group for gene activation; and the enhancer of trithorax and Polycomb (ETP) group for both repression and activation. Additional sex combs (Asx) is a genetically identified ETP for the Hox loci, but the molecular basis of its dual function is unclear. We show that in vitro, Asx binds directly to the SET domains of the histone methyltransferases (HMT) enhancer of zeste [E(z)] (H3K27me3) and Trx (H3K4me3) through a bipartite interaction site separated by 846 amino acid residues. In Drosophila S2 cell nuclei, Asx interacts with E(z) and Trx in vivo. Drosophila Asx is required for repression of heat-shock gene hsp70 and is recruited downstream of the hsp70 promoter. Changes in the levels of H3K4me3 and H3K27me3 downstream of the hsp70 promoter in Asx mutants relative to wild type show that Asx regulates H3K4 and H3K27 trimethylation. We propose that during transcription Asx modulates the ratio of H3K4me3 to H3K27me3 by selectively recruiting the antagonistic HMTs, E(z) and Trx or other nucleosome-modifying enzymes to hsp70.

  7. Neutron scattering studies of K3H(SO4)2 and K3D(SO4)2: the particle-in-a-box model for the quantum phase transition.

    PubMed

    Fillaux, François; Cousson, Alain

    2012-08-21

    In the crystal of K(3)H(SO(4))(2) or K(3)D(SO(4))(2), dimers SO(4)···H···SO(4) or SO(4)···D···SO(4) are linked by strong centrosymmetric hydrogen or deuterium bonds whose O···O length is ≈2.50 Å. We address two open questions. (i) Are H or D sites split or not? (ii) Is there any structural counterpart to the phase transition observed for K(3)D(SO(4))(2) at T(c) ≈ 85.5 K, which does not exist for K(3)H(SO(4))(2)? Neutron diffraction by single-crystals at cryogenic or room temperature reveals no structural transition and no resolvable splitting of H or D sites. However, the width of the probability densities suggest unresolved splitting of the wavefunctions suggesting rigid entities H(L1/2)-H(R1/2) or D(L1/2)-D(R1/2) whose separation lengths are l(H) ≈ 0.16 Å or l(D) ≈ 0.25 Å. The vibrational eigenstates for the center of mass of H(L1/2)-H(R1/2) revealed by inelastic neutron scattering are amenable to a square-well and we suppose the same potential holds for D(L1/2)-D(R1/2). In order to explain dielectric and calorimetric measurements of mixed crystals K(3)D((1-ρ))H(ρ)(SO(4))(2) (0 ≤ ρ ≤ 1), we replace the classical notion of order-disorder by the quantum notion of discernible (e.g., D(L1/2)-D(R1/2)) or indiscernible (e.g., H(L1/2)-H(R1/2)) components depending on the separation length of the split wavefunction. The discernible-indiscernible isostructural transition at finite temperatures is induced by a thermal pure quantum state or at 0 K by ρ.

  8. Reduced Histone H3 Lysine 9 Methylation Contributes to the Pathogenesis of Latent Autoimmune Diabetes in Adults via Regulation of SUV39H2 and KDM4C.

    PubMed

    Liu, Xi-Yu; Li, Hong

    2017-01-01

    Aims . Latent autoimmune diabetes in adults (LADA) is an autoimmune disease of which the mechanism is not clear. Emerging evidence suggests that histone methylation contributes to autoimmunity. Methods . Blood CD4 + T lymphocytes from 26 LADA patients and 26 healthy controls were isolated to detect histone H3 lysine 4 and H3 lysine 9 methylation status. Results . Reduced global H3 lysine 9 methylation was observed in LADA patients' CD4 + T lymphocytes, compared to healthy controls ( P < 0.05). H3 lysine 4 methylation was not statistically different. The reduced H3 lysine 9 methylation was associated with GADA titer but not correlated with glycosylated hemoglobin (HbA1c). When the LADA patient group was divided into those with complication and those without, relatively reduced global H3 lysine 9 methylation was observed in LADA patients with complication ( P < 0.05). The expression of histone methyltransferase SUV39H2 for H3 lysine 9 methylation was downregulated in LADA patients, and the expression of histone demethylase KDM4C which made H3 lysine 9 demethylation was upregulated. Conclusion . The reduction of histone H3 lysine 9 methylation which may due to the downregulation of methyltransferase SUV39H2 and the upregulation of demethylase KDM4C was found in CD4 + T lymphocytes of LADA patients.

  9. Broad H3K4me3 is associated with increased transcription elongation and enhancer activity at tumor-suppressor genes.

    PubMed

    Chen, Kaifu; Chen, Zhong; Wu, Dayong; Zhang, Lili; Lin, Xueqiu; Su, Jianzhong; Rodriguez, Benjamin; Xi, Yuanxin; Xia, Zheng; Chen, Xi; Shi, Xiaobing; Wang, Qianben; Li, Wei

    2015-10-01

    Tumor suppressors are mostly defined by inactivating mutations in tumors, yet little is known about their epigenetic features in normal cells. Through integrative analysis of 1,134 genome-wide epigenetic profiles, mutations from >8,200 tumor-normal pairs and our experimental data from clinical samples, we discovered broad peaks for trimethylation of histone H3 at lysine 4 (H3K4me3; wider than 4 kb) as the first epigenetic signature for tumor suppressors in normal cells. Broad H3K4me3 is associated with increased transcription elongation and enhancer activity, which together lead to exceptionally high gene expression, and is distinct from other broad epigenetic features, such as super-enhancers. Genes with broad H3K4me3 peaks conserved across normal cells may represent pan-cancer tumor suppressors, such as TP53 and PTEN, whereas genes with cell type-specific broad H3K4me3 peaks may represent cell identity genes and cell type-specific tumor suppressors. Furthermore, widespread shortening of broad H3K4me3 peaks in cancers is associated with repression of tumor suppressors. Thus, the broad H3K4me3 epigenetic signature provides mutation-independent information for the discovery and characterization of new tumor suppressors.

  10. Broad H3K4me3 is associated with increased transcription elongation and enhancer activity at tumor suppressor genes

    PubMed Central

    Chen, Kaifu; Chen, Zhong; Wu, Dayong; Zhang, Lili; Lin, Xueqiu; Su, Jianzhong; Rodriguez, Benjamin; Xi, Yuanxin; Xia, Zheng; Chen, Xi; Shi, Xiaobing; Wang, Qianben; Li, Wei

    2016-01-01

    Tumor suppressors are mostly defined by inactivating mutations in tumors, yet little is known about their epigenetic features in normal cells. Through integrative analysis of 1,134 genome-wide epigenetic profiles, mutations from >8,200 tumor-normal pairs, and our experimental data from clinical samples, we discovered broad H3K4me3 (wider than 4 kb) as the first epigenetic signature for tumor suppressors in normal cells. Broad H3K4me3 is associated with increased transcription elongation and enhancer activity together leading to exceptionally high gene expression, and is distinct from other broad epigenetic features, such as super-enhancers. Broad H3K4me3 conserved across normal cells may represent pan-cancer tumor suppressors, such as P53 and PTEN, whereas cell-type-specific broad H3K4me3 may indicate cell-identity genes and cell-type-specific tumor suppressors. Furthermore, widespread shortening of broad H3K4me3 in cancers is associated with repression of tumor suppressors. Together, the broad H3K4me3 epigenetic signature provides mutation-independent information for the discovery and characterization of novel tumor suppressors. PMID:26301496

  11. Kinetics of the R + NO2 reactions (R = i-C3H7, n-C3H7, s-C4H9, and t-C4H9) in the temperature range 201-489 K.

    PubMed

    Rissanen, Matti P; Arppe, Suula L; Eskola, Arkke J; Tammi, Matti M; Timonen, Raimo S

    2010-04-15

    The bimolecular rate coefficients of four alkyl radical reactions with NO(2) have been measured in direct time-resolved experiments. Reactions were studied under pseudo-first-order conditions in a temperature-controlled tubular flow reactor coupled to a laser photolysis/photoionization mass spectrometer (LP-PIMS). The measured reaction rate coefficients are independent of helium bath gas pressure within the experimental ranges covered and exhibit negative temperature dependence. For i-C(3)H(7) + NO(2) and t-C(4)H(9) + NO(2) reactions, the dependence of ordinate (logarithm of reaction rate coefficients) on abscissa (1/T or log(T)) was nonlinear. The obtained results (in cm(3) s(-1)) can be expressed by the following equations: k(n-C(3)H(7) + NO(2)) = ((4.34 +/- 0.08) x 10(-11)) (T/300 K)(-0.14+/-0.08) (203-473 K, 1-7 Torr), k(i-C(3)H(7) + NO(2)) = ((3.66 +/- 2.54) x 10(-12)) exp(656 +/- 201 K/T)(T/300 K)(1.26+/-0.68) (220-489 K, 1-11 Torr), k(s-C(4)H(9) + NO(2)) = ((4.99 +/- 0.16) x 10(-11))(T/300 K)(-1.74+/-0.12) (241-485 K, 2 - 12 Torr) and k(t-C(4)H(9) + NO(2)) = ((8.64 +/- 4.61) x 10(-12)) exp(413 +/- 154 K/T)(T/300 K)(0.51+/-0.55) (201-480 K, 2-11 Torr), where the uncertainties shown refer only to the 1 standard deviations obtained from the fitting procedure. The estimated overall uncertainty in the determined bimolecular rate coefficients is about +/-20%.

  12. The COMPASS Family of Histone H3K4 Methylases: Mechanisms of Regulation in Development and Disease Pathogenesis

    PubMed Central

    Shilatifard, Ali

    2014-01-01

    The Saccharomyces cerevisiae Set1/COMPASS was the first histone H3 lysine 4 (H3K4) methylase identified over ten years ago. Since then, it has been demonstrated that Set1/COMPASS and its enzymatic product, H3K4 methylation, is highly conserved across the evolutionary tree. Although there is only one COMPASS in yeast, human cells bear at least six COMPASS family members each capable of methylating H3K4 with non-redundant functions. In yeast, the monoubiquitination of histone H2B by Rad6/Bre1 is required for proper H3K4 and H3K79 trimethylations. This histone crosstalk and its machinery are also highly conserved from yeast to human. In this review, the process of histone H2B monoubiquitination-dependent and independent histone H3K4 methylation as a mark of active transcription, enhancer signatures, and developmentally poised genes will be discussed. The misregulation of histone H2B monoubiquitination and H3K4 methylation results in the pathogenesis of human diseases including cancer. Recent findings in this regard will also be examined. PMID:22663077

  13. dSet1 Is the Main H3K4 Di- and Tri-Methyltransferase Throughout Drosophila Development

    PubMed Central

    Hallson, Graham; Hollebakken, Robert E.; Li, Taosui; Syrzycka, Monika; Kim, Inho; Cotsworth, Shawn; Fitzpatrick, Kathleen A.; Sinclair, Donald A. R.; Honda, Barry M.

    2012-01-01

    In eukaryotes, the post-translational addition of methyl groups to histone H3 lysine 4 (H3K4) plays key roles in maintenance and establishment of appropriate gene expression patterns and chromatin states. We report here that an essential locus within chromosome 3L centric heterochromatin encodes the previously uncharacterized Drosophila melanogaster ortholog (dSet1, CG40351) of the Set1 H3K4 histone methyltransferase (HMT). Our results suggest that dSet1 acts as a “global” or general H3K4 di- and trimethyl HMT in Drosophila. Levels of H3K4 di- and trimethylation are significantly reduced in dSet1 mutants during late larval and post-larval stages, but not in animals carrying mutations in genes encoding other well-characterized H3K4 HMTs such as trr, trx, and ash1. The latter results suggest that Trr, Trx, and Ash1 may play more specific roles in regulating key cellular targets and pathways and/or act as global H3K4 HMTs earlier in development. In yeast and mammalian cells, the HMT activity of Set1 proteins is mediated through an evolutionarily conserved protein complex known as Complex of Proteins Associated with Set1 (COMPASS). We present biochemical evidence that dSet1 interacts with members of a putative Drosophila COMPASS complex and genetic evidence that these members are functionally required for H3K4 methylation. Taken together, our results suggest that dSet1 is responsible for the bulk of H3K4 di- and trimethylation throughout Drosophila development, thus providing a model system for better understanding the requirements for and functions of these modifications in metazoans. PMID:22048023

  14. Arsenic silences hepatic PDK4 expression through activation of histone H3K9 methylatransferase G9a

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xi; Wu, Jianguo; Choiniere, Jonathan

    It is well established that increased liver cancer incidence is strongly associated with epigenetic silencing of tumor suppressor genes; the latter is contributed by the environmental exposure to arsenic. Pyruvate dehydrogenase kinase 4 (PDK4) is a mitochondrial protein that regulates the TCA cycle. However, the epigenetic mechanisms mediated by arsenic to control PDK4 expression remain elusive. In the present study, we showed that histone methyltransferase G9a- and Suv39H-mediated histone H3 lysine 9 (H3K9) methylations contributed to PDK4 silencing in hepatic cells. The PDK4 expression was induced by G9a inhibitor BRD4770 (BRD) and Suv39H inhibitor Chaetocin (CHA). In contrast, arsenic exposuremore » decreased PDK4 expression by inducing G9a and increasing H3K9 di- and tri-methylations levels (H3K9me2/3). In addition, arsenic exposure antagonizes the effect of BRD by enhancing the enrichment of H3K9me2/3 in the PKD4 promoter. Moreover, knockdown of G9a using siRNA induced PDK4 expression in HCC cells. Furthermore, arsenic decreased hepatic PDK4 expression as well as diminished the induction of PDK4 by BRD in mouse liver and hepatocytes. Overall, the results suggest that arsenic causes aberrant repressive histone modification to silence PDK4 in both HCC cells and in mouse liver. - Graphical abstract: Schematic showing arsenic-mediated epigenetic pathway that inhibits PDK4 expression. (A) BRD induces PDK4 expression by decreasing G9a protein and histone H3K9me2 and H3K9me3 levels as well as diminishing their recruitment to the PDK4 promoter. (B) Arsenic counteracts the effect of BRD by increasing histone H3K9me2 and H3K9me3 levels as well as enhancing their enrichment to the PDK4 promoter. Display Omitted - Highlights: • Histone methyltrasferase G9a inhibitor BRD induces PDK4 expression. • Arsenic decreases PDK4 expression and increases H3K9me2 and me3 levels. • Arsenic enhances H3K9me2/me3 enrichment in the PDK4 promoter. • Arsenic antagonizes the

  15. Trimethylation of histone H3 lysine 4 impairs methylation of histone H3 lysine 9

    PubMed Central

    LeRoy, Gary; Bua, Dennis J; Garcia, Benjamin A; Gozani, Or; Richard, Stéphane

    2010-01-01

    Chromatin is broadly compartmentalized in two defined states: euchromatin and heterochromatin. Generally, euchromatin is trimethylated on histone H3 lysine 4 (H3K4me3) while heterochromatin contains the H3K9me3 mark. The H3K9me3 modification is added by lysine methyltransferases (KMTs) such as SETDB1. Herein, we show that SETDB1 interacts with its substrate H3, but only in the absence of the euchromatic mark H3K4me3. In addition, we show that SETDB1 fails to methylate substrates containing the H3K4me3 mark. Likewise, the functionally related H3K9 KMTs G9A, GLP and SUV39H1 also fail to bind and to methylate H3K4me3 substrates. Accordingly, we provide in vivo evidence that H3K9me2-enriched histones are devoid of H3K4me2/3 and that histones depleted of H3K4me2/3 have elevated H3K9me2/3. The correlation between the loss of interaction of these KMTs with H3K4me3 and concomitant methylation impairment leads to the postulate that at least these four KMTs require stable interaction with their respective substrates for optimal activity. Thus, novel substrates could be discovered via the identification of KMT interacting proteins. Indeed, we find that SETDB1 binds to and methylates a novel substrate, the inhibitor of growth protein ING2, while SUV39H1 binds to and methylates the heterochromatin protein HP1α. Thus, our observations suggest a mechanism of post-translational regulation of lysine methylation and propose a potential mechanism for the segregation of the biologically opposing marks, H3K4me3 and H3K9me3. Furthermore, the correlation between H3-KMTs interaction and substrate methylation highlights that the identification of novel KMT substrates may be facilitated by the identification of interaction partners. PMID:21124070

  16. A histone H3K9M mutation traps histone methyltransferase Clr4 to prevent heterochromatin spreading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shan, Chun-Min; Wang, Jiyong; Xu, Ke

    2016-09-20

    Histone lysine-to-methionine (K-to-M) mutations are associated with multiple cancers, and they function in a dominant fashion to block the methylation of corresponding lysines on wild type histones. However, their mechanisms of function are controversial. Here we show that in fission yeast, introducing the K9M mutation into one of the three histone H3 genes dominantly blocks H3K9 methylation on wild type H3 across the genome. In addition, H3K9M enhances the interaction of histone H3 tail with the H3K9 methyltransferase Clr4 in a SAM (S-adenosyl-methionine)-dependent manner, and Clr4 is trapped at nucleation sites to prevent its spreading and the formation of largemore » heterochromatin domains. We further determined the crystal structure of an H3K9M peptide in complex with human H3K9 methyltransferase G9a and SAM, which reveales that the methionine side chain had enhanced van der Waals interactions with G9a. Therefore, our results provide a detailed mechanism by which H3K9M regulates H3K9 methylation.« less

  17. Monitoring conformational heterogeneity of the lid of DnaK substrate-binding domain during its chaperone cycle.

    PubMed

    Banerjee, Rupa; Jayaraj, Gopal Gunanathan; Peter, Joshua Jebakumar; Kumar, Vignesh; Mapa, Koyeli

    2016-08-01

    DnaK or Hsp70 of Escherichia coli is a master regulator of the bacterial proteostasis network. Allosteric communication between the two functional domains of DnaK, the N-terminal nucleotide-binding domain (NBD) and the C-terminal substrate- or peptide-binding domain (SBD) regulate its activity. X-ray crystallography and NMR studies have provided snapshots of distinct conformations of Hsp70 proteins in various physiological states; however, the conformational heterogeneity and dynamics of allostery-driven Hsp70 activity remains underexplored. In this work, we employed single-molecule Förster resonance energy transfer (sm-FRET) measurements to capture distinct intradomain conformational states of a region within the DnaK-SBD known as the lid. Our data conclusively demonstrate prominent conformational heterogeneity of the DnaK lid in ADP-bound states; in contrast, the ATP-bound open conformations are homogeneous. Interestingly, a nonhydrolysable ATP analogue, AMP-PNP, imparts heterogeneity to the lid conformations mimicking the ADP-bound state. The cochaperone DnaJ confers ADP-like heterogeneous lid conformations to DnaK, although the presence of the cochaperone accelerates the substrate-binding rate by a hitherto unknown mechanism. Irrespective of the presence of DnaJ, binding of a peptide substrate to the DnaK-SBD leads to prominent lid closure. Lid closure is only partial upon binding to molten globule-like authentic cellular substrates, probably to accommodate non-native substrate proteins of varied structures. © 2016 Federation of European Biochemical Societies.

  18. PHF13 is a molecular reader and transcriptional co-regulator of H3K4me2/3

    PubMed Central

    Chung, Ho-Ryun; Xu, Chao; Fuchs, Alisa; Mund, Andreas; Lange, Martin; Staege, Hannah; Schubert, Tobias; Bian, Chuanbing; Dunkel, Ilona; Eberharter, Anton; Regnard, Catherine; Klinker, Henrike; Meierhofer, David; Cozzuto, Luca; Winterpacht, Andreas; Di Croce, Luciano; Min, Jinrong; Will, Hans; Kinkley, Sarah

    2016-01-01

    PHF13 is a chromatin affiliated protein with a functional role in differentiation, cell division, DNA damage response and higher chromatin order. To gain insight into PHF13's ability to modulate these processes, we elucidate the mechanisms targeting PHF13 to chromatin, its genome wide localization and its molecular chromatin context. Size exclusion chromatography, mass spectrometry, X-ray crystallography and ChIP sequencing demonstrate that PHF13 binds chromatin in a multivalent fashion via direct interactions with H3K4me2/3 and DNA, and indirectly via interactions with PRC2 and RNA PolII. Furthermore, PHF13 depletion disrupted the interactions between PRC2, RNA PolII S5P, H3K4me3 and H3K27me3 and resulted in the up and down regulation of genes functionally enriched in transcriptional regulation, DNA binding, cell cycle, differentiation and chromatin organization. Together our findings argue that PHF13 is an H3K4me2/3 molecular reader and transcriptional co-regulator, affording it the ability to impact different chromatin processes. DOI: http://dx.doi.org/10.7554/eLife.10607.001 PMID:27223324

  19. The histone demethylase Fbxl11/Kdm2a plays an essential role in embryonic development by repressing cell-cycle regulators.

    PubMed

    Kawakami, Eri; Tokunaga, Akinori; Ozawa, Manabu; Sakamoto, Reiko; Yoshida, Nobuaki

    2015-02-01

    Methylation and de-methylation of histone lysine residues play pivotal roles in mammalian early development; these modifications influence chromatin architecture and regulate gene transcription. Fbxl11 (F-box and leucine-rich repeat 11)/Kdm2a is a histone demethylase that selectively removes mono- and di-methylation from histone H3K36. Previously, two other histone H3K36 demethylases (Jmjd5 or Fbxl10) were analyzed based on the phenotypes of the corresponding knockout (KO) mice; the results of those studies implicated H3K36 demethylases in cell proliferation, apoptosis, and senescence (Fukuda et al., 2011; Ishimura et al., 2012). To elucidate the physiological role of Fbxl11, we generated and examined Fbxl11 KO mice. Fbxl11 was expressed throughout the body during embryogenesis, and the Fbxl11 KO mice exhibited embryonic lethality at E10.5-12.5, accompanied with severe growth defects leading to reduced body size. Furthermore, knockout of Fbxl11 decreased cell proliferation and increased apoptosis. The lack of Fbxl11 resulted in downregulation of the Polycomb group protein (PcG) Ezh2, PcG mediated H2A ubiquitination and upregulation of the cyclin-dependent kinase inhibitor p21Cip1. Taken together, our findings suggest that Fbxl11 plays an essential role in embryonic development and homeostasis by regulating cell proliferation and survival. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Acetylated Histone H3K9 is associated with meiotic recombination hotspots, and plays a role in recombination redundantly with other factors including the H3K4 methylase Set1 in fission yeast

    PubMed Central

    Yamada, Shintaro; Ohta, Kunihiro; Yamada, Takatomi

    2013-01-01

    Histone modifications are associated with meiotic recombination hotspots, discrete sites with augmented recombination frequency. For example, trimethylation of histone H3 lysine4 (H3K4me3) marks most hotspots in budding yeast and mouse. Modified histones are known to regulate meiotic recombination partly by promoting DNA double-strand break (DSB) formation at hotspots, but the role and precise landscape of involved modifications remain unclear. Here, we studied hotspot-associated modifications in fission yeast and found general features: acetylation of H3 lysine9 (H3K9ac) is elevated, and H3K4me3 is not significantly enriched. Mutating H3K9 to non-acetylatable alanine mildly reduced levels of the DSB-inducing protein Rec12 (the fission yeast homologue of Spo11) and DSB at hotspots, indicating that H3K9ac may be involved in DSB formation by enhancing the interaction between Rec12 and hotspots. In addition, we found that the lack of the H3K4 methyltransferase Set1 generally increased Rec12 binding to chromatin but partially reduced DSB formation at some loci, suggesting that Set1 is also involved in DSB formation. These results suggest that meiotic DSB formation is redundantly regulated by multiple chromatin-related factors including H3K9ac and Set1 in fission yeast. PMID:23382177

  1. LSD1 sustains estrogen-driven endometrial carcinoma cell proliferation through the PI3K/AKT pathway via di-demethylating H3K9 of cyclin D1.

    PubMed

    Chen, Chunqin; Wang, Yanan; Wang, Shiyu; Liu, Yuan; Zhang, Jiawen; Xu, Yuyao; Zhang, Zhenbo; Bao, Wei; Wu, Sufang

    2017-03-01

    A recent study reported that histone lysine specific demethylase 1 (LSD1, KDM1A) is overexpressed in endometrioid endometrial carcinoma (EEC) and associated with tumor progression as well as poor prognosis. However, the physiological function and mechanism of LSD1 in endometrial cancer (EC) remains largely unknown. In this study, we demonstrate that β-estradiol (E2) treatment increased LSD1 expression via the GPR30/PI3K/AKT pathway in endometrial cancer cells. Both siGPR30 and the PI3K inhibitor LY294002 block this effect. RNAi-mediated silencing of LSD1 abolished estrogen-driven endometrial cancer cell (ECC) proliferation, and induced G1 cell arrest and apoptosis. Mechanistically, we find that LSD1 silencing results in PI3K/AKT signal inactivation, but without the elevation of PTEN expression as expected. This is because the inhibition of LSD1 induces dimethylation of lysine 9 on histone H3 (H3K9m2) accumulation at the promoter region of cyclin D1. Interfering with cyclin D1 leads to PI3K/AKT signal suppression. Re-overexpression of cyclin D1 in LSD1-knockdown ECCs reverses the LSD1 inhibitory action. Our finding connects estrogen signaling with epigenetic regulation in EEC and provides novel experimental support for LSD1 as a potential target for endometrial cancer therapeutics.

  2. MINA controls proliferation and tumorigenesis of glioblastoma by epigenetically regulating cyclins and CDKs via H3K9me3 demethylation.

    PubMed

    Huang, M-Y; Xuan, F; Liu, W; Cui, H-J

    2017-01-19

    It is generally known that histone demethylases regulate gene transcription by altering the methylate status on histones, but their roles in cancers and the underlying molecular mechanisms still remain unclear. MYC-induced nuclear antigen (MINA) is reported to be a histone demethylase and highly expressed in many cancers. Here, for the first time, we show that MINA is involved in glioblastoma carcinogenesis and reveal the probable mechanisms of it in cell-cycle control. Kaplan-Meier analysis of progression-free survival showed that high MINA expression was strongly correlated with poor outcome and advancing tumor stage. MINA knockdown significantly repressed the cell proliferation and tumorigenesis abilities of glioblastoma cells in vitro and in vivo that were rescued by overexpressing the full-length MINA afterwards. Microarray analysis after knockdown of MINA revealed that MINA probably regulated glioblastoma carcinogenesis through the predominant cell-cycle pathways. Further investigation showed that MINA deficiency led to a cell-cycle arrest in G1 and G2 phases. And among the downstream genes, we found that cyclins and cyclin-dependent kinases were directly activated by MINA via the demethylation of H3K9me3.

  3. A new set of K3Fe3(PO4)4·yH2O (0 ≤ y ≤ 1) layered phases obtained by topotactic reactions

    NASA Astrophysics Data System (ADS)

    Trad, Khiem; Wattiaux, Alain; Ben Amara, Mongi; Delmas, Claude; Carlier, Dany

    2018-06-01

    K3Fe3(PO4)4·H2O powder was synthesized by Na+/K+ exchange reaction from Na3Fe3(PO4)4 in aqueous medium. The replacement of the sodium cations by the potassium larger ones and water molecules causes a structural distortion leading to P2/n monoclinic K3Fe3(PO4)4·H2O. This new layered phase was characterized by XRD, Mössbauer spectroscopy and magnetic measurements. The study of its thermal stability reveals that other new layered K3Fe3(PO4)4·yH2O with (0 ≤ y ≤ 1) phases can be stabilized up to 600 °C and finally at higher temperature a new K3Fe3(PO4)4 polymorph with a different structural type is irreversibility formed.

  4. Clr4 specificity and catalytic activity beyond H3K9 methylation.

    PubMed

    Kusevic, Denis; Kudithipudi, Srikanth; Iglesias, Nahid; Moazed, Danesh; Jeltsch, Albert

    2017-04-01

    In fission yeast, the catalytic activity of the protein lysine methyltransferase (PKMT) Clr4, the sole homolog of the mammalian SUV39H1 and SUV39H2 enzymes, majorly contributes to the formation of heterochromatin. The enzyme introduces histone 3 lysine 9 (H3K9) di- and tri-methylation, a central heterochromatic histone modification, and later it was also found to methylate the Mlo3 protein, which has a role in heterochromatin formation as well. Herein, we have investigated the substrate specificity of Clr4 using custom made mutational scanning peptide arrays. Our data show, that Clr4 recognizes an RK core motif, showing high preference for R8. In addition, it exhibits specific contacts at the S10, T11, G12 and G13 positions of the H3 peptide recognizing an R-K-SKRT-TCS-G sequence. Based on the specificity profile and in vitro methyltransferase assay targeted searches, 11 putative methylation sites in S. pombe proteins were identified from reported Clr4 interacting proteins including Mlo3. Peptide methylation was observed on Mlo3 and 7 novel target sites with strongest methylation signals on Spbc28F2.11 (HMG box-containing protein) at lysine 292 and Hrp3 (Chromodomain ATP-dep DNA helicase) at lysine 89. These data suggest that Clr4 has additional methylation substrates and it will be important to study the biological function of these novel methylation events. Furthermore, the specificity profile of Clr4 has been used to develop a quantitative method to compare and cluster specificity profiles of PKMTs. It shows that the specificity profile of Clr4 is most similar to that of the SUV39H2 enzyme, one of its human homologs. This approach will be helpful in the comparison of the recognition profiles of other families of PKMTs as well. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  5. Epigenetics and sex differences in the brain: A genome-wide comparison of histone-3 lysine-4 trimethylation (H3K4me3) in male and female mice.

    PubMed

    Shen, Erica Y; Ahern, Todd H; Cheung, Iris; Straubhaar, Juerg; Dincer, Aslihan; Houston, Isaac; de Vries, Geert J; Akbarian, Schahram; Forger, Nancy G

    2015-06-01

    Many neurological and psychiatric disorders exhibit gender disparities, and sex differences in the brain likely explain some of these effects. Recent work in rodents points to a role for epigenetics in the development or maintenance of neural sex differences, although genome-wide studies have so far been lacking. Here we review the existing literature on epigenetics and brain sexual differentiation and present preliminary analyses on the genome-wide distribution of histone-3 lysine-4 trimethylation in a sexually dimorphic brain region in male and female mice. H3K4me3 is a histone mark primarily organized as 'peaks' surrounding the transcription start site of active genes. We microdissected the bed nucleus of the stria terminalis and preoptic area (BNST/POA) in adult male and female mice and used ChIP-Seq to compare the distribution of H3K4me3 throughout the genome. We found 248 genes and loci with a significant sex difference in H3K4me3. Of these, the majority (71%) had larger H3K4me3 peaks in females. Comparisons with existing databases indicate that genes and loci with increased H3K4me3 in females are associated with synaptic function and with expression atlases from related brain areas. Based on RT-PCR, only a minority of genes with a sex difference in H3K4me3 has detectable sex differences in expression at baseline conditions. Together with previous findings, our data suggest that there may be sex biases in the use of epigenetic marks. Such biases could underlie sex differences in vulnerabilities to drugs or diseases that disrupt specific epigenetic processes. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Epigenetics and Sex Differences in the Brain: A Genome-Wide Comparison of Histone-3 Lysine-4 Trimethylation (H3K4me3) in Male and Female Mice

    PubMed Central

    Shen, Erica Y.; Ahern, Todd H.; Cheung, Iris; Straubhaar, Juerg; Dincer, Aslihan; Houston, Isaac; de Vries, Geert J.; Akbarian, Schahram; Forger, Nancy G.

    2014-01-01

    Many neurological and psychiatric disorders exhibit gender disparities, and sex differences in the brain likely explain some of these effects. Recent work in rodents points to a role for epigenetics in the development or maintenance of neural sex differences, although genome-wide studies have so far been lacking. Here we review the existing literature on epigenetics and brain sexual differentiation and present preliminary analyses on the genome-wide distribution of histone-3 lysine-4 trimethylation in a sexually dimorphic brain region in male and female mice. H3K4me3 is a histone mark primarily organized as ‘peaks’ surrounding the transcription start site of active genes. We microdissected the bed nucleus of the stria terminalis and preoptic area (BNST/POA) in adult male and female mice and used ChIP-Seq to compare the distribution of H3K4me3 throughout the genome. We found 248 genes and loci with a significant sex difference in H3K4me3. Of these, the majority (71%) had larger H3K4me3 peaks in females. Comparisons with existing databases indicate that genes and loci with increased H3K4me3 in females are associated with synaptic function and with expression atlases from related brain areas. Based on RT-PCR, only a minority of genes with a sex difference in H3K4me3 has detectable sex differences in expression at baseline conditions. Together with previous findings, our data suggest there may be sex biases in the use of epigenetic marks. Such biases could underlie sex differences in vulnerabilities to drugs or diseases that disrupt specific epigenetic processes. PMID:25131640

  7. The Memory of Environmental Chemical Exposure in C. elegans Is Dependent on the Jumonji Demethylases jmjd-2 and jmjd-3/utx-1.

    PubMed

    Camacho, Jessica; Truong, Lisa; Kurt, Zeyneb; Chen, Yen-Wei; Morselli, Marco; Gutierrez, Gerardo; Pellegrini, Matteo; Yang, Xia; Allard, Patrick

    2018-05-22

    How artificial environmental cues are biologically integrated and transgenerationally inherited is still poorly understood. Here, we investigate the mechanisms of inheritance of reproductive outcomes elicited by the model environmental chemical Bisphenol A in C. elegans. We show that Bisphenol A (BPA) exposure causes the derepression of an epigenomically silenced transgene in the germline for 5 generations, regardless of ancestral response. Chromatin immunoprecipitation sequencing (ChIP-seq), histone modification quantitation, and immunofluorescence assays revealed that this effect is associated with a reduction of the repressive marks H3K9me3 and H3K27me3 in whole worms and in germline nuclei in the F3, as well as with reproductive dysfunctions, including germline apoptosis and embryonic lethality. Furthermore, targeting of the Jumonji demethylases JMJD-2 and JMJD-3/UTX-1 restores H3K9me3 and H3K27me3 levels, respectively, and it fully alleviates the BPA-induced transgenerational effects. Together, our results demonstrate the central role of repressive histone modifications in the inheritance of reproductive defects elicited by a common environmental chemical exposure. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. Depletion of histone demethylase KDM2A enhanced the adipogenic and chondrogenic differentiation potentials of stem cells from apical papilla

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Rui; Yao, Rui; Du, Juan

    Mesenchymal stem cells (MSCs) are a reliable resource for tissue regeneration, but the molecular mechanism underlying directed differentiation remains unclear; this has restricted potential MSC applications. The histone demethylase, lysine (K)-specific demethylase 2A (KDM2A), is evolutionarily conserved and ubiquitously expressed members of the JmjC-domain-containing histone demethylase family. A previous study determined that KDM2A can regulate the cell proliferation and osteo/dentinogenic differentiation of MSCs. It is not known whether KDM2A is involved in the other cell lineages differentiation of MSCs. Here, we show that depletion of KDM2A by short hairpin RNAs can enhance adipogenic and chondrogenic differentiation potentials in human stemmore » cells from apical papilla (SCAPs). We found that the stemness-related genes, SOX2, and the embryonic stem cell master transcription factor, NANOG were significantly increased after silence of KDM2A in SCAPs. Moreover, we found that knock-down of the KDM2A co-factor, BCOR also up-regulated the mRNA levels of SOX2 and NANOG. Furthermore, Chromatin immunoprecipitation assays demonstrate that silence of KDM2A increased the histone H3 Lysine 4 (H3K4) trimethylation in the SOX2 and NANOG locus and regulates its expression. In conclusion, our results suggested that depletion of KDM2A enhanced the adipogenic and chondrogenic differentiation potentials of SCAPs by up-regulated SOX2 and NANOG, BCOR also involved in this regulation as co-factor, and provided useful information to understand the molecular mechanism underlying directed differentiation in MSCs. - Highlights: • Depletion of KDM2A enhances adipogenic/chondrogenic differentiation in SCAPs. • Depletion of KDM2A enhances the differentiation of SCAPs by activate SOX2 and NANOG. • Silence of KDM2A increases histone H3 Lysine 4 trimethylation in SOX2 and NANOG. • BCOR is co-factor of KDM2A involved in the differentiation regulation.« less

  9. H3K4me3 induces allosteric conformational changes in the DNA-binding and catalytic regions of the V(D)J recombinase

    PubMed Central

    Bettridge, John; Na, Chan Hyun; Desiderio, Stephen

    2017-01-01

    V(D)J recombination is initiated by the recombination-activating gene (RAG) recombinase, consisting of RAG-1 and RAG-2 subunits. The susceptibility of gene segments to cleavage by RAG is associated with histone modifications characteristic of active chromatin, including trimethylation of histone H3 at lysine 4 (H3K4me3). Binding of H3K4me3 by a plant homeodomain (PHD) in RAG-2 stimulates substrate binding and catalysis, which are functions of RAG-1. This has suggested an allosteric mechanism in which information regarding occupancy of the RAG-2 PHD is transmitted to RAG-1. To determine whether the conformational distribution of RAG is altered by H3K4me3, we mapped changes in solvent accessibility of cysteine thiols by differential isotopic chemical footprinting. Binding of H3K4me3 to the RAG-2 PHD induces conformational changes in RAG-1 within a DNA-binding domain and in the ZnH2 domain, which acts as a scaffold for the catalytic center. Thus, engagement of H3K4me3 by the RAG-2 PHD is associated with dynamic conformational changes in RAG-1, consistent with allosteric control by active chromatin. PMID:28174273

  10. Heterogeneous Antibody-Based Activity Assay for Lysine Specific Demethylase 1 (LSD1) on a Histone Peptide Substrate.

    PubMed

    Schmitt, Martin L; Ladwein, Kathrin I; Carlino, Luca; Schulz-Fincke, Johannes; Willmann, Dominica; Metzger, Eric; Schilcher, Pierre; Imhof, Axel; Schüle, Roland; Sippl, Wolfgang; Jung, Manfred

    2014-07-01

    Posttranslational modifications of histone tails are very important for epigenetic gene regulation. The lysine-specific demethylase LSD1 (KDM1A/AOF2) demethylates in vitro predominantly mono- and dimethylated lysine 4 on histone 3 (H3K4) and is a promising target for drug discovery. We report a heterogeneous antibody-based assay, using dissociation-enhanced lanthanide fluorescent immunoassay (DELFIA) for the detection of LSD1 activity. We used a biotinylated histone 3 peptide (amino acids 1-21) with monomethylated lysine 4 (H3K4me) as the substrate for the detection of LSD1 activity with antibody-mediated quantitation of the demethylated product. We have successfully used the assay to measure the potency of reference inhibitors. The advantage of the heterogeneous format is shown with cumarin-based LSD1 inhibitor candidates that we have identified using virtual screening. They had shown good potency in an established LSD1 screening assay. The new heterogeneous assay identified them as false positives, which was verified using mass spectrometry. © 2014 Society for Laboratory Automation and Screening.

  11. Requirement of lid2 for interfacial activation of a family I.3 lipase with unique two lid structures.

    PubMed

    Cheng, Maria; Angkawidjaja, Clement; Koga, Yuichi; Kanaya, Shigenori

    2012-10-01

    A family I.3 lipase from Pseudomonas sp. MIS38 (PML) is characterized by the presence of two lids (lid1 and lid2) that greatly change conformation upon substrate binding. While lid1 represents the commonly known lid in lipases, lid2 is unique to PML and other family I.3 lipases. To clarify the role of lid2 in PML, a lid2 deletion mutant (ΔL2-PML) was constructed by deleting residues 35-64 of PML. ΔL2-PML requires calcium ions for both lipase and esterase activities as does PML, suggesting that it exhibits activity only when lid1 is fully open and anchored by the catalytically essential calcium ion, as does PML. However, when the enzymatic activity was determined using triacetin, the activity of PML exponentially increased as the substrate concentration reached and increased beyond the critical micellar concentration, while that of ΔL2-PML did not. These results indicate that PML undergoes interfacial activation, while ΔL2-PML does not. The activities of ΔL2-PML for long-chain triglycerides significantly decreased while its activity for fatty acid ethyl esters increased, compared with those of PML. Comparison of the tertiary models of ΔL2-PML in a closed and open conformation, which are optimized by molecular dynamics simulation, with the crystal structures of PML suggests that the hydrophobic surface area provided by lid1 and lid2 in an open conformation is considerably decreased by the deletion of lid2. We propose that the hydrophobic surface area provided by these lids is necessary to hold the micellar substrates firmly to the active site and therefore lid2 is required for interfacial activation of PML. © 2012 The Authors Journal compilation © 2012 FEBS.

  12. SDG2-Mediated H3K4 Methylation Is Required for Proper Arabidopsis Root Growth and Development

    PubMed Central

    Yao, Xiaozhen; Feng, Haiyang; Yu, Yu; Dong, Aiwu; Shen, Wen-Hui

    2013-01-01

    Trithorax group (TrxG) proteins are evolutionarily conserved in eukaryotes and play critical roles in transcriptional activation via deposition of histone H3 lysine 4 trimethylation (H3K4me3) in chromatin. Several Arabidopsis TrxG members have been characterized, and among them SET DOMAIN GROUP 2 (SDG2) has been shown to be necessary for global genome-wide H3K4me3 deposition. Although pleiotropic phenotypes have been uncovered in the sdg2 mutants, SDG2 function in the regulation of stem cell activity has remained largely unclear. Here, we investigate the sdg2 mutant root phenotype and demonstrate that SDG2 is required for primary root stem cell niche (SCN) maintenance as well as for lateral root SCN establishment. Loss of SDG2 results in drastically reduced H3K4me3 levels in root SCN and differentiated cells and causes the loss of auxin gradient maximum in the root quiescent centre. Elevated DNA damage is detected in the sdg2 mutant, suggesting that impaired genome integrity may also have challenged the stem cell activity. Genetic interaction analysis reveals that SDG2 and CHROMATIN ASSEMBLY FACTOR-1 act synergistically in root SCN and genome integrity maintenance but not in telomere length maintenance. We conclude that SDG2-mediated H3K4me3 plays a distinctive role in the regulation of chromatin structure and genome integrity, which are key features in pluripotency of stem cells and crucial for root growth and development. PMID:23483879

  13. Deubiquitylation of histone H2A activates transcriptional initiation via trans-histone cross-talk with H3K4 di- and trimethylation

    PubMed Central

    Nakagawa, Takeya; Kajitani, Takuya; Togo, Shinji; Masuko, Norio; Ohdan, Hideki; Hishikawa, Yoshitaka; Koji, Takehiko; Matsuyama, Toshifumi; Ikura, Tsuyoshi; Muramatsu, Masami; Ito, Takashi

    2008-01-01

    Transcriptional initiation is a key step in the control of mRNA synthesis and is intimately related to chromatin structure and histone modification. Here, we show that the ubiquitylation of H2A (ubH2A) correlates with silent chromatin and regulates transcriptional initiation. The levels of ubH2A vary during hepatocyte regeneration, and based on microarray expression data from regenerating liver, we identified USP21, a ubiquitin-specific protease that catalyzes the hydrolysis of ubH2A. When chromatin is assembled in vitro, ubH2A, but not H2A, specifically represses the di- and trimethylation of H3K4. USP21 relieves this ubH2A-specific repression. In addition, in vitro transcription analysis revealed that ubH2A represses transcriptional initiation, but not transcriptional elongation, by inhibiting H3K4 methylation. Notably, ubH2A-mediated repression was not observed when H3 Lys 4 was changed to arginine. Furthermore, overexpression of USP21 in the liver up-regulates a gene that is normally down-regulated during hepatocyte regeneration. Our studies revealed a novel mode of trans-histone cross-talk, in which H2A ubiquitylation controls the di- and trimethylation of H3K4, resulting in regulation of transcriptional initiation. PMID:18172164

  14. SET DOMAIN GROUP701 encodes a H3K4-methytransferase and regulates multiple key processes of rice plant development.

    PubMed

    Liu, Kunpeng; Yu, Yu; Dong, Aiwu; Shen, Wen-Hui

    2017-07-01

    Chromatin-based epigenetic information plays an important role in developmental gene regulation, in response to environment, and in natural variation of gene expression levels. Histone H3 lysine 4 di/trimethylation (H3K4me2/3) is abundant in euchromatin and is generally associated with transcriptional activation. Strikingly, however, enzymes catalyzing H3K4me2/3 remain poorly characterized in crops so far. Here, we investigated the function of the rice SET DOMAIN GROUP 701 (SDG701) gene by molecular and biochemical characterization of the gene product, and by studying effects of its loss or gain of function on plant growth and development. We demonstrated that SDG701 encodes a methytransferase specifically catalyzing H3K4 methylation. Overexpression and knockdown experiments showed that SDG701 is crucial for proper sporophytic plant development as well as for gametophytic transmission that directly impacts rice grain production. In-depth analysis of plant flowering time revealed that SDG701 promotes rice flowering under either long-day or short-day photoperiods. Consistently, the SDG701 protein was found to bind chromatin to promote H3K4me3 and to enhance expression of the rice Hd3a and RFT1 florigens. Collectively, our results establish SDG701 as a major rice H3K4-specific methyltransferase and provide important insights into function of H3K4me3 deposition in transcription activation of florigens in promoting plant flowering. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  15. Endogenous hydrogen sulfide regulates histone demethylase JMJD3-mediated inflammatory response in LPS-stimulated macrophages and in a mouse model of LPS-induced septic shock.

    PubMed

    Liu, Siyu; Wang, Xiling; Pan, Lilong; Wu, Weijun; Yang, Di; Qin, Ming; Jia, Wanwan; Xiao, Chenxi; Long, Fen; Ge, Junbo; Liu, Xinhua; Zhu, YiZhun

    2018-03-01

    Overproduction of inflammatory mediators contributes to uncontrolled inflammation during endotoxin shock. Cystathionine-γ-lyase (CSE), an enzyme involved in hydrogen sulfide (H 2 S) biosynthesis, has potential anti-inflammatory activity in a variety of inflammatory diseases. Jumonji domain-containing protein 3 (JMJD3), a histone 3 Lys27 (H3K27) demethylase, has been implicated in macrophage activation, but its function in CSE-mediated anti-inflammatory activities remains unknown. In the present study CSE was found to be upregulated in macrophages and mouse lipopolysaccharide (LPS) challenge models. LPS stimulation also enhanced the activation of JMJD3 and decreased H3K27me3 levels. JMJD3 knockdown upregulated H3K27me3 levels and attenuated the LPS-mediated inflammatory response. CSE knockout amplified the inflammatory cascade by increasing JMJD3 expression in septic mice. Similarly, enhanced production of inflammatory mediators by macrophages was mitigated by CSE overexpression via inhibition of JMJD3 expression. This is the first report indicating that inflammation enhanced CSE/H 2 S system biosynthesis, that in turn attenuated the LPS-triggered inflammatory response by regulating JMJD3 expression. Thus, the CSE/H 2 S system represents an epigenetic-based modification mechanism to prevent uncontrolled inflammation. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Targeting lysine specific demethylase 4A (KDM4A) tandem TUDOR domain - A fragment based approach.

    PubMed

    Upadhyay, Anup K; Judge, Russell A; Li, Leiming; Pithawalla, Ron; Simanis, Justin; Bodelle, Pierre M; Marin, Violeta L; Henry, Rodger F; Petros, Andrew M; Sun, Chaohong

    2018-06-01

    The tandem TUDOR domains present in the non-catalytic C-terminal half of the KDM4A, 4B and 4C enzymes play important roles in regulating their chromatin localizations and substrate specificities. They achieve this regulatory role by binding to different tri-methylated lysine residues on histone H3 (H3-K4me3, H3-K23me3) and histone H4 (H4-K20me3) depending upon the specific chromatin environment. In this work, we have used a 2D-NMR based fragment screening approach to identify a novel fragment (1a), which binds to the KDM4A-TUDOR domain and shows modest competition with H3-K4me3 binding in biochemical as well as in vitro cell based assays. A co-crystal structure of KDM4A TUDOR domain in complex with 1a shows that the fragment binds stereo-specifically to the methyl lysine binding pocket forming a network of strong hydrogen bonds and hydrophobic interactions. We anticipate that the fragment 1a can be further developed into a novel allosteric inhibitor of the KDM4 family of enzymes through targeting their C-terminal tandem TUDOR domain. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. The PR-Set7 binding domain of Riz1 is required for the H4K20me1-H3K9me1 trans-tail 'histone code' and Riz1 tumor suppressor function.

    PubMed

    Congdon, Lauren M; Sims, Jennifer K; Tuzon, Creighton T; Rice, Judd C

    2014-04-01

    PR-Set7/Set8/KMT5a is the sole histone H4 lysine 20 monomethyltransferase (H4K20me1) in metazoans and is essential for proper cell division and genomic stability. We unexpectedly discovered that normal cellular levels of monomethylated histone H3 lysine 9 (H3K9me1) were also dependent on PR-Set7, but independent of its catalytic activity. This observation suggested that PR-Set7 interacts with an H3K9 monomethyltransferase to establish the previously reported H4K20me1-H3K9me1 trans-tail 'histone code'. Here we show that PR-Set7 specifically and directly binds the C-terminus of the Riz1/PRDM2/KMT8 tumor suppressor and demonstrate that the N-terminal PR/SET domain of Riz1 preferentially monomethylates H3K9. The PR-Set7 binding domain was required for Riz1 nuclear localization and maintenance of the H4K20me1-H3K9me1 trans-tail 'histone code'. Although Riz1 can function as a repressor, Riz1/H3K9me1 was dispensable for the repression of genes regulated by PR-Set7/H4K20me1. Frameshift mutations resulting in a truncated Riz1 incapable of binding PR-Set7 occur frequently in various aggressive cancers. In these cancer cells, expression of wild-type Riz1 restored tumor suppression by decreasing proliferation and increasing apoptosis. These phenotypes were not observed in cells expressing either the Riz1 PR/SET domain or PR-Set7 binding domain indicating that Riz1 methyltransferase activity and PR-Set7 binding domain are both essential for Riz1 tumor suppressor function.

  18. Genome-Wide Studies Reveal that H3K4me3 Modification in Bivalent Genes Is Dynamically Regulated during the Pluripotent Cell Cycle and Stabilized upon Differentiation

    PubMed Central

    Grandy, Rodrigo A.; Whitfield, Troy W.; Wu, Hai; Fitzgerald, Mark P.; VanOudenhove, Jennifer J.; Zaidi, Sayyed K.; Montecino, Martin A.; Lian, Jane B.; van Wijnen, André J.; Stein, Janet L.

    2015-01-01

    Stem cell phenotypes are reflected by posttranslational histone modifications, and this chromatin-related memory must be mitotically inherited to maintain cell identity through proliferative expansion. In human embryonic stem cells (hESCs), bivalent genes with both activating (H3K4me3) and repressive (H3K27me3) histone modifications are essential to sustain pluripotency. Yet, the molecular mechanisms by which this epigenetic landscape is transferred to progeny cells remain to be established. By mapping genomic enrichment of H3K4me3/H3K27me3 in pure populations of hESCs in G2, mitotic, and G1 phases of the cell cycle, we found striking variations in the levels of H3K4me3 through the G2-M-G1 transition. Analysis of a representative set of bivalent genes revealed that chromatin modifiers involved in H3K4 methylation/demethylation are recruited to bivalent gene promoters in a cell cycle-dependent fashion. Interestingly, bivalent genes enriched with H3K4me3 exclusively during mitosis undergo the strongest upregulation after induction of differentiation. Furthermore, the histone modification signature of genes that remain bivalent in differentiated cells resolves into a cell cycle-independent pattern after lineage commitment. These results establish a new dimension of chromatin regulation important in the maintenance of pluripotency. PMID:26644406

  19. Design and syntheses of hybrid metal-organic materials based on K3[M(C2O4)33H2O [M(III)=Fe, Al, Cr] metallotectons

    NASA Astrophysics Data System (ADS)

    Sun, Yayong; Zong, Yingxia; Ma, Haoran; Zhang, Ao; Liu, Kang; Wang, Debao; Wang, Wenqiang; Wang, Lei

    2016-05-01

    By using K3[M(C2O4)33H2O [M(III)=Fe, Al, Cr] (C2O42-=oxalate) metallotectons as the starting material, we have synthesized eight novel complexes with formulas [{Fe(C2O4)2(H2O)2}2]·(H-L1)2·H2O 1, [Fe(C2O4)Cl2]·(H2-L2)0.5·(L2)0.5·H2O 2, [{Fe(C2O4)1.5Cl2}2]·(H-L3)43, [Fe2(C2O4)Cl8]·(H2-L4)2·2H2O 4, K[Al(C2O4)3]·(H2-L5)·2H2O 5, K[Al(C2O4)3]·(H-L6)2·2H2O 6, K[Cr(C2O4)3]·2H2O 7, Na[Fe(C2O4)3]·(H-L6)2·2H2O 8 (with L1=4-dimethylaminopyridine, L2=2,3,5,6-tetramethylpyrazine, L3=2-aminobenzimidazole, L4=1,4-bis-(1H-imidazol-1-yl)benzene, L5=1,4-bis((2-methylimidazol-1-yl)methyl)benzene, L6=2-methylbenzimidazole). Their structures have been determined by single-crystal X-ray diffraction analyses, elemental analyses, IR spectra and thermogravimetric analyses. Compound 3 is a 2D H-bonded supramolecular architecture. Others are 3D supramolecular structures. Compound 1 shows a [Fe(C2O4)2(H2O)2]- unit and 3D antionic H-bonded framework. Compound 2 features a [Fe(C2O4)Cl2]- anion and 1D iron-oxalate-iron chain. Compound 3 features a [Fe2(C2O4)3Cl4]4- unit. Compound 4 features distinct [Fe2(C2O4)Cl8]4- units, which are mutual linked by water molecules to generated a 2D H-bonded network. Compound 5 features infinite ladder-like chains constructed by [Al(C2O4)3]3- units and K+ cations. The 1D chains are further extended into 3D antionic H-bonded framework through O-H···O H-bonds. Compounds 6-8 show 2D [KAl(C2O4)3]2- layer, [KCr(C2O4)3]2- layer and [NaFe(C2O4)3]2- layer, respectively.

  20. SMYD5 regulates H4K20me3-marked heterochromatin to safeguard ES cell self-renewal and prevent spurious differentiation.

    PubMed

    Kidder, Benjamin L; Hu, Gangqing; Cui, Kairong; Zhao, Keji

    2017-01-01

    Epigenetic regulation of chromatin states is thought to control the self-renewal and differentiation of embryonic stem (ES) cells. However, the roles of repressive histone modifications such as trimethylated histone 4 lysine 20 (H4K20me3) in pluripotency and development are largely unknown. Here, we show that the histone lysine methyltransferase SMYD5 mediates H4K20me3 at heterochromatin regions. Depletion of SMYD5 leads to compromised self-renewal, including dysregulated expression of OCT4 targets, and perturbed differentiation. SMYD5-bound regions are enriched with repetitive DNA elements. Knockdown of SMYD5 results in a global decrease of H4K20me3 levels, a redistribution of heterochromatin constituents including H3K9me3/2, G9a, and HP1α, and de-repression of endogenous retroelements. A loss of SMYD5-dependent silencing of heterochromatin nearby genic regions leads to upregulated expression of lineage-specific genes, thus contributing to the decreased self-renewal and perturbed differentiation of SMYD5-depleted ES cells. Altogether, these findings implicate a role for SMYD5 in regulating ES cell self-renewal and H4K20me3-marked heterochromatin.

  1. Development of Substrate-Selective Probes for Affinity Pulldown of Histone Demethylases

    PubMed Central

    2015-01-01

    JmjC-domain containing histone demethylases (JHDMs) play critical roles in many key cellular processes and have been implicated in multiple disease conditions. Each enzyme within this family is known to have a strict substrate scope, specifically the position of the lysine within the histone and its degree of methylation. While much progress has been made in determining the substrates of each enzyme, new methods with which to systematically profile each histone mark are greatly needed. Novel chemical tools have the potential to fill this role and, furthermore, can be used as probes to answer fundamental questions about these enzymes and serve as potential therapeutic leads. In this work, we first investigated three small-molecule probes differing in the degree of “methylation state” and their differential bindings to JHDM1A (an H3K36me1/2 demethylase) using a fluorescence polarization-based competition assay. We then applied this specificity toward the “methylation state” and combined it with specificity toward lysine position in the design and synthesis of a peptidic probe targeting H3K36me2 JHDMs. The probe is further functionalized with a benzophenone cross-linking moiety and a biotin for affinity purification. Results showed binding of the peptidic probe to JHDM1A and specific enrichment of this protein in the presence of its native histone substrates. Affinity purification pulldown experiments from nuclear lysate coupled with mass spectrometry revealed the capability of the probe to pull out and enrich JHDMs along with other epigenetic proteins and transcriptional regulators. PMID:25335116

  2. Characterization of a broad-specificity non-haem iron N-demethylase from Pseudomonas putida CBB5 capable of utilizing several purine alkaloids as sole carbon and nitrogen source.

    PubMed

    Summers, Ryan M; Louie, Tai Man; Yu, Chi Li; Subramanian, Mani

    2011-02-01

    N-Demethylation of many xenobiotics and naturally occurring purine alkaloids such as caffeine and theobromine is primarily catalysed in higher organisms, ranging from fungi to mammals, by the well-studied membrane-associated cytochrome P450s. In contrast, there is no well-characterized enzyme for N-demethylation of purine alkaloids from bacteria, despite several reports on their utilization as sole source of carbon and nitrogen. Here, we provide what we believe to be the first detailed characterization of a purified N-demethylase from Pseudomonas putida CBB5. The soluble N-demethylase holoenzyme is composed of two components, a reductase component with cytochrome c reductase activity (Ccr) and a two-subunit N-demethylase component (Ndm). Ndm, with a native molecular mass of 240 kDa, is composed of NdmA (40 kDa) and NdmB (35 kDa). Ccr transfers reducing equivalents from NAD(P)H to Ndm, which catalyses an oxygen-dependent N-demethylation of methylxanthines to xanthine, formaldehyde and water. Paraxanthine and 7-methylxanthine were determined to be the best substrates, with apparent K(m) and k(cat) values of 50.4±6.8 μM and 16.2±0.6 min(-1), and 63.8±7.5 μM and 94.8±3.0 min(-1), respectively. Ndm also displayed activity towards caffeine, theobromine, theophylline and 3-methylxanthine, all of which are growth substrates for this organism. Ndm was deduced to be a Rieske [2Fe-2S]-domain-containing non-haem iron oxygenase based on (i) its distinct absorption spectrum and (ii) significant identity of the N-terminal sequences of NdmA and NdmB with the gene product of an uncharacterized caffeine demethylase in P. putida IF-3 and a hypothetical protein in Janthinobacterium sp. Marseille, both predicted to be Rieske non-haem iron oxygenases.

  3. Hydrothermal Syntheses and Structures of Three-Dimensional Oxo-fluorovanadium Phosphates: [H 2N(C 2H 4) 2NH 2] 0.5[(VO) 4V(HPO 4) 2(PO 4) 2F 2(H 2O) 4] · 2H 2O and K 2[(VO) 3(PO 4) 2F 2(H 2O)] · H 2O

    NASA Astrophysics Data System (ADS)

    Bonavia, Grant; Haushalter, R. C.; Zubieta, Jon

    1996-11-01

    The hydrothermal reactions of FPO3H2with vanadium oxides result in the incorporation of fluoride into V-P-O frameworks as a consequence of metal-mediated hydrolysis of the fluorophosphoric acid to produce F-and PO3-4. By exploiting this convenient source of F-, two 3-dimensional oxo-fluorovanadium phosphate phases were isolated, [H2N(C2H4)2NH2]0.5[(VO)4V(HOP4)2(PO4)2F2(H2O)4) · 2H2O (1 · 2H2O) and K2[(VO)3(PO4)2F2(H2O)] · H2O (2 · H2O). Both anionic frameworks contain (VIVO)-F--phosphate layers, with confacial bioctahedral {(VIVO)2FO6} units as the fundamental motif. In the case of 1, the layers are linked through {VIIIO6} octahedra, while for 2 the interlayer connectivity is provided by edge-sharing {(VIVO)2F2O6} units. Crystal data are 1 · 2H2O, CH10FN0.5O13P2V2.5, monoclinicC2/m,a= 18.425(4) Å,c= 8.954(2) Å, β = 93.69(2)0,V= 1221.1(4) Å3,Z= 4,Dcalc= 2.423 g cm-3; 2 · H2O, H4F2K2O13P2V3, triclinicPoverline1,a= 7.298(1) Å,b= 8.929(2) Å,c = 10.090(2) Å, α = 104.50(2)0, β = 100.39(2)0, δ = 92.13(2)0,V= 623.8(3) Å3,Z= 2,Dcalc= 2.891 g cm-3.

  4. Genome-Wide Studies Reveal that H3K4me3 Modification in Bivalent Genes Is Dynamically Regulated during the Pluripotent Cell Cycle and Stabilized upon Differentiation.

    PubMed

    Grandy, Rodrigo A; Whitfield, Troy W; Wu, Hai; Fitzgerald, Mark P; VanOudenhove, Jennifer J; Zaidi, Sayyed K; Montecino, Martin A; Lian, Jane B; van Wijnen, André J; Stein, Janet L; Stein, Gary S

    2016-02-15

    Stem cell phenotypes are reflected by posttranslational histone modifications, and this chromatin-related memory must be mitotically inherited to maintain cell identity through proliferative expansion. In human embryonic stem cells (hESCs), bivalent genes with both activating (H3K4me3) and repressive (H3K27me3) histone modifications are essential to sustain pluripotency. Yet, the molecular mechanisms by which this epigenetic landscape is transferred to progeny cells remain to be established. By mapping genomic enrichment of H3K4me3/H3K27me3 in pure populations of hESCs in G2, mitotic, and G1 phases of the cell cycle, we found striking variations in the levels of H3K4me3 through the G2-M-G1 transition. Analysis of a representative set of bivalent genes revealed that chromatin modifiers involved in H3K4 methylation/demethylation are recruited to bivalent gene promoters in a cell cycle-dependent fashion. Interestingly, bivalent genes enriched with H3K4me3 exclusively during mitosis undergo the strongest upregulation after induction of differentiation. Furthermore, the histone modification signature of genes that remain bivalent in differentiated cells resolves into a cell cycle-independent pattern after lineage commitment. These results establish a new dimension of chromatin regulation important in the maintenance of pluripotency. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  5. Epigenetic silencing of the DNA mismatch repair gene, MLH1, induced by hypoxic stress in a pathway dependent on the histone demethylase, LSD1

    PubMed Central

    Lu, Yuhong; Wajapeyee, Narendra; Turker, Mitchell S.; Glazer, Peter M.

    2014-01-01

    SUMMARY Silencing of the MLH1 gene is frequently seen in sporadic cancers. We report that hypoxia causes decreased H3K4 methylation at the MLH1 promoter via the H3K4 demethylases, LSD1 and PLU-1, and promotes long-term silencing of the promoter in a pathway that requires LSD1. Knockdown of LSD1 or its co-repressor, CoREST, also prevents the re-silencing (and cytosine DNA methylation) of the endogenous MLH1 promoter in RKO colon cancer cells following transient reactivation by the DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine (5-aza-dC). The results demonstrate that hypoxia is a critical driving force for silencing of MLH1 through chromatin modification and indicate that the LSD1/CoREST complex is essential for MLH1 silencing. PMID:25043185

  6. A Rhodium(III)-Based Inhibitor of Lysine-Specific Histone Demethylase 1 as an Epigenetic Modulator in Prostate Cancer Cells.

    PubMed

    Yang, Chao; Wang, Wanhe; Liang, Jia-Xin; Li, Guodong; Vellaisamy, Kasipandi; Wong, Chun-Yuen; Ma, Dik-Lung; Leung, Chung-Hang

    2017-03-23

    We report herein a novel rhodium(III) complex 1 as a new LSD1 targeting agent and epigenetic modulator. Complex 1 disrupted the interaction of LSD1-H3K4me2 in human prostate carcinoma cells and enhanced the amplification of p21, FOXA2, and BMP2 gene promoters. Complex 1 was selective for LSD1 over other histone demethylases, such as KDM2b, KDM7, and MAO activities, and also showed antiproliferative activity toward human cancer cells. To date, complex 1 is the first metal-based inhibitor of LSD1 activity.

  7. Chemical and Electrochemical Asymmetric Dihydroxylation of Olefins in I(2)-K(2)CO(3)-K(2)OsO(2)(OH)(4) and I(2)-K(3)PO(4)/K(2)HPO(4)-K(2)OsO(2)(OH)(4) Systems with Sharpless' Ligand.

    PubMed

    Torii, Sigeru; Liu, Ping; Bhuvaneswari, Narayanaswamy; Amatore, Christian; Jutand, Anny

    1996-05-03

    Iodine-assisted chemical and electrochemical asymmetric dihydroxylation of various olefins in I(2)-K(2)CO(3)-K(2)OsO(2)(OH)(4) and I(2)-K(3)PO(4)/K(2)HPO(4)-K(2)OsO(2)(OH)(4) systems with Sharpless' ligand provided the optically active glycols in excellent isolated yields and high enantiomeric excesses. Iodine (I(2)) was used stoichiometrically for the chemical dihydroxylation, and good results were obtained with nonconjugated olefins in contrast to the case of potassium ferricyanide as a co-oxidant. The potentiality of I(2) as a co-oxidant under stoichiometric conditions has been proven to be effective as an oxidizing mediator in electrolysis systems. Iodine-assisted asymmetric electro-dihydroxylation of olefins in either a t-BuOH/H(2)O(1/1)-K(2)CO(3)/(DHQD)(2)PHAL-(Pt) or t-BuOH/H(2)O(1/1)-K(3)PO(4)/K(2)HPO(4)/(DHQD)(2)PHAL-(Pt) system in the presence of potassium osmate in an undivided cell was investigated in detail. Irrespective of the substitution pattern, all the olefins afforded the diols in high yields and excellent enantiomeric excesses. A plausible mechanism is discussed on the basis of cyclic voltammograms as well as experimental observations.

  8. Loss of the retinoblastoma binding protein 2 (RBP2) histone demethylase suppresses tumorigenesis in mice lacking Rb1 or Men1

    PubMed Central

    Lin, Wenchu; Cao, Jian; Liu, Jiayun; Beshiri, Michael L.; Fujiwara, Yuko; Francis, Joshua; Cherniack, Andrew D.; Geisen, Christoph; Blair, Lauren P.; Zou, Mike R.; Shen, Xiaohua; Kawamori, Dan; Liu, Zongzhi; Grisanzio, Chiara; Watanabe, Hideo; Minamishima, Yoji Andrew; Zhang, Qing; Kulkarni, Rohit N.; Signoretti, Sabina; Rodig, Scott J.; Bronson, Roderick T.; Orkin, Stuart H.; Tuck, David P.; Benevolenskaya, Elizaveta V.; Meyerson, Matthew; Kaelin, William G.; Yan, Qin

    2011-01-01

    Aberrations in epigenetic processes, such as histone methylation, can cause cancer. Retinoblastoma binding protein 2 (RBP2; also called JARID1A or KDM5A) can demethylate tri- and dimethylated lysine 4 in histone H3, which are epigenetic marks for transcriptionally active chromatin, whereas the multiple endocrine neoplasia type 1 (MEN1) tumor suppressor promotes H3K4 methylation. Previous studies suggested that inhibition of RBP2 contributed to tumor suppression by the retinoblastoma protein (pRB). Here, we show that genetic ablation of Rbp2 decreases tumor formation and prolongs survival in Rb1+/− mice and Men1-defective mice. These studies link RBP2 histone demethylase activity to tumorigenesis and nominate RBP2 as a potential target for cancer therapy. PMID:21788502

  9. Epigenetic Profiling of H3K4Me3 Reveals Herbal Medicine Jinfukang-Induced Epigenetic Alteration Is Involved in Anti-Lung Cancer Activity.

    PubMed

    Lu, Jun; Zhang, Xiaoli; Shen, Tingting; Ma, Chao; Wu, Jun; Kong, Hualei; Tian, Jing; Shao, Zhifeng; Zhao, Xiaodong; Xu, Ling

    2016-01-01

    Traditional Chinese medicine Jinfukang (JFK) has been clinically used for treating lung cancer. To examine whether epigenetic modifications are involved in its anticancer activity, we performed a global profiling analysis of H3K4Me3, an epigenomic marker associated with active gene expression, in JFK-treated lung cancer cells. We identified 11,670 genes with significantly altered status of H3K4Me3 modification following JFK treatment (P < 0.05). Gene Ontology analysis indicates that these genes are involved in tumor-related pathways, including pathway in cancer, basal cell carcinoma, apoptosis, induction of programmed cell death, regulation of transcription (DNA-templated), intracellular signal transduction, and regulation of peptidase activity. In particular, we found that the levels of H3K4Me3 at the promoters of SUSD2, CCND2, BCL2A1, and TMEM158 are significantly altered in A549, NCI-H1975, NCI-H1650, and NCI-H2228 cells, when treated with JFK. Collectively, these findings provide the first evidence that the anticancer activity of JFK involves modulation of histone modification at many cancer-related gene loci.

  10. Epigenetic Profiling of H3K4Me3 Reveals Herbal Medicine Jinfukang-Induced Epigenetic Alteration Is Involved in Anti-Lung Cancer Activity

    PubMed Central

    Lu, Jun; Zhang, Xiaoli; Shen, Tingting; Ma, Chao; Wu, Jun; Kong, Hualei; Tian, Jing; Shao, Zhifeng; Zhao, Xiaodong; Xu, Ling

    2016-01-01

    Traditional Chinese medicine Jinfukang (JFK) has been clinically used for treating lung cancer. To examine whether epigenetic modifications are involved in its anticancer activity, we performed a global profiling analysis of H3K4Me3, an epigenomic marker associated with active gene expression, in JFK-treated lung cancer cells. We identified 11,670 genes with significantly altered status of H3K4Me3 modification following JFK treatment (P < 0.05). Gene Ontology analysis indicates that these genes are involved in tumor-related pathways, including pathway in cancer, basal cell carcinoma, apoptosis, induction of programmed cell death, regulation of transcription (DNA-templated), intracellular signal transduction, and regulation of peptidase activity. In particular, we found that the levels of H3K4Me3 at the promoters of SUSD2, CCND2, BCL2A1, and TMEM158 are significantly altered in A549, NCI-H1975, NCI-H1650, and NCI-H2228 cells, when treated with JFK. Collectively, these findings provide the first evidence that the anticancer activity of JFK involves modulation of histone modification at many cancer-related gene loci. PMID:27087825

  11. Critical role of histone demethylase Jmjd3 in the regulation of CD4+ T cell differentiation

    PubMed Central

    Ding, Xilai; Chepelev, Iouri; Zhou, Xikun; Zhao, Wei; Wei, Gang; Cui, Jun; Zhao, Keji; Wang, Helen Y.; Wang, Rong-Fu

    2014-01-01

    Epigenetic factors have been implicated in the regulation of CD4+ T cell differentiation. Jmjd3 plays a role in many biological processes, but its in vivo function in T cell differentiation remains unknown. Here, we report that Jmjd3 ablation promotes CD4+ T cell differentiation into Th2 and Th17 cells in the small intestine and colon, and inhibits T cell differentiation into Th1 cells under different cytokine-polarizing conditions and in a Th1-dependent colitis model. Jmjd3 deficiency also restrains the plasticity of the conversion of Th2, Th17 or Treg cells to Th1 cells. The skewing of T cell differentiation is concomitant with changes in the expression of key transcription factors and cytokines. H3K27me3 and H3K4me3 levels in Jmjd3-deficient cells are correlated with altered gene expression through interactions with specific transcription factors. Our results identify Jmjd3 as an epigenetic factor in T cell differentiation via changes in histone methylation and target gene expression. PMID:25531312

  12. (Bis)urea and (Bis)thiourea Inhibitors of Lysine-Specific Demethylase 1 as Epigenetic Modulators

    PubMed Central

    Sharma, Shiv K.; Wu, Yu; Steinbergs, Nora; Crowley, Michael L.; Hanson, Allison S.; Casero, Robert A.; Woster, Patrick M.

    2010-01-01

    The recently discovered enzyme lysine-specific demethylase 1 (LSD1) plays an important role in the epigenetic control of gene expression, and aberrant gene silencing secondary to LSD1 over expression is thought to contribute to the development of cancer. We recently reported a series of (bis)guanidines and (bis)biguanides that are potent inhibitors of LSD1, and induce the re-expression of aberrantly silenced tumor suppressor genes in tumor cells in vitro. We now report a series of isosteric ureas and thioureas that are also potent inhibitors of LSD1. These compounds induce increases in methylation at the histone 3 lysine 4 (H3K4) chromatin mark, a specific target of LSD1, in Calu-6 lung carcinoma cells. In addition, these analogues increase cellular levels of secreted frizzle-related proteins (SFRP) 2 and 5, and transcription factor GATA4. These compounds represent an important new series of epigenetic modulators with the potential for use as antitumor agents. PMID:20568780

  13. Human CRL4DDB2 ubiquitin ligase preferentially regulates post-repair chromatin restoration of H3K56Ac through recruitment of histone chaperon CAF-1

    PubMed Central

    Zhu, Qianzheng; Wei, Shengcai; Sharma, Nidhi; Wani, Gulzar; He, Jinshan; Wani, Altaf A.

    2017-01-01

    Acetylated histone H3 lysine 56 (H3K56Ac) diminishes in response to DNA damage but is restored following DNA repair. Here, we report that CRL4DDB2 ubiquitin ligase preferentially regulates post-repair chromatin restoration of H3K56Ac through recruitment of histone chaperon CAF-1. We show that H3K56Ac accumulates at DNA damage sites. The restoration of H3K56Ac but not H3K27Ac, H3K18Ac and H3K14Ac depends on CAF-1 function, whereas all these acetylations are mediated by CBP/p300. The CRL4DDB2 components, DDB1, DDB2 and CUL4A, are also required for maintaining the H3K56Ac and H3K9Ac level in chromatin, and for restoring H3K56Ac following induction of DNA photolesions and strand breaks. Depletion of CUL4A decreases the recruitment of CAF-1 p60 and p150 to ultraviolet radiation- and phleomycin-induced DNA damage. Neddylation inhibition renders CRL4DDB2 inactive, decreases H3K56Ac level, diminishes CAF-1 recruitment and prevents H3K56Ac restoration. Mutation in the PIP box of DDB2 compromises its capability to elevate the H3K56Ac level but does not affect XPC ubiquitination. These results demonstrated a function of CRL4DDB2 in differential regulation of histone acetylation in response to DNA damage, suggesting a novel role of CRL4DDB2 in repair-driven chromatin assembly. PMID:29262658

  14. Low-Temperature Rate Coefficients of C2H with CH4 and CD4 from 154 to 359 K

    NASA Technical Reports Server (NTRS)

    Opansky, Brian J.; Leone, Stephen R.

    1996-01-01

    Rate coefficients for the reaction C2H + CH4 yields C2H2 + CH3 and C2H + CD4 yields C2HD + CD3 are measured over the temperature range 154-359 K using transient infrared laser absorption spectroscopy. Ethynyl radicals are produced by pulsed laser photolysis of C2H2 in a variable temperature flow cell, and a tunable color center laser probes the transient removal of C2H (Chi(exp 2) Sigma(+) (0,0,0)) in absorption. The rate coefficients for the reactions of C2H with CH4 and CD4 both show a positive temperature dependence over the range 154-359 K, which can be expressed as k(sub CH4) = (1.2 +/- 0.1) x 10(exp -11) exp((-491 +/- 12)/T) and k(sub CD4) = (8.7 +/- 1.8) x 10(exp -12) exp((-650 +/- 61)/T) cm(exp 3) molecule(exp -1) s(exp -1), respectively. The reaction of C2H + CH4 exhibits a significant kinetic isotope effect at 300 K of k(sub CH4)/k(sub CD4) = 2.5 +/- 0.2. Temperature dependent rate constants for C2H + C2H2 were also remeasured over an increased temperature range from 143 to 359 K and found to show a slight negative temperature dependence, which can be expressed as k(sub C2H2) = 8.6 x 10(exp -16) T(exp 1.8) exp((474 +/- 90)/T) cm(exp 3) molecule(exp -1) s(exp -1).

  15. MoSET1 (Histone H3K4 Methyltransferase in Magnaporthe oryzae) Regulates Global Gene Expression during Infection-Related Morphogenesis

    PubMed Central

    Pham, Kieu Thi Minh; Inoue, Yoshihiro; Vu, Ba Van; Nguyen, Hanh Hieu; Nakayashiki, Toru; Ikeda, Ken-ichi; Nakayashiki, Hitoshi

    2015-01-01

    Here we report the genetic analyses of histone lysine methyltransferase (KMT) genes in the phytopathogenic fungus Magnaporthe oryzae. Eight putative M. oryzae KMT genes were targeted for gene disruption by homologous recombination. Phenotypic assays revealed that the eight KMTs were involved in various infection processes at varying degrees. Moset1 disruptants (Δmoset1) impaired in histone H3 lysine 4 methylation (H3K4me) showed the most severe defects in infection-related morphogenesis, including conidiation and appressorium formation. Consequently, Δmoset1 lost pathogenicity on wheat host plants, thus indicating that H3K4me is an important epigenetic mark for infection-related gene expression in M. oryzae. Interestingly, appressorium formation was greatly restored in the Δmoset1 mutants by exogenous addition of cAMP or of the cutin monomer, 16-hydroxypalmitic acid. The Δmoset1 mutants were still infectious on the super-susceptible barley cultivar Nigrate. These results suggested that MoSET1 plays roles in various aspects of infection, including signal perception and overcoming host-specific resistance. However, since Δmoset1 was also impaired in vegetative growth, the impact of MoSET1 on gene regulation was not infection specific. ChIP-seq analysis of H3K4 di- and tri-methylation (H3K4me2/me3) and MoSET1 protein during infection-related morphogenesis, together with RNA-seq analysis of the Δmoset1 mutant, led to the following conclusions: 1) Approximately 5% of M. oryzae genes showed significant changes in H3K4-me2 or -me3 abundance during infection-related morphogenesis. 2) In general, H3K4-me2 and -me3 abundance was positively associated with active transcription. 3) Lack of MoSET1 methyltransferase, however, resulted in up-regulation of a significant portion of the M. oryzae genes in the vegetative mycelia (1,491 genes), and during infection-related morphogenesis (1,385 genes), indicating that MoSET1 has a role in gene repression either directly or more

  16. Rate Coefficients of C2H with C2H4, C2H6, and H2 from 150 to 359 K

    NASA Technical Reports Server (NTRS)

    Opansky, Brian J.; Leone, Stephen R.

    1996-01-01

    Rate coefficients for the reactions C2H with C2H4, C2H6, and H2 are measured over the temperature range 150-359 K using transient infrared laser absorption spectroscopy. The ethynyl radical is formed by photolysis of C2H2 with a pulsed excimer laser at 193 nm, and its transient absorption is monitored with a color center laser on the Q(sub 11)(9) line of the A(sup 2) Pi-Chi(sup 2) Sigma transition at 3593.68 cm(exp -1). Over the experimental temperature range 150-359 K the rate constants of C2H with C2H4, C2H6, and H2 can be fitted to the Arrhenius expressions k(sub C2H4) = (7.8 +/- 0.6) x 10(exp -11) exp[(134 +/- 44)/T], k(sub C2H6) = (3.5 +/- 0.3) x 10(exp -11) exp[(2.9 +/- 16)/T], and k(sub H2) = (1.2 +/- 0.3) x 10(exp -11) exp[(-998 +/- 57)]/T cm(exp 3) molecule(exp -1) sec(exp -1). The data for C2H with C2H4 and C2H6 indicate a negligible activation energy to product formation shown by the mild negative temperature dependence of both reactions. When the H2 data are plotted together with the most recent high-temperature results from 295 to 854 K, a slight curvature is observed. The H2 data can be fit to the non-Arrhenius form k(sub H2) = 9.2 x 10(exp -18) T(sup 2.17 +/- 0.50) exp[(-478 +/- 165)/T] cm(exp 3) molecules(exp -1) sec(exp -1). The curvature in the Arrhenius plot is discussed in terms of both quantum mechanical tunneling of the H atom from H2 to the C2H radical and bending mode contributions to the partition function.

  17. Histone H3K4 methylation-dependent and -independent functions of Set1A/COMPASS in embryonic stem cell self-renewal and differentiation.

    PubMed

    Sze, Christie C; Cao, Kaixiang; Collings, Clayton K; Marshall, Stacy A; Rendleman, Emily J; Ozark, Patrick A; Chen, Fei Xavier; Morgan, Marc A; Wang, Lu; Shilatifard, Ali

    2017-09-01

    Of the six members of the COMPASS (complex of proteins associated with Set1) family of histone H3 Lys4 (H3K4) methyltransferases identified in mammals, Set1A has been shown to be essential for early embryonic development and the maintenance of embryonic stem cell (ESC) self-renewal. Like its familial relatives, Set1A possesses a catalytic SET domain responsible for histone H3K4 methylation. Whether H3K4 methylation by Set1A/COMPASS is required for ESC maintenance and during differentiation has not yet been addressed. Here, we generated ESCs harboring the deletion of the SET domain of Set1A (Set1A ΔSET ); surprisingly, the Set1A SET domain is dispensable for ESC proliferation and self-renewal. The removal of the Set1A SET domain does not diminish bulk H3K4 methylation in ESCs; instead, only a subset of genomic loci exhibited reduction in H3K4me3 in Set1A ΔSET cells, suggesting a role for Set1A independent of its catalytic domain in ESC self-renewal. However, Set1A ΔSET ESCs are unable to undergo normal differentiation, indicating the importance of Set1A-dependent H3K4 methylation during differentiation. Our data also indicate that during differentiation, Set1A but not Mll2 functions as the H3K4 methylase on bivalent genes and is required for their expression, supporting a model for transcriptional switch between Mll2 and Set1A during the self-renewing-to-differentiation transition. Together, our study implicates a critical role for Set1A catalytic methyltransferase activity in regulating ESC differentiation but not self-renewal and suggests the existence of context-specific H3K4 methylation that regulates transcriptional outputs during ESC pluripotency. © 2017 Sze et al.; Published by Cold Spring Harbor Laboratory Press.

  18. Increased mitochondrial function downstream from KDM5A histone demethylase rescues differentiation in pRB-deficient cells

    PubMed Central

    Váraljai, Renáta; Islam, Abul B.M.M.K.; Beshiri, Michael L.; Rehman, Jalees; Lopez-Bigas, Nuria; Benevolenskaya, Elizaveta V.

    2015-01-01

    The retinoblastoma tumor suppressor protein pRb restricts cell growth through inhibition of cell cycle progression. Increasing evidence suggests that pRb also promotes differentiation, but the mechanisms are poorly understood, and the key question remains as to how differentiation in tumor cells can be enhanced in order to diminish their aggressive potential. Previously, we identified the histone demethylase KDM5A (lysine [K]-specific demethylase 5A), which demethylates histone H3 on Lys4 (H3K4), as a pRB-interacting protein counteracting pRB's role in promoting differentiation. Here we show that loss of Kdm5a restores differentiation through increasing mitochondrial respiration. This metabolic effect is both necessary and sufficient to induce the expression of a network of cell type-specific signaling and structural genes. Importantly, the regulatory functions of pRB in the cell cycle and differentiation are distinct because although restoring differentiation requires intact mitochondrial function, it does not necessitate cell cycle exit. Cells lacking Rb1 exhibit defective mitochondria and decreased oxygen consumption. Kdm5a is a direct repressor of metabolic regulatory genes, thus explaining the compensatory role of Kdm5a deletion in restoring mitochondrial function and differentiation. Significantly, activation of mitochondrial function by the mitochondrial biogenesis regulator Pgc-1α (peroxisome proliferator-activated receptor γ-coactivator 1α; also called PPARGC1A) a coactivator of the Kdm5a target genes, is sufficient to override the differentiation block. Overexpression of Pgc-1α, like KDM5A deletion, inhibits cell growth in RB-negative human cancer cell lines. The rescue of differentiation by loss of KDM5A or by activation of mitochondrial biogenesis reveals the switch to oxidative phosphorylation as an essential step in restoring differentiation and a less aggressive cancer phenotype. PMID:26314709

  19. Photoaffinity labelling of the cardiac calcium channel. (-)-[3H]azidopine labels a 165 kDa polypeptide, and evidence against a [3H]-1,4-dihydropyridine-isothiocyanate being a calcium-channel-specific affinity ligand.

    PubMed

    Ferry, D R; Goll, A; Glossmann, H

    1987-04-01

    The arylazide 1,4-dihydropyridine (-)-[3H]azidopine binds to a saturable population of sites in guinea-pig heart membranes with a dissociation constant (KD) of 30 +/- 7 pM and a density (Bmax.) of 670 +/- 97 fmol/mg of protein. This high-affinity binding site is assumed to reside on voltage-operated calcium channels because reversible binding is blocked stereoselectively by 1,4-dihydropyridine channel blockers and by the enantiomers of Bay K 8644. A low-affinity (KD 25 +/- 7 nM) high-capacity (Bmax. 21.6 +/- 9 pmol/mg of protein) site does not bind (-)- or (+)-Bay K 8644, but is blocked by high concentrations (greater than 500 nM) of dihydro-2,6-dimethyl-4-(2-isothiocyanatophenyl)-3,5-pyridinedicarboxy lic acid dimethyl ester (1,4-DHP-isothiocyanate) or, e.g., (+/-)-nicardipine. (-)-[3H]Azidopine was photoincorporated covalently into bands of 165 +/- 8, 39 +/- 2 and 35 +/- 3 kDa, as determined by SDS/polyacrylamide-gel electrophoresis. Labelling of the 165 kDa band is protected stereoselectively by 1,4-dihydropyridine enantiomers at low (nM) concentrations and by (-)- and (+)-Bay K 8644, whereas the lower-Mr bands are not. Thus, only the 165 kDa band is the calcium-channel-linked 1,4-dihydropyridine receptor. Photolabelling of the 39 or 35 kDa bands was only blocked by 10 microM-1,4-DHP-isothiocyanate or 50 microM-(+/-)-nicardipine but not by 10 microM-(-)-Bay K 8644. [3H]-1,4-DHP-isothiocyanate binds to guinea-pig heart membranes with a KD of 0.35 nM and dissociates with a k-1 of 0.2 min-1 at 30 degrees C. [3H]-1,4 DHP-isothiocyanate irreversibly labels bands of 39 and 35 kDa which are protected by greater than 10 microM-(+/-)-nicardipine or unlabelled ligand but not by 10 microM-(-)-Bay K 8644. Thus, [3H]-1,4-DHP-isothiocyanate is not an affinity probe for the calcium channel.

