Karamesinis, Konstantinos; Spyropoulou, Anastasia; Dalagiorgou, Georgia; Katsianou, Maria A; Nokhbehsaim, Marjan; Memmert, Svenja; Deschner, James; Vastardis, Heleni; Piperi, Christina
2017-01-01
The present study aimed to investigate the long-term effects of hydrostatic pressure on chondrocyte differentiation, as indicated by protein levels of transcription factors SOX9 and RUNX2, on transcriptional activity of SOX9, as determined by pSOX9 levels, and on the expression of polycystin-encoding genes Pkd1 and Pkd2. ATDC5 cells were cultured in insulin-supplemented differentiation medium (ITS) and/or exposed to 14.7 kPa of hydrostatic pressure for 12, 24, 48, and 96 h. Cell extracts were assessed for SOX9, pSOX9, and RUNX2 using western immunoblotting. The Pkd1 and Pkd2 mRNA levels were detected by real-time PCR. Hydrostatic pressure resulted in an early drop in SOX9 and pSOX9 protein levels at 12 h followed by an increase from 24 h onwards. A reverse pattern was followed by RUNX2, which reached peak levels at 24 h of hydrostatic pressure-treated chondrocytes in ITS culture. Pkd1 and Pkd2 mRNA levels increased at 24 h of combined hydrostatic pressure and ITS treatment, with the latter remaining elevated up to 96 h. Our data indicate that long periods of continuous hydrostatic pressure stimulate chondrocyte differentiation through a series of molecular events involving SOX9, RUNX2, and polycystins-1, 2, providing a theoretical background for functional orthopedic mechanotherapies.
Kawanishi, Makoto; Oura, Atsuhiro; Furukawa, Katsuko; Fukubayashi, Toru; Nakamura, Kozo; Tateishi, Tetsuya; Ushida, Takashi
2007-05-01
Hydrostatic pressure is one of the most frequently used mechanical stimuli in chondrocyte experiments. A variety of hydrostatic pressure loading devices have been used in cartilage cell experiments. However, no gas-controlled system with other than a low pressure load was used up to this time. Hence we used a polyolefin bag from which gas penetration was confirmed. Chondrocytes were extracted from bovine normal knee joint cartilage. After 3 passages, dedifferentiated chondrocytes were applied to form a pellet. These pellets were cultured in chemically defined serum-free medium with ITS+Premix for 3 days. Then 5 MPa of cyclic hydrostatic pressure was applied at 0.5 Hz for 4 h per day for 4 days. Semiquantitative reverse transcriptase-polymerase chain reaction showed a 5-fold increase in the levels of aggrecan mRNA due to cyclic hydrostatic pressure load (p<0.01). Type II collagen mRNA levels were also upregulated 4-fold by a cyclic hydrostatic pressure load (p<0.01). Type I collagen mRNA levels were similarly reduced in the cyclic hydrostatic pressure load group and in the control group. The partial oxygen pressure (PO2) and partial carbon dioxide pressure (PCO2) of the medium in the bag reached equilibrium in 24 h, and no significant change was observed for 3 days afterwards. PO2 and PCO2 were very well controlled. The loaded pellet showed better safranin O/fast green staining than did the control pellet. Metachromatic staining by Alcian blue staining was found to be stronger in the loaded than in the control pellets. The extracellular matrices excretion of loaded pellets was higher than that of control pellets. These results suggest that gas-controlled cyclic hydrostatic pressure enhanced the cartilaginous matrix formation of dedifferentiated cells differentiated in vitro.
Takemura, Akihiro; Shibata, Yoriko; Takeuchi, Yuki; Hur, Sung-Pyo; Sugama, Nozomi; Badruzzaman, Md
2012-01-01
Most wrasse species in tropical waters exhibit daily spawning synchrony with a preference for high tide. Fish perceive tidal rhythm cues through sensory organs and activate the brain-pituitary-gonadal endocrine axis for synchronous gonadal maturation, although how the tidal-related spawning cycle is controlled endogenously is not known. The purpose of this study was to examine whether hydrostatic pressure has an impact on brain monoamine levels and reproductive activities in the threespot wrasse Halichoeres trimaculatus. The contents of dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), serotonin (5-HT), and 5-hydroxyindoleacetic acid (5-HIAA) in the brain were measured using high-performance liquid chromatography and an electrochemical detection system. Exposing the fish to hydrostatic pressure occurring at a 3-m depth (~30 kPa) resulted in an increase in 5-HIAA/5-HT over 3h and a decrease in DOPAC/DA over 6h. No changes in gonadosomatic index or oocyte diameter were observed between the groups when female fish were reared at 0-m and 3-m depth for 3h. Hydrostatic pressure did not alter pituitary mRNA abundance of follicle stimulating hormone-β or luteinizing hormone-β. However, in vitro culture of ovaries from pressurized fish in the presence of human chorionic gonadotropin resulted in an increase in 17α,20β-dihydroxy-4-pregnen-3-one in the medium. These results suggest that hydrostatic pressure activates oocyte maturation through brain monoaminergic activity in this tropical wrasse species. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Putman, William M.
2010-01-01
The Goddard Earth Observing System Model (GEOS-S), an earth system model developed in the NASA Global Modeling and Assimilation Office (GMAO), has integrated the non-hydrostatic finite-volume dynamical core on the cubed-sphere grid. The extension to a non-hydrostatic dynamical framework and the quasi-uniform cubed-sphere geometry permits the efficient exploration of global weather and climate modeling at cloud permitting resolutions of 10- to 4-km on today's high performance computing platforms. We have explored a series of incremental increases in global resolution with GEOS-S from irs standard 72-level 27-km resolution (approx.5.5 million cells covering the globe from the surface to 0.1 hPa) down to 3.5-km (approx. 3.6 billion cells).
NASA Astrophysics Data System (ADS)
Putman, W. M.; Suarez, M.
2009-12-01
The Goddard Earth Observing System Model (GEOS-5), an earth system model developed in the NASA Global Modeling and Assimilation Office (GMAO), has integrated the non-hydrostatic finite-volume dynamical core on the cubed-sphere grid. The extension to a non-hydrostatic dynamical framework and the quasi-uniform cubed-sphere geometry permits the efficient exploration of global weather and climate modeling at cloud permitting resolutions of 10- to 4-km on today's high performance computing platforms. We have explored a series of incremental increases in global resolution with GEOS-5 from it's standard 72-level 27-km resolution (~5.5 million cells covering the globe from the surface to 0.1 hPa) down to 3.5-km (~3.6 billion cells). We will present results from a series of forecast experiments exploring the impact of the non-hydrostatic dynamics at transition resolutions of 14- to 7-km, and the influence of increased horizontal/vertical resolution on convection and physical parameterizations within GEOS-5. Regional and mesoscale features of 5- to 10-day weather forecasts will be presented and compared with satellite observations. Our results will highlight the impact of resolution on the structure of cloud features including tropical convection and tropical cyclone predicability, cloud streets, von Karman vortices, and the marine stratocumulus cloud layer. We will also present experiment design and early results from climate impact experiments for global non-hydrostatic models using GEOS-5. Our climate experiments will focus on support for the Year of Tropical Convection (YOTC). We will also discuss a seasonal climate time-slice experiment design for downscaling coarse resolution century scale climate simulations to global non-hydrostatic resolutions of 14- to 7-km with GEOS-5.
Dynamic culturing of cartilage tissue: the significance of hydrostatic pressure.
Correia, Cristina; Pereira, Ana L; Duarte, Ana R C; Frias, Ana M; Pedro, Adriano J; Oliveira, João T; Sousa, Rui A; Reis, Rui L
2012-10-01
Human articular cartilage functions under a wide range of mechanical loads in synovial joints, where hydrostatic pressure (HP) is the prevalent actuating force. We hypothesized that the formation of engineered cartilage can be augmented by applying such physiologic stimuli to chondrogenic cells or stem cells, cultured in hydrogels, using custom-designed HP bioreactors. To test this hypothesis, we investigated the effects of distinct HP regimens on cartilage formation in vitro by either human nasal chondrocytes (HNCs) or human adipose stem cells (hASCs) encapsulated in gellan gum (GG) hydrogels. To this end, we varied the frequency of low HP, by applying pulsatile hydrostatic pressure or a steady hydrostatic pressure load to HNC-GG constructs over a period of 3 weeks, and evaluated their effects on cartilage tissue-engineering outcomes. HNCs (10×10(6) cells/mL) were encapsulated in GG hydrogels (1.5%) and cultured in a chondrogenic medium under three regimens for 3 weeks: (1) 0.4 MPa Pulsatile HP; (2) 0.4 MPa Steady HP; and (3) Static. Subsequently, we applied the pulsatile regimen to hASC-GG constructs and varied the amplitude of loading, by generating both low (0.4 MPa) and physiologic (5 MPa) HP levels. hASCs (10×10(6) cells/mL) were encapsulated in GG hydrogels (1.5%) and cultured in a chondrogenic medium under three regimens for 4 weeks: (1) 0.4 MPa Pulsatile HP; (2) 5 MPa Pulsatile HP; and (3) Static. In the HNC study, the best tissue development was achieved by the pulsatile HP regimen, whereas in the hASC study, greater chondrogenic differentiation and matrix deposition were obtained for physiologic loading, as evidenced by gene expression of aggrecan, collagen type II, and sox-9; metachromatic staining of cartilage extracellular matrix; and immunolocalization of collagens. We thus propose that both HNCs and hASCs detect and respond to physical forces, thus resembling joint loading, by enhancing cartilage tissue development in a frequency- and amplitude-dependant manner.
