Sample records for h3n2 canine influenza

  1. Canine susceptibility to human influenza viruses (A/pdm 09H1N1, A/H3N2 and B).

    PubMed

    Song, Daesub; Kim, Hyekwon; Na, Woonsung; Hong, Minki; Park, Seong-Jun; Moon, Hyoungjoon; Kang, Bokyu; Lyoo, Kwang-Soo; Yeom, Minjoo; Jeong, Dae Gwin; An, Dong-Jun; Kim, Jeong-Ki

    2015-02-01

    We investigated the infectivity and transmissibility of the human seasonal H3N2, pandemic (pdm) H1N1 (2009) and B influenza viruses in dogs. Dogs inoculated with human seasonal H3N2 and pdm H1N1 influenza viruses exhibited nasal shedding and were seroconverted against the viruses; this did not occur in the influenza B virus-inoculated dogs. Transmission of human H3N2 virus between dogs was demonstrated by observing nasal shedding and seroconversion in naïve dogs after contact with inoculated dogs. The seroprevalence study offered evidence of human H3N2 infection occurring in dogs since 2008. Furthermore, serological evidence of pdm H1N1 influenza virus infection alone and in combination with canine H3N2 virus was found in the serum samples collected from field dogs during 2010 and 2011. Our results suggest that dogs may be hosts for human seasonal H3N2 and pdm H1N1 influenza viruses. © 2015 The Authors.

  2. A bivalent live-attenuated influenza vaccine for the control and prevention of H3N8 and H3N2 canine influenza viruses.

    PubMed

    Rodriguez, Laura; Nogales, Aitor; Murcia, Pablo R; Parrish, Colin R; Martínez-Sobrido, Luis

    2017-08-03

    Canine influenza viruses (CIVs) cause a contagious respiratory disease in dogs. CIV subtypes include H3N8, which originated from the transfer of H3N8 equine influenza virus (EIV) to dogs; and the H3N2, which is an avian-origin virus adapted to infect dogs. Only inactivated influenza vaccines (IIVs) are currently available against the different CIV subtypes. However, the efficacy of these CIV IIVs is not optimal and improved vaccines are necessary for the efficient prevention of disease caused by CIVs in dogs. Since live-attenuated influenza vaccines (LAIVs) induce better immunogenicity and protection efficacy than IIVs, we have combined our previously described H3N8 and H3N2 CIV LAIVs to create a bivalent vaccine against both CIV subtypes. Our findings show that, in a mouse model of infection, the bivalent CIV LAIV is safe and able to induce, upon a single intranasal immunization, better protection than that induced by a bivalent CIV IIV against subsequent challenge with H3N8 or H3N2 CIVs. These protection results also correlated with the ability of the bivalent CIV LAIV to induce better humoral immune responses. This is the first description of a bivalent LAIV for the control and prevention of H3N8 and H3N2 CIV infections in dogs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Molecular analyses of H3N2 canine influenza viruses isolated from Korea during 2013-2014.

    PubMed

    Lee, EunJung; Kim, Eun-Ju; Kim, Bo-Hye; Song, Jae-Young; Cho, In-Soo; Shin, Yeun-Kyung

    2016-04-01

    Canine influenza A virus (CIV) causes a respiratory disease among dog populations and is prevalent in North America and Asia. Recently, Asian H3N2 CIV infection has been of particular concern, with recent reports related to reassortants with pandemic 2009 strains, direct transmission from a human H3N2, a possibility of H3N2 CIV transmission to other mammals, and even the first outbreak of H3N2 CIVs in North America in April 2015. However, despite these global concerns, our understanding of how influenza A virus transmission impacts the overall populations of H3N2 CIVs remains incomplete. Hence, we investigated the evolutionary history of the most recent two Korean CIV isolates, A/canine/Korea/BD-1/2013 and A/canine/Korea/DG1/2014, along with 57 worldwide CIVs, using comprehensive molecular analyses based on genomic genotyping. This study presents that the new Korean CIV isolates are closely related to the predominantly circulating H3N2 CIVs with genotypes K, G, E, 3B, F, 2D, F, and 1E, carrying several mutations in antigenic and host determinant sites. Also, our findings show that the genome-wide genetic variations within the H3N2 CIVs are low; however, two antigenic protein (HA and NA) analysis demonstrates genetic diversification of the H3N2 CIVs, which evolves independently between Korea and China.

  4. Short communication: isolation and phylogenetic analysis of an avian-origin H3N2 canine influenza virus in dog shelter, China.

    PubMed

    Su, Shuo; Yuan, Ziguo; Chen, Jidang; Xie, Jiexiong; Li, Huatao; Huang, Zhen; Zhang, Minze; Du, Guohao; Chen, Zhongming; Tu, Liqing; Zou, Yufei; Miao, Junhao; Wang, Hui; Jia, Kun; Li, Shoujun

    2013-06-01

    A H3N2 canine influenza virus, A/canine/Guangdong/3/2011 (H3N2), was isolated from roaming dogs in rural China. Sequence and phylogenetic analysis of eight gene segments revealed that the A/canine/Guangdong/3/2011 (H3N2) was most similar to a recent H3N2 canine influenza virus isolated in cats from South Korea, which originated from an avian strain. To our knowledge, this is the first report of an avian-origin H3N2 CIV which was isolated from roaming dogs in China. The epidemiologic information provided herein suggests that continued study is required to determine if this virus could be established in the roaming dog population in rural China and pose potential threats to public health.

  5. The avian-origin H3N2 canine influenza virus has limited replication in swine

    USDA-ARS?s Scientific Manuscript database

    A genetically and antigenically distinct H3N2 canine influenza of avian-origin was detected in March of 2015 in Chicago, Illinois. A subsequent outbreak was reported with over 1,000 dogs in the Midwest affected. The potential for canine-to-swine transmission was unknown. Experimental infection in pi...

  6. Evaluation of protective efficacy of three novel H3N2 canine influenza vaccines.

    PubMed

    Tu, Liqing; Zhou, Pei; Li, Lutao; Li, Xiuzhen; Hu, Renjun; Jia, Kun; Sun, Lingshuang; Yuan, Ziguo; Li, Shoujun

    2017-11-17

    Canine influenza virus (CIV) has the potential risk to spread in different areas and dog types. Thus, there is a growing need to develop an effective vaccine to control CIV disease. Here, we developed three vaccine candidates: 1) a recombinant pVAX1 vector expressing H3N2 CIV hemagglutinin (pVAX1-HA); 2) a live attenuated canine adenovirus type 2 expressing H3N2 CIV hemagglutinin (rCAV2-HA); and 3) an inactivated H3N2 CIV (A/canine/Guangdong/01/2006 (H3N2)). Mice received an initial intramuscular immunization that followed two booster injections at 2 and 4 weeks post-vaccination (wpv). The splenic lymphocytes were collected to assess the immune responses at 6 wpv. The protective efficacy was evaluated by challenging H3N2 CIV after vaccination (at 6 wpv). Our results demonstrated that all three vaccine candidates elicited cytokine and antibody responses in mice. The rCAV2-HA vaccine and the inactivated vaccine generated efficient protective efficacy in mice, whereas limited protection was provided by the pVAX1-HA DNA vaccine. Therefore, both the rCAV2-HA live recombinant virus and the inactivated CIV could be used as potential novel vaccines against H3N2CIV. This study provides guidance for choosing the most appropriate vaccine for the prevention and control of CIV disease.

  7. H3N2 canine influenza virus causes severe morbidity in dogs with induction of genes related to inflammation and apoptosis

    PubMed Central

    2013-01-01

    Dogs are companion animals that live in close proximity with humans. Canine H3N2 influenza virus has been isolated from pet dogs that showed severe respiratory signs and other clinical symptoms such as fever, reduced body weight, and interstitial pneumonia. The canine H3N2 influenza virus can be highly transmissible among dogs via aerosols. When we analyzed global gene expression in the lungs of infected dogs, the genes associated with the immune response and cell death were greatly elevated. Taken together, our results suggest that canine H3N2 influenza virus can be easily transmitted among dogs, and that severe pneumonia in the infected dogs may be partially due to the elevated expression of genes related to inflammation and apoptosis. PMID:24090140

  8. Evaluation of protective efficacy of three novel H3N2 canine influenza vaccines

    PubMed Central

    Li, Lutao; Li, Xiuzhen; Hu, Renjun; Jia, Kun; Sun, Lingshuang; Yuan, Ziguo; Li, Shoujun

    2017-01-01

    Canine influenza virus (CIV) has the potential risk to spread in different areas and dog types. Thus, there is a growing need to develop an effective vaccine to control CIV disease. Here, we developed three vaccine candidates: 1) a recombinant pVAX1 vector expressing H3N2 CIV hemagglutinin (pVAX1-HA); 2) a live attenuated canine adenovirus type 2 expressing H3N2 CIV hemagglutinin (rCAV2-HA); and 3) an inactivated H3N2 CIV (A/canine/Guangdong/01/2006 (H3N2)). Mice received an initial intramuscular immunization that followed two booster injections at 2 and 4 weeks post-vaccination (wpv). The splenic lymphocytes were collected to assess the immune responses at 6 wpv. The protective efficacy was evaluated by challenging H3N2 CIV after vaccination (at 6 wpv). Our results demonstrated that all three vaccine candidates elicited cytokine and antibody responses in mice. The rCAV2-HA vaccine and the inactivated vaccine generated efficient protective efficacy in mice, whereas limited protection was provided by the pVAX1-HA DNA vaccine. Therefore, both the rCAV2-HA live recombinant virus and the inactivated CIV could be used as potential novel vaccines against H3N2CIV. This study provides guidance for choosing the most appropriate vaccine for the prevention and control of CIV disease. PMID:29228675

  9. Zoonotic Risk, Pathogenesis, and Transmission of Avian-Origin H3N2 Canine Influenza Virus

    PubMed Central

    Sun, Hailiang; Blackmon, Sherry; Yang, Guohua; Waters, Kaitlyn; Li, Tao; Tangwangvivat, Ratanaporn; Xu, Yifei; Shyu, Daniel; Wen, Feng; Cooley, Jim; Senter, Lucy; Lin, Xiaoxu; Jarman, Richard; Hanson, Larry; Webby, Richard

    2017-01-01

    ABSTRACT Two subtypes of influenza A virus (IAV), avian-origin canine influenza virus (CIV) H3N2 (CIV-H3N2) and equine-origin CIV H3N8 (CIV-H3N8), are enzootic in the canine population. Dogs have been demonstrated to seroconvert in response to diverse IAVs, and naturally occurring reassortants of CIV-H3N2 and the 2009 H1N1 pandemic virus (pdmH1N1) have been isolated. We conducted a thorough phenotypic evaluation of CIV-H3N2 in order to assess its threat to human health. Using ferret-generated antiserum, we determined that CIV-H3N2 is antigenically distinct from contemporary human H3N2 IAVs, suggesting that there may be minimal herd immunity in humans. We assessed the public health risk of CIV-H3N2 × pandemic H1N1 (pdmH1N1) reassortants by characterizing their in vitro genetic compatibility and in vivo pathogenicity and transmissibility. Using a luciferase minigenome assay, we quantified the polymerase activity of all possible 16 ribonucleoprotein (RNP) complexes (PB2, PB1, PA, NP) between CIV-H3N2 and pdmH1N1, identifying some combinations that were more active than either parental virus complex. Using reverse genetics and fixing the CIV-H3N2 hemagglutinin (HA), we found that 51 of the 127 possible reassortant viruses were viable and able to be rescued. Nineteen of these reassortant viruses had high-growth phenotypes in vitro, and 13 of these replicated in mouse lungs. A single reassortant with the NP and HA gene segments from CIV-H3N2 was selected for characterization in ferrets. The reassortant was efficiently transmitted by contact but not by the airborne route and was pathogenic in ferrets. Our results suggest that CIV-H3N2 reassortants may pose a moderate risk to public health and that the canine host should be monitored for emerging IAVs. IMPORTANCE IAV pandemics are caused by the introduction of novel viruses that are capable of efficient and sustained transmission into a human population with limited herd immunity. Dogs are a a potential mixing vessel for

  10. Zoonotic Risk, Pathogenesis, and Transmission of Avian-Origin H3N2 Canine Influenza Virus.

    PubMed

    Sun, Hailiang; Blackmon, Sherry; Yang, Guohua; Waters, Kaitlyn; Li, Tao; Tangwangvivat, Ratanaporn; Xu, Yifei; Shyu, Daniel; Wen, Feng; Cooley, Jim; Senter, Lucy; Lin, Xiaoxu; Jarman, Richard; Hanson, Larry; Webby, Richard; Wan, Xiu-Feng

    2017-11-01

    Two subtypes of influenza A virus (IAV), avian-origin canine influenza virus (CIV) H3N2 (CIV-H3N2) and equine-origin CIV H3N8 (CIV-H3N8), are enzootic in the canine population. Dogs have been demonstrated to seroconvert in response to diverse IAVs, and naturally occurring reassortants of CIV-H3N2 and the 2009 H1N1 pandemic virus (pdmH1N1) have been isolated. We conducted a thorough phenotypic evaluation of CIV-H3N2 in order to assess its threat to human health. Using ferret-generated antiserum, we determined that CIV-H3N2 is antigenically distinct from contemporary human H3N2 IAVs, suggesting that there may be minimal herd immunity in humans. We assessed the public health risk of CIV-H3N2 × pandemic H1N1 (pdmH1N1) reassortants by characterizing their in vitro genetic compatibility and in vivo pathogenicity and transmissibility. Using a luciferase minigenome assay, we quantified the polymerase activity of all possible 16 ribonucleoprotein (RNP) complexes (PB2, PB1, PA, NP) between CIV-H3N2 and pdmH1N1, identifying some combinations that were more active than either parental virus complex. Using reverse genetics and fixing the CIV-H3N2 hemagglutinin (HA), we found that 51 of the 127 possible reassortant viruses were viable and able to be rescued. Nineteen of these reassortant viruses had high-growth phenotypes in vitro , and 13 of these replicated in mouse lungs. A single reassortant with the NP and HA gene segments from CIV-H3N2 was selected for characterization in ferrets. The reassortant was efficiently transmitted by contact but not by the airborne route and was pathogenic in ferrets. Our results suggest that CIV-H3N2 reassortants may pose a moderate risk to public health and that the canine host should be monitored for emerging IAVs. IMPORTANCE IAV pandemics are caused by the introduction of novel viruses that are capable of efficient and sustained transmission into a human population with limited herd immunity. Dogs are a a potential mixing vessel for avian

  11. Origins and Evolutionary Dynamics of H3N2 Canine Influenza Virus.

    PubMed

    Zhu, Henan; Hughes, Joseph; Murcia, Pablo R

    2015-05-01

    Influenza A viruses (IAVs) are maintained mainly in wild birds, and despite frequent spillover infections of avian IAVs into mammals, only a small number of viruses have become established in mammalian hosts. A new H3N2 canine influenza virus (CIV) of avian origin emerged in Asia in the mid-2000s and is now circulating in dog populations of China and South Korea, and possibly in Thailand. The emergence of CIV provides new opportunities for zoonotic infections and interspecies transmission. We examined 14,764 complete IAV genomes together with all CIV genomes publicly available since its first isolation until 2013. We show that CIV may have originated as early as 1999 as a result of segment reassortment among Eurasian and North American avian IAV lineages. We also identified amino acid changes that might have played a role in CIV emergence, some of which have not been previously identified in other cross-species jumps. CIV evolves at a lower rate than H3N2 human influenza viruses do, and viral phylogenies exhibit geographical structure compatible with high levels of local transmission. We detected multiple intrasubtypic and heterosubtypic reassortment events, including the acquisition of the NS segment of an H5N1 avian influenza virus that had previously been overlooked. In sum, our results provide insight into the adaptive changes required by avian viruses to establish themselves in mammals and also highlight the potential role of dogs to act as intermediate hosts in which viruses with zoonotic and/or pandemic potential could originate, particularly with an estimated dog population of ∼ 700 million. Influenza A viruses circulate in humans and animals. This multihost ecology has important implications, as past pandemics were caused by IAVs carrying gene segments of both human and animal origin. Adaptive evolution is central to cross-species jumps, and this is why understanding the evolutionary processes that shape influenza A virus genomes is key to elucidating

  12. Canine H3N8 influenza virus infection in dogs and mice.

    PubMed

    Castleman, W L; Powe, J R; Crawford, P C; Gibbs, E P J; Dubovi, E J; Donis, R O; Hanshaw, D

    2010-05-01

    An H3N8 influenza virus closely related to equine influenza virus was identified in racing greyhound dogs with respiratory disease in 2004 and subsequently identified in shelter and pet dogs. Pathologic findings in dogs spontaneously infected with canine influenza virus were compared with lesions induced in beagle and mongrel dogs following experimental inoculation with influenza A/canine/Florida/43/2004. BALB/c mice were inoculated with canine influenza virus to assess their suitability as an experimental model for viral pathogenesis studies. All dogs inoculated with virus developed necrotizing and hyperplastic tracheitis and bronchitis with involvement of submucosal glands as well as mild bronchiolitis and pneumonia. Viral antigen was identified in bronchial and tracheal epithelial cells of all dogs and in alveolar macrophages of several dogs. Many dogs that were spontaneously infected with virus also developed bacterial pneumonia, and greyhound dogs with fatal spontaneous infection developed severe pulmonary hemorrhage with hemothorax. Virus-inoculated BALB/c mice developed tracheitis, bronchitis, bronchiolitis, and mild pneumonia in association with viral antigen in airway epithelial cells and in type 2 alveolar epithelial cells. Virus was not detected in extrarespiratory sites in any animals. The results indicate that canine influenza virus infection consistently induces acute tracheitis and bronchitis in dogs. Mice may be a useful model for some pathogenesis studies on canine influenza virus infection.

  13. Experimental infection and natural contact exposure of ferrets with canine influenza virus (H3N2).

    PubMed

    Lee, Yu-Na; Lee, Dong-Hun; Park, Jae-Keun; Yuk, Seong-Su; Kwon, Jung-Hoon; Nahm, Sang-Soep; Lee, Joong-Bok; Park, Seung-Yong; Choi, In-Soo; Song, Chang-Seon

    2013-02-01

    Epidemics of H3N2 canine influenza virus (CIV) among dogs in South Korea and southern China have raised concern over the potential for zoonotic transmission of these viruses. Here, we analysed the pathogenesis and transmissibility of H3N2 CIV in ferret. H3N2 CIV replicated efficiently in the respiratory system of inoculated ferrets and caused acute necrotizing bronchioalveolitis and non-suppurative encephalitis. Transmission of H3N2 CIV was detected in three of six ferrets co-housed with inoculated ferrets, but no viruses were detected in second-contact ferrets. These findings show that H3N2 CIV has the capacity to replicate in and transmit partially among co-housed ferrets and underscore the need for continued public health surveillance.

  14. Comparative analysis of MicroRNA expression in dog lungs infected with the H3N2 and H5N1 canine influenza viruses.

    PubMed

    Zheng, Yun; Fu, Xinliang; Wang, Lifang; Zhang, Wenyan; Zhou, Pei; Zhang, Xin; Zeng, Weijie; Chen, Jidang; Cao, Zongxi; Jia, Kun; Li, Shoujun

    2018-05-14

    MicroRNAs, a class of noncoding RNAs 18 to 23 nucleotides (nt) in length, play critical roles in a wide variety of biological processes. The objective of this study was to examine differences in microRNA expression profiles derived from the lungs of beagle dogs infected with the avian-origin H3N2 canine influenza virus (CIV) or the highly pathogenic avian influenza (HPAI) H5N1 virus (canine-origin isolation strain). After dogs were infected with H3N2 or H5N1, microRNA expression in the lungs was assessed using a deep-sequencing approach. To identify the roles of microRNAs in viral pathogenicity and the host immune response, microRNA target genes were predicted, and their functions were analyzed using bioinformatics software. A total of 229 microRNAs were upregulated in the H5N1 infection group compared with those in the H3N2 infection group, and 166 microRNAs were downregulated. MicroRNA target genes in the H5N1 group were more significantly involved in metabolic pathways, such as glycerolipid metabolism and glycerophospholipid metabolism, than those in the H3N2 group. The inhibition of metabolic pathways may lead to appetite loss, weight loss and weakened immunity. Moreover, miR-485, miR-144, miR-133b, miR-4859-5p, miR-6902-3p, miR-7638, miR-1307-3p and miR-1346 were significantly altered microRNAs that potentially led to the inhibition of innate immune pathways and the heightened pathogenicity of H5N1 compared with that of H3N2 in dogs. This study deepens our understanding of the complex relationships among microRNAs, the influenza virus-mediated immune response and immune injury in dogs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Comparative pathogenesis of H3N2 canine influenza virus in beagle dogs challenged by intranasal and intratracheal inoculation.

    PubMed

    Luo, Jie; Lu, Gang; Ye, Shaotang; Ou, Jiajun; Fu, Cheng; Zhang, Xin; Wang, Xiangbin; Huang, Ji; Wu, Peixin; Xu, Haibin; Wu, Liyan; Li, Shoujun

    2018-05-31

    As important companion animals, dogs may serve as intermediate hosts for transmitting influenza virus to humans. However, knowledge regarding H3N2 canine influenza virus (CIV) pathogenicity is not comprehensive, which directly affects the animal models of pathogenicity in H3N2 CIV vaccine research. Here, to assess H3N2 CIV pathogenicity, we utilized 30 ten-week-old purpose-bred beagles intratracheally or intranasally inoculated with 10 6 50 % egg-infectious dose. Intratracheal inoculation was more virulent to dogs than intranasal inoculation as shown by lung pathology score, histopathological changes, clinical symptoms, and body temperature. More intense virus replication was observed in the upper and lower respiratory tracts by intratracheal than intranasal inoculation according to nasal swabs, various organ virus titers, and antigen expression. These results may enhance the H3N2 CIV infection model, providing a more complete experimental basis for studying intrinsic H3N2 CIV pathogenic mechanism, and also serving a reference role for CIV prevention and treatment. Copyright © 2018. Published by Elsevier B.V.

  16. The pathogenesis of H3N8 canine influenza virus in chickens and turkeys

    USDA-ARS?s Scientific Manuscript database

    Canine influenza virus (CIV) of the H3N8 subtype has emerged in dog populations throughout the U.S. where it has become endemic in kennels and animal shelters in some regions of the U.S. CIV is believed to be an equine influenza that was transmitted to and adapted to dogs. It has not previously bee...

  17. The pathogenesis of H3N8 canine influenza virus in chickens, turkeys and ducks

    USDA-ARS?s Scientific Manuscript database

    Canine influenza virus (CIV) of the H3N8 subtype has emerged in dog populations throughout the U.S. where is has become endemic in kennels and animal shelters in some regions. It has not previously been determined whether the canine adapted virus can be transmitted to domestic poultry, which are su...

  18. Assessment of Molecular, Antigenic, and Pathological Features of Canine Influenza A(H3N2) Viruses That Emerged in the United States

    PubMed Central

    Pulit-Penaloza, Joanna A.; Simpson, Natosha; Yang, Hua; Creager, Hannah M.; Jones, Joyce; Carney, Paul; Belser, Jessica A.; Yang, Genyan; Chang, Jessie; Zeng, Hui; Thor, Sharmi; Jang, Yunho; Killian, Mary Lea; Jenkins-Moore, Melinda; Janas-Martindale, Alicia; Dubovi, Edward; Wentworth, David E.; Stevens, James; Tumpey, Terrence M.; Davis, C. Todd; Maines, Taronna R.

    2017-01-01

    Background A single subtype of canine influenza virus (CIV), A(H3N8), was circulating in the United States until a new subtype, A(H3N2), was detected in Illinois in spring 2015. Since then, this CIV has caused thousands of infections in dogs in multiple states. Methods In this study, genetic and antigenic properties of the new CIV were evaluated. In addition, structural and glycan array binding features of the recombinant hemagglutinin were determined. Replication kinetics in human airway cells and pathogenesis and transmissibility in animal models were also assessed. Results A(H3N2) CIVs maintained molecular and antigenic features related to low pathogenicity avian influenza A(H3N2) viruses and were distinct from A(H3N8) CIVs. The structural and glycan array binding profile confirmed these findings and revealed avian-like receptor-binding specificity. While replication kinetics in human airway epithelial cells was on par with that of seasonal influenza viruses, mild-to-moderate disease was observed in infected mice and ferrets, and the virus was inefficiently transmitted among cohoused ferrets. Conclusions Further adaptation is needed for A(H3N2) CIVs to present a likely threat to humans. However, the potential for coinfection of dogs and possible reassortment of human and other animal influenza A viruses presents an ongoing risk to public health. PMID:28934454

  19. Association between nasal shedding and fever that influenza A (H3N2) induces in dogs.

    PubMed

    Song, Daesub; Moon, Hyoungjoon; Jung, Kwonil; Yeom, Minjoo; Kim, Hyekwon; Han, Sangyoon; An, Dongjun; Oh, Jinsik; Kim, Jongman; Park, Bongkyun; Kang, Bokyu

    2011-01-05

    Avian origin canine influenza virus was reported in Korea. The dog to dog contact transmission of the avian origin canine influenza virus (CIV) H3N2 and CIV H3N8 was shown by experimental contact transmission. This study was focused on viral excretion and fever in order to elucidate the epidemiological associations which might be helpful to control the disease transmissions in CIV outbreak in dogs. An influenza seronegative 10-week-old Beagle dog was experimentally inoculated with the canine influenza virus A/canine/01/2007, subtype H3N2. Eight hours after inoculation, the infected dog was cohoused with seven uninfected Beagle dogs. Clinical signs including fever were recorded for 14 days post inoculation. The infected dog and four of seven contact dogs in the study showed clinical signs (sneezing, nasal discharge and coughing) during the study. Viral shedding occurred in all of the animals tested and began on 1 to 6 DPI in dogs with clinical signs. Elevated body temperatures above 39.5 °C (geometric mean temperature of 39.86 °C ± 0.49) were observed in all symptomatic dogs. The mean viral titer during fever was 2.99 log EID₅₀/ml, which was significantly higher than the viral titer detected in the non fever. The data show that contact dogs with a canine influenza infected dog shed different levels of virus in their nasal excretions and demonstrate that clinical signs, including fever, significantly correlate with the viral shedding.

  20. Evolution of canine and equine influenza (H3N8) viruses co-circulating between 2005 and 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivailler, Pierre; Perry, Ijeoma A.; Jang Yunho

    Influenza virus, subtype H3N8, was transmitted from horses to greyhound dogs in 2004 and subsequently spread to pet dog populations. The co-circulation of H3N8 viruses in dogs and horses makes bi-directional virus transmission between these animal species possible. To understand the dynamics of viral transmission, we performed virologic surveillance in dogs and horses between 2005 and 2008 in the United States. The genomes of influenza A H3N8 viruses isolated from 36 dogs and horses were sequenced to determine their origin and evolution. Phylogenetic analyses revealed that H3N8 influenza viruses from horses and dogs were monophyletic and distinct. There was nomore » evidence of canine influenza virus infection in horses with respiratory disease or new introductions of equine influenza viruses into dogs in the United States. Analysis of a limited number of equine influenza viruses suggested substantial separation in the transmission of viruses causing clinically apparent influenza in dogs and horses.« less

  1. Efficacy of canine influenza virus (H3N8) vaccine to decrease severity of clinical disease after co-challenge with canine influenza virus and Streptococcus equi subsp. Zooepidemicus

    USDA-ARS?s Scientific Manuscript database

    Since first emerging into the North American canine population in 2004, canine influenza virus (CIV) subtype H3N8 has shown horizontal transmission among dogs, with a high level of adaptation to this species. Severity of disease is variable, and co-infection by other respiratory pathogens is an impo...

  2. Comparative analysis of virulence of a novel, avian-origin H3N2 canine influenza virus in various host species.

    PubMed

    Lyoo, Kwang-Soo; Kim, Jeong-Ki; Kang, Bokyu; Moon, Hyoungjoon; Kim, Jongman; Song, Manki; Park, Bongkyun; Kim, Sang-Hyun; Webster, Robert G; Song, Daesub

    2015-01-02

    A novel avian-origin H3N2 canine influenza A virus (CIV) that showed high sequence similarities in hemagglutinin and neuraminidase genes with those of non-pathogenic avian influenza viruses was isolated in our routine surveillance program in South Korea. We previously reported that the pathogenicity of this strain could be reproduced in dogs and cats. In the present study, the host tropism of H3N2 CIV was examined by experimental inoculation into several host species, including chickens, pigs, mice, guinea pigs, and ferrets. The CIV infection resulted in no overt symptoms of disease in these host species. However, sero-conversion, virus shedding, and gross and histopathologic lung lesions were observed in guinea pig and ferrets but not in pigs, or mice. Based on the genetic similarity of our H3N2 CIV with currently circulating avian influenza viruses and the presence of α-2,3-linked rather than α-2,6-linked sialic acid receptors in the respiratory tract of dogs, we believed that this strain of CIV would have avian virus-like receptor specificity, but that seems to be contrary to our findings in the present study. Further studies are needed to determine the co-receptors of hemagglutinin or post-attachment factors related to virus internalization or pathogenesis in other animals. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Global and quantitative proteomic analysis of dogs infected by avian-like H3N2 canine influenza virus

    PubMed Central

    Su, Shuo; Tian, Jin; Hong, Malin; Zhou, Pei; Lu, Gang; Zhu, Huachen; Zhang, Guihong; Lai, Alexander; Li, Shoujun

    2015-01-01

    Canine influenza virus A (H3N2) is a newly emerged etiological agent for respiratory infections in dogs. The mechanism of interspecies transmission from avian to canine species and the development of diseases in this new host remain to be explored. To investigate this, we conducted a differential proteomics study in 2-month-old beagles inoculated intranasally with 106 TCID50 of A/canine/Guangdong/01/2006 (H3N2) virus. Lung sections excised at 12 h post-inoculation (hpi), 4 days, and 7 days post-inoculation (dpi) were processed for global and quantitative analysis of differentially expressed proteins. A total of 17,796 proteins were identified at different time points. About 1.6% was differentially expressed between normal and infected samples. Of these, 23, 27, and 136 polypeptides were up-regulated, and 14, 18, and 123 polypeptides were down-regulated, at 12 hpi, 4 dpi, and 7 dpi, respectively. Vann diagram analysis indicated that 17 proteins were up-regulated and one was down-regulated at all three time points. Selected proteins were validated by real-time PCR and by Western blot. Our results show that apoptosis and cytoskeleton-associated proteins expression was suppressed, whereas interferon-induced proteins plus other innate immunity proteins were induced after the infection. Understanding of the interactions between virus and the host will provide insights into the basis of interspecies transmission, adaptation, and virus pathogenicity. PMID:25883591

  4. cfa-miR-143 Promotes Apoptosis via the p53 Pathway in Canine Influenza Virus H3N2-Infected Cells.

    PubMed

    Zhou, Pei; Tu, Liqing; Lin, Xi; Hao, Xiangqi; Zheng, Qingxu; Zeng, Weijie; Zhang, Xin; Zheng, Yun; Wang, Lifang; Li, Shoujun

    2017-11-25

    MicroRNAs regulate multiple aspects of the host response to viral infection. This study verified that the expression of cfa-miR-143 was upregulated in vivo and in vitro by canine influenza virus (CIV) H3N2 infection. To understand the role of cfa-miR-143 in CIV-infected cells, the target gene of cfa-miR-143 was identified and assessed for correlations with proteins involved in the apoptosis pathway. A dual luciferase reporter assay showed that cfa-miR-143 targets insulin-like growth factor binding protein 5 (Igfbp5). Furthermore, a miRNA agomir and antagomir of cfa-miR-143 caused the downregulation and upregulation of Igfbp5, respectively, in CIV-infected madin-darby canine kidney (MDCK) cells. This study demonstrated that cfa-miR-143 stimulated p53 and caspase3 activation and induced apoptosis via the p53 pathway in CIV H3N2-infected cells. In conclusion, CIV H3N2 induced the upregulation of cfa-miR-143, which contributes to apoptosis via indirectly activating the p53-caspase3 pathway.

  5. Mutation tryptophan to leucine at position 222 of haemagglutinin could facilitate H3N2 influenza A virus infection in dogs

    PubMed Central

    Yang, Guohua; Li, Shoujun; Blackmon, Sherry; Ye, Jianqiang; Bradley, Konrad C.; Cooley, Jim; Smith, Dave; Hanson, Larry; Cardona, Carol; Steinhauer, David A.; Webby, Richard; Liao, Ming

    2013-01-01

    An avian-like H3N2 influenza A virus (IAV) has recently caused sporadic canine influenza outbreaks in China and Korea, but the molecular mechanisms involved in the interspecies transmission of H3N2 IAV from avian to canine species are not well understood. Sequence analysis showed that residue 222 in haemagglutinin (HA) is predominantly tryptophan (W) in the closely related avian H3N2 IAV, but was leucine (L) in canine H3N2 IAV. In this study, reassortant viruses rH3N2-222L (canine-like) and rH3N2-222W (avian-like) with HA mutation L222W were generated using reverse genetics to evaluate the significance of the L222W mutation on receptor binding and host tropism of H3N2 IAV. Compared with rH3N2-222W, rH3N2-222L grew more rapidly in MDCK cells and had significantly higher infectivity in primary canine tracheal epithelial cells. Tissue-binding assays demonstrated that rH3N2-222L had a preference for canine tracheal tissues rather avian tracheal tissues, whereas rH3N2-222W favoured slightly avian rather canine tracheal tissues. Glycan microarray analysis suggested both rH3N2-222L and rH3N2-222W bound preferentially to α2,3-linked sialic acids. However, the rH3N2-222W had more than twofold less binding affinity than rH3N2-222L to a set of glycans with Neu5Aca23Galb1–4(Fuca-)-like or Neu5Aca23Galb1–3(Fuca-)-like structures. These data suggest the W to L mutation at position 222 of the HA could facilitate infection of H3N2 IAV in dogs, possibly by increasing the binding affinities of the HA to specific receptors with Neu5Aca23Galb1–4(Fuca-) or Neu5Aca23Galb1–3(Fuca-)-like structures that are present in dogs. PMID:23994833

  6. Multiple incursions and recurrent epidemic fade-out of H3N2 canine influenza A virus in the United States.

    PubMed

    Voorhees, Ian E H; Dalziel, Benjamin D; Glaser, Amy; Dubovi, Edward J; Murcia, Pablo R; Newbury, Sandra; Toohey-Kurth, Kathy; Su, Shuo; Kriti, Divya; Van Bakel, Harm; Goodman, Laura B; Leutenegger, Christian; Holmes, Edward C; Parrish, Colin R

    2018-06-06

    Avian-origin H3N2 canine influenza virus (CIV) transferred to dogs in Asia around 2005, becoming enzootic throughout China and Korea before reaching the USA in early 2015. To understand the post-transfer evolution and epidemiology of this virus, particularly the cause of recent and ongoing increases in incidence in the USA, we performed an integrated analysis of whole-genome sequence data from 64 newly sequenced viruses and comprehensive surveillance data. This reveals that the circulation of H3N2 CIV within the USA is typified by recurrent epidemic burst-fadeout dynamics driven by multiple introductions of virus from Asia. Although all major viral lineages displayed similar rates of genomic sequence evolution, H3N2 CIV consistently exhibited proportionally more non-synonymous substitutions per site compared to avian reservoir viruses, indicative of a large-scale change in selection pressures. Despite these genotypic differences, we found no evidence of adaptive evolution or increased viral transmission, with epidemiological models indicating a basic reproductive number, R 0 , of between 1 and 1.5 across nearly all USA outbreaks, consistent with maintained, but heterogeneous circulation. We propose that CIV's mode of viral circulation may have resulted in evolutionary cul-de-sacs, in which there is little opportunity for the selection of the more transmissible H3N2 CIV phenotypes necessary to enable circulation through a general dog population characterized by widespread contact heterogeneity. CIV must therefore rely on metapopulations of high host density (notably animal shelters) within the greater dog population and reintroduction from other populations or face complete epidemic extinction. IMPORTANCE The relatively recent appearance of influenza A virus (IAV) epidemics in dogs expands our understanding of IAV host-range and ecology, providing useful and relevant models for understanding critical factors involved in viral emergence. Here, we integrate viral

  7. Influenza A (H3N2) Variant Virus

    MedlinePlus

    ... When Planning Fairs Key Facts for People Exhibiting Pigs at Fairs News & Highlights Materials & Resources Publications & Resources ... What's this? Submit Button Influenza Types Seasonal Avian Swine Variant Pandemic Other Influenza A (H3N2) Variant Virus ...

  8. Drug susceptibility of influenza A/H3N2 strains co-circulating during 2009 influenza pandemic: first report from Mumbai.

    PubMed

    Gohil, Devanshi J; Kothari, Sweta T; Shinde, Pramod S; Chintakrindi, Anand S; Meharunkar, Rhuta; Warke, Rajas V; Kanyalkar, Meena A; Chowdhary, Abhay S; Deshmukh, Ranjana A

    2015-01-01

    From its first instance in 1977, resistance to amantadine, a matrix (M2) inhibitor has been increasing among influenza A/H3N2, thus propelling the use of oseltamivir, a neuraminidase (NA) inhibitor as a next line drug. Information on drug susceptibility to amantadine and neuraminidase inhibitors for influenza A/H3N2 viruses in India is limited with no published data from Mumbai. This study aimed at examining the sensitivity to M2 and NA inhibitors of influenza A/H3N2 strains isolated from 2009 to 2011 in Mumbai. Nasopharyngeal swabs positive for influenza A/H3N2 virus were inoculated on Madin-Darby canine kidney (MDCK) cell line for virus isolation. Molecular analysis of NA and M2 genes was used to detect known mutations contributing to resistance. Resistance to neuraminidase was assayed using a commercially available chemiluminescence based NA-Star assay kit. Genotypically, all isolates were observed to harbor mutations known to confer resistance to amantadine. However, no know mutations conferring resistance to NA inhibitors were detected. The mean IC50 value for oseltamivir was 0.25 nM. One strain with reduced susceptibility to the neuraminidase inhibitor (IC₅₀=4.08 nM) was isolated from a patient who had received oseltamivir treatment. Phylogenetic analysis postulate the emergence of amantadine resistance in Mumbai may be due to genetic reassortment with the strains circulating in Asia and North America. Surveillance of drug susceptibility helped us to identify an isolate with reduced sensitivity to oseltamivir. Therefore, we infer that such surveillance would help in understanding possible trends underlying the emergence of resistant variants in humans. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Outbreaks of pandemic (H1N1) 2009 and seasonal influenza A (H3N2) on cruise ship.

    PubMed

    Ward, Kate A; Armstrong, Paul; McAnulty, Jeremy M; Iwasenko, Jenna M; Dwyer, Dominic E

    2010-11-01

    To determine the extent and pattern of influenza transmission and effectiveness of containment measures, we investigated dual outbreaks of pandemic (H1N1) 2009 and influenza A (H3N2) that had occurred on a cruise ship in May 2009. Of 1,970 passengers and 734 crew members, 82 (3.0%) were infected with pandemic (H1N1) 2009 virus, 98 (3.6%) with influenza A (H3N2) virus, and 2 (0.1%) with both. Among 45 children who visited the ship's childcare center, infection rate for pandemic (H1N1) 2009 was higher than that for influenza A (H3N2) viruses. Disembarked passengers reported a high level of compliance with isolation and quarantine recommendations. We found 4 subsequent cases epidemiologically linked to passengers but no evidence of sustained transmission to the community or passengers on the next cruise. Among this population of generally healthy passengers, children seemed more susceptible to pandemic (H1N1) 2009 than to influenza (H3N2) viruses. Intensive disease control measures successfully contained these outbreaks.

  10. Natural co-infection of influenza A/H3N2 and A/H1N1pdm09 viruses resulting in a reassortant A/H3N2 virus.

    PubMed

    Rith, Sareth; Chin, Savuth; Sar, Borann; Y, Phalla; Horm, Srey Viseth; Ly, Sovann; Buchy, Philippe; Dussart, Philippe; Horwood, Paul F

    2015-12-01

    Despite annual co-circulation of different subtypes of seasonal influenza, co-infections between different viruses are rarely detected. These co-infections can result in the emergence of reassortant progeny. We document the detection of an influenza co-infection, between influenza A/H3N2 with A/H1N1pdm09 viruses, which occurred in a 3 year old male in Cambodia during April 2014. Both viruses were detected in the patient at relatively high viral loads (as determined by real-time RT-PCR CT values), which is unusual for influenza co-infections. As reassortment can occur between co-infected influenza A strains we isolated plaque purified clonal viral populations from the clinical material of the patient infected with A/H3N2 and A/H1N1pdm09. Complete genome sequences were completed for 7 clonal viruses to determine if any reassorted viruses were generated during the influenza virus co-infection. Although most of the viral sequences were consistent with wild-type A/H3N2 or A/H1N1pdm09, one reassortant A/H3N2 virus was isolated which contained an A/H1N1pdm09 NS1 gene fragment. The reassortant virus was viable and able to infect cells, as judged by successful passage in MDCK cells, achieving a TCID50 of 10(4)/ml at passage number two. There is no evidence that the reassortant virus was transmitted further. The co-infection occurred during a period when co-circulation of A/H3N2 and A/H1N1pdm09 was detected in Cambodia. It is unclear how often influenza co-infections occur, but laboratories should consider influenza co-infections during routine surveillance activities. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Cross-Species Infectivity of H3N8 Influenza Virus in an Experimental Infection in Swine

    PubMed Central

    Solórzano, Alicia; Foni, Emanuela; Córdoba, Lorena; Baratelli, Massimiliano; Razzuoli, Elisabetta; Bilato, Dania; Martín del Burgo, María Ángeles; Perlin, David S.; Martínez, Jorge; Martínez-Orellana, Pamela; Fraile, Lorenzo; Chiapponi, Chiara; Amadori, Massimo; del Real, Gustavo

    2015-01-01

    ABSTRACT Avian influenza A viruses have gained increasing attention due to their ability to cross the species barrier and cause severe disease in humans and other mammal species as pigs. H3 and particularly H3N8 viruses, are highly adaptive since they are found in multiple avian and mammal hosts. H3N8 viruses have not been isolated yet from humans; however, a recent report showed that equine influenza A viruses (IAVs) can be isolated from pigs, although an established infection has not been observed thus far in this host. To gain insight into the possibility of H3N8 avian IAVs to cross the species barrier into pigs, in vitro experiments and an experimental infection in pigs with four H3N8 viruses from different origins (equine, canine, avian, and seal) were performed. As a positive control, an H3N2 swine influenza virus A was used. Although equine and canine viruses hardly replicated in the respiratory systems of pigs, avian and seal viruses replicated substantially and caused detectable lesions in inoculated pigs without previous adaptation. Interestingly, antibodies against hemagglutinin could not be detected after infection by hemagglutination inhibition (HAI) test with avian and seal viruses. This phenomenon was observed not only in pigs but also in mice immunized with the same virus strains. Our data indicated that H3N8 IAVs from wild aquatic birds have the potential to cross the species barrier and establish successful infections in pigs that might spread unnoticed using the HAI test as diagnostic tool. IMPORTANCE Although natural infection of humans with an avian H3N8 influenza A virus has not yet been reported, this influenza A virus subtype has already crossed the species barrier. Therefore, we have examined the potential of H3N8 from canine, equine, avian, and seal origin to productively infect pigs. Our results demonstrated that avian and seal viruses replicated substantially and caused detectable lesions in inoculated pigs without previous adaptation

  12. Cross-Species Infectivity of H3N8 Influenza Virus in an Experimental Infection in Swine.

    PubMed

    Solórzano, Alicia; Foni, Emanuela; Córdoba, Lorena; Baratelli, Massimiliano; Razzuoli, Elisabetta; Bilato, Dania; Martín del Burgo, María Ángeles; Perlin, David S; Martínez, Jorge; Martínez-Orellana, Pamela; Fraile, Lorenzo; Chiapponi, Chiara; Amadori, Massimo; del Real, Gustavo; Montoya, María

    2015-11-01

    Avian influenza A viruses have gained increasing attention due to their ability to cross the species barrier and cause severe disease in humans and other mammal species as pigs. H3 and particularly H3N8 viruses, are highly adaptive since they are found in multiple avian and mammal hosts. H3N8 viruses have not been isolated yet from humans; however, a recent report showed that equine influenza A viruses (IAVs) can be isolated from pigs, although an established infection has not been observed thus far in this host. To gain insight into the possibility of H3N8 avian IAVs to cross the species barrier into pigs, in vitro experiments and an experimental infection in pigs with four H3N8 viruses from different origins (equine, canine, avian, and seal) were performed. As a positive control, an H3N2 swine influenza virus A was used. Although equine and canine viruses hardly replicated in the respiratory systems of pigs, avian and seal viruses replicated substantially and caused detectable lesions in inoculated pigs without previous adaptation. Interestingly, antibodies against hemagglutinin could not be detected after infection by hemagglutination inhibition (HAI) test with avian and seal viruses. This phenomenon was observed not only in pigs but also in mice immunized with the same virus strains. Our data indicated that H3N8 IAVs from wild aquatic birds have the potential to cross the species barrier and establish successful infections in pigs that might spread unnoticed using the HAI test as diagnostic tool. Although natural infection of humans with an avian H3N8 influenza A virus has not yet been reported, this influenza A virus subtype has already crossed the species barrier. Therefore, we have examined the potential of H3N8 from canine, equine, avian, and seal origin to productively infect pigs. Our results demonstrated that avian and seal viruses replicated substantially and caused detectable lesions in inoculated pigs without previous adaptation. Surprisingly, we

  13. Outbreaks of Pandemic (H1N1) 2009 and Seasonal Influenza A (H3N2) on Cruise Ship

    PubMed Central

    Ward, Kate A.; Armstrong, Paul; Iwasenko, Jenna M.; Dwyer, Dominic E.

    2010-01-01

    To determine the extent and pattern of influenza transmission and effectiveness of containment measures, we investigated dual outbreaks of pandemic (H1N1) 2009 and influenza A (H3N2) that had occurred on a cruise ship in May 2009. Of 1,970 passengers and 734 crew members, 82 (3.0%) were infected with pandemic (H1N1) 2009 virus, 98 (3.6%) with influenza A (H3N2) virus, and 2 (0.1%) with both. Among 45 children who visited the ship’s childcare center, infection rate for pandemic (H1N1) 2009 was higher than that for influenza A (H3N2) viruses. Disembarked passengers reported a high level of compliance with isolation and quarantine recommendations. We found 4 subsequent cases epidemiologically linked to passengers but no evidence of sustained transmission to the community or passengers on the next cruise. Among this population of generally healthy passengers, children seemed more susceptible to pandemic (H1N1) 2009 than to influenza (H3N2) viruses. Intensive disease control measures successfully contained these outbreaks. PMID:21029531

  14. Molecular evidence for interspecies transmission of H3N2pM/H3N2v influenza A viruses at an Ohio agricultural fair, July 2012

    PubMed Central

    Bowman, Andrew S; Sreevatsan, Srinand; Killian, Mary L; Page, Shannon L; Nelson, Sarah W; Nolting, Jacqueline M; Cardona, Carol; Slemons, Richard D

    2012-01-01

    Evidence accumulating in 2011–2012 indicates that there is significant intra- and inter-species transmission of influenza A viruses at agricultural fairs, which has renewed interest in this unique human/swine interface. Six human cases of influenza A (H3N2) variant (H3N2v) virus infections were epidemiologically linked to swine exposure at fairs in the United States in 2011. In 2012, the number of H3N2v cases in the Midwest had exceeded 300 from early July to September, 2012. Prospective influenza A virus surveillance among pigs at Ohio fairs resulted in the detection of H3N2pM (H3N2 influenza A viruses containing the matrix (M) gene from the influenza A (H1N1) pdm09 virus). These H3N2pM viruses were temporally and spatially linked to several human H3N2v cases. Complete genomic analyses of these H3N2pM isolates demonstrated >99% nucleotide similarity to the H3N2v isolates recovered from human cases. Actions to mitigate the bidirectional interspecies transmission of influenza A virus between people and animals at agricultural fairs may be warranted. PMID:26038404

  15. Outcomes of and risk factors for presumed canine H3N2 influenza virus infection in a metropolitan outbreak.

    PubMed

    Dunn, Danielle; Creevy, Kate E; Krimer, Paula M

    2018-04-15

    OBJECTIVE To determine clinical signs, case fatality rate, and factors associated with positive results of PCR testing for canine influenza virus (CIV) in dogs during an H3N2 CIV outbreak in the Atlanta area. DESIGN Cross-sectional study. ANIMALS 220 dogs with a nasal swab specimen submitted to an Atlanta-area diagnostic laboratory between May 1 and July 2, 2015, for PCR assay detection of CIV specifically or CIV and 5 other respiratory pathogens. PROCEDURES Veterinarians of tested dogs were surveyed by various means to collect information regarding clinical signs, survival status at the time of survey completion, vaccination history (≤ 12 months prior to testing), and travel history (≤ 2 months prior to testing). Data were compared between CIV-positive and CIV-negative dogs. RESULTS Surveys for 120 (55%) dogs were completed. Forty (33%) of these dogs had positive results of CIV testing. No significant differences were identified between CIV-positive and CIV-negative dogs regarding breed, sex, reproductive status, duration of clinical signs prior to testing, other dogs in the household, or travel history. When other factors were controlled for, CIV-positive dogs were more likely to be adult (> 1 year of age) than juvenile (≤ 1 year of age) and to be inappetent. Only 1 (3%) CIV-positive dog died during the study period (shortly after it was evaluated because of respiratory signs). CONCLUSIONS AND CLINICAL RELEVANCE From May 1 to July 2, 2015, the reported clinical signs of dogs tested during the Georgia H3N2 CIV outbreak were similar to those reported for dogs with H3N8 CIV infection, and the case fatality rate was low.

  16. Antigenic Characterization of H3N2 Influenza A Viruses from Ohio Agricultural Fairs

    PubMed Central

    Feng, Zhixin; Gomez, Janet; Bowman, Andrew S.; Ye, Jianqiang; Long, Li-Ping; Nelson, Sarah W.; Yang, Jialiang; Martin, Brigitte; Jia, Kun; Nolting, Jacqueline M.; Cunningham, Fred; Cardona, Carol; Zhang, Jianqiang; Yoon, Kyoung-Jin; Slemons, Richard D.

    2013-01-01

    The demonstrated link between the emergence of H3N2 variant (H3N2v) influenza A viruses (IAVs) and swine exposure at agricultural fairs has raised concerns about the human health risk posed by IAV-infected swine. Understanding the antigenic profiles of IAVs circulating in pigs at agricultural fairs is critical to developing effective prevention and control strategies. Here, 68 H3N2 IAV isolates recovered from pigs at Ohio fairs (2009 to 2011) were antigenically characterized. These isolates were compared with other H3 IAVs recovered from commercial swine, wild birds, and canines, along with human seasonal and variant H3N2 IAVs. Antigenic cartography demonstrated that H3N2 IAV isolates from Ohio fairs could be divided into two antigenic groups: (i) the 2009 fair isolates and (ii) the 2010 and 2011 fair isolates. These same two antigenic clusters have also been observed in commercial swine populations in recent years. Human H3N2v isolates from 2010 and 2011 are antigenically clustered with swine-origin IAVs from the same time period. The isolates recovered from pigs at fairs did not cross-react with ferret antisera produced against the human seasonal H3N2 IAVs circulating during the past decade, raising the question of the degree of immunity that the human population has to swine-origin H3N2 IAVs. Our results demonstrate that H3N2 IAVs infecting pigs at fairs and H3N2v isolates were antigenically similar to the IAVs circulating in commercial swine, demonstrating that exhibition swine can function as a bridge between commercial swine and the human population. PMID:23637412

  17. Evolution-informed forecasting of seasonal influenza A (H3N2).

    PubMed

    Du, Xiangjun; King, Aaron A; Woods, Robert J; Pascual, Mercedes

    2017-10-25

    Interpandemic or seasonal influenza A, currently subtypes H3N2 and H1N1, exacts an enormous annual burden both in terms of human health and economic impact. Incidence prediction ahead of season remains a challenge largely because of the virus' antigenic evolution. We propose a forecasting approach that incorporates evolutionary change into a mechanistic epidemiological model. The proposed models are simple enough that their parameters can be estimated from retrospective surveillance data. These models link amino acid sequences of hemagglutinin epitopes with a transmission model for seasonal H3N2 influenza, also informed by H1N1 levels. With a monthly time series of H3N2 incidence in the United States for more than 10 years, we demonstrate the feasibility of skillful prediction for total cases ahead of season, with a tendency to underpredict monthly peak epidemic size, and an accurate real-time forecast for the 2016/2017 influenza season. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  18. Influenza A(H3N2) Outbreak at Transit Center at Manas, Kyrgyzstan, 2014

    DTIC Science & Technology

    2015-01-01

    influenza-like illness symptoms from 3 December 2013 through 28 February 2014. There were 85 specimens positive for influenza (18 influenza A( H1N1 ...February 2014. Th ere were 85 specimens positive for infl uenza (18 infl uenza A( H1N1 )pdm09, 65 infl uenza A(H3N2), one infl uenza A/not subtyped, and one...Health Organization reports, both infl uenza A( H1N1 )pdm09 and A(H3N2) viruses were circulating during the time of this outbreak.9 Th is is

  19. Evolution-informed forecasting of seasonal influenza A (H3N2)

    PubMed Central

    Du, Xiangjun; King, Aaron A.; Woods, Robert J.; Pascual, Mercedes

    2018-01-01

    Inter-pandemic or seasonal influenza exacts an enormous annual burden both in terms of human health and economic impact. Incidence prediction ahead of season remains a challenge largely because of the virus’ antigenic evolution. We propose here a forecasting approach that incorporates evolutionary change into a mechanistic epidemiological model. The proposed models are simple enough that their parameters can be estimated from retrospective surveillance data. These models link amino-acid sequences of hemagglutinin epitopes with a transmission model for seasonal H3N2 influenza, also informed by H1N1 levels. With a monthly time series of H3N2 incidence in the United States over 10 years, we demonstrate the feasibility of prediction ahead of season and an accurate real-time forecast for the 2016/2017 influenza season. PMID:29070700

  20. Infection of mice with a human influenza A/H3N2 virus induces protective immunity against lethal infection with influenza A/H5N1 virus.

    PubMed

    Kreijtz, J H C M; Bodewes, R; van den Brand, J M A; de Mutsert, G; Baas, C; van Amerongen, G; Fouchier, R A M; Osterhaus, A D M E; Rimmelzwaan, G F

    2009-08-06

    The transmission of highly pathogenic avian influenza (HPAI) A viruses of the H5N1 subtype from poultry to man and the high case fatality rate fuels the fear for a pandemic outbreak caused by these viruses. However, prior infections with seasonal influenza A/H1N1 and A/H3N2 viruses induce heterosubtypic immunity that could afford a certain degree of protection against infection with the HPAI A/H5N1 viruses, which are distantly related to the human influenza A viruses. To assess the protective efficacy of such heterosubtypic immunity mice were infected with human influenza virus A/Hong Kong/2/68 (H3N2) 4 weeks prior to a lethal infection with HPAI virus A/Indonesia/5/05 (H5N1). Prior infection with influenza virus A/Hong Kong/2/68 reduced clinical signs, body weight loss, mortality and virus replication in the lungs as compared to naive mice infected with HPAI virus A/Indonesia/5/05. Priming by infection with respiratory syncytial virus, a non-related virus did not have a beneficial effect on the outcome of A/H5N1 infections, indicating that adaptive immune responses were responsible for the protective effect. In mice primed by infection with influenza A/H3N2 virus cytotoxic T lymphocytes (CTL) specific for NP(366-374) epitope ASNENMDAM and PA(224-232) SCLENFRAYV were observed. A small proportion of these CTL was cross-reactive with the peptide variant derived from the influenza A/H5N1 virus (ASNENMEVM and SSLENFRAYV respectively) and upon challenge infection with the influenza A/H5N1 virus cross-reactive CTL were selectively expanded. These CTL, in addition to those directed to conserved epitopes, shared by the influenza A/H3N2 and A/H5N1 viruses, most likely contributed to accelerated clearance of the influenza A/H5N1 virus infection. Although also other arms of the adaptive immune response may contribute to heterosubtypic immunity, the induction of virus-specific CTL may be an attractive target for development of broad protective vaccines. Furthermore the

  1. Trivalent inactivated influenza vaccine effective against influenza A(H3N2) variant viruses in children during the 2014/15 season, Japan

    PubMed Central

    Sugaya, Norio; Shinjoh, Masayoshi; Kawakami, Chiharu; Yamaguchi, Yoshio; Yoshida, Makoto; Baba, Hiroaki; Ishikawa, Mayumi; Kono, Mio; Sekiguchi, Shinichiro; Kimiya, Takahisa; Mitamura, Keiko; Fujino, Motoko; Komiyama, Osamu; Yoshida, Naoko; Tsunematsu, Kenichiro; Narabayashi, Atsushi; Nakata, Yuji; Sato, Akihiro; Taguchi, Nobuhiko; Fujita, Hisayo; Toki, Machiko; Myokai, Michiko; Ookawara, Ichiro; Takahashi, Takao

    2016-01-01

    The 2014/15 influenza season in Japan was characterised by predominant influenza A(H3N2) activity; 99% of influenza A viruses detected were A(H3N2). Subclade 3C.2a viruses were the major epidemic A(H3N2) viruses, and were genetically distinct from A/New York/39/2012(H3N2) of 2014/15 vaccine strain in Japan, which was classified as clade 3C.1. We assessed vaccine effectiveness (VE) of inactivated influenza vaccine (IIV) in children aged 6 months to 15 years by test-negative case–control design based on influenza rapid diagnostic test. Between November 2014 and March 2015, a total of 3,752 children were enrolled: 1,633 tested positive for influenza A and 42 for influenza B, and 2,077 tested negative. Adjusted VE was 38% (95% confidence intervals (CI): 28 to 46) against influenza virus infection overall, 37% (95% CI: 27 to 45) against influenza A, and 47% (95% CI: -2 to 73) against influenza B. However, IIV was not statistically significantly effective against influenza A in infants aged 6 to 11 months or adolescents aged 13 to 15 years. VE in preventing hospitalisation for influenza A infection was 55% (95% CI: 42 to 64). Trivalent IIV that included A/New York/39/2012(H3N2) was effective against drifted influenza A(H3N2) virus, although vaccine mismatch resulted in low VE. PMID:27784529

  2. Human T-cells directed to seasonal influenza A virus cross-react with 2009 pandemic influenza A (H1N1) and swine-origin triple-reassortant H3N2 influenza viruses.

    PubMed

    Hillaire, Marine L B; Vogelzang-van Trierum, Stella E; Kreijtz, Joost H C M; de Mutsert, Gerrie; Fouchier, Ron A M; Osterhaus, Albert D M E; Rimmelzwaan, Guus F

    2013-03-01

    Virus-specific CD8(+) T-cells contribute to protective immunity against influenza A virus (IAV) infections. As the majority of these cells are directed to conserved viral proteins, they may afford protection against IAVs of various subtypes. The present study assessed the cross-reactivity of human CD8(+) T-lymphocytes, induced by infection with seasonal A (H1N1) or A (H3N2) influenza virus, with 2009 pandemic influenza A (H1N1) virus [A(H1N1)pdm09] and swine-origin triple-reassortant A (H3N2) [A(H3N2)v] viruses that are currently causing an increasing number of human cases in the USA. It was demonstrated that CD8(+) T-cells induced after seasonal IAV infections exerted lytic activity and produced gamma interferon upon in vitro restimulation with A(H1N1)pdm09 and A(H3N2)v influenza A viruses. Furthermore, CD8(+) T-cells directed to A(H1N1)pdm09 virus displayed a high degree of cross-reactivity with A(H3N2)v viruses. It was concluded that cross-reacting T-cells had the potential to afford protective immunity against A(H1N1)pdm09 viruses during the pandemic and offer some degree of protection against infection with A(H3N2)v viruses.

  3. Evaluation of a vectored equine herpesvirus type 1 (EHV-1) vaccine expressing H3 haemagglutinin in the protection of dogs against canine influenza.

    PubMed

    Rosas, Cristina; Van de Walle, Gerlinde R; Metzger, Stephan M; Hoelzer, Karin; Dubovi, Edward J; Kim, Sung G; Parrish, Colin R; Osterrieder, Nikolaus

    2008-05-02

    In 2004, canine influenza virus (CIV) was identified as a respiratory pathogen of dogs for the first time and found to be closely related to H3N8 equine influenza virus (EIV). We generated a recombinant vectored vaccine that expresses H3 of a recent isolate of EIV using equine herpesvirus type 1 (EHV-1) as the delivery vehicle. This EHV-1 vectored vaccine exhibited robust and stable EIV H3 expression and induced a strong influenza virus-specific response in both mice and dogs upon intranasal or subcutaneous administration. Furthermore, upon challenge with the recent CIV isolate A/canine/PA/10915-07, protection of vaccinated dogs could be demonstrated by a significant reduction in clinical sings, and, more importantly, by a significant reduction in virus shedding. We concluded that the EHV-1/H3 recombinant vector can be a valuable alternative for protection of dogs against clinical disease induced by CIV and can significantly reduce virus spread.

  4. Evaluation of a vectored equine herpesvirus type 1 (EHV-1) vaccine expressing H3 haemagglutinin in the protection of dogs against canine influenza

    PubMed Central

    Rosas, Cristina; Van de Walle, Gerlinde R.; Metzger, Stephan M.; Hoelzer, Karin; Dubovi, Edward J.; Kim, Sung G.; Parrish, Colin R.; Osterrieder, Nikolaus

    2008-01-01

    In 2004, canine influenza virus (CIV) was identified as a respiratory pathogen of dogs for the first time and is closely related to H3N8 equine influenza virus (EIV). We generated a recombinant vectored vaccine that expresses H3 of a recent isolate of EIV using equine herpesvirus type 1 (EHV-1) as the delivery vehicle. This EHV-1 vectored vaccine exhibited robust and stable EIV H3 expression and induced a strong influenza virus-specific response in both mice and dogs upon intranasal or subcutaneous administration. Furthermore, upon challenge with the recent CIV isolate A/canine/PA/10915-07, protection of vaccinated dogs could be demonstrated by a significant reduction in clinical sings, and, more importantly, by a significant reduction in virus shedding. We concluded that the EHV-1/H3 recombinant vector can be a valuable alternative for protection of dogs against clinical disease induced by CIV and can significantly reduce spread. PMID:18407383

  5. Outbreak of variant influenza A(H3N2) virus in the United States.

    PubMed

    Jhung, Michael A; Epperson, Scott; Biggerstaff, Matthew; Allen, Donna; Balish, Amanda; Barnes, Nathelia; Beaudoin, Amanda; Berman, Lashondra; Bidol, Sally; Blanton, Lenee; Blythe, David; Brammer, Lynnette; D'Mello, Tiffany; Danila, Richard; Davis, William; de Fijter, Sietske; Diorio, Mary; Durand, Lizette O; Emery, Shannon; Fowler, Brian; Garten, Rebecca; Grant, Yoran; Greenbaum, Adena; Gubareva, Larisa; Havers, Fiona; Haupt, Thomas; House, Jennifer; Ibrahim, Sherif; Jiang, Victoria; Jain, Seema; Jernigan, Daniel; Kazmierczak, James; Klimov, Alexander; Lindstrom, Stephen; Longenberger, Allison; Lucas, Paul; Lynfield, Ruth; McMorrow, Meredith; Moll, Maria; Morin, Craig; Ostroff, Stephen; Page, Shannon L; Park, Sarah Y; Peters, Susan; Quinn, Celia; Reed, Carrie; Richards, Shawn; Scheftel, Joni; Simwale, Owen; Shu, Bo; Soyemi, Kenneth; Stauffer, Jill; Steffens, Craig; Su, Su; Torso, Lauren; Uyeki, Timothy M; Vetter, Sara; Villanueva, Julie; Wong, Karen K; Shaw, Michael; Bresee, Joseph S; Cox, Nancy; Finelli, Lyn

    2013-12-01

    Variant influenza virus infections are rare but may have pandemic potential if person-to-person transmission is efficient. We describe the epidemiology of a multistate outbreak of an influenza A(H3N2) variant virus (H3N2v) first identified in 2011. We identified laboratory-confirmed cases of H3N2v and used a standard case report form to characterize illness and exposures. We considered illness to result from person-to-person H3N2v transmission if swine contact was not identified within 4 days prior to illness onset. From 9 July to 7 September 2012, we identified 306 cases of H3N2v in 10 states. The median age of all patients was 7 years. Commonly reported signs and symptoms included fever (98%), cough (85%), and fatigue (83%). Sixteen patients (5.2%) were hospitalized, and 1 fatal case was identified. The majority of those infected reported agricultural fair attendance (93%) and/or contact with swine (95%) prior to illness. We identified 15 cases of possible person-to-person transmission of H3N2v. Viruses recovered from patients were 93%-100% identical and similar to viruses recovered from previous cases of H3N2v. All H3N2v viruses examined were susceptible to oseltamivir and zanamivir and resistant to adamantane antiviral medications. In a large outbreak of variant influenza, the majority of infected persons reported exposures, suggesting that swine contact at an agricultural fair was a risk for H3N2v infection. We identified limited person-to-person H3N2v virus transmission, but found no evidence of efficient or sustained person-to-person transmission. Fair managers and attendees should be aware of the risk of swine-to-human transmission of influenza viruses in these settings.

  6. Antigenic variation of H1N1, H1N2 and H3N2 swine influenza viruses in Japan and Vietnam.

    PubMed

    Takemae, Nobuhiro; Nguyen, Tung; Ngo, Long Thanh; Hiromoto, Yasuaki; Uchida, Yuko; Pham, Vu Phong; Kageyama, Tsutomu; Kasuo, Shizuko; Shimada, Shinichi; Yamashita, Yasutaka; Goto, Kaoru; Kubo, Hideyuki; Le, Vu Tri; Van Vo, Hung; Do, Hoa Thi; Nguyen, Dang Hoang; Hayashi, Tsuyoshi; Matsuu, Aya; Saito, Takehiko

    2013-04-01

    The antigenicity of the influenza A virus hemagglutinin is responsible for vaccine efficacy in protecting pigs against swine influenza virus (SIV) infection. However, the antigenicity of SIV strains currently circulating in Japan and Vietnam has not been well characterized. We examined the antigenicity of classical H1 SIVs, pandemic A(H1N1)2009 (A(H1N1)pdm09) viruses, and seasonal human-lineage SIVs isolated in Japan and Vietnam. A hemagglutination inhibition (HI) assay was used to determine antigenic differences that differentiate the recent Japanese H1N2 and H3N2 SIVs from the H1N1 and H3N2 domestic vaccine strains. Minor antigenic variation between pig A(H1N1)pdm09 viruses was evident by HI assay using 13 mAbs raised against homologous virus. A Vietnamese H1N2 SIV, whose H1 gene originated from a human strain in the mid-2000s, reacted poorly with post-infection ferret serum against human vaccine strains from 2000-2010. These results provide useful information for selection of optimal strains for SIV vaccine production.

  7. Comparison of the virulence of three H3N2 canine influenza virus isolates from Korea and China in mouse and Guinea pig models.

    PubMed

    Xie, Xing; Na, Woonsung; Kang, Aram; Yeom, Minjoo; Yuk, Heejun; Moon, Hyoungjoon; Kim, Sung-Jae; Kim, Hyun-Woo; Kim, Jeong-Ki; Pang, Maoda; Wang, Yongshan; Liu, Yongjie; Song, Daesub

    2018-05-02

    Avian-origin H3N2 canine influenza virus (CIV) has been the most common subtype in Korea and China since 2007. Here, we compared the pathogenicity and transmissibility of three H3N2 CIV strains [Chinese CIV (JS/10), Korean CIV (KR/07), and Korean recombinant CIV between the classic H3N2 CIV and the pandemic H1N1 virus (MV/12)] in BALB/c mouse and guinea pig models. The pandemic H1N1 (CA/09) strain served as the control. BALB/c mice infected with H1N1 had high mortality and obvious body weight loss, whereas no overt disease symptoms were observed in mice inoculated with H3N2 CIV strains. The viral titers were higher in the group MV/12 than those in groups JS/10 and KR/07, while the mice infected with JS/10 showed higher viral titers in all tissues (except for the lung) than the mice infected with KR/07. The data obtained in guinea pigs also demonstrated that group MV/12 presented the highest loads in most of the tissues, followed by group JS/10 and KR/07. Also, direct contact transmissions of all the three CIV strains could be observed in guinea pigs, and for the inoculated and the contact groups, the viral titer of group MV/12 and KR/07 was higher than that of group JS/10 in nasal swabs. These findings indicated that the matrix (M) gene obtained from the pandemic H1N1 may enhance viral replication of classic H3N2 CIV; JS/10 has stronger viral replication ability in tissues as compared to KR/07, whereas KR/07 infected guinea pigs have more viral shedding than JS/10 infected guinea pigs. There exists a discrepancy in pathobiology among CIV isolates. Reverse genetics regarding the genomes of CIV isolates will be helpful to further explain the virus characteristics.

  8. Seroprevalence of H1N1, H3N2 and H1N2 influenza viruses in pigs in seven European countries in 2002-2003.

    PubMed

    Van Reeth, Kristien; Brown, Ian H; Dürrwald, Ralf; Foni, Emanuela; Labarque, Geoffrey; Lenihan, Patrick; Maldonado, Jaime; Markowska-Daniel, Iwona; Pensaert, Maurice; Pospisil, Zdenek; Koch, Guus

    2008-05-01

    Avian-like H1N1 and human-like H3N2 swine influenza viruses (SIV) have been considered widespread among pigs in Western Europe since the 1980s, and a novel H1N2 reassortant with a human-like H1 emerged in the mid 1990s. This study, which was part of the EC-funded 'European Surveillance Network for Influenza in Pigs 1', aimed to determine the seroprevalence of the H1N2 virus in different European regions and to compare the relative prevalences of each SIV between regions. Laboratories from Belgium, the Czech Republic, Germany, Italy, Ireland, Poland and Spain participated in an international serosurvey. A total of 4190 sow sera from 651 farms were collected in 2002-2003 and examined in haemagglutination inhibition tests against H1N1, H3N2 and H1N2. In Belgium, Germany, Italy and Spain seroprevalence rates to each of the three SIV subtypes were high (> or =30% of the sows seropositive) to very high (> or =50%), except for a lower H1N2 seroprevalence rate in Italy (13.8%). Most sows in these countries with high pig populations had antibodies to two or three subtypes. In Ireland, the Czech Republic and Poland, where swine farming is less intensive, H1N1 was the dominant subtype (8.0-11.7% seropositives) and H1N2 and H3N2 antibodies were rare (0-4.2% seropositives). Thus, SIV of H1N1, H3N2 and H1N2 subtype are enzootic in swine producing regions of Western Europe. In Central Europe, SIV activity is low and the circulation of H3N2 and H1N2 remains to be confirmed. The evolution and epidemiology of SIV throughout Europe is being further monitored through a second 'European Surveillance Network for Influenza in Pigs'.

  9. The PB2-K627E mutation attenuates H3N2 swine influenza virus in cultured cells and in mice.

    PubMed

    Gong, Xiao-Qian; Ruan, Bao-Yang; Liu, Xiao-Min; Zhang, Peng; Wang, Xiu-Hui; Wang, Qi; Shan, Tong-Ling; Tong, Wu; Zhou, Yan-Jun; Li, Guo-Xin; Zheng, Hao; Tong, Guang-Zhi; Yu, Hai

    2018-04-01

    PB2-627K is an important amino acid that determines the virulence of some influenza A viruses. However, it has not been experimentally investigated in the H3N2 swine influenza virus. To explore the potential role of PB2-K627E substitution in H3N2 swine influenza virus, the growth properties and pathogenicity between H3N2 swine influenza virus and its PB2-K627E mutant were compared. For the first time, our results showed that PB2-K627E mutation attenuates H3N2 swine influenza virus in mammalian cells and in mice, suggesting that PB2-627K is required for viral replication and pathogenicity of H3N2 swine influenza virus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Outbreak of Variant Influenza A(H3N2) Virus in the United States

    PubMed Central

    Jhung, Michael A.; Epperson, Scott; Biggerstaff, Matthew; Allen, Donna; Balish, Amanda; Barnes, Nathelia; Beaudoin, Amanda; Berman, LaShondra; Bidol, Sally; Blanton, Lenee; Blythe, David; Brammer, Lynnette; D’Mello, Tiffany; Danila, Richard; Davis, William; de Fijter, Sietske; DiOrio, Mary; Durand, Lizette O.; Emery, Shannon; Fowler, Brian; Garten, Rebecca; Grant, Yoran; Greenbaum, Adena; Gubareva, Larisa; Havers, Fiona; Haupt, Thomas; House, Jennifer; Ibrahim, Sherif; Jiang, Victoria; Jain, Seema; Jernigan, Daniel; Kazmierczak, James; Klimov, Alexander; Lindstrom, Stephen; Longenberger, Allison; Lucas, Paul; Lynfield, Ruth; McMorrow, Meredith; Moll, Maria; Morin, Craig; Ostroff, Stephen; Page, Shannon L.; Park, Sarah Y.; Peters, Susan; Quinn, Celia; Reed, Carrie; Richards, Shawn; Scheftel, Joni; Simwale, Owen; Shu, Bo; Soyemi, Kenneth; Stauffer, Jill; Steffens, Craig; Su, Su; Torso, Lauren; Uyeki, Timothy M.; Vetter, Sara; Villanueva, Julie; Wong, Karen K.; Shaw, Michael; Bresee, Joseph S.; Cox, Nancy; Finelli, Lyn

    2017-01-01

    Background Variant influenza virus infections are rare but may have pandemic potential if person-to-person transmission is efficient. We describe the epidemiology of a multistate outbreak of an influenza A(H3N2) variant virus (H3N2v) first identified in 2011. Methods We identified laboratory-confirmed cases of H3N2v and used a standard case report form to characterize illness and exposures. We considered illness to result from person-to-person H3N2v transmission if swine contact was not identified within 4 days prior to illness onset. Results From 9 July to 7 September 2012, we identified 306 cases of H3N2v in 10 states. The median age of all patients was 7 years. Commonly reported signs and symptoms included fever (98%), cough (85%), and fatigue (83%). Sixteen patients (5.2%) were hospitalized, and 1 fatal case was identified. The majority of those infected reported agricultural fair attendance (93%) and/or contact with swine (95%) prior to illness. We identified 15 cases of possible person-to-person transmission of H3N2v. Viruses recovered from patients were 93%–100% identical and similar to viruses recovered from previous cases of H3N2v. All H3N2v viruses examined were susceptible to oseltamivir and zanamivir and resistant to adamantane antiviral medications. Conclusions In a large outbreak of variant influenza, the majority of infected persons reported exposures, suggesting that swine contact at an agricultural fair was a risk for H3N2v infection. We identified limited person-to-person H3N2v virus transmission, but found no evidence of efficient or sustained person-to-person transmission. Fair managers and attendees should be aware of the risk of swine-to-human transmission of influenza viruses in these settings. PMID:24065322

  11. Higher titers of some H5N1 and recent human H1N1 and H3N2 influenza viruses in Mv1 Lu vs. MDCK cells

    PubMed Central

    2011-01-01

    Background The infectivity of influenza A viruses can differ among the various primary cells and continuous cell lines used for such measurements. Over many years, we observed that all things equal, the cytopathic effects caused by influenza A subtype H1N1, H3N2, and H5N1 viruses were often detected earlier in a mink lung epithelial cell line (Mv1 Lu) than in MDCK cells. We asked whether virus yields as measured by the 50% tissue culture infectious dose and plaque forming titer also differed in MDCK and Mv1 Lu cells infected by the same influenza virus subtypes. Results The 50% tissue culture infectious dose and plaque forming titer of many influenza A subtype H1N1, H3N2, and H5N1 viruses was higher in Mv1 Lu than in MDCK cells. Conclusions The yields of influenza subtype H1N1, H3N2, and H5N1 viruses can be higher in Mv1 Lu cells than in MDCK cells. PMID:21314955

  12. Impact of influenza in the post-pandemic phase: Clinical features in hospitalized patients with influenza A (H1N1) pdm09 and H3N2 viruses, during 2013 in Santa Fe, Argentina.

    PubMed

    Kusznierz, Gabriela; Carolina, Cudós; Manuel, Rudi Juan; Sergio, Lejona; Lucila, Ortellao; Julio, Befani; Mirta, Villani; Pedro, Morana; Graciana, Morera; Andrea, Uboldi; Elsa, Zerbini

    2017-07-01

    It is important to characterize the clinical and epidemiological pattern of the influenza A (H1N1) pdm09 virus and compare it with influenza A (H3N2) virus, as surveyed in just a few studies, in order to contribute to the implementation and strengthening of influenza control and prevention strategies. The aims in this study were to describe influenza clinical and epidemiological characteristics in hospitalized patients, caused by influenza A (H1N1)pdm09 and influenza A (H3N2) viruses during 2013, in Santa Fe, Argentina. A retrospective study was conducted over 2013 among hospitalized patients with laboratory-confirmed influenza diagnosis. In contrast to patients with influenza A (H3N2) (20.5%), a higher proportion of hospitalizations associated with influenza H1N1pdm were reported among adults aged 35-65 years (42.8%). Of all patients, 73.6% had an underlying medical condition. Hospitalized patients with H1N1pdm were subject to 2.6 (95%CI, 1.0-6.8) times higher risk of severity, than those hospitalized with influenza A (H3N2). This results demonstrate the impact in the post-pandemic era of H1N1pdm virus, with increased risk of severe disease, in relation to H3N2 virus, both viruses co-circulating during 2013. © 2017 Wiley Periodicals, Inc.

  13. Enhanced genetic characterization of influenza A(H3N2) viruses and vaccine effectiveness by genetic group, 2014–2015

    PubMed Central

    Flannery, Brendan; Zimmerman, Richard K.; Gubareva, Larisa V.; Garten, Rebecca J.; Chung, Jessie R.; Nowalk, Mary Patricia; Jackson, Michael L.; Jackson, Lisa A.; Monto, Arnold S.; Ohmit, Suzanne E.; Belongia, Edward A.; McLean, Huong Q.; Gaglani, Manjusha; Piedra, Pedro A.; Mishin, Vasiliy P.; Chesnokov, Anton P.; Spencer, Sarah; Thaker, Swathi N.; Barnes, John R.; Foust, Angie; Sessions, Wendy; Xu, Xiyan; Katz, Jacqueline; Fry, Alicia M.

    2018-01-01

    Background During the 2014–15 US influenza season, expanded genetic characterization of circulating influenza A(H3N2) viruses was used to assess the impact of genetic variability of influenza A(H3N2) viruses on influenza vaccine effectiveness (VE). Methods A novel pyrosequencing assay was used to determine genetic group based on hemagglutinin (HA) gene sequences of influenza A(H3N2) viruses from patients enrolled US Flu Vaccine Effectiveness network sites. Vaccine effectiveness was estimated using a test-negative design comparing vaccination among patients infected with influenza A(H3N2) viruses and uninfected patients. Results Among 9710 enrollees, 1868 (19%) tested positive for influenza A(H3N2); genetic characterization of 1397 viruses showed 1134 (81%) belonged to one HA genetic group (3C.2a) of antigenically drifted H3N2 viruses. Effectiveness of 2014–15 influenza vaccination varied by A(H3N2) genetic group from 1% (95% confidence interval [CI], −14% to 14%) against illness caused by antigenically drifted A(H3N2) group 3C.2a viruses versus 44% (95% CI, 16% to 63%) against illness caused by vaccine-like A(H3N2) group 3C.3b viruses. Conclusion Effectiveness of 2014–15 influenza vaccination varied by genetic group of influenza A(H3N2) virus. Changes in hemagglutinin genes related to antigenic drift were associated with reduced vaccine effectiveness. PMID:27190176

  14. Suspension culture process for H9N2 avian influenza virus (strain Re-2).

    PubMed

    Wang, Honglin; Guo, Suying; Li, Zhenguang; Xu, Xiaoqin; Shao, Zexiang; Song, Guicai

    2017-10-01

    H9N2 avian influenza virus has caused huge economic loss for the Chinese poultry industry since it was first identified. Vaccination is frequently used as a control method for the disease. Meanwhile suspension culture has become an important tool for the development of influenza vaccines. To optimize the suspension culture conditions for the avian influenza H9N2 virus (Re-2 strain) in Madin-Darby Canine Kidney (MDCK) cells, we studied the culture conditions for cell growth and proliferation parameters for H9N2 virus replication. MDCK cells were successfully cultured in suspension, from a small scale to industrial levels of production, with passage time and initial cell density being optimized. The influence of pH on the culture process in the reactor has been discussed and the process parameters for industrial production were explored via amplification of the 650L reactor. Subsequently, we cultivated cells at high cell density and harvested high amounts of virus, reaching 10log2 (1:1024). Furthermore an animal experiment was conducted to detect antibody. Compared to the chicken embryo virus vaccine, virus cultured from MDCK suspension cells can produce a higher amount of antibodies. The suspension culture process is simple and cost efficient, thus providing a solid foundation for the realization of large-scale avian influenza vaccine production.

  15. Seroprotective antibodies to 2011 variant influenza A(H3N2v) and seasonal influenza A(H3N2) among three age groups of US Department of Defense service members.

    PubMed

    Radin, Jennifer M; Hawksworth, Anthony W; Ortiguerra, Ryan G; Brice, Gary T

    2015-01-01

    In 2011, a new variant of influenza A(H3N2) emerged that contained a recombination of genes from swine H3N2 viruses and the matrix (M) gene of influenza A(H1N1)pdm09 virus. New combinations and variants of pre-existing influenza viruses are worrisome if there is low or nonexistent immunity in a population, which increases chances for an outbreak or pandemic. Sera collected in 2011 were obtained from US Department of Defense service members in three age groups: 19-21 years, 32-33 years, and 47-48 years. Pre- and post-vaccination samples were available for the youngest age group, and postvaccination samples for the two older groups. Specimens were tested using microneutralization assays for antibody titers against H3N2v (A/Indiana/10/2011) and seasonal H3N2 virus (A/Perth/16/2009). The youngest age group had significantly (p<0.05) higher geometric mean titers for H3N2v with 165 (95% confidence interval [CI]: 105-225) compared with the two older groups, aged 32-33 and 47-48 years, who had geometric mean titers of 68 (95% CI: 55-82) and 46 (95% CI: 24-65), respectively. Similarly, the youngest age group also had the highest geometric mean titers for seasonal H3N2. In the youngest age group, the proportion of patients who seroconverted after vaccination was 12% for H3N2v and 27% for seasonal H3N2. Our results were similar to previous studies that found highest seroprotection among young adults and decreasing titers among older adults. The proportion of 19- to 21-year-olds who seroconverted after seasonal vaccination was low and similar to previous findings. Improving our understanding of H3N2v immunity among different age groups in the United States can help inform vaccination plans if H3N2v becomes more transmissible in the future.

  16. Identification of four genotypes of H3N2 swine influenza virus in pigs from southern China.

    PubMed

    Chen, Jidang; Fu, Xinliang; Chen, Ye; He, Shuyi; Zheng, Yun; Cao, Zhenpeng; Yu, Wenxin; Zhou, Han; Su, Shuo; Zhang, Guihong

    2014-10-01

    In 2011, four H3N2 swine influenza viruses (SIVs) were isolated from nasal swabs of four pigs (800 nasal swabs were collected from pigs showing influenza-like symptoms) in Guangdong province, China. Four different genotypes of H3N2 appeared among pigs in southern China, including wholly human-like H3N2 viruses, intermediate (1975) double-reassortant human H3N2 viruses (resulting from reassortment between an early human lineage and a recent human lineage), recent double-reassortant human H3N2 viruses, and avian-like H3N2 viruses. Because pigs can support the reassortment of human and avian influenza viruses, our surveillance should be enhanced as a part of an overall pandemic preparedness plan.

  17. Experimental infection of clade 1.1.2 (H5N1), clade 2.3.2.1c (H5N1) and clade 2.3.4.4 (H5N6) highly pathogenic avian influenza viruses in dogs.

    PubMed

    Lyoo, K S; Na, W; Phan, L V; Yoon, S W; Yeom, M; Song, D; Jeong, D G

    2017-12-01

    Since the emergence of highly pathogenic avian influenza (HPAI) H5N1 in Asia, the haemagglutinin (HA) gene of this virus lineage has continued to evolve in avian populations, and H5N1 lineage viruses now circulate concurrently worldwide. Dogs may act as an intermediate host, increasing the potential for zoonotic transmission of influenza viruses. Virus transmission and pathologic changes in HPAI clade 1.1.2 (H5N1)-, 2.3.2.1c (H5N1)- and 2.3.4.4 (H5N6)-infected dogs were investigated. Mild respiratory signs and antibody response were shown in dogs intranasally infected with the viruses. Lung histopathology showed lesions that were associated with moderate interstitial pneumonia in the infected dogs. In this study, HPAI H5N6 virus replication in dogs was demonstrated for the first time. Dogs have been suspected as a "mixing vessel" for reassortments between avian and human influenza viruses to occur. The replication of these three subtypes of the H5 lineage of HPAI viruses in dogs suggests that dogs could serve as intermediate hosts for avian-human influenza virus reassortment if they are also co-infected with human influenza viruses. © 2017 Blackwell Verlag GmbH.

  18. Heterologous Humoral Response against H5N1, H7N3, and H9N2 Avian Influenza Viruses after Seasonal Vaccination in a European Elderly Population

    PubMed Central

    Sanz, Ivan; Rojo, Silvia; Tamames, Sonia; Eiros, José María; Ortiz de Lejarazu, Raúl

    2017-01-01

    Avian influenza viruses are currently one of the main threats to human health in the world. Although there are some screening reports of antibodies against these viruses in humans from Western countries, most of these types of studies are conducted in poultry and market workers of Asian populations. The presence of antibodies against avian influenza viruses was evaluated in an elderly European population. An experimental study was conducted, including pre- and post-vaccine serum samples obtained from 174 elderly people vaccinated with seasonal influenza vaccines of 2006–2007, 2008–2009, 2009–2010, and 2010–2011 Northern Hemisphere vaccine campaigns. The presence of antibodies against A/H5N1, A/H7N3, and A/H9N2 avian influenza viruses were tested by using haemaglutination inhibition assays. Globally, heterotypic antibodies were found before vaccination in 2.9% of individuals against A/H5N1, 1.2% against A/H7N3, and 25.9% against A/H9N2. These pre-vaccination antibodies were present at titers ≥1/40 in 1.1% of individuals against A/H5N1, in 1.1% against H7N3, and in 0.6% against the A/H9N2 subtype. One 76 year-old male showed pre-vaccine antibodies (Abs) against those three avian influenza viruses, and another three individuals presented Abs against two different viruses. Seasonal influenza vaccination induced a significant number of heterotypic seroconversions against A/H5N1 (14.4%) and A/H9N2 (10.9%) viruses, but only one seroconversion was observed against the A/H7N3 subtype. After vaccination, four individuals showed Abs titers ≥1/40 against those three avian viruses, and 55 individuals against both A/H5N1 and A/H9N2. Seasonal vaccination is able to induce some weak heterotypic responses to viruses of avian origin in elderly individuals with no previous exposure to them. However, this response did not accomplish the European Medicament Agency criteria for influenza vaccine efficacy. The results of this study show that seasonal vaccines induce a broad

  19. Phylogeography of Influenza A(H3N2) Virus in Peru, 2010-2012.

    PubMed

    Pollett, Simon; Nelson, Martha I; Kasper, Matthew; Tinoco, Yeny; Simons, Mark; Romero, Candice; Silva, Marita; Lin, Xudong; Halpin, Rebecca A; Fedorova, Nadia; Stockwell, Timothy B; Wentworth, David; Holmes, Edward C; Bausch, Daniel G

    2015-08-01

    It remains unclear whether lineages of influenza A(H3N2) virus can persist in the tropics and seed temperate areas. We used viral gene sequence data sampled from Peru to test this source-sink model for a Latin American country. Viruses were obtained during 2010-2012 from influenza surveillance cohorts in Cusco, Tumbes, Puerto Maldonado, and Lima. Specimens positive for influenza A(H3N2) virus were randomly selected and underwent hemagglutinin sequencing and phylogeographic analyses. Analysis of 389 hemagglutinin sequences from Peru and 2,192 global sequences demonstrated interseasonal extinction of Peruvian lineages. Extensive mixing occurred with global clades, but some spatial structure was observed at all sites; this structure was weakest in Lima and Puerto Maldonado, indicating that these locations may experience greater viral traffic. The broad diversity and co-circulation of many simultaneous lineages of H3N2 virus in Peru suggests that this country should not be overlooked as a potential source for novel pandemic strains.

  20. Swine-origin influenza A (H3N2) virus infection in two children--Indiana and Pennsylvania, July-August 2011.

    PubMed

    2011-09-09

    Influenza A viruses are endemic in many animal species, including humans, swine, and wild birds, and sporadic cases of transmission of influenza A viruses between humans and animals do occur, including human infections with avian-origin influenza A viruses (i.e., H5N1 and H7N7) and swine-origin influenza A viruses (i.e., H1N1, H1N2, and H3N2). Genetic analysis can distinguish animal origin influenza viruses from the seasonal human influenza viruses that circulate widely and cause annual epidemics. This report describes two cases of febrile respiratory illness caused by swine-origin influenza A (H3N2) viruses identified on August 19 and August 26, 2011, and the current investigations. No epidemiologic link between the two cases has been identified, and although investigations are ongoing, no additional confirmed human infections with this virus have been detected. These viruses are similar to eight other swine-origin influenza A (H3N2) viruses identified from previous human infections over the past 2 years, but are unique in that one of the eight gene segments (matrix [M] gene) is from the 2009 influenza A (H1N1) virus. The acquisition of the M gene in these two swine-origin influenza A (H3N2) viruses indicates that they are "reassortants" because they contain genes of the swine-origin influenza A (H3N2) virus circulating in North American pigs since 1998 and the 2009 influenza A (H1N1) virus that might have been transmitted to pigs from humans during the 2009 H1N1 pandemic. However, reassortments of the 2009 influenza A (H1N1) virus with other swine influenza A viruses have been reported previously in swine. Clinicians who suspect influenza virus infection in humans with recent exposure to swine should obtain a nasopharyngeal swab from the patient for timely diagnosis at a state public health laboratory and consider empiric neuraminidase inhibitor antiviral treatment to quickly limit potential human transmission.

  1. Swine influenza virus vaccine serologic cross-reactivity to contemporary U.S. swine H3N2 and efficacy in pigs infected with an H3N2 similar to 2011-2012 H3N2v

    USDA-ARS?s Scientific Manuscript database

    Background: Swine influenza A virus (IAV) reassortment with 2009 H1N1 pandemic (H1N1pdm09) virus has been documented and new genotypes and sub-clusters of H3N2 have since expanded in the U.S. swine population. An H3N2 variant (H3N2v) virus with the H1N1pdm09 matrix gene and the remaining genes of sw...

  2. Combining magnetic nanoparticle with biotinylated nanobodies for rapid and sensitive detection of influenza H3N2

    PubMed Central

    2014-01-01

    Our objective is to develop a rapid and sensitive assay based on magnetic beads to detect the concentration of influenza H3N2. The possibility of using variable domain heavy-chain antibodies (nanobody) as diagnostic tools for influenza H3N2 was investigated. A healthy camel was immunized with inactivated influenza H3N2. A nanobody library of 8 × 108 clones was constructed and phage displayed. After three successive biopanning steps, H3N2-specific nanobodies were successfully isolated, expressed in Escherichia coli, and purified. Sequence analysis of the nanobodies revealed that we possessed four classes of nanobodies against H3N2. Two nanobodies were further used to prepare our rapid diagnostic kit. Biotinylated nanobody was effectively immobilized onto the surface of streptavidin magnetic beads. The modified magnetic beads with nanobody capture specifically influenza H3N2 and can still be recognized by nanobodies conjugated to horseradish peroxidase (HRP) conjugates. Under optimized conditions, the present immunoassay exhibited a relatively high sensitive detection with a limit of 50 ng/mL. In conclusion, by combining magnetic beads with specific nanobodies, this assay provides a promising influenza detection assay to develop a potential rapid, sensitive, and low-cost diagnostic tool to screen for influenza infections. PMID:25328501

  3. Combining magnetic nanoparticle with biotinylated nanobodies for rapid and sensitive detection of influenza H3N2

    NASA Astrophysics Data System (ADS)

    Zhu, Min; Hu, Yonghong; Li, Guirong; Ou, Weijun; Mao, Panyong; Xin, Shaojie; Wan, Yakun

    2014-09-01

    Our objective is to develop a rapid and sensitive assay based on magnetic beads to detect the concentration of influenza H3N2. The possibility of using variable domain heavy-chain antibodies (nanobody) as diagnostic tools for influenza H3N2 was investigated. A healthy camel was immunized with inactivated influenza H3N2. A nanobody library of 8 × 108 clones was constructed and phage displayed. After three successive biopanning steps, H3N2-specific nanobodies were successfully isolated, expressed in Escherichia coli, and purified. Sequence analysis of the nanobodies revealed that we possessed four classes of nanobodies against H3N2. Two nanobodies were further used to prepare our rapid diagnostic kit. Biotinylated nanobody was effectively immobilized onto the surface of streptavidin magnetic beads. The modified magnetic beads with nanobody capture specifically influenza H3N2 and can still be recognized by nanobodies conjugated to horseradish peroxidase (HRP) conjugates. Under optimized conditions, the present immunoassay exhibited a relatively high sensitive detection with a limit of 50 ng/mL. In conclusion, by combining magnetic beads with specific nanobodies, this assay provides a promising influenza detection assay to develop a potential rapid, sensitive, and low-cost diagnostic tool to screen for influenza infections.