  20. A histone methylation network regulates transgenerational epigenetic memory in C. elegans

    PubMed Central

    Greer, Eric L.; Beese-Sims, Sara E.; Brookes, Emily; Spadafora, Ruggero; Zhu, Yun; Rothbart, Scott B.; Aristizábal-Corrales, David; Chen, Shuzhen; Badeaux, Aimee I.; Jin, Qiuye; Wang, Wei; Strahl, Brian D.; Colaiácovo, Monica P.; Shi, Yang

    2014-01-01

    Summary How epigenetic information is transmitted from generation to generation remains largely unknown. Deletion of the C. elegans Histone H3 lysine 4 dimethyl (H3K4me2) demethylase spr-5 leads to inherited accumulation of the euchromatic H3K4me2 mark and progressive decline in fertility. Here we identified multiple chromatin-modifying factors, including novel H3K4me1/me2 and H3K9me3 methyltransferases, an H3K9me3 demethylase and an H3K9me reader, which either suppress or accelerate the progressive transgenerational phenotypes of spr-5 mutant worms. Our findings uncover a network of chromatin regulators that control the trans-generational flow of epigenetic information, and suggest that the balance between euchromatic H3K4 and heterochromatic H3K9 methylation regulates trans-generational effects on fertility. PMID:24685137

  1. KDM5 lysine demethylases are involved in maintenance of 3′UTR length

    PubMed Central

    Blair, Lauren P.; Liu, Zongzhi; Labitigan, Ramon Lorenzo D.; Wu, Lizhen; Zheng, Dinghai; Xia, Zheng; Pearson, Erica L.; Nazeer, Fathima I.; Cao, Jian; Lang, Sabine M.; Rines, Rachel J.; Mackintosh, Samuel G.; Moore, Claire L.; Li, Wei; Tian, Bin; Tackett, Alan J.; Yan, Qin

    2016-01-01

    The complexity by which cells regulate gene and protein expression is multifaceted and intricate. Regulation of 3′ untranslated region (UTR) processing of mRNA has been shown to play a critical role in development and disease. However, the process by which cells select alternative mRNA forms is not well understood. We discovered that the Saccharomyces cerevisiae lysine demethylase, Jhd2 (also known as KDM5), recruits 3′UTR processing machinery and promotes alteration of 3′UTR length for some genes in a demethylase-dependent manner. Interaction of Jhd2 with both chromatin and RNA suggests that Jhd2 affects selection of polyadenylation sites through a transcription-coupled mechanism. Furthermore, its mammalian homolog KDM5B (also known as JARID1B or PLU1), but not KDM5A (also known as JARID1A or RBP2), promotes shortening of CCND1 transcript in breast cancer cells. Consistent with these results, KDM5B expression correlates with shortened CCND1 in human breast tumor tissues. In contrast, both KDM5A and KDM5B are involved in the lengthening of DICER1. Our findings suggest both a novel role for this family of demethylases and a novel targetable mechanism for 3′UTR processing. PMID:28138513

  2. Association of H3K9me3 and H3K27me3 repressive histone marks with breast cancer subtypes in the Nurses' Health Study.

    PubMed

    Healey, Megan A; Hu, Rong; Beck, Andrew H; Collins, Laura C; Schnitt, Stuart J; Tamimi, Rulla M; Hazra, Aditi

    2014-10-01

    Repressive histone tail modifications have been associated with molecular breast cancer subtypes. We investigated whether histone 3 lysine 9 trimethylation (H3K9me3) and histone 3 lysine 27 trimethylation (H3K27me3) were associated with tumor features and subtypes while adjusting for prospectively collected reproductive and lifestyle breast cancer risk factors. We have tissue microarray data with immunohistochemical marker information on 804 incident cases of invasive breast cancer diagnosed from 1976-2000 in the Nurses' Health Study. Tissue microarray sections were stained for global H3K9me3 and H3K27me3, and scored into four categories. Multivariate odds ratios (OR) and 95 % confidence intervals (CI) were calculated using logistic regression models for tumor features and subtypes, adjusting for breast cancer risk factors. While there were no significant associations between H3K9me3 and tumor features, H3K27me3 was significantly associated with lower grade tumors compared to high grade tumors in the multivariate model (OR = 1.95, 95 % CI 1.35-2.81, p = 0.0004). H3K27me3 was suggestively associated with estrogen receptor-positive (ER+) tumors (OR = 1.47, 95 % CI 0.97-2.23, p = 0.07). In subtype analyses, H3K27me3 was positively associated with the luminal A subtype compared to all other subtypes (OR = 1.42, 95 % CI 1.14-1.77, p = 0.002), and was inversely associated with HER2-type (OR = 0.58, 95 % CI 0.37-0.91, p = 0.02) and basal-like breast cancer (OR = 0.52, 95 % CI 0.36-0.76, p = 0.0006). In the largest immunohistochemical examination of H3K9me3 and H3K27me3 in breast cancer, we found that H3K27me3 positivity, but not H3K9me3, was associated with lower grade tumors and the luminal A subtype after adjusting for reproductive and lifestyle breast cancer risk factors.

  3. Histone H4K20 tri-methylation at late-firing origins ensures timely heterochromatin replication.

    PubMed

    Brustel, Julien; Kirstein, Nina; Izard, Fanny; Grimaud, Charlotte; Prorok, Paulina; Cayrou, Christelle; Schotta, Gunnar; Abdelsamie, Alhassan F; Déjardin, Jérôme; Méchali, Marcel; Baldacci, Giuseppe; Sardet, Claude; Cadoret, Jean-Charles; Schepers, Aloys; Julien, Eric

    2017-09-15

    Among other targets, the protein lysine methyltransferase PR-Set7 induces histone H4 lysine 20 monomethylation (H4K20me1), which is the substrate for further methylation by the Suv4-20h methyltransferase. Although these enzymes have been implicated in control of replication origins, the specific contribution of H4K20 methylation to DNA replication remains unclear. Here, we show that H4K20 mutation in mammalian cells, unlike in Drosophila , partially impairs S-phase progression and protects from DNA re-replication induced by stabilization of PR-Set7. Using Epstein-Barr virus-derived episomes, we further demonstrate that conversion of H4K20me1 to higher H4K20me2/3 states by Suv4-20h is not sufficient to define an efficient origin per se , but rather serves as an enhancer for MCM2-7 helicase loading and replication activation at defined origins. Consistent with this, we find that Suv4-20h-mediated H4K20 tri-methylation (H4K20me3) is required to sustain the licensing and activity of a subset of ORCA/LRWD1-associated origins, which ensure proper replication timing of late-replicating heterochromatin domains. Altogether, these results reveal Suv4-20h-mediated H4K20 tri-methylation as a critical determinant in the selection of active replication initiation sites in heterochromatin regions of mammalian genomes. © 2017 The Authors.

  4. Vibrational spectroscopic analysis of taranakite (K,NH 4)Al 3(PO 4) 3(OH)·9(H 2O) from the Jenolan Caves, Australia

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Xi, Yunfei; Palmer, Sara J.; Pogson, Ross E.

    2011-12-01

    Many phosphate containing minerals are found in the Jenolan Caves. Such minerals are formed by the reaction of bat guano and clays from the caves. Among these cave minerals is the mineral taranakite (K,NH 4)Al 3(PO 4) 3(OH)·9(H 2O) which has been identified by X-ray diffraction. Jenolan Caves taranakite has been characterised by Raman spectroscopy. Raman and infrared bands are assigned to H 2PO 4, OH and NH stretching vibrations. By using a combination of XRD and Raman spectroscopy, the existence of taranakite in the caves has been proven.

  5. Citrullination/Methylation Crosstalk on Histone H3 Regulates ER-Target Gene Transcription.

    PubMed

    Clancy, Kathleen W; Russell, Anna-Maria; Subramanian, Venkataraman; Nguyen, Hannah; Qian, Yuewei; Campbell, Robert M; Thompson, Paul R

    2017-06-16

    Posttranslational modifications of histone tails are a key contributor to epigenetic regulation. Histone H3 Arg26 and Lys27 are both modified by multiple enzymes, and their modifications have profound effects on gene expression. Citrullination of H3R26 by PAD2 and methylation of H3K27 by PRC2 have opposing downstream impacts on gene regulation; H3R26 citrullination activates gene expression, and H3K27 methylation represses gene expression. Both of these modifications are drivers of a variety of cancers, and their writer enzymes, PAD2 and EZH2, are the targets of drug therapies. After biochemical and cell-based analysis of these modifications, a negative crosstalk interaction is observed. Methylation of H3K27 slows citrullination of H3R26 30-fold, whereas citrullination of H3R26 slows methylation 30,000-fold. Examination of the mechanism of this crosstalk interaction uncovered a change in structure of the histone tail upon citrullination which prevents methylation by the PRC2 complex. This mechanism of crosstalk is reiterated in cell lines using knockdowns and inhibitors of both enzymes. Based our data, we propose a model in which, after H3 Cit26 formation, H3K27 demethylases are recruited to the chromatin to activate transcription. In total, our studies support the existence of crosstalk between citrullination of H3R26 and methylation of H3K27.

  6. Structural analysis of the core COMPASS family of histone H3K4 methylases from yeast to human

    PubMed Central

    Takahashi, Yoh-hei; Westfield, Gerwin H.; Oleskie, Austin N.; Trievel, Raymond C.; Shilatifard, Ali; Skiniotis, Georgios

    2011-01-01

    Histone H3 lysine 4 (H3K4) methylation is catalyzed by the highly evolutionarily conserved multiprotein complex known as Set1/COMPASS or MLL/COMPASS-like complexes from yeast to human, respectively. Here we have reconstituted fully functional yeast Set1/COMPASS and human MLL/COMPASS-like complex in vitro and have identified the minimum subunit composition required for histone H3K4 methylation. These subunits include the methyltransferase C-terminal SET domain of Set1/MLL, Cps60/Ash2L, Cps50/RbBP5, Cps30/WDR5, and Cps25/Dpy30, which are all common components of the COMPASS family from yeast to human. Three-dimensional (3D) cryo-EM reconstructions of the core yeast complex, combined with immunolabeling and two-dimensional (2D) EM analysis of the individual subcomplexes reveal a Y-shaped architecture with Cps50 and Cps30 localizing on the top two adjacent lobes and Cps60-Cps25 forming the base at the bottom. EM analysis of the human complex reveals a striking similarity to its yeast counterpart, suggesting a common subunit organization. The SET domain of Set1 is located at the juncture of Cps50, Cps30, and the Cps60-Cps25 module, lining the walls of a central channel that may act as the platform for catalysis and regulative processing of various degrees of H3K4 methylation. This structural arrangement suggested that COMPASS family members function as exo-methylases, which we have confirmed by in vitro and in vivo studies. PMID:22158900

  7. Structural analysis of the core COMPASS family of histone H3K4 methylases from yeast to human.

    PubMed

    Takahashi, Yoh-hei; Westfield, Gerwin H; Oleskie, Austin N; Trievel, Raymond C; Shilatifard, Ali; Skiniotis, Georgios

    2011-12-20

    Histone H3 lysine 4 (H3K4) methylation is catalyzed by the highly evolutionarily conserved multiprotein complex known as Set1/COMPASS or MLL/COMPASS-like complexes from yeast to human, respectively. Here we have reconstituted fully functional yeast Set1/COMPASS and human MLL/COMPASS-like complex in vitro and have identified the minimum subunit composition required for histone H3K4 methylation. These subunits include the methyltransferase C-terminal SET domain of Set1/MLL, Cps60/Ash2L, Cps50/RbBP5, Cps30/WDR5, and Cps25/Dpy30, which are all common components of the COMPASS family from yeast to human. Three-dimensional (3D) cryo-EM reconstructions of the core yeast complex, combined with immunolabeling and two-dimensional (2D) EM analysis of the individual subcomplexes reveal a Y-shaped architecture with Cps50 and Cps30 localizing on the top two adjacent lobes and Cps60-Cps25 forming the base at the bottom. EM analysis of the human complex reveals a striking similarity to its yeast counterpart, suggesting a common subunit organization. The SET domain of Set1 is located at the juncture of Cps50, Cps30, and the Cps60-Cps25 module, lining the walls of a central channel that may act as the platform for catalysis and regulative processing of various degrees of H3K4 methylation. This structural arrangement suggested that COMPASS family members function as exo-methylases, which we have confirmed by in vitro and in vivo studies.

  8. Transrepressive function of TLX requires the histone demethylase LSD1.

    PubMed

    Yokoyama, Atsushi; Takezawa, Shinichiro; Schüle, Roland; Kitagawa, Hirochika; Kato, Shigeaki

    2008-06-01

    TLX is an orphan nuclear receptor (also called NR2E1) that regulates the expression of target genes by functioning as a constitutive transrepressor. The physiological significance of TLX in the cytodifferentiation of neural cells in the brain is known. However, the corepressors supporting the transrepressive function of TLX have yet to be identified. In this report, Y79 retinoblastoma cells were subjected to biochemical techniques to purify proteins that interact with TLX, and we identified LSD1 (also called KDM1), which appears to form a complex with CoREST and histone deacetylase 1. LSD1 interacted with TLX directly through its SWIRM and amine oxidase domains. LSD1 potentiated the transrepressive function of TLX through its histone demethylase activity as determined by a luciferase assay using a genomically integrated reporter gene. LSD1 and TLX were recruited to a TLX-binding site in the PTEN gene promoter, accompanied by the demethylation of H3K4me2 and deacetylation of H3. Knockdown of either TLX or LSD1 derepressed expression of the endogenous PTEN gene and inhibited cell proliferation of Y79 cells. Thus, the present study suggests that LSD1 is a prime corepressor for TLX.

  9. Identification of 80K-H as a protein involved in GLUT4 vesicle trafficking

    PubMed Central

    2005-01-01

    PKCζ (protein kinase Cζ) is a serine/threonine protein kinase controlled by insulin, various growth factors and phosphoinositide 3-kinase. It has been implicated in controlling glucose transport in response to insulin by the translocation of GLUT4-(glucose transporter 4) containing vesicles to the plasma membrane in stimulated cells. How PKCζ modulates GLUT4 vesicle trafficking remains unknown. A yeast two-hybrid screen using full-length human PKCζ identified 80K-H protein as an interactor with PKCζ. GST (glutathione S-transferase) pull-down assays with GST-tagged 80K-H constructs confirmed the interaction and showed that the N-terminal portion of 80K-H was not required for the interaction. Immunoprecipitates of endogenous PKCζ from Cho cells, 3T3-L1 adipocytes or L6 myotubes contained endogenous 80K-H, demonstrating a physiological interaction. Insulin stimulation enhanced the association 3–5-fold. Immunoprecipitates of endogenous 80K-H contained endogenous munc18c and immunoprecipitates of endogenous munc18c contained endogenous PKCζ, with insulin markedly increasing the amount of co-immunoprecipitated protein in each case. These results show that insulin triggers interactions in vivo between PKCζ, 80K-H and munc18c. Overexpression of 80K-H constructs mimicked the action of insulin in stimulating both glucose uptake and translocation of Myc-tagged GLUT4 in Cho cells, with the level of effect proportional to the ability of the constructs to associate with munc18c. These results identify 80K-H as a new player involved in GLUT4 vesicle transport and identify a link between a kinase involved in the insulin signalling cascade, PKCζ, and a known component of the GLUT4 vesicle trafficking pathway, munc18c. The results suggest a model whereby insulin triggers the formation of a PKCζ–80K-H–munc18c complex that enhances GLUT4 translocation to the plasma membrane. PMID:15707389

  10. Effect of cationic substitution on the double-well hydrogen-bond potential in [K1-x(NH4)x]3H(SO4)2 proton conductors: a single-crystal neutron diffraction study.

    PubMed

    Choudhury, R R; Chitra, R; Selezneva, E V; Makarova, I P

    2017-10-01

    The structure of the mixed crystal [K 1-x (NH 4 ) x ] 3 H(SO 4 ) 2 as obtained from single-crystal neutron diffraction is compared with the previously reported room-temperature neutron structure of crystalline K 3 H(SO 4 ) 2 . The two structures are very similar, as indicated by the high value of their isostructurality index (94.8%). It was found that the replacement of even a small amount (3%) of K + with NH 4 + has a significant influence on the short strong hydrogen bond connecting the two SO 4 2- ions. Earlier optical measurements had revealed that the kinetics of the superionic transition in the solid solution [K 1-x (NH 4 ) x ] 3 H(SO 4 ) 2 are much faster than in K 3 H(SO 4 ) 2 ; this reported difference in the kinetics of the superionic phase transition in this class of crystal is explained on the basis of the difference in strength of the hydrogen-bond interactions in the two structures.

  11. The neuronal metabolite NAA regulates histone H3 methylation in oligodendrocytes and myelin lipid composition

    PubMed Central

    Singhal, N. K.; Huang, H.; Li, S.; Clements, R.; Gadd, J.; Daniels, A.; Kooijman, E. E.; Bannerman, P.; Burns, T.; Guo, F.; Pleasure, D.; Freeman, E.; Shriver, L.

    2017-01-01

    The neuronal mitochondrial metabolite N-acetylaspartate (NAA) is decreased in the multiple sclerosis (MS) brain. NAA is synthesized in neurons by the enzyme N-acetyltransferase-8-like (NAT8L) and broken down in oligodendrocytes by aspartoacylase (ASPA) into acetate and aspartate. We have hypothesized that NAA links the metabolism of axons with oligodendrocytes to support myelination. To test this hypothesis, we performed lipidomic analyses using liquid chromatography–tandem mass spectrometry (LC–MS/MS) and high-performance thin-layer chromatography (HPTLC) to identify changes in myelin lipid composition in postmortem MS brains and in NAT8L knockout (NAT8L−/−) mice which do not synthesize NAA. We found reduced levels of sphingomyelin in MS normal appearing white matter that mirrored decreased levels of NAA. We also discovered decreases in the amounts of sphingomyelin and sulfatide lipids in the brains of NAT8L−/− mice compared to controls. Metabolomic analysis of primary cultures of oligodendrocytes treated with NAA revealed increased levels of α-ketoglutarate, which has been reported to regulate histone demethylase activity. Consistent with this, NAA treatment resulted in alterations in the levels of histone H3 methylation, including H3K4me3, H3K9me2, and H3K9me3. The H3K4me3 histone mark regulates cellular energetics, metabolism, and growth, while H3K9me3 has been linked to alterations in transcriptional repression in developing oligodendrocytes. We also noted the NAA treatment was associated with increases in the expression of genes involved in sulfatide and sphingomyelin synthesis in cultured oligodendrocytes. This is the first report demonstrating that neuronal-derived NAA can signal to the oligodendrocyte nucleus. These data suggest that neuronal-derived NAA signals through epigenetic mechanisms in oligodendrocytes to support or maintain myelination. PMID:27709268

  12. The neuronal metabolite NAA regulates histone H3 methylation in oligodendrocytes and myelin lipid composition.

    PubMed

    Singhal, N K; Huang, H; Li, S; Clements, R; Gadd, J; Daniels, A; Kooijman, E E; Bannerman, P; Burns, T; Guo, F; Pleasure, D; Freeman, E; Shriver, L; McDonough, J

    2017-01-01

    The neuronal mitochondrial metabolite N-acetylaspartate (NAA) is decreased in the multiple sclerosis (MS) brain. NAA is synthesized in neurons by the enzyme N-acetyltransferase-8-like (NAT8L) and broken down in oligodendrocytes by aspartoacylase (ASPA) into acetate and aspartate. We have hypothesized that NAA links the metabolism of axons with oligodendrocytes to support myelination. To test this hypothesis, we performed lipidomic analyses using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and high-performance thin-layer chromatography (HPTLC) to identify changes in myelin lipid composition in postmortem MS brains and in NAT8L knockout (NAT8L -/- ) mice which do not synthesize NAA. We found reduced levels of sphingomyelin in MS normal appearing white matter that mirrored decreased levels of NAA. We also discovered decreases in the amounts of sphingomyelin and sulfatide lipids in the brains of NAT8L -/- mice compared to controls. Metabolomic analysis of primary cultures of oligodendrocytes treated with NAA revealed increased levels of α-ketoglutarate, which has been reported to regulate histone demethylase activity. Consistent with this, NAA treatment resulted in alterations in the levels of histone H3 methylation, including H3K4me3, H3K9me2, and H3K9me3. The H3K4me3 histone mark regulates cellular energetics, metabolism, and growth, while H3K9me3 has been linked to alterations in transcriptional repression in developing oligodendrocytes. We also noted the NAA treatment was associated with increases in the expression of genes involved in sulfatide and sphingomyelin synthesis in cultured oligodendrocytes. This is the first report demonstrating that neuronal-derived NAA can signal to the oligodendrocyte nucleus. These data suggest that neuronal-derived NAA signals through epigenetic mechanisms in oligodendrocytes to support or maintain myelination.

  13. Cis-existence of H3K27me3 and H3K36me2 in mouse embryonic stem cells revealed by specific ions of isobaric modification chromatogram.

    PubMed

    Mao, Hailei; Han, Gang; Xu, Longyong; Zhu, Duming; Lin, Hanqing; Cao, Xiongwen; Yu, Yi; Chen, Charlie Degui

    2015-07-21

    Histone H3 lysine 27 trimethylation (H3K27me3) and H3 lysine 36 trimethylation (H3K36me3) are important epigenetic modifications correlated with transcription repression and activation, respectively. These two opposing modifications rarely co-exist in the same H3 polypeptide. However, a small but significant amount of H3 tails are modified with 5 methyl groups on K27 and K36 in mouse embryonic stem cells (mESCs) and it is unclear how the trimethylation is distributed on K27 or K36. A label-free, bottom-up mass spectrum method, named specific ions of isobaric modification chromatogram (SIMC), was established to quantify the relative abundance of K27me2-K36me3 and K27me3-K36me2 in the same histone H3 tail. By using this method, we demonstrated that the H3K27me3-K36me2 comprises about 85 % of the penta-methylated H3 tails at K27 and K36 in mESCs. Upon mESC differentiation, the abundance of H3K27me3-K36me2 significantly decreased, while the level of H3K27me2-K36me3 remains unchanged. Our study not only revealed the cis-existence of H3K27me3-K36me2 in mESCs, but also suggested that this combinatorial histone modification may assume a specific regulatory function during differentiation.

  14. Overview of LIDS Docking and Berthing System Seals

    NASA Technical Reports Server (NTRS)

    Daniels, Christopher C.; Dunlap, Patrick H., Jr.; deGroh, Henry C., III; Steinetz, Bruce M.; Oswald, Jay J.; Smith, Ian

    2007-01-01

    This viewgraph presentation describes the Low Impact Docking System (LIDS) docking and berthing system seals. The contents include: 1) Description of the Application: Low Impact Docking System (LIDS); 2) LIDS Seal Locations: Vehicle Undocked (Hatch Closed); 3) LIDS Seal Locations: Mechanical Pass Thru; 4) LIDS Seal Locations: Electrical and Pyro Connectors; 5) LIDS Seal Locations: Vehicle Docked (Hatches Open); 6) LIDS Seal Locations: Main Interface Seal; 7) Main Interface Seal Challenges and Specifications; 8) Approach; 9) Seal Concepts Under Development/Evaluation; 10) Elastomer Material Evaluations; 11) Evaluation of Relevant Seal Properties; 12) Medium-Scale (12") Gask-O-Seal Compression Tests; 13) Medium-Scale Compression Results; 14) Adhesion Forces of Elliptical Top Gask-o-seals; 15) Medium-Scale Seals; 16) Medium-Scale Leakage Results: Effect of Configuration; 17) Full Scale LIDS Seal Test Rig Development; 18) Materials International Space Station Experiment (MISSE 6A and 6B); and 19) Schedule.

  15. Loss of histone H4K20 trimethylation predicts poor prognosis in breast cancer and is associated with invasive activity

    PubMed Central

    2014-01-01

    Introduction Loss of histone H4 lysine 20 trimethylation (H4K20me3) is associated with multiple cancers, but its role in breast tumors is unclear. In addition, the pathological effects of global reduction in H4K20me3 remain mostly unknown. Therefore, a major goal of this study was to elucidate the global H4K20me3 level in breast cancer tissue and investigate its pathological functions. Methods Levels of H4K20me3 and an associated histone modification, H3 lysine 9 trimethylation (H3K9me3), were evaluated by immunohistochemistry in a series of breast cancer tissues. Univariate and multivariate clinicopathological and survival analyses were performed. We also examined the effect of overexpression or knockdown of the histone H4K20 methyltransferases, SUV420H1 and SUV420H2, on cancer-cell invasion activity in vitro. Results H4K20me3, but not H3K9me3, was clearly reduced in breast cancer tissue. A reduced level of H4K20me3 was correlated with several aspects of clinicopathological status, including luminal subtypes, but not with HER2 expression. Multivariate analysis showed that reduced levels of H4K20me3 independently associated with lower disease-free survival. Moreover, ectopic expression of SUV420H1 and SUV420H2 in breast cancer cells suppressed cell invasiveness, whereas knockdown of SUV420H2 activated normal mammary epithelial-cell invasion in vitro. Conclusions H4K20me3 was reduced in cancerous regions of breast-tumor tissue, as in other types of tumor. Reduced H4K20me3 level can be used as an independent marker of poor prognosis in breast cancer patients. Most importantly, this study suggests that a reduced level of H4K20me3 increases the invasiveness of breast cancer cells in a HER2-independent manner. PMID:24953066

  16. ATR inhibition controls aggressive prostate tumors deficient in Y-linked histone demethylase KDM5D.

    PubMed

    Komura, Kazumasa; Yoshikawa, Yuki; Shimamura, Teppei; Chakraborty, Goutam; Gerke, Travis A; Hinohara, Kunihiko; Chadalavada, Kalyani; Jeong, Seong Ho; Armenia, Joshua; Du, Shin-Yi; Mazzu, Ying Z; Taniguchi, Kohei; Ibuki, Naokazu; Meyer, Clifford A; Nanjangud, Gouri J; Inamoto, Teruo; Lee, Gwo-Shu Mary; Mucci, Lorelei A; Azuma, Haruhito; Sweeney, Christopher J; Kantoff, Philip W

    2018-06-04

    Epigenetic modifications control cancer development and clonal evolution in various cancer types. Here, we show that loss of the male-specific histone demethylase lysine-specific demethylase 5D (KDM5D) encoded on the Y chromosome epigenetically modifies histone methylation marks and alters gene expression, resulting in aggressive prostate cancer. Fluorescent in situ hybridization demonstrated that segmental or total deletion of the Y chromosome in prostate cancer cells is one of the causes of decreased KDM5D mRNA expression. The result of ChIP-sequencing analysis revealed that KDM5D preferably binds to promoter regions with coenrichment of the motifs of crucial transcription factors that regulate the cell cycle. Loss of KDM5D expression with dysregulated H3K4me3 transcriptional marks was associated with acceleration of the cell cycle and mitotic entry, leading to increased DNA-replication stress. Analysis of multiple clinical data sets reproducibly showed that loss of expression of KDM5D confers a poorer prognosis. Notably, we also found stress-induced DNA damage on the serine/threonine protein kinase ATR with loss of KDM5D. In KDM5D-deficient cells, blocking ATR activity with an ATR inhibitor enhanced DNA damage, which led to subsequent apoptosis. These data start to elucidate the biological characteristics resulting from loss of KDM5D and also provide clues for a potential novel therapeutic approach for this subset of aggressive prostate cancer.

  17. ChIP-seq and ChIP-exo profiling of Pol II, H2A.Z, and H3K4me3 in human K562 cells.

    PubMed

    Mchaourab, Zenab F; Perreault, Andrea A; Venters, Bryan J

    2018-03-06

    The human K562 chronic myeloid leukemia cell line has long served as an experimental paradigm for functional genomic studies. To systematically and functionally annotate the human genome, the ENCODE consortium generated hundreds of functional genomic data sets, such as chromatin immunoprecipitation coupled to sequencing (ChIP-seq). While ChIP-seq analyses have provided tremendous insights into gene regulation, spatiotemporal insights were limited by a resolution of several hundred base pairs. ChIP-exonuclease (ChIP-exo) is a refined version of ChIP-seq that overcomes this limitation by providing higher precision mapping of protein-DNA interactions. To study the interplay of transcription initiation and chromatin, we profiled the genome-wide locations for RNA polymerase II (Pol II), the histone variant H2A.Z, and the histone modification H3K4me3 using ChIP-seq and ChIP-exo. In this Data Descriptor, we present detailed information on parallel experimental design, data generation, quality control analysis, and data validation. We discuss how these data lay the foundation for future analysis to understand the relationship between the occupancy of Pol II and nucleosome positions at near base pair resolution.

  18. Context dependency of Set1/COMPASS-mediated histone H3 Lys4 trimethylation

    PubMed Central

    Thornton, Janet L.; Westfield, Gerwin H.; Takahashi, Yoh-hei; Cook, Malcolm; Gao, Xin; Woodfin, Ashley R.; Lee, Jung-Shin; Morgan, Marc A.; Jackson, Jessica; Smith, Edwin R.; Couture, Jean-Francois; Skiniotis, Georgios; Shilatifard, Ali

    2014-01-01

    The stimulation of trimethylation of histone H3 Lys4 (H3K4) by H2B monoubiquitination (H2Bub) has been widely studied, with multiple mechanisms having been proposed for this form of histone cross-talk. Cps35/Swd2 within COMPASS (complex of proteins associated with Set1) is considered to bridge these different processes. However, a truncated form of Set1 (762-Set1) is reported to function in H3K4 trimethylation (H3K4me3) without interacting with Cps35/Swd2, and such cross-talk is attributed to the n-SET domain of Set1 and its interaction with the Cps40/Spp1 subunit of COMPASS. Here, we used biochemical, structural, in vivo, and chromatin immunoprecipitation (ChIP) sequencing (ChIP-seq) approaches to demonstrate that Cps40/Spp1 and the n-SET domain of Set1 are required for the stability of Set1 and not the cross-talk. Furthermore, the apparent wild-type levels of H3K4me3 in the 762-Set1 strain are due to the rogue methylase activity of this mutant, resulting in the mislocalization of H3K4me3 from the promoter-proximal regions to the gene bodies and intergenic regions. We also performed detailed screens and identified yeast strains lacking H2Bub but containing intact H2Bub enzymes that have normal levels of H3K4me3, suggesting that monoubiquitination may not directly stimulate COMPASS but rather works in the context of the PAF and Rad6/Bre1 complexes. Our study demonstrates that the monoubiquitination machinery and Cps35/Swd2 function to focus COMPASS's H3K4me3 activity at promoter-proximal regions in a context-dependent manner. PMID:24402317

  19. Structure-based nuclear import mechanism of histones H3 and H4 mediated by Kap123

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, Sojin; Yoon, Jungmin; Kim, Hanseong

    Kap123, a major karyopherin protein of budding yeast, recognizes the nuclear localization signals (NLSs) of cytoplasmic histones H3 and H4 and translocates them into the nucleus during DNA replication. Mechanistic questions include H3- and H4-NLS redundancy toward Kap123 and the role of the conserved diacetylation of cytoplasmic H4 (K5ac and K12ac) in Kap123-mediated histone nuclear translocation. Here, we report crystal structures of full-length Kluyveromyces lactis Kap123 alone and in complex with H3- and H4-NLSs. Structures reveal the unique feature of Kap123 that possesses two discrete lysine-binding pockets for NLS recognition. Structural comparison illustrates that H3- and H4-NLSs share at leastmore » one of two lysine-binding pockets, suggesting that H3- and H4-NLSs are mutually exclusive. Additionally, acetylation of key lysine residues at NLS, particularly H4-NLS diacetylation, weakens the interaction with Kap123. These data support that cytoplasmic histone H4 diacetylation weakens the Kap123-H4-NLS interaction thereby facilitating histone Kap123-H3-dependent H3:H4/Asf1 complex nuclear translocation.« less

  20. Crystallization and X-ray data analysis of the 10 kDa C-terminal lid subdomain from Caenorhabditis elegans Hsp70

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Worrall, Liam; Walkinshaw, Malcolm D., E-mail: m.walkinshaw@ed.ac.uk

    Crystals of the C-terminal 10 kDa lid subdomain from the C. elegans chaperone Hsp70 have been obtained that diffract X-rays to ∼3.5 Å and belong to space group I2{sub 1}2{sub 1}2{sub 1}. Analysis of X-ray data and initial heavy-atom phasing reveals 24 monomers in the asymmetric unit related by 432 non-crystallographic symmetry. Hsp70 is an important molecular chaperone involved in the regulation of protein folding. Crystals of the C-terminal 10 kDa helical lid domain (residues 542–640) from a Caenorhabditis elegans Hsp70 homologue have been produced that diffract X-rays to ∼3.4 Å. Crystals belong to space group I2{sub 1}2{sub 1}2{sub 1},more » with unit-cell parameters a = b = 197, c = 200 Å. The Matthews coefficient, self-rotation function and Patterson map indicate 24 monomers in the asymmetric unit, showing non-crystallographic 432 symmetry. Molecular-replacement studies using the corresponding domain from rat, the only eukaryotic homologue with a known structure, failed and a mercury derivative was obtained. Preliminary MAD phasing using SHELXD and SHARP for location and refinement of the heavy-atom substructure and SOLOMON for density modification produced interpretable maps with a clear protein–solvent boundary. Further density-modification, model-building and refinement are currently under way.« less

  1. EZH2-mediated H3K27 trimethylation mediates neurodegeneration in ataxia-telangiectasia

    PubMed Central

    Li, Jiali; Hart, Ronald P.; Mallimo, Elyse M.; Swerdel, Mavis R.; Kusnecov, Alexander; Herrup, Karl

    2014-01-01

    The symptoms of ataxia-telangiectasia (A-T) include a progressive neurodegeneration caused by ATM protein deficiency. We previously found that nuclear accumulation of histone deacetylase-4, HDAC4, contributes to this degeneration; we now report that increased histone H3K27 trimethylation (H3K27me3) mediated by polycomb repressive complex 2 (PRC2) also plays an important role in the A-T phenotype. Enhancer of zeste homolog 2 (EZH2), a core catalytic component of PRC2, is a new ATM kinase target, and ATM-mediated S734 phosphorylation of EZH2 reduces protein stability. Thus, PRC2 formation is elevated along with H3K27me3in ATM deficiency. ChIP-sequencing shows a significant increase in H3K27me3 ‘marks’ and a dramatic shift in their location. The change of H3K27me3 chromatin-binding pattern is directly related to cell cycle re-entry and cell death of ATM-deficient neurons. Lentiviral knockdown of EZH2 rescues Purkinje cell degeneration and behavioral abnormalities in Atm−/− mice, demonstrating that EZH2 hyperactivity is another key factor in A-T neurodegeneration. PMID:24162653

  2. Design, Synthesis and Antifungal Activity Evaluation of New Thiazolin-4-ones as Potential Lanosterol 14α-Demethylase Inhibitors

    PubMed Central

    Stana, Anca; Vodnar, Dan C.; Tamaian, Radu; Pîrnău, Adrian; Vlase, Laurian; Ionuț, Ioana; Oniga, Ovidiu; Tiperciuc, Brînduşa

    2017-01-01

    Twenty-three thiazolin-4-ones were synthesized starting from phenylthioamide or thiourea derivatives by condensation with α-monochloroacetic acid or ethyl α-bromoacetate, followed by substitution in position 5 with various arylidene moieties. All the synthesized compounds were physico-chemically characterized and the IR (infrared spectra), 1H NMR (proton nuclear magnetic resonance), 13C NMR (carbon nuclear magnetic resonance) and MS (mass spectrometry) data were consistent with the assigned structures. The synthesized thiazolin-4-one derivatives were tested for antifungal properties against several strains of Candida and all compounds exhibited efficient anti-Candida activity, two of them (9b and 10) being over 500-fold more active than fluconazole. Furthermore, the compounds’ lipophilicity was assessed and the compounds were subjected to in silico screening for prediction of their ADME-Tox properties (absorbtion, distribution, metabolism, excretion and toxicity). Molecular docking studies were performed to investigate the mode of action towards the fungal lanosterol 14α-demethylase, a cytochrome P450-dependent enzyme. The results of the in vitro antifungal activity screening, docking study and ADME-Tox prediction revealed that the synthesized compounds are potential anti-Candida agents that might act by inhibiting the fungal lanosterol 14α-demethylase and can be further optimized and developed as lead compounds. PMID:28106743

  3. Influence of the Organic Species and Oxoanion in the Synthesis of two Uranyl Sulfate Hydrates, (H 3 O) 2 [(UO 2 ) 2 (SO 4 ) 3 ­(H 2 O)]·7H 2 O and (H 3 O) 2 [(UO 2 ) 2 (SO 4 ) 3 (H 2 O)]·4H 2 O, and a Uranyl Selenate-Selenite [C 5 H 6 N][(UO 2 )(SeO 4 )(HSeO 3 )

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jouffret, Laurent J.; Wylie, Ernest M.; Burns, Peter C.

    2012-08-08

    Two uranyl sulfate hydrates, (H3O)2[(UO2)2(SO4)3(H2O)]·7H2O (NDUS) and (H3O)2[(UO2)2(SO4)3(H2O)]·4H2O (NDUS1), and one uranyl selenate-selenite [C5H6N][(UO2)(SeO4)(HSeO3)] (NDUSe), were obtained and their crystal structures solved. NDUS and NDUSe result from reactions in highly acidic media in the presence of L-cystine at 373 K. NDUS crystallized in a closed vial at 278 K after 5 days and NDUSe in an open beaker at 278 K after 2 weeks. NDUS1 was synthesized from aqueous solution at room temperature over the course of a month. NDUS, NDUS1, and NDUSe crystallize in the monoclinic space group P21/n, a = 15.0249(4) Å,b = 9.9320(2) Å, c = 15.6518(4)more » Å, β = 112.778(1)°, V = 2153.52(9) Å3,Z = 4, the tetragonal space group P43212, a = 10.6111(2) Å,c = 31.644(1) Å, V = 3563.0(2) Å3, Z = 8, and in the monoclinic space group P21/n, a = 8.993(3) Å, b = 13.399(5) Å, c = 10.640(4) Å,β = 108.230(4)°, V = 1217.7(8) Å3, Z = 4, respectively.The structural units of NDUS and NDUS1 are two-dimensional uranyl sulfate sheets with a U/S ratio of 2/3. The structural unit of NDUSe is a two-dimensional uranyl selenate-selenite sheets with a U/Se ratio of 1/2. In-situ reaction of the L-cystine ligands gives two distinct products for the different acids used here. Where sulfuric acid is used, only H3O+ cations are located in the interlayer space, where they balance the charge of the sheets, whereas where selenic acid is used, interlayer C5H6N+ cations result from the cyclization of the carboxyl groups of L-cystine, balancing the charge of the sheets.« less

  4. JMJD3 suppresses stem cell-like characteristics in breast cancer cells by downregulation of Oct4 independently of its demethylase activity.

    PubMed

    Xun, Jing; Wang, Dekun; Shen, Long; Gong, Junbo; Gao, Ruifang; Du, Lingfang; Chang, Antao; Song, Xiangrong; Xiang, Rong; Tan, Xiaoyue

    2017-03-28

    Epigenetic regulator JMJD3 plays an important role in both tumor progression and somatic cell reprogramming. Here, we explored the effect of JMJD3 on the stem cell-like characteristics of breast cancer and its underlying mechanism involving stemness-related transcription factor Oct4. Our data revealed that, in breast cancer cells lines and an orthotopic xenograph mouse model of breast cancer, ectopic overexpression of JMJD3 suppressed stem cell-like characteristics of breast cancer cells, whereas knockdown of JMJD3 promoted these characteristics. Oct4 mediated the suppressive effects of JMJD3 on the stemness of breast cancer cells. The inhibitory effect of JMJD3 on Oct4 was independent of demethylase activity, but mediated via degradation of PHF20. Furthermore, we applied an agonist of the vitamin D receptor, paricalcitol, and found that it induced JMJD3 in breast cancer cells. Our data showed that administration of paricalcitol suppressed stem cell-like characteristics and Oct4 expression. Taken together, JMJD3 inhibits the stem cell-like characteristics in breast cancer by suppression of stemness factor Oct4 in a PHF20-dependent manner. Administration of paricalcitol leads to upregulation of JMJD3 that suppresses Oct4 expression and the stem cell-like characteristics in breast cancer.

  5. Parameter estimation for mathematical models of a nongastric H+(Na+)-K(+)(NH4+)-ATPase.

    PubMed

    Nadal-Quirós, Mónica; Moore, Leon C; Marcano, Mariano

    2015-09-01

    The role of nongastric H(+)-K(+)-ATPase (HKA) in ion homeostasis of macula densa (MD) cells is an open question. To begin to explore this issue, we developed two mathematical models that describe ion fluxes through a nongastric HKA. One model assumes a 1H(+):1K(+)-per-ATP stoichiometry; the other assumes a 2H(+):2K(+)-per-ATP stoichiometry. Both models include Na+ and NH4+ competitive binding with H+ and K+, respectively, a characteristic observed in vitro and in situ. Model rate constants were obtained by minimizing the distance between model and experimental outcomes. Both 1H(+)(1Na(+)):1K(+)(1NH4 (+))-per-ATP and 2H(+)(2Na(+)):2K(+)(2NH4 (+))-per-ATP models fit the experimental data well. Using both models, we simulated ion net fluxes as a function of cytosolic or luminal ion concentrations typical for the cortical thick ascending limb and MD region. We observed that (1) K+ and NH4+ flowed in the lumen-to-cytosol direction, (2) there was competitive behavior between luminal K+ and NH4+ and between cytosolic Na+ and H+, 3) ion fluxes were highly sensitive to changes in cytosolic Na+ or H+ concentrations, and 4) the transporter does mostly Na+ / K+ exchange under physiological conditions. These results support the concept that nongastric HKA may contribute to Na+ and pH homeostasis in MD cells. Furthermore, in both models, H+ flux reversed at a luminal pH that was <5.6. Such reversal led to Na+ / H+ exchange for a luminal pH of <2 and 4 in the 1:1-per-ATP and 2:2-per-ATP models, respectively. This suggests a novel role of nongastric HKA in cell Na+ homeostasis in the more acidic regions of the renal tubules. Copyright © 2015 the American Physiological Society.

  6. Parameter estimation for mathematical models of a nongastric H+(Na+)-K+(NH4+)-ATPase

    PubMed Central

    Nadal-Quirós, Mónica; Moore, Leon C.

    2015-01-01

    The role of nongastric H+-K+-ATPase (HKA) in ion homeostasis of macula densa (MD) cells is an open question. To begin to explore this issue, we developed two mathematical models that describe ion fluxes through a nongastric HKA. One model assumes a 1H+:1K+-per-ATP stoichiometry; the other assumes a 2H+:2K+-per-ATP stoichiometry. Both models include Na+ and NH4+ competitive binding with H+ and K+, respectively, a characteristic observed in vitro and in situ. Model rate constants were obtained by minimizing the distance between model and experimental outcomes. Both 1H+(1Na+):1K+(1NH4+)-per-ATP and 2H+(2Na+):2K+(2NH4+)-per-ATP models fit the experimental data well. Using both models, we simulated ion net fluxes as a function of cytosolic or luminal ion concentrations typical for the cortical thick ascending limb and MD region. We observed that 1) K+ and NH4+ flowed in the lumen-to-cytosol direction, 2) there was competitive behavior between luminal K+ and NH4+ and between cytosolic Na+ and H+, 3) ion fluxes were highly sensitive to changes in cytosolic Na+ or H+ concentrations, and 4) the transporter does mostly Na+/K+ exchange under physiological conditions. These results support the concept that nongastric HKA may contribute to Na+ and pH homeostasis in MD cells. Furthermore, in both models, H+ flux reversed at a luminal pH that was <5.6. Such reversal led to Na+/H+ exchange for a luminal pH of <2 and 4 in the 1:1-per-ATP and 2:2-per-ATP models, respectively. This suggests a novel role of nongastric HKA in cell Na+ homeostasis in the more acidic regions of the renal tubules. PMID:26109090

  7. Enhanced H3K4me3 modifications are involved in the transactivation of DNA damage responsive genes in workers exposed to low-level benzene.

    PubMed

    Li, Jie; Xing, Xiumei; Zhang, Xinjie; Liang, Boxuan; He, Zhini; Gao, Chen; Wang, Shan; Wang, Fangping; Zhang, Haiyan; Zeng, Shan; Fan, Junling; Chen, Liping; Zhang, Zhengbao; Zhang, Bo; Liu, Caixia; Wang, Qing; Lin, Weiwei; Dong, Guanghui; Tang, Huanwen; Chen, Wen; Xiao, Yongmei; Li, Daochuan

    2018-03-01

    In this study, we explore whether altered global histone modifications respond to low-level benzene exposure as well as their association with the hematotoxicity. We recruited 147 low-level benzene-exposed workers and 122 control workers from a petrochemical factory in Maoming City, Guangdong Province, China. The internal exposure marker level, urinary S-phenylmercapturic acid (SPMA), in benzene-exposed workers was 1.81-fold higher than that of the controls (P < 0.001). ELISA method was established to examine the specific histone modifications in human peripheral blood lymphocytes (PBLCs) of workers. A decrease in the counts of white blood cells (WBC), neutrophils, lymphocytes, and monocytes appeared in the benzene-exposed group (all P < 0.05) compared to the control group. Global trimethylated histone 3 lysine 4 (H3K4me3) modification was enhanced in the benzene-exposed group (P < 0.05) and was positively associated with the concentration of urinary SPMA (β = 0.103, P = 0.045) and the extent of DNA damage (% Tail DNA: β = 0.181, P = 0.022), but was negatively associated with the leukocyte count (WBC: β = -0.038, P = 0.023). The in vitro study revealed that H3K4me3 mark was enriched in the promoters of several DNA damage responsive (DDR) genes including CRY1, ERCC2, and TP53 in primary human lymphocytes treated with hydroquinone. Particularly, H3K4me3 modification was positively correlated with the expression of CRY1 in the PBLCs of benzene-exposed workers. These observations indicate that H3K4me3 modification might mediate the transcriptional regulation of DDR genes in response to low-dose benzene exposure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Point mutation of H3/H4 histones affects acetic acid tolerance in Saccharomyces cerevisiae.

    PubMed

    Liu, Xiangyong; Zhang, Xiaohua; Zhang, Zhaojie

    2014-10-10

    The molecular mechanism of acetic acid tolerance in yeast remains unclear despite of its importance for efficient cellulosic ethanol production. In this study, we examined the effects of histone H3/H4 point mutations on yeast acetic acid tolerance by comprehensively screening a histone H3/H4 mutant library. A total of 24 histone H3/H4 mutants (six acetic acid resistant and 18 sensitive) were identified. Compared to the wild-type strain, the histone acetic acid-resistant mutants exhibited improved ethanol fermentation performance under acetic acid stress. Genome-wide transcriptome analysis revealed that changes in the gene expression in the acetic acid-resistant mutants H3 K37A and H4 K16Q were mainly related to energy production, antioxidative stress. Our results provide novel insights into yeast acetic acid tolerance on the basis of histone, and suggest a novel approach to improve ethanol production by altering the histone H3/H4 sequences. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Exploring PHD fingers and H3K4me0 interactions with molecular dynamics simulations and binding free energy calculations: AIRE-PHD1, a comparative study.

    PubMed

    Spiliotopoulos, Dimitrios; Spitaleri, Andrea; Musco, Giovanna

    2012-01-01

    PHD fingers represent one of the largest families of epigenetic readers capable of decoding post-translationally modified or unmodified histone H3 tails. Because of their direct involvement in human pathologies they are increasingly considered as a potential therapeutic target. Several PHD/histone-peptide structures have been determined, however relatively little information is available on their dynamics. Studies aiming to characterize the dynamic and energetic determinants driving histone peptide recognition by epigenetic readers would strongly benefit from computational studies. Herein we focus on the dynamic and energetic characterization of the PHD finger subclass specialized in the recognition of histone H3 peptides unmodified in position K4 (H3K4me0). As a case study we focused on the first PHD finger of autoimmune regulator protein (AIRE-PHD1) in complex with H3K4me0. PCA analysis of the covariance matrix of free AIRE-PHD1 highlights the presence of a "flapping" movement, which is blocked in an open conformation upon binding to H3K4me0. Moreover, binding free energy calculations obtained through Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) methodology are in good qualitative agreement with experiments and allow dissection of the energetic terms associated with native and alanine mutants of AIRE-PHD1/H3K4me0 complexes. MM/PBSA calculations have also been applied to the energetic analysis of other PHD fingers recognizing H3K4me0. In this case we observe excellent correlation between computed and experimental binding free energies. Overall calculations show that H3K4me0 recognition by PHD fingers relies on compensation of the electrostatic and polar solvation energy terms and is stabilized by non-polar interactions.

  10. Live imaging of H3K9 acetylation in plant cells

    PubMed Central

    Kurita, Kazuki; Sakamoto, Takuya; Yagi, Noriyoshi; Sakamoto, Yuki; Ito, Akihiro; Nishino, Norikazu; Sako, Kaori; Yoshida, Minoru; Kimura, Hiroshi; Seki, Motoaki; Matsunaga, Sachihiro

    2017-01-01

    Proper regulation of histone acetylation is important in development and cellular responses to environmental stimuli. However, the dynamics of histone acetylation at the single-cell level remains poorly understood. Here we established a transgenic plant cell line to track histone H3 lysine 9 acetylation (H3K9ac) with a modification-specific intracellular antibody (mintbody). The H3K9ac-specific mintbody fused to the enhanced green fluorescent protein (H3K9ac-mintbody-GFP) was introduced into tobacco BY-2 cells. We successfully demonstrated that H3K9ac-mintbody-GFP interacted with H3K9ac in vivo. The ratio of nuclear/cytoplasmic H3K9ac-mintbody-GFP detected in quantitative analysis reflected the endogenous H3K9ac levels. Under chemically induced hyperacetylation conditions with histone deacetylase inhibitors including trichostatin A, Ky-2 and Ky-14, significant enhancement of H3K9ac was detected by H3K9ac-mintbody-GFP dependent on the strength of inhibitors. Conversely, treatment with a histone acetyltransferase inhibitor, C646 caused a reduction in the nuclear to cytoplasmic ratio of H3K9ac-mintbody-GFP. Using this system, we assessed the environmental responses of H3K9ac and found that cold and salt stresses enhanced H3K9ac in tobacco BY-2 cells. In addition, a combination of H3K9ac-mintbody-GFP with 5-ethynyl-2′-deoxyuridine labelling confirmed that H3K9ac level is constant during interphase. PMID:28418019

  11. Sol-gel synthesis of K{sub 3}InF{sub 6} and structural characterization of K{sub 2}InC{sub 10}O{sub 10}H{sub 6}F{sub 9}, K{sub 3}InC{sub 12}O{sub 14}H{sub 4}F{sub 18} and K{sub 3}InC{sub 12}O{sub 12}F{sub 18}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labeguerie, Jessica; Gredin, Patrick; Marrot, Jerome

    2005-10-15

    K{sub 3}InF{sub 6} is synthesized by a sol-gel route starting from indium and potassium acetates dissolved in isopropanol in the stoichiometry 1:3, with trifluoroacetic acid as fluorinating agent. The crystal structures of the organic precursors were solved by X-ray diffraction methods on single crystals. Three organic compounds were isolated and identified: K{sub 2}InC{sub 10}O{sub 10}H{sub 6}F{sub 9}, K{sub 3}InC{sub 12}O{sub 14}H{sub 4}F{sub 18} and K{sub 3}InC{sub 12}O{sub 12}F{sub 18}. The first one, deficient in potassium in comparison with the initial stoichiometry, is unstable. In its crystal structure, acetate as well as trifluoroacetate anions are coordinated to the indium atom. Themore » two other precursors are obtained, respectively, by quick and slow evaporation of the solution. They correspond to the final organic compounds, which give K{sub 3}InF{sub 6} by decomposition at high temperature. The crystal structure of K{sub 3}InC{sub 12}O{sub 14}H{sub 4}F{sub 18} is characterized by complex anions [In(CF{sub 3}COO){sub 4}(OH{sub x}){sub 2}]{sup (5-2x)-} and isolated [CF{sub 3}COOH{sub 2-x}]{sup (x-1)-} molecules with x=2 or 1, surrounded by K{sup +} cations. The crystal structure of K{sub 3}InC{sub 12}O{sub 12}F{sub 18} is only constituted by complex anions [In(CF{sub 3}COO){sub 6}]{sup 3-} and K{sup +} cations. For all these compounds, potassium cations ensure only the electroneutrality of the structure. IR spectra of K{sub 2}InC{sub 10}O{sub 10}H{sub 6}F{sub 9} and K{sub 3}InC{sub 12}O{sub 12}F{sub 18} were also performed at room temperature on pulverized crystals.« less

  12. Dynamic association of epigenetic H3K4me3 and DNA 5hmC marks in the dorsal hippocampus and anterior cingulate cortex following reactivation of a fear memory.

    PubMed

    Webb, William M; Sanchez, Richard G; Perez, Gabriella; Butler, Anderson A; Hauser, Rebecca M; Rich, Megan C; O'Bierne, Aidan L; Jarome, Timothy J; Lubin, Farah D

    2017-07-01

    Epigenetic mechanisms such as DNA methylation and histone methylation are critical regulators of gene transcription changes during memory consolidation. However, it is unknown how these epigenetic modifications coordinate control of gene expression following reactivation of a previously consolidated memory. Here, we found that retrieval of a recent contextual fear conditioned memory increased global levels of H3 lysine 4-trimethylation (H3K4me3) and DNA 5-hydroxymethylation (5hmC) in area CA1 of the dorsal hippocampus. Further experiments revealed increased levels of H3K4me3 and DNA 5hmC within a CpG-enriched coding region of the Npas4, but not c-fos, gene. Intriguingly, retrieval of a 30-day old memory increased H3K4me3 and DNA 5hmC levels at a CpG-enriched coding region of c-fos, but not Npas4, in the anterior cingulate cortex, suggesting that while these two epigenetic mechanisms co-occur following the retrieval of a recent or remote memory, their gene targets differ depending on the brain region. Additionally, we found that in vivo siRNA-mediated knockdown of the H3K4me3 methyltransferase Mll1 in CA1 abolished retrieval-induced increases in DNA 5hmC levels at the Npas4 gene, suggesting that H3K4me3 couples to DNA 5hmC mechanisms. Consistent with this, loss of Mll1 prevented retrieval-induced increases in Npas4 mRNA levels in CA1 and impaired fear memory. Collectively, these findings suggest an important link between histone methylation and DNA hydroxymethylation mechanisms in the epigenetic control of de novo gene transcription triggered by memory retrieval. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Transrepressive Function of TLX Requires the Histone Demethylase LSD1 ▿ †

    PubMed Central

    Yokoyama, Atsushi; Takezawa, Shinichiro; Schüle, Roland; Kitagawa, Hirochika; Kato, Shigeaki

    2008-01-01

    TLX is an orphan nuclear receptor (also called NR2E1) that regulates the expression of target genes by functioning as a constitutive transrepressor. The physiological significance of TLX in the cytodifferentiation of neural cells in the brain is known. However, the corepressors supporting the transrepressive function of TLX have yet to be identified. In this report, Y79 retinoblastoma cells were subjected to biochemical techniques to purify proteins that interact with TLX, and we identified LSD1 (also called KDM1), which appears to form a complex with CoREST and histone deacetylase 1. LSD1 interacted with TLX directly through its SWIRM and amine oxidase domains. LSD1 potentiated the transrepressive function of TLX through its histone demethylase activity as determined by a luciferase assay using a genomically integrated reporter gene. LSD1 and TLX were recruited to a TLX-binding site in the PTEN gene promoter, accompanied by the demethylation of H3K4me2 and deacetylation of H3. Knockdown of either TLX or LSD1 derepressed expression of the endogenous PTEN gene and inhibited cell proliferation of Y79 cells. Thus, the present study suggests that LSD1 is a prime corepressor for TLX. PMID:18391013

  14. Adolescent alcohol exposure alters lysine demethylase 1 (LSD1) expression and histone methylation in the amygdala during adulthood.

    PubMed

    Kyzar, Evan J; Zhang, Huaibo; Sakharkar, Amul J; Pandey, Subhash C

    2017-09-01

    Alcohol exposure in adolescence is an important risk factor for the development of alcoholism in adulthood. Epigenetic processes are implicated in the persistence of adolescent alcohol exposure-related changes, specifically in the amygdala. We investigated the role of histone methylation mechanisms in the persistent effects of adolescent intermittent ethanol (AIE) exposure in adulthood. Adolescent rats were exposed to 2 g/kg ethanol (2 days on/off) or intermittent n-saline (AIS) during postnatal days (PND) 28-41 and used for behavioral and epigenetic studies. We found that AIE exposure caused a long-lasting decrease in mRNA and protein levels of lysine demethylase 1(Lsd1) and mRNA levels of Lsd1 + 8a (a neuron-specific splice variant) in specific amygdaloid structures compared with AIS-exposed rats when measured at adulthood. Interestingly, AIE increased histone H3 lysine 9 dimethylation (H3K9me2) levels in the central nucleus of the amygdala (CeA) and medial nucleus of the amygdala (MeA) in adulthood without producing any change in H3K4me2 protein levels. Acute ethanol challenge (2 g/kg) in adulthood attenuated anxiety-like behaviors and the decrease in Lsd1 + 8a mRNA levels in the amygdala induced by AIE. AIE caused an increase in H3K9me2 occupancy at the brain-derived neurotrophic factor exon IV promoter in the amygdala that returned to baseline after acute ethanol challenge in adulthood. These results indicate that AIE specifically modulates epizymes involved in H3K9 dimethylation in the amygdala in adulthood, which are possibly responsible for AIE-induced chromatin remodeling and adult psychopathology such as anxiety. © Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  15. Are the 'cave' minerals archerite (K,NH 4)H 2PO 4 and biphosphammite (K,NH 4)H 2PO 4 identical? A molecular structural study

    NASA Astrophysics Data System (ADS)

    Frost, Ray L.; Xi, Yunfei; Palmer, Sara J.

    2011-08-01

    The molecular structure of the mineral archerite ((K,NH 4)H 2PO 4) has been determined and compared with that of biphosphammite ((NH 4,K)H 2PO 4). Raman spectroscopy and infrared spectroscopy has been used to characterise these 'cave' minerals. Both minerals originated from the Murra-el-elevyn Cave, Eucla, Western Australia. The mineral is formed by the reaction of the chemicals in bat guano with calcite substrates. Raman and infrared bands are assigned to HPO4-, OH and NH stretching vibrations. The Raman band at 981 cm -1 is assigned to the HOP stretching vibration. Bands in the 1200-1800 cm -1 region are associated with NH4+ bending modes. The molecular structure of the two minerals appear to be very similar, and it is therefore concluded that the two minerals are identical.

  16. Rate contants for CF{sub 3} + H{sub 2} {yields} CF{sub 3}H + H and CF{sub 3}H + H {yields} CF{sub 3} + H{sub 2} reactions in the temperature range 1100-1600 K.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hranisavljevic, J.; Michael, V.; Chemistry

    1998-09-24

    The shock tube technique coupled with H-atom atomic resonance absorption spectrometry has been used to study the reactions (1) CF{sub 3} + H{sub 2} {yields} CF{sub 3}H + H and (2) CF{sub 3}H + H{yields} CF{sub 3} + H{sub 2} over the temperature ranges 1168-1673 K and 1111-1550 K, respectively. The results can be represented by the Arrhenius expressions k1 = 2.56 x 10{sup -11} exp(-8549K/T) and k2 = 6.13 x 10{sup -11} exp(-7364K/T), both in cm3 molecule-1 s-1. Equilibrium constants were calculated from the two Arrhenius expressions in the overlapping temperature range, and good agreement was obtained with themore » literature values. The rate constants for reaction 2 were converted into rate constants for reaction 1 using literature equilibrium constants. These data are indistinguishable from direct k1 measurements, and an Arrhenius fit for the joint set is k{sub 1} = 1.88 x 10{sup -11} exp(-8185K/T) cm3 molecule-1 s-1. The CF{sub 3} + H{sub 2} {yields} CF{sub 3}H + H reaction was further modeled using conventional transition-state theory, which included ab initio electronic structure determinations of reactants, transition state, and products.« less

  17. Design and syntheses of hybrid metal–organic materials based on K{sub 3}[M(C{sub 2}O{sub 4}){sub 3}]·3H{sub 2}O [M(III)=Fe, Al, Cr] metallotectons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yayong; Zong, Yingxia; Ma, Haoran

    2016-05-15

    By using K{sub 3}[M(C{sub 2}O{sub 4}){sub 3}]·3H{sub 2}O [M(III)=Fe, Al, Cr] (C{sub 2}O{sub 4}{sup 2−}=oxalate) metallotectons as the starting material, we have synthesized eight novel complexes with formulas [{Fe(C_2O_4)_2(H_2O)_2}{sub 2}]·(H–L{sub 1}){sub 2}·H{sub 2}O 1, [Fe(C{sub 2}O{sub 4})Cl{sub 2}]·(H{sub 2}–L{sub 2}){sub 0.5}·(L{sub 2}){sub 0.5}·H{sub 2}O 2, [{Fe(C_2O_4)_1_._5Cl_2}{sub 2}]·(H–L{sub 3}){sub 4}3, [Fe{sub 2}(C{sub 2}O{sub 4})Cl{sub 8}]·(H{sub 2}–L{sub 4}){sub 2}·2H{sub 2}O 4, K[Al(C{sub 2}O{sub 4}){sub 3}]·(H{sub 2}–L{sub 5})·2H{sub 2}O 5, K[Al(C{sub 2}O{sub 4}){sub 3}]·(H–L{sub 6}){sub 2}·2H{sub 2}O 6, K[Cr(C{sub 2}O{sub 4}){sub 3}]·2H{sub 2}O 7, Na[Fe(C{sub 2}O{sub 4}){sub 3}]·(H–L{sub 6}){sub 2}·2H{sub 2}O 8 (with L{sub 1}=4-dimethylaminopyridine, L{sub 2}=2,3,5,6-tetramethylpyrazine, L{sub 3}=2-aminobenzimidazole, L{sub 4}=1,4-bis-(1H-imidazol-1-yl)benzene, L{sub 5}=1,4-bis((2-methylimidazol-1-yl)methyl)benzene,more » L{sub 6}=2-methylbenzimidazole). Their structures have been determined by single-crystal X-ray diffraction analyses, elemental analyses, IR spectra and thermogravimetric analyses. Compound 3 is a 2D H-bonded supramolecular architecture. Others are 3D supramolecular structures. Compound 1 shows a [Fe(C{sub 2}O{sub 4}){sub 2}(H{sub 2}O){sub 2}]{sup −} unit and 3D antionic H-bonded framework. Compound 2 features a [Fe(C{sub 2}O{sub 4})Cl{sub 2}]{sup -} anion and 1D iron-oxalate-iron chain. Compound 3 features a [Fe{sub 2}(C{sub 2}O{sub 4}){sub 3}Cl{sub 4}]{sup 4−} unit. Compound 4 features distinct [Fe{sub 2}(C{sub 2}O{sub 4})Cl{sub 8}]{sup 4−} units, which are mutual linked by water molecules to generated a 2D H-bonded network. Compound 5 features infinite ladder-like chains constructed by [Al(C{sub 2}O{sub 4}){sub 3}]{sup 3−} units and K{sup +} cations. The 1D chains are further extended into 3D antionic H-bonded framework through O–H···O H-bonds. Compounds 6–8 show 2D [KAl

  18. Cryogen free cooling of ASTRO-H SXS Helium Dewar from 300 K to 4 K

    NASA Astrophysics Data System (ADS)

    Kanao, Ken'ichi; Yoshida, Seiji; Miyaoka, Mikio; Tsunematsu, Shoji; Otsuka, Kiyomi; Hoshika, Shunji; Narasaki, Katsuhiro; Mitsuda, Kazuhisa; Yamasaki, Noriko; Takei, Yoh; Fujimoto, Ryuji; Sato, Yoichi; Okamoto, Atsushi; Noda, Hirofumi; DiPirro, Michel J.; Shirron, Peter J.

    2017-12-01

    Soft X-ray Spectrometer instrument (SXS) is one of the primary scientific instruments of ASTRO-H. SXS has a cold detector that is cooled to 50 mK by using a multi-stage Adiabatic Demagnetization Refrigerator (ADR). SXS Dewar containing ADR provides 1.3 K heat sink by using liquid helium in nominal operation. After liquid helium is dried up, 4 K heat sink is provided by using mechanical coolers. Both nominal operation and cryogen free operation were successfully demonstrated. This paper describes the test result of cryogen free operation and cool-down performance from room temperature by using only mechanical coolers without liquid helium. The coolers on the Dewar cooled down cold mass from around 300 K to 4 K with 260 W electric power in 40 days. Cold mass is 35 kg in 4 K area including the helium tank, ADR and detector assembly.

  19. A687V EZH2 is a driver of histone H3 lysine 27 (H3K27) hypertrimethylation.

    PubMed

    Ott, Heidi M; Graves, Alan P; Pappalardi, Melissa B; Huddleston, Michael; Halsey, Wendy S; Hughes, Ashley M; Groy, Arthur; Dul, Edward; Jiang, Yong; Bai, Yuchen; Annan, Roland; Verma, Sharad K; Knight, Steven D; Kruger, Ryan G; Dhanak, Dashyant; Schwartz, Benjamin; Tummino, Peter J; Creasy, Caretha L; McCabe, Michael T

    2014-12-01

    The EZH2 methyltransferase silences gene expression through methylation of histone H3 on lysine 27 (H3K27). Recently, EZH2 mutations have been reported at Y641, A677, and A687 in non-Hodgkin lymphoma. Although the Y641F/N/S/H/C and A677G mutations exhibit clearly increased activity with substrates dimethylated at lysine 27 (H3K27me2), the A687V mutant has been shown to prefer a monomethylated lysine 27 (H3K27me1) with little gain of activity toward H3K27me2. Herein, we demonstrate that despite this unique substrate preference, A687V EZH2 still drives increased H3K27me3 when transiently expressed in cells. However, unlike the previously described mutants that dramatically deplete global H3K27me2 levels, A687V EZH2 retains normal levels of H3K27me2. Sequencing of B-cell-derived cancer cell lines identified an acute lymphoblastic leukemia cell line harboring this mutation. Similar to exogenous expression of A687V EZH2, this cell line exhibited elevated H3K27me3 while possessing H3K27me2 levels higher than Y641- or A677-mutant lines. Treatment of A687V EZH2-mutant cells with GSK126, a selective EZH2 inhibitor, was associated with a global decrease in H3K27me3, robust gene activation, caspase activation, and decreased proliferation. Structural modeling of the A687V EZH2 active site suggests that the increased catalytic activity with H3K27me1 may be due to a weakened interaction with an active site water molecule that must be displaced for dimethylation to occur. These findings suggest that A687V EZH2 likely increases global H3K27me3 indirectly through increased catalytic activity with H3K27me1 and cells harboring this mutation are highly dependent on EZH2 activity for their survival. ©2014 American Association for Cancer Research.

  20. Arabidopsis COMPASS-Like Complexes Mediate Histone H3 Lysine-4 Trimethylation to Control Floral Transition and Plant Development

    PubMed Central

    Jiang, Danhua; Kong, Nicholas C.; Gu, Xiaofeng; Li, Zicong; He, Yuehui

    2011-01-01

    Histone H3 lysine-4 (H3K4) methylation is associated with transcribed genes in eukaryotes. In Drosophila and mammals, both di- and tri-methylation of H3K4 are associated with gene activation. In contrast to animals, in Arabidopsis H3K4 trimethylation, but not mono- or di-methylation of H3K4, has been implicated in transcriptional activation. H3K4 methylation is catalyzed by the H3K4 methyltransferase complexes known as COMPASS or COMPASS-like in yeast and mammals. Here, we report that Arabidopsis homologs of the COMPASS and COMPASS-like complex core components known as Ash2, RbBP5, and WDR5 in humans form a nuclear subcomplex during vegetative and reproductive development, which can associate with multiple putative H3K4 methyltransferases. Loss of function of ARABIDOPSIS Ash2 RELATIVE (ASH2R) causes a great decrease in genome-wide H3K4 trimethylation, but not in di- or mono-methylation. Knockdown of ASH2R or the RbBP5 homolog suppresses the expression of a crucial Arabidopsis floral repressor, FLOWERING LOCUS C (FLC), and FLC homologs resulting in accelerated floral transition. ASH2R binds to the chromatin of FLC and FLC homologs in vivo and is required for H3K4 trimethylation, but not for H3K4 dimethylation in these loci; overexpression of ASH2R causes elevated H3K4 trimethylation, but not H3K4 dimethylation, in its target genes FLC and FLC homologs, resulting in activation of these gene expression and consequent late flowering. These results strongly suggest that H3K4 trimethylation in FLC and its homologs can activate their expression, providing concrete evidence that H3K4 trimethylation accumulation can activate eukaryotic gene expression. Furthermore, our findings suggest that there are multiple COMPASS-like complexes in Arabidopsis and that these complexes deposit trimethyl but not di- or mono-methyl H3K4 in target genes to promote their expression, providing a molecular explanation for the observed coupling of H3K4 trimethylation (but not H3K4 dimethylation

  1. Increased H3K9me3 drives dedifferentiated phenotype via KLF6 repression in liposarcoma

    PubMed Central

    Keung, Emily Z.; Akdemir, Kadir C.; Al Sannaa, Ghadah A.; Garnett, Jeannine; Lev, Dina; Torres, Keila E.; Lazar, Alexander J.; Rai, Kunal; Chin, Lynda

    2015-01-01

    Liposarcoma (LPS) can be divided into 4 different subtypes, of which well-differentiated LPS (WDLPS) and dedifferentiated LPS (DDLPS) are the most common. WDLPS is typically low grade, whereas DDLPS is high grade, aggressive, and carries a worse prognosis. WDLPS and DDLPS frequently co-occur in patients. However, it is not clear whether DDLPS arises independently from WDLPS, or whether epigenomic alterations underly the histopathological differences of these subtypes. Here, we profiled 9 epigenetic marks in tumor samples from 151 patients with LPS and showed elevated trimethylation of histone H3 at Lys9 (H3K9me3) levels in DDLPS tumors. Integrated ChIP-seq and gene expression analyses of patient-derived cell lines revealed that H3K9me3 mediates differential regulation of genes involved in cellular differentiation and migration. Among these, Kruppel-like factor 6 (KLF6) was reduced in DDLPS, with increased H3K9me3 at associated regulatory regions. Pharmacologic inhibition of H3K9me3 with chaetocin decreased DDLPS proliferation and increased expression of the adipogenesis-associated factors PPARγ, CEBPα, and CEBPβ, suggesting that increased H3K9me3 may mediate DDLPS-associated aggressiveness and dedifferentiation properties. KLF6 overexpression partially phenocopied chaetocin treatment in DDLPS cells and induced phenotypic changes that were consistent with adipocytic differentiation, suggesting that the effects of increased H3K9me3 may be mediated through KLF6. In conclusion, we provide evidence of an epigenetic basis for the transition between WDLPS and DDLPS. PMID:26193637

  2. Increased H3K9me3 drives dedifferentiated phenotype via KLF6 repression in liposarcoma.

    PubMed

    Keung, Emily Z; Akdemir, Kadir C; Al Sannaa, Ghadah A; Garnett, Jeannine; Lev, Dina; Torres, Keila E; Lazar, Alexander J; Rai, Kunal; Chin, Lynda

    2015-08-03

    Liposarcoma (LPS) can be divided into 4 different subtypes, of which well-differentiated LPS (WDLPS) and dedifferentiated LPS (DDLPS) are the most common. WDLPS is typically low grade, whereas DDLPS is high grade, aggressive, and carries a worse prognosis. WDLPS and DDLPS frequently co-occur in patients. However, it is not clear whether DDLPS arises independently from WDLPS, or whether epigenomic alterations underly the histopathological differences of these subtypes. Here, we profiled 9 epigenetic marks in tumor samples from 151 patients with LPS and showed elevated trimethylation of histone H3 at Lys9 (H3K9me3) levels in DDLPS tumors. Integrated ChIP-seq and gene expression analyses of patient-derived cell lines revealed that H3K9me3 mediates differential regulation of genes involved in cellular differentiation and migration. Among these, Kruppel-like factor 6 (KLF6) was reduced in DDLPS, with increased H3K9me3 at associated regulatory regions. Pharmacologic inhibition of H3K9me3 with chaetocin decreased DDLPS proliferation and increased expression of the adipogenesis-associated factors PPARγ, CEBPα, and CEBPβ, suggesting that increased H3K9me3 may mediate DDLPS-associated aggressiveness and dedifferentiation properties. KLF6 overexpression partially phenocopied chaetocin treatment in DDLPS cells and induced phenotypic changes that were consistent with adipocytic differentiation, suggesting that the effects of increased H3K9me3 may be mediated through KLF6. In conclusion, we provide evidence of an epigenetic basis for the transition between WDLPS and DDLPS.

  3. Vitamin K3 (menadione)-induced oncosis associated with keratin 8 phosphorylation and histone H3 arylation.

    PubMed

    Scott, Gary K; Atsriku, Christian; Kaminker, Patrick; Held, Jason; Gibson, Brad; Baldwin, Michael A; Benz, Christopher C

    2005-09-01

    The vitamin K analog menadione (K3), capable of both redox cycling and arylating nucleophilic substrates by Michael addition, has been extensively studied as a model stress-inducing quinone in both cell culture and animal model systems. Exposure of keratin 8 (k-8) expressing human breast cancer cells (MCF7, T47D, SKBr3) to K3 (50-100 microM) induced rapid, sustained, and site-specific k-8 serine phosphorylation (pSer73) dependent on signaling by a single mitogen activated protein kinase (MAPK) pathway, MEK1/2. Normal nuclear morphology and k-8 immunofluorescence coupled with the lack of DNA laddering or other features of apoptosis indicated that K3-induced cytotoxicity, evident within 4 h of treatment and delayed but not prevented by MEK1/2 inhibition, was due to a form of stress-activated cell death known as oncosis. Independent of MAPK signaling was the progressive appearance of K3-induced cellular fluorescence, principally nuclear in origin and suggested by in vitro fluorimetry to have been caused by K3 thiol arylation. Imaging by UV transillumination of protein gels containing nuclear extracts from K3-treated cells revealed a prominent 17-kDa band shown to be histone H3 by immunoblotting and mass spectrometry (MS). K3 arylation of histones in vitro followed by electrospray ionization-tandem MS analyses identified the unique Cys110 residue within H3, exposed only in the open chromatin of transcriptionally active genes, as a K3 arylation target. These findings delineate new pathways associated with K3-induced stress and suggest a potentially novel role for H3 Cys110 as a nuclear stress sensor.

  4. Purification and characterization of trimethylamine-N-oxide demethylase from jumbo squid (Dosidicus gigas).

    PubMed

    Fu, Xue-Yan; Xue, Chang-Hu; Miao, Ben-Chun; Liang, Jun-Ni; Li, Zhao-Jie; Cui, Feng-Xia

    2006-02-08

    Trimethylamine-N-oxide demethylase (TMAOase) was purified from Jumbo squid (Dosidicus gigas) and characterized in detail herein. The TMAOase was extracted from squid with 20 mM Tris-acetate buffer (pH 7.0) containing 1.0 M NaCl, followed by acid treatment and heat treatment. Then it was purified by deithylaminoethyl-cellulose and Sephacryl S-300 chromatography, subsequently resulting in an 839-fold purification. The molecular mass of the TMAOase was defined to be 17.5 kDa. The optimum pH of the purified TMAOase was 7.0, and its optimum temperature was confirmed to be 55 degrees C. The TMAOase was stable to heat treatment up to 50 degrees C and stable at pH 7.0-9.0. Reducing agents such as DTT, Na2SO3, and NADH were effective at activating TMAOase, and ethylenediaminetetraacetic acid, as well as Mg2+ and Ca2+, could also enhance the activity of TMAOase remarkably, whereas the TMAOase could be significantly inhibited by tea polyphenol, phytic acid and acetic acid. In addition, the TMAOase converted TMAO to dimethylamine and formaldehyde stoichiometrically with a K(m) of 26.2 mM.

  5. Rate Constant and RRKM Product Study for the Reaction Between CH3 and C2H3 at T = 298K

    NASA Technical Reports Server (NTRS)

    Thorn, R. Peyton, Jr.; Payne, Walter A., Jr.; Chillier, Xavier D. F.; Stief, Louis J.; Nesbitt, Fred L.; Tardy, D. C.

    2000-01-01

    The total rate constant k1 has been determined at P = 1 Torr nominal pressure (He) and at T = 298 K for the vinyl-methyl cross-radical reaction CH3 + C2H3 yields products. The measurements were performed in a discharge flow system coupled with collision-free sampling to a mass spectrometer operated at low electron energies. Vinyl and methyl radicals were generated by the reactions of F with C2H4 and CH4, respectively. The kinetic studies were performed by monitoring the decay of C2H3 with methyl in excess, 6 < |CH3|(sub 0)/|C2H3|(sub 0) < 21. The overall rate coefficient was determined to be k1(298 K) = (1.02 +/- 0.53)x10(exp -10) cubic cm/molecule/s with the quoted uncertainty representing total errors. Numerical modeling was required to correct for secondary vinyl consumption by reactions such as C2H3 + H and C2H3 + C2H3. The present result for k1 at T = 298 K is compared to two previous studies at high pressure (100-300 Torr He) and to a very recent study at low pressure (0.9-3.7 Torr He). Comparison is also made with the rate constant for the similar reaction CH3 + C2H5 and with a value for k1 estimated by the geometric mean rule employing values for k(CH3 + CH3) and k(C2H3 + C2H3). Qualitative product studies at T = 298 K and 200 K indicated formation of C3H6, C2H2, and C2H5 as products of the combination-stabilization, disproportionation, and combination-decomposition channels, respectively, of the CH3 + C2H3 reaction. We also observed the secondary C4H8 product of the subsequent reaction of C3H5 with excess CH3; this observation provides convincing evidence for the combination-decomposition channel yielding C3H5 + H. RRKM calculations with helium as the deactivator support the present and very recent experimental observations that allylic C-H bond rupture is an important path in the combination reaction. The pressure and temperature dependencies of the branching fractions are also predicted.

  6. CD86 expression as a surrogate cellular biomarker for pharmacological inhibition of the histone demethylase lysine-specific demethylase 1.

    PubMed

    Lynch, James T; Cockerill, Mark J; Hitchin, James R; Wiseman, Daniel H; Somervaille, Tim C P

    2013-11-01

    There is a lack of rapid cell-based assays that read out enzymatic inhibition of the histone demethylase LSD1 (lysine-specific demethylase 1). Through transcriptome analysis of human acute myeloid leukemia THP1 cells treated with a tranylcypromine-derivative inhibitor of LSD1 active in the low nanomolar range, we identified the cell surface marker CD86 as a sensitive surrogate biomarker of LSD1 inhibition. Within 24h of enzyme inhibition, there was substantial and dose-dependent up-regulation of CD86 expression, as detected by quantitative polymerase chain reaction, flow cytometry, and enzyme-linked immunosorbent assay. Thus, the use of CD86 expression may facilitate screening of compounds with putative LSD1 inhibitory activities in cellular assays. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. JMJD3 inhibition protects against isoproterenol-induced cardiac hypertrophy by suppressing β-MHC expression.

    PubMed

    Guo, Zhen; Lu, Jing; Li, Jingyan; Wang, Panxia; Li, Zhenzhen; Zhong, Yao; Guo, Kaiteng; Wang, Junjian; Ye, Jiantao; Liu, Peiqing

    2018-05-10

    Jumonji domain-containing protein D3 (JMJD3), a histone 3 lysine 27 (H3K27) demethylase, has been extensively studied for their participation in development, cellular physiology and a variety of diseases. However, its potential roles in cardiovascular system remain unknown. In this study, we found that JMJD3 played a pivotal role in the process of cardiac hypertrophy. JMJD3 expression was elevated by isoproterenol (ISO) stimuli both in vitro and in vivo. Overexpression of wild-type JMJD3, but not the demethylase-defective mutant, promoted cardiomyocyte hypertrophy, as implied by increased cardiomyocyte surface area and the expression of hypertrophy marker genes. In contrary, JMJD3 silencing or its inhibitor GSK-J4 suppressed ISO-induced cardiac hypertrophy. Mechanistically, JMJD3 was recruited to demethylate H3K27me3 at the promoter of β-MHC to promote its expression and cardiac hypertrophy. Thus, our results reveal that JMJD3 may be a key epigenetic regulator of β-MHC expression in cardiomyocytes and a potential therapeutic target for cardiac hypertrophy. Copyright © 2018. Published by Elsevier B.V.

  8. K2-137 b: an Earth-sized planet in a 4.3-h orbit around an M-dwarf

    NASA Astrophysics Data System (ADS)

    Smith, A. M. S.; Cabrera, J.; Csizmadia, Sz; Dai, F.; Gandolfi, D.; Hirano, T.; Winn, J. N.; Albrecht, S.; Alonso, R.; Antoniciello, G.; Barragán, O.; Deeg, H.; Eigmüller, Ph; Endl, M.; Erikson, A.; Fridlund, M.; Fukui, A.; Grziwa, S.; Guenther, E. W.; Hatzes, A. P.; Hidalgo, D.; Howard, A. W.; Isaacson, H.; Korth, J.; Kuzuhara, M.; Livingston, J.; Narita, N.; Nespral, D.; Nowak, G.; Palle, E.; Pätzold, M.; Persson, C. M.; Petigura, E.; Prieto-Arranz, J.; Rauer, H.; Ribas, I.; Van Eylen, V.

    2018-03-01

    We report the discovery in K2's Campaign 10 of a transiting terrestrial planet in an ultra-short-period orbit around an M3-dwarf. K2-137 b completes an orbit in only 4.3 h, the second shortest orbital period of any known planet, just 4 min longer than that of KOI 1843.03, which also orbits an M-dwarf. Using a combination of archival images, adaptive optics imaging, radial velocity measurements, and light-curve modelling, we show that no plausible eclipsing binary scenario can explain the K2 light curve, and thus confirm the planetary nature of the system. The planet, whose radius we determine to be 0.89 ± 0.09 R⊕, and which must have an iron mass fraction greater than 0.45, orbits a star of mass 0.463 ± 0.052 M⊙ and radius 0.442 ± 0.044 R⊙.

  9. Rate constants for CF{sub 3} + H{sub 2} {r_arrow} CF{sub 3}H + H and CF{sub 3}H + H {r_arrow} CF{sub 3} + H{sub 2} reactions in the temperature range 1100--1600 K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hranisavljevic, J.; Michael, J.V.

    1998-09-24

    The shock tube technique coupled with H-atom atomic resonance absorption spectrometry has been used to study the reactions (1) CF{sub 3} + H{sub 2} {r_arrow} CF{sub 3}H + H and (2) CF{sub 3}H + H {r_arrow} CF{sub 3} + H{sub 2} over the temperature ranges 1168--1673 K and 1111--1550 K, respectively. The results can be represented by the Arrhenius expressions k{sub 1} = 2.56 {times} 10{sup {minus}11} exp({minus}8549K/T) and k{sub 2} = 6.13 {times} 10{sup {minus}11} exp({minus}7364K/T), both in cm{sup 3} molecule{sup {minus}1} s{sup {minus}1}. Equilibrium constants were calculated from the two Arrhenius expressions in the overlapping temperature range, andmore » good agreement was obtained with the literature values. The rate constants for reaction 2 were converted into rate constants for reaction 1 using literature equilibrium constants. These data are indistinguishable from direct k{sub 1} measurements, and an Arrhenius fit for the joint set is k{sub 1} = 1.88 {times} 10{sup {minus}11} exp({minus}8185K/T) cm{sup 3} molecule{sup {minus}1} s{sup {minus}1}. The CF{sub 3} + H{sub 2} {r_arrow} CF{sub 3}H + H reaction was further modeled using conventional transition-state theory, which included ab initio electronic structure determinations of reactants, transition state, and products.« less

  10. MOF Acetylates the Histone Demethylase LSD1 to Suppress Epithelial-to-Mesenchymal Transition.

    PubMed

    Luo, Huacheng; Shenoy, Anitha K; Li, Xuehui; Jin, Yue; Jin, Lihua; Cai, Qingsong; Tang, Ming; Liu, Yang; Chen, Hao; Reisman, David; Wu, Lizi; Seto, Edward; Qiu, Yi; Dou, Yali; Casero, Robert A; Lu, Jianrong

    2016-06-21

    The histone demethylase LSD1 facilitates epithelial-to-mesenchymal transition (EMT) and tumor progression by repressing epithelial marker expression. However, little is known about how its function may be modulated. Here, we report that LSD1 is acetylated in epithelial but not mesenchymal cells. Acetylation of LSD1 reduces its association with nucleosomes, thus increasing histone H3K4 methylation at its target genes and activating transcription. The MOF acetyltransferase interacts with LSD1 and is responsible for its acetylation. MOF is preferentially expressed in epithelial cells and is downregulated by EMT-inducing signals. Expression of exogenous MOF impedes LSD1 binding to epithelial gene promoters and histone demethylation, thereby suppressing EMT and tumor invasion. Conversely, MOF depletion enhances EMT and tumor metastasis. In human cancer, high MOF expression correlates with epithelial markers and a favorable prognosis. These findings provide insight into the regulation of LSD1 and EMT and identify MOF as a critical suppressor of EMT and tumor progression. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. Global analysis of H3K27me3 as an epigenetic marker in prostate cancer progression.