Piezoelectric Performance and Hydrostatic Parameters of Novel 2-2-Type Composites.
Topolov, Vitaly Yu; Bowen, Christopher R; Krivoruchko, Andrey V
2017-10-01
This paper provides a detailed study of the structure-piezoelectric property relationships and the hydrostatic response of 2-2-Type composites based on relaxor-ferroelectric 0.72 Pb (Mg 1/3 Nb 2/3 )O 3 -0.28PbTiO 3 single crystal (SC) material. Type I layers in the composite system are represented by a single-domain [111]-poled SC. Changes in the orientation of the crystallographic axes in the Type I layer are undertaken to determine the maximum values of the hydrostatic piezoelectric coefficients d h ∗ , g h ∗ , and e h ∗ , and squared figure of merit d h ∗ g h ∗ of the composite. The Type II layers are a 0-3 composite whereby inclusions of modified PbTiO 3 ceramic are distributed in a polymer matrix. A new effect is described for the first time due to the impact of anisotropic elastic properties of the Type II layers on the hydrostatic piezoelectric response that is coupled with the polarization orientation effect in the Type I layers. Large hydrostatic parameters g h ∗ ≈ 300 -400 mV · m/N, e h ∗ ≈ 40 -45 C/ [Formula: see text], and d h ∗ g h ∗ ∼ 10 -11 Pa -1 are achieved in the composite based on the 0.72 Pb(Mg 1/3 Nb 2/3 )O 3 -0.28PbTiO 3 SC. Examples of the large piezoelectric anisotropy ( |d 33 ∗ /d 3f ∗ | ≥ 5 or | g 33 ∗ /g 3f ∗ | ≥ 5 ) are discussed. The hydrostatic parameters of this novel compositesystem are compared to those of conventional 2-2 piezocomposites.
Jortikka, M O; Parkkinen, J J; Inkinen, R I; Kärner, J; Järveläinen, H T; Nelimarkka, L O; Tammi, M I; Lammi, M J
2000-02-15
Chondrocytes of the articular cartilage sense mechanical factors associated with joint loading, such as hydrostatic pressure, and maintain the homeostasis of the extracellular matrix by regulating the metabolism of proteoglycans (PGs) and collagens. Intermittent hydrostatic pressure stimulates, while continuous high hydrostatic pressure inhibits, the biosynthesis of PGs. High continuous hydrostatic pressure also changes the structure of cytoskeleton and Golgi complex in cultured chondrocytes. Using microtubule (MT)-affecting drugs nocodazole and taxol as tools we examined whether MTs are involved in the regulation of PG synthesis in pressurized primary chondrocyte monolayer cultures. Disruption of the microtubular array by nocodazole inhibited [(35)S]sulfate incorporation by 39-48%, while MT stabilization by taxol caused maximally a 17% inhibition. Continuous hydrostatic pressure further decreased the synthesis by 34-42% in nocodazole-treated cultures. This suggests that high pressure exerts its inhibitory effect through mechanisms independent of MTs. On the other hand, nocodazole and taxol both prevented the stimulation of PG synthesis by cyclic 0. 5 Hz, 5 MPa hydrostatic pressure. The drugs did not affect the structural and functional properties of the PGs, and none of the treatments significantly affected cell viability, as indicated by the high level of PG synthesis 24-48 h after the release of drugs and/or high hydrostatic pressure. Our data on two-dimensional chondrocyte cultures indicate that inhibition of PG synthesis by continuous high hydrostatic pressure does not interfere with the MT-dependent vesicle traffic, while the stimulation of synthesis by cyclic pressure does not occur if the dynamic nature of MTs is disturbed by nocodazole. Similar phenomena may operate in cartilage matrix embedded chondrocytes. Copyright 2000 Academic Press.
Ahlqvist, J; Harilainen, A; Aalto, K; Sarna, S; Lalla, M; Osterlund, K
1994-11-01
Three out of the four Starling pressures were determined at arthroscopy of traumatic effusions of the knee. The range of the joint fluid hydrostatic pressure Pjoint was 5-83 cmH2O (0.5-8.1 kPa, 4-61 mmHg), that of the colloid osmotic pressure difference COPplasma-COPjoint 0-21.7 cmH2O. In 11 of 15 cases the sum Pjoint+COP difference exceeded 32.6 cmH2O (3.19 kPa, 24 mmHg), a high estimate of average capillary pressure at the level of the heart. The number of 'exceeding' cases was 8/15 if only 80% of the COP difference was considered effective. Pjoint and the COP difference oppose filtration of fluid from plasma into joints, indicating that mean capillary pressure, the only Starling pressure not determined, was elevated unless the effusions were being resorbed back into the blood. The findings can be explained by tamponade compensated by arteriolar vasodilatation, suspected to be metabolically mediated.
Frequency response of pig intervertebral disc cells subjected to dynamic hydrostatic pressure.
Kasra, Mehran; Merryman, W David; Loveless, Kristen N; Goel, Vijay K; Martin, James D; Buckwalter, Joseph A
2006-10-01
The pathogenesis of vibration-induced disorders of intervertebral disc at the cellular level is largely unknown. Dynamic loads with frequencies close to that of the in vivo human spine resonant frequency (4-6 Hz) have a destructive effect, which may induce extracellular disc matrix (ECM) degradation. To investigate this issue, three-dimensional (3D) alginate cultures of normal pig intervertebral disc nucleus and inner annulus cells were tested under dynamic hydrostatic loading. Alginate cultures of each region were divided into six groups; five groups were exposed to cyclic hydrostatic pressures of frequencies 1, 3, 5, 8, and 10 Hz with the same amplitude (1 MPa), and group 6 was the control group (no loading). Cultures of different groups were loaded for 3 days (30 min daily) in a hydraulic chamber. Effects of loading frequency on disc collagen and protein metabolism were investigated by measuring 3H-proline-labeled proteins associated with the cells in the extracellular matrix and release of 3H-proline-labeled molecules into culture medium. The results indicated a poor synthesis rate and more degradation near the 5 Hz frequency. The repeatability of experiments was verified by performing two experiments with the same protocol. Both experiments indicated that a threshold frequency of around 5 Hz disrupted protein metabolism. Copyright (c) 2006 Orthopaedic Research Society.
Dynamic Culturing of Cartilage Tissue: The Significance of Hydrostatic Pressure
Pereira, Ana L.; Duarte, Ana R.C.; Frias, Ana M.; Pedro, Adriano J.; Oliveira, João T.; Sousa, Rui A.; Reis, Rui L.
2012-01-01
Human articular cartilage functions under a wide range of mechanical loads in synovial joints, where hydrostatic pressure (HP) is the prevalent actuating force. We hypothesized that the formation of engineered cartilage can be augmented by applying such physiologic stimuli to chondrogenic cells or stem cells, cultured in hydrogels, using custom-designed HP bioreactors. To test this hypothesis, we investigated the effects of distinct HP regimens on cartilage formation in vitro by either human nasal chondrocytes (HNCs) or human adipose stem cells (hASCs) encapsulated in gellan gum (GG) hydrogels. To this end, we varied the frequency of low HP, by applying pulsatile hydrostatic pressure or a steady hydrostatic pressure load to HNC-GG constructs over a period of 3 weeks, and evaluated their effects on cartilage tissue-engineering outcomes. HNCs (10×106 cells/mL) were encapsulated in GG hydrogels (1.5%) and cultured in a chondrogenic medium under three regimens for 3 weeks: (1) 0.4 MPa Pulsatile HP; (2) 0.4 MPa Steady HP; and (3) Static. Subsequently, we applied the pulsatile regimen to hASC-GG constructs and varied the amplitude of loading, by generating both low (0.4 MPa) and physiologic (5 MPa) HP levels. hASCs (10×106 cells/mL) were encapsulated in GG hydrogels (1.5%) and cultured in a chondrogenic medium under three regimens for 4 weeks: (1) 0.4 MPa Pulsatile HP; (2) 5 MPa Pulsatile HP; and (3) Static. In the HNC study, the best tissue development was achieved by the pulsatile HP regimen, whereas in the hASC study, greater chondrogenic differentiation and matrix deposition were obtained for physiologic loading, as evidenced by gene expression of aggrecan, collagen type II, and sox-9; metachromatic staining of cartilage extracellular matrix; and immunolocalization of collagens. We thus propose that both HNCs and hASCs detect and respond to physical forces, thus resembling joint loading, by enhancing cartilage tissue development in a frequency- and amplitude-dependant manner. PMID:22559784
Li, Yi; Chen, Yan-Ming; Sun, Ming-Ming; Guo, Xiao-Dan; Wang, Ya-Chen; Zhang, Zhong-Zhi
2016-04-20
Glaucoma is a progressive optic neuropathy characterized by degeneration of neurons due to loss of retinal ganglion cells (RGCs). High intraocular pressure (HIOP), the main risk factor, causes the optic nerve damage. However, the precise mechanism of HIOP-induced RGC death is not yet completely understood. This study was conducted to determine apoptosis of RGC-5 cells induced by elevated hydrostatic pressures, explore whether laminin is associated with apoptosis under pressure, whether laminin can protect RGCs from apoptosis and affirm the mechanism that regulates the process of RGCs survival. RGC-5 cells were exposed to 0, 20, 40, and 60 mmHg in a pressurized incubator for 6, 12, and 24 h, respectively. The effect of elevated hydrostatic pressure on RGC-5 cells was measured by Annexin V-fluorescein isothiocyanate/propidium iodide staining, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and Western blotting of cleaved caspase-3 protein. Location and expression of laminin were detected by immunofluorescence. The expression of β1-integrin, phosphorylation of focal adhesion kinase (FAK) and protein kinase B (PKB, or AKT) were investigated with real-time polymerase chain reaction and Western blotting analysis. Elevated hydrostatic pressure induced apoptosis in cultured RGC-5 cells. Pressure with 40 mmHg for 24 h induced a maximum apoptosis. Laminin was declined in RGC-5 cells after exposing to 40 mmHg for 24 h. After pretreating with laminin, RGC-5 cells survived from elevated pressure. Furthermore, β1-integrin and phosphorylation of FAK and AKT were increased compared to 40 mmHg group. The data show apoptosis tendency of RGC-5 cells with elevated hydrostatic pressure. Laminin can protect RGC-5 cells against high pressure via β1-integrin/FAK/AKT signaling pathway. These results suggest that the decreased laminin of RGC-5 cells might be responsible for apoptosis induced by elevated hydrostatic pressure, and laminin or activating β1-integrin/FAK/AKT pathway might be potential treatments to prevent RGC loss in glaucomatous optic neuropathy.