  4. Human infections with influenza A(H3N2) variant virus in the United States, 2011-2012

    USDA-ARS?s Scientific Manuscript database

    BACKGROUND. During August 2011-April 2012, 13 human infections with influenza A(H3N2) variant (H3N2v) virus were identified in the United States; 8 occurred in the prior 2 years. This virus differs from previous variant influenza viruses in that it contains the matrix (M) gene from the Influenza A(H...

  5. Novel reassortant of swine influenza H1N2 virus in Germany.

    PubMed

    Zell, Roland; Motzke, Susann; Krumbholz, Andi; Wutzler, Peter; Herwig, Volker; Dürrwald, Ralf

    2008-01-01

    European porcine H1N2 influenza viruses arose after multiple reassortment steps involving a porcine influenza virus with avian-influenza-like internal segments and human H1N1 and H3N2 viruses in 1994. In Germany, H1N2 swine influenza viruses first appeared in 2000. Two German H1N2 swine influenza virus strains isolated from pigs with clinical symptoms of influenza are described. They were characterized by the neutralization test, haemagglutination inhibition (HI) test and complete sequencing of the viral genomes. The data demonstrate that these viruses represent a novel H1N2 reassortant. The viruses showed limited neutralization by sera raised against heterologous A/sw/Bakum/1,832/00-like H1N2 viruses. Sera pools from recovered pigs showed a considerably lower HI reaction, indicative of diagnostic difficulties in using the HI test to detect these viruses with A/sw/Bakum/1,832/00-like H1N2 antigens. Genome sequencing revealed the novel combination of the human-like HAH1 gene of European porcine H1N2 influenza viruses and the NAN2 gene of European porcine H3N2 viruses.

  6. Surveillance of human influenza A(H3N2) virus from 1999 to 2009 in southern Italy.

    PubMed

    DE Donno, A; Idolo, A; Quattrocchi, M; Zizza, A; Gabutti, G; Romano, A; Grima, P; Donatelli, I; Guido, M

    2014-05-01

    The aim of this study was to evaluate the presence of influenza virus co-infections in humans and changes in the genetic variability of A(H3N2) virus strains in southern Italy from 1999 to 2009. A partial sequence of the haemagglutinin (HA) gene by human influenza H3N2 strains identified in oropharyngeal swabs from patients with influenza-like illness was analysed by DNA sequencing and a phylogenetic analysis was performed. During the seasons 1999-2000, 2002-2003, 2004-2005 and 2008-2009, the influenza viruses circulating belonged to subtype H3N2. However, A(H1N1) subtype virus and B type were respectively prevalent during the 2000-2001, 2006-2007, 2007-2008 and 2001-2002, 2003-2004, 2005-2006 seasons. The HA sequences appeared to be closely related to the sequence of the influenza A vaccine strain. Only the 2002-2003 season was characterized by co-circulation of two viral lineages: A/New York/55/01(H3N2)-like virus of the previous season and A/Fujian/411/02(H3N2)-like virus, a new H3 variant. In this study, over the decade analysed, no significant change was seen in the sequences of the HA gene of H3 viruses isolated.

  7. Emergence and Evolution of Novel Reassortant Influenza A Viruses in Canines in Southern China.

    PubMed

    Chen, Ying; Trovão, Nídia S; Wang, Guojun; Zhao, Weifeng; He, Ping; Zhou, Huabo; Mo, Yanning; Wei, Zuzhang; Ouyang, Kang; Huang, Weijian; García-Sastre, Adolfo; Nelson, Martha I

    2018-06-05

    The capacity of influenza A viruses (IAVs) to host jump from animal reservoir species to humans presents an ongoing pandemic threat. Birds and swine are considered major reservoirs of viral genetic diversity, whereas equines and canines have historically been restricted to one or two stable IAV lineages with no transmission to humans. Here, by sequencing the complete genomes of 16 IAVs obtained from canines in southern China (Guangxi Zhuang Autonomous Region [Guangxi]) in 2013 to 2015, we demonstrate that the evolution of canine influenza viruses (CIVs) in Asian dogs is increasingly complex, presenting a potential threat to humans. First, two reassortant H1N1 virus genotypes were introduced independently from swine into canines in Guangxi, including one genotype associated with a zoonotic infection. The genomes contain segments from three lineages that circulate in swine in China: North American triple reassortant H3N2, Eurasian avian-like H1N1, and pandemic H1N1. Furthermore, the swine-origin H1N1 viruses have transmitted onward in canines and reassorted with the CIV-H3N2 viruses that circulate endemically in Asian dogs, producing three novel reassortant CIV genotypes (H1N1r, H1N2r, and H3N2r [r stands for reassortant]). CIVs from this study were collected primarily from pet dogs presenting with respiratory symptoms at veterinary clinics, but dogs in Guangxi are also raised for meat, and street dogs roam freely, creating a more complex ecosystem for CIV transmission. Further surveillance is greatly needed to understand the full genetic diversity of CIV in southern China, the nature of viral emergence and persistence in the region's diverse canine populations, and the zoonotic risk as the viruses continue to evolve. IMPORTANCE Mammals have emerged as critically underrecognized sources of influenza virus diversity, including pigs that were the source of the 2009 pandemic and bats and bovines that harbor highly divergent viral lineages. Here, we identify two

  8. Pathogenicity and Transmissibility of Novel Reassortant H3N2 Influenza Viruses with 2009 Pandemic H1N1 Genes in Pigs

    PubMed Central

    Ma, Jingjiao; Shen, Huigang; Liu, Qinfang; Bawa, Bhupinder; Qi, Wenbao; Duff, Michael; Lang, Yuekun; Lee, Jinhwa; Yu, Hai; Bai, Jianfa; Tong, Guangzhi; Hesse, Richard A.; Richt, Jürgen A.

    2014-01-01

    ABSTRACT At least 10 different genotypes of novel reassortant H3N2 influenza viruses with 2009 pandemic H1N1 [A(H1N1)pdm09] gene(s) have been identified in U.S. pigs, including the H3N2 variant with a single A(H1N1)pdm09 M gene, which has infected more than 300 people. To date, only three genotypes of these viruses have been evaluated in animal models, and the pathogenicity and transmissibility of the other seven genotype viruses remain unknown. Here, we show that three H3N2 reassortant viruses that contain 3 (NP, M, and NS) or 5 (PA, PB2, NP, M, and NS) genes from A(H1N1)pdm09 were pathogenic in pigs, similar to the endemic H3N2 swine virus. However, the reassortant H3N2 virus with 3 A(H1N1)pdm09 genes and a recent human influenza virus N2 gene was transmitted most efficiently among pigs, whereas the reassortant H3N2 virus with 5 A(H1N1)pdm09 genes was transmitted less efficiently than the endemic H3N2 virus. Interestingly, the polymerase complex of reassortant H3N2 virus with 5 A(H1N1)pdm09 genes showed significantly higher polymerase activity than those of endemic and reassortant H3N2 viruses with 3 A(H1N1)pdm09 genes. Further studies showed that an avian-like glycine at position 228 at the hemagglutinin (HA) receptor binding site is responsible for inefficient transmission of the reassortant H3N2 virus with 5 A(H1N1)pdm09 genes. Taken together, our results provide insights into the pathogenicity and transmissibility of novel reassortant H3N2 viruses in pigs and suggest that a mammalian-like serine at position 228 in the HA is critical for the transmissibility of these reassortant H3N2 viruses. IMPORTANCE Swine influenza is a highly contagious zoonotic disease that threatens animal and public health. Introduction of 2009 pandemic H1N1 virus [A(H1N1)pdm09] into swine herds has resulted in novel reassortant influenza viruses in swine, including H3N2 and H1N2 variants that have caused human infections in the United States. We showed that reassortant H3N2 influenza

  9. Predominance of influenza A(H3N2) viruses during the 2016/2017 season in Bulgaria.

    PubMed

    Korsun, Neli; Angelova, Svetla; Trifonova, Ivelina; Tzotcheva, Iren; Mileva, Sirma; Voleva, Silvia; Georgieva, Irina; Perenovska, Penka

    2018-02-01

    Influenza viruses are characterised by high variability, which makes them able to cause annual epidemics. The aim of this study is to determine the antigenic and genetic characteristics of influenza viruses circulating in Bulgaria during the 2016/2017 season. The detection and typing/subtyping of influenza viruses were performed using real time RT-PCR. Results of antigenic characterisation, phylogenetic and amino acid sequence analyses of representative influenza strains are presented herein. The 2016/2017 season was characterised by an early start, an exclusive dominance of A(H3N2) viruses accounting for 93 % of total influenza virus detections, and a low circulation of A(H1N1)pdm09 (4.2 %) and type B (2.5 %) viruses. The analysed A(H3N2) viruses belonged to subclades 3C.2a (52 %) and 3C.2a1 (48 %); all studied A(H1N1)pdm09 and B/Victoria-lineage viruses belonged to subclades 6B.1 and 1A, respectively. The amino acid sequence analysis of 56 A(H3N2) isolates revealed the presence of substitutions in 18 positions in haemagglutinin (HA) as compared to the A/Hong Kong/4801/2014 vaccine virus, seven of which occurred in four antigenic sites, together with changes in 23 positions in neuraminidase (NA), and a number of substitutions in internal proteins PB2, PB1, PB1-F2, PA, NP and NS1. Despite the many amino acid substitutions, A(H3N2) viruses remained antigenically similar to the vaccine strain. Substitutions in HA and NA sequences of A(H1N1)pdm09 and B/Victoria-lineage strains were also identified, including in antigenic sites. The results of this study confirm the genetic variability of circulating influenza viruses, particularly A(H3N2), and the need for continued antigenic and molecular surveillance.

  10. The replication of Bangladeshi H9N2 avian influenza viruses carrying genes from H7N3 in mammals

    PubMed Central

    Shanmuganatham, Karthik K; Jones, Jeremy C; Marathe, Bindumadhav M; Feeroz, Mohammed M; Jones-Engel, Lisa; Walker, David; Turner, Jasmine; Rabiul Alam, S M; Kamrul Hasan, M; Akhtar, Sharmin; Seiler, Patrick; McKenzie, Pamela; Krauss, Scott; Webby, Richard J; Webster, Robert G

    2016-01-01

    H9N2 avian influenza viruses are continuously monitored by the World Health Organization because they are endemic; they continually reassort with H5N1, H7N9 and H10N8 viruses; and they periodically cause human infections. We characterized H9N2 influenza viruses carrying internal genes from highly pathogenic H7N3 viruses, which were isolated from chickens or quail from live-bird markets in Bangladesh between 2010 and 2013. All of the H9N2 viruses used in this study carried mammalian host-specific mutations. We studied their replication kinetics in normal human bronchoepithelial cells and swine tracheal and lung explants, which exhibit many features of the mammalian airway epithelium and serve as a mammalian host model. All H9N2 viruses replicated to moderate-to-high titers in the normal human bronchoepithelial cells and swine lung explants, but replication was limited in the swine tracheal explants. In Balb/c mice, the H9N2 viruses were nonlethal, replicated to moderately high titers and the infection was confined to the lungs. In the ferret model of human influenza infection and transmission, H9N2 viruses possessing the Q226L substitution in hemagglutinin replicated well without clinical signs and spread via direct contact but not by aerosol. None of the H9N2 viruses tested were resistant to the neuraminidase inhibitors. Our study shows that the Bangladeshi H9N2 viruses have the potential to infect humans and highlights the importance of monitoring and characterizing this influenza subtype to better understand the potential risk these viruses pose to humans. PMID:27094903

  11. The replication of Bangladeshi H9N2 avian influenza viruses carrying genes from H7N3 in mammals.

    PubMed

    Shanmuganatham, Karthik K; Jones, Jeremy C; Marathe, Bindumadhav M; Feeroz, Mohammed M; Jones-Engel, Lisa; Walker, David; Turner, Jasmine; Rabiul Alam, S M; Kamrul Hasan, M; Akhtar, Sharmin; Seiler, Patrick; McKenzie, Pamela; Krauss, Scott; Webby, Richard J; Webster, Robert G

    2016-04-20

    H9N2 avian influenza viruses are continuously monitored by the World Health Organization because they are endemic; they continually reassort with H5N1, H7N9 and H10N8 viruses; and they periodically cause human infections. We characterized H9N2 influenza viruses carrying internal genes from highly pathogenic H7N3 viruses, which were isolated from chickens or quail from live-bird markets in Bangladesh between 2010 and 2013. All of the H9N2 viruses used in this study carried mammalian host-specific mutations. We studied their replication kinetics in normal human bronchoepithelial cells and swine tracheal and lung explants, which exhibit many features of the mammalian airway epithelium and serve as a mammalian host model. All H9N2 viruses replicated to moderate-to-high titers in the normal human bronchoepithelial cells and swine lung explants, but replication was limited in the swine tracheal explants. In Balb/c mice, the H9N2 viruses were nonlethal, replicated to moderately high titers and the infection was confined to the lungs. In the ferret model of human influenza infection and transmission, H9N2 viruses possessing the Q226L substitution in hemagglutinin replicated well without clinical signs and spread via direct contact but not by aerosol. None of the H9N2 viruses tested were resistant to the neuraminidase inhibitors. Our study shows that the Bangladeshi H9N2 viruses have the potential to infect humans and highlights the importance of monitoring and characterizing this influenza subtype to better understand the potential risk these viruses pose to humans.

  12. Swine influenza virus vaccine serologic cross-reactivity to contemporary US swine H3N2 and efficacy in pigs infected with an H3N2 similar to 2011-2012 H3N2v.

    PubMed

    Kitikoon, Pravina; Gauger, Phillip C; Anderson, Tavis K; Culhane, Marie R; Swenson, Sabrina; Loving, Crystal L; Perez, Daniel R; Vincent, Amy L

    2013-12-01

    Swine influenza A virus (IAV) reassortment with 2009 H1N1 pandemic (H1N1pdm09) virus has been documented, and new genotypes and subclusters of H3N2 have since expanded in the US swine population. An H3N2 variant (H3N2v) virus with the H1N1pdm09 matrix gene and the remaining genes of swine triple reassortant H3N2 caused outbreaks at agricultural fairs in 2011-2012. To assess commercial swine IAV vaccines' efficacy against H3N2 viruses, including those similar to H3N2v, antisera to three vaccines were tested by hemagglutinin inhibition (HI) assay against contemporary H3N2. Vaccine 1, with high HI cross-reactivity, was further investigated for efficacy against H3N2 virus infection in pigs with or without maternally derived antibodies (MDA). In addition, efficacy of a vaccine derived from whole inactivated virus (WIV) was compared with live attenuated influenza virus (LAIV) against H3N2. Hemagglutinin inhibition cross-reactivity demonstrated that contemporary swine H3N2 viruses have drifted from viruses in current swine IAV vaccines. The vaccine with the highest level of HI cross-reactivity significantly protected pigs without MDA. However, the presence of MDA at vaccination blocked vaccine efficacy. The performance of WIV and LAIV was comparable in the absence of MDA. Swine IAV in the United States is complex and dynamic. Vaccination to minimize virus shedding can help limit transmission of virus among pigs and people. However, vaccines must be updated. A critical review of the use of WIV in sows is required in the context of the current IAV ecology and vaccine application in pigs with MDA. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  13. Phylogeography of Influenza A(H3N2) Virus in Peru, 2010–2012

    PubMed Central

    Nelson, Martha I.; Kasper, Matthew; Tinoco, Yeny; Simons, Mark; Romero, Candice; Silva, Marita; Lin, Xudong; Halpin, Rebecca A.; Fedorova, Nadia; Stockwell, Timothy B.; Wentworth, David; Holmes, Edward C.; Bausch, Daniel G.

    2015-01-01

    It remains unclear whether lineages of influenza A(H3N2) virus can persist in the tropics and seed temperate areas. We used viral gene sequence data sampled from Peru to test this source–sink model for a Latin American country. Viruses were obtained during 2010–2012 from influenza surveillance cohorts in Cusco, Tumbes, Puerto Maldonado, and Lima. Specimens positive for influenza A(H3N2) virus were randomly selected and underwent hemagglutinin sequencing and phylogeographic analyses. Analysis of 389 hemagglutinin sequences from Peru and 2,192 global sequences demonstrated interseasonal extinction of Peruvian lineages. Extensive mixing occurred with global clades, but some spatial structure was observed at all sites; this structure was weakest in Lima and Puerto Maldonado, indicating that these locations may experience greater viral traffic. The broad diversity and co-circulation of many simultaneous lineages of H3N2 virus in Peru suggests that this country should not be overlooked as a potential source for novel pandemic strains. PMID:26196599

  14. Analytical detection of influenza A(H3N2)v and other A variant viruses from the USA by rapid influenza diagnostic tests.

    PubMed

    Balish, Amanda; Garten, Rebecca; Klimov, Alexander; Villanueva, Julie

    2013-07-01

    The performance of rapid influenza diagnostic tests (RIDTs) that detect influenza viral nucleoprotein (NP) antigen has been reported to be variable. Recent human infections with variant influenza A viruses that are circulating in pigs prompted the investigation of the analytical reactivity of RIDTs with these variant viruses. To determine analytical reactivity of seven FDA-cleared RIDTs with influenza A variant viruses in comparison with the reactivity with recently circulating seasonal influenza A viruses. Tenfold serial dilutions of cell culture-grown seasonal and variant influenza A viruses were prepared and tested in duplicate with seven RIDTs. All RIDTs evaluated in this study detected the seasonal influenza A(H3N2) virus, although detection limits varied among assays. All but one examined RIDT identified the influenza A(H1N1)pdm09 virus. However, only four of seven RIDTs detected all influenza A(H3N2)v, A(H1N2)v, and A(H1N1)v viruses. Reduced sensitivity of RIDTs to variant influenza viruses may be due to amino acid differences between the NP proteins of seasonal viruses and the NP proteins from viruses circulating in pigs. Clinicians should be aware of the limitations of RIDTs to detect influenza A variant viruses. Specimens from patients with influenza-like illness in whom H3N2v is suspected should be sent to public health laboratories for additional diagnostic testing. Published 2012. This article is a US Government work and is in the public domain in the USA.

  15. Identification of reassortant pandemic H1N1 influenza virus in Korean pigs.

    PubMed

    Han, Jae Yeon; Park, Sung Jun; Kim, Hye Kwon; Rho, Semi; Nguyen, Giap Van; Song, Daesub; Kang, Bo Kyu; Moon, Hyung Jun; Yeom, Min Joo; Park, Bong Kyun

    2012-05-01

    Since the 2009 pandemic human H1N1 influenza A virus emerged in April 2009, novel reassortant strains have been identified throughout the world. This paper describes the detection and isolation of reassortant strains associated with human pandemic influenza H1N1 and swine influenza H1N2 (SIV) viruses in swine populations in South Korea. Two influenza H1N2 reassortants were detected, and subtyped by PCR. The strains were isolated using Madin- Darby canine kidney (MDCK) cells, and genetically characterized by phylogenetic analysis for genetic diversity. They consisted of human, avian, and swine virus genes that were originated from the 2009 pandemic H1N1 virus and a neuraminidase (NA) gene from H1N2 SIV previously isolated in North America. This identification of reassortment events in swine farms raises concern that reassortant strains may continuously circulate within swine populations, calling for the further study and surveillance of pandemic H1N1 among swine.

  16. Influenza A(H6N1) Virus in Dogs, Taiwan

    PubMed Central

    Lin, Hui-Ting; Wang, Ching-Ho; Chueh, Ling-Ling; Su, Bi-Ling

    2015-01-01

    We determined the prevalence of influenza A virus in dogs in Taiwan and isolated A/canine/Taiwan/E01/2014. Molecular analysis indicated that this isolate was closely related to influenza A(H6N1) viruses circulating in Taiwan and harbored the E627K substitution in the polymerase basic 2 protein, which indicated its ability to replicate in mammalian species. PMID:26583707

  17. Outbreak of H3N2 influenza at a US military base in Djibouti during the H1N1 pandemic of 2009.

    PubMed

    Cosby, Michael T; Pimentel, Guillermo; Nevin, Remington L; Fouad Ahmed, Salwa; Klena, John D; Amir, Ehab; Younan, Mary; Browning, Robert; Sebeny, Peter J

    2013-01-01

    Influenza pandemics have significant operational impact on deployed military personnel working in areas throughout the world. The US Department of Defense global influenza-like illness (ILI) surveillance network serves an important role in establishing baseline trends and can be leveraged to respond to outbreaks of respiratory illness. We identified and characterized an operationally unique outbreak of H3N2 influenza at Camp Lemonnier, Djibouti occurring simultaneously with the H1N1 pandemic of 2009 [A(H1N1)pdm09]. Enhanced surveillance for ILI was conducted at Camp Lemonnier in response to local reports of a possible outbreak during the A(H1N1)pdm09 pandemic. Samples were collected from consenting patients presenting with ILI (utilizing a modified case definition) and who completed a case report form. Samples were cultured and analyzed using standard real-time reverse transcriptase PCR (rt-RT-PCR) methodology and sequenced genetic material was phylogenetically compared to other published strains. rt-RT-PCR and DNA sequencing revealed that 25 (78%) of the 32 clinical samples collected were seasonal H3N2 and only 2 (6%) were A(H1N1)pdm09 influenza. The highest incidence of H3N2 occurred during the month of May and 80% of these were active duty military personnel. Phylogenetic analysis revealed that sequenced H3N2 strains were genetically similar to 2009 strains from the United States of America, Australia, and South east Asia. This outbreak highlights challenges in the investigation of influenza among deployed military populations and corroborates the public health importance of maintaining surveillance systems for ILI that can be enhanced locally when needed.

  18. Molecular Epidemiology of Influenza A/H3N2 Viruses Circulating in Mexico from 2003 to 2012

    PubMed Central

    Escalera-Zamudio, Marina; Nelson, Martha I.; Cobián Güemes, Ana Georgina; López-Martínez, Irma; Cruz-Ortiz, Natividad; Iguala-Vidales, Miguel; García, Elvia Rodríguez; Barrera-Badillo, Gisela; Díaz-Quiñonez, Jose Alberto; López, Susana; Arias, Carlos F.; Isa, Pavel

    2014-01-01

    In this work, nineteen influenza A/H3N2 viruses isolated in Mexico between 2003 and 2012 were studied. Our findings show that different human A/H3N2 viral lineages co-circulate within a same season and can also persist locally in between different influenza seasons, increasing the chance for genetic reassortment events. A novel minor cluster was also identified, named here as Korea, that circulated worldwide during 2003. Frequently, phylogenetic characterization did not correlate with the determined antigenic identity, supporting the need for the use of molecular evolutionary tools additionally to antigenic data for the surveillance and characterization of viral diversity during each flu season. This work represents the first long-term molecular epidemiology study of influenza A/H3N2 viruses in Mexico based on the complete genomic sequences and contributes to the monitoring of evolutionary trends of A/H3N2 influenza viruses within North and Central America. PMID:25075517

  19. Swine-to-Human Transmission of Influenza A(H3N2) Virus at Agricultural Fairs, Ohio, USA, 2012

    PubMed Central

    Nelson, Sarah W.; Page, Shannon L.; Nolting, Jacqueline M.; Killian, Mary L.; Sreevatsan, Srinand; Slemons, Richard D.

    2014-01-01

    Agricultural fairs provide an opportunity for bidirectional transmission of influenza A viruses. We sought to determine influenza A virus activity among swine at fairs in the United States. As part of an ongoing active influenza A virus surveillance project, nasal swab samples were collected from exhibition swine at 40 selected Ohio agricultural fairs during 2012. Influenza A(H3N2) virus was isolated from swine at 10 of the fairs. According to a concurrent public health investigation, 7 of the 10 fairs were epidemiologically linked to confirmed human infections with influenza A(H3N2) variant virus. Comparison of genome sequences of the subtype H3N2 isolates recovered from humans and swine from each fair revealed nucleotide identities of >99.7%, confirming zoonotic transmission between swine and humans. All influenza A(H3N2) viruses isolated in this study, regardless of host species or fair, were >99.5% identical, indicating that 1 virus strain was widely circulating among exhibition swine in Ohio during 2012. PMID:25148572

  20. Emergence of novel clade 2.3.4 influenza A (H5N1) virus subgroups in Yunnan Province, China.

    PubMed

    Hu, Tingsong; Song, Jianling; Zhang, Wendong; Zhao, Huanyun; Duan, Bofang; Liu, Qingliang; Zeng, Wei; Qiu, Wei; Chen, Gang; Zhang, Yingguo; Fan, Quanshui; Zhang, Fuqiang

    2015-07-01

    From December 2013 to March 2014, a major wave of highly pathogenic avian influenza outbreak occurred in poultry in Yunnan Province, China. We isolated and characterized eight highly pathogenic avian influenza A (H5N1) viruses from poultry. Full genome influenza sequences and analyses have been performed. Sequence analyses revealed that they belonged to clade 2.3.4 but did not fit within the three defined subclades. The isolated viruses were provisional subclade 2.3.4.4e. The provisional subclade 2.3.4.4e viruses with six internal genes from avian influenza A (H5N2) viruses in 2013 were the novel reassortant influenza A (H5N1) viruses which were associated with the outbreak of H5N1 occurred in egg chicken farms in Yunnan Province. The HA genes were similar to subtype H5 viruses isolated from January to March of 2014 in Asia including H5N6 and H5N8. The NA genes were most closely related to A/chicken/Vietnam/NCVD-KA423/2013 (H5N1) from the subclade 2.3.2. The HI assay demonstrated a lack of antigenic relatedness between clades 2.3.4.4e and 2.3.4.1 (RE-5 vaccine strain) or 2.3.2.2 (RE-6 vaccine strain). Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Outbreak of H3N2 Influenza at a US Military Base in Djibouti during the H1N1 Pandemic of 2009

    PubMed Central

    Cosby, Michael T.; Pimentel, Guillermo; Nevin, Remington L.; Fouad Ahmed, Salwa; Klena, John D.; Amir, Ehab; Younan, Mary; Browning, Robert; Sebeny, Peter J.

    2013-01-01

    Background Influenza pandemics have significant operational impact on deployed military personnel working in areas throughout the world. The US Department of Defense global influenza-like illness (ILI) surveillance network serves an important role in establishing baseline trends and can be leveraged to respond to outbreaks of respiratory illness. Objective We identified and characterized an operationally unique outbreak of H3N2 influenza at Camp Lemonnier, Djibouti occurring simultaneously with the H1N1 pandemic of 2009 [A(H1N1)pdm09]. Methods Enhanced surveillance for ILI was conducted at Camp Lemonnier in response to local reports of a possible outbreak during the A(H1N1)pdm09 pandemic. Samples were collected from consenting patients presenting with ILI (utilizing a modified case definition) and who completed a case report form. Samples were cultured and analyzed using standard real-time reverse transcriptase PCR (rt-RT-PCR) methodology and sequenced genetic material was phylogenetically compared to other published strains. Results rt-RT-PCR and DNA sequencing revealed that 25 (78%) of the 32 clinical samples collected were seasonal H3N2 and only 2 (6%) were A(H1N1)pdm09 influenza. The highest incidence of H3N2 occurred during the month of May and 80% of these were active duty military personnel. Phylogenetic analysis revealed that sequenced H3N2 strains were genetically similar to 2009 strains from the United States of America, Australia, and South east Asia. Conclusions This outbreak highlights challenges in the investigation of influenza among deployed military populations and corroborates the public health importance of maintaining surveillance systems for ILI that can be enhanced locally when needed. PMID:24339995

  2. Genomewide analysis of reassortment and evolution of human influenza A(H3N2) viruses circulating between 1968 and 2011.

    PubMed

    Westgeest, Kim B; Russell, Colin A; Lin, Xudong; Spronken, Monique I J; Bestebroer, Theo M; Bahl, Justin; van Beek, Ruud; Skepner, Eugene; Halpin, Rebecca A; de Jong, Jan C; Rimmelzwaan, Guus F; Osterhaus, Albert D M E; Smith, Derek J; Wentworth, David E; Fouchier, Ron A M; de Graaf, Miranda

    2014-03-01

    Influenza A(H3N2) viruses became widespread in humans during the 1968 H3N2 virus pandemic and have been a major cause of influenza epidemics ever since. These viruses evolve continuously by reassortment and genomic evolution. Antigenic drift is the cause for the need to update influenza vaccines frequently. Using two data sets that span the entire period of circulation of human influenza A(H3N2) viruses, it was shown that influenza A(H3N2) virus evolution can be mapped to 13 antigenic clusters. Here we analyzed the full genomes of 286 influenza A(H3N2) viruses from these two data sets to investigate the genomic evolution and reassortment patterns. Numerous reassortment events were found, scattered over the entire period of virus circulation, but most prominently in viruses circulating between 1991 and 1998. Some of these reassortment events persisted over time, and one of these coincided with an antigenic cluster transition. Furthermore, selection pressures and nucleotide and amino acid substitution rates of all proteins were studied, including those of the recently discovered PB1-N40, PA-X, PA-N155, and PA-N182 proteins. Rates of nucleotide and amino acid substitutions were most pronounced for the hemagglutinin, neuraminidase, and PB1-F2 proteins. Selection pressures were highest in hemagglutinin, neuraminidase, matrix 1, and nonstructural protein 1. This study of genotype in relation to antigenic phenotype throughout the period of circulation of human influenza A(H3N2) viruses leads to a better understanding of the evolution of these viruses. Each winter, influenza virus infects approximately 5 to 15% of the world's population, resulting in significant morbidity and mortality. Influenza A(H3N2) viruses evolve continuously by reassortment and genomic evolution. This leads to changes in antigenic recognition (antigenic drift) which make it necessary to update vaccines against influenza A(H3N2) viruses frequently. In this study, the relationship of genetic evolution

  3. Evolution of the hemagglutinin gene of H3N8 canine influenza virus in dogs.

    PubMed

    Pecoraro, Heidi L; Bennett, Susi; Spindel, Miranda E; Landolt, Gabriele A

    2014-12-01

    With the widespread use of a recently developed canine influenza virus (CIV) H3N8 vaccine, continual molecular evaluation of circulating CIVs is necessary for monitoring antigenic drift. The aim of this project was to further describe the genetic evolution of CIV, as well as determine any genetic variation within potential antigenic regions that might result in antigenic drift. To this end, the hemagglutinin gene of 19 CIV isolates from dogs residing in Colorado, New York, and South Carolina humane shelters was sequenced and compared to CIV strains isolated during 2003-2012. Phylogenetic analysis suggests that CIV might be diverging into two geographically distinct lineages. Using a mixed-effects model for evolution and single likelihood ancestor counting methods, several amino acid sites were found to be undergoing selection pressure. Additionally, a total of six amino acid changes were observed in two possible antigenic sites for CIVs isolated from Colorado and New York humane shelters between 2009 and 2011. As CIV isolates might be diverging into geographically distinct lineages, further experiments are warranted to determine the extent of antigenic drift occurring within circulating CIV.

  4. Integrated Lung and Tracheal mRNA-Seq and miRNA-Seq Analysis of Dogs with an Avian-Like H5N1 Canine Influenza Virus Infection

    PubMed Central

    Fu, Cheng; Luo, Jie; Ye, Shaotang; Yuan, Ziguo; Li, Shoujun

    2018-01-01

    Avian-like H5N1 canine influenza virus (CIV) causes severe respiratory infections in dogs. However, the mechanism underlying H5N1 CIV infection in dogs is unknown. The present study aimed to identify differentially expressed miRNAs and mRNAs in the lungs and trachea in H5N1 CIV-infected dogs through a next-generation sequencing-based method. Eighteen 40-day-old beagles were inoculated intranasally with CIV, A/canine/01/Guangdong/2013 (H5N1) at a tissue culture infectious dose 50 (TCID50) of 106, and lung and tracheal tissues were harvested at 3 and 7 d post-inoculation. The tissues were processed for miRNA and mRNA analysis. By means of miRNA-gene expression integrative negative analysis, we found miRNA–mRNA pairs. Lung and trachea tissues showed 138 and 135 negative miRNA–mRNA pairs, respectively. One hundred and twenty negative miRNA–mRNA pairs were found between the different tissues. In particular, pathways including the influenza A pathway, chemokine signaling pathways, and the PI3K-Akt signaling pathway were significantly enriched in all groups in responses to virus infection. Furthermore, dysregulation of miRNA and mRNA expression was observed in the respiratory tract of H5N1 CIV-infected dogs and notably, TLR4 (miR-146), NF-κB (miR-34c) and CCL5 (miR-335), CCL10 (miR-8908-5p), and GNGT2 (miR-122) were found to play important roles in regulating pathways that resist virus infection. To our knowledge, the present study is the first to analyze miRNA and mRNA expression in H5N1 CIV-infected dogs; furthermore, the present findings provide insights into the molecular mechanisms underlying influenza virus infection. PMID:29556219

  5. Comparative pathology of pigs infected with Korean H1N1, H1N2, or H3N2 swine influenza A viruses.

    PubMed

    Lyoo, Kwang-Soo; Kim, Jeong-Ki; Jung, Kwonil; Kang, Bo-Kyu; Song, Daesub

    2014-09-24

    The predominant subtypes of swine influenza A virus (SIV) in Korea swine population are H1N1, H1N2, and H3N2. The viruses are genetically close to the classical U.S. H1N1 and triple-reassortant H1N2 and H3N2 viruses, respectively. Comparative pathogenesis caused by Korean H1N1, H1N2, and H3N2 SIV was evaluated in this study. The H3N2 infected pigs had severe scores of gross and histopathological lesions at post-inoculation days (PID) 2, and this then progressively decreased. Both the H1N1 and H1N2 infected pigs lacked gross lesions at PID 2, but they showed moderate to severe pneumonia on PID 4, 7 and 14. The pigs infected with H1N1 had significant scores of gross and histopathological lesions when compared with the other pigs infected with H1N2, H3N2, and mock at PID 14. Mean SIV antigen-positive scores were rarely detected for pigs infected with H1N2 and H3N2 from PID 7, whereas a significantly increased amount of viral antigens were found in the bronchioles and alveolar epithelium of the H1N1infected pigs at PID 14. We demonstrated that Korean SIV subtypes had different pulmonary pathologic patterns. The Korean H3N2 rapidly induced acute lung lesions such as broncho-interstitial pneumonia, while the Korean H1N1 showed longer course of infection as compared to other strains.

  6. In vivo prophylactic activity of QR-435 against H3N2 influenza virus infection.

    PubMed

    Oxford, John S; Lambkin, Robert; Guralnik, Mario; Rosenbloom, Richard A; Petteruti, Michael P; Digian, Kelly; LeFante, Carolyn

    2007-01-01

    Prophylaxis against influenza infection can take several forms, none of which is totally effective at preventing the spread of the disease. QR-435, an all-natural compound of green-tea extract and other agents, has been developed to protect against a range of viral infections, including the influenza subtype H3N2. Several different QR-435 formulations were tested against the two influenza A H3N2 viruses (A/Sydney/5/97 and A/Panama/2007/99) in the ferret model. Most experiments included negative (phosphate-buffered saline) and positive (oseltamivir 5 mg/kg, twice daily) controls. QR-435 and the control were administered 5 minutes after intranasal delivery of the virus as prophylaxis against infection resulting from exposure to infected but untreated ferrets and for prevention of transmission from infected and treated ferrets to untreated animals. Effects of QR-435 on seroconversion, virus shedding, and systemic sequelae of infection (weight loss, fever, reduced activity) were evaluated. QR-435 prevented transmission and provided prophylaxis against influenza virus H3N2. Prophylaxis with QR-435 was significantly more than with oseltamivir in these experiments. Optimal in vivo efficacy of QR-435 requires a horseradish concentration of at least 50% of that in the original formulation, and the benefits of this preparation appear to be dose dependent. QR-435 is effective for both prevention of H3N2 viral transmission and prophylaxis. These preclinical results warrant further evaluation of its prophylactic properties against avian influenza virus infection in humans.

  7. The Continuing Evolution of H5N1 and H9N2 Influenza Viruses in Bangladesh

    PubMed Central

    Marinova-Petkova, Atanaska; Shanmuganatham, Karthik; Feeroz, Mohammed M.; Jones-Engel, Lisa; Hassan, M. Kamrul; Akhtar, Sharmin; Turner, Jasmine; Walker, David; Seiler, Patrick; Franks, John; McKenzie, Pamela; Krauss, Scott; Webby, Richard J.; Webster, Robert G.

    2017-01-01

    Summary In 2011, avian influenza surveillance at the Bangladesh live bird markets (LBMs) showed complete replacement of the highly pathogenic avian influenza (HPAI) H5N1 virus of clade 2.2.2 (Qinghai-like H5N1 lineage) by the HPAI H5N1 clade 2.3.2.1. This clade, which continues to circulate in Bangladesh and neighboring countries, is an intra- and inter-clade reassortant; its HA, PB1, PA and NS genes come from subclade 2.3.2.1a; PB2 from subclade 2.3.2.1c; and NA, NP, and M from clade 2.3.4.2. The H9N2 influenza viruses co-circulating in the Bangladesh LBMs are also reassortants, possessing five genes (NS, M, NP, PA, and PB1) from a HPAI H7N3 virus previously isolated in Pakistan. Despite frequent co-infection of chickens and ducks, reassortment between these H5N1 and H9N2 viruses has been rare. However, all such reassortants detected in 2011 through 2013 have carried 7 genes from HPAI H5N1 clade 2.3.2.1a and the PB1 gene from the Bangladeshi H9N2 clade G1 Mideast, itself derived from HPAI H7N3 virus. Although, the live birds which we sampled in Bangladesh showed no clinical signs of morbidity, the emergence of this reassortant HPAI H5N1 lineage further complicates endemic circulation of H5N1 viruses in Bangladesh, posing a threat to both poultry and humans. PMID:27309046

  8. Potency of an inactivated influenza vaccine prepared from A/duck/Hokkaido/162/2013 (H2N1) against a challenge with A/swine/Missouri/2124514/2006 (H2N3) in mice

    PubMed Central

    SUZUKI, Mizuho; OKAMATSU, Masatoshi; HIONO, Takahiro; MATSUNO, Keita; SAKODA, Yoshihiro

    2017-01-01

    H2N2 influenza virus caused a pandemic starting in 1957 but has not been detected in humans since 1968. Thus, most people are immunologically naive to viruses of the H2 subtype. In contrast, H2 influenza viruses are continually isolated from wild birds, and H2N3 viruses were isolated from pigs in 2006. H2 influenza viruses could cause a pandemic if re-introduced into humans. In the present study, a vaccine against H2 influenza was prepared as an effective control measure against a future human pandemic. A/duck/Hokkaido/162/2013 (H2N1), which showed broad antigenic cross-reactivity, was selected from the candidate H2 influenza viruses recently isolated from wild birds in Asian countries. Sufficient neutralizing antibodies against homologous and heterologous viruses were induced in mice after two subcutaneous injections of the inactivated whole virus particle vaccine. The inactivated vaccine induced protective immunity sufficient to reduce the impact of challenges with A/swine/Missouri/2124514/2006 (H2N3). This study demonstrates that the inactivated whole virus particle vaccine prepared from an influenza virus library would be useful against a future H2 influenza pandemic. PMID:28993601

  9. Interim estimates of the effectiveness of the influenza vaccine against A(H3N2) influenza in adults in South Korea, 2016-2017 season.

    PubMed

    Noh, Ji Yun; Lim, Sooyeon; Song, Joon Young; Choi, Won Suk; Jeong, Hye Won; Heo, Jung Yeon; Lee, Jacob; Seo, Yu Bin; Lee, Jin-Soo; Wie, Seong Heon; Kim, Young Keun; Park, Kyung Hwa; Jung, Sook-In; Kim, Shin Woo; Lee, Sun Hee; Lee, Han Sol; Yoon, Young Hoon; Cheong, Hee Jin; Kim, Woo Joo

    2017-01-01

    In the 2016-2017 season, the A(H3N2) influenza epidemic presented an unusual early peak pattern compared with past seasons in South Korea. The interim vaccine effectiveness (VE) of influenza vaccination in preventing laboratory-confirmed influenza was estimated using test-negative design through the tertiary hospital-based influenza surveillance system in South Korea. From 1 September, 2016 to 7 January, 2017, adjusted VE of influenza vaccination in preventing laboratory-confirmed A(H3N2) was -52.1% (95% confidence interval [CI], -147.2 to 6.4); -70.0% (95% CI, -212.0 to 7.4) in 19-64 years and 4.3% (95% CI, -137.8 to 61.5) in the elderly. Circulating A(H3N2) viruses belonged to the three phylogenetic subclades of 3C.2a, differently to A/Hong Kong/4801/2014, the current vaccine strain. Amino acid substitutions in hemagglutinin of circulating viruses seem to contribute to low VE. In conclusion, interim VE analysis presented that the protection of laboratory-confirmed influenza by seasonal influenza vaccination did not show the statistical significance in South Korea in the 2016-2017 influenza season.

  10. Efficacy of Live-Attenuated H9N2 Influenza Vaccine Candidates Containing NS1 Truncations against H9N2 Avian Influenza Viruses.

    PubMed

    Chen, Sujuan; Zhu, Yinbiao; Yang, Da; Yang, Yang; Shi, Shaohua; Qin, Tao; Peng, Daxin; Liu, Xiufan

    2017-01-01

    H9N2 avian influenza virus is a zoonotic agent with a broad host range that can contribute genetic information to H5 or H7N9 subtype viruses, which are significant threats to both humans and birds. Thus, there is a great need for a vaccine to control H9N2 avian influenza. Three mutant viruses of an H9N2 virus A/chicken/Taixing/10/2010 (rTX-NS1-73, rTX-NS1-100, and rTX-NS1-128) were constructed with different NS1 gene truncations and confirmed by western blot analysis. The genetic stability, pathogenicity, transmissibility, and host immune responses toward these mutants were evaluated. The mutant virus rTX-NS1-128 exhibited the most attenuated phenotype and lost transmissibility. The expression levels of interleukin 12 in the nasal and tracheal tissues from chickens immunized with rTX-NS1-128 were significantly upregulated on day 3 post-immunization and the IgA and IgG antibody levels were significantly increased on days 7, 14, and 21 post-immunization when compared to chickens that received an inactivated vaccine. rTX-NS1-128 also protected chickens from challenge by homologous and heterologous H9N2 avian influenza viruses. The results indicate that rTX-NS1-128 can be used as a potential live-attenuated vaccine against H9N2 avian influenza.

  11. Avian influenza virus H9N2 infections in farmed minks.

    PubMed

    Zhang, Chuanmei; Xuan, Yang; Shan, Hu; Yang, Haiyan; Wang, Jianlin; Wang, Ke; Li, Guimei; Qiao, Jian

    2015-11-02

    The prevalence of avian H9N2 viruses throughout Asia, along with their demonstrated ability to infect mammals, puts them high on the list of influenza viruses with pandemic potential for humans. In this study, we investigated whether H9N2 viruses could infect farmed minks. First, we conducted a serological survey for avian influenza virus antibodies on a random sample of the field-trial population of farmed minks. Then we inoculated farmed minks with A/Chicken/Hebei/4/2008 H9N2 viruses and observed the potential pathogenicity of H9N2 virus and virus shedding in infected minks. H9 influenza antibodies could be detected in most farmed minks with a higher seropositivity, which indicated that farmed minks had the high prevalence of exposure to H9 viruses. After infection, the minks displayed the slight clinical signs including lethargy and initial weight loss. The infected lungs showed the mild diffuse pneumonia with thickened alveolar walls and inflammatory cellular infiltration. Influenza virus detection showed that viruses were detected in the allantoic fluids inoculated supernatant of lung tissues at 3 and 7 days post-infection (dpi), and found in the nasal swabs of H9N2-infected minks at 3-11 dpi, suggesting that H9N2 viruses replicated in the respiratory organ, were then shed outwards. HI antibody test showed that antibody levels began to rise at 7 dpi. Our data provided the serological and experimental evidences that strongly suggested farmed minks under the natural state were susceptible to H9N2 viral infection and might be the H9N2 virus carriers. It is imperative to strengthen the H9N2 viral monitoring in farmed minks and pay urgent attention to prevent and control new influenza viruses pandemic prevalence.

  12. Multiplex RT-PCR assay for differentiating European swine influenza virus subtypes H1N1, H1N2 and H3N2.

    PubMed

    Chiapponi, Chiara; Moreno, Ana; Barbieri, Ilaria; Merenda, Marianna; Foni, Emanuela

    2012-09-01

    In Europe, three major swine influenza viral (SIV) subtypes (H1N1, H1N2 and H3N2) have been isolated in pigs. Developing a test that is able to detect and identify the subtype of the circulating strain rapidly during an outbreak of respiratory disease in the pig population is of essential importance. This study describes two multiplex RT-PCRs which distinguish the haemagglutinin (HA) gene and the neuraminidase (NA) gene of the three major subtypes of SIV circulating in Europe. The HA PCR was able to identify the lineage (avian or human) of the HA of H1 subtypes. The analytical sensitivity of the test, considered to be unique, was assessed using three reference viruses. The detection limit corresponded to 1×10(-1) TCID(50)/200μl for avian-like H1N1, 1×10(0) TCID(50)/200μl for human-like H1N2 and 1×10(1) TCID(50)/200μl for H3N2 SIV. The multiplex RT-PCR was first carried out on a collection of 70 isolated viruses showing 100% specificity and then on clinical samples, from which viruses had previously been isolated, resulting in an 89% positive specificity of the viral subtype. Finally, the test was able to identify the viral subtype correctly in 56% of influenza A positive samples, from which SIV had not been isolated previously. It was also possible to identify mixed viral infections and the circulation of a reassortant strain before performing genomic studies. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Primer development to obtain complete coding sequence of HA and NA genes of influenza A/H3N2 virus.

    PubMed

    Agustiningsih, Agustiningsih; Trimarsanto, Hidayat; Setiawaty, Vivi; Artika, I Made; Muljono, David Handojo

    2016-08-30

    Influenza is an acute respiratory illness and has become a serious public health problem worldwide. The need to study the HA and NA genes in influenza A virus is essential since these genes frequently undergo mutations. This study describes the development of primer sets for RT-PCR to obtain complete coding sequence of Hemagglutinin (HA) and Neuraminidase (NA) genes of influenza A/H3N2 virus from Indonesia. The primers were developed based on influenza A/H3N2 sequence worldwide from Global Initiative on Sharing All Influenza Data (GISAID) and further tested using Indonesian influenza A/H3N2 archived samples of influenza-like illness (ILI) surveillance from 2008 to 2009. An optimum RT-PCR condition was acquired for all HA and NA fragments designed to cover complete coding sequence of HA and NA genes. A total of 71 samples were successfully sequenced for complete coding sequence both of HA and NA genes out of 145 samples of influenza A/H3N2 tested. The developed primer sets were suitable for obtaining complete coding sequences of HA and NA genes of Indonesian samples from 2008 to 2009.

  14. Evolution of Novel Reassortant A/H3N2 Influenza Viruses in North American Swine and Humans, 2009–2011

    PubMed Central

    Vincent, Amy L.; Kitikoon, Pravina; Holmes, Edward C.; Gramer, Marie R.

    2012-01-01

    Novel H3N2 influenza viruses (H3N2v) containing seven genome segments from swine lineage triple-reassortant H3N2 viruses and a 2009 pandemic H1N1 (H1N1pdm09) matrix protein segment (pM) were isolated from 12 humans in the United States between August and December 2011. To understand the evolution of these novel H3N2 viruses in swine and humans, we undertook a phylogenetic analysis of 674 M sequences and 388 HA and NA sequences from influenza viruses isolated from North American swine during 2009–2011, as well as HA, NA, and M sequences from eight H3N2v viruses isolated from humans. We identified 34 swine influenza viruses (termed rH3N2p) with the same combination of H3, N2, and pM segments as the H3N2v viruses isolated from humans. Notably, these rH3N2p viruses were generated in swine via reassortment events between H3N2 viruses and the pM segment approximately 4 to 10 times since 2009. The pM segment has also reassorted with multiple distinct lineages of H1 virus, especially H1δ viruses. Importantly, the N2 segment of all H3N2v viruses isolated from humans is derived from a genetically distinct N2 lineage that has circulated in swine since being acquired by reassortment with seasonal human H3N2 viruses in 2001–2002, rather than from the N2 that is associated with the 1998 H3N2 swine lineage. The identification of this N2 variant may have implications for influenza vaccine design and the potential pandemic threat of H3N2v to human age groups with differing levels of prior exposure and immunity. PMID:22696653

  15. Intercontinental circulation of human influenza A(H1N2) reassortant viruses during the 2001-2002 influenza season.

    PubMed

    Xu, Xiyan; Smith, Catherine B; Mungall, Bruce A; Lindstrom, Stephen E; Hall, Henrietta E; Subbarao, Kanta; Cox, Nancy J; Klimov, Alexander

    2002-11-15

    Reassortant influenza A viruses bearing the H1 subtype of hemagglutinin (HA) and the N2 subtype of neuraminidase (NA) were isolated from humans in the United States, Canada, Singapore, Malaysia, India, Oman, Egypt, and several countries in Europe during the 2001-2002 influenza season. The HAs of these H1N2 viruses were similar to that of the A/New Caledonia/20/99(H1N1) vaccine strain both antigenically and genetically, and the NAs were antigenically and genetically related to those of recent human H3N2 reference strains, such as A/Moscow/10/99(H3N2). All 6 internal genes of the H1N2 reassortants examined originated from an H3N2 virus. This article documents the first widespread circulation of H1N2 reassortants on 4 continents. The current influenza vaccine is expected to provide good protection against H1N2 viruses, because it contains the A/New Caledonia/20/99(H1N1) and A/Moscow/10/99(H3N2)-like viruses, which have H1 and N2 antigens that are similar to those of recent H1N2 viruses.

  16. The first Swedish H1N2 swine influenza virus isolate represents an uncommon reassortant.

    PubMed

    Bálint, Adám; Metreveli, Giorgi; Widén, Frederik; Zohari, Siamak; Berg, Mikael; Isaksson, Mats; Renström, Lena Hm; Wallgren, Per; Belák, Sándor; Segall, Thomas; Kiss, István

    2009-10-28

    The European swine influenza viruses (SIVs) show considerable diversity comprising different types of H1N1, H3N2, and H1N2 strains. The intensifying full genome sequencing efforts reveal further reassortants within these subtypes. Here we report the identification of an uncommon reassortant variant of H1N2 subtype influenza virus isolated from a pig in a multisite herd where H1N2 swine influenza was diagnosed for the first time in Sweden during the winter of 2008-2009. The majority of the European H1N2 swine influenza viruses described so far possess haemagglutinin (HA) of the human-like H1N2 SIV viruses and the neuraminidase (NA) of either the European H1N2 or H3N2 SIV-like viruses. The Swedish isolate has an avian-like SIV HA and a H3N2 SIV-like NA, which is phylogenetically more closely related to H3N2 SIV NAs from isolates collected in the early '80s than to the NA of H3N2 origin of the H1N2 viruses isolated during the last decade, as depicted by some German strains, indicative of independent acquisition of the NA genes for these two types of reassortants. The internal genes proved to be entirely of avian-like SIV H1N1 origin. The prevalence of this SIV variant in pig populations needs to be determined, as well as the suitability of the routinely used laboratory reagents to analyze this strain.The description of this H1N2 SIV adds further information to influenza epidemiology and supports the necessity of surveillance for influenza viruses in pigs.

  17. Genetic Compatibility and Virulence of Reassortants Derived from Contemporary Avian H5N1 and Human H3N2 Influenza A Viruses

    PubMed Central

    Zhou, Hong; Cox, Nancy J.; Donis, Ruben O.

    2008-01-01

    The segmented structure of the influenza virus genome plays a pivotal role in its adaptation to new hosts and the emergence of pandemics. Despite concerns about the pandemic threat posed by highly pathogenic avian influenza H5N1 viruses, little is known about the biological properties of H5N1 viruses that may emerge following reassortment with contemporary human influenza viruses. In this study, we used reverse genetics to generate the 63 possible virus reassortants derived from H5N1 and H3N2 viruses, containing the H5N1 surface protein genes, and analyzed their viability, replication efficiency, and mouse virulence. Specific constellations of avian–human viral genes proved deleterious for viral replication in cell culture, possibly due to disruption of molecular interaction networks. In particular, striking phenotypes were noted with heterologous polymerase subunits, as well as NP and M, or NS. However, nearly one-half of the reassortants replicated with high efficiency in vitro, revealing a high degree of compatibility between avian and human virus genes. Thirteen reassortants displayed virulent phenotypes in mice and may pose the greatest threat for mammalian hosts. Interestingly, one of the most pathogenic reassortants contained avian PB1, resembling the 1957 and 1968 pandemic viruses. Our results reveal the broad spectrum of phenotypes associated with H5N1/H3N2 reassortment and a possible role for the avian PB1 in the emergence of pandemic influenza. These observations have important implications for risk assessment of H5N1 reassortant viruses detected in surveillance programs. PMID:18497857

  18. Genome-Wide Analysis of Evolutionary Markers of Human Influenza A(H1N1)pdm09 and A(H3N2) Viruses May Guide Selection of Vaccine Strain Candidates.

    PubMed

    Belanov, Sergei S; Bychkov, Dmitrii; Benner, Christian; Ripatti, Samuli; Ojala, Teija; Kankainen, Matti; Kai Lee, Hong; Wei-Tze Tang, Julian; Kainov, Denis E

    2015-11-27

    Here we analyzed whole-genome sequences of 3,969 influenza A(H1N1)pdm09 and 4,774 A(H3N2) strains that circulated during 2009-2015 in the world. The analysis revealed changes at 481 and 533 amino acid sites in proteins of influenza A(H1N1)pdm09 and A(H3N2) strains, respectively. Many of these changes were introduced as a result of random drift. However, there were 61 and 68 changes that were present in relatively large number of A(H1N1)pdm09 and A(H3N2) strains, respectively, that circulated during relatively long time. We named these amino acid substitutions evolutionary markers, as they seemed to contain valuable information regarding the viral evolution. Interestingly, influenza A(H1N1)pdm09 and A(H3N2) viruses acquired non-overlapping sets of evolutionary markers. We next analyzed these characteristic markers in vaccine strains recommended by the World Health Organization for the past five years. Our analysis revealed that vaccine strains carried only few evolutionary markers at antigenic sites of viral hemagglutinin (HA) and neuraminidase (NA). The absence of these markers at antigenic sites could affect the recognition of HA and NA by human antibodies generated in response to vaccinations. This could, in part, explain moderate efficacy of influenza vaccines during 2009-2014. Finally, we identified influenza A(H1N1)pdm09 and A(H3N2) strains, which contain all the evolutionary markers of influenza A strains circulated in 2015, and which could be used as vaccine candidates for the 2015/2016 season. Thus, genome-wide analysis of evolutionary markers of influenza A(H1N1)pdm09 and A(H3N2) viruses may guide selection of vaccine strain candidates. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  19. International Laboratory Comparison of Influenza Microneutralization Assays for A(H1N1)pdm09, A(H3N2), and A(H5N1) Influenza Viruses by CONSISE

    PubMed Central

    Engelhardt, Othmar G.; Wood, John; Heath, Alan; Katz, Jacqueline M.; Peiris, Malik; Hoschler, Katja; Hungnes, Olav; Zhang, Wenqing; Van Kerkhove, Maria D.

    2015-01-01

    The microneutralization assay is commonly used to detect antibodies to influenza virus, and multiple protocols are used worldwide. These protocols differ in the incubation time of the assay as well as in the order of specific steps, and even within protocols there are often further adjustments in individual laboratories. The impact these protocol variations have on influenza serology data is unclear. Thus, a laboratory comparison of the 2-day enzyme-linked immunosorbent assay (ELISA) and 3-day hemagglutination (HA) microneutralization (MN) protocols, using A(H1N1)pdm09, A(H3N2), and A(H5N1) viruses, was performed by the CONSISE Laboratory Working Group. Individual laboratories performed both assay protocols, on multiple occasions, using different serum panels. Thirteen laboratories from around the world participated. Within each laboratory, serum sample titers for the different assay protocols were compared between assays to determine the sensitivity of each assay and were compared between replicates to assess the reproducibility of each protocol for each laboratory. There was good correlation of the results obtained using the two assay protocols in most laboratories, indicating that these assays may be interchangeable for detecting antibodies to the influenza A viruses included in this study. Importantly, participating laboratories have aligned their methodologies to the CONSISE consensus 2-day ELISA and 3-day HA MN assay protocols to enable better correlation of these assays in the future. PMID:26108286

  20. PREDAC-H3: a user-friendly platform for antigenic surveillance of human influenza a(H3N2) virus based on hemagglutinin sequences.

    PubMed

    Peng, Yousong; Yang, Lei; Li, Honglei; Zou, Yuanqiang; Deng, Lizong; Wu, Aiping; Du, Xiangjun; Wang, Dayan; Shu, Yuelong; Jiang, Taijiao

    2016-08-15

    Timely surveillance of the antigenic dynamics of the influenza virus is critical for accurate selection of vaccine strains, which is important for effective prevention of viral spread and infection. Here, we provide a computational platform, called PREDAC-H3, for antigenic surveillance of human influenza A(H3N2) virus based on the sequence of surface protein hemagglutinin (HA). PREDAC-H3 not only determines the antigenic variants and antigenic cluster (grouped for similar antigenicity) to which the virus belongs, based on HA sequences, but also allows visualization of the spatial distribution and temporal dynamics of antigenic clusters of viruses isolated from around the world, thus assisting in antigenic surveillance of human influenza A(H3N2) virus. It is publicly available from: http://biocloud.hnu.edu.cn/influ411/html/index.php : yshu@cnic.org.cn or taijiao@moon.ibp.ac.cn. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Reassortment process after co-infection of pigs with avian H1N1 and swine H3N2 influenza viruses.

    PubMed

    Urbaniak, Kinga; Markowska-Daniel, Iwona; Kowalczyk, Andrzej; Kwit, Krzysztof; Pomorska-Mól, Małgorzata; Frącek, Barbara; Pejsak, Zygmunt

    2017-07-08

    The influenza A virus is highly variable, which, to some degree, is caused by the reassortment of viral genetic material. This process plays a major role in the generation of novel influenza virus strains that can emerge in a new host population. Due to the susceptibility of pigs to infections with avian, swine and human influenza viruses, they are considered intermediate hosts for the adaptation of the avian influenza virus to humans. In order to test the reassortment process in pigs, they were co-infected with H3N2 A/swine/Gent/172/2008 (Gent/08) and H1N1 A/duck/Italy/1447/2005 (Italy/05) and co-housed with a group of naïve piglets. The Gent/08 strains dominated over Italy/05, but reassortment occurred. The reassortant strains of the H1N1 subtype (12.5%) with one gene (NP or M) of swine-origin were identified in the nasal discharge of the contact-exposed piglets. These results demonstrate that despite their low efficiency, genotypically and phenotypically different influenza A viruses can undergo genetic exchange during co-infection of pigs.

  2. Influenza A(H9N2) Virus, Myanmar, 2014-2015.

    PubMed

    Lin, Thant Nyi; Nonthabenjawan, Nutthawan; Chaiyawong, Supassama; Bunpapong, Napawan; Boonyapisitsopa, Supanat; Janetanakit, Taveesak; Mon, Pont Pont; Mon, Hla Hla; Oo, Kyaw Naing; Oo, Sandi Myint; Mar Win, Mar; Amonsin, Alongkorn

    2017-06-01

    Routine surveillance of influenza A virus was conducted in Myanmar during 2014-2015. Influenza A(H9N2) virus was isolated in Shan State, upper Myanmar. Whole-genome sequencing showed that H9N2 virus from Myanmar was closely related to H9N2 virus of clade 4.2.5 from China.

  3. Polymerase Discordance in Novel Swine Influenza H3N2v Constellations Is Tolerated in Swine but Not Human Respiratory Epithelial Cells

    PubMed Central

    Powell, Joshua D.; Dlugolenski, Daniel; Nagy, Tamas; Gabbard, Jon; Lee, Christopher; Tompkins, Stephen M.; Tripp, Ralph A.

    2014-01-01

    Swine-origin H3N2v, a variant of H3N2 influenza virus, is a concern for novel reassortment with circulating pandemic H1N1 influenza virus (H1N1pdm09) in swine because this can lead to the emergence of a novel pandemic virus. In this study, the reassortment prevalence of H3N2v with H1N1pdm09 was determined in swine cells. Reassortants evaluated showed that the H1N1pdm09 polymerase (PA) segment occurred within swine H3N2 with ∼80% frequency. The swine H3N2-human H1N1pdm09 PA reassortant (swH3N2-huPA) showed enhanced replication in swine cells, and was the dominant gene constellation. Ferrets infected with swH3N2-huPA had increased lung pathogenicity compared to parent viruses; however, swH3N2-huPA replication in normal human bronchoepithelial cells was attenuated - a feature linked to expression of IFN-β and IFN-λ genes in human but not swine cells. These findings indicate that emergence of novel H3N2v influenza constellations require more than changes in the viral polymerase complex to overcome barriers to cross-species transmission. Additionally, these findings reveal that while the ferret model is highly informative for influenza studies, slight differences in pathogenicity may not necessarily be indicative of human outcomes after infection. PMID:25330303

  4. Effect of previous and current vaccination against influenza A(H1N1)pdm09, A(H3N2), and B during the post-pandemic period 2010-2016 in Spain.

    PubMed

    Gherasim, Alin; Martínez-Baz, Iván; Castilla, Jesús; Pozo, Francisco; Larrauri, Amparo

    2017-01-01

    Recent studies suggest that the protective effect of the current influenza vaccine could be influenced by vaccination in previous seasons. We estimated the combined effect of the previous and current influenza vaccines from the 2010-2011 season to the 2015-2016 season in Spain. We performed a test-negative case-control study in patients ≥9 years old. We estimated the influenza vaccine effectiveness (IVE) against influenza A(H1N1)pdm09, A(H3N2), and B virus. We included 1206 influenza A(H1N1)pdm09 cases, 1358 A(H3N2) cases and 1079 B cases. IVE against A(H1N1)pdm09 virus in the pooled-season analysis was 53% (95% Confidence Interval (CI): 21% to 72%) for those vaccinated only in the current season and 50% (95%CI: 23% to 68%) for those vaccinated in the both current and previous seasons. Against the influenza A(H3N2) virus, IVE was 17% (95%CI: -43% to 52%) for those vaccinated only in the current season and 3% (95%CI: -33% to 28%) for those vaccinated in both seasons. Regarding influenza B, we obtained similar IVEs for those vaccinated only in the current and those vaccinated in both seasons: 57% (95%CI: 12% to 79%) and 56% (95%CI: 36% to 70%), respectively. Our results suggested no interference between the previous and current influenza vaccines against A(H1N1)pdm09 and B viruses, but a possible negative interference against A(H3N2) virus.

  5. Effects of Isatis root polysaccharide in mice infected with H3N2 swine influenza virus.

    PubMed

    Wang, Xuebing; Xue, Yang; Li, Yongliang; Liu, Fang; Yan, Yanhua; Zhang, Hongying; Jin, Qianyue

    2018-05-01

    Isatis root polysaccharide (IRPS) has gained attention in the field of virology. However, very few studies have evaluated the effects of IRPS on H3N2 swine influenza virus (SIV). The antiviral activities of IRPS against SIV were investigated in vitro through three different modes and in vivo in an experimental mouse model of SIV infection. Mice were treated by oral gavage with various doses of IRPS before being experimentally infected with SIV A/swine/Henan/2010(H3N2). The antiviral effects of IRPS were evaluated by clinical signs, weight, histopathology, cytokine levels in lung homogenates and serum nitric oxide (NO) and IgG levels at 2, 5 and 9 d post-infection. IRPS demonstrated an inhibitory effect on SIV in Madin-Darby canine kidney cells. Additionally, IRPS significantly improved symptoms, reduced pathological changes and enhanced serum levels of NO and IgG in SIV-infected mice. Furthermore, detection of cytokines in lung homogenates showed IRPS could alter cytokine production to improve immune responses and systemic ability to repair inflammation. Moreover, IRPS extenuated the pulmonary inflammatory response. The results show that various concentrations of IRPS exert antiviral effects in vitro and in vivo. In an experimental mouse model of SIV infection, IRPS at a dose of 75 mg/kg was effective. Copyright © 2018. Published by Elsevier Ltd.

  6. Genetic drift of influenza A(H3N2) viruses during two consecutive seasons in 2011-2013 in Corsica, France.

    PubMed

    Fantoni, Anais; Arena, Christophe; Corrias, Laura; Salez, Nicolas; de Lamballerie, Xavier Nicolas; Amoros, Jean Pierre; Blanchon, Thierry; Varesi, Laurent; Falchi, Alessandra

    2014-04-01

    The 2011-2012 and 2012-2013 post-pandemic influenza outbreaks were characterized by variability in the A(H3N2) influenza viruses, resulting in low to moderate vaccine effectiveness (VE). The aim of this study was to investigate the molecular evolution and vaccine strain match of the A(H3N2) influenza viruses, having been circulated throughout the population of the French Corsica Island in 2011-2012 and again in 2012-2013. Clinical samples from 31 patients with confirmed A(H3N2) influenza viruses were collected by general practitioners (GPs) over these two consecutive seasons. An analysis of genetic distance and antigenic drift was conducted. Based on a hemagglutinin (HA) aminoacid sequence analysis, the Corsican A(H3N2) viruses fell into the A/Victoria/208/2009 genetic clade, group 3. All influenza viruses were characterized by at least four fixed amino acid mutations which were: N145S (epitope A); Q156H and V186G (epitope B) Y219S (epitope D), with respect to the A/Perth/16/2009 (reference vaccine strain for the 2011-2012) and the A/Victoria/361/2011 (reference vaccine strain for the 2012-2013). Using the p(epitope) model, the percentages of the perfect match VE estimated against circulated strains declined within and between seasons, with estimations of <50%. Overall, these results seem to indicate an antigenic drift of the A(H3N2) influenza viruses which were circulated in Corsica. These findings highlight the importance of the continuous and careful surveillance of genetic changes in the HA domain during seasonal influenza epidemics, in order to provide information on newly emerging genetic variants. © 2013 Wiley Periodicals, Inc.

  7. Challenge of N95 Filtering Facepiece Respirators with Viable H1N1 Influenza Aerosols

    PubMed Central

    Harnish, Delbert A.; Heimbuch, Brian K.; Husband, Michael; Lumley, April E.; Kinney, Kimberly; Shaffer, Ronald E.; Wander, Joseph D.

    2015-01-01

    OBJECTIVE Specification of appropriate personal protective equipment for respiratory protection against influenza is somewhat controversial. In a clinical environment, N95 filtering facepiece respirators (FFRs) are often recommended for respiratory protection against infectious aerosols. This study evaluates the ability of N95 FFRs to capture viable H1N1 influenza aerosols. METHODS Five N95 FFR models were challenged with aerosolized viable H1N1 influenza and inert polystyrene latex particles at continuous flow rates of 85 and 170 liters per minute. Virus was assayed using Madin-Darby canine kidney cells to determine the median tissue culture infective dose (TCID50). Aerosols were generated using a Collison nebulizer containing H1N1 influenza virus at 1 × 108 TCID50/mL. To determine filtration efficiency, viable sampling was performed upstream and downstream of the FFR. RESULTS N95 FFRs filtered 0.8-µm particles of both H1N1 influenza and inert origins with more than 95% efficiency. With the exception of 1 model, no statistically significant difference in filtration performance was observed between influenza and inert particles of similar size. Although statistically significant differences were observed for 2 models when comparing the 2 flow rates, the differences have no significance to protection. CONCLUSIONS This study empirically demonstrates that a National Institute for Occupational Safety and Health–approved N95 FFR captures viable H1N1 influenza aerosols as well as or better than its N95 rating, suggesting that a properly fitted FFR reduces inhalation exposure to airborne influenza virus. This study also provides evidence that filtration efficiency is based primarily on particle size rather than the nature of the particle’s origin. PMID:23571366

  8. Prior infection of pigs with a recent human H3N2 influenza virus confers minimal cross-protection against a European swine H3N2 virus.

    PubMed

    Qiu, Yu; van der Meulen, Karen; Van Reeth, Kristien

    2013-11-01

    H3N2 influenza viruses circulating in humans and European pigs originate from the pandemic A/Hong Kong/68 virus. Because of slower antigenic drift in swine, the antigenic divergence between swine and human viruses has been increasing. It remains unknown to what extent this results in a reduced cross-protection between recent human and swine H3N2 influenza viruses. We examined whether prior infection of pigs with an old [A/Victoria/3/75 (A/Vic/75)] or a more recent [A/Wisconsin/67/05 (A/Wis/05)] human H3N2 virus protected against a European swine H3N2 virus [sw/Gent/172/08 (sw/Gent/08)]. Genetic and antigenic relationships between sw/Gent/08 and a selection of human H3N2 viruses were also assessed. After challenge with sw/Gent/08, all challenge controls had high virus titers in the entire respiratory tract at 3 days post-challenge and nasal virus excretion for 5-6 days. Prior infection with sw/Gent/08 or A/Vic/75 offered complete virological protection against challenge. Pigs previously inoculated with A/Wis/05 showed similar virus titers in the respiratory tract as challenge controls, but the mean duration of nasal shedding was 1·3 days shorter. Unlike sw/Gent/08- and A/Vic/75-inoculated pigs, A/Wis/05-inoculated pigs lacked cross-reactive neutralizing antibodies against sw/Gent/08 before challenge, but they showed a more rapid antibody response to sw/Gent/08 than challenge controls after challenge. Cross-protection and serological responses correlated with genetic and antigenic differences. Infection immunity to a recent human H3N2 virus confers minimal cross-protection against a European swine H3N2 virus. We discuss our findings with regard to the recent zoonotic infections of humans in the United States with a swine-origin H3N2 variant virus. © 2013 John Wiley & Sons Ltd.

  9. Antiviral resistance due to deletion in the neuraminidase gene and defective interfering-like viral polymerase basic 2 RNA of influenza A virus subtype H3N2.

    PubMed

    Trebbien, Ramona; Christiansen, Claus Bohn; Fischer, Thea Kølsen

    2018-05-01

    Antiviral treatment of influenza virus infections can lead to drug resistance of virus. This study investigates a selection of mutations in the full genome of H3N2 influenza A virus isolated from a patient in treatment with oseltamivir. Respiratory samples from a patient were collected before, during, and after antiviral treatment. Whole genome sequencing of the influenza virus by next generation sequencing, and low-frequency-variant analysis was performed. Neuraminidase-inhibition tests were performed with oseltamivir and zanamivir, and viruses were propagated in sial-transferase gene transfected Madin-Darby Canine Kidney cells. A deletion at amino acid position 245-248 in the neuraminidase gene occurred after initiation of treatment with oseltamivir. The deleted virus had highly reduced inhibition against oseltamivir but was sensitive to zanamivir. Nine days after discontinuation of oseltamivir treatment the deleted H3N2 virus was still present in the patient. After three passages of the deleted virus in cell culture, the deletion was retained. Several variant mutations appeared in the other genes of the H3N2 virus, where most striking were two major out-of-frame deletions in the polymerase basic 2 (PB2) gene, indicating defective interfering-like viral RNA. The viruses harboring the 245-248 deletion in the neuraminidase gene were still present after discontinuation of oseltamivir treatment and passages in cell cultures, indicating a potential risk for transmission of the deleted virus. Full genome deep sequencing was useful to reveal variant mutations that might be selected due to antiviral treatment, and defective interfering-like viral PB2 RNA in the respiratory samples was detected. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Pathogenicity and transmission in pigs of the novel A(H3N2)v influenza virus isolated from humans and characterization of swine H3N2 viruses isolated in 2010-2011

    USDA-ARS?s Scientific Manuscript database

    Swine influenza virus (SIV) H3N2 with triple reassorted internal genes (TRIG) has been enzootic in U.S. since 1998. Transmission of the 2009 pandemic H1N1 (pH1N1) virus to pigs in the U.S. was followed by reassortment with endemic SIV, resulting in reassorted viruses that include novel H3N2 genotype...

  11. Amino Acids in Hemagglutinin Antigenic Site B Determine Antigenic and Receptor Binding Differences between A(H3N2)v and Ancestral Seasonal H3N2 Influenza Viruses

    PubMed Central

    Wang, Xiaoquan; Ilyushina, Natalia A.; Lugovtsev, Vladimir Y.; Bovin, Nicolai V.; Couzens, Laura K.; Gao, Jin

    2016-01-01

    ABSTRACT Influenza A H3N2 variant [A(H3N2)v] viruses, which have caused human infections in the United States in recent years, originated from human seasonal H3N2 viruses that were introduced into North American swine in the mid-1990s, but they are antigenically distinct from both the ancestral and current circulating H3N2 strains. A reference A(H3N2)v virus, A/Minnesota/11/2010 (MN/10), and a seasonal H3N2 strain, A/Beijing/32/1992 (BJ/92), were chosen to determine the molecular basis for the antigenic difference between A(H3N2)v and the ancestral viruses. Viruses containing wild-type and mutant MN/10 or BJ/92 hemagglutinins (HAs) were constructed and probed for reactivity with ferret antisera against MN/10 and BJ/92 in hemagglutination inhibition assays. Among the amino acids that differ between the MN/10 and BJ/92 HAs, those in antigenic site A had little impact on the antigenic phenotype. Within antigenic site B, mutations at residues 156, 158, 189, and 193 of MN/10 HA to those in BJ/92 switched the MN/10 antigenic phenotype to that of BJ/92. Mutations at residues 156, 157, 158, 189, and 193 of BJ/92 HA to amino acids present in MN/10 were necessary for BJ/92 to become antigenically similar to MN/10. The HA amino acid substitutions responsible for switching the antigenic phenotype also impacted HA binding to sialyl receptors that are usually present in the human respiratory tract. Our study demonstrates that antigenic site B residues play a critical role in determining both the unique antigenic phenotype and receptor specificity of A(H3N2)v viruses, a finding that may facilitate future surveillance and risk assessment of novel influenza viruses. IMPORTANCE Influenza A H3N2 variant [A(H3N2)v] viruses have caused hundreds of human infections in multiple states in the United States since 2009. Most cases have been children who had contact with swine in agricultural fairs. These viruses originated from human seasonal H3N2 viruses that were introduced into the U

  12. Two genotypes of H1N2 swine influenza viruses appeared among pigs in China.

    PubMed

    Xu, Chuantian; Zhu, Qiyun; Yang, Huanliang; Zhang, Xiumei; Qiao, Chuanling; Chen, Yan; Xin, Xiaoguang; Chen, Hualan

    2009-10-01

    H1N2 is one of the main subtypes of influenza, which circulates in swine all over the world. To investigate the prevalence and genetic of H1N2 in swine of China. Two H1N2 swine influenza viruses were isolated from Tianjin and Guangdong province of China in 2004 and 2006, respectively. The molecular evolution of eight gene segments was analyzed. A/Swine/Tianjin/1/2004 has low identity with A/Swine/Guangdong/2006; in the phylogenetic tree of PA gene, A/Swine/Guangdong/1/2006 and A/Swine/Guangxi/1/2006 along with the H1N2 swine isolates of North America formed a cluster; and A/Swine/Tianjin/2004 and A/Swine/Zhejiang/2004, along with the classical H1N1 swine isolates formed another cluster; except that NA gene of A/Swine/Tianjin/1/2004 fell into the cluster of the H3N2 human influenza virus, indicating the reassortment between H3N2 human and H1N1 swine influenza viruses. Two different genotypes of H1N2 appeared among pigs in China. A/swine/Guangdong/1/06 was probably from H1N2 swine influenza viruses of North America; while A/swine/Tianjin/1/04 maybe come from reassortments of classical H1N1 swine and H3N2 human viruses prevalent in North America.

  13. Effect of previous and current vaccination against influenza A(H1N1)pdm09, A(H3N2), and B during the post-pandemic period 2010-2016 in Spain

    PubMed Central

    Castilla, Jesús; Pozo, Francisco

    2017-01-01

    Background Recent studies suggest that the protective effect of the current influenza vaccine could be influenced by vaccination in previous seasons. We estimated the combined effect of the previous and current influenza vaccines from the 2010–2011 season to the 2015–2016 season in Spain. Methods We performed a test-negative case-control study in patients ≥9 years old. We estimated the influenza vaccine effectiveness (IVE) against influenza A(H1N1)pdm09, A(H3N2), and B virus. Results We included 1206 influenza A(H1N1)pdm09 cases, 1358 A(H3N2) cases and 1079 B cases. IVE against A(H1N1)pdm09 virus in the pooled-season analysis was 53% (95% Confidence Interval (CI): 21% to 72%) for those vaccinated only in the current season and 50% (95%CI: 23% to 68%) for those vaccinated in the both current and previous seasons. Against the influenza A(H3N2) virus, IVE was 17% (95%CI: -43% to 52%) for those vaccinated only in the current season and 3% (95%CI: -33% to 28%) for those vaccinated in both seasons. Regarding influenza B, we obtained similar IVEs for those vaccinated only in the current and those vaccinated in both seasons: 57% (95%CI: 12% to 79%) and 56% (95%CI: 36% to 70%), respectively. Conclusion Our results suggested no interference between the previous and current influenza vaccines against A(H1N1)pdm09 and B viruses, but a possible negative interference against A(H3N2) virus. PMID:28614376

  14. Computationally Optimized Broadly Reactive Hemagglutinin Elicits Hemagglutination Inhibition Antibodies against a Panel of H3N2 Influenza Virus Cocirculating Variants

    PubMed Central

    Wong, Terianne M.; Allen, James D.; Bebin-Blackwell, Anne-Gaelle; Carter, Donald M.; Alefantis, Timothy; DiNapoli, Joshua; Kleanthous, Harold

    2017-01-01

    ABSTRACT Each influenza season, a set of wild-type viruses, representing one H1N1, one H3N2, and one to two influenza B isolates, are selected for inclusion in the annual seasonal influenza vaccine. In order to develop broadly reactive subtype-specific influenza vaccines, a methodology called computationally optimized broadly reactive antigens (COBRA) was used to design novel hemagglutinin (HA) vaccine immunogens. COBRA technology was effectively used to design HA immunogens that elicited antibodies that neutralized H5N1 and H1N1 isolates. In this report, the development and characterization of 17 prototype H3N2 COBRA HA proteins were screened in mice and ferrets for the elicitation of antibodies with HA inhibition (HAI) activity against human seasonal H3N2 viruses that were isolated over the last 48 years. The most effective COBRA HA vaccine regimens elicited antibodies with broader HAI activity against a panel of H3N2 viruses than wild-type H3 HA vaccines. The top leading COBRA HA candidates were tested against cocirculating variants. These variants were not efficiently detected by antibodies elicited by the wild-type HA from viruses selected as the vaccine candidates. The T-11 COBRA HA vaccine elicited antibodies with HAI and neutralization activity against all cocirculating variants from 2004 to 2007. This is the first report demonstrating broader breadth of vaccine-induced antibodies against cocirculating H3N2 strains compared to the wild-type HA antigens that were represented in commercial influenza vaccines. IMPORTANCE There is a need for an improved influenza vaccine that elicits immune responses that recognize a broader number of influenza virus strains to prevent infection and transmission. Using the COBRA approach, a set of vaccines against influenza viruses in the H3N2 subtype was tested for the ability to elicit antibodies that neutralize virus infection against not only historical vaccine strains of H3N2 but also a set of cocirculating variants that

  15. Live attenuated H5N1 vaccine with H9N2 internal genes protects chickens from infections by both Highly Pathogenic H5N1 and H9N2 Influenza Viruses

    PubMed Central

    Nang, Nguyen Tai; Song, Byung Min; Kang, Young Myong; Kim, Heui Man; Kim, Hyun Soo; Seo, Sang Heui

    2012-01-01

    Please cite this paper as: Nang et al. (2013) Live attenuated H5N1 vaccine with H9N2 internal genes protects chickens from infections by both Highly Pathogenic H5N1 and H9N2 Influenza Viruses. Influenza and Other Respiratory Viruses 7(2) 120–131. Background  The highly pathogenic H5N1 and H9N2 influenza viruses are endemic in many countries around the world and have caused considerable economic loss to the poultry industry. Objectives  We aimed to study whether a live attenuated H5N1 vaccine comprising internal genes from a cold‐adapted H9N2 influenza virus could protect chickens from infection by both H5N1 and H9N2 viruses. Methods  We developed a cold‐adapted H9N2 vaccine virus expressing hemagglutinin and neuraminidase derived from the highly pathogenic H5N1 influenza virus using reverse genetics. Results and Conclusions  Chickens immunized with the vaccine were protected from lethal infections with homologous and heterologous H5N1 or H9N2 influenza viruses. Specific antibody against H5N1 virus was detected up to 11 weeks after vaccination (the endpoint of this study). In vaccinated chickens, IgA and IgG antibody subtypes were induced in lung and intestinal tissue, and CD4+ and CD8+ T lymphocytes expressing interferon‐gamma were induced in the splenocytes. These data suggest that a live attenuated H5N1 vaccine with cold‐adapted H9N2 internal genes can protect chickens from infection with H5N1 and H9N2 influenza viruses by eliciting humoral and cellular immunity. PMID:22487301

  16. The European I-MOVE Multicentre 2013-2014 Case-Control Study. Homogeneous moderate influenza vaccine effectiveness against A(H1N1)pdm09 and heterogenous results by country against A(H3N2).

    PubMed

    Valenciano, Marta; Kissling, Esther; Reuss, Annicka; Jiménez-Jorge, Silvia; Horváth, Judit K; Donnell, Joan M O; Pitigoi, Daniela; Machado, Ausenda; Pozo, Francisco

    2015-06-04

    In the first five I-MOVE (Influenza Monitoring Vaccine Effectiveness in Europe) influenza seasons vaccine effectiveness (VE) results were relatively homogenous among participating study sites. In 2013-2014, we undertook a multicentre case-control study based on sentinel practitioner surveillance networks in six European Union (EU) countries to measure 2013-2014 influenza VE against medically-attended influenza-like illness (ILI) laboratory-confirmed as influenza. Influenza A(H3N2) and A(H1N1)pdm09 viruses co-circulated during the season. Practitioners systematically selected ILI patients to swab within eight days of symptom onset. We compared cases (ILI positive to influenza A(H3N2) or A(H1N1)pdm09) to influenza negative patients. We calculated VE for the two influenza A subtypes and adjusted for potential confounders. We calculated heterogeneity between sites using the I(2) index and Cochrane's Q test. If the I(2) was <50%, we estimated pooled VE as (1 minus the OR)×100 using a one-stage model with study site as a fixed effect. If the I(2) was >49% we used a two-stage random effects model. We included in the A(H1N1)pdm09 analysis 531 cases and 1712 controls and in the A(H3N2) analysis 623 cases and 1920 controls. For A(H1N1)pdm09, the Q test (p=0.695) and the I(2) index (0%) suggested no heterogeneity of adjusted VE between study sites. Using a one-stage model, the overall pooled adjusted VE against influenza A(H1N1)pdm2009 was 47.5% (95% CI: 16.4-67.0). For A(H3N2), the I(2) was 51.5% (p=0.067). Using a two-stage model for the pooled analysis, the adjusted VE against A(H3N2) was 29.7 (95% CI: -34.4-63.2). The results suggest a moderate 2013-2014 influenza VE against A(H1N1)pdm09 and a low VE against A(H3N2). The A(H3N2) estimates were heterogeneous among study sites. Larger sample sizes by study site are needed to prevent statistical heterogeneity, decrease variability and allow for two-stage pooled VE for all subgroup analyses. Copyright © 2015 The Authors

  17. Neutralizing Antibody Responses to Antigenically Drifted Influenza A(H3N2) Viruses among Children and Adolescents following 2014-2015 Inactivated and Live Attenuated Influenza Vaccination

    PubMed Central

    Martin, Judith M.; Gross, F. Liaini; Jefferson, Stacie; Cole, Kelly Stefano; Archibald, Crystal Ann; Nowalk, Mary Patricia; Susick, Michael; Moehling, Krissy; Spencer, Sarah; Chung, Jessie R.; Flannery, Brendan; Zimmerman, Richard K.

    2016-01-01

    Human influenza A(H3N2) viruses that predominated during the moderately severe 2014-2015 influenza season differed antigenically from the vaccine component, resulting in reduced vaccine effectiveness (VE). To examine antibody responses to 2014-2015 inactivated influenza vaccine (IIV) and live-attenuated influenza vaccine (LAIV) among children and adolescents, we collected sera before and after vaccination from 150 children aged 3 to 17 years enrolled at health care facilities. Hemagglutination inhibition (HI) assays were used to assess the antibody responses to vaccine strains. We evaluated cross-reactive antibody responses against two representative A(H3N2) viruses that had antigenically drifted from the A(H3N2) vaccine component using microneutralization (MN) assays. Postvaccination antibody titers to drifted A(H3N2) viruses were higher following receipt of IIV (MN geometric mean titers [GMTs], 63 to 68; 38 to 45% achieved seroconversion) versus LAIV (MN GMT, 22; only 3 to 5% achieved seroconversion). In 9- to 17-year-olds, the highest MN titers were observed among IIV-vaccinated individuals who had received LAIV in the previous season. Among all IIV recipients aged 3 to 17 years, the strongest predictor of antibody responses to the drifted viruses was the prevaccination titers to the vaccine strain. The results of our study suggest that in an antigenically drifted influenza season, vaccination still induced cross-reactive antibody responses to drifted circulating A(H3N2) viruses, although higher antibody titers may be required for protection. Antibody responses to drifted A(H3N2) viruses following vaccination were influenced by multiple factors, including vaccine type and preexisting immunity from prior exposure. PMID:27558294

  18. [Susceptibility of human influenza A (H3N2) viruses to neuraminidase inhibitors isolated during 2011-2012 in China].

    PubMed

    Huang, Weijuan; Tan, Minju; Zhao, Xiang; Cheng, Yanhui; Li, Xiyan; Guo, Junfeng; Wei, Hejiang; Xiao, Ning; Wang, Zhao; Wang, Dayan; Shu, Yuelong

    2015-06-01

    To analyze the susceptibility of influenza A (H3N2) viruses to neuraminidase inhibitors during 2011-2012 in Mainland China. All the tested viruses were obtained from the Chinese National Influenza Surveillance Network, which covers 31 provinces in mainland China, including 408 network laboratories and 554 sentinel hospitals. In total 1 903 viruses were selected with isolation date from January 1, 2011 to December 31, 2012 in Mainland China, among these viruses, 721 were confirmed to be influenza A (H3N2) virus by Chinese National Influenza Center and tested for the susceptibility to oseltamivir and zanamivir using chemiluminescence-based assay. The neuraminidase inhibitor sensitive reference virus A/Washington/01/2007 (119E) and oseltamivir resistant virus A/Texas/12/2007 (E119V) were used as control in this study. The t -test was used to compare the difference of NAI susceptibility of viruses isolated from different years. The half maximal inhibitory concentration (IC₅₀) of A/Washington/01/2007 for oseltamivir and zanamivir was (0.10 ± 0.02) and (0.30 ± 0.05) nmol/L, respectively. The IC₅₀ of A/Texas/12/2007 for oseltamivir and zanamivir was (4.27 ± 1.60) and (0.20 ± 0.03) nmol/L, respectively. Among the 721 influenza A (H3N2) viruses, 132 influenza A (H3N2) viruses were isolated in 2011 and 589 influenza A (H3N2) viruses were isolated in 2012. The IC50 for oseltamivir ranged from 0.04 to 0.62 nmol/L for viruses isolated in 2011 and ranged from 0.02 to 0.95 nmol/L for viruses in 2012, and the IC₅₀ of all the viruses tested was within 10-fold IC₅₀ (1.0 nmol/L) of the neuraminidase inhibitor sensitive reference virus A/Washington/01/2007. The IC50 of zanamivir ranged from 0.12 to 0.80 nmol/L for viruses in 2011 and ranged from 0.04 to 0.72 nmol/L for viruses in 2012, and was within 10-fold IC₅₀ (3.0 nmol/L) of the neuraminidase inhibitor sensitive reference virus A/Washington/01/2007. The influenza A(H3N2) viruses isolated during 2011-2012 in

  19. Seasonal H3N2 and 2009 Pandemic H1N1 Influenza A Viruses Reassort Efficiently but Produce Attenuated Progeny

    PubMed Central

    Phipps, Kara L.; Marshall, Nicolle; Tao, Hui; Danzy, Shamika; Onuoha, Nina; Steel, John

    2017-01-01

    ABSTRACT Reassortment of gene segments between coinfecting influenza A viruses (IAVs) facilitates viral diversification and has a significant epidemiological impact on seasonal and pandemic influenza. Since 1977, human IAVs of H1N1 and H3N2 subtypes have cocirculated with relatively few documented cases of reassortment. We evaluated the potential for viruses of the 2009 pandemic H1N1 (pH1N1) and seasonal H3N2 lineages to reassort under experimental conditions. Results of heterologous coinfections with pH1N1 and H3N2 viruses were compared to those obtained following coinfection with homologous, genetically tagged, pH1N1 viruses as a control. High genotype diversity was observed among progeny of both coinfections; however, diversity was more limited following heterologous coinfection. Pairwise analysis of genotype patterns revealed that homologous reassortment was random while heterologous reassortment was characterized by specific biases. pH1N1/H3N2 reassortant genotypes produced under single-cycle coinfection conditions showed a strong preference for homologous PB2-PA combinations and general preferences for the H3N2 NA, pH1N1 M, and H3N2 PB2 except when paired with the pH1N1 PA or NP. Multicycle coinfection results corroborated these findings and revealed an additional preference for the H3N2 HA. Segment compatibility was further investigated by measuring chimeric polymerase activity and growth of selected reassortants in human tracheobronchial epithelial cells. In guinea pigs inoculated with a mixture of viruses, parental H3N2 viruses dominated but reassortants also infected and transmitted to cage mates. Taken together, our results indicate that strong intrinsic barriers to reassortment between seasonal H3N2 and pH1N1 viruses are few but that the reassortants formed are attenuated relative to parental strains. IMPORTANCE The genome of IAV is relatively simple, comprising eight RNA segments, each of which typically encodes one or two proteins. Each viral protein

  20. Infection and pathogenesis of canine, equine, and human influenza viruses in canine tracheas.

    PubMed

    Gonzalez, Gaelle; Marshall, John F; Morrell, Joanna; Robb, David; McCauley, John W; Perez, Daniel R; Parrish, Colin R; Murcia, Pablo R

    2014-08-01

    Influenza A viruses (IAVs) can jump species barriers and occasionally cause epidemics, epizootics, pandemics, and panzootics. Characterizing the infection dynamics at the target tissues of natural hosts is central to understanding the mechanisms that control host range, tropism, and virulence. Canine influenza virus (CIV; H3N8) originated after the transfer of an equine influenza virus (EIV) into dogs. Thus, comparing CIV and EIV isolates provides an opportunity to study the determinants of influenza virus emergence. Here we characterize the replication of canine, equine, and human IAVs in the trachea of the dog, a species to which humans are heavily exposed. We define a phenotype of infection for CIV, which is characterized by high levels of virus replication and extensive tissue damage. CIV was compared to evolutionarily distinct EIVs, and the early EIV isolates showed an impaired ability to infect dog tracheas, while EIVs that circulated near the time of CIV emergence exhibited a CIV-like infection phenotype. Inoculating dog tracheas with various human IAVs (hIAVs) showed that they infected the tracheal epithelium with various efficiencies depending on the virus tested. Finally, we show that reassortant viruses carrying gene segments of CIV and hIAV are viable and that addition of the hemagglutinin (HA) and neuraminidase (NA) of CIV to the 2009 human pandemic virus results in a virus that replicates at high levels and causes significant lesions. This provides important insights into the role of evolution on viral emergence and on the role of HA and NA as determinants of pathogenicity. Influenza A viruses (IAVs) have entered new host species in recent history, sometimes with devastating consequences. Canine influenza virus (CIV) H3N8 originated from a direct transfer of an equine influenza virus (EIV) in the early 2000s. We studied the infection patterns of IAVs that circulate in dogs or to which dogs are commonly exposed and showed that CIV emergence was likely

  1. A Historical Perspective of Influenza A(H1N2) Virus

    PubMed Central

    McVernon, Jodie; Hall, Robert; Leder, Karin

    2014-01-01

    The emergence and transition to pandemic status of the influenza A(H1N1)A(H1N1)pdm09) virus in 2009 illustrated the potential for previously circulating human viruses to re-emerge in humans and cause a pandemic after decades of circulating among animals. Within a short time of the initial emergence of A(H1N1)pdm09 virus, novel reassortants were isolated from swine. In late 2011, a variant (v) H3N2 subtype was isolated from humans, and by 2012, the number of persons infected began to increase with limited person-to-person transmission. During 2012 in the United States, an A(H1N2)v virus was transmitted to humans from swine. During the same year, Australia recorded its first H1N2 subtype infection among swine. The A(H3N2)v and A(H1N2)v viruses contained the matrix protein from the A(H1N1)pdm09 virus, raising the possibility of increased transmissibility among humans and underscoring the potential for influenza pandemics of novel swine-origin viruses. We report on the differing histories of A(H1N2) viruses among humans and animals. PMID:24377419

  2. A historical perspective of influenza A(H1N2) virus.

    PubMed

    Komadina, Naomi; McVernon, Jodie; Hall, Robert; Leder, Karin

    2014-01-01

    The emergence and transition to pandemic status of the influenza A(H1N1)A(H1N1)pdm09) virus in 2009 illustrated the potential for previously circulating human viruses to re-emerge in humans and cause a pandemic after decades of circulating among animals. Within a short time of the initial emergence of A(H1N1)pdm09 virus, novel reassortants were isolated from swine. In late 2011, a variant (v) H3N2 subtype was isolated from humans, and by 2012, the number of persons infected began to increase with limited person-to-person transmission. During 2012 in the United States, an A(H1N2)v virus was transmitted to humans from swine. During the same year, Australia recorded its first H1N2 subtype infection among swine. The A(H3N2)v and A(H1N2)v viruses contained the matrix protein from the A(H1N1)pdm09 virus, raising the possibility of increased transmissibility among humans and underscoring the potential for influenza pandemics of novel swine-origin viruses. We report on the differing histories of A(H1N2) viruses among humans and animals.