    PubMed

    Ngollo, Marjolaine; Lebert, Andre; Daures, Marine; Judes, Gaelle; Rifai, Khaldoun; Dubois, Lucas; Kemeny, Jean-Louis; Penault-Llorca, Frederique; Bignon, Yves-Jean; Guy, Laurent; Bernard-Gallon, Dominique

    2017-04-12

    H3K27me3 histone marks shape the inhibition of gene transcription. In prostate cancer, the deregulation of H3K27me3 marks might play a role in prostate tumor progression. We investigated genome-wide H3K27me3 histone methylation profile using chromatin immunoprecipitation (ChIP) and 2X400K promoter microarrays to identify differentially-enriched regions in biopsy samples from prostate cancer patients. H3K27me3 marks were assessed in 34 prostate tumors: 11 with Gleason score > 7 (GS > 7), 10 with Gleason score ≤ 7 (GS ≤ 7), and 13 morphologically normal prostate samples. Here, H3K27me3 profiling identified an average of 386 enriched-genes on promoter regions in healthy control group versus 545 genes in GS ≤ 7 and 748 genes in GS > 7 group. We then ran a factorial discriminant analysis (FDA) and compared the enriched genes in prostate-tumor biopsies and normal biopsies using ANOVA to identify significantly differentially-enriched genes. The analysis identified ALG5, EXOSC8, CBX1, GRID2, GRIN3B, ING3, MYO1D, NPHP3-AS1, MSH6, FBXO11, SND1, SPATS2, TENM4 and TRA2A genes. These genes are possibly associated with prostate cancer. Notably, the H3K27me3 histone mark emerged as a novel regulatory mechanism in poor-prognosis prostate cancer. Our findings point to epigenetic mark H3K27me3 as an important event in prostate carcinogenesis and progression. The results reported here provide new molecular insights into the pathogenesis of prostate cancer.

  12. Regions of very low H3K27me3 partition the Drosophila genome into topological domains

    PubMed Central

    Flower, Rosalyn; Choo, Siew Woh

    2017-01-01

    It is now well established that eukaryote genomes have a common architectural organization into topologically associated domains (TADs) and evidence is accumulating that this organization plays an important role in gene regulation. However, the mechanisms that partition the genome into TADs and the nature of domain boundaries are still poorly understood. We have investigated boundary regions in the Drosophila genome and find that they can be identified as domains of very low H3K27me3. The genome-wide H3K27me3 profile partitions into two states; very low H3K27me3 identifies Depleted (D) domains that contain housekeeping genes and their regulators such as the histone acetyltransferase-containing NSL complex, whereas domains containing moderate-to-high levels of H3K27me3 (Enriched or E domains) are associated with regulated genes, irrespective of whether they are active or inactive. The D domains correlate with the boundaries of TADs and are enriched in a subset of architectural proteins, particularly Chromator, BEAF-32, and Z4/Putzig. However, rather than being clustered at the borders of these domains, these proteins bind throughout the H3K27me3-depleted regions and are much more strongly associated with the transcription start sites of housekeeping genes than with the H3K27me3 domain boundaries. While we have not demonstrated causality, we suggest that the D domain chromatin state, characterised by very low or absent H3K27me3 and established by housekeeping gene regulators, acts to separate topological domains thereby setting up the domain architecture of the genome. PMID:28282436

  13. Association Between Schizophrenia and DNA Demethylase Activity in Human Peripheral Blood Mononuclear Cells.

    PubMed

    Zhang, Lili; Pang, Bo; Zhang, Wenbin; Bai, Wei; Yu, Weiying; Li, Yuanyuan; Hua, Wanqing; Li, Wenjun; Kou, Changgui

    2018-06-01

    DNA demethylase is a crucial enzyme in the epigenetic modification and regulation mechanisms of gene transcription. Based on previous assertions that the pathophysiology of schizophrenia is associated with epigenetics, we aimed to explore whether DNA demethylase activity might be related to schizophrenia in northeast China. We recruited 25 patients with first-episode schizophrenia and 29 normal controls from a northeast Chinese Han population. The diagnostic criteria of schizophrenia were determined according to diseases and related health problems, the tenth revision (ICD-10), and criteria of mental disorders, the third revised edition (CCMD3). DNA demethylase activity in human peripheral blood mononuclear cells (PBMCs) was measured using a DNA demethylase activity colorimetric assay ultra kit. Using Student's t-test, activation of DNA demethylase and its activity were higher in schizophrenia patients compared to healthy individuals (p < 0.001). Furthermore, the level of DNA demethylase activity in male and female subjects with schizophrenia significantly increased (all p < 0.05). Our data showed that DNA demethylase might play a role in the pathophysiology of schizophrenia, and individuals with higher DNA demethylase activity were susceptible to schizophrenia in a northeast Chinese Han population. To the best of our knowledge, this is the first time directly measured human blood samples to examine the association between first-episode schizophrenia patients and DNA demethylase activity, which will provide new insight to explore the effect on the mechanism of schizophrenia.

  14. Thermal decomposition of europium sulfates Eu2(SO4)3·8H2O and EuSO4

    NASA Astrophysics Data System (ADS)

    Denisenko, Yu. G.; Khritokhin, N. A.; Andreev, O. V.; Basova, S. A.; Sal'nikova, E. I.; Polkovnikov, A. A.

    2017-11-01

    Reactions of europium sulfates Eu2(SO4)3·8H2O and EuSO4 complete decomposition were studied by Simultaneous Thermal Analysis. It was revealed that one-step dehydratation of Eu2(SO4)3·8H2O crystallohydrate is accompanied by the formation of amorphous anhydrous europium sulfate Eu2(SO4)3. Crystallization of amorphous europium (III) sulfate occurs at 381.1 °C (in argon) and 391.3 °C (in air). The average enthalpy values for dehydratation reaction of Eu2(SO4)3·8H2O (ΔH° = 141.1 kJ/mol), decomposition reactions of Eu2(SO4)3H = 463.1 kJ/mol), Eu2O2SO4H = 378.4 kJ/mol) and EuSO4H = 124.1 kJ/mol) were determined. The step process mechanisms of thermal decomposition of europium (III) sulfate in air and europium (II) sulfate in inert atmosphere were established and justified. The kinetic parameters of complete thermal decomposition of europium (III) sulfate octahydrate were calculated by Kissinger model. The standard enthalpies of compound formation were calculated using thermal effects and formation enthalpy data for binary compounds.

  15. Histone demethylase JARID1C inactivation triggers genomic instability in sporadic renal cancer

    PubMed Central

    Rondinelli, Beatrice; Rosano, Dalia; Antonini, Elena; Frenquelli, Michela; Montanini, Laura; Huang, DaChuan; Segalla, Simona; Yoshihara, Kosuke; Amin, Samir B.; Lazarevic, Dejan; The, Bin Tean; Verhaak, Roel G.W.; Futreal, P. Andrew; Di Croce, Luciano; Chin, Lynda; Cittaro, Davide; Tonon, Giovanni

    2015-01-01

    Mutations in genes encoding chromatin-remodeling proteins are often identified in a variety of cancers. For example, the histone demethylase JARID1C is frequently inactivated in patients with clear cell renal cell carcinoma (ccRCC); however, it is largely unknown how JARID1C dysfunction promotes cancer. Here, we determined that JARID1C binds broadly to chromatin domains characterized by the trimethylation of lysine 9 (H3K9me3), which is a histone mark enriched in heterochromatin. Moreover, we found that JARID1C localizes on heterochromatin, is required for heterochromatin replication, and forms a complex with established players of heterochromatin assembly, including SUV39H1 and HP1α, as well as with proteins not previously associated with heterochromatin assembly, such as the cullin 4 (CUL4) complex adaptor protein DDB1. Transcription on heterochromatin is tightly suppressed to safeguard the genome, and in ccRCC cells, JARID1C inactivation led to the unrestrained expression of heterochromatic noncoding RNAs (ncRNAs) that in turn triggered genomic instability. Moreover, ccRCC patients harboring JARID1C mutations exhibited aberrant ncRNA expression and increased genomic rearrangements compared with ccRCC patients with tumors endowed with other genetic lesions. Together, these data suggest that inactivation of JARID1C in renal cancer leads to heterochromatin disruption, genomic rearrangement, and aggressive ccRCCs. Moreover, our results shed light on a mechanism that underlies genomic instability in sporadic cancers. PMID:26551685

  16. The Habitability of a Stagnant-Lid Earth

    NASA Astrophysics Data System (ADS)

    Tosi, N.; Godolt, M.; Stracke, B.; Ruedas, T.; Grenfell, L.; Höning, D.; Nikolaou, A.; Plesa, A. C.; Breuer, D.; Spohn, T.

    2017-12-01

    Plate tectonics is a fundamental component for the habitability of the Earth. Yet whether it is a recurrent feature of terrestrial bodies orbiting other stars or unique to the Earth is unknown. The stagnant lid may rather be the most common tectonic expression on such bodies. To understand whether a stagnant-lid planet can be habitable, i.e. host liquid water at its surface, we model the thermal evolution of the mantle, volcanic outgassing of H2O and CO2, and resulting climate of an Earth-like planet lacking plate tectonics. We used a 1D model of parameterized convection to simulate the evolution of melt generation and the build-up of an atmosphere of H2O and CO2 over 4.5 Gyr. We then employed a 1D radiative-convective atmosphere model to calculate the global mean atmospheric temperature and the boundaries of the habitable zone (HZ). The evolution of the interior is characterized by the initial production of a large amount of partial melt accompanied by a rapid outgassing of H2O and CO2. At 1 au, the obtained temperatures generally allow for liquid water on the surface nearly over the entire evolution. While the outer edge of the HZ is mostly influenced by the amount of outgassed CO2, the inner edge presents a more complex behaviour that is dependent on the partial pressures of both gases. At 1 au, the stagnant-lid planet considered would be regarded as habitable. The width of the HZ at the end of the evolution, albeit influenced by the amount of outgassed CO2, can vary in a non-monotonic way depending on the extent of the outgassed H2O reservoir. Our results suggest that stagnant-lid planets can be habitable over geological timescales and that joint modelling of interior evolution, volcanic outgassing, and accompanying climate is necessary to robustly characterize planetary habitability.

  17. JMJD1A, H3K9me1, H3K9me2 and ADM expression as prognostic markers in oral and oropharyngeal squamous cell carcinoma.

    PubMed

    Maia, Lucas de Lima; Peterle, Gabriela Tonini; Dos Santos, Marcelo; Trivilin, Leonardo Oliveira; Mendes, Suzanny Oliveira; de Oliveira, Mayara Mota; Dos Santos, Joaquim Gasparini; Stur, Elaine; Agostini, Lidiane Pignaton; Couto, Cinthia Vidal Monteiro da Silva; Dalbó, Juliana; de Assis, Aricia Leone Evangelista Monteiro; Archanjo, Anderson Barros; Mercante, Ana Maria Da Cunha; Lopez, Rossana Veronica Mendoza; Nunes, Fábio Daumas; de Carvalho, Marcos Brasilino; Tajara, Eloiza Helena; Louro, Iúri Drumond; Álvares-da-Silva, Adriana Madeira

    2018-01-01

    Jumonji Domain-Containing 1A (JMJD1A) protein promotes demethylation of histones, especially at lysin-9 of di-methylated histone H3 (H3K9me2) or mono-methylated (H3K9me1). Increased levels of H3 histone methylation at lysin-9 (H3K9) is related to tumor suppressor gene silencing. JMJD1A gene target Adrenomeduline (ADM) has shown to promote cell growth and tumorigenesis. JMJD1A and ADM expression, as well as H3K9 methylation level have been related with development risk and prognosis of several tumor types. We aimed to evaluate JMJD1A, ADM, H3K9me1 and H3K9me2expression in paraffin-embedded tissue microarrays from 84 oral and oropharyngeal squamous cell carcinoma samples through immunohistochemistry analysis. Our results showed that nuclear JMJD1A expression was related to lymph node metastasis risk. In addition, JMJD1A cytoplasmic expression was an independent risk marker for advanced tumor stages. H3K9me1 cytoplasmic expression was associated with reduced disease-specific death risk. Furthermore, high H3K9me2 nuclear expression was associated with worse specific-disease and disease-free survival. Finally, high ADM cytoplasmic expression was an independent marker of lymph node metastasis risk. JMJD1A, H3K9me1/2 and ADM expression may be predictor markers of progression and prognosis in oral and oropharynx cancer patients, as well as putative therapeutic targets.

  18. JMJD1A, H3K9me1, H3K9me2 and ADM expression as prognostic markers in oral and oropharyngeal squamous cell carcinoma

    PubMed Central

    Peterle, Gabriela Tonini; dos Santos, Marcelo; Trivilin, Leonardo Oliveira; Mendes, Suzanny Oliveira; de Oliveira, Mayara Mota; dos Santos, Joaquim Gasparini; Stur, Elaine; Agostini, Lidiane Pignaton; Couto, Cinthia Vidal Monteiro da Silva; Dalbó, Juliana; de Assis, Aricia Leone Evangelista Monteiro; Archanjo, Anderson Barros; Mercante, Ana Maria Da Cunha; Lopez, Rossana Veronica Mendoza; Nunes, Fábio Daumas; de Carvalho, Marcos Brasilino; Tajara, Eloiza Helena; Louro, Iúri Drumond; Álvares-da-Silva, Adriana Madeira

    2018-01-01

    Aims Jumonji Domain-Containing 1A (JMJD1A) protein promotes demethylation of histones, especially at lysin-9 of di-methylated histone H3 (H3K9me2) or mono-methylated (H3K9me1). Increased levels of H3 histone methylation at lysin-9 (H3K9) is related to tumor suppressor gene silencing. JMJD1A gene target Adrenomeduline (ADM) has shown to promote cell growth and tumorigenesis. JMJD1A and ADM expression, as well as H3K9 methylation level have been related with development risk and prognosis of several tumor types. Methods and results We aimed to evaluate JMJD1A, ADM, H3K9me1 and H3K9me2expression in paraffin-embedded tissue microarrays from 84 oral and oropharyngeal squamous cell carcinoma samples through immunohistochemistry analysis. Our results showed that nuclear JMJD1A expression was related to lymph node metastasis risk. In addition, JMJD1A cytoplasmic expression was an independent risk marker for advanced tumor stages. H3K9me1 cytoplasmic expression was associated with reduced disease-specific death risk. Furthermore, high H3K9me2 nuclear expression was associated with worse specific-disease and disease-free survival. Finally, high ADM cytoplasmic expression was an independent marker of lymph node metastasis risk. Conclusion JMJD1A, H3K9me1/2 and ADM expression may be predictor markers of progression and prognosis in oral and oropharynx cancer patients, as well as putative therapeutic targets. PMID:29590186

  19. Mixed-metal uranium(VI) iodates: hydrothermal syntheses, structures, and reactivity of Rb[UO(2)(CrO(4))(IO(3))(H(2)O)], A(2)[UO(2)(CrO(4))(IO(3))(2)] (A = K, Rb, Cs), and K(2)[UO(2)(MoO(4))(IO(3))(2)].

    PubMed

    Sykora, Richard E; McDaniel, Steven M; Wells, Daniel M; Albrecht-Schmitt, Thomas E

    2002-10-07

    The reactions of the molecular transition metal iodates A[CrO(3)(IO(3))] (A = K, Rb, Cs) with UO(3) under mild hydrothermal conditions provide access to four new, one-dimensional, uranyl chromatoiodates, Rb[UO(2)(CrO(4))(IO(3))(H(2)O)] (1) and A(2)[UO(2)(CrO(4))(IO(3))(2)] (A = K (2), Rb (3), Cs (4)). Under basic conditions, MoO(3), UO(3), and KIO(4) can be reacted to form K(2)[UO(2)(MoO(4))(IO(3))(2)] (5), which is isostructural with 2 and 3. The structure of 1 consists of one-dimensional[UO(2)(CrO(4))(IO(3))(H(2)O)](-) ribbons that contain uranyl moieties bound by bridging chromate and iodate anions as well as a terminal water molecule to create [UO(7)] pentagonal bipyramidal environments around the U(VI) centers. These ribbons are separated from one another by Rb(+) cations. When the iodate content is increased in the hydrothermal reactions, the terminal water molecule is replaced by a monodentate iodate anion to yield 2-4. These ribbons can be further modified by replacing tetrahedral chromate anions with MoO(4)(2)(-) anions to yield isostructural, one-dimensional [UO(2)(MoO(4))(IO(3))(2)](2)(-) ribbons. Crystallographic data: 1, triclinic, space group P(-)1, a = 7.3133(5) A, b = 8.0561(6) A, c = 8.4870(6) A, alpha = 88.740(1) degrees, beta = 87.075(1) degrees, gamma = 71.672(1) degrees, Z = 2; 2, monoclinic, space group P2(1)/c, a = 11.1337(5) A, b = 7.2884(4) A, c = 15.5661(7) A, beta = 107.977(1) degrees, Z = 4; 3, monoclinic, space group P2(1)/c, a = 11.3463(6) A, b = 7.3263(4) A, c = 15.9332(8) A, beta = 108.173(1) degrees, Z = 4; 4, monoclinic, space group P2(1)/n, a = 7.3929(5) A, b = 8.1346(6) A, c = 22.126(2) A, beta = 90.647(1) degrees, Z = 4; 5, monoclinic, space group P2(1)/c, a = 11.3717(6) A, b = 7.2903(4) A, c = 15.7122(8) A, beta = 108.167(1) degrees, Z = 4.

  20. p38 MAPK activation and H3K4 trimethylation is decreased by lactate in vitro and high intensity resistance training in human skeletal muscle.

    PubMed

    Willkomm, Lena; Gehlert, Sebastian; Jacko, Daniel; Schiffer, Thorsten; Bloch, Wilhelm

    2017-01-01

    Exercise induces adaptation of skeletal muscle by acutely modulating intracellular signaling, gene expression, protein turnover and myogenic activation of skeletal muscle stem cells (Satellite cells, SCs). Lactate (La)-induced metabolic stimulation alone has been shown to modify SC proliferation and differentiation. Although the mechanistic basis remains elusive, it was demonstrated that La affects signaling via p38 mitogen activated protein kinase (p38 MAPK) which might contribute to trimethylation of histone 3 lysine 4 (H3K4me3) known to regulate satellite cell proliferation and differentiation. We investigated the effects of La on p38 MAPK and H3K4me3 in a model of activated SCs. Differentiating C2C12 myoblasts were treated with La (20 mM) and samples analysed using qRT-PCR, immunofluorescence, and western blotting. We determined a reduction of p38 MAPK phosphorylation, decreased H3K4me3 and reduced expression of Myf5, myogenin, and myosin heavy chain (MHC) leading to decreased differentiation of La-treated C2C12 cells after 5 days of repeated La treatment. We further investigated whether this regulatory pathway would be affected in human skeletal muscle by the application of two different resistance exercise regimes (RE) associated with distinct metabolic demands and blood La accumulation. Muscle biopsies were obtained 15, 30 min, 1, 4, and 24 h post exercise after moderate intensity RE (STD) vs. high intensity RE (HIT). Consistent with in vitro results, reduced p38 phosphorylation and blunted H3K4me3 were also observed upon metabolically demanding HIT RE in human skeletal muscle. Our data provide evidence that La-accumulation acutely affects p38 MAPK signaling, gene expression and thereby cell differentiation and adaptation in vitro, and likely in vivo.

  1. Lower lid retraction in thyroid orbitopathy: lamellar shortening or proptosis?

    PubMed

    Rajabi, Mohammad Taher; Jafari, Hajar; Mazloumi, Mehdi; Tabatabaie, Syed Ziaeddin; Rajabi, Mohammad Bagher; Hasanlou, Narges; Abtahi, Seyed-Mojtaba; Goldberg, Robert A

    2014-08-01

    To investigate any correlation between lower lid retraction and proptosis and also between lower lid retraction and lamellar length, as measured by fornix depth, in patients with thyroid eye disease (TED). One hundred and sixty-six eyes of 83 patients with TED were enrolled. The inferior fornix depth, Hertel exophthalmometry measurement, clinical activity score, and lower lid position were the main outcome variables. The correlation between lower lid position measurement and Hertel measurements and also between the lower lid position measurement and inferior fornix depth were evaluated using ANOVA and Pearson's tests. The mean age of subjects in patients with and without lid retraction was 42.8 ± 1.5 and 47.7 ± 1.6 years, respectively (P = 0.4). The inferior fornix depth in patients with and without lower lid retraction was 11.8 ± 1.5 and 11.8 ± 1.3 mm, respectively (P = 0.960). Pearson's analysis showed a significant correlation between the degree of proptosis and lower lid retraction in TED patients (P = 0.01). However, no significant correlation was found between the level of lower lid retraction and the fornix depth (P = 0.87). The main cause of lower lid retraction in TED is proptosis. The beneficial effect of orbital decompression on improvement of lower lid retraction must be considered during a stepwise surgical approach in TED patients.

  2. Insulin-like growth factor-I stimulates H{sub 4}II rat hepatoma cell proliferation: Dominant role of PI-3'K/Akt signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexia, Catherine; Fourmatgeat, Pascal; Delautier, Daniele

    2006-04-15

    Although hepatocytes are the primary source of endocrine IGF-I and -II in mammals, their autocrine/paracrine role in the dysregulation of proliferation and apoptosis during hepatocarcinogenesis and in hepatocarcinomas (HCC) remains to be elucidated. Indeed, IGF-II and type-I IGF receptors are overexpressed in HCC cells, and IGF-I is synthesized in adjacent non-tumoral liver tissue. In the present study, we have investigated the effects of type-I IGF receptor signaling on H{sub 4}II rat hepatoma cell proliferation, as estimated by {sup 3}H-thymidine incorporation into DNA. IGF-I stimulated the rate of DNA synthesis of serum-deprived H{sub 4}II cells, stimulation being maximal 3 h aftermore » the onset of IGF-I treatment and remaining elevated until at least 6 h. The IGF-I-induced increase in DNA replication was abolished by LY294002 and only partially inhibited by PD98059, suggesting that phosphoinositol-3' kinase (PI-3'K) and to a lesser extent MEK/Erk signaling were involved. Furthermore, the 3- to 19-fold activation of the Erks in the presence of LY294002 suggested a down-regulation of the MEK/Erk cascade by PI-3'K signaling. Finally, the effect of IGF-I on DNA replication was almost completely abolished in clones of H{sub 4}II cells expressing a dominant-negative form of Akt but was unaltered by rapamycin treatment of wild-type H{sub 4}II cells. Altogether, these data support the notion that the stimulation of H{sub 4}II rat hepatoma cell proliferation by IGF-I is especially dependent on Akt activation but independent on the Akt/mTOR signal0009i.« less

  3. Lines in the spectrum of /sup 6/LiD (3086--5156 A)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, K.C.

    1976-01-01

    The emission spectra of A/sup 1/..sigma../sup +/--X/sup 1/..sigma../sup +/ bands of /sup 6/LiD were photographed in the 3086 A - 5156 A region with a 3.4 meter Ebert Spectrograph of theoretical resolution of about 0.07 cm/sup -1/. High-purity /sup 6/LiD crystals were obtained from Oak Ridge National Laboratory. The atomic percent of /sup 6/Li in /sup 6/LiD was 95.58 percent. The discharge source is a demountable stainless steel hollow cathode lamp. The lithium deuteride crystals were packed into the cathode. Pressure in the discharge tube was about 10 to 20 torr of D/sub 2/. The discharge was run at aboutmore » 600 volts and 1.25 to 1.75 amperes. Acceptable spectra were obtained with exposure time of 6 hours. A Westinghouse iron hollow cathode was used to produce the iron spectrum for calibration. The plates were measured on the Gaertner photoplate comparator with an encoder system and on-line computer service at Argonne National Laboratory. The measured lines in the spectra of /sup 6/LiD are given in this report (COO-2326-18). Similar spectra for /sup 6/LiH and /sup 7/LiH are given in companion reports (COO-2326-17) and (COO-2326-19), respectively. The relative intensities of the lines are applicable only to short regions and do not extend over the whole spectrum.« less

  4. Arid5b facilitates chondrogenesis by recruiting the histone demethylase Phf2 to Sox9-regulated genes

    NASA Astrophysics Data System (ADS)

    Hata, Kenji; Takashima, Rikako; Amano, Katsuhiko; Ono, Koichiro; Nakanishi, Masako; Yoshida, Michiko; Wakabayashi, Makoto; Matsuda, Akio; Maeda, Yoshinobu; Suzuki, Yutaka; Sugano, Sumio; Whitson, Robert H.; Nishimura, Riko; Yoneda, Toshiyuki

    2013-11-01

    Histone modification, a critical step for epigenetic regulation, is an important modulator of biological events. Sox9 is a transcription factor critical for endochondral ossification; however, proof of its epigenetic regulation remains elusive. Here we identify AT-rich interactive domain 5b (Arid5b) as a transcriptional co-regulator of Sox9. Arid5b physically associates with Sox9 and synergistically induces chondrogenesis. Growth of Arid5b-/- mice is retarded with delayed endochondral ossification. Sox9-dependent chondrogenesis is attenuated in Arid5b-deficient cells. Arid5b recruits Phf2, a histone lysine demethylase, to the promoter region of Sox9 target genes and stimulates H3K9me2 demethylation of these genes. In the promoters of chondrogenic marker genes, H3K9me2 levels are increased in Arid5b-/- chondrocytes. Finally, we show that Phf2 knockdown inhibits Sox9-induced chondrocyte differentiation. Our findings establish an epigenomic mechanism of skeletal development, whereby Arid5b promotes chondrogenesis by facilitating Phf2-mediated histone demethylation of Sox9-regulated chondrogenic gene promoters.

  5. Natural variation of H3K27me3 distribution between two Arabidopsis accessions and its association with flanking transposable elements

    PubMed Central

    2012-01-01

    Background Histone H3 lysine 27 tri-methylation and lysine 9 di-methylation are independent repressive chromatin modifications in Arabidopsis thaliana. H3K27me3 is established and maintained by Polycomb repressive complexes whereas H3K9me2 is catalyzed by SUVH histone methyltransferases. Both modifications can spread to flanking regions after initialization and were shown to be mutually exclusive in Arabidopsis. Results We analyzed the extent of natural variation of H3K27me3 in the two accessions Landsberg erecta (Ler) and Columbia (Col) and their F1 hybrids. The majority of H3K27me3 target genes in Col were unchanged in Ler and F1 hybrids. A small number of Ler-specific targets were detected and confirmed. Consistent with a cis-regulatory mechanism for establishing H3K27me3, differential targets showed allele-specific H3K27me3 in hybrids. Five Ler-specific targets showed the active mark H3K4me3 in Col and for this group, differential H3K27me3 enrichment accorded to expression variation. On the other hand, the majority of Ler-specific targets were not expressed in Col, Ler or 17 other accessions. Instead of H3K27me3, the antagonistic mark H3K9me2 and other heterochromatic features were observed at these loci in Col. These loci were frequently flanked by transposable elements, which were often missing in the Ler genome assembly. Conclusion There is little variation in H3K27me3 occupancy within the species, although H3K27me3 targets were previously shown as overrepresented among differentially expressed genes. The existing variation in H3K27me3 seems mostly explained by flanking polymorphic transposable elements. These could nucleate heterochromatin, which then spreads into neighboring H3K27me3 genes, thus converting them to H3K9me2 targets. PMID:23253144

  6. Ras-Induced Changes in H3K27me3 Occur after Those in Transcriptional Activity

    PubMed Central

    Hosogane, Masaki; Funayama, Ryo; Nishida, Yuichiro; Nagashima, Takeshi; Nakayama, Keiko

    2013-01-01

    Oncogenic signaling pathways regulate gene expression in part through epigenetic modification of chromatin including DNA methylation and histone modification. Trimethylation of histone H3 at lysine-27 (H3K27), which correlates with transcriptional repression, is regulated by an oncogenic form of the small GTPase Ras. Although accumulation of trimethylated H3K27 (H3K27me3) has been implicated in transcriptional regulation, it remains unclear whether Ras-induced changes in H3K27me3 are a trigger for or a consequence of changes in transcriptional activity. We have now examined the relation between H3K27 trimethylation and transcriptional regulation by Ras. Genome-wide analysis of H3K27me3 distribution and transcription at various times after expression of oncogenic Ras in mouse NIH 3T3 cells identified 115 genes for which H3K27me3 level at the gene body and transcription were both regulated by Ras. Similarly, 196 genes showed Ras-induced changes in transcription and H3K27me3 level in the region around the transcription start site. The Ras-induced changes in transcription occurred before those in H3K27me3 at the genome-wide level, a finding that was validated by analysis of individual genes. Depletion of H3K27me3 either before or after activation of Ras signaling did not affect the transcriptional regulation of these genes. Furthermore, given that H3K27me3 enrichment was dependent on Ras signaling, neither it nor transcriptional repression was maintained after inactivation of such signaling. Unexpectedly, we detected unannotated transcripts derived from intergenic regions at which the H3K27me3 level is regulated by Ras, with the changes in transcript abundance again preceding those in H3K27me3. Our results thus indicate that changes in H3K27me3 level in the gene body or in the region around the transcription start site are not a trigger for, but rather a consequence of, changes in transcriptional activity. PMID:24009517

  7. Synthesis, crystal structure, thermal analysis and dielectric properties of Rb4(SO4)(HSO4)2(H3AsO4) compound

    NASA Astrophysics Data System (ADS)

    Belhaj Salah, M.; Nouiri, N.; Jaouadi, K.; Mhiri, T.; Zouari, N.

    2018-01-01

    A new inorganic Rb4(SO4)(HSO4)2(H3AsO4) compound was prepared. It was found to crystallize in the monoclinic system (P21 space group) with the following lattice parameters: a = 5868 (1) Å, b = 13,579(2) Å, c = 11,809 (3) Å and β = 94,737 (1)°. The structure is characterized by SO42-, HSO4- and H3AsO4 tetrahedra connected by hydrogen bridge to form two types of dimmer (H(8)S(2)O4- … S(1)O42- and H(12)S(2)O4- … H3AsO4). These dimmers are interconnected by both hydrogen bonds O(14)sbnd H(14)· · ·O(4) and O(15)sbnd H(15)· · ·O(2). They are also linked by the hydrogen bridge assured by the hydrogen atoms H(2), H(3) and H(4) of the H3AsO4 group to build the chain S(1)O4H3AsO4 which are parallel to the ''a'',direction. The rubidium cations are coordinated by eight oxygen atoms with Rbsbnd O distance ranging from 2893(8) to 3.415(6) Å. The existence of Osbnd H and (S/As)sbnd O bonds in the structure at room temperature has been confirmed by IR and Raman spectroscopy in the frequency ranges 4000-400 cm-1and 1200 - 50 cm-1, respectively. Thermal analysis of Rb4(HSO4)(HSO4)2(H3AsO4) showed that the transformation to high temperature phase occurs at 407 K by one-step process. Thermal decomposition of the product takes place at much higher temperatures, with an onset of approximately 522 K. The first transition detected by differential scanning calorimetry (DSC) was also analyzed by dielectric and conductivity measurements using the impedance spectroscopy techniques. The conductivity in the high temperature phase at 428 K is 1.04 × 10-3 Ω-1 cm-1, and the activation energy for the proton transport is 0.36 eV. The conductivity relaxation parameters associated with the high disorder protonic conduction have been examined from analysis of the M"/M"max spectrum measured in a wide temperature range. Transport properties of this material appear to be due to the proton hopping mechanism. The obtained results show that this transition is protonic by nature.

  8. Lack of the COMPASS Component Ccl1 Reduces H3K4 Trimethylation Levels and Affects Transcription of Secondary Metabolite Genes in Two Plant-Pathogenic Fusarium Species.

    PubMed

    Studt, Lena; Janevska, Slavica; Arndt, Birgit; Boedi, Stefan; Sulyok, Michael; Humpf, Hans-Ulrich; Tudzynski, Bettina; Strauss, Joseph

    2016-01-01

    In the two fungal pathogens Fusarium fujikuroi and Fusarium graminearum , secondary metabolites (SMs) are fitness and virulence factors and there is compelling evidence that the coordination of SM gene expression is under epigenetic control. Here, we characterized Ccl1, a subunit of the COMPASS complex responsible for methylating lysine 4 of histone H3 (H3K4me). We show that Ccl1 is not essential for viability but a regulator of genome-wide trimethylation of H3K4 (H3K4me3). Although, recent work in Fusarium and Aspergillus spp. detected only sporadic H3K4 methylation at the majority of the SM gene clusters, we show here that SM profiles in CCL1 deletion mutants are strongly deviating from the wild type. Cross-complementation experiments indicate high functional conservation of Ccl1 as phenotypes of the respective △ ccl1 were rescued in both fungi. Strikingly, biosynthesis of the species-specific virulence factors gibberellic acid and deoxynivalenol produced by F. fujikuroi and F. graminearum , respectively, was reduced in axenic cultures but virulence was not attenuated in these mutants, a phenotype which goes in line with restored virulence factor production levels in planta. This suggests that yet unknown plant-derived signals are able to compensate for Ccl1 function during pathogenesis.

  9. Chromatin interaction networks revealed unique connectivity patterns of broad H3K4me3 domains and super enhancers in 3D chromatin.

    PubMed

    Thibodeau, Asa; Márquez, Eladio J; Shin, Dong-Guk; Vera-Licona, Paola; Ucar, Duygu

    2017-10-31

    Broad domain promoters and super enhancers are regulatory elements that govern cell-specific functions and harbor disease-associated sequence variants. These elements are characterized by distinct epigenomic profiles, such as expanded deposition of histone marks H3K27ac for super enhancers and H3K4me3 for broad domains, however little is known about how they interact with each other and the rest of the genome in three-dimensional chromatin space. Using network theory methods, we studied chromatin interactions between broad domains and super enhancers in three ENCODE cell lines (K562, MCF7, GM12878) obtained via ChIA-PET, Hi-C, and Hi-CHIP assays. In these networks, broad domains and super enhancers interact more frequently with each other compared to their typical counterparts. Network measures and graphlets revealed distinct connectivity patterns associated with these regulatory elements that are robust across cell types and alternative assays. Machine learning models showed that these connectivity patterns could effectively discriminate broad domains from typical promoters and super enhancers from typical enhancers. Finally, targets of broad domains in these networks were enriched in disease-causing SNPs of cognate cell types. Taken together these results suggest a robust and unique organization of the chromatin around broad domains and super enhancers: loci critical for pathologies and cell-specific functions.

  10. The system K2Mg2(SO4)3 (langbeinite)-K2Ca2(SO4)3 (calcium-langbeinite)

    USGS Publications Warehouse

    Morey, G.W.; Rowe, J.J.; Fournier, R.O.

    1964-01-01

    The join between the compositions K2Mg2(SO4)3 and K2Ca2(SO4)3 was studied by means of high-temperature equilibrium quenching techniques and by means of a heating stage mounted on an X-ray diffractometer. Complete solid solution exists in the system, but at 25??C members of the solid solution series are isometric only in the composition range 0-73??5 wt. per cent K2Ca2(SO4)3. At compositions richer in K2Ca2(SO4)3 than 73??5 wt. per cent, members of the series are optically biaxial. At higher temperatures members of the solid solution series are isometric at successively more calcium-rich compositions and pure K2Ca2(SO4)3 is isometric above about 200 ?? 2??C. The system is not binary, as mixtures richer in K2Ca2(SO4)3 than 42 wt. per cent decompose with the formation of liquid and CaSO4. ?? 1964.

  11. A Combinatorial H4 Tail Library to Explore the Histone Code

    PubMed Central

    Garske, Adam L.; Craciun, Gheorghe; Denu, John M.

    2008-01-01

    Histone modifications modulate chromatin structure and function. A posttranslational modification-randomized, combinatorial library based on the first twenty-one residues of histone H4 was designed for systematic examination of proteins that interpret a histone code. The 800-member library represented all permutations of most known modifications within the N-terminal tail of histone H4. To determine its utility in a protein-binding assay, the on-bead library was screened with an antibody directed against phosphoserine 1 of H4. Among the hits, 59/60 sequences were phosphorylated at S1, while 30/30 of those selected from the non-hits were unphosphorylated. A 512-member version of the library was then used to determine the binding specificity of the double tudor domain of hJMJD2A, a histone demethylase involved in transcriptional repression. Global linear least squares fitting of modifications from the identified peptides (40 hits and 34 non-hits) indicated that methylation of K20 was the primary determinant for binding, but that phosphorylation/acetylation on neighboring sites attenuated the interaction. To validate the on-bead screen, isothermal titration calorimetry was performed with thirteen H4 peptides. Dissociation constants ranged from 1 mM - 1μM and corroborated the screening results. The general approach should be useful for probing the specificity of any histone-binding protein. PMID:18616348

  12. Modes of Interaction of KMT2 Histone H3 Lysine 4 Methyltransferase/COMPASS Complexes with Chromatin

    PubMed Central

    Bochyńska, Agnieszka; Lüscher-Firzlaff, Juliane

    2018-01-01

    Regulation of gene expression is achieved by sequence-specific transcriptional regulators, which convey the information that is contained in the sequence of DNA into RNA polymerase activity. This is achieved by the recruitment of transcriptional co-factors. One of the consequences of co-factor recruitment is the control of specific properties of nucleosomes, the basic units of chromatin, and their protein components, the core histones. The main principles are to regulate the position and the characteristics of nucleosomes. The latter includes modulating the composition of core histones and their variants that are integrated into nucleosomes, and the post-translational modification of these histones referred to as histone marks. One of these marks is the methylation of lysine 4 of the core histone H3 (H3K4). While mono-methylation of H3K4 (H3K4me1) is located preferentially at active enhancers, tri-methylation (H3K4me3) is a mark found at open and potentially active promoters. Thus, H3K4 methylation is typically associated with gene transcription. The class 2 lysine methyltransferases (KMTs) are the main enzymes that methylate H3K4. KMT2 enzymes function in complexes that contain a necessary core complex composed of WDR5, RBBP5, ASH2L, and DPY30, the so-called WRAD complex. Here we discuss recent findings that try to elucidate the important question of how KMT2 complexes are recruited to specific sites on chromatin. This is embedded into short overviews of the biological functions of KMT2 complexes and the consequences of H3K4 methylation. PMID:29498679

  13. Lid wiper microvascular responses as an indicator of contact lens discomfort

    PubMed Central

    Deng, Zhihong; Wang, Jianhua; Jiang, Hong; Fadli, Zohra; Liu, Che; Tan, Jia; Zhou, Jin

    2016-01-01

    Purpose To analyze quantitatively the alterations in the microvascular network of the upper tarsal conjunctiva, lid wiper, and bulbar conjunctiva relative to ocular discomfort after contact lens wear. Design A prospective, cross-over clinical study. Methods Functional slit-lamp biomicroscopy (FSLB) was used to image the microvascular network of the upper tarsal conjunctiva, lid wiper, and bulbar conjunctiva. The microvascular network was automatically segmented, and fractal analyses were performed to yield the fractal dimension (Dbox) that represented vessel density. Sixteen healthy subjects (nine female and seven male) with an average age of 35.5 ± 6.7 years old (mean ± standard deviation) were recruited. The right eye was imaged at 9 AM and 3 PM at the first visit (Day 1) when the subject was not wearing contact lenses. During the second visit (Day 2), the right eye was fit with a contact lens for 6 h. Microvascular imaging was performed before (at 9 AM) and after lens wear (at 3 PM). Ocular comfort was rated using a 50-point visual analogue scale before and after 6 h of lens wear, and its relationships with microvascular parameters were analyzed. Results There were no significant differences in Dbox among the upper tarsal conjunctiva, lid wiper, and bulbar conjunctiva among the measurements at 9 AM (Day 1 and Day 2) and 3 PM (Day 1) when the subjects were not wearing the lenses (P > 0.05), whereas after 6 h of lens wear, the microvascular network densities were increased in all three of these locations. Dbox of the lid wiper increased from 1.411 ± 0.116 to 1.548 ± 0.079 after 6 h of contact lens wear (P < 0.01). Dbox of the tarsal conjunctiva was 1.731 ± 0.026 at baseline and increased to 1.740 ± 0.030 (P < 0.05). Dbox of the bulbar conjunctiva increased from 1.587 ± 0.059 to 1.632 ± 0.060 (P < 0.001). The decrease in ocular discomfort was strongly related to the Dbox change in the lid wiper (r = 0.61, P < 0.05). There were no correlations between the

  14. Dynamic redistribution of calcium sensitive potassium channels (hK(Ca)3.1) in migrating cells.

    PubMed

    Schwab, Albrecht; Nechyporuk-Zloy, Volodymyr; Gassner, Birgit; Schulz, Christoph; Kessler, Wolfram; Mally, Sabine; Römer, Michael; Stock, Christian

    2012-02-01

    Calcium-sensitive potassium channels (K(Ca)3.1) are expressed in virtually all migrating cells. Their activity is required for optimal cell migration so that their blockade leads to slowing down. K(Ca)3.1 channels must be inserted into the plasma membrane in order to elicit their physiological function. However, the plasma membrane of migrating cells is subject to rapid recycling by means of endo- and exocytosis. Here, we focussed on the endocytic internalization and the intracellular transport of the human isoform hK(Ca)3.1. A hK(Ca)3.1 channel construct with an HA-tag in the extracellularly located S3-S4 linker was transfected into migrating transformed renal epithelial MDCK-F cells. Channel internalization was visualized and quantified with immunofluorescence and a cell-based ELISA. Movement of hK(Ca)3.1 channel containing vesicles as well as migration of MDCK-F cells were monitored by means of time lapse video microscopy. hK(Ca)3.1 channels are endocytosed during migration. Most of the hK(Ca)3.1 channel containing vesicles are moving at a speed of up to 2 µm/sec in a microtubule-dependent manner towards the front of MDCK-F cells. Our experiments indicate that endocytosis of hK(Ca)3.1 channels is clathrin-dependent since they colocalize with clathrin adaptor proteins and since it is impaired when a C-terminal dileucine motif is mutated. The C-terminal dileucine motif is also important for the subcellular localization of hK(Ca)3.1 channels in migrating cells. Mutated channels are no longer concentrated at the leading edge. We therefore propose that recycling of hK(Ca)3.1 channels contributes to their characteristic subcellular distribution in migrating cells. Copyright © 2011 Wiley Periodicals, Inc.

  15. Reduced H3K27me3 expression in radiation-associated angiosarcoma of the breast.

    PubMed

    Mentzel, Thomas; Kiss, Katalin

    2018-03-01

    The diagnosis of radiation-associated angiosarcoma is challenging and there are overlapping clinicopathological features between radiation-associated benign, atypical and malignant vascular lesions. It has been shown convincingly, that the majority of radiation-associated angiosarcomas are characterised by amplification and subsequent overexpression of MYC in contrast to benign and atypical vascular lesions. Given the fact that epigenetic changes play an important role in carcinogenesis and loss of histone H3K27 trimethylation (H3K27me3) has been found in a number of malignant neoplasms including malignant peripheral nerve sheath tumours, especially when associated with previous radiotherapy, we evaluated the immunohistochemical reaction pattern for H3K27me3 in 49 vascular lesions and control cases: normal skin and benign vascular lesions not associated with previous radiotherapy, radiation-associated benign, atypical and malignant vascular lesions and angiosarcomas not associated with previous radiotherapy. We found loss of H3K27me3 expression in most cases of radiation-associated angiosarcomas, whereas endothelial cells in benign and atypical vascular lesions arising after previous radiotherapy stained positively for H3K27me3. The sporadic angiosarcomas stained inconsistently for H3K27me3. Loss of H3K27me3 is typically seen in radiation-associated angiosarcomas, representing an additional diagnostic tool and raises questions in regard to the carcinogenesis of malignant vascular neoplasms.

  16. Cell cycle-dependent changes in H3K56ac in human cells

    PubMed Central

    Stejskal, Stanislav; Stepka, Karel; Tesarova, Lenka; Stejskal, Karel; Matejkova, Martina; Simara, Pavel; Zdrahal, Zbynek; Koutna, Irena

    2015-01-01

    The incorporation of histone H3 with an acetylated lysine 56 (H3K56ac) into the nucleosome is important for chromatin remodeling and serves as a marker of new nucleosomes during DNA replication and repair in yeast. However, in human cells, the level of H3K56ac is greatly reduced, and its role during the cell cycle is controversial. Our aim was to determine the potential of H3K56ac to regulate cell cycle progression in different human cell lines. A significant increase in the number of H3K56ac foci, but not in H3K56ac protein levels, was observed during the S and G2 phases in cancer cell lines, but was not observed in embryonic stem cell lines. Despite this increase, the H3K56ac signal was not present in late replication chromatin, and H3K56ac protein levels did not decrease after the inhibition of DNA replication. H3K56ac was not tightly associated with the chromatin and was primarily localized to active chromatin regions. Our results support the role of H3K56ac in transcriptionally active chromatin areas but do not confirm H3K56ac as a marker of newly synthetized nucleosomes in DNA replication. PMID:26645646

  17. Correlation Between Expression of Recombinant Proteins and Abundance of H3K4Me3 on the Enhancer of Human Cytomegalovirus Major Immediate-Early Promoter.

    PubMed

    Soo, Benjamin P C; Tay, Julian; Ng, Shirelle; Ho, Steven C L; Yang, Yuansheng; Chao, Sheng-Hao

    2017-08-01

    Role of epigenetic regulation in the control of gene expression is well established. The impact of several epigenetic mechanisms, such as DNA methylation and histone acetylation, on recombinant protein production in mammalian cells has been investigated recently. Here we investigate the correlation between the selected epigenetic markers and five trastuzumab biosimilar-producing Chinese hamster ovary (CHO) cell lines in which the expression of trastuzumab is driven by human cytomegalovirus (HCMV) major immediate-early (MIE) promoter. We chose the producing clones in which transcription was the determinative step for the production of recombinant trastuzumab. We found that the abundance of trimethylation of histone 3 at lysine 4 (H3K4Me3) on the enhancer of HCMV MIE promoter correlated well with the relative titers of recombinant trastuzumab among the clones. Such close correlation was not observed between the recombinant protein and other epigenetic markers examined in our study. Our results demonstrate that the HCMV MIE enhancer-bound H3K4Me3 epigenetic marker may be used as the epigenetic indicator to predict the relative production of recombinant proteins between the producing CHO cell lines.

  18. Dachiardite-K, (K2Ca)(Al4Si20O48) · 13H2O, a new zeolite from Eastern Rhodopes, Bulgaria

    NASA Astrophysics Data System (ADS)

    Chukanov, N. V.; Encheva, S.; Petrov, P.; Pekov, I. V.; Belakovskiy, D. I.; Britvin, S. N.; Aksenov, S. M.

    2016-12-01

    Dachiardite-K (IMA No. 2015-041), a new zeolite, is a K-dominant member of the dachiardite series with the idealized formula (K2Ca)(Al4Si20O48) · 13H2O. It occurs in the walls of opal-chalcedony veinlets cutting hydrothermally altered effusive rocks of the Zvezdel paleovolcanic complex near the village of Austa, Momchilgrad Municipality, Eastern Rhodopes, Bulgaria. Chalcedony, opal, dachiardite-Ca, dachiardite-Na, ferrierite-Mg, ferrierite-K, clinoptilolite-Ca, clinoptilolite-K, mordenite, smectite, celadonite, calcite, and barite are associated minerals. The mineral forms radiated aggregates up to 8 mm in diameter consisting of split acicular individuals. Dachiardite-K is white to colorless. Perfect cleavage is observed on (100). D meas = 2.18(2), D calc = 2.169 g/cm3. The IR spectrum is given. Dachiardite-K is biaxial (+), α = 1.477 (calc), β = 1.478(2), γ = 1.481(2), 2 V meas = 65(10)°. The chemical composition (electron microprobe, mean of six point analyses, H2O determined by gravimetric method) is as follows, wt %: 4.51 K2O, 3.27 CaO, 0.41 BaO, 10.36 A12O3, 67.90 SiO2, 13.2 H2O, total is 99.65. The empirical formula is H26.23K1.71Ca1.04Ba0.05Al3.64Si20.24O61. The strongest reflections in the powder X-ray diffraction pattern [ d, Å (I, %) (hkl)] are: 9.76 (24) (001), 8.85 (58) (200), 4.870 (59) (002), 3.807 (16) (202), 3.768 (20) (112, 020), 3.457 (100) (220), 2.966 (17) (602). Dachiardite-K is monoclinic, space gr. C2/m, Cm or C2; the unit cell parameters refined from the powder X-ray diffraction data are: a = 18.670(8), b = 7.511(3), c = 10.231(4) Å, β = 107.79(3)°, V= 1366(1) Å3, Z = 1. The type specimen has been deposited in the Earth and Man National Museum, Sofia, Bulgaria, with the registration number 23927.

  19. A case report of adult cerebellar high-grade glioma with H3.1 K27M mutation: a rare example of an H3 K27M mutant cerebellar tumor.

    PubMed

    Funata, Nobuaki; Nobusawa, Sumihito; Nakata, Satoshi; Yamazaki, Tatsuya; Takabagake, Kazuhiko; Koike, Tsukasa; Maegawa, Tatsuya; Yamada, Ryoji; Shinoura, Nobusada; Mine, Yutaka

    2018-01-01

    Diffuse midline glioma, H3 K27M mutant, is newly recognized as a distinct category, which usually arises in the brain stem, thalamus or spinal cord of children, and young adults. The oncogenic H3 K27M mutation involves H3.3 (encoded by H3F3A) or H3.1 (encoded by HIST1H3B/HIST1H3C), and the incidence of each mutation differs among the primary sites. Recently, several papers have reported that cerebellar high-grade gliomas in both children and adults also harbor H3 K27 mutation. With the exception of one pediatric case, all of the cases carried the mutation in H3.3. We herein present the case of an adult cerebellar high-grade astrocytic tumor with H3.1 K27M mutation in a 45-year-old man, which also involvedTP53 mutation and was immunonegative for ATRX. Some groups have reported that H3.3 and H3.1 K27M mutations define subgroups of diffuse intrinsic pontine gliomas (DIPGs) with different phenotypes as well as genetic alterations. On comparing the findings of the present case, particularly TP53 mutation status and ATRX expression, to the findings of the previous studies on DIPGs, our case seems unusual among the H3.1 K27M mutant subgroup. Further studies are needed to clarify the exact frequency, clinicopathological characteristics, and genomic alterations of cerebellar gliomas harboring H3 K27M mutation.

  20. Pot/Lid Illusion

    PubMed Central

    Kennedy, John M.

    2016-01-01

    A new everyday visual size illusion is presented—the Pot/Lid illusion. Observers choose an unduly large lid for a pot. We ask whether the optic slant of the pot brim would increase its apparent size or if vision underestimates the size of tilted lids. PMID:27698990

  1. G-quadruplex RNA binding and recognition by the lysine-specific histone demethylase-1 enzyme

    PubMed Central

    Hirschi, Alexander; Martin, William J.; Luka, Zigmund; Loukachevitch, Lioudmila V.; Reiter, Nicholas J.

    2016-01-01

    Lysine-specific histone demethylase 1 (LSD1) is an essential epigenetic regulator in metazoans and requires the co-repressor element-1 silencing transcription factor (CoREST) to efficiently catalyze the removal of mono- and dimethyl functional groups from histone 3 at lysine positions 4 and 9 (H3K4/9). LSD1 interacts with over 60 regulatory proteins and also associates with lncRNAs (TERRA, HOTAIR), suggesting a regulatory role for RNA in LSD1 function. We report that a stacked, intramolecular G-quadruplex (GQ) forming TERRA RNA (GG[UUAGGG]8UUA) binds tightly to the functional LSD1–CoREST complex (Kd ≈ 96 nM), in contrast to a single GQ RNA unit ([UUAGGG]4U), a GQ DNA ([TTAGGG]4T), or an unstructured single-stranded RNA. Stabilization of a parallel-stranded GQ RNA structure by monovalent potassium ions (K+) is required for high affinity binding to the LSD1–CoREST complex. These data indicate that LSD1 can distinguish between RNA and DNA as well as structured versus unstructured nucleotide motifs. Further, cross-linking mass spectrometry identified the primary location of GQ RNA binding within the SWIRM/amine oxidase domain (AOD) of LSD1. An ssRNA binding region adjacent to this GQ binding site was also identified via X-ray crystallography. This RNA binding interface is consistent with kinetic assays, demonstrating that a GQ-forming RNA can serve as a noncompetitive inhibitor of LSD1-catalyzed demethylation. The identification of a GQ RNA binding site coupled with kinetic data suggests that structured RNAs can function as regulatory molecules in LSD1-mediated mechanisms. PMID:27277658

  2. PRIMARY STRUCTURE OF THE P450 LANOSTEROL DEMETHYLASE GENE FROM SACCHAROMYCES CEREVISIAE

    EPA Science Inventory

    We have sequenced the structural gene and flanking regions for lanosterol 14 alpha-demethylase (14DM) from Saccharomyces cerevisiae. An open reading frame of 530 codons encodes a 60.7-kDa protein. When this gene is disrupted by integrative transformation, the resulting strain req...

  3. Synthesis of cationic iridium(I) complexes of water-soluble phosphine ligands, [Ir(CO)(TPPMS){sub 3}]CF{sub 3}SO{sub 3}, [Ir(CO)(H{sub 2}O)(TPPTS){sub 2}]CF{sub 3}SO{sub 3}, and [Ir(CO){sub 2}(TPPMS){sub 3}]ClO{sub 4} (TPPMS = PPh{sub 2}(m-C{sub 6}H{sub 4}SO{sub 3}K), TPPTS = P(m-C{sub 6}H{sub 4}SO{sub 3}Na){sub 3})

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paterniti, D.P.; Francisco, L.W.; Atwood, J.D.

    Several new water-soluble iridium(I) complexes were synthesized and their reactivities with small molecules (H{sub 2} or CO) in polar solvents (DMSO or H{sub 2}O) examined. Reaction of H{sub 2} with [Ir(CO)(TPPMS){sub 3}]CF{sub 3}SO{sub 3} (TPPMS = P(C{sub 6}H{sub 5}){sub 2}(m-C{sub 6}H{sub 4}SO{sub 3}K)) in DMSO or H{sub 2}O produces [cis,mer-Ir(CO)(H){sub 2}(TPPMS){sub 3}]CF{sub 3}SO{sub 3}, while the reaction of CO with [Ir(CO)(TPPMS){sub 3}]-CF{sub 3}SO{sub 3} in water yields [Ir(CO){sub 2}(TPPMS){sub 3}]CF{sub 3}SO{sub 3}. Carbonylation of [Ir(CO){sub 2}(TPPMS){sub 3}]ClO{sub 4} in DMSO produces [Ir(CO){sub 3}(TPPMS){sub 2}]ClO{sub 4} and TPPMS; no reaction is observed in H{sub 2}O. Hydrogenation of [Ir(CO){sub 2}(TPPMS){sub 3}]ClO{sub 4}more » in DMSO or H{sub 2}O yields [cis,mer-Ir(CO)(H){sub 2}(TPPMS){sub 3}]ClO{sub 4}, while reaction of H{sub 2} with an aqueous solution of [Ir(CO)(H{sub 2}O)(TPPTS){sub 2}]CF{sub 3}SO{sub 3} produces [Ir(CO)(H{sub 2}O)(H){sub 2}(TPPTS){sub 2}]CF{sub 3}SO{sub 3}. Reaction of trans-Ir(CO)ClL{sub 2} (L = TPPMS or TPPTS) with excess L in H{sub 2}O produces [Ir(CO)L{sub 3}]Cl, while no reaction occurs in DMSO, [Ir(CO){sub 3}(TPPMS){sub 2}]Cl reacts irreversibly with TPPMS in H{sub 2}O to produce [Ir(CO){sub 2}-(TPPMS){sub 3}]Cl.« less

  4. Cell cycle- and chaperone-mediated regulation of H3K56ac incorporation in yeast.

    PubMed

    Kaplan, Tommy; Liu, Chih Long; Erkmann, Judith A; Holik, John; Grunstein, Michael; Kaufman, Paul D; Friedman, Nir; Rando, Oliver J

    2008-11-01

    Acetylation of histone H3 lysine 56 is a covalent modification best known as a mark of newly replicated chromatin, but it has also been linked to replication-independent histone replacement. Here, we measured H3K56ac levels at single-nucleosome resolution in asynchronously growing yeast cultures, as well as in yeast proceeding synchronously through the cell cycle. We developed a quantitative model of H3K56ac kinetics, which shows that H3K56ac is largely explained by the genomic replication timing and the turnover rate of each nucleosome, suggesting that cell cycle profiles of H3K56ac should reveal most first-time nucleosome incorporation events. However, since the deacetylases Hst3/4 prevent use of H3K56ac as a marker for histone deposition during M phase, we also directly measured M phase histone replacement rates. We report a global decrease in turnover rates during M phase and a further specific decrease in turnover at several early origins of replication, which switch from rapidly replaced in G1 phase to stably bound during M phase. Finally, by measuring H3 replacement in yeast deleted for the H3K56 acetyltransferase Rtt109 and its two co-chaperones Asf1 and Vps75, we find evidence that Rtt109 and Asf1 preferentially enhance histone replacement at rapidly replaced nucleosomes, whereas Vps75 appears to inhibit histone turnover at those loci. These results provide a broad perspective on histone replacement/incorporation throughout the cell cycle and suggest that H3K56 acetylation provides a positive-feedback loop by which replacement of a nucleosome enhances subsequent replacement at the same location.

  5. The transcription factor c-Fos coordinates with histone lysine-specific demethylase 2A to activate the expression of cyclooxygenase-2

    PubMed Central

    Du, Yipeng; Cao, Lin-lin; Li, Meiting; Shen, Changchun; Hou, Tianyun; Zhao, Ying; Wang, Haiying; Deng, Dajun; Wang, Lina; He, Qihua; Zhu, Wei-Guo

    2015-01-01

    Cyclooxygenase-2 (COX-2) is overexpressed in a variety of human epithelial cancers, including lung cancer, and is highly associated with a poor prognosis and a low survival rate. Understanding how COX-2 is regulated in response to carcinogens will offer insight into designing anti-cancer strategies and preventing cancer development. Here, we analyzed COX-2 expression in several human lung cancer cell lines and found that COX-2 expression was absent in the H719 and H460 cell lines by a DNA methylation-independent mechanism. The re-expression of COX-2 was observed after 12-O-tetradecanoylphorbol-13-acetate (TPA) treatment in both cell lines. Further investigation found that H3K36 dimethylation was significantly reduced near the COX-2 promoter because histone demethylase 2A (KDM2A) was recruited to the COX-2 promoter after TPA treatment. In addition, the transcription factor c-Fos was found to be required to recruit KDM2A to the COX-2 promoter for reactivation of COX-2 in response to TPA treatment in both the H719 and H460 cell lines. Together, our data reveal a novel mechanism by which the carcinogen TPA activates COX-2 expression by regulating H3K36 dimethylation near the COX-2 promoter. PMID:26430963

  6. Excision of uranium oxide chains and ribbons in the novel one-dimensional uranyl iodates K(2)[(UO(2))3(IO(3))(4)O(2)] and Ba[(UO(2)2(IO(3))(2)O(2)](H(2)O).

    PubMed

    Bean, A C; Ruf, M; Albrecht-Schmitt, T E

    2001-07-30

    The alkali metal and alkaline-earth metal uranyl iodates K(2)[(UO(2))(3)(IO(3))(4)O(2)] and Ba[(UO(2))(2)(IO(3))(2)O(2)](H(2)O) have been prepared from the hydrothermal reactions of KCl or BaCl(2) with UO(3) and I(2)O(5) at 425 and 180 degrees C, respectively. While K(2)[(UO(2))(3)(IO(3))(4)O(2)] can be synthesized under both mild and supercritical conditions, the yield increases from <5% to 73% as the temperature is raised from 180 to 425 degrees C. Ba[(UO(2))(2)(IO(3))(2)O(2)](H(2)O), however, has only been isolated from reactions performed in the mild temperature regime. Thermal measurements (DSC) indicate that K(2)[(UO(2))(3)(IO(3))(4)O(2)] is more stable than Ba[(UO(2))(2)(IO(3))(2)O(2)](H(2)O) and that both compounds decompose through thermal disproportionation at 579 and 575 degrees C, respectively. The difference in the thermal behavior of these compounds provides a basis for the divergence of their preparation temperatures. The structure of K(2)[(UO(2))(3)(IO(3))(4)O(2)] is composed of [(UO(2))(3)(IO(3))(4)O(2)](2)(-) chains built from the edge-sharing UO(7) pentagonal bipyramids and UO(6) octahedra. Ba[(UO(2))(2)(IO(3))(2)O(2)](H(2)O) consists of one-dimensional [(UO(2))(2)(IO(3))(2)O(2)](2)(-) ribbons formed from the edge sharing of distorted UO(7) pentagonal bipyramids. In both compounds the iodate groups occur in both bridging and monodentate binding modes and further serve to terminate the edges of the uranium oxide chains. The K(+) or Ba(2+) cations separate the chains or ribbons in these compounds forming bonds with terminal oxygen atoms from the iodate ligands. Crystallographic data: K(2)[(UO(2))(3)(IO(3))(4)O(2)], triclinic, space group P_1, a = 7.0372(5) A, b = 7.7727(5) A, c = 8.9851(6) A, alpha = 93.386(1) degrees, beta = 105.668(1) degrees, gamma = 91.339(1) degrees, Z = 1; Ba[(UO(2))(2)(IO(3))(2)O(2)](H(2)O), monoclinic, space group P2(1)/c, a = 8.062(4) A, b = 6.940(3) A, c = 21.67(1), beta= 98.05(1) degrees, Z = 4.

  7. Early Earth plume-lid tectonics: A high-resolution 3D numerical modelling approach

    NASA Astrophysics Data System (ADS)

    Fischer, R.; Gerya, T.

    2016-10-01

    Geological-geochemical evidence point towards higher mantle potential temperature and a different type of tectonics (global plume-lid tectonics) in the early Earth (>3.2 Ga) compared to the present day (global plate tectonics). In order to investigate tectono-magmatic processes associated with plume-lid tectonics and crustal growth under hotter mantle temperature conditions, we conduct a series of 3D high-resolution magmatic-thermomechanical models with the finite-difference code I3ELVIS. No external plate tectonic forces are applied to isolate 3D effects of various plume-lithosphere and crust-mantle interactions. Results of the numerical experiments show two distinct phases in coupled crust-mantle evolution: (1) a longer (80-100 Myr) and relatively quiet 'growth phase' which is marked by growth of crust and lithosphere, followed by (2) a short (∼20 Myr) and catastrophic 'removal phase', where unstable parts of the crust and mantle lithosphere are removed by eclogitic dripping and later delamination. This modelling suggests that the early Earth plume-lid tectonic regime followed a pattern of episodic growth and removal also called episodic overturn with a periodicity of ∼100 Myr.

  8. Genome-wide ChIP-seq mapping and analysis of butyrate-induced H3K9 and H3K27 acetylation and epigenomic landscape alteration in bovine cells

    USDA-ARS?s Scientific Manuscript database

    Utilizing next-generation sequencing technology, combined with ChIP (Chromatin Immunoprecipitation) technology, we analyzed histone modification (acetylation) induced by butyrate and the large-scale mapping of the epigenomic landscape of normal histone H3 and acetylated histone H3K9 and H3K27. To d...

  9. First identification and thermodynamic characterization of the ternary U(VI) species, UO2(O2)(CO3)2(4-), in UO2-H2O2-K2CO3 solutions.

    PubMed

    Goff, George S; Brodnax, Lia F; Cisneros, Michael R; Peper, Shane M; Field, Stephanie E; Scott, Brian L; Runde, Wolfgang H

    2008-03-17

    In alkaline carbonate solutions, hydrogen peroxide can selectively replace one of the carbonate ligands in UO2(CO3)3(4-) to form the ternary mixed U(VI) peroxo-carbonato species UO2(O2)(CO3)2(4-). Orange rectangular plates of K4[UO2(CO3)2(O2)].H2O were isolated and characterized by single crystal X-ray diffraction studies. Crystallographic data: monoclinic, space group P2(1)/ n, a = 6.9670(14) A, b = 9.2158(10) A, c = 18.052(4) A, Z = 4. Spectrophotometric titrations with H 2O 2 were performed in 0.5 M K 2CO 3, with UO2(O2)(CO3)2(4-) concentrations ranging from 0.1 to 0.55 mM. The molar absorptivities (M(-1) cm(-1)) for UO2(CO3)3(4-) and UO2(O2)(CO3)2(4-) were determined to be 23.3 +/- 0.3 at 448.5 nm and 1022.7 +/- 19.0 at 347.5 nm, respectively. Stoichiometric analyses coupled with spectroscopic comparisons between solution and solid state indicate that the stable solution species is UO2(O2)(CO3)2(4-), which has an apparent formation constant of log K' = 4.70 +/- 0.02 relative to the tris-carbonato complex.

  10. Oxothiomolybdenum derivatives of the superlacunary crown heteropolyanion {P8W48}: structure of [K4{Mo4O4S4(H2O)3(OH)2}2(WO2)(P8W48O184)]30– and studies in solution.

    PubMed

    Korenev, Vladimir S; Floquet, Sébastien; Marrot, Jérôme; Haouas, Mohamed; Mbomekallé, Israël-Martyr; Taulelle, Francis; Sokolov, Maxim N; Fedin, Vladimir P; Cadot, Emmanuel

    2012-02-20

    Reaction of the cyclic lacunary [H(7)P(8)W(48)O(184)](33-) anion (noted P(8)W(48)) with the [Mo(2)S(2)O(2)(H(2)O)(6)](2+) oxothiocation led to two compounds, namely, [K(4){Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(2)(WO(2))(P(8)W(48)O(184))](30-) (denoted 1) and [{Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(2)(P(8)W(48)O(184))](36-) (denoted 2), which were characterized in the solid state and solution. In the solid state, the structure of [K(4){Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(2)(WO(2))(P(8)W(48)O(184))](30-) reveals the presence of two disordered {Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(2+) "handles" connected on both sides of the P(8)W(48) ring. Such a disorder is consistent with the presence of two geometrical isomers where the relative disposition of the two {Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(2+) handles are arranged in a perpendicular or parallel mode. Such an interpretation is fully supported by (31)P and (183)W NMR solution studies. The relative stability of both geometrical isomers appears to be dependent upon the nature of the internal alkali cations, i.e., Na(+) vs K(+), and increased lability of the two {Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(2+) handles, compared to the oxo analogous, was clearly identified by significant broadening of the (31)P and (183)W NMR lines. Solution studies carried out by UV-vis spectroscopy showed that formation of the adduct [{Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(2)(P(8)W(48)O(184))](36-) occurs in the 1.5-4.7 pH range and corresponds to a fast and quantitative condensation process. Furthermore, (31)P NMR titrations in solution reveal formation of the "monohandle" derivative [{Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(P(8)W(48)O(184))](38-) as an intermediate prior to formation of the "bishandle" derivatives. Furthermore, the electrochemical behavior of [{Mo(4)O(4)S(4)(H(2)O)(3)(OH)(2)}(2)(P(8)W(48)O(184))](36-) was studied in aqueous medium and compared with the parent anion P(8)W(48).

  11. Thermally-induced first-order phase transition in the (FC6H4C2H4NH3)2[PbI4] photoluminescent organic-inorganic material

    NASA Astrophysics Data System (ADS)

    Koubaa, M.; Dammak, T.; Garrot, D.; Castro, M.; Codjovi, E.; Mlayah, A.; Abid, Y.; Boukheddaden, K.

    2012-03-01

    The thermal properties of the perovskite slab alkylammonium lead iodide (FC6H4C2H4NH3)2[PbI4] are investigated using spectroscopic ellipsometry, differential scanning calorimetry, photoluminescence, and Raman spectroscopy. The spectroscopic ellipsometry, performed in the heating mode, clearly evidenced the presence of a singularity at 375 K. This is corroborated by the temperature dependence of the photoluminescence, which pointed out a first-order order-disorder phase transition at ˜375 K, with a hysteresis loop of 40 K width. Raman spectroscopy data suggest that this transition arises from a dynamic rotational disordering of the ammonium headgroups of the alkylammonium chain. In contrast, differential scanning calorimetry measurements on a pellet sample led to an entropy change value ΔS ≈0.39 J/K/mol at the transition, suggesting the existence of a residual short-range order of the NH3+ on cooling from the high temperature phase.

  12. G-quadruplex RNA binding and recognition by the lysine-specific histone demethylase-1 enzyme.

    PubMed

    Hirschi, Alexander; Martin, William J; Luka, Zigmund; Loukachevitch, Lioudmila V; Reiter, Nicholas J

    2016-08-01

    Lysine-specific histone demethylase 1 (LSD1) is an essential epigenetic regulator in metazoans and requires the co-repressor element-1 silencing transcription factor (CoREST) to efficiently catalyze the removal of mono- and dimethyl functional groups from histone 3 at lysine positions 4 and 9 (H3K4/9). LSD1 interacts with over 60 regulatory proteins and also associates with lncRNAs (TERRA, HOTAIR), suggesting a regulatory role for RNA in LSD1 function. We report that a stacked, intramolecular G-quadruplex (GQ) forming TERRA RNA (GG[UUAGGG]8UUA) binds tightly to the functional LSD1-CoREST complex (Kd ≈ 96 nM), in contrast to a single GQ RNA unit ([UUAGGG]4U), a GQ DNA ([TTAGGG]4T), or an unstructured single-stranded RNA. Stabilization of a parallel-stranded GQ RNA structure by monovalent potassium ions (K(+)) is required for high affinity binding to the LSD1-CoREST complex. These data indicate that LSD1 can distinguish between RNA and DNA as well as structured versus unstructured nucleotide motifs. Further, cross-linking mass spectrometry identified the primary location of GQ RNA binding within the SWIRM/amine oxidase domain (AOD) of LSD1. An ssRNA binding region adjacent to this GQ binding site was also identified via X-ray crystallography. This RNA binding interface is consistent with kinetic assays, demonstrating that a GQ-forming RNA can serve as a noncompetitive inhibitor of LSD1-catalyzed demethylation. The identification of a GQ RNA binding site coupled with kinetic data suggests that structured RNAs can function as regulatory molecules in LSD1-mediated mechanisms. © 2016 Hirschi et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  13. Photocrystallographic structure determination of a new geometric isomer of [Ru(NH3)4(H2O)(eta1-OSO)][MeC6H4SO3]2.

    PubMed

    Bowes, Katharine F; Cole, Jacqueline M; Husheer, Shamus L G; Raithby, Paul R; Savarese, Teresa L; Sparkes, Hazel A; Teat, Simon J; Warren, John E

    2006-06-21

    The structure of a new metastable geometric isomer of [Ru(NH3)4(H2O)(SO2)][MeC6H4SO3]2 in which the SO2 group is coordinated through a single oxygen in an eta1-OSO bonding mode has been determined at 13 K; the new isomer was obtained as a 36% component of the structure within a single crystal upon irradiation using a tungsten lamp.

  14. Dimerization of Nitrophorin 4 at Low pH and Comparison to the K1A Mutant of Nitrophorin 1

    DOE PAGES

    Berry, Robert E.; Yang, Fei; Shokhireva, Tatiana K.; ...

    2014-12-09

    Nitrophorin 4, one of the four NO-carrying heme proteins from the salivary glands of Rhodnius prolixus, forms a homodimer at pH 5.0 with a K d of ~8 μM. This dimer begins to dissociate at pH 5.5 and is completely dissociated to monomer at pH 7.3, even at 3.7 mM. The dimer is significantly stabilized by binding NO to the heme and at pH 7.3 would require dilution to well below 0.2 mM to completely dissociate the NP4-NO homodimer. The primary techniques used for investigating the homodimer and the monomer–dimer equilibrium were size-exclusion fast protein liquid chromatography at pH 5.0more » and 1H{ 15N} heteronuclear single-quantum coherence spectroscopy as a function of pH and concentration. Preparation of site-directed mutants of NP4 (A1K, D30A, D30N, V36A/D129A/L130A, K38A, R39A, K125A, K125E, D132A, L133V, and K38Q/R39Q/K125Q) showed that the N-terminus, D30, D129, D132, at least one heme propionate, and, by association, likely also E32 and D35 are involved in the dimerization. The “closed loop” form of the A–B and G–H flexible loops of monomeric NP4, which predominates in crystal structures of the monomeric protein reported at pH 5.6 but not at pH 7.5 and which involves all of the residues listed above except D132, is required for dimer formation. Wild-type NP1 does not form a homodimer, but NP1(K1A) and native N-terminal NP1 form dimers in the presence of NO. Lastly, the homodimer of NP1, however, is considerably less stable than that of NP4 in the absence of NO. This suggests that additional aspartate or glutamate residues present in the C-terminal region of NP4, but not NP1, are also involved in stabilizing the dimer.« less

  15. PRMT5-mediated histone H4 arginine-3 symmetrical dimethylation marks chromatin at G + C-rich regions of the mouse genome

    PubMed Central

    Girardot, Michael; Hirasawa, Ryutaro; Kacem, Salim; Fritsch, Lauriane; Pontis, Julien; Kota, Satya K.; Filipponi, Doria; Fabbrizio, Eric; Sardet, Claude; Lohmann, Felix; Kadam, Shilpa; Ait-Si-Ali, Slimane; Feil, Robert

    2014-01-01

    Symmetrical dimethylation on arginine-3 of histone H4 (H4R3me2s) has been reported to occur at several repressed genes, but its specific regulation and genomic distribution remained unclear. Here, we show that the type-II protein arginine methyltransferase PRMT5 controls H4R3me2s in mouse embryonic fibroblasts (MEFs). In these differentiated cells, we find that the genome-wide pattern of H4R3me2s is highly similar to that in embryonic stem cells. In both the cell types, H4R3me2s peaks are detected predominantly at G + C-rich regions. Promoters are consistently marked by H4R3me2s, independently of transcriptional activity. Remarkably, H4R3me2s is mono-allelic at imprinting control regions (ICRs), at which it marks the same parental allele as H3K9me3, H4K20me3 and DNA methylation. These repressive chromatin modifications are regulated independently, however, since PRMT5-depletion in MEFs resulted in loss of H4R3me2s, without affecting H3K9me3, H4K20me3 or DNA methylation. Conversely, depletion of ESET (KMT1E) or SUV420H1/H2 (KMT5B/C) affected H3K9me3 and H4K20me3, respectively, without altering H4R3me2s at ICRs. Combined, our data indicate that PRMT5-mediated H4R3me2s uniquely marks the mammalian genome, mostly at G + C-rich regions, and independently from transcriptional activity or chromatin repression. Furthermore, comparative bioinformatics analyses suggest a putative role of PRMT5-mediated H4R3me2s in chromatin configuration in the nucleus. PMID:24097435

  16. Lysine-specific demethylase 2A expression is associated with cell growth and cyclin D1 expression in colorectal adenocarcinoma.

    PubMed

    Cao, Lin-Lin; Du, Changzheng; Liu, Hangqi; Pei, Lin; Qin, Li; Jia, Mei; Wang, Hui

    2018-04-01

    Lysine-specific demethylase 2A (KDM2A), a specific H3K36me1/2 demethylase, has been reported to be closely associated with several types of cancer. In this study, we aimed to investigate the expression and function of KDM2A in colorectal adenocarcinoma. A total of 215 colorectal adenocarcinoma specimens were collected, and then subjected to immunohistochemistry assay to evaluate the expression levels of KDM2A, cyclin D1 and other proteins in colorectal adenocarcinoma tissues. Real-time polymerase chain reaction, Western blot, and other molecular biology methods were used to explore the role of KDM2A in colorectal adenocarcinoma cells. In this study, we report that the expression level of KDM2A is high in colorectal adenocarcinoma tissues, and this high expression promotes the proliferation and colony formation of colorectal adenocarcinoma cells, as demonstrated by KDM2A knockdown experiments. In addition, the expression of KDM2A is closely associated with cyclin D1 expression in colorectal adenocarcinoma tissues and cell lines. Our study reveals a novel role for high-expressed KDM2A in colorectal adenocarcinoma cell growth, and that the expression of KDM2A is associated with that of cyclin D1 in colorectal adenocarcinoma.

  17. QM/MM Investigation of Substrate and Product Specificities of Suv4-20h2: How Does This Enzyme Generate Dimethylated H4K20 from Monomethylated Substrate?

    PubMed

    Qian, Ping; Guo, Haobo; Wang, Liang; Guo, Hong

    2017-06-13

    Protein lysine methyltransferases (PKMTs) catalyze the methylation of lysine residues on histone proteins in the regulation of chromatin structure and gene expression. In contrast to many other PKMTs for which unmodified lysine is the methylation target, the enzymes in the Suv4-20 family are able to generate dimethylated product (H4K20me2) based exclusively on the monomethylated H4K20 substrate (H4K20me1). The origin of such substrate/product specificity is still not clear. Here, molecular dynamics (MD) and free energy (potential of mean force) simulations are undertaken using quantum mechanical/molecular mechanical (QM/MM) potentials to understand the substrate/product specificities of Suv4-20h2, a member of the Suv4-20 family. The free energy barriers for mono-, di-, and trimethylation in Suv4-20h2 obtained from the simulations are found to be well correlated with the specificities observed experimentally with the allowed dimethylation based on the H4K20me1 substrate and prohibited monomethylation and trimethylation based on H4K20 and H4K20me2, respectively. It is demonstrated that the reason for the relatively efficient dimethylation is an effective transition state (TS) stabilization through strengthening the CH···O interactions as well as the presence of a cation-π interaction at the transition state. The simulations also show that the failures of Suv4-20h2 to catalyze monomethylation and trimethylation are due, respectively, to a less effective TS stabilization and inability of the reactant complex containing H4K20me2 to adopt a reactive (near attack) configuration for methyl transfer. The results suggest that care must be exercised in the prediction of the substrate specificity based only on the existence of near attack configurations in substrate complexes.

  18. Telobox motifs recruit CLF/SWN-PRC2 for H3K27me3 deposition via TRB factors in Arabidopsis.

    PubMed

    Zhou, Yue; Wang, Yuejun; Krause, Kristin; Yang, Tingting; Dongus, Joram A; Zhang, Yijing; Turck, Franziska

    2018-05-01

    Polycomb repressive complexes (PRCs) control organismic development in higher eukaryotes through epigenetic gene repression 1-4 . PRC proteins do not contain DNA-binding domains, thus prompting questions regarding how PRCs find their target loci 5 . Here we present genome-wide evidence of PRC2 recruitment by telomere-repeat-binding factors (TRBs) through telobox-related motifs in Arabidopsis. A triple trb1-2, trb2-1, and trb3-2 (trb1/2/3) mutant with a developmental phenotype and a transcriptome strikingly similar to those of strong PRC2 mutants showed redistribution of trimethyl histone H3 Lys27 (H3K27me3) marks and lower H3K27me3 levels, which were correlated with derepression of TRB1-target genes. TRB1-3 physically interacted with the PRC2 proteins CLF and SWN. A SEP3 reporter gene with a telobox mutation showed ectopic expression, which was correlated with H3K27me3 depletion, whereas tethering TRB1 to the mutated cis element partially restored repression. We propose that telobox-related motifs recruit PRC2 through the interaction between TRBs and CLF/SWN, a mechanism essential for H3K27me3 deposition at a subset of target genes.

  19. Dimerization of nitrophorin 4 at low pH and comparison to the K1A mutant of nitrophorin 1.

    PubMed

    Berry, Robert E; Yang, Fei; Shokhireva, Tatiana K; Amoia, Angela M; Garrett, Sarah A; Goren, Allena M; Korte, Stephanie R; Zhang, Hongjun; Weichsel, Andrzej; Montfort, William R; Walker, F Ann

    2015-01-20

    Nitrophorin 4, one of the four NO-carrying heme proteins from the salivary glands of Rhodnius prolixus, forms a homodimer at pH 5.0 with a Kd of ∼8 μM. This dimer begins to dissociate at pH 5.5 and is completely dissociated to monomer at pH 7.3, even at 3.7 mM. The dimer is significantly stabilized by binding NO to the heme and at pH 7.3 would require dilution to well below 0.2 mM to completely dissociate the NP4-NO homodimer. The primary techniques used for investigating the homodimer and the monomer-dimer equilibrium were size-exclusion fast protein liquid chromatography at pH 5.0 and (1)H{(15)N} heteronuclear single-quantum coherence spectroscopy as a function of pH and concentration. Preparation of site-directed mutants of NP4 (A1K, D30A, D30N, V36A/D129A/L130A, K38A, R39A, K125A, K125E, D132A, L133V, and K38Q/R39Q/K125Q) showed that the N-terminus, D30, D129, D132, at least one heme propionate, and, by association, likely also E32 and D35 are involved in the dimerization. The "closed loop" form of the A-B and G-H flexible loops of monomeric NP4, which predominates in crystal structures of the monomeric protein reported at pH 5.6 but not at pH 7.5 and which involves all of the residues listed above except D132, is required for dimer formation. Wild-type NP1 does not form a homodimer, but NP1(K1A) and native N-terminal NP1 form dimers in the presence of NO. The homodimer of NP1, however, is considerably less stable than that of NP4 in the absence of NO. This suggests that additional aspartate or glutamate residues present in the C-terminal region of NP4, but not NP1, are also involved in stabilizing the dimer.

  20. Dimerization of Nitrophorin 4 at Low pH and Comparison to the K1A Mutant of Nitrophorin 1

    PubMed Central

    2015-01-01

    Nitrophorin 4, one of the four NO-carrying heme proteins from the salivary glands of Rhodnius prolixus, forms a homodimer at pH 5.0 with a Kd of ∼8 μM. This dimer begins to dissociate at pH 5.5 and is completely dissociated to monomer at pH 7.3, even at 3.7 mM. The dimer is significantly stabilized by binding NO to the heme and at pH 7.3 would require dilution to well below 0.2 mM to completely dissociate the NP4-NO homodimer. The primary techniques used for investigating the homodimer and the monomer–dimer equilibrium were size-exclusion fast protein liquid chromatography at pH 5.0 and 1H{15N} heteronuclear single-quantum coherence spectroscopy as a function of pH and concentration. Preparation of site-directed mutants of NP4 (A1K, D30A, D30N, V36A/D129A/L130A, K38A, R39A, K125A, K125E, D132A, L133V, and K38Q/R39Q/K125Q) showed that the N-terminus, D30, D129, D132, at least one heme propionate, and, by association, likely also E32 and D35 are involved in the dimerization. The “closed loop” form of the A–B and G–H flexible loops of monomeric NP4, which predominates in crystal structures of the monomeric protein reported at pH 5.6 but not at pH 7.5 and which involves all of the residues listed above except D132, is required for dimer formation. Wild-type NP1 does not form a homodimer, but NP1(K1A) and native N-terminal NP1 form dimers in the presence of NO. The homodimer of NP1, however, is considerably less stable than that of NP4 in the absence of NO. This suggests that additional aspartate or glutamate residues present in the C-terminal region of NP4, but not NP1, are also involved in stabilizing the dimer. PMID:25489673

  1. Carbonate mineral solubility at low temperatures in the Na-K-Mg-Ca-H-Cl-SO 4-OH-HCO 3-CO 3-CO 2-H 2O system

    NASA Astrophysics Data System (ADS)

    Marion, Giles M.