Li, Yi; Chen, Yan-Ming; Sun, Ming-Ming; Guo, Xiao-Dan; Wang, Ya-Chen; Zhang, Zhong-Zhi
2016-01-01
Background: Glaucoma is a progressive optic neuropathy characterized by degeneration of neurons due to loss of retinal ganglion cells (RGCs). High intraocular pressure (HIOP), the main risk factor, causes the optic nerve damage. However, the precise mechanism of HIOP-induced RGC death is not yet completely understood. This study was conducted to determine apoptosis of RGC-5 cells induced by elevated hydrostatic pressures, explore whether laminin is associated with apoptosis under pressure, whether laminin can protect RGCs from apoptosis and affirm the mechanism that regulates the process of RGCs survival. Methods: RGC-5 cells were exposed to 0, 20, 40, and 60 mmHg in a pressurized incubator for 6, 12, and 24 h, respectively. The effect of elevated hydrostatic pressure on RGC-5 cells was measured by Annexin V-fluorescein isothiocyanate/propidium iodide staining, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and Western blotting of cleaved caspase-3 protein. Location and expression of laminin were detected by immunofluorescence. The expression of β1-integrin, phosphorylation of focal adhesion kinase (FAK) and protein kinase B (PKB, or AKT) were investigated with real-time polymerase chain reaction and Western blotting analysis. Results: Elevated hydrostatic pressure induced apoptosis in cultured RGC-5 cells. Pressure with 40 mmHg for 24 h induced a maximum apoptosis. Laminin was declined in RGC-5 cells after exposing to 40 mmHg for 24 h. After pretreating with laminin, RGC-5 cells survived from elevated pressure. Furthermore, β1-integrin and phosphorylation of FAK and AKT were increased compared to 40 mmHg group. Conclusions: The data show apoptosis tendency of RGC-5 cells with elevated hydrostatic pressure. Laminin can protect RGC-5 cells against high pressure via β1-integrin/FAK/AKT signaling pathway. These results suggest that the decreased laminin of RGC-5 cells might be responsible for apoptosis induced by elevated hydrostatic pressure, and laminin or activating β1-integrin/FAK/AKT pathway might be potential treatments to prevent RGC loss in glaucomatous optic neuropathy. PMID:27064044
Fernández Mondéjar, E; Vazquez Mata, G; Cárdenas, A; Mansilla, A; Cantalejo, F; Rivera, R
1996-09-01
To analyze the effect of different levels of positive end-expiratory pressure (PEEP) on extravascular lung water and on lymphatic drainage through the thoracic duct during hydrostatic pulmonary edema. Randomized, controlled, experimental study. Research laboratory of a tertiary care hospital. Eighteen beagle dogs weighing between 10 and 19 kg. Dogs were anesthetized and cannulated via a thoracic duct. Hydrostatic pulmonary edema was provoked by inflating the balloon of a Foley catheter in the left atrium. Different amounts of PEEP were applied. Extravascular lung water was determined by the double indicator dilution method (indocyanine green in glucoside solution at 0 degree C), and lymphatic drainage was measured every 30 mins. After a baseline measurement, the left atrial pressure was increased to 24 to 26 mm Hg, and measurements were recorded after 30, 60, 90, and 120 mins. The animals were divided into three groups. Group I (n = 6): PEEP of 20 cm H2O was instituted at 120 mins, and the other determinations were made without PEEP; group II (n = 7): PEEP of 10 cm H2O was instituted at 60 and 90 mins; group III (n = 5): PEEP of 20 cm H2O was instituted at 60 and 90 mins. Extravascular lung water increased after the increase of left atrial pressure in all three groups. After 90 mins, the extravascular lung water was significantly greater (p < .01) in group I (no PEEP application) at 21.2 +/- 5.1 mL/kg than in groups II and III (with 10 and 20 cm H2O of PEEP) at 12.8 +/- 2.01 and 14.8 +/- 4.8 mL/kg, respectively. Lymphatic drainage tended to increase over time in all three groups. Ninety minutes after the left atrial pressure increase, lymphatic drainage was significantly greater (p < .05) in group II, at 6.06 +/- 2.53 mL/kg/30 mins, than in group I, at 2.83 +/- 0.76 mL/kg/30 mins. a) The application of PEEP levels of between 10 and 20 cm H2O limits the increase of extravascular lung water in cases of hydrostatic pulmonary edema; and b) the application of 10 cm H2O of PEEP increases the lymphatic flow through the thoracic duct.
Effects of hydrostatic pressure on mouse sperm.
Karimi, N; Kamangar, P Bahrami; Azadbakht, M; Amini, A; Amiri, I
2014-01-01
The objective of this study was to investigate the abnormalities in sperm after exposure to hydrostatic pressure. Hydrostatic pressure acting on the cells is one of the fundamental environmental mechanical forces. Disorders of relationship between the cells and this mechanical force, such as when pressure varies beyond physiological limits, can lead to disease or pathological states. Sperm exposed to different range of hydrostatic pressure within male reproductive system and after entering the female reproductive system. Sexually mature male NMRI mice, 8-12 weeks-old were sperm donors. Sperms were separated from the caudal epididymis and maintained in Ham's F-10 culture medium supplemented with 10 % FBS and divided into control and treatments. Sperm suspensions in the treatments were placed within pressure chamber and were subjected to increased hydrostatic pressure of 25, 50 and 100 mmHg (treatment I, II and III) above atmospheric pressure for 2 and 4 h. Sperm viability, motility, morphology, DNA integrity and fertilizing ability were assessed and compared with control. Results showed that hydrostatic pressure dependent on ranges and time manner reduced sperm quality due to adverse effect on viability, motility , morphology, DNA integrity and fertilizing ability in all of treatments, especially after 4h (p<0.05). Our data revealed hydrostatic pressure reduces sperm quality as a consequence of adverse effects on sperm parameters and may cause male infertility or subfertility (Tab. 5, Ref. 5).
Comparison of Simulated Microgravity and Hydrostatic Pressure for Chondrogenesis of hASC.
Mellor, Liliana F; Steward, Andrew J; Nordberg, Rachel C; Taylor, Michael A; Loboa, Elizabeth G
2017-04-01
Cartilage tissue engineering is a growing field due to the lack of regenerative capacity of native tissue. The use of bioreactors for cartilage tissue engineering is common, but the results are controversial. Some studies suggest that microgravity bioreactors are ideal for chondrogenesis, while others show that mimicking hydrostatic pressure is crucial for cartilage formation. A parallel study comparing the effects of loading and unloading on chondrogenesis has not been performed. The goal of this study was to evaluate chondrogenesis of human adipose-derived stem cells (hASC) under two different mechanical stimuli relative to static culture: microgravity and cyclic hydrostatic pressure (CHP). Pellets of hASC were cultured for 14 d under simulated microgravity using a rotating wall vessel bioreactor or under CHP (7.5 MPa, 1 Hz, 4 h · d-1) using a hydrostatic pressure vessel. We found that CHP increased mRNA expression of Aggrecan, Sox9, and Collagen II, caused a threefold increase in sulfated glycosaminoglycan production, and resulted in stronger vimentin staining intensity and organization relative to microgravity. In addition, Wnt-signaling patterns were altered in a manner that suggests that simulated microgravity decreases chondrogenic differentiation when compared to CHP. Our goal was to compare chondrogenic differentiation of hASC using a microgravity bioreactor and a hydrostatic pressure vessel, two commonly used bioreactors in cartilage tissue engineering. Our results indicate that CHP promotes hASC chondrogenesis and that microgravity may inhibit hASC chondrogenesis. Our findings further suggest that cartilage formation and regeneration might be compromised in space due to the lack of mechanical loading.Mellor LF, Steward AJ, Nordberg RC, Taylor MA, Loboa EG. Comparison of simulated microgravity and hydrostatic pressure for chondrogenesis of hASC. Aerosp Med Hum Perform. 2017; 88(4):377-384.