  3. Highly Pathogenic Avian Influenza H5N1 Clade 2.3.2.1c Virus in Lebanon, 2016.

    PubMed

    El Romeh, Ali; Zecchin, Bianca; Fusaro, Alice; Ibrahim, Elias; El Bazzal, Bassel; El Hage, Jeanne; Milani, Adelaide; Zamperin, Gianpiero; Monne, Isabella

    2017-06-01

    We report the phylogenetic analysis of the first outbreak of H5N1 highly pathogenic avian influenza virus detected in Lebanon from poultry in April 2016. Our whole-genome sequencing analysis revealed that the Lebanese H5N1 virus belongs to genetic clade 2.3.2.1c and clusters with viruses from Europe and West Africa.

  4. Broad-spectrum neutralization of avian influenza viruses by sialylated human milk oligosaccharides: in vivo assessment of 3'-sialyllactose against H9N2 in chickens.

    PubMed

    Pandey, Ramesh Prasad; Kim, Dae Hee; Woo, Jinsuk; Song, Jaeyoung; Jang, Sang Ho; Kim, Joon Bae; Cheong, Kwang Myun; Oh, Jin Sik; Sohng, Jae Kyung

    2018-02-07

    Two sialylated human milk oligosaccharides (SHMOs) 3'-sialyllactose (3'-SL) and 6'-sialyllactose (6'-SL) were accessed for their possible antiviral activity against six different subtypes of thirteen avian influenza (AI) viruses in vitro. 3'-SL exhibited promising antiviral activity against almost all subtypes of tested AI viruses in hemagglutination inhibition assay, whereas 6'-SL showed activity against few selected H1N1, H1N2, and H3N2 subtype strains. 3'-SL has minimum inhibitory concentration values of 15.62 mM or less in more than half of the viruses examined. 3'-SL also showed effective inactivation of H9N2 Korea isolate (A/Chicken/Korea/MS96/1996) at 12.5 mM concentration in Madin Darby Canine Kidney (MDCK) cell line. Thus, 3'-SL was further studied for in vivo study against H9N2 virus in pathogen free chicken experiment models. In vivo study exhibited improved clinical symptoms on H9N2 infected chickens when treated with 3'-SL. Moreover, treating chickens with 3'-SL resulted in complete elimination of H9N2 viruses within 24 h of virus infection (0.8 HAU of H9N2). Indirect ELISA assay confirmed complete wash-out of H9N2 viruses from the colon after neutralization by 3'-SL without entering the blood stream. These in vivo results open up possible applications of 3'-SL for the prevention of AI virus infections in birds by a simple cleansing mechanism.

  5. Interim estimates of divergence date and vaccine strain match of human influenza A(H3N2) virus from systematic influenza surveillance (2010-2015) in Hangzhou, southeast of China.

    PubMed

    Li, Jun; Zhou, Yin-yan; Kou, Yu; Yu, Xin-fen; Zheng, Zhi-bei; Yang, Xu-hui; Wang, Hao-qiu

    2015-11-01

    In the post-pandemic period 2010-2015, seasonal influenza A(H3N2) virus predominated in Hangzhou, southeast of China, with an increased activity and semi-annual seasons. This study utilized HA virus gene segment sequences to analyze the divergence date and vaccine strain match of human influenza A(H3N2) virus from systematic influenza surveillance in Hangzhou. Virological and serological analyses of 124 representative A(H3N2) viruses from prospective studies of systematic surveillance samples were conducted to quantify the genetic and antigenic characteristics and their vaccine strain match. Bayesian phylogenetic inference showed that two separate subgroups 3C.3 and 3C.2 probably diverged from group 3C in early 2012 and then evolved into groups 3C.3a and 3C.2a, respectively, in the 2014/15 influenza season. Furthermore, high amino acid substitution rates of the HA1 subunit were found in A(H3N2) group 3C.2a variants, indicating that increased antigenic drift of A(H3N2) group 3C.2a virus is associated with a vaccine mismatch to the 2015/16 vaccine reference strain Switzerland/9715293/2013 (group 3C.3a). A portion of the group 3C.2a isolates are not covered by the current A(H3N2) vaccine strain. These findings offer insights into the emergence of group 3C.2a variants with epidemic potential in the imminent influenza seasons. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Highly pathogenic influenza H5N1 virus of clade 2.3.2.1c in Western Siberia.

    PubMed

    Marchenko, V Y; Susloparov, I M; Kolosova, N P; Goncharova, N I; Shipovalov, A V; Ilyicheva, T N; Durymanov, A G; Chernyshova, O A; Kozlovskiy, L I; Chernyshova, T V; Pryadkina, E N; Karimova, T V; Mikheev, V N; Ryzhikov, A B

    2016-06-01

    In the spring of 2015, avian influenza virus surveillance in Western Siberia resulted in isolation of several influenza H5N1 virus strains. The strains were isolated from several wild bird species. Investigation of biological features of those strains demonstrated their high pathogenicity for mammals. Phylogenetic analysis of the HA gene showed that the strains belong to clade 2.3.2.1c.

  7. Pandemic Paradox: Early Life H2N2 Pandemic Influenza Infection Enhanced Susceptibility to Death during the 2009 H1N1 Pandemic.

    PubMed

    Gagnon, Alain; Acosta, Enrique; Hallman, Stacey; Bourbeau, Robert; Dillon, Lisa Y; Ouellette, Nadine; Earn, David J D; Herring, D Ann; Inwood, Kris; Madrenas, Joaquin; Miller, Matthew S

    2018-01-16

    Recent outbreaks of H5, H7, and H9 influenza A viruses in humans have served as a vivid reminder of the potentially devastating effects that a novel pandemic could exert on the modern world. Those who have survived infections with influenza viruses in the past have been protected from subsequent antigenically similar pandemics through adaptive immunity. For example, during the 2009 H1N1 "swine flu" pandemic, those exposed to H1N1 viruses that circulated between 1918 and the 1940s were at a decreased risk for mortality as a result of their previous immunity. It is also generally thought that past exposures to antigenically dissimilar strains of influenza virus may also be beneficial due to cross-reactive cellular immunity. However, cohorts born during prior heterosubtypic pandemics have previously experienced elevated risk of death relative to surrounding cohorts of the same population. Indeed, individuals born during the 1890 H3Nx pandemic experienced the highest levels of excess mortality during the 1918 "Spanish flu." Applying Serfling models to monthly mortality and influenza circulation data between October 1997 and July 2014 in the United States and Mexico, we show corresponding peaks in excess mortality during the 2009 H1N1 "swine flu" pandemic and during the resurgent 2013-2014 H1N1 outbreak for those born at the time of the 1957 H2N2 "Asian flu" pandemic. We suggest that the phenomenon observed in 1918 is not unique and points to exposure to pandemic influenza early in life as a risk factor for mortality during subsequent heterosubtypic pandemics. IMPORTANCE The relatively low mortality experienced by older individuals during the 2009 H1N1 influenza virus pandemic has been well documented. However, reported situations in which previous influenza virus exposures have enhanced susceptibility are rare and poorly understood. One such instance occurred in 1918-when those born during the heterosubtypic 1890 H3Nx influenza virus pandemic experienced the highest

  8. Influenza A (H3N2) virus in swine at agricultural fairs and transmission to humans, Michigan and Ohio, USA, 2016

    USDA-ARS?s Scientific Manuscript database

    An 18 case outbreak of variant H3N2 influenza A occurred during 2016 after exposure to influenza-infected swine at seven agricultural fairs. Sixteen cases were infected with a reassortant between 2010-2011 human seasonal H3N2 strains and viruses endemic in North American swine, a viral lineage incre...

  9. The Continuing Evolution of H5N1 and H9N2 Influenza Viruses in Bangladesh Between 2013 and 2014.

    PubMed

    Marinova-Petkova, Atanaska; Shanmuganatham, Karthik; Feeroz, Mohammed M; Jones-Engel, Lisa; Hasan, M Kamrul; Akhtar, Sharmin; Turner, Jasmine; Walker, David; Seiler, Patrick; Franks, John; McKenzie, Pamela; Krauss, Scott; Webby, Richard J; Webster, Robert G

    2016-05-01

    In 2011, avian influenza surveillance at the Bangladesh live bird markets (LBMs) showed complete replacement of the highly pathogenic avian influenza (HPAI) H5N1 virus of clade 2.2.2 (Qinghai-like H5N1 lineage) by the HPAI H5N1 clade 2.3.2.1. This clade, which continues to circulate in Bangladesh and neighboring countries, is an intra-and interclade reassortant; its HA, polymerase basic 1 (PB1), polymerase (PA), and nonstructural (NS) genes come from subclade 2.3.2.1a; the polymerase basic 2 (PB2) comes from subclade 2.3.2.1c; and the NA, nucleocapsid protein (NP), and matrix (M) gene from clade 2.3.4.2. The H9N2 influenza viruses cocirculating in the Bangladesh LBMs are also reassortants, possessing five genes (NS, M, NP, PA, and PB1) from an HPAI H7N3 virus previously isolated in Pakistan. Despite frequent coinfection of chickens and ducks, reassortment between these H5N1 and H9N2 viruses has been rare. However, all such reassortants detected in 2011 through 2013 have carried seven genes from the local HPAI H5N1 lineage and the PB1 gene from the Bangladeshi H9N2 clade G1 Mideast, itself derived from HPAI H7N3 virus. Although the live birds we sampled in Bangladesh showed no clinical signs of morbidity, the emergence of this reassortant HPAI H5N1 lineage further complicates endemic circulation of H5N1 viruses in Bangladesh, posing a threat to both poultry and humans.

  10. Outbreak of Influenza A (H3N2) Variant Virus Infection among Attendees of an Agricultural Fair, Pennsylvania, USA, 2011

    PubMed Central

    Greenbaum, Adena; Moll, Maria E.; Lando, James; Moore, Erin L.; Ganatra, Rahul; Biggerstaff, Matthew; Lam, Eugene; Smith, Erica E.; Storms, Aaron D.; Miller, Jeffrey R.; Dato, Virginia; Nalluswami, Kumar; Nambiar, Atmaram; Silvestri, Sharon A.; Lute, James R.; Ostroff, Stephen; Hancock, Kathy; Branch, Alicia; Trock, Susan C.; Klimov, Alexander; Shu, Bo; Brammer, Lynnette; Epperson, Scott; Finelli, Lyn; Jhung, Michael A.

    2012-01-01

    During August 2011, influenza A (H3N2) variant [A(H3N2)v] virus infection developed in a child who attended an agricultural fair in Pennsylvania, USA; the virus resulted from reassortment of a swine influenza virus with influenza A(H1N1)pdm09. We interviewed fair attendees and conducted a retrospective cohort study among members of an agricultural club who attended the fair. Probable and confirmed cases of A(H3N2)v virus infection were defined by serology and genomic sequencing results, respectively. We identified 82 suspected, 4 probable, and 3 confirmed case-patients who attended the fair. Among 127 cohort study members, the risk for suspected case status increased as swine exposure increased from none (4%; referent) to visiting swine exhibits (8%; relative risk 2.1; 95% CI 0.2–53.4) to touching swine (16%; relative risk 4.4; 95% CI 0.8–116.3). Fairs may be venues for zoonotic transmission of viruses with epidemic potential; thus, health officials should investigate respiratory illness outbreaks associated with agricultural events. PMID:23171635

  11. Novel Reassortant H3N2 Avian Influenza Virus Isolated from Domestic Ducks in Eastern China in 2016

    PubMed Central

    Sun, Wenqiang; Li, Jiaxin; Hu, Jiao; Jiang, Daxiu; Ge, Zhichuang; Xing, Chaonan; Wang, Xiaoquan; Gu, Min; Liu, Xiaowen; Hu, Shunlin

    2017-01-01

    ABSTRACT H3 subtype avian influenza virus (AIV) poses a great threat to public health, and so investigating its epidemiology is of great importance. A novel reassortant H3N2 AIV strain was isolated from a live poultry market in eastern China. The strain’s genes originated from H1N1, H3, and H7 AIVs. Thus, the genome information of the H3N2 isolate will help to investigate further the epidemiology of H3 subtype AIVs in China. PMID:29192070

  12. Outbreak of swine influenza in Argentina reveals a non-contemporary human H3N2 virus highly transmissible among pigs.

    PubMed

    Cappuccio, Javier A; Pena, Lindomar; Dibárbora, Marina; Rimondi, Agustina; Piñeyro, Pablo; Insarralde, Lucas; Quiroga, María A; Machuca, Mariana; Craig, Maria I; Olivera, Valeria; Chockalingam, Ashok; Perfumo, Carlos J; Perez, Daniel R; Pereda, Ariel

    2011-12-01

    Sporadic outbreaks of human H3N2 influenza A virus (IAV) infections in swine populations have been reported in Asia, Europe and North America since 1970. In South America, serological surveys in pigs indicate that IAVs of the H3 and H1 subtypes are currently in circulation; however, neither virus isolation nor characterization has been reported. In November 2008, an outbreak of respiratory disease in pigs consistent with swine influenza virus (SIV) infection was detected in Argentina. The current study describes the clinical epidemiology, pathology, and molecular and biological characteristics of the virus. Phylogenetic analysis revealed that the virus isolate shared nucleotide identities of 96-98 % with H3N2 IAVs that circulated in humans from 2000 to 2003. Antigenically, sera from experimentally inoculated animals cross-reacted mainly with non-contemporary human-origin H3N2 influenza viruses. In an experimental infection in a commercial swine breed, the virus was of low virulence but was transmitted efficiently to contact pigs and caused severe disease when an infected animal acquired a secondary bacterial infection. This is the first report of a wholly human H3N2 IAV associated with clinical disease in pigs in South America. These studies highlight the importance of two-way transmission of IAVs and SIVs between pigs and humans, and call for enhanced influenza surveillance in the pig population worldwide.

  13. Stockpiled pre-pandemic H5N1 influenza virus vaccines with AS03 adjuvant provide cross-protection from H5N2 clade 2.3.4.4 virus challenge in ferrets

    PubMed Central

    Sun, Xiangjie; Belser, Jessica A.; Pulit-Penaloza, Joanna A.; Creager, Hannah M.; Guo, Zhu; Jefferson, Stacie N.; Liu, Feng; York, Ian A.; Stevens, James; Maines, Taronna R.; Jernigan, Daniel B.; Katz, Jacqueline M.; Levine, Min Z.; Tumpey, Terrence M.

    2018-01-01

    Avian influenza viruses, notably H5 subtype viruses, pose a continuous threat to public health due to their pandemic potential. In recent years, influenza virus H5 subtype split vaccines with novel oil-in-water emulsion based adjuvants (e.g. AS03, MF59) have been shown to be safe, immunogenic, and able to induce broad immune responses in clinical trials, providing strong scientific support for vaccine stockpiling. However, whether such vaccines can provide protection from infection with emerging, antigenically distinct clades of H5 viruses has not been adequately addressed. Here, we selected two AS03-adjuvanted H5N1 vaccines from the US national prepandemic influenza vaccine stockpile and assessed whether the 2004–05 vaccines could provide protection against a 2014 highly pathogenic avian influenza (HPAI) H5N2 virus (A/northern pintail/Washington/40964/2014), a clade 2.3.4.4 virus responsible for mass culling of poultry in North America. Ferrets received two doses of adjuvanted vaccine containing 7.5 μg of hemagglutinin (HA) from A/Vietnam/1203/2004 (clade 1) or A/Anhui/1/2005 (clade 2.3.4) virus either in a homologous or heterologous prime-boost vaccination regime. We found that both vaccination regimens elicited robust antibody responses against the 2004–05 vaccine viruses and could reduce virus-induced morbidity and viral replication in the lower respiratory tract upon heterologous challenge despite the low level of cross-reactive antibody titers to the challenge H5N2 virus. This study supports the value of existing stockpiled 2004–05 influenza H5N1 vaccines, combined with AS03-adjuvant for early use in the event of an emerging pandemic with H5N2-like clade 2.3.4.4 viruses. PMID:28554058

  14. Temperature sensitivity on growth and/or replication of H1N1, H1N2 and H3N2 influenza A viruses isolated from pigs and birds in mammalian cells.

    PubMed

    Massin, Pascale; Kuntz-Simon, Gaëlle; Barbezange, Cyril; Deblanc, Céline; Oger, Aurélie; Marquet-Blouin, Estelle; Bougeard, Stéphanie; van der Werf, Sylvie; Jestin, Véronique

    2010-05-19

    Influenza A viruses have been isolated from a wide range of animal species, aquatic birds being the reservoir for their genetic diversity. Avian influenza viruses can be transmitted to humans, directly or indirectly through an intermediate host like pig. This study aimed to define in vitro conditions that could prove useful to evaluate the potential of influenza viruses to adapt to a different host. Growth of H1N1, H1N2 and H3N2 influenza viruses belonging to different lineages isolated from birds or pigs prior to 2005 was tested on MDCK or NPTr cell lines in the presence or absence of exogenous trypsin. Virus multiplication was compared at 33, 37 and 40 degrees C, the infection site temperatures in human, swine and avian hosts, respectively. Temperature sensitivity of PB2-, NP- and M-RNA replication was also tested by quantitative real-time PCR. Multiplication of avian viruses was cold-sensitive, whatever cell type. By contrast, temperature sensitivity of swine viruses was found to depend on the virus and the host cell: for an H1N1 swine isolate from 1982, multiplication was cold-sensitive on NPTr cells and undetectable at 40 degrees C. From genetic analyses, it appears that temperature sensitivity could involve other residues than PB2 residue 627 and could affect other steps of the replication cycle than replication. Copyright 2009 Elsevier B.V. All rights reserved.

  15. Cellular and humoral cross-immunity against two H3N2v influenza strains in presumably unexposed healthy and HIV-infected subjects.

    PubMed

    Agrati, Chiara; Castilletti, Concetta; Cimini, Eleonora; Lapa, Daniele; Quartu, Serena; Caglioti, Claudia; Lanini, Simone; Cattoli, Giovanni; Martini, Federico; Ippolito, Giuseppe; Capobianchi, Maria R

    2014-01-01

    Human cases of infection due to a novel swine-origin variant of influenza A virus subtype H3N2 (H3N2v) have recently been identified in the United States. Pre-existing humoral and cellular immunity has been recognized as one of the key factors in limiting the infection burden of an emerging influenza virus strain, contributing to restrict its circulation and to mitigate clinical presentation. Aim of this study was to assess humoral and cell-mediated cross immune responses to H3N2v in immuno-competent (healthy donors, n = 45) and immuno-compromised hosts (HIV-infected subjects, n = 46) never exposed to H3N2v influenza strain. Humoral response against i) H3N2v (A/H3N2/Ind/08/11), ii) animal vaccine H3N2 strain (A/H3N2/Min/11/10), and iii) pandemic H1N1 virus (A/H1N1/Cal/07/09) was analysed by hemagglutination inhibition assay; cell-mediated response against the same influenza strains was analysed by ELISpot assay. A large proportion of healthy and HIV subjects displayed cross-reacting humoral and cellular immune responses against two H3N2v strains, suggesting the presence of B- and T-cell clones able to recognize epitopes from emerging viral strains in both groups. Specifically, humoral response was lower in HIV subjects than in HD, and a specific age-related pattern of antibody response against different influenza strains was observed both in HD and in HIV. Cellular immune response was similar between HD and HIV groups and no relationship with age was reported. Finally, no correlation between humoral and cellular immune response was observed. Overall, a high prevalence of HD and HIV patients showing cross reactive immunity against two H3N2v strains was observed, with a slightly lower proportion in HIV persons. Other studies focused on HIV subjects at different stages of diseases are needed in order to define how cross immunity can be affected by advanced immunosuppression.

  16. Phylogenetic relationships of the HA and NA genes between vaccine and seasonal influenza A(H3N2) strains in Korea

    PubMed Central

    Park, Sehee; Bae, Joon-Yong; Yoo, Kirim; Cheong, Hee Jin; Noh, Ji Yun; Hong, Kyung Wook; Lemey, Philippe; Vrancken, Bram; Kim, Juwon; Nam, Misun; Yun, Soo-Hyeon; Cho, Woo In; Song, Joon Young; Kim, Woo Joo; Park, Mee Sook; Song, Jin-Won; Kee, Sun-Ho; Song, Ki-Joon; Park, Man-Seong

    2017-01-01

    Seasonal influenza is caused by two influenza A subtype (H1N1 and H3N2) and two influenza B lineage (Victoria and Yamagata) viruses. Of these antigenically distinct viruses, the H3N2 virus was consistently detected in substantial proportions in Korea during the 2010/11-2013/14 seasons when compared to the other viruses and appeared responsible for the influenza-like illness rate peak during the first half of the 2011/12 season. To further scrutinize possible causes for this, we investigated the evolutionary and serological relationships between the vaccine and Korean H3N2 strains during the 2011/12 season for the main antigenic determinants of influenza viruses, the hemagglutinin (HA) and neuraminidase (NA) genes. In the 2011/12 season, when the number of H3N2 cases peaked, the majority of the Korean strains did not belong to the HA clade of A/Perth/16/2009 vaccine, and no Korean strains were of this lineage in the NA segment. In a serological assay, post-vaccinated human sera exhibited much reduced hemagglutination inhibition antibody titers against the non-vaccine clade Korean H3N2 strains. Moreover, Korean strains harbored several amino acid differences in the HA antigenic sites and in the NA with respect to vaccine lineages during this season. Of these, the HA antigenic site C residues 45 and 261 and the NA residue 81 appeared to be the signatures of positive selection. In subsequent seasons, when H3N2 cases were lower, the HA and NA genes of vaccine and Korean strains were more phylogenetically related to each other. Combined, our results provide indirect support for using phylogenetic clustering patterns of the HA and possibly also the NA genes in the selection of vaccine viruses and the assessment of vaccine effectiveness. PMID:28257427

  17. In Vivo Selection of H1N2 Influenza Virus Reassortants in the Ferret Model

    PubMed Central

    Angel, Matthew; Kimble, J. Brian; Pena, Lindomar; Wan, Hongquan

    2013-01-01

    Although the ferret model has been extensively used to study pathogenesis and transmission of influenza viruses, little has been done to determine whether ferrets are a good surrogate animal model to study influenza virus reassortment. It has been previously shown that the pandemic 2009 H1N1 (H1N1pdm) virus was able to transmit efficiently in ferrets. In coinfection studies with either seasonal H1N1 or H3N2 strains (H1N1s or H3N2s, respectively), the H1N1pdm virus was able to outcompete these strains and become the dominant transmissible virus. However, lack of reassortment could have been the result of differences in the cell or tissue tropism of these viruses in the ferret. To address this issue, we performed coinfection studies with recombinant influenza viruses carrying the surface genes of a seasonal H3N2 strain in the background of an H1N1pdm strain and vice versa. After serial passages in ferrets, a dominant H1N2 virus population was obtained with a constellation of gene segments, most of which, except for the neuraminidase (NA) and PB1 segments, were from the H1N1pdm strain. Our studies suggest that ferrets recapitulate influenza virus reassortment events. The H1N2 virus generated through this process resembles similar viruses that are emerging in nature, particularly in pigs. PMID:23302886

  18. Viral reassortment and transmission after co-infection of pigs with classical H1N1 and triple-reassortant H3N2 swine influenza viruses.

    PubMed

    Ma, Wenjun; Lager, Kelly M; Lekcharoensuk, Porntippa; Ulery, Eva S; Janke, Bruce H; Solórzano, Alicia; Webby, Richard J; García-Sastre, Adolfo; Richt, Jürgen A

    2010-09-01

    Triple-reassortant swine influenza viruses circulating in North American pigs contain the internal genes derived from swine (matrix, non-structural and nucleoprotein), human [polymerase basic 1 (PB1)] and avian (polymerase acidic and PB2) influenza viruses forming a constellation of genes that is well conserved and is called the triple-reassortant internal gene (TRIG) cassette. In contrast, the external genes [haemagglutinin (HA) and neuraminidase (NA)] are less conserved, reflecting multiple reassortant events that have produced viruses with different combinations of HA and NA genes. This study hypothesized that maintenance of the TRIG cassette confers a selective advantage to the virus. To test this hypothesis, pigs were co-infected with the triple-reassortant H3N2 A/Swine/Texas/4199-2/98 (Tx/98) and the classical H1N1 A/Swine/Iowa/15/1930 viruses and co-housed with a group of sentinel animals. This direct contact group was subsequently moved into contact with a second group of naïve animals. Four different subtypes (H1N1, H1N2, H3N1 and H3N2) of influenza virus were identified in bronchoalveolar lavage fluid collected from the lungs of the experimentally infected pigs, with most of the viruses containing TRIG from the Tx/98 virus. Interestingly, only the intact H3N2 Tx/98 virus was transmitted from the infected pigs to the direct-contact animals and from them to the second contact group of pigs. These results demonstrated that multiple reassortments can occur within a host; however, only specific gene constellations are readily transmissible. It was concluded that certain HA and NA gene pairs, in conjunction with the TRIG cassette, may have a competitive advantage over other combinations for transmission and maintenance in swine.

  19. Novel Reassortant H3N2 Avian Influenza Virus Isolated from Domestic Ducks in Eastern China in 2016.

    PubMed

    Sun, Wenqiang; Li, Jiaxin; Hu, Jiao; Jiang, Daxiu; Ge, Zhichuang; Xing, Chaonan; Wang, Xiaoquan; Gu, Min; Liu, Xiaowen; Hu, Shunlin; Liu, Xiufan

    2017-11-30

    H3 subtype avian influenza virus (AIV) poses a great threat to public health, and so investigating its epidemiology is of great importance. A novel reassortant H3N2 AIV strain was isolated from a live poultry market in eastern China. The strain's genes originated from H1N1, H3, and H7 AIVs. Thus, the genome information of the H3N2 isolate will help to investigate further the epidemiology of H3 subtype AIVs in China. Copyright © 2017 Sun et al.

  20. Evaluation of Influenza Virus A/H3N2 and B Vaccines on the Basis of Cross-Reactivity of Postvaccination Human Serum Antibodies against Influenza Viruses A/H3N2 and B Isolated in MDCK Cells and Embryonated Hen Eggs

    PubMed Central

    Kishida, Noriko; Fujisaki, Seiichiro; Yokoyama, Masaru; Sato, Hironori; Saito, Reiko; Ikematsu, Hideyuki; Xu, Hong; Takashita, Emi; Tashiro, Masato; Takao, Shinichi; Yano, Takuya; Suga, Tomoko; Kawakami, Chiharu; Yamamoto, Miwako; Kajiyama, Keiko; Saito, Hiroyuki; Shimada, Shin'ichi; Watanabe, Sumi; Aoki, Satomi; Taira, Katsuya; Kon, Miyako; Lin, Jih-Hui

    2012-01-01

    The vaccine strains against influenza virus A/H3N2 for the 2010-2011 season and influenza virus B for the 2009-2010 and 2010-2011 seasons in Japan are a high-growth reassortant A/Victoria/210/2009 (X-187) strain and an egg-adapted B/Brisbane/60/2008 (Victoria lineage) strain, respectively. Hemagglutination inhibition (HI) tests with postinfection ferret antisera indicated that the antisera raised against the X-187 and egg-adapted B/Brisbane/60/2008 vaccine production strains poorly inhibited recent epidemic isolates of MDCK-grown A/H3N2 and B/Victoria lineage viruses, respectively. The low reactivity of the ferret antisera may be attributable to changes in the hemagglutinin (HA) protein of production strains during egg adaptation. To evaluate the efficacy of A/H3N2 and B vaccines, the cross-reactivities of postvaccination human serum antibodies against A/H3N2 and B/Victoria lineage epidemic isolates were assessed by a comparison of the geometric mean titers (GMTs) of HI and neutralization (NT) tests. Serum antibodies elicited by the X-187 vaccine had low cross-reactivity to both MDCK- and egg-grown A/H3N2 isolates by HI test and narrow cross-reactivity by NT test in all age groups. On the other hand, the GMTs to B viruses detected by HI test were below the marginal level, so the cross-reactivity was assessed by NT test. The serum neutralizing antibodies elicited by the B/Brisbane/60/2008 vaccine reacted well with egg-grown B viruses but exhibited remarkably low reactivity to MDCK-grown B viruses. The results of these human serological studies suggest that the influenza A/H3N2 vaccine for the 2010-2011 season and B vaccine for the 2009-2010 and 2010-2011 seasons may possess insufficient efficacy and low efficacy, respectively. PMID:22492743

  1. Influenza A(H3N2) Virus in Swine at Agricultural Fairs and Transmission to Humans, Michigan and Ohio, USA, 2016

    PubMed Central

    Walia, Rasna R.; Nolting, Jacqueline M.; Vincent, Amy L.; Killian, Mary Lea; Zentkovich, Michele M.; Lorbach, Joshua N.; Lauterbach, Sarah E.; Anderson, Tavis K.; Davis, C. Todd; Zanders, Natosha; Jones, Joyce; Jang, Yunho; Lynch, Brian; Rodriguez, Marisela R.; Blanton, Lenee; Lindstrom, Stephen E.; Wentworth, David E.; Schiltz, John; Averill, James J.; Forshey, Tony

    2017-01-01

    In 2016, a total of 18 human infections with influenza A(H3N2) virus occurred after exposure to influenza-infected swine at 7 agricultural fairs. Sixteen of these cases were the result of infection by a reassorted virus with increasing prevalence among US swine containing a hemagglutinin gene from 2010–11 human seasonal H3N2 strains. PMID:28820376

  2. Waning vaccine protection against influenza A (H3N2) illness in children and older adults during a single season.

    PubMed

    Belongia, Edward A; Sundaram, Maria E; McClure, David L; Meece, Jennifer K; Ferdinands, Jill; VanWormer, Jeffrey J

    2015-01-01

    Recent studies have suggested that vaccine-induced protection against influenza may decline within one season. We reanalyzed data from a study of influenza vaccine effectiveness to determine if time since vaccination was an independent predictor of influenza A (H3N2). Patients with acute respiratory illness were actively recruited during the 2007-2008 season. Respiratory swabs were tested for influenza, and vaccination dates were determined by a validated immunization registry. The association between influenza RT-PCR result and vaccination interval (days) was examined using multivariable logistic regression, adjusting for calendar time, age and other confounders. There were 629 vaccinated participants, including 177 influenza A (H3N2) cases and 452 test negative controls. The mean (SD) interval from vaccination to illness onset was 101.7 (25.9) days for influenza cases and 93.0 (29.9) days for controls. There was a significant association between vaccination interval and influenza result in the main effects model. The adjusted odds ratio (aOR) for influenza was 1.12 (CI 1.01, 1.26) for every 14 day increase in the vaccination interval. Age modified the association between vaccination interval and influenza (p=0.005 for interaction). Influenza was associated with increasing vaccination interval in young children and older adults, but not in adolescents or non-elderly adults. Similar results were found when calendar week of vaccine receipt was assessed as the primary exposure variable. Identification of influenza A (H3N2) was associated with increasing time since vaccination among young children and older adults during a single influenza season. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Reassortant H1N1 influenza virus vaccines protect pigs against pandemic H1N1 influenza virus and H1N2 swine influenza virus challenge.

    PubMed

    Yang, Huanliang; Chen, Yan; Shi, Jianzhong; Guo, Jing; Xin, Xiaoguang; Zhang, Jian; Wang, Dayan; Shu, Yuelong; Qiao, Chuanling; Chen, Hualan

    2011-09-28

    Influenza A (H1N1) virus has caused human influenza outbreaks in a worldwide pandemic since April 2009. Pigs have been found to be susceptible to this influenza virus under experimental and natural conditions, raising concern about their potential role in the pandemic spread of the virus. In this study, we generated a high-growth reassortant virus (SC/PR8) that contains the hemagglutinin (HA) and neuraminidase (NA) genes from a novel H1N1 isolate, A/Sichuan/1/2009 (SC/09), and six internal genes from A/Puerto Rico/8/34 (PR8) virus, by genetic reassortment. The immunogenicity and protective efficacy of this reassortant virus were evaluated at different doses in a challenge model using a homologous SC/09 or heterologous A/Swine/Guangdong/1/06(H1N2) virus (GD/06). Two doses of SC/PR8 virus vaccine elicited high-titer serum hemagglutination inhibiting (HI) antibodies specific for the 2009 H1N1 virus and conferred complete protection against challenge with either SC/09 or GD/06 virus, with reduced lung lesions and viral shedding in vaccine-inoculated animals compared with non-vaccinated control animals. These results indicated for the first time that a high-growth SC/PR8 reassortant H1N1 virus exhibits properties that are desirable to be a promising vaccine candidate for use in swine in the event of a pandemic H1N1 influenza. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Different neuraminidase inhibitor susceptibilities of human H1N1, H1N2, and H3N2 influenza A viruses isolated in Germany from 2001 to 2005/2006.

    PubMed

    Bauer, Katja; Richter, Martina; Wutzler, Peter; Schmidtke, Michaela

    2009-04-01

    In the flu season 2005/2006 amantadine-resistant human influenza A viruses (FLUAV) of subtype H3N2 circulated in Germany. This raises questions on the neuraminidase inhibitor (NAI) susceptibility of FLUAV. To get an answer, chemiluminescence-based neuraminidase inhibition assays were performed with 51 H1N1, H1N2, and H3N2 FLUAV isolated in Germany from 2001 to 2005/2006. According to the mean IC(50) values (0.38-0.91 nM for oseltamivir and 0.76-1.13 nM for zanamivir) most H1N1 and H3N2 FLUAV were NAI-susceptible. But, about four times higher zanamivir concentrations were necessary to inhibit neuraminidase activity of H1N2 viruses. Two H1N1 isolates were less susceptible to both drugs in NA inhibition as well as virus yield reduction assays. Results from sequence analysis of viral hemagglutinin and neuraminidase genes and evolutionary analysis of N2 gene revealed (i) different subclades for N2 in H1N2 and H3N2 FLUAV that could explain the differences in zanamivir susceptibility among these viruses and (ii) specific amino acid substitutions in the neuraminidase segment of the two less NAI-susceptible H1N1 isolates. One H3N2 was isolate proved to be a mixture of a NA deletion mutant and full-length NA viruses.

  5. Molecular Surveillance of Antiviral Drug Resistance of Influenza A/H3N2 Virus in Singapore, 2009-2013

    PubMed Central

    Lee, Hong Kai; Tang, Julian Wei-Tze; Loh, Tze Ping; Hurt, Aeron C.; Oon, Lynette Lin-Ean; Koay, Evelyn Siew-Chuan

    2015-01-01

    Adamantanes and neuraminidase inhibitors (NAIs) are two classes of antiviral drugs available for the chemoprophylaxis and treatment of influenza infections. To determine the frequency of drug resistance in influenza A/H3N2 viruses in Singapore, large-scale sequencing of neuraminidase (NA) and matrix protein (MP) genes was performed directly without initial culture amplification. 241 laboratory-confirmed influenza A/H3N2 clinical samples, collected between May 2009 and November 2013 were included. In total, 229 NA (95%) and 241 MP (100%) complete sequences were obtained. Drug resistance mutations in the NA and MP genes were interpreted according to published studies. For the NAIs, a visual inspection of the aligned NA sequences revealed no known drug resistant genotypes (DRGs). For the adamantanes, the well-recognised S31N DRG was identified in all 241 MP genes. In addition, there was an increasing number of viruses carrying the combination of D93G+Y155F+D251V (since May 2013) or D93G (since March 2011) mutations in the NA gene. However, in-vitro NAI testing indicated that neither D93G+Y155F+D251V nor D93G alone conferred any changes in NAI susceptibility. Lastly, an I222T mutation in the NA gene that has previously been reported to cause oseltamivir-resistance in influenza A/H1N1/2009, B, and A/H5N1, was detected from a treatment-naïve patient. Further in-vitro NAI testing is required to confirm the effect of this mutation in A/H3N2 virus. PMID:25635767

  6. In Silico Identification of Highly Conserved Epitopes of Influenza A H1N1, H2N2, H3N2, and H5N1 with Diagnostic and Vaccination Potential

    PubMed Central

    Muñoz-Medina, José Esteban; Sánchez-Vallejo, Carlos Javier; Méndez-Tenorio, Alfonso; Monroy-Muñoz, Irma Eloísa; Angeles-Martínez, Javier; Santos Coy-Arechavaleta, Andrea; Santacruz-Tinoco, Clara Esperanza; González-Ibarra, Joaquín; Anguiano-Hernández, Yu-Mei; González-Bonilla, César Raúl; Ramón-Gallegos, Eva; Díaz-Quiñonez, José Alberto

    2015-01-01

    The unpredictable, evolutionary nature of the influenza A virus (IAV) is the primary problem when generating a vaccine and when designing diagnostic strategies; thus, it is necessary to determine the constant regions in viral proteins. In this study, we completed an in silico analysis of the reported epitopes of the 4 IAV proteins that are antigenically most significant (HA, NA, NP, and M2) in the 3 strains with the greatest world circulation in the last century (H1N1, H2N2, and H3N2) and in one of the main aviary subtypes responsible for zoonosis (H5N1). For this purpose, the HMMER program was used to align 3,016 epitopes reported in the Immune Epitope Database and Analysis Resource (IEDB) and distributed in 34,294 stored sequences in the Pfam database. Eighteen epitopes were identified: 8 in HA, 5 in NA, 3 in NP, and 2 in M2. These epitopes have remained constant since they were first identified (~91 years) and are present in strains that have circulated on 5 continents. These sites could be targets for vaccination design strategies based on epitopes and/or as markers in the implementation of diagnostic techniques. PMID:26346523

  7. Treatment and Prevention of Pandemic H1N1 Influenza.

    PubMed

    Rewar, Suresh; Mirdha, Dashrath; Rewar, Prahlad

    2015-01-01

    Swine influenza is a respiratory infection common to pigs worldwide caused by type A influenza viruses, principally subtypes H1N1, H1N2, H2N1, H3N1, H3N2, and H2N3. Swine influenza viruses also can cause moderate to severe illness in humans and affect persons of all age groups. People in close contact with swine are at especially high risk. Until recently, epidemiological study of influenza was limited to resource-rich countries. The World Health Organization declared an H1N1 pandemic on June 11, 2009, after more than 70 countries reported 30,000 cases of H1N1 infection. In 2015, incidence of swine influenza increased substantially to reach a 5-year high. In India in 2015, 10,000 cases of swine influenza were reported with 774 deaths. The Centers for Disease Control and Prevention recommend real-time polymerase chain reaction as the method of choice for diagnosing H1N1. Antiviral drugs are the mainstay of clinical treatment of swine influenza and can make the illness milder and enable the patient to feel better faster. Antiviral drugs are most effective when they are started within the first 48 hours after the clinical signs begin, although they also may be used in severe or high-risk cases first seen after this time. The Centers for Disease Control and Prevention recommends use of oseltamivir (Tamiflu, Genentech) or zanamivir (Relenza, GlaxoSmithKline). Prevention of swine influenza has 3 components: prevention in swine, prevention of transmission to humans, and prevention of its spread among humans. Because of limited treatment options, high risk for secondary infection, and frequent need for intensive care of individuals with H1N1 pneumonia, environmental control, including vaccination of high-risk populations and public education are critical to control of swine influenza out breaks. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Outbreak of swine influenza in Argentina reveals a non-contemporary human H3N2 virus highly transmissible among pigs

    PubMed Central

    Cappuccio, Javier A.; Pena, Lindomar; Dibárbora, Marina; Rimondi, Agustina; Piñeyro, Pablo; Insarralde, Lucas; Quiroga, María A.; Machuca, Mariana; Craig, Maria I.; Olivera, Valeria; Chockalingam, Ashok; Perfumo, Carlos J.

    2011-01-01

    Sporadic outbreaks of human H3N2 influenza A virus (IAV) infections in swine populations have been reported in Asia, Europe and North America since 1970. In South America, serological surveys in pigs indicate that IAVs of the H3 and H1 subtypes are currently in circulation; however, neither virus isolation nor characterization has been reported. In November 2008, an outbreak of respiratory disease in pigs consistent with swine influenza virus (SIV) infection was detected in Argentina. The current study describes the clinical epidemiology, pathology, and molecular and biological characteristics of the virus. Phylogenetic analysis revealed that the virus isolate shared nucleotide identities of 96–98 % with H3N2 IAVs that circulated in humans from 2000 to 2003. Antigenically, sera from experimentally inoculated animals cross-reacted mainly with non-contemporary human-origin H3N2 influenza viruses. In an experimental infection in a commercial swine breed, the virus was of low virulence but was transmitted efficiently to contact pigs and caused severe disease when an infected animal acquired a secondary bacterial infection. This is the first report of a wholly human H3N2 IAV associated with clinical disease in pigs in South America. These studies highlight the importance of two-way transmission of IAVs and SIVs between pigs and humans, and call for enhanced influenza surveillance in the pig population worldwide. PMID:21849519

  9. Phylogenetic Analysis of a Swine Influenza A(H3N2) Virus Isolated in Korea in 2012

    PubMed Central

    Park, Sehee; Lee, Sangmoo; Hwang, Min-Woong; Bae, Joon-Yong; Heo, Jun; Kim, Donghwan; Jang, Seok-Il; Kim, Kabsu; Park, Man-Seong

    2014-01-01

    Influenza A virus (IAV) can infect avian and mammalian species, including humans. The genome nature of IAVs may contribute to viral adaptation in different animal hosts, resulting in gene reassortment and the reproduction of variants with optimal fitness. As seen again in the 2009 swine-origin influenza A H1N1 pandemic, pigs are known to be susceptible to swine, avian, and human IAVs and can serve as a ‘mixing vessel’ for the generation of novel IAV variants. To this end, the emergence of swine influenza viruses must be kept under close surveillance. Herein, we report the isolation and phylogenetic study of a swine IAV, A/swine/Korea/PL01/2012 (swPL01, H3N2 subtype). After screening nasopharyngeal samples from pigs in the Gyeongsangnam-do region of Korea from December 2011 to May 2012, we isolated the swPL01 virus and sequenced its all of 8 genome segments (polymerase basic 2, PB2; polymerase basic 1, PB1; polymerase acidic, PA; hemagglutinin, HA; nucleocapsid protein, NP; neuraminidase, NA; matrix protein, M; and nonstructural protein, NS). The phylogenetic study, analyzed with reference strains registered in the National Center for Biotechnology Information (NCBI) database, indicated that the swPL01 virus was similar to the North American triple-reassortant swine strains and that the HA gene of the swPL01 virus was categorized into swine H3 cluster IV. The swPL01 virus had the M gene of the triple-reassortant swine H3N2 viruses, whereas that of other contemporary strains in Korea was transferred from the 2009 pandemic H1N1 virus. These data suggest the possibility that various swine H3N2 viruses may co-circulate in Korea, which underlines the importance of a sustained surveillance system against swine IAVs. PMID:24523938

  10. Full genomic analysis of an influenza A (H1N2) virus identified during 2009 pandemic in Eastern India: evidence of reassortment event between co-circulating A(H1N1)pdm09 and A/Brisbane/10/2007-like H3N2 strains.

    PubMed

    Mukherjee, Tapasi Roy; Agrawal, Anurodh S; Chakrabarti, Sekhar; Chawla-Sarkar, Mamta

    2012-10-11

    During the pandemic [Influenza A(H1N1)pdm09] period in 2009-2010, an influenza A (Inf-A) virus with H1N2 subtype (designated as A/Eastern India/N-1289/2009) was detected from a 25 years old male from Mizoram (North-eastern India). To characterize full genome of the H1N2 influenza virus. For initial detection of Influenza viruses, amplification of matrix protein (M) gene of Inf-A and B viruses was carried out by real time RT-PCR. Influenza A positive viruses are then further subtyped with HA and NA gene specific primers. Sequencing and the phylogenetic analysis was performed for the H1N2 strain to understand its origin. The outcome of this full genome study revealed a unique reassortment event where the N-1289 virus acquired it's HA gene from a 2009 pandemic H1N1 virus with swine origin and the other genes from H3N2-like viruses of human origin. This study provides information on possibility of occurrence of reassortment events during influenza season when infectivity is high and two different subtypes of Inf-A viruses co-circulate in same geographical location.

  11. Novel triple reassortant H1N2 influenza viruses bearing six internal genes of the pandemic 2009/H1N1 influenza virus were detected in pigs in China.

    PubMed

    Qiao, Chuanling; Liu, Liping; Yang, Huanliang; Chen, Yan; Xu, Huiyang; Chen, Hualan

    2014-12-01

    The pandemic A/H1N1 influenza viruses emerged in both Mexico and the United States in March 2009, and were transmitted efficiently in the human population. Transmissions of the pandemic 2009/H1N1 virus from humans to poultry and other species of mammals were reported from several continents during the course of the 2009 H1N1 pandemic. Reassortant H1N1, H1N2, and H3N2 viruses containing genes of the pandemic 2009/H1N1 viruses appeared in pigs in some countries. In winter of 2012, a total of 2600 nasal swabs were collected from healthy pigs in slaughterhouses located throughout 10 provinces in China. The isolated viruses were subjected to genetic and antigenic analysis. Two novel triple-reassortant H1N2 influenza viruses were isolated from swine in China in 2012, with the HA gene derived from Eurasian avian-like swine H1N1, the NA gene from North American swine H1N2, and the six internal genes from the pandemic 2009/H1N1 viruses. The two viruses had similar antigenic features and some significant changes in antigenic characteristics emerged when compared to the previously identified isolates. We inferred that the novel reassortant viruses in China may have arisen from the accumulation of the three types of influenza viruses, which further indicates that swine herds serve as "mixing vessels" for influenza viruses. Influenza virus reassortment is an ongoing process, and our findings highlight the urgent need for continued influenza surveillance among swine herds. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Cross-reactivity between avian influenza A (H7N9) virus and divergent H7 subtypic- and heterosubtypic influenza A viruses.

    PubMed

    Guo, Li; Wang, Dayan; Zhou, Hongli; Wu, Chao; Gao, Xin; Xiao, Yan; Ren, Lili; Paranhos-Baccalà, Gláucia; Shu, Yuelong; Jin, Qi; Wang, Jianwei

    2016-02-24

    The number of human avian H7N9 influenza infections has been increasing in China. Understanding their antigenic and serologic relationships is crucial for developing diagnostic tools and vaccines. Here, we evaluated the cross-reactivities and neutralizing activities among H7 subtype influenza viruses and between H7N9 and heterosubtype influenza A viruses. We found strong cross-reactivities between H7N9 and divergent H7 subtypic viruses, including H7N2, H7N3, and H7N7. Antisera against H7N2, H7N3, and H7N7 could also effectively neutralize two distinct H7N9 strains. Two-way cross-reactivities exist within group 2, including H3 and H4, whereas one-way cross-reactivities were found across other groups, including H1, H10, H9, and H13. Our data indicate that the hemaglutinins from divergent H7 subtypes may facilitate the development of vaccines for distinct H7N9 infections. Moreover, serologic diagnoses for H7N9 infections need to consider possible interference from the cross-reactivity of H7N9 with other subtype influenza viruses.

  13. Incidence of adamantane resistance among influenza A (H3N2) viruses isolated worldwide from 1994 to 2005: a cause for concern.

    PubMed

    Bright, Rick A; Medina, Marie-jo; Xu, Xiyan; Perez-Oronoz, Gilda; Wallis, Teresa R; Davis, Xiaohong M; Povinelli, Laura; Cox, Nancy J; Klimov, Alexander I

    2005-10-01

    Adamantanes have been used to treat influenza A virus infections for many years. Studies have shown a low incidence of resistance to these drugs among circulating influenza viruses; however, their use is rising worldwide and drug resistance has been reported among influenza A (H5N1) viruses isolated from poultry and human beings in Asia. We sought to assess adamantane resistance among influenza A viruses isolated during the past decade from countries participating in WHO's global influenza surveillance network. We analysed data for influenza field isolates that were obtained worldwide and submitted to the WHO Collaborating Center for Influenza at the US Centers for Disease Control and Prevention between Oct 1, 1994, and Mar 31, 2005. We used pyrosequencing, confirmatory sequence analysis, and phenotypic testing to detect drug resistance among circulating influenza A H3N2 (n=6524), H1N1 (n=589), and H1N2 (n=83) viruses. More than 7000 influenza A field isolates were screened for specific aminoacid substitutions in the M2 gene known to confer drug resistance. During the decade of surveillance a significant increase in drug resistance was noted, from 0.4% in 1994-1995 to 12.3% in 2003-2004. This increase in the proportion of resistant viruses was weighted heavily by those obtained from Asia with 61% of resistant viruses isolated since 2003 being from people in Asia. Our data raise concerns about the appropriate use of adamantanes and draw attention to the importance of tracking the emergence and spread of drug-resistant influenza A viruses.

  14. Live Bird Markets of Bangladesh: H9N2 Viruses and the Near Absence of Highly Pathogenic H5N1 Influenza

    PubMed Central

    Negovetich, Nicholas J.; Feeroz, Mohammed M.; Jones-Engel, Lisa; Walker, David; Alam, S. M. Rabiul; Hasan, Kamrul; Seiler, Patrick; Ferguson, Angie; Friedman, Kim; Barman, Subrata; Franks, John; Turner, Jasmine; Krauss, Scott; Webby, Richard J.; Webster, Robert G.

    2011-01-01

    Avian influenza surveillance in Bangladesh has been passive, relying on poultry farmers to report suspected outbreaks of highly pathogenic H5N1 influenza. Here, the results of an active surveillance effort focusing on the live-bird markets are presented. Prevalence of influenza infection in the birds of the live bird markets is 23.0%, which is similar to that in poultry markets in other countries. Nearly all of the isolates (94%) were of the non-pathogenic H9N2 subtype, but viruses of the H1N2, H1N3, H3N6, H4N2, H5N1, and H10N7 subtypes were also observed. The highly pathogenic H5N1-subtype virus was observed at extremely low prevalence in the surveillance samples (0.08%), and we suggest that the current risk of infection for humans in the retail poultry markets in Bangladesh is negligible. However, the high prevalence of the H9 subtype and its potential for interaction with the highly pathogenic H5N1-subtype, i.e., reassortment and attenuation of host morbidity, highlight the importance of active surveillance of the poultry markets. PMID:21541296

  15. Phylogenetic Diversity and Genotypical Complexity of H9N2 Influenza A Viruses Revealed by Genomic Sequence Analysis

    PubMed Central

    Dong, Guoying; Luo, Jing; Zhang, Hong; Wang, Chengmin; Duan, Mingxing; Deliberto, Thomas Jude; Nolte, Dale Louis; Ji, Guangju; He, Hongxuan

    2011-01-01

    H9N2 influenza A viruses have become established worldwide in terrestrial poultry and wild birds, and are occasionally transmitted to mammals including humans and pigs. To comprehensively elucidate the genetic and evolutionary characteristics of H9N2 influenza viruses, we performed a large-scale sequence analysis of 571 viral genomes from the NCBI Influenza Virus Resource Database, representing the spectrum of H9N2 influenza viruses isolated from 1966 to 2009. Our study provides a panoramic framework for better understanding the genesis and evolution of H9N2 influenza viruses, and for describing the history of H9N2 viruses circulating in diverse hosts. Panorama phylogenetic analysis of the eight viral gene segments revealed the complexity and diversity of H9N2 influenza viruses. The 571 H9N2 viral genomes were classified into 74 separate lineages, which had marked host and geographical differences in phylogeny. Panorama genotypical analysis also revealed that H9N2 viruses include at least 98 genotypes, which were further divided according to their HA lineages into seven series (A–G). Phylogenetic analysis of the internal genes showed that H9N2 viruses are closely related to H3, H4, H5, H7, H10, and H14 subtype influenza viruses. Our results indicate that H9N2 viruses have undergone extensive reassortments to generate multiple reassortants and genotypes, suggesting that the continued circulation of multiple genotypical H9N2 viruses throughout the world in diverse hosts has the potential to cause future influenza outbreaks in poultry and epidemics in humans. We propose a nomenclature system for identifying and unifying all lineages and genotypes of H9N2 influenza viruses in order to facilitate international communication on the evolution, ecology and epidemiology of H9N2 influenza viruses. PMID:21386964

  16. Whole-Genome Characterization of a Novel Human Influenza A(H1N2) Virus Variant, Brazil

    PubMed Central

    Born, Priscila Silva; Matos, Aline Rocha; Motta, Fernando Couto; Caetano, Braulia Costa; Debur, Maria do Carmo; Riediger, Irina Nastassja; Brown, David; Siqueira, Marilda M.

    2017-01-01

    We report the characterization of a novel reassortant influenza A(H1N2) virus not previously reported in humans. Recovered from a a pig farm worker in southeast Brazil who had influenza-like illness, this virus is a triple reassortant containing gene segments from subtypes H1N2 (hemagglutinin), H3N2 (neuraminidase), and pandemic H1N1 (remaining genes). PMID:27983507

  17. Whole-Genome Characterization of a Novel Human Influenza A(H1N2) Virus Variant, Brazil.

    PubMed

    Resende, Paola Cristina; Born, Priscila Silva; Matos, Aline Rocha; Motta, Fernando Couto; Caetano, Braulia Costa; Debur, Maria do Carmo; Riediger, Irina Nastassja; Brown, David; Siqueira, Marilda M

    2017-01-01

    We report the characterization of a novel reassortant influenza A(H1N2) virus not previously reported in humans. Recovered from a a pig farm worker in southeast Brazil who had influenza-like illness, this virus is a triple reassortant containing gene segments from subtypes H1N2 (hemagglutinin), H3N2 (neuraminidase), and pandemic H1N1 (remaining genes).

  18. Haemagglutinin mutations and glycosylation changes shaped the 2012/13 influenza A(H3N2) epidemic, Houston, Texas

    PubMed Central

    Stucker, K M; Schobel, S A; Olsen, R J; Hodges, H L; Lin, X; Halpin, R A; Fedorova, N; Stockwell, T B; Tovchigrechko, A; Das, S R; Wentworth, D E; Musser, J M

    2017-01-01

    While the early start and higher intensity of the 2012/13 influenza A virus (IAV) epidemic was not unprecedented, it was the first IAV epidemic season since the 2009 H1N1 influenza pandemic where the H3N2 subtype predominated. We directly sequenced the genomes of 154 H3N2 clinical specimens collected throughout the epidemic to better understand the evolution of H3N2 strains and to inform the H3N2 vaccine selection process. Phylogenetic analyses indicated that multiple co-circulating clades and continual antigenic drift in the haemagglutinin (HA) of clades 5, 3A, and 3C, with the evolution of a new 3C subgroup (3C-2012/13), were the driving causes of the epidemic. Drift variants contained HA substitutions and alterations in the potential N-linked glycosylation sites of HA. Antigenic analysis demonstrated that viruses in the emerging subclade 3C.3 and subgroup 3C-2012/13 were not well inhibited by antisera generated against the 3C.1 vaccine strains used for the 2012/13 (A/Victoria/361/2011) or 2013/14 (A/Texas/50/2012) seasons. Our data support updating the H3N2 vaccine strain to a clade 3C.2 or 3C.3-like strain or a subclade that has drifted further. They also underscore the challenges in vaccine strain selection, particularly regarding HA and neuraminidase substitutions derived during laboratory passage that may alter antigenic testing accuracy. PMID:25990233

  19. Cross-reactivity between avian influenza A (H7N9) virus and divergent H7 subtypic- and heterosubtypic influenza A viruses

    PubMed Central

    Guo, Li; Wang, Dayan; Zhou, Hongli; Wu, Chao; Gao, Xin; Xiao, Yan; Ren, Lili; Paranhos-Baccalà, Gláucia; Shu, Yuelong; Jin, Qi; Wang, Jianwei

    2016-01-01

    The number of human avian H7N9 influenza infections has been increasing in China. Understanding their antigenic and serologic relationships is crucial for developing diagnostic tools and vaccines. Here, we evaluated the cross-reactivities and neutralizing activities among H7 subtype influenza viruses and between H7N9 and heterosubtype influenza A viruses. We found strong cross-reactivities between H7N9 and divergent H7 subtypic viruses, including H7N2, H7N3, and H7N7. Antisera against H7N2, H7N3, and H7N7 could also effectively neutralize two distinct H7N9 strains. Two-way cross-reactivities exist within group 2, including H3 and H4, whereas one-way cross-reactivities were found across other groups, including H1, H10, H9, and H13. Our data indicate that the hemaglutinins from divergent H7 subtypes may facilitate the development of vaccines for distinct H7N9 infections. Moreover, serologic diagnoses for H7N9 infections need to consider possible interference from the cross-reactivity of H7N9 with other subtype influenza viruses. PMID:26907865

  20. Serological comparison of antibodies to avian influenza viruses, subtypes H5N2, H6N1, H7N3 and H7N9 between poultry workers and non-poultry workers in Taiwan in 2012.

    PubMed

    Huang, S Y; Yang, J R; Lin, Y J; Yang, C H; Cheng, M C; Liu, M T; Wu, H S; Chang, F Y

    2015-10-01

    In Taiwan, avian influenza virus (AIV) subtypes H5N2, H6N1 and H7N3 have been identified in domestic poultry, and several strains of these subtypes have become endemic in poultry. To evaluate the potential of avian-to-human transmission due to occupational exposure, an exploratory analysis of AIV antibody status in poultry workers was conducted. We enrolled 670 poultry workers, including 335 live poultry vendors (LPVs), 335 poultry farmers (PFs), and 577 non-poultry workers (NPWs). Serum antibody titres against various subtypes of viruses were analysed and compared. The overall seropositivity rates in LPVs and PFs were 2·99% (10/335) and 1·79% (6/335), respectively, against H5N2; and 0·6% (2/335) and 1·19% (4/335), respectively, for H7N3 virus. Of NPWs, 0·35% (2/577) and 0·17% (1/577) were seropositive for H5N2 and H7N3, respectively. Geographical analysis revealed that poultry workers whose workplaces were near locations where H5N2 outbreaks in poultry have been reported face greater risks of being exposed to viruses that result in elevated H5N2 antibody titres. H6N1 antibodies were detected in only one PF, and no H7N9 antibodies were found in the study subjects. Subclinical infections caused by H5N2, H6N1 and H7N3 viruses were thus identified in poultry workers in Taiwan. Occupational exposure is associated with a high risk of AIV infection, and the seroprevalence of particular avian influenza strains in humans reflects the endemic strains in poultry in this region.

  1. Molecular epidemiology of H9N2 influenza viruses in Northern Europe.

    PubMed

    Lindh, Erika; Ek-Kommonen, Christine; Väänänen, Veli-Matti; Vaheri, Antti; Vapalahti, Olli; Huovilainen, Anita

    2014-08-27

    Low pathogenic avian influenza viruses are maintained in wild bird populations throughout the world. Avian influenza viruses are characterized by their efficient ability to reassort and adapt, which enables them to cross the species barrier and enhances their zoonotic potential. Influenza viruses of the H9N2 subtype appear endemic among poultry in Eurasia. They usually exist as low-pathogenic strains and circulate between wild bird populations, poultry and birds sold at live bird markets. Direct transmission of H9N2 viruses, with receptor specificities similar to human influenza strains, to pigs and humans has been reported on several occasions. H9N2 virus was first encountered in Finland in 2009, during routine screening of hunted wild waterfowl. The next year, H9N2 influenza viruses were isolated from wild birds on four occasions, including once from a farmed mallard. We have investigated the relationship between the reared and wild bird isolates by sequencing the hemagglutinin and the neuraminidase genes of the Finnish H9N2 viruses. Nucleotide sequence comparison and phylogenetic analyses indicate that H9N2 was transmitted from wild birds to reared birds in 2010, and that highly identical strains have been circulating in Europe during the last few years. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Mortality burden of the 2009 A/H1N1 influenza pandemic in France: comparison to seasonal influenza and the A/H3N2 pandemic.

    PubMed

    Lemaitre, Magali; Carrat, Fabrice; Rey, Grégoire; Miller, Mark; Simonsen, Lone; Viboud, Cécile

    2012-01-01

    The mortality burden of the 2009 A/H1N1 pandemic remains unclear in many countries due to delays in reporting of death statistics. We estimate the age- and cause-specific excess mortality impact of the pandemic in France, relative to that of other countries and past epidemic and pandemic seasons. We applied Serfling and Poisson excess mortality approaches to model weekly age- and cause-specific mortality rates from June 1969 through May 2010 in France. Indicators of influenza activity, time trends, and seasonal terms were included in the models. We also reviewed the literature for country-specific estimates of 2009 pandemic excess mortality rates to characterize geographical differences in the burden of this pandemic. The 2009 A/H1N1 pandemic was associated with 1.0 (95% Confidence Intervals (CI) 0.2-1.9) excess respiratory deaths per 100,000 population in France, compared to rates per 100,000 of 44 (95% CI 43-45) for the A/H3N2 pandemic and 2.9 (95% CI 2.3-3.7) for average inter-pandemic seasons. The 2009 A/H1N1 pandemic had a 10.6-fold higher impact than inter-pandemic seasons in people aged 5-24 years and 3.8-fold lower impact among people over 65 years. The 2009 pandemic in France had low mortality impact in most age groups, relative to past influenza seasons, except in school-age children and young adults. The historical A/H3N2 pandemic was associated with much larger mortality impact than the 2009 pandemic, across all age groups and outcomes. Our 2009 pandemic excess mortality estimates for France fall within the range of previous estimates for high-income regions. Based on the analysis of several mortality outcomes and comparison with laboratory-confirmed 2009/H1N1 deaths, we conclude that cardio-respiratory and all-cause mortality lack precision to accurately measure the impact of this pandemic in high-income settings and that use of more specific mortality outcomes is important to obtain reliable age-specific estimates.

  3. PB2-588 V promotes the mammalian adaptation of H10N8, H7N9 and H9N2 avian influenza viruses

    PubMed Central

    Xiao, Chencheng; Ma, Wenjun; Sun, Na; Huang, Lihong; Li, Yaling; Zeng, Zhaoyong; Wen, Yijun; Zhang, Zaoyue; Li, Huanan; Li, Qian; Yu, Yuandi; Zheng, Yi; Liu, Shukai; Hu, Pingsheng; Zhang, Xu; Ning, Zhangyong; Qi, Wenbao; Liao, Ming

    2016-01-01

    Human infections with avian influenza H7N9 or H10N8 viruses have been reported in China, raising concerns that they might cause human epidemics and pandemics. However, how these viruses adapt to mammalian hosts is unclear. Here we show that besides the commonly recognized viral polymerase subunit PB2 residue 627 K, other residues including 87E, 292 V, 340 K, 588 V, 648 V, and 676 M in PB2 also play critical roles in mammalian adaptation of the H10N8 virus. The avian-origin H10N8, H7N9, and H9N2 viruses harboring PB2-588 V exhibited higher polymerase activity, more efficient replication in mammalian and avian cells, and higher virulence in mice when compared to viruses with PB2-588 A. Analyses of available PB2 sequences showed that the proportion of avian H9N2 or human H7N9 influenza isolates bearing PB2-588 V has increased significantly since 2013. Taken together, our results suggest that the substitution PB2-A588V may be a new strategy for an avian influenza virus to adapt mammalian hosts. PMID:26782141

  4. Fitness of Pandemic H1N1 and Seasonal influenza A viruses during Co-infection: Evidence of competitive advantage of pandemic H1N1 influenza versus seasonal influenza.

    PubMed

    Perez, Daniel Roberto; Sorrell, Erin; Angel, Matthew; Ye, Jianqiang; Hickman, Danielle; Pena, Lindomar; Ramirez-Nieto, Gloria; Kimble, Brian; Araya, Yonas

    2009-08-24

    On June 11, 2009 the World Health Organization (WHO) declared a new H1N1 influenza pandemic. This pandemic strain is as transmissible as seasonal H1N1 and H3N2 influenza A viruses. Major concerns facing this pandemic are whether the new virus will replace, co-circulate and/or reassort with seasonal H1N1 and/or H3N2 human strains. Using the ferret model, we investigated which of these three possibilities were most likely favored. Our studies showed that the current pandemic virus is more transmissible than, and has a biological advantage over, prototypical seasonal H1 or H3 strains.

  5. Molecular Epidemiology of Influenza A/H3N2 Viruses Circulating in Uganda

    PubMed Central

    Byarugaba, Denis K.; Ducatez, Mariette F.; Erima, Bernard; Mworozi, Edison A.; Millard, Monica; Kibuuka, Hannah; Lukwago, Luswa; Bwogi, Josephine; Kaira, Blanche B.; Mimbe, Derrick; Schnabel, David C.; Krauss, Scott; Darnell, Daniel; Webby, Richard J.; Webster, Robert G.; Wabwire-Mangen, Fred

    2011-01-01

    The increasing availability of complete influenza virus genomes is deepening our understanding of influenza evolutionary dynamics and facilitating the selection of vaccine strains. However, only one complete African influenza virus sequence is available in the public domain. Here we present a complete genome analysis of 59 influenza A/H3N2 viruses isolated from humans in Uganda during the 2008 and 2009 season. Isolates were recovered from hospital-based sentinel surveillance for influenza-like illnesses and their whole genome sequenced. The viruses circulating during these two seasons clearly differed from each other phylogenetically. They showed a slow evolution away from the 2009/10 recommended vaccine strain (A/Brisbane/10/07), instead clustering with the 2010/11 recommended vaccine strain (A/Perth/16/09) in the A/Victoria/208/09 clade, as observed in other global regions. All of the isolates carried the adamantane resistance marker S31N in the M2 gene and carried several markers of enhanced transmission; as expected, none carried any marker of neuraminidase inhibitor resistance. The hemagglutinin gene of the 2009 isolates differed from that of the 2008 isolates in antigenic sites A, B, D, and to a lesser extent, C and E indicating evidence of an early phylogenetic shift from the 2008 to 2009 viruses. The internal genes of the 2009 isolates were similar to those of one 2008 isolate, A/Uganda/MUWRP-050/2008. Another 2008 isolate had a truncated PB1-F2 protein. Whole genome sequencing can enhance surveillance of future seasonal changes in the viral genome which is crucial to ensure that selected vaccine strains are protective against the strains circulating in Eastern Africa. This data provides an important baseline for this surveillance. Overall the influenza virus activity in Uganda appears to mirror that observed in other regions of the southern hemisphere. PMID:22132146

  6. Infectivity, transmission and pathogenicity of H5 highly pathogenic avian influenza clade 2.3.4.4 (H5N8 and H5N2) United States index viruses in Pekin ducks and Chinese geese

    USDA-ARS?s Scientific Manuscript database

    In late 2014, a H5N8 highly pathogenic avian influenza (HPAI) virus, clade 2.3.4.4, spread by migratory birds into North America mixing with low pathogenicity AI viruses to produce a H5N2 HPAI virus. The H5N8 and H5N2 HPAI viruses were detected initially in wild waterfowl and backyard birds, and lat...

  7. Case of seasonal reassortant A(H1N2) influenza virus infection, the Netherlands, March 2018.

    PubMed

    Meijer, Adam; Swaan, Corien M; Voerknecht, Martin; Jusic, Edin; van den Brink, Sharon; Wijsman, Lisa A; Voordouw, Bettie Cg; Donker, Gé A; Sleven, Jacqueline; Dorigo-Zetsma, Wendelien W; Svraka, Sanela; van Boven, Michiel; Haverkate, Manon R; Timen, Aura; van Dissel, Jaap T; Koopmans, Marion Pg; Bestebroer, Theo M; Fouchier, Ron Am

    2018-04-01

    A seasonal reassortant A(H1N2) influenza virus harbouring genome segments from seasonal influenza viruses A(H1N1)pdm09 (HA and NS) and A(H3N2) (PB2, PB1, PA, NP, NA and M) was identified in March 2018 in a 19-months-old patient with influenza-like illness (ILI) who presented to a general practitioner participating in the routine sentinel surveillance of ILI in the Netherlands. The patient recovered fully. Further epidemiological and virological investigation did not reveal additional cases.

  8. Protection of guinea pigs by vaccination with a recombinant swinepox virus co-expressing HA1 genes of swine H1N1 and H3N2 influenza viruses.

    PubMed

    Xu, Jiarong; Yang, Deji; Huang, Dongyan; Xu, Jiaping; Liu, Shichao; Lin, Huixing; Zhu, Haodan; Liu, Bao; Lu, Chengping

    2013-03-01

    Swine influenza (SI) is an acute respiratory infectious disease of swine caused by swine influenza virus (SIV). SIV is not only an important respiratory pathogen in pigs but also a potent threat to human health. Here, we report the construction of a recombinant swinepox virus (rSPV/H3-2A-H1) co-expressing hemagglutinin (HA1) of SIV subtypes H1N1 and H3N2. Immune responses and protection efficacy of the rSPV/H3-2A-H1 were evaluated in guinea pigs. Inoculation of rSPV/H3-2A-H1 yielded neutralizing antibodies against SIV H1N1 and H3N2. The IFN-γ and IL-4 concentrations in the supernatant of lymphocytes stimulated with purified SIV HA1 antigen were significantly higher (P < 0.01) than those of the control groups. Complete protection of guinea pigs against SIV H1N1 or H3N2 challenge was observed. No SIV shedding was detected from guinea pigs vaccinated with rSPV/H3-2A-H1 after challenge. Most importantly, the guinea pigs immunized with rSPV/H3-2A-H1 did not show gross and micrographic lung lesions. However, the control guinea pigs experienced distinct gross and micrographic lung lesions at 7 days post-challenge. Our data suggest that the recombinant swinepox virus encoding HA1 of SIV H1N1 and H3N2 might serve as a promising candidate vaccine for protection against SIV H1N1 and H3N2 infections.

  9. An outbreak of influenza A/H3N2 in a Zambian school dormitory.

    PubMed

    Mizuta, K; Oshitani, H; Mpabalwani, E M; Kasolo, F C; Luo, N P; Suzuki, H; Numazaki, Y

    1995-03-01

    There was an outbreak of "a mysterious disease" at a Zambian school dormitory in September, 1993. Investigation with questionnaire and collection of throat swab specimens for virus isolation were carried out on 46 patients to identify the causative agent. In this outbreak, most of the patients showed similar symptoms such as fever, headache, sore throat, cough, etc. The disease had spread to all dormitories within a couple of days after the onset of the first cases. From these patients, 13 influenza viruses A/H3N2 were isolated on MDCK cell line. This was a first ever confirmed outbreak of influenza virus infection in Zambia.

  10. [Swine-origin influenza H1N1/California--passions and facts].

    PubMed

    Gendon, Iu Z

    2010-01-01

    Analysis of pandemic caused by swine influenza virus H1N1/California showed moderate virulence of this virus compared to pandemic viruses, which caused pandemics in 1918, 1957, and 1968. During seasonal influenza epidemic in countries of southern hemisphere (June-August 2009) despite on circulation of H1N1/California strain, epidemics was caused by human influenza viruses H3N2 and H1N1. It was concluded that strain H1N1/California could not be attributed to pandemic strains of influenza viruses.

  11. Reintroduction of highly pathogenic avian influenza A/H5N8 virus of clade 2.3.4.4. in Russia.

    PubMed

    Marchenko, Vasiliy Y; Susloparov, Ivan M; Komissarov, Andrey B; Fadeev, Artem; Goncharova, Nataliya I; Shipovalov, Andrey V; Svyatchenko, Svetlana V; Durymanov, Alexander G; Ilyicheva, Tatyana N; Salchak, Lyudmila K; Svintitskaya, Elena P; Mikheev, Valeriy N; Ryzhikov, Alexander B

    2017-05-01

    In the spring of 2016, a loss of wild birds was observed during the monitoring of avian influenza virus activity in the Republic of Tyva. That outbreak was caused by influenza H5N8 virus of clade 2.3.4.4. In the fall, viruses of H5N8 clade 2.3.4.4 were propagated in European countries. This paper presents some results of analysis of the virus strains isolated during the spring and fall seasons in 2016 in the Russian Federation. The investigated strains were highly pathogenic for mice, and some of their antigenic and genetic features differed from those of an H5N8 strain that circulated in 2014 in Russia.

  12. Antigenic and Molecular Characterization of Avian Influenza A(H9N2) Viruses, Bangladesh

    PubMed Central

    Shanmuganatham, Karthik; Feeroz, Mohammed M.; Jones-Engel, Lisa; Smith, Gavin J.D.; Fourment, Mathieu; Walker, David; McClenaghan, Laura; Alam, S.M. Rabiul; Hasan, M. Kamrul; Seiler, Patrick; Franks, John; Danner, Angie; Barman, Subrata; McKenzie, Pamela; Krauss, Scott; Webby, Richard J.

    2013-01-01

    Human infection with avian influenza A(H9N2) virus was identified in Bangladesh in 2011. Surveillance for influenza viruses in apparently healthy poultry in live-bird markets in Bangladesh during 2008–2011 showed that subtype H9N2 viruses are isolated year-round, whereas highly pathogenic subtype H5N1 viruses are co-isolated with subtype H9N2 primarily during the winter months. Phylogenetic analysis of the subtype H9N2 viruses showed that they are reassortants possessing 3 gene segments related to subtype H7N3; the remaining gene segments were from the subtype H9N2 G1 clade. We detected no reassortment with subtype H5N1 viruses. Serologic analyses of subtype H9N2 viruses from chickens revealed antigenic conservation, whereas analyses of viruses from quail showed antigenic drift. Molecular analysis showed that multiple mammalian-specific mutations have become fixed in the subtype H9N2 viruses, including changes in the hemagglutinin, matrix, and polymerase proteins. Our results indicate that these viruses could mutate to be transmissible from birds to mammals, including humans. PMID:23968540

  13. Determination of antigenicity-altering patches on the major surface protein of human influenza A/H3N2 viruses

    PubMed Central

    Kratsch, Christina; Klingen, Thorsten R.; Mümken, Linda; Steinbrück, Lars; McHardy, Alice C.

    2016-01-01

    Human influenza viruses are rapidly evolving RNA viruses that cause short-term respiratory infections with substantial morbidity and mortality in annual epidemics. Uncovering the general principles of viral coevolution with human hosts is important for pathogen surveillance and vaccine design. Protein regions are an appropriate model for the interactions between two macromolecules, but the currently used epitope definition for the major antigen of influenza viruses, namely hemagglutinin, is very broad. Here, we combined genetic, evolutionary, antigenic, and structural information to determine the most relevant regions of the hemagglutinin of human influenza A/H3N2 viruses for interaction with human immunoglobulins. We estimated the antigenic weights of amino acid changes at individual sites from hemagglutination inhibition data using antigenic tree inference followed by spatial clustering of antigenicity-altering protein sites on the protein structure. This approach determined six relevant areas (patches) for antigenic variation that had a key role in the past antigenic evolution of the viruses. Previous transitions between successive predominating antigenic types of H3N2 viruses always included amino acid changes in either the first or second antigenic patch. Interestingly, there was only partial overlap between the antigenic patches and the patches under strong positive selection. Therefore, besides alterations of antigenicity, other interactions with the host may shape the evolution of human influenza A/H3N2 viruses. PMID:27774294

  14. Antigenic Maps of Influenza A(H3N2) Produced With Human Antisera Obtained After Primary Infection.

    PubMed

    Fonville, Judith M; Fraaij, Pieter L A; de Mutsert, Gerrie; Wilks, Samuel H; van Beek, Ruud; Fouchier, Ron A M; Rimmelzwaan, Guus F

    2016-01-01

    Antigenic characterization of influenza viruses is typically based on hemagglutination inhibition (HI) assay data for viral isolates tested against strain-specific postinfection ferret antisera. Here, similar virus characterizations were performed using serological data from humans with primary influenza A(H3N2) infection. We screened sera collected between 1995 and 2011 from children between 9 and 24 months of age for influenza virus antibodies, performed HI tests for the positive sera against 23 influenza viruses isolated between 1989 and 2011, and measured HI titers of antisera against influenza A(H3N2) from 24 ferrets against the same panel of viruses. Of the 17 positive human sera, 6 had a high response, showing HI patterns that would be expected from primary infection antisera, while 11 sera had lower, more dispersed patterns of reactivity that are not easily explained. The antigenic map based on the high-response human HI data was similar to the map created using ferret data. Although the overall structure of the ferret and human antigenic maps is similar, local differences in virus positions indicate that the human and ferret immune system might see antigenic properties of viruses differently. Further studies are needed to establish the degree of similarity between serological patterns in ferret and human data. © The Author 2015. Published by Oxford University Press for the Infectious Diseases Society of America.

  15. Novel H5N8 clade 2.3.4.4 highly pathogenic avian influenza virus in wild awuatic birds, Russia, 2016

    USDA-ARS?s Scientific Manuscript database

    H5N1 high pathogenicity avian influenza virus (HPAIV) emerged in 1996 in Guangdong China (Gs/GD) and has evolved into multiple genetic clades. Since 2008, HPAIV H5 clade 2.3.4 with N2, N5 and N8 neuraminidase subtypes have been identified in mainland China and outbreak of HPAIV H5N8 clade 2.3.4.4 ou...

  16. Isolation and characterization of an H9N2 influenza virus isolated in Argentina

    PubMed Central

    Xu, Kemin; Ferreri, Lucas; Rimondi, Agustina; Olivera, Valeria; Romano, Marcelo; Ferreyra, Hebe; Rago, Virgina; Uhart, Marcela; Chen, Hongjun; Sutton, Troy; Pereda, Ariel; Perez, Daniel R.

    2016-01-01

    As part of our ongoing efforts on animal influenza surveillance in Argentina, an H9N2 virus was isolated from a wild aquatic bird (Netta peposaca), A/rosy-billed pochard/Argentina/CIP051-559/2007 (H9N2) – herein referred to as 559/H9N2. Due to the important role that H9N2 viruses play in the ecology of influenza in nature, the 559/H9N2 isolate was characterized molecularly and biologically. Phylogenetic analysis of the HA gene revealed that the 559/H9N2 virus maintained an independent evolutionary pathway and shared a sister-group relationship with North American viruses, suggesting a common ancestor. The rest of the genome segments clustered with viruses from South America. Experimental inoculation of the 559/H9N2 in chickens and quail revealed efficient replication and transmission only in quail. Our results add to the notion of the unique evolutionary trend of avian influenza viruses in South America. Our study increases our understanding of H9N2 viruses in nature and emphasizes the importance of expanding animal influenza surveillance efforts to better define the ecology of influenza viruses at a global scale. PMID:22709552

  17. Reassortant clade 2.3.4.4 of highly pathogenic avian influenza A (H5N6) virus, Taiwan, 2017

    USDA-ARS?s Scientific Manuscript database

    A highly pathogenic avian influenza A(H5N6) virus of clade 2.3.4.4 was detected in a domestic duck found dead in Taiwan during February 2017. The endemic situation and continued evolution of various reassortant highly pathogenic avian influenza viruses in Taiwan warrant concern about further reassor...

  18. Routes of transmission during a nosocomial influenza A(H3N2) outbreak among geriatric patients and healthcare workers.

    PubMed

    Eibach, D; Casalegno, J-S; Bouscambert, M; Bénet, T; Regis, C; Comte, B; Kim, B-A; Vanhems, P; Lina, B

    2014-03-01

    Influenza presents a life-threatening infection for hospitalized geriatric patients, who might be nosocomially infected via healthcare workers (HCWs), other patients or visitors. In the 2011/2012 influenza season an influenza A(H3N2) outbreak occurred in the geriatric department at the Hôpital Edouard Herriot, Lyon. To clarify the transmission chain for this influenza A(H3N2) outbreak by sequence analysis and to identify preventive measures. Laboratory testing of patients with influenza-like illness in the acute care geriatric department revealed 22 cases of influenza between 19th February and 15th March 2012. Incidences for patients and HCWs were calculated and possible epidemiological links were analysed using a questionnaire. Neuraminidase and haemagglutinin genes of culture-positive samples and community influenza samples were sequenced and clustered to detect patients with identical viral strains. Sixteen patients and six HCWs were affected, resulting in an attack rate of 24% and 11% respectively. Six nosocomial infections were recorded. The sequence analysis confirmed three independent influenza clusters on three different sections of the geriatric ward. For at least two clusters, an HCW source was determined. Epidemiological and microbiological results confirm influenza transmission from HCWs to patients. A higher vaccination rate, isolation measures and better hand hygiene are recommended in order to prevent outbreaks in future influenza seasons. Copyright © 2014 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  19. Effects of egg-adaptation on receptor-binding and antigenic properties of recent influenza A (H3N2) vaccine viruses.

    PubMed

    Parker, Lauren; Wharton, Stephen A; Martin, Stephen R; Cross, Karen; Lin, Yipu; Liu, Yan; Feizi, Ten; Daniels, Rodney S; McCauley, John W

    2016-06-01

    Influenza A virus (subtype H3N2) causes seasonal human influenza and is included as a component of influenza vaccines. The majority of vaccine viruses are isolated and propagated in eggs, which commonly results in amino acid substitutions in the haemagglutinin (HA) glycoprotein. These substitutions can affect virus receptor-binding and alter virus antigenicity, thereby, obfuscating the choice of egg-propagated viruses for development into candidate vaccine viruses. To evaluate the effects of egg-adaptive substitutions seen in H3N2 vaccine viruses on sialic acid receptor-binding, we carried out quantitative measurement of virus receptor-binding using surface biolayer interferometry with haemagglutination inhibition (HI) assays to correlate changes in receptor avidity with antigenic properties. Included in these studies was a panel of H3N2 viruses generated by reverse genetics containing substitutions seen in recent egg-propagated vaccine viruses and corresponding cell culture-propagated wild-type viruses. These assays provide a quantitative approach to investigating the importance of individual amino acid substitutions in influenza receptor-binding. Results show that viruses with egg-adaptive HA substitutions R156Q, S219Y, and I226N, have increased binding avidity to α2,3-linked receptor-analogues and decreased binding avidity to α2,6-linked receptor-analogues. No measurable binding was detected for the viruses with amino acid substitution combination 156Q+219Y and receptor-binding increased in viruses where egg-adaptation mutations were introduced into cell culture-propagated virus. Substitutions at positions 156 and 190 appeared to be primarily responsible for low reactivity in HI assays with post-infection ferret antisera raised against 2012-2013 season H3N2 viruses. Egg-adaptive substitutions at position 186 caused substantial differences in binding avidity with an insignificant effect on antigenicity.

  20. Influenza H7N9 and H9N2 Viruses: Coexistence in Poultry Linked to Human H7N9 Infection and Genome Characteristics

    PubMed Central

    Yu, Xinfen; Jin, Tao; Cui, Yujun; Pu, Xiaoying; Li, Jun; Xu, Jin; Liu, Guang; Jia, Huijue; Liu, Dan; Song, Shili; Yu, Yang; Xie, Li; Huang, Renjie; Ding, Hua; Kou, Yu; Zhou, Yinyan; Wang, Yayu; Xu, Xun; Yin, Ye; Wang, Jian; Guo, Chenyi; Yang, Xianwei; Hu, Liangping; Wu, Xiaopeng; Wang, Hailong; Liu, Jun; Zhao, Guoqiu; Zhou, Jiyong; Gao, George F.; Yang, Ruifu; Wang, Jun

    2014-01-01

    ABSTRACT Avian influenza virus A of the novel H7N9 reassortant subtype was recently found to cause severe human respiratory infections in China. Live poultry markets were suspected locations of the human H7N9 infection sources, based on the cases' exposure histories and sequence similarities between viral isolates. To explore the role of live poultry markets in the origin of the novel H7N9 virus, we systematically examined poultry and environmental specimens from local markets and farms in Hangzhou, using real-time reverse transcription-PCR (RT-PCR) as well as high-throughput next-generation sequencing (NGS). RT-PCR identified specimens positive for the H7 and N9 genomic segments in all of the 12 poultry markets epidemiologically linked to 10 human H7N9 cases. Chickens, ducks, and environmental specimens from the markets contained heavily mixed subtypes, including H7, N9, H9, and N2 and sometimes H5 and N1. The idea of the coexistence of H7N9 and H9N2 subtypes in chickens was further supported by metagenomic sequencing. In contrast, human H7N9 infection cases (n = 31) were all negative for H9N2 virus according to real-time RT-PCR. The six internal segments were indistinguishable for the H7N9 and H9N2 viruses. The H9, N2, and internal-segment sequences were very close to the sequence of the H9N2 virus circulating in chickens in China recently. Our results provide direct evidence that H9N2 strains coexisted with the novel human-pathogenic H7N9 influenza virus in epidemiologically linked live poultry markets. Avian influenza A virus of the H9N2 subtype likely made a recent contribution to the evolution of the H7N9 virus and continues to do so. IMPORTANCE Our results suggest that avian influenza A virus of the H9N2 subtype likely made a recent contribution to the evolution of the H7N9 virus, a novel reassortant avian influenza virus A subtype, and continues to do so. The finding helps shed light on how the H7N9 virus emerged, spread, and transmitted to humans. It is of

  1. Influenza H7N9 and H9N2 viruses: coexistence in poultry linked to human H7N9 infection and genome characteristics.

    PubMed

    Yu, Xinfen; Jin, Tao; Cui, Yujun; Pu, Xiaoying; Li, Jun; Xu, Jin; Liu, Guang; Jia, Huijue; Liu, Dan; Song, Shili; Yu, Yang; Xie, Li; Huang, Renjie; Ding, Hua; Kou, Yu; Zhou, Yinyan; Wang, Yayu; Xu, Xun; Yin, Ye; Wang, Jian; Guo, Chenyi; Yang, Xianwei; Hu, Liangping; Wu, Xiaopeng; Wang, Hailong; Liu, Jun; Zhao, Guoqiu; Zhou, Jiyong; Pan, Jingcao; Gao, George F; Yang, Ruifu; Wang, Jun

    2014-03-01

    Avian influenza virus A of the novel H7N9 reassortant subtype was recently found to cause severe human respiratory infections in China. Live poultry markets were suspected locations of the human H7N9 infection sources, based on the cases' exposure histories and sequence similarities between viral isolates. To explore the role of live poultry markets in the origin of the novel H7N9 virus, we systematically examined poultry and environmental specimens from local markets and farms in Hangzhou, using real-time reverse transcription-PCR (RT-PCR) as well as high-throughput next-generation sequencing (NGS). RT-PCR identified specimens positive for the H7 and N9 genomic segments in all of the 12 poultry markets epidemiologically linked to 10 human H7N9 cases. Chickens, ducks, and environmental specimens from the markets contained heavily mixed subtypes, including H7, N9, H9, and N2 and sometimes H5 and N1. The idea of the coexistence of H7N9 and H9N2 subtypes in chickens was further supported by metagenomic sequencing. In contrast, human H7N9 infection cases (n = 31) were all negative for H9N2 virus according to real-time RT-PCR. The six internal segments were indistinguishable for the H7N9 and H9N2 viruses. The H9, N2, and internal-segment sequences were very close to the sequence of the H9N2 virus circulating in chickens in China recently. Our results provide direct evidence that H9N2 strains coexisted with the novel human-pathogenic H7N9 influenza virus in epidemiologically linked live poultry markets. Avian influenza A virus of the H9N2 subtype likely made a recent contribution to the evolution of the H7N9 virus and continues to do so. Our results suggest that avian influenza A virus of the H9N2 subtype likely made a recent contribution to the evolution of the H7N9 virus, a novel reassortant avian influenza virus A subtype, and continues to do so. The finding helps shed light on how the H7N9 virus emerged, spread, and transmitted to humans. It is of considerable

  2. H7N9 Influenza Virus Is More Virulent in Ferrets than 2009 Pandemic H1N1 Influenza Virus.

    PubMed

    Yum, Jung; Ku, Keun Bon; Kim, Hyun Soo; Seo, Sang Heui

    2015-12-01

    The novel H7N9 influenza virus has been infecting humans in China since February 2013 and with a mortality rate of about 40%. This study compared the pathogenicity of the H7N9 and 2009 pandemic H1N1 influenza viruses in a ferret model, which shows similar symptoms to those of humans infected with influenza viruses. The H7N9 influenza virus caused a more severe disease than did the 2009 pandemic H1N1 influenza virus. All of the ferrets infected with the H7N9 influenza virus had died by 6 days after infection, while none of those infected with the 2009 pandemic H1N1 influenza virus died. Ferrets infected with the H7N9 influenza virus had higher viral titers in their lungs than did those infected with the 2009 pandemic H1N1 influenza virus. Histological findings indicated that hemorrhagic pneumonia was caused by infection with the H7N9 influenza virus, but not with the 2009 pandemic H1N1 influenza virus. In addition, the lung tissues of ferrets infected with the H7N9 influenza virus contained higher levels of chemokines than did those of ferrets infected with the 2009 pandemic H1N1 influenza virus. This study suggests that close monitoring is needed to prevent human infection by the lethal H7N9 influenza virus.

  3. Genotype patterns of contemporary reassorted H3N2 virus in U.S. swine

    USDA-ARS?s Scientific Manuscript database

    To understand the evolution of H3N2v influenza viruses that have infected 288 humans since July 2011, we performed the largest phylogenetic analysis at a whole genome scale of influenza viruses from North American swine to date (n = 200). At least ten distinct reassorted H3N2/pandemic H1N1 (rH3N2p)...

  4. Serological evidence for avian H9N2 influenza virus infections among Romanian agriculture workers.

    PubMed

    Coman, Alexandru; Maftei, Daniel N; Krueger, Whitney S; Heil, Gary L; Friary, John A; Chereches, Razvan M; Sirlincan, Emanuela; Bria, Paul; Dragnea, Claudiu; Kasler, Iosif; Gray, Gregory C

    2013-12-01

    In recent years, wild birds have introduced multiple highly pathogenic avian influenza (HPAI) H5N1 virus infections in Romanian poultry. In 2005 HPAI infections were widespread among domestic poultry and anecdotal reports suggested domestic pigs may also have been exposed. We sought to examine evidence for zoonotic influenza infections among Romanian agriculture workers. Between 2009 and 2010, 363 adult participants were enrolled in a cross-sectional, seroepidemiological study. Confined animal feeding operation (CAFO) swine workers in Tulcea and small, traditional backyard farmers in Cluj-Napoca were enrolled, as well as a non-animal exposed control group from Cluj-Napoca. Enrollment sera were examined for serological evidence of previous infection with 9 avian and 3 human influenza virus strains. Serologic assays showed no evidence of previous infection with 7 low pathogenic avian influenza viruses or with HPAI H5N1. However, 33 participants (9.1%) had elevated microneutralization antibody titers against avian-like A/Hong Kong/1073/1999(H9N2), 5 with titers ≥ 1:80 whom all reported exposure to poultry. Moderate poultry exposure was significantly associated with elevated titers after controlling for the subjects' age (adjusted OR = 3.6; 95% CI, 1.1-12.1). There was no evidence that previous infection with human H3N2 or H2N2 viruses were confounding the H9N2 seroreactivity. These data suggest that H9N2 virus may have circulated in Romanian poultry and occasionally infected man. Copyright © 2013 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.

  5. A Simple Restriction Fragment Length Polymorphism-Based Strategy That Can Distinguish the Internal Genes of Human H1N1, H3N2, and H5N1 Influenza A Viruses

    PubMed Central

    Cooper, Lynn A.; Subbarao, Kanta

    2000-01-01

    A simple molecular technique for rapid genotyping was developed to monitor the internal gene composition of currently circulating influenza A viruses. Sequence information from recent H1N1, H3N2, and H5N1 human virus isolates was used to identify conserved regions within each internal gene, and gene-specific PCR primers capable of amplifying all three virus subtypes were designed. Subtyping was based on subtype-specific restriction fragment length polymorphism (RFLP) patterns within the amplified regions. The strategy was tested in a blinded fashion using 10 control viruses of each subtype (total, 30) and was found to be very effective. Once standardized, the genotyping method was used to identify the origin of the internal genes of 51 influenza A viruses isolated from humans in Hong Kong during and immediately following the 1997–1998 H5N1 outbreak. No avian-human or H1-H3 reassortants were detected. Less than 2% (6 of 486) of the RFLP analyses were inconclusive; all were due to point mutations within a restriction site. The technique was also used to characterize the internal genes of two avian H9N2 viruses isolated from children in Hong Kong during 1999. PMID:10878047

  6. A Novel Activation Mechanism of Avian Influenza Virus H9N2 by Furin

    PubMed Central

    Tse, Longping V.; Hamilton, Alice M.; Friling, Tamar

    2014-01-01

    Avian influenza virus H9N2 is prevalent in waterfowl and has become endemic in poultry in Asia and the Middle East. H9N2 influenza viruses have served as a reservoir of internal genes for other avian influenza viruses that infect humans, and several cases of human infection by H9N2 influenza viruses have indicated its pandemic potential. Fortunately, an extensive surveillance program enables close monitoring of H9N2 influenza viruses worldwide and has generated a large repository of virus sequences and phylogenetic information. Despite the large quantity of sequences in different databases, very little is known about specific virus isolates and their pathogenesis. Here, we characterize a low-pathogenicity avian influenza virus, A/chicken/Israel/810/2001 (H9N2) (Israel810), which is representative of influenza virus strains that have caused severe morbidity and mortality in poultry farms. We show that under certain circumstances the Israel810 hemagglutinin (HA) can be activated by furin, a hallmark of highly pathogenic avian influenza virus. We demonstrate that Israel810 HA can be cleaved in cells with high levels of furin expression and that a mutation that eliminates a glycosylation site in HA1 allows the Israel810 HA to gain universal cleavage in cell culture. Pseudoparticles generated from Israel810 HA, or the glycosylation mutant, transduce cells efficiently. In contrast, introduction of a polybasic cleavage site into Israel810 HA leads to pseudoviruses that are compromised for transduction. Our data indicate a mechanism for an H9N2 evolutionary pathway that may allow it to gain virulence in a distinct manner from H5 and H7 influenza viruses. PMID:24257604

  7. Novel Highly Pathogenic Avian A(H5N2) and A(H5N8) Influenza Viruses of Clade 2.3.4.4 from North America Have Limited Capacity for Replication and Transmission in Mammals

    PubMed Central

    Kaplan, Bryan S.; Russier, Marion; Jeevan, Trushar; Marathe, Bindumadhav; Govorkova, Elena A.; Russell, Charles J.; Kim-Torchetti, Mia; Choi, Young Ki; Brown, Ian; Saito, Takehiko; Stallknecht, David E.; Krauss, Scott

    2016-01-01

    ABSTRACT Highly pathogenic influenza A(H5N8) viruses from clade 2.3.4.4 were introduced to North America by migratory birds in the fall of 2014. Reassortment of A(H5N8) viruses with avian viruses of North American lineage resulted in the generation of novel A(H5N2) viruses with novel genotypes. Through sequencing of recent avian influenza viruses, we identified PB1 and NP gene segments very similar to those in the viruses isolated from North American waterfowl prior to the introduction of A(H5N8) to North America, highlighting these bird species in the origin of reassortant A(H5N2) viruses. While they were highly virulent and transmissible in poultry, we found A(H5N2) viruses to be low pathogenic in mice and ferrets, and replication was limited in both hosts compared with those of recent highly pathogenic avian influenza (HPAI) H5N1 viruses. Molecular characterization of the hemagglutinin protein from A(H5N2) viruses showed that the receptor binding preference, cleavage, and pH of activation were highly adapted for replication in avian species and similar to those of other 2.3.4.4 viruses. In addition, North American and Eurasian clade 2.3.4.4 H5NX viruses replicated to significantly lower titers in differentiated normal human bronchial epithelial cells than did seasonal human A(H1N1) and highly pathogenic A(H5N1) viruses isolated from a human case. Thus, despite their having a high impact on poultry, our findings suggest that the recently emerging North American A(H5N2) viruses are not expected to pose a substantial threat to humans and other mammals without further reassortment and/or adaptation and that reassortment with North American viruses has not had a major impact on viral phenotype. IMPORTANCE Highly pathogenic H5 influenza viruses have been introduced into North America from Asia, causing extensive morbidity and mortality in domestic poultry. The introduced viruses have reassorted with North American avian influenza viruses, generating viral genotypes

  8. Novel Highly Pathogenic Avian A(H5N2) and A(H5N8) Influenza Viruses of Clade 2.3.4.4 from North America Have Limited Capacity for Replication and Transmission in Mammals.