    2001-06-01

    Carbonate minerals have played an important role in the geochemical evolution of Earth, and may have also played an important role in the geochemical evolution of Mars and Europa. Several models have been published in recent years that describe chloride and sulfate mineral solubilities in concentrated brines using the Pitzer equations. Few of these models are parameterized for subzero temperatures, and those that are do not include carbonate chemistry. The objectives of this work are to estimate Pitzer-equation bicarbonate-carbonate parameters and carbonate mineral solubility products and to incorporate them into the FREZCHEM model to predict carbonate mineral solubilities in the Na-K-Mg-Ca-H-Cl-SO 4-OH-HCO 3-CO 3-CO 2-H 2O system at low temperatures (≤25°C) with a special focus on subzero temperatures. Most of the Pitzer-equation parameters and equilibrium constants are taken from the literature and extrapolated into the subzero temperature range. Solubility products for 14 sodium, potassium, magnesium, and calcium bicarbonate and carbonate minerals are included in the model. Most of the experimental data are at temperatures ≥ -8°C; only for the NaHCO 3-NaCl-H 2O and Na 2CO 3-NaCl-H 2O systems are there bicarbonate and carbonate data to temperatures as low as -21.6°C. In general, the fit of the model to the experimental data is good. For example, calculated eutectic temperatures and compositions for NaHCO 3, Na 2CO 3, and their mixtures with NaCl and Na 2SO 4 salts are in good agreement with experimental data to temperatures as low as -21.6°C. Application of the model to eight saline, alkaline carbonate waters give predicted pHs ranging from 9.2 to 10.2, in comparison with measured pHs that range from 8.7 to 10.2. The model suggests that the CaCO 3 mineral that precipitates during seawater freezing is probably calcite and not ikaite. The model demonstrates that a proposed salt assemblage for the icy surface of Europa consisting of highly hydrated MgSO 4

  2. A Genetically Encoded Probe for Live-Cell Imaging of H4K20 Monomethylation.

    PubMed

    Sato, Yuko; Kujirai, Tomoya; Arai, Ritsuko; Asakawa, Haruhiko; Ohtsuki, Chizuru; Horikoshi, Naoki; Yamagata, Kazuo; Ueda, Jun; Nagase, Takahiro; Haraguchi, Tokuko; Hiraoka, Yasushi; Kimura, Akatsuki; Kurumizaka, Hitoshi; Kimura, Hiroshi

    2016-10-09

    Eukaryotic gene expression is regulated in the context of chromatin. Dynamic changes in post-translational histone modification are thought to play key roles in fundamental cellular functions such as regulation of the cell cycle, development, and differentiation. To elucidate the relationship between histone modifications and cellular functions, it is important to monitor the dynamics of modifications in single living cells. A genetically encoded probe called mintbody (modification-specific intracellular antibody), which is a single-chain variable fragment tagged with a fluorescent protein, has been proposed as a useful visualization tool. However, the efficacy of intracellular expression of antibody fragments has been limited, in part due to different environmental conditions in the cytoplasm compared to the endoplasmic reticulum where secreted proteins such as antibodies are folded. In this study, we have developed a new mintbody specific for histone H4 Lys20 monomethylation (H4K20me1). The specificity of the H4K20me1-mintbody in living cells was verified using yeast mutants and mammalian cells in which this target modification was diminished. Expression of the H4K20me1-mintbody allowed us to monitor the oscillation of H4K20me1 levels during the cell cycle. Moreover, dosage-compensated X chromosomes were visualized using the H4K20me1-mintbody in mouse and nematode cells. Using X-ray crystallography and mutational analyses, we identified critical amino acids that contributed to stabilization and/or proper folding of the mintbody. Taken together, these data provide important implications for future studies aimed at developing functional intracellular antibodies. Specifically, the H4K20me1-mintbody provides a powerful tool to track this particular histone modification in living cells and organisms. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Structure–function studies of histone H3/H4 tetramer maintenance during transcription by chaperone Spt2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Shoudeng; Rufiange, Anne; Huang, Hongda

    Cells use specific mechanisms such as histone chaperones to abrogate the inherent barrier that the nucleosome poses to transcribing polymerases. The current model postulates that nucleosomes can be transiently disrupted to accommodate passage of RNA polymerases and that histones H3 and H4 possess their own chaperones dedicated to the recovery of nucleosomes. Here, we determined the crystal structure of the conserved C terminus of human Suppressors of Ty insertions 2 (hSpt2C) chaperone bound to an H3/H4 tetramer. The structural studies demonstrate that hSpt2C is bound to the periphery of the H3/H4 tetramer, mimicking the trajectory of nucleosomal-bound DNA. These structuralmore » studies have been complemented with in vitro binding and in vivo functional studies on mutants that disrupt key intermolecular contacts involving two acidic patches and hydrophobic residues on Spt2C. We show that contacts between both human and yeast Spt2C with the H3/H4 tetramer are required for the suppression of H3/ H4 exchange as measured by H3K56ac and new H3 deposition. Furthermore, these interactions are also crucial for the inhibition of spurious transcription from within coding regions. In conclusion, together, our data indicate that Spt2 interacts with the periphery of the H3/H4 tetramer and promotes its recycling in the wake of RNA polymerase.« less

  4. Structure–function studies of histone H3/H4 tetramer maintenance during transcription by chaperone Spt2

    DOE PAGES

    Chen, Shoudeng; Rufiange, Anne; Huang, Hongda; ...

    2015-06-15

    Cells use specific mechanisms such as histone chaperones to abrogate the inherent barrier that the nucleosome poses to transcribing polymerases. The current model postulates that nucleosomes can be transiently disrupted to accommodate passage of RNA polymerases and that histones H3 and H4 possess their own chaperones dedicated to the recovery of nucleosomes. Here, we determined the crystal structure of the conserved C terminus of human Suppressors of Ty insertions 2 (hSpt2C) chaperone bound to an H3/H4 tetramer. The structural studies demonstrate that hSpt2C is bound to the periphery of the H3/H4 tetramer, mimicking the trajectory of nucleosomal-bound DNA. These structuralmore » studies have been complemented with in vitro binding and in vivo functional studies on mutants that disrupt key intermolecular contacts involving two acidic patches and hydrophobic residues on Spt2C. We show that contacts between both human and yeast Spt2C with the H3/H4 tetramer are required for the suppression of H3/ H4 exchange as measured by H3K56ac and new H3 deposition. Furthermore, these interactions are also crucial for the inhibition of spurious transcription from within coding regions. In conclusion, together, our data indicate that Spt2 interacts with the periphery of the H3/H4 tetramer and promotes its recycling in the wake of RNA polymerase.« less

  5. Novel human D-amino acid oxidase inhibitors stabilize an active-site lid-open conformation

    PubMed Central

    Terry-Lorenzo, Ryan T.; Chun, Lawrence E.; Brown, Scott P.; Heffernan, Michele L. R.; Fang, Q. Kevin; Orsini, Michael A.; Pollegioni, Loredano; Hardy, Larry W.; Spear, Kerry L.; Large, Thomas H.

    2014-01-01

    The NMDAR (N-methyl-D-aspartate receptor) is a central regulator of synaptic plasticity and learning and memory. hDAAO (human D-amino acid oxidase) indirectly reduces NMDAR activity by degrading the NMDAR co-agonist D-serine. Since NMDAR hypofunction is thought to be a foundational defect in schizophrenia, hDAAO inhibitors have potential as treatments for schizophrenia and other nervous system disorders. Here, we sought to identify novel chemicals that inhibit hDAAO activity. We used computational tools to design a focused, purchasable library of compounds. After screening this library for hDAAO inhibition, we identified the structurally novel compound, ‘compound 2’ [3-(7-hydroxy-2-oxo-4-phenyl-2H-chromen-6-yl)propanoic acid], which displayed low nM hDAAO inhibitory potency (Ki=7 nM). Although the library was expected to enrich for compounds that were competitive for both D-serine and FAD, compound 2 actually was FAD uncompetitive, much like canonical hDAAO inhibitors such as benzoic acid. Compound 2 and an analog were independently co-crystalized with hDAAO. These compounds stabilized a novel conformation of hDAAO in which the active-site lid was in an open position. These results confirm previous hypotheses regarding active-site lid flexibility of mammalian D-amino acid oxidases and could assist in the design of the next generation of hDAAO inhibitors. PMID:25001371

  6. Molecular basis for the role of oncogenic histone mutations in modulating H3K36 methylation

    DOE PAGES

    Zhang, Yinglu; Shan, Chun -Min; Wang, Jiyong; ...

    2017-03-03

    Histone H3 lysine 36 methylation (H3K36me) is critical for epigenetic regulation and mutations at or near H3K36 are associated with distinct types of cancers. H3K36M dominantly inhibits H3K36me on wild-type histones, whereas H3G34R/V selectively affects H3K36me on the same histone tail. Here we report the crystal structures of SETD2 SET domain in complex with an H3K36M peptide and SAM or SAH. There are large conformational changes in the substrate binding regions of the SET domain, and the K36M residue interacts with the catalytic pocket of SETD2. H3G34 is surrounded by a very narrow tunnel, which excludes larger amino acid sidemore » chains. H3P38 is in the trans configuration, and the cis configuration is incompatible with SETD2 binding. Lastly, mutations of H3G34 or H3P38 alleviate the inhibitory effects of H3K36M on H3K36me, demonstrating that the stable interaction of H3K36M with SETD2 is critical for its inhibitory effects.« less

  7. [Autogenous tarsus transplant as spacer for treatment of lower lid retraction in Grave's disease].

    PubMed

    Schittkowski, M P; Fichter, N; Guthoff, R F

    2008-08-01

    Lower lid retraction in dysthyroid orbitopathy is of less functional concern than optic neuropathy or diplopia in central positions of gaze. However, it may lead to incomplete lid closure resulting in corneal exposure. Patients often suffer from aesthetic impairment. A retrospective analysis of 13 consecutive patients treated for lower lid retraction due to Grave's Disease between 2005 and 2007 was undertaken. In spite of regular ophthalmological examinations, specific attention was directed to measurement of the lid fissure width and scleral show for quantification of lower lid retraction. OPERATION: The lower lid is everted and the conjunctiva is opened horizontally underneath the tarsal edge. Lower lid retractors are disinserted and dissected until the lower lid might be elevated in symmetry to the fellow eye. This procedure is continued until 1 mm overcorrection is gained. A free tarsal transplant is harvested from the ipsilateral upper lid tarsus. At least 4 mm vertical tarsus have to be left. Tarsus is sutured with absorbable material. In the 13 patients operated upon (9 women, 4 men) aged 23 - 67 years, scleral show was preoperative 2.7 mm (mean) and postoperative 0.1 mm. Lid fissure width was preoperative 13 mm (10 - 16 mm) and immediately postoperative 10.3 mm (7 - 13). 6 months postoperative the lid-elevating effect was reduced by 0.5 mm in maximum in the 9 patients available for control. The lid closure deficit, which was present in 7 patients before, could be corrected completely in 5 and diminished to 1 mm in 2 patients. Using this particular technique, functional and aesthetical satisfying results are obtained. The main advantages are renunciation of allogen, xenogeny or synthetic material with its possible risks of slow-virus infection and/or extrusion. Further studies are necessary to evaluate long-term results.

  8. An estimate of the PH3, CH3D, and GeH4 abundances on Jupiter from the Voyager IRIS data at 4.5 microns

    NASA Technical Reports Server (NTRS)

    Drossart, P.; Encrenaz, T.; Combes, M.; Kunde, V.; Hanel, R.

    1982-01-01

    No evidence is found for large scale phosphine abundance variations over Jovian latitudes between -30 and +30 deg, in PH3, CH3D, and GeH4 abundances derived from the 2100-2250/cm region of the Voyager 1 IRIS spectra. The PH3/H2 value of (4.5 + or - 1.5) X 10 to the -7th derived from atmospheric regions corresponding to 170-200 K is 0.75 + or - 0.25 times the solar value, and suggests that the PH3/H2 ratio on Jupiter decreases with atmospheric pressure upon comparison with other PH3 determinations at 10 microns. In the 200-250 K region, CH3D/H2 and GeH4/H2 ratios of 2.0 X 10 to the -7th and 1.0 X 10 to the -9th, respectively, are derived within a factor of 2.0. Assuming a C/H value of 0.001, as derived from Voyager, the CH3D/H2 ratio obtained in this study implies a D/H ratio of 0.000018. This is in agreement with the interstellar medium value.

  9. Characterization of Upper Eyelid Tarsus and Lid Wiper Dimensions.

    PubMed

    Navascues-Cornago, Maria; Maldonado-Codina, Carole; Gupta, Ruchi; Morgan, Philip B

    2016-09-01

    To measure various dimensions of the upper tarsal plate and the area of upper lid wiper staining. The repeatability of the method of measurement was investigated. Thirty-five healthy non-contact lens wearers were enrolled. The following parameters were measured from digital images of the upper eyelid captured with a slitlamp camera: length, height, and total area of the tarsal plate and area of lid wiper staining (lissamine green). Measurements were performed in a randomized and masked fashion on two separate occasions by the same investigator using ImageJ (National Institutes of Health). Coefficients of repeatability (COR) were calculated. The dimensions (mean±SD) of the tarsal plate were 20.6±1.9 mm length, 7.9±0.8 mm height, and 103.3±18.8 mm total area. The area of lid wiper staining was 2.7±2.0 mm. No association was found between tarsal dimensions and lid wiper staining (all P>0.05). Image analysis COR values were 0.6 mm tarsal length, 0.1 mm tarsal height, 1.2 mm tarsal area, and 0.4 mm lid wiper staining. There was no significant difference between repeated measurements for any parameter (all P>0.05). Limits of agreement were narrow for all parameters, indicating good agreement between repeated measurements. This work has demonstrated that there is a wide range in the dimensions of the upper tarsal plate in an urban UK population. No association was found between the upper tarsal dimensions and lid wiper staining. ImageJ was shown to be a repeatable method to measure the dimensions of the upper tarsal plate and upper lid wiper staining.

  10. Hyper-Acetylation of Histone H3K56 Limits Break-Induced Replication by Inhibiting Extensive Repair Synthesis

    PubMed Central

    Che, Jun; Smith, Stephanie; Kim, Yoo Jung; Shim, Eun Yong; Myung, Kyungjae; Lee, Sang Eun

    2015-01-01

    Break-induced replication (BIR) has been implicated in restoring eroded telomeres and collapsed replication forks via single-ended invasion and extensive DNA synthesis on the recipient chromosome. Unlike other recombination subtypes, DNA synthesis in BIR likely relies heavily on mechanisms enabling efficient fork progression such as chromatin modification. Herein we report that deletion of HST3 and HST4, two redundant de-acetylases of histone H3 Lysine 56 (H3K56), inhibits BIR, sensitizes checkpoint deficient cells to deoxyribonucleotide triphosphate pool depletion, and elevates translocation-type gross chromosomal rearrangements (GCR). The basis for deficiency in BIR and gene conversion with long gap synthesis in hst3Δ hst4Δ cells can be traced to a defect in extensive DNA synthesis. Distinct from other cellular defects associated with deletion of HST3 and HST4 including thermo-sensitivity and elevated spontaneous mutagenesis, the BIR defect in hst3Δ hst4Δ cannot be offset by the deletion of RAD17 or MMS22, but rather by the loss of RTT109 or ASF1, or in combination with the H3K56R mutation, which also restores tolerance to replication stress in mrc1 mutants. Our studies suggest that acetylation of H3K56 limits extensive repair synthesis and interferes with efficient fork progression in BIR. PMID:25705897

  11. LOFT L2-3 blowdown experiment safety analyses D, E, and G; LOCA analyses H, K, K1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perryman, J.L.; Keeler, C.D.; Saukkoriipi, L.O.

    1978-12-01

    Three calculations using conservative off-nominal conditions and evaluation model options were made using RELAP4/MOD5 for blowdown-refill and RELAP4/MOD6 for reflood for Loss-of-Fluid Test Experiment L2-3 to support the experiment safety analysis effort. The three analyses are as follows: Analysis D: Loss of commercial power during Experiment L2-3; Analysis E: Hot leg quick-opening blowdown valve (QOBV) does not open during Experiment L2-3; and Analysis G: Cold leg QOBV does not open during Experiment L2-3. In addition, the results of three LOFT loss-of-coolant accident (LOCA) analyses using a power of 56.1 MW and a primary coolant system flow rate of 3.6 millionmore » 1bm/hr are presented: Analysis H: Intact loop 200% hot leg break; emergency core cooling (ECC) system B unavailable; Analysis K: Pressurizer relief valve stuck in open position; ECC system B unavailable; and Analysis K1: Same as analysis K, but using a primary coolant system flow rate of 1.92 million 1bm/hr (L2-4 pre-LOCE flow rate). For analysis D, the maximum cladding temperature reached was 1762/sup 0/F, 22 sec into reflood. In analyses E and G, the blowdowns were slower due to one of the QOBVs not functioning. The maximum cladding temperature reached in analysis E was 1700/sup 0/F, 64.7 sec into reflood; for analysis G, it was 1300/sup 0/F at the start of reflood. For analysis H, the maximum cladding temperature reached was 1825/sup 0/F, 0.01 sec into reflood. Analysis K was a very slow blowdown, and the cladding temperatures followed the saturation temperature of the system. The results of analysis K1 was nearly identical to analysis K; system depressurization was not affected by the primary coolant system flow rate.« less

  12. Processes of Molecular Relaxation in Binary Crystalline Systems KNO3-KClO4, KNO3-KNO2, and K2CO3-K2SO4

    NASA Astrophysics Data System (ADS)

    Aliev, A. R.; Akhmedov, I. R.; Kakagasanov, M. G.; Aliev, Z. A.; Gafurov, M. M.; Rabadanov, K. Sh.; Amirov, A. M.

    2018-03-01

    The processes of molecular relaxation in binary crystalline systems KNO3-KClO4, KNO3-KNO2, and K2CO3-K2SO4 are studied via differential thermal analysis and Raman spectroscopy. It is found that the relaxation time of the vibrations ν1( A) of anions NO- 3 and CO2- 3 in systems KNO3-KClO4, KNO3-KNO2, and K2CO3-K2SO4 is less than that in KNO3 and K2CO3, respectively. It is shown that the increased rate of relaxation is explained by an additional relaxation mechanism presented in the system. This mechanism is associated with the excitation of vibrations of anions ClO- 4, NO- 2, and SO2- 4 and the lattice phonons that emerge. It is found that this relaxation mechanism requires correspondence of the frequency difference of these vibrations to the region of sufficiently high density of states of the phonon spectrum.

  13. The histone demethylase KDM3A, and its downstream target MCAM, promote Ewing Sarcoma cell migration and metastasis

    PubMed Central

    Sechler, Marybeth; Parrish, Janet K.; Birks, Diane K.; Jedlicka, Paul

    2017-01-01

    Ewing Sarcoma is the second most common solid pediatric malignant neoplasm of bone and soft tissue. Driven by EWS/Ets, or rarely variant, oncogenic fusions, Ewing Sarcoma is a biologically and clinically aggressive disease with a high propensity for metastasis. However, the mechanisms underpinning Ewing Sarcoma metastasis are currently not well understood. In the present study, we identify and characterize a novel metastasis-promotional pathway in Ewing Sarcoma, involving the histone demethylase KDM3A, previously identified by our laboratory as a new cancer-promoting gene in this disease. Using global gene expression profiling, we show that KDM3A positively regulates genes and pathways implicated in cell migration and metastasis, and demonstrate, using functional assays, that KDM3A promotes migration in vitro and experimental, post-intravasation, metastasis in vivo. We further identify the Melanoma Cell Adhesion Molecule (MCAM) as a novel KDM3A target gene in Ewing Sarcoma, and an important effector of KDM3A pro-metastatic action. Specifically, we demonstrate that MCAM depletion, like KDM3A depletion, inhibits cell migration in vitro and experimental metastasis in vivo, and that MCAM partially rescues impaired migration due to KDM3A knock-down. Mechanistically, we show that KDM3A regulates MCAM expression both through a direct mechanism, involving modulation of H3K9 methylation at the MCAM promoter, and an indirect mechanism, via the Ets1 transcription factor. Lastly, we identify an association between high MCAM levels in patient tumors and poor survival, in two different Ewing Sarcoma clinical cohorts. Taken together, our studies uncover a new metastasis-promoting pathway in Ewing Sarcoma, with therapeutically targetable components. PMID:28319067

  14. ORC1 BAH domain links H4K20me2 to DNA replication licensing and Meier-Gorlin syndrome

    PubMed Central

    Kuo, Alex J.; Song, Jikui; Cheung, Peggie; Ishibe-Murakami, Satoko; Yamazoe, Sayumi; Chen, James K.; Patel, Dinshaw J.; Gozani, Or

    2012-01-01

    Recognition of distinctly modified histones by specialized “effector” proteins constitutes a key mechanism for transducing molecular events at chromatin to biological outcomes1. Effector proteins influence DNA-templated processes, including transcription, DNA recombination, and DNA repair; however, no effector functions have yet been identified within the mammalian machinery that regulates DNA replication. Here we show that ORC1 – a component of ORC (origin of replication complex), which mediates pre-DNA replication licensing2 – contains a BAH (bromo adjacent homology) domain that specifically recognizes histone H4 dimethylated at lysine 20 (H4K20me2). Recognition of H4K20me2 is a property common to BAH domains present within diverse metazoan ORC1 proteins. Structural studies reveal that the specificity of the BAH domain for H4K20me2 is mediated by a dynamic aromatic dimethyllysine-binding cage and multiple intermolecular contacts involving the bound peptide. H4K20me2 is enriched at replication origins and abrogating ORC1 recognition of H4K20me2 in cells impairs ORC1 occupancy at origins, ORC chromatin loading, and cell-cycle progression. Mutation of the ORC1 BAH domain has been implicated in the etiology of Meier-Gorlin syndrome (MGS)3,4, a form of primordial dwarfism5, and ORC1 depletion in zebrafish results in an MGS-like phenotype4. We find that wild-type human ORC1, but not ORC1 H4K20me2-binding mutants, rescues the growth retardation of orc1 morphants. Moreover, zebrafish depleted of H4K20me2 have diminished body size, mirroring the phenotype of orc1 morphants. Together, our results identify the BAH domain as a novel methyllysine-binding module, thereby establishing the first direct link between histone methylation and the metazoan DNA replication machinery, and defining a pivotal etiologic role for the canonical H4K20me2 mark, via ORC1, in primordial dwarfism. PMID:22398447

  15. Biotransformation of ferulic acid to protocatechuic acid by Corynebacterium glutamicum ATCC 21420 engineered to express vanillate O-demethylase.

    PubMed

    Okai, Naoko; Masuda, Takaya; Takeshima, Yasunobu; Tanaka, Kosei; Yoshida, Ken-Ichi; Miyamoto, Masanori; Ogino, Chiaki; Kondo, Akihiko

    2017-12-01

    Ferulic acid (4-hydroxy-3-methoxycinnamic acid, FA) is a lignin-derived phenolic compound abundant in plant biomass. The utilization of FA and its conversion to valuable compounds is desired. Protocatechuic acid (3,4-dihydroxybenzoic acid, PCA) is a precursor of polymers and plastics and a constituent of food. A microbial conversion system to produce PCA from FA was developed in this study using a PCA-producing strain of Corynebacterium glutamicum F (ATCC 21420). C. glutamicum strain F grown at 30 °C for 48 h utilized 2 mM each of FA and vanillic acid (4-hydroxy-3-methoxybenzoic acid, VA) to produce PCA, which was secreted into the medium. FA may be catabolized by C. glutamicum through proposed (I) non-β-oxidative, CoA-dependent or (II) β-oxidative, CoA-dependent phenylpropanoid pathways. The conversion of VA to PCA is the last step in each pathway. Therefore, the vanillate O-demethylase gene (vanAB) from Corynebacterium efficiens NBRC 100395 was expressed in C. glutamicum F (designated strain FVan) cultured at 30 °C in AF medium containing FA. Strain C. glutamicum FVan converted 4.57 ± 0.07 mM of FA into 2.87 ± 0.01 mM PCA after 48 h with yields of 62.8% (mol/mol), and 6.91 mM (1064 mg/L) of PCA was produced from 16.0 mM of FA after 12 h of fed-batch biotransformation. Genomic analysis of C. glutamicum ATCC 21420 revealed that the PCA-utilization genes (pca cluster) were conserved in strain ATCC 21420 and that mutations were present in the PCA importer gene pcaK.

  16. The tumor suppressor SirT2 regulates cell cycle progression and genome stability by modulating the mitotic deposition of H4K20 methylation

    PubMed Central

    Serrano, Lourdes; Martínez-Redondo, Paloma; Marazuela-Duque, Anna; Vazquez, Berta N.; Dooley, Scott J.; Voigt, Philipp; Beck, David B.; Kane-Goldsmith, Noriko; Tong, Qiang; Rabanal, Rosa M.; Fondevila, Dolors; Muñoz, Purificación; Krüger, Marcus; Tischfield, Jay A.; Vaquero, Alejandro

    2013-01-01

    The establishment of the epigenetic mark H4K20me1 (monomethylation of H4K20) by PR-Set7 during G2/M directly impacts S-phase progression and genome stability. However, the mechanisms involved in the regulation of this event are not well understood. Here we show that SirT2 regulates H4K20me1 deposition through the deacetylation of H4K16Ac (acetylation of H4K16) and determines the levels of H4K20me2/3 throughout the cell cycle. SirT2 binds and deacetylates PR-Set7 at K90, modulating its chromatin localization. Consistently, SirT2 depletion significantly reduces PR-Set7 chromatin levels, alters the size and number of PR-Set7 foci, and decreases the overall mitotic deposition of H4K20me1. Upon stress, the interaction between SirT2 and PR-Set7 increases along with the H4K20me1 levels, suggesting a novel mitotic checkpoint mechanism. SirT2 loss in mice induces significant defects associated with defective H4K20me1–3 levels. Accordingly, SirT2-deficient animals exhibit genomic instability and chromosomal aberrations and are prone to tumorigenesis. Our studies suggest that the dynamic cross-talk between the environment and the genome during mitosis determines the fate of the subsequent cell cycle. PMID:23468428

  17. KDM1 Class Flavin-Dependent Protein Lysine Demethylases

    PubMed Central

    Burg, Jonathan M.; Link, Jennifer E.; Morgan, Brittany S.; Heller, Frederick J.; Hargrove, Amanda E.; McCafferty, Dewey G.

    2015-01-01

    Flavin-dependent, lysine-specific protein demethylases (KDM1s) are a subfamily of amine oxidases that catalyze the selective posttranslational oxidative demethylation of methyllysine side chains within protein and peptide substrates. KDM1s participate in the widespread epigenetic regulation of both normal and disease state transcriptional programs. Their activities are central to various cellular functions, such as hematopoietic and neuronal differentiation, cancer proliferation and metastasis, and viral lytic replication and establishment of latency. Interestingly, KDM1s function as catalytic subunits within complexes with coregulatory molecules that modulate enzymatic activity of the demethylases and coordinate their access to specific substrates at distinct sites within the cell and chromatin. Although several classes of KDM1 -selective small molecule inhibitors have been recently developed, these pan-active site inhibition strategies lack the ability to selectively discriminate between KDM1 activity in specific, and occasionally opposing, functional contexts within these complexes. Here we review the discovery of this class of demethylases, their structures, chemical mechanisms, and specificity. Additionally, we review inhibition of this class of enzymes as well as emerging interactions with coregulatory molecules that regulate demethylase activity in highly specific functional contexts of biological and potential therapeutic importance. PMID:25787087

  18. CAF-1-induced oligomerization of histones H3/H4 and mutually exclusive interactions with Asf1 guide H3/H4 transitions among histone chaperones and DNA

    PubMed Central

    Liu, Wallace H.; Roemer, Sarah C.; Port, Alex M.; Churchill, Mair E. A.

    2012-01-01

    Anti-silencing function 1 (Asf1) and Chromatin Assembly Factor 1 (CAF-1) chaperone histones H3/H4 during the assembly of nucleosomes on newly replicated DNA. To understand the mechanism of histone H3/H4 transfer among Asf1, CAF-1 and DNA from a thermodynamic perspective, we developed and employed biophysical approaches using full-length proteins in the budding yeast system. We find that the C-terminal tail of Asf1 enhances the interaction of Asf1 with CAF-1. Surprisingly, although H3/H4 also enhances the interaction of Asf1 with the CAF-1 subunit Cac2, H3/H4 forms a tight complex with CAF-1 exclusive of Asf1, with an affinity weaker than Asf1–H3/H4 or H3/H4–DNA interactions. Unlike Asf1, monomeric CAF-1 binds to multiple H3/H4 dimers, which ultimately promotes the formation of (H3/H4)2 tetramers on DNA. Thus, transition of H3/H4 from the Asf1-associated dimer to the DNA-associated tetramer is promoted by CAF-1-induced H3/H4 oligomerization. PMID:23034810

  19. H3K27me3 dynamics dictate evolving uterine states in pregnancy and parturition

    PubMed Central

    Nancy, Patrice; Siewiera, Johan; Tagliani, Elisa; Osokine, Ivan; Manandhar, Priyanka; Clementi, Caterina

    2017-01-01

    Uncovering the causes of pregnancy complications such as preterm labor requires greater insight into how the uterus remains in a noncontractile state until term and then surmounts this state to enter labor. Here, we show that dynamic generation and erasure of the repressive histone modification tri-methyl histone H3 lysine 27 (H3K27me3) in decidual stromal cells dictate both elements of pregnancy success in mice. In early gestation, H3K27me3-induced transcriptional silencing of select gene targets ensured uterine quiescence by preventing the decidua from expressing parturition-inducing hormone receptors, manifesting type 1 immunity, and most unexpectedly, generating myofibroblasts and associated wound-healing responses. In late gestation, genome-wide H3K27 demethylation allowed for target gene upregulation, decidual activation, and labor entry. Pharmacological inhibition of H3K27 demethylation in late gestation not only prevented term parturition, but also inhibited delivery while maintaining pup viability in a noninflammatory model of preterm parturition. Immunofluorescence analysis of human specimens suggested that similar regulatory events might occur in the human decidua. Together, these results reveal the centrality of regulated gene silencing in the uterine adaptation to pregnancy and suggest new areas in the study and treatment of pregnancy disorders. PMID:29202469

  20. Monolithic LTCC seal frame and lid

    DOEpatents

    Krueger, Daniel S.; Peterson, Kenneth A.; Stockdale, Dave; Duncan, James Brent; Riggs, Bristen

    2016-06-21

    A method for forming a monolithic seal frame and lid for use with a substrate and electronic circuitry comprises the steps of forming a mandrel from a ceramic and glass based material, forming a seal frame and lid block from a ceramic and glass based material, creating a seal frame and lid by forming a compartment and a plurality of sidewalls in the seal frame and lid block, placing the seal frame and lid on the mandrel such that the mandrel fits within the compartment, and cofiring the seal frame and lid block.

  1. Mutation of A677 in histone methyltransferase EZH2 in human B-cell lymphoma promotes hypertrimethylation of histone H3 on lysine 27 (H3K27).

    PubMed

    McCabe, Michael T; Graves, Alan P; Ganji, Gopinath; Diaz, Elsie; Halsey, Wendy S; Jiang, Yong; Smitheman, Kimberly N; Ott, Heidi M; Pappalardi, Melissa B; Allen, Kimberly E; Chen, Stephanie B; Della Pietra, Anthony; Dul, Edward; Hughes, Ashley M; Gilbert, Seth A; Thrall, Sara H; Tummino, Peter J; Kruger, Ryan G; Brandt, Martin; Schwartz, Benjamin; Creasy, Caretha L

    2012-02-21

    Trimethylation of histone H3 on lysine 27 (H3K27me3) is a repressive posttranslational modification mediated by the histone methyltransferase EZH2. EZH2 is a component of the polycomb repressive complex 2 and is overexpressed in many cancers. In B-cell lymphomas, its substrate preference is frequently altered through somatic mutation of the EZH2 Y641 residue. Herein, we identify mutation of EZH2 A677 to a glycine (A677G) among lymphoma cell lines and primary tumor specimens. Similar to Y641 mutant cell lines, an A677G mutant cell line revealed aberrantly elevated H3K27me3 and decreased monomethylated H3K27 (H3K27me1) and dimethylated H3K27 (H3K27me2). A677G EZH2 possessed catalytic activity with a substrate specificity that was distinct from those of both WT EZH2 and Y641 mutants. Whereas WT EZH2 displayed a preference for substrates with less methylation [unmethylated H3K27 (H3K27me0):me1:me2 k(cat)/K(m) ratio = 9:6:1] and Y641 mutants preferred substrates with greater methylation (H3K27me0:me1:me2 k(cat)/K(m) ratio = 1:2:13), the A677G EZH2 demonstrated nearly equal efficiency for all three substrates (H3K27me0:me1:me2 k(cat)/K(m) ratio = 1.1:0.6:1). When transiently expressed in cells, A677G EZH2, but not WT EZH2, increased global H3K27me3 and decreased H3K27me2. Structural modeling of WT and mutant EZH2 suggested that the A677G mutation acquires the ability to methylate H3K27me2 through enlargement of the lysine tunnel while preserving activity with H3K27me0/me1 substrates through retention of the Y641 residue that is crucial for orientation of these smaller substrates. This mutation highlights the interplay between Y641 and A677 residues in the substrate specificity of EZH2 and identifies another lymphoma patient population that harbors an activating mutation of EZH2.

  2. Silica-induced initiation of circular ZC3H4 RNA/ZC3H4 pathway promotes the pulmonary macrophage activation.

    PubMed

    Yang, Xiyue; Wang, Jing; Zhou, Zewei; Jiang, Rong; Huang, Jie; Chen, Lulu; Cao, Zhouli; Chu, Han; Han, Bing; Cheng, Yusi; Chao, Jie

    2018-06-01

    Phagocytosis of silicon dioxide (SiO 2 ) into lung cells causes an inflammatory cascade that results in fibroblast proliferation and migration, followed by fibrosis. Circular RNAs (circRNAs) are a subclass of noncoding RNAs that are present within mammalian cells; however, researchers have not determined whether circRNAs are involved in the pathophysiologic process of silicosis. To elucidate the role of these RNAs in SiO 2 -induced inflammation in pulmonary macrophages, we investigated the upstream molecular mechanisms and functional effects of circRNAs on cell apoptosis, proliferation, and migration. Primary cultures of alveolar macrophages from healthy donors and from patients and the RAW264.7 macrophage cell line were used to explore the functions of circZC3H4 RNA in macrophage activation. The experimental results indicated the following: 1) SiO 2 concomitantly increased circZC3H4 RNA expression and increased ZC3H4 protein levels; 2) circular ZC3H4 (circZC3H4) RNA and ZC3H4 protein participated in SiO 2 -induced macrophage activation; and 3) SiO 2 -activated macrophages promoted fibroblast proliferation and migration via the circZC3H4 RNA/ZC3H4 pathway. The up-regulation of the ZC3H4 protein was confirmed in tissue samples from patients with silicosis. Our study elucidates a link between SiO 2 -induced macrophage activation and the circZC3H4 RNA/ZC3H4 pathway, thereby providing novel insight into the potential use of ZC3H4 to develop novel therapeutic strategies for silicosis.-Yang, X., Wang, J., Zhou, Z., Jiang, R., Huang, J., Chen, L., Cao, Z., Chu, H., Han, B., Cheng, Y., Chao, J. Silica-induced initiation of circular ZC3H4 RNA/ZC3H4 pathway promotes the pulmonary macrophage activation.

  3. Kinetics of photoinduced electron transfer between DNA bases and triplet 3,3',4,4'-benzophenone tetracarboxylic acid in aqueous solution of different pH's: proton-coupled electron transfer?

    PubMed

    Nguyen, Truong X; Kattnig, Daniel; Mansha, Asim; Grampp, Günter; Yurkovskaya, Alexandra V; Lukzen, Nikita

    2012-11-08

    The kinetics of triplet state quenching of 3,3',4,4'-benzophenone tetracarboxylic acid (BPTC) by DNA bases adenine, adenosine, thymine, and thymidine has been investigated in aqueous solution using time-resolved laser flash photolysis. The observation of the BPTC ketyl radical anion at λ(max) = 630 nm indicates that one electron transfer is involved in the quenching reactions. The pH-dependence of the quenching rate constants is measured in detail. As a result, the chemical reactivity of the reactants is assigned. The bimolecular rate constants of the quenching reactions between triplet BPTC and adenine, adenosine, thymine, and thymidine are k(q) = 2.3 × 10(9) (4.7 < pH < 9.9), k(q) = 4.0 × 10(9) (3.5 < pH < 4.7), k(q) = 1.0 × 10(9) (4.7 < pH < 9.9), and k(q) = 4.0 × 10(8) M(-1) s(-1) (4.7 < pH < 9.8), respectively. Moreover, it reveals that in strong basic medium (pH = 12.0) a keto-enol tautomerism of thymine inhibits its reaction with triplet BPTC. Such a behavior is not possible for thymidine because of its deoxyribose group. In addition, the pH-dependence of the apparent electrochemical standard potential of thymine in aqueous solution was investigated by cyclic voltammetry. The ΔE/ΔpH ≈ -59 mV/pH result is characteristic of proton-coupled electron transfer. This behavior, together with the kinetic analysis, leads to the conclusion that the quenching reactions between triplet BPTC and thymine involve one proton-coupled electron transfer.

  4. Repression of Middle Sporulation Genes in Saccharomyces cerevisiae by the Sum1-Rfm1-Hst1 Complex Is Maintained by Set1 and H3K4 Methylation

    PubMed Central

    Jaiswal, Deepika; Jezek, Meagan; Quijote, Jeremiah; Lum, Joanna; Choi, Grace; Kulkarni, Rushmie; Park, DoHwan; Green, Erin M.

    2017-01-01

    The conserved yeast histone methyltransferase Set1 targets H3 lysine 4 (H3K4) for mono, di, and trimethylation and is linked to active transcription due to the euchromatic distribution of these methyl marks and the recruitment of Set1 during transcription. However, loss of Set1 results in increased expression of multiple classes of genes, including genes adjacent to telomeres and middle sporulation genes, which are repressed under normal growth conditions because they function in meiotic progression and spore formation. The mechanisms underlying Set1-mediated gene repression are varied, and still unclear in some cases, although repression has been linked to both direct and indirect action of Set1, associated with noncoding transcription, and is often dependent on the H3K4me2 mark. We show that Set1, and particularly the H3K4me2 mark, are implicated in repression of a subset of middle sporulation genes during vegetative growth. In the absence of Set1, there is loss of the DNA-binding transcriptional regulator Sum1 and the associated histone deacetylase Hst1 from chromatin in a locus-specific manner. This is linked to increased H4K5ac at these loci and aberrant middle gene expression. These data indicate that, in addition to DNA sequence, histone modification status also contributes to proper localization of Sum1. Our results also show that the role for Set1 in middle gene expression control diverges as cells receive signals to undergo meiosis. Overall, this work dissects an unexplored role for Set1 in gene-specific repression, and provides important insights into a new mechanism associated with the control of gene expression linked to meiotic differentiation. PMID:29066473

  5. Retrofitting LID Practices into Existing Neighborhoods: Is It Worth It?

    NASA Astrophysics Data System (ADS)

    Wright, Timothy J.; Liu, Yaoze; Carroll, Natalie J.; Ahiablame, Laurent M.; Engel, Bernard A.

    2016-04-01

    Low-impact development (LID) practices are gaining popularity as an approach to manage stormwater close to the source. LID practices reduce infrastructure requirements and help maintain hydrologic processes similar to predevelopment conditions. Studies have shown LID practices to be effective in reducing runoff and improving water quality. However, little has been done to aid decision makers in selecting the most effective practices for their needs and budgets. The long-term hydrologic impact assessment LID model was applied to four neighborhoods in Lafayette, Indiana using readily available data sources to compare LID practices by analyzing runoff volumes, implementation cost, and the approximate period needed to achieve payback on the investment. Depending on the LID practice and adoption level, 10-70 % reductions in runoff volumes could be achieved. The cost per cubic meter of runoff reduction was highly variable depending on the LID practice and the land use to which it was applied, ranging from around 3 to almost 600. In some cases the savings from reduced runoff volumes paid back the LID practice cost with interest in less than 3 years, while in other cases it was not possible to generate a payback. Decision makers need this information to establish realistic goals and make informed decisions regarding LID practices before moving into detailed designs, thereby saving time and resources.

  6. Reduced H3K27me3 expression in Merkel cell polyoma virus-positive tumors.

    PubMed

    Busam, Klaus J; Pulitzer, Melissa P; Coit, Daniel C; Arcila, Maria; Leng, Danielle; Jungbluth, Achim A; Wiesner, Thomas

    2017-06-01

    Merkel cell carcinoma is a primary cutaneous neuroendocrine carcinoma, which once metastatic is difficult to treat. Recent mutation analyses of Merkel cell carcinoma revealed a low number of mutations in Merkel cell polyomavirus-associated tumors, and a high number of mutations in virus-negative combined squamous cell and neuroendocrine carcinomas of chronically sun-damaged skin. We speculated that the paucity of mutations in virus-positive Merkel cell carcinoma may reflect a pathomechanism that depends on derangements of chromatin without alterations in the DNA sequence (epigenetic dysregulation). One central epigenetic regulator is the Polycomb repressive complex 2 (PRC2), which silences genomic regions by trimethylating (me3) lysine (K) 27 of histone H3, and thereby establishes the histone mark H3K27me3. Recent experimental research data demonstrated that PRC2 loss in mice skin results in the formation of Merkel cells. Prompted by these findings, we explored a possible contribution of PRC2 loss in human Merkel cell carcinoma. We examined the immunohistochemical expression of H3K27me3 in 35 Merkel cell carcinomas with pure histological features (22 primary and 13 metastatic lesions) and in 5 combined squamous and neuroendocrine carcinomas of the skin. We found a strong reduction of H3K27me3 staining in tumors with pure histologic features and virus-positive Merkel cell carcinomas. Combined neuroendocrine carcinomas had no or only minimal loss of H3K27me3 labeling. Our findings suggest that a PRC2-mediated epigenetic deregulation may play a role in the pathogenesis of virus-positive Merkel cell carcinomas and in tumors with pure histologic features.

  7. Infrared spectroscopy of solid normal hydrogen doped with CH3F and O2 at 4.2 K: CH3F:O2 complex and CH3F migration

    NASA Astrophysics Data System (ADS)

    Abouaf-Marguin, L.; Vasserot, A.-M.

    2011-04-01

    Double doping of solid normal hydrogen with CH3F and O2 at about 4.2 K gives evidence of (ortho-H2)n:CH3F clusters and of O2:CH3F complex formation. FTIR analysis of the time evolution of the spectra in the region of the v3 C-F stretching mode indicates that these clusters behave very differently from (ortho-H2)n:H2O clusters. The main point is the observed migration of CH3F molecules in solid para-H2 at 4.2 K which differs from that of H2O under identical experimental conditions. This is confirmed by an increase over time of the integrated intensity of the CH3F:O2 complex with a rate constant K = 2.7(2) . 10-4 s-1.

  8. The Versatile Lid Crease Approach to Upper Eyelid Margin Rotation.

    PubMed

    Cruz, Antonio A V; Akaishi, Patricia M S; Al-Dufaileej, Mohammed; Galindo-Ferreiro, Alicia

    2015-01-01

    Lid margin rotational procedures have been used to correct cicatricial trachomatous entropion since the 19(th) century. There are two basic types of surgeries used for lid margin rotation. The first type is based on through-and-through approach combining tarsotomy and the use of sutures on the anterior lamella. The second type of surgery was suggested by Trabut, who proposed a tarsal advancement by posterior approach. We demonstrate that using a lid crease incision combines the basic mechanisms of the anterior and posterior approaches and in addition, addresses a variety of lid problems commonly found in the aged population with cicatricial entropion. After tarsal plate exposure, a tarsotomy through conjunctiva is performed as described by Trabut. Then, instead of using external sutures secured by bolsters, internal absorbable sutures can be used to simultaneously advance the distal tarsal fragment and exert strong tension on the marginal orbicularis muscle. Sixty lids of 40 patients underwent surgery with a lid crease incision. The follow-up ranged from 1 to 12 months (mean 3.0 months ± 2.71). Forty percent of the patients (24 lids) had more than 3 months of follow-up. Adequate margin rotation was achieved in all lids but one that showed a medial eyelash touching the cornea.

  9. HDAC inhibitors induce global changes in histone lysine and arginine methylation and alter expression of lysine demethylases.

    PubMed

    Lillico, Ryan; Sobral, Marina Gomez; Stesco, Nicholas; Lakowski, Ted M

    2016-02-05

    Histone deacetylase (HDAC) inhibitors are cancer treatments that inhibit the removal of the epigenetic modification acetyllysine on histones, resulting in altered gene expression. Such changes in expression may influence other histone epigenetic modifications. We describe a validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to quantify lysine acetylation and methylation and arginine methylation on histones extracted from cultured cells treated with HDAC inhibitors. The HDAC inhibitors vorinostat, mocetinostat and entinostat induced 400-600% hyperacetylation in HEK 293 and K562 cells. All HDAC inhibitors decreased histone methylarginines in HEK 293 cells but entinostat produced dose dependent reductions in asymmetric dimethylarginine, not observed in K562 cells. Vorinostat produced increases in histone lysine methylation and decreased expression of some lysine demethylases (KDM), measured by quantitative PCR. Entinostat had variable effects on lysine methylation and decreased expression of some KDM while increasing expression of others. Mocetinostat produced dose dependent increases in histone lysine methylation by LC-MS/MS. This was corroborated with a multiplex colorimetric assay showing increases in histone H3 lysine 4, 9, 27, 36 and 79 methylation. Increases in lysine methylation were correlated with dose dependent decreases in the expression of seven KDM. Mocetinostat functions as an HDAC inhibitor and a de facto KDM inhibitor. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Synthesis and structure of spiro[2-(2-methylphenyl)-4H-1,3-benzoxazine-4,2′-adamantane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osyanin, V. A., E-mail: orgchem@samgtu.ru; Ivleva, E. A.; Rybakov, V. B.

    2015-01-15

    Synthesis and an X-ray diffraction study of spiro[2-(2-methylphenyl)-4H-1,3-benzoxazine-4,2′-adamantane] C{sub 24}H{sub 25}NO are performed: monoclinic crystal system, space group P2{sub 1}/c, a = 13.9424(3) Å, b = 7.56554(17) Å, c = 17.0155(3) Å, β = 99.6457(18)°, Z = 4, V = 1769.45(6) Å{sup 3}. ρ{sub calcd} = 1.244 g/cm{sup 3}, R = 0.0339 [T = 100(2) K]. The oxazine ring of the molecule adopts the boat conformation. The bond lengths and angles are standard for this class of compounds.

  11. Mutation of A677 in histone methyltransferase EZH2 in human B-cell lymphoma promotes hypertrimethylation of histone H3 on lysine 27 (H3K27)

    PubMed Central

    McCabe, Michael T.; Graves, Alan P.; Ganji, Gopinath; Diaz, Elsie; Halsey, Wendy S.; Jiang, Yong; Smitheman, Kimberly N.; Ott, Heidi M.; Pappalardi, Melissa B.; Allen, Kimberly E.; Chen, Stephanie B.; Della Pietra, Anthony; Dul, Edward; Hughes, Ashley M.; Gilbert, Seth A.; Thrall, Sara H.; Tummino, Peter J.; Kruger, Ryan G.; Brandt, Martin; Schwartz, Benjamin; Creasy, Caretha L.

    2012-01-01

    Trimethylation of histone H3 on lysine 27 (H3K27me3) is a repressive posttranslational modification mediated by the histone methyltransferase EZH2. EZH2 is a component of the polycomb repressive complex 2 and is overexpressed in many cancers. In B-cell lymphomas, its substrate preference is frequently altered through somatic mutation of the EZH2 Y641 residue. Herein, we identify mutation of EZH2 A677 to a glycine (A677G) among lymphoma cell lines and primary tumor specimens. Similar to Y641 mutant cell lines, an A677G mutant cell line revealed aberrantly elevated H3K27me3 and decreased monomethylated H3K27 (H3K27me1) and dimethylated H3K27 (H3K27me2). A677G EZH2 possessed catalytic activity with a substrate specificity that was distinct from those of both WT EZH2 and Y641 mutants. Whereas WT EZH2 displayed a preference for substrates with less methylation [unmethylated H3K27 (H3K27me0):me1:me2 kcat/Km ratio = 9:6:1] and Y641 mutants preferred substrates with greater methylation (H3K27me0:me1:me2 kcat/Km ratio = 1:2:13), the A677G EZH2 demonstrated nearly equal efficiency for all three substrates (H3K27me0:me1:me2 kcat/Km ratio = 1.1:0.6:1). When transiently expressed in cells, A677G EZH2, but not WT EZH2, increased global H3K27me3 and decreased H3K27me2. Structural modeling of WT and mutant EZH2 suggested that the A677G mutation acquires the ability to methylate H3K27me2 through enlargement of the lysine tunnel while preserving activity with H3K27me0/me1 substrates through retention of the Y641 residue that is crucial for orientation of these smaller substrates. This mutation highlights the interplay between Y641 and A677 residues in the substrate specificity of EZH2 and identifies another lymphoma patient population that harbors an activating mutation of EZH2. PMID:22323599

  12. CTCF-KDM4A complex correlates with histone modifications that negatively regulate CHD5 gene expression in cancer cell lines

    PubMed Central

    Guerra-Calderas, Lissania; González-Barrios, Rodrigo; Patiño, Carlos César; Alcaraz, Nicolás; Salgado-Albarrán, Marisol; de León, David Cantú; Hernández, Clementina Castro; Sánchez-Pérez, Yesennia; Maldonado-Martínez, Héctor Aquiles; De la Rosa-Velazquez, Inti A.; Vargas-Romero, Fernanda; Herrera, Luis A.; García-Carrancá, Alejandro; Soto-Reyes, Ernesto

    2018-01-01

    Histone demethylase KDM4A is involved in H3K9me3 and H3K36me3 demethylation, which are epigenetic modifications associated with gene silencing and RNA Polymerase II elongation, respectively. KDM4A is abnormally expressed in cancer, affecting the expression of multiple targets, such as the CHD5 gene. This enzyme localizes at the first intron of CHD5, and the dissociation of KDM4A increases gene expression. In vitro assays showed that KDM4A-mediated demethylation is enhanced in the presence of CTCF, suggesting that CTCF could increase its enzymatic activity in vivo, however the specific mechanism by which CTCF and KDM4A might be involved in the CHD5 gene repression is poorly understood. Here, we show that CTCF and KDM4A form a protein complex, which is recruited into the first intron of CHD5. This is related to a decrease in H3K36me3/2 histone marks and is associated with its transcriptional downregulation. Depletion of CTCF or KDM4A by siRNA, triggered the reactivation of CHD5 expression, suggesting that both proteins are involved in the negative regulation of this gene. Furthermore, the knockout of KDM4A restored the CHD5 expression and H3K36me3 and H3K36me2 histone marks. Such mechanism acts independently of CHD5 promoter DNA methylation. Our findings support a novel mechanism of epigenetic repression at the gene body that does not involve promoter silencing. PMID:29682202

  13. 2,3-Dihydro-2,5-dihydroxy-4H-benzopyran-4-one: a nonphysiological substrate for fungal melanin biosynthetic enzymes.

    PubMed

    Thompson, J E; Basarab, G S; Pierce, J; Hodge, C N; Jordan, D B

    1998-02-01

    We have synthesized an alternate substrate for trihydroxynaphthalene reductase (3HNR) and scytalone dehydratase (SD), two enzymes in the fungal melanin biosynthetic pathway. The oxidation of 2,3-dihydro-2,5-dihydroxy-4H-benzopyran-4-one (DDBO) to 4,5-dihydroxy-2H-benzopyran-2-one (DBO) with concomitant reduction of NADP+ is catalyzed by 3HNR. DDBO is dehydrated by SD to 5-hydroxy-4H-1-benzopyran-4-one (HBO). These reactions can be monitored using continuous spectrophotometric assays. DDBO race-mizes rapidly, so chiral synthesis to mimic the natural substrate is not required. DDBO, DBO, and HBO are stable in aerated aqueous solution, in contrast to the rapidly autooxidizing trihydroxynaphthalene, a physiological substrate for 3HNR and product of SD. Unlike the natural substrates, DDBO, DBO, and HBO do not change protonation state between pH's 4 and 9. Oxidation of DDBO is effectively irreversible at pH 7, as DBO deprotonates with a pKa of 2.5. At pH 7.0 and 25 degrees C, the kcat for 3HNR catalyzed DDBO oxidation is 14 s-1 and the K(m) is 5 microM; the kcat for SD catalyzed DDBO dehydration is 400 s-1 and the K(m) is 15 microM. Based on these kinetic constants, DDBO is a better substrate than the natural substrate scytalone for both 3HNR and SD at neutral pH. An explanation for the preference of DDBO over scytalone in the oxidation and dehydration reactions is offered.

  14. A histone H3K36 chromatin switch coordinates DNA double-strand break repair pathway choice.

    PubMed

    Pai, Chen-Chun; Deegan, Rachel S; Subramanian, Lakxmi; Gal, Csenge; Sarkar, Sovan; Blaikley, Elizabeth J; Walker, Carol; Hulme, Lydia; Bernhard, Eric; Codlin, Sandra; Bähler, Jürg; Allshire, Robin; Whitehall, Simon; Humphrey, Timothy C

    2014-06-09

    DNA double-strand break (DSB) repair is a highly regulated process performed predominantly by non-homologous end joining (NHEJ) or homologous recombination (HR) pathways. How these pathways are coordinated in the context of chromatin is unclear. Here we uncover a role for histone H3K36 modification in regulating DSB repair pathway choice in fission yeast. We find Set2-dependent H3K36 methylation reduces chromatin accessibility, reduces resection and promotes NHEJ, while antagonistic Gcn5-dependent H3K36 acetylation increases chromatin accessibility, increases resection and promotes HR. Accordingly, loss of Set2 increases H3K36Ac, chromatin accessibility and resection, while Gcn5 loss results in the opposite phenotypes following DSB induction. Further, H3K36 modification is cell cycle regulated with Set2-dependent H3K36 methylation peaking in G1 when NHEJ occurs, while Gcn5-dependent H3K36 acetylation peaks in S/G2 when HR prevails. These findings support an H3K36 chromatin switch in regulating DSB repair pathway choice.

  15. Dynamics of genomic H3K27me3 domains and role of EZH2 during pancreatic endocrine specification

    PubMed Central

    Xu, Cheng-Ran; Li, Lin-Chen; Donahue, Greg; Ying, Lei; Zhang, Yu-Wei; Gadue, Paul; Zaret, Kenneth S

    2014-01-01

    Endoderm cells undergo sequential fate choices to generate insulin-secreting beta cells. Ezh2 of the PRC2 complex, which generates H3K27me3, modulates the transition from endoderm to pancreas progenitors, but the role of Ezh2 and H3K27me3 in the next transition to endocrine progenitors is unknown. We isolated endoderm cells, pancreas progenitors, and endocrine progenitors from different staged mouse embryos and analyzed H3K27me3 genome-wide. Unlike the decline in H3K27me3 domains reported during embryonic stem cell differentiation in vitro, we find that H3K27me3 domains increase in number during endocrine progenitor development in vivo. Genes that lose the H3K27me3 mark typically encode transcriptional regulators, including those for pro-endocrine fates, whereas genes that acquire the mark typically are involved in cell biology and morphogenesis. Deletion of Ezh2 at the pancreas progenitor stage enhanced the production of endocrine progenitors and beta cells. Inhibition of EZH2 in embryonic pancreas explants and in human embryonic stem cell cultures increased endocrine progenitors in vitro. Our studies reveal distinct dynamics in H3K27me3 targets in vivo and a means to modulate beta cell development from stem cells. PMID:25107471

  16. Effect of LID (Registered) processing on the microstructure and mechanical properties of Ti-6Al-4V and Ti-6Al-2Sn-4Zr-2Mo titanium foil-gauge materials

    NASA Technical Reports Server (NTRS)

    Balckburn, Linda B.

    1987-01-01

    A study was undertaken to determine the mechanical properties and microstructures resulting from Liquid Interface Diffusion (LID -Registered) processing of foil-gauge specimens of Ti-6Al-4V and Ti-6Al-2Sn-4Zr-2Mo coated with varying amounts of LID material. In addition, the effects of various elevated temperature exposures on the concentration profiles of the LID alloying elements were investigated, using specimens with a narrow strip of LID material applied to the surface. Room and elevated temperature tensile properties were determined for both coated and uncoated specimens. Optical microscopy was used to examine alloy microstructures, and scanning electron microscopy to examine fracture surface morphologies. The chemical concentration profiles of the strip-coated specimens were determined with an electron microprobe.

  17. K2 Au(IO3)5 and β-KAu(IO3)4: Polar Materials with Strong SHG Responses Originating from Synergistic Effect of AuO4 and IO3 Units.

    PubMed

    Xu, Xiang; Hu, Chun-Li; Li, Bing-Xuan; Mao, Jiang-Gao

    2016-01-26

    Two new polar potassium gold iodates, namely, K2 Au(IO3)5 (Cmc21) and β-KAu(IO3)4 (C2), have been synthesized and structurally characterized. Both compounds feature zero-dimensional polar [Au(IO3)4](-) units composed of an AuO4 square-planar unit coordinated by four IO3(-) ions in a monodentate fashion. In β-KAu(IO3)4, isolated [Au(IO3)4](-) ions are separated by K(+) ions, whereas in K2 Au(IO3)5, isolated [Au(IO3)4](-) ions and non-coordinated IO3(-) units are separated by K(+) ions. Both compounds are thermally stable up to 400 °C and exhibit high transmittance in the NIR region (λ=800-2500 nm) with measured optical band gaps of 2.65 eV for K2 Au(IO3 )5 and 2.75 eV for β-KAu(IO3)4. Powder second-harmonic generation measurements by using λ=2.05 μm laser radiation indicate that K2 Au(IO3)5 and β-KAu(IO3)4 are both phase-matchable materials with strong SHG responses of approximately 1.0 and 1.3 times that of KTiOPO4, respectively. Theoretical calculations based on DFT methods confirm that such strong SHG responses originate from a synergistic effect of the AuO4 and IO3 units. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. PRIMARY STRUCTURE OF THE CYTOCHROME P450 LANOSTEROL 14A-DEMETHYLASE GENE FROM CANDIDA TROPICALIS

    EPA Science Inventory

    We report the nucleotide sequence of the gene and flanking DNA for the cytochrome P450 lanosterol 14 alpha-demethylase (14DM) from the yeast Candida tropicalis ATCC750. An open reading frame (ORF) of 528 codons encoding a 60.9-kD protein is identified. This ORF includes a charact...

  19. Fulde-Ferrell-Larkin-Ovchinnikov superconductivity in the layered organic superconductor β "-(BEDT-TTF ) 4[(H3O ) Ga (C2O4)3] C6H5NO2

    NASA Astrophysics Data System (ADS)

    Uji, S.; Iida, Y.; Sugiura, S.; Isono, T.; Sugii, K.; Kikugawa, N.; Terashima, T.; Yasuzuka, S.; Akutsu, H.; Nakazawa, Y.; Graf, D.; Day, P.

    2018-04-01

    Resistance and magnetic torque measurements are reported in a layered organic superconductor, β "-(BEDT-TTF ) 4[(H3O ) Ga (C2O4)3] C6H5NO2 with Tc=4.8 K, where BEDT-TTF stands for bis(ethylenedithio)tetrathiafulvalene. Because of the large anion between the BEDT-TTF conducting layers, the superconductivity of this salt is highly anisotropic. In magnetic fields parallel to the conducting layers for T =0.4 K, the magnetic torque shows a large diamagnetic signal associated with hysteresis up to ˜21 T, suggesting the upper critical field Hc 2≳21 T at 0.4 K. The large reduction of the diamagnetic signal is observed above 16 T, which shows a Fulde and Ferrell and Larkin and Ovchinnikov (FFLO) phase transition. For T =0.5 K, the interlayer resistance has nonzero value in a wide field region up to Hc 2, arising from the Josephson vortex dynamics. Successive dips in the second derivative curves of the resistance are observed between 16 T and Hc 2, which are ascribed to the commensurability effect between the Josephson vortex lattice and the order parameter oscillation of the FFLO phase. The commensurability effect is observed only in nearly parallel fields, showing that the FFLO phase is stable in a very limited field angle region. The temperature-field phase diagram is determined.

  20. Ab initio chemical kinetics for SiH3 reactions with Si(x)H2x+2 (x = 1-4).

    PubMed

    Raghunath, P; Lin, M C

    2010-12-30

    Gas-phase kinetics and mechanisms of SiH(3) reactions with SiH(4), Si(2)H(6), Si(3)H(8), and Si(4)H(10), processes of relevance to a-Si thin-film deposition, have been investigated by ab initio molecular orbital and transition-state theory (TST) calculations. Geometric parameters of all the species involved in the title reactions were optimized by density functional theory at the B3LYP and BH&HLYP levels with the 6-311++G(3df,2p) basis set. The potential energy surface of each reaction was refined at the CCSD(T)/6-311++G(3df,2p) level of theory. The results show that the most favorable low energy pathways in the SiH(3) reactions with these silanes occur by H abstraction, leading to the formation of SiH(4) + Si(x)H(2x+1) (silanyl) radicals. For both Si(3)H(8) and n-Si(4)H(10) reactions, the lowest energy barrier channels take place by secondary Si-H abstraction, yielding SiH(4) + s-Si(3)H(7) and SiH(4) + s-Si(4)H(9), respectively. In the i-Si(4)H(10) reaction, tertiary Si-H abstraction has the lowest barrier producing SiH(4) + t-Si(4)H(9). In addition, direct SiH(3)-for-X substitution reactions forming Si(2)H(6) + X (X = H or silanyls) can also occur, but with significantly higher reaction barriers. A comparison of the SiH(3) reactions with the analogous CH(3) reactions with alkanes has been made. The rate constants for low-energy product channels have been calculated for the temperature range 300-2500 K by TST with Eckart tunneling corrections. These results, together with predicted heats of formation of various silanyl radicals and Si(4)H(10) isomers, have been tabulated for modeling of a-Si:H film growth by chemical vapor deposition.

  1. Induction of H3K9me3 and DNA methylation by tethered heterochromatin factors in Neurospora crassa

    PubMed Central

    Selker, Eric U.

    2017-01-01

    Functionally different chromatin domains display distinct chemical marks. Constitutive heterochromatin is commonly associated with trimethylation of lysine 9 on histone H3 (H3K9me3), hypoacetylated histones, and DNA methylation, but the contributions of and interplay among these features are not fully understood. To dissect the establishment of heterochromatin, we investigated the relationships among these features using an in vivo tethering system in Neurospora crassa. Artificial recruitment of the H3K9 methyltransferase DIM-5 (defective in methylation-5) induced H3K9me3 and DNA methylation at a normally active, euchromatic locus but did not bypass the requirement of DIM-7, previously implicated in the localization of DIM-5, indicating additional DIM-7 functionality. Tethered heterochromatin protein 1 (HP1) induced H3K9me3, DNA methylation, and gene silencing. The induced heterochromatin required histone deacetylase 1 (HDA-1), with an intact catalytic domain, but HDA-1 was not essential for de novo heterochromatin formation at native heterochromatic regions. Silencing did not require H3K9me3 or DNA methylation. However, DNA methylation contributed to establishment of H3K9me3 induced by tethered HP1. Our analyses also revealed evidence of regulatory mechanisms, dependent on HDA-1 and DIM-5, to control the localization and catalytic activity of the DNA methyltransferase DIM-2. Our study clarifies the interrelationships among canonical aspects of heterochromatin and supports a central role of HDA-1–mediated histone deacetylation in heterochromatin spreading and gene silencing. PMID:29078403

  2. The histone lysine demethylase Kdm6b is required for activity-dependent preconditioning of hippocampal neuronal survival

    PubMed Central

    Wijayatunge, Ranjula; Chen, Liang-Fu; Cha, Young May; Zannas, Anthony S.; Frank, Christopher L.; West, Anne E.

    2014-01-01

    Enzymes that regulate histone lysine methylation play important roles in neuronal differentiation, but little is known about their contributions to activity-regulated gene transcription in differentiated neurons. We characterized activity-regulated expression of lysine demethylases and lysine methyltransferases in the hippocampus of adult male mice following pilocarpine-induced seizure. Pilocarpine drove a 20-fold increase in mRNA encoding the histone H3 lysine27-specific demethylase Kdm6b selectively in granule neurons of the dentate gyrus, and this induction was recapitulated in cultured hippocampal neurons by bicuculline and 4-aminopyridine (Bic+4AP) stimulation of synaptic activity. Because activity-regulated gene expression is highly correlated with neuronal survival, we tested the requirement for Kdm6b expression in Bic+4AP induced preconditioning of neuronal survival. Prior exposure to Bic+4AP promoted neuronal survival in control neurons upon growth factor withdrawal, however this effect was ablated when we knocked down Kdm6b expression. Loss of Kdm6b did not disrupt activity-induced expression of most genes, including that of a gene set previously established to promote neuronal survival in this assay. However using bioinformatic analysis of RNA sequencing data, we discovered that Kdm6b knockdown neurons showed impaired inducibility of a discrete set of genes annotated for their function in inflammation. These data reveal a novel function for Kdm6b in activity-regulated neuronal survival, and they suggest that activity- and Kdm6b-dependent regulation of inflammatory gene pathways may serve as an adaptive pro-survival response to increased neuronal activity. PMID:24983519

  3. H3K27me3 forms BLOCs over silent genes and intergenic regions and specifies a histone banding pattern on a mouse autosomal chromosome

    PubMed Central

    Pauler, Florian M.; Sloane, Mathew A.; Huang, Ru; Regha, Kakkad; Koerner, Martha V.; Tamir, Ido; Sommer, Andreas; Aszodi, Andras; Jenuwein, Thomas; Barlow, Denise P.

    2009-01-01

    In mammals, genome-wide chromatin maps and immunofluorescence studies show that broad domains of repressive histone modifications are present on pericentromeric and telomeric repeats and on the inactive X chromosome. However, only a few autosomal loci such as silent Hox gene clusters have been shown to lie in broad domains of repressive histone modifications. Here we present a ChIP-chip analysis of the repressive H3K27me3 histone modification along chr 17 in mouse embryonic fibroblast cells using an algorithm named broad local enrichments (BLOCs), which allows the identification of broad regions of histone modifications. Our results, confirmed by BLOC analysis of a whole genome ChIP-seq data set, show that the majority of H3K27me3 modifications form BLOCs rather than focal peaks. H3K27me3 BLOCs modify silent genes of all types, plus flanking intergenic regions and their distribution indicates a negative correlation between H3K27me3 and transcription. However, we also found that some nontranscribed gene-poor regions lack H3K27me3. We therefore performed a low-resolution analysis of whole mouse chr 17, which revealed that H3K27me3 is enriched in mega-base-pair-sized domains that are also enriched for genes, short interspersed elements (SINEs) and active histone modifications. These genic H3K27me3 domains alternate with similar-sized gene-poor domains. These are deficient in active histone modifications, as well as H3K27me3, but are enriched for long interspersed elements (LINEs) and long-terminal repeat (LTR) transposons and H3K9me3 and H4K20me3. Thus, an autosome can be seen to contain alternating chromatin bands that predominantly separate genes from one retrotransposon class, which could offer unique domains for the specific regulation of genes or the silencing of autonomous retrotransposons. PMID:19047520

  4. Energetics of the O-H bond and of intramolecular hydrogen bonding in HOC6H4C(O)Y (Y = H, CH3, CH2CH=CH2, C[triple bond]CH, CH2F, NH2, NHCH3, NO2, OH, OCH3, OCN, CN, F, Cl, SH, and SCH3) compounds.

    PubMed

    Bernardes, Carlos E S; Minas da Piedade, Manuel E

    2008-10-09

    The energetics of the phenolic O-H bond in a series of 2- and 4-HOC 6H 4C(O)Y (Y = H, CH3, CH 2CH=CH2, C[triple bond]CH, CH2F, NH2, NHCH 3, NO2, OH, OCH3, OCN, CN, F, Cl, SH, and SCH3) compounds and of the intramolecular O...H hydrogen bond in 2-HOC 6H 4C(O)Y, was investigated by using a combination of experimental and theoretical methods. The standard molar enthalpies of formation of 2-hydroxybenzaldehyde (2HBA), 4-hydroxybenzaldehyde (4HBA), 2'-hydroxyacetophenone (2HAP), 2-hydroxybenzamide (2HBM), and 4-hydroxybenzamide (4HBM), at 298.15 K, were determined by micro- or macrocombustion calorimetry. The corresponding enthalpies of vaporization or sublimation were also measured by Calvet drop-calorimetry and Knudsen effusion measurements. The combination of the obtained experimental data led to Delta f H m (o)(2HBA, g) = -238.3 +/- 2.5 kJ.mol (-1), DeltafHm(o)(4HBA, g) = -220.3 +/- 2.0 kJ.mol(-1), Delta f H m (o)(2HAP, g) = -291.8 +/- 2.1 kJ.mol(-1), DeltafHm(o)(2HBM, g) = -304.8 +/- 1.5 kJ.mol (-1), and DeltafHm(o) (4HBM, g) = -278.4 +/- 2.4 kJ.mol (-1). These values, were used to assess the predictions of the B3LYP/6-31G(d,p), B3LYP/6-311+G(d,p), B3LYP/aug-cc-pVDZ, B3P86/6-31G(d,p), B3P86/6-311+G(d,p), B3P86/aug-cc-pVDZ, and CBS-QB3 methods, for the enthalpies of a series of isodesmic gas phase reactions. In general, the CBS-QB3 method was able to reproduce the experimental enthalpies of reaction within their uncertainties. The B3LYP/6-311+G(d,p) method, with a slightly poorer accuracy than the CBS-QB3 approach, achieved the best performance of the tested DFT models. It was further used to analyze the trends of the intramolecular O...H hydrogen bond in 2-HOC 6H 4C(O)Y evaluated by the ortho-para method and to compare the energetics of the phenolic O-H bond in 2- and 4-HOC 6H 4C(O)Y compounds. It was concluded that the O-H bond "strength" is systematically larger for 2-hydroxybenzoyl than for the corresponding 4-hydroxybenzoyl isomers mainly due to the presence of

  5. Experimentally determined standard thermodynamic properties of synthetic MgSO(44H(2)O (Starkeyite) and MgSO(43H(2)O: a revised internally consistent thermodynamic data set for magnesium sulfate hydrates.

    PubMed

    Grevel, Klaus-Dieter; Majzlan, Juraj; Benisek, Artur; Dachs, Edgar; Steiger, Michael; Fortes, A Dominic; Marler, Bernd

    2012-11-01

    The enthalpies of formation of synthetic MgSO(44H(2)O (starkeyite) and MgSO(43H(2)O were obtained by solution calorimetry at T=298.15 K. The resulting enthalpies of formation from the elements are [Formula: see text] (starkeyite)=-2498.7±1.1 kJ·mol(-1) and [Formula: see text] (MgSO(43H(2)O)=-2210.3±1.3kJ·mol(-1). The standard entropy of starkeyite was derived from low-temperature heat capacity measurements acquired with a physical property measurement system (PPMS) in the temperature range 5 KK: [Formula: see text] (starkeyite)=254.48±2.0 J·K(-1)·mol(-1). Additionally, differential scanning calorimetry (DSC) measurements with a Perkin Elmer Diamond DSC in the temperature range 270 KK were performed to check the reproducibility of the PPMS measurements around ambient temperature. The experimental C(p) data of starkeyite between 229 and 303 K were fitted with a Maier-Kelley polynomial, yielding C(p)(T)=107.925+0.5532·T-1048894·T(-2). The hydration state of all Mg sulfate hydrates changes in response to local temperature and humidity conditions. Based on recently reported equilibrium relative humidities and the new standard properties described above, the internally consistent thermodynamic database for the MgSO(4)·nH(2)O system was refined by a mathematical programming (MAP) analysis. As can be seen from the resulting phase diagrams, starkeyite is metastable in the entire T-%RH range. Due to kinetic limitations of kieserite formation, metastable occurrence of starkeyite might be possible under martian conditions.

  6. Novel 1H-1,2,3-, 2H-1,2,3-, 1H-1,2,4- and 4H-1,2,4-triazole derivatives: a patent review (2008 - 2011).

    PubMed

    Ferreira, Vitor F; da Rocha, David R; da Silva, Fernando C; Ferreira, Patrícia G; Boechat, Núbia A; Magalhães, Jorge L

    2013-03-01

    The triazoles represent a class of five-membered heterocyclic compounds of great importance for the preparation of new drugs with diverse biological activities because they may present several structural variations with the same numbers of carbon and nitrogen atoms. Due to the success of various triazoles that entered the pharmaceutical market and are still being used in medicines, many companies and research groups have shown interest in developing new methods of synthesis and biological evaluation of potential uses for these compounds. In this review, the authors explored aspects of patents for the 1H-1,2,3-, 2H-1,2,3-, 1H-1,2,4- and 4H-1,2,4-triazole families, including prototypes being considered in clinical studies between 2008 and 2011. The triazoles have been studied for over a century as an important class of heterocyclic compounds and still attract considerable attention due to their broad range of biological activities. More recently, there has been considerable interest in the development of novel triazoles with anti-inflammatory, antiplatelet, antimicrobial, antimycobacterial, antitumoral and antiviral properties and activity against several neglected diseases. This review emphasizes recent perspective and advances in the therapeutically active 1H-1,2,3-, 2H-1,2,3-, 1H-1,2,4- and 4H-1,2,4-triazole derivative patents between 2008 and 2011, covering the development of new chemical entities and new pharmaceuticals. Many studies have focused on these compounds as target structures and evaluated them in several biological targets. The preparation of 1H-1,2,3-, 2H-1,2,3-, 1H-1,2,4- and 4H-1,2,4-triazole derivatives brings to light several issues. There is a need to find new, more efficient preparations for these triazoles that take into consideration current issues in green chemistry, energy saving and sustainability. New diseases are discovered and new viruses and bacteria continue to challenge mankind, so it is imperative to find new prototypes for these

  7. Thermodynamic properties and crystal structure refinement of ferricopiapite, coquimbite, rhomboclase, and Fe2(SO4)3(H2O)5

    USGS Publications Warehouse

    Majzlan, J.; Navrotsky, A.; McCleskey, R. Blaine; Alpers, Charles N.

    2006-01-01

    Enthalpies of formation of ferricopiapite [nominally Fe4.67(SO4)6(OH)2 (H2O)20]. coquimbite [Fe2(SO4)3(H2O)9], rhomboclase [(H3O)Fe(SO4)2 (H2O)3], and Fe2(SO4)3(H2O)5 were measured by acid (5 N HCl) solution calorimetry. The samples were characterized by wet chemical analyses and synchrotron powder X-ray diffraction (XRD). The refinement of XRD patterns gave lattice parameters, atomic positions, thermal factors, and occupancies of the sites. The calculated formulae differ slightly from the nominal compositions: Fe4.78(SO4)6 (OH)2.34(H2O)20.71 (ferricopiapite), (Fe1.47Al0.53)(SO4)3 (H2O)9.65 (coquimbite), (H3O)1.34Fe(SO4)2.17 (H2O)3.06 (rhomboclase), and Fe2(SO4)3 (H2O)5.03. All thermodynamic data are given per mole of these formulae. The measured standard enthalpies (in kJ/mol) of formation from the elements (crystalline Fe, Al, S, and ideal gases O2 and H2) at T = 298.15 K are -4115.8??4.1 [Fe2(SO4)3 (H2O)5.03], -12045.1??9.2 (ferricopiapite), -5738.4??3.3 (coquimbite), and -3201.1??2.6 (rhomboclase). Standard entropy (S??) was estimated as a sum of entropies of oxide, hydroxide, and sulfate components. The estimated S?? (in J/mol.K) values for the iron sulfates are 488.2 [Fe2(SO4)3 (H2O)5.03], 1449.2 (ferricopiapite), 638.3 (coquimbite), and 380.1 (rhomboclase). The calculated Gibbs free energies of formation (in kJ/mol) are -3499.7??4.2 [Fe2(SO4)3 (H2O)5.03], -10089.8??9.3 (ferricopiapite), -4845.6??3.3 (coquimbite), and -2688.0??2.7 (rhomboclase). These results combined with other available thermodynamic data allow construction of mineral stability diagrams in the FeIII2(SO4)3-FeII SO4-H2O system. One such diagram is provided, indicating that the order of stability of ferric sulfate minerals with decreasing pH in the range of 1.5 to -0.5 is: hydronium jarosite, ferricopiapite, and rhomboclase. ?? 2006 E. Schweizerbart'sche Verlagsbuchhandlung.

  8. Lid for improved dendritic web growth

    DOEpatents

    Duncan, Charles S.; Kochka, Edgar L.; Piotrowski, Paul A.; Seidensticker, Raymond G.

    1992-03-24

    A lid for a susceptor in which a crystalline material is melted by induction heating to form a pool or melt of molten material from which a dendritic web of essentially a single crystal of the material is pulled through an elongated slot in the lid and the lid has a pair of generally round openings adjacent the ends of the slot and a groove extends between each opening and the end of the slot. The grooves extend from the outboard surface of the lid to adjacent the inboard surface providing a strip contiguous with the inboard surface of the lid to produce generally uniform radiational heat loss across the width of the dendritic web adjacent the inboard surface of the lid to reduce thermal stresses in the web and facilitate the growth of wider webs at a greater withdrawal rate.

  9. Regulation of N-nitrosodimethylamine demethylase in rat liver and kidney.

    PubMed

    Hong, J Y; Pan, J M; Dong, Z G; Ning, S M; Yang, C S

    1987-11-15

    In previous work, the low Km form of N-nitrosodimethylamine (NDMA) demethylase has been demonstrated to be due to a specific form of cytochrome P-450 (designated as P-450ac) and to be the enzyme required for the metabolic activation of NDMA. The present work deals with the regulation of P-450ac in rat liver during development as well as the mechanism of induction of P-450ac in rat liver and kidney by inducers. NDMA demethylase activity was almost undetectable in the liver of newborn rats, increased after day 4, and remained elevated throughout the first 17 days of the neonatal period. The enhancement of NDMA demethylase activity during development was accompanied by corresponding increases of P-450ac content and P-450ac mRNA levels as determined by Western and slot blot analyses, respectively. No sex differences with respect to this enzyme were observed in the developing rats. Acetone treatment on late-term pregnant rats for 2 days resulted in transplacental inductions of P-450ac and P-450ac mRNA in the newborn rats. Pretreatment of young male rats and adult female rats with acetone or isopropyl alcohol caused increases of NDMA demethylase activity and P-450ac content in the liver but no significant change in the P-450ac mRNA level. These facts suggest the possible existence of a posttranscription regulatory mechanism under these induction conditions. The presence of P-450ac in rat kidney was demonstrated by Western and Northern blot analyses. The renal form of P-450ac seemed to be regulated in a fashion similar to the hepatic P-450ac regarding its response to inducing factors such as fasting and acetone treatment.

  10. Ax(H3O)2-xMn5(HPO3)6 (A = Li, Na, K and NH4): open-framework manganese(ii) phosphites templated by mixed cationic species.

    PubMed

    Orive, Joseba; Fernández de Luis, Roberto; Fernández, Jesús Rodríguez; Lezama, Luis; Arriortua, María I

    2016-07-26

    Ax(H3O)2-xMn5(HPO3)6 (A = Li, x = 0.55 (1-Li); A = Na, x = 0.72 (2-Na); A = K, x = 0.30 (3-K); A = NH4, x = 0.59 (4-NH4)) phases were synthesized by employing mild hydrothermal conditions. 1-Li was studied by single crystal X-ray diffraction, while sodium, potassium and ammonium containing analogues were obtained as polycrystalline samples and characterized by powder X-ray diffraction. The four compounds were characterized by ICP-Q-MS, thermal analysis and XPS, IR, UV/Vis and EPR spectroscopy. Single crystal data indicate that 1-Li crystallizes in the P3[combining macron]c1 space group with lattice parameters a = 10.3764(1) Å and c = 9.4017(1) Å with Z = 2. The crystal structure of these phases is constituted by a three-dimensional [Mn(ii)5(HPO3)6](2-) anionic skeleton templated by alkali metal and ammonium cations together with protonated water molecules. Such an inorganic framework is formed by layers of edge-sharing MnO6 octahedra placed in the ab plane and joined along the c direction through phosphite pseudotetrahedra. The sheets display 12-membered ring channels parallel to the c-axis, ca. 5 Å in diameter, where the extraframework species display a strong disorder. EPR measurements point to the existence of short range ferromagnetic interactions around 12 K. Magnetic susceptibility and heat capacity measurements show that all the compounds exhibit long range antiferromagnetic order below circa 4 K, with a significant magnetocaloric effect around the Neel temperature.

  11. Human SLC4A11 Is a Novel NH3/H+ Co-transporter*

    PubMed Central

    Zhang, Wenlin; Ogando, Diego G.; Bonanno, Joseph A.; Obukhov, Alexander G.

    2015-01-01

    SLC4A11 has been proposed to be an electrogenic membrane transporter, permeable to Na+, H+ (OH−), bicarbonate, borate, and NH4+. Recent studies indicate, however, that neither bicarbonate or borate is a substrate. Here, we examined potential NH4+, Na+, and H+ contributions to electrogenic ion transport through SLC4A11 stably expressed in Na+/H+ exchanger-deficient PS120 fibroblasts. Inward currents observed during exposure to NH4Cl were determined by the [NH3]o, not [NH4+]o, and current amplitudes varied with the [H+] gradient. These currents were relatively unaffected by removal of Na+, K+, or Cl− from the bath but could be reduced by inclusion of NH4Cl in the pipette solution. Bath pH changes alone did not generate significant currents through SLC4A11, except immediately following exposure to NH4Cl. Reversal potential shifts in response to changing [NH3]o and pHo suggested an NH3/H+-coupled transport mode for SLC4A11. Proton flux through SLC4A11 in the absence of ammonia was relatively small, suggesting that ammonia transport is of more physiological relevance. Methylammonia produced currents similar to NH3 but with reduced amplitude. Estimated stoichiometry of SLC4A11 transport was 1:2 (NH3/H+). NH3-dependent currents were insensitive to 10 μm ethyl-isopropyl amiloride or 100 μm 4,4′- diisothiocyanatostilbene-2,2′-disulfonic acid. We propose that SLC4A11 is an NH3/2H+ co-transporter exhibiting unique characteristics. PMID:26018076

  12. Loss of NR2E3 represses AHR by LSD1 reprogramming, is associated with poor prognosis in liver cancer.

    PubMed

    Khanal, Tilak; Choi, Kwangmin; Leung, Yuet-Kin; Wang, Jiang; Kim, Dasom; Janakiram, Vinothini; Cho, Sung-Gook; Puga, Alvaro; Ho, Shuk-Mei; Kim, Kyounghyun

    2017-09-06

    The aryl hydrocarbon receptor (AHR) plays crucial roles in inflammation, metabolic disorder, and cancer. However, the molecular mechanisms regulating AHR expression remain unknown. Here, we found that an orphan nuclear NR2E3 maintains AHR expression, and forms an active transcriptional complex with transcription factor Sp1 and coactivator GRIP1 in MCF-7 human breast and HepG2 liver cancer cell lines. NR2E3 loss promotes the recruitment of LSD1, a histone demethylase of histone 3 lysine 4 di-methylation (H3K4me2), to the AHR gene promoter region, resulting in repression of AHR expression. AHR expression and responsiveness along with H3K4me2 were significantly reduced in the livers of Nr2e3 rd7 (Rd7) mice that express low NR2E3 relative to the livers of wild-type mice. SP2509, an LSD1 inhibitor, fully restored AHR expression and H3K4me2 levels in Rd7 mice. Lastly, we demonstrated that both AHR and NR2E3 are significantly associated with good clinical outcomes in liver cancer. Together, our results reveal a novel link between NR2E3, AHR, and liver cancer via LSD1-mediated H3K4me2 histone modification in liver cancer development.

  13. The SoLid experiment

    NASA Astrophysics Data System (ADS)

    Kalousis, L. N.; SoLid Collaboration

    2017-09-01

    The SoLid experiment is a short-baseline project, probing the disappearance of reactor antineutrinos using a novel detector design. Installed at a very short distance of ˜ 5.5 - 10 m from the BR2 research reactor at SCK·CEN in Mol (Belgium) it will be able to search for active-to-sterile neutrino oscillations, exploring most of the allowed parameter region. SoLid will make use of a highly segmented detector, built from 5 cm PVT cubes, interleaved with 6LiF:ZnS(Ag) screens, and read out by optical fibers and Silicon Photomultipliers (SiPMs). The detector granularity allows for the localization of the positron and neutron signals from antineutrino interactions and the robust neutron identification capabilities, offered by the 6LiF:ZnS(Ag) inorganic scintillator, provide background suppression to an unparalleled level. This paper reviews the experimental layout and current status of SoLid. Emphasis is put on the challenges one faces towards this measurement, focusing on the decisions and strategy adapted by the SoLid collaboration. The analysis scheme and the details of the oscillation framework are also presented, highlighting the sensitivity contour and physics potential of SoLid. Finally, other physics topics, such as, reactor monitoring or measurement of the 235U spectrum are also covered.

  14. Synthetic, Infrared, 1H and 13C NMR Spectral Studies on N-(2-/3-Substituted Phenyl)-4-Substituted Benzenesulphonamides, 4-X'C6H4SO2NH(2-/3-XC6H4), where X' = H, CH3, C2H5, F, Cl or Br, and X = CH3 or Cl

    NASA Astrophysics Data System (ADS)

    Gowda, B. Thimme; Shetty, Mahesha; Jayalakshmi, K. L.

    2005-02-01

    Twenty three N-(2-/3-substituted phenyl)-4-substituted benzenesulphonamides of the general formula, 4-X'C6H4SO2NH(2-/3-XC6H4), where X' = H, CH3, C2H5, F, Cl or Br and X = CH3 or Cl have been prepared and characterized, and their infrared spectra in the solid state, 1H and 13C NMR spectra in solution were studied. The N-H stretching vibrations, νN-H, absorb in the range 3285 - 3199 cm-1, while the asymmetric and symmetric SO2 vibrations vary in the ranges 1376 - 1309 cm-1 and 1177 - 1148 cm-1, respectively. The S-N and C-N stretching vibrations absorb in the ranges 945 - 893 cm-1 and 1304 - 1168 cm-1, respectively. The compounds do not exhibit particular trends in the variation of these frequencies on substitution either at ortho or meta positions with either a methyl group or Cl. The observed 1H and 13C chemical shifts of are assigned to protons and carbons of the two benzene rings. Incremental shifts of the ring protons and carbons due to -SO2NH(2-/3-XC6H4) groups in C6H5SO2NH(2-/3-XC6H4), and 4- X'C6H4SO2- and 4-X'C6H4SO2NH- groups in 4-X'C6H4SO2NH(C6H5) are computed and employed to calculate the chemical shifts of the ring protons and carbons in the substituted compounds, 4-X'C6H4SO2NH(2-/3-XC6H4). The computed values agree well with the observed chemical shifts.