Han, Zhenwei; Wang, Kunjie; Chen, Lin; Wei, Tangqiang; Luo, Deyi; Li, Shengfu
2012-04-01
To explore the effect of hydrostatic pressure on intracellular free calcium concentration ([Ca2+]i) and the gene expression of transient receptor potential vanilloid (TRPV) in cultured human bladder smooth muscle cells (hb-SMCs), and to preliminarily probe into the possible molecular mechanism of hb-SMCs proliferation stimulated by hydrostatic pressure. The passage 6-7 hb-SMCs were loaded with Ca2+ indicator Fluo-3/AM. When the hb-SMCs were under 0 cm H2O (1cm H2O = 0.098 kPa) (group A) or 200 cm H2O hydrostatic pressure for 30 minutes (group B) and then removing the 200 cm H2O hydrostatic pressure (group C), the [Ca2+]i was measured respectively by inverted laser scanning confocal microscope. When the hb-SMCs were given the 200 cm H2O hydrostatic pressure for 0 hour, 2 hours, 6 hours, 12 hours, and 24 hours, the mRNA expressions of TRPV1, TRPV2, and TRPV4 were detected by RT-PCR technique. The [Ca2+]i of group A, group B, and group C were (100.808 +/- 1.724), (122.008 +/- 1.575), and (99.918 +/- 0.887) U, respectively; group B was significantly higher than groups A and C (P < 0.001). The [Ca2+]i of group C decreased to the base line level of group A after removing the pressure (t = 0.919, P = 0.394). The TRPV1, TRPV2, and TRPV4 genes expressed in hb-SMCs under 200 cm H2O hydrostatic pressure at 0 hour, 2 hours, 6 hours, 12 hours, and 24 hours, but the expressions had no obvious changes with time. There was no significant difference in the expressions of TRPV1, TRPV2, and TRPV4 among 3 groups (P > 0.05). The [Ca2+]i of hb-SMCs increases significantly under high hydrostatic pressure. As possible genes in stretch-activated cation channel, the TRPV1, TRPV2, and TRPV4 express in hb-SMCs under 200 cm H2O hydrostatic pressure. It is possible that the mechanical pressure regulates the [Ca2+]i of hb-SMCs by opening the stretch-activated cation channel rather than up-regulating its expression.
Hydrostatic pressure influences HIF-2 alpha expression in chondrocytes.
Inoue, Hiroaki; Arai, Yuji; Kishida, Tsunao; Terauchi, Ryu; Honjo, Kuniaki; Nakagawa, Shuji; Tsuchida, Shinji; Matsuki, Tomohiro; Ueshima, Keiichirou; Fujiwara, Hiroyoshi; Mazda, Osam; Kubo, Toshikazu
2015-01-05
Hypoxia-inducible factor (HIF)-2α is considered to play a major role in the progression of osteoarthritis. Recently, it was reported that pressure amplitude influences HIF-2α expression in murine endothelial cells. We examined whether hydrostatic pressure is involved in expression of HIF-2α in articular chondrocytes. Chondrocytes were cultured and stimulated by inflammation or hydrostatic pressure of 0, 5, 10, or 50 MPa. After stimulation, heat shock protein (HSP) 70, HIF-2α, nuclear factor kappa B (NF-κB), matrix metalloproteinase (MMP)-13, MMP-3, and vascular endothelial growth factor (VEGF) gene expression were evaluated. The levels of all gene expression were increased by inflammatory stress. When chondrocytes were exposed to a hydrostatic pressure of 5 MPa, HIF-2α, MMP-13, and MMP-3 gene expression increased significantly although those of HSP70 and NF-κB were not significantly different from the control group. In contrast, HIF-2α gene expression did not increase under a hydrostatic pressure of 50 MPa although HSP70 and NF-κB expression increased significantly compared to control. We considered that hydrostatic pressure of 5 MPa could regulate HIF-2α independent of NF-κB, because the level of HIF-2α gene expression increased significantly without upregulation of NF-κB expression at 5 MPa. Hydrostatic pressure may influence cartilage degeneration, inducing MMP-13 and MMP-3 expression through HIF-2α.
Suzuki, Masaaki; Kotani, Ryosuke
2015-01-01
Hydrostatic positive pressure and vasoconstrictor acidified the cochlear fluids, whereas the vasodilator made the fluids alkaline. CBF might play a role in regulating cochlea fluid pH. Cochlea fluid pH is highly dependent on the HCO3(-)/CO2 buffer system. Cochlear blood flow (CBF) supplies O2 and removes CO2. It is speculated that cochlear blood flow changes might affect the balance of the HCO3(-)/CO2 buffer system in the cochlea. It is known that the elevation of inner ear pressure decreases the CBF, and local application of vasodilating or vasoconstricting agents directly to the cochlea changes the CBF. The purpose of this study was to elucidate the effect of positive hydrostatic inner ear pressure and application of a vasodilator and vasoconstrictor of cochlear vessels on the pH of the endolymph and perilymph. The authors performed animal physiological experiments on 30 guinea pigs. Hydrostatic positive pressure was infused through a glass capillary tube inserted into the scala tympani of the basal turn. The vasodilator, nitric oxide donor (sodium nitroprusside; SNP), and the vasoconstrictor, bupivacaine, were placed topically onto the round window of the guinea pig cochlea. Endolymph pH (pHe) and endocochlear potential (EP) were monitored by double-barreled ion-selective microelectrodes in the second turn of the guinea pig cochlea. During the topical application study, scala vestibuli perilymph pH (pHv) was also measured simultaneously in the second turn. The application of hydrostatic positive pressure caused a decrease in pHe and EP. Positive perilymphatic pressure caused the endolymph to become acidic pressure-dependently. Application of 3.0% SNP evoked an increase in both the pHe and pHv, following by a gradual recovery to baseline levels. On the other hand, 0.5% bupivacaine caused a decrease in both the pHe and pHv. The EP during topical application showed slight, non-significant changes.
Hydrostatic Pressure Influences HIF-2 Alpha Expression in Chondrocytes
Inoue, Hiroaki; Arai, Yuji; Kishida, Tsunao; Terauchi, Ryu; Honjo, Kuniaki; Nakagawa, Shuji; Tsuchida, Shinji; Matsuki, Tomohiro; Ueshima, Keiichirou; Fujiwara, Hiroyoshi; Mazda, Osam; Kubo, Toshikazu
2015-01-01
Hypoxia-inducible factor (HIF)-2α is considered to play a major role in the progression of osteoarthritis. Recently, it was reported that pressure amplitude influences HIF-2α expression in murine endothelial cells. We examined whether hydrostatic pressure is involved in expression of HIF-2α in articular chondrocytes. Chondrocytes were cultured and stimulated by inflammation or hydrostatic pressure of 0, 5, 10, or 50 MPa. After stimulation, heat shock protein (HSP) 70, HIF-2α, nuclear factor kappa B (NF-κB), matrix metalloproteinase (MMP)-13, MMP-3, and vascular endothelial growth factor (VEGF) gene expression were evaluated. The levels of all gene expression were increased by inflammatory stress. When chondrocytes were exposed to a hydrostatic pressure of 5 MPa, HIF-2α, MMP-13, and MMP-3 gene expression increased significantly although those of HSP70 and NF-κB were not significantly different from the control group. In contrast, HIF-2α gene expression did not increase under a hydrostatic pressure of 50 MPa although HSP70 and NF-κB expression increased significantly compared to control. We considered that hydrostatic pressure of 5 MPa could regulate HIF-2α independent of NF-κB, because the level of HIF-2α gene expression increased significantly without upregulation of NF-κB expression at 5 MPa. Hydrostatic pressure may influence cartilage degeneration, inducing MMP-13 and MMP-3 expression through HIF-2α. PMID:25569085
Cheleschi, Sara; De Palma, Anna; Pecorelli, Alessandra; Pascarelli, Nicola Antonio; Valacchi, Giuseppe; Belmonte, Giuseppe; Carta, Serafino; Galeazzi, Mauro; Fioravanti, Antonella
2017-01-12
Mechanical loading and hydrostatic pressure (HP) regulate chondrocytes' metabolism; however, how mechanical stimulation acts remain unclear. MicroRNAs (miRNAs) play an important role in cartilage homeostasis, mechanotransduction, and in the pathogenesis of osteoarthritis (OA). This study investigated the effects of a cyclic HP (1-5 MPa), in both normal and OA human chondrocytes, on the expression of miR-27a/b , miR-140 , miR-146a/b , and miR-365 , and of their target genes ( MMP-13 , ADAMTS-5 , IGFBP-5 , and HDAC-4 ). Furthermore, we assessed the possible involvement of Wnt/β-catenin pathway in response to HP. Chondrocytes were exposed to HP for 3h and the evaluations were performed immediately after pressurization, and following 12, 24, and 48 h. Total RNA was extracted and used for real-time PCR. β-catenin was detected by Western blotting analysis and immunofluorescence. In OA chondrocytes, HP induced a significant increase ( p < 0.01) of the expression levels of miR-27a/b , miR-140 , and miR-146a , and a significant reduction ( p < 0.01) of miR-365 at all analyzed time points. MMP-13 , ADAMTS-5 , and HDAC-4 were significantly downregulated following HP, while no significant modification was found for IGFBP-5 . β-catenin levels were significantly increased ( p < 0.001) in OA chondrocytes at basal conditions and significantly reduced ( p < 0.01) by HP. Pressurization did not cause any significant modification in normal cells. In conclusion, in OA chondrocytes, HP restores the expression levels of some miRNAs, downregulates MMP-13, ADAMTS-5, and HDAC-4, and modulates the Wnt/β-catenin pathway activation.