    PubMed

    Kaplan, Bryan S; Russier, Marion; Jeevan, Trushar; Marathe, Bindumadhav; Govorkova, Elena A; Russell, Charles J; Kim-Torchetti, Mia; Choi, Young Ki; Brown, Ian; Saito, Takehiko; Stallknecht, David E; Krauss, Scott; Webby, Richard J

    2016-01-01

    Highly pathogenic influenza A(H5N8) viruses from clade 2.3.4.4 were introduced to North America by migratory birds in the fall of 2014. Reassortment of A(H5N8) viruses with avian viruses of North American lineage resulted in the generation of novel A(H5N2) viruses with novel genotypes. Through sequencing of recent avian influenza viruses, we identified PB1 and NP gene segments very similar to those in the viruses isolated from North American waterfowl prior to the introduction of A(H5N8) to North America, highlighting these bird species in the origin of reassortant A(H5N2) viruses. While they were highly virulent and transmissible in poultry, we found A(H5N2) viruses to be low pathogenic in mice and ferrets, and replication was limited in both hosts compared with those of recent highly pathogenic avian influenza (HPAI) H5N1 viruses. Molecular characterization of the hemagglutinin protein from A(H5N2) viruses showed that the receptor binding preference, cleavage, and pH of activation were highly adapted for replication in avian species and similar to those of other 2.3.4.4 viruses. In addition, North American and Eurasian clade 2.3.4.4 H5NX viruses replicated to significantly lower titers in differentiated normal human bronchial epithelial cells than did seasonal human A(H1N1) and highly pathogenic A(H5N1) viruses isolated from a human case. Thus, despite their having a high impact on poultry, our findings suggest that the recently emerging North American A(H5N2) viruses are not expected to pose a substantial threat to humans and other mammals without further reassortment and/or adaptation and that reassortment with North American viruses has not had a major impact on viral phenotype. IMPORTANCE Highly pathogenic H5 influenza viruses have been introduced into North America from Asia, causing extensive morbidity and mortality in domestic poultry. The introduced viruses have reassorted with North American avian influenza viruses, generating viral genotypes not seen on

  9. Swine Influenza Virus (H1N2) Characterization and Transmission in Ferrets, Chile.

    PubMed

    Bravo-Vasquez, Nicolás; Karlsson, Erik A; Jimenez-Bluhm, Pedro; Meliopoulos, Victoria; Kaplan, Bryan; Marvin, Shauna; Cortez, Valerie; Freiden, Pamela; Beck, Melinda A; Hamilton-West, Christopher; Schultz-Cherry, Stacey

    2017-02-01

    Phylogenetic analysis of the influenza hemagglutinin gene (HA) has suggested that commercial pigs in Chile harbor unique human seasonal H1-like influenza viruses, but further information, including characterization of these viruses, was unavailable. We isolated influenza virus (H1N2) from a swine in a backyard production farm in Central Chile and demonstrated that the HA gene was identical to that in a previous report. Its HA and neuraminidase genes were most similar to human H1 and N2 viruses from the early 1990s and internal segments were similar to influenza A(H1N1)pdm09 virus. The virus replicated efficiently in vitro and in vivo and transmitted in ferrets by respiratory droplet. Antigenically, it was distinct from other swine viruses. Hemagglutination inhibition analysis suggested that antibody titers to the swine Chilean H1N2 virus were decreased in persons born after 1990. Further studies are needed to characterize the potential risk to humans, as well as the ecology of influenza in swine in South America.

  10. Swine Influenza Virus (H1N2) Characterization and Transmission in Ferrets, Chile

    PubMed Central

    Bravo-Vasquez, Nicolás; Karlsson, Erik A.; Jimenez-Bluhm, Pedro; Meliopoulos, Victoria; Kaplan, Bryan; Marvin, Shauna; Cortez, Valerie; Freiden, Pamela; Beck, Melinda A.

    2017-01-01

    Phylogenetic analysis of the influenza hemagglutinin gene (HA) has suggested that commercial pigs in Chile harbor unique human seasonal H1-like influenza viruses, but further information, including characterization of these viruses, was unavailable. We isolated influenza virus (H1N2) from a swine in a backyard production farm in Central Chile and demonstrated that the HA gene was identical to that in a previous report. Its HA and neuraminidase genes were most similar to human H1 and N2 viruses from the early 1990s and internal segments were similar to influenza A(H1N1)pdm09 virus. The virus replicated efficiently in vitro and in vivo and transmitted in ferrets by respiratory droplet. Antigenically, it was distinct from other swine viruses. Hemagglutination inhibition analysis suggested that antibody titers to the swine Chilean H1N2 virus were decreased in persons born after 1990. Further studies are needed to characterize the potential risk to humans, as well as the ecology of influenza in swine in South America. PMID:28098524

  11. [Differences in oligomerization of nucleocapsid protein of epidemic human influenza A(H1N1), A(H1N2) and B viruses].

    PubMed

    Prokudina, E N; Semenova, N P; Chumakov, V M; Burtseva, E I; Slepushkin, A N

    2003-01-01

    A comparative analysis of involving the nucleocapsid protein (NP) into shaping-up of SDS-resistant oligomers was carried out presently in circulating epidemic strains of human influenza, viruses A and B. The study results of viral isolates obtained from clinical samples and recent standard strains revealed that the involvement of NP in the SDS-resistant oligomers, which are different in various subtypes of influenza A viruses. According to this sign, the human viruses A(9H3N2) are close to the avian ones, in which, as proved by us previously, virtually the entire NP transforms itself into the oligomers resistant to SDS. About 10-20% of NP are involved in shaping-up the virus influenza A(H1N1) of SDS-resistant oligomers. No SDS-resistant NP-oligomers were detected in influenza of type B. It is suggested that the prevalence of human viruses A(H3N2) in NP-oligomers are the peculiarities of NP structure and of the presence of the PB1 protein from avian influenza virus.

  12. Molecular characterization of a novel reassortant H1N2 influenza virus containing genes from the 2009 pandemic human H1N1 virus in swine from eastern China.

    PubMed

    Peng, Xiuming; Wu, Haibo; Xu, Lihua; Peng, Xiaorong; Cheng, Linfang; Jin, Changzhong; Xie, Tiansheng; Lu, Xiangyun; Wu, Nanping

    2016-06-01

    Pandemic outbreaks of H1N1 swine influenza virus have been reported since 2009. Reassortant H1N2 viruses that contain genes from the pandemic H1N1 virus have been isolated in Italy and the United States. However, there is limited information regarding the molecular characteristics of reassortant H1N2 swine influenza viruses in eastern China. Active influenza surveillance programs in Zhejiang Province identified a novel H1N2 influenza virus isolated from pigs displaying clinical signs of influenza virus infection. Whole-genome sequencing was performed and this strain was compared with other influenza viruses available in GenBank. Phylogenetic analysis suggested that the novel strain contained genes from the 2009 pandemic human H1N1 and swine H3N2 viruses. BALB/c mice were infected with the isolated virus to assess its virulence in mice. While the novel H1N2 isolate replicated well in mice, it was found to be less virulent. These results provide additional evidence that swine serve as intermediate hosts or 'mixing vessels' for novel influenza viruses. They also emphasize the importance of surveillance in the swine population for use as an early warning system for influenza outbreaks in swine and human populations.

  13. Enhanced virulence of clade 2.3.2.1 highly pathogenic avian influenza A H5N1 viruses in ferrets.

    PubMed

    Pearce, Melissa B; Pappas, Claudia; Gustin, Kortney M; Davis, C Todd; Pantin-Jackwood, Mary J; Swayne, David E; Maines, Taronna R; Belser, Jessica A; Tumpey, Terrence M

    2017-02-01

    Sporadic avian to human transmission of highly pathogenic avian influenza (HPAI) A(H5N1) viruses necessitates the analysis of currently circulating and evolving clades to assess their potential risk. Following the spread and sustained circulation of clade 2 viruses across multiple continents, numerous subclades and genotypes have been described. To better understand the pathogenesis associated with the continued diversification of clade 2A(H5N1) influenza viruses, we investigated the relative virulence of eleven human and poultry isolates collected from 2006 to 2013 by determining their ability to cause disease in the ferret model. Numerous clade 2 viruses, including a clade 2.2 avian isolate, a 2.2.2.1 human isolate, and two 2.2.1 human isolates, were found to be of low virulence in the ferret model, though lethality was detected following infection with one 2.2.1 human isolate. In contrast, three of six clade 2.3.2.1 avian isolates tested led to severe disease and death among infected ferrets. Clade 2.3.2.1b and 2.3.2.1c isolates, but not 2.3.2.1a isolates, were associated with ferret lethality. All A(H5N1) viruses replicated efficiently in the respiratory tract of ferrets regardless of their virulence and lethality. However, lethal isolates were characterized by systemic viral dissemination, including detection in the brain and enhanced histopathology in lung tissues. The finding of disparate virulence phenotypes between clade 2A(H5N1) viruses, notably differences between subclades of 2.3.2.1 viruses, suggests there are distinct molecular determinants present within the established subclades, the identification of which will assist in molecular-based surveillance and public health efforts against A(H5N1) viruses. Published by Elsevier Inc.

  14. Enhanced virulence of clade 2.3.2.1 highly pathogenic avian influenza A H5N1 viruses in ferrets

    PubMed Central

    Pearce, Melissa B.; Pappas, Claudia; Gustin, Kortney M.; Davis, C. Todd; Pantin-Jackwood, Mary J.; Swayne, David E.; Maines, Taronna R.; Belser, Jessica A.; Tumpey, Terrence M.

    2017-01-01

    Sporadic avian to human transmission of highly pathogenic avian influenza (HPAI) A(H5N1) viruses necessitates the analysis of currently circulating and evolving clades to assess their potential risk. Following the spread and sustained circulation of clade 2 viruses across multiple continents, numerous subclades and genotypes have been described. To better understand the pathogenesis associated with the continued diversification of clade 2 A(H5N1) influenza viruses, we investigated the relative virulence of eleven human and poultry isolates collected from 2006 to 2013 by determining their ability to cause disease in the ferret model. Numerous clade 2 viruses, including a clade 2.2 avian isolate, a 2.2.2.1 human isolate, and two 2.2.1 human isolates, were found to be of low virulence in the ferret model, though lethality was detected following infection with one 2.2.1 human isolate. In contrast, three of six clade 2.3.2.1 avian isolates tested led to severe disease and death among infected ferrets. Clade 2.3.2.1b and 2.3.2.1c isolates, but not 2.3.2.1a isolates, were associated with ferret lethality. All A(H5N1) viruses replicated efficiently in the respiratory tract of ferrets regardless of their virulence and lethality. However, lethal isolates were characterized by systemic viral dissemination, including detection in the brain and enhanced histopathology in lung tissues. The finding of disparate virulence phenotypes between clade 2 A(H5N1) viruses, notably differences between subclades of 2.3.2.1 viruses, suggests there are distinct molecular determinants present within the established subclades, the identification of which will assist in molecular-based surveillance and public health efforts against A(H5N1) viruses. PMID:28038412

  15. Generation of a reassortant avian influenza virus H5N2 vaccine strain capable of protecting chickens against infection with Egyptian H5N1 and H9N2 viruses.

    PubMed

    Kandeil, Ahmed; Moatasim, Yassmin; Gomaa, Mokhtar R; Shehata, Mahmoud M; El-Shesheny, Rabeh; Barakat, Ahmed; Webby, Richard J; Ali, Mohamed A; Kayali, Ghazi

    2016-01-04

    Avian influenza H5N1 viruses have been enzootic in Egyptian poultry since 2006. Avian influenza H9N2 viruses which have been circulating in Egyptian poultry since 2011 showed high replication rates in embryonated chicken eggs and mammalian cells. To investigate which gene segment was responsible for increasing replication, we constructed reassortant influenza viruses using the low pathogenic H1N1 PR8 virus as backbone and included individual genes from A/chicken/Egypt/S4456B/2011(H9N2) virus. Then, we invested this finding to improve a PR8-derived H5N1 influenza vaccine strain by incorporation of the NA segment of H9N2 virus instead of the NA of H5N1. The growth properties of this virus and several other forms of reassortant H5 viruses were compared. Finally, we tested the efficacy of this reassortant vaccine strain in chickens. We observed an increase in replication for a reassortant virus expressing the neuraminidase gene (N2) of H9N2 virus relative to that of either parental viruses or reassortant PR8 viruses expressing other genes. Then, we generated an H5N2 vaccine strain based on the H5 from an Egyptian H5N1 virus and the N2 from an Egyptian H9N2 virus on a PR8 backbone. This strain had better replication rates than an H5N2 reassortant strain on an H9N2 backbone and an H5N1 reassortant on a PR8 backbone. This virus was then used to develop a killed, oil-emulsion vaccine and tested for efficacy against H5N1 and H9N2 viruses in chickens. Results showed that this vaccine was immunogenic and reduced mortality and shedding. Our findings suggest that an inactivated PR8-derived H5N2 influenza vaccine is efficacious in poultry against H5N1 and H9N2 viruses and the vaccine seed replicates at a high rate thus improving vaccine production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Evolution of the hemagglutinin expressed by human influenza A(H1N1)pdm09 and A(H3N2) viruses circulating between 2008-2009 and 2013-2014 in Germany.

    PubMed

    Wedde, Marianne; Biere, Barbara; Wolff, Thorsten; Schweiger, Brunhilde

    2015-10-01

    This report describes the evolution of the influenza A(H1N1)pdm09 and A(H3N2) viruses circulating in Germany between 2008-2009 and 2013-2014. The phylogenetic analysis of the hemagglutinin (HA) genes of both subtypes revealed similar evolution of the HA variants that were also seen worldwide with minor exceptions. The analysis showed seven distinct HA clades for A(H1N1)pdm09 and six HA clades for A(H3N2) viruses. Herald strains of both subtypes appeared sporadically since 2008-2009. Regarding A(H1N1)pdm09, herald strains of HA clade 3 and 4 were detected late in the 2009-2010 season. With respect to A(H3N2), we found herald strains of HA clade 3, 4 and 7 between 2009 and 2012. Those herald strains were predominantly seen for minor and not for major HA clades. Generally, amino acid substitutions were most frequently found in the globular domain, including substitutions near the antigenic sites or the receptor binding site. Differences between both influenza A subtypes were seen with respect to the position of the indicated substitutions in the HA. For A(H1N1)pdm09 viruses, we found more substitutions in the stem region than in the antigenic sites. In contrast, in A(H3N2) viruses most changes were identified in the major antigenic sites and five changes of potential glycosylation sites were identified in the head of the HA monomer. Interestingly, we found in seasons with less influenza activity a relatively high increase of substitutions in the head of the HA in both subtypes. This might be explained by the fact that mutations under negative selection are subsequently compensated by secondary mutations to restore important functions e.g. receptor binding properties. A better knowledge of basic evolution strategies of influenza viruses will contribute to the refinement of predictive mathematical models for identifying novel antigenic drift variants. Copyright © 2015 Elsevier GmbH. All rights reserved.

  17. Reassortant Clade 2.3.4.4 of Highly Pathogenic Avian Influenza A(H5N6) Virus, Taiwan, 2017.

    PubMed

    Chen, Li-Hsuan; Lee, Dong-Hun; Liu, Yu-Pin; Li, Wan-Chen; Swayne, David E; Chang, Jen-Chieh; Chen, Yen-Ping; Lee, Fan; Tu, Wen-Jane; Lin, Yu-Ju

    2018-06-01

    A highly pathogenic avian influenza A(H5N6) virus of clade 2.3.4.4 was detected in a domestic duck found dead in Taiwan during February 2017. The endemic situation and continued evolution of various reassortant highly pathogenic avian influenza viruses in Taiwan warrant concern about further reassortment and a fifth wave of intercontinental spread.

  18. Determinants of glycan receptor specificity of H2N2 influenza A virus hemagglutinin.

    PubMed

    Viswanathan, Karthik; Koh, Xiaoying; Chandrasekaran, Aarthi; Pappas, Claudia; Raman, Rahul; Srinivasan, Aravind; Shriver, Zachary; Tumpey, Terrence M; Sasisekharan, Ram

    2010-10-29

    The H2N2 subtype of influenza A virus was responsible for the Asian pandemic of 1957-58. However, unlike other subtypes that have caused pandemics such as H1N1 and H3N2, which continue to circulate among humans, H2N2 stopped circulating in the human population in 1968. Strains of H2 subtype still continue to circulate in birds and occasionally pigs and could be reintroduced into the human population through antigenic drift or shift. Such an event is a potential global health concern because of the waning population immunity to H2 hemagglutinin (HA). The first step in such a cross-species transmission and human adaptation of influenza A virus is the ability for its surface glycoprotein HA to bind to glycan receptors expressed in the human upper respiratory epithelia. Recent structural and biochemical studies have focused on understanding the glycan receptor binding specificity of the 1957-58 pandemic H2N2 HA. However, there has been considerable HA sequence divergence in the recent avian-adapted H2 strains from the pandemic H2N2 strain. Using a combination of structural modeling, quantitative glycan binding and human respiratory tissue binding methods, we systematically identify mutations in the HA from a recent avian-adapted H2N2 strain (A/Chicken/PA/2004) that make its quantitative glycan receptor binding affinity (defined using an apparent binding constant) comparable to that of a prototypic pandemic H2N2 (A/Albany/6/58) HA.

  19. Determinants of Glycan Receptor Specificity of H2N2 Influenza A Virus Hemagglutinin

    PubMed Central

    Chandrasekaran, Aarthi; Pappas, Claudia; Raman, Rahul; Srinivasan, Aravind; Shriver, Zachary; Tumpey, Terrence M.; Sasisekharan, Ram

    2010-01-01

    The H2N2 subtype of influenza A virus was responsible for the Asian pandemic of 1957-58. However, unlike other subtypes that have caused pandemics such as H1N1 and H3N2, which continue to circulate among humans, H2N2 stopped circulating in the human population in 1968. Strains of H2 subtype still continue to circulate in birds and occasionally pigs and could be reintroduced into the human population through antigenic drift or shift. Such an event is a potential global health concern because of the waning population immunity to H2 hemagglutinin (HA). The first step in such a cross-species transmission and human adaptation of influenza A virus is the ability for its surface glycoprotein HA to bind to glycan receptors expressed in the human upper respiratory epithelia. Recent structural and biochemical studies have focused on understanding the glycan receptor binding specificity of the 1957-58 pandemic H2N2 HA. However, there has been considerable HA sequence divergence in the recent avian-adapted H2 strains from the pandemic H2N2 strain. Using a combination of structural modeling, quantitative glycan binding and human respiratory tissue binding methods, we systematically identify mutations in the HA from a recent avian-adapted H2N2 strain (A/Chicken/PA/2004) that make its quantitative glycan receptor binding affinity (defined using an apparent binding constant) comparable to that of a prototypic pandemic H2N2 (A/Albany/6/58) HA. PMID:21060797

  20. Quantifying selection and diversity in viruses by entropy methods, with application to the haemagglutinin of H3N2 influenza

    PubMed Central

    Pan, Keyao; Deem, Michael W.

    2011-01-01

    Many viruses evolve rapidly. For example, haemagglutinin (HA) of the H3N2 influenza A virus evolves to escape antibody binding. This evolution of the H3N2 virus means that people who have previously been exposed to an influenza strain may be infected by a newly emerged virus. In this paper, we use Shannon entropy and relative entropy to measure the diversity and selection pressure by an antibody in each amino acid site of H3 HA between the 1992–1993 season and the 2009–2010 season. Shannon entropy and relative entropy are two independent state variables that we use to characterize H3N2 evolution. The entropy method estimates future H3N2 evolution and migration using currently available H3 HA sequences. First, we show that the rate of evolution increases with the virus diversity in the current season. The Shannon entropy of the sequence in the current season predicts relative entropy between sequences in the current season and those in the next season. Second, a global migration pattern of H3N2 is assembled by comparing the relative entropy flows of sequences sampled in China, Japan, the USA and Europe. We verify this entropy method by describing two aspects of historical H3N2 evolution. First, we identify 54 amino acid sites in HA that have evolved in the past to evade the immune system. Second, the entropy method shows that epitopes A and B on the top of HA evolve most vigorously to escape antibody binding. Our work provides a novel entropy-based method to predict and quantify future H3N2 evolution and to describe the evolutionary history of H3N2. PMID:21543352

  1. Investigation of an Outbreak of Variant Influenza A(H3N2) Virus Infection Associated With an Agricultural Fair-Ohio, August 2012.

    PubMed

    Greenbaum, Adena; Quinn, Celia; Bailer, Jennifer; Su, Su; Havers, Fiona; Durand, Lizette O; Jiang, Victoria; Page, Shannon; Budd, Jeremy; Shaw, Michael; Biggerstaff, Matthew; de Fijter, Sietske; Smith, Kathleen; Reed, Carrie; Epperson, Scott; Brammer, Lynnette; Feltz, Dave; Sohner, Kevin; Ford, Jared; Jain, Seema; Gargiullo, Paul; Weiss, Edward; Burg, Pat; DiOrio, Mary; Fowler, Brian; Finelli, Lyn; Jhung, Michael A

    2015-11-15

    In 2012, one third of cases in a multistate outbreak of variant influenza A(H3N2) virus ([H3N2]v) infection occurred in Ohio. We conducted an investigation of (H3N2)v cases associated with agricultural Fair A in Ohio. We surveyed Fair A swine exhibitors and their household members. Confirmed cases had influenza-like illness (ILI) and a positive laboratory test for (H3N2)v, and probable cases had ILI. We calculated attack rates. We determined risk factors for infection, using multivariable log-binomial regression. We identified 20 confirmed and 94 probable cases associated with Fair A. Among 114 cases, the median age was 10 years, there were no hospitalizations or deaths, and 82% had swine exposure. In the exhibitor household cohort of 359 persons (83 households), we identified 6 confirmed cases (2%) and 40 probable cases (11%). An age of <10 years was a significant risk factor (P < .01) for illness. One instance of likely human-to-human transmission was identified. In this (H3N2)v outbreak, no evidence of sustained human-to-human (H3N2)v transmission was found. Our risk factor analysis contributed to the development of the recommendation that people at increased risk of influenza-associated complications, including children aged <5 years, avoid swine barns at fairs during the 2012 fair season. Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  2. Novel H7N2 and H5N6 Avian Influenza A Viruses in Sentinel Chickens: A Sentinel Chicken Surveillance Study.

    PubMed

    Zhao, Teng; Qian, Yan-Hua; Chen, Shan-Hui; Wang, Guo-Lin; Wu, Meng-Na; Huang, Yong; Ma, Guang-Yuan; Fang, Li-Qun; Gray, Gregory C; Lu, Bing; Tong, Yi-Gang; Ma, Mai-Juan; Cao, Wu-Chun

    2016-01-01

    In 2014, a sentinel chicken surveillance for avian influenza viruses was conducted in aquatic bird habitat near Wuxi City, Jiangsu Province, China. Two H7N2, one H5N6, and two H9N2 viruses were isolated. Sequence analysis revealed that the H7N2 virus is a novel reassortant of H7N9 and H9N2 viruses and H5N6 virus is a reassortant of H5N1 clade 2.3.4 and H6N6 viruses. Substitutions V186 and L226 (H3 numbering) in the hemagglutinin (HA) gene protein was found in two H7N2 viruses but not in the H5N6 virus. Two A138 and A160 mutations were identified in the HA gene protein of all three viruses but a P128 mutation was only observed in the H5N6 virus. A deletion of 3 and 11 amino acids in the neuraminidase stalk region was found in two H7N2 and H5N6 viruses, respectively. Moreover, a mutation of N31 in M2 protein was observed in both two H7N2 viruses. High similarity of these isolated viruses to viruses previously identified among poultry and humans, suggests that peridomestic aquatic birds may play a role in sustaining novel virus transmission. Therefore, continued surveillance is needed to monitor these avian influenza viruses in wild bird and domestic poultry that may pose a threat to poultry and human health.

  3. Novel Reassortant Clade 2.3.4.4 Avian Influenza A(H5N8) Virus in Wild Aquatic Birds, Russia, 2016.

    PubMed

    Lee, Dong-Hun; Sharshov, Kirill; Swayne, David E; Kurskaya, Olga; Sobolev, Ivan; Kabilov, Marsel; Alekseev, Alexander; Irza, Victor; Shestopalov, Alexander

    2017-02-01

    The emergence of novel avian influenza viruses in migratory birds is of concern because of the potential for virus dissemination during fall migration. We report the identification of novel highly pathogenic avian influenza viruses of subtype H5N8, clade 2.3.4.4, and their reassortment with other avian influenza viruses in waterfowl and shorebirds of Siberia.

  4. Isolation and genetic characterization of avian-like H1N1 and novel ressortant H1N2 influenza viruses from pigs in China.

    PubMed

    Yu, Hai; Zhang, Peng-Chao; Zhou, Yan-Jun; Li, Guo-Xin; Pan, Jie; Yan, Li-Ping; Shi, Xiao-Xiao; Liu, Hui-Li; Tong, Guang-Zhi

    2009-08-21

    As pigs are susceptible to both human and avian influenza viruses, they have been proposed to be intermediate hosts or mixing vessels for the generation of pandemic influenza viruses through reassortment or adaptation to the mammalian host. In this study, we reported avian-like H1N1 and novel ressortant H1N2 influenza viruses from pigs in China. Homology and phylogenetic analyses showed that the H1N1 virus (A/swine/Zhejiang/1/07) was closely to avian-like H1N1 viruses and seemed to be derived from the European swine H1N1 viruses, which was for the first time reported in China; and the two H1N2 viruses (A/swine/Shanghai/1/07 and A/swine/Guangxi/13/06) were novel ressortant H1N2 influenza viruses containing genes from the classical swine (HA, NP, M and NS), human (NA and PB1) and avian (PB2 and PA) lineages, which indicted that the reassortment among human, avian, and swine influenza viruses had taken place in pigs in China and resulted in the generation of new viruses. The isolation of avian-like H1N1 influenza virus originated from the European swine H1N1 viruses, especially the emergence of two novel ressortant H1N2 influenza viruses provides further evidence that pigs serve as intermediate hosts or "mixing vessels", and swine influenza virus surveillance in China should be given a high priority.

  5. Characterization of an H9N2 avian influenza virus from a Fringilla montifringilla brambling in northern China.

    PubMed

    Yuan, Jing; Xu, Lili; Bao, Linlin; Yao, Yanfeng; Deng, Wei; Li, Fengdi; Lv, Qi; Gu, Songzhi; Wei, Qiang; Qin, Chuan

    2015-02-01

    Avian H9N2 influenza viruses circulating in domestic poultry populations are occasionally transmitted to humans. We report the genomic characterization of an H9N2 avian influenza virus (A/Brambling/Beijing/16/2012) first isolated from a healthy Fringilla montifringilla brambling in northern China in 2012. Phylogenetic analyses revealed that this H9N2 virus belongs to the BJ/94-like sublineage. This virus had a low pathogenicity for chickens and was able to replicate at a low level in mouse lung tissue. Transmission studies in ferrets showed that this H9N2 strain shed high levels of the virus in nasal and throat swabs. In vitro receptor binding assays, the virus bound only to α-2,6 linkage receptors and not to the avian-type α-2,3 linkage receptors, suggesting that H9N2 influenza viruses present potential public health risks. Therefore, attention should be paid to H9N2 influenza viruses and the close surveillance of H9N2 viruses in poultry. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Global Migration Dynamics Underlie Evolution and Persistence of Human Influenza A (H3N2)

    PubMed Central

    Bedford, Trevor; Cobey, Sarah; Beerli, Peter; Pascual, Mercedes

    2010-01-01

    The global migration patterns of influenza viruses have profound implications for the evolutionary and epidemiological dynamics of the disease. We developed a novel approach to reconstruct the genetic history of human influenza A (H3N2) collected worldwide over 1998 to 2009 and used it to infer the global network of influenza transmission. Consistent with previous models, we find that China and Southeast Asia lie at the center of this global network. However, we also find that strains of influenza circulate outside of Asia for multiple seasons, persisting through dynamic migration between northern and southern regions. The USA acts as the primary hub of temperate transmission and, together with China and Southeast Asia, forms the trunk of influenza's evolutionary tree. These findings suggest that antiviral use outside of China and Southeast Asia may lead to the evolution of long-term local and potentially global antiviral resistance. Our results might also aid the design of surveillance efforts and of vaccines better tailored to different geographic regions. PMID:20523898

  7. Unifying viral genetics and human transportation data to predict the global transmission dynamics of human influenza H3N2.

    PubMed

    Lemey, Philippe; Rambaut, Andrew; Bedford, Trevor; Faria, Nuno; Bielejec, Filip; Baele, Guy; Russell, Colin A; Smith, Derek J; Pybus, Oliver G; Brockmann, Dirk; Suchard, Marc A

    2014-02-01

    Information on global human movement patterns is central to spatial epidemiological models used to predict the behavior of influenza and other infectious diseases. Yet it remains difficult to test which modes of dispersal drive pathogen spread at various geographic scales using standard epidemiological data alone. Evolutionary analyses of pathogen genome sequences increasingly provide insights into the spatial dynamics of influenza viruses, but to date they have largely neglected the wealth of information on human mobility, mainly because no statistical framework exists within which viral gene sequences and empirical data on host movement can be combined. Here, we address this problem by applying a phylogeographic approach to elucidate the global spread of human influenza subtype H3N2 and assess its ability to predict the spatial spread of human influenza A viruses worldwide. Using a framework that estimates the migration history of human influenza while simultaneously testing and quantifying a range of potential predictive variables of spatial spread, we show that the global dynamics of influenza H3N2 are driven by air passenger flows, whereas at more local scales spread is also determined by processes that correlate with geographic distance. Our analyses further confirm a central role for mainland China and Southeast Asia in maintaining a source population for global influenza diversity. By comparing model output with the known pandemic expansion of H1N1 during 2009, we demonstrate that predictions of influenza spatial spread are most accurate when data on human mobility and viral evolution are integrated. In conclusion, the global dynamics of influenza viruses are best explained by combining human mobility data with the spatial information inherent in sampled viral genomes. The integrated approach introduced here offers great potential for epidemiological surveillance through phylogeographic reconstructions and for improving predictive models of disease control.

  8. Swine Influenza (H3N2) Infection in a Child and Possible Community Transmission, Canada

    PubMed Central

    Lee, Bonita E.; Patel, Jagdish; Bastien, Nathalie; Grimsrud, Karen; Seal, Robert F.; King, Robin; Marshall, Frank; Li, Yan

    2007-01-01

    An influenza A virus (H3N2) of probable swine origin, designated A/Canada/1158/2006, was isolated from a 7-month-old hospitalized child who lived on a communal farm in Canada. The child recovered uneventfully. A serosurvey that used a hemagglutination-inhibition assay for A/Canada/1158/2006 was conducted on 54 of the 90 members of the farm. Seropositivity was demonstrated in the index patient, 4 of 7 household members, and 4 of 46 nonhousehold members; none had a history of hospital admission for respiratory illness in the preceding year. Serologic evidence for this strain of swine influenza was also found in 1 of 10 pigs (12 weeks–6 months of age) on the farm. Human infection with swine influenza virus is underrecognized in Canada, and because viral strains could adapt or reassort into a form that results in efficient human-to-human transmission, routine surveillance of swine workers should be considered as part of pandemic influenza preparedness. PMID:18258037

  9. Experimental infection of highly pathogenic avian influenza viruses, Clade 2.3.4.4 H5N6 and H5N8, in Mandarin ducks from South Korea.

    PubMed

    Son, K; Kim, Y-K; Oem, J-K; Jheong, W-H; Sleeman, J M; Jeong, J

    2018-06-01

    Outbreaks of highly pathogenic avian influenza (HPAI) have been reported worldwide. Wild waterfowl play a major role in the maintenance and transmission of HPAI. Highly pathogenic avian influenza subtype H5N6 and H5N8 viruses simultaneously emerged in South Korea. In this study, the comparative pathogenicity and infectivity of Clade 2.3.4.4 Group B H5N8 and Group C H5N6 viruses were evaluated in Mandarin duck (Aix galericulata). None of the ducks infected with H5N6 or H5N8 viruses showed clinical signs or mortality. Serological assays revealed that the HA antigenicity of H5N8 and H5N6 viruses was similar to each other. Moreover, both the viruses did not replicate after cross-challenging with H5N8 and H5N6 viruses, respectively, as the second infection. Although both the viruses replicated in most of the internal organs of the ducks, viral replication and shedding through cloaca were higher in H5N8-infected ducks than in H5N6-infected ducks. The findings of this study provide preliminary information to help estimate the risks involved in further evolution and dissemination of Clade 2.3.4.4 HPAI viruses among wild birds. © 2017 The Authors. Transboundary and Emerging Diseases Published by Blackwell Verlag GmbH.

  10. Incidence and Epidemiology of Hospitalized Influenza Cases in Rural Thailand during the Influenza A (H1N1)pdm09 Pandemic, 2009–2010

    PubMed Central

    Baggett, Henry C.; Chittaganpitch, Malinee; Thamthitiwat, Somsak; Prapasiri, Prabda; Naorat, Sathapana; Sawatwong, Pongpun; Ditsungnoen, Darunee; Olsen, Sonja J.; Simmerman, James M.; Srisaengchai, Prasong; Chantra, Somrak; Peruski, Leonard F.; Sawanpanyalert, Pathom; Maloney, Susan A.; Akarasewi, Pasakorn

    2012-01-01

    Background Data on the burden of the 2009 influenza pandemic in Asia are limited. Influenza A(H1N1)pdm09 was first reported in Thailand in May 2009. We assessed incidence and epidemiology of influenza-associated hospitalizations during 2009–2010. Methods We conducted active, population-based surveillance for hospitalized cases of acute lower respiratory infection (ALRI) in all 20 hospitals in two rural provinces. ALRI patients were sampled 1∶2 for participation in an etiology study in which nasopharyngeal swabs were collected for influenza virus testing by PCR. Results Of 7,207 patients tested, 902 (12.5%) were influenza-positive, including 190 (7.8%) of 2,436 children aged <5 years; 86% were influenza A virus (46% A(H1N1)pdm09, 30% H3N2, 6.5% H1N1, 3.5% not subtyped) and 13% were influenza B virus. Cases of influenza A(H1N1)pdm09 first peaked in August 2009 when 17% of tested patients were positive. Subsequent peaks during 2009 and 2010 represented a mix of influenza A(H1N1)pdm09, H3N2, and influenza B viruses. The estimated annual incidence of hospitalized influenza cases was 136 per 100,000, highest in ages <5 years (477 per 100,000) and >75 years (407 per 100,000). The incidence of influenza A(H1N1)pdm09 was 62 per 100,000 (214 per 100,000 in children <5 years). Eleven influenza-infected patients required mechanical ventilation, and four patients died, all adults with influenza A(H1N1)pdm09 (1) or H3N2 (3). Conclusions Influenza-associated hospitalization rates in Thailand during 2009–10 were substantial and exceeded rates described in western countries. Influenza A(H1N1)pdm09 predominated, but H3N2 also caused notable morbidity. Expanded influenza vaccination coverage could have considerable public health impact, especially in young children. PMID:23139802

  11. Personal protective equipment and risk for avian influenza (H7N3).

    PubMed

    Morgan, Oliver; Kuhne, Mirjam; Nair, Pat; Verlander, Neville Q; Preece, Richard; McDougal, Marianne; Zambon, Maria; Reacher, Mark

    2009-01-01

    An outbreak of avian influenza (H7N3) among poultry resulted in laboratory-confirmed disease in 1 of 103 exposed persons. Incomplete use of personal protective equipment (PPE) was associated with conjunctivitis and influenza-like symptoms. Rigorous use of PPE by persons managing avian influenza outbreaks may reduce exposure to potentially hazardous infected poultry materials.

  12. Personal Protective Equipment and Risk for Avian Influenza (H7N3)

    PubMed Central

    Kuhne, Mirjam; Nair, Pat; Verlander, Neville Q.; Preece, Richard; McDougal, Marianne; Zambon, Maria; Reacher, Mark

    2009-01-01

    An outbreak of avian influenza (H7N3) among poultry resulted in laboratory-confirmed disease in 1 of 103 exposed persons. Incomplete use of personal protective equipment (PPE) was associated with conjunctivitis and influenza-like symptoms. Rigorous use of PPE by persons managing avian influenza outbreaks may reduce exposure to potentially hazardous infected poultry materials. PMID:19116052

  13. Evidence for common ancestry among viruses isolated from wild birds in Beringia and highly pathogenic intercontinental reassortant H5N1 and H5N2 influenza A viruses

    USGS Publications Warehouse

    Ramey, Andy M.; Reeves, Andrew; Teslaa, Joshua L.; Nashold, Sean W.; Donnelly, Tyrone F.; Bahl, Justin; Hall, Jeffrey S.

    2016-01-01

    Highly pathogenic clade 2.3.4.4 H5N8, H5N2, and H5N1 influenza A viruses were first detected in wild, captive, and domestic birds in North America in November–December 2014. In this study, we used wild waterbird samples collected in Alaska prior to the initial detection of clade 2.3.4.4 H5 influenza A viruses in North America to assess the evidence for: (1) dispersal of highly pathogenic influenza A viruses from East Asia to North America by migratory birds via Alaska and (2) ancestral origins of clade 2.3.4.4 H5 reassortant viruses in Beringia. Although we did not detect highly pathogenic influenza A viruses in our sample collection from western Alaska, we did identify viruses that contained gene segments sharing recent common ancestry with intercontinental reassortant H5N2 and H5N1 viruses. Results of phylogenetic analyses and estimates for times of most recent common ancestry support migratory birds sampled in Beringia as maintaining viral diversity closely related to novel highly pathogenic influenza A virus genotypes detected in North America. Although our results do not elucidate the route by which highly pathogenic influenza A viruses were introduced into North America, genetic evidence is consistent with the hypothesized trans-Beringian route of introduction via migratory birds.

  14. A novel pathogenic mechanism of highly pathogenic avian influenza H5N1 viruses involves hemagglutinin mediated resistance to serum innate inhibitors.

    PubMed

    Panaampon, Jutatip; Ngaosuwankul, Nathamon; Suptawiwat, Ornpreya; Noisumdaeng, Pirom; Sangsiriwut, Kantima; Siridechadilok, Bunpote; Lerdsamran, Hatairat; Auewarakul, Prasert; Pooruk, Phisanu; Puthavathana, Pilaipan

    2012-01-01

    In this study, the effect of innate serum inhibitors on influenza virus infection was addressed. Seasonal influenza A(H1N1) and A(H3N2), 2009 pandemic A(H1N1) (H1N1pdm) and highly pathogenic avian influenza (HPAI) A(H5N1) viruses were tested with guinea pig sera negative for antibodies against all of these viruses as evaluated by hemagglutination-inhibition and microneutralization assays. In the presence of serum inhibitors, the infection by each virus was inhibited differently as measured by the amount of viral nucleoprotein produced in Madin-Darby canine kidney cells. The serum inhibitors inhibited seasonal influenza A(H3N2) virus the most, while the effect was less in seasonal influenza A(H1N1) and H1N1pdm viruses. The suppression by serum inhibitors could be reduced by heat inactivation or treatment with receptor destroying enzyme. In contrast, all H5N1 strains tested were resistant to serum inhibitors. To determine which structure (hemagglutinin (HA) and/or neuraminidase (NA)) on the virus particles that provided the resistance, reverse genetics (rg) was applied to construct chimeric recombinant viruses from A/Puerto Rico/8/1934(H1N1) (PR8) plasmid vectors. rgPR8-H5 HA and rgPR8-H5 HANA were resistant to serum inhibitors while rgPR8-H5 NA and PR8 A(H1N1) parental viruses were sensitive, suggesting that HA of HPAI H5N1 viruses bestowed viral resistance to serum inhibition. These results suggested that the ability to resist serum inhibition might enable the viremic H5N1 viruses to disseminate to distal end organs. The present study also analyzed for correlation between susceptibility to serum inhibitors and number of glycosylation sites present on the globular heads of HA and NA. H3N2 viruses, the subtype with highest susceptibility to serum inhibitors, harbored the highest number of glycosylation sites on the HA globular head. However, this positive correlation cannot be drawn for the other influenza subtypes.

  15. Genetic and biological characterisation of an avian-like H1N2 swine influenza virus generated by reassortment of circulating avian-like H1N1 and H3N2 subtypes in Denmark.

    PubMed

    Trebbien, Ramona; Bragstad, Karoline; Larsen, Lars Erik; Nielsen, Jens; Bøtner, Anette; Heegaard, Peter M H; Fomsgaard, Anders; Viuff, Birgitte; Hjulsager, Charlotte Kristiane

    2013-09-18

    The influenza A virus subtypes H1N1, H1N2 and H3N2 are the most prevalent subtypes in swine. In 2003, a reassorted H1N2 swine influenza virus (SIV) subtype appeared and became prevalent in Denmark. In the present study, the reassortant H1N2 subtype was characterised genetically and the infection dynamics compared to an "avian-like" H1N1 virus by an experimental infection study. Sequence analyses were performed of the H1N2 virus. Two groups of pigs were inoculated with the reassortant H1N2 virus and an "avian-like" H1N1 virus, respectively, followed by inoculation with the opposite subtype four weeks later. Measurements of HI antibodies and acute phase proteins were performed. Nasal virus excretion and virus load in lungs were determined by real-time RT-PCR. The phylogenetic analysis revealed that the reassorted H1N2 virus contained a European "avian-like" H1-gene and a European "swine-like" N2-gene, thus being genetically distinct from most H1N2 viruses circulating in Europe, but similar to viruses reported in 2009/2010 in Sweden and Italy. Sequence analyses of the internal genes revealed that the reassortment probably arose between circulating Danish "avian-like" H1N1 and H3N2 SIVs. Infected pigs developed cross-reactive antibodies, and increased levels of acute phase proteins after inoculations. Pigs inoculated with H1N2 exhibited nasal virus excretion for seven days, peaking day 1 after inoculation two days earlier than H1N1 infected pigs and at a six times higher level. The difference, however, was not statistically significant. Pigs euthanized on day 4 after inoculation, had a high virus load in all lung lobes. After the second inoculation, the nasal virus excretion was minimal. There were no clinical sign except elevated body temperature under the experimental conditions. The "avian-like" H1N2 subtype, which has been established in the Danish pig population at least since 2003, is a reassortant between circulating swine "avian-like" H1N1 and H3N2. The Danish

  16. Genetic and biological characterisation of an avian-like H1N2 swine influenza virus generated by reassortment of circulating avian-like H1N1 and H3N2 subtypes in Denmark

    PubMed Central

    2013-01-01

    Background The influenza A virus subtypes H1N1, H1N2 and H3N2 are the most prevalent subtypes in swine. In 2003, a reassorted H1N2 swine influenza virus (SIV) subtype appeared and became prevalent in Denmark. In the present study, the reassortant H1N2 subtype was characterised genetically and the infection dynamics compared to an “avian-like” H1N1 virus by an experimental infection study. Methods Sequence analyses were performed of the H1N2 virus. Two groups of pigs were inoculated with the reassortant H1N2 virus and an “avian-like” H1N1 virus, respectively, followed by inoculation with the opposite subtype four weeks later. Measurements of HI antibodies and acute phase proteins were performed. Nasal virus excretion and virus load in lungs were determined by real-time RT-PCR. Results The phylogenetic analysis revealed that the reassorted H1N2 virus contained a European “avian-like” H1-gene and a European “swine-like” N2-gene, thus being genetically distinct from most H1N2 viruses circulating in Europe, but similar to viruses reported in 2009/2010 in Sweden and Italy. Sequence analyses of the internal genes revealed that the reassortment probably arose between circulating Danish “avian-like” H1N1 and H3N2 SIVs. Infected pigs developed cross-reactive antibodies, and increased levels of acute phase proteins after inoculations. Pigs inoculated with H1N2 exhibited nasal virus excretion for seven days, peaking day 1 after inoculation two days earlier than H1N1 infected pigs and at a six times higher level. The difference, however, was not statistically significant. Pigs euthanized on day 4 after inoculation, had a high virus load in all lung lobes. After the second inoculation, the nasal virus excretion was minimal. There were no clinical sign except elevated body temperature under the experimental conditions. Conclusions The “avian-like” H1N2 subtype, which has been established in the Danish pig population at least since 2003, is a reassortant

  17. Generation and protective efficacy of a cold-adapted attenuated avian H9N2 influenza vaccine.

    PubMed

    Wei, Yandi; Qi, Lu; Gao, Huijie; Sun, Honglei; Pu, Juan; Sun, Yipeng; Liu, Jinhua

    2016-07-26

    To prevent H9N2 avian influenza virus infection in chickens, a long-term vaccination program using inactivated vaccines has been implemented in China. However, the protective efficacy of inactivated vaccines against antigenic drift variants is limited, and H9N2 influenza virus continues to circulate in vaccinated chicken flocks in China. Therefore, developing a cross-reactive vaccine to control the impact of H9N2 influenza in the poultry industry remains a high priority. In the present study, we developed a live cold-adapted H9N2 influenza vaccine candidate (SD/01/10-ca) by serial passages in embryonated eggs at successively lower temperatures. A total of 13 amino acid mutations occurred during the cold-adaptation of this H9N2 virus. The candidate was safe in chickens and induced robust hemagglutination-inhibition antibody responses and influenza virus-specific CD4(+) and CD8(+) T cell immune responses in chickens immunized intranasally. Importantly, the candidate could confer protection of chickens from homologous and heterogenous H9N2 viruses. These results demonstrated that the cold-adapted attenuated H9N2 virus would be selected as a vaccine to control the infection of prevalent H9N2 influenza viruses in chickens.

  18. Generation and protective efficacy of a cold-adapted attenuated avian H9N2 influenza vaccine

    PubMed Central

    Wei, Yandi; Qi, Lu; Gao, Huijie; Sun, Honglei; Pu, Juan; Sun, Yipeng; Liu, Jinhua

    2016-01-01

    To prevent H9N2 avian influenza virus infection in chickens, a long-term vaccination program using inactivated vaccines has been implemented in China. However, the protective efficacy of inactivated vaccines against antigenic drift variants is limited, and H9N2 influenza virus continues to circulate in vaccinated chicken flocks in China. Therefore, developing a cross-reactive vaccine to control the impact of H9N2 influenza in the poultry industry remains a high priority. In the present study, we developed a live cold-adapted H9N2 influenza vaccine candidate (SD/01/10-ca) by serial passages in embryonated eggs at successively lower temperatures. A total of 13 amino acid mutations occurred during the cold-adaptation of this H9N2 virus. The candidate was safe in chickens and induced robust hemagglutination-inhibition antibody responses and influenza virus–specific CD4+ and CD8+ T cell immune responses in chickens immunized intranasally. Importantly, the candidate could confer protection of chickens from homologous and heterogenous H9N2 viruses. These results demonstrated that the cold-adapted attenuated H9N2 virus would be selected as a vaccine to control the infection of prevalent H9N2 influenza viruses in chickens. PMID:27457755

  19. Current situation of H9N2 subtype avian influenza in China.

    PubMed

    Gu, Min; Xu, Lijun; Wang, Xiaoquan; Liu, Xiufan

    2017-09-15

    In China, H9N2 subtype avian influenza outbreak is firstly reported in Guangdong province in 1992. Subsequently, the disease spreads into vast majority regions nationwide and has currently become endemic there. Over vicennial genetic evolution, the viral pathogenicity and transmissibility have showed an increasing trend as year goes by, posing serious threat to poultry industry. In addition, H9N2 has demonstrated significance to public health as it could not only directly infect mankind, but also donate partial or even whole cassette of internal genes to generate novel human-lethal reassortants like H5N1, H7N9, H10N8 and H5N6 viruses. In this review, we mainly focused on the epidemiological dynamics, biological characteristics, molecular phylogeny and vaccine strategy of H9N2 subtype avian influenza virus in China to present an overview of the situation of H9N2 in China.

  20. Pathogenicity and Transmission in Pigs of the Novel A(H3N2)v Influenza Virus Isolated from Humans and Characterization of Swine H3N2 Viruses Isolated in 2010-2011

    PubMed Central

    Kitikoon, Pravina; Gauger, Phillip C.; Schlink, Sarah N.; Bayles, Darrell O.; Gramer, Marie R.; Darnell, Daniel; Webby, Richard J.; Lager, Kelly M.; Swenson, Sabrina L.; Klimov, Alexander

    2012-01-01

    Swine influenza virus (SIV) H3N2 with triple reassorted internal genes (TRIG) has been enzootic in Unites States since 1998. Transmission of the 2009 pandemic H1N1 (pH1N1) virus to pigs in the United States was followed by reassortment with endemic SIV, resulting in reassorted viruses that include novel H3N2 genotypes (rH3N2p). Between July and December 2011, 12 cases of human infections with swine-lineage H3N2 viruses containing the pandemic matrix (pM) gene [A(H3N2)v] were detected. Whole-genome analysis of H3N2 viruses isolated from pigs from 2009 to 2011 sequenced in this study and other available H3N2 sequences showed six different rH3N2p genotypes present in the U.S. swine population since 2009. The presence of the pM gene was a common feature among all rH3N2p genotypes, but no specific genotype appeared to predominate in the swine population. We compared the pathogenic, transmission, genetic, and antigenic properties of a human A(H3N2)v isolate and two swine H3N2 isolates, H3N2-TRIG and rH3N2p. Our in vivo study detected no increased virulence in A(H3N2)v or rH3N2p viruses compared to endemic H3N2-TRIG virus. Antibodies to cluster IV H3N2-TRIG and rH3N2p viruses had reduced cross-reactivity to A(H3N2)v compared to other cluster IV H3N2-TRIG and rH3N2p viruses. Genetic analysis of the hemagglutinin gene indicated that although rH3N2p and A(H3N2)v are related to cluster IV of H3N2-TRIG, some recent rH3N2p isolates appeared to be forming a separate cluster along with the human isolates of A(H3N2)v. Continued monitoring of these H3N2 viruses is necessary to evaluate the evolution and potential loss of population immunity in swine and humans. PMID:22491461

  1. Pathogenicity and transmission in pigs of the novel A(H3N2)v influenza virus isolated from humans and characterization of swine H3N2 viruses isolated in 2010-2011.

    PubMed

    Kitikoon, Pravina; Vincent, Amy L; Gauger, Phillip C; Schlink, Sarah N; Bayles, Darrell O; Gramer, Marie R; Darnell, Daniel; Webby, Richard J; Lager, Kelly M; Swenson, Sabrina L; Klimov, Alexander

    2012-06-01

    Swine influenza virus (SIV) H3N2 with triple reassorted internal genes (TRIG) has been enzootic in Unites States since 1998. Transmission of the 2009 pandemic H1N1 (pH1N1) virus to pigs in the United States was followed by reassortment with endemic SIV, resulting in reassorted viruses that include novel H3N2 genotypes (rH3N2p). Between July and December 2011, 12 cases of human infections with swine-lineage H3N2 viruses containing the pandemic matrix (pM) gene [A(H3N2)v] were detected. Whole-genome analysis of H3N2 viruses isolated from pigs from 2009 to 2011 sequenced in this study and other available H3N2 sequences showed six different rH3N2p genotypes present in the U.S. swine population since 2009. The presence of the pM gene was a common feature among all rH3N2p genotypes, but no specific genotype appeared to predominate in the swine population. We compared the pathogenic, transmission, genetic, and antigenic properties of a human A(H3N2)v isolate and two swine H3N2 isolates, H3N2-TRIG and rH3N2p. Our in vivo study detected no increased virulence in A(H3N2)v or rH3N2p viruses compared to endemic H3N2-TRIG virus. Antibodies to cluster IV H3N2-TRIG and rH3N2p viruses had reduced cross-reactivity to A(H3N2)v compared to other cluster IV H3N2-TRIG and rH3N2p viruses. Genetic analysis of the hemagglutinin gene indicated that although rH3N2p and A(H3N2)v are related to cluster IV of H3N2-TRIG, some recent rH3N2p isolates appeared to be forming a separate cluster along with the human isolates of A(H3N2)v. Continued monitoring of these H3N2 viruses is necessary to evaluate the evolution and potential loss of population immunity in swine and humans.

  2. Epidemiology of influenza in West Africa after the 2009 influenza A(H1N1) pandemic, 2010-2012.

    PubMed

    Talla Nzussouo, Ndahwouh; Duque, Jazmin; Adedeji, Adebayo Abel; Coulibaly, Daouda; Sow, Samba; Tarnagda, Zekiba; Maman, Issaka; Lagare, Adamou; Makaya, Sonia; Elkory, Mohamed Brahim; Kadjo Adje, Herve; Shilo, Paul Alhassan; Tamboura, Boubou; Cisse, Assana; Badziklou, Kossi; Maïnassara, Halima Boubacar; Bara, Ahmed Ould; Keita, Adama Mamby; Williams, Thelma; Moen, Ann; Widdowson, Marc-Alain; McMorrow, Meredith

    2017-12-04

    Over the last decade, capacity for influenza surveillance and research in West Africa has strengthened. Data from these surveillance systems showed influenza A(H1N1)pdm09 circulated in West Africa later than in other regions of the continent. We contacted 11 West African countries to collect information about their influenza surveillance systems (number of sites, type of surveillance, sampling strategy, populations sampled, case definitions used, number of specimens collected and number of specimens positive for influenza viruses) for the time period January 2010 through December 2012. Of the 11 countries contacted, 8 responded: Burkina Faso, Cote d'Ivoire, Mali, Mauritania, Niger, Nigeria, Sierra Leone and Togo. Countries used standard World Health Organization (WHO) case definitions for influenza-like illness (ILI) and severe acute respiratory illness (SARI) or slight variations thereof. There were 70 surveillance sites: 26 SARI and 44 ILI. Seven countries conducted SARI surveillance and collected 3114 specimens of which 209 (7%) were positive for influenza viruses. Among influenza-positive SARI patients, 132 (63%) were influenza A [68 influenza A(H1N1)pdm09, 64 influenza A(H3N2)] and 77 (37%) were influenza B. All eight countries conducted ILI surveillance and collected 20,375 specimens, of which 2278 (11%) were positive for influenza viruses. Among influenza-positive ILI patients, 1431 (63%) were influenza A [820 influenza A(H1N1)pdm09, 611 influenza A(H3N2)] and 847 (37%) were influenza B. A majority of SARI and ILI case-patients who tested positive for influenza (72% SARI and 59% ILI) were children aged 0-4 years, as were a majority of those enrolled in surveillance. The seasonality of influenza and the predominant influenza type or subtype varied by country and year. Influenza A(H1N1)pdm09 continued to circulate in West Africa along with influenza A(H3N2) and influenza B during 2010-2012. Although ILI surveillance systems produced a robust number of samples

  3. Challenge for One Health: Co-Circulation of Zoonotic H5N1 and H9N2 Avian Influenza Viruses in Egypt.

    PubMed

    Kim, Shin-Hee

    2018-03-09

    Highly pathogenic avian influenza (HPAI) H5N1 viruses are currently endemic in poultry in Egypt. Eradication of the viruses has been unsuccessful due to improper application of vaccine-based control strategies among other preventive measures. The viruses have evolved rapidly with increased bird-to-human transmission efficacy, thus affecting both animal and public health. Subsequent spread of potentially zoonotic low pathogenic avian influenza (LPAI) H9N2 in poultry has also hindered efficient control of avian influenza. The H5N1 viruses acquired enhanced bird-to-human transmissibility by (1) altering amino acids in hemagglutinin (HA) that enable binding affinity to human-type receptors, (2) loss of the glycosylation site and 130 loop in the HA protein and (3) mutation of E627K in the PB2 protein to enhance viral replication in mammalian hosts. The receptor binding site of HA of Egyptian H9N2 viruses has been shown to contain the Q234L substitution along with a H191 mutation, which can increase human-like receptor specificity. Therefore, co-circulation of H5N1 and H9N2 viruses in poultry farming and live bird markets has increased the risk of human exposure, resulting in complication of the epidemiological situation and raising a concern for potential emergence of a new influenza A virus pandemic. For efficient control of infection and transmission, the efficacy of vaccine and vaccination needs to be improved with a comprehensive control strategy, including enhanced biosecurity, education, surveillance, rapid diagnosis and culling of infected poultry.

  4. Challenge for One Health: Co-Circulation of Zoonotic H5N1 and H9N2 Avian Influenza Viruses in Egypt

    PubMed Central

    2018-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 viruses are currently endemic in poultry in Egypt. Eradication of the viruses has been unsuccessful due to improper application of vaccine-based control strategies among other preventive measures. The viruses have evolved rapidly with increased bird-to-human transmission efficacy, thus affecting both animal and public health. Subsequent spread of potentially zoonotic low pathogenic avian influenza (LPAI) H9N2 in poultry has also hindered efficient control of avian influenza. The H5N1 viruses acquired enhanced bird-to-human transmissibility by (1) altering amino acids in hemagglutinin (HA) that enable binding affinity to human-type receptors, (2) loss of the glycosylation site and 130 loop in the HA protein and (3) mutation of E627K in the PB2 protein to enhance viral replication in mammalian hosts. The receptor binding site of HA of Egyptian H9N2 viruses has been shown to contain the Q234L substitution along with a H191 mutation, which can increase human-like receptor specificity. Therefore, co-circulation of H5N1 and H9N2 viruses in poultry farming and live bird markets has increased the risk of human exposure, resulting in complication of the epidemiological situation and raising a concern for potential emergence of a new influenza A virus pandemic. For efficient control of infection and transmission, the efficacy of vaccine and vaccination needs to be improved with a comprehensive control strategy, including enhanced biosecurity, education, surveillance, rapid diagnosis and culling of infected poultry. PMID:29522492

  5. Epidemiology of pandemic influenza A/H1N1 virus during 2009-2010 in Taiwan.

    PubMed

    Lan, Yu-Ching; Su, Mei-Chi; Chen, Chao-Hsien; Huang, Su-Hua; Chen, Wan-Li; Tien, Ni; Lin, Cheng-Wen

    2013-10-01

    Outbreak of swine-origin influenza A/H1N1 virus (pdmH1N1) occurred in 2009. Taiwanese authorities implemented nationwide vaccinations with pdmH1N1-specific inactivated vaccine as of November 2009. This study evaluates prevalence, HA phylogenetic relationship, and transmission dynamic of influenza A and B viruses in Taiwan in 2009-2010. Respiratory tract specimens were analyzed for influenza A and B viruses. The pdmH1N1 peaked in November 2009, was predominant from August 2009 to January 2010, then sharply dropped in February 2010. Significant prevalence peaks of influenza B in April-June of 2010 and H3N2 virus in July and August were observed. Highest percentage of pdmH1N1- and H3N2-positive cases appeared among 11-15-year-olds; influenza B-positive cases were dominant among those 6-10 years old. Maximum likelihood phylogenetic trees showed 11 unique clusters of pdmH1N1, seasonal H3N2 influenza A and B viruses, as well as transmission clusters and mixed infections of influenza strains in Taiwan. The 2009 pdmH1N1 virus was predominant in Taiwan from August 2009 to January 2010; seasonal H3N2 influenza A and B viruses exhibited small prevalence peaks after nationwide vaccinations. Phylogenetic evidence indicated transmission clusters and multiple independent clades of co-circulating influenza A and B strains in Taiwan. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Genetic Characterization of Influenza A (H1N1) Pandemic 2009 Virus Isolates from Mumbai.

    PubMed

    Gohil, Devanshi; Kothari, Sweta; Shinde, Pramod; Meharunkar, Rhuta; Warke, Rajas; Chowdhary, Abhay; Deshmukh, Ranjana

    2017-08-01

    Pandemic influenza A (H1N1) 2009 virus was first detected in India in May 2009 which subsequently became endemic in many parts of the country. Influenza A viruses have the ability to evade the immune response through its ability of antigenic variations. The study aims to characterize influenza A (H1N1) pdm 09 viruses circulating in Mumbai during the pandemic and post-pandemic period. Nasopharyngeal swabs positive for influenza A (H1N1) pdm 09 viruses were inoculated on Madin-Darby canine kidney cell line for virus isolation. Molecular and phylogenetic analysis of influenza A (H1N1) pdm 09 isolates was conducted to understand the evolution and genetic diversity of the strains. Nucleotide and amino acid sequences of the HA gene of Mumbai isolates when compared to A/California/07/2009-vaccine strain revealed 14 specific amino acid differences located at the antigenic sites. Amino acid variations in HA and NA gene resulted in changes in the N-linked glycosylation motif which may lead to immune evasion. Phylogenetic analysis of the isolates revealed their evolutionary position with vaccine strain A/California/07/2009 but had undergone changes gradually. The findings in the present study confirm genetic variability of influenza viruses and highlight the importance of continuous surveillance during influenza outbreaks.

  7. Highly Pathogenic Avian Influenza Virus (H5N8) Clade 2.3.4.4 Infection in Migratory Birds, Egypt.

    PubMed

    Selim, Abdullah A; Erfan, Ahmed M; Hagag, Naglaa; Zanaty, Ali; Samir, Abdel-Hafez; Samy, Mohamed; Abdelhalim, Ahmed; Arafa, Abdel-Satar A; Soliman, Mohamed A; Shaheen, Momtaz; Ibraheem, Essam M; Mahrous, Ibrahim; Hassan, Mohamed K; Naguib, Mahmoud M

    2017-06-01

    We isolated highly pathogenic avian influenza virus (H5N8) of clade 2.3.4.4 from the common coot (Fulica atra) in Egypt, documenting its introduction into Africa through migratory birds. This virus has a close genetic relationship with subtype H5N8 viruses circulating in Europe. Enhanced surveillance to detect newly emerging viruses is warranted.

  8. Intraspecies and interspecies transmission of mink H9N2 influenza virus.

    PubMed

    Yong-Feng, Zhao; Fei-Fei, Diao; Jia-Yu, Yu; Feng-Xia, Zhang; Chang-Qing, Jiang; Jian-Li, Wang; Shou-Yu, Guo; Kai, Cui; Chuan-Yi, Liu; Xue-Hua, Wei; Jiang, Shi-Jin; Zhi-Jing, Xie

    2017-08-07

    H9N2 influenza A virus (IAV) causes low pathogenic respiratory disease and infects a wide range of hosts. In this study, six IAVs were isolated from mink and identified as H9N2 IAV. Sequence analysis revealed that the six isolates continued to evolve, and their PB2 genes shared high nucleotide sequence identity with H7N9 IAV. The six isolates contained an amino acid motif PSRSSR↓GL at the hemagglutinin cleavage site, which is a characteristic of low pathogenic influenza viruses. A serosurvey demonstrated that H9N2 IAV had spread widely in mink and was prevalent in foxes and raccoon dogs. Transmission experiments showed that close contact between H9N2-infected mink and naive mink, foxes and raccoon dogs resulted in spread of the virus to the contact animals. Furthermore, H9N2 challenge experiments in foxes and raccoon dogs showed that H9N2 IAV could infect these hosts. Virological and epidemiological surveillance of H9N2 IAV should be strengthened for the fur animal industry.

  9. Comparative study of the hemagglutinin and neuraminidase genes of influenza A virus H3N2, H9N2, and H5N1 subtypes using bioinformatics techniques.

    PubMed

    Ahn, Insung; Son, Hyeon S

    2007-07-01

    To investigate the genomic patterns of influenza A virus subtypes, such as H3N2, H9N2, and H5N1, we collected 1842 sequences of the hemagglutinin and neuraminidase genes from the NCBI database and parsed them into 7 categories: accession number, host species, sampling year, country, subtype, gene name, and sequence. The sequences that were isolated from the human, avian, and swine populations were extracted and stored in a MySQL database for intensive analysis. The GC content and relative synonymous codon usage (RSCU) values were calculated using JAVA codes. As a result, correspondence analysis of the RSCU values yielded the unique codon usage pattern (CUP) of each subtype and revealed no extreme differences among the human, avian, and swine isolates. H5N1 subtype viruses exhibited little variation in CUPs compared with other subtypes, suggesting that the H5N1 CUP has not yet undergone significant changes within each host species. Moreover, some observations may be relevant to CUP variation that has occurred over time among the H3N2 subtype viruses isolated from humans. All the sequences were divided into 3 groups over time, and each group seemed to have preferred synonymous codon patterns for each amino acid, especially for arginine, glycine, leucine, and valine. The bioinformatics technique we introduce in this study may be useful in predicting the evolutionary patterns of pandemic viruses.

  10. Transmissibility of novel H7N9 and H9N2 avian influenza viruses between chickens and ferrets.

    PubMed

    Ku, Keun Bon; Park, Eun Hye; Yum, Jung; Kim, Heui Man; Kang, Young Myong; Kim, Jeong Cheol; Kim, Ji An; Kim, Hyun Soo; Seo, Sang Heui

    2014-02-01

    Previous studies have shown that the H7N9 avian influenza virus cannot be transmitted efficiently between ferrets via respiratory droplets. Here, we studied the infectivity of the H7N9 avian influenza virus in chickens and its transmissibility from infected to naïve chickens and ferrets. The H7N9 virus (A/Anhui/1/2013) replicated poorly in chickens and could not be transmitted efficiently from infected chickens to naïve chickens and ferrets. H7N9 virus was shed from chicken tracheae for only 2 days after infection and from chicken cloacae for only 1 day after infection, while the H9N2 avian influenza virus, which is endemic in chickens in many Asian countries, was shed from tracheae and cloacae for 8 days after infection. Taken together, our results suggest that chickens may be a poor agent of transmission for the H7N9 virus to other chickens and to mammals, including humans. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Reconstructing the 2003/2004 H3N2 influenza epidemic in Switzerland with a spatially explicit, individual-based model

    PubMed Central

    2011-01-01

    Background Simulation models of influenza spread play an important role for pandemic preparedness. However, as the world has not faced a severe pandemic for decades, except the rather mild H1N1 one in 2009, pandemic influenza models are inherently hypothetical and validation is, thus, difficult. We aim at reconstructing a recent seasonal influenza epidemic that occurred in Switzerland and deem this to be a promising validation strategy for models of influenza spread. Methods We present a spatially explicit, individual-based simulation model of influenza spread. The simulation model bases upon (i) simulated human travel data, (ii) data on human contact patterns and (iii) empirical knowledge on the epidemiology of influenza. For model validation we compare the simulation outcomes with empirical knowledge regarding (i) the shape of the epidemic curve, overall infection rate and reproduction number, (ii) age-dependent infection rates and time of infection, (iii) spatial patterns. Results The simulation model is capable of reproducing the shape of the 2003/2004 H3N2 epidemic curve of Switzerland and generates an overall infection rate (14.9 percent) and reproduction numbers (between 1.2 and 1.3), which are realistic for seasonal influenza epidemics. Age and spatial patterns observed in empirical data are also reflected by the model: Highest infection rates are in children between 5 and 14 and the disease spreads along the main transport axes from west to east. Conclusions We show that finding evidence for the validity of simulation models of influenza spread by challenging them with seasonal influenza outbreak data is possible and promising. Simulation models for pandemic spread gain more credibility if they are able to reproduce seasonal influenza outbreaks. For more robust modelling of seasonal influenza, serological data complementing sentinel information would be beneficial. PMID:21554680

  12. Genetic Characterization of H1N1 and H1N2 Influenza A Viruses Circulating in Ontario Pigs in 2012.

    PubMed

    Grgić, Helena; Costa, Marcio; Friendship, Robert M; Carman, Susy; Nagy, Éva; Poljak, Zvonimir

    2015-01-01

    The objective of this study was to characterize H1N1 and H1N2 influenza A virus isolates detected during outbreaks of respiratory disease in pig herds in Ontario (Canada) in 2012. Six influenza viruses were included in analysis using full genome sequencing based on the 454 platform. In five H1N1 isolates, all eight segments were genetically related to 2009 pandemic virus (A(H1N1)pdm09). One H1N2 isolate had hemagglutinin (HA), polymerase A (PA) and non-structural (NS) genes closely related to A(H1N1)pdm09, and neuraminidase (NA), matrix (M), polymerase B1 (PB1), polymerase B2 (PB2), and nucleoprotein (NP) genes originating from a triple-reassortant H3N2 virus (tr H3N2). The HA gene of five Ontario H1 isolates exhibited high identity of 99% with the human A(H1N1)pdm09 [A/Mexico/InDRE4487/09] from Mexico, while one Ontario H1N1 isolate had only 96.9% identity with this Mexican virus. Each of the five Ontario H1N1 viruses had between one and four amino acid (aa) changes within five antigenic sites, while one Ontario H1N2 virus had two aa changes within two antigenic sites. Such aa changes in antigenic sites could have an effect on antibody recognition and ultimately have implications for immunization practices. According to aa sequence analysis of the M2 protein, Ontario H1N1 and H1N2 viruses can be expected to offer resistance to adamantane derivatives, but not to neuraminidase inhibitors.

  13. Detection of influenza A(H1N1)v virus by real-time RT-PCR.

    PubMed

    Panning, M; Eickmann, M; Landt, O; Monazahian, M; Olschläger, S; Baumgarte, S; Reischl, U; Wenzel, J J; Niller, H H; Günther, S; Hollmann, B; Huzly, D; Drexler, J F; Helmer, A; Becker, S; Matz, B; Eis-Hübinger, Am; Drosten, C

    2009-09-10

    Influenza A(H1N1)v virus was first identified in April 2009. A novel real-time RT-PCR for influenza A(H1N1)v virus was set up ad hoc and validated following industry-standard criteria. The lower limit of detection of the assay was 384 copies of viral RNA per ml of viral transport medium (95% confidence interval: 273-876 RNA copies/ml). Specificity was 100% as assessed on a panel of reference samples including seasonal human influenza A virus H1N1 and H3N2, highly pathogenic avian influenza A virus H5N1 and porcine influenza A virus H1N1, H1N2 and H3N2 samples. The real-time RT-PCR assay for the influenza A matrix gene recommended in 2007 by the World Health Organization was modified to work under the same reaction conditions as the influenza A(H1N1)v virus-specific test. Both assays were equally sensitive. Clinical applicability of both assays was demonstrated by screening of almost 2,000 suspected influenza (H1N1)v specimens, which included samples from the first cases of pandemic H1N1 influenza imported to Germany. Measuring influenza A(H1N1)v virus concentrations in 144 laboratory-confirmed samples yielded a median of 4.6 log RNA copies/ml. The new methodology proved its principle and might assist public health laboratories in the upcoming influenza pandemic.

  14. A Single Dose of an Avian H3N8 Influenza Virus Vaccine Is Highly Immunogenic and Efficacious against a Recently Emerged Seal Influenza Virus in Mice and Ferrets

    PubMed Central

    Baz, Mariana; Paskel, Myeisha; Matsuoka, Yumiko; Zengel, James R.; Cheng, Xing; Treanor, John J.; Jin, Hong

    2015-01-01

    ABSTRACT H3N8 influenza viruses are a commonly found subtype in wild birds, usually causing mild or no disease in infected birds. However, they have crossed the species barrier and have been associated with outbreaks in dogs, pigs, donkeys, and seals and therefore pose a threat to humans. A live attenuated, cold-adapted (ca) H3N8 vaccine virus was generated by reverse genetics using the wild-type (wt) hemagglutinin (HA) and neuraminidase (NA) genes from the A/blue-winged teal/Texas/Sg-00079/2007 (H3N8) (tl/TX/079/07) wt virus and the six internal protein gene segments from the ca influenza A virus vaccine donor strain, A/Ann Arbor/6/60 ca (H2N2), the backbone of the licensed seasonal live attenuated influenza vaccine. One dose of the tl/TX/079/07 ca vaccine induced a robust neutralizing antibody response against the homologous (tl/TX/079/07) and two heterologous influenza viruses, including the recently emerged A/harbor seal/New Hampshire/179629/2011 (H3N8) and A/northern pintail/Alaska/44228-129/2006 (H3N8) viruses, and conferred robust protection against the homologous and heterologous influenza viruses. We also analyzed human sera against the tl/TX/079/07 H3N8 avian influenza virus and observed low but detectable antibody reactivity in elderly subjects, suggesting that older H3N2 influenza viruses confer some cross-reactive antibody. The latter observation was confirmed in a ferret study. The safety, immunogenicity, and efficacy of the tl/TX/079/07 ca vaccine in mice and ferrets support further evaluation of this vaccine in humans for use in the event of transmission of an H3N8 avian influenza virus to humans. The human and ferret serology data suggest that a single dose of the vaccine may be sufficient in older subjects. IMPORTANCE Although natural infection of humans with an avian H3N8 influenza virus has not yet been reported, this influenza virus subtype has already crossed the species barrier and productively infected mammals. Pandemic preparedness is an

  15. Genesis of avian influenza H9N2 in Bangladesh.

    PubMed

    Shanmuganatham, Karthik; Feeroz, Mohammed M; Jones-Engel, Lisa; Walker, David; Alam, SMRabiul; Hasan, MKamrul; McKenzie, Pamela; Krauss, Scott; Webby, Richard J; Webster, Robert G

    2014-12-01

    Avian influenza subtype H9N2 is endemic in many bird species in Asia and the Middle East and has contributed to the genesis of H5N1, H7N9 and H10N8, which are potential pandemic threats. H9N2 viruses that have spread to Bangladesh have acquired multiple gene segments from highly pathogenic (HP) H7N3 viruses that are presumably in Pakistan and currently cocirculate with HP H5N1. However, the source and geographic origin of these H9N2 viruses are not clear. We characterized the complete genetic sequences of 37 Bangladeshi H9N2 viruses isolated in 2011-2013 and investigated their inter- and intrasubtypic genetic diversities by tracing their genesis in relationship to other H9N2 viruses isolated from neighboring countries. H9N2 viruses in Bangladesh are homogenous with several mammalian host-specific markers and are a new H9N2 sublineage wherein the hemagglutinin (HA) gene is derived from an Iranian H9N2 lineage (Mideast_B Iran), the neuraminidase (NA) and polymerase basic 2 (PB2) genes are from Dubai H9N2 (Mideast_C Dubai), and the non-structural protein (NS), nucleoprotein (NP), matrix protein (MP), polymerase acidic (PA) and polymerase basic 1 (PB1) genes are from HP H7N3 originating from Pakistan. Different H9N2 genotypes that were replaced in 2006 and 2009 by other reassortants have been detected in Bangladesh. Phylogenetic and molecular analyses suggest that the current genotype descended from the prototypical H9N2 lineage (G1), which circulated in poultry in China during the late 1990s and came to Bangladesh via the poultry trade within the Middle East, and that this genotype subsequently reassorted with H7N3 and H9N2 lineages from Pakistan and spread throughout India. Thus, continual surveillance of Bangladeshi HP H5N1, H7N3 and H9N2 is warranted to identify further evolution and adaptation to humans.

  16. Genesis of avian influenza H9N2 in Bangladesh

    PubMed Central

    Shanmuganatham, Karthik; Feeroz, Mohammed M; Jones-Engel, Lisa; Walker, David; Alam, SMRabiul; Hasan, MKamrul; McKenzie, Pamela; Krauss, Scott; Webby, Richard J; Webster, Robert G

    2014-01-01

    Avian influenza subtype H9N2 is endemic in many bird species in Asia and the Middle East and has contributed to the genesis of H5N1, H7N9 and H10N8, which are potential pandemic threats. H9N2 viruses that have spread to Bangladesh have acquired multiple gene segments from highly pathogenic (HP) H7N3 viruses that are presumably in Pakistan and currently cocirculate with HP H5N1. However, the source and geographic origin of these H9N2 viruses are not clear. We characterized the complete genetic sequences of 37 Bangladeshi H9N2 viruses isolated in 2011–2013 and investigated their inter- and intrasubtypic genetic diversities by tracing their genesis in relationship to other H9N2 viruses isolated from neighboring countries. H9N2 viruses in Bangladesh are homogenous with several mammalian host-specific markers and are a new H9N2 sublineage wherein the hemagglutinin (HA) gene is derived from an Iranian H9N2 lineage (Mideast_B Iran), the neuraminidase (NA) and polymerase basic 2 (PB2) genes are from Dubai H9N2 (Mideast_C Dubai), and the non-structural protein (NS), nucleoprotein (NP), matrix protein (MP), polymerase acidic (PA) and polymerase basic 1 (PB1) genes are from HP H7N3 originating from Pakistan. Different H9N2 genotypes that were replaced in 2006 and 2009 by other reassortants have been detected in Bangladesh. Phylogenetic and molecular analyses suggest that the current genotype descended from the prototypical H9N2 lineage (G1), which circulated in poultry in China during the late 1990s and came to Bangladesh via the poultry trade within the Middle East, and that this genotype subsequently reassorted with H7N3 and H9N2 lineages from Pakistan and spread throughout India. Thus, continual surveillance of Bangladeshi HP H5N1, H7N3 and H9N2 is warranted to identify further evolution and adaptation to humans. PMID:26038507

  17. Respiratory transmission of an avian H3N8 influenza virus isolated from a harbour seal

    USGS Publications Warehouse

    Karlsson, Erik A.; Ip, Hon S.; Hall, Jeffrey S.; Yoon, Sun W.; Johnson, Jordan; Beck, Melinda A.; Webby, Richard J.; Schultz-Cherry, Stacey

    2014-01-01

    The ongoing human H7N9 influenza infections highlight the threat of emerging avian influenza viruses. In 2011, an avian H3N8 influenza virus isolated from moribund New England harbour seals was shown to have naturally acquired mutations known to increase the transmissibility of highly pathogenic H5N1 influenza viruses. To elucidate the potential human health threat, here we evaluate a panel of avian H3N8 viruses and find that the harbour seal virus displays increased affinity for mammalian receptors, transmits via respiratory droplets in ferrets and replicates in human lung cells. Analysis of a panel of human sera for H3N8 neutralizing antibodies suggests that there is no population-wide immunity to these viruses. The prevalence of H3N8 viruses in birds and multiple mammalian species including recent isolations from pigs and evidence that it was a past human pandemic virus make the need for surveillance and risk analysis of these viruses of public health importance.

  18. Reassortant Avian Influenza A(H5N1) Viruses with H9N2-PB1 Gene in Poultry, Bangladesh

    PubMed Central

    Yamage, Mat; Dauphin, Gwenaëlle; Claes, Filip; Ahmed, Garba; Giasuddin, Mohammed; Salviato, Annalisa; Ormelli, Silvia; Bonfante, Francesco; Schivo, Alessia; Cattoli, Giovanni

    2013-01-01

    Bangladesh has reported a high number of outbreaks of highly pathogenic avian influenza (HPAI) (H5N1) in poultry. We identified a natural reassortant HPAI (H5N1) virus containing a H9N2-PB1 gene in poultry in Bangladesh. Our findings highlight the risks for prolonged co-circulation of avian influenza viruses and the need to monitor their evolution. PMID:24047513

  19. Trivalent influenza vaccine-induced antibody response to circulating influenza a (H3N2) viruses in 2010/11 and 2011/12 seasons.

    PubMed

    Hiroi, Satoshi; Morikawa, Saeko; Nakata, Keiko; Maeda, Akiko; Kanno, Tsuneji; Irie, Shin; Ohfuji, Satoko; Hirota, Yoshio; Kase, Tetsuo

    2015-01-01

    To evaluate antibody response induced by trivalent inactivated influenza vaccine (TIV) against circulating influenza A (H3N2) strains in healthy adults during the 2010/11 and 2011/12 seasons, a hemagglutination-inhibition (HI) assay was utilized to calculate geometric mean antibody titer (GMT), seroprotection rate (post vaccination HI titers of ≥1 :40), and seroresponse rate (4-fold increase in antibody level). In the 2010/11 season, GMT increased 1.8- to 2.0-fold following the first dose of TIV against 3 circulating strains and 2.2-fold following the second compared to before vaccination. The seroresponse rate ranged from 22% to 26% following the first dose of TIV and from 31% to 33% following the second (n = 54 ). The seroprotection rate increased from a range of 6% to 13% to a range of 26% to 33% following the first dose of TIV and to a range of 37% to 42% following the second (n = 54 ). In the 2011/12 season, GMT increased 1.4-fold against A/Osaka/110/2011 and 1.8-fold against A/Osaka/5/2012. For A/Osaka/110/2011, the seroresponse rate was 29%, and the seroprotection rate increased from 26% to 55% following vaccination (n = 31 ). For A/Osaka/5/2012, the seroresponse rate was 26%, and the seroprotection rate increased from 68% to 84% following vaccination (n = 31 ). HI assays with reference antisera demonstrated that the strains in the 2011/12 season were antigenically distinct from vaccine strain (A/Victoria/210/2009). In conclusion, the vaccination increased the seroprotection rate against circulating H3N2 strains in the 2010/11 and 2011/12 seasons. Vaccination of TIV might have potential to induce reactive antibodies against antigenically distinct circulating H3N2 viruses.

  20. Rules of co-occurring mutations characterize the antigenic evolution of human influenza A/H3N2, A/H1N1 and B viruses.

    PubMed

    Chen, Haifen; Zhou, Xinrui; Zheng, Jie; Kwoh, Chee-Keong

    2016-12-05

    The human influenza viruses undergo rapid evolution (especially in hemagglutinin (HA), a glycoprotein on the surface of the virus), which enables the virus population to constantly evade the human immune system. Therefore, the vaccine has to be updated every year to stay effective. There is a need to characterize the evolution of influenza viruses for better selection of vaccine candidates and the prediction of pandemic strains. Studies have shown that the influenza hemagglutinin evolution is driven by the simultaneous mutations at antigenic sites. Here, we analyze simultaneous or co-occurring mutations in the HA protein of human influenza A/H3N2, A/H1N1 and B viruses to predict potential mutations, characterizing the antigenic evolution. We obtain the rules of mutation co-occurrence using association rule mining after extracting HA1 sequences and detect co-mutation sites under strong selective pressure. Then we predict the potential drifts with specific mutations of the viruses based on the rules and compare the results with the "observed" mutations in different years. The sites under frequent mutations are in antigenic regions (epitopes) or receptor binding sites. Our study demonstrates the co-occurring site mutations obtained by rule mining can capture the evolution of influenza viruses, and confirms that cooperative interactions among sites of HA1 protein drive the influenza antigenic evolution.

  1. Assessment of pathogenicity and antigenicity of American lineage influenza H5N2 viruses in Taiwan.

    PubMed

    Lin, Chun-Yang; Chia, Min-Yuan; Chen, Po-Ling; Yeh, Chia-Tsui; Cheng, Ming-Chu; Su, Ih-Jen; Lee, Min-Shi

    2017-08-01

    During December 2003 and March 2004, large scale epidemics of low-pathogenic avian influenza (LPAI) H5N2 occurred in poultry farms in central and southern Taiwan. Based on genomic analysis, these H5N2 viruses contain HA and NA genes of American-lineage H5N2 viruses and six internal genes from avian influenza A/H6N1 viruses endemic in poultry in Taiwan. After disappearing for several years, these novel influenza H5N2 viruses caused outbreaks in poultry farms again in 2008, 2010 and 2012, and have evolved into high pathogenic AI (HPAI) since 2010. Moreover, asymptomatic infections of influenza H5N2 were detected serologically in poultry workers in 2012. Therefore, we evaluated antigenicity and pathogenicity of the novel H5N2 viruses in ferrets. We found that no significant antigenic difference was detected among the novel H5N2 viruses isolated from 2003 to 2014 and the novel H5N2 viruses could cause mild infections in ferrets. Monitoring zoonotic transmission of the novel H5N2 viruses is necessary. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Evaluation of the immunogenicity and protective effects of a trivalent chimeric norovirus P particle immunogen displaying influenza HA2 from subtypes H1, H3 and B

    PubMed Central

    Gong, Xin; Yin, He; Shi, Yuhua; He, Xiaoqiu; Yu, Yongjiao; Guan, Shanshan; Kuai, Ziyu; Haji, Nasteha M; Haji, Nafisa M; Kong, Wei; Shan, Yaming

    2016-01-01

    The ectodomain of the influenza A virus (IAV) hemagglutinin (HA) stem is highly conserved across strains and has shown promise as a universal influenza vaccine in a mouse model. In this study, potential B-cell epitopes were found through sequence alignment and epitope prediction in a stem fragment, HA2:90-105, which is highly conserved among virus subtypes H1, H3 and B. A norovirus (NoV) P particle platform was used to express the HA2:90-105 sequences from subtypes H1, H3 and B in loops 1, 2 and 3 of the protrusion (P) domain, respectively. Through mouse immunization and microneutralization assays, the immunogenicity and protective efficacy of the chimeric NoV P particle (trivalent HA2-PP) were tested against infection with three subtypes (H1N1, H3N2 and B) of IAV in Madin–Darby canine kidney cells. The protective efficacy of the trivalent HA2-PP was also evaluated preliminarily in vivo by virus challenge in the mouse model. The trivalent HA2-PP immunogen induced significant IgG antibody responses, which could be enhanced by a virus booster vaccination. Moreover, the trivalent HA2-PP immunogen also demonstrated in vitro neutralization of the H3 and B viruses, and in vivo protection against the H3 virus. Our results support the notion that a broadly protective vaccine approach using an HA2-based NoV P particle platform can provide cross-protection against challenge viruses of different IAV subtypes. The efficacy of the immunogen should be further enhanced for practicality, and a better understanding of the protective immune mechanism will be critical for the development of HA2-based multivalent vaccines. PMID:27222326

  3. Evaluation of the immunogenicity and protective effects of a trivalent chimeric norovirus P particle immunogen displaying influenza HA2 from subtypes H1, H3 and B.

    PubMed

    Gong, Xin; Yin, He; Shi, Yuhua; He, Xiaoqiu; Yu, Yongjiao; Guan, Shanshan; Kuai, Ziyu; Haji, Nasteha M; Haji, Nafisa M; Kong, Wei; Shan, Yaming

    2016-05-25

    The ectodomain of the influenza A virus (IAV) hemagglutinin (HA) stem is highly conserved across strains and has shown promise as a universal influenza vaccine in a mouse model. In this study, potential B-cell epitopes were found through sequence alignment and epitope prediction in a stem fragment, HA2:90-105, which is highly conserved among virus subtypes H1, H3 and B. A norovirus (NoV) P particle platform was used to express the HA2:90-105 sequences from subtypes H1, H3 and B in loops 1, 2 and 3 of the protrusion (P) domain, respectively. Through mouse immunization and microneutralization assays, the immunogenicity and protective efficacy of the chimeric NoV P particle (trivalent HA2-PP) were tested against infection with three subtypes (H1N1, H3N2 and B) of IAV in Madin-Darby canine kidney cells. The protective efficacy of the trivalent HA2-PP was also evaluated preliminarily in vivo by virus challenge in the mouse model. The trivalent HA2-PP immunogen induced significant IgG antibody responses, which could be enhanced by a virus booster vaccination. Moreover, the trivalent HA2-PP immunogen also demonstrated in vitro neutralization of the H3 and B viruses, and in vivo protection against the H3 virus. Our results support the notion that a broadly protective vaccine approach using an HA2-based NoV P particle platform can provide cross-protection against challenge viruses of different IAV subtypes. The efficacy of the immunogen should be further enhanced for practicality, and a better understanding of the protective immune mechanism will be critical for the development of HA2-based multivalent vaccines.

  4. Vaccination with virus-like particles containing H5 antigens from three H5N1 clades protects chickens from H5N1 and H5N8 influenza viruses

    PubMed Central

    Kapczynski, Darrell R.; Tumpey, Terrence M.; Hidajat, Rachmat; Zsak, Aniko; Chrzastek, Klaudia; Tretyakova, Irina; Pushko, Peter

    2016-01-01

    Highly pathogenic avian influenza (HPAI) viruses, especially H5N1 strains, represent a public health threat and cause widespread morbidity and mortality in domestic poultry. Recombinant virus-like particles (VLPs) represent a promising novel vaccine approach to control avian influenza including HPAI strains. Influenza VLPs contain viral hemagglutinin (HA), which can be expressed in cell culture within highly immunogenic VLPs that morphologically and antigenically resemble influenza virions, except VLPs are non-infectious. Here we describe a recombinant VLP containing HA proteins derived from three distinct clades of H5N1 viruses as an experimental, broadly protective H5 avian influenza vaccine. A baculovirus vector was configured to co-express the H5 genes from recent H5N1 HPAI isolates A/chicken/Germany/2014 (clade 2.3.4.4), A/chicken/West Java/Subang/29/2007 (clade 2.1.3) and A/chicken/Egypt/121/2012 (clade 2.2.1). Co-expression of these genes in Sf9 cells along with influenza neuraminidase (NA) and retrovirus gag genes resulted in production of triple-clade H555 VLPs that exhibited hemagglutination activity and morphologically resembled influenza virions. Vaccination of chickens with these VLPs resulted in induction of serum antibody responses and efficient protection against experimental challenges with three different viruses including the recent U.S. H5N8 HPAI isolate. We conclude that these novel triple-clade VLPs represent a feasible strategy for simultaneously evoking protective antibodies against multiple variants of H5 influenza virus. PMID:26868083

  5. Multiple introductions of highly pathogenic avian influenza H5N1 viruses into Bangladesh

    PubMed Central

    Marinova-Petkova, Atanaska; Feeroz, Mohammed M; Rabiul Alam, SM; Kamrul Hasan, M; Akhtar, Sharmin; Jones-Engel, Lisa; Walker, David; McClenaghan, Laura; Rubrum, Adam; Franks, John; Seiler, Patrick; Jeevan, Trushar; McKenzie, Pamela; Krauss, Scott; Webby, Richard J; Webster, Robert G

    2014-01-01

    Highly pathogenic H5N1 and low pathogenic H9N2 influenza viruses are endemic to poultry markets in Bangladesh and have cocirculated since 2008. H9N2 influenza viruses circulated constantly in the poultry markets, whereas highly pathogenic H5N1 viruses occurred sporadically, with peaks of activity in cooler months. Thirty highly pathogenic H5N1 influenza viruses isolated from poultry were characterized by antigenic, molecular, and phylogenetic analyses. Highly pathogenic H5N1 influenza viruses from clades 2.2.2 and 2.3.2.1 were isolated from live bird markets only. Phylogenetic analysis of the 30 H5N1 isolates revealed multiple introductions of H5N1 influenza viruses in Bangladesh. There was no reassortment between the local H9N2 influenza viruses and H5N1 genotype, despite their prolonged cocirculation. However, we detected two reassortant H5N1 viruses, carrying the M gene from the Chinese H9N2 lineage, which briefly circulated in the Bangladesh poultry markets and then disappeared. On the other hand, interclade reassortment occurred within H5N1 lineages and played a role in the genesis of the currently dominant H5N1 viruses in Bangladesh. Few ‘human-like' mutations in H5N1 may account for the limited number of human cases. Antigenically, clade 2.3.2.1 H5N1 viruses in Bangladesh have evolved since their introduction and are currently mainly homogenous, and show evidence of recent antigenic drift. Although reassortants containing H9N2 genes were detected in live poultry markets in Bangladesh, these reassortants failed to supplant the dominant H5N1 lineage. PMID:26038508

  6. The avian-origin PB1 gene segment facilitated replication and transmissibility of the H3N2/1968 pandemic influenza virus.