  15. H3S10ph broadly marks early-replicating domains in interphase ESCs and shows reciprocal antagonism with H3K9me2.

    PubMed

    Chen, Carol C L; Goyal, Preeti; Karimi, Mohammad M; Abildgaard, Marie H; Kimura, Hiroshi; Lorincz, Matthew C

    2018-01-01

    Phosphorylation of histone H3 at serine 10 (H3S10ph) by Aurora kinases plays an important role in mitosis; however, H3S10ph also marks regulatory regions of inducible genes in interphase mammalian cells, implicating mitosis-independent functions. Using the fluorescent ubiquitin-mediated cell cycle indicator (FUCCI), we found that 30% of the genome in interphase mouse embryonic stem cells (ESCs) is marked with H3S10ph. H3S10ph broadly demarcates gene-rich regions in G1 and is positively correlated with domains of early DNA replication timing (RT) but negatively correlated with H3K9me2 and lamin-associated domains (LADs). Consistent with mitosis-independent kinase activity, this pattern was preserved in ESCs treated with Hesperadin, a potent inhibitor of Aurora B/C kinases. Disruption of H3S10ph by expression of nonphosphorylatable H3.3S10A results in ectopic spreading of H3K9me2 into adjacent euchromatic regions, mimicking the phenotype observed in Drosophila JIL-1 kinase mutants . Conversely, interphase H3S10ph domains expand in Ehmt1 (also known as Glp ) null ESCs, revealing that H3S10ph deposition is restricted by H3K9me2. Strikingly, spreading of H3S10ph at RT transition regions (TTRs) is accompanied by aberrant transcription initiation of genes co-oriented with the replication fork in Ehmt1 -/- and Ehmt2 -/- ESCs, indicating that establishment of repressive chromatin on the leading strand following DNA synthesis may depend upon these lysine methyltransferases. H3S10ph is also anti-correlated with H3K9me2 in interphase murine embryonic fibroblasts (MEFs) and is restricted to intragenic regions of actively transcribing genes by EHMT2. Taken together, these observations reveal that H3S10ph may play a general role in restricting the spreading of repressive chromatin in interphase mammalian cells. © 2018 Chen et al.; Published by Cold Spring Harbor Laboratory Press.

  16. 40 CFR 721.5540 - 1H,3H,5H-oxazolo [3,4-c] oxazole, dihydro-7a-methyl-.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false 1H,3H,5H-oxazolo [3,4-c] oxazole... Specific Chemical Substances § 721.5540 1H,3H,5H-oxazolo [3,4-c] oxazole, dihydro-7a-methyl-. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified as 1H,3H,5H...

  17. H3K27 methylation and H3S28 phosphorylation-dependent transcriptional regulation by INHAT subunit SET/TAF-Iβ.

    PubMed

    Kim, Ji-Young; Kim, Kee-Beom; Son, Hye-Ju; Chae, Yun-Cheol; Oh, Si-Taek; Kim, Dong-Wook; Pak, Jhang Ho; Seo, Sang-Beom

    2012-09-21

    Significant progress has been made in understanding the relationship between histone modifications and 'reader' molecules and their effects on transcriptional regulation. A previously identified INHAT complex subunit, SET/TAF-Iβ, binds to histones and inhibits histone acetylation. To investigate the binding specificities of SET/TAF-Iβ to various histone modifications, we employed modified histone tail peptide array analyses. SET/TAF-Iβ strongly recognized PRC2-mediated H3K27me1/2/3; however, the bindings were completely disrupted by H3S28 phosphorylation. We have demonstrated that SET/TAF-Iβ is sequentially recruited to the target gene promoter ATF3 after the PRC2 complex via H3K27me recognition and may offer additive effects in the repression of the target gene. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  18. Rate coefficients for the reactions of C2(a(3)Pi(u)) and C2(X(1)Sigma(g)(+)) with various hydrocarbons (CH4, C2H2, C2H4, C2H6, and C3H8): a gas-phase experimental study over the temperature range 24-300 K.

    PubMed

    Páramo, Alejandra; Canosa, André; Le Picard, Sébastien D; Sims, Ian R

    2008-10-02

    The kinetics of reactions of C2(a(3)Pi(u)) and C2(X(1)Sigma(g)(+)) with various hydrocarbons (CH4, C2H2, C2H4, C2H6, and C3H8) have been studied in a uniform supersonic flow expansion over the temperature range 24-300 K. Rate coefficients have been obtained by using the pulsed laser photolysis-laser induced fluorescence technique, where both radicals were produced at the same time but detected separately. The reactivity of the triplet state was found to be significantly lower than that of the singlet ground state for all reactants over the whole temperature range of the study. Whereas C2(X(1)Sigma(g)(+)) reacts with a rate coefficient close to the gas kinetic limit with all hydrocarbons studied apart from CH4, C2(a(3)Pi(u)) appears to be more sensitive to the molecular and electronic structure of the reactant partners. The latter reacts at least one order of magnitude faster with unsaturated hydrocarbons than with alkanes, and the rate coefficients increase very significantly with the size of the alkane. Results are briefly discussed in terms of their potential astrophysical impact.

  19. Epigenomic analysis in a cell-based model reveals the roles of H3K9me3 in breast cancer transformation.

    PubMed

    Li, Qing-Lan; Lei, Pin-Ji; Zhao, Quan-Yi; Li, Lianyun; Wei, Gang; Wu, Min

    2017-08-01

    Epigenetic marks are critical regulators of chromatin and gene activity. Their roles in normal physiology and disease states, including cancer development, still remain elusive. Herein, the epigenomic change of H3K9me3, as well as its potential impacts on gene activity and genome stability, was investigated in an in vitro breast cancer transformation model. The global H3K9me3 level was studied with western blotting. The distribution of H3K9me3 on chromatin and gene expression was studied with ChIP-Seq and RNA-Seq, respectively. The global H3K9me3 level decreases during transformation and its distribution on chromatin is reprogrammed. By combining with TCGA data, we identified 67 candidate oncogenes, among which five genes are totally novel. Our analysis further links H3K9me3 with transposon activity, and suggests H3K9me3 reduction increases the cell's sensitivity to DNA damage reagents. H3K9me3 reduction is possibly related with breast cancer transformation by regulating gene expression and chromatin stability during transformation.

  20. Dual-resolution modeling demonstrates greater conformational heterogeneity of CENP-A/H4 dimer than that of H3/H4

    NASA Astrophysics Data System (ADS)

    Zhao, Haiqing

    Centromere protein A (CENP-A) is a centromere-specific H3 histone variant and shares only about 50% amino acid sequence identity with the canonical H3 protein. CENP-A is required for packaging the centromere and for the proper separation of chromosomes during mitosis. Despite their discrete functions, previously reported crystal structures of the CENP-A/H4 and H3/H4 dimers reveal surprising similarity. In this work, we characterize the structure and dynamics of CENP-A/H4 and H3/H4 dimers with a dual-resolution approach, using both all-atom and coarse-grained (CG) molecular dynamics (MD) simulations. Interestingly, the histone dimer containing CENP-A is more structurally variable than the canonical H3 dimer. Furthermore, our calculations revealed significant conformational distinctions between the interface profiles of CENP-A/H4 and H3/H4. In addition, the presence of the CENP-A-specific chaperone HJURP dramatically reduced the conformational heterogeneity of CENP-A/H4. Overall, these results are in general agreement with the available experimental data and provide new dynamic insights into the mechanisms underpinning the chaperone-mediated assembly of CENP-A nucleosomes in vivo.

  1. The Dynamics and Regulatory Mechanism of Pronuclear H3k9me2 Asymmetry in Mouse Zygotes

    PubMed Central

    Ma, Xue-Shan; Chao, Shi-Bin; Huang, Xian-Ju; Lin, Fei; Qin, Ling; Wang, Xu-Guang; Meng, Tie-Gang; Zhu, Cheng-Cheng; Schatten, Heide; Liu, Hong-Lin; Sun, Qing-Yuan

    2015-01-01

    H3K9 methylation is an important histone modification that is correlated with gene transcription repression. The asymmetric H3K9 dimethylation (H3K9me2) pattern between paternal and maternal genomes is generated soon after fertilization. In the present study, we carefully determined the dynamics of H3K9me2 changes in mouse zygotes, and investigated the regulatory mechanisms. The results indicated that histone methyltransferase G9a, but not GLP, was involved in the regulation of asymmetric H3K9me2, and G9a was the methyltransferase that induced the appearance of H3K9me2 in the male pronucleus of the zygote treated with cycloheximide. We found that there were two distinct mechanisms that regulate H3K9me2 in the male pronucleus. Before 8 h of in vitro fertilization (IVF), a mechanism exists that inhibits the association of G9a with the H3K9 sites. After 10 h of IVF the inhibition of G9a activity depends on yet unknown novel protein(s) synthesis. The two mechanisms of transfer take place between 8–10 h of IVF, and the novel protein failed to inhibit G9a activity in time, resulting in the appearance of a low level de novo H3K9me2 in the male pronucleus. PMID:26639638

  2. Aqua complexes of 18—crown-6 with H 3PO 4, H 2TiF 6, and HNO 3: synthesis and vibrational spectra

    NASA Astrophysics Data System (ADS)

    Chénevert, R.; Rodrigue, A.; Chamberland, D.; Ouellet, J.; Savoie, R.

    1985-11-01

    Neutral-component complexes of 2:3:1 (acid:water:18-crown-6) stoichiometry have been obtained with H 3PO 4 and H 2TiF 6. These adducts have been studied by infrared and Raman spectroscopy, along with the corresponding (HNO 3-H 1O) 2-18-crown-6 complex, whose synthesis has already been reported. The spectra indicate that the crown ether has a highly regular conformation in these complexes. In those with H 3PO 4 and HNO 3, the binding of the acid molecule to the ether takes place through a H 2O linker, the strength of the XOH⋯OH 2 hydrogen bond being directly related to the p K a of the acid. With HNO 3, the acidic proton appears to be delocalized between the two oxygen atoms, giving a pseudo H 2O + ion whereas in the corresponding deuterocompound the D atom remains associated with the acid.

  3. Live-cell single-molecule tracking reveals co-recognition of H3K27me3 and DNA targets polycomb Cbx7-PRC1 to chromatin

    PubMed Central

    Zhen, Chao Yu; Tatavosian, Roubina; Huynh, Thao Ngoc; Duc, Huy Nguyen; Das, Raibatak; Kokotovic, Marko; Grimm, Jonathan B; Lavis, Luke D; Lee, Jun; Mejia, Frances J; Li, Yang; Yao, Tingting; Ren, Xiaojun

    2016-01-01

    The Polycomb PRC1 plays essential roles in development and disease pathogenesis. Targeting of PRC1 to chromatin is thought to be mediated by the Cbx family proteins (Cbx2/4/6/7/8) binding to histone H3 with a K27me3 modification (H3K27me3). Despite this prevailing view, the molecular mechanisms of targeting remain poorly understood. Here, by combining live-cell single-molecule tracking (SMT) and genetic engineering, we reveal that H3K27me3 contributes significantly to the targeting of Cbx7 and Cbx8 to chromatin, but less to Cbx2, Cbx4, and Cbx6. Genetic disruption of the complex formation of PRC1 facilitates the targeting of Cbx7 to chromatin. Biochemical analyses uncover that the CD and AT-hook-like (ATL) motif of Cbx7 constitute a functional DNA-binding unit. Live-cell SMT of Cbx7 mutants demonstrates that Cbx7 is targeted to chromatin by co-recognizing of H3K27me3 and DNA. Our data suggest a novel hierarchical cooperation mechanism by which histone modifications and DNA coordinate to target chromatin regulatory complexes. DOI: http://dx.doi.org/10.7554/eLife.17667.001 PMID:27723458

  4. The Histone Modification H3K27me3 Is Retained after Gene Duplication and Correlates with Conserved Noncoding Sequences in Arabidopsis

    PubMed Central

    Berke, Lidija; Snel, Berend

    2014-01-01

    The histone modification H3K27me3 is involved in repression of transcription and plays a crucial role in developmental transitions in both animals and plants. It is deposited by PRC2 (Polycomb repressive complex 2), a conserved protein complex. In Arabidopsis thaliana, H3K27me3 is found at 15% of all genes. These tend to encode transcription factors and other regulators important for development. However, it is not known how PRC2 is recruited to target loci nor how this set of target genes arose during Arabidopsis evolution. To resolve the latter, we integrated A. thaliana gene families with five independent genome-wide H3K27me3 data sets. Gene families were either significantly enriched or depleted of H3K27me3, showing a strong impact of shared ancestry to H3K27me3 distribution. To quantify this, we performed ancestral state reconstruction of H3K27me3 on phylogenetic trees of gene families. The set of H3K27me3-marked genes changed less than expected by chance, suggesting that H3K27me3 was retained after gene duplication. This retention suggests that the PRC2-recruiting signal could be encoded in the DNA and also conserved among certain duplicated genes. Indeed, H3K27me3-marked genes were overrepresented among paralogs sharing conserved noncoding sequences (CNSs) that are enriched with transcription factor binding sites. The association of upstream CNSs with H3K27me3-marked genes represents the first genome-wide connection between H3K27me3 and potential regulatory elements in plants. Thus, we propose that CNSs likely function as part of the PRC2 recruitment in plants. PMID:24567304

  5. Developmental Dynamics of X-Chromosome Dosage Compensation by the DCC and H4K20me1 in C. elegans

    PubMed Central

    Kramer, Maxwell; Kranz, Anna-Lena; Su, Amanda; Winterkorn, Lara H.; Albritton, Sarah Elizabeth; Ercan, Sevinc

    2015-01-01

    In Caenorhabditis elegans, the dosage compensation complex (DCC) specifically binds to and represses transcription from both X chromosomes in hermaphrodites. The DCC is composed of an X-specific condensin complex that interacts with several proteins. During embryogenesis, DCC starts localizing to the X chromosomes around the 40-cell stage, and is followed by X-enrichment of H4K20me1 between 100-cell to comma stage. Here, we analyzed dosage compensation of the X chromosome between sexes, and the roles of dpy-27 (condensin subunit), dpy-21 (non-condensin DCC member), set-1 (H4K20 monomethylase) and set-4 (H4K20 di-/tri-methylase) in X chromosome repression using mRNA-seq and ChIP-seq analyses across several developmental time points. We found that the DCC starts repressing the X chromosomes by the 40-cell stage, but X-linked transcript levels remain significantly higher in hermaphrodites compared to males through the comma stage of embryogenesis. Dpy-27 and dpy-21 are required for X chromosome repression throughout development, but particularly in early embryos dpy-27 and dpy-21 mutations produced distinct expression changes, suggesting a DCC independent role for dpy-21. We previously hypothesized that the DCC increases H4K20me1 by reducing set-4 activity on the X chromosomes. Accordingly, in the set-4 mutant, H4K20me1 increased more from the autosomes compared to the X, equalizing H4K20me1 level between X and autosomes. H4K20me1 increase on the autosomes led to a slight repression, resulting in a relative effect of X derepression. H4K20me1 depletion in the set-1 mutant showed greater X derepression compared to equalization of H4K20me1 levels between X and autosomes in the set-4 mutant, indicating that H4K20me1 level is important, but X to autosomal balance of H4K20me1 contributes only slightly to X-repression. Thus H4K20me1 by itself is not a downstream effector of the DCC. In summary, X chromosome dosage compensation starts in early embryos as the DCC localizes to

  6. MEMS packaging with etching and thinning of lid wafer to form lids and expose device wafer bond pads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chanchani, Rajen; Nordquist, Christopher; Olsson, Roy H

    In wafer-level packaging of microelectromechanical (MEMS) devices a lid wafer is bonded to a MEMS wafer in a predermined aligned relationship. Portions of the lid wafer are removed to separate the lid wafer into lid portions that respectively correspond in alignment with MEMS devices on the MEMS wafer, and to expose areas of the MEMS wafer that respectively contain sets of bond pads respectively coupled to the MEMS devices.

  7. CALCULATED REGENERATOR PERFORMANCE AT 4 K WITH HELIUM-4 AND HELIUM-3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radebaugh, Ray; Huang Yonghua; O'Gallagher, Agnes

    2008-03-16

    The helium-4 working fluid in regenerative cryocoolers operating with the cold end near 4 K deviates considerably from an ideal gas. As a result, losses in the regenerator, given by the time-averaged enthalpy flux, are increased and are strong functions of the operating pressure and temperature. Helium-3, with its lower boiling point, behaves somewhat closer to an ideal gas in this low temperature range and can reduce the losses in 4 K regenerators. An analytical model is used to find the fluid properties that strongly influence the regenerator losses as well as the gross refrigeration power. The thermodynamic and transportmore » properties of helium-3 were incorporated into the latest NIST regenerator numerical model, known as REGEN3.3, which was used to model regenerator performance with either helium-4 or helium-3. With this model we show how the use of helium-3 in place of helium-4 can improve the performance of 4 K regenerative cryocoolers. The effects of operating pressure, warm-end temperature, and frequency on regenerators with helium-4 and helium-3 are investigated and compared. The results are used to find optimum operating conditions. The frequency range investigated varies from 1 Hz to 30 Hz, with particular emphasis on higher frequencies.« less

  8. Antifungal agents. 10. New derivatives of 1-[(aryl)[4-aryl-1H-pyrrol-3-yl]methyl]-1H-imidazole, synthesis, anti-candida activity, and quantitative structure-analysis relationship studies.

    PubMed

    Tafi, Andrea; Costi, Roberta; Botta, Maurizio; Di Santo, Roberto; Corelli, Federico; Massa, Silvio; Ciacci, Andrea; Manetti, Fabrizio; Artico, Marino

    2002-06-20

    The synthesis, anti-Candida activity, and quantitative structure-activity relationship (QSAR) studies of a series of 2,4-dichlorobenzylimidazole derivatives having a phenylpyrrole moiety (related to the antibiotic pyrrolnitrin) in the alpha-position are reported. A number of substituents on the phenyl ring, ranging from hydrophobic (tert-butyl, phenyl, or 1-pyrrolyl moiety) to basic (NH(2)), polar (CF(3), CN, SCH(3), NO(2)), or hydrogen bond donors and acceptor (OH) groups, were chosen to better understand the interaction of these compounds with cytochrome P450 14-alpha-lanosterol demethylase (P450(14DM)). Finally, the triazole counterpart of one of the imidazole compounds was synthesized and tested to investigate influence of the heterocyclic ring on biological activity. The in vitro antifungal activities of the newly synthesized azoles 10p-v,x-c' were tested against Candida albicans and Candida spp. at pH 7.2 and pH 5.6. A CoMFA model, previously derived for a series of antifungal agents belonging to chemically diverse families related to bifonazole, was applied to the new products. Because the results produced by this approach were not encouraging, Catalyst software was chosen to perform a new 3D-QSAR study. Catalyst was preferred this time because of the possibility of considering each compound as a collection of energetically reasonable conformations and of considering alternative stereoisomers. The pharmacophore model developed by Catalyst, named HYPO1, showed good performances in predicting the biological activity data, although it did not exhibit an unequivocal preference for one enantiomeric series of inhibitors relative to the other. One aromatic nitrogen with a lone pair in the ring plane (mapped by all of the considered compounds) and three aromatic ring features were recognized to have pharmacophoric relevance, whereas neither hydrogen bond acceptor nor hydrophobic features were found. These findings confirmed that the key interaction of azole

  9. Smad, PI3K/Akt, and Wnt-dependent signaling pathways are involved in BMP-4-induced ESC self-renewal.

    PubMed

    Lee, Min Young; Lim, Hyun Woo; Lee, Sang Hun; Han, Ho Jae

    2009-08-01

    It is known that bone morphogenetic protein 4 (BMP-4) has a diverse effect on ESCs. However, its precise mechanism in mouse ESCs is not fully understood. We evaluated the effect of BMP-4 on ESC proliferation and its related signal cascades in this study. BMP-4 significantly increased the level of [(3)H]-thymidine incorporation in time- (> or =8 hours) and dose- (> or =10 ng/ml) dependent manners. Additionally, BMP-4 increased cyclin D1 and decreased p27(kip1) expression values in a time-dependent manner. The increases in BMP-4-induced [(3)H]-thymidine incorporation and cyclin D1 expression were inhibited by the BMP-4 receptor antagonist noggin. BMP-4 increased Wnt1 expression. Wnt1 expression was attenuated by Smad4 small interfering RNA (siRNA), and BMP-4-induced cyclin D1 expression was inhibited by Smad4 and Wnt1 siRNAs. BMP-4 also activated beta-catenin, which was blocked by Smad4 and Wnt1 siRNAs. In addition, BMP-4 induced Akt phosphorylation. BMP-4-induced beta-catenin activation and cyclin D1 expression were attenuated by phosphatidyl inositol 3-kinase (PI3K) siRNA and Akt inhibitor. Additionally, downregulation of Smad4, Wnt1, and PI3K expression by siRNA decreased the levels of pluripotency marker mRNAs of ESCs, including Oct4, Sox2, and FoxD3. Our results suggested that BMP-4-induced [(3)H]-thymidine incorporation was significantly attenuated by Smad4, Wnt1, and PI3K knockdown. In conclusion, BMP-4 contributed to the maintenance of cell proliferation and the pluripotent state by Smad, PI3K/Akt, and Wnt1/beta-catenin in mouse ESCs.

  10. The H3K9 dimethyltransferases EHMT1/2 protect against pathological cardiac hypertrophy

    PubMed Central

    Aronsen, Jan Magnus; Ferrini, Arianna; Brien, Patrick; Alkass, Kanar; Tomasso, Antonio; Agrawal, Asmita; Bergmann, Olaf; Reik, Wolf; Roderick, Hywel Llewelyn

    2016-01-01

    Cardiac hypertrophic growth in response to pathological cues is associated with reexpression of fetal genes and decreased cardiac function and is often a precursor to heart failure. In contrast, physiologically induced hypertrophy is adaptive, resulting in improved cardiac function. The processes that selectively induce these hypertrophic states are poorly understood. Here, we have profiled 2 repressive epigenetic marks, H3K9me2 and H3K27me3, which are involved in stable cellular differentiation, specifically in cardiomyocytes from physiologically and pathologically hypertrophied rat hearts, and correlated these marks with their associated transcriptomes. This analysis revealed the pervasive loss of euchromatic H3K9me2 as a conserved feature of pathological hypertrophy that was associated with reexpression of fetal genes. In hypertrophy, H3K9me2 was reduced following a miR-217–mediated decrease in expression of the H3K9 dimethyltransferases EHMT1 and EHMT2 (EHMT1/2). miR-217–mediated, genetic, or pharmacological inactivation of EHMT1/2 was sufficient to promote pathological hypertrophy and fetal gene reexpression, while suppression of this pathway protected against pathological hypertrophy both in vitro and in mice. Thus, we have established a conserved mechanism involving a departure of the cardiomyocyte epigenome from its adult cellular identity to a reprogrammed state that is accompanied by reexpression of fetal genes and pathological hypertrophy. These results suggest that targeting miR-217 and EHMT1/2 to prevent H3K9 methylation loss is a viable therapeutic approach for the treatment of heart disease. PMID:27893464

  11. A bipolar outflow of ionized gas in K3-50A: H76 alpha radio recombination line and continuum observations of K3-50

    NASA Technical Reports Server (NTRS)

    Depree, C. G.; Goss, W. M.; Palmer, Patrick; Rubin, Robert H.

    1994-01-01

    The H II regions near K3-50 (G70.3 + 1.6) have been imaged at high angular resolution (approximately 1 sec .3) in the continuum and the recombination lines H76(sub alpha and He76(sub alpha) using the Very Large Array (VLA). The helium line is detected in only the brightest component K3-50A while the hydrogen line is detected in three components (K3-50A, B and C1). K3-50A shows a pronounced velocity gradient of approximately 150 km/sec/pc along its major axis (P.A. = 160 deg); in addition a wide range of line widths are observed, from 20 to 65 km/sec. Kinematics from the line data and the morphology of the continuum emission suggest that the ionized material associated with K3-50A is undergoing a high-velocity bipolar outflow.

  12. Dynamic regulation of six histone H3 lysine (K) methyltransferases in response to prolonged anoxia exposure in a freshwater turtle.

    PubMed

    Wijenayake, Sanoji; Hawkins, Liam J; Storey, Kenneth B

    2018-04-05

    The importance of histone lysine methylation is well established in health, disease, early development, aging, and cancer. However, the potential role of histone H3 methylation in regulating gene expression in response to extended periods of oxygen deprivation (anoxia) in a natural, anoxia-tolerant model system is underexplored. Red-eared sliders (Trachemys scripta elegans) can tolerate and survive three months of absolute anoxia and recover without incurring detrimental cellular damage, mainly by reducing the overall metabolic rate by 90% when compared to normoxia. Stringent regulation of gene expression is a vital aspect of metabolic rate depression in red-eared sliders, and as such we examined the anoxia-responsive regulation of histone lysine methylation in the liver during 5 h and 20 h anoxia exposure. Interestingly, this is the first study to illustrate the existence of histone lysine methyltransferases (HKMTs) and corresponding histone H3 lysine methylation levels in the liver of anoxia-tolerant red-eared sliders. In brief, H3K4me1, a histone mark associated with active transcription, and two corresponding histone lysine methyltransferases that modify H3K4me1 site, significantly increased in response to anoxia. On the contrary, H3K27me1, another transcriptionally active histone mark, significantly decreased during 20 h anoxia, and a transcriptionally repressive histone mark, H3K9me3, and the corresponding KMTs, similarly increased during 20 h anoxia. Overall, the results suggest a dynamic regulation of histone H3 lysine methylation in the liver of red-eared sliders that could theoretically aid in the selective upregulation of genes that are necessary for anoxia survival, while globally suppressing others to conserve energy. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Objective Brow Height Measurements Following Pretrichial Brow Lift and Upper Lid Blepharoplasty.

    PubMed

    Martin, Matthew; Shah, Christopher T; Attawala, Payal; Neaman, Keith; Meldrum, Melissa; Hassan, Adam S

    2016-01-01

    As the ptotic brow drops below the supraorbital rim, it can exacerbate dermatochalasis by pushing the adjacent skin of the upper lid further down. The purpose of this study was to evaluate the outcomes associated with a combined pretrichial brow lift and upper lid blepharoplasty in patients with dermatochalasis and mild to moderate brow ptosis. A retrospective case series of 46 patients with dermatochalasis and mild to moderate brow ptosis treated with a combined, bilateral pretrichial brow lift and upper lid blepharoplasty from January 2008 to December 2011. Main outcome measures included measurements of brow lift at 3 months post-operatively, complications encountered, patient satisfaction and surgeon satisfaction. Outcomes from 46 patients were evaluated. The mean brow lift was 1.85 mm at the lateral canthus, 1.54 mm at the lateral limbus, 1.31 mm at the mid-pupil, and 1.07 mm at the medial limbus. Brow lift at the lateral canthus was significantly more elevated than at the medial limbus (P < 0.001). Minor complications were encountered in seven of 46 patients (15.2%). Mean patient satisfaction score was 3.20 and surgeon satisfaction 3.24 (max = 4, very satisfied). The modified pretrichial brow lift offered effective lateral lift that complements an upper lid blepharoplasty. This technique was met with a high degree of patient and surgeon satisfaction, and had a minimal complication profile.

  14. Adjustable Lid Aids Silicon-Ribbon Growth

    NASA Technical Reports Server (NTRS)

    Mchugh, J. P.; Steidensticker, R. G.; Duncan, C. S.

    1985-01-01

    Closely-spaced crucible cover speeds up solidification. Growth rate of dendritic-web silicon ribbon from molten silicon increased by controlling distance between crucible susceptor lid and liquid/solid interface. Lid held in relatively high position when crucible newly filled with chunks of polycrystalline silicon. As silicon melts and forms pool of liquid at lower level, lid gradually lowered.

  15. Fumonisin FB1 treatment acts synergistically with methyl donor deficiency during rat pregnancy to produce alterations of H3- and H4-histone methylation patterns in fetuses.

    PubMed

    Pellanda, Hélène; Forges, Thierry; Bressenot, Aude; Chango, Abalo; Bronowicki, Jean-Pierre; Guéant, Jean-Louis; Namour, Fares

    2012-06-01

    Prenatal folate and methyl donor malnutrition lead to epigenetic alterations that could enhance susceptibility to disease. Methyl-deficient diet (MDD) and fumonisin FB1 are risk factors for neural tube defects and cancers. Evidence indicates that FB1 impairs folate metabolism. Folate receptors and four heterochromatin markers were investigated in rat fetuses liver derived from dams exposed to MDD and/or FB1 administered at a dose twice higher than the provisional maximum tolerable daily intake (PMTDI = 2 μg/kg/day). Even though folate receptors transcription seemed up-regulated by methyl depletion regardless of FB1 treatment, combined MDD/FB1 exposure might reverse this up-regulation since folate receptors transcripts were lower in the MDD/FB1 versus MDD group. Methyl depletion decreased H4K20me3. Combined MDD/FB1 decreased H4K20me3 even more and increased H3K9me3. The elevated H3K9me3 can be viewed as a defense mechanism inciting the cell to resist heterochromatin disorganization. H3R2me2 and H4K16Ac varied according to this mechanism even though statistical significance was not consistent. Considering that humans are exposed to FB1 levels above the PMTDI, this study is relevant because it suggests that low doses of FB1 interact with MDD thus contributing to disrupt the epigenetic landscape. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Dynamic Control of Chromosome Topology and Gene Expression by a Chromatin Modification.

    PubMed

    Bian, Qian; Anderson, Erika C; Brejc, Katjuša; Meyer, Barbara J

    2018-02-22

    The function of chromatin modification in establishing higher-order chromosome structure during gene regulation has been elusive. We dissected the machinery and mechanism underlying the enrichment of histone modification H4K20me1 on hermaphrodite X chromosomes during Caenorhabditis elegans dosage compensation and discovered a key role for H4K20me1 in regulating X-chromosome topology and chromosome-wide gene expression. Structural and functional analysis of the dosage compensation complex (DCC) subunit DPY-21 revealed a novel Jumonji C demethylase subfamily that converts H4K20me2 to H4K20me1 in worms and mammals. Inactivation of demethylase activity in vivo by genome editing eliminated H4K20me1 enrichment on X chromosomes of somatic cells, increased X-linked gene expression, reduced X-chromosome compaction, and disrupted X-chromosome conformation by diminishing the formation of topologically associated domains. H4K20me1 is also enriched on the inactive X of female mice, making our studies directly relevant to mammalian development. Unexpectedly, DPY-21 also associates specifically with autosomes of nematode germ cells in a DCC-independent manner to enrich H4K20me1 and trigger chromosome compaction. Thus, DPY-21 is an adaptable chromatin regulator. Its H4K20me2 demethylase activity can be harnessed during development for distinct biological functions by targeting it to diverse genomic locations through different mechanisms. In both somatic cells and germ cells, H4K20me1 enrichment modulates three-dimensional chromosome architecture, demonstrating the direct link between chromatin modification and higher-order chromosome structure. © 2017 Bian et al.; Published by Cold Spring Harbor Laboratory Press.

  17. Void-Free Lid for Food Packaging

    NASA Technical Reports Server (NTRS)

    Watson, C. D.; Farris, W. P.

    1986-01-01

    Flexible cover eliminates air pockets in sealed container. Universal food-package lid formed from flexible plastic. Partially folded, lid unfolded by depressing center portion. Height of flat portion of lid above flange thereby reduced. Pressure of food against central oval depression pops it out, forming dome that provides finger grip for mixing contents with water or opening lid. Therefore food stays fresh, allows compact stacking of partially filled containers, and resists crushing. Originally developed for packaging dehydrated food for use in human consumption on Space Shuttle missions. Other uses include home canning and commercial food packaging.

  18. HDAC1 and HDAC3 underlie dynamic H3K9 acetylation during embryonic neurogenesis and in schizophrenia-like animals.

    PubMed

    Večeřa, Josef; Bártová, Eva; Krejčí, Jana; Legartová, Soňa; Komůrková, Denisa; Rudá-Kučerová, Jana; Štark, Tibor; Dražanová, Eva; Kašpárek, Tomáš; Šulcová, Alexandra; Dekker, Frank J; Szymanski, Wiktor; Seiser, Christian; Weitzer, Georg; Mechoulam, Raphael; Micale, Vincenzo; Kozubek, Stanislav

    2018-01-01

    Although histone acetylation is one of the most widely studied epigenetic modifications, there is still a lack of information regarding how the acetylome is regulated during brain development and pathophysiological processes. We demonstrate that the embryonic brain (E15) is characterized by an increase in H3K9 acetylation as well as decreases in the levels of HDAC1 and HDAC3. Moreover, experimental induction of H3K9 hyperacetylation led to the overexpression of NCAM in the embryonic cortex and depletion of Sox2 in the subventricular ependyma, which mimicked the differentiation processes. Inducing differentiation in HDAC1-deficient mouse ESCs resulted in early H3K9 deacetylation, Sox2 downregulation, and enhanced astrogliogenesis, whereas neuro-differentiation was almost suppressed. Neuro-differentiation of (wt) ESCs was characterized by H3K9 hyperacetylation that was associated with HDAC1 and HDAC3 depletion. Conversely, the hippocampi of schizophrenia-like animals showed H3K9 deacetylation that was regulated by an increase in both HDAC1 and HDAC3. The hippocampi of schizophrenia-like brains that were treated with the cannabinoid receptor-1 inverse antagonist AM251 expressed H3K9ac at the level observed in normal brains. Together, the results indicate that co-regulation of H3K9ac by HDAC1 and HDAC3 is important to both embryonic brain development and neuro-differentiation as well as the pathophysiology of a schizophrenia-like phenotype. © 2017 Wiley Periodicals, Inc.

  19. Transcriptional Regulation of JARID1B/KDM5B Histone Demethylase by Ikaros, Histone Deacetylase 1 (HDAC1), and Casein Kinase 2 (CK2) in B-cell Acute Lymphoblastic Leukemia*

    PubMed Central

    Wang, Haijun; Song, Chunhua; Ding, Yali; Pan, Xiaokang; Ge, Zheng; Tan, Bi-Hua; Gowda, Chandrika; Sachdev, Mansi; Muthusami, Sunil; Ouyang, Hongsheng; Lai, Liangxue; Francis, Olivia L.; Morris, Christopher L.; Abdel-Azim, Hisham; Dorsam, Glenn; Xiang, Meixian; Payne, Kimberly J.; Dovat, Sinisa

    2016-01-01

    Impaired function of the Ikaros (IKZF1) protein is associated with the development of high-risk B-cell precursor acute lymphoblastic leukemia (B-ALL). The mechanisms of Ikaros tumor suppressor activity in leukemia are unknown. Ikaros binds to the upstream regulatory elements of its target genes and regulates their transcription via chromatin remodeling. Here, we report that Ikaros represses transcription of the histone H3K4 demethylase, JARID1B (KDM5B). Transcriptional repression of JARID1B is associated with increased global levels of H3K4 trimethylation. Ikaros-mediated repression of JARID1B is dependent on the activity of the histone deacetylase, HDAC1, which binds to the upstream regulatory element of JARID1B in complex with Ikaros. In leukemia, JARID1B is overexpressed, and its inhibition results in cellular growth arrest. Ikaros-mediated repression of JARID1B in leukemia is impaired by pro-oncogenic casein kinase 2 (CK2). Inhibition of CK2 results in increased binding of the Ikaros-HDAC1 complex to the promoter of JARID1B, with increased formation of trimethylated histone H3 lysine 27 and decreased histone H3 Lys-9 acetylation. In cases of high-risk B-ALL that carry deletion of one Ikaros (IKZF1) allele, targeted inhibition of CK2 restores Ikaros binding to the JARID1B promoter and repression of JARID1B. In summary, the presented data suggest a mechanism through which Ikaros and HDAC1 regulate the epigenetic signature in leukemia: via regulation of JARID1B transcription. The presented data identify JARID1B as a novel therapeutic target in B-ALL and provide a rationale for the use of CK2 inhibitors in the treatment of high-risk B-ALL. PMID:26655717

  20. [(3)H]8-Ethyl-4-methyl-2-phenyl-(8R)-4,5,7,8-tetrahydro-1H-imidazo[2,1-i]-purin-5-one ([(3)H]PSB-11), a novel high-affinity antagonist radioligand for human A(3) adenosine receptors.

    PubMed

    Müller, Christa E; Diekmann, Martina; Thorand, Mark; Ozola, Vita

    2002-02-11

    This study describes the preparation and binding properties of [(3)H]PSB-11, a novel, potent, and selective antagonist radioligand for human A(3) adenosine receptors (ARs). [(3)H]PSB-11 binding to membranes of Chinese hamster ovary (CHO) cells expressing the human A(3) AR was saturable and reversible. Saturation experiments showed that [(3)H]PSB-11 labeled a single class of binding sites with high affinity (K(D)=4.9 nM) and limited capacity (B(max)=3500 fmol/mg of protein). PSB-11 is highly selective versus the other adenosine receptor subtypes. The new radioligand shows an extraordinarily low degree of non-specific binding rendering it a very useful tool for studying the (patho)physiological roles of A(3 )ARs.

  1. X-ray crystallographic and MD simulation studies on the mechanism of interfacial activation of a family I.3 lipase with two lids.

    PubMed

    Angkawidjaja, Clement; Matsumura, Hiroyoshi; Koga, Yuichi; Takano, Kazufumi; Kanaya, Shigenori

    2010-07-02

    The interfacial activation mechanism of family I.3 lipase from Pseudomonas sp. MIS38 (PML), which has two alpha-helical lids (lid1 and lid2), was investigated using a combination of X-ray crystallography and molecular dynamics (MD) simulation. The crystal structure of PML in an open conformation was determined at 2.1 A resolution in the presence of Ca(2+) and Triton X-100. Comparison of this structure with that in the closed conformation indicates that both lids greatly change their positions and lid1 is anchored by the calcium ion (Ca1) in the open conformation. This structure was not seriously changed even when the protein was dialyzed extensively against the Ca(2+)-free buffer containing Triton X-100 before crystallization, indicating that the open conformation is fairly stable unless a micellar substance is removed. The crystal structure of the PML derivative, in which the active site serine residue (Ser207) is diethylphosphorylated by soaking the crystal of PML in the open conformation in a solution containing diethyl p-nitrophenyl phosphate, was also determined. This structure greatly resembles that in the open conformation, indicating that PML structure in the open conformation represents that in the active form. MD simulation of PML in the open conformation in the absence of micelles showed that lid2 closes first, while lid1 maintains its open conformation. Likewise, MD simulation of PML in the closed conformation in the absence of Ca(2+) and in the presence of octane or trilaurin micelles showed that lid1 opens, while lid2 remains closed. These results suggest that Ca1 functions as a hook for stabilization of a fully opened conformation of lid1 and for initiation of subsequent opening of lid2. Copyright 2010 Elsevier Ltd. All rights reserved.

  2. Synthesis, biological evaluation and docking analysis of 3-methyl-1-phenylchromeno[4,3-c]pyrazol-4(1H)-ones as potential cyclooxygenase-2 (COX-2) inhibitors.

    PubMed

    Grover, Jagdeep; Kumar, Vivek; Sobhia, M Elizabeth; Jachak, Sanjay M

    2014-10-01

    As a part of our continued efforts to discover new COX inhibitors, a series of 3-methyl-1-phenylchromeno[4,3-c]pyrazol-4(1H)-ones were synthesized and evaluated for in vitro COX inhibitory potential. Within this series, seven compounds (3a-d, 3h, 3k and 3q) were identified as potential and selective COX-2 inhibitors (COX-2 IC50's in 1.79-4.35μM range; COX-2 selectivity index (SI)=6.8-16.7 range). Compound 3b emerged as most potent (COX-2 IC50=1.79μM; COX-1 IC50 >30μM) and selective COX-2 inhibitor (SI >16.7). Further, compound 3b displayed superior anti-inflammatory activity (59.86% inhibition of edema at 5h) in comparison to celecoxib (51.44% inhibition of edema at 5h) in carrageenan-induced rat paw edema assay. Structure-activity relationship studies suggested that N-phenyl ring substituted with p-CF3 substituent (3b, 3k and 3q) leads to more selective inhibition of COX-2. To corroborate obtained experimental biological data, molecular docking study was carried out which revealed that compound 3b showed stronger binding interaction with COX-2 as compared to COX-1. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. [{(Mo)Mo5O21(H2O)3(SO4)}12(VO)30(H2O)20]36-: a molecular quantum spin icosidodecahedron.

    PubMed

    Botar, Bogdan; Kögerler, Paul; Hill, Craig L

    2005-07-07

    Self-assembly of aqueous solutions of molybdate and vanadate under reducing, mildly acidic conditions results in a polyoxomolybdate-based {Mo72V30} cluster compound Na8K16(VO)(H2O)5[K10 subset{(Mo)Mo5O21(H2O)3(SO4)}12(VO)30(H2O)20].150H2O, 1, a quantum spin-based Keplerate structure.

  4. IBM1, a JmjC domain-containing histone demethylase, is involved in the regulation of RNA-directed DNA methylation through the epigenetic control of RDR2 and DCL3 expression in Arabidopsis

    PubMed Central

    Fan, Di; Dai, Yan; Wang, Xuncheng; Wang, Zhenjie; He, Hang; Yang, Hongchun; Cao, Ying; Deng, Xing Wang; Ma, Ligeng

    2012-01-01

    Small RNA-directed DNA methylation (RdDM) is an important epigenetic pathway in Arabidopsis that controls the expression of multiple genes and several developmental processes. RNA-DEPENDENT RNA POLYMERASE 2 (RDR2) and DICER-LIKE 3 (DCL3) are necessary factors in 24-nt small interfering RNA (siRNA) biogenesis, which is part of the RdDM pathway. Here, we found that Increase in BONSAI Methylation 1 (IBM1), a conserved JmjC family histone demethylase, is directly associated with RDR2 and DCL3 chromatin. The mutation of IBM1 induced the hypermethylation of H3K9 and DNA non-CG sites within RDR2 and DCL3, which repressed their expression. A genome-wide analysis suggested that the reduction in RDR2 and DCL3 expression affected siRNA biogenesis in a locus-specific manner and disrupted RdDM-directed gene repression. Together, our results suggest that IBM1 regulates gene expression through two distinct pathways: direct association to protect genes from silencing by preventing the coupling of histone and DNA methylation, and indirect silencing of gene expression through RdDM-directed repression. PMID:22772985

  5. High-pressure structural behavior of hydrogarnet, katoite Ca3Al2(O4H4)3

    NASA Astrophysics Data System (ADS)

    Kyono, A.; Kato, M.; Sano-Furukawa, A.; Machida, S. I.; Hattori, T.

    2016-12-01

    High-pressure structural behavior of hydrogarnet, katoite Ca3Al2(O4H4)3, was investigated using single-crystal synchrotron x-ray diffraction, Raman spectroscopic, and neutron diffraction analyses. The high-pressure single-crystal synchrotron x-ray diffraction was performed at BL10A, Photon Factory, KEK, Japan. With compression, the a lattice parameter decreased continuously from 12.565 (1) Å to 12.226 (3) Å up to 7.1 GPa. A fit to the Birch-Murnaghan equation of state (EoS) based on the P-V data gives K0 = 56.0 (6) GPa, K' = 4.3 (1), and V0 = 1984.2 (5) Å3, which were consistent with the previous study by Lager et al. (2002). Weak reflections forbidden by the systematic absence of hk0 with k, l = 2n were observed at 5.5 GPa and their intensities became stronger as increasing pressure. The pattern change of systematic absence implies phase transformation from space group Ia-3d to its non-centrosymmetric space group I-43d. High-pressure Raman spectroscopic study was performed up to 8.3 GPa at room temperature. The pressure dependence of lattice modes showed a positive pressure shifts, whereas that of OH stretching vibration mode was changed negative above 5.1 GPa. The change indicates that the strength of hydrogen bonding turns to increase above 5.1 GPa. High-pressure and high-temperature neutron diffraction study was performed with six-axis large volume press, ATSUHIME, at BL11 (PLANET), J-PARC, Japan. At a pressure of approximately 8 GPa, the a lattice parameter increased with temperature, but neither thermal decomposition nor dehydroxylation process occurred up to 1123 K. The crystal structure of katoite was determined by Rietveld method using neutron diffraction data with the space group I-43d. The volume of dodecahedral site containing Ca cations and that of octahedral site occupied by Al cations remained almost constant with temperature, but two crystallographically inequivalent tetrahedral sites which were caused by phase transformation behaved differently

  6. Mechanistic study on the fluorination of K[B(CN)4] with ClF enabling the high yield and large scale synthesis of K[B(CF3)4] and K[(CF3)3BCN].

    PubMed

    Bernhardt, Eduard; Finze, Maik; Willner, Helge

    2011-10-17

    The fluorination of K[B(CN)(4)] with ClF is studied by millimolar test reactions in aHF and CH(2)Cl(2) solution and by subsequent identification of intermediates such as B-CF═NCl, B-CF(2)-NCl(2), and B-CF(3) species as well as NCl(3) by (19)F, (11)B NMR, and Raman spectroscopy, respectively. At first one cyano group of K[B(CN)(4)] is converted fast into a CF(3) group, and with increasing fluorination the reaction becomes slower and several intermediates could be observed. On the basis of these results, a synthesis was developed for K[B(CF(3))(4)] on a 0.2 molar scale by treatment of K[B(CN)(4)] diluted in aHF with ClF. The course of the reactions was followed by (i) monitoring the vapor pressure inside the reactor, (ii) observing the heat dissipation during ClF uptake, and (iii) measuring the volume of the released nitrogen gas. Since the fluorination of the last cyano group proceeds very slowly, the selective synthesis of K[(CF(3))(3)BCN] on a 0.2 molar scale is possible, as well. The analysis of the mechanisms, thermodynamics, and kinetics of the fluorination reactions is supported by density functional theory (DFT) calculations.

  7. Solvothermal indium fluoride chemistry: Syntheses and crystal structures of K{sub 5}In{sub 3}F{sub 14}, beta-(NH{sub 4}){sub 3}InF{sub 6} and [NH{sub 4}]{sub 3}[C{sub 6}H{sub 21}N{sub 4}]{sub 2}[In{sub 4}F{sub 21}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jayasundera, Anil C.A.; Goff, Richard J.; Li Yang

    2010-02-15

    The solvothermal syntheses and crystal structures of three indium fluorides are presented. K{sub 5}In{sub 3}F{sub 14} (1) and beta-(NH{sub 4}){sub 3}InF{sub 6} (2) are variants on known inorganic structure types chiolite and cryolite, respectively, with the latter exhibiting a complex and apparently novel structural distortion. [NH{sub 4}]{sub 3}[C{sub 6}H{sub 21}N{sub 4}]{sub 2}[In{sub 4}F{sub 21}] (3) represents a new hybrid composition displaying a unique trimeric metal fluoride building unit. - Graphical abstract: Solvothermal synthesis has been used to prepare three indium fluorides, including a novel hybrid material containing a unique [In{sub 3}F{sub 15}] trimer templated by tren.

  8. H4K20me0 marks post-replicative chromatin and recruits the TONSL₋MMS22L DNA repair complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saredi, Giulia; Huang, Hongda; Hammond, Colin M.

    Here, we report that after DNA replication, chromosomal processes including DNA repair and transcription take place in the context of sister chromatids. While cell cycle regulation can guide these processes globally, mechanisms to distinguish pre- and post-replicative states locally remain unknown. In this paper we reveal that new histones incorporated during DNA replication provide a signature of post-replicative chromatin, read by the human TONSL–MMS22L 1, 2, 3, 4 homologous recombination complex. We identify the TONSL ankyrin repeat domain (ARD) as a reader of histone H4 tails unmethylated at K20 (H4K20me0), which are specific to new histones incorporated during DNA replicationmore » and mark post-replicative chromatin until the G2/M phase of the cell cycle. Accordingly, TONSL–MMS22L binds new histones H3H4 both before and after incorporation into nucleosomes, remaining on replicated chromatin until late G2/M. H4K20me0 recognition is required for TONSL–MMS22L binding to chromatin and accumulation at challenged replication forks and DNA lesions. Consequently, TONSL ARD mutants are toxic, compromising genome stability, cell viability and resistance to replication stress. Finally, together, these data reveal a histone-reader-based mechanism for recognizing the post-replicative state, offering a new angle to understand DNA repair with the potential for targeted cancer therapy.« less

  9. Structure, ferroelectric ordering, and semiempirical quantum calculations of lanthanide based metal-organic framework: [Nd(C4H5O6)(C4H4O6)][3H2O

    NASA Astrophysics Data System (ADS)

    Ahmad, Bhat Zahoor; Want, Basharat

    2016-04-01

    We investigate the structure and ferroelectric behavior of a lanthanide based metal-organic framework (MOF), [Nd(C4H5O6)(C4H4O6)][3H2O]. X-ray crystal structure analyses reveal that it crystallizes in the P41212 space group with Nd centres, coordinated by nine oxygen atoms, forming a distorted capped square antiprismatic geometry. The molecules, bridged by tartrate ligands, form a 2D chiral structure. The 2D sheets are further linked into a 3D porous framework via strong hydrogen-bonding scheme (O-H…O ≈ 2.113 Å). Dielectric studies reveal two anomalies at 295 K and 185 K. The former is a paraelectric-ferroelectric transition, and the later is attributed to the freezing down of the motion of the hydroxyl groups. The phase transition is of second order, and the spontaneous polarization in low temperature phase is attributed to the ordering of protons of hydroxyl groups. The dielectric nonlinearity parameters have been calculated using Landau- Devonshire phenomenological theory. In addition, the most recent semiempirical models, Sparkle/PM7, Sparkle/RM1, and Sparkle/AM1, are tested on the present system to assay the accuracy of semiempirical quantum approaches to predict the geometries of solid MOFs. Our results show that Sparkle/PM7 model is the most accurate to predict the unit cell structure and coordination polyhedron geometry. The semiempirical methods are also used to calculate different ground state molecular properties.

  10. Nucleosome eviction along with H3K9ac deposition enhances Sox2 binding during human neuroectodermal commitment

    PubMed Central

    Du, Yanhua; Liu, Zhenping; Cao, Xinkai; Chen, Xiaolong; Chen, Zhenyu; Zhang, Xiaobai; Zhang, Xiaoqing; Jiang, Cizhong

    2017-01-01

    Neuroectoderm is an important neural precursor. However, chromatin remodeling and its epigenetic regulatory roles during the differentiation of human neuroectodermal cells (hNECs) from human embryonic stem cells (hESCs) remain largely unexplored. Here, we obtained hNECs through directed differentiation from hESCs, and determined chromatin states in the two cell types. Upon differentiation, H2A.Z-mediated nucleosome depletion leads to an open chromatin structure in promoters and upregulates expression of neuroectodermal genes. Increase in H3K9ac signals and decrease in H3K27me3 signals in promoters result in an active chromatin state and activate neuroectodermal genes. Conversely, decrease in H3K9ac signals and increase in H3K27me3 signals in promoters repress pluripotency genes. Moreover, H3K9ac signals facilitate the pluripotency factor Sox2 binding to target sites unique to hNECs. Knockdown of the acetyltransferase Kat2b erases H3K9ac signals, disrupts Sox2 binding, and fails the differentiation. Our results demonstrate a hierarchy of epigenetic regulation of gene expression during the differentiation of hNECs from hESCs through chromatin remodeling. PMID:28475175

  11. A Simple Method for Visualization of Locus-Specific H4K20me1 Modifications in Living Caenorhabditis elegans Single Cells.

    PubMed

    Shinkai, Yoichi; Kuramochi, Masahiro; Doi, Motomichi

    2018-05-03

    Recently, advances in next-generation sequencing technologies have enabled genome-wide analyses of epigenetic modifications; however, it remains difficult to analyze the states of histone modifications at a single-cell resolution in living multicellular organisms because of the heterogeneity within cellular populations. Here we describe a simple method to visualize histone modifications on the specific sequence of target locus at a single-cell resolution in living Caenorhabditis elegans , by combining the LacO/LacI system and a genetically-encoded H4K20me1-specific probe, "mintbody". We demonstrate that Venus-labeled mintbody and mTurquoise2-labeled LacI can co-localize on an artificial chromosome carrying both the target locus and LacO sequences, where H4K20me1 marks the target locus. We demonstrate that our visualization method can precisely detect H4K20me1 depositions on the her-1 gene sequences on the artificial chromosome, to which the dosage compensation complex binds to regulate sex determination. The degree of H4K20me1 deposition on the her-1 sequences on the artificial chromosome correlated strongly with sex, suggesting that, using the artificial chromosome, this method can reflect context-dependent changes of H4K20me1 on endogenous genomes. Furthermore, we demonstrate live imaging of H4K20me1 depositions on the artificial chromosome. Combined with ChIP assays, this mintbody-LacO/LacI visualization method will enable analysis of developmental and context-dependent alterations of locus-specific histone modifications in specific cells and elucidation of the underlying molecular mechanisms. Copyright © 2018, G3: Genes, Genomes, Genetics.

  12. Syntheses, crystal structures and optical spectroscopy of Ln{sub 2}(SO{sub 4}){sub 3}.8H{sub 2}O (Ln=Ho, Tm) and Pr{sub 2}(SO{sub 4}){sub 3}.4H{sub 2}O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kazmierczak, Karolina; Hoeppe, Henning A., E-mail: henning@ak-hoeppe.d

    2011-05-15

    The lanthanide sulphate octahydrates Ln{sub 2}(SO{sub 4}){sub 3}.8H{sub 2}O (Ln=Ho, Tm) and the respective tetrahydrate Pr{sub 2}(SO{sub 4}){sub 3}.4H{sub 2}O were obtained by evaporation of aqueous reaction mixtures of trivalent rare earth oxides and sulphuric acid at 300 K. Ln{sub 2}(SO{sub 4}){sub 3}.8H{sub 2}O (Ln=Ho, Tm) crystallise in space group C2/c (Z=4, a{sub Ho}=13.4421(4) A, b{sub Ho}=6.6745(2) A, c{sub Ho}=18.1642(5) A, {beta}{sub Ho}=102.006(1) A{sup 3} and a{sub Tm}=13.4118(14) A, b{sub Tm}=6.6402(6) A, c{sub Tm}=18.1040(16) A, {beta}{sub Tm}=101.980(8) A{sup 3}), Pr{sub 2}(SO{sub 4}){sub 3}.4H{sub 2}O adopts space group P2{sub 1}/n (a=13.051(3) A, b=7.2047(14) A, c=13.316(3) A, {beta}=92.55(3) A{sup 3}). The vibrationalmore » and optical spectra of Ho{sub 2}(SO{sub 4}){sub 3}.8H{sub 2}O and Pr{sub 2}(SO{sub 4}){sub 3}.4H{sub 2}O are also reported. -- Graphical abstract: In the lanthanide sulphate octahydrates the cations form slightly undulated layers. Between the layers are voids in which sulphate tetrahedra and water molecules are located. The holmium compound exhibits an Alexandrite effect. Display Omitted Highlights: {yields} Determination of the optimum conditions for the growth of single-crystals of Ln{sub 2}(SO{sub 4}){sub 3}.8H{sub 2}O (Ln=Ho, Tm) and Pr{sub 2}(SO{sub 4}){sub 3}.4H{sub 2}O. {yields} Single-crystal structure elucidation of Ln{sub 2}(SO{sub 4}){sub 3}.8H{sub 2}O (Ln=Ho, Tm) including hydrogen bonds. {yields} Single-crystal structure determination of Pr{sub 2}(SO{sub 4}){sub 3}.4H{sub 2}O including hydrogen bonds. {yields} UV-vis spectra of Ho{sub 2}(SO{sub 4}){sub 3}.8H{sub 2}O and Pr{sub 2}(SO{sub 4}){sub 3}.4H{sub 2}O recorded and interpreted: Assignation of bands and clarification of the Alexandrite effect of the Ho compound. {yields} IR and Raman spectra of Ln{sub 2}(SO{sub 4}){sub 3}.8H{sub 2}O (Ln=Ho, Tm) and Pr{sub 2}(SO{sub 4}){sub 3}.4H{sub 2}O recorded and interpreted.« less

  13. Synthesis, structure, optical, photoluminescence and magnetic properties of K2[Co(C2O4)2(H2O)2]·4H2O

    NASA Astrophysics Data System (ADS)

    Narsimhulu, M.; Hussain, K. A.

    2018-06-01

    The synthesis, crystal structure, optical, photoluminescence and magnetic behaviour of potassium bis(oxalato)cobaltate(II)tertrahydrate{K2[Co(C2O4)2(H2O)2]·4H2O} are described. The compound was grown at room temperature from mixture of aqueous solutions by slow evaporation method. The X-ray crystallographic data showed that the compound belongs to the monoclinic crystal system with P21/n space group and Z = 4. The UV-visible diffuse absorbance spectra exhibited bands at 253, 285 and 541 nm in the visible and ultraviolet regions. The optical band gap of the compound was estimated as 3.4 eV. At room temperature, an intense photoluminescence was observed from this material around 392 nm when it excited at 254 nm. The variable temperature dc magnetic susceptibility measurements exposed paramagnetic behaviour at high temperatures and antiferromagnetic ordering at low temperatures.

  14. Nqrs Data for H4I3Li2NO9 [H4INO3·2(ILiO3)] (Subst. No. 2278)

    NASA Astrophysics Data System (ADS)

    Chihara, H.; Nakamura, N.

    This document is part of Subvolume B 'Substances Containing C10H16 … Zn' of Volume 48 'Nuclear Quadrupole Resonance Spectroscopy Data' of Landolt-Börnstein - Group III 'Condensed Matter'. It contains an extract of Section '3.2 Data tables' of the Chapter '3 Nuclear quadrupole resonance data' providing the NQRS data for H4I3Li2NO9 [H4INO3·2(ILiO3)] (Subst. No. 2278)

  15. Immunohistochemical Analysis of Histone H3 Modifications in Germ Cells during Mouse Spermatogenesis

    PubMed Central

    Song, Ning; Liu, Jie; An, Shucai; Nishino, Tomoya; Hishikawa, Yoshitaka; Koji, Takehiko

    2011-01-01

    Histone modification has been implicated in the regulation of mammalian spermatogenesis. However, the association of differently modified histone H3 with a specific stage of germ cells during spermatogenesis is not fully understood. In this study, we examined the localization of variously modified histone H3 in paraffin-embedded sections of adult mouse testis immunohistochemically, focusing on acetylation at lysine 9 (H3K9ac), lysine 18 (H3K18ac), and lysine 23 (H3K23ac); tri-methylation at lysine 4 (H3K4me3) and lysine 27 (H3K27me3); and phosphorylation at serine 10 (H3S10phos). As a result, we found that there was a significant fluctuation in the modifications; in spermatogonia, the stainings for H3K9ac, H3K18ac, and H3K23ac were strong while that for H3K4me3 was weak. In spermatocytes, the stainings for H3K9ac, H3K18ac, H3K23ac, and H3K4me3 were reduced in the preleptotene to pachytene stage, but in diplotene stage the stainings for H3K18ac, H3K23ac, and H3K4me3 seemed to become intense again. The staining for H3K27me3 was nearly constant throughout these stages. In the ensuing spermiogenesis, a dramatic acetylation and methylation of histone H3 was found in the early elongated spermatids and then almost all signals disappeared in the late elongated spermatids, in parallel with the replacement from histones to protamines. In addition, we confirmed that the staining of histone H3S10phos was exclusively associated with mitotic and meiotic cell division. Based upon the above results, we indicated that the modification pattern of histone H3 is subject to dynamic change and specific to a certain stage of germ cell differentiation during mouse spermatogenesis. PMID:21927517

  16. Immunohistochemical Analysis of Histone H3 Modifications in Germ Cells during Mouse Spermatogenesis.

    PubMed

    Song, Ning; Liu, Jie; An, Shucai; Nishino, Tomoya; Hishikawa, Yoshitaka; Koji, Takehiko

    2011-08-27

    Histone modification has been implicated in the regulation of mammalian spermatogenesis. However, the association of differently modified histone H3 with a specific stage of germ cells during spermatogenesis is not fully understood. In this study, we examined the localization of variously modified histone H3 in paraffin-embedded sections of adult mouse testis immunohistochemically, focusing on acetylation at lysine 9 (H3K9ac), lysine 18 (H3K18ac), and lysine 23 (H3K23ac); tri-methylation at lysine 4 (H3K4me3) and lysine 27 (H3K27me3); and phosphorylation at serine 10 (H3S10phos). As a result, we found that there was a significant fluctuation in the modifications; in spermatogonia, the stainings for H3K9ac, H3K18ac, and H3K23ac were strong while that for H3K4me3 was weak. In spermatocytes, the stainings for H3K9ac, H3K18ac, H3K23ac, and H3K4me3 were reduced in the preleptotene to pachytene stage, but in diplotene stage the stainings for H3K18ac, H3K23ac, and H3K4me3 seemed to become intense again. The staining for H3K27me3 was nearly constant throughout these stages. In the ensuing spermiogenesis, a dramatic acetylation and methylation of histone H3 was found in the early elongated spermatids and then almost all signals disappeared in the late elongated spermatids, in parallel with the replacement from histones to protamines. In addition, we confirmed that the staining of histone H3S10phos was exclusively associated with mitotic and meiotic cell division. Based upon the above results, we indicated that the modification pattern of histone H3 is subject to dynamic change and specific to a certain stage of germ cell differentiation during mouse spermatogenesis.

  17. SON and its alternatively spliced isoforms control MLL complex-mediated H3K4me3 and transcription of leukemia-associated genes

    PubMed Central

    Kim, Jung-Hyun; Baddoo, Melody C.; Park, Eun Young; Stone, Joshua K.; Park, Hyeonsoo; Butler, Thomas W.; Huang, Gang; Yan, Xiaomei; Pauli-Behn, Florencia; Myers, Richard M.; Tan, Ming; Flemington, Erik K.; Lim, Ssang-Taek; Erin Ahn, Eun-Young

    2016-01-01

    SUMMARY Dysregulation of MLL complex-mediated histone methylation plays a pivotal role in gene expression associated with diseases, but little is known about cellular factors modulating MLL complex activity. Here, we report that SON, previously known as an RNA splicing factor, controls MLL complex-mediated transcriptional initiation. SON binds to DNA near transcription start sites, interacts with menin, and inhibits MLL complex assembly, resulting in decreased H3K4me3 and transcriptional repression. Importantly, alternatively spliced short isoforms of SON are markedly upregulated in acute myeloid leukemia. The short isoforms compete with full-length SON for chromatin occupancy, but lack the menin-binding ability, thereby antagonizing full-length SON function in transcriptional repression while not impairing full-length SON-mediated RNA splicing. Furthermore, overexpression of a short isoform of SON enhances replating potential of hematopoietic progenitors. Our findings define SON as a fine-tuner of the MLL-menin interaction and reveal short SON overexpression as a marker indicating aberrant transcriptional initiation in leukemia. PMID:26990989

  18. ATXR5 and ATXR6 are novel H3K27 monomethyltransferases required for chromatin structure and gene silencing

    PubMed Central

    Jacob, Yannick; Feng, Suhua; LeBlanc, Chantal A.; Bernatavichute, Yana V.; Stroud, Hume; Cokus, Shawn; Johnson, Lianna M.; Pellegrini, Matteo; Jacobsen, Steven E.; Michaels, Scott D.

    2009-01-01

    Constitutive heterochromatin in Arabidopsis thaliana is marked by repressive chromatin modifications including DNA methylation, histone H3 dimethylation at lysine 9 (H3K9me2), and monomethylation at lysine 27 (H3K27me1). The enzymes catalyzing DNA methylation and H3K9me2 have been identified and mutations in these proteins lead to the reactivation of silenced heterochromatic elements. The enzymes responsible for heterochromatic H3K27me1, in contrast, remain unknown. Here we show that the divergent SET-domain proteins ARABIDOPSIS TRITHORAX-RELATED PROTEIN5 (ATXR5) and ATXR6 exhibit H3K27 monomethyltransferase activity and double mutants have reduced H3K27me1 in vivo and show partial heterochromatin decondensation. Mutations in atxr5 and atxr6 also lead to transcriptional activation of repressed heterochromatic elements. Interestingly, H3K9me2 and DNA methylation are unaffected in the double mutant. These results indicate that ATXR5 and ATXR6 form a novel class of H3K27 methyltransferases and that H3K27me1 represents a new pathway required for transcriptional repression in Arabidopsis. PMID:19503079

  19. Synthesis, structure and NMR characterization of a new monomeric aluminophosphate [ dl-Co(en) 3] 2[Al(HPO 4) 2(H 1.5PO 4) 2(H 2PO 4) 2](H 3PO 4) 4 containing four different types of monophosphates

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Li, Jiyang; Xu, Jun; Duan, Fangzheng; Deng, Feng; Xu, Ruren

    2009-03-01

    A new zero-dimensional (0D) aluminophosphate monomer [ dl-Co(en) 3] 2[Al(HPO 4) 2(H 1.5PO 4) 2(H 2PO 4) 2](H 3PO 4) 4 (designated AlPO-CJ38) with Al/P ratio of 1/6 has been solvothermally prepared by using racemic cobalt complex dl-Co(en) 3Cl 3 as the template. The Al atom is octahedrally linked to six P atoms via bridging oxygen atoms, forming a unique [Al(HPO 4) 2(H 1.5PO 4) 2(H 2PO 4) 2] 6- monomer. Notably, there exists intramolecular symmetrical O⋯H⋯O bonds, which results in pseudo-4-rings stabilized by the strong H-bonding interactions. The structure is also featured by the existence of four different types of monophosphates that have been confirmed by 31P NMR and 1H NMR spectra. The crystal data are as follows: AlPO-CJ38, [ dl-Co(en) 3] 2[Al(HPO 4) 2(H 1.5PO 4) 2(H 2PO 4) 2](H 3PO 4) 4, M = 1476.33, monoclinic, C2/ c (No. 15), a = 36.028(7) Å, b = 8.9877(18) Å, c = 16.006(3) Å, β = 100.68(3)°, U = 5093.2(18) Å 3,Z = 4, R1 = 0.0509 ( I > 2 σ( I)) and wR2 = 0.1074 (all data). CCDC number 689491.

  20. Ischemic Preconditioning Confers Epigenetic Repression of Mtor and Induction of Autophagy Through G9a-Dependent H3K9 Dimethylation.

    PubMed

    Gidlöf, Olof; Johnstone, Andrea L; Bader, Kerstin; Khomtchouk, Bohdan B; O'Reilly, Jiaqi J; Celik, Selvi; Van Booven, Derek J; Wahlestedt, Claes; Metzler, Bernhard; Erlinge, David

    2016-12-22

    Ischemic preconditioning (IPC) protects the heart from prolonged ischemic insult and reperfusion injury through a poorly understood mechanism. Post-translational modifications of histone residues can confer rapid and drastic switches in gene expression in response to various stimuli, including ischemia. The aim of this study was to investigate the effect of histone methylation in the response to cardiac ischemic preconditioning. We used cardiac biopsies from mice subjected to IPC to quantify global levels of 3 of the most well-studied histone methylation marks (H3K9me2, H3K27me3, and H3K4me3) with Western blot and found that H3K9me2 levels were significantly increased in the area at risk compared to remote myocardium. In order to assess which genes were affected by the increase in H3K9me2 levels, we performed ChIP-Seq and transcriptome profiling using microarray. Two hundred thirty-seven genes were both transcriptionally repressed and enriched in H3K9me2 in the area at risk of IPC mice. Of these, Mtor (Mechanistic target of rapamycin) was chosen for mechanistic studies. Knockdown of the major H3K9 methyltransferase G9a resulted in a significant decrease in H3K9me2 levels across Mtor, increased Mtor expression, as well as decreased autophagic activity in response to rapamycin and serum starvation. IPC confers an increase of H3K9me2 levels throughout the Mtor gene-a master regulator of cellular metabolism and a key player in the cardioprotective effect of IPC-leading to transcriptional repression via the methyltransferase G9a. The results of this study indicate that G9a has an important role in regulating cardiac autophagy and the cardioprotective effect of IPC. © 2016 The Authors and University of Miami Miller School of Medicine. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  1. A variable Ag-Cr-Oxalate channel lattice: [M(x)Ag(0.5)(-)(x)(H(2)O)(3)]@[Ag(2.5)Cr(C(2)O(4))(3)], M = K, Cs, Ag.

    PubMed

    Dean, Philip A W; Craig, Don; Dance, Ian; Russell, Vanessa; Scudder, Marcia

    2004-01-26

    Reaction of aqueous AgNO(3) with aqueous M(3)[Cr(ox)(3)] in >or=3:1 molar ratio causes the rapid growth of large, cherry-black, light-stable crystals which are not Ag(3)[Cr(ox)(3)], but [M(0.5)(H(2)O)(3)]@[Ag(2.5)Cr(ox)(3)] (ox(2)(-) = oxalate, C(2)O(4)(2)(-); M = Na, K, Cs, Ag, or mixtures of Ag and a group 1 element). The structure of these crystals contains an invariant channeled framework, with composition [[Ag(2.5)Cr(ox)(3)](-)(0.5)]( infinity ), constructed with [Cr(ox)(3)] coordination units linked by Ag atoms through centrosymmetric [Cr-O(2)C(2)O(2)-Ag](2) double bridges. The framework composition [Ag(2.5)Cr(ox)(3)](-)(0.5) occurs because one Ag is located on a 2-fold axis. Within the channels there is a well-defined and ordered set of six water molecules, strongly hydrogen bonded to each other and some of the oxalate O atoms. This invariant channel plus water structure accommodates group 1 cations, and/or Ag cations, in different locations and in variable proportions, but always coordinated by channel water and some oxalate O atoms. The general formulation of these crystals is therefore [M(x)Ag(0.5-x)(H(2)O)(3)]@[Ag(2.5)Cr(ox)(3)]. Five different crystals with this structure are reported, with compositions 1 Ag(0.5)[Ag(2.5)Cr(ox)(3)](H(2)O)(3), 2 Cs(0.19)Ag(0.31)[Ag(2.5)Cr(ox)(3)](H(2)O)(3), 3 K(0.28)Ag(0.22)[Ag(2.5)Cr(ox)(3)](H(2)O)(3), 4 Cs(0.41)Ag(0.09)[Ag(2.5)Cr(ox)(3)](H(2)O)(3), and 5 Cs(0.43)Ag(0.07) [Ag(2.5)Cr(ox)(3)](H(2)O)(3). All crystallize in space group C2/c, with a approximately 18.4, b approximately 14.6, c approximately 12.3 A, beta approximately 113 degrees. Pure Ag(3)[Cr(ox)(3)](H(2)O)(3), which has the same crystal structure (1), was obtained from water by treating Li(3)[Cr(ox)(3)] with excess AgNO(3). Complete dehydration of all of these compounds occurs between 30 and 100 degrees C, with loss of diffraction, but rehydration by exposure to H(2)O(g) at ambient temperature leads to recovery of the original diffraction pattern. In single

  2. Objective Brow Height Measurements Following Pretrichial Brow Lift and Upper Lid Blepharoplasty

    PubMed Central

    Martin, Matthew; Shah, Christopher T; Attawala, Payal; Neaman, Keith; Meldrum, Melissa; Hassan, Adam S

    2016-01-01

    Background: As the ptotic brow drops below the supraorbital rim, it can exacerbate dermatochalasis by pushing the adjacent skin of the upper lid further down. Aim: The purpose of this study was to evaluate the outcomes associated with a combined pretrichial brow lift and upper lid blepharoplasty in patients with dermatochalasis and mild to moderate brow ptosis. Materials and Methods: A retrospective case series of 46 patients with dermatochalasis and mild to moderate brow ptosis treated with a combined, bilateral pretrichial brow lift and upper lid blepharoplasty from January 2008 to December 2011. Main outcome measures included measurements of brow lift at 3 months post-operatively, complications encountered, patient satisfaction and surgeon satisfaction. Results: Outcomes from 46 patients were evaluated. The mean brow lift was 1.85 mm at the lateral canthus, 1.54 mm at the lateral limbus, 1.31 mm at the mid-pupil, and 1.07 mm at the medial limbus. Brow lift at the lateral canthus was significantly more elevated than at the medial limbus (P < 0.001). Minor complications were encountered in seven of 46 patients (15.2%). Mean patient satisfaction score was 3.20 and surgeon satisfaction 3.24 (max = 4, very satisfied). Conclusions: The modified pretrichial brow lift offered effective lateral lift that complements an upper lid blepharoplasty. This technique was met with a high degree of patient and surgeon satisfaction, and had a minimal complication profile. PMID:27398009

  3. Histone H3 Lysine 14 (H3K14) Acetylation Facilitates DNA Repair in a Positioned Nucleosome by Stabilizing the Binding of the Chromatin Remodeler RSC (Remodels Structure of Chromatin)*

    PubMed Central

    Duan, Ming-Rui; Smerdon, Michael J.

    2014-01-01

    Histone H3 acetylation is induced by UV damage in yeast and may play an important role in regulating the repair of UV photolesions in nucleosome-loaded genomic loci. However, it remains elusive how H3 acetylation facilitates repair. We generated a strongly positioned nucleosome containing homogeneously acetylated H3 at Lys-14 (H3K14ac) and investigated possible mechanisms by which H3K14 acetylation modulates repair. We show that H3K14ac does not alter nucleosome unfolding dynamics or enhance the repair of UV-induced cyclobutane pyrimidine dimers by UV photolyase. Importantly, however, nucleosomes with H3K14ac have a higher affinity for purified chromatin remodeling complex RSC (Remodels the Structure of Chromatin) and show greater cyclobutane pyrimidine dimer repair compared with unacetylated nucleosomes. Our study indicates that, by anchoring RSC, H3K14 acetylation plays an important role in the unfolding of strongly positioned nucleosomes during repair of UV damage. PMID:24515106

  4. iLIDS Simulations and Videos for Docking TIM

    NASA Technical Reports Server (NTRS)

    Lewis, James L.

    2010-01-01

    The video shows various aspects of the International Low Impact Docking System, including team members, some production, configuration, mated androgynous iLIDS, SCS Lockdown system, thermal analysis, electrical engineering aspects, the iLIDS control box and emulator, radiation testing at BNL, component environmental testing, component vibration testing, 3G processor board delivery system, GTA vibe test, EMA testbed, hook and hook disassembly, flex shaftdrive assembly, GSE cradle MISSE-6 Columbus, MISSE 6 and 7 seal experiments, actuated full scale seal test rig, LIDS on Hubble, dynamics test prep, EDU 54 mass emulation and SCS, load ring characterization, 6DOF proof test, SCS at 6DOF, machining EEMS and inner ring assembly, APAS assembly, inner ring fitting, rotation stand assembly, EEMS mating, and EEMS proof of concept demonstration.

  5. Preparation and surface characterization of activated carbons from Euphorbia rigida by chemical activation with ZnCl2, K2CO3, NaOH and H3PO4

    NASA Astrophysics Data System (ADS)

    Kılıç, Murat; Apaydın-Varol, Esin; Pütün, Ayşe Eren

    2012-11-01

    Preparation of activated carbons from Euphorbia rigida by chemical activation with different impregnation agents and ratios was studied. ZnCl2, K2CO3, NaOH and H3PO4 were used as chemical activation agents and four impregnation ratios (25-50-75-100%) by mass were applied on biomass. Activation is applied to impregnated biomass samples at 700 °C under sweeping gas in a fixed bed reactor. For determination of chemical and physical properties of the obtained activated carbons; elemental analysis was applied to determine the elemental composition (C, H, N, O) and FT-IR spectra was used to analyze the functional groups. BET equation was used to calculate the surface areas of activated carbons. For understanding the changes in the surface structure, activated carbons were conducted to Scanning Electron Microscopy (SEM). Maximum BET surface area (2613 m2/g) was reached with 75% K2CO3 impregnated biomass sample. Experimental results showed that impregnation types and ratios have a significant effect on the pore structure of activated carbon and E. rigida seems to be an alternative precursor for commercial activated carbon production.

  6. Homologous overexpression of rfaH in E. coli K4 improves the production of chondroitin-like capsular polysaccharide

    PubMed Central

    2013-01-01

    Background Glycosaminoglycans, such as hyaluronic acid, heparin, and chondroitin sulfate, are among the top ranked products in industrial biotechnology for biomedical applications, with a growing world market of billion dollars per year. Recently a remarkable progress has been made in the development of tailor-made strains as sources for the manufacturing of such products. The genetic modification of E. coli K4, a natural producer of chondroitin sulfate precursor, is challenging considering the lack of detailed information on its genome, as well as its mobilome. Chondroitin sulfate is currently used as nutraceutical for the treatment of osteoarthritis, and several new therapeutic applications, spanning from the development of skin substitutes to live attenuated vaccines, are under evaluation. Results E. coli K4 was used as host for the overexpression of RfaH, a positive regulator that controls expression of the polysaccharide biosynthesis genes and other genes necessary for the virulence of E. coli K4. Various engineering strategies were compared to investigate different types of expression systems (plasmid vs integrative cassettes) and integration sites (genome vs endogenous mobile element). All strains analysed in shake flasks on different media showed a capsular polysaccharide production improved by 40 to 140%, compared to the wild type, with respect to the final product titer. A DO-stat fed-batch process on the 2L scale was also developed for the best performing integrative strain, EcK4r3, yielding 5.3 g∙L-1 of K4 polysaccharide. The effect of rfaH overexpression in EcK4r3 affected the production of lipopolysaccharide and the expression of genes involved in the polysaccharide biosynthesis pathway (kfoC and kfoA), as expected. An alteration of cellular metabolism was revealed by changes of intracellular pools of UDP-sugars which are used as precursors for polysaccharide biosynthesis. Conclusions The present study describes the identification of a gene target

  7. Homologous overexpression of RfaH in E. coli K4 improves the production of chondroitin-like capsular polysaccharide.

    PubMed

    Cimini, Donatella; De Rosa, Mario; Carlino, Elisabetta; Ruggiero, Alessandro; Schiraldi, Chiara

    2013-05-09

    Glycosaminoglycans, such as hyaluronic acid, heparin, and chondroitin sulfate, are among the top ranked products in industrial biotechnology for biomedical applications, with a growing world market of billion dollars per year. Recently a remarkable progress has been made in the development of tailor-made strains as sources for the manufacturing of such products. The genetic modification of E. coli K4, a natural producer of chondroitin sulfate precursor, is challenging considering the lack of detailed information on its genome, as well as its mobilome. Chondroitin sulfate is currently used as nutraceutical for the treatment of osteoarthritis, and several new therapeutic applications, spanning from the development of skin substitutes to live attenuated vaccines, are under evaluation. E. coli K4 was used as host for the overexpression of RfaH, a positive regulator that controls expression of the polysaccharide biosynthesis genes and other genes necessary for the virulence of E. coli K4. Various engineering strategies were compared to investigate different types of expression systems (plasmid vs integrative cassettes) and integration sites (genome vs endogenous mobile element). All strains analysed in shake flasks on different media showed a capsular polysaccharide production improved by 40 to 140%, compared to the wild type, with respect to the final product titer. A DO-stat fed-batch process on the 2L scale was also developed for the best performing integrative strain, EcK4r3, yielding 5.3 g ∙ L(-1) of K4 polysaccharide. The effect of rfaH overexpression in EcK4r3 affected the production of lipopolysaccharide and the expression of genes involved in the polysaccharide biosynthesis pathway (kfoC and kfoA), as expected. An alteration of cellular metabolism was revealed by changes of intracellular pools of UDP-sugars which are used as precursors for polysaccharide biosynthesis. The present study describes the identification of a gene target and the application of a

  8. Low Impact Docking System (LIDS)

    NASA Technical Reports Server (NTRS)

    LaBauve, Tobie E.

    2009-01-01

    Since 1996, NASA has been developing a docking system that will simplify operations and reduce risks associated with mating spacecraft. This effort has focused on developing and testing an original, reconfigurable, active, closed-loop, force-feedback controlled docking system using modern technologies. The primary objective of this effort has been to design a docking interface that is tunable to the unique performance requirements for all types of mating operations (i.e. docking and berthing, autonomous and piloted rendezvous, and in-space assembly of vehicles, modules and structures). The docking system must also support the transfer of crew, cargo, power, fluid, and data. As a result of the past 10 years of docking system advancement, the Low Impact Docking System or LIDS was developed. The current LIDS design incorporates the lessons learned and development experiences from both previous and existing docking systems. LIDS feasibility was established through multiple iterations of prototype hardware development and testing. Benefits of LIDS include safe, low impact mating operations, more effective and flexible mission implementation with an anytime/anywhere mating capability, system level redundancy, and a more affordable and sustainable mission architecture with reduced mission and life cycle costs. In 1996 the LIDS project, then known as the Advanced Docking Berthing System (ADBS) project, launched a four year developmental period. At the end of the four years, the team had built a prototype of the soft-capture hardware and verified the control system that will be used to control the soft-capture system. In 2001, the LIDS team was tasked to work with the X- 38 Crew Return Vehicle (CRV) project and build its first Engineering Development Unit (EDU).

  9. DOT1L and H3K79 Methylation in Transcription and Genomic Stability.

    PubMed

    Wood, Katherine; Tellier, Michael; Murphy, Shona

    2018-02-27

    The organization of eukaryotic genomes into chromatin provides challenges for the cell to accomplish basic cellular functions, such as transcription, DNA replication and repair of DNA damage. Accordingly, a range of proteins modify and/or read chromatin states to regulate access to chromosomal DNA. Yeast Dot1 and the mammalian homologue DOT1L are methyltransferases that can add up to three methyl groups to histone H3 lysine 79 (H3K79). H3K79 methylation is implicated in several processes, including transcription elongation by RNA polymerase II, the DNA damage response and cell cycle checkpoint activation. DOT1L is also an important drug target for treatment of mixed lineage leukemia (MLL)-rearranged leukemia where aberrant transcriptional activation is promoted by DOT1L mislocalisation. This review summarizes what is currently known about the role of Dot1/DOT1L and H3K79 methylation in transcription and genomic stability.

  10. ATRX binds to atypical chromatin domains at the 3′ exons of zinc finger genes to preserve H3K9me3 enrichment

    PubMed Central

    Chowdhury, Asif H.; Hasson, Dan; Dyer, Michael A.

    2016-01-01

    ABSTRACT ATRX is a SWI/SNF chromatin remodeler proposed to govern genomic stability through the regulation of repetitive sequences, such as rDNA, retrotransposons, and pericentromeric and telomeric repeats. However, few direct ATRX target genes have been identified and high-throughput genomic approaches are currently lacking for ATRX. Here we present a comprehensive ChIP-sequencing study of ATRX in multiple human cell lines, in which we identify the 3′ exons of zinc finger genes (ZNFs) as a new class of ATRX targets. These 3′ exonic regions encode the zinc finger motifs, which can range from 1–40 copies per ZNF gene and share large stretches of sequence similarity. These regions often contain an atypical chromatin signature: they are transcriptionally active, contain high levels of H3K36me3, and are paradoxically enriched in H3K9me3. We find that these ZNF 3′ exons are co-occupied by SETDB1, TRIM28, and ZNF274, which form a complex with ATRX. CRISPR/Cas9-mediated loss-of-function studies demonstrate (i) a reduction of H3K9me3 at the ZNF 3′ exons in the absence of ATRX and ZNF274 and, (ii) H3K9me3 levels at atypical chromatin regions are particularly sensitive to ATRX loss compared to other H3K9me3-occupied regions. As a consequence of ATRX or ZNF274 depletion, cells with reduced levels of H3K9me3 show increased levels of DNA damage, suggesting that ATRX binds to the 3′ exons of ZNFs to maintain their genomic stability through preservation of H3K9me3. PMID:27029610

  11. Experimentally Determined Standard Thermodynamic Properties of Synthetic MgSO4·4H2O (Starkeyite) and MgSO4·3H2O: A Revised Internally Consistent Thermodynamic Data Set for Magnesium Sulfate Hydrates

    PubMed Central

    Majzlan, Juraj; Benisek, Artur; Dachs, Edgar; Steiger, Michael; Fortes, A. Dominic; Marler, Bernd

    2012-01-01

    Abstract The enthalpies of formation of synthetic MgSO4·4H2O (starkeyite) and MgSO4·3H2O were obtained by solution calorimetry at T=298.15 K. The resulting enthalpies of formation from the elements are \\documentclass{aastex}\\usepackage{amsbsy}\\usepackage{amsfonts}\\usepackage{amssymb}\\usepackage{bm}\\usepackage{mathrsfs}\\usepackage{pifont}\\usepackage{stmaryrd}\\usepackage{textcomp}\\usepackage{portland, xspace}\\usepackage{amsmath, amsxtra}\\pagestyle{empty}\\DeclareMathSizes{10}{9}{7}{6}\\begin{document}$$\\Delta_{ \\rm f}H^0_{298}$$\\end{document} (starkeyite)=−2498.7±1.1 kJ·mol−1 and \\documentclass{aastex}\\usepackage{amsbsy}\\usepackage{amsfonts}\\usepackage{amssymb}\\usepackage{bm}\\usepackage{mathrsfs}\\usepackage{pifont}\\usepackage{stmaryrd}\\usepackage{textcomp}\\usepackage{portland, xspace}\\usepackage{amsmath, amsxtra}\\pagestyle{empty}\\DeclareMathSizes{10}{9}{7}{6}\\begin{document}$$\\Delta_{ \\rm f}H^0_{298}$$\\end{document} (MgSO4·3H2O)=−2210.3±1.3kJ·mol−1. The standard entropy of starkeyite was derived from low-temperature heat capacity measurements acquired with a physical property measurement system (PPMS) in the temperature range 5 KK: \\documentclass{aastex}\\usepackage{amsbsy}\\usepackage{amsfonts}\\usepackage{amssymb}\\usepackage{bm}\\usepackage{mathrsfs}\\usepackage{pifont}\\usepackage{stmaryrd}\\usepackage{textcomp}\\usepackage{portland, xspace}\\usepackage{amsmath, amsxtra}\\pagestyle{empty}\\DeclareMathSizes{10}{9}{7}{6}\\begin{document}$$S^0_{298}$$\\end{document} (starkeyite)=254.48±2.0 J·K−1·mol−1. Additionally, differential scanning calorimetry (DSC) measurements with a Perkin Elmer Diamond DSC in the temperature range 270 KK were performed to check the reproducibility of the PPMS measurements around ambient temperature. The experimental Cp data of starkeyite between 229 and 303 K were fitted with a Maier-Kelley polynomial, yielding Cp(T)=107.925+0.5532·T−1048894·T−2

  12. H3K9me3 Inhibition Improves Memory, Promotes Spine Formation, and Increases BDNF Levels in the Aged Hippocampus

    PubMed Central

    Prieto, G. Aleph; Petrosyan, Arpine; Loertscher, Brad M.; Dieskau, André P.; Overman, Larry E.; Cotman, Carl W.