Cheleschi, Sara; De Palma, Anna; Pecorelli, Alessandra; Pascarelli, Nicola Antonio; Valacchi, Giuseppe; Belmonte, Giuseppe; Carta, Serafino; Galeazzi, Mauro; Fioravanti, Antonella
2017-01-01
Mechanical loading and hydrostatic pressure (HP) regulate chondrocytes’ metabolism; however, how mechanical stimulation acts remain unclear. MicroRNAs (miRNAs) play an important role in cartilage homeostasis, mechanotransduction, and in the pathogenesis of osteoarthritis (OA). This study investigated the effects of a cyclic HP (1–5 MPa), in both normal and OA human chondrocytes, on the expression of miR-27a/b, miR-140, miR-146a/b, and miR-365, and of their target genes (MMP-13, ADAMTS-5, IGFBP-5, and HDAC-4). Furthermore, we assessed the possible involvement of Wnt/β-catenin pathway in response to HP. Chondrocytes were exposed to HP for 3h and the evaluations were performed immediately after pressurization, and following 12, 24, and 48 h. Total RNA was extracted and used for real-time PCR. β-catenin was detected by Western blotting analysis and immunofluorescence. In OA chondrocytes, HP induced a significant increase (p < 0.01) of the expression levels of miR-27a/b, miR-140, and miR-146a, and a significant reduction (p < 0.01) of miR-365 at all analyzed time points. MMP-13, ADAMTS-5, and HDAC-4 were significantly downregulated following HP, while no significant modification was found for IGFBP-5. β-catenin levels were significantly increased (p < 0.001) in OA chondrocytes at basal conditions and significantly reduced (p < 0.01) by HP. Pressurization did not cause any significant modification in normal cells. In conclusion, in OA chondrocytes, HP restores the expression levels of some miRNAs, downregulates MMP-13, ADAMTS-5, and HDAC-4, and modulates the Wnt/β-catenin pathway activation. PMID:28085114
Yoo, Sungyul; Ghafoor, Kashif; Kim, Jeong Un; Kim, Sanghun; Jung, Bora; Lee, Dong-Un; Park, Jiyong
2015-06-01
Nonpasteurized orange juice is manufactured by squeezing juice from fruit without peel removal. Fruit surfaces may carry pathogenic microorganisms that can contaminate squeezed juice. Titanium dioxide-UVC photocatalysis (TUVP), a nonthermal technique capable of microbial inactivation via generation of hydroxyl radicals, was used to decontaminate orange surfaces. Levels of spot-inoculated Escherichia coli O157:H7 (initial level of 7.0 log CFU/cm(2)) on oranges (12 cm(2)) were reduced by 4.3 log CFU/ml when treated with TUVP (17.2 mW/cm(2)). Reductions of 1.5, 3.9, and 3.6 log CFU/ml were achieved using tap water, chlorine (200 ppm), and UVC alone (23.7 mW/cm(2)), respectively. E. coli O157:H7 in juice from TUVP (17.2 mW/cm(2))-treated oranges was reduced by 1.7 log CFU/ml. After orange juice was treated with high hydrostatic pressure (HHP) at 400 MPa for 1 min without any prior fruit surface disinfection, the level of E. coli O157:H7 was reduced by 2.4 log CFU/ml. However, the E. coli O157:H7 level in juice was reduced by 4.7 log CFU/ml (to lower than the detection limit) when TUVP treatment of oranges was followed by HHP treatment of juice, indicating a synergistic inactivation effect. The inactivation kinetics of E. coli O157:H7 on orange surfaces followed a biphasic model. HHP treatment did not affect the pH, °Brix, or color of juice. However, the ascorbic acid concentration and pectinmethylesterase activity were reduced by 35.1 and 34.7%, respectively.
Ikenoue, Takashi; Trindade, Michael C D; Lee, Mel S; Lin, Eric Y; Schurman, David J; Goodman, Stuart B; Smith, R Lane
2003-01-01
This study addressed the hypothesis that duration and magnitude of applied intermittent hydrostatic pressure (IHP) are critical parameters in regulation of normal human articular chondrocyte aggrecan and type II collagen expression. Articular chondrocytes were isolated from knee cartilage and maintained as primary, high-density monolayer cultures. IHP was applied at magnitudes of 1, 5 and 10 MPa at 1 Hz for durations of either 4 h per day for one day (4 x 1) or 4 h per day for four days (4 x 4). Total cellular RNA was isolated and analyzed for aggrecan and type II collagen mRNA signal levels using specific primers and reverse transcription polymerase chain reaction (RT-PCR) nested with beta-actin primers as internal controls. With a 4x1 loading regimen, aggrecan mRNA signal levels increased 1.3- and 1.5-fold at 5 and 10 MPa, respectively, relative to beta-actin mRNA when compared to unloaded cultures. Changing the duration of loading to a 4x4 regimen increased aggrecan mRNA signal levels by 1.4-, 1.8- and 1.9-fold at loads of 1, 5 and 10 MPa, respectively. In contrast to the effects of IHP on aggrecan, type II collagen mRNA signal levels were only upregulated at loads of 5 and 10 MPa with the 4x4 loading regimen. Analysis of cell-associated protein by western blotting confirmed that IHP increased aggrecan and type II collagen in chondrocyte extracts. These data demonstrate that duration and magnitude of applied IHP differentially alter chondrocyte matrix protein expression. The results show that IHP provides an important stimulus for increasing cartilage matrix anabolism and may contribute to repair and regeneration of damaged or diseased cartilage.
Reinwald, Yvonne; Leonard, Katherine H.L.; Henstock, James R.; Whiteley, Jonathan P.; Osborne, James M.; Waters, Sarah L.; Levesque, Philippe
2015-01-01
Bioreactors have been widely acknowledged as valuable tools to provide a growth environment for engineering tissues and to investigate the effect of physical forces on cells and cell-scaffold constructs. However, evaluation of the bioreactor environment during culture is critical to defining outcomes. In this study, the performance of a hydrostatic force bioreactor was examined by experimental measurements of changes in dissolved oxygen (O2), carbon dioxide (CO2), and pH after mechanical stimulation and the determination of physical forces (pressure and stress) in the bioreactor through mathematical modeling and numerical simulation. To determine the effect of hydrostatic pressure on bone formation, chick femur skeletal cell-seeded hydrogels were subjected to cyclic hydrostatic pressure at 0–270 kPa and 1 Hz for 1 h daily (5 days per week) over a period of 14 days. At the start of mechanical stimulation, dissolved O2 and CO2 in the medium increased and the pH of the medium decreased, but remained within human physiological ranges. Changes in physiological parameters (O2, CO2, and pH) were reversible when medium samples were placed in a standard cell culture incubator. In addition, computational modeling showed that the distribution and magnitude of physical forces depends on the shape and position of the cell-hydrogel constructs in the tissue culture format. Finally, hydrostatic pressure was seen to enhance mineralization of chick femur skeletal cell-seeded hydrogels. PMID:24967717
Reinwald, Yvonne; Leonard, Katherine H L; Henstock, James R; Whiteley, Jonathan P; Osborne, James M; Waters, Sarah L; Levesque, Philippe; El Haj, Alicia J
2015-01-01
Bioreactors have been widely acknowledged as valuable tools to provide a growth environment for engineering tissues and to investigate the effect of physical forces on cells and cell-scaffold constructs. However, evaluation of the bioreactor environment during culture is critical to defining outcomes. In this study, the performance of a hydrostatic force bioreactor was examined by experimental measurements of changes in dissolved oxygen (O2), carbon dioxide (CO2), and pH after mechanical stimulation and the determination of physical forces (pressure and stress) in the bioreactor through mathematical modeling and numerical simulation. To determine the effect of hydrostatic pressure on bone formation, chick femur skeletal cell-seeded hydrogels were subjected to cyclic hydrostatic pressure at 0-270 kPa and 1 Hz for 1 h daily (5 days per week) over a period of 14 days. At the start of mechanical stimulation, dissolved O2 and CO2 in the medium increased and the pH of the medium decreased, but remained within human physiological ranges. Changes in physiological parameters (O2, CO2, and pH) were reversible when medium samples were placed in a standard cell culture incubator. In addition, computational modeling showed that the distribution and magnitude of physical forces depends on the shape and position of the cell-hydrogel constructs in the tissue culture format. Finally, hydrostatic pressure was seen to enhance mineralization of chick femur skeletal cell-seeded hydrogels.
In-situ high-pressure powder X-ray diffraction study of α-zirconium phosphate.