    PubMed

    Wendel, Isabel; Rubbenstroth, Dennis; Doedt, Jennifer; Kochs, Georg; Wilhelm, Jochen; Staeheli, Peter; Klenk, Hans-Dieter; Matrosovich, Mikhail

    2015-04-01

    The H2N2/1957 and H3N2/1968 pandemic influenza viruses emerged via the exchange of genomic RNA segments between human and avian viruses. The avian hemagglutinin (HA) allowed the hybrid viruses to escape preexisting immunity in the human population. Both pandemic viruses further received the PB1 gene segment from the avian parent (Y. Kawaoka, S. Krauss, and R. G. Webster, J Virol 63:4603-4608, 1989), but the biological significance of this observation was not understood. To assess whether the avian-origin PB1 segment provided pandemic viruses with some selective advantage, either on its own or via cooperation with the homologous HA segment, we modeled by reverse genetics the reassortment event that led to the emergence of the H3N2/1968 pandemic virus. Using seasonal H2N2 virus A/California/1/66 (Cal) as a surrogate precursor human virus and pandemic virus A/Hong Kong/1/68 (H3N2) (HK) as a source of avian-derived PB1 and HA gene segments, we generated four reassortant recombinant viruses and compared pairs of viruses which differed solely by the origin of PB1. Replacement of the PB1 segment of Cal by PB1 of HK facilitated viral polymerase activity, replication efficiency in human cells, and contact transmission in guinea pigs. A combination of PB1 and HA segments of HK did not enhance replicative fitness of the reassortant virus compared with the single-gene PB1 reassortant. Our data suggest that the avian PB1 segment of the 1968 pandemic virus served to enhance viral growth and transmissibility, likely by enhancing activity of the viral polymerase complex. Despite the high impact of influenza pandemics on human health, some mechanisms underlying the emergence of pandemic influenza viruses still are poorly understood. Thus, it was unclear why both H2N2/1957 and H3N2/1968 reassortant pandemic viruses contained, in addition to the avian HA, the PB1 gene segment of the avian parent. Here, we addressed this long-standing question by modeling the emergence of the H3N2

  7. The Avian-Origin PB1 Gene Segment Facilitated Replication and Transmissibility of the H3N2/1968 Pandemic Influenza Virus

    PubMed Central

    Wendel, Isabel; Rubbenstroth, Dennis; Doedt, Jennifer; Kochs, Georg; Wilhelm, Jochen; Staeheli, Peter; Klenk, Hans-Dieter

    2015-01-01

    ABSTRACT The H2N2/1957 and H3N2/1968 pandemic influenza viruses emerged via the exchange of genomic RNA segments between human and avian viruses. The avian hemagglutinin (HA) allowed the hybrid viruses to escape preexisting immunity in the human population. Both pandemic viruses further received the PB1 gene segment from the avian parent (Y. Kawaoka, S. Krauss, and R. G. Webster, J Virol 63:4603–4608, 1989), but the biological significance of this observation was not understood. To assess whether the avian-origin PB1 segment provided pandemic viruses with some selective advantage, either on its own or via cooperation with the homologous HA segment, we modeled by reverse genetics the reassortment event that led to the emergence of the H3N2/1968 pandemic virus. Using seasonal H2N2 virus A/California/1/66 (Cal) as a surrogate precursor human virus and pandemic virus A/Hong Kong/1/68 (H3N2) (HK) as a source of avian-derived PB1 and HA gene segments, we generated four reassortant recombinant viruses and compared pairs of viruses which differed solely by the origin of PB1. Replacement of the PB1 segment of Cal by PB1 of HK facilitated viral polymerase activity, replication efficiency in human cells, and contact transmission in guinea pigs. A combination of PB1 and HA segments of HK did not enhance replicative fitness of the reassortant virus compared with the single-gene PB1 reassortant. Our data suggest that the avian PB1 segment of the 1968 pandemic virus served to enhance viral growth and transmissibility, likely by enhancing activity of the viral polymerase complex. IMPORTANCE Despite the high impact of influenza pandemics on human health, some mechanisms underlying the emergence of pandemic influenza viruses still are poorly understood. Thus, it was unclear why both H2N2/1957 and H3N2/1968 reassortant pandemic viruses contained, in addition to the avian HA, the PB1 gene segment of the avian parent. Here, we addressed this long-standing question by modeling the

  8. Genetic Characterization of H1N1 and H1N2 Influenza A Viruses Circulating in Ontario Pigs in 2012

    PubMed Central

    Grgić, Helena; Costa, Marcio; Friendship, Robert M.; Carman, Susy; Nagy, Éva; Poljak, Zvonimir

    2015-01-01

    The objective of this study was to characterize H1N1 and H1N2 influenza A virus isolates detected during outbreaks of respiratory disease in pig herds in Ontario (Canada) in 2012. Six influenza viruses were included in analysis using full genome sequencing based on the 454 platform. In five H1N1 isolates, all eight segments were genetically related to 2009 pandemic virus (A(H1N1)pdm09). One H1N2 isolate had hemagglutinin (HA), polymerase A (PA) and non-structural (NS) genes closely related to A(H1N1)pdm09, and neuraminidase (NA), matrix (M), polymerase B1 (PB1), polymerase B2 (PB2), and nucleoprotein (NP) genes originating from a triple-reassortant H3N2 virus (tr H3N2). The HA gene of five Ontario H1 isolates exhibited high identity of 99% with the human A(H1N1)pdm09 [A/Mexico/InDRE4487/09] from Mexico, while one Ontario H1N1 isolate had only 96.9% identity with this Mexican virus. Each of the five Ontario H1N1 viruses had between one and four amino acid (aa) changes within five antigenic sites, while one Ontario H1N2 virus had two aa changes within two antigenic sites. Such aa changes in antigenic sites could have an effect on antibody recognition and ultimately have implications for immunization practices. According to aa sequence analysis of the M2 protein, Ontario H1N1 and H1N2 viruses can be expected to offer resistance to adamantane derivatives, but not to neuraminidase inhibitors. PMID:26030614

  9. Computational 3D structures of drug-targeting proteins in the 2009-H1N1 influenza A virus

    NASA Astrophysics Data System (ADS)

    Du, Qi-Shi; Wang, Shu-Qing; Huang, Ri-Bo; Chou, Kuo-Chen

    2010-01-01

    The neuraminidase (NA) and M2 proton channel of influenza virus are the drug-targeting proteins, based on which several drugs were developed. However these once powerful drugs encountered drug-resistant problem to the H5N1 and H1N1 flu. To address this problem, the computational 3D structures of NA and M2 proteins of 2009-H1N1 influenza virus were built using the molecular modeling technique and computational chemistry method. Based on the models the structure features of NA and M2 proteins were analyzed, the docking structures of drug-protein complexes were computed, and the residue mutations were annotated. The results may help to solve the drug-resistant problem and stimulate designing more effective drugs against 2009-H1N1 influenza pandemic.

  10. Inferring the global phylodynamics of influenza A/H3N2 viruses in Taiwan.

    PubMed

    Gong, Yu-Nong; Tsao, Kuo-Chien; Chen, Guang-Wu

    2018-02-20

    Influenza A/H3N2 viruses are characterized by highly mutated RNA genomes. In this study, we focused on tracing the phylodynamics of Taiwanese strains over the past four decades. All Taiwanese H3N2 HA1 sequences and references were downloaded from public database. A Bayesian skyline plot (BSP) and phylogenetic tree were used to analyze the evolutionary history, and Bayesian phylogeographic analysis was applied to predict the spatiotemporal migrations of influenza outbreaks. Genetic diversity was found to have peaked near the summer of 2009 in BSP, in addition to the two earlier reported ones in summer of 2005 and 2007. We predicted their spatiotemporal migrations and found the summer epidemic of 2005 from Korea, and 2007 and 2009 from the Western United States. BSP also predicted an elevated genetic diversity in 2015-2017. Quasispecies were found over approximately 20% of the strains included in this time span. In addition, a first-time seen N31S mutation was noted in Taiwan in 2016-2017. We comprehensively investigated the evolutionary history of Taiwanese strains in 1979-2017. An epidemic caution could thus be raised if genetic diversity was found to have peaked. An example showed a newly-discovered cluster in 2016-2017 strains featuring a mutation N31S together with HA-160 quasispecies. Phylogeographic analysis, moreover, provided useful insights in tracing the possible source and migrations of these epidemics around the world. We demonstrated that Asian destinations including Taiwan were the immediate followers, while U.S. continent was predicted the origin of two summer epidemics in 2007 and 2009. Copyright © 2018. Published by Elsevier B.V.

  11. An H5N1-based matrix protein 2 ectodomain tetrameric peptide vaccine provides cross-protection against lethal infection with H7N9 influenza virus.

    PubMed

    Leung, Ho-Chuen; Chan, Chris Chung-Sing; Poon, Vincent Kwok-Man; Zhao, Han-Jun; Cheung, Chung-Yan; Ng, Fai; Huang, Jian-Dong; Zheng, Bo-Jian

    2015-04-01

    In March 2013, a patient infected with a novel avian influenza A H7N9 virus was reported in China. Since then, there have been 458 confirmed infection cases and 177 deaths. The virus contains several human-adapted markers, indicating that H7N9 has pandemic potential. The outbreak of this new influenza virus highlighted the need for the development of universal influenza vaccines. Previously, we demonstrated that a tetrameric peptide vaccine based on the matrix protein 2 ectodomain (M2e) of the H5N1 virus (H5N1-M2e) could protect mice from lethal infection with different clades of H5N1 and 2009 pandemic H1N1 influenza viruses. In this study, we investigated the cross-protection of H5N1-M2e against lethal infection with the new H7N9 virus. Although five amino acid differences existed at positions 13, 14, 18, 20, and 21 between M2e of H5N1 and H7N9, H5N1-M2e vaccination with either Freund's adjuvant or the Sigma adjuvant system (SAS) induced a high level of anti-M2e antibody, which cross-reacted with H7N9-M2e peptide. A mouse-adapted H7N9 strain, A/Anhui/01/2013m, was used for lethal challenge in animal experiments. H5N1-M2e vaccination provided potent cross-protection against lethal challenge of the H7N9 virus. Reduced viral replication and histopathological damage of mouse lungs were also observed in the vaccinated mice. Our results suggest that the tetrameric H5N1-M2e peptide vaccine could protect against different subtypes of influenza virus infections. Therefore, this vaccine may be an ideal candidate for developing a universal vaccine to prevent the reemergence of avian influenza A H7N9 virus and the emergence of potential novel reassortants of influenza virus.

  12. Efficient replication and strong induction of innate immune responses by H9N2 avian influenza virus in human dendritic cells.

    PubMed

    Westenius, Veera; Mäkelä, Sanna M; Ziegler, Thedi; Julkunen, Ilkka; Österlund, Pamela

    2014-12-01

    Avian influenza A (H9N2) viruses have occasionally been identified in humans with upper respiratory tract infections. The novel H7N9/2013 virus identified in China shows that a low pathogenic avian influenza (LPAI) virus can be highly pathogenic in humans. Therefore, it is important to understand virus-host cell interactions and immune responses triggered by LPAI viruses in humans. We found that LPAI A/Hong Kong/1073/99 (H9N2) virus replicated efficiently in human dendritic cells (DCs). The H9N2 virus induced strong IFN gene expression although with different kinetics than seasonal influenza A/Beijing/353/89 (H3N2) virus. IFN inducible antiviral proteins were produced in H9N2 virus-infected cells at the same level as in H3N2 infection. The H9N2 virus was extremely sensitive to the antiviral actions of type I IFNs. These results indicate that the avian influenza H9N2 virus is inducing a strong antiviral IFN response in human DCs. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. [Investigation on a seasonal influenza accompanying with the first locale novel A/H1N1 influenza outbreak in China].

    PubMed

    Yuan, Jun; Li, Mei-xia; Liu, Yu-fei; Di, Biao; Xiao, Xiao-ling; Mao, Xin-wu; Wu, Ye-jian; Xie, Hua-ping; Xie, Zhao-jun; Zhang, Hao; Liu, Jian-ping; Li, Hai-lin; Shen, Ji-chuan; Yang, Zhi-cong; Wang, Ming

    2009-10-01

    To timely summarize past experience and to provide more pertinent reference for control and prevention in A/H1N1 cases in influenza season. During May 25 to 31, 2009, 2 secondary community cases caused by a influenza A/H1N1 imported case. In the close contacts of 3 A/H1N1 cases, 14 had some aspirator symptoms onset, such as fever (> or = 37.5 degrees C), cough, sore throat and etc. Laboratory tests excluded the infection of A/H1N1 influenza. For throat swab test for the 14 cases, 7 were tested for seasonal influenza virus. A face-to-face or telephone interview was conducted by CDC staff to collect information of 62 close contacts. Of 14 fever cases, there was no significant by differences by age[15-age group: 19.2% (5/26), over 25-age group: 25.0% (9/36); chi(2) = 0.287, P = 0.592]; by sex group [24.0% (6/25) for male and 21.6% (8/37) for female; chi(2) = 0.048, P = 0.826], by working units [dressing and design, photograph, saleroom and others, consumer group: 42.1% (8/19), 27.3% (3/11), 12.5% (2/16) and 6.3% (1/16); chi(2) = 7.653, P = 0.054], by dormitory style [dormitory style = 33.3% (4/12), non-dormitory style = 29.4% (10/34); chi(2) = 0.699, P = 0.403]. All the cases had fever (37.5 - 37.9 degrees C), no case had diarrhea. One in 3 A/H1N1 cases had diarrhea. All the 14 cases were negative result for A/H1N1 RNA. Six from 7 cases were positive for seasonal influenza test. This was a seasonal influenza outbreak happened in the close contacts of first confirmed A/H1N1 cases in community in mainland China. It showed that we should exclude the seasonal influenza in the investigation of A/H1N1 cases in the seasonal influenza period in some time. It is necessary to take effective measure to strengthen the control and prevention of seasonal influenza.

  14. Genomic analysis of influenza A virus from captive wild boars in Brazil reveals a human-like H1N2 influenza virus.

    PubMed

    Biondo, Natalha; Schaefer, Rejane; Gava, Danielle; Cantão, Mauricio E; Silveira, Simone; Mores, Marcos A Z; Ciacci-Zanella, Janice R; Barcellos, David E S N

    2014-01-10

    Influenza is a viral disease that affects human and several animal species. In Brazil, H1N1, H3N2 and 2009 pandemic H1N1 A(H1N1)pdm09 influenza A viruses (IAV) circulate in domestic swine herds. Wild boars are also susceptible to IAV infection but in Brazil until this moment there are no reports of IAV infection in wild boars or in captive wild boars populations. Herein the occurrence of IAV in captive wild boars with the presence of lung consolidation lesions during slaughter was investigated. Lung samples were screened by RT-PCR for IAV detection. IAV positive samples were further analyzed by quantitative real-time PCR (qRRT-PCR), virus isolation, genomic sequencing, histopathology and immunohistochemistry (IHC). Eleven out of 60 lungs (18.3%) were positive for IAV by RT-PCR and seven out of the eleven were also positive for A(H1N1)pdm09 by qRRT-PCR. Chronic diffuse bronchopneumonia was observed in all samples and IHC analysis was negative for influenza A antigen. Full genes segments of H1N2 IAV were sequenced using Illumina's genome analyzer platform (MiSeq). The genomic analysis revealed that the HA and NA genes clustered with IAVs of the human lineage and the six internal genes were derived from the H1N1pdm09 IAV. This is the first report of a reassortant human-like H1N2 influenza virus infection in captive wild boars in Brazil and indicates the need to monitor IAV evolution in Suidae populations. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Vaccination with Killed but Metabolically Active E. coli Over-expressing Hemagglutinin Elicits Neutralizing Antibodies to H1N1 Swine Origin Influenza A Virus

    PubMed Central

    Liu, Pei-Feng; Wang, Yanhan; Liu, Yu-Tsueng; Huang, Chun-Ming

    2017-01-01

    There is a need for a fast and simple method for vaccine production to keep up with the pace of a rapidly spreading virus in the early phases of the influenza pandemic. The use of whole viruses produced in chicken eggs or recombinant antigens purified from various expression systems has presented considerable challenges, especially with lengthy processing times. Here, we use the killed but metabolically active (KBMA) Escherichia coli (E. coli) to harbor the hemagglutinin (HA) of swine origin influenza A (H1N1) virus (S-OIV) San Diego/01/09 (SD/H1N1-S-OIV). Intranasal vaccination of mice with KBMA E. coli SD/H1N1-S-OIV HA without adding exogenous adjuvants provoked detectable neutralizing antibodies against the virus-induced hemagglutination within three weeks. Boosting vaccination enhanced the titers of neutralizing antibodies, which can decrease viral infectivity in Madin-Darby canine kidney (MDCK) cells. The antibodies were found to specifically neutralize the SD/H1N1-S-OIV-, but not seasonal influenza viruses (H1N1 and H3N2), -induced hemagglutination. The use of KBMA E. coli as an egg-free system to produce anti-influenza vaccines makes unnecessary the rigorous purification of an antigen prior to immunization, providing an alternative modality to combat influenza virus in future outbreaks. PMID:28492063

  16. Early 2016/17 vaccine effectiveness estimates against influenza A(H3N2): I-MOVE multicentre case control studies at primary care and hospital levels in Europe

    PubMed Central

    Kissling, Esther; Rondy, Marc

    2017-01-01

    We measured early 2016/17 season influenza vaccine effectiveness (IVE) against influenza A(H3N2) in Europe using multicentre case control studies at primary care and hospital levels. IVE at primary care level was 44.1%, 46.9% and 23.4% among 0–14, 15–64 and ≥ 65 year-olds, and 25.7% in the influenza vaccination target group. At hospital level, IVE was 2.5%, 7.9% and 2.4% among ≥ 65, 65–79 and ≥ 80 year-olds. As in previous seasons, we observed suboptimal IVE against influenza A(H3N2). PMID:28230524

  17. Seasonal influenza A/H3N2 virus infection and IL-1Β, IL-10, IL-17, and IL-28 polymorphisms in Iranian population.

    PubMed

    Rogo, Lawal Dahiru; Rezaei, Farhad; Marashi, Seyed Mahdi; Yekaninejad, Mir Saeed; Naseri, Maryam; Ghavami, Nastaran; Mokhtari-Azad, Talat

    2016-12-01

    Increased blood cytokines is the main immunopathological process that were attributed to severe clinical outcomes in cases of influenza A/H3N2 virus infection. The study was aimed to investigate the polymorphisms of IL-1β, IL-10, IL-17, and IL-28 genes to find the possibility of their association with the clinical outcome of influenza A/H3N2 virus infection among the infected patients in Iran. This is a Case-Control study in which influenza A/H3N2 virus positive confirmed with real-time PCR were the cases. DNA samples from groups were genotyped for polymorphisms in rs16944 (IL-1β), rs1800872 (IL-10), rs2275913 (IL-17), and rs8099917 (IL-28). Confidence interval (95%CI) and Odds ratio (OR) were calculated. IL-17 rs2275913 (GG and AG) were associated with risk of infection with that were statistically significant (P < 0.05, OR = 2.08-2.94). IL-1β (rs16944) (GG) was associated with reduced risk of infection (P < 0.01, OR = 0.46). Genotype GG and GT of IL-10 (rs1800872) were associated with increased risk of infection with influenza A/H3N2 virus (P < 0.05, OR = 2.04-2.58). In addition, IL-28 (rs8099917) genotypes GG (P < 0.05, OR = 0.49) and TG (P < 0.05, OR = 0.59) were associated with reduced risk of ILI symptom while genotype TT (P < 0.01, OR = 4.31) was associated with increased risk of ILI symptom. The results of this study demonstrated that polymorphisms of genes involved in the inflammatory and anti-inflammatory process affect the outcome of disease caused by influenza A/H3N2 virus. Thorough insight on host immune response at the time of influenza A virus infection is required to ensure adequate patient care in the case of feature outbreaks. J. Med. Virol. 88:2078-2084, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Efficacy of clade 2.3.2 H5 commercial vaccines in protecting chickens from clade 2.3.4.4 H5N8 highly pathogenic avian influenza infection.

    PubMed

    Yuk, Seong-Su; Erdene-Ochir, T O; Kwon, Jung-Hoon; Noh, Jin-Yong; Hong, Woo-Tack; Jeong, Jei-Hyun; Jeong, Sol; Gwon, Gyeong-Bin; Shin, Jong-Il; Sur, Jung-Hyang; Song, Chang-Seon

    2017-03-01

    Emerging clade 2.3.4.4 of the highly pathogenic avian influenza (HPAI) virus strain H5N8, which had been detected sporadically in domestic poultry in China, started to affect wild birds and poultry in South Korea in 2014. The virus was spread to Germany, Italy, the Netherlands, United Kingdom, and even United States by migratory birds. Here, we tested currently used commercial clade 2.3.2 H5 vaccines to evaluate mortality, clinical signs, virus shedding, and histological damage after experimental infection of chickens with the clade 2.3.4.4 HPAI H5N8 virus. Although the vaccination protected chickens from death, it failed to prevent chickens from shedding the virus and from tissue damage according to histological examination. These results suggest that the use of appropriate vaccines that match the currently epidemic HPAI virus is recommended, and continuous HPAI surveillance and testing of currently used commercial vaccines should be performed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Outbreak of pandemic influenza A/H1N1 2009 in Nepal.

    PubMed

    Adhikari, Bal Ram; Shakya, Geeta; Upadhyay, Bishnu Prasad; Prakash Kc, Khagendra; Shrestha, Sirjana Devi; Dhungana, Guna Raj

    2011-03-23

    The 2009 flu pandemic is a global outbreak of a new strain of H1N1 influenza virus. Pandemic influenza A (H1N1) 2009 has posed a serious public health challenge world-wide. Nepal has started Laboratory diagnosis of Pandemic influenza A/H1N1 from mid June 2009 though active screening of febrile travellers with respiratory symptoms was started from April 27, 2009. Out of 609 collected samples, 302 (49.6%) were Universal Influenza A positive. Among the influenza A positive samples, 172(28.3%) were positive for Pandemic influenza A/H1N1 and 130 (21.3%) were Seasonal influenza A. Most of the pandemic cases (53%) were found among young people with ≤ 20 years. Case Fatality Ratio for Pandemic influenza A/H1N1 in Nepal was 1.74%. Upon Molecular characterization, all the isolated pandemic influenza A/H1N1 2009 virus found in Nepal were antigenically and genetically related to the novel influenza A/CALIFORNIA/07/2009-LIKE (H1N1)v type. The Pandemic 2009 influenza virus found in Nepal were antigenically and genetically related to the novel A/CALIFORNIA/07/2009-LIKE (H1N1)v type.

  20. Highly pathogenic avian influenza A(H7N3) virus in poultry workers, Mexico, 2012.

    PubMed

    Lopez-Martinez, Irma; Balish, Amanda; Barrera-Badillo, Gisela; Jones, Joyce; Nuñez-García, Tatiana E; Jang, Yunho; Aparicio-Antonio, Rodrigo; Azziz-Baumgartner, Eduardo; Belser, Jessica A; Ramirez-Gonzalez, José E; Pedersen, Janice C; Ortiz-Alcantara, Joanna; Gonzalez-Duran, Elizabeth; Shu, Bo; Emery, Shannon L; Poh, Mee K; Reyes-Teran, Gustavo; Vazquez-Perez, Joel A; Avila-Rios, Santiago; Uyeki, Timothy; Lindstrom, Stephen; Villanueva, Julie; Tokars, Jerome; Ruiz-Matus, Cuitláhuac; Gonzalez-Roldan, Jesus F; Schmitt, Beverly; Klimov, Alexander; Cox, Nancy; Kuri-Morales, Pablo; Davis, C Todd; Diaz-Quiñonez, José Alberto

    2013-01-01

    We identified 2 poultry workers with conjunctivitis caused by highly pathogenic avian influenza A(H7N3) viruses in Jalisco, Mexico. Genomic and antigenic analyses of 1 isolate indicated relatedness to poultry and wild bird subtype H7N3 viruses from North America. This isolate had a multibasic cleavage site that might have been derived from recombination with host rRNA.

  1. Low 2016/17 season vaccine effectiveness against hospitalised influenza A(H3N2) among elderly: awareness warranted for 2017/18 season.

    PubMed

    Rondy, Marc; Gherasim, Alin; Casado, Itziar; Launay, Odile; Rizzo, Caterina; Pitigoi, Daniela; Mickiene, Aukse; Marbus, Sierk D; Machado, Ausenda; Syrjänen, Ritva K; Pem-Novose, Iva; Horváth, Judith Krisztina; Larrauri, Amparo; Castilla, Jesús; Vanhems, Philippe; Alfonsi, Valeria; Ivanciuc, Alina E; Kuliese, Monika; van Gageldonk-Lafeber, Rianne; Gomez, Veronica; Ikonen, Niina; Lovric, Zvjezdana; Ferenczi, Annamária; Moren, Alain

    2017-10-01

    In a multicentre European hospital study we measured influenza vaccine effectiveness (IVE) against A(H3N2) in 2016/17. Adjusted IVE was 17% (95% confidence interval (CI): 1 to 31) overall; 25% (95% CI: 2 to 43) among 65-79-year-olds and 13% (95% CI: -15 to 30) among those ≥ 80 years. As the A(H3N2) vaccine component has not changed for 2017/18, physicians and public health experts should be aware that IVE could be low where A(H3N2) viruses predominate.

  2. Changes in adaptation of H5N2 highly pathogenic avian influenza H5 clade 2.3.4.4 viruses in chickens and mallards

    USDA-ARS?s Scientific Manuscript database

    H5N2 highly pathogenic avian influenza (HPAI) viruses caused a severe poultry outbreak in the United States (U.S.) during 2015. In order to examine changes in adaptation of this viral lineage, the infectivity, transmission and pathogenesis of poultry H5N2 viruses was investigated in chickens and mal...

  3. Prior infection of chickens with H1N1 or H1N2 avian influenza elicits partial heterologous protection against highly pathogenic H5N1.

    PubMed

    Nfon, Charles; Berhane, Yohannes; Pasick, John; Embury-Hyatt, Carissa; Kobinger, Gary; Kobasa, Darwyn; Babiuk, Shawn

    2012-01-01

    There is a critical need to have vaccines that can protect against emerging pandemic influenza viruses. Commonly used influenza vaccines are killed whole virus that protect against homologous and not heterologous virus. Using chickens we have explored the possibility of using live low pathogenic avian influenza (LPAI) A/goose/AB/223/2005 H1N1 or A/WBS/MB/325/2006 H1N2 to induce immunity against heterologous highly pathogenic avian influenza (HPAI) A/chicken/Vietnam/14/2005 H5N1. H1N1 and H1N2 replicated in chickens but did not cause clinical disease. Following infection, chickens developed nucleoprotein and H1 specific antibodies, and reduced H5N1 plaque size in vitro in the absence of H5 neutralizing antibodies at 21 days post infection (DPI). In addition, heterologous cell mediated immunity (CMI) was demonstrated by antigen-specific proliferation and IFN-γ secretion in PBMCs re-stimulated with H5N1 antigen. Following H5N1 challenge of both pre-infected and naïve controls chickens housed together, all naïve chickens developed acute disease and died while H1N1 or H1N2 pre-infected chickens had reduced clinical disease and 70-80% survived. H1N1 or H1N2 pre-infected chickens were also challenged with H5N1 and naïve chickens placed in the same room one day later. All pre-infected birds were protected from H5N1 challenge but shed infectious virus to naïve contact chickens. However, disease onset, severity and mortality was reduced and delayed in the naïve contacts compared to directly inoculated naïve controls. These results indicate that prior infection with LPAI virus can generate heterologous protection against HPAI H5N1 in the absence of specific H5 antibody.

  4. Prior Infection of Chickens with H1N1 or H1N2 Avian Influenza Elicits Partial Heterologous Protection against Highly Pathogenic H5N1

    PubMed Central

    Nfon, Charles; Berhane, Yohannes; Pasick, John; Embury-Hyatt, Carissa; Kobinger, Gary; Kobasa, Darwyn; Babiuk, Shawn

    2012-01-01

    There is a critical need to have vaccines that can protect against emerging pandemic influenza viruses. Commonly used influenza vaccines are killed whole virus that protect against homologous and not heterologous virus. Using chickens we have explored the possibility of using live low pathogenic avian influenza (LPAI) A/goose/AB/223/2005 H1N1 or A/WBS/MB/325/2006 H1N2 to induce immunity against heterologous highly pathogenic avian influenza (HPAI) A/chicken/Vietnam/14/2005 H5N1. H1N1 and H1N2 replicated in chickens but did not cause clinical disease. Following infection, chickens developed nucleoprotein and H1 specific antibodies, and reduced H5N1 plaque size in vitro in the absence of H5 neutralizing antibodies at 21 days post infection (DPI). In addition, heterologous cell mediated immunity (CMI) was demonstrated by antigen-specific proliferation and IFN-γ secretion in PBMCs re-stimulated with H5N1 antigen. Following H5N1 challenge of both pre-infected and naïve controls chickens housed together, all naïve chickens developed acute disease and died while H1N1 or H1N2 pre-infected chickens had reduced clinical disease and 70–80% survived. H1N1 or H1N2 pre-infected chickens were also challenged with H5N1 and naïve chickens placed in the same room one day later. All pre-infected birds were protected from H5N1 challenge but shed infectious virus to naïve contact chickens. However, disease onset, severity and mortality was reduced and delayed in the naïve contacts compared to directly inoculated naïve controls. These results indicate that prior infection with LPAI virus can generate heterologous protection against HPAI H5N1 in the absence of specific H5 antibody. PMID:23240067

  5. Reoccurrence of avian influenza A(H5N2) virus clade 2.3.4.4 in wild birds, Alaska, USA, 2016

    USDA-ARS?s Scientific Manuscript database

    We report reoccurrence of highly pathogenic avian influenza A(H5N2) virus clade 2.3.4.4 in a wild mallard in Alaska, USA, in August 2016. Identification of this virus in a migratory species confirms low-frequency persistence in North America and the potential for re-dissemination of the virus during...

  6. Antigenic variation of the human influenza A (H3N2) virus during the 2014-2015 winter season.

    PubMed

    Hua, Sha; Li, XiYan; Liu, Mi; Cheng, YanHui; Peng, YouSong; Huang, WeiJuan; Tan, MinJu; Wei, HeJiang; Guo, JunFeng; Wang, DaYan; Wu, AiPing; Shu, YueLong; Jiang, TaiJiao

    2015-09-01

    The human influenza A (H3N2) virus dominated the 2014-2015 winter season in many countries and caused massive morbidity and mortality because of its antigenic variation. So far, very little is known about the antigenic patterns of the recent H3N2 virus. By systematically mapping the antigenic relationships of H3N2 strains isolated since 2010, we discovered that two groups with obvious antigenic divergence, named SW13 (A/Switzerland/9715293/2013-like strains) and HK14 (A/Hong Kong/5738/2014-like strains), co-circulated during the 2014-2015 winter season. HK14 group co-circulated with SW13 in Europe and the United States during this season, while there were few strains of HK14 in mainland China, where SW13 has dominated since 2012. Furthermore, we found that substitutions near the receptor-binding site on hemagglutinin played an important role in the antigenic variation of both the groups. These findings provide a comprehensive understanding of the recent antigenic evolution of H3N2 virus and will aid in the selection of vaccine strains.

  7. NS1 Protein Amino Acid Changes D189N and V194I Affect Interferon Responses, Thermosensitivity, and Virulence of Circulating H3N2 Human Influenza A Viruses

    PubMed Central

    Nogales, Aitor; Martinez-Sobrido, Luis

    2016-01-01

    ABSTRACT Influenza virus NS1 protein is a nonstructural, multifunctional protein that counteracts host innate immune responses, modulating virus pathogenesis. NS1 protein variability in subjects infected with H3N2 influenza A viruses (IAVs) during the 2010/2011 season was analyzed, and amino acid changes in residues 86, 189, and 194 were found. The consequences of these mutations for the NS1-mediated inhibition of IFN responses and the pathogenesis of the virus were evaluated, showing that NS1 mutations D189N and V194I impaired the ability of the NS1 protein to inhibit general gene expression, most probably because these mutations decreased the binding of NS1 to the cleavage and polyadenylation specificity factor 30 (CPSF30). A recombinant A/Puerto Rico/8/34 (PR8) H1N1 virus encoding the H3N2 NS1-D189N protein was slightly attenuated, whereas the virus encoding the H3N2 NS1-V194I protein was further attenuated in mice. The higher attenuation of this virus could not be explained by differences in the ability of the two NS1 proteins to counteract host innate immune responses, indicating that another factor must be responsible. In fact, we showed that the virus encoding the H3N2 NS1-V194I protein demonstrated a temperature-sensitive (ts) phenotype, providing a most likely explanation for the stronger attenuation observed. As far as we know, this is the first description of a mutation in NS1 residue 194 conferring a ts phenotype. These studies are relevant in order to identify new residues important for NS1 functions and in human influenza virus surveillance to assess mutations affecting the pathogenicity of circulating viruses. IMPORTANCE Influenza viral infections represent a serious public health problem, with influenza virus causing a contagious respiratory disease that is most effectively prevented through vaccination. The multifunctional nonstructural protein 1 (NS1) is the main viral factor counteracting the host antiviral response. Therefore, influenza virus

  8. NS1 Protein Amino Acid Changes D189N and V194I Affect Interferon Responses, Thermosensitivity, and Virulence of Circulating H3N2 Human Influenza A Viruses.

    PubMed

    Nogales, Aitor; Martinez-Sobrido, Luis; Topham, David J; DeDiego, Marta L

    2017-03-01

    Influenza virus NS1 protein is a nonstructural, multifunctional protein that counteracts host innate immune responses, modulating virus pathogenesis. NS1 protein variability in subjects infected with H3N2 influenza A viruses (IAVs) during the 2010/2011 season was analyzed, and amino acid changes in residues 86, 189, and 194 were found. The consequences of these mutations for the NS1-mediated inhibition of IFN responses and the pathogenesis of the virus were evaluated, showing that NS1 mutations D189N and V194I impaired the ability of the NS1 protein to inhibit general gene expression, most probably because these mutations decreased the binding of NS1 to the cleavage and polyadenylation specificity factor 30 (CPSF30). A recombinant A/Puerto Rico/8/34 (PR8) H1N1 virus encoding the H3N2 NS1-D189N protein was slightly attenuated, whereas the virus encoding the H3N2 NS1-V194I protein was further attenuated in mice. The higher attenuation of this virus could not be explained by differences in the ability of the two NS1 proteins to counteract host innate immune responses, indicating that another factor must be responsible. In fact, we showed that the virus encoding the H3N2 NS1-V194I protein demonstrated a temperature-sensitive (ts) phenotype, providing a most likely explanation for the stronger attenuation observed. As far as we know, this is the first description of a mutation in NS1 residue 194 conferring a ts phenotype. These studies are relevant in order to identify new residues important for NS1 functions and in human influenza virus surveillance to assess mutations affecting the pathogenicity of circulating viruses. IMPORTANCE Influenza viral infections represent a serious public health problem, with influenza virus causing a contagious respiratory disease that is most effectively prevented through vaccination. The multifunctional nonstructural protein 1 (NS1) is the main viral factor counteracting the host antiviral response. Therefore, influenza virus

  9. Carnosine markedly ameliorates H9N2 swine influenza virus-induced acute lung injury

    PubMed Central

    Wang, Cunlian; Zhang, Ruihua; Xu, Mingju; Liu, Baojian; Wei, Dong; Wang, Guohua; Tian, Shufei

    2015-01-01

    Oxidative stress injury is an important pathogenesis of influenza virus in critically ill patients. The present study investigated the efficacy of carnosine, an antioxidant and free radical scavenger, on a model of acute lung injury (ALI) induced by H9N2 swine influenza virus. Female specific-pathogen-free BALB/c mice were randomized into four groups and treated as follows: (1) H9N2 group, (2) mock control group, (3) H9N2+carnosine group and (4) carnosine control group. The H9N2 group mice were inoculated intranasally with A/Swine/Hebei/012/2008/ (H9N2) virus (100 μl) in allantoic fluid (AF), whilst mock-infected animals were intranasally inoculated with non-infectious AF. Carnosine [10 mg (kg body mass)− 1] was administered orally (100 μl) for 7 days consecutively. The survival rate, lung water content, TNF-α and IL-1β levels, lung histopathology, myeloperoxidase (MPO) activity, and Toll-like receptor (TLR)-4 levels were determined at 2, 4, 6, 8 and 14 days after inoculation. Carnosine treatment effectively decreased the mortality (43 versus 75 %, P < 0.05), significantly ameliorated pathological lesions in lungs and decreased the lung wet/dry mass ratio (P < 0.05). It also inhibited MPO activity, suppressed TNF-α and IL-1β release, decreased the H9N2 viral titre, and markedly inhibited levels of TLR-4 mRNA and protein in the lungs of infected mice (P < 0.05), which supported the use of carnosine for managing severe influenza cases. PMID:26233716

  10. Influenza Risk Management: Lessons Learned from an A(H1N1) pdm09 Outbreak Investigation in an Operational Military Setting

    DTIC Science & Technology

    2013-07-10

    of the virus in Spain was detected during an outbreak investigation of influenza -like illness (ILI) in soldiers from an engineering military academy...SwInfA primer and probe set) and specific A(H1N1) pdm09 influenza A viruses using SwH1 primer and probe set developed by CDC, Atlanta (WHO...CY062374, CY062375 and CY062376. Viral culture Influenza viruses were isolated from clinical samples by infecting Madin Darby Canine Kidney (MDCK

  11. Fatal influenza A (H5N1) virus Infection in zoo-housed Tigers in Yunnan Province, China

    PubMed Central

    Hu, Tingsong; Zhao, Huanyun; Zhang, Yan; Zhang, Wendong; Kong, Qiang; Zhang, Zhixiao; Cui, Qinghua; Qiu, Wei; Deng, Bo; Fan, Quanshui; Zhang, Fuqiang

    2016-01-01

    From 2014 to 2015, three cases of highly pathogenic avian influenza infection occurred in zoo-housed north-east China tigers (Panthera tigris ssp.altaica) and four tigers died of respiratory distress in succession in Yunnan Province, China. We isolated and characterized three highly pathogenic avian influenza A(H5N1) viruses from these tigers. Phylogenetic analysis indicated that A/tiger /Yunnan /tig1404 /2014(H5N1) belongs to the provisional subclade 2.3.4.4e which were novel reassortant influenza A (H5N1) viruses with six internal genes from avian influenza A (H5N2) viruses. The HA gene of the isolated A/tiger /Yunnan /tig1412 /2014(H5N1) virus belongs to the subclade 2.3.2.1b. The isolated A/tiger /Yunnan /tig1508/2015 (H5N1) virus was a novel reassortant influenza A (H5N1) virus with three internal genes (PB2, PB1 and M) from H9N2 virus and belongs to the subclade 2.3.2.1c. PMID:27162026

  12. Fatal influenza A (H5N1) virus Infection in zoo-housed Tigers in Yunnan Province, China.

    PubMed

    Hu, Tingsong; Zhao, Huanyun; Zhang, Yan; Zhang, Wendong; Kong, Qiang; Zhang, Zhixiao; Cui, Qinghua; Qiu, Wei; Deng, Bo; Fan, Quanshui; Zhang, Fuqiang

    2016-05-10

    From 2014 to 2015, three cases of highly pathogenic avian influenza infection occurred in zoo-housed north-east China tigers (Panthera tigris ssp.altaica) and four tigers died of respiratory distress in succession in Yunnan Province, China. We isolated and characterized three highly pathogenic avian influenza A(H5N1) viruses from these tigers. Phylogenetic analysis indicated that A/tiger /Yunnan /tig1404 /2014(H5N1) belongs to the provisional subclade 2.3.4.4e which were novel reassortant influenza A (H5N1) viruses with six internal genes from avian influenza A (H5N2) viruses. The HA gene of the isolated A/tiger /Yunnan /tig1412 /2014(H5N1) virus belongs to the subclade 2.3.2.1b. The isolated A/tiger /Yunnan /tig1508/2015 (H5N1) virus was a novel reassortant influenza A (H5N1) virus with three internal genes (PB2, PB1 and M) from H9N2 virus and belongs to the subclade 2.3.2.1c.

  13. Cross-protective immunity against influenza A/H1N1 virus challenge in mice immunized with recombinant vaccine expressing HA gene of influenza A/H5N1 virus

    PubMed Central

    2013-01-01

    Background Influenza virus undergoes constant antigenic evolution, and therefore influenza vaccines must be reformulated each year. Time is necessary to produce a vaccine that is antigenically matched to a pandemic strain. A goal of many research works is to produce universal vaccines that can induce protective immunity to influenza A viruses of various subtypes. Despite intensive studies, the precise mechanisms of heterosubtypic immunity (HSI) remain ambiguous. Method In this study, mice were vaccinated with recombinant virus vaccine (rL H5), in which the hemagglutinin (HA) gene of influenza A/H5N1 virus was inserted into the LaSota Newcastle disease virus (NDV) vaccine strain. Following a challenge with influenza A/H1N1 virus, survival rates and lung index of mice were observed. The antibodies to influenza virus were detected using hemagglutination inhibition (HI). The lung viral loads, lung cytokine levels and the percentages of both IFN-γ+CD4+ and IFN-γ+CD8+ T cells in spleen were detected using real-time RT-PCR, ELISA and flow cytometry respectively. Results In comparison with the group of mice given phosphate-buffered saline (PBS), the mice vaccinated with rL H5 showed reductions in lung index and viral replication in the lungs after a challenge with influenza A/H1N1 virus. The antibody titer in group 3 (H1N1-H1N1) was significantly higher than that in other groups which only low levels of antibody were detected. IFN-γ levels increased in both group 1 (rL H5-H1N1) and group 2 (rL H5 + IL-2-H1N1). And the IFN-γ level of group 2 was significantly higher than that of group 1. The percentages of both IFN-γ+CD4+ and IFN-γ+CD8+ T cells in group 1 (rL H5-H1N1) and group 2 (rL H5 + IL-2-H1N1) increased significantly, as measured by flow cytometry. Conclusion After the mice were vaccinated with rL H5, cross-protective immune response was induced, which was against heterosubtypic influenza A/H1N1 virus. To some extent, cross-protective immune response can

  14. Reoccurrence of Avian Influenza A(H5N2) Virus Clade 2.3.4.4 in Wild Birds, Alaska, USA, 2016.

    PubMed

    Lee, Dong-Hun; Torchetti, Mia K; Killian, Mary Lea; DeLiberto, Thomas J; Swayne, David E

    2017-02-01

    We report reoccurrence of highly pathogenic avian influenza A(H5N2) virus clade 2.3.4.4 in a wild mallard in Alaska, USA, in August 2016. Identification of this virus in a migratory species confirms low-frequency persistence in North America and the potential for re-dissemination of the virus during the 2016 fall migration.

  15. Experimental infection with H1N1 European swine influenza virus protects pigs from an infection with the 2009 pandemic H1N1 human influenza virus.

    PubMed

    Busquets, Núria; Segalés, Joaquim; Córdoba, Lorena; Mussá, Tufaria; Crisci, Elisa; Martín-Valls, Gerard E; Simon-Grifé, Meritxell; Pérez-Simó, Marta; Pérez-Maíllo, Monica; Núñez, Jose I; Abad, Francesc X; Fraile, Lorenzo; Pina, Sonia; Majó, Natalia; Bensaid, Albert; Domingo, Mariano; Montoya, María

    2010-01-01

    The recent pandemic caused by human influenza virus A(H1N1) 2009 contains ancestral gene segments from North American and Eurasian swine lineages as well as from avian and human influenza lineages. The emergence of this A(H1N1) 2009 poses a potential global threat for human health and the fact that it can infect other species, like pigs, favours a possible encounter with other influenza viruses circulating in swine herds. In Europe, H1N1, H1N2 and H3N2 subtypes of swine influenza virus currently have a high prevalence in commercial farms. To better assess the risk posed by the A(H1N1) 2009 in the actual situation of swine farms, we sought to analyze whether a previous infection with a circulating European avian-like swine A/Swine/Spain/53207/2004 (H1N1) influenza virus (hereafter referred to as SwH1N1) generated or not cross-protective immunity against a subsequent infection with the new human pandemic A/Catalonia/63/2009 (H1N1) influenza virus (hereafter referred to as pH1N1) 21 days apart. Pigs infected only with pH1N1 had mild to moderate pathological findings, consisting on broncho-interstitial pneumonia. However, pigs inoculated with SwH1N1 virus and subsequently infected with pH1N1 had very mild lung lesions, apparently attributed to the remaining lesions caused by SwH1N1 infection. These later pigs also exhibited boosted levels of specific antibodies. Finally, animals firstly infected with SwH1N1 virus and latter infected with pH1N1 exhibited undetectable viral RNA load in nasal swabs and lungs after challenge with pH1N1, indicating a cross-protective effect between both strains. © INRA, EDP Sciences, 2010.

  16. Progressive antigenic drift and phylogeny of human influenza A(H3N2) virus over five consecutive seasons (2009-2013) in Hangzhou, China.

    PubMed

    Shao, Tie-Juan; Li, Jun; Yu, Xin-Fen; Kou, Yu; Zhou, Yin-Yan; Qian, Xin

    2014-12-01

    Vaccine efficacy (VE) can be affected by progressive antigenic drift or any new reassortment of influenza viruses. To effectively track the evolution of human influenza A(H3N2) virus circulating in Hangzhou, China, a total of 65 clinical specimens were selected randomly from outpatients infected by A(H3N2) viruses during the study period from November 2009 to December 2013. The results of reduced VE and antigenic drift of the correspondent epitopes (C-D-E to A-B) suggest that the current vaccine provides suboptimal protection against the A(H3N2) strains circulating recently. Phylogenetic analysis of the entire HA and NA sequences demonstrated that these two genes underwent independent evolutionary pathways during recent seasons. The H3-based phylogenetic tree showed that a special strain A/Hangzhou/A289/2012 fell in a cluster among viruses with reduced VE predominantly circulating in 2013. Our findings underscore a possible early warning for the circulation of A(H3N2) variants with antigenic drift during the previous seasons. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Evolution of the H9N2 influenza genotype that facilitated the genesis of the novel H7N9 virus.

    PubMed

    Pu, Juan; Wang, Shuoguo; Yin, Yanbo; Zhang, Guozhong; Carter, Robert A; Wang, Jinliang; Xu, Guanlong; Sun, Honglei; Wang, Min; Wen, Chu; Wei, Yandi; Wang, Dongdong; Zhu, Baoli; Lemmon, Gordon; Jiao, Yuannian; Duan, Susu; Wang, Qian; Du, Qian; Sun, Meng; Bao, Jinnan; Sun, Yipeng; Zhao, Jixun; Zhang, Hui; Wu, Gang; Liu, Jinhua; Webster, Robert G

    2015-01-13

    The emergence of human infection with a novel H7N9 influenza virus in China raises a pandemic concern. Chicken H9N2 viruses provided all six of the novel reassortant's internal genes. However, it is not fully understood how the prevalence and evolution of these H9N2 chicken viruses facilitated the genesis of the novel H7N9 viruses. Here we show that over more than 10 y of cocirculation of multiple H9N2 genotypes, a genotype (G57) emerged that had changed antigenicity and improved adaptability in chickens. It became predominant in vaccinated farm chickens in China, caused widespread outbreaks in 2010-2013 before the H7N9 viruses emerged in humans, and finally provided all of their internal genes to the novel H7N9 viruses. The prevalence and variation of H9N2 influenza virus in farmed poultry could provide an important early warning of the emergence of novel reassortants with pandemic potential.

  18. Different evolutionary trends of swine H1N2 influenza viruses in Italy compared to European viruses

    PubMed Central

    2013-01-01

    European H1N2 swine influenza viruses (EU H1N2SIVs) arose from multiple reassortment events among human H1N1, human H3N2, and avian influenza viruses. We investigated the evolutionary dynamics of 53 Italian H1N2 strains by comparing them with EU H1N2 SIVs. Hemagglutinin (HA) phylogeny revealed Italian strains fell into four groups: Group A and B (41 strains) had a human H1 similar to EU H1N2SIVs, which probably originated in 1986. However Group B (38 strains) formed a subgroup that had a two-amino acid deletion at positions 146/147 in HA. Group C (11 strains) contained an avian H1 that probably originated in 1996, and Group D (1 strain) had an H1 characteristic of the 2009 pandemic strain. Neuraminidase (NA) phylogeny suggested a series of genomic reassortments had occurred. Group A had an N2 that originated from human H3N2 in the late 1970s. Group B had different human N2 that most likely arose from a reassortment with the more recent human H3N2 virus, which probably occurred in 2000. Group C had an avian-like H1 combined with an N2 gene from one of EU H1N2SIVs, EU H3N2SIVs or Human H3N2. Group D was part of the EU H3N2SIVs clade. Although selection pressure for HA and NA was low, several positively selected sites were identified in both proteins, some of which were antigenic, suggesting selection influenced the evolution of SIV. The data highlight different evolutionary trends between European viruses and currently circulating Italian B strains and show the establishment of reassortant strains involving human viruses in Italian pigs. PMID:24289094

  19. Different evolutionary trends of swine H1N2 influenza viruses in Italy compared to European viruses.

    PubMed

    Moreno, Ana; Gabanelli, Elena; Sozzi, Enrica; Lelli, Davide; Chiapponi, Chiara; Ciccozzi, Massimo; Zehender, Gianguglielmo; Cordioli, Paolo

    2013-12-01

    European H1N2 swine influenza viruses (EU H1N2SIVs) arose from multiple reassortment events among human H1N1, human H3N2, and avian influenza viruses. We investigated the evolutionary dynamics of 53 Italian H1N2 strains by comparing them with EU H1N2 SIVs. Hemagglutinin (HA) phylogeny revealed Italian strains fell into four groups: Group A and B (41 strains) had a human H1 similar to EU H1N2SIVs, which probably originated in 1986. However Group B (38 strains) formed a subgroup that had a two-amino acid deletion at positions 146/147 in HA. Group C (11 strains) contained an avian H1 that probably originated in 1996, and Group D (1 strain) had an H1 characteristic of the 2009 pandemic strain. Neuraminidase (NA) phylogeny suggested a series of genomic reassortments had occurred. Group A had an N2 that originated from human H3N2 in the late 1970s. Group B had different human N2 that most likely arose from a reassortment with the more recent human H3N2 virus, which probably occurred in 2000. Group C had an avian-like H1 combined with an N2 gene from one of EU H1N2SIVs, EU H3N2SIVs or Human H3N2. Group D was part of the EU H3N2SIVs clade. Although selection pressure for HA and NA was low, several positively selected sites were identified in both proteins, some of which were antigenic, suggesting selection influenced the evolution of SIV. The data highlight different evolutionary trends between European viruses and currently circulating Italian B strains and show the establishment of reassortant strains involving human viruses in Italian pigs.

  20. Novel Reassortant Human-Like H3N2 and H3N1 Influenza A Viruses Detected in Pigs Are Virulent and Antigenically Distinct from Swine Viruses Endemic to the United States

    PubMed Central

    Rajão, Daniela S.; Gauger, Phillip C.; Anderson, Tavis K.; Lewis, Nicola S.; Abente, Eugenio J.; Killian, Mary Lea; Sutton, Troy C.; Zhang, Jianqiang

    2015-01-01

    ABSTRACT Human-like swine H3 influenza A viruses (IAV) were detected by the USDA surveillance system. We characterized two novel swine human-like H3N2 and H3N1 viruses with hemagglutinin (HA) genes similar to those in human seasonal H3 strains and internal genes closely related to those of 2009 H1N1 pandemic viruses. The H3N2 neuraminidase (NA) was of the contemporary human N2 lineage, while the H3N1 NA was of the classical swine N1 lineage. Both viruses were antigenically distant from swine H3 viruses that circulate in the United States and from swine vaccine strains and also showed antigenic drift from human seasonal H3N2 viruses. Their pathogenicity and transmission in pigs were compared to those of a human H3N2 virus with a common HA ancestry. Both swine human-like H3 viruses efficiently infected pigs and were transmitted to indirect contacts, whereas the human H3N2 virus did so much less efficiently. To evaluate the role of genes from the swine isolates in their pathogenesis, reverse genetics-generated reassortants between the swine human-like H3N1 virus and the seasonal human H3N2 virus were tested in pigs. The contribution of the gene segments to virulence was complex, with the swine HA and internal genes showing effects in vivo. The experimental infections indicate that these novel H3 viruses are virulent and can sustain onward transmission in pigs, and the naturally occurring mutations in the HA were associated with antigenic divergence from H3 IAV from humans and swine. Consequently, these viruses could have a significant impact on the swine industry if they were to cause more widespread outbreaks, and the potential risk of these emerging swine IAV to humans should be considered. IMPORTANCE Pigs are important hosts in the evolution of influenza A viruses (IAV). Human-to-swine transmissions of IAV have resulted in the circulation of reassortant viruses containing human-origin genes in pigs, greatly contributing to the diversity of IAV in swine worldwide

  1. Novel Reassortant Human-Like H3N2 and H3N1 Influenza A Viruses Detected in Pigs Are Virulent and Antigenically Distinct from Swine Viruses Endemic to the United States.

    PubMed

    Rajão, Daniela S; Gauger, Phillip C; Anderson, Tavis K; Lewis, Nicola S; Abente, Eugenio J; Killian, Mary Lea; Perez, Daniel R; Sutton, Troy C; Zhang, Jianqiang; Vincent, Amy L

    2015-11-01

    Human-like swine H3 influenza A viruses (IAV) were detected by the USDA surveillance system. We characterized two novel swine human-like H3N2 and H3N1 viruses with hemagglutinin (HA) genes similar to those in human seasonal H3 strains and internal genes closely related to those of 2009 H1N1 pandemic viruses. The H3N2 neuraminidase (NA) was of the contemporary human N2 lineage, while the H3N1 NA was of the classical swine N1 lineage. Both viruses were antigenically distant from swine H3 viruses that circulate in the United States and from swine vaccine strains and also showed antigenic drift from human seasonal H3N2 viruses. Their pathogenicity and transmission in pigs were compared to those of a human H3N2 virus with a common HA ancestry. Both swine human-like H3 viruses efficiently infected pigs and were transmitted to indirect contacts, whereas the human H3N2 virus did so much less efficiently. To evaluate the role of genes from the swine isolates in their pathogenesis, reverse genetics-generated reassortants between the swine human-like H3N1 virus and the seasonal human H3N2 virus were tested in pigs. The contribution of the gene segments to virulence was complex, with the swine HA and internal genes showing effects in vivo. The experimental infections indicate that these novel H3 viruses are virulent and can sustain onward transmission in pigs, and the naturally occurring mutations in the HA were associated with antigenic divergence from H3 IAV from humans and swine. Consequently, these viruses could have a significant impact on the swine industry if they were to cause more widespread outbreaks, and the potential risk of these emerging swine IAV to humans should be considered. Pigs are important hosts in the evolution of influenza A viruses (IAV). Human-to-swine transmissions of IAV have resulted in the circulation of reassortant viruses containing human-origin genes in pigs, greatly contributing to the diversity of IAV in swine worldwide. New human-like H3N2

  2. Sequential Seasonal H1N1 Influenza Virus Infections Protect Ferrets against Novel 2009 H1N1 Influenza Virus

    PubMed Central

    Carter, Donald M.; Bloom, Chalise E.; Nascimento, Eduardo J. M.; Marques, Ernesto T. A.; Craigo, Jodi K.; Cherry, Joshua L.; Lipman, David J.

    2013-01-01

    Individuals <60 years of age had the lowest incidence of infection, with ∼25% of these people having preexisting, cross-reactive antibodies to novel 2009 H1N1 influenza. Many people >60 years old also had preexisting antibodies to novel H1N1. These observations are puzzling because the seasonal H1N1 viruses circulating during the last 60 years were not antigenically similar to novel H1N1. We therefore hypothesized that a sequence of exposures to antigenically different seasonal H1N1 viruses can elicit an antibody response that protects against novel 2009 H1N1. Ferrets were preinfected with seasonal H1N1 viruses and assessed for cross-reactive antibodies to novel H1N1. Serum from infected ferrets was assayed for cross-reactivity to both seasonal and novel 2009 H1N1 strains. These results were compared to those of ferrets that were sequentially infected with H1N1 viruses isolated prior to 1957 or more-recently isolated viruses. Following seroconversion, ferrets were challenged with novel H1N1 influenza virus and assessed for viral titers in the nasal wash, morbidity, and mortality. There was no hemagglutination inhibition (HAI) cross-reactivity in ferrets infected with any single seasonal H1N1 influenza viruses, with limited protection to challenge. However, sequential H1N1 influenza infections reduced the incidence of disease and elicited cross-reactive antibodies to novel H1N1 isolates. The amount and duration of virus shedding and the frequency of transmission following novel H1N1 challenge were reduced. Exposure to multiple seasonal H1N1 influenza viruses, and not to any single H1N1 influenza virus, elicits a breadth of antibodies that neutralize novel H1N1 even though the host was never exposed to the novel H1N1 influenza viruses. PMID:23115287

  3. Signal Immune Reactions of Macrophages Differentiated from THP-1 Monocytes to Infection with Pandemic H1N1PDM09 Virus and H5N2 and H9N2 Avian Influenza A Virus.

    PubMed

    Sokolova, T M; Poloskov, V V; Shuvalov, A N; Rudneva, I A; Timofeeva, T A

    2018-03-01

    In culture of THP-1 cells differentiated into macrophages with PMA (THP-PMA macrophages) infected with influenza viruses of subtypes H1, H5 and H9, we measured the expression of TLR7 and RIG1 receptor genes, sensors of viral RNA and ribonucleoprotein, and the levels of production of inflammatory cytokines IL-1β, TNFα, IL-10, and IFNα. The sensitivity and inflammatory response of THP-PMA macrophages to pandemic influenza A virus H1N1pdm09 and avian influenza H5N2 and H9N2 viruses correlate with the intracellular level of their viral RNA and activation of the RIG1 gene. Abortive infection is accompanied by intensive macrophage secretion of TNFα, IL-1β, and toxic factors inducing cell death. Activity of endosomal TLR7 receptor gene changed insignificantly in 24 h after infection and significantly decreased in 48 and 72 h under the action of H5N2 and H9N2, which correlated with manifestation of the cytopathogenic effect of these viruses. H5N2 and H9N2 avian viruses in THP-PMA macrophages are strong activators of the expression of the gene of the cytoplasmic RIG1 receptor 24 and 48 h after infection, and the pandemic virus H1N1pdm09 is a weak stimulator of RIG1 gene. Avian influenza H5N2 and H9N2 viruses are released by rapid induction of the inflammatory response in macrophages. At the late stages of infection, we observed a minor increase in IL-10 secretion in macrophages and, probably, the polarization of a part of the population in type M2. The studied influenza A viruses are weak inductors of IFN in THP-PMA macrophages. In the culture medium of THP-PMA macrophages infected with H9N2 and H5N2 viruses, MTT test revealed high levels of toxic factors causing the death of Caco-2 cells. In contrast to avian viruses, pandemic virus H1N1pdm09 did not induce production of toxic factors.

  4. Novel reassortant influenza A(H1N2) virus derived from A(H1N1)pdm09 virus isolated from swine, Japan, 2012.

    PubMed

    Kobayashi, Miho; Takayama, Ikuyo; Kageyama, Tsutomu; Tsukagoshi, Hiroyuki; Saitoh, Mika; Ishioka, Taisei; Yokota, Yoko; Kimura, Hirokazu; Tashiro, Masato; Kozawa, Kunihisa

    2013-12-01

    We isolated a novel influenza virus A(H1N2) strain from a pig on January 13, 2012, in Gunma Prefecture, Japan. Phylogenetic analysis showed that the strain was a novel type of double-reassortant virus derived from the swine influenza virus strains H1N1pdm09 and H1N2, which were prevalent in Gunma at that time.

  5. High conservation level of CD8(+) T cell immunogenic regions within an unusual H1N2 human influenza variant.

    PubMed

    Komadina, Naomi; Quiñones-Parra, Sergio M; Kedzierska, Katherine; McCaw, James M; Kelso, Anne; Leder, Karin; McVernon, Jodie

    2016-10-01

    Current seasonal influenza vaccines require regular updates due to antigenic drift causing loss of effectiveness and therefore providing little or no protection against novel influenza A subtypes. Next generation vaccines capable of eliciting CD8(+) T cell (CTL) mediated cross-protective immunity may offer a long-term alternative strategy. However, measuring pre- and existing levels of CTL cross-protection in humans is confounded by differences in infection histories across individuals. During 2000-2003, H1N2 viruses circulated persistently in the human population for the first time and we hypothesized that the viral nucleoprotein (NP) contained novel CTL epitopes that may have contributed to the survival of the viruses. This study describes the immunogenic NP peptides of H1N1, H2N2, and H3N2 influenza viruses isolated from humans over the past century, 1918-2003, by comparing this historical dataset to reference NP peptides from H1N2 that circulated in humans during 2000-2003. Observed peptides sequences ranged from highly conserved (15%) to highly variable (12%), with variation unrelated to reported immunodominance. No unique NP peptides which were exclusive to the H1N2 viruses were noted. However, the virus had inherited the NP from a recently emerged H3N2 variant containing novel peptides, which may have assisted its persistence. Any advantage due to this novelty was subsequently lost with emergence of a newer H3N2 variant in 2003. Our approach has potential to provide insight into the population context in which influenza viruses emerge, and may help to inform immunogenic peptide selection for CTL-inducing influenza vaccines. J. Med. Virol. 88:1725-1732, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Prevalence and diversity of H9N2 avian influenza in chickens of Northern Vietnam, 2014.

    PubMed

    Thuy, Duong Mai; Peacock, Thomas P; Bich, Vu Thi Ngoc; Fabrizio, Thomas; Hoang, Dang Nguyen; Tho, Nguyen Dang; Diep, Nguyen Thi; Nguyen, Minh; Hoa, Le Nguyen Minh; Trang, Hau Thi Thu; Choisy, Marc; Inui, Ken; Newman, Scott; Trung, Nguyen Vu; van Doorn, Rogier; To, Thanh Long; Iqbal, Munir; Bryant, Juliet E

    2016-10-01

    Despite their classification as low pathogenicity avian influenza viruses (LPAIV), A/H9N2 viruses cause significant losses in poultry in many countries throughout Asia, the Middle East and North Africa. To date, poultry surveillance in Vietnam has focused on detection of influenza H5 viruses, and there is limited understanding of influenza H9 epidemiology and transmission dynamics. We determined prevalence and diversity of influenza A viruses in chickens from live bird markets (LBM) of 7 northern Vietnamese provinces, using pooled oropharyngeal swabs collected from October to December 2014. Screening by real time RT-PCR revealed 1207/4900 (24.6%) of pooled swabs to be influenza A virus positive; overall prevalence estimates after accounting for pooling (5 swabs/pools) were 5.8% (CI 5.4-6.0). Subtyping was performed on 468 pooled swabs with M gene Ct<26. No influenza H7 was detected; 422 (90.1%) were H9 positive; and 22 (4.7%) were H5 positive. There was no evidence was of interaction between H9 and H5 virus detection rates. We sequenced 17 whole genomes of A/H9N2, 2 of A/H5N6, and 11 partial genomes. All H9N2 viruses had internal genes that clustered with genotype 57 and were closely related to Chinese human isolates of A/H7N9 and A/H10N8. Using a nucleotide divergence cutoff of 98%, we identified 9 distinct H9 genotypes. Phylogenetic analysis suggested multiple introductions of H9 viruses to northern Vietnam rather than in-situ transmission. Further investigations of H9 prevalence and diversity in other regions of Vietnam are warranted to assess H9 endemicity elsewhere in the country. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Characterization of clade 2.3.4.4 highly pathogenic H5 avian influenza viruses in ducks and chickens.

    PubMed

    Sun, Honglei; Pu, Juan; Hu, Jiao; Liu, Litao; Xu, Guanlong; Gao, George F; Liu, Xiufan; Liu, Jinhua

    2016-01-01

    Worldwide dissemination of reassortant variants of H5 clade 2.3.4.4 highly pathogenic avian influenza (HPAI) viruses has posed a great threat to the poultry industry. Here, we systematically characterized the H5N2, H5N6 and H5N8 influenza viruses in poultry and compared them with those of previous clade 2.3.4 H5N1 virus. All the three H5 subtype reassortants caused systematic infection in ducks, and exhibited efficient direct transmission in ducks. All of them were highly pathogenic in chickens; however, the H5 reassortants have reduced virulence compared to the parental H5N1 virus. Antigenicity analysis revealed that the current vaccines that are widely used in China may fail to confer protection against the H5 reassortants. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Outbreaks of avian influenza A (H5N2), (H5N8), and (H5N1) among birds--United States, December 2014-January 2015.

    PubMed

    Jhung, Michael A; Nelson, Deborah I

    2015-02-06

    During December 15, 2014-January 16, 2015, the U.S. Department of Agriculture received 14 reports of birds infected with Asian-origin, highly pathogenic avian influenza A (HPAI) (H5N2), (H5N8), and (H5N1) viruses. These reports represent the first reported infections with these viruses in U.S. wild or domestic birds. Although these viruses are not known to have caused disease in humans, their appearance in North America might increase the likelihood of human infection in the United States. Human infection with other avian influenza viruses, such as HPAI (H5N1) and (H5N6) viruses and (H7N9) virus, has been associated with severe, sometimes fatal, disease, usually following contact with poultry.

  9. Protective efficacy of an inactivated Eurasian avian-like H1N1 swine influenza vaccine against homologous H1N1 and heterologous H1N1 and H1N2 viruses in mice.

    PubMed

    Sui, Jinyu; Yang, Dawei; Qiao, Chuanling; Xu, Huiyang; Xu, Bangfeng; Wu, Yunpu; Yang, Huanliang; Chen, Yan; Chen, Hualan

    2016-07-19

    Eurasian avian-like H1N1 (EA H1N1) swine influenza viruses are prevalent in pigs in Europe and Asia, but occasionally cause human infection, which raises concern about their pandemic potential. Here, we produced a whole-virus inactivated vaccine with an EA H1N1 strain (A/swine/Guangxi/18/2011, SW/GX/18/11) and evaluated its efficacy against homologous H1N1 and heterologous H1N1 and H1N2 influenza viruses in mice. A strong humoral immune response, which we measured by hemagglutination inhibition (HI) and virus neutralization (VN), was induced in the vaccine-inoculated mice upon challenge. The inactivated SW/GX/18/11 vaccine provided complete protection against challenge with homologous SW/GX/18/11 virus in mice and provided effective protection against challenge with heterologous H1N1 and H1N2 viruses with distinctive genomic combinations. Our findings suggest that this EA H1N1 vaccine can provide protection against both homologous H1N1 and heterologous H1N1 or H1N2 virus infection. As such, it is an excellent vaccine candidate to prevent H1N1 swine influenza. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Comprehensive global amino acid sequence analysis of PB1F2 protein of influenza A H5N1 viruses and the influenza A virus subtypes responsible for the 20th-century pandemics.

    PubMed

    Pasricha, Gunisha; Mishra, Akhilesh C; Chakrabarti, Alok K

    2013-07-01

    PB1F2 is the 11th protein of influenza A virus translated from +1 alternate reading frame of PB1 gene. Since the discovery, varying sizes and functions of the PB1F2 protein of influenza A viruses have been reported. Selection of PB1 gene segment in the pandemics, variable size and pleiotropic effect of PB1F2 intrigued us to analyze amino acid sequences of this protein in various influenza A viruses. Amino acid sequences for PB1F2 protein of influenza A H5N1, H1N1, H2N2, and H3N2 subtypes were obtained from Influenza Research Database. Multiple sequence alignments of the PB1F2 protein sequences of the aforementioned subtypes were used to determine the size, variable and conserved domains and to perform mutational analysis. Analysis showed that 96·4% of the H5N1 influenza viruses harbored full-length PB1F2 protein. Except for the 2009 pandemic H1N1 virus, all the subtypes of the 20th-century pandemic influenza viruses contained full-length PB1F2 protein. Through the years, PB1F2 protein of the H1N1 and H3N2 viruses has undergone much variation. PB1F2 protein sequences of H5N1 viruses showed both human- and avian host-specific conserved domains. Global database of PB1F2 protein revealed that N66S mutation was present only in 3·8% of the H5N1 strains. We found a novel mutation, N84S in the PB1F2 protein of 9·35% of the highly pathogenic avian influenza H5N1 influenza viruses. Varying sizes and mutations of the PB1F2 protein in different influenza A virus subtypes with pandemic potential were obtained. There was genetic divergence of the protein in various hosts which highlighted the host-specific evolution of the virus. However, studies are required to correlate this sequence variability with the virulence and pathogenicity. © 2012 John Wiley & Sons Ltd.

  11. A Novel H1N2 Influenza Virus Related to the Classical and Human Influenza Viruses from Pigs in Southern China.

    PubMed

    Song, Yafen; Wu, Xiaowei; Wang, Nianchen; Ouyang, Guowen; Qu, Nannan; Cui, Jin; Qi, Yan; Liao, Ming; Jiao, Peirong

    2016-01-01

    Southern China has long been considered to be an epicenter of pandemic influenza viruses. The special environment, breeding mode, and lifestyle in southern China provides more chances for wild aquatic birds, domestic poultry, pigs, and humans to be in contact. This creates the opportunity for interspecies transmission and generation of new influenza viruses. In this study, we reported a novel reassortant H1N2 influenza virus from pigs in southern China. According to the phylogenetic trees and homology of the nucleotide sequence, the virus was confirmed to be a novel triple-reassortant H1N2 virus containing genes from classical swine (PB2, PB1, HA, NP, and NS genes), triple-reassortant swine (PA and M genes), and recent human (NA gene) lineages. It indicated that the novel reassortment virus among human and swine influenza viruses occurred in pigs in southern China. The isolation of the novel reassortant H1N2 influenza viruses provides further evidence that pigs are "mixing vessels," and swine influenza virus surveillance in southern China will provide important information about genetic evaluation and antigenic variation of swine influenza virus to formulate the prevention and control measures for the viruses.

  12. Comprehensive global amino acid sequence analysis of PB1F2 protein of influenza A H5N1 viruses and the influenza A virus subtypes responsible for the 20th‐century pandemics

    PubMed Central

    Pasricha, Gunisha; Mishra, Akhilesh C.; Chakrabarti, Alok K.

    2012-01-01

    Please cite this paper as: Pasricha et al. (2012) Comprehensive global amino acid sequence analysis of PB1F2 protein of influenza A H5N1 viruses and the Influenza A virus subtypes responsible for the 20th‐century pandemics. Influenza and Other Respiratory Viruses 7(4), 497–505. Background  PB1F2 is the 11th protein of influenza A virus translated from +1 alternate reading frame of PB1 gene. Since the discovery, varying sizes and functions of the PB1F2 protein of influenza A viruses have been reported. Selection of PB1 gene segment in the pandemics, variable size and pleiotropic effect of PB1F2 intrigued us to analyze amino acid sequences of this protein in various influenza A viruses. Methods  Amino acid sequences for PB1F2 protein of influenza A H5N1, H1N1, H2N2, and H3N2 subtypes were obtained from Influenza Research Database. Multiple sequence alignments of the PB1F2 protein sequences of the aforementioned subtypes were used to determine the size, variable and conserved domains and to perform mutational analysis. Results  Analysis showed that 96·4% of the H5N1 influenza viruses harbored full‐length PB1F2 protein. Except for the 2009 pandemic H1N1 virus, all the subtypes of the 20th‐century pandemic influenza viruses contained full‐length PB1F2 protein. Through the years, PB1F2 protein of the H1N1 and H3N2 viruses has undergone much variation. PB1F2 protein sequences of H5N1 viruses showed both human‐ and avian host‐specific conserved domains. Global database of PB1F2 protein revealed that N66S mutation was present only in 3·8% of the H5N1 strains. We found a novel mutation, N84S in the PB1F2 protein of 9·35% of the highly pathogenic avian influenza H5N1 influenza viruses. Conclusions  Varying sizes and mutations of the PB1F2 protein in different influenza A virus subtypes with pandemic potential were obtained. There was genetic divergence of the protein in various hosts which highlighted the host‐specific evolution of the virus

  13. H9N2 avian influenza transmission and antigenicity

    USDA-ARS?s Scientific Manuscript database

    Low pathogenic H9N2 avian influenza has become endemic in parts of Asia, the Middle East and North Africa causing respiratory disease with occasional mortality. The use of vaccination has become common to try and control the clinical disease, but vaccination has not been shown to be an effective er...

  14. H2N2 live attenuated influenza vaccine is safe and immunogenic for healthy adult volunteers

    PubMed Central

    Isakova-Sivak, Irina; Stukova, Marina; Erofeeva, Mariana; Naykhin, Anatoly; Donina, Svetlana; Petukhova, Galina; Kuznetsova, Victoria; Kiseleva, Irina; Smolonogina, Tatiana; Dubrovina, Irina; Pisareva, Maria; Nikiforova, Alexandra; Power, Maureen; Flores, Jorge; Rudenko, Larisa

    2015-01-01

    H2N2 influenza viruses have not circulated in the human population since 1968, but they are still being regularly detected in the animal reservoir, suggesting their high pandemic potential. To prepare for a possible H2N2 pandemic, a number of H2N2 vaccine candidates have been generated and tested in preclinical and clinical studies. Here we describe the results of a randomized, double-blind placebo-controlled phase 1 clinical trial of an H2N2 live attenuated influenza vaccine (LAIV) candidate prepared from a human influenza virus isolated in 1966. The vaccine candidate was safe and well-tolerated by healthy adults, and did not cause serious adverse events or an increased rate of moderate or severe reactogenicities. The H2N2 vaccine virus was infectious for Humans. It was shed by 78.6% and 74.1% volunteers after the first and second dose, respectively, most probably due to the human origin of the virus. Importantly, no vaccine virus transmission to unvaccinated subjects was detected during the study. We employed multiple immunological tests to ensure the adequate assessment of the H2N2 pandemic LAIV candidate and demonstrated that the majority (92.6%) of the vaccinated subjects responded to the H2N2 LAIV in one or more immunological tests, including 85.2% of subjects with antibody responses and 55.6% volunteers with cell-mediated immune responses. In addition, we observed strong correlation between the H2N2 LAIV virus replication in the upper respiratory tract and the development of antibody responses. PMID:25831405

  15. Evolution, global spread, and pathogenicity of highly pathogenic avian influenza H5Nx clade 2.3.4.4

    USDA-ARS?s Scientific Manuscript database

    Novel subtypes of Eurasian-origin (Goose/Guangdong lineage) H5 highly pathogenic avian influenza (HPAI) viruses belonging to clade 2.3.4 such as H5N2, H5N5, H5N6, and H5N8 have been identified in China since 2008 and subsequently evolved into four genetically distinct groups (A – D) of clade 2.3.4.4...

  16. Novel Reassortant Influenza A(H1N2) Virus Derived from A(H1N1)pdm09 Virus Isolated from Swine, Japan, 2012

    PubMed Central

    Kobayashi, Miho; Takayama, Ikuyo; Kageyama, Tsutomu; Tsukagoshi, Hiroyuki; Saitoh, Mika; Ishioka, Taisei; Yokota, Yoko; Kimura, Hirokazu; Tashiro, Masato

    2013-01-01

    We isolated a novel influenza virus A(H1N2) strain from a pig on January 13, 2012, in Gunma Prefecture, Japan. Phylogenetic analysis showed that the strain was a novel type of double-reassortant virus derived from the swine influenza virus strains H1N1pdm09 and H1N2, which were prevalent in Gunma at that time. PMID:24274745

  17. Infectivity and Transmissibility of Avian H9N2 Influenza Viruses in Pigs

    PubMed Central

    Wang, Jia; Wu, Maocai; Hong, Wenshan; Fan, Xiaohui; Chen, Rirong; Zheng, Zuoyi; Zeng, Yu; Huang, Ren; Zhang, Yu; Lam, Tommy Tsan-Yuk; Smith, David K.

    2016-01-01

    ABSTRACT The H9N2 influenza viruses that are enzootic in terrestrial poultry in China pose a persistent pandemic threat to humans. To investigate whether the continuous circulation and adaptation of these viruses in terrestrial poultry increased their infectivity to pigs, we conducted a serological survey in pig herds with H9N2 viruses selected from the aquatic avian gene pool (Y439 lineage) and the enzootic terrestrial poultry viruses (G1 and Y280 lineages). We also compared the infectivity and transmissibility of these viruses in pigs. It was found that more than 15% of the pigs sampled from 2010 to 2012 in southern China were seropositive to either G1 or Y280 lineage viruses, but none of the sera were positive to the H9 viruses from the Y439 lineage. Viruses of the G1 and Y280 lineages were able to infect experimental pigs, with detectable nasal shedding of the viruses and seroconversion, whereas viruses of the Y439 lineage did not cause a productive infection in pigs. Thus, adaptation and prevalence in terrestrial poultry could lead to interspecies transmission of H9N2 viruses from birds to pigs. Although H9N2 viruses do not appear to be continuously transmissible among pigs, repeated introductions of H9 viruses to pigs naturally increase the risk of generating mammalian-adapted or reassorted variants that are potentially infectious to humans. This study highlights the importance of monitoring the activity of H9N2 viruses in terrestrial poultry and pigs. IMPORTANCE H9N2 subtype of influenza viruses has repeatedly been introduced into mammalian hosts, including humans and pigs, so awareness of their activity and evolution is important for influenza pandemic preparedness. However, since H9N2 viruses usually cause mild or even asymptomatic infections in mammalian hosts, they may be overlooked in influenza surveillance. Here, we found that the H9N2 viruses established in terrestrial poultry had higher infectivity in pigs than those from aquatic birds, which

  18. Infectivity and Transmissibility of Avian H9N2 Influenza Viruses in Pigs.

    PubMed

    Wang, Jia; Wu, Maocai; Hong, Wenshan; Fan, Xiaohui; Chen, Rirong; Zheng, Zuoyi; Zeng, Yu; Huang, Ren; Zhang, Yu; Lam, Tommy Tsan-Yuk; Smith, David K; Zhu, Huachen; Guan, Yi

    2016-01-13

    The H9N2 influenza viruses that are enzootic in terrestrial poultry in China pose a persistent pandemic threat to humans. To investigate whether the continuous circulation and adaptation of these viruses in terrestrial poultry increased their infectivity to pigs, we conducted a serological survey in pig herds with H9N2 viruses selected from the aquatic avian gene pool (Y439 lineage) and the enzootic terrestrial poultry viruses (G1 and Y280 lineages). We also compared the infectivity and transmissibility of these viruses in pigs. It was found that more than 15% of the pigs sampled from 2010 to 2012 in southern China were seropositive to either G1 or Y280 lineage viruses, but none of the sera were positive to the H9 viruses from the Y439 lineage. Viruses of the G1 and Y280 lineages were able to infect experimental pigs, with detectable nasal shedding of the viruses and seroconversion, whereas viruses of the Y439 lineage did not cause a productive infection in pigs. Thus, adaptation and prevalence in terrestrial poultry could lead to interspecies transmission of H9N2 viruses from birds to pigs. Although H9N2 viruses do not appear to be continuously transmissible among pigs, repeated introductions of H9 viruses to pigs naturally increase the risk of generating mammalian-adapted or reassorted variants that are potentially infectious to humans. This study highlights the importance of monitoring the activity of H9N2 viruses in terrestrial poultry and pigs. H9N2 subtype of influenza viruses has repeatedly been introduced into mammalian hosts, including humans and pigs, so awareness of their activity and evolution is important for influenza pandemic preparedness. However, since H9N2 viruses usually cause mild or even asymptomatic infections in mammalian hosts, they may be overlooked in influenza surveillance. Here, we found that the H9N2 viruses established in terrestrial poultry had higher infectivity in pigs than those from aquatic birds, which suggests that adaptation of

  19. H9N2 low pathogenic avian influenza: Should we be afraid?

    USDA-ARS?s Scientific Manuscript database

    The H9N2 low pathogenic avian influenza (LPAI) is probably the most widespread avian influenza subtype in poultry around the world being endemic in a large part of Asia, the Middle East, Northern Africa, and in Germany. Currently, there is no standardized clade system to describe the antigenic vari...

  20. H9N2 low pathogenic avian influenza in Pakistan (2012-2015)

    USDA-ARS?s Scientific Manuscript database

    Significant economic losses from deaths and decreased egg production have resulted from H9N2 low pathogenic avian influenza virus (LPAIV) infections in poultry across North Africa, the Middle East and Asia. The H9N2 LPAIVs have been endemic in Pakistani poultry since 1996, but no new viruses have be...

  1. Outbreak of Influenza A(H3N2) Variant Virus Infections Among Persons Attending Agricultural Fairs Housing Infected Swine - Michigan and Ohio, July-August 2016.

    PubMed

    Schicker, Rebekah S; Rossow, John; Eckel, Seth; Fisher, Nicolas; Bidol, Sally; Tatham, Lilith; Matthews-Greer, Janice; Sohner, Kevin; Bowman, Andrew S; Avrill, James; Forshey, Tony; Blanton, Lenee; Davis, C Todd; Schiltz, John; Skorupski, Susan; Berman, LaShondra; Jang, Yunho; Bresee, Joseph S; Lindstrom, Stephen; Trock, Susan C; Wentworth, David; Fry, Alicia M; de Fijter, Sietske; Signs, Kimberly; DiOrio, Mary; Olsen, Sonja J; Biggerstaff, Matthew

    2016-10-28

    On August 3, 2016, the Ohio Department of Health Laboratory reported to CDC that a respiratory specimen collected on July 28 from a male aged 13 years who attended an agricultural fair in Ohio during July 22-29, 2016, and subsequently developed a respiratory illness, tested positive by real-time reverse transcription-polymerase chain reaction (rRT-PCR) for influenza A(H3N2) variant* (H3N2v). The respiratory specimen was collected as part of routine influenza surveillance activities. The next day, CDC was notified of a child aged 9 years who was a swine exhibitor at an agricultural fair in Michigan who became ill on July 29, 2016, and tested positive for H3N2v virus at the Michigan Department of Health and Human Services Laboratory. Investigations by Michigan and Ohio health authorities identified 18 human infections linked to swine exhibits at agricultural fairs. To minimize transmission of influenza viruses from infected swine to visitors, agricultural fair organizers should consider prevention measures such as shortening the time swine are on the fairgrounds, isolating ill swine, maintaining a veterinarian on call, providing handwashing stations, and prohibiting food and beverages in animal barns. Persons at high risk for influenza-associated complications should be discouraged from entering swine barns.

  2. Evolution of the H9N2 influenza genotype that facilitated the genesis of the novel H7N9 virus

    PubMed Central

    Pu, Juan; Wang, Shuoguo; Yin, Yanbo; Zhang, Guozhong; Carter, Robert A.; Wang, Jinliang; Xu, Guanlong; Sun, Honglei; Wang, Min; Wen, Chu; Wei, Yandi; Wang, Dongdong; Zhu, Baoli; Lemmon, Gordon; Jiao, Yuannian; Duan, Susu; Wang, Qian; Du, Qian; Sun, Meng; Bao, Jinnan; Sun, Yipeng; Zhao, Jixun; Zhang, Hui; Wu, Gang; Liu, Jinhua; Webster, Robert G.

    2015-01-01

    The emergence of human infection with a novel H7N9 influenza virus in China raises a pandemic concern. Chicken H9N2 viruses provided all six of the novel reassortant’s internal genes. However, it is not fully understood how the prevalence and evolution of these H9N2 chicken viruses facilitated the genesis of the novel H7N9 viruses. Here we show that over more than 10 y of cocirculation of multiple H9N2 genotypes, a genotype (G57) emerged that had changed antigenicity and improved adaptability in chickens. It became predominant in vaccinated farm chickens in China, caused widespread outbreaks in 2010–2013 before the H7N9 viruses emerged in humans, and finally provided all of their internal genes to the novel H7N9 viruses. The prevalence and variation of H9N2 influenza virus in farmed poultry could provide an important early warning of the emergence of novel reassortants with pandemic potential. PMID:25548189

  3. PB1-F2 Peptide Derived from Avian Influenza A Virus H7N9 Induces Inflammation via Activation of the NLRP3 Inflammasome*

    PubMed Central

    Pinar, Anita; Dowling, Jennifer K.; Bitto, Natalie J.; Robertson, Avril A. B.; Latz, Eicke; Stewart, Cameron R.; Drummond, Grant R.; Cooper, Matthew A.; McAuley, Julie L.; Tate, Michelle D.; Mansell, Ashley

    2017-01-01

    The emergence of avian H7N9 influenza A virus in humans with associated high mortality has highlighted the threat of a potential pandemic. Fatal H7N9 infections are characterized by hyperinflammation and increased cellular infiltrates in the lung. Currently there are limited therapies to address the pathologies associated with H7N9 infection and the virulence factors that contribute to these pathologies. We have found that PB1-F2 derived from H7N9 activates the NLRP3 inflammasome and induces lung inflammation and cellular recruitment that is NLRP3-dependent. We have also shown that H7N9 and A/Puerto Rico/H1N1 (PR8)PB1-F2 peptide treatment induces significant mitochondrial reactive oxygen production, which contributes to NLRP3 activation. Importantly, treatment of cells or mice with the specific NLRP3 inhibitor MCC950 significantly reduces IL-1β maturation, lung cellular recruitment, and cytokine production. Together, these results suggest that PB1-F2 from H7N9 avian influenza A virus may be a major contributory factor to disease pathophysiology and excessive inflammation characteristic of clinical infections and that targeting the NLRP3 inflammasome may be an effective means to reduce the inflammatory burden associated with H7N9 infections. PMID:27913620

  4. PB1-F2 Peptide Derived from Avian Influenza A Virus H7N9 Induces Inflammation via Activation of the NLRP3 Inflammasome.

    PubMed

    Pinar, Anita; Dowling, Jennifer K; Bitto, Natalie J; Robertson, Avril A B; Latz, Eicke; Stewart, Cameron R; Drummond, Grant R; Cooper, Matthew A; McAuley, Julie L; Tate, Michelle D; Mansell, Ashley

    2017-01-20

    The emergence of avian H7N9 influenza A virus in humans with associated high mortality has highlighted the threat of a potential pandemic. Fatal H7N9 infections are characterized by hyperinflammation and increased cellular infiltrates in the lung. Currently there are limited therapies to address the pathologies associated with H7N9 infection and the virulence factors that contribute to these pathologies. We have found that PB1-F2 derived from H7N9 activates the NLRP3 inflammasome and induces lung inflammation and cellular recruitment that is NLRP3-dependent. We have also shown that H7N9 and A/Puerto Rico/H1N1 (PR8)PB1-F2 peptide treatment induces significant mitochondrial reactive oxygen production, which contributes to NLRP3 activation. Importantly, treatment of cells or mice with the specific NLRP3 inhibitor MCC950 significantly reduces IL-1β maturation, lung cellular recruitment, and cytokine production. Together, these results suggest that PB1-F2 from H7N9 avian influenza A virus may be a major contributory factor to disease pathophysiology and excessive inflammation characteristic of clinical infections and that targeting the NLRP3 inflammasome may be an effective means to reduce the inflammatory burden associated with H7N9 infections. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Mutation signature in neuraminidase gene of avian influenza H9N2/G1 in Egypt.

    PubMed

    Mosaad, Zienab; Arafa, Abdelsatar; Hussein, Hussein A; Shalaby, Mohamed A

    2017-06-01

    The low pathogenic avian influenza (LPAI) H9N2 subtype has become the most prevalent and widespread in many Asian and Middle Eastern countries. It causes an enzootic situation in commercial poultry and known as a potential facilitator virus that can be transmitted to human from birds. The neuraminidase (NA) gene plays an important role the release and spread of the virus from infected cells and throughout the bird. The complete nucleotide sequences of the NA gene of seven H9N2 viruses collected from apparent healthy chicken and quail flocks in Egypt during 2014-2015, were amplified and sequenced. The phylogenetic relationships were investigated and all viruses were belonging to the A/Q/HK/G1/97 strain (G1-like). There were no insertions or deletions or shortening in NA stalk regions when compared to Y280-lineage and the human H9N2 isolates. No obvious changes NA interactions with antiviral drugs. We found that the Egyptian H9N2 viruses have seven glycosylation sites like the most recorded H9N2 viruses in the country, except A/Q/Egypt/14864V/2014 virus which has only six. The NA has four amino acid substitutions distributed in different parts of the hemadsorbing site. The most characteristic substitutions in this site were S372A and W403R these substitutions were a distinctive feature resembling to human H9N2, H2N2 and H3N2 viruses but differs from the other avian influenza viruses. These Special features of surface glycoproteins of LPAI-H9N2 viruses refer to the tendency for enhanced introductions into humans and ensuring the importance of poultry in the transfer influenza viruses.

  6. Three mutations switch H7N9 influenza to human-type receptor specificity.

    PubMed

    de Vries, Robert P; Peng, Wenjie; Grant, Oliver C; Thompson, Andrew J; Zhu, Xueyong; Bouwman, Kim M; de la Pena, Alba T Torrents; van Breemen, Marielle J; Ambepitiya Wickramasinghe, Iresha N; de Haan, Cornelis A M; Yu, Wenli; McBride, Ryan; Sanders, Rogier W; Woods, Robert J; Verheije, Monique H; Wilson, Ian A; Paulson, James C

    2017-06-01

    The avian H7N9 influenza outbreak in 2013 resulted from an unprecedented incidence of influenza transmission to humans from infected poultry. The majority of human H7N9 isolates contained a hemagglutinin (HA) mutation (Q226L) that has previously been associated with a switch in receptor specificity from avian-type (NeuAcα2-3Gal) to human-type (NeuAcα2-6Gal), as documented for the avian progenitors of the 1957 (H2N2) and 1968 (H3N2) human influenza pandemic viruses. While this raised concern that the H7N9 virus was adapting to humans, the mutation was not sufficient to switch the receptor specificity of H7N9, and has not resulted in sustained transmission in humans. To determine if the H7 HA was capable of acquiring human-type receptor specificity, we conducted mutation analyses. Remarkably, three amino acid mutations conferred a switch in specificity for human-type receptors that resembled the specificity of the 2009 human H1 pandemic virus, and promoted binding to human trachea epithelial cells.

  7. Three mutations switch H7N9 influenza to human-type receptor specificity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Vries, Robert P.; Peng, Wenjie; Grant, Oliver C.

    The avian H7N9 influenza outbreak in 2013 resulted from an unprecedented incidence of influenza transmission to humans from infected poultry. The majority of human H7N9 isolates contained a hemagglutinin (HA) mutation (Q226L) that has previously been associated with a switch in receptor specificity from avian-type (NeuAcα2-3Gal) to human-type (NeuAcα2-6Gal), as documented for the avian progenitors of the 1957 (H2N2) and 1968 (H3N2) human influenza pandemic viruses. While this raised concern that the H7N9 virus was adapting to humans, the mutation was not sufficient to switch the receptor specificity of H7N9, and has not resulted in sustained transmission in humans. Tomore » determine if the H7 HA was capable of acquiring human-type receptor specificity, we conducted mutation analyses. Remarkably, three amino acid mutations conferred a switch in specificity for human-type receptors that resembled the specificity of the 2009 human H1 pandemic virus, and promoted binding to human trachea epithelial cells.« less

  8. Conserved neutralizing epitope at globular head of hemagglutinin in H3N2 influenza viruses.

    PubMed

    Iba, Yoshitaka; Fujii, Yoshifumi; Ohshima, Nobuko; Sumida, Tomomi; Kubota-Koketsu, Ritsuko; Ikeda, Mariko; Wakiyama, Motoaki; Shirouzu, Mikako; Okada, Jun; Okuno, Yoshinobu; Kurosawa, Yoshikazu; Yokoyama, Shigeyuki

    2014-07-01

    Neutralizing antibodies that target the hemagglutinin of influenza virus either inhibit binding of hemagglutinin to cellular receptors or prevent the low-pH-induced conformational change in hemagglutinin required for membrane fusion. In general, the former type of antibody binds to the globular head formed by HA1 and has narrow strain specificity, while the latter type binds to the stem mainly formed by HA2 and has broad strain specificity. In the present study, we analyzed the epitope and function of a broadly neutralizing human antibody against H3N2 viruses, F005-126. The crystal structure of F005-126 Fab in complex with hemagglutinin revealed that the antibody binds to the globular head, spans a cleft formed by two hemagglutinin monomers in a hemagglutinin trimer, and cross-links them. It recognizes two peptide portions (sites L and R) and a glycan linked to asparagine at residue 285 using three complementarity-determining regions and framework 3 in the heavy chain. Binding of the antibody to sites L (residues 171 to 173, 239, and 240) and R (residues 91, 92, 270 to 273, 284, and 285) is mediated mainly by van der Waals contacts with the main chains of the peptides in these sites and secondarily by hydrogen bonds with a few side chains of conserved sequences in HA1. Furthermore, the glycan recognized by F005-126 is conserved among H3N2 viruses. F005-126 has the ability to prevent low-pH-induced conformational changes in hemagglutinin. The newly identified conserved epitope, including the glycan, should be immunogenic in humans and may induce production of broadly neutralizing antibodies against H3 viruses. Antibodies play an important role in protection against influenza virus, and hemagglutinin is the major target for virus neutralizing antibodies. It has long been believed that all effective neutralizing antibodies bind to the surrounding regions of the sialic acid-binding pocket and inhibit the binding of hemagglutinin to the cellular receptor. Since

  9. Conserved Neutralizing Epitope at Globular Head of Hemagglutinin in H3N2 Influenza Viruses

    PubMed Central

    Iba, Yoshitaka; Fujii, Yoshifumi; Ohshima, Nobuko; Sumida, Tomomi; Kubota-Koketsu, Ritsuko; Ikeda, Mariko; Wakiyama, Motoaki; Shirouzu, Mikako; Okada, Jun; Okuno, Yoshinobu; Yokoyama, Shigeyuki

    2014-01-01

    ABSTRACT Neutralizing antibodies that target the hemagglutinin of influenza virus either inhibit binding of hemagglutinin to cellular receptors or prevent the low-pH-induced conformational change in hemagglutinin required for membrane fusion. In general, the former type of antibody binds to the globular head formed by HA1 and has narrow strain specificity, while the latter type binds to the stem mainly formed by HA2 and has broad strain specificity. In the present study, we analyzed the epitope and function of a broadly neutralizing human antibody against H3N2 viruses, F005-126. The crystal structure of F005-126 Fab in complex with hemagglutinin revealed that the antibody binds to the globular head, spans a cleft formed by two hemagglutinin monomers in a hemagglutinin trimer, and cross-links them. It recognizes two peptide portions (sites L and R) and a glycan linked to asparagine at residue 285 using three complementarity-determining regions and framework 3 in the heavy chain. Binding of the antibody to sites L (residues 171 to 173, 239, and 240) and R (residues 91, 92, 270 to 273, 284, and 285) is mediated mainly by van der Waals contacts with the main chains of the peptides in these sites and secondarily by hydrogen bonds with a few side chains of conserved sequences in HA1. Furthermore, the glycan recognized by F005-126 is conserved among H3N2 viruses. F005-126 has the ability to prevent low-pH-induced conformational changes in hemagglutinin. The newly identified conserved epitope, including the glycan, should be immunogenic in humans and may induce production of broadly neutralizing antibodies against H3 viruses. IMPORTANCE Antibodies play an important role in protection against influenza virus, and hemagglutinin is the major target for virus neutralizing antibodies. It has long been believed that all effective neutralizing antibodies bind to the surrounding regions of the sialic acid-binding pocket and inhibit the binding of hemagglutinin to the cellular

  10. Genotypic evolution and antigenicity of H9N2 influenza viruses in Shanghai, China.

    PubMed

    Ge, Feifei; Li, Xin; Ju, Houbin; Yang, Dequan; Liu, Jian; Qi, Xinyong; Wang, Jian; Yang, Xianchao; Qiu, Yafeng; Liu, Peihong; Zhou, Jinping

    2016-06-01

    H9N2 influenza viruses have been circulating in China since 1994, but a systematic investigation of H9N2 in Shanghai has not previously been undertaken. Here, using 14 viruses we isolated from poultry and pigs in Shanghai during 2002 and 2006-2014, together with the commercial vaccine A/chicken/Shanghai/F/1998 (Ck/SH/F/98), we analyzed the evolution of H9N2 influenza viruses in Shanghai and showed that all 14 isolates originated from Ck/SH/F/98 antigenically. We evaluated the immune protection efficiency of the vaccine. Our findings demonstrate that H9N2 viruses in Shanghai have undergone extensive reassortment. Various genotypes emerged in 2002, 2006 and 2007, while during 2009-2014 only one genotype was found. Four antigenic groups, A-D, could be identified among the 14 isolates and a variety of antigenically distinct H9N2-virus-derived avian influenza viruses (AIVs) circulated simultaneously in Shanghai during this period. Challenge experiments using vaccinated chickens indicated that the vaccine prevented shedding of antigenic group A and B viruses, but not those of the more recent groups C and D. Genetic analysis showed that compared to the vaccine strain, representative viruses of antigenic groups C and D possess greater numbers of amino acid substitutions in the hemagglutinin (HA) protein than viruses in antigenic groups A and B. Many of these substitutions are located in antigenic sites. Our results indicate that the persistence of H9N2 AIV in China might be due to incomplete vaccine protection and that the avian influenza vaccine should be regularly evaluated and updated to maintain optimal protection.