    2016-01-01

    An increasing number of studies show that an altered epigenetic landscape may cause impairments in regulation of learning and memory-related genes within the aged hippocampus, eventually resulting in cognitive deficits in the aged brain. One such epigenetic repressive mark is trimethylation of H3K9 (H3K9me3), which is typically implicated in gene silencing. Here, we identify, for the first time, an essential role for H3K9me3 and its histone methyl transferase (SUV39H1) in mediating hippocampal memory functions. Pharmacological inhibition of SUV39H1 using a novel and selective inhibitor decreased levels of H3K9me3 in the hippocampus of aged mice, and improved performance in the objection location memory and fear conditioning tasks and in a complex spatial environment learning task. The inhibition of SUV39H1 induced an increase in spine density of thin and stubby but not mushroom spines in the hippocampus of aged animals and increased surface GluR1 levels in hippocampal synaptosomes, a key index of spine plasticity. Furthermore, there were changes at BDNF exon I gene promoter, in concert with overall BDNF levels in the hippocampus of drug-treated animals compared with control animals. Together, these data demonstrate that SUV39H1 inhibition and the concomitant H3K9me3 downregulation mediate gene transcription in the hippocampus and reverse age-dependent deficits in hippocampal memory. SIGNIFICANCE STATEMENT Cognitive decline is a debilitating condition associated with not only neurodegenerative diseases but also aging in general. However, effective treatments have been slow to emerge so far. In this study, we demonstrate that epigenetic regulation of key synaptic proteins may be an underlying, yet reversible, cause of this decline. Our findings suggest that histone 3 trimethylation is a probable target for pharmacological intervention that can counteract cognitive decline in the aging brain. Finally, we provide support to the hypothesis that, by manipulating the

  13. Structure of aryl O -demethylase offers molecular insight into a catalytic tyrosine-dependent mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohler, Amanda C.; Mills, Matthew J. L.; Adams, Paul D.

    Some strains of soil and marine bacteria have evolved intricate metabolic pathways for using environmentally derived aromatics as a carbon source. Many of these metabolic pathways go through intermediates such as vanillate, 3-O-methylgallate, and syringate. Demethylation of these compounds is essential for downstream aryl modification, ring opening, and subsequent assimilation of these compounds into the tricarboxylic acid (TCA) cycle, and, correspondingly, there are a variety of associated aryl demethylase systems that vary in complexity. Intriguingly, only a basic understanding of the least complex system, the tetrahydrofolate-dependent aryl demethylase LigM from Sphingomonas paucimobilis, a bacterial strain that metabolizes lignin-derived aromatics, wasmore » previously available. LigM-catalyzed demethylation enables further modification and rin g opening of the single-ring aromatics vanillate and 3-Omethylgallate, which are common byproducts of biofuel production. We characterize aryl O-demethylation by LigM and report its 1.81-Å crystal structure, revealing a unique demethylase fold and a canonical folate-binding domain. Structural homology and geometry optimization calculations enabled the identification of LigM's tetrahydrofolate-binding site and protein-folate interactions. Computationally guided mutagenesis and kinetic analyses allowed the identification of the enzyme's aryl-binding site location and determination of its unique, catalytic tyrosine-dependent reaction mechanism. This work defines LigM as a distinct demethylase, both structurally and functionally, and provides insight into demethylation and its reaction requirements. Our results afford the mechanistic details required for efficient utilization of LigM as a tool for aryl O-demethylation and as a component of synthetic biology efforts to valorize previously underused aromatic compounds.« less

  14. Structure of aryl O -demethylase offers molecular insight into a catalytic tyrosine-dependent mechanism

    DOE PAGES

    Kohler, Amanda C.; Mills, Matthew J. L.; Adams, Paul D.; ...

    2017-04-03

    Some strains of soil and marine bacteria have evolved intricate metabolic pathways for using environmentally derived aromatics as a carbon source. Many of these metabolic pathways go through intermediates such as vanillate, 3-O-methylgallate, and syringate. Demethylation of these compounds is essential for downstream aryl modification, ring opening, and subsequent assimilation of these compounds into the tricarboxylic acid (TCA) cycle, and, correspondingly, there are a variety of associated aryl demethylase systems that vary in complexity. Intriguingly, only a basic understanding of the least complex system, the tetrahydrofolate-dependent aryl demethylase LigM from Sphingomonas paucimobilis, a bacterial strain that metabolizes lignin-derived aromatics, wasmore » previously available. LigM-catalyzed demethylation enables further modification and rin g opening of the single-ring aromatics vanillate and 3-Omethylgallate, which are common byproducts of biofuel production. We characterize aryl O-demethylation by LigM and report its 1.81-Å crystal structure, revealing a unique demethylase fold and a canonical folate-binding domain. Structural homology and geometry optimization calculations enabled the identification of LigM's tetrahydrofolate-binding site and protein-folate interactions. Computationally guided mutagenesis and kinetic analyses allowed the identification of the enzyme's aryl-binding site location and determination of its unique, catalytic tyrosine-dependent reaction mechanism. This work defines LigM as a distinct demethylase, both structurally and functionally, and provides insight into demethylation and its reaction requirements. Our results afford the mechanistic details required for efficient utilization of LigM as a tool for aryl O-demethylation and as a component of synthetic biology efforts to valorize previously underused aromatic compounds.« less

  15. H3K9me2/3 Binding of the MBT Domain Protein LIN-61 Is Essential for Caenorhabditis elegans Vulva Development

    PubMed Central

    Koester-Eiserfunke, Nora; Fischle, Wolfgang

    2011-01-01

    MBT domain proteins are involved in developmental processes and tumorigenesis. In vitro binding and mutagenesis studies have shown that individual MBT domains within clustered MBT repeat regions bind mono- and dimethylated histone lysine residues with little to no sequence specificity but discriminate against the tri- and unmethylated states. However, the exact function of promiscuous histone methyl-lysine binding in the biology of MBT domain proteins has not been elucidated. Here, we show that the Caenorhabditis elegans four MBT domain protein LIN-61, in contrast to other MBT repeat factors, specifically interacts with histone H3 when methylated on lysine 9, displaying a strong preference for di- and trimethylated states (H3K9me2/3). Although the fourth MBT repeat is implicated in this interaction, H3K9me2/3 binding minimally requires MBT repeats two to four. Further, mutagenesis of residues conserved with other methyl-lysine binding MBT regions in the fourth MBT repeat does not abolish interaction, implicating a distinct binding mode. In vivo, H3K9me2/3 interaction of LIN-61 is required for C. elegans vulva development within the synMuvB pathway. Mutant LIN-61 proteins deficient in H3K9me2/3 binding fail to rescue lin-61 synMuvB function. Also, previously identified point mutant synMuvB alleles are deficient in H3K9me2/3 interaction although these target residues that are outside of the fourth MBT repeat. Interestingly, lin-61 genetically interacts with two other synMuvB genes, hpl-2, an HP1 homologous H3K9me2/3 binding factor, and met-2, a SETDB1 homologous H3K9 methyl transferase (H3K9MT), in determining C. elegans vulva development and fertility. Besides identifying the first sequence specific and di-/trimethylation binding MBT domain protein, our studies imply complex multi-domain regulation of ligand interaction of MBT domains. Our results also introduce a mechanistic link between LIN-61 function and biology, and they establish interplay of the H3K9me2/3

  16. The role of MAP4K3 in lifespan regulation of Caenorhabditiselegans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Maruf H.; Hart, Matthew J., E-mail: HartMJ@uthscsa.edu; Rea, Shane L., E-mail: reas3@uthscsa.edu

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Inhibition of MAP4K3 by RNAi leads to increased mean lifespan in Caenorhabditis elegans. Black-Right-Pointing-Pointer Mutation in the citron homology domain of MAP4K3 leads to increased mean lifespan. Black-Right-Pointing-Pointer Mutation in the kinase domain of MAP4K3 has no significant effect on mean lifespan. -- Abstract: The TOR pathway is a kinase signaling pathway that regulates cellular growth and proliferation in response to nutrients and growth factors. TOR signaling is also important in lifespan regulation - when this pathway is inhibited, either naturally, by genetic mutation, or by pharmacological means, lifespan is extended. MAP4K3 is a Ser/Thr kinase that hasmore » recently been found to be involved in TOR activation. Unexpectedly, the effect of this protein is not mediated via Rheb, the more widely known TOR activation pathway. Given the role of TOR in growth and lifespan control, we looked at how inhibiting MAP4K3 in Caenorhabditiselegans affects lifespan. We used both feeding RNAi and genetic mutants to look at the effect of MAP4K3 deficiency. Our results show a small but significant increase in mean lifespan in MAP4K3 deficient worms. MAP4K3 thus represents a new target in the TOR pathway that can be targeted for pharmacological intervention to control lifespan.« less

  17. Growth and optical, magnetic and transport properties of (C4H9NH3)2MCl4 organic-inorganic hybrid films (M = Cu, Sn)

    NASA Astrophysics Data System (ADS)

    Aruta, C.; Licci, F.; Zappettini, A.; Bolzoni, F.; Rastelli, F.; Ferro, P.; Besagni, T.

    2005-10-01

    Films of (C4H9NH3)2MCl4 (M=Cu and Sn) organic-inorganic hybrid perovskites have been deposited in-situ by a single-source thermal ablation technique on glassy, crystalline and polymeric substrates. Independently of the substrate, the films were well crystallized, c-axis oriented and with a narrow rocking curve of the (0010) reflection (full width at half maximum <1°). The (0 0 ℓ) reflections were consistent with those of the bulk orthorhombic phases and the “c” lattice parameters were 30.85±0.05 and 32.35±0.05 Å, for the Cu- and the Sn-compound, respectively. (C4H9NH3)2CuCl4 films had an optical absorption peak at 375 nm at room temperature. From the magnetic point of view they act as layered nanocomposites with a dominant ferromagnetic component localized in planes (2D magnetism). Tc was 7.3±0.1 K and a moderate easy-plane anisotropy was observed. The photoluminescence spectra of typical (C4H9NH3)2SnCl4 films at 12 K had a broad yellow band, which did not correspond to any significant peak in the absorption spectrum. The films were semiconducting down to 250 K or, in the case of the best samples, down to 200 K and became insulating at lower temperature. The resistivity of the best films was (5±1) 104 Ω cm at 300 K, and the energy gap was 1.11 eV.

  18. Spatial Translation and Scaling Up of LID Practices in Deer Creek Watershed in East Missouri

    NASA Astrophysics Data System (ADS)

    Di Vittorio, Damien

    This study investigated two important aspects of hydrologic effects of low impact development (LID) practices at the watershed scale by (1) examining the potential benefits of scaling up of LID design, and (2) evaluating downstream effects of LID design and its spatial translation within a watershed. The Personal Computer Storm Water Management Model (PCSWMM) was used to model runoff reduction with the implementation of LID practices in Deer Creek watershed (DCW), Missouri. The model was calibrated from 2003 to 2007 (R2 = 0.58 and NSE = 0.57), and validated from 2008 to 2012 (R2 = 0.64 and NSE = 0.65) for daily direct runoff. Runoff simulated for the study period, 2003 to 2012 (NSE = 0.61; R2 = 0.63), was used as the baseline for comparison to LID scenarios. Using 1958 areal imagery to assign land cover, a predevelopment scenario was constructed and simulated to assess LID scenarios' ability to restore predevelopment hydrologic conditions. The baseline and all LID scenarios were simulated using 2006 National Land Cover Dataset. The watershed was divided in 117 subcatchments, which were clustered in six groups of approximately equal areas and two scaling concepts consisting of incremental scaling and spatial scaling were modelled. Incremental scaling was investigated using three LID practices (rain barrel, porous pavement, and rain garden). Each LID practice was simulated at four implementation levels (25%, 50%, 75%, and 100%) in all subcatchments for the study period (2003 to 2012). Results showed an increased runoff reduction, ranging from 3% to 31%, with increased implementation level. Spatial scaling was investigated by increasing the spatial extent of LID practices using the subcatchment groups and all three LID practices (combined) implemented at 50% level. Results indicated that as the spatial extent of LID practices increased the runoff reduction at the outlet also increased, ranging from 3% to 19%. Spatial variability of LID implementation was examined by

  19. Composite of K-doped (NH4)2V3O8/graphene as an anode material for sodium-ion batteries.

    PubMed

    Liu, Xin; Li, Zhiwei; Fei, Hailong; Wei, Mingdeng

    2015-11-21

    A layer structured K-doped (NH4)2V3O8/graphene (K-NVG) was prepared via a hydrothermal route and then used as an anode material for sodium-ion batteries for the first time. The K-NVG nanosheets have a diameter in the range of 200-500 nm. The K-NVG electrode exhibited stable cycling and a good rate performance with a reversible capacity of 235.4 mA h g(-1), which is much higher than the 90.5 mA h g(-1) value of the (NH4)2V3O8/graphene electrode after 100 cycles at a current density of 100 mA g(-1). Simultaneously, the retention rate was maintained at 82% even after 250 cycles at the current density of 300 mA g(-1). Such good electrochemical properties may be attributed to the K-NVG's stable layered structure.

  20. Activation of Bmp2-Smad1 Signal and Its Regulation by Coordinated Alteration of H3K27 Trimethylation in Ras-Induced Senescence

    PubMed Central

    Kaneda, Atsushi; Fujita, Takanori; Anai, Motonobu; Yamamoto, Shogo; Nagae, Genta; Morikawa, Masato; Tsuji, Shingo; Oshima, Masanobu; Miyazono, Kohei; Aburatani, Hiroyuki

    2011-01-01

    Cellular senescence involves epigenetic alteration, e.g. loss of H3K27me3 in Ink4a-Arf locus. Using mouse embryonic fibroblast (MEF), we here analyzed transcription and epigenetic alteration during Ras-induced senescence on genome-wide scale by chromatin immunoprecipitation (ChIP)-sequencing and microarray. Bmp2 was the most activated secreted factor with H3K4me3 gain and H3K27me3 loss, whereas H3K4me3 loss and de novo formation of H3K27me3 occurred inversely in repression of nine genes, including two BMP-SMAD inhibitors Smad6 and Noggin. DNA methylation alteration unlikely occurred. Ras-activated cells senesced with nuclear accumulation of phosphorylated SMAD1/5/8. Senescence was bypassed in Ras-activated cells when Bmp2/Smad1 signal was blocked by Bmp2 knockdown, Smad6 induction, or Noggin induction. Senescence was induced when recombinant BMP2 protein was added to Bmp2-knocked-down Ras-activated cells. Downstream Bmp2-Smad1 target genes were then analyzed genome-wide by ChIP-sequencing using anti-Smad1 antibody in MEF that was exposed to BMP2. Smad1 target sites were enriched nearby transcription start sites of genes, which significantly correlated to upregulation by BMP2 stimulation. While Smad6 was one of Smad1 target genes to be upregulated by BMP2 exposure, Smad6 repression in Ras-activated cells with increased enrichment of Ezh2 and gain of H3K27me3 suggested epigenetic disruption of negative feedback by Polycomb. Among Smad1 target genes that were upregulated in Ras-activated cells without increased repressive mark, Parvb was found to contribute to growth inhibition as Parvb knockdown lead to escape from senescence. It was revealed through genome-wide analyses in this study that Bmp2-Smad1 signal and its regulation by harmonized epigenomic alteration play an important role in Ras-induced senescence. PMID:22072987

  1. Autochthonous tumors driven by Rb1 loss have an ongoing requirement for the RBP2 histone demethylase.

    PubMed

    McBrayer, Samuel K; Olenchock, Benjamin A; DiNatale, Gabriel J; Shi, Diana D; Khanal, Januka; Jennings, Rebecca B; Novak, Jesse S; Oser, Matthew G; Robbins, Alissa K; Modiste, Rebecca; Bonal, Dennis; Moslehi, Javid; Bronson, Roderick T; Neuberg, Donna; Nguyen, Quang-De; Signoretti, Sabina; Losman, Julie-Aurore; Kaelin, William G

    2018-04-17

    Inactivation of the retinoblastoma gene ( RB1 ) product, pRB, is common in many human cancers. Targeting downstream effectors of pRB that are central to tumorigenesis is a promising strategy to block the growth of tumors harboring loss-of-function RB1 mutations. One such effector is retinoblastoma-binding protein 2 (RBP2, also called JARID1A or KDM5A), which encodes an H3K4 demethylase. Binding of pRB to RBP2 has been linked to the ability of pRB to promote senescence and differentiation. Importantly, genetic ablation of RBP2 is sufficient to phenocopy pRB's ability to induce these cellular changes in cell culture experiments. Moreover, germline Rbp2 deletion significantly impedes tumorigenesis in Rb1 +/- mice. The value of RBP2 as a therapeutic target in cancer, however, hinges on whether loss of RBP2 could block the growth of established tumors as opposed to simply delaying their onset. Here we show that conditional, systemic ablation of RBP2 in tumor-bearing Rb1 +/- mice is sufficient to slow tumor growth and significantly extend survival without causing obvious toxicity to the host. These findings show that established Rb1 -null tumors require RBP2 for growth and further credential RBP2 as a therapeutic target in human cancers driven by RB1 inactivation.

  2. Norisoboldine, a natural AhR agonist, promotes Treg differentiation and attenuates colitis via targeting glycolysis and subsequent NAD+/SIRT1/SUV39H1/H3K9me3 signaling pathway.

    PubMed

    Lv, Qi; Wang, Kai; Qiao, Simiao; Yang, Ling; Xin, Yirong; Dai, Yue; Wei, Zhifeng

    2018-02-15

    Norisoboldine (NOR), a natural aryl hydrocarbon receptor (AhR) agonist, has been demonstrated to attenuate ulcerative colitis (UC) and induce the generation of Treg cells. Under UC condition, hypoxia widely exists in colonic mucosa, and secondary changes of microRNAs (miRs) expressions and glycolysis contribute to Treg differentiation. At present, we worked for exploring the deep mechanisms for NOR-promoted Treg differentiation in hypoxia and its subsequent anti-UC action from the angle of AhR/miR or AhR/glycolysis axis. Results showed that NOR promoted Treg differentiation in hypoxia and the effect was stronger relative to normoxia. It activated AhR in CD4 + T cells under hypoxic microenvironment; CH223191 (a specific AhR antagonist) and siAhR-3 abolished NOR-promoted Treg differentiation. Furthermore, the progress of glycolysis, levels of Glut1 and HK2, and expression of miR-31 rather than miR-219 and miR-490 in CD4 + T cells were downregulated by NOR treatment under hypoxic microenvironment. However, HK2 plasmid but not miR-31 mimic significantly interfered NOR-enhanced Treg polarization. In addition, NOR reduced NAD + and SIRT1 levels, facilitated the ubiquitin-proteasomal degradation of SUV39H1 protein, and inhibited the enrichment of H3K9me3 at -1, 201 to -1,500 region of Foxp3 promoter in CD4 + T cells under hypoxic microenvironment, which was weakened by HK2 plasmid, CH223191, and siAhR-3. Finally, the correlation between NOR-mediated activation of AhR, repression of glycolysis, regulation of NAD + /SIRT1/SUV39H1/H3K9me3 signals, induction of Treg cells, and remission of colitis was confirmed in mice with DSS-induced colitis by using CH223191 and HK2 plasmid. In conclusion, NOR promoted Treg differentiation and then alleviated the development of colitis by regulating AhR/glycolysis axis and subsequent NAD + /SIRT1/SUV39H1/H3K9me3 signaling pathway.

  3. A novel technique for measurement of thermal rate constants and temperature dependences of dissociative recombination: CO{sub 2}{sup +}, CF{sub 3}{sup +}, N{sub 2}O{sup +}, C{sub 7}H{sub 8}{sup +}, C{sub 7}H{sub 7}{sup +}, C{sub 6}H{sub 6}{sup +}, C{sub 6}H{sub 5}{sup +}, C{sub 5}H{sub 6}{sup +}, C{sub 4}H{sub 4}{sup +}, and C{sub 3}H{sub 3}{sup +}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fournier, Joseph A.; Shuman, Nicholas S.; Melko, Joshua J.

    A novel technique using a flowing afterglow-Langmuir probe apparatus for measurement of temperature dependences of rate constants for dissociative recombination (DR) is presented. Low ({approx}10{sup 11} cm{sup -3}) concentrations of a neutral precursor are added to a noble gas/electron afterglow plasma thermalized at 300-500 K. Charge exchange yields one or many cation species, each of which may undergo DR. Relative ion concentrations are monitored at a fixed reaction time while the initial plasma density is varied between 10{sup 9} and 10{sup 10} cm{sup -3}. Modeling of the decrease in concentration of each cation relative to the non-recombining noble gas cationmore » yields the rate constant for DR. The technique is applied to several species (O{sub 2}{sup +}, CO{sub 2}{sup +}, CF{sub 3}{sup +}, N{sub 2}O{sup +}) with previously determined 300 K values, showing excellent agreement. The measurements of those species are extended to 500 K, with good agreement to literature values where they exist. Measurements are also made for a range of C{sub n}H{sub m}{sup +} (C{sub 7}H{sub 7}{sup +}, C{sub 7}H{sub 8}{sup +}, C{sub 5}H{sub 6}{sup +}, C{sub 4}H{sub 4}{sup +}, C{sub 6}H{sub 5}{sup +}, C{sub 3}H{sub 3}{sup +}, and C{sub 6}H{sub 6}{sup +}) derived from benzene and toluene neutral precursors. C{sub n}H{sub m}{sup +} DR rate constants vary from 8-12 Multiplication-Sign 10{sup -7} cm{sup 3} s{sup -1} at 300 K with temperature dependences of approximately T{sup -0.7}. Where prior measurements exist these results are in agreement, with the exception of C{sub 3}H{sub 3}{sup +} where the present results disagree with a previously reported flat temperature dependence.« less

  4. The solid solution K3.84Ni0.78Fe3.19(PO4)5

    PubMed Central

    Strutynska, Nataliia Yu.; Ogorodnyk, Ivan V.; Livitska, Oksana V.; Baumer, Vyacheslav N.; Slobodyanik, Nikolay S.

    2014-01-01

    The title compound, tetra­potassium tetra­[nickel(II)/iron(III)] penta­kis­(orthophosphate), K3.84Ni0.78Fe3.19(PO4)5, has been obtained from a flux. The structure is isotypic with that of K4MgFe3(PO4)5. The three-dimensional framework is built up from (Ni/Fe)O5 trigonal bipyramids with a mixed Fe:Ni occupancy of 0.799 (8):0.196 (10) and isolated PO4 tetra­hedra, one of which is on a general position and one of which has -4.. site symmetry. Two K+ cations are statistically occupied and are distributed over two positions in hexa­gonally shaped channels that run parallel to [001]. One K+ cation [occupancy 0.73 (3)] is surrounded by nine O atoms, while the other K+ cation [occupancy 0.23 (3)] is surrounded by eight O atoms. PMID:25161510

  5. Thermo and mechanoluminescence of Dy3+ activated K2Mg2(SO4)3 phosphor

    NASA Astrophysics Data System (ADS)

    Panigrahi, A. K.; Dhoble, S. J.; Kher, R. S.; Moharil, S. V.

    2003-08-01

    A solid state diffusion method for the preparation of (K2 : Dy)Mg2(SO4)3 and (K2 : Dy,P)Mg2(SO4)3 phosphors is reported. Thermoluminescence (TL) and mechanoluminescence (ML) characteristics are studied. TL, shown by the (K2 : Dy,P)Mg2(SO4)3 phosphor is 60% as intense as the conventional CaSO4 : Dy phosphor used in the TLD of ionization radiation. It has a linear TL dose response and a negligible fading. These properties of (K2 : Dy,P)Mg2(SO4)3 should be suitable in dosimetry of ionization radiation using TL technique. ML of (K2 : Dy)Mg2(SO4)3 shows one peak which has been observed in ML intensity versus time curve. The ML peak shows the recombination of electrons with free radicals (anion radicals produced by γ-irradiation) released from traps during the mechanical pressure applied on the Dy activated K2Mg2(SO4)3 phosphor. This ML mechanism is proposed for γ-irradiated sulfate based phosphors. It has been found that the total light output, i.e. ML intensity, increases with concentration of dopant, strain rate and irradiation dose of the phosphor. Mechanoluminescence and ML emission spectra of (K2 : Dy)Mg2(SO4)3 were recorded for better understanding of the ML process. The TL and ML measurements have also been performed to elucidate the mechanism of ML. Some correlation between ML and TL has also been found.

  6. Synthetic and Spectroscopic Studies on N-(i,j-Disubstituted Phenyl)-4- Substituted Benzenesulphonamides, 4-X'C6H4SO2NH(i,j-X2C6H3), where X' = H, CH3, C2H5, F, Cl or Br; i, j = 2, 3; 2, 4; 2, 5; 2, 6 or 3, 4; and X = CH3 or Cl

    NASA Astrophysics Data System (ADS)

    Shetty, Mahesha; Gowda, B. Thimme

    2005-02-01

    Fifty four N-(i,j-disubstituted phenyl)-4-substituted benzenesulphonamides of the general formula 4-X'C6H4SO2NH(i,j-X2C6H3), where X' = H, CH3, C2H5, F, Cl or Br; i,j = 2,3; 2,4; 2,5; 2,6 or 3, 4; and X = CH3 or Cl, are prepared and characterized and their infrared, 1H and 13C NMR spectra in solution are studied. The N-H stretching vibrations νN-H absorb in the range 3305 - 3205 cm-1, while the asymmetric and symmetric SO2 vibrations vary in the ranges 1377 - 1307 cm-1 and 1184 - 1128 cm-1, respectively. The N-(i,j-disubstituted phenyl)-4-substituted benzenesulphonamides show C-S, S-N and C-N stretching vibrations in the ranges 844 - 800 cm-1, 945 - 891 cm-1 and 1309 - 1170 cm-1, respectively. The compounds do not exhibit particular trends in the variation of these frequencies on substitution either at ortho or meta positions with either a methyl group or Cl. The observed 1H and 13C chemical shifts of are assigned to protons and carbon atoms of the two benzene rings. Incremental shifts of the ring protons and carbon atoms due to -SO2NH(i,j-X2C6H3) groups in C6H5SO2NH(i,j-X2C6H3) and 4-X'C6H4SO2NH- groups in 4-X'C6H4SO2NH(C6H*) are computed and employed to calculate the chemical shifts of the ring protons and carbon atoms in the substituted compounds 4-X'C6H4SO2NH(i,j-X2C6H3). The different methods of calculation lead to almost the same values in most cases and agree well with the observed chemical shifts, indicating the validity of the principle of additivity of the substituent effects with chemical shifts in these compounds.

  7. A mass spectrometric study of gaseous H4PO+3 and H2PO-3 ions

    NASA Astrophysics Data System (ADS)

    de Petris, Giulia; Occhiucci, Giorgio; Pepi, Federico

    1994-09-01

    H4PO+3 ions have been generated in a mass spectrometer by proton-transfer to H3PO3 from different Brønsted acids. The proton affinity of H3PO3 has been estimated by bracketing and kinetic methods to be 198.6 ± 2 kcal mol-1. Gaseous H4PO+3 ions have been structurally assessed by metastable ion kinetic energy (MIKE) and collisionally induced dissociation (CID) mass spectrometry leading to the detection of a single isomeric species. The chemistry of H2PO-3 is characterized by facile addition-elimination reactions leading to formation of polyanions. Species containing up to six P atoms have been detected.

  8. Are HO radicals produced in the reaction of O(3P) with 1-C4H8 ?

    NASA Technical Reports Server (NTRS)

    Luria, M.; Simonaitis, R.; Heicklen, J.

    1972-01-01

    The reaction of O(3P) with 1-C4H8 was examined in the presence of CO which scavenges HO radicals to produce CO2. From the CO2 quantum yield, an upper limit to the efficiency of HO production in the reaction of O(3P) with 1-C4H8 was found to be 0.020 at both 298 and 473 K.

  9. Alkali metal-templated assembly of cyanometalate ``boxes'' (NEt{sub 4}){sub 3}{l{underscore}brace}M[Cp*Rh(CN){sub 3}]{sub 4}[Mo(CO){sub 3}]{sub 4}{r{underscore}brace} (M = K, Cs). Selective binding of Cs{sup +}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klausmeyer, K.K.; Wilson, S.R.; Rauchfuss, T.B.

    1999-03-31

    The box-like cages {l{underscore}brace}M[Cp*Rh(CN){sub 3}]{sub 4}[Mo(CO){sub 3}]{sub 4}{r{underscore}brace}{sup 3{minus}} form as the sole metal-containing products of the reaction of [Cp*Rh(CN){sub 3}]{sup {minus}} and ({eta}{sup 6}-C{sub 6}H{sub 3}Me{sub 3})Mo(CO){sub 3} in the presence of K{sup +} and Cs{sup +}. Well-defined species could not be identified in solutions of Cp*Rh(CN){sub 3}{sup {minus}} ({eta}{sup 6}-C{sub 6}H{sub 3}Me{sub 3})Mo(CO){sub 3} in the absence of alkali metal cations. The new cages were isolated as their Et{sub 4}N{sup +} salts, M = K{sup +} (1), Cs{sup +} (2). Crystallographic characterization of 1 and 2 reveals box-like M{sub 8}({micro}-CN){sub 12} cages containing alkali metal cations. The cagesmore » feature 12 external CO and 4 external C{sub 5}Me{sub 5} ligands. In 1, the K{sup +} is disordered over two off-center positions, whereas in the case of 2, the Cs{sup +} is centered in the cage with a formal coordination number of 24. Otherwise, the structures of the two compounds are virtually indistinguishable. The persistence of the solid-state structures in solution was established through {sup 13}C NMR spectroscopy and electrospray mass spectrometric measurements. {sup 133}Cs NMR spectroscopy, which readily distinguishes free from included Cs{sup +}, shows that the boxes preferentially bind Cs{sup +} relative to K{sup +}.« less

  10. Design, synthesis and anticonvulsant activity of some new 6,8-halo-substituted-2h-[1,2,4]triazino[5,6-b]indole-3(5h)-one/-thione and 6,8-halo-substituted 5-methyl-2h-[1,2,4]triazino[5,6-b]indol-3(5h)-one/-thione

    PubMed Central

    Kumar, Rajeev; Singh, Tejendra; Singh, Hariram; Jain, Sandeep; Roy, R. K.

    2014-01-01

    A new series of 6,8-halo-substituted-2H-[1,2,4]triazino[5,6-b]indole-3(5H)-one/-thione and 6,8-halo-substituted 5-methyl-2H-[1,2,4]triazino[5,6-b]indol-3(5H)-one/-thione (5a-5l) were designed and synthesized keeping in view of the structural requirement of pharmacophore. The above compounds were characterized by thin layer chromatography and spectral analysis. Anticonvulsant activity of the synthesized compounds was evaluated by the maximal electroshock (MES) test. Neurotoxicity and CNS depressant effects were evaluated by the rotarod motor impairment and Porsolt’s force swim tests, respectively. A computational study was carried out, for calculation of pharmacophore pattern, prediction of pharmacokinetic properties and toxicity properties. The above study revealed that the compounds 8-chloro-2H-[1,2,4]triazino[5,6-b]indol-3(5H)-one (5e), 6,8-dibromo-2H-[1,2,4]triazino[5,6-b]indol-3(5H)-one (5i) and 6,8-dibromo-5-methyl-2H-[1,2,4]triazino[5,6-b]indol-3(5H)-one (5k) possess excellent anticonvulsant activity in the series with little CNS depressant effect and no neurotoxicity as compared to standard drugs phenytoin and carbamazepine. PMID:26417257

  11. Fluorcanasite, K3Na3Ca5Si12O30(F,OH)4 · H2O, a new mineral species from the Khibiny alkaline pluton, Kola Peninsula, Russia, and new data on canasite

    NASA Astrophysics Data System (ADS)

    Khomyakov, A. P.; Nechelyustov, G. N.; Krivokoneva, G. K.; Rastsvetaeva, R. K.; Rozenberg, K. A.; Rozhdestvenskaya, I. V.

    2009-12-01

    Fluorcanasite is described, a new mineral species found in dumps of the Kirovsk apatite mine, Mt. Kukisvumchorr, Khibiny alkaline pluton, Kola Peninsula, Russia. The new mineral is associated with microcline, nepheline, aegirine, scherbakovite, lamprophyllite, pectolite, mosandrite, villiaumite, rasvumite, and molybdenite. It occurs as prismatic crystals up to 0.2-0.3 × 1-2 mm in size extending along [010]. Fluorcanasite is purple, transparent, with white streak and vitreous luster. The fracture is hackly along the extension and stepped in other directions. The mineral is brittle. The cleavage is eminent parallel to {100} and {201} and perfect parallel to {001}. D(meas) = 2.68(2) g/cm3 (volumetric method); D(calc) = 2.69 g/cm3. Fluorcanasite is biaxial, negative, n α = 1.538(1), n β = 1.546(1), n γ = 1.549(1), 2 V(meas) = 60(2)°, 2 V(calc) = 63°. Dispersion r > v. The new mineral is pleochroic according to the scheme N β > N γ > N α; N β is purple, N γ is lilac, and N α is amber-yellow. Orientation is as follows: b = N β, a∧ N γ = 3°, c∧ N α = 19°. Fluorcanasite is not luminescent in UV light and slowly decomposes in acid. The new mineral is monoclinic, space group Cm, a = 18.846(4), b = 7.242(1), c = 12.650(2) Å, β = 111.84(2)°, V = 1602.6(4) Å3, Z = 2. The strongest reflections [ d, Å( I)] in the X-ray powder pattern of a grainoriented sample are 2.915(100), 4.204(40), 5.872(36), 4.712(36), 2.358(32), 3.012(24), 2.310(24), 3.082(24) and the same reflections in a randomly oriented sample are 3.082(100), 2.915(85), 4.712(46), 4.204(41), 3.340(35), 5.872(33), 2.658(30). The chemical composition, determined with an electron microprobe, is as follows, wt %: 7.19 Na2O, 10.91 K2O, 19.55 CaO, 0.27 FeO, 2.08 MnO, 55.84 SiO2, 4.10 F, 2.22 H2O (determined on the basis of structural data), 1.73-O = F2; the total is 100.43. The empirical formula, calculated on the basis of Si = 12, is K2.99Na3.00(Ca4.50Mn0.38·Fe{0.05/2+})Σ4.93Si12O29.93(F2.79OH1

  12. The relief of dry eye signs and symptoms using a combination of lubricants, lid hygiene and ocular nutraceuticals.

    PubMed

    Ngo, William; Srinivasan, Sruthi; Houtman, Diane; Jones, Lyndon

    To determine the combined effect of TheraTears ® Lubricant Eye Drops, TheraTears ® SteriLid Eyelid Cleanser, and TheraTears ® Nutrition on dry eye signs and symptoms. This prospective study enrolled 28 dry eye participants. Participants were instructed to use the Lubricant Eye Drops at least 2-4× a day, SteriLid 1-2× a day, and Nutrition 3 gel caps once a day. Participants were followed up at baseline, 1 month and 3 months. Outcome variables were the Ocular Surface Disease Index (OSDI), Symptom Assessment iN Dry Eye (SANDE) questionnaire, non-invasive tear break-up time (NIBUT), osmolarity, number of meibomian glands blocked (#MG blocked), meibum quality, eyelid margin features, Schirmer's test, tear film lipid layer thickness (LLT), meniscus height, corneal and conjunctival staining. Twenty participants (mean age=43, from 23 to 66, 17F, 3M) completed the study. Participants reported having used, on average, the Lubricant Eye Drop 2.4×/day, the SteriLid 1.1×/day, and the Nutrition 3 gel caps 1×/day. There was a significant change over time (p<0.05) for OSDI (-21.2 points), SANDE (-32.4 points), NIBUT (+0.43s), eyelid margin features (-1.1 grade), meibum quality (-1.0 grade), and #MG blocked (-4.0 glands). By using a combination of TheraTears ® Lubricant Eye Drop, SteriLid, and Nutrition, patients experience significant relief in both dry eye symptoms and signs. Copyright © 2016 Spanish General Council of Optometry. Published by Elsevier España, S.L.U. All rights reserved.

  13. Controlled precipitation of nesquehonite (MgCO 3·3H 2O) by the reaction of MgCl 2 with (NH 4) 2CO 3

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Li, Zhibao; Demopoulos, George P.

    2008-03-01

    In this study, homogeneous (unseeded) precipitation of nesquehonite (MgCO 3·3H 2O) by the reaction of MgCl 2 with (NH 4) 2CO 3 in supersaturated solutions was investigated. Factors that influence the precipitation of MgCO 3·3H 2O, such as reaction temperature, initial concentration, stirring speed, titration speed, equilibration time, have been studied. SEM images and particle size distribution show that the temperature, initial concentration and titration speed have significant effect on nesquehonite's crystal morphology and particle size. In addition, stirring speed and equilibration time also have some influence on its properties. X-ray powder diffraction (XRD) results show that the obtained crystals compositions are greatly affected by the reaction temperature. With the morphological transformation, their corresponding composition also change from MgCO 3· xH 2O to Mg 5(CO 3) 4(OH) 2·4H 2O in the interval of 288-333 K. With the optimization of operating conditions, the crystals can grow up to a length of about 40 μm and a width of 5 μm, indicating good filtration properties. High-purity nesquehonite obtained in this study was calcined to produce highly pure MgO at 1073 K as shown by XRD results.

  14. Structural and Functional Elucidation of Yeast Lanosterol 14α-Demethylase in Complex with Agrochemical Antifungals

    PubMed Central

    Sagatova, Alia A.; Keniya, Mikhail V.; Negroni, Jacopo; Wilson, Rajni K.; Woods, Matthew A.; Monk, Brian C.

    2016-01-01

    Azole antifungals, known as demethylase inhibitors (DMIs), target sterol 14α-demethylase (CYP51) in the ergosterol biosynthetic pathway of fungal pathogens of both plants and humans. DMIs remain the treatment of choice in crop protection against a wide range of fungal phytopathogens that have the potential to reduce crop yields and threaten food security. We used a yeast membrane protein expression system to overexpress recombinant hexahistidine-tagged S. cerevisiae lanosterol 14α-demethylase and the Y140F or Y140H mutants of this enzyme as surrogates in order characterize interactions with DMIs. The whole-cell antifungal activity (MIC50 values) of both the R- and S-enantiomers of tebuconazole, prothioconazole (PTZ), prothioconazole-desthio, and oxo-prothioconazole (oxo-PTZ) as well as for fluquinconazole, prochloraz and a racemic mixture of difenoconazole were determined. In vitro binding studies with the affinity purified enzyme were used to show tight type II binding to the yeast enzyme for all compounds tested except PTZ and oxo-PTZ. High resolution X-ray crystal structures of ScErg11p6×His in complex with seven DMIs, including four enantiomers, reveal triazole-mediated coordination of all compounds and the specific orientation of compounds within the relatively hydrophobic binding site. Comparison with CYP51 structures from fungal pathogens including Candida albicans, Candida glabrata and Aspergillus fumigatus provides strong evidence for a highly conserved CYP51 structure including the drug binding site. The structures obtained using S. cerevisiae lanosterol 14α-demethylase in complex with these agrochemicals provide the basis for understanding the impact of mutations on azole susceptibility and a platform for the structure-directed design of the next-generation of DMIs. PMID:27907120

  15. Substrate preferences and catalytic parameters determined by structural characteristics of sterol 14alpha-demethylase (CYP51) from Leishmania infantum.

    PubMed

    Hargrove, Tatiana Y; Wawrzak, Zdzislaw; Liu, Jialin; Nes, W David; Waterman, Michael R; Lepesheva, Galina I

    2011-07-29

    Leishmaniasis is a major health problem that affects populations of ∼90 countries worldwide, with no vaccine and only a few moderately effective drugs. Here we report the structure/function characterization of sterol 14α-demethylase (CYP51) from Leishmania infantum. The enzyme catalyzes removal of the 14α-methyl group from sterol precursors. The reaction is essential for membrane biogenesis and therefore has great potential to become a target for antileishmanial chemotherapy. Although L. infantum CYP51 prefers C4-monomethylated sterol substrates such as C4-norlanosterol and obtusifoliol (V(max) of ∼10 and 8 min(-1), respectively), it is also found to 14α-demethylate C4-dimethylated lanosterol (V(max) = 0.9 min(-1)) and C4-desmethylated 14α-methylzymosterol (V(max) = 1.9 min(-1)). Binding parameters with six sterols were tested, with K(d) values ranging from 0.25 to 1.4 μM. Thus, L. infantum CYP51 is the first example of a plant-like sterol 14α-demethylase, where requirements toward the composition of the C4 atom substituents are not strict, indicative of possible branching in the postsqualene portion of sterol biosynthesis in the parasite. Comparative analysis of three CYP51 substrate binding cavities (Trypanosoma brucei, Trypanosoma cruzi, and L. infantum) suggests that substrate preferences of plant- and fungal-like protozoan CYP51s largely depend on the differences in the enzyme active site topology. These minor structural differences are also likely to underlie CYP51 catalytic rates and drug susceptibility and can be used to design potent and specific inhibitors.

  16. Diffuse high-grade gliomas with H3 K27M mutations carry a dismal prognosis independent of tumor location.

    PubMed

    Karremann, Michael; Gielen, Gerrit H; Hoffmann, Marion; Wiese, Maria; Colditz, Niclas; Warmuth-Metz, Monika; Bison, Brigitte; Claviez, Alexander; van Vuurden, Dannis G; von Bueren, André O; Gessi, Marco; Kühnle, Ingrid; Hans, Volkmar H; Benesch, Martin; Sturm, Dominik; Kortmann, Rolf-Dieter; Waha, Andreas; Pietsch, Torsten; Kramm, Christof M

    2018-01-10

    The novel entity of "diffuse midline glioma, H3 K27M-mutant" has been defined in the 2016 revision of the World Health Organization (WHO) classification of tumors of the central nervous system (CNS). Tumors of this entity arise in CNS midline structures of predominantly pediatric patients and are associated with an overall dismal prognosis. They are defined by K27M mutations in H3F3A or HIST1H3B/C, encoding for histone 3 variants H3.3 and H3.1, respectively, which are considered hallmark events driving gliomagenesis. Here, we characterized 85 centrally reviewed diffuse gliomas on midline locations enrolled in the nationwide pediatric German HIT-HGG registry regarding tumor site, histone 3 mutational status, WHO grade, age, sex, and extent of tumor resection. We found 56 H3.3 K27M-mutant tumors (66%), 6 H3.1 K27M-mutant tumors (7%), and 23 H3-wildtype tumors (27%). H3 K27M-mutant gliomas shared an aggressive clinical course independent of their anatomic location. Multivariate regression analysis confirmed the significant impact of the H3 K27M mutation as the only independent parameter predictive of overall survival (P = 0.009). In H3 K27M-mutant tumors, neither anatomic midline location nor histopathological grading nor extent of tumor resection had an influence on survival. These results substantiate the clinical significance of considering diffuse midline glioma, H3 K27M-mutant, as a distinct entity corresponding to WHO grade IV, carrying a universally fatal prognosis. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  17. The devil is in the details: comparison between COP9 signalosome (CSN) and the LID of the 26S proteasome.

    PubMed

    Meister, Cindy; Gulko, Miriam Kolog; Köhler, Anna M; Braus, Gerhard H

    2016-02-01

    The COP9 signalosome (CSN) and the proteasomal LID are conserved macromolecular complexes composed of at least eight subunits with molecular weights of approximately 350 kDa. CSN and LID are part of the ubiquitin–proteasome pathway and cleave isopeptide linkages of lysine side chains on target proteins. CSN cleaves the isopeptide bond of ubiquitin-like protein Nedd8 from cullins, whereas the LID cleaves ubiquitin from target proteins sentenced for degradation. CSN and LID are structurally and functionally similar but the order of the assembly pathway seems to be different. The assembly differs in at least the last subunit joining the pre-assembled subcomplex. This review addresses the similarities and differences in structure, function and assembly of CSN and LID.

  18. A 64Cycles/MB, Luma-Chroma Parallelized H.264/AVC Deblocking Filter for 4K × 2K Applications

    NASA Astrophysics Data System (ADS)

    Shen, Weiwei; Fan, Yibo; Zeng, Xiaoyang

    In this paper, a high-throughput debloking filter is presented for H.264/AVC standard, catering video applications with 4K × 2K (4096 × 2304) ultra-definition resolution. In order to strengthen the parallelism without simply increasing the area, we propose a luma-chroma parallel method. Meanwhile, this work reduces the number of processing cycles, the amount of external memory traffic and the working frequency, by using triple four-stage pipeline filters and a luma-chroma interlaced sequence. Furthermore, it eliminates most unnecessary off-chip memory bandwidth with a highly reusable memory scheme, and adopts a “slide window” buffer scheme. As a result, our design can support 4K × 2K at 30fps applications at the working frequency of only 70.8MHz.

  19. Syntheses and characterization of phosphonates and diphosphonates of molybdenum, A4[(MoO3)5(O3PR)2]·xH2O, A2[Mo2O5(O3PR)2] and A2[Mo2O5(O3P-R-PO3)] (A = K, Rb, Cs, Tl, NH4).

    PubMed

    Elias Jesu Packiam, D; Vidyasagar, Kanamaluru

    2017-11-28

    Twenty new molybdenum phosphonates and diphosphonates have been synthesized and structurally characterized by single crystal and powder X-ray diffraction, CHN analyses, spectroscopic and thermal studies. Four of them are molecular phenyl- and benzyl-phosphonates containing discrete [(MoO 3 ) 5 (O 3 PR) 2 ] 4- (R = Ph or CH 2 Ph) cyclic anions. The sixteen non-molecular compounds are layered isostructural phenylphosphonates, A 2 [Mo 2 O 5 (O 3 PPh) 2 ] (A = NH 4 , Tl, Rb, Cs) and K 1.5 (H 3 O) 0.5 [Mo 2 O 5 (O 3 PPh) 2 ] and the corresponding diphosphonate compounds with pillared anionic layers, A 2 [Mo 2 O 5 (O 3 P(CH 2 ) 3 PO 3 )], A 2 [Mo 2 O 5 (O 3 P(CH 2 ) 4 PO 3 )] and A 2 [Mo 2 O 5 (O 3 P(C 6 H 4 )PO 3 )]. The A + ions reside in the interlayer region as well as in the cavities within the anionic layers.

  20. Genome-Wide Profiling of Histone Modifications (H3K9me2 and H4K12ac) and Gene Expression in Rust (Uromyces appendiculatus) Inoculated Common Bean (Phaseolus vulgaris L.).

    PubMed

    Ayyappan, Vasudevan; Kalavacharla, Venu; Thimmapuram, Jyothi; Bhide, Ketaki P; Sripathi, Venkateswara R; Smolinski, Tomasz G; Manoharan, Muthusamy; Thurston, Yaqoob; Todd, Antonette; Kingham, Bruce

    2015-01-01

    Histone modifications such as methylation and acetylation play a significant role in controlling gene expression in unstressed and stressed plants. Genome-wide analysis of such stress-responsive modifications and genes in non-model crops is limited. We report the genome-wide profiling of histone methylation (H3K9me2) and acetylation (H4K12ac) in common bean (Phaseolus vulgaris L.) under rust (Uromyces appendiculatus) stress using two high-throughput approaches, chromatin immunoprecipitation sequencing (ChIP-Seq) and RNA sequencing (RNA-Seq). ChIP-Seq analysis revealed 1,235 and 556 histone methylation and acetylation responsive genes from common bean leaves treated with the rust pathogen at 0, 12 and 84 hour-after-inoculation (hai), while RNA-Seq analysis identified 145 and 1,763 genes differentially expressed between mock-inoculated and inoculated plants. The combined ChIP-Seq and RNA-Seq analyses identified some key defense responsive genes (calmodulin, cytochrome p450, chitinase, DNA Pol II, and LRR) and transcription factors (WRKY, bZIP, MYB, HSFB3, GRAS, NAC, and NMRA) in bean-rust interaction. Differential methylation and acetylation affected a large proportion of stress-responsive genes including resistant (R) proteins, detoxifying enzymes, and genes involved in ion flux and cell death. The genes identified were functionally classified using Gene Ontology (GO) and EuKaryotic Orthologous Groups (KOGs). The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis identified a putative pathway with ten key genes involved in plant-pathogen interactions. This first report of an integrated analysis of histone modifications and gene expression involved in the bean-rust interaction as reported here provides a comprehensive resource for other epigenomic regulation studies in non-model species under stress.

  1. Genome-Wide Profiling of Histone Modifications (H3K9me2 and H4K12ac) and Gene Expression in Rust (Uromyces appendiculatus) Inoculated Common Bean (Phaseolus vulgaris L.)

    PubMed Central

    Thimmapuram, Jyothi; Bhide, Ketaki P.; Sripathi, Venkateswara R.; Smolinski, Tomasz G.; Manoharan, Muthusamy; Thurston, Yaqoob; Todd, Antonette; Kingham, Bruce

    2015-01-01

    Histone modifications such as methylation and acetylation play a significant role in controlling gene expression in unstressed and stressed plants. Genome-wide analysis of such stress-responsive modifications and genes in non-model crops is limited. We report the genome-wide profiling of histone methylation (H3K9me2) and acetylation (H4K12ac) in common bean (Phaseolus vulgaris L.) under rust (Uromyces appendiculatus) stress using two high-throughput approaches, chromatin immunoprecipitation sequencing (ChIP-Seq) and RNA sequencing (RNA-Seq). ChIP-Seq analysis revealed 1,235 and 556 histone methylation and acetylation responsive genes from common bean leaves treated with the rust pathogen at 0, 12 and 84 hour-after-inoculation (hai), while RNA-Seq analysis identified 145 and 1,763 genes differentially expressed between mock-inoculated and inoculated plants. The combined ChIP-Seq and RNA-Seq analyses identified some key defense responsive genes (calmodulin, cytochrome p450, chitinase, DNA Pol II, and LRR) and transcription factors (WRKY, bZIP, MYB, HSFB3, GRAS, NAC, and NMRA) in bean-rust interaction. Differential methylation and acetylation affected a large proportion of stress-responsive genes including resistant (R) proteins, detoxifying enzymes, and genes involved in ion flux and cell death. The genes identified were functionally classified using Gene Ontology (GO) and EuKaryotic Orthologous Groups (KOGs). The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis identified a putative pathway with ten key genes involved in plant-pathogen interactions. This first report of an integrated analysis of histone modifications and gene expression involved in the bean-rust interaction as reported here provides a comprehensive resource for other epigenomic regulation studies in non-model species under stress. PMID:26167691

  2. Synthesis and crystal structures of nitratocobaltates Na2[Co(NO3)4], K2[Co(NO3)4], and Ag[Co(NO3)3] and potassium nitratonickelate K2[Ni(NO3)4

    NASA Astrophysics Data System (ADS)

    Morozov, I. V.; Fedorova, A. A.; Albov, D. V.; Kuznetsova, N. R.; Romanov, I. A.; Rybakov, V. B.; Troyanov, S. I.

    2008-03-01

    The cobalt(II) and nickel(II) nitrate complexes with an island structure (Na2[Co(NO3)4] ( I) and K2[Co(NO3)4] ( II)] and a chain structure [Ag[Co(NO3)3] ( III) and K2[Ni(NO3)4] ( IV)] are synthesized and investigated using X-ray diffraction. In the anionic complex [Co(NO3)4]2- of the crystal structure of compound I, the Co coordination polyhedron is a twisted tetragonal prism formed by the O atoms of four asymmetric bidentate nitrate groups. In the anion [Co(NO3)4]2- of the crystal structure of compound II, one of the four NO3 groups is monodentate and the other NO3 groups are bidentate (the coordination number of the cobalt atom is equal to seven, and the cobalt coordination polyhedron is a monocapped trigonal prism). The crystal structures of compounds III and IV contain infinite chains of the compositions [Co(NO3)2(NO3)2/2]- and [Ni(NO3)3(NO3)2/2]2-, respectively. In the crystal structure of compound III, seven oxygen atoms of one monodentate and three bidentate nitrate groups form a dodecahedron with an unoccupied vertex of the A type around the Co atom. In the crystal structure of compound IV, the octahedral polyhedron of the Ni atom is formed by five nitrate groups, one of which is terminal bidentate. The data on the structure of Co(II) coordination polyhedra in the known nitratocobaltates are generalized.

  3. Enrichment of H3K9me2 on Unsynapsed Chromatin in Caenorhabditis elegans Does Not Target de Novo Sites

    PubMed Central

    Guo, Yiqing; Yang, Bing; Li, Yini; Maine, Eleanor M.

    2015-01-01

    Many organisms alter the chromatin state of unsynapsed chromosomes during meiotic prophase, a phenomenon hypothesized to function in maintaining germline integrity. In Caenorhabditis elegans, histone H3 lysine 9 dimethylation (H3K9me2) is detected by immunolabeling as enriched on unsynapsed meiotic chromosomes. Loss of the SET domain protein, MET-2, greatly reduces H3K9me2 abundance and results in germline mortality. Here, we used him-8 mutations to disable X chromosome synapsis and performed a combination of molecular assays to map the sites of H3K9me2 accumulation, evaluate H3K9me2 abundance in germline vs. whole animals, and evaluate the impact of H3K9me2 loss on the germline transcriptome. Our data indicate that H3K9me2 is elevated broadly across the X chromosome and at defined X chromosomal sites in him-8 adults compared with controls. H3K9me2 levels are also elevated to a lesser degree at sites on synapsed chromosomes in him-8 adults compared with controls. These results suggest that MET-2 activity is elevated in him-8 mutants generally as well as targeted preferentially to the unsynapsed X. Abundance of H3K9me2 and other histone H3 modifications is low in germline chromatin compared with whole animals, which may facilitate genome reprogramming during gametogenesis. Loss of H3K9me2 has a subtle impact on the him-8 germline transcriptome, suggesting H3K9me2 may not be a major regulator of developmental gene expression in C. elegans. We hypothesize H3K9me2 may have a structural function critical for germline immortality, and a greater abundance of these marks may be required when a chromosome does not synapse. PMID:26156747

  4. LSD1 activates a lethal prostate cancer gene network independently of its demethylase function.

    PubMed

    Sehrawat, Archana; Gao, Lina; Wang, Yuliang; Bankhead, Armand; McWeeney, Shannon K; King, Carly J; Schwartzman, Jacob; Urrutia, Joshua; Bisson, William H; Coleman, Daniel J; Joshi, Sunil K; Kim, Dae-Hwan; Sampson, David A; Weinmann, Sheila; Kallakury, Bhaskar V S; Berry, Deborah L; Haque, Reina; Van Den Eeden, Stephen K; Sharma, Sunil; Bearss, Jared; Beer, Tomasz M; Thomas, George V; Heiser, Laura M; Alumkal, Joshi J

    2018-05-01

    Medical castration that interferes with androgen receptor (AR) function is the principal treatment for advanced prostate cancer. However, clinical progression is universal, and tumors with AR-independent resistance mechanisms appear to be increasing in frequency. Consequently, there is an urgent need to develop new treatments targeting molecular pathways enriched in lethal prostate cancer. Lysine-specific demethylase 1 (LSD1) is a histone demethylase and an important regulator of gene expression. Here, we show that LSD1 promotes the survival of prostate cancer cells, including those that are castration-resistant, independently of its demethylase function and of the AR. Importantly, this effect is explained in part by activation of a lethal prostate cancer gene network in collaboration with LSD1's binding protein, ZNF217. Finally, that a small-molecule LSD1 inhibitor-SP-2509-blocks important demethylase-independent functions and suppresses castration-resistant prostate cancer cell viability demonstrates the potential of LSD1 inhibition in this disease.

  5. Potential antimicrobial agents from triazole-functionalized 2H-benzo[b][1,4]oxazin-3(4H)-ones.

    PubMed

    Bollu, Rajitha; Banu, Saleha; Bantu, Rajashaker; Reddy, A Gopi; Nagarapu, Lingaiah; Sirisha, K; Kumar, C Ganesh; Gunda, Shravan Kumar; Shaik, Kamal

    2017-12-01

    A series of substituted triazole functionalized 2H-benzo[b][1,4]oxazin-3(4H)-ones were synthesized by employing click chemistry and further characterized based on 1 H NMR, 13 C NMR, IR and mass spectral studies. All the synthesized derivatives were screened for their in vitro antimicrobial activities. Further, molecular docking studies were accomplished to explore the binding interactions between 1,2,3-triazol-4-yl-2H-benzo[b][1,4]oxazin-3(4H)-one and the active site of Staphylococcus aureus (CrtM) dehydrosqualene synthase (PDB ID: 2ZCS). These docking studies revealed that the synthesized derivatives showed high binding energies and strong H-bond interactions with the dehydrosqualene synthase validating the observed antimicrobial activity data. Based on antimicrobial activity and docking studies, the compounds 9c, 9d and 9e were identified as promising antimicrobial leads. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Slow spin relaxation induced by magnetic field in [NdCo(bpdo)(H2O)4(CN)6]⋅3H2O.

    PubMed

    Vrábel, P; Orendáč, M; Orendáčová, A; Čižmár, E; Tarasenko, R; Zvyagin, S; Wosnitza, J; Prokleška, J; Sechovský, V; Pavlík, V; Gao, S

    2013-05-08

    We report on a comprehensive investigation of the magnetic properties of [NdCo(bpdo)(H2O)4(CN)6]⋅3H2O (bpdo=4, 4'-bipyridine-N,N'-dioxide) by use of electron paramagnetic resonance, magnetization, specific heat and susceptibility measurements. The studied material was identified as a magnet with an effective spin S = 1/2 and a weak exchange interaction J/kB = 25 mK. The ac susceptibility studies conducted at audio frequencies and at temperatures from 1.8 to 9 K revealed that the application of a static magnetic field induces a slow spin relaxation. It is suggested that the relaxation in the magnetic field appears due to an Orbach-like process between the two lowest doublet energy states of the magnetic Nd(3+) ion. The appearance of the slow relaxation in a magnetic field cannot be associated with a resonant phonon trapping. The obtained results suggest that the relaxation is influenced by nuclear spin driven quantum tunnelling which is suppressed by external magnetic field.

  7. CFD Growth of 3C-SiC on 4H/6H Mesas

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Trunek, Andrew J.; Spry, David J.; Powell, J. Anthony; Du, Hui; Skowronski, Marek; Huang, XianRong; Dudley, Michael

    2006-01-01

    This article describes growth and characterization of the highest quality reproducible 3C-SiC heteroepitaxial films ever reported. By properly nucleating 3C-SiC growth on top of perfectly on-axis (0001) 4H-SiC mesa surfaces completely free of atomic scale steps and extended defects, growth of 3C-SiC mesa heterofilms completely free of extended crystal defects can be achieved. In contrast, nucleation and growth of 3C-SiC mesa heterofilms on top of 4H-SiC mesas with atomic-scale steps always results in numerous observable dislocations threading through the 3C-SiC epilayer. High-resolution X-ray diffraction and transmission electron microscopy measurements indicate non-trivial in-plane lattice mismatch between the 3C and 4H layers. This mismatch is somewhat relieved in the step-free mesa case via misfit dislocations confined to the 3C/4H interfacial region without dislocations threading into the overlying 3C-SiC layer. These results indicate that the presence or absence of steps at the 3C/4H heteroepitaxial interface critically impacts the quality, defect structure, and relaxation mechanisms of single-crystal heteroepitaxial 3C-SiC films.

  8. Inhibitory effect of 2-(piperidinoethoxyphenyl)-3-(4-hydroxyphenyl)-2H-benzo(b)pyran (K-1) on human primary endometrial hyperplasial cells mediated via combined suppression of Wnt/β-catenin signaling and PI3K/Akt survival pathway.

    PubMed

    Chandra, V; Fatima, I; Manohar, M; Popli, P; Sirohi, V K; Hussain, M K; Hajela, K; Sankhwar, P; Dwivedi, A

    2014-08-21

    Endometrial hyperplasia is a precursor to the most common gynecologic cancer diagnosed in women. Apart from estrogenic induction, aberrant activation of the Wnt/β-catenin signal is well known to correlate with endometrial hyperplasia and its carcinoma. The benzopyran compound 2-(piperidinoethoxyphenyl)-3-(4-hydroxyphenyl)-2H-benzo (b) pyran(K-1), a potent antiestrogenic agent, has been shown to have apoptosis-inducing activity in rat uterine hyperplasia. The current study was undertaken to explore the effect of the benzopyran compound K-1 on growth and Wnt signaling in human endometrial hyperplasial cells. Primary culture of atypical endometrial hyperplasial cells was characterized by the epithelial cell marker cytokeratin-7. Results revealed that compound K-1 reduced the viability of primary endometrial hyperplasial cells and expression of ERα, PR, PCNA, Wnt7a, FZD6, pGsk3β and β-catenin without affecting the growth of the primary culture of normal endometrial cells. The β-catenin target genes CyclinD1 and c-myc were also found to be reduced, whereas the expression of axin2 and Wnt/β-catenin signaling inhibitor Dkk-1 was found to be upregulated, which caused the reduced interaction of Wnt7a and FZD6. Nuclear accumulation of β-catenin was found to be decreased by compound K-1. K-1 also suppressed the pPI3K/pAkt survival pathway and induced the cleavage of caspases and PARP, thus subsequently causing the apoptosis of endometrial hyperplasial cells. In conclusion, compound K-1 suppressed the growth of human primary endometrial hyperplasial cells through discontinued Wnt/β-catenin signaling and induced apoptosis via inhibiting the PI3K/Akt survival pathway.

  9. In silico probing and biological evaluation of SETDB1/ESET-targeted novel compounds that reduce tri-methylated histone H3K9 (H3K9me3) level

    NASA Astrophysics Data System (ADS)

    Park, Insun; Hwang, Yu Jin; Kim, TaeHun; Viswanath, Ambily Nath Indu; Londhe, Ashwini M.; Jung, Seo Yun; Sim, Kyoung Mi; Min, Sun-Joon; Lee, Ji Eun; Seong, Jihye; Kim, Yun Kyung; No, Kyoung Tai; Ryu, Hoon; Pae, Ae Nim

    2017-10-01

    ERG-associated protein with the SET domain (ESET/SET domain bifurcated 1/SETDB1/KMT1E) is a histone lysine methyltransferase (HKMT) and it preferentially tri-methylates lysine 9 of histone H3 (H3K9me3). SETDB1/ESET leads to heterochromatin condensation and epigenetic gene silencing. These functional changes are reported to correlate with Huntington's disease (HD) progression and mood-related disorders which make SETDB1/ESET a viable drug target. In this context, the present investigation was performed to identify novel peptide-competitive small molecule inhibitors of the SETDB1/ESET by a combined in silico-in vitro approach. A ligand-based pharmacophore model was built and employed for the virtual screening of ChemDiv and Asinex database. Also, a human SETDB1/ESET homology model was constructed to supplement the data further. Biological evaluation of the selected 21 candidates singled out 5 compounds exhibiting a notable reduction of the H3K9me3 level via inhibitory potential of SETDB1/ESET activity in SETDB1/ESET-inducible cell line and HD striatal cells. Later on, we identified two compounds as final hits that appear to have neuronal effects without cytotoxicity based on the result from MTT assay. These compounds hold the calibre to become the future lead compounds and can provide structural insights into more SETDB1/ESET-focused drug discovery research. Moreover, these SETDB1/ESET inhibitors may be applicable for the preclinical study to ameliorate neurodegenerative disorders via epigenetic regulation.

  10. In silico probing and biological evaluation of SETDB1/ESET-targeted novel compounds that reduce tri-methylated histone H3K9 (H3K9me3) level.

    PubMed

    Park, Insun; Hwang, Yu Jin; Kim, TaeHun; Viswanath, Ambily Nath Indu; Londhe, Ashwini M; Jung, Seo Yun; Sim, Kyoung Mi; Min, Sun-Joon; Lee, Ji Eun; Seong, Jihye; Kim, Yun Kyung; No, Kyoung Tai; Ryu, Hoon; Pae, Ae Nim

    2017-10-01

    ERG-associated protein with the SET domain (ESET/SET domain bifurcated 1/SETDB1/KMT1E) is a histone lysine methyltransferase (HKMT) and it preferentially tri-methylates lysine 9 of histone H3 (H3K9me3). SETDB1/ESET leads to heterochromatin condensation and epigenetic gene silencing. These functional changes are reported to correlate with Huntington's disease (HD) progression and mood-related disorders which make SETDB1/ESET a viable drug target. In this context, the present investigation was performed to identify novel peptide-competitive small molecule inhibitors of the SETDB1/ESET by a combined in silico-in vitro approach. A ligand-based pharmacophore model was built and employed for the virtual screening of ChemDiv and Asinex database. Also, a human SETDB1/ESET homology model was constructed to supplement the data further. Biological evaluation of the selected 21 candidates singled out 5 compounds exhibiting a notable reduction of the H3K9me3 level via inhibitory potential of SETDB1/ESET activity in SETDB1/ESET-inducible cell line and HD striatal cells. Later on, we identified two compounds as final hits that appear to have neuronal effects without cytotoxicity based on the result from MTT assay. These compounds hold the calibre to become the future lead compounds and can provide structural insights into more SETDB1/ESET-focused drug discovery research. Moreover, these SETDB1/ESET inhibitors may be applicable for the preclinical study to ameliorate neurodegenerative disorders via epigenetic regulation.

  11. X-Ray study of hetero ring flexibility in norbornane, norbornene-fused 1,3-oxazin-2-thiones Structure of 5,8-methano- r-4-phenyl-c-4a, c-5,6,7, c-8, c- 8a-hexahydro-4H- 1 ,3-benzoxazin-2 (3H)-thione

    NASA Astrophysics Data System (ADS)

    Kálmán, A.; Argay, Gy.; Stájer, G.; Bernáth, G.

    1991-08-01

    The structure of S,8-methano- r-4-phenyl c4a, c5,6,7 c8 c8ahexahydro4 H 1,3 -benzoxazin- 2 (3 H)-thione (C 15H 17N0S, M r=259.37) has been established by X-ray crystallography from diffractometer data: it crystallizes in the monoclinic space group P2 1/n with a=6.150(2) Å, b=9.655(1) Å, c=22.093(4) Å,β=96.75(2)† V=1302.7(8) Å 3,4,D c=1.32gcm -3and p( Cu K) =20.4cm -. The structure has been solved by direct methods, refined to R=0.050 for 2193 observed reflections. The X-ray analysis substantiated the structure: the NMR spectra in- dicated that the 4-phenyl group assumes an exo-equatorial position. The puckering parameters of D. Cremer, J.A. Pople, J. Am. Chem. Soc., 97 (1975), 1354 (ref.1), of the distorted hetero ring (a transitional form between E 4-envelope, ( 5S 4-screw-boat) show that, depending on the positions of the hetero atoms, both the norbornane, norbornene skeletons markedly alter the characteristic transitional ( 5E/ 5H 6) shape of the 1,3-oxazine ring observed in other saturated, partly saturated l,3-benzoxazin-2-ones, analogous thiones.

  12. Lid dynamics of porcine pancreatic lipase in non-aqueous solvents.

    PubMed

    Haque, Neshatul; Prabhu, N Prakash

    2016-10-01

    Understanding the dynamics of enzymes in organic solvents has wider implications on their industrial applications. Pancreatic lipases, which show activity in their lid open-state, demonstrate enhanced activity in organic solvents at higher temperatures. However, the lid dynamics of pancreatic lipases in non-aqueous environment is yet to be clearly understood. Dynamics of porcine pancreatic lipase (PPL) in open and closed conformations was followed in ethanol, toluene, and octanol using molecular simulation methods. In silico double mutant D250V and E254L of PPL (PPLmut-Cl) was created and its lid opening dynamics in water and in octanol was analyzed. PPL showed increase in solvent accessible surface area and decrease in packing density as the polarity of the surrounded solvent decreased. Breaking the interactions between D250-Y115, and D250-E254 in PPLmut-Cl directed the lid to attain open-state conformation. Major energy barriers during the lid movement in water and in octanol were identified. Also, the trajectories of lid movement were found to be different in these solvents. Only the double mutant at higher temperature showed lid opening movement suggesting the essential role of the three residues in holding the lid in closed conformation. The lid opening dynamics was faster in octanol than water suggesting that non-polar solvents favor open conformation of the lid. This study identifies important interactions between the lid and the residues in domain 1 which possibly keeps the lid in closed conformation. Also, it explains the rearrangements of residue-residue interactions during lid opening movement in water and in octanol. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. X-ray diffraction analysis of 4- and 4'-substituted C n H2 n + 1O-C6H3(OH)-CH=N-C6H4-C m H2 m + 1 ( n/ m = 2/1 and 3/4) salicylideneanilines

    NASA Astrophysics Data System (ADS)

    Kuz'mina, L. G.; Navasardyan, M. A.; Mikhailov, A. A.

    2017-11-01

    X-ray diffraction study of two crystalline modifications of C2H5O-C6H3(OH)-CH=N-C6H4-CH3 ( 1a, sp. gr. P21/ n, and 1b, sp. gr. C2/c) and C3H7O-C6H3(OH)-CH=N-C6H4-C4H9 ( 2, sp. gr. P212121) has been performed. The 1a crystal structure contains two independent molecules. The molecules are conformationally nonrigid with respect to the mutual rotation of benzene rings; the dihedral angles between their planes are 29.19° and 26.00° in the independent molecules of 1a, 18.72° in the molecule of 1b, and 50.35° in the molecule of 2. The crystal packing of the compounds is discussed.

  14. Synthesis and antitumor screening of new 1,7-diphenyl-3-(1,3-disubstituted-1H-pyrazole-4-carbonyl)-[1,2,4]triazolo[4,3-a]pyrimidin-5(1H)-ones.

    PubMed

    Shawali, Ahmad S; Sherif, Sherif M; Darwish, Manal A A; El-merzabani, Mahmoud M

    2010-01-01

    A new series of 3-(1,3-disubstituted-1H-pyrazole-4-carbonyl)-1,7-diphenyl-[1,2,4]triazolo[4,3-a]pyrimidin-5(1H)-ones 4 was prepared by reaction of the enaminone 2 with hydrazonoyl halides 3. The preliminary screening for antitumor activity of the synthesized compounds was carried out against Ehrlich Ascites Carcinoma tumor cells. The results revealed that the studied compounds 4 have low or no antitumor activity towards EAC tumor cells.

  15. The measurement of sulfate mineral solubilities in the Na-K-Ca-Cl-SO 4-H 2O system at temperatures of 100, 150 and 200°C

    NASA Astrophysics Data System (ADS)

    Freyer, Daniela; Voigt, Wolfgang

    2004-01-01

    At T > 100°C development of thermodynamic models suffers from missing experimental data, particularly for solubilities of sulfate minerals in mixed solutions. Solubilities in Na +-K +-Ca 2+-Cl --SO 42-/H 2O subsystems were investigated at 150, 200°C and at selected compositions at 100°C. The apparatus used to examine solid-liquid phase equilibria under hydrothermal conditions has been described. In the system NaCl-CaSO 4-H 2O the missing anhydrite (CaSO 4) solubilities at high NaCl concentrations up to halite saturation have been determined. In the system Na 2SO 4-CaSO 4-H 2O the observed glauberite (Na 2SO 4 · CaSO 4) solubility is higher than that predicted by the high temperature model of Greenberg and Møller (1989), especially at 200°C. At high salt concentrations, solubilities of both anhydrite and glauberite increase with increasing temperature. Stability fields of the minerals syngenite (K 2SO 4 · CaSO 4 · H 2O) and goergeyite (K 2SO 4 · 5 CaSO 4 · H 2O) were determined, and a new phase was found at 200°C in the K 2SO 4-CaSO 4-H 2O system. Chemical and single crystal structure analysis give the formula K 2SO 4 · CaSO 4. The structure is isostructural with palmierite (K 2SO 4 · PbSO 4). The glaserite ("3 K 2SO 4 · Na 2SO 4") appears as solid solution in the system Na 2SO 4-K 2SO 4-H 2O. Its solubility and stoichiometry was determined as a function of solution composition.

  16. A Cutinase from Trichoderma reesei with a lid-covered active site and kinetic properties of true lipases.

    PubMed

    Roussel, Alain; Amara, Sawsan; Nyyssölä, Antti; Mateos-Diaz, Eduardo; Blangy, Stéphanie; Kontkanen, Hanna; Westerholm-Parvinen, Ann; Carrière, Frédéric; Cambillau, Christian

    2014-11-11

    Cutinases belong to the α/β-hydrolase fold family of enzymes and degrade cutin and various esters, including triglycerides, phospholipids and galactolipids. Cutinases are able to degrade aggregated and soluble substrates because, in contrast with true lipases, they do not have a lid covering their catalytic machinery. We report here the structure of a cutinase from the fungus Trichoderma reesei (Tr) in native and inhibitor-bound conformations, along with its enzymatic characterization. A rare characteristic of Tr cutinase is its optimal activity at acidic pH. Furthermore, Tr cutinase, in contrast with classical cutinases, possesses a lid covering its active site and requires the presence of detergents for activity. In addition to the presence of the lid, the core of the Tr enzyme is very similar to other cutinase cores, with a central five-stranded β-sheet covered by helices on either side. The catalytic residues form a catalytic triad involving Ser164, His229 and Asp216 that is covered by the two N-terminal helices, which form the lid. This lid opens in the presence of surfactants, such as β-octylglucoside, and uncovers the catalytic crevice, allowing a C11Y4 phosphonate inhibitor to bind to the catalytic serine. Taken together, these results reveal Tr cutinase to be a member of a new group of lipolytic enzymes resembling cutinases but with kinetic and structural features of true lipases and a heightened specificity for long-chain triglycerides. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. $$ \\mathcal{N} $$ = 4 superconformal bootstrap of the K 3 CFT

    DOE PAGES

    Lin, Ying-Hsuan; Shao, Shu-Heng; Simmons-Duffin, David; ...

    2017-05-23

    We study two-dimensional (4; 4) superconformal eld theories of central charge c = 6, corresponding to nonlinear sigma models on K3 surfaces, using the superconformal bootstrap. This is made possible through a surprising relation between the BPS N = 4 superconformal blocks with c = 6 and bosonic Virasoro conformal blocks with c = 28, and an exact result on the moduli dependence of a certain integrated BPS 4-point function. Nontrivial bounds on the non-BPS spectrum in the K3 CFT are obtained as functions of the CFT moduli, that interpolate between the free orbifold points and singular CFT points. Wemore » observe directly from the CFT perspective the signature of a continuous spectrum above a gap at the singular moduli, and fi nd numerically an upper bound on this gap that is saturated by the A1 N = 4 cigar CFT. We also derive an analytic upper bound on the fi rst nonzero eigenvalue of the scalar Laplacian on K3 in the large volume regime, that depends on the K3 moduli data. As two byproducts, we find an exact equivalence between a class of BPS N = 2 superconformal blocks and Virasoro conformal blocks in two dimensions, and an upper bound on the four-point functions of operators of sufficiently low scaling dimension in three and four dimensional CFTs.« less

  18. $$ \\mathcal{N} $$ = 4 superconformal bootstrap of the K 3 CFT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Ying-Hsuan; Shao, Shu-Heng; Simmons-Duffin, David

    We study two-dimensional (4; 4) superconformal eld theories of central charge c = 6, corresponding to nonlinear sigma models on K3 surfaces, using the superconformal bootstrap. This is made possible through a surprising relation between the BPS N = 4 superconformal blocks with c = 6 and bosonic Virasoro conformal blocks with c = 28, and an exact result on the moduli dependence of a certain integrated BPS 4-point function. Nontrivial bounds on the non-BPS spectrum in the K3 CFT are obtained as functions of the CFT moduli, that interpolate between the free orbifold points and singular CFT points. Wemore » observe directly from the CFT perspective the signature of a continuous spectrum above a gap at the singular moduli, and fi nd numerically an upper bound on this gap that is saturated by the A1 N = 4 cigar CFT. We also derive an analytic upper bound on the fi rst nonzero eigenvalue of the scalar Laplacian on K3 in the large volume regime, that depends on the K3 moduli data. As two byproducts, we find an exact equivalence between a class of BPS N = 2 superconformal blocks and Virasoro conformal blocks in two dimensions, and an upper bound on the four-point functions of operators of sufficiently low scaling dimension in three and four dimensional CFTs.« less

  19. JMJD1C Ensures Mouse Embryonic Stem Cell Self-Renewal and Somatic Cell Reprogramming through Controlling MicroRNA Expression.

    PubMed

    Xiao, Feng; Liao, Bing; Hu, Jing; Li, Shuang; Zhao, Haixin; Sun, Ming; Gu, Junjie; Jin, Ying

    2017-09-12

    The roles of histone demethylases (HDMs) for the establishment and maintenance of pluripotency are incompletely characterized. Here, we show that JmjC-domain-containing protein 1c (JMJD1C), an H3K9 demethylase, is required for mouse embryonic stem cell (ESC) self-renewal. Depletion of Jmjd1c leads to the activation of ERK/MAPK signaling and epithelial-to-mesenchymal transition (EMT) to induce differentiation of ESCs. Inhibition of ERK/MAPK signaling rescues the differentiation phenotype caused by Jmjd1c depletion. Mechanistically, JMJD1C, with the help of pluripotency factor KLF4, maintains ESC identity at least in part by regulating the expression of the miR-200 family and miR-290/295 cluster to suppress the ERK/MAPK signaling and EMT. Additionally, we uncover that JMJD1C ensures efficient generation and maintenance of induced pluripotent stem cells, at least partially through controlling the expression of microRNAs. Collectively, we propose an integrated model of epigenetic and transcriptional control mediated by the H3K9 demethylase for ESC self-renewal and somatic cell reprogramming. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Antibodies against H3 and H4 histones from the sera of HIV-infected patients catalyze site-specific degradation of these histones.

    PubMed

    Baranova, Svetlana V; Dmitrenok, Pavel S; Zubkova, Anastasiya D; Ivanisenko, Nikita V; Odintsova, Elena S; Buneva, Valentina N; Nevinsky, Georgy A

    2018-02-19

    Histones and their posttranslational modified forms play pivotal roles in chromatin functioning and gene transcription. Also, histones are harmful when they enter the intercellular space; their administration to animals results in systemic inflammatory and toxic responses. Autoantibodies having enzymatic activities (abzymes) are the specific feature of several autoimmune and viral diseases. Electrophoretically homogeneous IgGs containing no canonical proteases were purified from sera of HIV-infected patients by using several affinity chromatographies. In contrast to known canonical proteases, Abs from HIV-infected patients hydrolyzed exclusively only histones but no other control globular proteins. The H3 and H4 histone cleavage sites by antihistone IgGs were determined by matrix-assisted laser desorption/ionization mass spectrometry for the first time. Two clusters of H3 hydrolysis contain major (↕) and minor (*) cleavage sites: 18-K*Q*LA↕TK*A↕AR*KS↕A*P-30 and 34-G*VK*KPHR*YRPGTVA*L*R-50. H4 histone has only 1 cluster of cleavage sites containing additionally moderate (↓) cleavage sites: 15-A↕KR↕HR↕KVLR↓D*NIQ↓GIT*K-31. Sites of these histones cleavage correspond mainly to their known epitopes. It was surprising that most of the cleavage sites of histones are involved in the interaction with DNA of nucleosome core. Because histones act as damage-associated molecules, abzymes against H3 and H4 can play important role in pathogenesis of AIDs and probably other viral and immune diseases. Copyright © 2018 John Wiley & Sons, Ltd.

  1. MIR146A inhibits JMJD3 expression and osteogenic differentiation in human mesenchymal stem cells

    PubMed Central

    Huszar, Jessica M.; Payne, Christopher J.

    2014-01-01

    Chromatin remodeling is important for cell differentiation. Histone methyltransferase EZH2 and histone demethylase JMJD3 (KDM6B) modulate levels of histone H3 lysine 27 trimethylation (H3K27me3). Interplay between the two modulators influence lineage specification in stem cells. Here, we identified microRNA MIR146A to be a negative regulator of JMJD3. In the osteogenic differentiation of human mesenchymal stem cells (hMSCs), we observed an upregulation of JMJD3 and a downregulation of MIR146A. Blocking JMJD3 activity in differentiating hMSCs reduced transcript levels of osteogenic gene RUNX2. H3K27me3 levels decreased at the RUNX2 promoter during cell differentiation. Modulation of MIR146A levels in hMSCs altered JMJD3 and RUNX2 expression and affected osteogenic differentiation. We conclude that JMJD3 promotes osteogenesis in differentiating hMSCs, with MIR146A regulating JMJD3. PMID:24726732

  2. Development of wireless vehicle remote control for fuel lid operation

    NASA Astrophysics Data System (ADS)

    Sulaiman, N.; Jadin, M. S.; Najib, M. S.; Mustafa, M.; Azmi, S. N. F.

    2018-04-01

    Nowadays, the evolution of the vehicle technology had made the vehicle especially car to be equipped with a remote control to control the operation of the locking and unlocking system of the car’s door and rear’s bonnet. However, for the fuel or petrol lid, it merely can be opened from inside the car’s cabin by handling the fuel level inside the car’s cabin to open the fuel lid. The petrol lid can be closed by pushing the lid by hand. Due to the high usage of using fuel lever to open the fuel lid when refilling the fuel, the car driver might encounter the malfunction of fuel lid (fail to open) when pushing or pulling the fuel lever. Thus, the main aim of the research is to enhance the operation of an existing car remote control where the car fuel lid can be controlled using two techniques; remote control-based and smartphone-based. The remote control is constructed using Arduino microcontroller, wireless sensors and XCTU software to set the transmitting and receiving parameters. Meanwhile, the smartphone can control the operation of the fuel lid by communicating with Arduino microcontroller which is attached to the fuel lid using Bluetooth sensor to open the petrol lid. In order to avoid the conflict of instruction between wireless systems with the existing mechanical-based system, the servo motor will be employed to release the fuel lid merely after receiving the instruction from Arduino microcontroller and smartphone. As a conclusion, the prototype of the multipurpose vehicle remote control is successfully invented, constructed and tested. The car fuel lid can be opened either using remote control or smartphone in a sequential manner. Therefore, the outcome of the project can be used to serve as an alternative solution to solve the car fuel lid problem even though the problem rarely occurred.

  3. Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B-cell lymphomas.

    PubMed

    Sneeringer, Christopher J; Scott, Margaret Porter; Kuntz, Kevin W; Knutson, Sarah K; Pollock, Roy M; Richon, Victoria M; Copeland, Robert A

    2010-12-07

    EZH2, the catalytic subunit of the PRC2 complex, catalyzes the mono- through trimethylation of lysine 27 on histone H3 (H3K27). Histone H3K27 trimethylation is a mechanism for suppressing transcription of specific genes that are proximal to the site of histone modification. Point mutations of the EZH2 gene (Tyr641) have been reported to be linked to subsets of human B-cell lymphoma. The mutant allele is always found associated with a wild-type allele (heterozygous) in disease cells, and the mutations were reported to ablate the enzymatic activity of the PRC2 complex for methylating an unmodified peptide substrate. Here we demonstrate that the WT enzyme displays greatest catalytic efficiency (k(cat)/K) for the zero to monomethylation reaction of H3K27 and diminished efficiency for subsequent (mono- to di- and di- to trimethylation) reactions. In stark contrast, the disease-associated Y641 mutations display very limited ability to perform the first methylation reaction, but have enhanced catalytic efficiency for the subsequent reactions, relative to the WT enzyme. These results imply that the malignant phenotype of disease requires the combined activities of a H3K27 monomethylating enzyme (PRC2 containing WT EZH2 or EZH1) together with the mutant PRC2s for augmented conversion of H3K27 to the trimethylated form. To our knowledge, this is the first example of a human disease that is dependent on the coordinated activities of normal and disease-associated mutant enzymatic function.