Readman, Jennifer E; Lennie, Alistair; Hriljac, Joseph A
2014-06-01
The high-pressure structural chemistry of α-zirconium phosphate, α-Zr(HPO4)2·H2O, was studied using in-situ high-pressure diffraction and synchrotron radiation. The layered phosphate was studied under both hydrostatic and non-hydrostatic conditions and Rietveld refinement carried out on the resulting diffraction patterns. It was found that under hydrostatic conditions no uptake of additional water molecules from the pressure-transmitting medium occurred, contrary to what had previously been observed with some zeolite materials and a layered titanium phosphate. Under hydrostatic conditions the sample remained crystalline up to 10 GPa, but under non-hydrostatic conditions the sample amorphized between 7.3 and 9.5 GPa. The calculated bulk modulus, K0 = 15.2 GPa, showed the material to be very compressible with the weak linkages in the structure of the type Zr-O-P.
Filtration coefficient of the axon membrane as measured with hydrostatic and osmotic methods.
Vargas, F F
1968-01-01
The hydraulic conductivity of the membranes surrounding the giant axon of the squid, Dosidicus gigas, was measured. In some axons the axoplasm was partially removed by suction. Perfusion was then established by insertion of a second pipette. In other axons the axoplasm was left intact and only one pipette was inserted. In both groups hydrostatic pressure was applied by means of a water column in a capillary manometer. Displacement of the meniscus in time gave the rate of fluid flowing across the axon sheath. In both groups osmotic differences across the membrane were established by the addition of a test molecule to the external medium which was seawater. The hydraulic conductivity determined by application of hydrostatic pressure was 10.6 +/- 0.8.10(-8) cm/sec cm H(2)O in perfused axons and 3.2 +/- 0.6.10(-8) cm/sec cm H(2)O in intact axons. When the driving force was an osmotic pressure gradient the conductivity was 4.5 +/- 0.6 x 10(-10) cm/sec cm H(2)O and 4.8 +/- 0.9 x 10(-10) cm/sec cm H(2)O in perfused and intact axons, respectively. A comparable result was found when the internal solution was made hyperosmotic. The fluid flow was a linear function of the hydrostatic pressure up to 70 cm of water. Glycerol outflux and membrane conductance were increased 1.6 and 1.1 times by the application of hydrostatic pressure. These increments do not give an explanation of the difference between the filtration coefficients. Other possible explanations are suggested and discussed.
Hydrostatic fluid pressure in the vestibular organ of the guinea pig.
Park, Jonas J-H; Boeven, Jahn J; Vogel, Stefan; Leonhardt, Steffen; Wit, Hero P; Westhofen, Martin
2012-07-01
Since inner ear hair cells are mechano-electric transducers the control of hydrostatic pressure in the inner ear is crucial. Most studies analyzing dynamics and regulation of inner ear hydrostatic pressure performed pressure measurements in the cochlea. The present study is the first one reporting about absolute hydrostatic pressure values in the labyrinth. Hydrostatic pressure of the endolymphatic system was recorded in all three semicircular canals. Mean pressure values were 4.06 cmH(2)O ± 0.61 in the posterior, 3.36 cmH(2)O ± 0.94 in the anterior and 3.85 cmH(2)O ± 1.38 in the lateral semicircular canal. Overall hydrostatic pressure in the vestibular organ was 3.76 cmH(2)O ± 0.36. Endolymphatic hydrostatic pressure in all three semicircular canals is the same (p = 0.310). With regard to known endolymphatic pressure values in the cochlea from past studies vestibular pressure values are comparable to cochlear values. Until now it is not known whether the reuniens duct and the Bast's valve which are the narrowest passages in the endolymphatic system are open or closed. Present data show that most likely the endolymphatic system is a functionally open entity.
NASA Technical Reports Server (NTRS)
Ream, L. W.
1973-01-01
A test program was conducted to determine the performance characteristics of gas-lubricated nonconforming pivoted-pad journal bearings and a spiral-groove thrust bearing designed for the Brayton cycle rotating unit (BRU). Hydrostatic, hybrid (simultaneously hydrostatic and hydrodynamic), and hydrodynamic tests were conducted in argon gas at ambient pressure and temperature ranges representative of hydrostatic operation up to the 10.5-kWe BRU power-generating level. Performance of the gas lubricated bearings is presented, including hydrostatic gas flow rates, bearing clearances, bearing temperatures, and transient performance.
Kim, Do-Yeon; Yeom, Soo-Jin; Park, Chang-Su; Kim, Yeong-Su
2016-10-01
To optimize conversion of rutin to isoquercetin by commercial α-L-rhamnosidase using high hydrostatic pressure (HHP). The de-rhamnosylation activity of α-L-rhamnosidase for isoquercetin production was maximal at pH 6.0 and 50 °C using HHP (150 MPa). The enzyme showed high specificity for rutin. The specific activity for rutin at HHP was 1.5-fold higher than that at atmospheric pressure. The enzyme completely hydrolysed 20 mM rutin in tartary buckwheat extract after 2 h at HHP, with a productivity of 10 mM h(-1). The productivity and conversion were 2.2- and 1.5-fold higher at HHP than at atmospheric pressure, respectively. This is the first report concerning the enzymatic hydrolysis of isoquercetin in tartary buckwheat at HHP.
Liang, Zhou; Xin, Wei; Qiang, Liu; Xiang, Cai; Bang-Hua, Liao; Jin, Yang; De-Yi, Luo; Hong, Li; Kun-Jie, Wang
2017-06-01
Abnormal intravesical pressure results in a series of pathological changes. We investigated the effects of hydrostatic pressure and muscarinic receptors on the release of inflammatory cytokines in rat and human bladder smooth muscle cells (HBSMCs). Animal model of bladder outlet obstruction was induced by urethra ligation. HBSMCs were subjected to elevated hydrostatic pressure and/or acetylcholine (Ach). Macrophage infiltration in the bladder wall was determined by immunohistochemical staining. The expression of inflammatory genes was measured by RT-PCR, ELISA and immunofluorescence. In obstructed bladder, inflammatory genes and macrophage infiltration were remarkably induced. When HBSMCs were subjected to 200-300 cm H 2 O pressure for 2-24 h in vitro, the expressions of IL-6 and RANTES were significantly increased. Hydrostatic pressure promoted the protein levels of phospho-NFκB p65 and phospho-ERK1/2 as well as muscarinic receptors. Moreover, NFκB or ERK1/2 inhibitors suppressed pressure-induced inflammatory genes mRNA. When cells were treated with 1 μM acetylcholine for 6 h, a significant increase in IL-6 mRNA expression was detected. Acetylcholine also enhanced pressure-induced phospho-NFκB p65 and IL-6 protein expression. Additionally, pressure-induced IL-6 was partially suppressed by muscarinic receptors antagonists. Hydrostatic pressure and muscarinic receptors were involved in the secretion of inflammatory cytokines in HBSMCs, indicating a pro-inflammatory effect of the two factors in the pathological process of BOO. © 2016 Wiley Periodicals, Inc.
Filtration Coefficient of the Axon Membrane As Measured with Hydrostatic and Osmotic Methods
Vargas, Fernando F.
1968-01-01
The hydraulic conductivity of the membranes surrounding the giant axon of the squid, Dosidicus gigas, was measured. In some axons the axoplasm was partially removed by suction. Perfusion was then established by insertion of a second pipette. In other axons the axoplasm was left intact and only one pipette was inserted. In both groups hydrostatic pressure was applied by means of a water column in a capillary manometer. Displacement of the meniscus in time gave the rate of fluid flowing across the axon sheath. In both groups osmotic differences across the membrane were established by the addition of a test molecule to the external medium which was seawater. The hydraulic conductivity determined by application of hydrostatic pressure was 10.6 ± 0.8.10-8 cm/sec cm H2O in perfused axons and 3.2 ± 0.6.10-8 cm/sec cm H2O in intact axons. When the driving force was an osmotic pressure gradient the conductivity was 4.5 ± 0.6 x 10-10 cm/sec cm H2O and 4.8 ± 0.9 x 10-10 cm/sec cm H2O in perfused and intact axons, respectively. A comparable result was found when the internal solution was made hyperosmotic. The fluid flow was a linear function of the hydrostatic pressure up to 70 cm of water. Glycerol outflux and membrane conductance were increased 1.6 and 1.1 times by the application of hydrostatic pressure. These increments do not give an explanation of the difference between the filtration coefficients. Other possible explanations are suggested and discussed. PMID:5642470
Neetoo, Hudaa; Ye, Mu; Chen, Haiqiang
2008-12-10
Sprouts eaten raw are increasingly being perceived as hazardous foods as they have been implicated in Escherichia coli O157:H7 outbreaks where the seeds were found to be the likely source of contamination. The objective of our study was to evaluate the potential of using high hydrostatic pressure (HHP) technology for alfalfa seed decontamination. Alfalfa seeds inoculated with a cocktail of five strains of E. coli O157:H7 were subjected to pressures of 500 and 600 MPa for 2 min at 20 degrees C in a dry or wet (immersed in water) state. Immersing seeds in water during pressurization considerably enhanced inactivation of E. coli O157:H7 achieving reductions of 3.5 log and 5.7 log at 500 and 600 MPa, respectively. When dry seeds were pressurized, both pressure levels reduced the counts by <0.7 log. To test the efficacy of HHP to completely decontaminate seeds whilst meeting the FDA requirement of 5 log reductions, seeds inoculated with a ~5 log CFU/g of E. coli O157:H7 were pressure-treated at 600 and 650 MPa at 20 degrees C for holding times of 2 to 20 min. A >5 log reduction in the population was achieved when 600 MPa was applied for durations of > or =6 min although survivors were still detected by enrichment. When the pressure was stepped up to 650 MPa, the threshold time required to achieve complete elimination was 15 min. Un-inoculated seeds pressure-treated at 650 MPa for 15 min at 20 degrees C successfully sprouted achieving a germination rate identical to untreated seeds after eight days of sprouting. These results therefore demonstrate the promising application of HHP on alfalfa seeds to eliminate the risk of E. coli O157:H7 infections associated with consumption of raw alfalfa sprouts.