  11. Influenza A(H1N1)pdm09 during air travel

    PubMed Central

    Neatherlin, John; Cramer, Elaine H.; Dubray, Christine; Marienau, Karen J.; Russell, Michelle; Sun, Hong; Whaley, Melissa; Hancock, Kathy; Duong, Krista K.; Kirking, Hannah L.; Schembri, Christopher; Katz, Jacqueline M.; Cohen, Nicole J.; Fishbein, Daniel B.

    2015-01-01

    Summary The global spread of the influenza A(H1N1)pdm09 virus (pH1N1) associated with travelers from North America during the onset of the 2009 pandemic demonstrates the central role of international air travel in virus migration. To characterize risk factors for pH1N1 transmission during air travel, we investigated travelers and airline employees from four North American flights carrying ill travelers with confirmed pH1N1 infection. Of 392 passengers and crew identified, information was available for 290 (74%) passengers were interviewed. Overall attack rates for acute respiratory infection and influenza-like illness 1–7 days after travel were 5.2% and 2.4% respectively. Of 43 individuals that provided sera, 4 (9.3%) tested positive for pH1N1 antibodies, including 3 with serologic evidence of asymptomatic infection. Investigation of novel influenza aboard aircraft may be instructive. However, beyond the initial outbreak phase, it may compete with community-based mitigation activities, and interpretation of findings will be difficult in the context of established community transmission. PMID:23523241

  12. Protection of human influenza vaccines against a reassortant swine influenza virus of pandemic H1N1 origin using a pig model.

    PubMed

    Arunorat, Jirapat; Charoenvisal, Nataya; Woonwong, Yonlayong; Kedkovid, Roongtham; Jittimanee, Supattra; Sitthicharoenchai, Panchan; Kesdangsakonwut, Sawang; Poolperm, Pariwat; Thanawongnuwech, Roongroje

    2017-10-01

    Since the pandemic H1N1 emergence in 2009 (pdmH1N1), many reassortant pdmH1N1 viruses emerged and found circulating in the pig population worldwide. Currently, commercial human subunit vaccines are used commonly to prevent the influenza symptom based on the WHO recommendation. In case of current reassortant swine influenza viruses transmitting from pigs to humans, the efficacy of current human influenza vaccines is of interest. In this study, influenza A negative pigs were vaccinated with selected commercial human subunit vaccines and challenged with rH3N2. All sera were tested with both HI and SN assays using four representative viruses from the surveillance data in 2012 (enH1N1, pdmH1N1, rH1N2 and rH3N2). The results showed no significant differences in clinical signs and macroscopic and microscopic findings among groups. However, all pig sera from vaccinated groups had protective HI titers to the enH1N1, pdmH1N1 and rH1N2 at 21DPV onward and had protective SN titers only to pdmH1N1and rH1N2 at 21DPV onward. SN test results appeared more specific than those of HI tests. All tested sera had no cross-reactivity against the rH3N2. Both studied human subunit vaccines failed to protect and to stop viral shedding with no evidence of serological reaction against rH3N2. SIV surveillance is essential for monitoring a novel SIV emergence potentially for zoonosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Investigation of an Influenza A (H3N2) outbreak in evacuation centres following the Great East Japan earthquake, 2011.

    PubMed

    Kamigaki, Taro; Seino, Jin; Tohma, Kentaro; Nukiwa-Soma, Nao; Otani, Kanako; Oshitani, Hitoshi

    2014-01-14

    The Great East Japan Earthquake of magnitude 9.0 that struck on 11 March 2011 resulted in more than 18000 deaths or cases of missing persons. The large-scale tsunami that followed the earthquake devastated many coastal areas of the Tohoku region, including Miyagi Prefecture, and many residents of the tsunami-affected areas were compelled to reside in evacuation centres (ECs). In Japan, seasonal influenza epidemics usually occur between December and March. At the time of the Great East Japan Earthquake on 11 March 2011, influenza A (H3N2) was still circulating and there was a heightened concern regarding severe outbreaks due to influenza A (H3N2). After local hospital staff and public health nurses detected influenza cases among the evacuees, an outbreak investigation was conducted in five ECs that had reported at least one influenza case from 23 March to 11 April 2011. Cases were confirmed by point-of-care tests and those residues were obtained and subjected to reverse transcription PCR and/or real time RT-PCR for sub-typing of influenza. There were 105 confirmed cases detected during the study period with a mean attack rate of 5.3% (range, 0.8%-11.1%). An epidemiological tree for two ECs demonstrated same-room and familial links that accounted for 88.5% of cases. The majority of cases occurred in those aged 15-64 years, who were likely to have engaged in search and rescue activities. No deaths were reported in this outbreak. Familial link accounted for on average 40.5% of influenza cases in two ECs and rooms where two or more cases were reported accounted for on average 85% in those ECs. A combination of preventative measures, including case cohorting, personal hygiene, wearing masks, and early detection and treatment, were implemented during the outbreak period. Influenza can cause outbreaks in a disaster setting when the disaster occurs during an epidemic influenza season. The transmission route is more likely to be associated with sharing room and space and

  14. A Novel H1N2 Influenza Virus Related to the Classical and Human Influenza Viruses from Pigs in Southern China

    PubMed Central

    Song, Yafen; Wu, Xiaowei; Wang, Nianchen; Ouyang, Guowen; Qu, Nannan; Cui, Jin; Qi, Yan; Liao, Ming; Jiao, Peirong

    2016-01-01

    Southern China has long been considered to be an epicenter of pandemic influenza viruses. The special environment, breeding mode, and lifestyle in southern China provides more chances for wild aquatic birds, domestic poultry, pigs, and humans to be in contact. This creates the opportunity for interspecies transmission and generation of new influenza viruses. In this study, we reported a novel reassortant H1N2 influenza virus from pigs in southern China. According to the phylogenetic trees and homology of the nucleotide sequence, the virus was confirmed to be a novel triple-reassortant H1N2 virus containing genes from classical swine (PB2, PB1, HA, NP, and NS genes), triple-reassortant swine (PA and M genes), and recent human (NA gene) lineages. It indicated that the novel reassortment virus among human and swine influenza viruses occurred in pigs in southern China. The isolation of the novel reassortant H1N2 influenza viruses provides further evidence that pigs are “mixing vessels,” and swine influenza virus surveillance in southern China will provide important information about genetic evaluation and antigenic variation of swine influenza virus to formulate the prevention and control measures for the viruses. PMID:27458456

  15. Swine Influenza Virus PA and Neuraminidase Gene Reassortment into Human H1N1 Influenza Virus Is Associated with an Altered Pathogenic Phenotype Linked to Increased MIP-2 Expression.

    PubMed

    Dlugolenski, Daniel; Jones, Les; Howerth, Elizabeth; Wentworth, David; Tompkins, S Mark; Tripp, Ralph A

    2015-05-01

    Swine are susceptible to infection by both avian and human influenza viruses, and this feature is thought to contribute to novel reassortant influenza viruses. In this study, the influenza virus reassortment rate in swine and human cells was determined. Coinfection of swine cells with 2009 pandemic H1N1 virus (huH1N1) and an endemic swine H1N2 (A/swine/Illinois/02860/09) virus (swH1N2) resulted in a 23% reassortment rate that was independent of α2,3- or α2,6-sialic acid distribution on the cells. The reassortants had altered pathogenic phenotypes linked to introduction of the swine virus PA and neuraminidase (NA) into huH1N1. In mice, the huH1N1 PA and NA mediated increased MIP-2 expression early postinfection, resulting in substantial pulmonary neutrophilia with enhanced lung pathology and disease. The findings support the notion that swine are a mixing vessel for influenza virus reassortants independent of sialic acid distribution. These results show the potential for continued reassortment of the 2009 pandemic H1N1 virus with endemic swine viruses and for reassortants to have increased pathogenicity linked to the swine virus NA and PA genes which are associated with increased pulmonary neutrophil trafficking that is related to MIP-2 expression. Influenza A viruses can change rapidly via reassortment to create a novel virus, and reassortment can result in possible pandemics. Reassortments among subtypes from avian and human viruses led to the 1957 (H2N2 subtype) and 1968 (H3N2 subtype) human influenza pandemics. Recent analyses of circulating isolates have shown that multiple genes can be recombined from human, avian, and swine influenza viruses, leading to triple reassortants. Understanding the factors that can affect influenza A virus reassortment is needed for the establishment of disease intervention strategies that may reduce or preclude pandemics. The findings from this study show that swine cells provide a mixing vessel for influenza virus reassortment

  16. Swine Influenza Virus PA and Neuraminidase Gene Reassortment into Human H1N1 Influenza Virus Is Associated with an Altered Pathogenic Phenotype Linked to Increased MIP-2 Expression

    PubMed Central

    Dlugolenski, Daniel; Jones, Les; Howerth, Elizabeth; Wentworth, David; Tompkins, S. Mark

    2015-01-01

    ABSTRACT Swine are susceptible to infection by both avian and human influenza viruses, and this feature is thought to contribute to novel reassortant influenza viruses. In this study, the influenza virus reassortment rate in swine and human cells was determined. Coinfection of swine cells with 2009 pandemic H1N1 virus (huH1N1) and an endemic swine H1N2 (A/swine/Illinois/02860/09) virus (swH1N2) resulted in a 23% reassortment rate that was independent of α2,3- or α2,6-sialic acid distribution on the cells. The reassortants had altered pathogenic phenotypes linked to introduction of the swine virus PA and neuraminidase (NA) into huH1N1. In mice, the huH1N1 PA and NA mediated increased MIP-2 expression early postinfection, resulting in substantial pulmonary neutrophilia with enhanced lung pathology and disease. The findings support the notion that swine are a mixing vessel for influenza virus reassortants independent of sialic acid distribution. These results show the potential for continued reassortment of the 2009 pandemic H1N1 virus with endemic swine viruses and for reassortants to have increased pathogenicity linked to the swine virus NA and PA genes which are associated with increased pulmonary neutrophil trafficking that is related to MIP-2 expression. IMPORTANCE Influenza A viruses can change rapidly via reassortment to create a novel virus, and reassortment can result in possible pandemics. Reassortments among subtypes from avian and human viruses led to the 1957 (H2N2 subtype) and 1968 (H3N2 subtype) human influenza pandemics. Recent analyses of circulating isolates have shown that multiple genes can be recombined from human, avian, and swine influenza viruses, leading to triple reassortants. Understanding the factors that can affect influenza A virus reassortment is needed for the establishment of disease intervention strategies that may reduce or preclude pandemics. The findings from this study show that swine cells provide a mixing vessel for influenza

  17. Genesis and Dissemination of Highly Pathogenic H5N6 Avian Influenza Viruses

    PubMed Central

    Yang, Lei; Zhu, Wenfei; Li, Xiaodan; Bo, Hong; Zhang, Ye; Zou, Shumei; Gao, Rongbao; Dong, Jie; Zhao, Xiang; Chen, Wenbing; Dong, Libo; Zou, Xiaohui; Xing, Yongcai

    2016-01-01

    ABSTRACT Clade 2.3.4.4 highly pathogenic avian influenza viruses (H5Nx) have spread from Asia to other parts of the world. Since 2014, human infections with clade 2.3.4.4 highly pathogenic avian influenza H5N6 viruses have been continuously reported in China. To investigate the genesis of the virus, we analyzed 123 H5 or N6 environmental viruses sampled from live-poultry markets or farms from 2012 to 2015 in Mainland China. Our results indicated that clade 2.3.4.4 H5N2/N6/N8 viruses shared the same hemagglutinin gene as originated in early 2009. From 2012 to 2015, the genesis of highly pathogenic avian influenza H5N6 viruses occurred via two independent pathways. Three major reassortant H5N6 viruses (reassortants A, B, and C) were generated. Internal genes of reassortant A and B viruses and reassortant C viruses derived from clade 2.3.2.1c H5N1 and H9N2 viruses, respectively. Many mammalian adaption mutations and antigenic variations were detected among the three reassortant viruses. Considering their wide circulation and dynamic reassortment in poultry, we highly recommend close monitoring of the viruses in poultry and humans. IMPORTANCE Since 2014, clade 2.3.4.4 highly pathogenic avian influenza (H5Nx) viruses have caused many outbreaks in both wild and domestic birds globally. Severe human cases with novel H5N6 viruses in this group were also reported in China in 2014 and 2015. To investigate the genesis of the genetic diversity of these H5N6 viruses, we sequenced 123 H5 or N6 environmental viruses sampled from 2012 to 2015 in China. Sequence analysis indicated that three major reassortants of these H5N6 viruses had been generated by two independent evolutionary pathways. The H5N6 reassortant viruses had been detected in most provinces of southern China and neighboring countries. Considering the mammalian adaption mutations and antigenic variation detected, the spread of these viruses should be monitored carefully due to their pandemic potential. PMID:28003485

  18. Boosting heterosubtypic neutralization antibodies in recipients of 2009 pandemic H1N1 influenza vaccine.

    PubMed

    Qiu, Chao; Huang, Yang; Wang, Qian; Tian, Di; Zhang, Wanju; Hu, Yunwen; Yuan, Zhenghong; Zhang, Xiaoyan; Xu, Jianqing

    2012-01-01

    A mass vaccination has been implemented to prevent the spread of 2009 pandemic influenza virus in China. Highly limited information is available on whether this vaccine induces cross-reactive neutralization antibodies against other subtypes of influenza viruses. We employed pseudovirus-based assays to analyze heterosubtypic neutralization responses in serum samples of 23 recipients of 2009 pandemic influenza vaccine. One dose of pandemic vaccine not only stimulated good neutralization antibodies against cognate influenza virus 2009 influenza A (H1N1), but also raised broad cross-reactive neutralization activities against seasonal H3N2 and highly pathogenic avian influenza virus H5N1 and lesser to H2N2. The cross-reactive neutralization activities were completely abolished after the removal of immunoglobin G (IgG). In contrast, H1N1 vaccination alone in influenza-naive mice elicited only vigorous homologous neutralizing activities but not cross-reactive neutralization activities. Our data suggest that the cross-reactive neutralization epitopes do exist in this vaccine and could elicit significant cross-reactive neutralizing IgG antibodies in the presence of preexisting responses. The exposure to H1N1 vaccine is likely to modify the hierarchical order of preexisting immune responses to influenza viruses. These findings provide insights into the evolution of human immunity to influenza viruses after experiencing multiple influenza virus infections and vaccinations.

  19. H9N2 influenza virus isolated from minks has enhanced virulence in mice.

    PubMed

    Xue, R; Tian, Y; Hou, T; Bao, D; Chen, H; Teng, Q; Yang, J; Li, X; Wang, G; Li, Z; Liu, Q

    2018-06-01

    H9N2 is one of the major subtypes of influenza virus circulating in poultry in China, which has a wide host range from bird to mammals. Two H9N2 viruses were isolated from one mink farm in 2014. Phylogenetic analysis showed that internal genes of the H9N2 viruses have close relationship with those of H7N9 viruses. Interestingly, two H9N2 were separated in phylogenetic trees, indicating that they are introduced to this mink farm in two independent events. And further mice studies showed that one H9N2 caused obvious weight loss and 20% mortality in infected mice, while another virus did not cause any clinical sign in mice infected at the same dose. Genetic analysis indicated that the virulent H9N2 contain a natural mutation at 701N in PB2 protein, which was reported to contribute to mammalian adaptation. However, such substitution is absent in the H9N2 avirulent to mice. Circulation of H9N2 in mink may drive the virus to adapt mammals; continual surveillance of influenza virus in mink was warranted. © 2018 Blackwell Verlag GmbH.

  20. Neuraminidase-mediated haemagglutination of recent human influenza A(H3N2) viruses is determined by arginine 150 flanking the neuraminidase catalytic site.

    PubMed

    Mögling, Ramona; Richard, Mathilde J; Vliet, Stefan van der; Beek, Ruud van; Schrauwen, Eefje J A; Spronken, Monique I; Rimmelzwaan, Guus F; Fouchier, Ron A M

    2017-06-01

    Over the last decade, an increasing proportion of circulating human influenza A(H3N2) viruses exhibited haemagglutination activity that was sensitive to neuraminidase inhibitors. This change in haemagglutination as compared to older circulating A(H3N2) viruses prompted an investigation of the underlying molecular basis. Recent human influenza A(H3N2) viruses were found to agglutinate turkey erythrocytes in a manner that could be blocked with either oseltamivir or neuraminidase-specific antisera, indicating that agglutination was driven by neuraminidase, with a low or negligible contribution of haemagglutinin. Using representative virus recombinants it was shown that the haemagglutinin of a recent A(H3N2) virus indeed had decreased activity to agglutinate turkey erythrocytes, while its neuraminidase displayed increased haemagglutinating activity. Viruses with chimeric and mutant neuraminidases were used to identify the amino acid substitution histidine to arginine at position 150 flanking the neuraminidase catalytic site as the determinant of this neuraminidase-mediated haemagglutination. An analysis of publicly available neuraminidase gene sequences showed that viruses with histidine at position 150 were rapidly replaced by viruses with arginine at this position between 2005 and 2008, in agreement with the phenotypic data. As a consequence of neuraminidase-mediated haemagglutination of recent A(H3N2) viruses and poor haemagglutination via haemagglutinin, haemagglutination inhibition assays with A(H3N2) antisera are no longer useful to characterize the antigenic properties of the haemagglutinin of these viruses for vaccine strain selection purposes. Continuous monitoring of the evolution of these viruses and potential consequences for vaccine strain selection remains important.

  1. Nomenclature updates resulting from the evolution of avian influenza A(H5) virus clades 2.1.3.2a, 2.2.1, and 2.3.4 during 2013-2014.

    PubMed

    Smith, Gavin J D; Donis, Ruben O

    2015-09-01

    The A/goose/Guangdong/1/96-like hemagglutinin (HA) genes of highly pathogenic avian influenza (HPAI) A(H5) viruses have continued to rapidly evolve since the most recent update to the H5 clade nomenclature by the WHO/OIE/FAO H5N1 Evolution Working Group. New clades diverging beyond established boundaries need to be identified and designated accordingly. Hemagglutinin sequences deposited in publicly accessible databases up to December 31, 2014, were analyzed by phylogenetic and average pairwise distance methods to identify new clades that merit nomenclature changes. Three new clade designations were recommended based on division of clade 2·1·3·2a (Indonesia), 2·2·1 (Egypt), and 2·3·4 (widespread detection in Asia, Europe, and North America) that includes newly emergent HPAI virus subtypes H5N2, H5N3, H5N5, H5N6, and H5N8. Continued global surveillance for HPAI A(H5) viruses in all host species and timely reporting of sequence data will be critical to quickly identify new clades and assess their potential impact on human and animal health. © 2015 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  2. Influenza Transmission in a Community during a Seasonal Influenza A(H3N2) Outbreak (2010–2011) in Mongolia: A Community-Based Prospective Cohort Study

    PubMed Central

    Nukiwa-Souma, Nao; Burmaa, Alexanderyn; Kamigaki, Taro; Od, Ishiin; Bayasgalan, Namuutsetsegiin; Darmaa, Badarchiin; Suzuki, Akira; Nymadawa, Pagbajabyn; Oshitani, Hitoshi

    2012-01-01

    Background Knowledge of how influenza viruses spread in a community is important for planning and implementation of effective interventions, including social distancing measures. Households and schools are implicated as the major sites for influenza virus transmission. However, the overall picture of community transmission is not well defined during actual outbreaks. We conducted a community-based prospective cohort study to describe the transmission characteristics of influenza in Mongolia. Methods and Findings A total of 5,655 residents in 1,343 households were included in this cohort study. An active search for cases of influenza-like illness (ILI) was performed between October 2010 and April 2011. Data collected during a community outbreak of influenza A(H3N2) were analyzed. Total 282 ILI cases occurred during this period, and 73% of the subjects were aged <15 years. The highest attack rate (20.4%) was in those aged 1–4 years, whereas the attack rate in those aged 5–9 years was 10.8%. Fifty-one secondary cases occurred among 900 household contacts from 43 households (43 index cases), giving an overall crude household secondary attack rate (SAR) of 5.7%. SAR was significantly higher in younger household contacts (relative risk for those aged <1 year: 9.90, 1–4 years: 5.59, and 5–9 years: 6.43). We analyzed the transmission patterns among households and a community and repeated transmissions were detected between households, preschools, and schools. Children aged 1–4 years played an important role in influenza transmission in households and in the community at large. Working-age adults were also a source of influenza in households, whereas elderly cases (aged ≥65 years) had no link with household transmission. Conclusions Repeated transmissions between households, preschools, and schools were observed during an influenza A(H3N2) outbreak period in Mongolia, where subjects aged 1–4 years played an important role in influenza transmission. PMID

  3. Characterization of Seasonal Influenza Virus Type and Subtypes Isolated from Influenza Like Illness Cases of 2012.

    PubMed

    Upadhyay, B P; Ghimire, P; Tashiro, M; Banjara, M R

    Background Seasonal influenza is one of the increasing public health burdens in Nepal. Objective The objective of this study was to isolate and characterize the influenza virus type and subtypes of Nepal. Method A total of 1536 throat swab specimens were collected from January to December 2012. Total ribonucleic acid was extracted using Qiagen viral nucleic acid extraction kit and polymerase chain reaction assay was performed following the US; CDC Real-time PCR protocol. Ten percent of positive specimens were inoculated onto Madin-Darby Canine Kidney cells. Isolates were characterized by using reference ferret antisera. Result Of the total specimens (n=1536), influenza virus type A was detected in 196 (22%) cases; of which 194 (99%) were influenza A (H1N1) pdm09 and 2 (1 %) were influenza A/H3 subtype. Influenza B was detected in 684 (76.9%) cases. Influenza A (H1N1) pdm09, A/H3 and influenza B virus were antigenically similar to the recommended influenza virus vaccine candidate of the year 2012. Although sporadic cases of influenza were observed throughout the year, peak was observed during July to November. Conclusion Similar to other tropical countries, A (H1N1) pdm09, A/H3 and influenza B viruses were co-circulated in Nepal.

  4. Evaluation of the zoonotic potential of multiple subgroups of clade 2.3.4.4 influenza A (H5N8) virus.

    PubMed

    Lee, Yu-Na; Lee, Eun-Kyoung; Song, Byung-Min; Heo, Gyeong-Beom; Woo, Sang-Hee; Cheon, Sun-Ha; Lee, Youn-Jeong

    2018-03-01

    Clade 2.3.4.4 H5N8 highly pathogenic avian influenza viruses (HPAIVs) have spread worldwide. Phylogenetic analysis identified two genetic groups of the H5N8 HPAIVs in South Korea; group A evolved further into four subgroups. Here, we examined the zoonotic potential, both in vivo and in vitro, of genetically distinct subgroups of H5N8 HPAIVs isolated in South Korea. When compared with other subgroups, A/mallard/Korea/H2102/2015 (H2102) virus caused relatively severe disease in mice at high doses. In ferrets, all H5N8 viruses replicated restrictively in the respiratory tract and did not induce significant clinical signs of influenza infection. In vitro studies, all viruses displayed a hemagglutinin phenotype that was poorly adapted for infection of mammals, although the H2102 virus exhibited higher replication kinetics at 33°C than the others. Although H5N8 HPAIVs have not yet acquired all the characteristics required for adaptation to mammals, their ability to evolve continuously underscores the need for timely risk assessment. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Activity of ergoferon against lethal influenza A (H3N2) virus infection in mice.

    PubMed

    Skarnovich, Maria A; Emelyanova, Alexandra G; Petrova, Nataliia V; Borshcheva, Alena A; Gorbunov, Evgeniy A; Mazurkov, Oleg Yu; Skarnovich, Maksim O; Tarasov, Sergey A; Shishkina, Larisa N; Epstein, Oleg I

    2017-01-01

    The influenza A virus accounts for serious annual viral upper respiratory tract infections. It is constantly able to modify its antigenic structure, thus evading host defence mechanisms. Moreover, currently available anti-influenza agents have a rather limited application, emphasizing the further need for new effective treatments. One of them is ergoferon, a drug containing combined polyclonal antibodies - anti-interferon gamma, anti-CD4 receptor and anti-histamine - in released-active form. The purpose of the study was to assess ergoferon antiviral efficacy in mice challenged with the A/Aichi/2/68 (H3N2) influenza virus. The virus was inoculated intranasally at a 90% lethal dose. Ergoferon was administered at 0.4 ml/day per os in a preventive and therapeutic regimen - daily for 5 days prior to and for 16 days after the challenge. The reference product, Tamiflu (oseltamivir), was used as a positive control treatment - at 20 mg/kg/day for 5 days after the challenge. Mice in the negative control group received distilled water which had been utilized for test sample preparation; untreated control animals received no treatment. Antiviral efficacy was assessed by an increase in survival rate, average life expectancy and virus titre reduction in the challenged mouse lungs. Survival rate and average life expectancy values were increased significantly in groups treated with ergoferon and Tamiflu, as compared with controls. Lung virus titres were reduced in these groups as observed on days 2 and 4 post-inoculation. Ergoferon demonstrated antiviral activity by reducing the severity and duration of the major signs of induced influenza infection.

  6. Age is not a determinant factor in susceptibility of broilers to H5N2 clade 2.3.4.4 high pathogenicity avian influenza virus

    USDA-ARS?s Scientific Manuscript database

    In 2014–2015, the US experienced an unprecedented outbreak of H5 clade 2.3.4.4 highly pathogenic avian influenza (HPAI) virus. The H5N2 HPAI virus outbreak in the Midwest in 2015 affected commercial turkey and layer farms, but not broiler farms. To assess any potential genetic resistance of broilers...

  7. Antigenic characterization of H3 subtypes of avian influenza A viruses from North America

    USGS Publications Warehouse

    Bailey, Elizabeth; Long, Li-Pong; Zhao, Nan; Hall, Jeffrey S.; Baroch, John A; Nolting, Jaqueline; Senter, Lucy; Cunningham, Frederick L; Pharr, G Todd; Hanson, Larry; Slemons, Richard; DeLiberto, Thomas J.; Wan, Xiu-Feng

    2016-01-01

    Besides humans, H3 subtypes of influenza A viruses (IAVs) can infect various animal hosts, including avian, swine, equine, canine, and sea mammal species. These H3 viruses are both antigenically and genetically diverse. Here, we characterized the antigenic diversity of contemporary H3 avian IAVs recovered from migratory birds in North America. Hemagglutination inhibition (HI) assays were performed on 37 H3 isolates of avian IAVs recovered from 2007 to 2011 using generated reference chicken sera. These isolates were recovered from samples taken in the Atlantic, Mississippi, Central, and Pacific waterfowl migration flyways. Antisera to all the tested H3 isolates cross-reacted with each other and, to a lesser extent, with those to H3 canine and H3 equine IAVs. Antigenic cartography showed that the largest antigenic distance among the 37 avian IAVs is about four units, and each unit corresponds to a 2 log 2 difference in the HI titer. However, none of the tested H3 IAVs cross-reacted with ferret sera derived from contemporary swine and human IAVs. Our results showed that the H3 avian IAVs we tested lacked significant antigenic diversity, and these viruses were antigenically different from those circulating in swine and human populations. This suggests that H3 avian IAVs in North American waterfowl are antigenically relatively stable.

  8. Antigenic Characterization of H3 Subtypes of Avian Influenza A Viruses from North America.

    PubMed

    Bailey, Elizabeth; Long, Li-Ping; Zhao, Nan; Hall, Jeffrey S; Baroch, John A; Nolting, Jacqueline; Senter, Lucy; Cunningham, Frederick L; Pharr, G Todd; Hanson, Larry; Slemons, Richard; DeLiberto, Thomas J; Wan, Xiu-Feng

    2016-05-01

    Besides humans, H3 subtypes of influenza A viruses (IAVs) can infect various animal hosts, including avian, swine, equine, canine, and sea mammal species. These H3 viruses are both antigenically and genetically diverse. Here, we characterized the antigenic diversity of contemporary H3 avian IAVs recovered from migratory birds in North America. Hemagglutination inhibition (HI) assays were performed on 37 H3 isolates of avian IAVs recovered from 2007 to 2011 using generated reference chicken sera. These isolates were recovered from samples taken in the Atlantic, Mississippi, Central, and Pacific waterfowl migration flyways. Antisera to all the tested H3 isolates cross-reacted with each other and, to a lesser extent, with those to H3 canine and H3 equine IAVs. Antigenic cartography showed that the largest antigenic distance among the 37 avian IAVs is about four units, and each unit corresponds to a 2 log 2 difference in the HI titer. However, none of the tested H3 IAVs cross-reacted with ferret sera derived from contemporary swine and human IAVs. Our results showed that the H3 avian IAVs we tested lacked significant antigenic diversity, and these viruses were antigenically different from those circulating in swine and human populations. This suggests that H3 avian IAVs in North American waterfowl are antigenically relatively stable.

  9. Genetic and biological characterization of three poultry-origin H5N6 avian influenza viruses with all internal genes from genotype S H9N2 viruses.

    PubMed

    Liu, Kaituo; Gu, Min; Hu, Shunlin; Gao, Ruyi; Li, Juan; Shi, Liwei; Sun, Wenqi; Liu, Dong; Gao, Zhao; Xu, Xiulong; Hu, Jiao; Wang, Xiaoquan; Liu, Xiaowen; Chen, Sujuan; Peng, Daxin; Jiao, Xinan; Liu, Xiufan

    2018-04-01

    During surveillance for avian influenza viruses, three H5N6 viruses were isolated in chickens obtained from live bird markets in eastern China, between January 2015 and April 2016. Sequence analysis revealed a high genomic homology between these poultry isolates and recent human H5N6 variants whose internal genes were derived from genotype S H9N2 avian influenza viruses. Glycan binding assays revealed that all avian H5N6 viruses were capable of binding to both human-type SAα-2,6Gal receptors and avian-type SAα-2,3Gal receptors. Their biological characteristics were further studied in BALB/c mice, specific-pathogen-free chickens, and mallard ducks. All three isolates had low pathogenicity in mice but were highly pathogenic to chickens, as evidenced by 100% mortality 36-120 hours post infection at a low dose of 10 3.0 EID 50 and through effective contact transmission. Moreover, all three poultry H5N6 isolates caused asymptomatic infections in ducks, which may serve as a reservoir host for their maintenance and dissemination; these migrating waterfowl could cause a potential global pandemic. Our study suggests that continuous epidemiological surveillance in poultry should be implemented for the early prevention of future influenza outbreaks.

  10. Influenza A (H1N1) virus pneumonia in intensive care unit.

    PubMed

    Adıgüzel, Nalan; Karakurt, Zuhal; Kalamanoğlu Balcı, Merih; Acartürk, Eylem; Güngör, Gökay; Yazıcıoğlu Moçin, Ozlem; Batı Kutlu, Semra; Yılmaz, Adnan

    2010-01-01

    Patients with influenza A (H1N1) virus infection have been admitted to intensive care units (ICU) due to development of severe respiratory failure. We described the clinical and epidemiologic characteristics of the 19 patients admitted to ICU due to influenza A (H1N1) virus infection. Study design is a descriptive case series in a third level-20 bed respiratory ICU at training hospital in Istanbul/Turkey. Influenza A (H1N1) virus infection was laboratory confirmed in specimens using real-time reverse transcriptase-polymerase-chain-reaction (RT-PCR). We collected data concerning demographic, epidemiologic and clinical characteristics of the patients, treatment mortality and outcome. From November 10 to December 31 2009, a total of 19 patients; 7 laboratory confirmed, 12 with high clinical suspicion were treated at ICU. Among 12 patients with high clinical suspicion; 3 patients had negative RT-PCR testing for influenza A (H1N1) virus, 9 patients had no tests. Mean age was 41.6 ± 11.9 (range 21 to 61). Median number of lung zone involvement was 4 (IQR= 3-4). Median PaO2/FiO2 was 105 (IQR= 85-165). Mean severity (APACHE II) and organ failure score (SOFA) were 13 ± 4 and 4.0 ± 1.3 respectively. Non-invasive mechanical ventilation (68.4%, n= 13), invasive mechanical ventilation (21.1%, n= 4) and nasal cannula oxygen (31.5%, n= 6) were implicated. The median length of ICU stay was 6 (IQR= 4-8). Oseltamivir therapy was given as 75 mg bid to 12 patients and 150 mg bid to 7 obese patients. ICU mortality rate was 21.1%. Presenting patients with pneumonia and acute respiratory failure due to influenza A (H1N1) virus infection were treated predominantly and successfully with non invasive mechanical ventilation. Clinicians should be aware of pulmonary complications of influenza A (H1N1) virus infection and that patients can be treated with non invasive mechanical ventilation paying attention to protective measures for health care providers.

  11. Surveillance for influenza virus subtypes H1, H2 and H3 among wild birds in Ukraine in 2006-2012

    USDA-ARS?s Scientific Manuscript database

    Background: Influenza is one of the most important and unpredictable diseases of humans, other mammals and birds. Influenza virus of H1, H2, and H3 subtypes circulate in humans and cause seasonal influenza. Similar subtypes are also circulating in the natural reservoir, wild aquatic birds, and und...

  12. Divergent genetic evolution of hemagglutinin in influenza A H1N1 and A H1N2 subtypes isolated in the south-France since the winter of 2001-2002.

    PubMed

    Al Faress, Shaker; Cartet, Gaëlle; Ferraris, Olivier; Norder, Helene; Valette, Martine; Lina, Bruno

    2005-07-01

    Influenza A viruses are divided into subtypes based on their hemagglutinin (H1 to H15) and neuraminidase (N1 to N9) glycoproteins. Of these, three A subtypes H1N1, H3N2 and H1N2 circulate in the human population. Influenza A viruses display a high antigenic variability called "antigenic drift" which allows the virus to escape antibody neutralization. Evaluate the mutations apparition that might predict a divergent antigenic evolution of hemagglutinin in influenza A H1N1 and A H1N2 viruses. During the three winters of 2001-2002 to 2003-2004, 58 A H1N1 and 23 A H1N2 subtypes have been isolated from patients with influenza-like illness in the south of France. The HA1 region was analyzed by RT-PCR and subsequently sequenced to compare the HA1 genetic evolution of influenza A H1N1 and A H1N2 subtypes. Our results showed that 28 amino acid substitutions have accumulated in the HA1 region since the circulation of A/New Caledonia/20/99-like viruses in France. Of these, fifteen were located in four antigenic sites (B, C, D and E). Six of them were observed only in the A H1N2 isolates, six only in the A H1N1 isolates and three in both subtypes. Furthermore, nine of twenty two A H1N2 isolates from the winter of 2002-2003 shared a T90A amino acid change which has not been observed in any A H1N1 isolate; resulting in the introduction of a new glycosylation site close to the antigenic site E. This might mask some antigenic E determinants and therefore, modify the A H1N2 antigenicity. The divergent genetic evolution of hemagglutinin may ultimately lead to a significant different antigenicity between A H1N1 and A H1N2 subtypes that would require the introduction of a new subtype in the vaccine batches.

  13. Enzootic genotype S of H9N2 avian influenza viruses donates internal genes to emerging zoonotic influenza viruses in China.

    PubMed

    Gu, Min; Chen, Hongzhi; Li, Qunhui; Huang, Junqing; Zhao, Mingjun; Gu, Xiaobing; Jiang, Kaijun; Wang, Xiaoquan; Peng, Daxin; Liu, Xiufan

    2014-12-05

    Avian influenza viruses of subtype H9N2 are widely prevalent in poultry in many Asian countries, and the segmented nature of the viral genome results in multiple distinct genotypes via reassortment. In this study, genetic evolution of H9N2 viruses circulating in eastern China during 2007-2013 was analyzed. The results showed that the diversity of the gene constellations generated six distinct genotypes, in which a novel genotype (S) bearing the backbone of A/chicken/Shanghai/F/98-like viruses by acquiring A/quail/Hong Kong/G1/97-like polymerase basic subunit 2 and matrix genes has gradually established its ecological niche and been consistently prevalent in chicken flocks in eastern China since its first detection in 2007. Furthermore, genotype S possessed the peculiarity to donate most of its gene segments to other emerging influenza A viruses in China, including the novel reassortant highly pathogenic avian influenza H5N2, the 2013 novel H7N7, H7N9 and the latest reassortant H10N8 viruses, with potential threat to poultry industry and human health. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Serological evidence of H9N2 avian influenza virus exposure among poultry workers from Fars province of Iran.

    PubMed

    Heidari, A; Mancin, M; Nili, H; Pourghanbari, G H; Lankarani, K B; Leardini, S; Cattoli, G; Monne, I; Piccirillo, A

    2016-01-27

    Since the 1990s, influenza A viruses of the H9N2 subtype have been causing infections in the poultry population around the globe. This influenza subtype is widely circulating in poultry and human cases of AI H9N2 have been sporadically reported in countries where this virus is endemic in domestic birds. The wide circulation of H9N2 viruses throughout Europe and Asia along with their ability to cause direct infection in mammals and humans, raises public health concerns. H9N2 AI was reported for the first time in Iran in 1998 and at present it is endemic in poultry. This study was carried out to evaluate the exposure to H9N2 AI viruses among poultry workers from the Fars province. 100 poultry workers and 100 healthy individuals with no professional exposure to poultry took part in this study. Serum samples were tested for antibodies against two distinct H9N2 avian influenza viruses, which showed different phylogenetic clustering and important molecular differences, such as at the amino acid (aa) position 226 (Q/L) (H3 numbering), using haemagglutination inhibition (HI) and microneutralization (MN) assays. Results showed that 17 % of the poultry workers were positive for the A/chicken/Iran/10VIR/854-5/2008 virus in MN test and 12 % in HI test using the titer ≥40 as positive cut-off value. Only 2 % of the poultry workers were positive for the A/chicken/Iran/12VIR/9630/1998 virus. Seroprevalence of non exposed individuals for both H9N2 strains was below 3 % by both tests. Statistical analyses models showed that exposure to poultry significantly increases the risk of infection with H9N2 virus. The results have demonstrated that exposure to avian H9N2 viruses had occurred among poultry workers in the Fars province of Iran. Continuous surveillance programmes should be implemented to monitor the presence of avian influenza infections in humans and to evaluate their potential threat to poultry workers and public health.

  15. Genomic characterization of H1N2 swine influenza viruses in Italy.

    PubMed

    Moreno, Ana; Chiapponi, Chiara; Boniotti, Maria Beatrice; Sozzi, Enrica; Foni, Emanuela; Barbieri, Ilaria; Zanoni, Maria Grazia; Faccini, Silvia; Lelli, Davide; Cordioli, Paolo

    2012-05-04

    Three subtypes (H1N1, H1N2, and H3N2) are currently diffused worldwide in pigs. The H1N2 subtype was detected for the first time in Italian pigs in 1998. To investigate the genetic characteristics and the molecular evolution of this subtype in Italy, we conducted a phylogenetic analysis of whole genome sequences of 26 strains isolated from 1998 to 2010. Phylogenetic analysis of HA and NA genes showed differences between the older (1998-2003) and the more recent strains (2003-2010). The older isolates were closely related to the established European H1N2 lineage, whereas the more recent isolates possessed a different NA deriving from recent human H3N2 viruses. Two other reassortant H1N2 strains have been detected: A/sw/It/22530/02 has the HA gene that is closely related to H1N1 viruses; A/sw/It/58769/10 is an uncommon strain with an HA that is closely related to H1N1 and an NA similar to H3N2 SIVs. Amino acid analysis revealed interesting features: a deletion of two amino acids (146-147) in the HA gene of the recent isolates and two strains isolated in 1998; the presence of the uncommon aa change (N66S), in the PB1-F2 protein in strains isolated from 2009 to 2010, which is said to have contributed to the increased virulence. These results demonstrate the importance of pigs as mixing vessels for animal and human influenza and show the presence and establishment of reassortant strains involving human viruses in pigs in Italy. These findings also highlighted different genomic characteristics of the NA gene the recent Italian strains compared to circulating European viruses. Published by Elsevier B.V.

  16. Genesis of Influenza A(H5N8) Viruses

    PubMed Central

    El-Shesheny, Rabeh; Barman, Subrata; Feeroz, Mohammed M.; Hasan, M. Kamrul; Jones-Engel, Lisa; Franks, John; Turner, Jasmine; Seiler, Patrick; Walker, David; Friedman, Kimberly; Kercher, Lisa; Begum, Sajeda; Akhtar, Sharmin; Datta, Ashis Kumar; Krauss, Scott; Kayali, Ghazi; McKenzie, Pamela; Webby, Richard J.

    2017-01-01

    Highly pathogenic avian influenza A(H5N8) clade 2.3.4.4 virus emerged in 2016 and spread to Russia, Europe, and Africa. Our analysis of viruses from domestic ducks at Tanguar haor, Bangladesh, showed genetic similarities with other viruses from wild birds in central Asia, suggesting their potential role in the genesis of A(H5N8). PMID:28609260

  17. Genesis of Influenza A(H5N8) Viruses.

    PubMed

    El-Shesheny, Rabeh; Barman, Subrata; Feeroz, Mohammed M; Hasan, M Kamrul; Jones-Engel, Lisa; Franks, John; Turner, Jasmine; Seiler, Patrick; Walker, David; Friedman, Kimberly; Kercher, Lisa; Begum, Sajeda; Akhtar, Sharmin; Datta, Ashis Kumar; Krauss, Scott; Kayali, Ghazi; McKenzie, Pamela; Webby, Richard J; Webster, Robert G

    2017-08-01

    Highly pathogenic avian influenza A(H5N8) clade 2.3.4.4 virus emerged in 2016 and spread to Russia, Europe, and Africa. Our analysis of viruses from domestic ducks at Tanguar haor, Bangladesh, showed genetic similarities with other viruses from wild birds in central Asia, suggesting their potential role in the genesis of A(H5N8).

  18. Transcriptomic characterization of the novel avian-origin influenza A (H7N9) virus: specific host response and responses intermediate between avian (H5N1 and H7N7) and human (H3N2) viruses and implications for treatment options.

    PubMed

    Josset, Laurence; Zeng, Hui; Kelly, Sara M; Tumpey, Terrence M; Katze, Michael G

    2014-02-04

    A novel avian-origin H7N9 influenza A virus (IAV) emerged in China in 2013, causing mild to lethal human respiratory infections. H7N9 originated with multiple reassortment events between avian viruses and carries genetic markers of human adaptation. Determining whether H7N9 induces a host response closer to that with human or avian IAV is important in order to better characterize this emerging virus. Here we compared the human lung epithelial cell response to infection with A/Anhui/01/13 (H7N9) or highly pathogenic avian-origin H5N1, H7N7, or human seasonal H3N2 IAV. The transcriptomic response to H7N9 was highly specific to this strain but was more similar to the response to human H3N2 than to that to other avian IAVs. H7N9 and H3N2 both elicited responses related to eicosanoid signaling and chromatin modification, whereas H7N9 specifically induced genes regulating the cell cycle and transcription. Among avian IAVs, the response to H7N9 was closest to that elicited by H5N1 virus. Host responses common to H7N9 and the other avian viruses included the lack of induction of the antigen presentation pathway and reduced proinflammatory cytokine induction compared to that with H3N2. Repression of these responses could have an important impact on the immunogenicity and virulence of H7N9 in humans. Finally, using a genome-based drug repurposing approach, we identified several drugs predicted to regulate the host response to H7N9 that may act as potential antivirals, including several kinase inhibitors, as well as FDA-approved drugs, such as troglitazone and minocycline. Importantly, we validated that minocycline inhibited H7N9 replication in vitro, suggesting that our computational approach holds promise for identifying novel antivirals. Whether H7N9 will be the next pandemic influenza virus or will persist and sporadically infect humans from its avian reservoir, similar to H5N1, is not known yet. High-throughput profiling of the host response to infection allows rapid

  19. Changes in adaptation of H5N2 highly pathogenic avian influenza H5 clade 2.3.4.4 viruses in chickens and mallards

    PubMed Central

    DeJesus, Eric; Costa-Hurtado, Mar; Smith, Diane; Lee, Dong-Hun; Spackman, Erica; Kapczynski, Darrell R.; Torchetti, Mia Kim; Killian, Mary Lea; Suarez, David L.; Swayne, David E.; Pantin-Jackwood, Mary J.

    2016-01-01

    H5N2 highly pathogenic avian influenza (HPAI) viruses caused a severe poultry outbreak in the United States (U.S.) during 2015. In order to examine changes in adaptation of this viral lineage, the infectivity, pathogenesis and transmission of poultry H5N2 viruses were investigated in chickens and mallards in comparison to the wild duck 2014 U.S. index H5N2 virus. The four poultry isolates examined had a lower mean bird infectious dose than the index virus but still transmitted poorly to direct contacts. In mallards, two of the H5N2 poultry isolates had similar high infectivity and transmissibility as the index H5N2 virus, the H5N8 U.S. index virus, and a 2005 H5N1 clade 2.2 virus. Mortality occurred with the H5N1 virus and, interestingly, with one of two poultry H5N2 isolates. Increased virus adaptation to chickens was observed with the poultry H5N2 viruses; however these viruses retained high adaptation to mallards but pathogenicity was differently affected. PMID:27632565

  20. Dynamic Convergent Evolution Drives the Passage Adaptation across 48 Years' History of H3N2 Influenza Evolution.

    PubMed

    Chen, Hui; Deng, Qiang; Ng, Sock Hoon; Lee, Raphael Tze Chuen; Maurer-Stroh, Sebastian; Zhai, Weiwei

    2016-12-01

    Influenza viruses are often propagated in a diverse set of culturing media and additional substitutions known as passage adaptation can cause extra evolution in the target strain, leading to ineffective vaccines. Using 25,482 H3N2 HA1 sequences curated from Global Initiative on Sharing All Influenza Data and National Center for Biotechnology Information databases, we found that passage adaptation is a very dynamic process that changes over time and evolves in a seesaw like pattern. After crossing the species boundary from bird to human in 1968, the influenza H3N2 virus evolves to be better adapted to the human environment and passaging them in embryonated eggs (i.e., an avian environment) leads to increasingly stronger positive selection. On the contrary, passage adaptation to the mammalian cell lines changes from positive selection to negative selection. Using two statistical tests, we identified 19 codon positions around the receptor binding domain strongly contributing to passage adaptation in the embryonated egg. These sites show strong convergent evolution and overlap extensively with positively selected sites identified in humans, suggesting that passage adaptation can confound many of the earlier studies on influenza evolution. Interestingly, passage adaptation in recent years seems to target a few codon positions in antigenic surface epitopes, which makes it difficult to produce antigenically unaltered vaccines using embryonic eggs. Our study outlines another interesting scenario whereby both convergent and adaptive evolution are working in synchrony driving viral adaptation. Future studies from sequence analysis to vaccine production need to take careful consideration of passage adaptation. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Phenotypic and Genetic Characterization of Avian Influenza H5N2 Viruses with Intra- and Inter-Duck Variations in Taiwan

    PubMed Central

    Li, Yao-Tsun; Lai, Ching-Yu; Kao, Chuan-Liang; Yang, Chinglai; Wang, Won-Bo; King, Chwan-Chuen

    2015-01-01

    Background Human infections with avian influenza viruses (AIVs) have frequently raised global concerns of emerging, interspecies-transmissible viruses with pandemic potential. Waterfowl, the predominant reservoir of influenza viruses in nature, harbor precursors of different genetic lineages that have contributed to novel pandemic influenza viruses in the past. Methods Two duck influenza H5N2 viruses, DV518 and DV413, isolated through virological surveillance at a live-poultry market in Taiwan, showed phylogenetic relatedness but exhibited different replication capabilities in mammalian Madin-Darby Canine Kidney (MDCK) cells. This study characterizes the replication properties of the two duck H5N2 viruses and the determinants involved. Results The DV518 virus replicated more efficiently than DV413 in both MDCK and chicken DF1 cells. Interestingly, the infection of MDCK cells by DV518 formed heterogeneous plaques with great differences in size [large (L) and small (S)], and the two viral strains (p518-L and p518-S) obtained from plaque purification exhibited distinguishable replication kinetics in MDCK cells. Nonetheless, both plaque-purified DV518 strains still maintained their growth advantages over the plaque-purified p413 strain. Moreover, three amino acid substitutions in PA (P224S), PB2 (E72D), and M1 (A128T) were identified in intra-duck variations (p518-L vs p518-S), whereas other changes in HA (N170D), NA (I56T), and NP (Y289H) were present in inter-duck variations (DV518 vs DV413). Both p518-L and p518-S strains had the N170D substitution in HA, which might be related to their greater binding to MDCK cells. Additionally, polymerase activity assays on 293T cells demonstrated the role of vRNP in modulating the replication capability of the duck p518-L viruses in mammalian cells. Conclusion These results demonstrate that intra-host phenotypic variation occurs even within an individual duck. In view of recent human infections by low pathogenic AIVs, this study

  2. PB1-F2 Protein Does Not Impact the Virulence of Triple-Reassortant H3N2 Swine Influenza Virus in Pigs but Alters Pathogenicity and Transmission in Turkeys.

    PubMed

    Deventhiran, Jagadeeswaran; Kumar, Sandeep R P; Raghunath, Shobana; Leroith, Tanya; Elankumaran, Subbiah

    2016-01-01

    PB1-F2 protein, the 11th influenza A virus (IAV) protein, is considered to play an important role in primary influenza virus infection and postinfluenza secondary bacterial pneumonia in mice. The functional role of PB1-F2 has been reported to be a strain-specific and host-specific phenomenon. Its precise contribution to the pathogenicity and transmission of influenza virus in mammalian host, such as swine, and avian hosts, such as turkeys, remain largely unknown. In this study, we explored the role of PB1-F2 protein of triple-reassortant (TR) H3N2 swine influenza virus (SIV) in pigs and turkeys. Using the eight-plasmid reverse genetics system, we rescued wild-type SIV A/swine/Minnesota/1145/2007 (H3N2) (SIV 1145-WT), a PB1-F2 knockout mutant (SIV 1145-KO), and its N66S variant (SIV 1145-N66S). The ablation of PB1-F2 in SIV 1145 modulated early-stage apoptosis but did not affect the viral replication in swine alveolar macrophage cells. In pigs, PB1-F2 expression did not affect nasal shedding, lung viral load, immunophenotypes, and lung pathology. On the other hand, in turkeys, SIV 1145-KO infected poults, and its in-contacts developed clinical signs earlier than SIV 1145-WT groups and also displayed more extensive histopathological changes in intestine. Further, turkeys infected with SIV 1145-N66S displayed poor infectivity and transmissibility. The more extensive histopathologic changes in intestine and relative transmission advantage observed in turkeys infected with SIV 1145-KO need to be further explored. Taken together, these results emphasize the host-specific roles of PB1-F2 in the pathogenicity and transmission of IAV. Novel triple-reassortant H3N2 swine influenza virus emerged in 1998 and spread rapidly among the North American swine population. Subsequently, it showed an increased propensity to reassort, generating a range of reassortants. Unlike classical swine influenza virus, TR SIV produces a full-length PB1-F2 protein, which is considered an important

  3. PB1-F2 Protein Does Not Impact the Virulence of Triple-Reassortant H3N2 Swine Influenza Virus in Pigs but Alters Pathogenicity and Transmission in Turkeys

    PubMed Central

    Deventhiran, Jagadeeswaran; Kumar, Sandeep R. P.; Raghunath, Shobana; Elankumaran, Subbiah

    2015-01-01

    ABSTRACT PB1-F2 protein, the 11th influenza A virus (IAV) protein, is considered to play an important role in primary influenza virus infection and postinfluenza secondary bacterial pneumonia in mice. The functional role of PB1-F2 has been reported to be a strain-specific and host-specific phenomenon. Its precise contribution to the pathogenicity and transmission of influenza virus in mammalian host, such as swine, and avian hosts, such as turkeys, remain largely unknown. In this study, we explored the role of PB1-F2 protein of triple-reassortant (TR) H3N2 swine influenza virus (SIV) in pigs and turkeys. Using the eight-plasmid reverse genetics system, we rescued wild-type SIV A/swine/Minnesota/1145/2007 (H3N2) (SIV 1145-WT), a PB1-F2 knockout mutant (SIV 1145-KO), and its N66S variant (SIV 1145-N66S). The ablation of PB1-F2 in SIV 1145 modulated early-stage apoptosis but did not affect the viral replication in swine alveolar macrophage cells. In pigs, PB1-F2 expression did not affect nasal shedding, lung viral load, immunophenotypes, and lung pathology. On the other hand, in turkeys, SIV 1145-KO infected poults, and its in-contacts developed clinical signs earlier than SIV 1145-WT groups and also displayed more extensive histopathological changes in intestine. Further, turkeys infected with SIV 1145-N66S displayed poor infectivity and transmissibility. The more extensive histopathologic changes in intestine and relative transmission advantage observed in turkeys infected with SIV 1145-KO need to be further explored. Taken together, these results emphasize the host-specific roles of PB1-F2 in the pathogenicity and transmission of IAV. IMPORTANCE Novel triple-reassortant H3N2 swine influenza virus emerged in 1998 and spread rapidly among the North American swine population. Subsequently, it showed an increased propensity to reassort, generating a range of reassortants. Unlike classical swine influenza virus, TR SIV produces a full-length PB1-F2 protein, which is

  4. Molecular Mechanism of the Airborne Transmissibility of H9N2 Avian Influenza A Viruses in Chickens

    PubMed Central

    Zhong, Lei; Wang, Xiaoquan; Li, Qunhui; Liu, Dong; Chen, Hongzhi; Zhao, Mingjun; Gu, Xiaobing; He, Liang; Liu, Xiaowen; Gu, Min; Peng, Daxin

    2014-01-01

    ABSTRACT H9N2 avian influenza virus has been prevalent in poultry in many parts of the world since the 1990s and occasionally crosses the host barrier, transmitting to mammals, including humans. In recent years, these viruses have contributed genes to H5N1 and H7N9 influenza viruses, threatening public health. To explore the molecular mechanism for the airborne transmission of H9N2 virus, we compared two genetically close strains isolated from chickens in 2001, A/chicken/Shanghai/7/2001(SH7) and A/chicken/Shanghai/14/2001 (SH14). SH7 is airborne transmissible between chickens, whereas SH14 is not. We used reverse genetics and gene swapping to derive recombinant SH7 (rSH7), rSH14, and a panel of reassortant viruses. Among the reassortant viruses, we identified segments HA and PA as governing the airborne transmission among chickens. In addition, the NP and NS genes also contributed to a lesser extent. Furthermore, the mutational analyses showed the transmissibility phenotype predominantly mapped to the HA and PA genes, with HA-K363 and PA-L672 being important for airborne transmissibility among chickens. In addition, the viral infectivity and acid stability are related to the airborne transmissibility. Importantly, airborne transmission studies of 18 arbitrarily chosen H9N2 viruses from our collections confirmed the importance of both 363K in HA and 672L in PA in determining their levels of transmissibility. Our finding elucidates the genetic contributions to H9N2 transmissibility in chickens and highlights the importance of their prevalence in poultry. IMPORTANCE Our study investigates the airborne transmissibility of H9N2 viruses in chickens and the subsequent epidemic. H9N2 virus is the donor for several prevalent reassortant influenza viruses, such as H7N9/2013 and the H5N1 viruses. Poultry as the reservoir hosts of influenza virus is closely associated with human society. Airborne transmission is an efficient pathway for influenza virus transmission among

  5. Vaccination with NS1-truncated H3N2 swine influenza virus primes T cells and confers cross-protection against an H1N1 heterosubtypic challenge in pigs

    USDA-ARS?s Scientific Manuscript database

    The diversity of contemporary swine influenza virus (SIV) strains impedes effective immunization of swine herds. Mucosally delivered, attenuated virus vaccines are one approach with potential to provide broad cross-protection. Reverse genetics-derived H3N2 SIV virus with truncated NS1 (NS1delta126 T...

  6. Newly emerging mutations in the matrix genes of the human influenza A(H1N1)pdm09 and A(H3N2) viruses reduce the detection sensitivity of real-time reverse transcription-PCR.

    PubMed

    Yang, Ji-Rong; Kuo, Chuan-Yi; Huang, Hsiang-Yi; Wu, Fu-Ting; Huang, Yi-Lung; Cheng, Chieh-Yu; Su, Yu-Ting; Chang, Feng-Yee; Wu, Ho-Sheng; Liu, Ming-Tsan

    2014-01-01

    New variants of the influenza A(H1N1)pdm09 and A(H3N2) viruses were detected in Taiwan between 2012 and 2013. Some of these variants were not detected in clinical specimens using a common real-time reverse transcription-PCR (RT-PCR) assay that targeted the conserved regions of the viral matrix (M) genes. An analysis of the M gene sequences of the new variants revealed that several newly emerging mutations were located in the regions where the primers or probes of the real-time RT-PCR assay bind; these included three mutations (G225A, T228C, and G238A) in the A(H1N1)pdm09 virus, as well as one mutation (C163T) in the A(H3N2) virus. These accumulated mismatch mutations, together with the previously identified C154T mutation of the A(H1N1)pdm09 virus and the C153T and G189T mutations of the A(H3N2) virus, result in a reduced detection sensitivity for the real-time RT-PCR assay. To overcome the loss of assay sensitivity due to mismatch mutations, we established a real-time RT-PCR assay using degenerate nucleotide bases in both the primers and probe and successfully increased the sensitivity of the assay to detect circulating variants of the human influenza A viruses. Our observations highlight the importance of the simultaneous use of different gene-targeting real-time RT-PCR assays for the clinical diagnosis of influenza.

  7. Pathogenesis and Transmission of Novel Highly Pathogenic Avian Influenza H5N2 and H5N8 Viruses in Ferrets and Mice

    PubMed Central

    Pulit-Penaloza, Joanna A.; Sun, Xiangjie; Creager, Hannah M.; Zeng, Hui; Belser, Jessica A.; Maines, Taronna R.

    2015-01-01

    ABSTRACT A novel highly pathogenic avian influenza (HPAI) H5N8 virus, first detected in January 2014 in poultry and wild birds in South Korea, has spread throughout Asia and Europe and caused outbreaks in Canada and the United States by the end of the year. The spread of H5N8 and the novel reassortant viruses, H5N2 and H5N1 (H5Nx), in domestic poultry across multiple states in the United States pose a potential public health risk. To evaluate the potential of cross-species infection, we determined the pathogenicity and transmissibility of two Asian-origin H5Nx viruses in mammalian animal models. The newly isolated H5N2 and H5N8 viruses were able to cause severe disease in mice only at high doses. Both viruses replicated efficiently in the upper and lower respiratory tracts of ferrets; however, the clinical symptoms were generally mild, and there was no evidence of systemic dissemination of virus to multiple organs. Moreover, these influenza H5Nx viruses lacked the ability to transmit between ferrets in a direct contact setting. We further assessed viral replication kinetics of the novel H5Nx viruses in a human bronchial epithelium cell line, Calu-3. Both H5Nx viruses replicated to a level comparable to a human seasonal H1N1 virus, but significantly lower than a virulent Asian-lineage H5N1 HPAI virus. Although the recently isolated H5N2 and H5N8 viruses displayed moderate pathogenicity in mammalian models, their ability to rapidly spread among avian species, reassort, and generate novel strains underscores the need for continued risk assessment in mammals. IMPORTANCE In 2015, highly pathogenic avian influenza (HPAI) H5 viruses have caused outbreaks in domestic poultry in multiple U.S. states. The economic losses incurred with H5N8 and H5N2 subtype virus infection have raised serious concerns for the poultry industry and the general public due to the potential risk of human infection. This recent outbreak underscores the need to better understand the pathogenesis and

  8. Vaccine protection of poultry against H5 clade 2.3.4.4 highly pathogenic avian influenza

    USDA-ARS?s Scientific Manuscript database

    Following the 2014-2015 outbreaks of H5N2 and H5N8 (clade 2.3.4.4) highly pathogenic avian influenza (HPAI) in the U.S., studies were performed to identify vaccines with potential to be used as a control mechanism in the event of future outbreaks. We tested both inactivated and recombinant vaccine...

  9. Substitutions near the hemagglutinin receptor-binding site determine the antigenic evolution of influenza A H3N2 viruses in U.S. swine.

    PubMed

    Lewis, Nicola S; Anderson, Tavis K; Kitikoon, Pravina; Skepner, Eugene; Burke, David F; Vincent, Amy L

    2014-05-01

    Swine influenza A virus is an endemic and economically important pathogen in pigs, with the potential to infect other host species. The hemagglutinin (HA) protein is the primary target of protective immune responses and the major component in swine influenza A vaccines. However, as a result of antigenic drift, vaccine strains must be regularly updated to reflect currently circulating strains. Characterizing the cross-reactivity between strains in pigs and seasonal influenza virus strains in humans is also important in assessing the relative risk of interspecies transmission of viruses from one host population to the other. Hemagglutination inhibition (HI) assay data for swine and human H3N2 viruses were used with antigenic cartography to quantify the antigenic differences among H3N2 viruses isolated from pigs in the United States from 1998 to 2013 and the relative cross-reactivity between these viruses and current human seasonal influenza A virus strains. Two primary antigenic clusters were found circulating in the pig population, but with enough diversity within and between the clusters to suggest updates in vaccine strains are needed. We identified single amino acid substitutions that are likely responsible for antigenic differences between the two primary antigenic clusters and between each antigenic cluster and outliers. The antigenic distance between current seasonal influenza virus H3 strains in humans and those endemic in swine suggests that population immunity may not prevent the introduction of human viruses into pigs, and possibly vice versa, reinforcing the need to monitor and prepare for potential incursions. Influenza A virus (IAV) is an important pathogen in pigs and humans. The hemagglutinin (HA) protein is the primary target of protective immune responses and the major target of vaccines. However, vaccine strains must be updated to reflect current strains. Characterizing the differences between seasonal IAV in humans and swine IAV is important in

  10. Substitutions near the Hemagglutinin Receptor-Binding Site Determine the Antigenic Evolution of Influenza A H3N2 Viruses in U.S. Swine

    PubMed Central

    Lewis, Nicola S.; Anderson, Tavis K.; Kitikoon, Pravina; Skepner, Eugene; Burke, David F.

    2014-01-01

    ABSTRACT Swine influenza A virus is an endemic and economically important pathogen in pigs, with the potential to infect other host species. The hemagglutinin (HA) protein is the primary target of protective immune responses and the major component in swine influenza A vaccines. However, as a result of antigenic drift, vaccine strains must be regularly updated to reflect currently circulating strains. Characterizing the cross-reactivity between strains in pigs and seasonal influenza virus strains in humans is also important in assessing the relative risk of interspecies transmission of viruses from one host population to the other. Hemagglutination inhibition (HI) assay data for swine and human H3N2 viruses were used with antigenic cartography to quantify the antigenic differences among H3N2 viruses isolated from pigs in the United States from 1998 to 2013 and the relative cross-reactivity between these viruses and current human seasonal influenza A virus strains. Two primary antigenic clusters were found circulating in the pig population, but with enough diversity within and between the clusters to suggest updates in vaccine strains are needed. We identified single amino acid substitutions that are likely responsible for antigenic differences between the two primary antigenic clusters and between each antigenic cluster and outliers. The antigenic distance between current seasonal influenza virus H3 strains in humans and those endemic in swine suggests that population immunity may not prevent the introduction of human viruses into pigs, and possibly vice versa, reinforcing the need to monitor and prepare for potential incursions. IMPORTANCE Influenza A virus (IAV) is an important pathogen in pigs and humans. The hemagglutinin (HA) protein is the primary target of protective immune responses and the major target of vaccines. However, vaccine strains must be updated to reflect current strains. Characterizing the differences between seasonal IAV in humans and swine

  11. [Phylogenetic analysis of human/swine/avian gene reassortant H1N2 influenza A virus isolated from a pig in China].

    PubMed

    Chen, Yixiang; Meng, Xueqiong; Liu, Qi; Huang, Xia; Huang, Shengbin; Liu, Cuiquan; Shi, Kaichuang; Guo, Jiangang; Chen, Fangfang; Hu, Liping

    2008-04-01

    Our aim in this study was to determine the genetic characterization and probable origin of the H1N2 swine influenza virus (A/Swine/Guangxi/13/2006) (Sw/GX/13/06) from lung tissue of a pig in Guangxi province, China. Eight genes of Sw/GX/13/06 were cloned and genetically analyzed. The hemagglutinin (HA), nucleoprotein (NP), matrix (M) and non-structural (NS) genes of Sw/GX/13/06 were most closely related to genes from the classical swine H1N1 influenza virus lineage. The neuraminidase (NA) and PB1 genes were most closely related to the corresponding genes from the human influenza H3N2 virus lineage. The remaining two genes PA and PB2 polymerase genes were most closely related to the genes from avian influenza virus lineage. Phylogenetic analyses revealed that Sw/GX/13/06 was a human/swine/avian H1N2 virus, and closely related to H1N2 viruses isolated from pigs in United States (1999-2001) and Korea (2002). To our knowledge, Sw/GX/13/06 was the first triple-reassortant H1N2 influenza A virus isolated from a pig in China. Whether the Sw/GX/13/06 has a potential threat to breeding farm and human health remains to be further investigated.

  12. A duplex real-time RT-PCR assay for detecting H5N1 avian influenza virus and pandemic H1N1 influenza virus.

    PubMed

    Kang, Xiao-ping; Jiang, Tao; Li, Yong-qiang; Lin, Fang; Liu, Hong; Chang, Guo-hui; Zhu, Qing-yu; Qin, E-de; Qin, Cheng-feng; Yang, Yin-hui

    2010-06-02

    A duplex real-time reverse transcriptase polymerase chain reaction (RT-PCR) assay was improved for simultaneous detection of highly pathogenic H5N1 avian influenza virus and pandemic H1N1 (2009) influenza virus, which is suitable for early diagnosis of influenza-like patients and for epidemiological surveillance. The sensitivity of this duplex real-time RT-PCR assay was 0.02 TCID50 (50% tissue culture infective dose) for H5N1 and 0.2 TCID50 for the pandemic H1N1, which was the same as that of each single-target RT-PCR for pandemic H1N1 and even more sensitive for H5N1 with the same primers and probes. No cross reactivity of detecting other subtype influenza viruses or respiratory tract viruses was observed. Two hundred and thirty-six clinical specimens were tested by comparing with single real-time RT-PCR and result from the duplex assay was 100% consistent with the results of single real-time RT-PCR and sequence analysis.

  13. The characteristics and antigenic properties of recently emerged subclade 3C.3a and 3C.2a human influenza A(H3N2) viruses passaged in MDCK cells.

    PubMed

    Lin, Yipu; Wharton, Stephen A; Whittaker, Lynne; Dai, Mian; Ermetal, Burcu; Lo, Janice; Pontoriero, Andrea; Baumeister, Elsa; Daniels, Rodney S; McCauley, John W

    2017-05-01

    Two new subclades of influenza A(H3N2) viruses became prominent during the 2014-2015 Northern Hemisphere influenza season. The HA glycoproteins of these viruses showed sequence changes previously associated with alterations in receptor-binding properties. To address how these changes influence virus propagation, viruses were isolated and propagated in conventional MDCK cells and MDCK-SIAT1 cells, cells with enhanced expression of the human receptor for the virus, and analysed at each passage. Gene sequence analysis was undertaken as virus was passaged in conventional MDCK cells and MDCK-SIAT1 cells. Alterations in receptor recognition associated with passage of virus were examined by haemagglutination assays using red blood cells from guinea pigs, turkeys and humans. Microneutralisation assays were performed to determine how passage-acquired amino acid substitutions and polymorphisms affected virus antigenicity. Viruses were able to infect MDCK-SIAT1 cells more efficiently than conventional MDCK cells. Viruses of both the 3C.2a and 3C.3a subclades showed greater sequence change on passage in conventional MDCK cells than in MDCK-SIAT1 cells, with amino acid substitutions being seen in both HA and NA glycoproteins. However, virus passage in MDCK-SIAT1 cells at low inoculum dilutions showed reducing infectivity on continued passage. Current H3N2 viruses should be cultured in the MDCK-SIAT1 cell line to maintain faithful replication of the virus, and at an appropriate multiplicity of infection to retain infectivity. © 2017 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  14. Limited pathogenicity and transmissibility of Korean highly pathogenic avian influenza H5N6 clade 2.3.4.4 in ferrets.

    PubMed

    Noh, J-Y; Lee, D-H; Yuk, S-S; Kwon, J-H; Tseren-Ochir, E-O; Hong, W-T; Jeong, J-H; Jeong, S; Song, C-S

    2018-04-19

    The pathogenicity and transmissibility of a reassortant clade 2.3.4.4 avian influenza A (H5N6) virus were evaluated in ferrets. Virus excretion was detected in the upper respiratory tract, but the ferrets did not show any clinical signs of infection. Transmission did not occur between cohoused or respiratory droplet-contact ferrets. © 2018 Blackwell Verlag GmbH.

  15. Continuing evolution of H9N2 avian influenza virus in South Korea

    USDA-ARS?s Scientific Manuscript database

    The H9N2 low pathogenic avian influenza (LPAI) has caused great economic losses in Korean poultry industry since the first outbreak in 1996. Although the hemagglutinin gene of early H9N2 viruses were closely related to Chinese Y439-like lineage virus, it evolved into a unique Korean lineage after ...

  16. Fitness of Pandemic H1N1 and Seasonal influenza A viruses during Co-infection

    PubMed Central

    Perez, Daniel Roberto; Sorrell, Erin; Angel, Matthew; Ye, Jianqiang; Hickman, Danielle; Pena, Lindomar; Ramirez-Nieto, Gloria; Kimble, Brian; Araya, Yonas

    2009-01-01

    On June 11, 2009 the World Health Organization (WHO) declared a new H1N1 influenza pandemic. This pandemic strain is as transmissible as seasonal H1N1 and H3N2 influenza A viruses. Major concerns facing this pandemic are whether the new virus will replace, co-circulate and/or reassort with seasonal H1N1 and/or H3N2 human strains. Using the ferret model, we investigated which of these three possibilities were most likely favored. Our studies showed that the current pandemic virus is more transmissible than, and has a biological advantage over, prototypical seasonal H1 or H3 strains. PMID:20029606

  17. Emergence and evolution of avian H5N2 influenza viruses in chickens in Taiwan.

    PubMed

    Lee, Chang-Chun David; Zhu, Huachen; Huang, Pei-Yu; Peng, Liuxia; Chang, Yun-Cheng; Yip, Chun-Hung; Li, Yao-Tsun; Cheung, Chung-Lam; Compans, Richard; Yang, Chinglai; Smith, David K; Lam, Tommy Tsan-Yuk; King, Chwan-Chuen; Guan, Yi

    2014-05-01

    Sporadic activity by H5N2 influenza viruses has been observed in chickens in Taiwan from 2003 to 2012. The available information suggests that these viruses were generated by reassortment between a Mexican-like H5N2 virus and a local enzootic H6N1 virus. Yet the origin, prevalence, and pathogenicity of these H5N2 viruses have not been fully defined. Following the 2012 highly pathogenic avian influenza (HPAI) outbreaks, surveillance was conducted from December 2012 to July 2013 at a live-poultry wholesale market in Taipei. Our findings showed that H5N2 and H6N1 viruses cocirculated at low levels in chickens in Taiwan. Phylogenetic analyses revealed that all H5N2 viruses had hemagglutinin (HA) and neuraminidase (NA) genes derived from a 1994 Mexican-like virus, while their internal gene complexes were incorporated from the enzootic H6N1 virus lineage by multiple reassortment events. Pathogenicity studies demonstrated heterogeneous results even though all tested viruses had motifs (R-X-K/R-R) supportive of high pathogenicity. Serological surveys for common subtypes of avian viruses confirmed the prevalence of the H5N2 and H6N1 viruses in chickens and revealed an extraordinarily high seroconversion rate to an H9N2 virus, a subtype that is not found in Taiwan but is prevalent in mainland China. These findings suggest that reassortant H5N2 viruses, together with H6N1 viruses, have become established and enzootic in chickens throughout Taiwan and that a large-scale vaccination program might have been conducted locally that likely led to the introduction of the 1994 Mexican-like virus to Taiwan in 2003. H5N2 avian influenza viruses first appeared in chickens in Taiwan in 2003 and caused a series of outbreaks afterwards. Phylogenetic analyses show that the chicken H5N2 viruses have H5 and N2 genes that are closely related to those of a vaccine strain originating from Mexico in 1994, while the contemporary duck H5N2 viruses in Taiwan belong to the Eurasian gene pool. The

  18. Emergence and Evolution of Avian H5N2 Influenza Viruses in Chickens in Taiwan

    PubMed Central

    Lee, Chang-Chun David; Zhu, Huachen; Huang, Pei-Yu; Peng, Liuxia; Chang, Yun-Cheng; Yip, Chun-Hung; Li, Yao-Tsun; Cheung, Chung-Lam; Compans, Richard; Yang, Chinglai; Smith, David K.; Lam, Tommy Tsan-Yuk

    2014-01-01

    ABSTRACT Sporadic activity by H5N2 influenza viruses has been observed in chickens in Taiwan from 2003 to 2012. The available information suggests that these viruses were generated by reassortment between a Mexican-like H5N2 virus and a local enzootic H6N1 virus. Yet the origin, prevalence, and pathogenicity of these H5N2 viruses have not been fully defined. Following the 2012 highly pathogenic avian influenza (HPAI) outbreaks, surveillance was conducted from December 2012 to July 2013 at a live-poultry wholesale market in Taipei. Our findings showed that H5N2 and H6N1 viruses cocirculated at low levels in chickens in Taiwan. Phylogenetic analyses revealed that all H5N2 viruses had hemagglutinin (HA) and neuraminidase (NA) genes derived from a 1994 Mexican-like virus, while their internal gene complexes were incorporated from the enzootic H6N1 virus lineage by multiple reassortment events. Pathogenicity studies demonstrated heterogeneous results even though all tested viruses had motifs (R-X-K/R-R) supportive of high pathogenicity. Serological surveys for common subtypes of avian viruses confirmed the prevalence of the H5N2 and H6N1 viruses in chickens and revealed an extraordinarily high seroconversion rate to an H9N2 virus, a subtype that is not found in Taiwan but is prevalent in mainland China. These findings suggest that reassortant H5N2 viruses, together with H6N1 viruses, have become established and enzootic in chickens throughout Taiwan and that a large-scale vaccination program might have been conducted locally that likely led to the introduction of the 1994 Mexican-like virus to Taiwan in 2003. IMPORTANCE H5N2 avian influenza viruses first appeared in chickens in Taiwan in 2003 and caused a series of outbreaks afterwards. Phylogenetic analyses show that the chicken H5N2 viruses have H5 and N2 genes that are closely related to those of a vaccine strain originating from Mexico in 1994, while the contemporary duck H5N2 viruses in Taiwan belong to the

  19. Avian influenza A (H5N1).

    PubMed

    de Jong, Menno D; Hien, Tran Tinh

    2006-01-01

    Since their reemergence in 2003, highly pathogenic avian influenza A (H5N1) viruses have reached endemic levels among poultry in several southeast Asian countries and have caused a still increasing number of more than 100 reported human infections with high mortality. These developments have ignited global fears of an imminent influenza pandemic. The current knowledge of the virology, clinical spectrum, diagnosis and treatment of human influenza H5N1 virus infections is reviewed herein.

  20. Isolation of H5N6, H7N9 and H9N2 avian influenza A viruses from air sampled at live poultry markets in China, 2014 and 2015

    PubMed Central

    Zhou, Jie; Wu, Jie; Zeng, Xianqiao; Huang, Guofeng; Zou, Lirong; Song, Yingchao; Gopinath, Divya; Zhang, Xin; Kang, Min; Lin, Jinyan; Cowling, Benjamin J; Lindsley, William G.; Ke, Changwen; Peiris, Joseph Sriyal Malik; Yen, Hui-Ling

    2016-01-01

    Zoonotic infections by avian influenza viruses occur at the human–poultry interface, but the modes of transmission have not been fully investigated. We assessed the potential for airborne and fomite transmission at live poultry markets in Guangzhou city and in Hong Kong Special Administrative Region (SAR), China, during 2014 and 2015. Viral genome and infectious avian influenza A viruses of H5N6, H7N9, and H9N2 subtypes were detected predominantly from particles larger or equal to 1 μm in diameter in the air sampled with cyclone-based bioaerosol samplers at the live poultry markets in Guangzhou. Influenza A(H9N2) viruses were ubiquitously isolated every month during the study period from air and environmental swabs, and different lineages of H9N2 virus were isolated from markets where chickens and minor land-based poultry were sold. The use of de-feathering devices increased the quantity of virus-laden airborne particles while market closure reduced the amount of such particles. The results highlight the possibility of airborne transmission of avian influenza viruses among poultry or from poultry to humans within such settings. This may explain epidemiological observations in which some patients with H7N9 infection reported being in markets but no direct contact with live poultry or poultry stalls. PMID:27608369

  1. Isolation of H5N6, H7N9 and H9N2 avian influenza A viruses from air sampled at live poultry markets in China, 2014 and 2015.

    PubMed

    Zhou, Jie; Wu, Jie; Zeng, Xianqiao; Huang, Guofeng; Zou, Lirong; Song, Yingchao; Gopinath, Divya; Zhang, Xin; Kang, Min; Lin, Jinyan; Cowling, Benjamin J; Lindsley, William G; Ke, Changwen; Peiris, Joseph Sriyal Malik; Yen, Hui-Ling

    2016-09-01

    Zoonotic infections by avian influenza viruses occur at the human-poultry interface, but the modes of transmission have not been fully investigated. We assessed the potential for airborne and fomite transmission at live poultry markets in Guangzhou city and in Hong Kong Special Administrative Region (SAR), China, during 2014 and 2015. Viral genome and infectious avian influenza A viruses of H5N6, H7N9, and H9N2 subtypes were detected predominantly from particles larger or equal to 1 μm in diameter in the air sampled with cyclone-based bioaerosol samplers at the live poultry markets in Guangzhou. Influenza A(H9N2) viruses were ubiquitously isolated every month during the study period from air and environmental swabs, and different lineages of H9N2 virus were isolated from markets where chickens and minor land-based poultry were sold. The use of de-feathering devices increased the quantity of virus-laden airborne particles while market closure reduced the amount of such particles. The results highlight the possibility of airborne transmission of avian influenza viruses among poultry or from poultry to humans within such settings. This may explain epidemiological observations in which some patients with H7N9 infection reported being in markets but no direct contact with live poultry or poultry stalls. This article is copyright of The Authors, 2016.

  2. Influenza A (H1N1) in Rome, Italy in family: three case reports.

    PubMed

    Lisena, Francesco; Bordi, Licia; Carletti, Fabrizio; Castilletti, Concetta; Ferraro, Federica; Lalle, Eleonora; Lanini, Simone; Ruscitti, Luca Enrico; Fusco, Francesco Maria

    2009-12-01

    A new Influenza A virus H1N1 appeared in March-April 2009, and thousands of cases are being reported worldwide. In the initial months, several imported cases were reported in many European countries, while some countries reported local chains of transmission. We describe the first cluster of in-country transmission of the new Influenza A H1N1 which occurred in Italy, involving 3 patients. Patient 1, a 11-year-old male child developed fever, cough, and general malaise 4 days after returning from a travel to Mexico. Some days later, the 69-year-old grandfather (patient 2), who did not travel to Mexico, and the 33-month-old brother (patient 3) of patient 1 developed mild influenza symptoms. PCR tests resulted positive for Influenza A, and sequence analysis confirmed infection with the Influenza A (H1N1) strain for all three patients. Some problems were experienced in the administration of chemoprophylaxis and therapy in the patient 3. The chemoprophylaxis policies in other family members are described, too. Some interesting facts emerge from the analysis of this cluster. The transmission of Influenza A H1N1 virus seems to be dependent on strict contacts. Patient 2 and patient 3 did not take the chemoprophylaxis properly. The problems in the administration of chemoprophylaxis and therapy to patient 3 suggest that in infants specific individual-based strategies for assuring the correct administration are advisable.

  3. Evidence for avian H9N2 influenza virus infections among rural villagers in Cambodia.

    PubMed

    Blair, Patrick J; Putnam, Shannon D; Krueger, Whitney S; Chum, Channimol; Wierzba, Thomas F; Heil, Gary L; Yasuda, Chadwick Y; Williams, Maya; Kasper, Matthew R; Friary, John A; Capuano, Ana W; Saphonn, Vonthanak; Peiris, Malik; Shao, Hongxia; Perez, Daniel R; Gray, Gregory C

    2013-04-01

    Southeast Asia remains a critical region for the emergence of novel and/or zoonotic influenza, underscoring the importance of extensive sampling in rural areas where early transmission is most likely to occur. In 2008, 800 adult participants from eight sites were enrolled in a prospective population-based study of avian influenza (AI) virus transmission where highly pathogenic avian influenza (HPAI) H5N1 virus had been reported in humans and poultry from 2006 to 2008. From their enrollment sera and questionnaires, we report risk factor findings for serologic evidence of previous infection with 18 AI virus strains. Serologic assays revealed no evidence of previous infection with 13 different low-pathogenic AI viruses or with HPAI avian-like A/Cambodia/R0404050/2007(H5N1). However, 21 participants had elevated antibodies against avian-like A/Hong Kong/1073/1999(H9N2), validated with a monoclonal antibody blocking ELISA assay specific for avian H9. Although cross-reaction from antibodies against human influenza viruses cannot be completely excluded, the study data suggest that a number of participants were previously infected with the avian-like A/Hong Kong/1073/1999(H9N2) virus, likely due to as yet unidentified environmental exposures. Prospective data from this cohort will help us better understand the serology of zoonotic influenza infection in a rural cohort in SE Asia. Copyright © 2013 King Saud Bin Abdulaziz University for Health Sciences. All rights reserved.

  4. [Genomic characteristics of 2 strains of influenza A(H9N2)virus isolated from human infection cases in Anhui province].

    PubMed

    He, J; Liu, L P; Hou, S; Gong, L; Wu, J B; Hu, W F; Wang, J J

    2016-05-01

    To understand genomic characteristics of 2 strains of influenza A(H9N2)virus isolated from human infection cases in Anhui province in 2015. Two human infection with H9N2 virus were confirmed by national influenza surveillance laboratory network in Anhui through viral isolation in April and September, 2015, respectively. The full genomic sequences of the two viral isolates were analyzed in this study by using molecular bioinformatics software Mega 6.0. Human infection with H9N2 virus was first reported in Anhui province. The analysis of genomic sequence showed that the HA and NA genes of the two H9N2 isolates belonged to A/Chicken/Shanghai/F/98(H9N2)-like lineage, and shared high identity with H9N2 virus circulating in poultry in 2013. The PB2 and MP genes belonged to the A/quail/Hong Kong/G1/97-like lineage, and shared high homology with H7N9, H10N8 or H6N2 viruses. The amino acid sequence alignment results showed that several mutations for human infection tropism presented in the two virus strains, including Q226L, H183N and E190T in HA; S31N in M2; 63-65 deletion in NA. In addition, the H9N2 influenza virus strains possessed the PSRSSR\\GL motif in HA. Meanwhile several human-like signatures, including PA-100A, PA-356R and PA-409N were also found in the two virus strains. The H9N2 viruses isolated from human infection cases in Anhui province belonged to a reassortant virus originated from different lineage H9N2 avian influenza virus. The virus has possessed several human susceptibility locus.

  5. Antigenic Detection of Human Strain of Influenza Virus A (H3N2) in Swine Populations at Three Locations in Nigeria and Ghana during the Dry Early Months of 2014.

    PubMed

    Adeola, O A; Olugasa, B O; Emikpe, B O

    2016-03-01

    Since the first detection of human H3N2 influenza virus in Taiwanese pigs in 1970, infection of pigs with wholly human viruses has been known to occur in other parts of the world. These viruses, referred to as human-like H3N2 viruses, have been known to cause clinical and subclinical infections of swine populations. Due to the paucity and complete unavailability of information on transmission of influenza viruses from other species, especially humans, to swine in Nigeria and Ghana, respectively, this study was designed to investigate the presence and prevalence of a human strain of influenza A (H3N2) in swine populations at three locations in two cities within these two West African countries in January and February, 2014. Using stratified random technique, nasal swab specimens were collected from seventy-five (75) pigs at two locations in Ibadan, Nigeria and from fifty (50) pigs in Kumasi, Ghana. These specimens were tested directly by a sensitive Quantitative Solid Phase Antigen-detection Sandwich ELISA using anti-A/Brisbane/10/2007 haemagglutinin monoclonal antibody. Influenza virus A/Brisbane/10/2007 (H3N2) was detected among pigs at the three study locations, with an aggregate prevalence of 4.0% for the two locations in Ibadan, Nigeria and also 4.0% for Kumasi, Ghana. Transmission of influenza viruses from other species to swine portends serious sinister prospects for genetic reassortment and evolvement of novel viruses. We therefore recommend that further studies should be carried out to investigate the presence of other circulating human and avian influenza viruses in swine populations in West Africa and also determine the extent of genetic reassortment of strains circulating among these pigs. This would provide an early warning system for detection of novel influenza viruses, which could have pandemic potentials. © 2015 Blackwell Verlag GmbH.

  6. Evolution, global spread, and pathogenicity of highly pathogenic avian influenza H5Nx clade 2.3.4.4

    PubMed Central

    Lee, Dong-Hun; Bertran, Kateri; Kwon, Jung-Hoon

    2017-01-01

    Novel subtypes of Asian-origin (Goose/Guangdong lineage) H5 highly pathogenic avian influenza (HPAI) viruses belonging to clade 2.3.4, such as H5N2, H5N5, H5N6, and H5N8, have been identified in China since 2008 and have since evolved into four genetically distinct clade 2.3.4.4 groups (A–D). Since 2014, HPAI clade 2.3.4.4 viruses have spread rapidly via migratory wild aquatic birds and have evolved through reassortment with prevailing local low pathogenicity avian influenza viruses. Group A H5N8 viruses and its reassortant viruses caused outbreaks in wide geographic regions (Asia, Europe, and North America) during 2014–2015. Novel reassortant Group B H5N8 viruses caused outbreaks in Asia, Europe, and Africa during 2016–2017. Novel reassortant Group C H5N6 viruses caused outbreaks in Korea and Japan during the 2016–2017 winter season. Group D H5N6 viruses caused outbreaks in China and Vietnam. A wide range of avian species, including wild and domestic waterfowl, domestic poultry, and even zoo birds, seem to be permissive for infection by and/or transmission of clade 2.3.4.4 HPAI viruses. Further, compared to previous H5N1 HPAI viruses, these reassortant viruses show altered pathogenicity in birds. In this review, we discuss the evolution, global spread, and pathogenicity of H5 clade 2.3.4.4 HPAI viruses. PMID:28859267

  7. Identification of combinatorial host-specific signatures with a potential to affect host adaptation in influenza A H1N1 and H3N2 subtypes.