  4. Two Distinct Repressive Mechanisms for Histone 3 Lysine 4 Methylation through Promoting 3′-End Antisense Transcription

    PubMed Central

    Margaritis, Thanasis; Oreal, Vincent; Brabers, Nathalie; Maestroni, Laetitia; Vitaliano-Prunier, Adeline; Benschop, Joris J.; van Hooff, Sander; van Leenen, Dik

    2012-01-01

    Histone H3 di- and trimethylation on lysine 4 are major chromatin marks that correlate with active transcription. The influence of these modifications on transcription itself is, however, poorly understood. We have investigated the roles of H3K4 methylation in Saccharomyces cerevisiae by determining genome-wide expression-profiles of mutants in the Set1 complex, COMPASS, that lays down these marks. Loss of H3K4 trimethylation has virtually no effect on steady-state or dynamically-changing mRNA levels. Combined loss of H3K4 tri- and dimethylation results in steady-state mRNA upregulation and delays in the repression kinetics of specific groups of genes. COMPASS-repressed genes have distinct H3K4 methylation patterns, with enrichment of H3K4me3 at the 3′-end, indicating that repression is coupled to 3′-end antisense transcription. Further analyses reveal that repression is mediated by H3K4me3-dependent 3′-end antisense transcription in two ways. For a small group of genes including PHO84, repression is mediated by a previously reported trans-effect that requires the antisense transcript itself. For the majority of COMPASS-repressed genes, however, it is the process of 3′-end antisense transcription itself that is the important factor for repression. Strand-specific qPCR analyses of various mutants indicate that this more prevalent mechanism of COMPASS-mediated repression requires H3K4me3-dependent 3′-end antisense transcription to lay down H3K4me2, which seems to serve as the actual repressive mark. Removal of the 3′-end antisense promoter also results in derepression of sense transcription and renders sense transcription insensitive to the additional loss of SET1. The derepression observed in COMPASS mutants is mimicked by reduction of global histone H3 and H4 levels, suggesting that the H3K4me2 repressive effect is linked to establishment of a repressive chromatin structure. These results indicate that in S. cerevisiae, the non-redundant role of H3K4

  5. Regulation of H3K4me3 at Transcriptional Enhancers Characterizes Acquisition of Virus-Specific CD8+ T Cell-Lineage-Specific Function.

    PubMed

    Russ, Brendan E; Olshansky, Moshe; Li, Jasmine; Nguyen, Michelle L T; Gearing, Linden J; Nguyen, Thi H O; Olson, Matthew R; McQuilton, Hayley A; Nüssing, Simone; Khoury, Georges; Purcell, Damian F J; Hertzog, Paul J; Rao, Sudha; Turner, Stephen J

    2017-12-19

    Infection triggers large-scale changes in the phenotype and function of T cells that are critical for immune clearance, yet the gene regulatory mechanisms that control these changes are largely unknown. Using ChIP-seq for specific histone post-translational modifications (PTMs), we mapped the dynamics of ∼25,000 putative CD8 + T cell transcriptional enhancers (TEs) differentially utilized during virus-specific T cell differentiation. Interestingly, we identified a subset of dynamically regulated TEs that exhibited acquisition of a non-canonical (H3K4me3 + ) chromatin signature upon differentiation. This unique TE subset exhibited characteristics of poised enhancers in the naive CD8 + T cell subset and demonstrated enrichment for transcription factor binding motifs known to be important for virus-specific CD8 + T cell differentiation. These data provide insights into the establishment and maintenance of the gene transcription profiles that define each stage of virus-specific T cell differentiation. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. Variations in Nutrient Cycling and Meltwater Composition Between Ice-Lidded and Open System Cryoconites

    NASA Astrophysics Data System (ADS)

    Mass, A.

    2016-12-01

    Cryoconites are small melt pools on the ablation surface of glaciers created by the accumulation of aeolian sediment with a lower albedo than the surrounding ice. While many cryoconites remain open to the surrounding atmosphere, environmental conditions in the McMurdo Dry Valleys of Antarctica often lead to the formation of dense ice lids due to advection from cold winds. These lidded cryoconites are isolated from atmospheric exchange while maintaining subsurface melt in a solid-state greenhouse. The varying conditions for the formation and freeze-thaw cycle of cryoconites lead to a range of biogeochemical processes occurring within the pools. This study analyzed the biochemistry of both open and lidded cryoconite water from six glaciers in the Dry Valleys throughout the initial pulse melt, equilibrium, and refreezing periods in 2013- 2015. Many of the spatial gradients in carbon cycling, solute concentrations, and pH identified for lidded cryoconites exhibited opposite trends for pools in equilibrium with the atmosphere, while temporal gradients were less diverse for open pools.

  7. Discovery of phosphoinositide 3-kinases (PI3K) p110β isoform inhibitor 4-[2-hydroxyethyl(1-naphthylmethyl)amino]-6-[(2S)-2-methylmorpholin-4-yl]-1H-pyrimidin-2-one, an effective antithrombotic agent without associated bleeding and insulin resistance.

    PubMed

    Giordanetto, Fabrizio; Wållberg, Andreas; Ghosal, Saswati; Iliefski, Tommy; Cassel, Johan; Yuan, Zhong-Qing; von Wachenfeldt, Henrik; Andersen, Søren M; Inghardt, Tord; Tunek, Anders; Nylander, Sven

    2012-11-01

    Structure-based evolution of the original fragment leads resulted in the identification of 4-[2-hydroxyethyl(1-naphthylmethyl)amino]-6-[(2S)-2-methylmorpholin-4-yl]-1H-pyrimidin-2-one, (S)-21, a potent, selective phosphoinositide 3-kinases (PI3K) p110β isoform inhibitor with favourable in vivo antiplatelet effect. Despite its antiplatelet action, (S)-21 did not significantly increase bleeding time in dogs. Additionally, due to its enhanced selectivity over p110α, (S)-21 did not induce any insulin resistance in rats. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. X-ray structural studies and physicochemical characterization of (E)-6-(3,4-dimethoxyphenyl)-1-ethyl-4-mesitylimino-3-methyl- 3,4-dihydro-2(1H)-pyrimidinone polymorphs.

    PubMed

    Miyamae, A; Kitamura, S; Tada, T; Koda, S; Yasuda, T

    1991-10-01

    The polymorphism of (E)-6-(3,4-dimethoxyphenyl)-1-ethyl-4-mesitylimino-3-methyl-3,4-di hydro- 2(1 H)-pyrimidinone (FK664; 1) was characterized by using X-ray powder diffractometry, differential scanning calorimetry (DSC), and IR spectroscopy. Structures of two polymorphs (Forms A and B) were determined by X-ray crystallographic analysis. Form A crystallized in the monoclinic space group P2(1)/c, with a = 13.504(2), b = 6.733(1), c = 24.910(8) A, beta = 96.55(4) degrees, z = 4, and dcal = 1.203 g/cm3, while Form B crystallized in the same space group, with a = 8.067(2), b = 15.128(4), c = 18.657(4) A, beta = 102.34(3) degrees, z = 4, and dcal = 1.216 g/cm3. The conformational features of 1 were very similar between the two polymorphs. Compound 1, in both crystal forms, took an energetically reasonable conformation in three rigid planes, such as 2-pyrimidone, trimethylphenyl, and dimethoxyphenyl rings, but the molecules were packed in different ways between the two polymorphs. In the Form B crystal, a short contact was possible, to form pi-pi interactions between two dimethoxyphenyl groups related with the inversion center in the crystal lattice; this interaction seems to contribute to stabilizing the crystal structure of Form B. Both Forms A and B showed only one endothermic peak due to fusion at 115 and 140 degrees C, respectively, on the DSC thermograms; therefore, it is suggested that there are no transition points between the two polymorphs. The heats of fusion obtained from the DSC thermograms were 33.2(2) kJ/mol for Form A and 36.8(1) kJ/mol for Form B.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Exploring the mechanism how AF9 recognizes and binds H3K9ac by molecular dynamics simulations and free energy calculations.

    PubMed

    Wang, Quan; Zheng, Qing-Chuan; Zhang, Hong-Xing

    2016-11-01

    Histone acetylation is a very important regulatory mechanism in gene expression in the chromatin context. A new protein family-YEATS domains have been found as a novel histone acetylation reader, which could specific recognize the histone lysine acetylation. AF9 is an important one in the YEATS family. Focused on the AF9-H3K9ac (K9 acetylation) complex (ALY) (PDB code: 4TMP) and a serials of mutants, MUT (the acetyllsine of H3K9ac was mutated to lysine), F59A, G77A, and D103A, we applied molecular dynamics simulation and molecular mechanics Poisson-Boltzmann (MM-PBSA) free energy calculations to examine the role of AF9 protein in recognition interaction. The simulation results and analysis indicate that some residues of the protein have significant influence on recognition and binding to H3K9ac peptides and hydrophobic surface show the hydrophobic interactions play an important role in the binding. Our work can give important information to understand how the protein AF9 recognizes the peptides H3K9ac. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 779-786, 2016. © 2016 Wiley Periodicals, Inc.

  10. Mineralogical studies of the nitrate deposits of Chile. V. Iquiqueite, Na4K3Mg(CrO4)B24O39(OH).12H2O, a new saline mineral.

    USGS Publications Warehouse

    Ericksen, G.E.; Mrose, M.E.; Marinenko, J.W.; McGee, J.J.

    1986-01-01

    Iquiqueite (Na4K3Mg(CrO4)B24O39(OH).12H2O, a 11.6369(14), c 30.158(7) A, P31c, Z = 3) occurs as a widespread minor constituent in the nitrate fields of northern Chile. It is particularly abundant in the vicinity of Zapiga, Tarapaca province. Associated minerals include nitratite, halite, nitre, darapskite, blodite, glauberite, dietzeite, bruggenite, ulexite and gypsum. Iquiqueite forms thin, yellow, hexagonal platelets (5-50 mu m in diameter, <5 mu m in thickness) that are disseminated singly or in vermiform aggregates in nitrate ore. Observed forms are c(0001) and m(1010). Cleavage is perfect on (0001) and imperfect on (1010); H. = or <2. D(calc.) 2.05 g/cm3 and measured sp. gr. 2.05 + or - 0.09. The mineral is uniaxial negative, epsilon 1.447(2), omega 1.502(2). The XRD pattern has the six strongest lines 3.02(100), 2.856(100), 10.11(85), 6.04(85), 3.28(85), 3.22(85) A. The name is for the city of Iquique, Chile.-J.A.Z.

  11. Lid design for low level waste container

    DOEpatents

    Holbrook, Richard H.; Keener, Wendell E.

    1995-01-01

    A container for low level waste includes a shell and a lid. The lid has a frame to which a planar member is welded. The lid frame includes a rectangular outer portion made of square metal tubing, a longitudinal beam extending between axial ends of the rectangular outer portion, and a transverse beam extending between opposite lateral sides of the rectangular outer portion. Two pairs of diagonal braces extend between the longitudinal beam and the four corners of the rectangular outer portion of the frame.

  12. Lid design for low level waste container

    DOEpatents

    Holbrook, R.H.; Keener, W.E.

    1995-02-28

    A container for low level waste includes a shell and a lid. The lid has a frame to which a planar member is welded. The lid frame includes a rectangular outer portion made of square metal tubing, a longitudinal beam extending between axial ends of the rectangular outer portion, and a transverse beam extending between opposite lateral sides of the rectangular outer portion. Two pairs of diagonal braces extend between the longitudinal beam and the four corners of the rectangular outer portion of the frame. 6 figs.

  13. Unusual structural phase transition in [N(C2H5)4][N(CH3)4][ZnBr4

    NASA Astrophysics Data System (ADS)

    Krawczyk, Monika K.; Ingram, Adam; Cach, Ryszard; Czapla, Zbigniew; Czupiński, Olaf; Dacko, Sławomir; Staniorowski, Piotr

    2018-04-01

    The new hybrid organic-inorganic crystal [N(C2H5)4][N(CH3)4][ZnBr4] was grown and its physical properties and structural phase transition are presented. On the basis of thermal analysis (DSC (differential scanning calorimetry), DTA (differential thermal analysis), DTG), X-ray structural, dilatometric and dielectric studies as well as optical observation, the reversible first-order phase transition at 490/488 K on heating and cooling run, respectively, has been found. An appearance of domain structure of ferroelastic type gives evidence for an untypical lowering of crystal symmetry during the phase transition. At room temperature, the satisfying crystal structure solution was found in the tetragonal system, in the P?21m space group.

  14. Compositions of supersaturated solutions for enhanced growth of {alpha}-NiSO{sub 4} . 6H{sub 2}O, Me{sub 2}Ni(SO{sub 4}){sub 2} . 6H{sub 2}O, MeH{sub 2}PO{sub 4} [Me = Li, Na, K, Rb, Cs, NH{sub 4}], and K(H{sub x}D{sub 1-x}){sub 2}PO{sub 4} single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soboleva, L. V., E-mail: afkonst@ns.crys.ras.ru

    2008-05-15

    The possibility of determining the optimal compositions and temperatures of supersaturated solutions for enhanced growth of single crystals of congruently and incongruently dissolving solid phases from the solubility diagrams of ternary systems is shown, and this approach is justified. The NiSO{sub 4}-H{sub 2}SO{sub 4}-H{sub 2}O, Me{sub 2}SO{sub 4}-NiSO{sub 4}-H{sub 2}O, and Me{sub 2}O-P{sub 2}O{sub 5}-H{sub 2}O(D{sub 2}O) systems have been used to determine the optimal compositions and temperatures of supersaturated solutions for growth of {alpha}-NiSO{sub 4} . 6H{sub 2}O, Me{sub 2}Ni(SO{sub 4}){sub 2} . 6H{sub 2}O, MeH{sub 2}PO{sub 4} [Me = Li, Na, K, Rb, Cs, NH{sub 4}], and Kmore » (H{sub x} D{sub 1-x}){sub 2}PO{sub 4} (D is deuterium) single crystals.« less

  15. ON THE ORIGIN OF C{sub 4}H AND CH{sub 3}OH IN PROTOSTELLAR ENVELOPES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindberg, Johan E.; Charnley, Steven B.; Cordiner, Martin A., E-mail: johan.lindberg@nasa.gov

    The formation pathways of different types of organic molecules in protostellar envelopes and other regions of star formation are subjects of intense current interest. We present here observations of C{sub 4}H and CH{sub 3}OH, tracing two distinct groups of interstellar organic molecules, toward 16 protostars in the Ophiuchus and Corona Australis molecular clouds. Together with observations in the literature, we present C{sub 4}H and CH{sub 3}OH data from single-dish observations of 40 embedded protostars. We find no correlation between the C{sub 4}H and CH{sub 3}OH column densities in this large sample. Based on this lack of correlation, a difference inmore » line profiles between C{sub 4}H and CH{sub 3}OH, and previous interferometric observations of similar sources, we propose that the emission from these two molecules is spatially separated, with the CH{sub 3}OH tracing gas that has been transiently heated to high (∼70–100 K) temperatures and the C{sub 4}H tracing the cooler large-scale envelope where CH{sub 4} molecules have been liberated from ices. These results provide insight in the differentiation between hot corino and warm carbon-chain chemistry in embedded protostars.« less

  16. (E)-4-Methyl-N′-[(4-oxo-4H-chromen-3-yl)methyl­idene]benzohydrazide

    PubMed Central

    Ishikawa, Yoshinobu; Watanabe, Kohzoh

    2014-01-01

    In the title chromone-tethered benzohydrazide derivative, C18H14N2O3, the 4H-chromen-4-one and the –CH=N–NH–CO– units are each essentially planar, with the largest deviations from thei planes being 0.052 (2) and 0.003 (2) Å, respectively. The dihedral angles between the 4H-chromen-4-one and the –CH=N–NH–CO– units, the 4H-chromen-4-one unit and the benzene ring of the 4-tolyl group, and the benzene ring of the 4-tolyl group and the –CH=N–NH–CO– unit are 8.09 (7), 9.94 (5) and 17.97 (8)°, respectively. In the crystal, the mol­ecules form two types of centrosymmetric dimers: one by N—H⋯O hydrogen bonds and the other by π–π stacking inter­actions between the 4H-chromen-4-one unit and the 4-tolyl group [centroid–centroid distance = 3.641 (5) Å]. These dimers form one-dimensional assemblies extending along the a-axis direction. Additional π–π stacking inter­actions between two 4H-chromen-4-one units [centroid–centroid distance = 3.591 (5) Å] and two 4-tolyl groups [centroid–centroid distance = 3.792 (5) Å] organize the mol­ecules into a three-dimensional network. PMID:24860370

  17. A simple hydrogen-bonded chain in (3Z)-3-{1-[(5-phenyl-1H-pyrazol-3-yl)amino]ethylidene}-4,5-dihydrofuran-2(3H)-one, and a hydrogen-bonded ribbon of centrosymmetric rings in the self-assembled adduct (3Z)-3-{1-[(5-methyl-1H-pyrazol-3-yl)amino]ethylidene}-4,5-dihydrofuran-2(3H)-one-6-(2-hydroxyethyl)-2,5-dimethylpyrazolo[1,5-a]pyrimidin-7(4H)-one (1/1).

    PubMed

    Quiroga, Jairo; Portilla, Jaime; Cobo, Justo; Glidewell, Christopher

    2010-01-01

    (3Z)-3-{1-[(5-Phenyl-1H-pyrazol-3-yl)amino]ethylidene}-4,5-dihydrofuran-2(3H)-one, C(15)H(15)N(3)O(2), (I), and the stoichiometric adduct (3Z)-3-{1-[(5-methyl-1H-pyrazol-3-yl)amino]ethylidene}-4,5-dihydrofuran-2(3H)-one-6-(2-hydroxyethyl)-2,5-dimethylpyrazolo[1,5-a]pyrimidin-7(4H)-one (1/1), C(10)H(13)N(3)O(2).C(10)H(13)N(3)O(2), (II), in which the two components have the same composition but different constitutions, are formed in the reactions of 2-acetyl-4-butyrolactone with 5-amino-3-phenyl-1H-pyrazole and 5-amino-3-methyl-1H-pyrazole, respectively. In each compound, the furanone component contains an intramolecular N-H...O hydrogen bond. The molecules of (I) are linked into a chain by a single intermolecular N-H...O hydrogen bond, while in (II), a combination of one O-H...N hydrogen bond, within the selected asymmetric unit, and two N-H...O hydrogen bonds link the molecular components into a ribbon containing alternating centrosymmetric R(4)(4)(20) and R(6)(6)(22) rings.

  18. SETDB1 modulates PRC2 activity at developmental genes independently of H3K9 trimethylation in mouse ES cells

    PubMed Central

    Fei, Qi; Yang, Xiaoqin; Jiang, Hua; Wang, Qian; Yu, Yanyan; Yu, Yiling; Yi, Wei; Zhou, Shaolian; Chen, Taiping; Lu, Chris; Atadja, Peter; Liu, Xiaole Shirley; Li, En; Zhang, Yong; Shou, Jianyong

    2015-01-01

    SETDB1, a histone methyltransferase responsible for methylation of histone H3 lysine 9 (H3K9), is involved in maintenance of embryonic stem (ES) cells and early embryonic development of the mouse. However, how SETDB1 regulates gene expression during development is largely unknown. Here, we characterized genome-wide SETDB1 binding and H3K9 trimethylation (H3K9me3) profiles in mouse ES cells and uncovered two distinct classes of SETDB1 binding sites, termed solo and ensemble peaks. The solo peaks were devoid of H3K9me3 and enriched near developmental regulators while the ensemble peaks were associated with H3K9me3. A subset of the SETDB1 solo peaks, particularly those near neural development–related genes, was found to be associated with Polycomb Repressive Complex 2 (PRC2) as well as PRC2-interacting proteins JARID2 and MTF2. Genetic deletion of Setdb1 reduced EZH2 binding as well as histone 3 lysine 27 (H3K27) trimethylation level at SETDB1 solo peaks and facilitated neural differentiation. Furthermore, we found that H3K27me3 inhibits SETDB1 methyltransferase activity. The currently identified reciprocal action between SETDB1 and PRC2 reveals a novel mechanism underlying ES cell pluripotency and differentiation regulation. PMID:26160163

  19. Colon Cancer Tumorigenesis Initiated by the H1047R Mutant PI3K.

    PubMed

    Yueh, Alexander E; Payne, Susan N; Leystra, Alyssa A; Van De Hey, Dana R; Foley, Tyler M; Pasch, Cheri A; Clipson, Linda; Matkowskyj, Kristina A; Deming, Dustin A

    2016-01-01

    The phosphoinositide 3-kinase (PI3K) signaling pathway is critical for multiple important cellular functions, and is one of the most commonly altered pathways in human cancers. We previously developed a mouse model in which colon cancers were initiated by a dominant active PI3K p110-p85 fusion protein. In that model, well-differentiated mucinous adenocarcinomas developed within the colon and initiated through a non-canonical mechanism that is not dependent on WNT signaling. To assess the potential relevance of PI3K mutations in human cancers, we sought to determine if one of the common mutations in the human disease could also initiate similar colon cancers. Mice were generated expressing the Pik3caH1047R mutation, the analog of one of three human hotspot mutations in this gene. Mice expressing a constitutively active PI3K, as a result of this mutation, develop invasive adenocarcinomas strikingly similar to invasive adenocarcinomas found in human colon cancers. These tumors form without a polypoid intermediary and also lack nuclear CTNNB1 (β-catenin), indicating a non-canonical mechanism of tumor initiation mediated by the PI3K pathway. These cancers are sensitive to dual PI3K/mTOR inhibition indicating dependence on the PI3K pathway. The tumor tissue remaining after treatment demonstrated reduction in cellular proliferation and inhibition of PI3K signaling.

  20. Double negatively charged carbon vacancy at the h- and k-sites in 4H-SiC: Combined Laplace-DLTS and DFT study

    NASA Astrophysics Data System (ADS)

    Capan, Ivana; Brodar, Tomislav; Pastuović, Željko; Siegele, Rainer; Ohshima, Takeshi; Sato, Shin-ichiro; Makino, Takahiro; Snoj, Luka; Radulović, Vladimir; Coutinho, José; Torres, Vitor J. B.; Demmouche, Kamel

    2018-04-01

    We present results from combined Laplace-Deep Level Transient Spectroscopy (Laplace-DLTS) and density functional theory studies of the carbon vacancy (VC) in n-type 4H-SiC. Using Laplace-DLTS, we were able to distinguish two previously unresolved sub-lattice-inequivalent emissions, causing the broad Z1/2 peak at 290 K that is commonly observed by conventional DLTS in n-type 4H-SiC. This peak has two components with activation energies for electron emission of 0.58 eV and 0.65 eV. We compared these results with the acceptor levels of VC obtained by means of hybrid density functional supercell calculations. The calculations support the assignment of the Z1/2 signal to a superposition of emission peaks from double negatively charged VC defects. Taking into account the measured and calculated energy levels, the calculated relative stability of VC in hexagonal (h) and cubic (k) lattice sites, as well as the observed relative amplitude of the Laplace-DLTS peaks, we assign Z1 and Z2 to VC(h) and VC(k), respectively. We also present the preliminary results of DLTS and Laplace-DLTS measurements on deep level defects (ET1 and ET2) introduced by fast neutron irradiation and He ion implantation in 4H-SiC. The origin of ET1 and ET2 is still unclear.

  1. One-pot synthesis of K-doped g-C3N4 nanosheets with enhanced photocatalytic hydrogen production under visible-light irradiation

    NASA Astrophysics Data System (ADS)

    Wang, Yanyun; Zhao, Shuo; Zhang, Yiwei; Fang, Jiasheng; Zhou, Yuming; Yuan, Shenhao; Zhang, Chao; Chen, Wenxia

    2018-05-01

    Graphite carbon nitride (g-C3N4), as a promising low cost, visible light driven conjugated polymer semiconductor photocatalyst, has attracted wide attentions from researchers. However, low light absorption efficiency and inadequate charge separation limit the potential applications of g-C3N4. This paper exhibits K-doped g-C3N4 prepared by a facile thermal polymerization with KBr as the K source. The experiments of photocatalytic hydrogen evolution demonstrate that KBr content strongly affects the activity of the catalyst. XRD, FT-IR, XPS, SEM, TEM, UV-vis diffuse reflectance spectra, photoluminescence (PL) characterization methods are used to study the effects of potassium on the catalyst performance. The results find that K-modified g-C3N4 has a narrower band gap and enhanced light harvesting properties. Moreover, the photocatalytic hydrogen evolution rate (HER) of the optimized K-doped g-C3N4 nanosheets (10 wt % KBr) reaches 1337.2 μmol g-1h-1, which is about 5.6 times in comparison with that of pure g-C3N4 (239.8 μmol g-1h-1). The doping of the potassium may increase the π-conjugated systems and accelerate the electron transport rate, then improve the photocatalytic properties. Based on the results of the analysis, a possible mechanism is proposed.

  2. Co3(PO4)2·4H2O

    PubMed Central

    Lee, Young Hoon; Clegg, Jack K.; Lindoy, Leonard F.; Lu, G. Q. Max; Park, Yu-Chul; Kim, Yang

    2008-01-01

    Single crystals of Co3(PO4)2·4H2O, tricobalt(II) bis­[ortho­phosphate(V)] tetra­hydrate, were obtained under hydro­thermal conditions. The title compound is isotypic with its zinc analogue Zn3(PO4)2·4H2O (mineral name hopeite) and contains two independent Co2+ cations. One Co2+ cation exhibits a slightly distorted tetra­hedral coordination, while the second, located on a mirror plane, has a distorted octa­hedral coordination environment. The tetra­hedrally coordinated Co2+ is bonded to four O atoms of four PO4 3− anions, whereas the six-coordinate Co2+ is cis-bonded to two phosphate groups and to four O atoms of four water mol­ecules (two of which are located on mirror planes), forming a framework structure. In addition, hydrogen bonds of the type O—H⋯O are present throughout the crystal structure. PMID:21200978

  3. 16O resonances near 4α threshold through 12C (6Li,d ) reaction

    NASA Astrophysics Data System (ADS)

    Rodrigues, M. R. D.; Borello-Lewin, T.; Miyake, H.; Horodynski-Matsushigue, L. B.; Duarte, J. L. M.; Rodrigues, C. L.; de Faria, P. Neto; Cunsolo, A.; Cappuzzello, F.; Foti, A.; Agodi, C.; Cavallaro, M.; di Napoli, M.; Ukita, G. M.

    2014-11-01

    Several narrow alpha resonant 16O states were detected through the 12C (6Li,d ) reaction, in the range of 13.5 to 17.5 MeV of excitation energy. The reaction was measured at a bombarding energy of 25.5 MeV employing the São Paulo Pelletron-Enge-Spectrograph facility and the nuclear emulsion technique. Experimental angular distributions associated with natural parity quasi-bound states around the 4α threshold are presented and compared to DWBA predictions. The upper limit for the resonance widths obtained is near the energy resolution (15 keV).

  4. Cyclical DNA Methylation and Histone Changes Are Induced by LPS to Activate COX-2 in Human Intestinal Epithelial Cells

    PubMed Central

    Brancaccio, Mariarita; Coretti, Lorena; Florio, Ermanno; Pezone, Antonio; Calabrò, Viola; Falco, Geppino; Keller, Simona; Lembo, Francesca; Avvedimento, Vittorio Enrico; Chiariotti, Lorenzo

    2016-01-01

    Bacterial lipopolysaccharide (LPS) induces release of inflammatory mediators both in immune and epithelial cells. We investigated whether changes of epigenetic marks, including selected histone modification and DNA methylation, may drive or accompany the activation of COX-2 gene in HT-29 human intestinal epithelial cells upon exposure to LPS. Here we describe cyclical histone acetylation (H3), methylation (H3K4, H3K9, H3K27) and DNA methylation changes occurring at COX-2 gene promoter overtime after LPS stimulation. Histone K27 methylation changes are carried out by the H3 demethylase JMJD3 and are essential for COX-2 induction by LPS. The changes of the histone code are associated with cyclical methylation signatures at the promoter and gene body of COX-2 gene. PMID:27253528

  5. SoLid Detector Technology

    NASA Astrophysics Data System (ADS)

    Labare, Mathieu

    2017-09-01

    SoLid is a reactor anti-neutrino experiment where a novel detector is deployed at a minimum distance of 5.5 m from a nuclear reactor core. The purpose of the experiment is three-fold: to search for neutrino oscillations at a very short baseline; to measure the pure 235U neutrino energy spectrum; and to demonstrate the feasibility of neutrino detectors for reactor monitoring. This report presents the unique features of the SoLid detector technology. The technology has been optimised for a high background environment resulting from low overburden and the vicinity of a nuclear reactor. The versatility of the detector technology is demonstrated with a 288 kg detector prototype which was deployed at the BR2 nuclear reactor in 2015. The data presented includes both reactor on, reactor off and calibration measurements. The measurement results are compared with Monte Carlo simulations. The 1.6t SoLid detector is currently under construction, with an optimised design and upgraded material technology to enhance the detector capabilities. Its deployement on site is planned for the begin of 2017 and offers the prospect to resolve the reactor anomaly within about two years.

  6. Phase diagrams and physicochemical properties of Li+,K+(Rb+)//borate-H2O systems at 323 K

    NASA Astrophysics Data System (ADS)

    Feng, Shan; Yu, Xudong; Cheng, Xinglong; Zeng, Ying

    2017-11-01

    The phase and physicochemical properties diagrams of Li+,K+(Rb+)//borate-H2O systems at 323 K were constructed using the experimentally measured solubilities, densities, and refractive indices. The Schreinemakers' wet residue method and the X-ray diffraction were used for the determination of the compositions of solid phase. Results show that these two systems belong to the hydrate I type, with no solid solution or double salt formation. The borate phases formed in our experiments are RbB5O6(OH)4 · 2H2O, Li2B4O5(OH)4 · H2O, and K2B4O5(OH)4 · 2H2O. Comparison between the stable phase diagrams of the studied system at 288, 323, and 348 K show that in this temperature range, the crystallization form of salts do not changed. With the increase in temperature, the crystallization field of Li2B4O5(OH)4 · H2O salt at 348 K is obviously larger than that at 288 K. In the Li+,K+(Rb+)//borate-H2O systems, the densities and refractive indices of the solutions (at equilibrium) increase along with the mass fraction of K2B4O7 (Rb2B4O7), and reach the maximum values at invariant point E.

  7. Theoretical Kinetics Analysis for $$\\dot{H}$$ Atom Addition to 1,3-Butadiene and Related Reactions on the $$\\dot{C}$$ 4H 7 Potential Energy Surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yang; Klippenstein, Stephen J.; Zhou, Chong-Wen

    The oxidation chemistry of the simplest conjugated hydrocarbon, 1,3-butadiene, can provide a first step in understanding the role of poly-unsaturated hydrocarbons in combustion and, in particular, an understanding of their contribution towards soot formation. Based on our previous work on propene and the butene isomers (1-, 2- and isobutene), it was found that the reaction kinetics of H-atom addition to the C=C double bond plays a significant role in fuel consumption kinetics and influences the predictions of high-temperature ignition delay times, product species concentrations and flame speed measurements. In this study, the rate constants and thermodynamic properties formore » $$\\dot{H}$$-atom addition to 1,3-butadiene and related reactions on the $$\\dot{C}$$ 4H 7 potential energy surface have been calculated using two different series of quantum chemical methods and two different kinetic codes. Excellent agreement is obtained between the two different kinetics codes. The calculated results including zero point energies, single point energies, rate constants, barrier heights and thermochemistry are systematically compared among the two quantum chemical methods. 1-methylallyl ($$\\dot{C}$$ 4H 71-3) and 3-buten-1- yl ($$\\dot{C}$$ 4H 71-4) radicals and C 2H 4 + $$\\dot{C}$$2H3 are found to be the most important channels and reactivity promoting products, respectively. We calculated that terminal addition is dominant (> 80%) compared to internal $$\\dot{H}$$-atom addition at all temperatures in the range 298 – 2000 K. However, this dominance decreases with increasing temperature. The calculated rate constants for the bimolecular reaction C 4H 6 + $$\\dot{H}$$ → products and C 2H 4 + $$\\dot{C}$$ 2H 3 → products are in excellent agreement with both experimental and theoretical results from the literature. For selected C 4 species the calculated thermochemical values are also in good agreement with literature data. In addition, the rate constants for H

  8. Raman studies of phase transitions in ferroelectric [C2H5NH3]2ZnCl4

    NASA Astrophysics Data System (ADS)

    Ben Mohamed, C.; Karoui, K.; Bulou, A.; Ben Rhaiem, A.

    2017-03-01

    The present paper accounted for the synthesis, differential scanning calorimetric and vibrational spectroscopy of [C2H5NH3]2ZnCl4grown at room temperature. Differential scanning calorimetric (DSC) disclosed five phase transitions at T1=231 K, T2=234 K, T3=237 K, T4=247 K and T5=312 K. The temperature dependence of the dielectric constant at different temperatures proved that this compound is ferroelectric below 238 K. Raman spectra as function temperature have been used to characterize these transitions and their nature, which indicates a change of the some peak near the transitions phase. The analysis of the wavenumber and the line width based on the order-disorder model allowed to obtain information relative to the thermal coefficient and the activation energy near the transitions phase.

  9. LSD1 knockdown reveals novel histone lysine methylation in human breast cancer MCF-7 cells.

    PubMed

    Jin, Yue; Huo, Bo; Fu, Xueqi; Cheng, Zhongyi; Zhu, Jun; Zhang, Yu; Hao, Tian; Hu, Xin

    2017-08-01

    Histone lysine methylation, which plays an important role in the regulation of gene expression, genome stability, chromosome conformation and cell differentiation, is a dynamic process that is collaboratively regulated by lysine methyltransferases (KMTs) and lysine demethylases (KDMs). LSD1, the first identified KDMs, catalyzes the demethylation of mono- and di-methylated H3K4 and H3K9. Here, we systematically investigated the effects of LSD1 knockdown on histone methylations. Surprisingly, in addition to H3K4 and H3K9, the methylation level on other histone lysines, such as H3K27, H3K36 and H3K79, are also increased. The expression of SOX2, E-cadherin and FoxA2 are increased upon LSD1 knockdown, and the methylation level of H3K4, H3K27 and H3K36 in the promoter region of these genes are all changed after LSD1 knockdown. Our results show that LSD1 knockdown has a broad effect on histone lysine methylation, which indicates that LSD1 regulates histone lysine methylation in collaboration with other KMTs and KDMs. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Water mediated synthesis, spectral and structural studies of ethyl 6-amino-4-aryl-5-cyano-2-propyl-4H-pyran-3-carboxylates: Single crystal X-ray structure of ethyl 6-amino-4-(2-chlorophenyl)-5-cyano-2-propyl-4H-pyran-3-carboxylate

    NASA Astrophysics Data System (ADS)

    Udhaya Kumar, C.; Sethukumar, A.; Agilandeshwari, R.; Arul Prakasam, B.; Vidhyasagar, T.; Sillanpää, Mika

    2014-02-01

    An efficient and multifunctional three component synthetic protocol was developed to synthesize ethyl 6-amino-4-aryl-5-cyano-2-propyl-4H-pyran-3-carboxylates from ethyl 3-oxohexanoate, malononitrile and corresponding aldehydes (1a-11a) using K2CO3 as a catalyst under water solvent in good yields. The derived compounds have been analyzed by IR and NMR (1D and 2D) spectra. Single crystal X-ray structural analysis of 2a, evidences the flattened-boat conformation of pyran ring and the phenyl group is nearly perpendicular to the pyran ring.

  11. The pumping lid: investigating multi-material 3D printing for equipment-free, programmable generation of positive and negative pressures for microfluidic applications.

    PubMed

    Begolo, Stefano; Zhukov, Dmitriy V; Selck, David A; Li, Liang; Ismagilov, Rustem F

    2014-12-21

    Equipment-free pumping is a challenging problem and an active area of research in microfluidics, with applications for both laboratory and limited-resource settings. This paper describes the pumping lid method, a strategy to achieve equipment-free pumping by controlled generation of pressure. Pressure was generated using portable, lightweight, and disposable parts that can be integrated with existing microfluidic devices to simplify workflow and eliminate the need for pumping equipment. The development of this method was enabled by multi-material 3D printing, which allows fast prototyping, including composite parts that combine materials with different mechanical properties (e.g. both rigid and elastic materials in the same part). The first type of pumping lid we describe was used to produce predictable positive or negative pressures via controlled compression or expansion of gases. A model was developed to describe the pressures and flow rates generated with this approach and it was validated experimentally. Pressures were pre-programmed by the geometry of the parts and could be tuned further even while the experiment was in progress. Using multiple lids or a composite lid with different inlets enabled several solutions to be pumped independently in a single device. The second type of pumping lid, which relied on vapor-liquid equilibrium to generate pressure, was designed, modeled, and experimentally characterized. The pumping lid method was validated by controlling flow in different types of microfluidic applications, including the production of droplets, control of laminar flow profiles, and loading of SlipChip devices. We believe that applying the pumping lid methodology to existing microfluidic devices will enhance their use as portable diagnostic tools in limited resource settings as well as accelerate adoption of microfluidics in laboratories.

  12. KDM1A triggers androgen-induced miRNA transcription via H3K4me2 demethylation and DNA oxidation.

    PubMed

    Yang, Shu; Zhang, Jiyuan; Zhang, Yalong; Wan, Xuechao; Zhang, Congzhe; Huang, Xiaohui; Huang, Wenhua; Pu, Honglei; Pei, Chaohan; Wu, Hai; Huang, Yan; Huang, Shengdong; Li, Yao

    2015-06-15

    Androgen receptor (AR) is a ligand dependent transcription factor that regulates the transcription of target genes. AR activity is closely involved in the maintenance and progression of prostate cancer. After the binding with androgen, AR moves into nucleus and binds to DNA sequence containing androgen response elements (ARE). Flavin-dependent monoamine oxidase KDM1A is necessary for AR driven transcription while the mechanism remains unclear. The association between androgen-dependent transcription and oxidation was tested through pharmaceutical inhibitions and siRNA knockdown of DNA oxidation repair components in prostate cancer cells. The recruitment of involved proteins and the histone methylation dynamics on ARE region was explored by chromatin immunoprecipitation (ChIP). Oxidation inhibition reduced AR dependent expression of KLK3, TMPRSS2, hsa-miR-125b2, and hsa-miR-133b. And such reduction could be restored by H2 O2 treatment. KDM1A recruitment and H3K4me2 demethylation on ARE regions, which produce H2 O2 , are associated with AR targets transcription. AR targets transcription and coupled oxidation recruit 8-oxoguanine-DNA glycosylase (OGG1) and the nuclease APEX1 to ARE regions. Such recruitment depends on KDM1A, and is necessary for AR targets transcription. Our work underlined the importance of histone demethylation and DNA oxidation/repairing machinery in androgen-dependent transcription. The present finds have implications for research into new druggable targets for prostate cancer relying on the cascade of AR activity regulation. © 2015 Wiley Periodicals, Inc.

  13. H3.Y discriminates between HIRA and DAXX chaperone complexes and reveals unexpected insights into human DAXX-H3.3-H4 binding and deposition requirements

    PubMed Central

    Zink, Lisa-Maria; Delbarre, Erwan; Eberl, H. Christian; Keilhauer, Eva C.; Bönisch, Clemens; Pünzeler, Sebastian; Bartkuhn, Marek; Collas, Philippe; Mann, Matthias

    2017-01-01

    Abstract Histone chaperones prevent promiscuous histone interactions before chromatin assembly. They guarantee faithful deposition of canonical histones and functionally specialized histone variants into chromatin in a spatial- and temporally-restricted manner. Here, we identify the binding partners of the primate-specific and H3.3-related histone variant H3.Y using several quantitative mass spectrometry approaches, and biochemical and cell biological assays. We find the HIRA, but not the DAXX/ATRX, complex to recognize H3.Y, explaining its presence in transcriptionally active euchromatic regions. Accordingly, H3.Y nucleosomes are enriched in the transcription-promoting FACT complex and depleted of repressive post-translational histone modifications. H3.Y mutational gain-of-function screens reveal an unexpected combinatorial amino acid sequence requirement for histone H3.3 interaction with DAXX but not HIRA, and for H3.3 recruitment to PML nuclear bodies. We demonstrate the importance and necessity of specific H3.3 core and C-terminal amino acids in discriminating between distinct chaperone complexes. Further, chromatin immunoprecipitation sequencing experiments reveal that in contrast to euchromatic HIRA-dependent deposition sites, human DAXX/ATRX-dependent regions of histone H3 variant incorporation are enriched in heterochromatic H3K9me3 and simple repeat sequences. These data demonstrate that H3.Y's unique amino acids allow a functional distinction between HIRA and DAXX binding and its consequent deposition into open chromatin. PMID:28334823

  14. High-pressure single-crystal synchrotron X-ray diffraction of kainite (KMg(SO4) Cl 3H2O)

    NASA Astrophysics Data System (ADS)

    Nazzareni, S.; Comodi, P.; Hanfland, M.

    2018-03-01

    Kainite (KMg(SO4) Cl 3H2O) is a "mixed-salt" sulfate from the group of evaporitic minerals more soluble than Ca-sulfate hydrate and NaCl. The compressibility and structural modifications of monoclinic (sp. gr. C2/m) kainite up to a pressure of 14 GPa were studied by high-pressure single-crystal synchrotron X-ray diffraction. Kainite remains stable over the investigated pressure range and no phase transition was recognised. The bulk modulus is K 0 = 31.6 (1) GPa, with K' fixed to 4, as obtained by fitting the P-volume data with a second-order Birch-Murnaghan EoS (BM2); instead of using a BM3 EoS, we obtained K 0 = 32.2(5) GPa, K' =3.8 (1). The linear moduli calculated for the lattice parameters fitting the data with a BM3 EoS are for a-axis M 0a = 117(4) GPa, Mpa = 11(1), for b-axis M 0b = 113(2) GPa, Mpc = 8.6(5), and c-axis M 0c = 68.2(3) GPa, Mpc = 14(1). Structure refinements showed a strong compression of the K polyhedra and in particular K(1) and K(3) polyhedra have similar polyhedral bulk moduli: K 0K(1) = 20.8(7) GPa, K'=4.8(3); K 0K(2) = 29(1) GPa, K'=8.1(6); K 0K(3) = 26(1) GPa, K'=4.2(4). The most compressible bond distances are K(1)-Cl(2) with a shortening of about 13%, K(1)-Cl(1) with a shortening of about 10%, K(3)-Ow(6) and K(3)-O8(B) both with a shortening of 9%. S-tetrahedra are almost incompressible and Mg-octahedra bulk moduli are K 0Mg(2) = 102(4) GPa, and K 0Mg(4) = 72(1) GPa, K 0Mg(1) = 41(4) GPa K'= 8.9(1.7), and K 0Mg(3) = 65(5) GPa K'= 10(2). The strain tensor analysis indicates that the most compressible direction of the kainite monoclinic structure is oriented 29.7(2)° from the c-axis in the (0 1 0) plane. The shortening of the K(1)-K(2) distance (from 4.219(4) Å at ambient P to 3.521(7) Å at 11.9 GPa) and the different compressibilities of the octahedra/tetrahedra may explain why the stiffer direction of kainite is in the a-c plane approximatively along the direction where K(1)-K(2) and Mg(4)-Mg(3)-Mg(4) polyhedra align. This may

  15. Functionalized Derivatives of Benzo-Crown Ethers. Part 4. Antifungal Macrocyclic Supramolecular Complexes of Transition Metal Ions Acting as Lanosterol-14-α-Demethylase Ihibitors

    PubMed Central

    Barboiu, Mihai; Scozzafava, Andrea; Guran, Cornelia; Diaconescu, Paula; Bojin, Mihaela; Iluc, Vlad; Cot, Louis

    1999-01-01

    Poly- and mononuclear metal complexes of 2,3,11,12-bis[4-(10-aminodecylcarbonyl)]benzo-18- crown-6 (L) and Cu(II); Ni(II); Co(II) and Cr(III) have been synthesized and characterized by standard physico-chemical procedures. In the newly prepared complexes the crown moiety oxygen atoms of the macrocyclic host did not generally interact with metal ions, whereas the two amino groups of the ligand always did. Several of the newly synthesized compounds act as effective antifungal agents against Aspergillus and Candida spp., some of them showing activities comparable to ketoconazole, with minimum inhibitory concentrations in the range of 0.3−0.5 μg/mL. The mechanism of antifungal action of these coordination compounds is probably connected to an inhibition of lanosterol-14-α-demethylase, a metallo-enzyme playing a key role in sterol biosynthesis in fungi, bacteria and eukariotes. PMID:18475888

  16. Monohalogenated ferrocenes C5H5FeC5H4 X (X = Cl, Br and I) and a second polymorph of C5H5FeC5H4I

    PubMed Central

    Romanov, Alexander S.; Mulroy, Joseph M.; Khrustalev, Victor N.; Antipin, Mikhail Yu.; Timofeeva, Tatiana V.

    2009-01-01

    The structures of the three title monosubstituted ferrocenes, namely 1-chloro­ferrocene, [Fe(C5H5)(C5H4Cl)], (I), 1-bromo­ferrocene, [Fe(C5H5)(C5H4Br)], (II), and 1-iodo­ferrocene, [Fe(C5H5)(C5H4I)], (III), were determined at 100 K. The chloro- and bromo­ferrocenes are isomorphous crystals. The new triclinic polymorph [space group P , Z = 4, T = 100 K, V = 943.8 (4) Å3] of iodo­ferrocene, (III), and the previously reported monoclinic polymorph of (III) [Laus, Wurst & Schottenberger (2005 ▶). Z. Kristallogr. New Cryst. Struct. 220, 229–230; space group Pc, Z = 4, T = 100 K, V = 924.9 Å3] were obtained by crystallization from ethanolic solutions at 253 and 303 K, respectively. All four phases contain two independent mol­ecules in the unit cell. The relative orientations of the cyclo­penta­dienyl (Cp) rings are eclipsed and staggered in the independent mol­ecules of (I) and (II), while (III) demonstrates only an eclipsed conformation. The triclinic and monoclinic polymorphs of (III) contain nonbonded inter­molecular I⋯I contacts, causing different packing modes. In the triclinic form of (III), the mol­ecules are arranged in zigzag tetra­mers, while in the monoclinic form the mol­ecules are arranged in zigzag chains along the a axis. Crystallographic data for (III), along with the computed lattice energies of the two polymorphs, suggest that the monoclinic form is more stable. PMID:19893225

  17. Colon Cancer Tumorigenesis Initiated by the H1047R Mutant PI3K

    PubMed Central

    Yueh, Alexander E.; Payne, Susan N.; Leystra, Alyssa A.; Van De Hey, Dana R.; Foley, Tyler M.; Pasch, Cheri A.; Clipson, Linda; Matkowskyj, Kristina A.; Deming, Dustin A.

    2016-01-01

    The phosphoinositide 3-kinase (PI3K) signaling pathway is critical for multiple important cellular functions, and is one of the most commonly altered pathways in human cancers. We previously developed a mouse model in which colon cancers were initiated by a dominant active PI3K p110-p85 fusion protein. In that model, well-differentiated mucinous adenocarcinomas developed within the colon and initiated through a non-canonical mechanism that is not dependent on WNT signaling. To assess the potential relevance of PI3K mutations in human cancers, we sought to determine if one of the common mutations in the human disease could also initiate similar colon cancers. Mice were generated expressing the Pik3caH1047R mutation, the analog of one of three human hotspot mutations in this gene. Mice expressing a constitutively active PI3K, as a result of this mutation, develop invasive adenocarcinomas strikingly similar to invasive adenocarcinomas found in human colon cancers. These tumors form without a polypoid intermediary and also lack nuclear CTNNB1 (β-catenin), indicating a non-canonical mechanism of tumor initiation mediated by the PI3K pathway. These cancers are sensitive to dual PI3K/mTOR inhibition indicating dependence on the PI3K pathway. The tumor tissue remaining after treatment demonstrated reduction in cellular proliferation and inhibition of PI3K signaling. PMID:26863299

  18. The electronic donation and frequency shifts on the YCCH⋯BH4- boron-bonded complexes (Y = H, CH3, CF3 and CCl3)

    NASA Astrophysics Data System (ADS)

    Pordeus, Renato Q.; Rego, Danilo G.; Oliveira, Boaz G.

    2015-06-01

    In this theoretical work, the tetrahydroborate ion (BH4-) was used as proton acceptor in the formation of the YCC-H⋯BH4- complexes (Y = H, CH3, CCl3 and CF3). Using B3LYP/6-311++G(d,p) level of theory, the results of structure corroborate with the analyses of infrared spectra showing that the changes in the bond lengths are in good agreement with the frequency shifts of the HCC-H, H3CCC-H, Cl3CCC-H and F3CCC-H proton donors. Based on the calculations carried out by the Quantum Theory of Atoms in Molecules (QTAIM), the reductions of electronic density corroborate with the red shifts in the frequencies of the C-H bonds. In addition to that, the C-H bonds are polarized because the contributions of s orbital diminish whereas of p increase. In line with this, the variations on the atomic radii computed via QTAIM calculations show that carbon outweigh hydrogen as follows (ΔrC > ΔrH). This scenario is indirectly supported by the Bent's rule of the chemical bonding. Although the interaction energies (corrected with BSSE and ZPE) vary between -19 and -67 kJ mol-1, these complexes interact without covalent character.

  19. 4H-SiC JFET Multilayer Integrated Circuit Technologies Tested Up to 1000 K

    NASA Technical Reports Server (NTRS)

    Spry, D. J.; Neudeck, P. G.; Chen, L.; Chang, C. W.; Lukco, D.; Beheim, G. M.

    2015-01-01

    Testing of semiconductor electronics at temperatures above their designed operating envelope is recognized as vital to qualification and lifetime prediction of circuits. This work describes the high temperature electrical testing of prototype 4H silicon carbide (SiC) junction field effect transistor (JFET) integrated circuits (ICs) technology implemented with multilayer interconnects; these ICs are intended for prolonged operation at temperatures up to 773K (500 C). A 50 mm diameter sapphire wafer was used in place of the standard NASA packaging for this experiment. Testing was carried out between 300K (27 C) and 1150K (877 C) with successful electrical operation of all devices observed up to 1000K (727 C).

  20. Structural, optical and electronic properties of K2Ba(NO3)4 crystal

    NASA Astrophysics Data System (ADS)

    Isaenko, L. I.; Korzhneva, K. E.; Goryainov, S. V.; Goloshumova, A. A.; Sheludyakova, L. A.; Bekenev, V. L.; Khyzhun, O. Y.

    2018-02-01

    Nitrate crystals reveal nonlinear optical properties and could be considered as converters of laser radiation in the short-wave region. The conditions for obtaining and basic properties of K2Ba(NO3)4 double nitrate crystals were investigated. Crystal growth was implemented by slow cooling in the temperature range of 72-49 °C and low rate evaporation. The structural analysis of K2Ba(NO3)4 formation on the basis of two mixed simple nitrate structures is discussed. The main groups of oscillations in K2Ba(NO3)4 crystal were revealed using Raman and IR spectroscopy, and the table of vibrations for this compound was compiled. The electronic structure of K2Ba(NO3)4 was elucidated in the present work from both experimental and theoretical viewpoints. In particular, X-ray photoelectron spectroscopy (XPS) was employed in the present work to measure binding energies of the atoms constituting the titled compound and its XPS valence-band spectrum for both pristine and Ar+ ion-bombarded surfaces. Further, total and partial densities of states of constituent atoms of K2Ba(NO3)4 have been calculated. The calculations reveal that the O 2p states dominate in the total valence-band region of K2Ba(NO3)4 except of its bottom, where K 3p and Ba 5p states are the principal contributors, while the bottom of the conduction band is composed mainly of the unoccupied O 2p states, with somewhat smaller contributions of the N 2p∗ states as well. With respect to the occupation of the valence band by the O 2p states, the present band-structure calculations are confirmed by comparison on a common energy scale of the XPS valence-band spectrum and the X-ray emission O Kα band for the K2Ba(NO3)4 crystal under study. Furthermore, the present calculations indicate that the K2Ba(NO3)4 compound is a direct-gap material.

  1. The K+/site and H+/site stoichiometry of mitochondrial electron transport.

    PubMed

    Reynafarje, B; Lehninger, A L

    1978-09-25

    Electrode measurements of the average number of H+ ejected and K+ taken up (in the presence of valinomycin) per pair of electrons passing the energy-conserving sites of the respiratory chain of rat liver and rat heart mitochondria have given identical values of the H+/site and 5+/site ratios very close to 4 in the presence of N-ethylmaleimide, an inhibitor of interfering respiration-coupled uptake of H+ + H2PO4-. The K+/site uptake ratio of 4 not only shows that inward movement of K+ provides quantitative charge-compensation for the 4 H+ ejected, but also confirms that 4 charges are separated per pair of electrons per site. When N-ethylmaleimide is omitted, the H+/site ejection ratio is depressed, because of the interfering secondary uptake of H/+ with H2PO4- on the phosphate carrier, but the K+/site uptake ratio remains at 4.0. Addition of phosphate or acetate, which can carry H+ into respiring mitochondria, further depresses the H+/site ratio, but does not affect the K+/site ratio, which remains at 4.0. These and other considerations thus confirm our earlier stoichiometric measurements that the average H+/site ratio is 4.0 and also show that the K+/site uptake ratio can be used as a measure of the intrinsic H+/site ratio, regardless of the presence of phosphate in the medium and without the necessity of adding N-ethylmaleimide or other inhibitors of H+ + H2PO4- transport.

  2. Electric conductivity analysis and dielectric relaxation behavior of the hybrid polyvanadate (H{sub 3}N(CH{sub 2}){sub 3}NH{sub 3})[V{sub 4}O{sub 10}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nefzi, H.; Sediri, F., E-mail: faouzi.sediri@ipeit.rnu.tn; Faculté des Sciences de Tunis, Université Tunis El Manar, 2092 El Manar, Tunis

    2013-05-15

    Highlights: ► Plate-like crystals (H{sub 3}N(CH{sub 2}){sub 3}NH{sub 3})[V{sub 4}O{sub 10}] were synthesized. ► Frequency and temperature dependence of AC conductivity indicate CBH model. ► The temperature dependence of DC conductivity exhibits two conduction mechanisms. - Abstract: Layered hybrid compound (H{sub 3}N(CH{sub 2}){sub 3}NH{sub 3})[V{sub 4}O{sub 10}] has been synthesized via hydrothermal method. Techniques X-ray powder diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and impedance spectroscopy have been used to characterize the hybrid material. Electrical and dielectric properties dependence on both temperature and frequency of the compound have been reported. The direct current conductivity process is thermally activated andmore » it is found to be 12.67 × 10{sup −4} Ω{sup −1} m{sup −1} at 523 K. The spectra follow the Arrhenius law with two activation energy 0.25 eV for T < 455 K and 0.5 eV for T > 455 K.« less

  3. Characterization of DNA methyltransferase and demethylase genes in Fragaria vesca.

    PubMed

    Gu, Tingting; Ren, Shuai; Wang, Yuanhua; Han, Yuhui; Li, Yi

    2016-06-01

    DNA methylation is an epigenetic modification essential for gene regulations in plants, but understanding on how it is involved in fruit development, especially in non-climacteric fleshy fruit, is limited. The diploid woodland strawberry (Fragaria vesca) is an important model for non-climacteric fruit crops. In this study, we identified DNA methyltransferase genes and demethylase genes in Fragaria vesca and other angiosperm species. In accordance with previous studies, our phylogenetic analyses of those DNA methylation modifiers support the clustering of those genes into several classes. Our data indicate that whole-genome duplications and tandem duplications contributed to the expansion of those DNA methylation modifiers in angiosperms. We have further demonstrated that some DNA methylase and demethylase genes reach their highest expression levels in strawberry fleshy fruits when turning from white to red, suggesting that DNA methylation might undergo a dramatic change at the onset of fleshy fruit-ripening process. In addition, we have observed that expression of some DNA demethylase genes increases in response to various abiotic stresses including heat, cold, drought and salinity. Collectively, our study indicates a regulatory role of DNA methylation in the turning stage of non-climacteric fleshy fruit and responses to environment stimuli, and would facilitate functional studies of DNA methylation in the growth and development of non-climacteric fruits.

  4. Reflected shock tube studies of high-temperature rate constants for OH + CH4 --> CH3 + H2O and CH3 + NO2 --> CH3O + NO.

    PubMed

    Srinivasan, N K; Su, M-C; Sutherland, J W; Michael, J V

    2005-03-10

    The reflected shock tube technique with multipass absorption spectrometric detection of OH radicals at 308 nm has been used to study the reactions OH + CH(4) --> CH(3) + H(2)O and CH(3) + NO(2) --> CH(3)O + NO. Over the temperature range 840-2025 K, the rate constants for the first reaction can be represented by the Arrhenius expression k = (9.52 +/- 1.62) x 10(-11) exp[(-4134 +/- 222 K)/T] cm(3) molecule(-1) s(-1). Since this reaction is important in both combustion and atmospheric chemistry, there have been many prior investigations with a variety of techniques. The present results extend the temperature range by 500 K and have been combined with the most accurate earlier studies to derive an evaluation over the extended temperature range 195-2025 K. A three-parameter expression describes the rate behavior over this temperature range, k = (1.66 x 10(-18))T(2.182) exp[(-1231 K)/T] cm(3) molecule(-1) s(-1). Previous theoretical studies are discussed, and the present evaluation is compared to earlier theoretical estimates. Since CH(3) radicals are a product of the reaction and could cause secondary perturbations in rate constant determinations, the second reaction was studied by OH radical production from the fast reactions CH(3)O --> CH(2)O + H and H + NO(2) --> OH + NO. The measured rate constant is 2.26 x 10(-11) cm(3) molecule(-1) s(-1) and is not dependent on temperature from 233 to 1700 K within experimental error.

  5. The hSK4 (KCNN4) isoform is the Ca2+-activated K+ channel (Gardos channel) in human red blood cells

    PubMed Central

    Hoffman, Joseph F.; Joiner, William; Nehrke, Keith; Potapova, Olga; Foye, Kristen; Wickrema, Amittha

    2003-01-01

    The question is, does the isoform hSK4, also designated KCNN4, represent the small conductance, Ca2+-activated K+ channel (Gardos channel) in human red blood cells? We have analyzed human reticulocyte RNA by RT-PCR, and, of the four isoforms of SK channels known, only SK4 was found. Northern blot analysis of purified and synchronously growing human erythroid progenitor cells, differentiating from erythroblasts to reticulocytes, again showed only the presence of SK4. Western blot analysis, with an anti-SK4 antibody, showed that human erythroid progenitor cells and, importantly, mature human red blood cell ghost membranes, both expressed the SK4 protein. The Gardos channel is known to turn on, given inside Ca2+, in the presence but not the absence of external \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\mathrm{K}}_{{\\mathrm{o}}}^{+}\\end{equation*}\\end{document} and remains refractory to \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\mathrm{K}}_{{\\mathrm{o}}}^{+}\\end{equation*}\\end{document} added after exposure to inside Ca2+. Heterologously expressed SK4, but not SK3, also shows this behavior. In inside–out patches of red cell membranes, the open probability (Po) of the Gardos channel is markedly reduced when the temperature is raised from 27 to 37°C. Net K+ efflux of intact red cells is also reduced by increasing temperature, as are the Po values of inside–out patches of Chinese hamster ovary cells expressing SK4 (but not SK3). Thus the envelope of evidence indicates that SK4 is the gene that codes for the Gardos channel in human red blood cells. This channel is important

  6. Growth habit determination by the balance of histone methylation activities in Arabidopsis

    PubMed Central

    Ko, Jong-Hyun; Mitina, Irina; Tamada, Yosuke; Hyun, Youbong; Choi, Yeonhee; Amasino, Richard M; Noh, Bosl; Noh, Yoo-Sun

    2010-01-01

    In Arabidopsis, the rapid-flowering summer-annual versus the vernalization-requiring winter-annual growth habit is determined by natural variation in FRIGIDA (FRI) and FLOWERING LOCUS C (FLC). However, the biochemical basis of how FRI confers a winter-annual habit remains elusive. Here, we show that FRI elevates FLC expression by enhancement of histone methyltransferase (HMT) activity. EARLY FLOWERING IN SHORT DAYS (EFS), which is essential for FRI function, is demonstrated to be a novel dual substrate (histone H3 lysine 4 (H3K4) and H3K36)-specific HMT. FRI is recruited into FLC chromatin through EFS and in turn enhances EFS activity and engages additional HMTs. At FLC, the HMT activity of EFS is balanced by the H3K4/H3K36- and H3K4-specific histone demethylase (HDM) activities of autonomous-pathway components, RELATIVE OF EARLY FLOWERING 6 and FLOWERING LOCUS D, respectively. Loss of HDM activity in summer annuals results in dominant HMT activity, leading to conversion to a winter-annual habit in the absence of FRI. Thus, our study provides a model of how growth habit is determined through the balance of the H3K4/H3K36-specific HMT and HDM activities. PMID:20711170

  7. Thermo-optical properties of 1H[3,4-b] quinoline films used in electroluminescent devices

    NASA Astrophysics Data System (ADS)

    Jaglarz, Janusz; Kępińska, Mirosława; Sanetra, Jerzy

    2014-06-01

    Electroluminescence cells with H[3,4-b] quinoline layers are promising devices for a blue light emitting EL diode. This work measured the optical reflectance as a function of temperature in copolymers PAQ layers deposited on Si crystalline substrate. Using the extended Cauchy dispersion model of the film refractive index we determined the thermo-optical coefficients for quinoline layers in the temperature range of 76-333 K from combined ellipsometric and spectrofotometric studies. The obtained values of thermo-optical coefficients of thin PAQ film, were negative and ranged in 5-10 × 10-4 [1/K].

  8. Thermal, Structural, AC Conductivity, and Dielectric Properties of Ethyl-2-amino-6-ethyl-5-oxo-4-(3-phenoxyphenyl)-5,6-dihydro-4H-pyrano[3,2-c]quinoline-3-carboxylate Thin Films

    NASA Astrophysics Data System (ADS)

    El-Shabaan, M. M.

    2018-05-01

    Thermal, structural, alternating-current (AC) conductivity (σ AC), and dielectric properties of ethyl-2-amino-6-ethyl-5-oxo-4-(3-phenoxyphenyl)-5,6-dihydro-4H-pyrano[3,2-c]quinoline-3-carboxylate (HPQC) thin films have been studied. Thermogravimetry analysis and differential scanning calorimetry confirmed the thermal stability of HPQC over a wide temperature range. Fourier-transform infrared spectroscopy and x-ray diffraction analysis were carried out on HPQC in powder form and as-deposited thin film. The crystal system and space group type were determined for HPQC in powder form. The AC conductivity and dielectric properties were determined in the frequency range from 0.5 kHz to 5 MHz and temperature range from 296 K to 443 K. The AC electrical conduction of HPQC thin film was found to be governed by the small-polaron tunneling mechanism. The polaron hopping energy (W H), tunneling distance (R), and density of states (N) near the Fermi level were determined as functions of temperature and frequency. The dielectric properties of HPQC thin film were studied by analysis of Nyquist diagrams, the dissipation factor (tan δ), and real (ɛ') and imaginary (ɛ″) parts of the dielectric constant.

  9. Solubility Report of 1-Methyl-3,5-Dinitro-1H-1,2,4-Triazole (MDNT) and 2-Methyl-4,5-Dinitro-2H-1,2,3-Triazole 1-Oxide (MDNTO) for Co-Crystallization Screen

    DTIC Science & Technology

    2015-11-01

    New Co-Crystals,” Crystal Growth & Design, Vol. 9, No. 3, pp. 1531-1537, 2009. 2 Landenberger, K., Matzger, A., “ Cocrystal Engineering of a...Y., Li, H., Zhou, Y., Zhou, J., Geo, T., Zhang, H., Jiang, G., “Toward Low- Sensitive and High-Energetic Cocrystal 1: Evaluation of the Power and the...Safety of Observed Energetic Cocrystals ,” CrystEngComm, 15, 4003-4014, 2013. 4 Levinthal, M.L., “Propellant Made With Cocrystals of

  10. Menin regulates Inhbb expression through an Akt/Ezh2-mediated H3K27 histone modification.

    PubMed

    Gherardi, Samuele; Ripoche, Doriane; Mikaelian, Ivan; Chanal, Marie; Teinturier, Romain; Goehrig, Delphine; Cordier-Bussat, Martine; Zhang, Chang X; Hennino, Ana; Bertolino, Philippe

    2017-04-01

    Although Men1 is a well-known tumour suppressor gene, little is known about the functions of Menin, the protein it encodes for. Since few years, numerous publications support a major role of Menin in the control of epigenetics gene regulation. While Menin interaction with MLL complex favours transcriptional activation of target genes through H3K4me3 marks, Menin also represses gene expression via mechanisms involving the Polycomb repressing complex (PRC). Interestingly, Ezh2, the PRC-methyltransferase that catalyses H3K27me3 repressive marks and Menin have been shown to co-occupy a large number of promoters. However, lack of binding between Menin and Ezh2 suggests that another member of the PRC complex is mediating this indirect interaction. Having found that ActivinB - a TGFβ superfamily member encoded by the Inhbb gene - is upregulated in insulinoma tumours caused by Men1 invalidation, we hypothesize that Menin could directly participate in the epigenetic-repression of Inhbb gene expression. Using Animal model and cell lines, we report that loss of Menin is directly associated with ActivinB-induced expression both in vivo and in vitro. Our work further reveals that ActivinB expression is mediated through a direct modulation of H3K27me3 marks on the Inhbb locus in Menin-KO cell lines. More importantly, we show that Menin binds on the promoter of Inhbb gene where it favours the recruitment of Ezh2 via an indirect mechanism involving Akt-phosphorylation. Our data suggests therefore that Menin could take an important part to the Ezh2-epigenetic repressive landscape in many cells and tissues through its capacity to modulate Akt phosphorylation. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. H3 K79 dimethylation marks developmental activation of the beta-globin gene but is reduced upon LCR-mediated high-level transcription.

    PubMed

    Sawado, Tomoyuki; Halow, Jessica; Im, Hogune; Ragoczy, Tobias; Bresnick, Emery H; Bender, M A; Groudine, Mark

    2008-07-15

    Genome-wide analyses of the relationship between H3 K79 dimethylation and transcription have revealed contradictory results. To clarify this relationship at a single locus, we analyzed expression and H3 K79 modification levels of wild-type (WT) and transcriptionally impaired beta-globin mutant genes during erythroid differentiation. Analysis of fractionated erythroid cells derived from WT/Delta locus control region (LCR) heterozygous mice reveals no significant H3 K79 dimethylation of the beta-globin gene on either allele prior to activation of transcription. Upon transcriptional activation, H3 K79 di-methylation is observed along both WT and DeltaLCR alleles, and both alleles are located in proximity to H3 K79 dimethylation nuclear foci. However, H3 K79 di-methylation is significantly increased along the DeltaLCR allele compared with the WT allele. In addition, analysis of a partial LCR deletion mutant reveals that H3 K79 dimethylation is inversely correlated with beta-globin gene expression levels. Thus, while our results support a link between H3 K79 dimethylation and gene expression, high levels of this mark are not essential for high level beta-globin gene transcription. We propose that H3 K79 dimethylation is destabilized on a highly transcribed template.

  12. H3.1 K36M mutation in a congenital-onset soft tissue neoplasm.

    PubMed

    Kernohan, Kristin D; Grynspan, David; Ramphal, Raveena; Bareke, Eric; Wang, You Chang; Nizalik, Elizabeth; Ragoussis, Jiannis; Jabado, Nada; Boycott, Kym M; Majewski, Jacek; Sawyer, Sarah L

    2017-12-01

    We describe a patient who presented with a congenital soft tissue lesion initially diagnosed as infantile fibromatosis at 15 days of age. Unusually, the mass demonstrated malignant progression leading to death at 20 months of age. Biological progression to malignancy is not known to occur in fibromatosis, and fibrosarcoma is not known to progress from a benign lesion. Whole-exome sequencing of the tumor identified a driver mutation in histone H3.1 at lysine (K)36. Our findings support the link between oncohistones and infantile soft tissue tumors and provide additional evidence for the oncogenic effects of p.K36M in H3 variants. © 2017 Wiley Periodicals, Inc.

  13. Microneedle-assisted permeation of lidocaine carboxymethylcellulose with gelatine co-polymer hydrogel.

    PubMed

    Nayak, Atul; Das, Diganta B; Vladisavljević, Goran T

    2014-05-01

    Lidocaine hydrochloride (LidH) was formulated in sodium carboxymethyl cellulose/ gelatine (NaCMC/GEL) hydrogel and a 'poke and patch' microneedle delivery method was used to enhance permeation flux of LidH. The microparticles were formed by electrostatic interactions between NaCMC and GEL macromolecules within a water/oil emulsion in paraffin oil and the covalent crosslinking was by glutaraldehyde. The GEL to NaCMC mass ratio was varied between 1.6 and 2.7. The LidH encapsulation yield was 1.2 to 7% w/w. LidH NaCMC/GEL was assessed for encapsulation efficiency, zeta potential, mean particle size and morphology. Subsequent in vitro skin permeation studies were performed via passive diffusion and microneedle assisted permeation of LidH NaCMC/GEL to determine the maximum permeation rate through full thickness skin. LidH 2.4% w/w NaCMC/GEL 1:1.6 and 1:2.3 respectively, possessed optimum zeta potential. LidH 2.4% w/w NaCMC/GEL 1:2.3 and 1:2.7 demonstrate higher pseudoplastic behaviour. Encapsulation efficiency (14.9-17.2%) was similar for LidH 2.4% w/w NaCMC/GEL 1:1.6-1:2.3. Microneedle assisted permeation flux was optimum for LidH 2.4% w/w NaCMC/GEL 1:2.3 at 6.1 μg/ml/h. LidH 2.4% w/w LidH NaCMC/GEL 1:2.3 crossed the minimum therapeutic drug threshold with microneedle skin permeation in less than 70 min.

  14. Reanalysis of tritium production in a sphere of /sup 6/LiD irradiated by 14-MeV neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fawcett, L.R. Jr.

    1985-08-01

    Tritium production and activation of radiochemical detector foils in a sphere of /sup 6/LiD irradiated by a central source of 14-MeV neutrons has been reanalyzed. The /sup 6/LiD sphere consisted of 10 solid hemispherical nested shells with ampules of /sup 6/LiH, /sup 7/LiH, and activation foils located 2.2, 5, 7.7, 12.6, 20, and 30 cm from the center. The Los Alamos Monte Carlo Neutron Photon Transport Code (MCNP) was used to calculate neutron transport through the /sup 6/LiD, tritium production in the ampules, and foil activation. The MCNP input model was three-dimensional and employed ENDF/B-V cross sections for transport, tritiummore » production, and (where available) foil activation. The reanalyzed experimentally observed-to-calculated values of tritium production were 1.053 +- 2.1% in /sup 6/LiH and 0.999 +- 2.1% in /sup 7/LiH. The recalculated foil activation observed-to-calculated ratios were not generally improved over those reported in the original analysis.« less

  15. Active Detergent-solubilized H+,K+-ATPase Is a Monomer*

    PubMed Central

    Dach, Ingrid; Olesen, Claus; Signor, Luca; Nissen, Poul; le Maire, Marc; Møller, Jesper V.; Ebel, Christine

    2012-01-01

    The H+,K+-ATPase pumps protons or hydronium ions and is responsible for the acidification of the gastric fluid. It is made up of an α-catalytic and a β-glycosylated subunit. The relation between cation translocation and the organization of the protein in the membrane are not well understood. We describe here how pure and functionally active pig gastric H+,K+-ATPase with an apparent Stokes radius of 6.3 nm can be obtained after solubilization with the non-ionic detergent C12E8, followed by exchange of C12E8 with Tween 20 on a Superose 6 column. Mass spectroscopy indicates that the β-subunit bears an excess mass of 9 kDa attributable to glycosylation. From chemical analysis, there are 0.25 g of phospholipids and around 0.024 g of cholesterol bound per g of protein. Analytical ultracentrifugation shows one main complex, sedimenting at s20,w = 7.2 ± 0.1 S, together with minor amounts of irreversibly aggregated material. From these data, a buoyant molecular mass is calculated, corresponding to an H+,K+-ATPase α,β-protomer of 147.3 kDa. Complementary sedimentation velocity with deuterated water gives a picture of an α,β-protomer with 0.9–1.4 g/g of bound detergent and lipids and a reasonable frictional ratio of 1.5, corresponding to a Stokes radius of 7.1 nm. An α2,β2 dimer is rejected by the data. Light scattering coupled to gel filtration confirms the monomeric state of solubilized H+,K+-ATPase. Thus, α,β H+,K+-ATPase is active at least in detergent and may plausibly function as a monomer, as has been established for other P-type ATPases, Ca2+-ATPase and Na+,K+-ATPase. PMID:23055529

  16. Lysine-specific demethylase 2A (KDM2A) normalizes human embryonic stem cell derived keratinocytes

    PubMed Central

    Iuchi, Shiro; Green, Howard

    2012-01-01

    Studies on human lysine-specific demethylase 2A (KDM2A) by others have recently begun. To date, the demethylase activity has been known to reduce expression of genes and eventually inhibit proliferation of cells. However, while attempting to improve proliferation of hES-cell–derived Nod keratinocytes, which grow poorly and have a short life span, we found that high expression of the KDM2A gene improves the poor proliferation of the cells. Of the four isomer cDNAs that we prepared from alternatively spliced KDM2A transcripts, only one stimulates the proliferation. This (KDM2A-N782) encodes the 782AA protein containing the JmjC, CXXC, and Ring domains, but not the F-box and AMN1 domains, unlike KDM2A, which has been studied by other groups. Our results not only show that differently spliced transcripts from a gene result in totally opposite outcomes, but also present critical evidence of the complicated activities of KDM2A, which contains all of the five domains. PMID:22635273

  17. Thieno[3,2-b]pyrrole-5-carboxamides as New Reversible Inhibitors of Histone Lysine Demethylase KDM1A/LSD1. Part 1: High-Throughput Screening and Preliminary Exploration.

    PubMed

    Sartori, Luca; Mercurio, Ciro; Amigoni, Federica; Cappa, Anna; Fagá, Giovanni; Fattori, Raimondo; Legnaghi, Elena; Ciossani, Giuseppe; Mattevi, Andrea; Meroni, Giuseppe; Moretti, Loris; Cecatiello, Valentina; Pasqualato, Sebastiano; Romussi, Alessia; Thaler, Florian; Trifiró, Paolo; Villa, Manuela; Vultaggio, Stefania; Botrugno, Oronza A; Dessanti, Paola; Minucci, Saverio; Zagarrí, Elisa; Carettoni, Daniele; Iuzzolino, Lucia; Varasi, Mario; Vianello, Paola

    2017-03-09

    Lysine specific demethylase 1 KDM1A (LSD1) regulates histone methylation and it is increasingly recognized as a potential therapeutic target in oncology. We report on a high-throughput screening campaign performed on KDM1A/CoREST, using a time-resolved fluorescence resonance energy transfer (TR-FRET) technology, to identify reversible inhibitors. The screening led to 115 hits for which we determined biochemical IC 50 , thus identifying four chemical series. After data analysis, we have prioritized the chemical series of N-phenyl-4H-thieno[3, 2-b]pyrrole-5-carboxamide for which we obtained X-ray structures of the most potent hit (compound 19, IC 50 = 2.9 μM) in complex with the enzyme. Initial expansion of this chemical class, both modifying core structure and decorating benzamide moiety, was directed toward the definition of the moieties responsible for the interaction with the enzyme. Preliminary optimization led to compound 90, which inhibited the enzyme with a submicromolar IC 50 (0.162 μM), capable of inhibiting the target in cells.

  18. Nitrilotris(methylenephosphonato)potassium K[μ{sup 6}-NH(CH{sub 2}PO{sub 3}){sub 3}H{sub 4}]: Synthesis, structure, and the nature of the K–O chemical bond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somov, N. V., E-mail: somov@phys.unn.ru; Chausov, F. F., E-mail: xps@ftiudm.ru; Zakirova, R. M., E-mail: ftt@udsu.ru

    2016-07-15

    The crystal structure of nitrilotris(methylenephosphonato)potassium K[μ{sup 6}-NH(CH{sub 2}PO{sub 3}){sub 3}H{sub 4}]—a three-dimensional coordination polymer—was determined. The potassium atom is coordinated by seven oxygen atoms belonging to the six nearest ligand molecules, resulting in distorted monocapped octahedral coordination geometry. The complex contains the four-membered chelate ring K–O–P–O. The K–O chemical bond is predominantly ionic. Meanwhile, the bonds of the potassium atom with some oxygen atoms have a noticeable covalent component. In addition to coordination bonds, the molecules in the crystal packing are linked by hydrogen bonds.

  19. Synthesis, crystal structure and high temperature phase transition in the new organic-inorganic hybrid [N(C4H9)4]3Zn2Cl7H2O crystals

    NASA Astrophysics Data System (ADS)

    Ben Gzaiel, Malika; Oueslati, Abderrazek; Lhoste, Jérôme; Gargouri, Mohamed; Bulou, Alain

    2015-06-01

    The present paper accounts for the synthesis, crystal structure, differential scanning calorimetry and vibrational spectroscopy of a new compound tri-tetrabutylammonium heptachloro-dizincate (I) grown at room temperature by slow evaporation of aqueous solution. From X-ray diffraction data collected at room temperature, it is concluded that it crystallizes in the monoclinic system (P21/n space group) containing ZnCl42- and ZnCl3H2O1- tetrahedra. The atomic arrangement can be described by an alternation of organic and organic-inorganic layers stacked along the c direction. Differential scanning calorimetry (DSC) in the range 250-450 K disclosed a reversible structural phase transition of order-disorder type at 358 K, prior to the melting at 395 K. The temperature dependence of the Raman spectra of [N(C4H9)4]3Zn2Cl7H2O single crystals was studied in the spectral range 100-3500 cm-1 and for temperatures between 300 and 386 K. The most important changes are observed for the line at 261 cm-1 issued from ν1(ZnCl4). The analysis of the wavenumber, intensity and the line width based on an order-disorder model allowed to obtain information relative to the activation energy and the correlation length. The decrease of the activation energy with increasing temperature has been interpreted in term of a change in the re-orientation motion of the anionic parts. The assumption of cluster fluctuations also allowed the critical exponents to be obtained for the transition δ = 0.011 and the correlation length ξ0 = 598 Å.

  20. Inhibitors of histone demethylation and histone deacetylation cooperate in regulating gene expression and inhibiting growth in human breast cancer cells

    PubMed Central

    Vasilatos, Shauna N.; Boric, Lamia; Shaw, Patrick G.; Davidson, Nancy E.

    2013-01-01

    Abnormal activities of histone lysine demethylases (KDMs) and lysine deacetylases (HDACs) are associated with aberrant gene expression in breast cancer development. However, the precise molecular mechanisms underlying the crosstalk between KDMs and HDACs in chromatin remodeling and regulation of gene transcription are still elusive. In this study, we showed that treatment of human breast cancer cells with inhibitors targeting the zinc cofactor dependent class I/II HDAC, but not NAD+ dependent class III HDAC, led to significant increase of H3K4me2 which is a specific substrate of histone lysine-specific demethylase 1 (LSD1) and a key chromatin mark promoting transcriptional activation. We also demonstrated that inhibition of LSD1 activity by a pharmacological inhibitor, pargyline, or siRNA resulted in increased acetylation of H3K9 (AcH3K9). However, siRNA knockdown of LSD2, a homolog of LSD1, failed to alter the level of AcH3K9, suggesting that LSD2 activity may not be functionally connected with HDAC activity. Combined treatment with LSD1 and HDAC inhibitors resulted in enhanced levels of H3K4me2 and AcH3K9, and exhibited synergistic growth inhibition of breast cancer cells. Finally, microarray screening identified a unique subset of genes whose expression was significantly changed by combination treatment with inhibitors of LSD1 and HDAC. Our study suggests that LSD1 intimately interacts with histone deacetylases in human breast cancer cells. Inhibition of histone demethylation and deacetylation exhibits cooperation and synergy in regulating gene expression and growth inhibition, and may represent a promising and novel approach for epigenetic therapy of breast cancer. PMID:21452019

  1. 3,4-Methylenedioxyamphetamine (MDA) analogues exhibit differential effects on synaptosomal release of 3H-dopamine and 3H-5-hydroxytryptamine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKenna, D.J.; Guan, X.M.; Shulgin, A.T.

    1991-03-01

    The effect of various analogues of the neurotoxic amphetamine derivative, MDA (3,4-methylenedioxyamphetamine) on carrier-mediated, calcium-independent release of 3H-5-HT and 3H-DA from rat brain synaptosomes was investigated. Both enantiomers of the neurotoxic analogues MDA and MDMA (3,4-methylenedioxymethamphetamine) induce synaptosomal release of 3H-5-HT and 3H-DA in vitro. The release of 3H-5-HT induced by MDMA is partially blocked by 10(-6) M fluoxetine. The (+) enantiomers of both MDA and MDMA are more potent than the (-) enantiomers as releasers of both 3H-5-HT and 3H-DA. Eleven analogues, differing from MDA with respect to the nature and number of ring and/or side chain substituents, alsomore » show some activity in the release experiments, and are more potent as releasers of 3H-5-HT than of 3H-DA. The amphetamine derivatives {plus minus}fenfluramine, {plus minus}norfenfluramine, {plus minus}MDE, {plus minus}PCA, and d-methamphetamine are all potent releasers of 3H-5-HT and show varying degrees of activity as 3H-DA releasers. The hallucinogen DOM does not cause significant release of either 3H-monoamine. Possible long-term serotonergic neurotoxicity was assessed by quantifying the density of 5-HT uptake sites in rats treated with multiple doses of selected analogues using 3H-paroxetine to label 5-HT uptake sites. In the neurotoxicity study of the compounds investigated, only (+)MDA caused a significant loss of 5-HT uptake sites in comparison to saline-treated controls. These results are discussed in terms of the apparent structure-activity properties affecting 3H-monoamine release and their possible relevance to neurotoxicity in this series of MDA congeners.« less

  2. Upper lid crease approach for margin rotation in trachomatous cicatricial entropion without external sutures.

    PubMed

    Cruz, Antonio Augusto Velasco E; Akaishi, Patricia M S; Al-Dufaileej, Mohammed; Galindo-Ferreiro, Alicia

    2015-01-01

    To describe the use of a lid crease incision for upper eyelid margin rotation in cicatricial entropion combining internal traction on the anterior lamella, tarsotomy, and tarsal overlap without external sutures. Surgical description: The main steps of the procedure consisted of exposure of the entire tarsal plate up to the eyelashes followed by tarsotomy through the conjunctiva. A double-armed 6.0 polyglactin suture was then passed through the distal tarsal fragment to the marginal section of the orbicularis oculi muscle. As the sutures were tied, the distal tarsus advanced over the marginal section, and traction was exerted on the marginal strip of the orbicularis muscle. There were no bolsters or external knots. The pretarsal skin-muscle flap was closed with a 6.0 plain gut suture. We used this procedure at a tertiary hospital in Saudi Arabia from 2013 to 2014. Sixty upper lids of 40 patients (23 women and 17 men) were operated on, with an age range of 44-99 years [mean ± standard deviation (SD) = 70.9 ± 13.01 years]. Bilateral surgery was performed on 21 patients. Follow-up ranged from 1 to 12 months (mean 3.0 ± 2.71 months). Forty percent of the patients (24 lids) had more than 3 months' follow-up. The postoperative lid margin position was good in all cases. Trichiasis (two lashes) was observed in only one patient with unilateral entropion on the medial aspect of the operated lid. The upper lid margin can be effectively rotated through a lid crease incision with internal sutures. The technique combines the main mechanisms of the Wies and Trabut approaches and avoids the use of bolsters or external sutures, which require a second consultation to be removed. Some other lid problems, such as ptosis, retraction, or dermatochalasis, can be concomitantly addressed during the procedure.

  3. Induction of autophagy by PI3K/MTOR and PI3K/MTOR/BRD4 inhibitors suppresses HIV-1 replication.

    PubMed

    Campbell, Grant R; Bruckman, Rachel S; Herns, Shayna D; Joshi, Shweta; Durden, Donald L; Spector, Stephen A

    2018-04-20

    In this study, we investigated the effects of the dual phosphatidylinositol 3-kinase/mechanistic target of rapamycin (PI3K/MTOR) inhibitor dactolisib (NVP-BEZ235), the PI3K/MTOR/bromodomain-containing protein 4 (BRD4) inhibitor SF2523, and the bromodomain and extra terminal domain inhibitor JQ1 on the productive infection of primary macrophages with human immunodeficiency type-1 (HIV). These inhibitors did not alter the initial susceptibility of macrophages to HIV infection. However, dactolisib, JQ1, and SF2523 all decreased HIV replication in macrophages in a dose-dependent manner via degradation of intracellular HIV through autophagy. Macrophages treated with dactolisib, JQ1, or SF2523 displayed an increase in LC3B lipidation combined with SQSTM1 degradation without inducing increased cell death. LC3B-II levels were further increased in the presence of pepstatin A suggesting that these inhibitors induce autophagic flux. RNA interference for ATG5 and ATG7 and pharmacological inhibitors of autophagosome-lysosome fusion and of lysosomal hydrolases all blocked the inhibition of HIV. Thus, we demonstrate that the mechanism of PI3K/MTOR and PI3K/MTOR/BRD4 inhibitor suppression of HIV requires the formation of autophagosomes, as well as their subsequent maturation into autolysosomes. These data provide further evidence in support of a role for autophagy in the control of HIV infection and open new avenues for the use of this class of drugs in HIV therapy. © 2018 Campbell et al.