NASA Astrophysics Data System (ADS)
Hu, Guanglan; Zheng, Yuanrong; Wang, Danfeng; Zha, Baoping; Liu, Zhenmin; Deng, Yun
2015-07-01
The effects of ultraviolet-C radiation (UV-C, 11.8 W/m2), single-cycle and multiple-cycle high hydrostatic pressure (HHP at 200, 400 or 600 MPa) on microbial load and physicochemical quality of raw milk were evaluated. Reductions of aerobic plate count (APC) and coliform count (CC) by HHP were more than 99.9% and 98.7%, respectively. Inactivation efficiency of microorganisms increased with pressure level. At the same pressure level, two-cycle treatments caused lower APC, but did not show CC differences compared with single-cycle treatments. Reductions of APC and CC by UV-C were somewhere between 200 MPa and 400/600 MPa. Both HHP and UV-C significantly decreased lightness and increased pH, but did not change soluble solids content and thiobarbituric acid-reactive substances' values. Two 2.5 min cycles of HHP at 600 MPa caused minimum APC and CC, and maximum conductivity. Compared with HHP, UV-C markedly increased protein oxidation and reduced darkening.
NASA Astrophysics Data System (ADS)
Sang, Lina; Shabbir, Babar; Maheshwari, Pankaj; Qiu, Wenbin; Ma, Zongqing; Dou, Shixue; Cai, Chuanbing; Awana, V. P. S.; Wang, Xiaolin
2018-07-01
We performed a systematic study of the hydrostatic pressure (HP) effect on the supercon-ducting transition temperature (T c), critical current density (J c), irreversibility field (H irr), upper critical field (H c2), and flux pinning mechanism in un-doped and 3 at.% Co-doped FeSe0.5Te0.5 crystals. We found that T c is increased from 11.5 to 17 K as HP increases from 0 to 1.2 GPa. Remarkably, the J c is significantly enhanced by a factor of 3 to 100 for low and high temperature and field, and the H irr line is shifted to higher fields by HP up to 1.2 GPa. Based on the collective pinning model, the δl pinning associated with charge-carrier mean free path fluctuation is responsible for the pinning mechanism of Fe1-x Co x Se0.5Te0.5 samples with or without pressure. A comprehensive vortex phase diagram in the mixed state is constructed and analysed for the 3 at.% Co-doped sample.
Effect of hydrostatic pressure on prokaryotic heterotrophic activity in the dark ocean
NASA Astrophysics Data System (ADS)
Amano, C.; Sintes, E.; Utsumi, M.; Herndl, G. J.
2016-02-01
The pioneering work of ZoBell in the 1940s revealed the existence of piezophilic bacteria in the deep ocean, capable of growing only under high-pressure conditions. However, it is still unclear to what extent the bulk prokaryotic community inhabiting the deep ocean is affected by hydrostatic pressure. Essentially, the fractions of the bulk microbial community being piezophilic, piezotolerant and piezosensitive remain unknown. To determine the influence of hydrostatic pressure on the heterotrophic microbial activity, an in situ microbial incubator (ISMI) was deployed in the North Atlantic Ocean at depths down to 3200 m. Natural prokaryotic communities were incubated under both in situ hydrostatic pressure and atmospheric pressure conditions at in situ temperature following the addition of 5 nM 3H-leucine. Bulk leucine incorporation rates and single cell activity assessed by microautoradiography combined with catalyzed reporter deposition fluorescence in situ hybridization (MICRO-CARD-FISH) were determined. Prokaryotic leucine incorporation rates obtained under in situ pressure conditions were generally lower than under atmospheric pressure conditions, suggesting that hydrostatic pressure inhibits overall heterotrophic activity in the deep sea. The ratio of leucine incorporation rates obtained under in situ pressure conditions to atmospheric pressure conditions decreased with depth for the bulk prokaryotic community. Moreover, MICRO-CARD-FISH revealed that specific prokaryotic groups are apparently more affected by hydrostatic pressure than others. Taken together, our results indicate varying sensitivities of prokaryotic groups to hydrostatic pressure.
Wang, Qi; Zhang, Chun; Guo, Fangxia; Li, Zenglan; Liu, Yongdong; Su, Zhiguo
2017-11-15
In this paper, we reported a novel strategy for the site-specific attachment of polyethylene glycol (PEGylation) of proteins using elevated hydrostatic pressure. The process was similar to the conventional one except the reactor was under elevated hydrostatic pressure. The model protein was recombinant human ciliary neurotrophic factor (rhCNTF), and the reagent was monomethoxy-polyethylene glycol-maleimide (mPEG-MAL). PEGylation with mPEG (40 kDa)-MAL at pH 7.0 under normal pressure for 5 h achieved a less than 5% yield. In comparison, when the pressure was elevated, the PEGylation yield was increased dramatically, reaching nearly 90% at 250 MPa. Furthermore, the following phenomena were observed: (1) high-hydrostatic-pressure PEGylation (HHPP) could operate at a low reactant ratio of 1:1.2 (rhCNTF to mPEG-MAL), while the conventional process needs a much-higher ratio. (2) Short and long chains of PEG gave a similar yield of 90% in HHPP, while the conventional yield for the short chain of the PEG was higher than that of the long chain. (3) The reaction pH in the range of 7.0 to 8.0 had almost no influence upon the yield of HHPP, while the PEGylation yield was significantly increased by a factor of three from pH 7.0 to 8.0 at normal pressure. Surface accessibility analysis was performed using GRASP2 software, and we found that Cys17 of rhCNTF was located at the concave patches, which may have steric hindrance for the PEG to approach. The speculated benefit of HHPP was the facilitation of target-site exposure, reducing the steric hindrance and making the reaction much easier. Structure and activity analysis demonstrated that the HHPP product was comparable to the PEGylated rhCNTF prepared through a conventional method. Overall, this work demonstrated that HHPP, as we proposed, may have application potentials in various conjugations of biomacromolecules.
The effects of intermittent hydrostatic pressure on self-assembled articular cartilage constructs.
Hu, Jerry C; Athanasiou, Kyriacos A
2006-05-01
To date, static culture for the tissue engineering of articular cartilage has shown to be inadequate in conferring functionality to constructs. Various forms of mechanical stimuli accompany articular cartilage development in vivo, and one of these is hydrostatic pressure. This study used histology, biochemistry, and biomechanics to examine the effects of intermittent hydrostatic pressure, applied at 10 MPa and 1 Hz for 4 h per day for 5 days per week for up to 8 weeks on self-assembled chondrocyte constructs. The self-assembling process is a novel approach that allows engineering of articular cartilage constructs without the use of exogenous scaffolds. The self-assembled constructs were found to be capable of enduring this loading regimen. Significant increases in collagen production were only observed in pressurized samples. Intermittent hydrostatic pressure prevented a significant decrease in total GAG, which was significant in controls. Aside from the beneficial effects intermittent hydrostatic pressure may have on ECM synthesis, its effects on mechanical properties may require longer culture periods to manifest. This study demonstrates the successful use of the self-assembling process to produce articular cartilage constructs. It also shows for the first time that long-term culture of tissue-engineered articular cartilage construct benefits from intermittent hydrostatic pressure.
Lee, Mel S; Ikenoue, Takashi; Trindade, Michael C D; Wong, Neal; Goodman, Stuart B; Schurman, David J; Smith, R Lane
2003-01-01
The role of continuous passive motion (CPM) in the management of septic arthritis and inflammatory arthritis remains of interest. CPM produces cyclic variations in intraarticular pressure that facilitates transport of fluid, nutrients, and solutes within and/or across the joint and stimulates chondrocyte metabolism. However, the precise mechanisms mediating the responses of chondrocytes to joint motion remain unclear. This study tested the hypothesis that dynamic mechanical loading counteracts effects of bacterial lipopolysaccharide (LPS), an inflammatory mediator, on chondrocyte metabolism. Intermittent hydrostatic pressure (IHP) (10 MPa for 4 h) was applied to human chondrocytes pretreated with LPS (1 microg/ml for 18 h). LPS activation of chondrocytes decreased mRNA signal levels of type II collagen by 67% and aggrecan by 56% and increased nitric oxide by 3.1-fold, monocyte chemotactic protein-1 mRNA signal levels by 6.5-fold, and matrix metalloproteinase-2 mRNA signal levels by 1.3-fold. Application of IHP to LPS-activated chondrocytes decreased nitric oxide synthase mRNA signal levels and nitric oxide levels in the culture medium. Exposure of LPS-activated chondrocytes to IHP upregulated type II collagen and aggrecan mRNA signal levels by 1.7-fold, relative to chondrocytes activated by LPS and maintained without loading. In addition, application of IHP decreased the upregulation in signal levels of monocyte chemotactic factor-1 and matrix metalloproteinase-2 following LPS activation by 45% and 15%, respectively. These data show that mechanical loading counteract effects of inflammatory agents, such as bacterial LPS, and suggest that postinfection sequelae are influenced by the presence or absence of joint loading.