    PubMed

    Khaliq, Zeeshan; Leijon, Mikael; Belák, Sándor; Komorowski, Jan

    2016-07-29

    The underlying strategies used by influenza A viruses (IAVs) to adapt to new hosts while crossing the species barrier are complex and yet to be understood completely. Several studies have been published identifying singular genomic signatures that indicate such a host switch. The complexity of the problem suggested that in addition to the singular signatures, there might be a combinatorial use of such genomic features, in nature, defining adaptation to hosts. We used computational rule-based modeling to identify combinatorial sets of interacting amino acid (aa) residues in 12 proteins of IAVs of H1N1 and H3N2 subtypes. We built highly accurate rule-based models for each protein that could differentiate between viral aa sequences coming from avian and human hosts. We found 68 host-specific combinations of aa residues, potentially associated to host adaptation on HA, M1, M2, NP, NS1, NEP, PA, PA-X, PB1 and PB2 proteins of the H1N1 subtype and 24 on M1, M2, NEP, PB1 and PB2 proteins of the H3N2 subtypes. In addition to these combinations, we found 132 novel singular aa signatures distributed among all proteins, including the newly discovered PA-X protein, of both subtypes. We showed that HA, NA, NP, NS1, NEP, PA-X and PA proteins of the H1N1 subtype carry H1N1-specific and HA, NA, PA-X, PA, PB1-F2 and PB1 of the H3N2 subtype carry H3N2-specific signatures. M1, M2, PB1-F2, PB1 and PB2 of H1N1 subtype, in addition to H1N1 signatures, also carry H3N2 signatures. Similarly M1, M2, NP, NS1, NEP and PB2 of H3N2 subtype were shown to carry both H3N2 and H1N1 host-specific signatures (HSSs). To sum it up, we computationally constructed simple IF-THEN rule-based models that could distinguish between aa sequences of avian and human IAVs. From the rules we identified HSSs having a potential to affect the adaptation to specific hosts. The identification of combinatorial HSSs suggests that the process of adaptation of IAVs to a new host is more complex than previously suggested

  8. Molecular mechanism of the airborne transmissibility of H9N2 avian influenza A viruses in chickens.

    PubMed

    Zhong, Lei; Wang, Xiaoquan; Li, Qunhui; Liu, Dong; Chen, Hongzhi; Zhao, Mingjun; Gu, Xiaobing; He, Liang; Liu, Xiaowen; Gu, Min; Peng, Daxin; Liu, Xiufan

    2014-09-01

    H9N2 avian influenza virus has been prevalent in poultry in many parts of the world since the 1990s and occasionally crosses the host barrier, transmitting to mammals, including humans. In recent years, these viruses have contributed genes to H5N1 and H7N9 influenza viruses, threatening public health. To explore the molecular mechanism for the airborne transmission of H9N2 virus, we compared two genetically close strains isolated from chickens in 2001, A/chicken/Shanghai/7/2001(SH7) and A/chicken/Shanghai/14/2001 (SH14). SH7 is airborne transmissible between chickens, whereas SH14 is not. We used reverse genetics and gene swapping to derive recombinant SH7 (rSH7), rSH14, and a panel of reassortant viruses. Among the reassortant viruses, we identified segments HA and PA as governing the airborne transmission among chickens. In addition, the NP and NS genes also contributed to a lesser extent. Furthermore, the mutational analyses showed the transmissibility phenotype predominantly mapped to the HA and PA genes, with HA-K363 and PA-L672 being important for airborne transmissibility among chickens. In addition, the viral infectivity and acid stability are related to the airborne transmissibility. Importantly, airborne transmission studies of 18 arbitrarily chosen H9N2 viruses from our collections confirmed the importance of both 363K in HA and 672L in PA in determining their levels of transmissibility. Our finding elucidates the genetic contributions to H9N2 transmissibility in chickens and highlights the importance of their prevalence in poultry. Our study investigates the airborne transmissibility of H9N2 viruses in chickens and the subsequent epidemic. H9N2 virus is the donor for several prevalent reassortant influenza viruses, such as H7N9/2013 and the H5N1 viruses. Poultry as the reservoir hosts of influenza virus is closely associated with human society. Airborne transmission is an efficient pathway for influenza virus transmission among flocks and individuals

  9. Pathogenesis and Transmission of Novel Highly Pathogenic Avian Influenza H5N2 and H5N8 Viruses in Ferrets and Mice.

    PubMed

    Pulit-Penaloza, Joanna A; Sun, Xiangjie; Creager, Hannah M; Zeng, Hui; Belser, Jessica A; Maines, Taronna R; Tumpey, Terrence M

    2015-10-01

    A novel highly pathogenic avian influenza (HPAI) H5N8 virus, first detected in January 2014 in poultry and wild birds in South Korea, has spread throughout Asia and Europe and caused outbreaks in Canada and the United States by the end of the year. The spread of H5N8 and the novel reassortant viruses, H5N2 and H5N1 (H5Nx), in domestic poultry across multiple states in the United States pose a potential public health risk. To evaluate the potential of cross-species infection, we determined the pathogenicity and transmissibility of two Asian-origin H5Nx viruses in mammalian animal models. The newly isolated H5N2 and H5N8 viruses were able to cause severe disease in mice only at high doses. Both viruses replicated efficiently in the upper and lower respiratory tracts of ferrets; however, the clinical symptoms were generally mild, and there was no evidence of systemic dissemination of virus to multiple organs. Moreover, these influenza H5Nx viruses lacked the ability to transmit between ferrets in a direct contact setting. We further assessed viral replication kinetics of the novel H5Nx viruses in a human bronchial epithelium cell line, Calu-3. Both H5Nx viruses replicated to a level comparable to a human seasonal H1N1 virus, but significantly lower than a virulent Asian-lineage H5N1 HPAI virus. Although the recently isolated H5N2 and H5N8 viruses displayed moderate pathogenicity in mammalian models, their ability to rapidly spread among avian species, reassort, and generate novel strains underscores the need for continued risk assessment in mammals. In 2015, highly pathogenic avian influenza (HPAI) H5 viruses have caused outbreaks in domestic poultry in multiple U.S. states. The economic losses incurred with H5N8 and H5N2 subtype virus infection have raised serious concerns for the poultry industry and the general public due to the potential risk of human infection. This recent outbreak underscores the need to better understand the pathogenesis and transmission of

  10. A human-like H1N2 influenza virus detected during an outbreak of acute respiratory disease in swine in Brazil.

    PubMed

    Schaefer, Rejane; Rech, Raquel Rubia; Gava, Danielle; Cantão, Mauricio Egídio; da Silva, Marcia Cristina; Silveira, Simone; Zanella, Janice Reis Ciacci

    2015-01-01

    Passive monitoring for detection of influenza A viruses (IAVs) in pigs has been carried out in Brazil since 2009, detecting mostly the A(H1N1)pdm09 influenza virus. Since then, outbreaks of acute respiratory disease suggestive of influenza A virus infection have been observed frequently in Brazilian pig herds. During a 2010-2011 influenza monitoring, a novel H1N2 influenza virus was detected in nursery pigs showing respiratory signs. The pathologic changes were cranioventral acute necrotizing bronchiolitis to subacute proliferative and purulent bronchointerstitial pneumonia. Lung tissue samples were positive for both influenza A virus and A(H1N1)pdm09 influenza virus based on RT-qPCR of the matrix gene. Two IAVs were isolated in SPF chicken eggs. HI analysis of both swine H1N2 influenza viruses showed reactivity to the H1δ cluster. DNA sequencing was performed for all eight viral gene segments of two virus isolates. According to the phylogenetic analysis, the HA and NA genes clustered with influenza viruses of the human lineage (H1-δ cluster, N2), whereas the six internal gene segments clustered with the A(H1N1)pdm09 group. This is the first report of a reassortant human-like H1N2 influenza virus derived from pandemic H1N1 virus causing an outbreak of respiratory disease in pigs in Brazil. The emergence of a reassortant IAV demands the close monitoring of pigs through the full-genome sequencing of virus isolates in order to enhance genetic information about IAVs circulating in pigs.

  11. Genetic characterization of H1N2 influenza a virus isolated from sick pigs in Southern China in 2010.

    PubMed

    Kong, Wei Li; Huang, Liang Zong; Qi, Hai Tao; Cao, Nan; Zhang, Liang Quan; Wang, Heng; Guan, Shang Song; Qi, Wen Bao; Jiao, Pei Rong; Liao, Ming; Zhang, Gui Hong

    2011-10-13

    In China H3N2 and H1N1 swine influenza viruses have been circulating for many years. In January 2010, before swine were infected with foot and mouth disease in Guangdong, some pigs have shown flu-like symptoms: cough, sneeze, runny nose and fever. We collected the nasopharyngeal swab of all sick pigs as much as possible. One subtype H1N2 influenza viruses were isolated from the pig population. The complete genome of one isolate, designated A/swine/Guangdong/1/2010(H1N2), was sequenced and compared with sequences available in GenBank. The nucleotide sequences of all eight viral RNA segments were determined, and then phylogenetic analysis was performed using the neighbor-joining method. HA, NP, M and NS were shown to be closely to swine origin. PB2 and PA were close to avian origin, but NA and PB1were close to human origin. It is a result of a multiple reassortment event. In conclusion, our finding provides further evidence about the interspecies transmission of avian influenza viruses to pigs and emphasizes the importance of reinforcing swine influenza virus (SIV) surveillance, especially before the emergence of highly pathogenic FMDs in pigs in Guangdong.

  12. Vaccine Efficacy of Inactivated, Chimeric Hemagglutinin H9/H5N2 Avian Influenza Virus and Its Suitability for the Marker Vaccine Strategy

    PubMed Central

    Kim, Se Mi; Kim, Young-Il; Park, Su-Jin; Kim, Eun-Ha; Kwon, Hyeok-il; Si, Young-Jae; Lee, In-Won; Song, Min-Suk

    2017-01-01

    ABSTRACT In order to produce a dually effective vaccine against H9 and H5 avian influenza viruses that aligns with the DIVA (differentiating infected from vaccinated animals) strategy, we generated a chimeric H9/H5N2 recombinant vaccine that expressed the whole HA1 region of A/CK/Korea/04163/04 (H9N2) and the HA2 region of recent highly pathogenic avian influenza (HPAI) A/MD/Korea/W452/14 (H5N8) viruses. The chimeric H9/H5N2 virus showed in vitro and in vivo growth properties and virulence that were similar to those of the low-pathogenic avian influenza (LPAI) H9 virus. An inactivated vaccine based on this chimeric virus induced serum neutralizing (SN) antibodies against both H9 and H5 viruses but induced cross-reactive hemagglutination inhibition (HI) antibody only against H9 viruses. Thus, this suggests its compatibility for use in the DIVA strategy against H5 strains. Furthermore, the chimeric H9/H5N2 recombinant vaccine protected immunized chickens against lethal challenge by HPAI H5N8 viruses and significantly attenuated virus shedding after infection by both H9N2 and HPAI H5N8 viruses. In mice, serological analyses confirmed that HA1- and HA2 stalk-specific antibody responses were induced by vaccination and that the DIVA principle could be employed through the use of an HI assay against H5 viruses. Furthermore, each HA1- and HA2 stalk-specific antibody response was sufficient to inhibit viral replication and protect the chimeric virus-immunized mice from lethal challenge with both mouse-adapted H9N2 and wild-type HPAI H5N1 viruses, although differences in vaccine efficacy against a homologous H9 virus (HA1 head domain immune-mediated protection) and a heterosubtypic H5 virus (HA2 stalk domain immune-mediated protection) were observed. Taken together, these results demonstrate that the novel chimeric H9/H5N2 recombinant virus is a low-pathogenic virus, and this chimeric vaccine is suitable for a DIVA vaccine with broad-spectrum neutralizing antibody against H5

  13. Higher vaccine effectiveness in seasons with predominant circulation of seasonal influenza A(H1N1) than in A(H3N2) seasons: test-negative case-control studies using surveillance data, Spain, 2003-2011.

    PubMed

    Savulescu, Camelia; Jiménez-Jorge, Silvia; Delgado-Sanz, Concha; de Mateo, Salvador; Pozo, Francisco; Casas, Inmaculada; Larrauri, Amparo

    2014-07-31

    We used data provided by the Spanish influenza surveillance system to measure seasonal influenza vaccine effectiveness (VE) against medically attended cases, laboratory confirmed with the predominately circulating influenza virus over eight seasons (2003-2011). Using the test-negative case-control design, we compared the vaccination status of swabbed influenza-like illnesses (ILI) patients who were laboratory confirmed with predominantly circulating influenza strain in the season (cases) to that of ILI patients testing negative for any influenza (controls). Data on age, sex, vaccination status and laboratory results were available for all seasons. We used logistic regression to calculate adjusted influenza VE for age, week of swabbing, Spanish region and season. We calculated the influenza VE by each season and pooling the seasons with the same predominant type/subtype. Overall influenza VE against infection with A(H3N2) subtype (four seasons) was 31 (95% confidence interval (CI):10; 48). For seasonal influenza A(H1N1) (two seasons), the effectiveness was 86% (95% CI: 65; 94). Against B infection (three seasons), influenza VE was 47% (95% CI: 27; 62). The Spanish influenza surveillance system allowed estimating influenza VE in the studied seasons for the predominant strain. Strengthening the influenza surveillance will result in more precise VE estimates for decision making. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. [Analysis of risk factors of fatal outcome in pregnant and puerperant patients with severe H1N1 influenza].

    PubMed

    Zabolotskikh, I B; Penzhoian, G A; Musaeva, T S; Goncharenko, S I

    2010-01-01

    As well as previous epidemics and pandemias of influenza, the 2009 H1N1 influenza pandemia increases the risk of severe illness in pregnant. Data were reported for 28 pregnant and 2 postpartum women who have been hospitalized in ICUs of Krasnodar Region with H1N1 influenza diagnosis. The laboratory tests for H1N1 were negative in 53.3% of suspected cases of H1N1 influenza (16 of 30). The major lethal risk factor in pregnant with H1N1 influenza is a development of septic shock with low PaO2\\FiO2 ratio (less than 140) and high Murray's Acute Lung Injury Score (higher than 2.5). High Apache II, Apache III, SAPS 2, SAPS 3 and SOFA scores are the additional lethal risk factors. Lethal outcomes were more frequent in the end of the second trimester of pregnancy.

  15. Development and characterization of a panel of cross-reactive monoclonal antibodies generated using H1N1 influenza virus.

    PubMed

    Guo, Chun-yan; Tang, Yi-gui; Qi, Zong-li; Liu, Yang; Zhao, Xiang-rong; Huo, Xue-ping; Li, Yan; Feng, Qing; Zhao, Peng-hua; Wang, Xin; Li, Yuan; Wang, Hai-fang; Hu, Jun; Zhang, Xin-jian

    2015-08-01

    To characterize the antigenic epitopes of the hemagglutinin (HA) protein of H1N1 influenza virus, a panel consisting of 84 clones of murine monoclonal antibodies (mAbs) were generated using the HA proteins from the 2009 pandemic H1N1 vaccine lysate and the seasonal influenza H1N1(A1) vaccines. Thirty-three (39%) of the 84 mAbs were found to be strain-specific, and 6 (7%) of the 84 mAbs were subtype-specific. Twenty (24%) of the 84 mAbs recognized the common HA epitopes shared by 2009 pandemic H1N1, seasonal A1 (H1N1), and A3 (H3N2) influenza viruses. Twenty-five of the 84 clones recognized the common HA epitopes shared by the 2009 pandemic H1N1, seasonal A1 (H1N1) and A3 (H3N2) human influenza viruses, and H5N1 and H9N2 avian influenza viruses. We found that of the 16 (19%) clones of the 84 mAbs panel that were cross-reactive with human respiratory pathogens, 15 were made using the HA of the seasonal A1 (H1N1) virus and 1 was made using the HA of the 2009 pandemic H1N1 influenza virus. Immunohistochemical analysis of the tissue microarray (TMA) showed that 4 of the 84 mAb clones cross-reacted with human tissue (brain and pancreas). Our results indicated that the influenza virus HA antigenic epitopes not only induce type-, subtype-, and strain-specific monoclonal antibodies against influenza A virus but also cross-reactive monoclonal antibodies against human tissues. Further investigations of these cross-reactive (heterophilic) epitopes may significantly improve our understanding of viral antigenic variation, epidemics, pathophysiologic mechanisms, and adverse effects of influenza vaccines. Copyright © 2015 Elsevier GmbH. All rights reserved.

  16. Enhanced virulence of clade 2.3.2.1 highly pathogenic avian influenza A(H5N1) viruses in ferrets

    USDA-ARS?s Scientific Manuscript database

    Sporadic avian to human transmission of highly pathogenic avian influenza (HPAI) A (H5N1) viruses necessitates the analysis of currently circulating and evolving clades to assess their potential risk. Following the spread and sustained circulation of clade 2 viruses across multiple continents, num...

  17. Evolution of H3N2v viruses in North American swine and humans, 2009-2011

    USDA-ARS?s Scientific Manuscript database

    Novel H3N2 influenza viruses (H3N2v) containing seven genome segments from swine-lineage triple reassortant H3N2 viruses and a 2009 pandemic H1N1 (H1N1pdm09) matrix protein segment (pM) have been isolated from 12 humans in the United States between August – December 2011. To understand the evolution...

  18. Reassortment of influenza A viruses in wild birds in Alaska before H5 Clade 2.3.4.4 Outbreaks

    USGS Publications Warehouse

    Hill, Nichola J.; Hussein, Islam T. M.; Davis, Kimberly R.; Ma, Eric J.; Spivey, Timothy; Ramey, Andy M.; Puryear, Wendy Blay; Das, Suman R.; Halpin, Rebecca A.; Lin, Xudong; Federova, Nadia B.; Suarez, David L.; Boyce, Walter M.; Runstadler, Jonathan A.

    2017-01-01

    Sampling of mallards in Alaska during September 2014–April 2015 identified low pathogenic avian influenza A virus (subtypes H5N2 and H1N1) that shared ancestry with highly pathogenic reassortant H5N2 and H5N1 viruses. Molecular dating indicated reassortment soon after interhemispheric movement of H5N8 clade 2.3.4.4, suggesting genetic exchange in Alaska or surrounds before outbreaks.

  19. Viral fusion efficacy of specific H3N2 influenza virus reassortant combinations at single-particle level

    PubMed Central

    Hsu, Hung-Lun; Millet, Jean K.; Costello, Deirdre A.; Whittaker, Gary R.; Daniel, Susan

    2016-01-01

    Virus pseudotyping is a useful and safe technique for studying entry of emerging strains of influenza virus. However, few studies have compared different reassortant combinations in pseudoparticle systems, or compared entry kinetics of native viruses and their pseudotyped analogs. Here, vesicular stomatitis virus (VSV)-based pseudovirions displaying distinct influenza virus envelope proteins were tested for fusion activity. We produced VSV pseudotypes containing the prototypical X-31 (H3) HA, either alone or with strain-matched or mismatched N2 NAs. We performed single-particle fusion assays using total internal reflection fluorescence microscopy to compare hemifusion kinetics among these pairings. Results illustrate that matching pseudoparticles behaved very similarly to native virus. Pseudoparticles harboring mismatched HA-NA pairings fuse at significantly slower rates than native virus, and NA-lacking pseudoparticles exhibiting the slowest fusion rates. Relative viral membrane HA density of matching pseudoparticles was higher than in mismatching or NA-lacking pseudoparticles. An equivalent trend of HA expression level on cell membranes of HA/NA co-transfected cells was observed and intracellular trafficking of HA was affected by NA co-expression. Overall, we show that specific influenza HA-NA combinations can profoundly affect the critical role played by HA during entry, which may factor into viral fitness and the emergence of new pandemic influenza viruses. PMID:27752100

  20. Viral fusion efficacy of specific H3N2 influenza virus reassortant combinations at single-particle level

    NASA Astrophysics Data System (ADS)

    Hsu, Hung-Lun; Millet, Jean K.; Costello, Deirdre A.; Whittaker, Gary R.; Daniel, Susan

    2016-10-01

    Virus pseudotyping is a useful and safe technique for studying entry of emerging strains of influenza virus. However, few studies have compared different reassortant combinations in pseudoparticle systems, or compared entry kinetics of native viruses and their pseudotyped analogs. Here, vesicular stomatitis virus (VSV)-based pseudovirions displaying distinct influenza virus envelope proteins were tested for fusion activity. We produced VSV pseudotypes containing the prototypical X-31 (H3) HA, either alone or with strain-matched or mismatched N2 NAs. We performed single-particle fusion assays using total internal reflection fluorescence microscopy to compare hemifusion kinetics among these pairings. Results illustrate that matching pseudoparticles behaved very similarly to native virus. Pseudoparticles harboring mismatched HA-NA pairings fuse at significantly slower rates than native virus, and NA-lacking pseudoparticles exhibiting the slowest fusion rates. Relative viral membrane HA density of matching pseudoparticles was higher than in mismatching or NA-lacking pseudoparticles. An equivalent trend of HA expression level on cell membranes of HA/NA co-transfected cells was observed and intracellular trafficking of HA was affected by NA co-expression. Overall, we show that specific influenza HA-NA combinations can profoundly affect the critical role played by HA during entry, which may factor into viral fitness and the emergence of new pandemic influenza viruses.

  1. HIV-1 and Its gp120 Inhibits the Influenza A(H1N1)pdm09 Life Cycle in an IFITM3-Dependent Fashion

    PubMed Central

    Mesquita, Milene; Fintelman-Rodrigues, Natalia; Sacramento, Carolina Q.; Abrantes, Juliana L.; Costa, Eduardo; Temerozo, Jairo R.; Siqueira, Marilda M.; Bou-Habib, Dumith Chequer; Souza, Thiago Moreno L.

    2014-01-01

    HIV-1-infected patients co-infected with A(H1N1)pdm09 surprisingly presented benign clinical outcome. The knowledge that HIV-1 changes the host homeostatic equilibrium, which may favor the patient resistance to some co-pathogens, prompted us to investigate whether HIV-1 infection could influence A(H1N1)pdm09 life cycle in vitro. We show here that exposure of A(H1N1)pdm09-infected epithelial cells to HIV-1 viral particles or its gp120 enhanced by 25% the IFITM3 content, resulting in a decrease in influenza replication. This event was dependent on toll-like receptor 2 and 4. Moreover, knockdown of IFITM3 prevented HIV-1 ability to inhibit A(H1N1)pdm09 replication. HIV-1 infection also increased IFITM3 levels in human primary macrophages by almost 100%. Consequently, the arrival of influenza ribonucleoproteins (RNPs) to nucleus of macrophages was inhibited, as evaluated by different approaches. Reduction of influenza RNPs entry into the nucleus tolled A(H1N1)pdm09 life cycle in macrophages earlier than usual, limiting influenza's ability to induce TNF-α. As judged by analysis of the influenza hemagglutin (HA) gene from in vitro experiments and from samples of HIV-1/A(H1N1)pdm09 co-infected individuals, the HIV-1-induced reduction of influenza replication resulted in delayed viral evolution. Our results may provide insights on the mechanisms that may have attenuated the clinical course of Influenza in HIV-1/A(H1N1)pdm09 co-infected patients during the recent influenza form 2009/2010. PMID:24978204

  2. HIV-1 and its gp120 inhibits the influenza A(H1N1)pdm09 life cycle in an IFITM3-dependent fashion.

    PubMed

    Mesquita, Milene; Fintelman-Rodrigues, Natalia; Sacramento, Carolina Q; Abrantes, Juliana L; Costa, Eduardo; Temerozo, Jairo R; Siqueira, Marilda M; Bou-Habib, Dumith Chequer; Souza, Thiago Moreno L

    2014-01-01

    HIV-1-infected patients co-infected with A(H1N1)pdm09 surprisingly presented benign clinical outcome. The knowledge that HIV-1 changes the host homeostatic equilibrium, which may favor the patient resistance to some co-pathogens, prompted us to investigate whether HIV-1 infection could influence A(H1N1)pdm09 life cycle in vitro. We show here that exposure of A(H1N1)pdm09-infected epithelial cells to HIV-1 viral particles or its gp120 enhanced by 25% the IFITM3 content, resulting in a decrease in influenza replication. This event was dependent on toll-like receptor 2 and 4. Moreover, knockdown of IFITM3 prevented HIV-1 ability to inhibit A(H1N1)pdm09 replication. HIV-1 infection also increased IFITM3 levels in human primary macrophages by almost 100%. Consequently, the arrival of influenza ribonucleoproteins (RNPs) to nucleus of macrophages was inhibited, as evaluated by different approaches. Reduction of influenza RNPs entry into the nucleus tolled A(H1N1)pdm09 life cycle in macrophages earlier than usual, limiting influenza's ability to induce TNF-α. As judged by analysis of the influenza hemagglutin (HA) gene from in vitro experiments and from samples of HIV-1/A(H1N1)pdm09 co-infected individuals, the HIV-1-induced reduction of influenza replication resulted in delayed viral evolution. Our results may provide insights on the mechanisms that may have attenuated the clinical course of Influenza in HIV-1/A(H1N1)pdm09 co-infected patients during the recent influenza form 2009/2010.

  3. Isolation and genetic characterization of H5N2 influenza viruses from pigs in Korea.

    PubMed

    Lee, Jun Han; Pascua, Philippe Noriel Q; Song, Min-Suk; Baek, Yun Hee; Kim, Chul-Joong; Choi, Hwan-Woon; Sung, Moon-Hee; Webby, Richard J; Webster, Robert G; Poo, Haryoung; Choi, Young Ki

    2009-05-01

    Due to dual susceptibility to both human and avian influenza A viruses, pigs are believed to be effective intermediate hosts for the spread and production of new viruses with pandemic potential. In early 2008, two swine H5N2 viruses were isolated from our routine swine surveillance in Korea. The sequencing and phylogenetic analysis of surface proteins revealed that the Sw/Korea/C12/08 and Sw/Korea/C13/08 viruses were derived from avian influenza viruses of the Eurasian lineage. However, although the Sw/Korea/C12/08 isolate is an entirely avian-like virus, the Sw/Korea/C13/08 isolate is an avian-swine-like reassortant with the PB2, PA, NP, and M genes coming from a 2006 Korean swine H3N1-like virus. The molecular characterization of the two viruses indicated an absence of significant mutations that could be associated with virulence or binding affinity. However, animal experiments showed that the reassortant Sw/Korea/C13/08 virus was more adapted and was more readily transmitted than the purely avian-like virus in a swine experimental model but not in ferrets. Furthermore, seroprevalence in swine sera from 2006 to 2008 suggested that avian H5 viruses have been infecting swine since 2006. Although there are no known potential clinical implications of the avian-swine reassortant virus for pathogenicity in pigs or other species, including humans, at present, the efficient transmissibility of the swine-adapted H5N2 virus could facilitate virus spread and could be a potential model for pandemic, highly pathogenic avian influenza (e.g., H5N1 and H7N7) virus outbreaks or a pandemic strain itself.

  4. Reduced experimental infectivity and transmissibility of intercontinental H5 (H5N8 and H5N2) compared to Eurasian H5N1 highly pathogenic avian influenza viruses for chickens, turkeys, and Japanese quail

    USDA-ARS?s Scientific Manuscript database

    H5N1 high pathogenicity avian influenza (HPAI) virus (HPAIV) emerged in 1996 in Guangdong China and has since spread to infect and cause deaths in wild birds, poultry and humans in over 63 countries in Asia, Europe and Africa; and more recently a reassortant H5N8 clade 2.3.4.4 HPAI virus has spread ...

  5. Efficacy of a recombinant turkey herpesvirus H5 vaccine against challenge with H5N1 clades 1.1.2 and 2.3.2.1 highly pathogenic avian influenza viruses in domestic ducks (Anas platyrhynchos domesticus)

    USDA-ARS?s Scientific Manuscript database

    The Goose/Guangdong (Gs/GD)-lineage H5N1 highly pathogenic avian influenza (HPAI) viruses continue to circulate and cause great economic losses in poultry in Asia, the Middle East, and Africa. Recently, the Gs/GD-lineage H5N8 HPAI virus belonging to clade 2.3.4.4 and its reassortants have caused out...

  6. Triple-reassortant influenza A virus with H3 of human seasonal origin, NA of swine origin, and internal A(H1N1) pandemic 2009 genes is established in Danish pigs.

    PubMed

    Krog, Jesper Schak; Hjulsager, Charlotte Kristiane; Larsen, Michael Albin; Larsen, Lars Erik

    2017-05-01

    This report describes a triple-reassortant influenza A virus with a HA that resembles H3 of human seasonal influenza from 2004 to 2005, N2 from influenza A virus already established in swine, and the internal gene cassette from A(H1N1)pdm09 has spread in Danish pig herds. The virus has been detected in several Danish pig herds during the last 2-3 years and may possess a challenge for human as well as animal health. © 2017 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  7. Complete genome sequence of a novel influenza A H1N2 virus circulating in swine from Central Bajio region, Mexico.

    PubMed

    Sánchez-Betancourt, J I; Cervantes-Torres, J B; Saavedra-Montañez, M; Segura-Velázquez, R A

    2017-12-01

    The aim of this study was to perform the complete genome sequence of a swine influenza A H1N2 virus strain isolated from a pig in Guanajuato, México (A/swine/Mexico/GtoDMZC01/2014) and to report its seroprevalence in 86 counties at the Central Bajio zone. To understand the evolutionary dynamics of the isolate, we undertook a phylogenetic analysis of the eight gene segments. These data revealed that the isolated virus is a reassortant H1N2 subtype, as its genes are derived from human (HA, NP, PA) and swine (M, NA, PB1, PB2 and NS) influenza viruses. Pig serum samples were analysed by the hemagglutination inhibition test, using wild H1N2 and H3N2 strains (A/swine/México/Mex51/2010 [H3N2]) as antigen sources. Positive samples to the H1N2 subtype were processed using the field-isolated H1N1 subtype (A/swine/México/Ver37/2010 [H1N1]). Seroprevalence to the H1N2 subtype was 26.74% in the sampled counties, being Jalisco the state with highest seroprevalence to this subtype (35.30%). The results herein reported demonstrate that this new, previously unregistered influenza virus subtype in México that shows internal genes from other swine viral subtypes isolated in the past 5 years, along with human virus-originated genes, is widely distributed in this area of the country. © 2017 Blackwell Verlag GmbH.

  8. Avian Influenza A(H5N1) Virus in Egypt.

    PubMed

    Kayali, Ghazi; Kandeil, Ahmed; El-Shesheny, Rabeh; Kayed, Ahmed S; Maatouq, Asmaa M; Cai, Zhipeng; McKenzie, Pamela P; Webby, Richard J; El Refaey, Samir; Kandeel, Amr; Ali, Mohamed A

    2016-03-01

    In Egypt, avian influenza A subtype H5N1 and H9N2 viruses are enzootic in poultry. The control plan devised by veterinary authorities in Egypt to prevent infections in poultry focused mainly on vaccination and ultimately failed. Recently, widespread H5N1 infections in poultry and a substantial increase in the number of human cases of H5N1 infection were observed. We summarize surveillance data from 2009 through 2014 and show that avian influenza viruses are established in poultry in Egypt and are continuously evolving genetically and antigenically. We also discuss the epidemiology of human infection with avian influenza in Egypt and describe how the true burden of disease is underestimated. We discuss the failures of relying on vaccinating poultry as the sole intervention tool. We conclude by highlighting the key components that need to be included in a new strategy to control avian influenza infections in poultry and humans in Egypt.

  9. Avian Influenza A(H5N1) Virus in Egypt

    PubMed Central

    Kandeil, Ahmed; El-Shesheny, Rabeh; Kayed, Ahmed S.; Maatouq, Asmaa M.; Cai, Zhipeng; McKenzie, Pamela P.; Webby, Richard J.; El Refaey, Samir; Kandeel, Amr; Ali, Mohamed A.

    2016-01-01

    In Egypt, avian influenza A subtype H5N1 and H9N2 viruses are enzootic in poultry. The control plan devised by veterinary authorities in Egypt to prevent infections in poultry focused mainly on vaccination and ultimately failed. Recently, widespread H5N1 infections in poultry and a substantial increase in the number of human cases of H5N1 infection were observed. We summarize surveillance data from 2009 through 2014 and show that avian influenza viruses are established in poultry in Egypt and are continuously evolving genetically and antigenically. We also discuss the epidemiology of human infection with avian influenza in Egypt and describe how the true burden of disease is underestimated. We discuss the failures of relying on vaccinating poultry as the sole intervention tool. We conclude by highlighting the key components that need to be included in a new strategy to control avian influenza infections in poultry and humans in Egypt. PMID:26886164

  10. Phylogenetic analysis of human influenza A/H3N2 viruses isolated in 2015 in Germany indicates significant genetic divergence from vaccine strains.

    PubMed

    Mostafa, Ahmed; Abdelwhab, El-Sayed M; Slanina, Heiko; Hussein, Mohamed A; Kuznetsova, Irina; Schüttler, Christian G; Ziebuhr, John; Pleschka, Stephan

    2016-06-01

    Infections by H3N2-type influenza A viruses (IAV) resulted in significant numbers of hospitalization in several countries in 2014-2015, causing disease also in vaccinated individuals and, in some cases, fatal outcomes. In this study, sequence analysis of H3N2 viruses isolated in Germany from 1998 to 2015, including eleven H3N2 isolates collected early in 2015, was performed. Compared to the vaccine strain A/Texas/50/2012 (H3N2), the 2015 strains from Germany showed up to 4.5 % sequence diversity in their HA1 protein, indicating substantial genetic drift. The data further suggest that two distinct phylogroups, 3C.2 and 3C.3, with 1.6-2.3 % and 0.3-2.4 % HA1 nucleotide and amino acid sequence diversity, respectively, co-circulated in Germany in the 2014/2015 season. Distinct glycosylation patterns and amino acid substitutions in the hemagglutinin and neuraminidase proteins were identified, possibly contributing to the unusually high number of H3N2 infections in this season and providing important information for developing vaccines that are effective against both genotypes.

  11. [Pulmonary pathology in fatal human influenza A (H1N1) infection].

    PubMed

    Duan, Xue-jing; Li, Yong; Gong, En-cong; Wang, Jue; Lü, Fu-dong; Zhang, He-qiu; Sun, Lin; Yue, Zhu-jun; Song, Chen-chao; Zhang, Shi-Jie; Li, Ning; Dai, Jie

    2011-12-01

    To study the pulmonary pathology in patients died of fatal human influenza A(H1N1) infection. Eight cases of fatal human influenza A (H1N1) infection, including 2 autopsy cases and 6 paramortem needle puncture biopsies, were enrolled into the study. Histologic examination, immunohistochemitry, flow cytometry and Western blotting were carried out. The major pathologic changes included necrotizing bronchiolitis with surrounding inflammation, diffuse alveolar damage and pulmonary hemorrhage. Influenza viral antigen expression was detected in the lung tissue by Western blotting. Immunohistochemical study demonstrated the presence of nuclear protein and hemagglutinin virus antigens in parts of trachea, bronchial epithelium and glands, alveolar epithelium, macrophages and endothelium. Flow cytometry showed that the apoptotic rate of type II pneumocytes (32.15%, 78.15%) was significantly higher than that of the controls (1.93%, 3.77%). Necrotizing bronchiolitis, diffuse alveolar damage and pulmonary hemorrhage followed by pulmonary fibrosis in late stage are the major pathologic changes in fatal human influenza A (H1N1) infection.

  12. Avian influenza H9N2 seroprevalence among poultry workers in Pune, India, 2010.

    PubMed

    Pawar, Shailesh D; Tandale, Babasaheb V; Raut, Chandrashekhar G; Parkhi, Saurabh S; Barde, Tanaji D; Gurav, Yogesh K; Kode, Sadhana S; Mishra, Akhilesh C

    2012-01-01

    Avian influenza (AI) H9N2 has been reported from poultry in India. A seroepidemiological study was undertaken among poultry workers to understand the prevalence of antibodies against AI H9N2 in Pune, Maharashtra, India. A total of 338 poultry workers were sampled. Serum samples were tested for presence of antibodies against AI H9N2 virus by hemagglutination inhibition (HI) and microneutralization (MN) assays. A total of 249 baseline sera from general population from Pune were tested for antibodies against AI H9N2 and were negative by HI assay using ≥40 cut-off antibody titre. Overall 21 subjects (21/338 = 6.2%) were positive for antibodies against AI H9N2 by either HI or MN assays using ≥40 cut-off antibody titre. A total of 4.7% and 3.8% poultry workers were positive for antibodies against AI H9N2 by HI and MN assay respectively using 40 as cut-off antibody titre. This is the first report of seroprevalence of antibodies against AI H9N2 among poultry workers in India.

  13. Possible Increased Pathogenicity of Pandemic (H1N1) 2009 Influenza Virus upon Reassortment

    PubMed Central

    Schrauwen, Eefje J.A.; Herfst, Sander; Chutinimitkul, Salin; Bestebroer, Theo M.; Rimmelzwaan, Guus F.; Osterhaus, Albert D.M.E.; Kuiken, Thijs

    2011-01-01

    Since emergence of the pandemic (H1N1) 2009 virus in April 2009, three influenza A viruses—seasonal (H3N2), seasonal (H1N1), and pandemic (H1N1) 2009—have circulated in humans. Genetic reassortment between these viruses could result in enhanced pathogenicity. We compared 4 reassortant viruses with favorable in vitro replication properties with the wild-type pandemic (H1N1) 2009 virus with respect to replication kinetics in vitro and pathogenicity and transmission in ferrets. Pandemic (H1N1) 2009 viruses containing basic polymerase 2 alone or in combination with acidic polymerase of seasonal (H1N1) virus were attenuated in ferrets. In contrast, pandemic (H1N1) 2009 with neuraminidase of seasonal (H3N2) virus resulted in increased virus replication and more severe pulmonary lesions. The data show that pandemic (H1N1) 2009 virus has the potential to reassort with seasonal influenza viruses, which may result in increased pathogenicity while it maintains the capacity of transmission through aerosols or respiratory droplets. PMID:21291589

  14. Replication and pathogenic potential of influenza A virus subtypes H3, H7, and H15 from free-range ducks in Bangladesh in mammals.

    PubMed

    El-Shesheny, Rabeh; Feeroz, Mohammed M; Krauss, Scott; Vogel, Peter; McKenzie, Pamela; Webby, Richard J; Webster, Robert G

    2018-04-25

    Surveillance of wild aquatic birds and free-range domestic ducks in the Tanguar Haor wetlands in Bangladesh has identified influenza virus subtypes H3N6, H7N1, H7N5, H7N9, and H15N9. Molecular characterization of these viruses indicates their contribution to the genesis of new genotypes of H5N1 influenza viruses from clade 2.3.2.1a that are dominant in poultry markets in Bangladesh as well as to the genesis of the highly pathogenic H5N8 virus currently causing disease outbreaks in domestic poultry in Europe and the Middle East. Therefore, we studied the antigenicity, replication, and pathogenicity of influenza viruses isolated from Tanguar Haor in the DBA/2J mouse model. All viruses replicated in the lung without prior mammalian adaptation, and H7N1 and H7N9 viruses caused 100% and 60% mortality, respectively. H7N5 viruses replicated only in the lungs, whereas H7N1 and H7N9 viruses also replicated in the heart, liver, and brain. Replication and transmission studies in mallard ducks showed that H7N1 and H7N9 viruses replicated in ducks without clinical signs of disease and shed at high titers from the cloaca of infected and contact ducks, which could facilitate virus transmission and spread. Our results indicate that H7 avian influenza viruses from free-range ducks can replicate in mammals, cause severe disease, and be efficiently transmitted to contact ducks. Our study highlights the role of free-range ducks in the spread of influenza viruses to other species in live poultry markets and the potential for these viruses to infect and cause disease in mammals.

  15. Serological and virological surveillance of avian influenza A virus H9N2 subtype in humans and poultry in Shanghai, China, between 2008 and 2010.

    PubMed

    Wang, Q; Ju, L; Liu, P; Zhou, J; Lv, X; Li, L; Shen, H; Su, H; Jiang, L; Jiang, Q

    2015-03-01

    We report the serological evidence of low-pathogenic avian influenza (LPAI) H9N2 infection in an occupational poultry-exposed population and a general population. A serological survey of an occupational poultry-exposed population and a general population was conducted using a haemagglutinin-inhibiting (HI) assay in Shanghai, China, from January 2008 to December 2010. Evidence of higher anti-H9 antibodies was found in serum samples collected from poultry workers. During this period, 239 H9N2 avian influenza viruses (AIVs) were isolated from 9297 tracheal and cloacal paired specimens collected from the poultry in live poultry markets. In addition, a total of 733 influenza viruses were isolated from 1569 nasal and throat swabs collected from patients with influenza-like symptoms in a sentinel hospital, which include H3N2, H1N1, pandemic H1N1 and B, but no H9N2 virus was detected. These findings highlight the need for long-term surveillance of avian influenza viruses in occupational poultry-exposed workers. © 2014 The Authors. Zoonoses and Public Health Published by Blackwell Verlag GmbH.

  16. Whole genome sequencing identifies influenza A H3N2 transmission and offers superior resolution to classical typing methods.

    PubMed

    Meinel, Dominik M; Heinzinger, Susanne; Eberle, Ute; Ackermann, Nikolaus; Schönberger, Katharina; Sing, Andreas

    2018-02-01

    Influenza with its annual epidemic waves is a major cause of morbidity and mortality worldwide. However, only little whole genome data are available regarding the molecular epidemiology promoting our understanding of viral spread in human populations. We implemented a RT-PCR strategy starting from patient material to generate influenza A whole genome sequences for molecular epidemiological surveillance. Samples were obtained within the Bavarian Influenza Sentinel. The complete influenza virus genome was amplified by a one-tube multiplex RT-PCR and sequenced on an Illumina MiSeq. We report whole genomic sequences for 50 influenza A H3N2 viruses, which was the predominating virus in the season 2014/15, directly from patient specimens. The dataset included random samples from Bavaria (Germany) throughout the influenza season and samples from three suspected transmission clusters. We identified the outbreak samples based on sequence identity. Whole genome sequencing (WGS) was superior in resolution compared to analysis of single segments or partial segment analysis. Additionally, we detected manifestation of substantial amounts of viral quasispecies in several patients, carrying mutations varying from the dominant virus in each patient. Our rapid whole genome sequencing approach for influenza A virus shows that WGS can effectively be used to detect and understand outbreaks in large communities. Additionally, the genomic data provide in-depth details about the circulating virus within one season.

  17. The neuraminidases of MDCK grown human influenza A(H3N2) viruses isolated since 1994 can demonstrate receptor binding.

    PubMed

    Mohr, Peter G; Deng, Yi-Mo; McKimm-Breschkin, Jennifer L

    2015-04-22

    The neuraminidases (NAs) of MDCK passaged human influenza A(H3N2) strains isolated since 2005 are reported to have dual functions of cleavage of sialic acid and receptor binding. NA agglutination of red blood cells (RBCs) can be inhibited by neuraminidase inhibitors (NAIs), thus distinguishing it from haemagglutinin (HA) binding. We wanted to know if viruses prior to 2005 can demonstrate this property. Pairs of influenza A(H3N2) isolates ranging from 1993-2008 passaged in parallel only in eggs or in MDCK cells were tested for inhibition of haemagglutination by various NAIs. Only viruses isolated since 1994 and cultured in MDCK cells bound chicken RBCs solely through their NA. NAI inhibition of agglutination of turkey RBCs was seen for some, but not all of these same MDCK grown viruses. Efficacy of inhibition of enzyme activity and haemagglutination differed between NAIs. For many viruses lower concentrations of oseltamivir could inhibit agglutination compared to zanamivir, although they could both inhibit enzyme activity at comparable concentrations. An E119V mutation reduced sensitivity to oseltamivir and 4-aminoDANA for both the enzyme assay and inhibition of agglutination. Sequence analysis of the NAs and HAs of some paired viruses revealed mutations in the haemagglutinin of all egg passaged viruses. For many of the paired egg and MDCK cultured viruses we found no differences in their NA sequences by Sanger sequencing. However, deep sequencing of MDCK grown isolates revealed low levels of variant populations with mutations at either D151 or T148 in the NA, suggesting mutations at either site may be able to confer this property. The NA active site of MDCK cultured human influenza A(H3N2) viruses isolated since 1994 can express dual enzyme and receptor binding functions. Binding correlated with either D151 or T148 mutations. The catalytic and receptor binding sites do not appear to be structurally identical since relative concentrations of the NAIs to inhibit

  18. Influenza A virus subtype H9N2 infection disrupts the composition of intestinal microbiota of chickens.

    PubMed

    Yitbarek, Alexander; Weese, J Scott; Alkie, Tamiru Negash; Parkinson, John; Sharif, Shayan

    2018-01-01

    The impact of low pathogenic influenza viruses such as subtype H9N2, which infect the respiratory and the gastrointestinal tracts of chickens, on microbial composition are not known. Twenty-day-old specific pathogen-free chickens were assigned to two treatment groups, control (uninfected) and H9N2-infected (challenged via the oral-nasal route). Fecal genomic DNA was extracted, and the V3-V4 regions of the 16S rRNA gene were sequenced using the Illumina Miseq® platform. Sequences were curated using Mothur as described in the MiSeq SOP. Infection of chickens with H9N2 resulted in an increase in phylum Proteobacteria, and differential enrichment with the genera Vampirovibrio, Pseudoflavonifractor, Ruminococcus, Clostridium cluster XIVb and Isobaculum while control chickens were differentially enriched with genera Novosphingobium, Sphingomonas, Bradyrhizobium and Bifidobacterium. Analysis of pre- and post-H9N2 infection of the same chickens showed that, before infection, the fecal microbiota was characterized by Lachnospiracea and Ruminococcaceae family and the genera Clostridium sensu stricto, Roseburia and Lachnospiraceae incertae sedis. However, post-H9N2 infection, class Deltaproteobacteria, orders Clostridiales and Bacteroidiales and the genus Alistipes were differentially enriched. Findings from the current study show that influenza virus infection in chickens results in the shift of the gut microbiota, and the disruption of the host-microbial homeostasis in the gut might be one of the mechanisms by which influenza virus infection is established in chickens. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Protection against avian influenza H9N2 virus challenge by immunization with hemagglutinin- or neuraminidase-expressing DNA in BALB/c mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu Meizhen; Fang Fang; Chen Yan

    2006-05-19

    Avian influenza viruses of H9N2 subtype are widely spread in avian species. The viruses have recently been transmitted to mammalian species, including humans, accelerating the efforts to devise protective strategies against them. In this study, an avian influenza H9N2 virus strain (A/Chicken/Jiangsu/7/2002), isolated in Jiangsu Province, China, was used to infect BALB/c mice for adaptation. After five lung-to-lung passages, the virus was stably proliferated in a large quantity in the murine lung and caused the deaths of mice. In addition, we explored the protection induced by H9N2 virus hemagglutinin (HA)- and neuraminidase (NA)-expressing DNAs in BALB/c mice. Female BALB/c micemore » aged 6-8 weeks were immunized once or twice at a 3-week interval with HA-DNA and NA-DNA by electroporation, respectively, each at a dose of 3, 10 or 30 {mu}g. The mice were challenged with a lethal dose (40x LD{sub 5}) of influenza H9N2 virus four weeks after immunization once or one week after immunization twice. The protections of DNA vaccines were evaluated by the serum antibody titers, residual lung virus titers, and survival rates of the mice. The result showed that immunization once with not less than 10 {mu}g or twice with 3 {mu}g HA-DNA or NA-DNA provided effective protection against homologous avian influenza H9N2 virus.« less

  20. N-glycan profiles in H9N2 avian influenza viruses from chicken eggs and human embryonic lung fibroblast cells.

    PubMed

    Chen, Wentian; Zhong, Yaogang; Su, Rui; Qi, Huicai; Deng, Weina; Sun, Yu; Ma, Tianran; Wang, Xilong; Yu, Hanjie; Wang, Xiurong; Li, Zheng

    2017-11-01

    N-glycosylation can affect the host specificity, virulence and infectivity of influenza A viruses (IAVs). In this study, the distribution and evolution of N-glycosylation sites in the hemagglutinin (HA) and neuraminidase (NA) of H9N2 virus were explored using phylogenetic analysis. Then, one strain of the H9N2 subtypes was proliferated in the embryonated chicken eggs (ECE) and human embryonic lung fibroblast cells (MRC-5) system. The proliferated viral N-glycan profiles were analyzed by a glycomic method that combined the lectin microarray and MALDI-TOF/TOF-MS. As a result, HA and NA of H9N2 viruses prossess six and five highly conserved N-glycosylation sites, respectively. Sixteen lectins (e.g., MAL-II, SNA and UEA-I) had increased expression levels of the glycan structures in the MRC-5 compared with the ECE system; however, 6 lectins (e.g., PHA-E, PSA and DSA) had contrasting results. Eleven glycans from the ECE system and 13 glycans from the MRC-5 system were identified. Our results showed that the Fucα-1,6GlcNAc(core fucose) structure was increased, and pentaantennary N-glycans were only observed in the ECE system. The SAα2-3/6Gal structures were highly expressed and Fucα1-2Galβ1-4GlcNAc structures were only observed in the MRC-5 system. We conclude that the existing SAα2-3/6Gal sialoglycans make the offspring of the H9N2 virus prefer entially attach to each other, which decreases the virulence. Alterations in the glycosylation sites for the evolution and role of IAVs have been widely described; however, little is known about the exact glycan structures for the same influenza strain from different hosts. Our findings may provide a novel way for further discussing the molecular mechanism of the viral transmission and virulence associated with viral glycosylation in avian and human hosts as well as vital information for designing a vaccine against influenza and other human viruses. Copyright © 2017. Published by Elsevier B.V.

  1. Acceptance of 2009 H1N1 influenza vaccine among pregnant women in Delaware.

    PubMed

    Drees, Marci; Johnson, Oluwakemi; Wong, Esther; Stewart, Ashley; Ferisin, Stephanie; Silverman, Paul R; Ehrenthal, Deborah B

    2012-04-01

    Due to disproportionately high mortality from 2009 H1N1 influenza, pregnant women were given highest priority for H1N1 vaccination. We surveyed postpartum women to determine vaccine uptake and reasons for lack of vaccination. We performed a cross-sectional survey of postpartum women delivering at our institution from February 1 to April 15, 2010. The 12-question survey ascertained maternal characteristics and vaccination concerns. Among 307 postpartum women, 191 (62%) had received H1N1 vaccination and 98 (32%) had declined. Factors associated with H1N1 vaccination included older age (relative risk [RR] 1.3, 95% confidence interval [CI] 1.1 to 1.5 for age ≥35 years compared with 20 to 34 years), at least college education (RR 1.5, 95% CI 1.3 to 1.8), prior influenza vaccination (RR 1.6, 95% CI 1.3 to 2.0), provider recommendation (RR 3.9, 95% CI 2.1 to 7.4), vaccination of family members (RR 1.6, 95% CI 1.3 to 1.9), and receipt of seasonal influenza vaccination (RR 2.2, 95% CI 1.7 to 2.9). Non-Hispanic black women were less likely to have been vaccinated (RR 0.6, 95% CI 0.5 to 0.8) than non-Hispanic white women. Safety concerns were cited by the majority (66%) of nonvaccinated women. H1N1 vaccine uptake among pregnant women was substantially higher than reported influenza vaccination rates during previous seasons. Safety concerns were the major barrier to vaccination. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  2. Neurologic complications of influenza A(H1N1)pdm09

    PubMed Central

    Khandaker, Gulam; Zurynski, Yvonne; Buttery, Jim; Marshall, Helen; Richmond, Peter C.; Dale, Russell C.; Royle, Jenny; Gold, Michael; Snelling, Tom; Whitehead, Bruce; Jones, Cheryl; Heron, Leon; McCaskill, Mary; Macartney, Kristine; Elliott, Elizabeth J.

    2012-01-01

    Objective: We sought to determine the range and extent of neurologic complications due to pandemic influenza A (H1N1) 2009 infection (pH1N1′09) in children hospitalized with influenza. Methods: Active hospital-based surveillance in 6 Australian tertiary pediatric referral centers between June 1 and September 30, 2009, for children aged <15 years with laboratory-confirmed pH1N1′09. Results: A total of 506 children with pH1N1′09 were hospitalized, of whom 49 (9.7%) had neurologic complications; median age 4.8 years (range 0.5–12.6 years) compared with 3.7 years (0.01–14.9 years) in those without complications. Approximately one-half (55.1%) of the children with neurologic complications had preexisting medical conditions, and 42.8% had preexisting neurologic conditions. On presentation, only 36.7% had the triad of cough, fever, and coryza/runny nose, whereas 38.7% had only 1 or no respiratory symptoms. Seizure was the most common neurologic complication (7.5%). Others included encephalitis/encephalopathy (1.4%), confusion/disorientation (1.0%), loss of consciousness (1.0%), and paralysis/Guillain-Barré syndrome (0.4%). A total of 30.6% needed intensive care unit (ICU) admission, 24.5% required mechanical ventilation, and 2 (4.1%) died. The mean length of stay in hospital was 6.5 days (median 3 days) and mean ICU stay was 4.4 days (median 1.5 days). Conclusions: Neurologic complications are relatively common among children admitted with influenza, and can be life-threatening. The lack of specific treatment for influenza-related neurologic complications underlines the importance of early diagnosis, use of antivirals, and universal influenza vaccination in children. Clinicians should consider influenza in children with neurologic symptoms even with a paucity of respiratory symptoms. PMID:22993280

  3. Identification of swine H1N2/pandemic H1N1 reassortant influenza virus in pigs, United States.

    PubMed

    Ali, Ahmed; Khatri, Mahesh; Wang, Leyi; Saif, Yehia M; Lee, Chang-Won

    2012-07-06

    In October and November 2010, novel H1N2 reassortant influenza viruses were identified from pigs showing mild respiratory signs that included cough and depression. Sequence and phylogenetic analysis showed that the novel H1N2 reassortants possesses HA and NA genes derived from recent H1N2 swine isolates similar to those isolated from Midwest. Compared to the majority of reported reassortants, both viruses preserved human-like host restrictive and putative antigenic sites in their HA and NA genes. The four internal genes, PB2, PB1, PA, and NS were similar to the contemporary swine triple reassortant viruses' internal genes (TRIG). Interestingly, NP and M genes of the novel reassortants were derived from the 2009 pandemic H1N1. The NP and M proteins of the two isolates demonstrated one (E16G) and four (G34A, D53E, I109T, and V313I) amino acid changes in the M2 and NP proteins, respectively. Similar amino acid changes were also noticed upon incorporation of the 2009 pandemic H1N1 NP in other reassortant viruses reported in the U.S. Thus the role of those amino acids in relation to host adaptation need to be further investigated. The reassortments of pandemic H1N1 with swine influenza viruses and the potential of interspecies transmission of these reassortants from swine to other species including human indicate the importance of systematic surveillance of swine population to determine the origin, the prevalence of similar reassortants in the U.S. and their impact on both swine production and public health. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Antigenic and genomic characterization of human influenza A and B viruses circulating in Argentina after the introduction of influenza A(H1N1)pdm09.

    PubMed

    Russo, Mara L; Pontoriero, Andrea V; Benedetti, Estefania; Czech, Andrea; Avaro, Martin; Periolo, Natalia; Campos, Ana M; Savy, Vilma L; Baumeister, Elsa G

    2014-12-01

    This study was conducted as part of the Argentinean Influenza and other Respiratory Viruses Surveillance Network, in the context of the Global Influenza Surveillance carried out by the World Health Organization (WHO). The objective was to study the activity and the antigenic and genomic characteristics of circulating viruses for three consecutive seasons (2010, 2011 and 2012) in order to investigate the emergence of influenza viral variants. During the study period, influenza virus circulation was detected from January to December. Influenza A and B, and all current subtypes of human influenza viruses, were present each year. Throughout the 2010 post-pandemic season, influenza A(H1N1)pdm09, unexpectedly, almost disappeared. The haemagglutinin (HA) of the A(H1N1)pdm09 viruses studied were segregated in a different genetic group to those identified during the 2009 pandemic, although they were still antigenically closely related to the vaccine strain A/California/07/2009. Influenza A(H3N2) viruses were the predominant strains circulating during the 2011 season, accounting for nearly 76 % of influenza viruses identified. That year, all HA sequences of the A(H3N2) viruses tested fell into the A/Victoria/208/2009 genetic clade, but remained antigenically related to A/Perth/16/2009 (reference vaccine recommended for this three-year period). A(H3N2) viruses isolated in 2012 were antigenically closely related to A/Victoria/361/2011, recommended by the WHO as the H3 component for the 2013 Southern Hemisphere formulation. B viruses belonging to the B/Victoria lineage circulated in 2010. A mixed circulation of viral variants of both B/Victoria and B/Yamagata lineages was detected in 2012, with the former being predominant. A(H1N1)pdm09 viruses remained antigenically closely related to the vaccine virus A/California/7/2009; A(H3N2) viruses continually evolved into new antigenic clusters and both B lineages, B/Victoria/2/87-like and B/Yamagata/16/88-like viruses, were observed

  5. Molecular Epidemiology and Antigenic Characterization of Seasonal Influenza Viruses Circulating in Nepal.

    PubMed

    Upadhyay, B P; Ghimire, P; Tashiro, M; Banjara, M R

    2017-01-01

    Influenza is one of the public health burdens in Nepal and its epidemiology is not clearly understood. The objective of this study was to explore the molecular epidemiology and the antigenic characteristics of the circulating influenza viruses in Nepal. A total of 1495 throat swab specimens were collected from January to December, 2014. Real time PCR assay was used for identification of influenza virus types and subtypes. Ten percent of the positive specimens were randomly selected and inoculated onto Madin-Darby Canine Kidney Epithelial cells (MDCK) for influenza virus isolation. All viruses were characterized by the hemagglutination inhibition (HI) assay. Influenza viruses were detected in 421/1495 (28.2%) specimens. Among positive cases, influenza A virus was detected in 301/421 (71.5%); of which 120 (39.9%) were influenza A/H1N1 pdm09 and 181 (60.1%) were influenza A/H3 subtype. Influenza B viruses were detected in 119/421 (28.3%) specimens. Influenza A/H1N1 pdm09, A/H3 and B viruses isolated in Nepal were antigenically similar to the vaccine strain influenza A/California/07/2009(H1N1pdm09), A/Texas/50/2012(H3N2), A/New York/39/2012(H3N2) and B/Massachusetts/2/2012, respectively. Influenza viruses were reported year-round in different geographical regions of Nepal which was similar to other tropical countries. The circulating influenza virus type and subtypes of Nepal were similar to vaccine candidate virus which could be prevented by currently used influenza vaccine.

  6. Fab MAbs specific to HA of influenza virus with H5N1 neutralizing activity selected from immunized chicken phage library.

    PubMed

    Pitaksajjakul, Pannamthip; Lekcharoensuk, Porntippa; Upragarin, Narin; Barbas, Carlos F; Ibrahim, Madiha Salah; Ikuta, Kazuyoshi; Ramasoota, Pongrama

    2010-05-14

    Hemagglutinin protein (HA) was considered to be the primary target for monoclonal antibody production. This protein not only plays an important role in viral infections, but can also be used to differentiate H5N1 virus from other influenza A viruses. Hence, for diagnostic and therapeutic applications, it is important to develop anti-HA monoclonal antibody (MAb) with high sensitivity, specificity, stability, and productivity. Nine unique Fab MAbs were generated from chimeric chicken/human Fab phage display library constructed from cDNA derived from chickens immunized with recombinant hemagglutinin protein constructed from H5N1 avian influenza virus (A/Vietnam/1203/04). The obtained Fab MAbs showed several characteristics for further optimization and development-three clones were highly specific to only H5N1 virus. This finding can be applied to the development of H5N1 diagnostic testing. Another clone showed neutralization activity that inhibited H5N1 influenza virus infection in Madin-Darby canine kidney (MDCK) cells. In addition, one clone showed strong reactivity with several of the influenza A virus subtypes tested. The conversion of this clone to whole IgG is a promising study for a cross-neutralization activity test. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  7. Enhanced infection of avian influenza virus H9N2 with infectious laryngeotracheitis vaccination in chickens.

    PubMed

    Arafat, Nagah; Eladl, Abdelfattah H; Marghani, Basma H; Saif, Mohamed A; El-Shafei, Reham A

    2018-06-01

    Avian influenza and infectious laryngeotracheitis viruses are common causes of respiratory diseases in chickens with economical importance worldwide. In this study, we investigated the effect of experimental co-infection of avian influenza virus-H9N2 (AIV-H9N2) with infectious laryngeotracheitis virus (ILTV) live-attenuated vaccine (LAR-VAC ® ) on chickens. Four experimental groups were included in this study: negative control group, AIV-H9N2 group, AIV-H9N2+LAR-VAC ® group, and LAR-VAC ® group. AIV-H9N2 was inoculated intranasally to challenged groups at 35 days of age. On the same day, LAR-VAC ® was ocularly administered to vaccinated groups. Chickens were observed for clinical signs, changes in body weight and mortality rates. Tissue samples, sera, tracheal and cloacal swabs, and blood were also collected at 3, 6, 9 and 12 days post-infection (PI). A significant increase in clinical signs and mortality rates were observed in the AIV-H9N2 + LAR-VAC ® group. Moreover, chickens coinfected with AIV-H9N2 and LAR-VAC ® showed a significant decrease in body weight and lymphoid organs indices. The tracheal gross and histopathological lesions and the shedding titer and period of AIV-H9N2 were significantly higher in AIV-H9N2 + LAR-VAC ® group when compared to other groups. Furthermore, AIV-H9N2 infection leads to humoral and cellular immunosuppression as shown by a significant decrease in the CD4 + /CD8 + ratio and antibody responses to ILTV and a significant increase in H/L ratio. In conclusion, this is the first report of co-infection of AIV-H9N2 and ILTV vaccine in chickens, which leads to increased pathogenicity, pathological lesions, and AIV-H9N2 shedding titer and period, which can lead to severe economic losses due to poor weight gain and mortality. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Protease-dependent hemagglutinin cleavage contributes to alteration in chicken hemagglutination by the H3N2 influenza A virus.

    PubMed

    Yamaoka, Masaoki; Makino, Akiko; Sasahara, Kenji; Nastri, Aldise Mareta; Krisna, Luh Ade Wilan; Purhito, Edith Frederika; Poetranto, Emmanuel Djoko; Wulandari, Laksmi; Yudhawati, Resti; Setiawati, Landia; Setyoningrum, Retno Asih; Shinya, Kyoko

    2013-01-01

    The human influenza A virus (H3N2) has been the predominant influenza strain since 1992, and one property of this virus is non-agglutination of chicken erythrocytes [Ch(-) virus]. The Ch(-) virus in our study was able to acquire chicken hemagglutination [Ch(+)] by trypsin passage but not by chymotrypsin passage. Moreover, the trypsin-passaged Ch(+) viruses reacquired the Ch(-) property after a further chymotrypsin passage. In particular, genetic analysis showed no evidence of mutations in the hemagglutinin (HA) gene during either trypsin or chymotrypsin passages: the only differences found were in the HA cleavage sites between the trypsin-passaged virus and the chymotrypsin-passaged virus as determined by the N-terminal amino acid sequence. These results suggested that protease-dependent differences at the viral HA cleavage site, rather than genetic mutations, are likely to have a significant effect on the viral ability to produce chicken hemagglutination.

  9. Low pathogenic avian influenza (H9N2) in chicken: Evaluation of an ancestral H9-MVA vaccine.

    PubMed

    Ducatez, Mariette F; Becker, Jens; Freudenstein, Astrid; Delverdier, Maxence; Delpont, Mattias; Sutter, Gerd; Guérin, Jean-Luc; Volz, Asisa

    2016-06-30

    Modified Vaccinia Ankara (MVA) has proven its efficacy as a recombinant vector vaccine for numerous pathogens including influenza virus. The present study aimed at evaluating a recombinant MVA candidate vaccine against low pathogenic avian influenza virus subtype H9N2 in the chicken model. As the high genetic and antigenic diversity of H9N2 viruses increases vaccine design complexity, one strategy to widen the range of vaccine coverage is to use an ancestor sequence. We therefore generated a recombinant MVA encoding for the gene sequence of an ancestral hemagglutinin H9 protein (a computationally derived amino acid sequence of the node of the H9N2 G1 lineage strains was obtained using the ANCESCON program). We analyzed the genetics and the growth properties of the MVA vector virus confirming suitability for use under biosafety level 1 and tested its efficacy when applied either as an intra-muscular (IM) or an oral vaccine in specific pathogen free chickens challenged with A/chicken/Tunisia/12/2010(H9N2). Two control groups were studied in parallel (unvaccinated and inoculated birds; unvaccinated and non-inoculated birds). IM vaccinated birds seroconverted as early as four days post vaccination and neutralizing antibodies were detected against A/chicken/Tunisia/12/2010(H9N2) in all the birds before challenge. The role of local mucosal immunity is unclear here as no antibodies were detected in eye drop or aerosol vaccinated birds. Clinical signs were not detected in any of the infected birds even in absence of vaccination. Virus replication was observed in both vaccinated and unvaccinated chickens, suggesting the MVA-ancestral H9 vaccine may not stop virus spread in the field. However vaccinated birds showed less histological damage, fewer influenza-positive cells and shorter virus shedding than their unvaccinated counterparts. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. 2009 H1N1 influenza and experience in three critical care units.

    PubMed

    Teke, Turgut; Coskun, Ramazan; Sungur, Murat; Guven, Muhammed; Bekci, Taha T; Maden, Emin; Alp, Emine; Doganay, Mehmet; Erayman, Ibrahim; Uzun, Kursat

    2011-04-07

    We describe futures of ICU admission, demographic characteristics, treatment and outcome for critically ill patients with laboratory-confirmed and suspected infection with the H1N1 virus admitted to the three different critical care departments in Turkey. Retrospective study of critically ill patients with 2009 influenza A(H1N1) at ICU. Demographic data, symptoms, comorbid conditions, and clinical outcomes were collected using a case report form. Critical illness occurred in 61 patients admitted to an ICU with confirmed (n=45) or probable and suspected 2009 influenza A(H1N1). Patients were young (mean, 41.5 years), were female (54%). Fifty-six patients, required mechanical ventilation (14 invasive, 27 noninvasive, 15 both) during the course of ICU. On admission, mean APACHE II score was 18.7±6.3 and median PaO(2)/FIO(2) was 127.9±70.4. 31 patients (50.8%) was die. There were no significant differences in baseline PaO(2)/FIO(2 )and ventilation strategies between survivors and nonsurvivors. Patients who survived were more likely to have NIMV use at the time of admission to the ICU. Critical illness from 2009 influenza A(H1N1) in ICU predominantly affects young patients with little major comorbidity and had a high case-fatality rate. NIMV could be used in 2009 influenza A (H1N1) infection-related hypoxemic respiratory failure.

  11. A(H1N1)pdm09 influenza infection: vaccine inefficiency.

    PubMed

    Friedman, Nehemya; Drori, Yaron; Pando, Rakefet; Glatman-Freedman, Aharona; Sefty, Hanna; Bassal, Ravit; Stein, Yaniv; Shohat, Tamy; Mendelson, Ella; Hindiyeh, Musa; Mandelboim, Michal

    2017-05-16

    The last influenza pandemic, caused by the swine A(H1N1)pdm09 influenza virus, began in North America at 2009. Since then, the World Health Organization (WHO) recommended integration of the swine-based virus A/California/07/2009 strain in yearly vaccinations. Yet, infections with A(H1N1)pdm09 have continued in subsequent years. The reasons for this are currently unknown. During the 2015-2016 influenza season, we noted an increased prevalence of A(H1N1)pdm09 influenza virus infection in Israel. Our phylogenetic analysis indicated that the circulating A(H1N1)pdm09 strains belonged to 6B.1 and 6B.2 clades and differed from the vaccinating strain, with approximately 18 amino acid differences found between the circulating strains and the immunizing A/California/07/2009 strain. Hemmaglutination inhibition (HI) assays demonstrated higher antibodies titer against the A/California/07/2009 vaccinating strain as compared to the circulating Israeli strains. We thus suggest that the current vaccination was not sufficiently effective and propose inclusion of the current circulating A(H1N1)pdm09 influenza viruses in the annual vaccine composition.

  12. Complete Genomic Sequences of H3N8 Equine Influenza Virus Strains Used as Vaccine Strains in Japan

    PubMed Central

    Yamanaka, Takashi; Bannai, Hiroshi; Tsujimura, Koji; Kokado, Hiroshi

    2018-01-01

    ABSTRACT We sequenced the eight segments of influenza A virus strains A/equine/Ibaraki/1/2007 and A/equine/Yokohama/aq13/2010, which are strains of the Florida sublineage clades 1 and 2 of the H3N8 subtype equine influenza virus. These strains have been used as vaccine strains in Japan since 2016 in accordance with World Organization for Animal Health (OIE) recommendations. PMID:29567739

  13. Complete Genomic Sequences of H3N8 Equine Influenza Virus Strains Used as Vaccine Strains in Japan.

    PubMed

    Nemoto, Manabu; Yamanaka, Takashi; Bannai, Hiroshi; Tsujimura, Koji; Kokado, Hiroshi

    2018-03-22

    We sequenced the eight segments of influenza A virus strains A/equine/Ibaraki/1/2007 and A/equine/Yokohama/aq13/2010, which are strains of the Florida sublineage clades 1 and 2 of the H3N8 subtype equine influenza virus. These strains have been used as vaccine strains in Japan since 2016 in accordance with World Organization for Animal Health (OIE) recommendations. Copyright © 2018 Nemoto et al.

  14. Critically ill patients with 2009 influenza A(H1N1) infection in Canada.

    PubMed

    Kumar, Anand; Zarychanski, Ryan; Pinto, Ruxandra; Cook, Deborah J; Marshall, John; Lacroix, Jacques; Stelfox, Tom; Bagshaw, Sean; Choong, Karen; Lamontagne, Francois; Turgeon, Alexis F; Lapinsky, Stephen; Ahern, Stéphane P; Smith, Orla; Siddiqui, Faisal; Jouvet, Philippe; Khwaja, Kosar; McIntyre, Lauralyn; Menon, Kusum; Hutchison, Jamie; Hornstein, David; Joffe, Ari; Lauzier, Francois; Singh, Jeffrey; Karachi, Tim; Wiebe, Kim; Olafson, Kendiss; Ramsey, Clare; Sharma, Sat; Dodek, Peter; Meade, Maureen; Hall, Richard; Fowler, Robert A

    2009-11-04

    Between March and July 2009, the largest number of confirmed cases of 2009 influenza A(H1N1) infection occurred in North America. To describe characteristics, treatment, and outcomes of critically ill patients in Canada with 2009 influenza A(H1N1) infection. A prospective observational study of 168 critically ill patients with 2009 influenza A(H1N1) infection in 38 adult and pediatric intensive care units (ICUs) in Canada between April 16 and August 12, 2009. The primary outcome measures were 28-day and 90-day mortality. Secondary outcomes included frequency and duration of mechanical ventilation and duration of ICU stay. Critical illness occurred in 215 patients with confirmed (n = 162), probable (n = 6), or suspected (n = 47) community-acquired 2009 influenza A(H1N1) infection. Among the 168 patients with confirmed or probable 2009 influenza A(H1N1), the mean (SD) age was 32.3 (21.4) years; 113 were female (67.3%) and 50 were children (29.8%). Overall mortality among critically ill patients at 28 days was 14.3% (95% confidence interval, 9.5%-20.7%). There were 43 patients who were aboriginal Canadians (25.6%). The median time from symptom onset to hospital admission was 4 days (interquartile range [IQR], 2-7 days) and from hospitalization to ICU admission was 1 day (IQR, 0-2 days). Shock and nonpulmonary acute organ dysfunction was common (Sequential Organ Failure Assessment mean [SD] score of 6.8 [3.6] on day 1). Neuraminidase inhibitors were administered to 152 patients (90.5%). All patients were severely hypoxemic (mean [SD] ratio of Pao(2) to fraction of inspired oxygen [Fio(2)] of 147 [128] mm Hg) at ICU admission. Mechanical ventilation was received by 136 patients (81.0%). The median duration of ventilation was 12 days (IQR, 6-20 days) and ICU stay was 12 days (IQR, 5-20 days). Lung rescue therapies included neuromuscular blockade (28% of patients), inhaled nitric oxide (13.7%), high-frequency oscillatory ventilation (11.9%), extracorporeal membrane

  15. H5N1 influenza vaccine induces a less robust neutralizing antibody response than seasonal trivalent and H7N9 influenza vaccines.

    PubMed

    Wong, Sook-San; DeBeauchamp, Jennifer; Zanin, Mark; Sun, Yilun; Tang, Li; Webby, Richard

    2017-01-01

    Conventional inactivated avian influenza vaccines have performed poorly in past vaccine trials, leading to the hypothesis that they are less immunogenic than seasonal influenza vaccines. We tested this hypothesis by comparing the immunogenicity of the H5N1 and H7N9 vaccines (avian influenza vaccines) to a seasonal trivalent inactivated influenza vaccine in naïve ferrets, administered with or without the adjuvants MF59 or AS03. Vaccine immunogenicity was assessed by measuring neutralizing antibody titers against hemagglutinin and neuraminidase and by hemagglutinin -specific IgG levels. Two doses of unadjuvanted vaccines induced low or no HA-specific IgG responses and hemagglutination-inhibiting titers. Adjuvanted vaccines induced comparable IgG-titers, but poorer neutralizing antibody titers for the H5 vaccine. All adjuvanted vaccines elicited detectable anti- neuraminidase -antibodies with the exception of the H5N1 vaccine, likely due to the low amounts of neuraminidase in the vaccine. Overall, the H5N1 vaccine had poorer capacity to induce neutralizing antibodies, but not HA-specific IgG, compared to H7N9 or trivalent inactivated influenza vaccine.

  16. Genetic characterization of H1N2 swine influenza virus isolated in China and its pathogenesis and inflammatory responses in mice.

    PubMed

    Zhang, Yan; Wang, Nan; Cao, Jiyue; Chen, Huanchun; Jin, Meilin; Zhou, Hongbo

    2013-09-01

    In 2009, two H1N2 influenza viruses were isolated from trachea swabs of pigs in Hubei in China. We compared these sequences with the other 18 complete genome sequences of swine H1N2 isolates from China during 2004 to 2010 and undertook extensive analysis of their evolutionary patterns. Six different genotypes - two reassortants between triple reassortant (TR) H3N2 and classical swine (CS) H1N1 virus, three reassortants between TR H1N2, Eurasian avian-like H1N1 swine virus and H9N2 swine virus, and one reassortant between H1N1, H3N2 human virus and CS H1N1 virus - were observed in these 20 swine H1N2 isolates. The TR H1N2 swine virus is the predominant genotype, and the two Hubei H1N2 isolates were located in this cluster. We also used a mouse model to examine the pathogenesis and inflammatory responses of the two isolates. The isolates replicated efficiently in the lung, and exhibited a strong inflammatory response, serious pathological changes and mortality in infected mice. Given the role that swine can play as putative "genetic mixing vessels" and the observed transmission of TR H1N2 in ferrets, H1N2 influenza surveillance in pigs should be increased to minimize the potential threat to public health.

  17. Molecular Evolution and Emergence of H5N6 Avian Influenza Virus in Central China.

    PubMed

    Du, Yingying; Chen, Mingyue; Yang, Jiayun; Jia, Yane; Han, Shufang; Holmes, Edward C; Cui, Jie

    2017-06-15

    H5N6 avian influenza virus (AIV) has posed a potential threat to public health since its emergence in China in 2013. To understand the evolution and emergence of H5N6 AIV in the avian population, we performed molecular surveillance of live poultry markets (LPMs) in Wugang Prefecture, Hunan Province, in central China, during 2014 and 2015. Wugang Prefecture is located on the Eastern Asian-Australian migratory bird flyway, and a human death due to an H5N6 virus was reported in the prefecture on 21 November 2016. In total, we sampled and sequenced the complete genomes of 175 H5N6 AIVs. Notably, our analysis revealed that H5N6 AIVs contain at least six genotypes arising from segment reassortment, including a rare variant that possesses an HA gene derived from H5N1 clade 2.3.2 and a novel NP gene that has its origins with H7N3 viruses. In addition, phylogenetic analysis revealed that genetically similar H5N6 AIVs tend to cluster according to their geographic regions of origin. These results help to reveal the evolutionary behavior of influenza viruses prior to their emergence in humans. IMPORTANCE The newly emerged H5N6 influenza A virus has caused more than 10 human deaths in China since 2013. In November 2016, a human death due to an H5N6 virus, in Wugang Prefecture, Hunan Province, was confirmed by the WHO. To better understand the evolution and emergence of H5N6 viruses, we surveyed live poultry markets (LPMs) in Wugang Prefecture before the reported human death, with a focus on revealing the diversity and genomic origins of H5N6 in birds during 2014 and 2015. In general, H5N6 viruses in this region were most closely related to H5N1 clade 2.3.4.4, with the exception of one virus with an HA gene derived from clade 2.3.2 such that it represents a novel reassortant. Clearly, the ongoing surveillance of LPMs is central to monitoring the emergence of pathogenic influenza viruses. Copyright © 2017 American Society for Microbiology.

  18. Domestic Ducks and H5N1 Influenza Epidemic, Thailand

    PubMed Central

    Songserm, Thaweesak; Jam-on, Rungroj; Sae-Heng, Numdee; Meemak, Noppadol; Hulse-Post, Diane J.; Sturm-Ramirez, Katharine M.

    2006-01-01

    In addition to causing 12 human deaths and 17 cases of human infection, the 2004 outbreak of H5N1 influenza virus in Thailand resulted in the death or slaughter of 60 million domestic fowl and the disruption of poultry production and trade. After domestic ducks were recognized as silent carriers of H5N1 influenza virus, government teams went into every village to cull flocks in which virus was detected; these team efforts markedly reduced H5N1 infection. Here we examine the pathobiology and epidemiology of H5N1 influenza virus in the 4 systems of duck raising used in Thailand in 2004. No influenza viruses were detected in ducks raised in "closed" houses with high biosecurity. However, H5N1 influenza virus was prevalent among ducks raised in "open" houses, free-ranging (grazing) ducks, and backyard ducks. PMID:16704804

  19. Immunogenicity and Protection Against Influenza H7N3 in Mice by Modified Vaccinia Virus Ankara Vectors Expressing Influenza Virus Hemagglutinin or Neuraminidase.

    PubMed

    Meseda, Clement A; Atukorale, Vajini; Soto, Jackeline; Eichelberger, Maryna C; Gao, Jin; Wang, Wei; Weiss, Carol D; Weir, Jerry P

    2018-03-29

    Influenza subtypes such as H7 have pandemic potential since they are able to infect humans with severe consequences, as evidenced by the ongoing H7N9 infections in China that began in 2013. The diversity of H7 viruses calls for a broadly cross-protective vaccine for protection. We describe the construction of recombinant modified vaccinia virus Ankara (MVA) vectors expressing the hemagglutinin (HA) or neuraminidase (NA) from three H7 viruses representing both Eurasian and North American H7 lineages - A/mallard/Netherlands/12/2000 (H7N3), A/Canada/rv444/2004 (H7N3), and A/Shanghai/02/2013 (H7N9). These vectors were evaluated for immunogenicity and protective efficacy against H7N3 virus in a murine model of intranasal challenge. High levels of H7-, N3-, and N9-specific antibodies, including neutralizing antibodies, were induced by the MVA-HA and MVA-NA vectors. Mice vaccinated with MVA vectors expressing any of the H7 antigens were protected, suggesting cross-protection among H7 viruses. In addition, MVA vectors expressing N3 but not N9 elicited protection against H7N3 virus challenge. Similar outcomes were obtained when immune sera from MVA vector-immunized mice were passively transferred to naïve mice prior to challenge with the H7N3 virus. The results support the further development of an MVA vector platform as a candidate vaccine for influenza strains with pandemic potential.

  20. Structure, Receptor Binding, and Antigenicity of Influenza Virus Hemagglutinins from the 1957 H2N2 Pandemic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Rui; McBride, Ryan; Paulson, James C.

    2010-03-04

    The hemagglutinin (HA) envelope protein of influenza viruses mediates essential viral functions, including receptor binding and membrane fusion, and is the major viral antigen for antibody neutralization. The 1957 H2N2 subtype (Asian flu) was one of the three great influenza pandemics of the last century and caused 1 million deaths globally from 1957 to 1968. Three crystal structures of 1957 H2 HAs have been determined at 1.60 to 1.75 {angstrom} resolutions to investigate the structural basis for their antigenicity and evolution from avian to human binding specificity that contributed to its introduction into the human population. These structures, which representmore » the highest resolutions yet recorded for a complete ectodomain of a glycosylated viral surface antigen, along with the results of glycan microarray binding analysis, suggest that a hydrophobicity switch at residue 226 and elongation of receptor-binding sites were both critical for avian H2 HA to acquire human receptor specificity. H2 influenza viruses continue to circulate in birds and pigs and, therefore, remain a substantial threat for transmission to humans. The H2 HA structure also reveals a highly conserved epitope that could be harnessed in the design of a broader and more universal influenza A virus vaccine.« less

  1. Emergence and development of H7N9 influenza viruses in China.

    PubMed

    Zhu, Huachen; Lam, Tommy Tsan-Yuk; Smith, David Keith; Guan, Yi

    2016-02-01

    The occurrence of human infections with avian H7N9 viruses since 2013 demonstrates the continuing pandemic threat posed by the current influenza ecosystem in China. Influenza surveillance and phylogenetic analyses showed that these viruses were generated by multiple interspecies transmissions and reassortments among the viruses resident in domestic ducks and the H9N2 viruses enzootic in chickens. A large population of domestic ducks hosting diverse influenza viruses provided the precondition for these events to occur, while acquiring internal genes from enzootic H9N2 influenza viruses in chickens promoted the spread of these viruses. Human infections effectively act as sentinels, reflecting the intensity of the activity of these viruses in poultry. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Reassortment between Swine H3N2 and 2009 Pandemic H1N1 in the United States Resulted in Influenza A Viruses with Diverse Genetic Constellations with Variable Virulence in Pigs

    PubMed Central

    Rajão, Daniela S.; Walia, Rasna R.; Campbell, Brian; Gauger, Phillip C.; Janas-Martindale, Alicia; Killian, Mary Lea

    2016-01-01

    ABSTRACT Repeated spillovers of the H1N1 pandemic virus (H1N1pdm09) from humans to pigs resulted in substantial evolution of influenza A viruses infecting swine, contributing to the genetic and antigenic diversity of influenza A viruses (IAV) currently circulating in swine. The reassortment with endemic swine viruses and maintenance of some of the H1N1pdm09 internal genes resulted in the circulation of different genomic constellations in pigs. Here, we performed a whole-genome phylogenetic analysis of 368 IAV circulating in swine from 2009 to 2016 in the United States. We identified 44 different genotypes, with the most common genotype (32.33%) containing a clade IV-A HA gene, a 2002-lineage NA gene, an M-pdm09 gene, and remaining gene segments of triple reassortant internal gene (TRIG) origin. To understand how different genetic constellations may relate to viral fitness, we compared the pathogenesis and transmission in pigs of six representative genotypes. Although all six genotypes efficiently infected pigs, they resulted in different degrees of pathology and viral shedding. These results highlight the vast H3N2 genetic diversity circulating in U.S. swine after 2009. This diversity has important implications in the control of this disease by the swine industry, as well as a potential risk for public health if swine-adapted viruses with H1N1pdm09 genes have an increased risk to humans, as occurred in the 2011-2012 and 2016 human variant H3N2v cases associated with exhibition swine. IMPORTANCE People continue to spread the 2009 H1N1 pandemic (H1N1pdm09) IAV to pigs, allowing H1N1pdm09 to reassort with endemic swine IAV. In this study, we determined the 8 gene combinations of swine H3N2 IAV detected from 2009 to 2016. We identified 44 different genotypes of H3N2, the majority of which contained at least one H1N1pdm09 gene segment. We compared six representative genotypes of H3N2 in pigs. All six genotypes efficiently infected pigs, but they resulted in different

  3. Reassortment between Swine H3N2 and 2009 Pandemic H1N1 in the United States Resulted in Influenza A Viruses with Diverse Genetic Constellations with Variable Virulence in Pigs.

    PubMed

    Rajão, Daniela S; Walia, Rasna R; Campbell, Brian; Gauger, Phillip C; Janas-Martindale, Alicia; Killian, Mary Lea; Vincent, Amy L

    2017-02-15

    Repeated spillovers of the H1N1 pandemic virus (H1N1pdm09) from humans to pigs resulted in substantial evolution of influenza A viruses infecting swine, contributing to the genetic and antigenic diversity of influenza A viruses (IAV) currently circulating in swine. The reassortment with endemic swine viruses and maintenance of some of the H1N1pdm09 internal genes resulted in the circulation of different genomic constellations in pigs. Here, we performed a whole-genome phylogenetic analysis of 368 IAV circulating in swine from 2009 to 2016 in the United States. We identified 44 different genotypes, with the most common genotype (32.33%) containing a clade IV-A HA gene, a 2002-lineage NA gene, an M-pdm09 gene, and remaining gene segments of triple reassortant internal gene (TRIG) origin. To understand how different genetic constellations may relate to viral fitness, we compared the pathogenesis and transmission in pigs of six representative genotypes. Although all six genotypes efficiently infected pigs, they resulted in different degrees of pathology and viral shedding. These results highlight the vast H3N2 genetic diversity circulating in U.S. swine after 2009. This diversity has important implications in the control of this disease by the swine industry, as well as a potential risk for public health if swine-adapted viruses with H1N1pdm09 genes have an increased risk to humans, as occurred in the 2011-2012 and 2016 human variant H3N2v cases associated with exhibition swine. People continue to spread the 2009 H1N1 pandemic (H1N1pdm09) IAV to pigs, allowing H1N1pdm09 to reassort with endemic swine IAV. In this study, we determined the 8 gene combinations of swine H3N2 IAV detected from 2009 to 2016. We identified 44 different genotypes of H3N2, the majority of which contained at least one H1N1pdm09 gene segment. We compared six representative genotypes of H3N2 in pigs. All six genotypes efficiently infected pigs, but they resulted in different degrees of lung damage

  4. A Live Attenuated Equine H3N8 Influenza Vaccine Is Highly Immunogenic and Efficacious in Mice and Ferrets

    PubMed Central

    Baz, Mariana; Paskel, Myeisha; Matsuoka, Yumiko; Zengel, James; Cheng, Xing; Treanor, John J.; Jin, Hong

    2014-01-01

    ABSTRACT Equine influenza viruses (EIV) are responsible for rapidly spreading outbreaks of respiratory disease in horses. Although natural infections of humans with EIV have not been reported, experimental inoculation of humans with these viruses can lead to a productive infection and elicit a neutralizing antibody response. Moreover, EIV have crossed the species barrier to infect dogs, pigs, and camels and therefore may also pose a threat to humans. Based on serologic cross-reactivity of H3N8 EIV from different lineages and sublineages, A/equine/Georgia/1/1981 (eq/GA/81) was selected to produce a live attenuated candidate vaccine by reverse genetics with the hemagglutinin and neuraminidase genes of the eq/GA/81 wild-type (wt) virus and the six internal protein genes of the cold-adapted (ca) A/Ann Arbor/6/60 (H2N2) vaccine donor virus, which is the backbone of the licensed seasonal live attenuated influenza vaccine. In both mice and ferrets, intranasal administration of a single dose of the eq/GA/81 ca vaccine virus induced neutralizing antibodies and conferred complete protection from homologous wt virus challenge in the upper respiratory tract. One dose of the eq/GA/81 ca vaccine also induced neutralizing antibodies and conferred complete protection in mice and nearly complete protection in ferrets upon heterologous challenge with the H3N8 (eq/Newmarket/03) wt virus. These data support further evaluation of the eq/GA/81 ca vaccine in humans for use in the event of transmission of an equine H3N8 influenza virus to humans. IMPORTANCE Equine influenza viruses have crossed the species barrier to infect other mammals such as dogs, pigs, and camels and therefore may also pose a threat to humans. We believe that it is important to develop vaccines against equine influenza viruses in the event that an EIV evolves, adapts, and spreads in humans, causing disease. We generated a live attenuated H3N8 vaccine candidate and demonstrated that the vaccine was immunogenic and

  5. Genetic characterization of avian influenza subtype H4N6 and H4N9 from live bird market, Thailand

    USDA-ARS?s Scientific Manuscript database

    A one year active surveillance program for influenza A viruses among avian species in a live-bird market (LBM) in Bangkok, Thailand was conducted in 2009. Out of 970 samples collected, influenza A virus subtypes H4N6 (n=2) and H4N9 (n=1), were isolated from healthy Muscovy ducks. All three viruses w...

  6. Virus-like particles displaying H5, H7, H9 hemagglutinins and N1 neuraminidase elicit protective immunity to heterologous avian influenza viruses in chickens

    PubMed Central

    Pushko, Peter; Tretyakova, Irina; Hidajat, Rachmat; Zsak, Aniko; Chrzastek, Klaudia; Tumpey, Terrence M.; Kapczynski, Darrell R.

    2016-01-01

    Avian influenza (AI) viruses circulating in wild birds pose a serious threat to public health. Human and veterinary vaccines against AI subtypes are needed. Here we prepared triple-subtype VLPs that co-localized H5, H7 and H9 antigens derived from H5N1, H7N3 and H9N2 viruses. VLPs also contained influenza N1 neuraminidase and retroviral gag protein. The H5/H7/H9/N1/gag VLPs were prepared using baculovirus expression. Biochemical, functional and antigenic characteristics were determined including hemagglutination and neuraminidase enzyme activities. VLPs were further evaluated in a chicken AI challenge model for safety, immunogenicity and protective efficacy against heterologous AI viruses including H5N2, H7N3 and H9N2 subtypes. All vaccinated birds survived challenges with H5N2 and H7N3 highly pathogenic AI (HPAI) viruses, while all controls died. Immune response was also detectable after challenge with low pathogenicity AI (LPAI) H9N2 virus suggesting that H5/H7/H9/N1/gag VLPs represent a promising approach for the development of broadly protective AI vaccine. PMID:27936463

  7. Reassortant H5N1 avian influenza viruses containing PA or NP gene from an H9N2 virus significantly increase the pathogenicity in mice.

    PubMed

    Hao, Xiaoli; Hu, Jiao; Wang, Jiongjiong; Xu, Jing; Cheng, Hao; Xu, Yunpeng; Li, Qunhui; He, Dongchang; Liu, Xiaowen; Wang, Xiaoquan; Gu, Min; Hu, Shunlin; Xu, Xiulong; Liu, Huimou; Chen, Sujuan; Peng, Daxin; Liu, Xiufan

    2016-08-30

    Reassortment between different influenza viruses is a crucial way to generate novel influenza viruses with unpredictable virulence and transmissibility, which may threaten the public health. As currently in China, avian influenza viruses (AIVs) of H9N2 and H5N1 subtypes are endemic in poultry in many areas, while they are prone to reassort with each other naturally. In order to evaluate the risk of the reassortment to public health, A/Goose/Jiangsu/k0403/2010 [GS/10(H5N1)] virus was used as a backbone to generate a series of reassortants, each contained a single internal gene derived from the predominant S genotype of the A/Chicken/Jiangsu/WJ57/2012 [WJ/57(H9N2)]. We next assessed the biological characteristics of these assortments, including pathogenicity, replication efficiency and polymerase activity. We found that the parental WJ/57(H9N2) and GS/10(H5N1) viruses displayed high genetic compatibility. Notably, the H5N1 reassortants containing the PA or NP gene from WJ/57(H9N2) virus significantly increased virulence and replication ability in mice, as well as markedly enhanced polymerase activity. Our results indicate that the endemicity of H9N2 and H5N1 in domestic poultry greatly increases the possibility of generating new viruses by reassortment that may pose a great threat to poultry industry and public health. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Avian influenza viruses (AIVs) H9N2 are in the course of reassorting into novel AIVs.

    PubMed

    Chang, Hui-Ping; Peng, Li; Chen, Liang; Jiang, Lu-Fang; Zhang, Zhi-Jie; Xiong, Cheng-Long; Zhao, Gen-Ming; Chen, Yue; Jiang, Qing-Wu

    2018-05-01

    In 2013, two episodes of influenza emerged in China and caused worldwide concern. A new H7N9 avian influenza virus (AIV) first appeared in China on February 19, 2013. By August 31, 2013, the virus had spread to ten provinces and two metropolitan cities. Of 134 patients with H7N9 influenza, 45 died. From then on, epidemics emerged sporadically in China and resulted in several victims. On November 30, 2013, a 73-year-old woman presented with an influenza-like illness. She developed multiple organ failure and died 9 d after the onset of disease. A novel reassortant AIV, H10N8, was isolated from a tracheal aspirate specimen that was obtained from the patient 7 d after onset. This case was the first human case of influenza A subtype H10N8. On 4 February, 2014, another death due to H10N8 avian influenza was reported in Jiangxi Province, China.

  9. Clinical course of asthma patients with H1N1 influenza infection and oseltamivir.

    PubMed

    Kim, Min-Hye; Song, Woo-Jung; Yang, Min-Suk; Lee, So-Hee; Kwon, Jae-Woo; Kim, Sae-Hoon; Kang, Hye-Ryun; Park, Heung-Woo; Cho, Young-Joo; Cho, Sang-Heon; Min, Kyung-Up; Kim, You-Young; Chang, Yoon-Seok

    2018-02-01

    H1N1 influenza virus prevailed throughout the world in 2009. However, there are few reports on the clinical features of H1N1 influenza infection in adult asthma patients. We evaluated the clinical features in asthma patients with H1N1 influenza infection who took oseltamivir and compared them to those with other upper respiratory infections. We reviewed asthma patients over 15 years of age who had visited Seoul National University Hospital and Seoul National University Bundang Hospital for suspected H1N1 influenza infection from August 2009 to March 2010. Various clinical features such as hospital admission days, respiratory symptoms, basal lung function, and past history was compared between H1N1 influenza PCR positive and negative groups. A total of 111 asthmatics were enrolled. All patients took oseltamivir. H1N1 RT-PCR was positive in 62 patients (55.9%), negative in 49 patients (44.1%). Wheezing developed more frequently in the H1N1 positive group. (43.5 vs. 16.7%, P=0.044). The rate of acute asthma exacerbations and pneumonia development were higher in the H1N1 positive group (59.7 vs. 51%, P=0.015, 25.0% vs. 0%, P<0.001). The rates for emergency room visit, hospital admissions, intensive care unit admissions, hospital days were not different between the groups. Underlying medical conditions were accompanied more frequently in the H1N1 negative patients (21.6% vs. 30.6%, P=0.002), especially cardiac disease (7.2% vs. 15.3%, P=0.011). H1N1 influenza infection may affect the clinical course of asthma combined with more severe manifestations; however, Oseltamivir could have affected the clinical course of H1N1 infected patients and made it milder than expected.

  10. Partial heterologous protection by low pathogenic H9N2 virus against natural H9N2-PB1 gene reassortant highly pathogenic H5N1 virus in chickens.

    PubMed

    Dash, Sandeep Kumar; Kumar, Manoj; Kataria, Jag Mohan; Nagarajan, Shanmugasundaram; Tosh, Chakradhar; Murugkar, Harshad V; Kulkarni, Diwakar D

    2016-06-01

    Low pathogenic avian influenza H9N2 and highly pathogenic avian influenza H5N1 viruses continue to co-circulate in chickens. Prior infection with low pathogenic avian influenza can modulate the outcome of H5N1 infection. In India, low pathogenic H9N2 and highly pathogenic H5N1 avian influenza viruses are co-circulating in poultry. Herein, by using chickens with prior infection of A/chicken/India/04TI05/2012 (H9N2) virus we explored the outcome of infection with H5N1 virus A/turkey/India/10CA03/2012 natural PB1 gene reassortant from H9N2. Four groups (E1-E4) of SPF chickens (n = 6) prior inoculated with 10(6) EID50 of H9N2 virus were challenged with 10(6) EID50 of H5N1 natural reassortant (PB1-H9N2) virus at days 1 (group E1); 3 (group E2); 7 (group E3) and 14 (group E4) post H9N2 inoculation. The survival percentage in groups E1-E4 was 0, 100, 66.6 and 50%, respectively. Virus shedding periods for groups E1-E4 were 3, 4, 7 and 9 days, respectively post H5N1 challenge. Birds of group E1 and E2 were shedding both H9N2 and H5N1 viruses and mean viral RNA copy number was higher in oropharyngeal swabs than cloacal swabs. In group, E3 and E4 birds excreted only H5N1 virus and mean viral RNA copy number was higher in most cloacal swabs than oral swabs. These results indicate that prior infection with H9N2 virus could protect from lethal challenge of reassortant H5N1 virus as early as with three days prior H9N2 inoculation and protection decreased in groups E3 and E4 as time elapsed. However, prior infection with H9N2 did not prevent infection with H5N1 virus and birds continue to excrete virus in oropharyngeal and cloacal swabs. Amino acid substitution K368E was found in HA gene of excreted H5N1 virus of group E3. Hence, concurrent infection can also cause emergence of viruses with mutations leading to virus evolution. The results of this study are important for the surveillance and epidemiological data analysis where both H9N2 and H5N1 viruses are co

  11. Multiple introductions of a reassortant H5N1 avian influenza virus of clade 2.3.2.1c with PB2 gene of H9N2 subtype into Indian poultry.