  4. Interferon regulatory factor 1 and histone H4 acetylation in systemic lupus erythematosus

    PubMed Central

    Leung, Yiu Tak; Shi, Lihua; Maurer, Kelly; Song, Li; Zhang, Zhe; Petri, Michelle; Sullivan, Kathleen E

    2015-01-01

    Histone acetylation modulates gene expression and has been described as increased in systemic lupus erythematosus (SLE). We investigated interferon regulatory factor 1 (IRF1) interactions that influence H4 acetylation (H4ac) in SLE. Intracellular flow cytometry for H4 acetylated lysine (K) 5, K8, K12, and K16 was performed. Histone acetylation was defined in monocytes and T cells from controls and SLE patients. RNA-Seq studies were performed on monocytes to look for an imbalance in histone acetyltransferases and histone deacetylase enzyme expression. Expression levels were validated using real-time quantitative RT-PCR. IRF1 induction of H4ac was evaluated using D54MG cells overexpressing IRF1. IRF1 protein interactions were studied using co-immunoprecipitation assays. IRF1-dependent recruitment of histone acetyltransferases to target genes was examined by ChIP assays using p300 antibody. Flow cytometry data showed significantly increased H4K5, H4K8, H4K12, and H4K16 acetylation in SLE monocytes. HDAC3 and HDAC11 gene expression were decreased in SLE monocytes. PCAF showed significantly higher gene expression in SLE than controls. IRF1-overexpressing D54MG cells were associated with significantly increased H4K5, H4K8, and H4K12 acetylation compared to vector-control D54MG cells both globally and at specific target genes. Co-immunoprecipitation studies using D54MG cells revealed IRF1 protein-protein interactions with PCAF, P300, CBP, GCN5, ATF2, and HDAC3. ChIP experiments demonstrated increased p300 recruitment to known IRF1 targets in D54MG cells overexpressing IRF1. In contrast, p300 binding to IRF1 targets decreased in D54MG cells with IRF1 knockdown. SLE appears to be associated with an imbalance in histone acetyltransferases and histone deacetylase enzymes favoring pathologic H4 acetylation. Furthermore, IRF1 directly interacts with chromatin modifying enzymes, supporting a model where recruitment to specific target genes is mediated in part by IRF1. PMID

  5. Crystal structure of the tri-ethyl-ammonium salt of 3-[(4-hy-droxy-3-meth-oxy-phen-yl)(4-hy-droxy-2-oxo-2H-chromen-3-yl)meth-yl]-2-oxo-2H-chromen-4-olate.

    PubMed

    Ikram, Muhammad; Rehman, Sadia; Khan, Afzal; Schulzke, Carola

    2018-03-01

    The reaction between 3,3'-[(3-meth-oxy-4-hy-droxy-phen-yl)methanedi-yl]bis-(4-hy-droxy-2 H -chromen-2-one) and tri-ethyl-amine in methanol yielded the title compound tri-ethyl-ammonium 3-[(4-hy-droxy-3-meth-oxy-phen-yl)(4-hy-droxy-2-oxo-2 H -chromen-3-yl)meth-yl]-2-oxo-2 H -chromen-4-olate, C 6 H 16 N + ·C 26 H 17 O 8 - or (NHEt 3 ) + (C 26 H 17 O 8 ) - , which crystallized directly from its methano-lic mother liquor. The non-deprotonated coumarol substituent shares its H atom with the deprotonated coumarolate substituent in a short negative charge-assisted hydrogen bond in which the freely refined H atom is moved from its parent O atom towards the acceptor O atom, elongating the covalent O-H bond to 1.18 (3) Å. The respective H atom can therefore be described as being shared by two alcohol O atoms, culminating in the formation of an eight-membered ring.

  6. The LSD1 Family of Histone Demethylases and the Pumilio Posttranscriptional Repressor Function in a Complex Regulatory Feedback Loop

    PubMed Central

    Miles, Wayne O.; Lepesant, Julie M. J.; Bourdeaux, Jessie; Texier, Manuela; Kerenyi, Marc A.; Nakakido, Makoto; Hamamoto, Ryuji; Orkin, Stuart H.; Dyson, Nicholas J.

    2015-01-01

    The lysine (K)-specific demethylase (LSD1) family of histone demethylases regulates chromatin structure and the transcriptional potential of genes. LSD1 is frequently deregulated in tumors, and depletion of LSD1 family members causes developmental defects. Here, we report that reductions in the expression of the Pumilio (PUM) translational repressor complex enhanced phenotypes due to dLsd1 depletion in Drosophila. We show that the PUM complex is a target of LSD1 regulation in fly and mammalian cells and that its expression is inversely correlated with LSD1 levels in human bladder carcinoma. Unexpectedly, we find that PUM posttranscriptionally regulates LSD1 family protein levels in flies and human cells, indicating the existence of feedback loops between the LSD1 family and the PUM complex. Our results highlight a new posttranscriptional mechanism regulating LSD1 activity and suggest that the feedback loop between the LSD1 family and the PUM complex may be functionally important during development and in human malignancies. PMID:26438601

  7. Weakly nucleophilic potassium aryltrifluoroborates in palladium-catalyzed Suzuki-Miyaura reactions: relative reactivity of K[4-RC6F4BF3] and the role of silver-assistance in acceleration of transmetallation.

    PubMed

    Bardin, Vadim V; Shabalin, Anton Yu; Adonin, Nicolay Yu

    2015-01-01

    Small differences in the reactivity of weakly nucleophilic potassium aryltrifluoroborates are revealed in the silver-assisted Pd-catalyzed cross-coupling of K[4-RC6F4BF3] (R = H, Bu, MeO, EtO, PrO, iPrO, BuO, t-BuO, CH2=CHCH2O, PhCH2O, PhCH2CH2O, PhO, F, pyrazol-1-yl, pyrrol-1-yl, and indol-1-yl) with ArX (4-BrC6H4CH3, 4-IC6H4F and 3-IC6H4F). An assumed role of silver(I) compounds Ag m Y (Y = O, NO3, SO4, BF4, F) consists in polarization of the Pd-X bond in neutral complex ArPdL n X with the generation of the related transition state or formation of [ArPdL n ][XAg m Y] with a highly electrophilic cation and subsequent transmetallation with the weakly nucleophilic borate. Efficiency of Ag m Y as a polarizing agent decreases in order Ag2O > AgNO3 ≈ Ag2SO4 > Ag[BF4] > AgF. No clear correlation between the reactivity of K[4-RC6F4BF3] and substituent electron parameters, σI and σR°, of the aryl group 4-RC6F4 was found.

  8. Weakly nucleophilic potassium aryltrifluoroborates in palladium-catalyzed Suzuki–Miyaura reactions: relative reactivity of K[4-RC6F4BF3] and the role of silver-assistance in acceleration of transmetallation

    PubMed Central

    Bardin, Vadim V; Shabalin, Anton Yu

    2015-01-01

    Summary Small differences in the reactivity of weakly nucleophilic potassium aryltrifluoroborates are revealed in the silver-assisted Pd-catalyzed cross-coupling of K[4-RC6F4BF3] (R = H, Bu, MeO, EtO, PrO, iPrO, BuO, t-BuO, CH2=CHCH2O, PhCH2O, PhCH2CH2O, PhO, F, pyrazol-1-yl, pyrrol-1-yl, and indol-1-yl) with ArX (4-BrC6H4CH3, 4-IC6H4F and 3-IC6H4F). An assumed role of silver(I) compounds AgmY (Y = O, NO3, SO4, BF4, F) consists in polarization of the Pd–X bond in neutral complex ArPdLnX with the generation of the related transition state or formation of [ArPdLn][XAgmY] with a highly electrophilic cation and subsequent transmetallation with the weakly nucleophilic borate. Efficiency of AgmY as a polarizing agent decreases in order Ag2O > AgNO3 ≈ Ag2SO4 > Ag[BF4] > AgF. No clear correlation between the reactivity of K[4-RC6F4BF3] and substituent electron parameters, σI and σR°, of the aryl group 4-RC6F4 was found. PMID:26124862

  9. SIRT6 deacetylates H3K18Ac at pericentric chromatin to prevent mitotic errors and cell senescence

    PubMed Central

    Tasselli, Luisa; Xi, Yuanxin; Zheng, Wei; Tennen, Ruth I.; Odrowaz, Zaneta; Simeoni, Federica; Li, Wei; Chua, Katrin F.

    2018-01-01

    Pericentric heterochromatin silencing at mammalian centromeres is essential for mitotic fidelity and genomic stability. Defective pericentric silencing is observed in senescent cells, aging tissues, and mammalian tumors, but the underlying mechanisms and functional consequences of these defects are unclear. Here, we uncover a pivotal role of the human SIRT6 enzyme in pericentric transcriptional silencing, and show that this function protects against mitotic defects, genomic instability, and cellular senescence. At pericentric heterochromatin, SIRT6 promotes deacetylation of a new substrate, histone H3 lysine K18 (H3K18), and inactivation of SIRT6 in cells leads to H3K18 hyperacetylation and aberrant accumulation of pericentric transcripts. Strikingly, RNAi-depletion of these transcripts rescues the mitotic and senescence phenotypes of SIRT6-deficient cells. Together, our findings reveal a new function for SIRT6 and H3K18Ac regulation at heterochromatin, and demonstrate the pathogenic role of de-regulated pericentric transcription in aging- and cancer- related cellular dysfunction. PMID:27043296

  10. The tumor suppressor SirT2 regulates cell cycle progression and genome stability by modulating the mitotic deposition of H4K20 methylation

    USDA-ARS?s Scientific Manuscript database

    The establishment of the epigenetic mark H4K20me1 (monomethylation of H4K20) by PR-Set7 during G2/M directly impacts S-phase progression and genome stability. However, the mechanisms involved in the regulation of this event are not well understood. Here we show that SirT2 regulates H4K20me1 depositi...

  11. Arabidopsis Histone Reader EMSY-LIKE 1 Binds H3K36 and Suppresses Geminivirus Infection.

    PubMed

    Coursey, Tami; Milutinovic, Milica; Regedanz, Elizabeth; Brkljacic, Jelena; Bisaro, David M

    2018-06-06

    Histone post-translational modifications (PTMs) impart information that regulates chromatin structure and activity. Their effects are mediated by histone reader proteins that bind specific PTMs to modify chromatin and/or recruit appropriate effectors to alter the chromatin landscape. Despite their crucial juxtaposition between information and functional outcome, relatively few plant histone readers have been identified, and nothing is known about their impact on viral chromatin and pathogenesis. We used the geminivirus Cabbage leaf curl virus (CaLCuV) as a model to functionally characterize two recently identified reader proteins, EMSY-LIKE 1 and 3 (EML1 and EML3), which contain Tudor-like Agenet domains predictive of histone PTM binding function. Here, we show that mutant Arabidopsis plants exhibit contrasting hypersusceptible ( eml1 ) and tolerant ( eml3 ) responses to CaLCuV infection, and that EML1 deficiency correlates with RNA polymerase II (Pol II) enrichment on viral chromatin and upregulated viral gene expression. Consistent with reader activity, EML1 and EML3 associate with nucleosomes and with CaLCuV chromatin, suggesting a direct impact on pathogenesis. We also demonstrate that EML1 and EML3 bind peptides containing histone H3 lysine 36 (H3K36), a PTM usually associated with active gene expression. The interaction encompasses multiple H3K36 PTMs, including methylation and acetylation, suggesting nuanced regulation. Further, EML1 and EML3 associate with similar regions of viral chromatin, implying possible competition between the two readers. Regions of EML1 and EML3 association correlate with sites of trimethylated H3K36 (H3K36me3) enrichment, consistent with regulation of geminivirus chromatin by direct EML targeting. IMPORTANCE Histone PTMs convey information that regulates chromatin compaction and DNA accessibility. Histone reader proteins bind specific PTMs and translate their effects by modifying chromatin and/or by recruiting effectors that alter

  12. Unusual reaction paths of SN2 nucleophile substitution reactions CH4 + H- → CH4 + H- and CH4 + F- → CH3F + H-: Quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Minyaev, Ruslan M.; Quapp, Wolfgang; Schmidt, Benjamin; Getmanskii, Ilya V.; Koval, Vitaliy V.

    2013-11-01

    Quantum chemical (CCSD(full)/6-311++G(3df,3pd), CCSD(T)(full)/6-311++G(3df,3pd)) and density function theory (B3LYP/6-311++G(3df,3pd)) calculations were performed for the SN2 nucleophile substitution reactions CH4 + H- → CH4 + H- and CH4 + F- → CH3F + H-. The calculated gradient reaction pathways for both reactions have an unusual behavior. An unusual stationary point of index 2 lies on the gradient reaction path. Using Newton trajectories for the reaction path, we can detect VRI point at which the reaction path branches.

  13. Insertion of bentonite with Organometallic [Fe3O(OOC6H5)6(H2O)3(NO3).nH2O] as Adsorbent of Congo Red

    NASA Astrophysics Data System (ADS)

    Said, Muhammad; Paluta Utami, Hasja; Hayati, Ferlina

    2018-01-01

    The adsorption of Congo red using bentonite inserted organometallic has been investigated. The insertion bentonite was characterized using FT-IR Spectrophotometer, XRD and XRF analysis. The FT-IR characterization showed the higher intensity of peak wavenumber at 470.6 cm-1 for Fe3O on the ratio 1:3. While the XRD characterization showed the shift of diffraction angle of 2θ was 5.2° and has a basal spacing of 16.8 Å. In the XRF characterization, the insertion process of organometallic occurred optimally with the percentage of metal oxide reached 71.75 %. The adsorption process of bentonite inserted organometallic compound [Fe3O(OOC6H5)6(H2O)3(NO3)·nH2O] showed the adsorption rate (k) is 0.050 min-1, the largest adsorption capacity (b) at 70°C is 4.48 mol/g, the largest adsorption energy at temperature 30°C which is 6.4 kJ/mol Organometallic compounds. The value of the enthalpy (ΔH) and entropy (ΔS) decreased with increasing concentrations of the Congo red. Effect of pH on the adsorption on at pH 3 shows the biggest of number Congo red absorbed is 19.52 mg/L for insertion of bentonite.

  14. Synthesis of 3,5-Isoxazolidinediones and 1H-2,3-Benzoxazine-1,4(3H)-diones from Aliphatic Oximes and Dicarboxylic Acid Chlorides

    PubMed Central

    2015-01-01

    The synthesis of the title compounds was carried out by reacting dicarboxylic acid chlorides with oximes in the presence of excess triethylamine. Disubstituted malonyl chlorides gave 2-alkenyl-4,4-dialkyl-3,5-isoxazolidinediones (8a–f) and 2,2′-ethylidene-bis[4,4-dialkyl-3,5-isoxazolidinedione]s (9a–f). Compounds 9 were formed from 8 and its N-unsubstituted 3,5-isoxazolidinedione decomposition product. Phthaloyl chlorides reacted with acetone oxime to yield 3-(1-methylethenyl)-1H-2,3-benzoxazine-1,4(3H)-diones (16a–e). Products 16 spontaneously decomposed to give N-unsubstituted 1H-2,3-benzoxazine-1,4(3H)-diones (17a–e) at rates that were dependent on temperature and solvent. Kinetic studies showed that two of the compounds decomposed by zero-order kinetics under neutral conditions. Butanedioyl chloride did not produce a cyclic product. PMID:24620711

  15. Synthesis of 3,5-isoxazolidinediones and 1H-2,3-benzoxazine-1,4(3H)-diones from aliphatic oximes and dicarboxylic acid chlorides.

    PubMed

    Izydore, Robert A; Jones, Joseph T; Mogesa, Benjamin; Swain, Ira N; Davis-Ward, Ronda G; Daniels, Dwayne L; Kpakima, Felicia Frazier; Spaulding-Phifer, Sharnelle T

    2014-04-04

    The synthesis of the title compounds was carried out by reacting dicarboxylic acid chlorides with oximes in the presence of excess triethylamine. Disubstituted malonyl chlorides gave 2-alkenyl-4,4-dialkyl-3,5-isoxazolidinediones (8a-f) and 2,2'-ethylidene-bis[4,4-dialkyl-3,5-isoxazolidinedione]s (9a-f). Compounds 9 were formed from 8 and its N-unsubstituted 3,5-isoxazolidinedione decomposition product. Phthaloyl chlorides reacted with acetone oxime to yield 3-(1-methylethenyl)-1H-2,3-benzoxazine-1,4(3H)-diones (16a-e). Products 16 spontaneously decomposed to give N-unsubstituted 1H-2,3-benzoxazine-1,4(3H)-diones (17a-e) at rates that were dependent on temperature and solvent. Kinetic studies showed that two of the compounds decomposed by zero-order kinetics under neutral conditions. Butanedioyl chloride did not produce a cyclic product.

  16. Standard Waste Box Lid Screw Removal Option Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anast, Kurt Roy

    This report provides results from test work conducted to resolve the removal of screws securing the standard waste box (SWB) lids that hold the remediated nitrate salt (RNS) drums. The test work evaluated equipment and process alternatives for removing the 42 screws that hold the SWB lid in place. The screws were secured with a red Loctite thread locker that makes removal very difficult because the rivets that the screw threads into would slip before the screw could be freed from the rivet, making it impossible to remove the screw and therefore the SWB lid.

  17. Involvement of dominant-negative spliced variants of the intermediate conductance Ca2+-activated K+ channel, K(Ca)3.1, in immune function of lymphoid cells.

    PubMed

    Ohya, Susumu; Niwa, Satomi; Yanagi, Ayano; Fukuyo, Yuka; Yamamura, Hisao; Imaizumi, Yuji

    2011-05-13

    The intermediate conductance Ca(2+)-activated K(+) channel (IK(Ca) channel) encoded by K(Ca)3.1 is responsible for the control of proliferation and differentiation in various types of cells. We identified novel spliced variants of K(Ca)3.1 (human (h) K(Ca)3.1b) from the human thymus, which were lacking the N-terminal domains of the original hK(Ca)3.1a as a result of alternative splicing events. hK(Ca)3.1b was significantly expressed in human lymphoid tissues. Western blot analysis showed that hK(Ca)3.1a proteins were mainly expressed in the plasma membrane fraction, whereas hK(Ca)3.1b was in the cytoplasmic fraction. We also identified a similar N terminus lacking K(Ca)3.1 variants from mice and rat lymphoid tissues (mK(Ca)3.1b and rK(Ca)3.1b). In the HEK293 heterologous expression system, the cellular distribution of cyan fluorescent protein-tagged hK(Ca)3.1a and/or YFP-tagged hK(Ca)3.1b isoforms showed that hK(Ca)3.1b suppressed the localization of hK(Ca)3.1a to the plasma membrane. In the Xenopus oocyte translation system, co-expression of hK(Ca)3.1b with hK(Ca)3.1a suppressed IK(Ca) channel activity of hK(Ca)3.1a in a dominant-negative manner. In addition, this study indicated that up-regulation of mK(Ca)3.1b in mouse thymocytes differentiated CD4(+)CD8(+) phenotype thymocytes into CD4(-)CD8(-) ones and suppressed concanavalin-A-stimulated thymocyte growth by down-regulation of mIL-2 transcripts. Anti-proliferative effects and down-regulation of mIL-2 transcripts were also observed in mK(Ca)3.1b-overexpressing mouse thymocytes. These suggest that the N-terminal domain of K(Ca)3.1 is critical for channel trafficking to the plasma membrane and that the fine-tuning of IK(Ca) channel activity modulated through alternative splicing events may be related to the control in physiological and pathophysiological conditions in T-lymphocytes.

  18. Outgassing on stagnant-lid super-Earths

    NASA Astrophysics Data System (ADS)

    Dorn, C.; Noack, L.; Rozel, A. B.

    2018-06-01

    Aims: We explore volcanic CO2-outgassing on purely rocky, stagnant-lid exoplanets of different interior structures, compositions, thermal states, and age. We focus on planets in the mass range of 1-8 M⊕ (Earth masses). We derive scaling laws to quantify first- and second-order influences of these parameters on volcanic outgassing after 4.5 Gyr of evolution. Methods: Given commonly observed astrophysical data of super-Earths, we identify a range of possible interior structures and compositions by employing Bayesian inference modeling. The astrophysical data comprise mass, radius, and bulk compositional constraints; ratios of refractory element abundances are assumed to be similar to stellar ratios. The identified interiors are subsequently used as input for two-dimensional (2D) convection models to study partial melting, depletion, and outgassing rates of CO2. Results: In total, we model depletion and outgassing for an extensive set of more than 2300 different super-Earth cases. We find that there is a mass range for which outgassing is most efficient ( 2-3 M⊕, depending on thermal state) and an upper mass where outgassing becomes very inefficient ( 5-7 M⊕, depending on thermal state). At small masses (below 2-3 M⊕) outgassing positively correlates with planet mass, since it is controlled by mantle volume. At higher masses (above 2-3 M⊕), outgassing decreases with planet mass, which is due to the increasing pressure gradient that limits melting to shallower depths. In summary, depletion and outgassing are mainly influenced by planet mass and thermal state. Interior structure and composition only moderately affect outgassing rates. The majority of outgassing occurs before 4.5 Gyr, especially for planets below 3 M⊕. Conclusions: We conclude that for stagnant-lid planets, (1) compositional and structural properties have secondary influence on outgassing compared to planet mass and thermal state, and (2) confirm that there is a mass range for which

  19. Dicer interacts with SIRT7 and regulates H3K18 deacetylation in response to DNA damaging agents.

    PubMed

    Zhang, Pei-Ying; Li, Guiling; Deng, Zhu-Jun; Liu, Li-Yuan; Chen, Li; Tang, Jun-Zhou; Wang, Yu-Qun; Cao, Su-Ting; Fang, Yu-Xiao; Wen, Fuping; Xu, Yunsheng; Chen, Xiaoming; Shi, Ke-Qing; Li, Wen-Feng; Xie, Congying; Tang, Kai-Fu

    2016-05-05

    Dicer participates in heterochromatin formation in fission yeast and plants. However, whether it has a similar role in mammals remains controversial. Here we showed that the human Dicer protein interacts with SIRT7, an NAD(+)-dependent H3K18Ac (acetylated lysine 18 of histone H3) deacetylase, and holds a proportion of SIRT7 in the cytoplasm. Dicer knockdown led to an increase of chromatin-associated SIRT7 and simultaneously a decrease of cytoplasmic SIRT7, while its overexpression induced SIRT7 reduction in the chromatin-associated fraction and increment in the cytoplasm. Furthermore, DNA damaging agents promoted Dicer expression, leading to decreased level of chromatin-associated SIRT7 and increased level of H3K18Ac, which can be alleviated by Dicer knockdown. Taken together with that H3K18Ac was exclusively associated with the chromatin, our findings suggest that Dicer induction by DNA damaging treatments prevents H3K18Ac deacetylation, probably by trapping more SIRT7 in the cytoplasm. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Anisotropic dielectric phase transition triggered by pendulum-like motion coupled with proton transfer in a layered hybrid crystalline material (4-nitroanilinium+) (18-crown-6) (H2PO4-) (H3PO4)2

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Zhu, Chun-li; Qin, Liu-lei; Zheng, Xiao-yuan; Liu, Zun-qi

    2018-07-01

    The organic-inorganic hybrid phase-transition material, (4-nitroanilinium+) (18-crown-6) (H2PO4-) (H3PO4)2 (1), was successfully synthesized. The organic (4-nitroanilinium) (18-crown-6)+ supramolecular cation layer and inorganic phosphate anion layer were arranged alternately. Differential scanning calorimetry (DSC), temperature-dependent dielectric measurements, and variable-temperature single-crystal X-ray diffraction analysis confirmed the reversible isostructural phase transition of 1 with the same space group Pbca at 225 K, wherein the synergistic effect between the pendulum-like motion of organic cations and the proton transfer in the Osbnd H⋯O hydrogen bonding of inorganic anions was mainly responsible for the phase-transition behavior of 1. The most striking dielectric property was the remarkable anisotropy along various crystallographic axes. A potential-energy calculation further supported the possibility of dynamic motion of cations in the crystal.

  1. H3K9 Trimethylation Silences Fas Expression to Confer Colon Carcinoma Immune Escape and 5-Fluorouracil Chemoresistance

    PubMed Central

    Paschall, Amy V.; Yang, Dafeng; Lu, Chunwan; Choi, Jeong-Hyeon; Li, Xia; Liu, Feiyan; Figueroa, Mario; Oberlies, Nicholas H.; Pearce, Cedric; Bollag, Wendy B.; Nayak-Kapoor, Asha; Liu, Kebin

    2015-01-01

    The Fas-FasL effector mechanism plays a key role in cancer immune surveillance by host T cells, but metastatic human colon carcinoma often uses silencing Fas expression as a mechanism of immune evasion. The molecular mechanism under FAS transcriptional silencing in human colon carcinoma is unknown. We performed genome-wide ChIP-Sequencing analysis and identified that the FAS promoter is enriched with H3K9me3 in metastatic human colon carcinoma cells. H3K9me3 level in the FAS promoter region is significantly higher in metastatic than in primary cancer cells, and is inversely correlated with Fas expression level. We discovered that verticillin A is a selective inhibitor of histone methyltransferases SUV39H1, SUV39H2 and G9a/GLP that exhibit redundant functions in H3K9 trimethylation and FAS transcriptional silencing. Genome-wide gene expression analysis identified FAS as one of the verticillin A target genes. Verticillin A treatment decreased H3K9me3 level in the FAS promoter and restored Fas expression. Furthermore, verticillin A exhibited greater efficacy than Decitabine and Vorinostat in overcoming colon carcinoma resistance to FasL-induced apoptosis. Verticillin A also increased DR5 expression and overcame colon carcinoma resistance to DR5 agonist drozitumab-induced apoptosis. Interestingly, verticillin A overcame metastatic colon carcinoma resistance to 5-Fluouracil in vitro and in vivo. Using an orthotopic colon cancer mouse model, we demonstrated that tumor-infiltrating cytotoxic T lymphocytes are FasL+ and FasL-mediated cancer immune surveillance is essential for colon carcinoma growth control in vivo. Our findings determine that H3K9me3 of the FAS promoter is a dominant mechanism underlying FAS silencing and resultant colon carcinoma immune evasion and progression. PMID:26136424

  2. Human sterol 14α-demethylase as a target for anticancer chemotherapy: towards structure-aided drug design1

    PubMed Central

    Hargrove, Tatiana Y.; Friggeri, Laura; Wawrzak, Zdzislaw; Sivakumaran, Suneethi; Yazlovitskaya, Eugenia M.; Hiebert, Scott W.; Guengerich, F. Peter; Waterman, Michael R.; Lepesheva, Galina I.

    2016-01-01

    Rapidly multiplying cancer cells synthesize greater amounts of cholesterol to build their membranes. Cholesterol-lowering drugs (statins) are currently in clinical trials for anticancer chemotherapy. However, given at higher doses, statins cause serious side effects by inhibiting the formation of other biologically important molecules derived from mevalonate. Sterol 14α-demethylase (CYP51), which acts 10 steps downstream, is potentially a more specific drug target because this portion of the pathway is fully committed to cholesterol production. However, screening a variety of commercial and experimental inhibitors of microbial CYP51 orthologs revealed that most of them (including all clinical antifungals) weakly inhibit human CYP51 activity, even if they display high apparent spectral binding affinity. Only one relatively potent compound, (R)-N-(1-(3,4′-difluorobiphenyl-4-yl)-2-(1H-imidazol-1-yl)ethyl)-4-(5-phenyl-1,3,4-oxadiazol-2-yl)benzamide (VFV), was identified. VFV has been further tested in cellular experiments and found to decrease proliferation of different cancer cell types. The crystal structures of human CYP51-VFV complexes (2.0 and 2.5 Å) both display a 2:1 inhibitor/enzyme stoichiometry, provide molecular insights regarding a broader substrate profile, faster catalysis, and weaker susceptibility of human CYP51 to inhibition, and outline directions for the development of more potent inhibitors. PMID:27313059

  3. Photoelectron spectroscopy and theoretical study of M(IO3)2(-) (M = H, Li, Na, K): structural evolution, optical isomers, and hyperhalogen behavior.

    PubMed

    Hou, Gao-Lei; Wu, Miao Miao; Wen, Hui; Sun, Qiang; Wang, Xue-Bin; Zheng, Wei-Jun

    2013-07-28

    H(IO3)2(-) and M(IO3)2(-) (M = Li, Na, K) anions were successfully produced via electrospray ionization of their corresponding bulk salt solutions, and were characterized by combining negative ion photoelectron spectroscopy and quantum chemical calculations. The experimental vertical detachment energies (VDEs) of M(IO3)2(-) (M = H, Li, Na, K) are 6.25, 6.57, 6.60, and 6.51 eV, respectively, and they are much higher than that of IO3(-) (4.77 eV). The theoretical calculations show that each of these anions has two energetically degenerate optical isomers. It is found that the structure of H(IO3)2(-) can be written as IO3(-)(HIO3), in which the H atom is tightly bound to one of the IO3(-) groups and forms an iodic acid (HIO3) molecule; while the structures of M(IO3)2(-) can be written as (IO3(-))M(+)(IO3(-)), in which the alkali metal atoms interact with the two IO3(-) groups almost equally and bridge the two IO3(-) groups via two O atoms of each IO3(-) with the two MOOI planes nearly perpendicular to each other. In addition, the high VDEs of M(IO3)2(-) (M = Li, Na, K) can be explained by the hyperhalogen behavior of their neutral counterparts.

  4. The PB2-K627E mutation attenuates H3N2 swine influenza virus in cultured cells and in mice.

    PubMed

    Gong, Xiao-Qian; Ruan, Bao-Yang; Liu, Xiao-Min; Zhang, Peng; Wang, Xiu-Hui; Wang, Qi; Shan, Tong-Ling; Tong, Wu; Zhou, Yan-Jun; Li, Guo-Xin; Zheng, Hao; Tong, Guang-Zhi; Yu, Hai

    2018-04-01

    PB2-627K is an important amino acid that determines the virulence of some influenza A viruses. However, it has not been experimentally investigated in the H3N2 swine influenza virus. To explore the potential role of PB2-K627E substitution in H3N2 swine influenza virus, the growth properties and pathogenicity between H3N2 swine influenza virus and its PB2-K627E mutant were compared. For the first time, our results showed that PB2-K627E mutation attenuates H3N2 swine influenza virus in mammalian cells and in mice, suggesting that PB2-627K is required for viral replication and pathogenicity of H3N2 swine influenza virus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Differential lactate and cholesterol synthetic activities in XY and XX Sertoli cells.

    PubMed

    Shishido, Yurina; Baba, Takashi; Sato, Tetsuya; Shima, Yuichi; Miyabayashi, Kanako; Inoue, Miki; Akiyama, Haruhiko; Kimura, Hiroshi; Kanai, Yoshiakira; Ishihara, Yasuhiro; Haraguchi, Shogo; Miyazaki, Akira; Rozman, Damjana; Yamazaki, Takeshi; Choi, Man-Ho; Ohkawa, Yasuyuki; Suyama, Mikita; Morohashi, Ken-Ichirou

    2017-02-02

    SRY, a sex-determining gene, induces testis development in chromosomally female (XX) individuals. However, mouse XX Sertoli cells carrying Sry (XX/Sry Sertoli cells) are incapable of fully supporting germ cell development, even when the karyotype of the germ cells is XY. While it has therefore been assumed that XX/Sry Sertoli cells are not functionally equivalent to XY Sertoli cells, it has remained unclear which specific functions are affected. To elucidate the functional difference, we compared the gene expression of XY and XX/Sry Sertoli cells. Lactate and cholesterol metabolisms, essential for nursing the developing germ cells, were down-regulated in XX/Sry cells, which appears to be caused at least in part by the differential expression of histone modification enzymes SMCX/SMCY (H3K4me3 demethylase) and UTX/UTY (H3K27me3 demethylase) encoded by the sex chromosomes. We suggest that down-regulation of lactate and cholesterol metabolism that may be due to altered epigenetic modification affects the nursing functions of XX/Sry Sertoli cells.

  6. Differential lactate and cholesterol synthetic activities in XY and XX Sertoli cells

    PubMed Central

    Shishido, Yurina; Baba, Takashi; Sato, Tetsuya; Shima, Yuichi; Miyabayashi, Kanako; Inoue, Miki; Akiyama, Haruhiko; Kimura, Hiroshi; Kanai, Yoshiakira; Ishihara, Yasuhiro; Haraguchi, Shogo; Miyazaki, Akira; Rozman, Damjana; Yamazaki, Takeshi; Choi, Man-Ho; Ohkawa, Yasuyuki; Suyama, Mikita; Morohashi, Ken-ichirou

    2017-01-01

    SRY, a sex-determining gene, induces testis development in chromosomally female (XX) individuals. However, mouse XX Sertoli cells carrying Sry (XX/Sry Sertoli cells) are incapable of fully supporting germ cell development, even when the karyotype of the germ cells is XY. While it has therefore been assumed that XX/Sry Sertoli cells are not functionally equivalent to XY Sertoli cells, it has remained unclear which specific functions are affected. To elucidate the functional difference, we compared the gene expression of XY and XX/Sry Sertoli cells. Lactate and cholesterol metabolisms, essential for nursing the developing germ cells, were down-regulated in XX/Sry cells, which appears to be caused at least in part by the differential expression of histone modification enzymes SMCX/SMCY (H3K4me3 demethylase) and UTX/UTY (H3K27me3 demethylase) encoded by the sex chromosomes. We suggest that down-regulation of lactate and cholesterol metabolism that may be due to altered epigenetic modification affects the nursing functions of XX/Sry Sertoli cells. PMID:28150810

  7. Frequency Comb Assisted IR Measurements of H_3^+, H_2D^+ and D_2H^+ Transitions

    NASA Astrophysics Data System (ADS)

    Jusko, Pavol; Asvany, Oskar; Schlemmer, Stephan

    2016-06-01

    We present recent measurements of the fundamental transitions of H_3^+, H_2D^+ and D_2H^+ in a 4 K 22-pole trap by action spectroscopic techniques. Either Laser Induced Inhibition of Cluster Growth (He attachment at T≈4 K), endothermic reaction of H_3^+ with O_2, or deuterium exchange has been used as measurement scheme. We used a 3 μm optical parametric oscillator coupled to a frequency comb in order to achieve accuracy generally below 1 MHz. Five transitions of H_3^+, eleven of H_2D^+ and ten of D_2H^+ were recorder in our spectral range. We compare our H_3^+ results with two previous frequency comb assisted works. Moreover, accurate determination of the frequency allows us to predict pure rotational transitions for H_2D^+ and D_2H^+ in the THz range. P. Jusko, C. Konietzko, S. Schlemmer, O. Asvany, J. Mol. Spec. 319 (2016) 55 O. Asvany, S. Brünken, L. Kluge, S. Schlemmer, Appl. Phys. B 114 (2014) 203 O. Asvany, J. Krieg, S. Schlemmer, Rev. Sci. Instr. 83 (2012) 093110 J.N. Hodges, A.J. Perry, P.A. Jenkins, B.M. Siller, B.J. McCall, J. Chem. Phys. 139 (2013) 164201 H.-C. Chen, C.-Y. Hsiao, J.-L. Peng, T. Amano, J.-T. Shy, Phys. Rev. Lett. 109 (2012) 263002

  8. Blocking the PI3K pathway enhances the efficacy of ALK-targeted therapy in EML4-ALK-positive nonsmall-cell lung cancer.

    PubMed

    Yang, Lin; Li, Guangchao; Zhao, Likun; Pan, Fei; Qiang, Jiankun; Han, Siqi

    2014-10-01

    Targeted therapy based on ALK tyrosine kinase inhibitors (ALK-TKIs) has made significant achievements in individuals with EML4-ALK (echinoderm microtubule-associated protein-like 4 gene and the anaplastic lymphoma kinase gene) fusion positive nonsmall-cell lung cancer (NSCLC). However, a high fraction of patients receive inferior clinical response to such treatment in the initial therapy, and the exact mechanisms underlying this process need to be further investigated. In this study, we revealed a persistently activated PI3K/AKT signaling that mediates the drug ineffectiveness. We found that genetic or pharmacological inhibition of ALK markedly abrogated phosphorylated STAT3 and ERK, but it failed to suppress AKT activity or induce apoptosis, in EML4-ALK-positive H2228 cells. Furthermore, targeted RNA interference of PI3K pathway components restored sensitivity to TAE684 treatment at least partially due to increased apoptosis. Combined TAE684 with PI3K inhibitor synergistically inhibited the proliferation of EML4-ALK-positive cells in vitro and significantly suppressed the growth of H2228 xenografts in vivo, suggesting the potential clinical application of such combinatorial therapy regimens in patients with EML4-ALK positive lung cancer.

  9. Structural and computational characterization of 4‧,4‧,6‧,6‧-tetrachloro-3-(2-methoxyethyl)-3H,4H-spiro-1,3,2-benzoxaza phosphinine-2,2‧- [1,3,5,2,4,6] triazatriphosphinine

    NASA Astrophysics Data System (ADS)

    Işıklan, Muhammet; Yıldırım, Erdem Kamil; Atiş, Murat; Sonkaya, Ömer; Çoşut, Bünyemin

    2016-08-01

    In this study a new monospirocyclic phosphazene derivative, 4‧,4‧,6‧,6‧-tetrachloro-3-(2-methoxyethyl)-3H,4H-spiro [1,3,2-benzoxazaphosphinine-2,2‧- [1,3,5,2,4,6] triazatriphosphinine] (SP1) was synthesized from the reaction of hexachlorocyclotriphosphazene (N3P3Cl6) with N/O donor-type, 2-{[(2-Metoxyethyl) amino]methyl}phenol. The structural investigations of the compound were verified by elemental analyses, MS, FTIR, 1H, 13C, 31P NMR spectroscopy and the single crystal X-ray diffraction analysis. The structural and spectroscopic data of the molecule in the ground state were calculated by using density functional method (DFT) using 6-311++G (d, p) basis set. The complete assignments of all vibrational modes were performed on the basis of the total energy distributions (TED). Isotropic chemical shifts (31P, 1H and 13C NMR) were calculated using the gauge-invariant atomic orbital (GIAO) method. Theoretical calculations of bond parameters, harmonic vibration frequencies and nuclear magnetic resonance are in good agreement with experimental results. The electrophilic and nucleophilic attack centers in SP1 were predicted with the local softness values (sk+, and sk-) of individual atoms and it is confirmed that P atoms of the PCl2 groups are nucleophilic attack centers.

  10. Histone H3K9 Trimethylase Eggless Controls Germline Stem Cell Maintenance and Differentiation

    PubMed Central

    Zhou, Jian; McDowell, William; Park, Jungeun; Haug, Jeff; Staehling, Karen; Tang, Hong; Xie, Ting

    2011-01-01

    Epigenetic regulation plays critical roles in the regulation of cell proliferation, fate determination, and survival. It has been shown to control self-renewal and lineage differentiation of embryonic stem cells. However, epigenetic regulation of adult stem cell function remains poorly defined. Drosophila ovarian germline stem cells (GSCs) are a productive adult stem cell system for revealing regulatory mechanisms controlling self-renewal and differentiation. In this study, we show that Eggless (Egg), a H3K9 methyltransferase in Drosophila, is required in GSCs for controlling self-renewal and in escort cells for regulating germ cell differentiation. egg mutant ovaries primarily exhibit germ cell differentiation defects in young females and gradually lose GSCs with time, indicating that Egg regulates both germ cell maintenance and differentiation. Marked mutant egg GSCs lack expression of trimethylated H3K9 (H3k9me3) and are rapidly lost from the niche, but their mutant progeny can still differentiate into 16-cell cysts, indicating that Egg is required intrinsically to control GSC self-renewal but not differentiation. Interestingly, BMP-mediated transcriptional repression of differentiation factor bam in marked egg mutant GSCs remains normal, indicating that Egg is dispensable for BMP signaling in GSCs. Normally, Bam and Bgcn interact with each other to promote GSC differentiation. Interestingly, marked double mutant egg bgcn GSCs are still lost, but their progeny are able to differentiate into 16-cell cysts though bgcn mutant GSCs normally do not differentiate, indicating that Egg intrinsically controls GSC self-renewal through repressing a Bam/Bgcn-independent pathway. Surprisingly, RNAi-mediated egg knockdown in escort cells leads to their gradual loss and a germ cell differentiation defect. The germ cell differentiation defect is at least in part attributed to an increase in BMP signaling in the germ cell differentiation niche. Therefore, this study has revealed

  11. Anisotropic H c 2 , thermodynamic and transport measurements, and pressure dependence of T c in K 2 Cr 3 As 3 single crystals

    DOE PAGES

    Kong, Tai; Bud'ko, Sergey L.; Canfield, Paul C.

    2015-01-30

    We present a detailed study of single crystalline K 2Cr 3As 3 and analyze its thermodynamic and transport properties, anisotropic H c2(T), and initial pressure dependence of T c. In zero field, the temperature-dependent resistivity is metallic. Deviation from a linear temperature dependence is evident below 100 K and a T 3 dependence is roughly followed from just above T c (~10K) to ~40K. Anisotropic H c2(T) data were measured up to 140 kOe with field applied along and perpendicular to the rodlike crystals. For the applied field perpendicular to the rod, H c2(T) is linear with a slope ~–70more » kOe/K. For field applied along the rod, the slope is about –120 kOe/K below 70 kOe. Above 70 kOe, the magnitude of the slope decreases to ~–70 kOe/K. The electronic specific heat coefficient γ, just above T c, is 73 mJ/mol K 2; the Debye temperature Θ D is 220 K. As a result, the specific heat jump at the superconducting transition ΔC~2.2γT c. Finally, for hydrostatic pressures up to ~7 kbar, T c decreases under pressure linearly at a rate of –0.034K/kbar.« less

  12. Highly selective and sensitive colorimetric determination of Cr3 + ion by 4-amino-5-methyl-4H-1,2,4-triazole-3-thiol functionalized Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Shahrivari, Shima; Faridbod, Farnoush; Ganjali, Mohammad Reza

    2018-02-01

    In this work, a rapid, selective naked eyes colorimetric chemical probe for the detection of Cr3 + was developed based on functionalization of gold nanoparticles. For this purpose, surface of Au NPs was functionalized using 4-amino-5-methyl-4H-1,2,4-triazole-3-thiol (AMTT). Through colorimetric studies, it was found that in the presence of Cr3 + ions, AMTT-Au NPs instantly aggregated and resulted in a color change of the solution from red to blue. The color change of AMTT-Au NPs due to the aggregation induced by Cr3 + can be seen with even naked eyes and also by UV-Vis spectroscopy with a detection limit of 1.8 μM and 0.1 μM, respectively. AMTT-Au NPs showed excellent selectivity toward Cr3 + compared to other cations tested, including K+, Na+, Cs+, Fe3 +, Ni2 +, Cu2 +, Co2 +, Zn2 +, Ba2 +, Ca2 +, Mg2 +, Cd2 +, Pb2 +, Hg2 + ions and especially all trivalent lanthanide ions. The absorbance ratio (A650/A525) was linear toward Cr3 + concentrations in the range of 0.6-6.1 μM (R2 = 0.996). The best response was achieved over a pH range of 3-5. Furthermore, the proposed colorimetric method based on AMTT-Au NPs was successfully used for Cr3 + ion detection in plasma sample and some water samples.

  13. Synthesis, crystal structure analysis, spectral (NMR, FT-IR, FT-Raman and UV-Vis) investigations, molecular docking studies, antimicrobial studies and quantum chemical calculations of a novel 4-chloro-8-methoxyquinoline-2(1H)-one: An effective antimicrobial agent and an inhibition of DNA gyrase and lanosterol-14α-demethylase enzymes

    NASA Astrophysics Data System (ADS)

    Murugavel, S.; Sundramoorthy, S.; Lakshmanan, D.; Subashini, R.; Pavan Kumar, P.

    2017-03-01

    The novel title compound 4-chloro-8-methoxyquinoline-2(1H)-one (4CMOQ) has been synthesized by slow evaporation solution growth technique at room temperature. The synthesized 4CMOQ molecule was characterized experimentally by FT-IR, FT-Raman, UV-Vis, NMR and single crystal diffraction (XRD) and theoretically by quantum chemical calculations. The molecular geometry was also optimized using density functional theory (DFT/B3LYP) method with the 6-311++G (d,p) basis set in ground state and compared with the experimental data. The entire vibrational assignments of wave numbers were made on the basis of potential energy distribution (PED) by VEDA 4 programme. The nuclear magnetic resonance spectra (1H and 13C NMR) are obtained by using the gauge-invariant atomic orbital (GIAO) method. The change in electron density (ED) in the antibonding orbital's and stabilization energies E(2) of the molecule have been evaluated by natural bond orbital (NBO) analysis to give clear evidence of stabilization. Moreover, electronic characteristics such as HOMO and LUMO energies, Mulliken atomic charges and molecular electrostatic potential surface are investigated. Absorption spectrum analysis, nonlinear optical properties, chemical reactivity descriptors and thermodynamic features are also outlined theoretically. Molecular docking studies were executed to understand the inhibitory activity of 4CMOQ against DNA gyrase and Lanosterol 14 α-demethylase. The antimicrobial activity of 4CMOQ was determined against bacterial strains such as Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa and fungal strains such as Aspergillus niger, Monascus purpureus and Penicillium citrinum. The obtained results show that the compound exhibited good to moderate antimicrobial activity.

  14. Calculational and Experimental Investigations of the Pressure Effects on Radical - Radical Cross Combinations Reactions: C2H5 + C2H3

    NASA Technical Reports Server (NTRS)

    Fahr, Askar; Halpern, Joshua B.; Tardy, Dwight C.

    2007-01-01

    Pressure-dependent product yields have been experimentally determined for the cross-radical reaction C2H5 + C2H3. These results have been extended by calculations. It is shown that the chemically activated combination adduct, 1-C4H8*, is either stabilized by bimolecular collisions or subject to a variety of unimolecular reactions including cyclizations and decompositions. Therefore the "apparent" combination/disproportionation ratio exhibits a complex pressure dependence. The experimental studies were performed at 298 K and at selected pressures between about 4 Torr (0.5 kPa) and 760 Torr (101 kPa). Ethyl and vinyl radicals were simultaneously produced by 193 nm excimer laser photolysis of C2H5COC2H3 or photolysis of C2H3Br and C2H5COC2H5. Gas chromatograph/mass spectrometry/flame ionization detection (GC/MS/FID) were used to identify and quantify the final reaction products. The major combination reactions at pressures between 500 (66.5 kPa) and 760 Torr are (1c) C2H5 + C2H3 yields 1-butene, (2c) C2H5 + C2H5 yields n-butane, and (3c) C2H3 + C2H3 yields 1,3-butadiene. The major products of the disproportionation reactions are ethane, ethylene, and acetylene. At moderate and lower pressures, secondary products, including propene, propane, isobutene, 2-butene (cis and trans), 1-pentene, 1,4-pentadiene, and 1,5-hexadiene are also observed. Two isomers of C4H6, cyclobutene and/or 1,2-butadiene, were also among the likely products. The pressure-dependent yield of the cross-combination product, 1-butene, was compared to the yield of n-butane, the combination product of reaction (2c), which was found to be independent of pressure over the range of this study. The [ 1-C4H8]/[C4H10] ratio was reduced from approx.1.2 at 760 Torr (101 kPa) to approx.0.5 at 100 Torr (13.3 kPa) and approx.0.1 at pressures lower than about 5 Torr (approx.0.7 kPa). Electronic structure and RRKM calculations were used to simulate both unimolecular and bimolecular processes. The relative importance

  15. K2Ho(PO4)(WO4)

    PubMed Central

    Terebilenko, Katherina V.; Zatovsky, Igor V.; Baumer, Vyacheslav N.; Slobodyanik, Nikolay S.; Shishkin, Oleg V.

    2008-01-01

    A new compound, dipotassium holmium(III) phosphate(V) tungstate(VI), K2Ho(PO4)(WO4), has been obtained during investigation of the K2O–P2O5–WO3–HoF3 phase system using the flux technique. The compound is isotypic with K2Bi(PO4)(WO4). Its framework structure consists of flat ∞ 2[HoPO4] layers parallel to (100) that are made up of ∞ 1[HoO8] zigzag chains inter­linked via slightly distorted PO4 tetra­hedra. WO4 tetra­hedra are attached above and below these layers, leaving space for the K+ counter-cations. The HoO8, PO4 and WO4 units exhibit 2 symmetry. PMID:21580811

  16. Downregulation of p-coumaroyl quinate/shikimate 3'-hydroxylase (C3'H) or cinnamate-4-hydrolylase (C4H) in Eucalyptus urophylla x Eucalyptus grandis leads to increased extractability

    DOE PAGES

    Ziebell, Angela; Gjersing, Erica; Hinchee, Maud; ...

    2016-01-20

    Lignin reduction through breeding and genetic modification has the potential to reduce costs in biomass processing in pulp and paper, forage, and lignocellulosic ethanol industries. Here, we present detailed characterization of the extractability and lignin structure of Eucalyptus urophylla x Eucalyptus grandis RNAi downregulated in p-coumaroyl quinate/shikimate 3'-hydroxylase (C3'H) or cinnamate-4-hydroxylase (C4H). Both the C3'H and C4H downregulated lines were found to have significantly higher extractability when exposed to NaOH base extraction, indicating altered cell wall construction. The molecular weight of isolated lignin was measured and lignin structure was determined by HSQC NMR-based lignin subunit analysis for control and themore » C3'H and C4H downregulated lines. The slight reductions in average molecular weights of the lignin isolated from the transgenic lines (C3'H = 7000, C4H = 6500, control = 7300) does not appear to explain the difference in extractability. The HSQC NMR-based lignin subunit analysis showed increases in H lignin content for the C3'H but only slight differences in the lignin subunit structure of the C3'H and C4H downregulated lines when compared to the control. The greatest difference between the C3'H and C4H downregulated lines is the total lignin content; therefore, it appears that overall lowered lignin content contributes greatly to reduced recalcitrance and increased extractability of cell wall biopolymers. Furthermore, studies will be conducted to determine how the reduction in lignin content creates a less rigid cell wall that is more prone to extraction and sugar release.« less

  17. Photoluminescence and thermoluminescence properties of Tb{sup 3+} doped K{sub 3}Gd(PO{sub 4}){sub 2} nanophosphor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Palvi; Bedyal, A.K.; Kumar, Vinay, E-mail: vinaykdhiman@yahoo.com

    2014-12-15

    Energy level diagram of Tb{sup 3+} ion in the K{sub 3}Gd(PO{sub 4}){sub 2} host lattice. - Highlights: • First time, a detailed TL and PL study on undoped and Tb{sup 3+} doped K{sub 3}Gd(PO{sub 4}){sub 2} nanophosphor. • Combustion method was employed to synthesize the Tb{sup 3+} doped K{sub 3}Gd(PO{sub 4}){sub 2} nanophosphor. • Mechanism of excitation and emission in undoped and Tb{sup 3+} doped K{sub 3}Gd(PO{sub 4}){sub 2} nanophosphor was given. - Abstract: Tb{sup 3+} doped nanoparticulate K{sub 3}Gd(PO{sub 4}){sub 2} phosphor was prepared by combustion method using urea as a fuel. The structure, optical and luminescent properties ofmore » the phosphor were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), diffuse reflectance spectroscopy (DRS), photoluminescence spectroscopy (PL), and thermoluminescence (TL) spectroscopy. In undoped K{sub 3}Gd(PO{sub 4}){sub 2}, the excitation and emission peaks at 273 nm and 323 nm belongs to the {sup 8}S{sub 7/2} → {sup 6}I{sub J(J=7/2)} and {sup 6}P{sub J(J=7/2)} → {sup 8} S{sub 7/2} transitions of Gd{sup 3+} while green emission was observed in the Tb{sup 3+} doped K{sub 3}Gd(PO{sub 4}){sub 2}. TL study was carried out after exposing the samples to γ-radiations (0.1–5 kGy) in the K{sub 3}Gd(PO{sub 4}){sub 2}:Tb{sup 3+} (1.5 mol%). The calculated kinetic parameters were compared with different methods. The band gap of the phosphor was estimated as 5.80 eV. The green shade of the Tb{sup 3+} ion with the CIE coordinates (x, y) as (0.29, 0.54) was in good agreement with the well known green phosphors.« less

  18. Genome-wide profiling identifies a subset of methamphetamine (METH)-induced genes associated with METH-induced increased H4K5Ac binding in the rat striatum.

    PubMed

    Cadet, Jean Lud; Jayanthi, Subramaniam; McCoy, Michael T; Ladenheim, Bruce; Saint-Preux, Fabienne; Lehrmann, Elin; De, Supriyo; Becker, Kevin G; Brannock, Christie

    2013-08-12

    METH is an illicit drug of abuse that influences gene expression in the rat striatum. Histone modifications regulate gene transcription. We therefore used microarray analysis and genome-scale approaches to examine potential relationships between the effects of METH on gene expression and on DNA binding of histone H4 acetylated at lysine 4 (H4K5Ac) in the rat dorsal striatum of METH-naïve and METH-pretreated rats. Acute and chronic METH administration caused differential changes in striatal gene expression. METH also increased H4K5Ac binding around the transcriptional start sites (TSSs) of genes in the rat striatum. In order to relate gene expression to histone acetylation, we binned genes of similar expression into groups of 100 genes and proceeded to relate gene expression to H4K5Ac binding. We found a positive correlation between gene expression and H4K5Ac binding in the striatum of control rats. Similar correlations were observed in METH-treated rats. Genes that showed acute METH-induced increased expression in saline-pretreated rats also showed METH-induced increased H4K5Ac binding. The acute METH injection caused similar increases in H4K5Ac binding in METH-pretreated rats, without affecting gene expression to the same degree. Finally, genes that showed METH-induced decreased expression exhibited either decreases or no changes in H4K5Ac binding. Acute METH injections caused increased gene expression of genes that showed increased H4K5Ac binding near their transcription start sites.

  19. Interactions of vitamin K3 with herring-sperm DNA using spectroscopy and electrochemistry.

    PubMed

    Huang, Jianhang; Wang, Xingming; Fei, Dan; Ding, Lisheng

    2010-10-01

    By means of ultraviolet-visible (UV-Vis) and fluorescence spectra, the binding ratio between vitamin K(3) and herring-sperm DNA in a physiological pH environment (pH = 7.40) was determined as n(K3):n(DNA) = 2:1, and the binding constants of vitamin K(3) binding to DNA at different temperatures were determined as K(θ)(298K) = 1.28 × 10(5) L·mol(-1) and K(θ)(310K) = 7.19 × 10(4) L·mol(-1), which were confirmed using the double reciprocal method are Δ(r)H(m)(θ) = -3.57 × 10(4) J·mol(-1), Δ(r)G(m)(θ) = -2.92 × 10(4) J·mol(-1), and Δ(r)S(m)(θ) = 217.67 J·mol(-1)K(-1). The driving power of this process was enthalpy. An intercalation binding of the vitamin K(3) with DNA was supported by a competitive experiment using acridine orange (AO) as a spectral probe. By combination analysis of the Scatchard method and cyclic voltammetry, we suggested that the interaction mode between vitamin K(3) and herring-sperm DNA would be a mixed mode. The quinonoid, duality fused-ring of vitamin K(3) can intercalate into the base pairs of DNA, and there is an electrostatic binding along with intercalation binding.

  20. The induction of H3K9 methylation by PIWIL4 at the p16{sup Ink4a} locus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugimoto, Keiki; Kage, Hidenori; Aki, Naomi

    The field of epigenetics has made progress by the identification of the small RNA-mediated epigenetic modification. However, little is known about the key proteins. Here, we report that the human PIWI-like family is a candidate protein that is involved in the pathway responsible for chromatin remodeling. The PIWI-like family proteins, expressed as the Flag-fusion proteins, formed a bulky body and localized to the nuclear periphery. Transient transfection of PIWI-like 4 (PIWIL4), only member of the PIWI-like family that was ubiquitously expressed in human tissues, induced histone H3 lysine 9 methylation at the p16{sup Ink4a} (CDKN2A) locus. The elevated level ofmore » histone methylation resulted in the downregulation of the p16{sup Ink4a} gene. These results suggest PIWIL4 plays important roles in the chromatin-modifying pathway in human somatic cells.« less

  1. Synthesis and characterization of n-alkylamino derivatives of vitamin K3: Molecular structure of 2-propylamino-3-methyl-1,4-naphthoquinone and antibacterial activities

    NASA Astrophysics Data System (ADS)

    Chadar, Dattatray; Camilles, Maria; Patil, Rishikesh; Khan, Ayesha; Weyhermüller, Thomas; Salunke-Gawali, Sunita

    2015-04-01

    We would like to introduce eight analogues of n-alkylamino derivatives of vitamin K3 (2-methyl-1,4-naphthoquinone) viz, 2-(n-alkylamino)-3-methyl-1,4-naphthoquinone (where n-alkyl is methyl; LM-1, ethyl; LM-2, propyl; LM-3, butyl; LM-4, pentyl; LM-5, hexyl; LM-6, heptyl; LM-7, octyl; LM-8). All the above analogues have been successfully synthesized from vitamin K3 and characterized using different analytical techniques. Furthermore, in order to understand the mechanistic aspects of formation of LM-1 to LM-8 compounds, we could propose the mechanism. The FT-IR analysis of LM-1 to LM-8 indicate the presence of characteristic band of Nsbnd H group ∼3287-3364 cm-1, the variation was attributed to extensive intramolecular hydrogen bonding interaction. The molecular structure of LM-3 compound has been confirmed by single crystal X-ray diffraction analysis. LM-3 compound crystallises in triclinic space group P1. There were four independent molecules in asymmetric unit cell and their molecular interactions observed via Nsbnd H⋯O, Csbnd H⋯O and π-π stacking of quinonoid rings. Pharmacological potential of all compounds has been evaluated in terms of their antibacterial activities against Pseudomonas aeruginosa and Staphylococcus aureus. All the compounds were active against both the strains while LM-2 was found to be more effective with a minimum inhibition concentration of 0.3125 μg/mL and 0.156 μg/mL respectively.

  2. β4-Integrin/PI3K Signaling Promotes Tumor Progression through the Galectin-3-N-Glycan Complex.

    PubMed

    Kariya, Yukiko; Oyama, Midori; Hashimoto, Yasuhiro; Gu, Jianguo; Kariya, Yoshinobu

    2018-06-01

    Malignant transformation is associated with aberrant N -glycosylation, but the role of protein N -glycosylation in cancer progression remains poorly defined. β4-integrin is a major carrier of N -glycans and is associated with poor prognosis, tumorigenesis, and metastasis. Here, N -glycosylation of β4-integrin contributes to the activation of signaling pathways that promote β4-dependent tumor development and progression. Increased expression of β1,6GlcNAc-branched N -glycans was found to be colocalized with β4-integrin in human cutaneous squamous cell carcinoma tissues, and that the β1,6GlcNAc residue was abundant on β4-integrin in transformed keratinocytes. Interruption of β1,6GlcNAc-branching formation on β4-integrin with the introduction of bisecting GlcNAc by N -acetylglucosaminyltransferase III overexpression was correlated with suppression of cancer cell migration and tumorigenesis. N -Glycan deletion on β4-integrin impaired β4-dependent cancer cell migration, invasion, and growth in vitro and diminished tumorigenesis and proliferation in vivo The reduced abilities of β4-integrin were accompanied with decreased phosphoinositol-3 kinase (PI3K)/Akt signals and were restored by the overexpression of the constitutively active p110 PI3K subunit. Binding of galectin-3 to β4-integrin via β1,6GlcNAc-branched N -glycans promoted β4-integrin-mediated cancer cell adhesion and migration. In contrast, a neutralizing antibody against galectin-3 attenuated β4-integrin N -glycan-mediated PI3K activation and inhibited the ability of β4-integrin to promote cell motility. Furthermore, galectin-3 knockdown by shRNA suppressed β4-integrin N -glycan-mediated tumorigenesis. These findings provide a novel role for N -glycosylation of β4-integrin in tumor development and progression, and the regulatory mechanism for β4-integrin/PI3K signaling via the galectin-3- N -glycan complex. Implications: N -Glycosylation of β4-integrin plays a functional role in promoting

  3. Mobile Lid Convection Beneath Enceladus' South Polar Terrain

    NASA Technical Reports Server (NTRS)

    Barr, Amy C.

    2008-01-01

    Enceladus' south polar region has a large heat flux, 55-110 milliwatts per square meter (or higher), that is spatially associated with cryovolcanic and tectonic activity. Tidal dissipation and vigorous convection in the underlying ice shell are possible sources of heat; however, prior predictions of the heat flux carried by stagnant lid convection range from F(sub conv) 15 to 30 milliwatts per square meter, too low to explain the observed heat flux. The high heat flux and increased cryovolcanic and tectonic activity suggest that near-surface ice in the region has become rheologically and mechanically weakened enough to permit convective plumes to reach close to the surface. If the yield strength of Enceladus' lithosphere is less than 1-10 kPa, convection may instead occur in the mobile lid" regime, which is characterized by large heat fluxes and large horizontal velocities in the near-surface ice. I show that model ice shells with effective surface viscosities between 10(exp 16) and 10(exp 17) Pa s and basal viscosities between 10(exp 13) and 10(exp 15) Pa s have convective heat fluxes comparable to that observed by the Cassini Composite Infrared Spectrometer. If this style of convection is occurring, the south polar terrain should be spreading horizontally with v1-10 millimeter per year and should be resurfaced in 0.1-10 Ma. On the basis of Cassini imaging data, the south polar terrain is 0.5 Ma old, consistent with the mobile lid hypothesis. Maxwell viscoelastic tidal dissipation in such ice shells is not capable of generating enough heat to balance convective heat transport. However, tidal heat may also be generated in the near-surface along faults as suggested by Nimmo et al. and/or viscous dissipation within the ice shell may occur by other processes not accounted for by the canonical Maxwell dissipation model.

  4. Synthesis of the new quaternary sulfides K[sub 2]Y[sub 4]Sn[sub 2]S[sub 11] and BaLnAgS[sub 3] (Ln = Er, Y, Gd) and the structures of K[sub 2]Y[sub 4]Sn[sub 2]S[sub 11] and BaErAgS[sub 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Ping; Ibers, J.A.

    1994-05-01

    Several new quarternary sulfides, K[sub 2]Y[sub 4]Sn[sub 2]S[sub 11] and BaLnAgS[sub 3] (Ln = Er, Y, Gd), have been synthesized by the reaction of the constituent binary chalcogenides and elements at 1000[degrees]C. The crystal structures of K[sub 2]Y[sub 4]Sn[sub 2]S[sub 11] and BaErAgS[sub 3] have been determined by single-crystal X-ray diffraction techniques. Crystal data: K[sub 2]Y[sub 4]Sn[sub 2]S[sub 11]-space group D[sup 8][sub 4h] - P4/ncc, M = 1023.88, Z = 4, a = 8.587(1), c = 27.892(4) [angstrom] (T = 115 K), V = 2056.7(4) [angstrom][sup 3], R[sub W](F[sup 2]) = 0.093 for 1965 observations having F[sup 2][sub 0] >more » 2[sigma](F[sup 2][sub 0]); BaEr AgS[sub 3]-space group C[sup 3][sub 2H] - C2/m, M = 508.65, Z = 4, a = 17.340(4), b = 4.014(1), x = 8.509(2) [angstrom], [beta] = 103.23(3)[degrees], (T = 115 K), V = 576.5(2) [angstrom][sup 3], R[sub W](F[sup 2]) = 0.049 for 1404 observations and 48 variables, R(F) = 0.018 for 1299 observations having F[sup 2][sub 0] > 2[sigma](F[sup 2][sub 0]). In both structures, the rare-earth atoms have octahedral coordination and the octahedra form slabs through edge- and corner-sharing. These slabs are separated by K[sup +] Ba[sup 2+] cations, and are crosslinked into three-dimensional frameworks by Sn[sub 2]S[sub 6] units as edge-sharing SnS[sub 4] tetrahedral pairs in K[sub 2]Y[sub 4]Sn[sub 2]S[sub 11], and by Ag[sub 2]S[sub 9] units as corner-sharing trigonal-bipyramidal AgS[sub 5] pairs in BaEr AgS[sub 3]. From their powder diffraction patterns, BaYAgS[sub 3] and Ba GdAgS[sub 3] appear to be isostructural with BaErAgS[sub 3].« less

  5. Analysis of tritium production in concentric spheres of oralloy and /sup 6/LiD irradiated by 14-MeV neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fawcett, L.R. Jr.; Roberts, R.R. II; Hunter, R.E.

    1988-03-01

    Tritium production and activation of radiochemical detector foils in a sphere of /sup 6/LiD with an oralloy core irradiated by a central source of 14-MeV neutrons have been calculated and compared with experimental measurements. The experimental assembly consisted of an oralloy sphere surrounded by three solid /sup 6/LiD concentric shells with ampules of /sup 6/LiH and /sup 7/LiH and activation foils located in several positions throughout the assembly. The Los Alamos Monte Carlo Neutron Photon Transport Code (MCNP) was used to calculate neutron transport throughout the system, tritium production in the ampules, and foil activation. The overall experimentally observed-to-calculated ratiosmore » of tritium production were 0.996 +- 2.5% in /sup 6/Li ampules and 0.903 +- 5.2% in /sup 7/Li ampules. Observed-to-calculated ratios for foil activation are also presented. 11 refs., 4 figs., 7 tabs.« less

  6. Immunohistochemical analysis of H3K27me3 demonstrates global reduction in group-A childhood posterior fossa ependymoma and is a powerful predictor of outcome.

    PubMed

    Panwalkar, Pooja; Clark, Jonathan; Ramaswamy, Vijay; Hawes, Debra; Yang, Fusheng; Dunham, Christopher; Yip, Stephen; Hukin, Juliette; Sun, Yilun; Schipper, Matthew J; Chavez, Lukas; Margol, Ashley; Pekmezci, Melike; Chung, Chan; Banda, Adam; Bayliss, Jill M; Curry, Sarah J; Santi, Mariarita; Rodriguez, Fausto J; Snuderl, Matija; Karajannis, Matthias A; Saratsis, Amanda M; Horbinski, Craig M; Carret, Anne-Sophie; Wilson, Beverly; Johnston, Donna; Lafay-Cousin, Lucie; Zelcer, Shayna; Eisenstat, David; Silva, Marianna; Scheinemann, Katrin; Jabado, Nada; McNeely, P Daniel; Kool, Marcel; Pfister, Stefan M; Taylor, Michael D; Hawkins, Cynthia; Korshunov, Andrey; Judkins, Alexander R; Venneti, Sriram

    2017-11-01

    Posterior fossa ependymomas (EPN_PF) in children comprise two morphologically identical, but biologically distinct tumor entities. Group-A (EPN_PFA) tumors have a poor prognosis and require intensive therapy. In contrast, group-B tumors (EPN_PFB) exhibit excellent prognosis and the current consensus opinion recommends future clinical trials to test the possibility of treatment de-escalation in these patients. Therefore, distinguishing these two tumor subtypes is critical. EPN_PFA and EPN_PFB can be distinguished based on DNA methylation signatures, but these assays are not routinely available. We have previously shown that a subset of poorly prognostic childhood EPN_PF exhibits global reduction in H3K27me3. Therefore, we set out to determine whether a simple immunohistochemical assay for H3K27me3 could be used to segregate EPN_PFA from EPN_PFB tumors. We assembled a cohort of 230 childhood ependymomas and H3K27me3 immunohistochemistry was assessed as positive or negative in a blinded manner. H3K27me3 staining results were compared with DNA methylation-based subgroup information available in 112 samples [EPN_PFA (n = 72) and EPN_PFB tumors (n = 40)]. H3K27me3 staining was globally reduced in EPN_PFA tumors and immunohistochemistry showed 99% sensitivity and 100% specificity in segregating EPN_PFA from EPN_PFB tumors. Moreover, H3K27me3 immunostaining was sufficient to delineate patients with worse prognosis in two independent, non-overlapping cohorts (n = 133 and n = 97). In conclusion, immunohistochemical evaluation of H3K27me3 global reduction is an economic, easily available and readily adaptable method for defining high-risk EPN_PFA from low-risk posterior fossa EPN_PFB tumors to inform prognosis and to enable the design of future clinical trials.

  7. Novel proton conducting polymer electrolytes based on polyparabanic acid doped with H 3PO 4 for high temperature fuel cell

    NASA Astrophysics Data System (ADS)

    Aihara, Yuichi; Sonai, Atsuo

    Three novel proton conducting polymer electrolytes based on polyparabanic acid doped with H 3PO 4 were synthesized and their use in high temperature fuel cells characterized. The precursor polymers, PMD-Im, POD-Im and PDMDP-Im, were synthesized by cyclization polymerization of diisocynanates. After doping with H 3PO 4, the ionic conductivity and the thermal degradation were studied by using the AC impedance method and thermal gravimetric analysis, respectively. These membranes showed high ionic conductivity of the order of 10 -2 S cm -1 at 423 K with good thermal stability. Their application to fuel cells was demonstrated and polarization curves were obtained at 423 K were obtained without humidification.

  8. Fluoroethoxy-1,4-diphenethylpiperidine and piperazine derivatives: Potent and selective inhibitors of [3H]dopamine uptake at the vesicular monoamine transporter-2.

    PubMed

    Hankosky, Emily R; Joolakanti, Shyam R; Nickell, Justin R; Janganati, Venumadhav; Dwoskin, Linda P; Crooks, Peter A

    2017-12-15

    A small library of fluoroethoxy-1,4-diphenethyl piperidine and fluoroethoxy-1,4-diphenethyl piperazine derivatives were designed, synthesized and evaluated for their ability to inhibit [ 3 H]dopamine (DA) uptake at the vesicular monoamine transporter-2 (VMAT2) and dopamine transporter (DAT), [ 3 H]serotonin (5-HT) uptake at the serotonin transporter (SERT), and [ 3 H]dofetilide binding at the human-ether-a-go-go-related gene (hERG) channel. The majority of the compounds exhibited potent inhibition of [ 3 H]DA uptake at VMAT2, Ki changes in the nanomolar range (K i  = 0.014-0.073 µM). Compound 15d exhibited the highest affinity (K i  = 0.014 µM) at VMAT2, and had 160-, 5-, and 60-fold greater selectivity for VMAT2 vs. DAT, SERT and hERG, respectively. Compound 15b exhibited the greatest selectivity (>60-fold) for VMAT2 relative to all the other targets evaluated, and 15b had high affinity for VMAT2 (K i  = 0.073 µM). Compound 15b was considered the lead compound from this analog series due to its high affinity and selectivity for VMAT2. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. DNA-Demethylase Regulated Genes Show Methylation-Independent Spatiotemporal Expression Patterns

    PubMed Central

    Schumann, Ulrike; Lee, Joanne; Kazan, Kemal; Ayliffe, Michael; Wang, Ming-Bo

    2017-01-01

    Recent research has indicated that a subset of defense-related genes is downregulated in the Arabidopsis DNA demethylase triple mutant rdd (ros1 dml2 dml3) resulting in increased susceptibility to the fungal pathogen Fusarium oxysporum. In rdd plants these downregulated genes contain hypermethylated transposable element sequences (TE) in their promoters, suggesting that this methylation represses gene expression in the mutant and that these sequences are actively demethylated in wild-type plants to maintain gene expression. In this study, the tissue-specific and pathogen-inducible expression patterns of rdd-downregulated genes were investigated and the individual role of ROS1, DML2, and DML3 demethylases in these spatiotemporal regulation patterns was determined. Large differences in defense gene expression were observed between pathogen-infected and uninfected tissues and between root and shoot tissues in both WT and rdd plants, however, only subtle changes in promoter TE methylation patterns occurred. Therefore, while TE hypermethylation caused decreased gene expression in rdd plants it did not dramatically effect spatiotemporal gene regulation, suggesting that this latter regulation is largely methylation independent. Analysis of ros1-3, dml2-1, and dml3-1 single gene mutant lines showed that promoter TE hypermethylation and defense-related gene repression was predominantly, but not exclusively, due to loss of ROS1 activity. These data demonstrate that DNA demethylation of TE sequences, largely by ROS1, promotes defense-related gene expression but does not control spatiotemporal expression in Arabidopsis. Summary: Ros1-mediated DNA demethylation of promoter transposable elements is essential for activation of defense-related gene expression in response to fungal infection in Arabidopsis thaliana. PMID:28894455

  10. Design and syntheses of novel N-(benzothiazol-5-yl)-4,5,6,7-tetrahydro-1H-isoindole-1,3(2H)-dione and N-(benzothiazol-5-yl)isoindoline-1,3-dione as potent protoporphyrinogen oxidase inhibitors.

    PubMed

    Jiang, Li-Li; Zuo, Yang; Wang, Zhi-Fang; Tan, Yin; Wu, Qiong-You; Xi, Zhen; Yang, Guang-Fu

    2011-06-08

    Discovery of protoporphyrinogen oxidase (PPO, EC 1.3.3.4) inhibitors has been one of the hottest research areas in the field of herbicide development for many years. As a continuation of our research work on the development of new PPO-inhibiting herbicides, a series of novel N-(benzothiazol-5-yl)-4,5,6,7-tetrahydro-1H-isoindole-1,3(2H)-diones (1a-p) and N-(benzothiazol-5-yl)isoindoline-1,3-diones (2a-h) were designed and synthesized according to the ring-closing strategy of two ortho-substituents. The bioassay results indicated that some newly synthesized compounds exhibited higher PPO inhibition activity than the control of sulfentrazone. Compound 1a, S-(5-(1,3-dioxo-4,5,6,7-tetrahydro-1H-isoindol-2(3H)-yl)-6-fluorobenzothiazol-2-yl) O-methyl carbonothioate, was identified as the most potent inhibitor with k(i) value of 0.08 μM, about 9 times higher than that of sulfentrazone (k(i) = 0.72 μM). Further green house assay showed that compound 1b, methyl 2-((5-(1,3-dioxo-4,5,6,7-tetrahydro-1H-isoindol-2(3H)-yl)-6-fluorobenzothiazol-2-yl)thio)acetate, exhibited herbicidal activity comparable to that of sulfentrazone even at a concentration of 37.5 g ai/ha. In addition, among six tested crops, wheat exhibited high tolerance to compound 1b even at a dosage of 300 g ai/ha. These results indicated that compound 1b might have the potential to be developed as a new herbicide for weed control of wheat field.

  11. Synthesis, structural and spectroscopic features, and investigation of bioactive nature of a novel organic-inorganic hybrid material 1H-1,2,4-triazole-4-ium trioxonitrate

    NASA Astrophysics Data System (ADS)

    Gatfaoui, Sofian; Issaoui, Noureddine; Mezni, Ali; Bardak, Fehmi; Roisnel, Thierry; Atac, Ahmet; Marouani, Houda

    2017-12-01

    The novel inorganic-organic hybrid material 1H-1,2,4-triazole-4-ium trioxonitrate (TAN) have been elaborated and crystallized to the monoclinic system with space group P21/c and the lattice parameters obtained are a = 8.8517(15) Å, b = 8.3791(15) Å, c = 7.1060(11) Å, β = 103.776(7)°, V = 511.89(15) Å3 and Z = 4. In order to enhance (TAN) on the applied plan, biophysicochemical characterization of the title compound have been obtained with experimentally and theoretically. The crystal structure exposed substantial hydrogen bonding stuck between the protonated 1,2,4-triazole ring and the nitrate forming thus sheets parallel to the plans (-1 0 1). The three-dimensional supramolecular network is formed through the π … π interactions involving heterocyclic rings in these sheets. Assessment of intermolecular contacts in the crystal arrangement was quantified by Hirshfeld surface analysis and interactions were analyzed by orbital NBO and topological AIM approaches. This compound was also investigated by means of infrared spectroscopy, electrical conductivity, thermal analysis TG-DTA, and DSC. Moreover, the antioxidant properties of TAN were determined via the DPPH radical scavenging, the ABTS radical scavenging, hydroxyl radical scavenging, and ferric reducing power (FRP). Obtained results confirm the functionality of antioxidant potency of TAN. The molecular structure and vibrational spectral analysis of TAN have been reported by using density functional theory calculations at B3LYP/6-311++G(d,p) level of theory. Molecular docking behaviors of TAN along with well-known triazole antifungal agents (fluconazole, itraconazole, posaconazole, and voriconazole) with saccharomyces cerevisiae CYP51 (Lanosterol 14-alpha demethylase) were investigated. The potent of TAN as an inhibitor was discussed on the basis of noncovalent interaction profile. Furthermore, protonic conduction of this compound has been intentional in the temperature range of 295-373 K.

  12. The hSK4 (KCNN4) isoform is the Ca2+-activated K+ channel (Gardos channel) in human red blood cells.

    PubMed

    Hoffman, Joseph F; Joiner, William; Nehrke, Keith; Potapova, Olga; Foye, Kristen; Wickrema, Amittha

    2003-06-10

    The question is, does the isoform hSK4, also designated KCNN4, represent the small conductance, Ca2+-activated K+ channel (Gardos channel) in human red blood cells? We have analyzed human reticulocyte RNA by RT-PCR, and, of the four isoforms of SK channels known, only SK4 was found. Northern blot analysis of purified and synchronously growing human erythroid progenitor cells, differentiating from erythroblasts to reticulocytes, again showed only the presence of SK4. Western blot analysis, with an anti-SK4 antibody, showed that human erythroid progenitor cells and, importantly, mature human red blood cell ghost membranes, both expressed the SK4 protein. The Gardos channel is known to turn on, given inside Ca2+, in the presence but not the absence of external Ko+ and remains refractory to Ko+ added after exposure to inside Ca2+. Heterologously expressed SK4, but not SK3, also shows this behavior. In inside-out patches of red cell membranes, the open probability (Po) of the Gardos channel is markedly reduced when the temperature is raised from 27 to 37 degrees C. Net K+ efflux of intact red cells is also reduced by increasing temperature, as are the Po values of inside-out patches of Chinese hamster ovary cells expressing SK4 (but not SK3). Thus the envelope of evidence indicates that SK4 is the gene that codes for the Gardos channel in human red blood cells. This channel is important pathophysiologically, because it represents the major pathway for cell shrinkage via KCl and water loss that occurs in sickle cell disease.

  13. 40 CFR 721.10356 - Zinc, bis[3-(acetyl-.kappa.O)-6-methyl-2H-pyran-2,4(3H)-dionato-.kappa.O4]diaqua-.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Zinc, bis[3-(acetyl-.kappa.O)-6-methyl-2H-pyran-2,4(3H)-dionato-.kappa.O4]diaqua-. 721.10356 Section 721.10356 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific...

  14. 40 CFR 721.10356 - Zinc, bis[3-(acetyl-.kappa.O)-6-methyl-2H-pyran-2,4(3H)-dionato-.kappa.O4]diaqua-.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Zinc, bis[3-(acetyl-.kappa.O)-6-methyl-2H-pyran-2,4(3H)-dionato-.kappa.O4]diaqua-. 721.10356 Section 721.10356 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific...

  15. 40 CFR 721.10356 - Zinc, bis[3-(acetyl-.kappa.O)-6-methyl-2H-pyran-2,4(3H)-dionato-.kappa.O4]diaqua-.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Zinc, bis[3-(acetyl-.kappa.O)-6-methyl-2H-pyran-2,4(3H)-dionato-.kappa.O4]diaqua-. 721.10356 Section 721.10356 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific...

  16. Genome-wide profiling identifies a subset of methamphetamine (METH)-induced genes associated with METH-induced increased H4K5Ac binding in the rat striatum

    PubMed Central

    2013-01-01

    Background METH is an illicit drug of abuse that influences gene expression in the rat striatum. Histone modifications regulate gene transcription. Methods We therefore used microarray analysis and genome-scale approaches to examine potential relationships between the effects of METH on gene expression and on DNA binding of histone H4 acetylated at lysine 4 (H4K5Ac) in the rat dorsal striatum of METH-naïve and METH-pretreated rats. Results Acute and chronic METH administration caused differential changes in striatal gene expression. METH also increased H4K5Ac binding around the transcriptional start sites (TSSs) of genes in the rat striatum. In order to relate gene expression to histone acetylation, we binned genes of similar expression into groups of 100 genes and proceeded to relate gene expression to H4K5Ac binding. We found a positive correlation between gene expression and H4K5Ac binding in the striatum of control rats. Similar correlations were observed in METH-treated rats. Genes that showed acute METH-induced increased expression in saline-pretreated rats also showed METH-induced increased H4K5Ac binding. The acute METH injection caused similar increases in H4K5Ac binding in METH-pretreated rats, without affecting gene expression to the same degree. Finally, genes that showed METH-induced decreased expression exhibited either decreases or no changes in H4K5Ac binding. Conclusion Acute METH injections caused increased gene expression of genes that showed increased H4K5Ac binding near their transcription start sites. PMID:23937714

  17. Hydrothermal synthesis and characterization of the first mixed alkali borate-nitrate K{sub 3}Na[B{sub 6}O{sub 9}(OH){sub 3}]NO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortner, Teresa S.; Wurst, Klaus; Perfler, Lukas

    2015-01-15

    The first mixed alkali borate-nitrate K{sub 3}Na[B{sub 6}O{sub 9}(OH){sub 3}]NO{sub 3} was synthesized under hydrothermal conditions from Na{sub 2}B{sub 4}O{sub 7}·10H{sub 2}O and K{sub 2}B{sub 4}O{sub 7}·4H{sub 2}O using KNO{sub 3} as a nitrate source. The compound crystallizes in the space group Pnnm (no. 58) with the lattice parameters a=1320.8(3), b=910.7(2), and c=1232.5(3) pm (Z=4). Isolated Sechserrings formed by BO{sub 4} and BO{sub 3} groups are linked through hydrogen bridges to form a three-dimensional network. - Graphical abstract: The first mixed alkali borate-nitrate K{sub 3}Na[B{sub 6}O{sub 9}(OH){sub 3}]NO{sub 3} was synthesized under hydrothermal conditions from Na{sub 2}B{sub 4}O{sub 7}·10H{sub 2}Omore » and K{sub 2}B{sub 4}O{sub 7}·4H{sub 2}O using KNO{sub 3} as a nitrate source. - Highlights: • The first mixed alkali borate-nitrate K{sub 3}Na[B{sub 6}O{sub 9}(OH){sub 3}]NO{sub 3} is reported. • Hydrothermal conditions (240 °C, 3d) were used for the synthesis of K{sub 3}Na[B{sub 6}O{sub 9}(OH){sub 3}]NO{sub 3}. • Borate Sechserrings are interconnected through hydrogen-bonding.« less

  18. Minority heating scenarios in ^4He(H) and ^3He(H) SST-1 plasmas

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Asim Kumar

    2018-01-01

    A numerical analysis of ion cyclotron resonance heating scenarios in two species of low ion temperature plasma has been done to elucidate the physics and possibility to achieve H-mode in tokamak plasma. The analysis is done in the steady-state superconducting tokamak, SST-1, using phase-I plasma parameters which is basically L-mode plasma parameters having low ion temperature and magnetic field with the help of the ion cyclotron heating code TORIC combined with `steady state Fokker-Planck quasilinear' (SSFPQL) solver. As a minority species hydrogen has been used in ^3He and ^4He plasmas to make two species ^3He(H) and ^4He(H) plasmas to study the ion cyclotron wave absorption scenarios. The minority heating is predominant in ^3He(H) and ^4He(H) plasmas as minority resonance layers are not shielded by ion-ion resonance and cut-off layers in both cases, and it is better in ^4He(H) plasma due to the smooth penetration of wave through plasma-vacuum surface. In minority concentration up to 15%, it has been observed that minority ion heating is the principal heating mechanism compared to electron heating and heating due to mode conversion phenomena. Numerical analysis with the help of SSFPQL solver shows that the tail of the distribution function of the minority ion is more energetic than that of the majority ion and therefore, more anisotropic. Due to good coupling of the wave and predominance of the minority heating regime, producing energetic ions in the tail region of the distribution function, the ^4He(H) and ^3He(H) plasmas could be studied in-depth to achieve H-mode in two species of low-temperature plasma.

  19. [Immobilization technology and mechanism of fly ash using H3PO4].

    PubMed

    Wang, Jun; Jiang, Jian-Guo; Sui, Ji-Chao; Yang, Shi-Jian

    2006-08-01

    Chemical composition and toxicity leaching characteristics of fly ash was analyzed. The experiment results show that many heavy metals were contained; leaching concentration of Pb is 67.03 mg/L, which exceeds the limit of identification standard for hazardous wastes. Effect of input mass of H3PO4 on immobilization of heavy metals and its long-term environmental stability was studied. The results show that when input 8% - 14% (H3PO4 mass/ fly ash mass) of H3PO4 sound immobilization effect can be achieved; 8% and 12% of H3PO4 will bring a satisfactory environmental stability of heavy metals, while more H3PO4 led to less buffer capacity to acid conditions. In fly ash treated by 12% H3PO4, a small quantity of crystal Cr2P2O7, ZnP2, Pb3P4O13, Pb3P2O7, NaZnPO4, NaPbP3O9, Ca2ZnSi2O7 can be detected by XRD; many independent fly ash particles and bar-shaped Pb5 (PO4)3Cl with a diameter of 0.3 - 0.5 microm were observed by SEM; concentrated heavy metal materials were not obtained by CHBr3 floatation. Conclusions can be drawn that, through neutralization reaction of H3PO4 with strongly alkaline fly ash, stabilization reaction conditions were improved, entrapped heavy metals were chemically activated and PO4(3-) needed in stabilization was produced. Activated heavy metals combined with PO4(3-) on surface of fly ash,generated phosphates existing as forms of solid solution in SiO2, CaCO3, CaSO4, KCl, NaCl.

  20. Structural and optical properties of nano-sized K3Nd(PO4)2:Yb3+ orthophosphate.

    PubMed

    Mizer, D; Macalik, L; Tomaszewski, P E; Lisiecki, R; Godlewska, P; Matraszek, A; Szczygieł, I; Zawadzki, M; Hanuza, J

    2009-09-01

    Nanocrystals of tripotassium neodymium bis-phosphate(V) doped with ytterbium ions, K3Nd(PO4)2: Yb3+, were synthesized by Pechini method. The obtained grains, having an average size of about 40 nm, were characterised by X-ray, electron microscopic, electron absorption, luminescence and IR studies. Moreover, fluorescence decay studies were carried out at room temperature. The energy transfer from the Nd3+ to Yb3+ was described and discussed. The results were compared to those of the K3Nd(PO4)2 bulk crystal.