    PubMed

    Tosh, Chakradhar; Nagarajan, Shanmugasundaram; Kumar, Manoj; Murugkar, Harshad V; Venkatesh, Govindarajulu; Shukla, Shweta; Mishra, Amit; Mishra, Pranav; Agarwal, Sonam; Singh, Bharati; Dubey, Prashant; Tripathi, Sushil; Kulkarni, Diwakar D

    2016-09-01

    Highly pathogenic avian influenza (HPAI) H5N1 viruses are a threat to poultry in Asia, Europe, Africa and North America. Here, we report isolation and characterization of H5N1 viruses isolated from ducks and turkeys in Kerala, Chandigarh and Uttar Pradesh, India between November 2014 and March 2015. Genetic and phylogenetic analyses of haemagglutinin gene identified that the virus belonged to a new clade 2.3.2.1c which has not been detected earlier in Indian poultry. The virus possessed molecular signature for high pathogenicity to chickens, which was corroborated by intravenous pathogenicity index of 2.96. The virus was a reassortant which derives its PB2 gene from H9N2 virus isolated in China during 2007-2013. However, the neuraminidase and internal genes are of H5N1 subtype. Phylogenetic and network analysis revealed that after detection in China in 2013/2014, the virus moved to Europe, West Africa and other Asian countries including India. The analyses further indicated multiple introductions of H5N1 virus in Indian poultry and internal spread in Kerala. One of the outbreaks in ducks in Kerala is linked to the H5N1 virus isolated from wild birds in Dubai suggesting movement of virus probably through migration of wild birds. However, the outbreaks in ducks in Chandigarh and Uttar Pradesh were from an unknown source in Asia which also contributed gene pools to the outbreaks in Europe and West Africa. The widespread incidence of the novel H5N1 HPAI is similar to the spread of clade 2.2 ("Qinghai-like") virus in 2005, and should be monitored to avoid threat to animal and public health. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Virus-like particles displaying H5, H7, H9 hemagglutinins and N1 neuraminidase elicit protective immunity to heterologous avian influenza viruses in chickens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pushko, Peter, E-mail: ppushko@medigen-usa.com

    Avian influenza (AI) viruses circulating in wild birds pose a serious threat to public health. Human and veterinary vaccines against AI subtypes are needed. Here we prepared triple-subtype VLPs that co-localized H5, H7 and H9 antigens derived from H5N1, H7N3 and H9N2 viruses. VLPs also contained influenza N1 neuraminidase and retroviral gag protein. The H5/H7/H9/N1/gag VLPs were prepared using baculovirus expression. Biochemical, functional and antigenic characteristics were determined including hemagglutination and neuraminidase enzyme activities. VLPs were further evaluated in a chicken AI challenge model for safety, immunogenicity and protective efficacy against heterologous AI viruses including H5N2, H7N3 and H9N2 subtypes.more » All vaccinated birds survived challenges with H5N2 and H7N3 highly pathogenic AI (HPAI) viruses, while all controls died. Immune response was also detectable after challenge with low pathogenicity AI (LPAI) H9N2 virus suggesting that H5/H7/H9/N1/gag VLPs represent a promising approach for the development of broadly protective AI vaccine. - Highlights: •VLPs were prepared that co-localized H5, H7 and H9 subtypes in a VLP envelope. •VLPs were characterized including electron microscopy, HA assay and NA enzyme activity. •Experimental VLP vaccine was evaluated in an avian influenza challenge model. •VLPs induced immune responses against heterologous H5, H7 and H9 virus challenges.« less

  13. Characteristics of atopic children with pandemic H1N1 influenza viral infection: pandemic H1N1 influenza reveals 'occult' asthma of childhood.

    PubMed

    Hasegawa, Shunji; Hirano, Reiji; Hashimoto, Kunio; Haneda, Yasuhiro; Shirabe, Komei; Ichiyama, Takashi

    2011-02-01

    The number of human cases of pandemic H1N1 influenza viral infection has increased in Japan since April 2009, as it has worldwide. This virus is widespread in the Yamaguchi prefecture in western Japan, where most infected children exhibited respiratory symptoms. Bronchial asthma is thought to be one of the risk factors that exacerbate respiratory symptoms of pandemic H1N1-infected patients, but the pathogenesis remains unclear. We retrospectively investigated the records of 33 children with pandemic H1N1 influenza viral infection who were admitted to our hospital between October and December 2009 and analyzed their clinical features. The percentage of children with asthma attack, with or without abnormal findings on chest radiographs (pneumonia, atelectasis, etc.), caused by pandemic H1N1 influenza infection was significantly higher than that of children with asthma attack and 2008-2009 seasonal influenza infection. Of the 33 children in our study, 22 (66.7%) experienced an asthma attack. Among these children, 20 (90.9%) did not receive long-term management for bronchial asthma, whereas 7 (31.8%) were not diagnosed with bronchial asthma and had experienced their first asthma attack. However, the severity of the attack did not correlate with the severity of the pulmonary complications of pandemic H1N1 influenza viral infection. The pandemic H1N1 influenza virus greatly increases the risk of lower respiratory tract complications such as asthma attack, pneumonia, and atelectasis, when compared to the seasonal influenza virus. Furthermore, our results suggest that pandemic H1N1 influenza viral infection can easily induce a severe asthma attack, pneumonia, and atelectasis in atopic children without any history of either an asthma attack or asthma treatment. © 2011 John Wiley & Sons A/S.

  14. Outbreak of Influenza A(H1N1) in a Kidney Transplant Unit-Protective Effect of Vaccination.

    PubMed

    Helanterä, I; Anttila, V-J; Lappalainen, M; Lempinen, M; Isoniemi, H

    2015-09-01

    Seasonal influenza vaccination is recommended for patients with end-stage renal disease (ESRD), despite suggested inferior efficacy among these patients. We characterize an outbreak of influenza A(H1N1) in a kidney transplant unit. Altogether 23 patients were treated on the ward for postoperative care after kidney transplantation during the outbreak. After the first positive case, all patients were tested with nasopharyngeal swab tests and 7 patients were diagnosed with influenza A(H1N1). Altogether 17/23 patients had received adequate seasonal influenza vaccination, of whom 2/17 tested positive for influenza (one asymptomatic, one with mild cough). Five of six unvaccinated patients were diagnosed with influenza A(H1N1); 3/5 suffered from severe respiratory failure and were treated with ventilator support in the ICU, but all died due to acute respiratory distress syndrome, whereas 2/5 suffered from mild viral pneumonitis and recovered fully. The risk of influenza infection and mortality was significantly increased in unvaccinated patients (odds ratio 37.5 [95% CI 2.7-507.5, p = 0.01] and 6.7 [95% CI 2.3-18.9, p = 0.003], respectively). Influenza A(H1N1) had a high mortality in our cohort of nonvaccinated immunosuppressed patients early after kidney transplantation. None of the vaccinated patients developed serious disease, supporting the role of vaccination also for ESRD patients. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.

  15. The rapid identification of human influenza neuraminidase N1 and N2 subtypes by ELISA.

    PubMed

    Barr, I G; McCaig, M; Durrant, C; Shaw, R

    2006-11-10

    An ELISA assay was developed to allow the rapid and accurate identification of human influenza A N1 and N2 neuraminidases. Initial testing using a fetuin pre-coating of wells correctly identified 81.7% of the neuraminidase type from a series of human A(H1N1), A(H1N2) and A(H3N2) viruses. This result could be improved to detect the neuraminidase subtype of almost all human influenza A viruses from a large panel of viruses isolated from 2000 to 2005, if the fetuin pre-coating was removed and the viruses were coated directly onto wells. This method is simple, rapid and can be used to screen large numbers of currently circulating human influenza A viruses for their neurraminidase subtype and is a good alternative to RT-PCR.

  16. Genetics, Receptor Binding Property, and Transmissibility in Mammals of Naturally Isolated H9N2 Avian Influenza Viruses

    PubMed Central

    Deng, Guohua; Zhang, Qianyi; Wang, Jinliang; He, Xijun; Wang, Kaicheng; Chen, Jiming; Li, Yuanyuan; Fan, Jun; Kong, Huiui; Gu, Chunyang; Guan, Yuantao; Suzuki, Yasuo; Kawaoka, Yoshihiro; Liu, Liling; Jiang, Yongping; Tian, Guobin; Li, Yanbing; Bu, Zhigao; Chen, Hualan

    2014-01-01

    H9N2 subtype influenza viruses have been detected in different species of wild birds and domestic poultry in many countries for several decades. Because these viruses are of low pathogenicity in poultry, their eradication is not a priority for animal disease control in many countries, which has allowed them to continue to evolve and spread. Here, we characterized the genetic variation, receptor-binding specificity, replication capability, and transmission in mammals of a series of H9N2 influenza viruses that were detected in live poultry markets in southern China between 2009 and 2013. Thirty-five viruses represented 17 genotypes on the basis of genomic diversity, and one specific “internal-gene-combination” predominated among the H9N2 viruses. This gene combination was also present in the H7N9 and H10N8 viruses that have infected humans in China. All of the 35 viruses preferentially bound to the human-like receptor, although two also retained the ability to bind to the avian-like receptor. Six of nine viruses tested were transmissible in ferrets by respiratory droplet; two were highly transmissible. Some H9N2 viruses readily acquired the 627K or 701N mutation in their PB2 gene upon infection of ferrets, further enhancing their virulence and transmission in mammals. Our study indicates that the widespread dissemination of H9N2 viruses poses a threat to human health not only because of the potential of these viruses to cause an influenza pandemic, but also because they can function as “vehicles” to deliver different subtypes of influenza viruses from avian species to humans. PMID:25411973

  17. The effects of a deleterious mutation load on patterns of influenza A/H3N2's antigenic evolution in humans

    PubMed Central

    Koelle, Katia; Rasmussen, David A

    2015-01-01

    Recent phylogenetic analyses indicate that RNA virus populations carry a significant deleterious mutation load. This mutation load has the potential to shape patterns of adaptive evolution via genetic linkage to beneficial mutations. Here, we examine the effect of deleterious mutations on patterns of influenza A subtype H3N2's antigenic evolution in humans. By first analyzing simple models of influenza that incorporate a mutation load, we show that deleterious mutations, as expected, act to slow the virus's rate of antigenic evolution, while making it more punctuated in nature. These models further predict three distinct molecular pathways by which antigenic cluster transitions occur, and we find phylogenetic patterns consistent with each of these pathways in influenza virus sequences. Simulations of a more complex phylodynamic model further indicate that antigenic mutations act in concert with deleterious mutations to reproduce influenza's spindly hemagglutinin phylogeny, co-circulation of antigenic variants, and high annual attack rates. DOI: http://dx.doi.org/10.7554/eLife.07361.001 PMID:26371556

  18. The hemagglutinin structure of an avian H1N1 influenza A virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Tianwei; Wang, Gengyan; Li, Anzhang

    2009-09-15

    The interaction between hemagglutinin (HA) and receptors is a kernel in the study of evolution and host adaptation of H1N1 influenza A viruses. The notion that the avian HA is associated with preferential specificity for receptors with Sia{alpha}2,3Gal glycosidic linkage over those with Sia{alpha}2,6Gal linkage is not all consistent with the available data on H1N1 viruses. By x-ray crystallography, the HA structure of an avian H1N1 influenza A virus, as well as its complexes with the receptor analogs, was determined. The structures revealed no preferential binding of avian receptor analogs over that of the human analog, suggesting that the HA/receptormore » binding might not be as stringent as is commonly believed in determining the host receptor preference for some subtypes of influenza viruses, such as the H1N1 viruses. The structure also showed difference in glycosylation despite the preservation of related sequences, which may partly contribute to the difference between structures of human and avian origin.« less

  19. H1N1 influenza (Swine flu)

    MedlinePlus

    Swine flu; H1N1 type A influenza ... The H1N1 virus is now considered a regular flu virus. It is one of the three viruses included in the regular (seasonal) flu vaccine . You cannot get H1N1 flu virus from ...

  20. Mesenchymal stromal cell treatment prevents H9N2 avian influenza virus-induced acute lung injury in mice.

    PubMed

    Li, Yan; Xu, Jun; Shi, Weiqing; Chen, Cheng; Shao, Yan; Zhu, Limei; Lu, Wei; Han, XiaoDong

    2016-10-28

    The avian influenza virus (AIV) can cross species barriers and expand its host range from birds to mammals, even humans. Avian influenza is characterized by pronounced activation of the proinflammatory cytokine cascade, which perpetuates the inflammatory response, leading to persistent systemic inflammatory response syndrome and pulmonary infection in animals and humans. There are currently no specific treatment strategies for avian influenza. We hypothesized that mesenchymal stromal cells (MSCs) would have beneficial effects in the treatment of H9N2 AIV-induced acute lung injury in mice. Six- to 8-week-old C57BL/6 mice were infected intranasally with 1 × 10 4 MID 50 of A/HONG KONG/2108/2003 [H9N2 (HK)] H9N2 virus to induce acute lung injury. After 30 min, syngeneic MSCs were delivered through the caudal vein. Three days after infection, we measured the survival rate, lung weight, arterial blood gas, and cytokines in both bronchoalveolar lavage fluid (BALF) and serum, and assessed pathological changes to the lungs. MSC administration significantly palliated H9N2 AIV-induced pulmonary inflammation by reducing chemokines and proinflammatory cytokines levels, as well as reducing inflammatory cell recruit into the lungs. Thus, H9N2 AIV-induced lung injury was markedly alleviated in mice treated with MSCs. Lung histopathology and arterial blood gas analysis were improved in mice with H9N2 AIV-induced lung injury following MSC treatment. MSC treatment significantly reduces H9N2 AIV-induced acute lung injury in mice and is associated with reduced pulmonary inflammation. These results indicate a potential role for MSC therapy in the treatment of clinical avian influenza.

  1. H5N1 influenza viruses: outbreaks and biological properties

    PubMed Central

    Neumann, Gabriele; Chen, Hualan; Gao, George F; Shu, Yuelong; Kawaoka, Yoshihiro

    2010-01-01

    All known subtypes of influenza A viruses are maintained in wild waterfowl, the natural reservoir of these viruses. Influenza A viruses are isolated from a variety of animal species with varying morbidity and mortality rates. More importantly, influenza A viruses cause respiratory disease in humans with potentially fatal outcome. Local or global outbreaks in humans are typically characterized by excess hospitalizations and deaths. In 1997, highly pathogenic avian influenza viruses of the H5N1 subtype emerged in Hong Kong that transmitted to humans, resulting in the first documented cases of human death by avian influenza virus infection. A new outbreak started in July 2003 in poultry in Vietnam, Indonesia, and Thailand, and highly pathogenic avian H5N1 influenza viruses have since spread throughout Asia and into Europe and Africa. These viruses continue to infect humans with a high mortality rate and cause worldwide concern of a looming pandemic. Moreover, H5N1 virus outbreaks have had devastating effects on the poultry industries throughout Asia. Since H5N1 virus outbreaks appear to originate from Southern China, we here examine H5N1 influenza viruses in China, with an emphasis on their biological properties. PMID:19884910

  2. Influenza virus-like particles harboring H9N2 HA and NA proteins induce a protective immune response in chicken.

    PubMed

    Li, Xin; Ju, Houbin; Liu, Jian; Yang, Dequan; Qi, Xinyong; Yang, Xianchao; Qiu, Yafeng; Zheng, Jie; Ge, Feifei; Zhou, Jinping

    2017-11-01

    Avian influenza viruses represent a growing threat of an influenza pandemic. The co-circulation of multiple H9N2 genotypes over the past decade has been replaced by one predominant genotype-G57 genotype, which displays a changed antigenicity and improved adaptability in chickens. Effective H9N2 subtype avian influenza virus vaccines for poultry are urgently needed. In this study, we constructed H9N2 subtype avian influenza virus-like particle (VLP) and evaluated its protective efficacy in specific pathogen-free (SPF) chickens to lay the foundation for developing an effective vaccine against influenza viruses. Expression of influenza proteins in VLPs was confirmed by Western blot, hemagglutination inhibition (HI), and neuraminidase inhibition (NI). The morphology was observed by electron microscopy. A group of 15 three-week-old SPF chickens was divided into three subgroups of five chickens immunized with VLP, commercial vaccine, and PBS. Challenge study was performed to evaluate efficacy of VLP vaccine. The hemagglutinin (HA) and neuraminidase (NA) proteins were co-expressed in the infected cells, self-assembled, and were released into the culture medium in the form of VLPs of diameter ~80 nm. The VLPs exhibited some functional characteristics of a full influenza virus, including hemagglutination and neuraminidase activity. In SPF chickens, the VLPs elicited serum antibodies specific for H9N2 and induced a higher HI titer (as detected by a homologous antigen) than did a commercial H9N2 vaccine (A/chicken/Shanghai/F/1998). Viral shedding from VLP vaccine subgroup was reduced compared with commercial vaccine subgroup and control subgroup. © 2017 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  3. Genetic Diversity of Highly Pathogenic Avian Influenza A(H5N8/H5N5) Viruses in Italy, 2016-17.

    PubMed

    Fusaro, Alice; Monne, Isabella; Mulatti, Paolo; Zecchin, Bianca; Bonfanti, Lebana; Ormelli, Silvia; Milani, Adelaide; Cecchettin, Krizia; Lemey, Philippe; Moreno, Ana; Massi, Paola; Dorotea, Tiziano; Marangon, Stefano; Terregino, Calogero

    2017-09-01

    In winter 2016-17, highly pathogenic avian influenza A(H5N8) and A(H5N5) viruses of clade 2.3.4.4 were identified in wild and domestic birds in Italy. We report the occurrence of multiple introductions and describe the identification in Europe of 2 novel genotypes, generated through multiple reassortment events.

  4. The emergence of influenza A H7N9 in human beings 16 years after influenza A H5N1: a tale of two cities.

    PubMed

    To, Kelvin K W; Chan, Jasper F W; Chen, Honglin; Li, Lanjuan; Yuen, Kwok-Yung

    2013-09-01

    Infection with either influenza A H5N1 virus in 1997 or avian influenza A H7N9 virus in 2013 caused severe pneumonia that did not respond to typical or atypical antimicrobial treatment, and resulted in high mortality. Both viruses are reassortants with internal genes derived from avian influenza A H9N2 viruses that circulate in Asian poultry. Both viruses have genetic markers of mammalian adaptation in their haemagglutinin and polymerase PB2 subunits, which enhanced binding to human-type receptors and improved replication in mammals, respectively. Hong Kong (affected by H5N1 in 1997) and Shanghai (affected by H7N9 in 2013) are two rapidly flourishing cosmopolitan megacities that were increasing in human population and poultry consumption before the outbreaks. Both cities are located along the avian migratory route at the Pearl River delta and Yangtze River delta. Whether the widespread use of the H5N1 vaccine in east Asia-with suboptimum biosecurity measures in live poultry markets and farms-predisposed to the emergence of H7N9 or other virus subtypes needs further investigation. Why H7N9 seems to be more readily transmitted from poultry to people than H5N1 is still unclear. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Comparative Characteristics of the 2009 Pandemic Influenza A (H1N1) Virus and 2010-2011 Seasonal Influenza in Pediatric Patients.

    PubMed

    Nasrallah, Najwan; Shachor-Meyouhas, Yael; Kra-Oz, Zipi; Mashiach, Tania; Szwarcwort-Cohen, Moran; Shafran, Eynat; Kassis, Imad

    2016-12-01

    In March 2009 the pandemic influenza A (H1N1) strain was identified. The disease initially appeared to be accompanied by complications and high mortality rates. It became an endemic virus during the influenza season in our region, along with the classical seasonal H3N2. To identify the burden of pandemic influenza, its effect in pediatric patients, and complicated hospitalizations, compared to seasonal influenza years after the pandemic. A retrospective observational study was conducted at a tertiary hospital. Data were collected from the medical records of all children who were hospitalized from April 2009 to 2011 with laboratory-confirmed influenza. Of 191 patients with influenza, 100 had the 2009 pandemic influenza, 62 had seasonal influenza, and 29 had H1N1 in 2010-2011. Patients with the 2009 H1N1 were characterized by older age, more co-morbidity conditions and more symptoms including fever, cough and rhinitis on admission. No significant differences in outcomes between the groups were recorded. Of patients hospitalized with pandemic influenza in 2009, 28% had complicated hospitalizations, compared with 17.7% of patients hospitalized with seasonal influenza in 2010-11. Children with pandemic influenza received more oseltamivir (Tamiflu®) (94% vs. 19.4%, P < 0.001) and more antibiotics than the other groups. The type of influenza had no effect on outcome. There were no significant differences between groups in the percentages of in-hospital mortality, admission to intensive care units, prolonged hospitalization (> 9 days), or the development of complications during hospitalization.

  6. Novel reassortant H10N7 avian influenza viruses isolated from chickens in Eastern China.

    PubMed

    Wu, Haibo; Lu, Rufeng; Wu, Xiaoxin; Peng, Xiaorong; Xu, Lihua; Cheng, Linfang; Lu, Xiangyun; Jin, Changzhong; Xie, Tiansheng; Yao, Hangping; Wu, Nanping

    2015-04-01

    Since 2004, the H10N7 subtype avian influenza virus (AIV) has caused sporadic human infections with variable clinical symptoms world-wide. However, there is limited information pertaining to the molecular characteristics of H10N7 AIVs in China. To more fully characterize the genetic relationships between three novel H10N7 strains isolated from chickens in Eastern China and the strains isolated from birds throughout Asia, and to determine the pathogenicity of the H10N7 isolates in vivo. All eight gene segments from the Chinese H10N7 strains were sequenced and compared with AIV strains available in GenBank. The virulence of the three isolates was determined in chickens and mice. Three H10N7 subtype avian influenza viruses were isolated from chickens in live poultry markets in Eastern China in 2014: (1) A/chicken/Zhejiang/2C66/2014(H10N7) (ZJ-2C66), (2) A/chicken/Zhejiang/2CP2/2014(H10N7) (ZJ-2CP2), and (3) A/chicken/Zhejiang/2CP8/2014(H10N7) (ZJ-2CP8). Phylogenetic analysis indicated that the viruses contained genetic material from H10, H2, H7, and H3 AIV strains that were circulating at the same time. The reassortant H10N7 viruses were found to be minimally pathogenic in chickens and moderately pathogenic in mice. The viruses were able to replicate in mice without prior adaptation. These results suggest that H10N7 surveillance in poultry should be used as an early warning system for avian influenza outbreaks. The novel strains identified here may post a threat to human health in the future if they continue to circulate. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Molecular characterization of H9N2 influenza virus isolated from mink and its pathogenesis in mink.

    PubMed

    Peng, Li; Chen, Chen; Kai-yi, Han; Feng-xia, Zhang; Yan-li, Zhu; Zong-shuai, Ling; Xing-xiao, Zhang; Shi-jin, Jiang; Zhi-jing, Xie

    2015-03-23

    In mid-August 2013, two H9N2 influenza viruses, named A/mink/Shandong/F6/2013 (Mk/SD/F6/13) and A/mink/Shandong/F10/2013 (Mk/SD/F10/13), were isolated from lung samples of 2 of 45 farmed mink exhibiting respiratory signs in mideastern Shandong province, China. The seroprevalence of antibodies to H9N2 in mink was 20% (53/265). Based on sequence analysis, the eight nucleotide sequences showed 99.7-100% identity between Mk/SD/F6/13 and Mk/SD/F10/13. The HA, NP and NS genes of Mk/SD/F6/13 and Mk/SD/F10/13 were close to A/chicken/Zhejiang/329/2011 (H9N2), the NA and PB1 genes to A/duck/Hunan/S4111/2011 (H9N2), the PA and M genes to A/chicken/Shanghai/C1/2012 (H9N2). However, the PB2 genes had a close relationship with A/Turkey/California/189/66 (H9N2). Based on Sialic acid (SA) receptor detection, a range tissues of the mink demonstrated staining for MAA and/or SNA, and mink could serve as an intermediate host for influenza viruses with pandemic potential for the other animals. Experimental infection of mink demonstrated that mink could be infected by H9N2 influenza viruses and presented mild clinical signs, virus shedding and seroconversion, but no animals died of the disease. It implied that mammalian host-adapted avian H9N2 strains infected mink. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. The T160A hemagglutinin substitution affects not only receptor binding property but also transmissibility of H5N1 clade 2.3.4 avian influenza virus in guinea pigs.

    PubMed

    Gu, Min; Li, Qunhui; Gao, Ruyi; He, Dongchang; Xu, Yunpeng; Xu, Haixu; Xu, Lijun; Wang, Xiaoquan; Hu, Jiao; Liu, Xiaowen; Hu, Shunlin; Peng, Daxin; Jiao, Xinan; Liu, Xiufan

    2017-02-06

    We generated and characterized site-directed HA mutants on the genetic backbone of H5N1 clade 2.3.4 virus preferentially binding to α-2,3 receptors in order to identify the key determinants in hemagglutinin rendering the dual affinity to both α-2,3 (avian-type) and α-2,6 (human-type) linked sialic acid receptors of the current clade 2.3.4.4 H5NX subtype avian influenza reassortants. The results show that the T160A substitution resulted in the loss of a glycosylation site at 158N and led not only to enhanced binding specificity for human-type receptors but also transmissibility among guinea pigs, which could be considered as an important molecular marker for assessing pandemic potential of H5 subtype avian influenza isolates.

  9. Pandemic vaccination strategies and influenza severe outcomes during the influenza A(H1N1)pdm09 pandemic and the post-pandemic influenza season: the Nordic experience.

    PubMed

    Gil Cuesta, Julita; Aavitsland, Preben; Englund, Hélène; Gudlaugsson, Ólafur; Hauge, Siri Helene; Lyytikäinen, Outi; Sigmundsdóttir, Guðrún; Tegnell, Anders; Virtanen, Mikko; Krause, Tyra Grove

    2016-04-21

    During the 2009/10 influenza A(H1N1)pdm09 pandemic, the five Nordic countries adopted different approaches to pandemic vaccination. We compared pandemic vaccination strategies and severe influenza outcomes, in seasons 2009/10 and 2010/11 in these countries with similar influenza surveillance systems. We calculated the cumulative pandemic vaccination coverage in 2009/10 and cumulative incidence rates of laboratory confirmed A(H1N1)pdm09 infections, intensive care unit (ICU) admissions and deaths in 2009/10 and 2010/11. We estimated incidence risk ratios (IRR) in a Poisson regression model to compare those indicators between Denmark and the other countries. The vaccination coverage was lower in Denmark (6.1%) compared with Finland (48.2%), Iceland (44.1%), Norway (41.3%) and Sweden (60.0%). In 2009/10 Denmark had a similar cumulative incidence of A(H1N1)pdm09 ICU admissions and deaths compared with the other countries. In 2010/11 Denmark had a significantly higher cumulative incidence of A(H1N1)pdm09 ICU admissions (IRR: 2.4; 95% confidence interval (CI): 1.9-3.0) and deaths (IRR: 8.3; 95% CI: 5.1-13.5). Compared with Denmark, the other countries had higher pandemic vaccination coverage and experienced less A(H1N1)pdm09-related severe outcomes in 2010/11. Pandemic vaccination may have had an impact on severe influenza outcomes in the post-pandemic season. Surveillance of severe outcomes may be used to compare the impact of influenza between seasons and support different vaccination strategies.

  10. Pathogenicity and transmission of H5 highly pathogenic avian influenza clade 2.3.4.4 viruses (H5N8 and H5N2) in domestic waterfowl (Pekin ducks and Chinese geese)

    USDA-ARS?s Scientific Manuscript database

    Domestic ducks and geese are common backyard poultry in many countries, frequently in contact with wild waterfowl, which are natural reservoirs of avian influenza viruses and have played a key role in the spread of Asian-lineage H5N1 highly pathogenic avian influenza (HPAI). In late 2014, a reassor...

  11. H1N1 seasonal influenza virus evolutionary rate changed over time.

    PubMed

    Suptawiwat, Ornpreya; Kongchanagul, Alita; Boonarkart, Chompunuch; Auewarakul, Prasert

    2018-05-02

    It was previously shown that the seasonal H1N1 influenza virus antigenic drift occurred at a slower rate than the seasonal H3N2 virus during the first decade of the 21th century. It was hypothesized that the slower antigenic evolution led to a decrease in average ages of infection, which in turn resulted in lower level of global viral circulation. It is unclear what caused the difference between the two viruses, but a plausible explanation may be related to the fact that the H1N1 virus had been in human population for much longer than the H3N2 virus. This would suggest that H1N1 antigenic drift in an earlier period may have been different from a more recent period. To test this hypothesis, we analyzed seasonal H1N1 influenza sequences during various time periods. In comparison to more recent H1N1 virus, the older H1N1 virus during the first half of the 20th century showed evidences of higher nonsynnonymous/synonymous ration (dN/dS) in its hemagglutinin (HA) gene. We compared amino acid sequence changes in the HA epitopes for each outbreak season and found that there were less changes in later years. Amino acid sequence diversity in the epitopes as measured by sequence entropy became smaller for each passing decade. These suggest that there might be some limit to the antigenic drift. The longer an influenza virus has drifted in human population, the less flexibility it may become. With less flexibility to adapt and escape the host immunity, the virus may have to rely more on younger naïve population. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Phylogenetic analysis of H9N2 avian influenza viruses in Afghanistan (2016-2017).

    PubMed

    Hosseini, Hossein; Ghalyanchilangeroudi, Arash; Fallah Mehrabadi, Mohammad Hossein; Sediqian, Mohammad Saeed; Shayeganmehr, Arzhang; Ghafouri, Seyed Ali; Maghsoudloo, Hossein; Abdollahi, Hamed; Farahani, Reza Kh

    2017-10-01

    Avian influenza A virus (AIV) subtype H9N2 is the most prevalent subtype found in terrestrial poultry throughout Eurasia and has been isolated from poultry outbreaks worldwide. Tracheal tissue specimens from 100 commercial broiler flocks in Afghanistan were collected between 2016 and 2017. After real-time RT-PCR, AI-positive samples were further characterized. A part of the HA gene was amplified using RT-PCR and sequenced. The results of real-time RT-PCR showed that 40 percent of the flocks were AI positive. Phylogenetic studies showed that these H9N2 AIVs grouped within the Eurasian-lineage G1 AIVs and had a correlation with H9N2 AIV circulating in the poultry population of the neighboring countries over the past decade. Analysis of the amino acid sequence of HA revealed that the detected H9N2 viruses possessed molecular profiles suggestive of low pathogenicity and specificity for the avian-like SAα2,3 receptor, demonstrating their specificity for and adaptation to domestic poultry. The results of the current study provide great insights into H9N2 viruses circulating in Afghanistan's poultry industry and demonstrate the necessity of planning an applied policy aimed at controlling and managing H9N2 infection in Afghan poultry.

  13. Synergistic effect of PB2 283M and 526R contributes to enhanced virulence of H5N8 influenza viruses in mice.

    PubMed

    Wang, Xiao; Chen, Sujuan; Wang, Dandan; Zha, Xixin; Zheng, Siwen; Qin, Tao; Ma, Wenjun; Peng, Daxin; Liu, Xiufan

    2017-10-25

    Highly pathogenic avian influenza (HPAI) H5N8 virus has caused considerable economic losses to poultry industry and poses a great threat to public health. Our previous study revealed two genetically similar HPAI H5N8 viruses displaying completely different virulence in mice. However, the molecular basis for viral pathogenicity to mammals remains unknown. Herein, we generated a series of reassortants between the two viruses and evaluated their virulence in mice. We demonstrated that 283M in PB2 is a new mammalian virulence marker for H5 viruses and that synergistic effect of amino acid residues 283M and 526R in PB2 is responsible for high virulence of the HPAI H5N8 virus. Analysis of available PB2 sequences showed that PB2 283M is highly conserved among influenza A viruses, while PB2 526R presents in most of human H3N2 and H5N1 isolates. Further study confirmed that the residues 283M and 526R had similar impacts on an HPAI H5N1 virus, suggesting that influenza viruses with both residues may replicate well in mammalian hosts. Together, these results present new insights for synergistic effect of 283M and 526R in PB2 of H5 HPAI virus on virulence to mammalian host, furthering our understanding of the pathogenesis of influenza A virus.

  14. A novel monoclonal antibody effective against lethal challenge with swine-lineage and 2009 pandemic H1N1 influenza viruses in mice

    USDA-ARS?s Scientific Manuscript database

    The HA protein of the 2009 pandemic H1N1viruses (14 H1N1pdm) is antigenically closely related to the HA of classical North American swine H1N1 influenza viruses (cH1N1). Since 1998, through reassortment and incorporation of HA genes from human H3N2 and H1N1 influenza viruses, swine influenza strains...

  15. H9N2 low pathogenic avian influenza in Pakistan (2012-2015).

    PubMed

    Lee, Dong-Hun; Swayne, David E; Sharma, Poonam; Rehmani, Shafqat Fatima; Wajid, Abdul; Suarez, David L; Afonso, Claudio

    2016-01-01

    Significant economic losses from deaths and decreased egg production have resulted from H9N2 low pathogenic avian influenza virus (LPAIV) infections in poultry across North Africa, the Middle East and Asia. The H9N2 LPAIVs have been endemic in Pakistani poultry since 1996, but no new viruses have been reported since 2010. Because novel genotypes of Pakistani H9N2 contain mammalian host-specific markers, recent surveillance is essential to better understand any continuing public health risk. Here the authors report on four new H9N2 LPAIVs, three from 2015 and one from 2012. All of the viruses tested in this study belonged to Middle East B genetic group of G1 lineage and had PAKSSR/G motif at the haemagglutinin cleavage site. The mammalian host-specific markers at position 226 in the haemagglutinin receptor-binding site and internal genes suggest that Pakistan H9N2 viruses are still potentially infectious for mammals. Continued active surveillance in poultry and mammals is needed to monitor the spread and understand the potential for zoonotic infection by these H9N2 LPAIVs.

  16. Genetics and biological property analysis of Korea lineage of influenza A H9N2 viruses.

    PubMed

    Kang, Min; Jang, Hyung-Kwan

    2017-05-01

    H9N2 influenza viruses have been detected from wild and domestic avian species including chickens and ducks worldwide. Few studies have compared the biological properties of different H9N2 lineages or determined whether certain lineages might pose a higher risk to mammals, especially H9N2 viruses of Korean lineage. The objective of this study was to characterize the genetic and biological properties of 22 Korean H9N2 viruses and assess their potential risks to mammals. Their complete genomes were analyzed. Some Korean H9N2 viruses were found to carry mammalian host-specific mutations. Based on genomic diversities, these H9N2 viruses were divided into 12 genotypes. All 22 showed preferential binding to human-like receptor. Two of eight H9N2 viruses were highly lethal to mice, causing 90-100% mortality without prior adaptation and severe respiratory syndromes associated with diffuse lung injury, severe pneumonia, and alveolar damage. These findings suggest that recent Korean H9N2 viruses might have established a stable sublineage with enhanced pathogenicity to mice. Various H9N2 strains pathogenic to mice were endemic in wild bird, poultry farm, and live bird markets, suggesting that Korean H9N2 viruses could evolve to become a threat to humans. The findings emphasize the necessity of careful, continuous, and thorough surveillance paired with risk-assessment for circulating H9N2 influenza viruses. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Influenza Viral Vectors Expressing Two Kinds of HA Proteins as Bivalent Vaccine Against Highly Pathogenic Avian Influenza Viruses of Clade 2.3.4.4 H5 and H7N9

    PubMed Central

    Li, Jinping; Hou, Guangyu; Wang, Yan; Wang, Suchun; Peng, Cheng; Yu, Xiaohui; Jiang, Wenming

    2018-01-01

    The H5 and H7N9 subtypes of highly pathogenic avian influenza viruses (HPAIVs) in China pose a serious challenge to public health and the poultry industry. In this study, a replication competent recombinant influenza A virus of the Í5N1 subtype expressing the H7 HA1 protein from a tri-cistronic NS segment was constructed. A heterologous dimerization domain was used to combine with the truncated NS1 protein of 73 amino acids to increase protein stability. H7 HA1, nuclear export protein coding region, and the truncated NS1 were fused in-frame into a single open reading frame via 2A self-cleaving peptides. The resulting PR8-H5-NS1(73)H7 stably expressed the H5 HA and H7 HA1 proteins, and exhibited similar growth kinetics as the parental PR8-H5 virus in vitro. PR8-H5-NS1(73)H7 induced specific hemagglutination inhibition (HI) antibody against H5, which was comparable to that of the combination vaccine of PR8-H5 and PR8-H7. The HI antibody titers against H7 virus were significantly lower than that by the combination vaccine. PR8-H5-NS1(73)H7 completely protected chickens from challenge with both H5 and H7 HPAIVs. These results suggest that PR8-H5-NS1(73)H7 is highly immunogenic and efficacious against both H5 and H7N9 HPAIVs in chickens. Highlights: - PR8-H5-NS1(73)H7 simultaneously expressed two HA proteins of different avian influenza virus subtypes. - PR8-H5-NS1(73)H7 was highly immunogenic in chickens. - PR8-H5-NS1(73)H7 provided complete protection against challenge with both H5 and H7N9 HPAIVs. PMID:29670587

  18. Virus-like particles displaying H5, H7, H9 hemagglutinins and N1 neuraminidase elicit protective immunity to heterologous avian influenza viruses in chickens.

    PubMed

    Pushko, Peter; Tretyakova, Irina; Hidajat, Rachmat; Zsak, Aniko; Chrzastek, Klaudia; Tumpey, Terrence M; Kapczynski, Darrell R

    2017-01-15

    Avian influenza (AI) viruses circulating in wild birds pose a serious threat to public health. Human and veterinary vaccines against AI subtypes are needed. Here we prepared triple-subtype VLPs that co-localized H5, H7 and H9 antigens derived from H5N1, H7N3 and H9N2 viruses. VLPs also contained influenza N1 neuraminidase and retroviral gag protein. The H5/H7/H9/N1/gag VLPs were prepared using baculovirus expression. Biochemical, functional and antigenic characteristics were determined including hemagglutination and neuraminidase enzyme activities. VLPs were further evaluated in a chicken AI challenge model for safety, immunogenicity and protective efficacy against heterologous AI viruses including H5N2, H7N3 and H9N2 subtypes. All vaccinated birds survived challenges with H5N2 and H7N3 highly pathogenic AI (HPAI) viruses, while all controls died. Immune response was also detectable after challenge with low pathogenicity AI (LPAI) H9N2 virus suggesting that H5/H7/H9/N1/gag VLPs represent a promising approach for the development of broadly protective AI vaccine. Copyright © 2016. Published by Elsevier Inc.

  19. Novel H5 clade 2.3.4.4 reassortant (H5N1) virus from a green-winged teal in Washington, USA.

    USGS Publications Warehouse

    Kim Torchetti, Mia; Killian, Mary-Lea; Dusek, Robert J.; Pedersen, Janice C.; Hines, Nichole; Bodenstein, Barbara L.; White, C. LeAnn; Ip, Hon S.

    2015-01-01

    Eurasian (EA)-origin H5N8 clade 2.3.4.4 avian influenza viruses were first detected in North America during December 2014. Subsequent reassortment with North American (AM) low-pathogenic wild-bird-origin avian influenza has generated at least two reassortants, including an EA/AM H5N1 from an apparently healthy wild green-winged teal, suggesting continued ongoing reassortment.

  20. In vitro and in vivo efficacy of fluorodeoxycytidine analogs against highly pathogenic avian influenza H5N1, seasonal, and pandemic H1N1 virus infections

    PubMed Central

    Kumaki, Yohichi; Day, Craig W.; Smee, Donald F.; Morrey, John D.; Barnard, Dale L.

    2011-01-01

    Various fluorodeoxyribonucleosides were evaluated for their antiviral activities against influenza virus infections in vitro and in vivo. Among the most potent inhibitors was 2'-deoxy-2'-fluorocytidine (2'-FdC). It inhibited various strains of low and highly pathogenic avian influenza H5N1 viruses, pandemic H1N1 viruses, an oseltamivir-resistant pandemic H1N1 virus, and seasonal influenza viruses (H3N2, H1N1, influenza B) in MDCK cells, with the 90% inhibitory concentrations ranging from 0.13 µM to 4.6 µM, as determined by a virus yield reduction assay. 2'-FdC was then tested for efficacy in BALB/c mice infected with a lethal dose of highly pathogenic influenza A/Vietnam/1203/2004 H5N1 virus. 2’FdC (60 mg/kg/d) administered intraperitoneally (i.p.) twice a day beginning 24 h after virus exposure significantly promoted survival (80% survival) of infected mice (p=0.0001). Equally efficacious were the treatment regimens in which mice were treated with 2'-FdC at 30 or 60 mg/kg/day (bid × 8) beginning 24 h before virus exposure. At these doses, 70–80% of the mice were protected from death due to virus infection (p=0.0005, p=0.0001; respectively). The lungs harvested from treated mice at day four of the infection displayed little surface pathology or histopathology, lung weights were lower, and the 60 mg/kg dose reduced lung virus titers, although not significantly compared to the placebo controls. All doses were well tolerated in uninfected mice. 2'-FdC could also be administered as late as 72 h post virus exposure and still significantly protect 60% mice from the lethal effects of the H5N1 virus infection (p=0.019). Other fluorodeoxyribonucleosides tested in the H5N1 mouse model, 2’-deoxy-5-fluorocytidine and 2'-deoxy-2', 2'-difluorocytidine, were very toxic at higher doses and not inhibitory at lower doses. Finally, 2'-FdC, which was active in the H5N1 mouse model, was also active in a pandemic H1N1 influenza A infection model in mice. When given at 30 mg

  1. Continual re-introduction of human pandemic H1N1 influenza A viruses into US swine, 2009-2014

    USDA-ARS?s Scientific Manuscript database

    Human-to-swine transmission of pandemic H1N1 influenza viruses (pH1N1) increased the genetic diversity of influenza A viruses in swine (swIAVs) globally and is linked to the emergence of new pandemic threats, including H3N2v variants. Through phylogenetic analysis of contemporary swIAVs in the Unit...

  2. Cross-reactivity to highly pathogenic avian influenza H5N1 viruses after vaccination with nonadjuvanted and MF59-adjuvanted influenza A/Duck/Singapore/97 (H5N3) vaccine: a potential priming strategy.

    PubMed

    Stephenson, Iain; Bugarini, Roberto; Nicholson, Karl G; Podda, Audino; Wood, John M; Zambon, Maria C; Katz, Jacqueline M

    2005-04-15

    Antigenically well-matched vaccines against highly pathogenic avian influenza H5N1 viruses are urgently required. Human serum samples after immunization with MF59 or nonadjuvanted A/duck/Singapore/97 (H5N3) vaccine were tested for antibody to 1997-2004 human H5N1 viruses. Antibody responses to 3 doses of nonadjuvanted vaccine were poor and were higher after MF59-adjuvanted vaccine, with seroconversion rates to A/HongKong/156/97, A/HongKong/213/03, A/Thailand/16/04, and A/Vietnam/1203/04 of 100% (P < .0001), 100% (P < .0001), 71% (P = .0004), and 43% (P = .0128) in 14 subjects, respectively, compared with 27%, 27%, 0%, and 0% in 11 who received nonadjuvanted vaccine. These findings have implications for the rational design of pandemic vaccines against influenza H5.

  3. Mammalian-transmissible H5N1 influenza: facts and perspective.

    PubMed

    Osterholm, Michael T; Kelley, Nicholas S

    2012-01-01

    Two recently submitted (but as yet unpublished) studies describe success in creating mutant isolates of H5N1 influenza A virus that can be transmitted via the respiratory route between ferrets; concern has been raised regarding human-to-human transmissibility of these or similar laboratory-generated influenza viruses. Furthermore, the potential release of methods used in these studies has engendered a great deal of controversy around publishing potential dual-use data and also has served as a catalyst for debates around the true case-fatality rate of H5N1 influenza and the capability of influenza vaccines and antivirals to impact any future unintentional or intentional release of H5N1 virus. In this report, we review available seroepidemiology data for H5N1 infection and discuss how case-finding strategies may influence the overall case-fatality rate reported by the WHO. We also provide information supporting the position that if an H5N1 influenza pandemic occurred, available medical countermeasures would have limited impact on the associated morbidity and mortality. Copyright © 2012 Osterholm et al.

  4. Detection of Antigenic Variants of Subtype H3 Swine Influenza A Viruses from Clinical Samples

    PubMed Central

    Martin, Brigitte E.; Li, Lei; Nolting, Jacqueline M.; Smith, David R.; Hanson, Larry A.

    2017-01-01

    ABSTRACT A large population of genetically and antigenically diverse influenza A viruses (IAVs) are circulating among the swine population, playing an important role in influenza ecology. Swine IAVs not only cause outbreaks among swine but also can be transmitted to humans, causing sporadic infections and even pandemic outbreaks. Antigenic characterizations of swine IAVs are key to understanding the natural history of these viruses in swine and to selecting strains for effective vaccines. However, influenza outbreaks generally spread rapidly among swine, and the conventional methods for antigenic characterization require virus propagation, a time-consuming process that can significantly reduce the effectiveness of vaccination programs. We developed and validated a rapid, sensitive, and robust method, the polyclonal serum-based proximity ligation assay (polyPLA), to identify antigenic variants of subtype H3N2 swine IAVs. This method utilizes oligonucleotide-conjugated polyclonal antibodies and quantifies antibody-antigen binding affinities by quantitative reverse transcription-PCR (RT-PCR). Results showed the assay can rapidly detect H3N2 IAVs directly from nasal wash or nasal swab samples collected from laboratory-challenged animals or during influenza surveillance at county fairs. In addition, polyPLA can accurately separate the viruses at two contemporary swine IAV antigenic clusters (H3N2 swine IAV-α and H3N2 swine IAV-ß) with a sensitivity of 84.9% and a specificity of 100.0%. The polyPLA can be routinely used in surveillance programs to detect antigenic variants of influenza viruses and to select vaccine strains for use in controlling and preventing disease in swine. PMID:28077698

  5. The transmissibility and control of pandemic influenza A (H1N1) virus.

    PubMed

    Yang, Yang; Sugimoto, Jonathan D; Halloran, M Elizabeth; Basta, Nicole E; Chao, Dennis L; Matrajt, Laura; Potter, Gail; Kenah, Eben; Longini, Ira M

    2009-10-30

    Pandemic influenza A (H1N1) 2009 (pandemic H1N1) is spreading throughout the planet. It has become the dominant strain in the Southern Hemisphere, where the influenza season has now ended. Here, on the basis of reported case clusters in the United States, we estimated the household secondary attack rate for pandemic H1N1 to be 27.3% [95% confidence interval (CI) from 12.2% to 50.5%]. From a school outbreak, we estimated that a typical schoolchild infects 2.4 (95% CI from 1.8 to 3.2) other children within the school. We estimated the basic reproductive number, R0, to range from 1.3 to 1.7 and the generation interval to range from 2.6 to 3.2 days. We used a simulation model to evaluate the effectiveness of vaccination strategies in the United States for fall 2009. If a vaccine were available soon enough, vaccination of children, followed by adults, reaching 70% overall coverage, in addition to high-risk and essential workforce groups, could mitigate a severe epidemic.

  6. Lack of H5N1 Avian Influenza Transmission to Hospital Employees, Hanoi, 2004

    PubMed Central

    Liem, Nguyen Thanh; Lim, Wilina

    2005-01-01

    To establish whether human-to-human transmission of influenza A H5N1 occurred in the healthcare setting in Vietnam, we conducted a cross-sectional seroprevalence survey among hospital employees exposed to 4 confirmed and 1 probable H5N1 case-patients or their clinical specimens. Eighty-three (95.4%) of 87 eligible employees completed a questionnaire and provided a serum sample, which was tested for antibodies to influenza A H5N1. Ninety-five percent reported exposure to >1 H5N1 case-patients; 59 (72.0%) reported symptoms, and 2 (2.4%) fulfilled the definition for a possible H5N1 secondary case-patient. No study participants had detectable antibodies to influenza A H5N1. The data suggest that the H5N1 viruses responsible for human cases in Vietnam in January 2004 are not readily transmitted from person to person. However, influenza viruses are genetically variable, and transmissibility is difficult to predict. Therefore, persons providing care for H5N1 patients should continue to take measures to protect themselves. PMID:15752437

  7. Determination of avian influenza A (H9N2) virions by inductively coupled plasma mass spectrometry based magnetic immunoassay with gold nanoparticles labeling

    NASA Astrophysics Data System (ADS)

    Xiao, Guangyang; Chen, Beibei; He, Man; Shi, Kaiwen; Zhang, Xing; Li, Xiaoting; Wu, Qiumei; Pang, Daiwen; Hu, Bin

    2017-12-01

    Avian influenza viruses are the pathogens of global poultry epidemics, and may even cause the human infections. Here, we proposed a novel inductively coupled plasma mass spectrometry (ICP-MS) based immunoassay with gold nanoparticles (Au NPs) labeling for the determination of H9N2 virions. Magnetic-beads modified with anti-influenza A H9N2 hemagglutinin mono-antibody (mAb-HA) were utilized for the capture of H9N2 virions in complex matrix; and Au NPs conjugated with mAb-HA were employed for the specific labeling of H9N2 virions for subsequent ICP-MS detection. With a sandwich immunoassay strategy, this method exhibited a high specificity for H9N2 among other influenza A virions such as H1N1 and H3N2. Under the optimized conditions, this method could detect as low as 0.63 ng mL- 1 H9N2 virions with the linear range of 2-400 ng mL- 1, the relative standard deviation for seven replicate detections of H9N2 virions was 7.2% (c = 10 ng mL- 1). The developed method was applied for the detection of H9N2 virions in real-world chicken dung samples, and the recovery for the spiking samples was 91.4-116.9%. This method is simple, rapid, sensitive, selective, reliable and has a good application potential for virions detection in real-world samples.

  8. Adaptation of Pandemic H1N1 Influenza Viruses in Mice▿

    PubMed Central

    Ilyushina, Natalia A.; Khalenkov, Alexey M.; Seiler, Jon P.; Forrest, Heather L.; Bovin, Nicolai V.; Marjuki, Henju; Barman, Subrata; Webster, Robert G.; Webby, Richard J.

    2010-01-01

    The molecular mechanism by which pandemic 2009 influenza A viruses were able to sufficiently adapt to humans is largely unknown. Subsequent human infections with novel H1N1 influenza viruses prompted an investigation of the molecular determinants of the host range and pathogenicity of pandemic influenza viruses in mammals. To address this problem, we assessed the genetic basis for increased virulence of A/CA/04/09 (H1N1) and A/TN/1-560/09 (H1N1) isolates, which are not lethal for mice, in a new mammalian host by promoting their mouse adaptation. The resulting mouse lung-adapted variants showed significantly enhanced growth characteristics in eggs, extended extrapulmonary tissue tropism, and pathogenicity in mice. All mouse-adapted viruses except A/TN/1-560/09-MA2 grew faster and to higher titers in cells than the original strains. We found that 10 amino acid changes in the ribonucleoprotein (RNP) complex (PB2 E158G/A, PA L295P, NP D101G, and NP H289Y) and hemagglutinin (HA) glycoprotein (K119N, G155E, S183P, R221K, and D222G) controlled enhanced mouse virulence of pandemic isolates. HA mutations acquired during adaptation affected viral receptor specificity by enhancing binding to α2,3 together with decreasing binding to α2,6 sialyl receptors. PB2 E158G/A and PA L295P amino acid substitutions were responsible for the significant enhancement of transcription and replication activity of the mouse-adapted H1N1 variants. Taken together, our findings suggest that changes optimizing receptor specificity and interaction of viral polymerase components with host cellular factors are the major mechanisms that contribute to the optimal competitive advantage of pandemic influenza viruses in mice. These modulators of virulence, therefore, may have been the driving components of early evolution, which paved the way for novel 2009 viruses in mammals. PMID:20592084

  9. Virological characterization of influenza H1N1pdm09 in Vietnam, 2010-2013.

    PubMed

    Nguyen, Hang K L; Nguyen, Phuong T K; Nguyen, Thach C; Hoang, Phuong V M; Le, Thanh T; Vuong, Cuong D; Nguyen, Anh P; Tran, Loan T T; Nguyen, Binh G; Lê, Mai Q

    2015-07-01

    Influenza A/H1N1pdm09 virus was first detected in Vietnam on May 31, 2009, and continues to circulate in Vietnam as a seasonal influenza virus. This study has monitored genotypic and phenotypic changes in this group of viruses during 2010-2013 period. We sequenced hemagglutinin (HA) and neuraminidase (NA) genes from representative influenza A/H1N1pdm09 and compared with vaccine strain A/California/07/09 and other contemporary isolates from neighboring countries. Hemagglutination inhibition (HI) and neuraminidase inhibition (NAI) assays also were performed on these isolates. Representative influenza A/H1N1pdm09 isolates (n = 61) from ILI and SARI surveillances in northern Vietnam between 2010 and 2013. The HA and NA phylogenies revealed six and seven groups, respectively. Five isolates (8·2%) had substitutions G155E and N156K in the HA, which were associated with reduced HI titers by antiserum raised against the vaccine virus A/California/07/2009. One isolate from 2011 and one isolate from 2013 had a predicted H275Y substitution in the neuraminidase molecule, which was associated with reduced susceptibility to oseltamivir in a NAI assay. We also identified a D222N change in the HA of a virus isolated from a fatal case in 2013. Significant genotypic and phenotypic changes in A/ H1N1pdm09 influenza viruses were detected by the National Influenza Surveillance System (NISS) in Vietnam between 2010 and 2013 highlighting the value of this system to Vietnam and to the region. Sustained NISS and continued virological monitoring of seasonal influenza viruses are required for vaccine policy development in Vietnam. 3. © 2015 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  10. Influenza A H3N2 subtype virus NS1 protein targets into the nucleus and binds primarily via its C-terminal NLS2/NoLS to nucleolin and fibrillarin

    PubMed Central

    2012-01-01

    Background Influenza A virus non-structural protein 1 (NS1) is a virulence factor, which is targeted into the cell cytoplasm, nucleus and nucleolus. NS1 is a multi-functional protein that inhibits host cell pre-mRNA processing and counteracts host cell antiviral responses. Previously, we have shown that the NS1 protein of the H3N2 subtype influenza viruses possesses a C-terminal nuclear localization signal (NLS) that also functions as a nucleolar localization signal (NoLS) and targets the protein into the nucleolus. Results Here, we show that the NS1 protein of the human H3N2 virus subtype interacts in vitro primarily via its C-terminal NLS2/NoLS and to a minor extent via its N-terminal NLS1 with the nucleolar proteins, nucleolin and fibrillarin. Using chimeric green fluorescence protein (GFP)-NS1 fusion constructs, we show that the nucleolar retention of the NS1 protein is determined by its C-terminal NLS2/NoLS in vivo. Confocal laser microscopy analysis shows that the NS1 protein colocalizes with nucleolin in nucleoplasm and nucleolus and with B23 and fibrillarin in the nucleolus of influenza A/Udorn/72 virus-infected A549 cells. Since some viral proteins contain NoLSs, it is likely that viruses have evolved specific nucleolar functions. Conclusion NS1 protein of the human H3N2 virus interacts primarily via the C-terminal NLS2/NoLS and to a minor extent via the N-terminal NLS1 with the main nucleolar proteins, nucleolin, B23 and fibrillarin. PMID:22909121

  11. Protection of poultry against the 2012 Mexican H7N3 highly pathogenic avian influenza virus with inactivated H7 avian influenza vaccines

    USDA-ARS?s Scientific Manuscript database

    In June of 2012, an outbreak of highly pathogenic avian influenza (HPAI) H7N3 was reported poultry in Jalisco, Mexico. Since that time the virus has spread to the surrounding States of Guanajuato and Aguascalientes and new outbreaks continue to be reported. To date more than 25 million birds have di...

  12. A Live Attenuated Influenza A(H5N1) Vaccine Induces Long-Term Immunity in the Absence of a Primary Antibody Response

    PubMed Central

    Talaat, Kawsar R.; Luke, Catherine J.; Khurana, Surender; Manischewitz, Jody; King, Lisa R.; McMahon, Bridget A.; Karron, Ruth A.; Lewis, Kristen D. C.; Qin, Jing; Follmann, Dean A.; Golding, Hana; Neuzil, Kathleen M.; Subbarao, Kanta

    2014-01-01

    Background. Highly pathogenic avian influenza A(H5N1) causes severe infections in humans. We generated 2 influenza A(H5N1) live attenuated influenza vaccines for pandemic use (pLAIVs), but they failed to elicit a primary immune response. Our objective was to determine whether the vaccines primed or established long-lasting immunity that could be detected by administration of inactivated subvirion influenza A(H5N1) vaccine (ISIV). Methods. The following groups were invited to participate in the study: persons who previously received influenza A(H5N1) pLAIV; persons who previously received an irrelevant influenza A(H7N3) pLAIV; and community members who were naive to influenza A(H5N1) and LAIV. LAIV-experienced subjects received a single 45-μg dose of influenza A(H5N1) ISIV. Influenza A(H5N1)– and LAIV-naive subjects received either 1 or 2 doses of ISIV. Results. In subjects who had previously received antigenically matched influenza A(H5N1) pLAIV followed by 1 dose of ISIV compared with those who were naive to influenza A(H5N1) and LAIV and received 2 doses of ISIV, we observed an increased frequency of antibody response (82% vs 50%, by the hemagglutination inhibition assay) and a significantly higher antibody titer (112 vs 76; P = .04). The affinity of antibody and breadth of cross-clade neutralization was also enhanced in influenza A(H5N1) pLAIV–primed subjects. Conclusions. ISIV administration unmasked long-lasting immunity in influenza A(H5N1) pLAIV recipients, with a rapid, high-titer, high-quality antibody response that was broadly cross-reactive across several influenza A(H5N1) clades. Clinical Trials Registration. NCT01109329. PMID:24604819

  13. Human Clade 2.3.4.4 A/H5N6 Influenza Virus Lacks Mammalian Adaptation Markers and Does Not Transmit via the Airborne Route between Ferrets.

    PubMed

    Herfst, Sander; Mok, Chris K P; van den Brand, Judith M A; van der Vliet, Stefan; Rosu, Miruna E; Spronken, Monique I; Yang, Zifeng; de Meulder, Dennis; Lexmond, Pascal; Bestebroer, Theo M; Peiris, J S Malik; Fouchier, Ron A M; Richard, Mathilde

    2018-01-01

    Since their emergence in 1997, A/H5N1 influenza viruses of the A/goose/Guangdong/1/96 lineage have diversified in multiple genetic and antigenic clades upon continued circulation in poultry in several countries in Eurasia and Africa. Since 2009, reassortant viruses carrying clade 2.3.4.4 hemagglutinin (HA) and internal and neuraminidase (NA) genes of influenza A viruses of different avian origin have been detected, yielding various HA-NA combinations, such as A/H5N1, A/H5N2, A/H5N3, A/H5N5, A/H5N6, and A/H5N8. Previous studies reported on the low pathogenicity and lack of airborne transmission of A/H5N2 and A/H5N8 viruses in the ferret model. However, although A/H5N6 viruses are the only clade 2.3.4.4 viruses that crossed the species barrier and infected humans, the risk they pose for human health remains poorly characterized. Here, the characterization of A/H5N6 A/Guangzhou/39715/2014 virus in vitro and in ferrets is described. This A/H5N6 virus possessed high polymerase activity, mediated by the E627K substitution in the PB2 protein, which corresponds to only one biological trait out of the three that were previously shown to confer airborne transmissibility to A/H5N1 viruses between ferrets. This might explain its lack of airborne transmission between ferrets. After intranasal inoculation, A/H5N6 virus replicated to high titers in the respiratory tracts of ferrets and was excreted for at least 6 days. Moreover, A/H5N6 virus caused severe pneumonia in ferrets upon intratracheal inoculation. Thus, A/H5N6 virus causes a more severe disease in ferrets than previously investigated clade 2.3.4.4 viruses, but our results demonstrate that the risk from airborne spread is currently low. IMPORTANCE Avian influenza A viruses are a threat to human health, as they cross the species barrier and infect humans occasionally, often with severe outcome. The antigenic and genetic diversity of A/H5 viruses from the A/goose/Guangdong/1/96 lineage is increasing, due to continued

  14. Human Clade 2.3.4.4 A/H5N6 Influenza Virus Lacks Mammalian Adaptation Markers and Does Not Transmit via the Airborne Route between Ferrets

    PubMed Central

    Mok, Chris K. P.; van den Brand, Judith M. A.; van der Vliet, Stefan; Rosu, Miruna E.; Spronken, Monique I.; Yang, Zifeng; de Meulder, Dennis; Lexmond, Pascal; Bestebroer, Theo M.; Peiris, J. S. Malik; Fouchier, Ron A. M.

    2018-01-01

    ABSTRACT Since their emergence in 1997, A/H5N1 influenza viruses of the A/goose/Guangdong/1/96 lineage have diversified in multiple genetic and antigenic clades upon continued circulation in poultry in several countries in Eurasia and Africa. Since 2009, reassortant viruses carrying clade 2.3.4.4 hemagglutinin (HA) and internal and neuraminidase (NA) genes of influenza A viruses of different avian origin have been detected, yielding various HA-NA combinations, such as A/H5N1, A/H5N2, A/H5N3, A/H5N5, A/H5N6, and A/H5N8. Previous studies reported on the low pathogenicity and lack of airborne transmission of A/H5N2 and A/H5N8 viruses in the ferret model. However, although A/H5N6 viruses are the only clade 2.3.4.4 viruses that crossed the species barrier and infected humans, the risk they pose for human health remains poorly characterized. Here, the characterization of A/H5N6 A/Guangzhou/39715/2014 virus in vitro and in ferrets is described. This A/H5N6 virus possessed high polymerase activity, mediated by the E627K substitution in the PB2 protein, which corresponds to only one biological trait out of the three that were previously shown to confer airborne transmissibility to A/H5N1 viruses between ferrets. This might explain its lack of airborne transmission between ferrets. After intranasal inoculation, A/H5N6 virus replicated to high titers in the respiratory tracts of ferrets and was excreted for at least 6 days. Moreover, A/H5N6 virus caused severe pneumonia in ferrets upon intratracheal inoculation. Thus, A/H5N6 virus causes a more severe disease in ferrets than previously investigated clade 2.3.4.4 viruses, but our results demonstrate that the risk from airborne spread is currently low. IMPORTANCE Avian influenza A viruses are a threat to human health, as they cross the species barrier and infect humans occasionally, often with severe outcome. The antigenic and genetic diversity of A/H5 viruses from the A/goose/Guangdong/1/96 lineage is increasing, due to

  15. Trivalent live attenuated intranasal influenza vaccine administered during the 2003-2004 influenza type A (H3N2) outbreak provided immediate, direct, and indirect protection in children.

    PubMed

    Piedra, Pedro A; Gaglani, Manjusha J; Kozinetz, Claudia A; Herschler, Gayla B; Fewlass, Charles; Harvey, Dianne; Zimmerman, Nadine; Glezen, W Paul

    2007-09-01

    Live attenuated influenza vaccine may protect against wild-type influenza illness shortly after vaccine administration by innate immunity. The 2003-2004 influenza A (H3N2) outbreak arrived early, and the circulating strain was antigenically distinct from the vaccine strain. The objective of this study was to determine the effectiveness of influenza vaccines for healthy school-aged children when administered during the influenza outbreak. An open-labeled, nonrandomized, community-based influenza vaccine trial was conducted in children 5 to 18 years old. Age-eligible healthy children received trivalent live attenuated influenza vaccine. Trivalent inactivated influenza vaccine was given to children with underlying health conditions. Influenza-positive illness was compared between vaccinated and nonvaccinated children. Medically attended acute respiratory illness and pneumonia and influenza rates for Scott and White Health Plan vaccinees were compared with age-eligible Scott and White Health Plan nonparticipants in the intervention communities. Herd protection was assessed by comparing age-specific medically attended acute respiratory illness rates in Scott and White Health Plan members in the intervention and comparison communities. We administered 1 dose of trivalent live attenuated influenza vaccine or trivalent inactivated influenza vaccine to 6569 and 1040 children, respectively (31.5% vaccination coverage), from October 10 to December 30, 2003. The influenza outbreak occurred from October 12 to December 20, 2003. Significant protection against influenza-positive illness (37.3%) and pneumonia and influenza events (50%) was detected in children who received trivalent live attenuated influenza vaccine but not trivalent inactivated influenza vaccine. Trivalent live attenuated influenza vaccine recipients had similar protection against influenza-positive illness within 14 days compared with >14 days (10 of 25 vs 9 of 30) after vaccination. Indirect effectiveness

  16. Yeast Surface-Displayed H5N1 Avian Influenza Vaccines

    PubMed Central

    Lei, Han; Jin, Sha; Karlsson, Erik; Schultz-Cherry, Stacey

    2016-01-01

    Highly pathogenic H5N1 avian influenza viruses pose a pandemic threat to human health. A rapid vaccine production against fast outbreak is desired. We report, herein, a paradigm-shift influenza vaccine technology by presenting H5N1 hemagglutinin (HA) to the surface of yeast. We demonstrated, for the first time, that the HA surface-presented yeast can be used as influenza vaccines to elicit both humoral and cell-mediated immunity in mice. The HI titer of antisera reached up to 128 in vaccinated mice. A high level of H5N1 HA-specific IgG1 and IgG2a antibody production was detected after boost immunization. Furthermore, we demonstrated that the yeast surface-displayed HA preserves its antigenic sites. It preferentially binds to both avian- and human-type receptors. In addition, the vaccine exhibited high cross-reactivity to both homologous and heterologous H5N1 viruses. A high level production of anti-HA antibodies was detected in the mice five months after vaccination. Finally, our animal experimental results indicated that the yeast vaccine offered complete protection of mice from lethal H5N1 virus challenge. No severe side effect of yeast vaccines was noted in animal studies. This new technology allows for rapid and large-scale production of influenza vaccines for prepandemic preparation. PMID:28078309

  17. Evaluation of Three Live Attenuated H2 Pandemic Influenza Vaccine Candidates in Mice and Ferrets

    PubMed Central

    Chen, Grace L.; Lamirande, Elaine W.; Cheng, Xing; Torres-Velez, Fernando; Orandle, Marlene; Jin, Hong; Kemble, George

    2014-01-01

    ABSTRACT H2 influenza viruses have not circulated in humans since 1968, and therefore a significant portion of the population would be susceptible to infection should H2 influenza viruses reemerge. H2 influenza viruses continue to circulate in avian reservoirs worldwide, and these reservoirs are a potential source from which these viruses could emerge. Three reassortant cold-adapted (ca) H2 pandemic influenza vaccine candidates with hemagglutinin (HA) and neuraminidase (NA) genes derived from the wild-type A/Japan/305/1957 (H2N2) (Jap/57), A/mallard/6750/1978 (H2N2) (mal/78), or A/swine/MO/4296424/2006 (H2N3) (sw/06) viruses and the internal protein gene segments from the A/Ann Arbor/6/60 ca virus were generated by plasmid-based reverse genetics (Jap/57 ca, mal/78 ca, and sw/06 ca, respectively). The vaccine candidates exhibited the in vitro phenotypes of temperature sensitivity and cold adaptation and were restricted in replication in the respiratory tract of ferrets. In mice and ferrets, the vaccines elicited neutralizing antibodies and conferred protection against homologous wild-type virus challenge. Of the three candidates, the sw/06 ca vaccine elicited cross-reactive antibodies and provided significant protection against the greatest number of heterologous viruses. These observations suggest that the sw/06 ca vaccine should be further evaluated in a clinical trial as an H2 pandemic influenza vaccine candidate. IMPORTANCE Influenza pandemics arise when novel influenza viruses are introduced into a population with little prior immunity to the new virus and often result in higher rates of illness and death than annual seasonal influenza epidemics. An influenza H2 subtype virus caused a pandemic in 1957, and H2 viruses circulated in humans till 1968. H2 influenza viruses continue to circulate in birds, and the development of an H2 influenza vaccine candidate is therefore considered a priority in preparing for future pandemics. However, we cannot predict whether a

  18. Immunization of Domestic Ducks with Live Nonpathogenic H5N3 Influenza Virus Prevents Shedding and Transmission of Highly Pathogenic H5N1 Virus to Chickens

    PubMed Central

    Gambaryan, Alexandra; Boravleva, Elizaveta; Lomakina, Natalia; Kropotkina, Ekaterina; Klenk, Hans-Dieter

    2018-01-01

    Wild ducks are known to be able to carry avian influenza viruses over long distances and infect domestic ducks, which in their turn infect domestic chickens. Therefore, prevention of virus transmission between ducks and chickens is important to control the spread of avian influenza. Here we used a low pathogenic wild aquatic bird virus A/duck/Moscow/4182/2010 (H5N3) for prevention of highly pathogenic avian influenza virus (HPAIV) transmission between ducks and chickens. We first confirmed that the ducks orally infected with H5N1 HPAIV A/chicken/Kurgan/3/2005 excreted the virus in feces. All chickens that were in contact with the infected ducks became sick, excreted the virus, and died. However, the ducks orally inoculated with 104 50% tissue culture infective doses of A/duck/Moscow/4182/2010 and challenged 14 to 90 days later with H5N1 HPAIV did not excrete the challenge virus. All contact chickens survived and did not excrete the virus. Our results suggest that low pathogenic virus of wild aquatic birds can be used for prevention of transmission of H5N1 viruses between ducks and chickens. PMID:29614716

  19. Poultry vaccination directed evolution of H9N2 low pathogenicity avian influenza viruses in Korea

    USDA-ARS?s Scientific Manuscript database

    Significant economic losses in the poultry industries have resulted from H9N2 low pathogenic avian influenza virus infections across North Africa, the Middle East and Asia. The present study investigated the evolutionary dynamics of H9N2 viruses circulating in Korea from 1996 to 2012. Our analysis o...

  20. Unusually High Mortality in Waterfowl Caused by Highly Pathogenic Avian Influenza A(H5N1) in Bangladesh

    PubMed Central

    Haider, N.; Sturm-Ramirez, K.; Khan, S. U.; Rahman, M. Z.; Sarkar, S.; Poh, M. K.; Shivaprasad, H. L.; Kalam, M. A.; Paul, S. K.; Karmakar, P. C.; Balish, A.; Chakraborty, A.; Mamun, A. A.; Mikolon, A. B.; Davis, C. T.; Rahman, M.; Donis, R. O.; Heffelfinger, J. D.; Luby, S. P.; Zeidner, N.

    2015-01-01

    Summary Mortality in ducks and geese caused by highly pathogenic avian influenza A (H5N1) infection had not been previously identified in Bangladesh. In June–July 2011, we investigated mortality in ducks, geese and chickens with suspected H5N1 infection in a north-eastern district of the country to identify the aetiologic agent and extent of the outbreak and identify possible associated human infections. We surveyed households and farms with affected poultry flocks in six villages in Netrokona district and collected cloacal and oropharyngeal swabs from sick birds and tissue samples from dead poultry. We conducted a survey in three of these villages to identify suspected human influenza-like illness cases and collected nasopharyngeal and throat swabs. We tested all swabs by real-time RT-PCR, sequenced cultured viruses, and examined tissue samples by histopathology and immunohistochemistry to detect and characterize influenza virus infection. In the six villages, among the 240 surveyed households and 11 small-scale farms, 61% (1789/2930) of chickens, 47% (4816/10 184) of ducks and 73% (358/493) of geese died within 14 days preceding the investigation. Of 70 sick poultry swabbed, 80% (56/70) had detectable RNA for influenza A/H5, including 89% (49/55) of ducks, 40% (2/5) of geese and 50% (5/10) of chickens. We isolated virus from six of 25 samples; sequence analysis of the hemagglutinin and neuraminidase gene of these six isolates indicated clade 2.3.2.1a of H5N1 virus. Histopathological changes and immunohistochemistry staining of avian influenza viral antigens were recognized in the brain, pancreas and intestines of ducks and chickens. We identified ten human cases showing signs compatible with influenza-like illness; four were positive for influenza A/H3; however, none were positive for influenza A/H5. The recently introduced H5N1 clade 2.3.2.1a virus caused unusually high mortality in ducks and geese. Heightened surveillance in poultry is warranted to guide

  1. Inference of Genotype–Phenotype Relationships in the Antigenic Evolution of Human Influenza A (H3N2) Viruses

    PubMed Central

    Steinbrück, Lars; McHardy, Alice Carolyn

    2012-01-01

    Distinguishing mutations that determine an organism's phenotype from (near-) neutral ‘hitchhikers’ is a fundamental challenge in genome research, and is relevant for numerous medical and biotechnological applications. For human influenza viruses, recognizing changes in the antigenic phenotype and a strains' capability to evade pre-existing host immunity is important for the production of efficient vaccines. We have developed a method for inferring ‘antigenic trees’ for the major viral surface protein hemagglutinin. In the antigenic tree, antigenic weights are assigned to all tree branches, which allows us to resolve the antigenic impact of the associated amino acid changes. Our technique predicted antigenic distances with comparable accuracy to antigenic cartography. Additionally, it identified both known and novel sites, and amino acid changes with antigenic impact in the evolution of influenza A (H3N2) viruses from 1968 to 2003. The technique can also be applied for inference of ‘phenotype trees’ and genotype–phenotype relationships from other types of pairwise phenotype distances. PMID:22532796

  2. Human infection with highly pathogenic H5N1 influenza virus.

    PubMed

    Gambotto, Andrea; Barratt-Boyes, Simon M; de Jong, Menno D; Neumann, Gabriele; Kawaoka, Yoshihiro

    2008-04-26

    Highly pathogenic H5N1 influenza A viruses have spread relentlessly across the globe since 2003, and they are associated with widespread death in poultry, substantial economic loss to farmers, and reported infections of more than 300 people with a mortality rate of 60%. The high pathogenicity of H5N1 influenza viruses and their capacity for transmission from birds to human beings has raised worldwide concern about an impending human influenza pandemic similar to the notorious H1N1 Spanish influenza of 1918. Since many aspects of H5N1 influenza research are rapidly evolving, we aim in this Seminar to provide an up-to-date discussion on select topics of interest to influenza clinicians and researchers. We summarise the clinical features and diagnosis of infection and present therapeutic options for H5N1 infection of people. We also discuss ideas relating to virus transmission, host restriction, and pathogenesis. Finally, we discuss vaccine development in view of the probable importance of vaccination in pandemic control.

  3. Avian Influenza A (H7N9) Virus

    MedlinePlus

    ... Variant Pandemic Other Asian Lineage Avian Influenza A (H7N9) Virus Language: English (US) Español Recommend on Facebook ... Guidance Laboratorian Guidance H7N9 Images Additional Information Asian H7N9 Outbreak Characterization Asian H7N9 virus infections in poultry ...

  4. Sensitivity of influenza rapid diagnostic tests to H5N1 and 2009 pandemic H1N1 viruses.

    PubMed

    Sakai-Tagawa, Yuko; Ozawa, Makoto; Tamura, Daisuke; Le, Mai thi Quynh; Nidom, Chairul A; Sugaya, Norio; Kawaoka, Yoshihiro

    2010-08-01

    Simple and rapid diagnosis of influenza is useful for making treatment decisions in the clinical setting. Although many influenza rapid diagnostic tests (IRDTs) are available for the detection of seasonal influenza virus infections, their sensitivity for other viruses, such as H5N1 viruses and the recently emerged swine origin pandemic (H1N1) 2009 virus, remains largely unknown. Here, we examined the sensitivity of 20 IRDTs to various influenza virus strains, including H5N1 and 2009 pandemic H1N1 viruses. Our results indicate that the detection sensitivity to swine origin H1N1 viruses varies widely among IRDTs, with some tests lacking sufficient sensitivity to detect the early stages of infection when the virus load is low.

  5. Role for migratory wild birds in the global spread of avian influenza H5N8

    USGS Publications Warehouse

    ,; Ip, Hon S.

    2016-01-01

    Avian influenza viruses affect both poultry production and public health. A subtype H5N8 (clade 2.3.4.4) virus, following an outbreak in poultry in South Korea in January 2014, rapidly spread worldwide in 2014–2015. Our analysis of H5N8 viral sequences, epidemiological investigations, waterfowl migration, and poultry trade showed that long-distance migratory birds can play a major role in the global spread of avian influenza viruses. Further, we found that the hemagglutinin of clade 2.3.4.4 virus was remarkably promiscuous, creating reassortants with multiple neuraminidase subtypes. Improving our understanding of the circumpolar circulation of avian influenza viruses in migratory waterfowl will help to provide early warning of threats from avian influenza to poultry, and potentially human, health.

  6. H7N2 feline influenza virus evaluated in a poultry model

    USDA-ARS?s Scientific Manuscript database

    In November and December of 2016 a novel influenza virus was isolated from cats from an animal shelter from New York City(NYC). The virus caused respiratory disease and was found in cats in several shelters in NYC, and one human also became infected. The H7N2 subtype isolate was sequenced and it w...

  7. Influenza A (H5N1) Viruses from Pigs, Indonesia

    PubMed Central

    Nidom, Chairul A.; Takano, Ryo; Yamada, Shinya; Sakai-Tagawa, Yuko; Daulay, Syafril; Aswadi, Didi; Suzuki, Takashi; Suzuki, Yasuo; Shinya, Kyoko; Iwatsuki-Horimoto, Kiyoko; Muramoto, Yukiko

    2010-01-01

    Pigs have long been considered potential intermediate hosts in which avian influenza viruses can adapt to humans. To determine whether this potential exists for pigs in Indonesia, we conducted surveillance during 2005–2009. We found that 52 pigs in 4 provinces were infected during 2005–2007 but not 2008–2009. Phylogenetic analysis showed that the viruses had been introduced into the pig population in Indonesia on at least 3 occasions. One isolate had acquired the ability to recognize a human-type receptor. No infected pig had influenza-like symptoms, indicating that influenza A (H5N1) viruses can replicate undetected for prolonged periods, facilitating avian virus adaptation to mammalian hosts. Our data suggest that pigs are at risk for infection during outbreaks of influenza virus A (H5N1) and can serve as intermediate hosts in which this avian virus can adapt to mammals. PMID:20875275

  8. Risk of Human Infections With Highly Pathogenic H5N2 and Low Pathogenic H7N1 Avian Influenza Strains During Outbreaks in Ostriches in South Africa

    PubMed Central

    Venter, Marietjie; Treurnicht, Florette K.; Buys, Amelia; Tempia, Stefano; Samudzi, Rudo; McAnerney, Johanna; Jacobs, Charlene A.; Thomas, Juno; Blumberg, Lucille

    2017-01-01

    Background Risk factors for human infection with highly pathogenic (HP) and low-pathogenic (LP) avian influenza (AI) H5N2 and H7N1 were investigated during outbreaks in ostriches in the Western Cape province, South Africa. Methods Serum surveys were conducted for veterinarians, farmworkers, and laboratory and abattoir workers involved in 2 AI outbreaks in the Western Cape province: (1) controlling and culling of 42 000 ostriches during (HPAI)H5N2 outbreaks in ostriches (2011) (n = 207); (2) movement control during (LPAI)H7N1 outbreaks in 2012 (n = 66). A third serosurvey was conducted on state veterinarians from across the country in 2012 tasked with disease control in general (n = 37). Antibodies to H5 and H7 were measured by means of hemagglutination inhibition and microneutralization assays, with microneutralization assay titers >40 considered positive. Results Two of 207 (1%) participants were seropositive for H5 and 4 of 207 (2%) for H7 in 2011, compared with 1 of 66 (1.5%) and 8 of 66 (13%) in 2012. Although individuals in all professions tested seropositive, abattoir workers (10 of 97; 10.3%) were significantly more at risk of influenza A(H7N1) infection (P = .001) than those in other professions (2 of 171;1.2%). Among state veterinarians, 4 of 37(11%) were seropositive for H7 and 1 of 37 (2.7%) for H5. Investigations of (LP)H7N1-associated fatalities in wild birds and quarantined exotic birds in Gauteng, AI outbreaks in poultry in KwaZulu-Natal, and ostriches in Western Cape province provide possible exposure events. Conclusion (LPAI)H7N1 strains pose a greater infection-risk than (HPAI)H5N2 strains to persons involved in control of outbreaks in infected birds, with ostrich abattoir workers at highest risk. PMID:28934458

  9. Development of a real-time RT-PCR assay for a novel influenza A (H1N1) virus.

    PubMed

    Jiang, Tao; Kang, Xiaoping; Deng, Yongqiang; Zhao, Hui; Li, Xiaofeng; Yu, Xuedong; Yu, Man; Qin, Ede; Zhu, Qingyu; Yang, Yinhui; Qin, Chengfeng

    2010-02-01

    A pandemic caused by a novel influenza A virus (H1N1) poses a serious public health threat. In this study, a real-time reverse transcriptase PCR (RT-PCR) assay based on the hemagglutinin gene was developed that discriminates the novel H1N1 from swine influenza virus, seasonal H1N1/H3N2 virus and the highly pathogenic H5N1 avian influenza virus. The sensitivity of this assay was 0.2 50% tissue culture infective dose of virus and 200 copies of in vitro-transcribed target RNA. Three hundred and forty-eight clinical specimens from suspected H1N1 patients were tested using this assay, and forty-two (12.07%) were found to be positive. Tests using the real-time PCR assay recommended by WHO and virus isolation gave identical results. This sensitive and specific real-time RT-PCR assay will contribute to the early diagnosis and control of the emerging H1N1 influenza pandemic. 2009 Elsevier B.V. All rights reserved.

  10. Hypothiocyanite produced by human and rat respiratory epithelial cells inactivates extracellular H1N2 influenza A virus.

    PubMed

    Gingerich, Aaron; Pang, Lan; Hanson, Jarod; Dlugolenski, Daniel; Streich, Rebecca; Lafontaine, Eric R; Nagy, Tamás; Tripp, Ralph A; Rada, Balázs

    2016-01-01

    Our aim was to study whether an extracellular, oxidative antimicrobial mechanism inherent to tracheal epithelial cells is capable of inactivating influenza H1N2 virus. Epithelial cells were isolated from tracheas of male Sprague-Dawley rats. Both primary human and rat tracheobronchial epithelial cells were differentiated in air-liquid interface cultures. A/swine/Illinois/02860/09 (swH1N2) influenza A virions were added to the apical side of airway cells for 1 h in the presence or absence of lactoperoxidase or thiocyanate. Characterization of rat epithelial cells (morphology, Duox expression) occurred via western blotting, PCR, hydrogen peroxide production measurement and histology. The number of viable virions was determined by plaque assays. Statistical difference of the results was analyzed by ANOVA and Tukey's test. Our data show that rat tracheobronchial epithelial cells develop a differentiated, polarized monolayer with high transepithelial electrical resistance, mucin production and expression of dual oxidases. Influenza A virions are inactivated by human and rat epithelial cells via a dual oxidase-, lactoperoxidase- and thiocyanate-dependent mechanism. Differentiated air-liquid interface cultures of rat tracheal epithelial cells provide a novel model to study airway epithelium-influenza interactions. The dual oxidase/lactoperoxidase/thiocyanate extracellular oxidative system producing hypothiocyanite is a fast and potent anti-influenza mechanism inactivating H1N2 viruses prior to infection of the epithelium.

  11. Reassortment between swine H3N2 and 2009 pandemic H1N1 in the United States resulted in influenza A viruses with diverse genetic constellations with variable virulence in pigs

    USDA-ARS?s Scientific Manuscript database

    Repeated spillovers of the H1N1 pandemic virus (H1N1pdm09) from humans to pigs resulted in substantial evolution of swine influenza viruses, contributing to the genetic and antigenic diversity of influenza A virus (IAV) currently circulating in swine. The reassortment with endemic swine viruses and ...

  12. Comparison of 2010-2011 H3N2 influenza A viruses isolated from swine and the A(H3N2)v isolated from humans in 2011

    USDA-ARS?s Scientific Manuscript database

    In the end of 2011, 12 U.S. cases of humans infected with swine H3N2 virus containing the matrix gene from pandemic H1N1 2009 virus (H1N1pdm09) were detected and named A(H3N2)v. This study used a swine model to compare the pathogenic, transmission, genetic, and antigenic properties of a human A(H3N2...

  13. Beagle dogs have low susceptibility to BJ94-like H9N2 avian influenza virus.

    PubMed

    Zhou, Pei; Wang, Lifang; Huang, San; Fu, Cheng; He, Huamei; Hong, Malin; Su, Shuo; Li, Shoujun

    2015-04-01

    In China, dogs are considered significant intermediate hosts of influenza viruses and have been reported to be infected with H9N2; additionally, a reassortant H9N2 virus has been isolated in dogs. Currently, there are three different lineages of H9N2, including BJ94-like, G1-like, and Y439-like lineages; BJ94-like H9N2 has been circulating in various types of poultry in southern China. Additionally, a number of studies have reported that H9N2 evolves rapidly and is frequently reassorted with H5N1, H7N9, or H10N8 to generate novel reassortants, which is significant for poultry and humans. In this study, two groups of beagles were inoculated either intranasally or intratracheally with the BJ94-like H9N2 virus. However, only four of the seven beagles in the intranasal group and five of the seven beagles in the intratracheal group displayed a mild fever; similarly, only two of the five beagles in the intranasal group and three of the five beagles in the intratracheal group underwent seroconversion. However, no viruses were detected from nasal swabs or rectal swabs or in the lungs of any of the inoculated beagles. Our results demonstrated that beagles have low susceptibility to the BJ94-like H9N2 avian influenza virus, which is the main virus circulating in southern China, indicating that the BJ94-like H9N2 virus does not currently threaten the health of dogs. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Safety and Immunogenicity of Cell Culture-Derived A/H3N2 Variant Influenza Vaccines: A Phase I Randomized, Observer-Blind, Dose-Ranging Study.

    PubMed

    Johnson, Casey; Hohenboken, Matthew; Poling, Terry; Jaehnig, Peter; Kanesa-Thasan, Niranjan

    2015-07-01

    A/H3N2 variant (H3N2v) influenza may sustain human-to-human transmission, and an available candidate vaccine would be important. In this phase I, randomized, observer-blind, dose-ranging study, 627 healthy subjects ≥ 3 years of age were randomized to receive 2 vaccinations with H3N2c cell-culture-derived vaccine doses containing 3.75 µg, 7.5 µg, or 15 µg hemagglutinin antigen of H3N2v with or without MF59 (registered trademark of Novartis AG) adjuvant (an oil-in-water emulsion). This paper reports Day 43 planned interim data. Single MF59-adjuvanted H3N2c doses elicited immune responses in almost all subjects regardless of antigen and adjuvant dose; the Center for Biologics Evaluation Research and Review (CBER) licensure criteria were met for all groups. Subjects with prevaccination hemagglutination inhibition titers <10 and children 3-<9 years achieve CBER criteria only after receiving 2 doses of nonadjuvanted H3N2c vaccine. Highest antibody titers were observed in the 7.5 µg + 0.25 mL MF59 groups in all age cohorts. MF59-adjuvanted H3N2c vaccines showed the highest rates of solicited local and systemic events, predominately mild or moderate. A single dose of H3N2c vaccine may be immunogenic and supports further development of MF59-adjuvanted H3N2c vaccines, especially for pediatric populations. ClinicalTrials.gov identifier NCT01855945 (http://clinicaltrials.gov/ct2/show/NCT01855945). © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Cross-protection against European swine influenza viruses in the context of infection immunity against the 2009 pandemic H1N1 virus: studies in the pig model of influenza.

    PubMed

    Qiu, Yu; De Hert, Karl; Van Reeth, Kristien

    2015-09-24

    Pigs are natural hosts for the same influenza virus subtypes as humans and are a valuable model for cross-protection studies with influenza. In this study, we have used the pig model to examine the extent of virological protection between a) the 2009 pandemic H1N1 (pH1N1) virus and three different European H1 swine influenza virus (SIV) lineages, and b) these H1 viruses and a European H3N2 SIV. Pigs were inoculated intranasally with representative strains of each virus lineage with 6- and 17-week intervals between H1 inoculations and between H1 and H3 inoculations, respectively. Virus titers in nasal swabs and/or tissues of the respiratory tract were determined after each inoculation. There was substantial though differing cross-protection between pH1N1 and other H1 viruses, which was directly correlated with the relatedness in the viral hemagglutinin (HA) and neuraminidase (NA) proteins. Cross-protection against H3N2 was almost complete in pigs with immunity against H1N2, but was weak in H1N1/pH1N1-immune pigs. In conclusion, infection with a live, wild type influenza virus may offer substantial cross-lineage protection against viruses of the same HA and/or NA subtype. True heterosubtypic protection, in contrast, appears to be minimal in natural influenza virus hosts. We discuss our findings in the light of the zoonotic and pandemic risks of SIVs.

  16. Detection of Antigenic Variants of Subtype H3 Swine Influenza A Viruses from Clinical Samples.

    PubMed

    Martin, Brigitte E; Bowman, Andrew S; Li, Lei; Nolting, Jacqueline M; Smith, David R; Hanson, Larry A; Wan, Xiu-Feng

    2017-04-01

    A large population of genetically and antigenically diverse influenza A viruses (IAVs) are circulating among the swine population, playing an important role in influenza ecology. Swine IAVs not only cause outbreaks among swine but also can be transmitted to humans, causing sporadic infections and even pandemic outbreaks. Antigenic characterizations of swine IAVs are key to understanding the natural history of these viruses in swine and to selecting strains for effective vaccines. However, influenza outbreaks generally spread rapidly among swine, and the conventional methods for antigenic characterization require virus propagation, a time-consuming process that can significantly reduce the effectiveness of vaccination programs. We developed and validated a rapid, sensitive, and robust method, the polyclonal serum-based proximity ligation assay (polyPLA), to identify antigenic variants of subtype H3N2 swine IAVs. This method utilizes oligonucleotide-conjugated polyclonal antibodies and quantifies antibody-antigen binding affinities by quantitative reverse transcription-PCR (RT-PCR). Results showed the assay can rapidly detect H3N2 IAVs directly from nasal wash or nasal swab samples collected from laboratory-challenged animals or during influenza surveillance at county fairs. In addition, polyPLA can accurately separate the viruses at two contemporary swine IAV antigenic clusters (H3N2 swine IAV-α and H3N2 swine IAV-ß) with a sensitivity of 84.9% and a specificity of 100.0%. The polyPLA can be routinely used in surveillance programs to detect antigenic variants of influenza viruses and to select vaccine strains for use in controlling and preventing disease in swine. Copyright © 2017 American Society for Microbiology.

  17. Vaccine efficacy of live-attenuated virus, whole inactivated virus and alphavirus vectored subunit vaccines against antigenically distinct H3N2 swine influenza A viruses

    USDA-ARS?s Scientific Manuscript database

    Introduction Influenza A virus (IAV) is an important pathogen in swine, and the main intervention strategy is vaccination to induce neutralizing antibodies against the hemagglutinin (HA). Three major antigenic clusters, cyan, red, and green, were identified among H3N2 viruses circulating in pigs in ...

  18. Protective efficacy of an inactivated vaccine against H9N2 avian influenza virus in ducks.

    PubMed

    Teng, Qiaoyang; Shen, Weixia; Liu, Qinfang; Rong, Guangyu; Chen, Lin; Li, Xuesong; Chen, Hongjun; Yang, Jianmei; Li, Zejun

    2015-09-17

    Wild ducks play an important role in the evolution of avian influenza viruses (AIVs). Domestic ducks in China are known to carry and spread H9N2 AIVs that are thought to have contributed internal genes for the recent outbreak of zoonotic H7N9 virus. In order to protect animal and public health, an effective vaccine is urgently needed to block and prevent the spread of H9N2 virus in ducks. We developed an inactivated H9N2 vaccine (with adjuvant Montanide ISA 70VG) based on an endemic H9N2 AIV and evaluated this vaccine in ducks. The results showed that the inactivated H9N2 vaccine was able to induce a strong and fast humoral immune response in vaccinated ducks. The hemagglutination inhibition titer in the sera increased fast, and reached its peak of 12.3 log2 at 5 weeks post-vaccination in immunized birds and remained at a high level for at least 37 weeks post-vaccination. Moreover, viral shedding was completely blocked in vaccinated ducks after challenge with a homologous H9N2 AIV at both 3 and 37 weeks post-vaccination. The results of this study indicate that the inactivated H9N2 vaccine induces high and prolonged immune response in vaccinated ducks and are efficacious in protecting ducks from H9N2 infection.

  19. Genetic Diversity of Highly Pathogenic Avian Influenza A(H5N8/H5N5) Viruses in Italy, 2016–17

    PubMed Central

    Monne, Isabella; Mulatti, Paolo; Zecchin, Bianca; Bonfanti, Lebana; Ormelli, Silvia; Milani, Adelaide; Cecchettin, Krizia; Lemey, Philippe; Moreno, Ana; Massi, Paola; Dorotea, Tiziano; Marangon, Stefano; Terregino, Calogero

    2017-01-01

    In winter 2016–17, highly pathogenic avian influenza A(H5N8) and A(H5N5) viruses of clade 2.3.4.4 were identified in wild and domestic birds in Italy. We report the occurrence of multiple introductions and describe the identification in Europe of 2 novel genotypes, generated through multiple reassortment events. PMID:28661831

  20. Influenza A(H1N1)v in Germany: the first 10,000 cases.

    PubMed

    Gilsdorf, Andreas; Poggensee, Gabriele

    2009-08-27

    The analysis of the first 10,000 cases of influenza A(H1N1)v in Germany confirms findings from other sources that the virus is currently mainly causing mild diseases, affecting mostly adolescents and young adults. Overall hospitalisation rate for influenza A(H1N1)v was low (7%). Only 3% of the cases had underlying conditions and pneumonia was rare (0.4%). Both reporting and testing requirements have been adapted recently, taking into consideration the additional information available on influenza A(H1N1)v infections.