NASA Technical Reports Server (NTRS)
da Silva, Arlindo M.; Putman, William; Nattala, J.
2014-01-01
This document describes the gridded output files produced by a two-year global, non-hydrostatic mesoscale simulation for the period 2005-2006 produced with the non-hydrostatic version of GEOS-5 Atmospheric Global Climate Model (AGCM). In addition to standard meteorological parameters (wind, temperature, moisture, surface pressure), this simulation includes 15 aerosol tracers (dust, sea-salt, sulfate, black and organic carbon), O3, CO and CO2. This model simulation is driven by prescribed sea-surface temperature and sea-ice, daily volcanic and biomass burning emissions, as well as high-resolution inventories of anthropogenic sources. A description of the GEOS-5 model configuration used for this simulation can be found in Putman et al. (2014). The simulation is performed at a horizontal resolution of 7 km using a cubed-sphere horizontal grid with 72 vertical levels, extending up to to 0.01 hPa (approximately 80 km). For user convenience, all data products are generated on two logically rectangular longitude-latitude grids: a full-resolution 0.0625 deg grid that approximately matches the native cubed-sphere resolution, and another 0.5 deg reduced-resolution grid. The majority of the full-resolution data products are instantaneous with some fields being time-averaged. The reduced-resolution datasets are mostly time-averaged, with some fields being instantaneous. Hourly data intervals are used for the reduced-resolution datasets, while 30-minute intervals are used for the full-resolution products. All full-resolution output is on the model's native 72-layer hybrid sigma-pressure vertical grid, while the reduced-resolution output is given on native vertical levels and on 48 pressure surfaces extending up to 0.02 hPa. Section 4 presents additional details on horizontal and vertical grids. Information of the model surface representation can be found in Appendix B. The GEOS-5 product is organized into file collections that are described in detail in Appendix C. Additional details about variables listed in this file specification can be found in a separate document, the GEOS-5 File Specification Variable Definition Glossary. Documentation about the current access methods for products described in this document can be found on the GEOS-5 Nature Run portal: http://gmao.gsfc.nasa.gov/projects/G5NR. Information on the scientific quality of this simulation will appear in a forthcoming NASA Technical Report Series on Global Modeling and Data Assimilation to be available from http://gmao.gsfc.nasa.gov/pubs/tm/.
Effect of dynamic hydrostatic pressure on rabbit intervertebral disc cells.
Kasra, Mehran; Goel, Vijay; Martin, James; Wang, Shea-Tien; Choi, Woosung; Buckwalter, Joseph
2003-07-01
The pathogenesis of vibration-induced disorders of intervertebral disc at the cellular level is largely unknown. The objective of this study was to establish a method to investigate the ranges of constructive and destructive hydrostatic loading frequencies and amplitudes in preventing or inducing extracellular disc matrix degradation. Using a hydraulic chamber, normal rabbit intervertebral disc cells were tested under dynamic hydrostatic loading. Monolayer cultures of disc outer annulus cells and 3-dimensional (3-D) alginate cultures of disc nucleus pulposus cells were tested. Effects of different loading amplitudes (3-D culture, 0-3 MPa; monolayer, 0-1.7 MPa) and frequencies (1-20 Hz) on disc collagen and protein metabolism were investigated by measuring 3H-proline-labeled proteins associated with the cells in the extracellular matrix and release of 3H-proline-labeled molecules into culture medium. High frequency and high amplitude hydrostatic stress stimulated collagen synthesis in cultures of outer annulus cells whereas the lower amplitude and frequency hydrostatic stress had little effect. For the same loading duration and repetition, neither treatment significantly affected the relative amount of protein released from the cell layers, indicating that protein degradation and stability were unaffected. In the 3-D nucleus culture, higher amplitude and frequency increased synthesis rate and lowered degradation. In this case, loading amplitude had a stronger influence on cell response than that of loading frequency. Considering the ranges of loading amplitude and frequency used in this study, short-term application of high loading amplitudes and frequencies was beneficial in stimulation of protein synthesis and reduction of protein degradation.
NASA Technical Reports Server (NTRS)
Ream, L. W.
1974-01-01
A test program was conducted to determine the performance characteristics of gas-lubricated cruciform-mounted tilting-pad journal bearings and a damped spiral-groove thrust bearing designed for the Brayton cycle rotating unit (BRU). Hydrostatic, hybrid (simultaneously hydrostatic and hydrodynamic), and hydrodynamic tests were conducted in argon gas at ambient pressure and temperature ranges representative of operation to the 10.5 kWe BRU power-generating level. Performance of the gas lubricated bearings is presented including hydrostatic gas flow rates, bearing clearances, bearing temperatures, and transient performance.
Regulation of gene expression in intervertebral disc cells by low and high hydrostatic pressure.
Neidlinger-Wilke, Cornelia; Würtz, Karin; Urban, Jill P G; Börm, Wolfgang; Arand, Markus; Ignatius, Anita; Wilke, Hans-Joachim; Claes, Lutz E
2006-08-01
Intervertebral disc structures are exposed to wide ranges of intradiscal hydrostatic pressure during different loading exercises and are at their minimum during lying or relaxed sitting and at maximum during lifting weights with a round back. We hypothesize that these different loading magnitudes influence the intervertebral disc (IVD) by alteration of disc matrix turnover depending on their magnitudes. Therefore the aim of this study was to assess changes in gene expression of human nucleus cells after the application of low hydrostatic pressure (0.25 MPa) and high hydrostatic pressure (2.5 MPa). IVD cells isolated from the nucleus of human (n = 18) and bovine (n = 24 from four animals) disc biopsies were seeded into three-dimensional collagen type-I matrices and exposed to the different loading magnitudes by specially developed pressure chambers. The lower pressure range (0.25 MPa, 30 min, 0.1 Hz) was applied with a recently published device by using an external compression cylinder. For the application of higher loads (2.5 MPa, 30 min, 0.1 Hz) the cell-loaded collagen gels were sealed into sterile bags with culture medium and stimulated in a newly developed water-filled compression cylinder by using a loading frame. These methods allowed the comparison of loading regimes in a wide physiological range under an equal three-dimensional culture conditions. Cells were harvested 24 h after the end of stimulation and changes in the expression of genes known to influence IVD matrix turnover (collagen-I, collagen-II, aggrecan, MMP1, MMP2, MMP3, MMP13) were analyzed by real-time RT-PCR. A Wilcoxon signed-rank test(1) and a Wilcoxon 2-sample test(2) were performed to detect differences between the stimulated and control samples(1) and differences between low and high hydrostatic pressure(2). Multiple testing was considered by adjusting the p value appropriately. Both regimes of hydrostatic pressure influenced gene expression in nucleus cells with opposite tendencies for the matrix forming proteins aggrecan and collagen type-I in response to the two different pressure magnitudes: Low hydrostatic-pressure (0.25 MPa) tended to increase collagen-I and aggrecan expression of human nucleus cells (P < 0.05) but only to a small degree. High hydrostatic pressure (2.5 MPa) tended to decrease gene expression of all anabolic proteins with significant effects on aggrecan expression of nucleus cells (P = 0.004). Low hydrostatic pressure had no influence on the expression of matrix metalloproteinases (MMP1, MMP2, MMP3 and MMP13). In contrast, high hydrostatic pressure tended to increase the expression of MMP1, MMP3 and MMP13 of human nucleus cells with high individual-individual variations. The decreased expression of aggrecan (P = 0.008) and collagen type II (P = 0.023) and the increased MMP3 expression (P = 0.008) in response to high hydrostatic pressure could be confirmed in additional experiments with bovine nucleus cells. These results suggest that hydrostatic pressure as one of the physiological stimuli of the IVD may influence matrix turnover in a magnitude dependent way. Low hydrostatic pressure (0.25 MPa) has quite small influences with a tendency to anabolic effects, whereas high hydrostatic pressure (2.5 MPa) tends to decrease the matrix protein expression with a tendency to increase some matrix-turnover enzymes. Therefore, hydrostatic pressure may regulate disc matrix turnover in a dose-dependent way.
Trindade, Michael C D; Shida, Jun-ichi; Ikenoue, Takashi; Lee, Mel S; Lin, Eric Y; Yaszay, Burt; Yerby, Scott; Goodman, Stuart B; Schurman, David J; Smith, R Lane
2004-09-01
This study tested the hypothesis that intermittent hydrostatic pressure applied to human osteoarthritic chondrocytes modulates matrix metalloproteinase and pro-inflammatory mediator release in vitro. Human osteoarthritic articular chondrocytes were isolated and cultured as primary high-density monolayers. For testing, chondrocyte cultures were transferred to serum-free medium and maintained without loading or with exposure to intermittent hydrostatic pressure (IHP) at 10 MPa at a frequency of 1 Hz for periods of 6, 12 and 24 h. Levels of matrix metalloproteinase-2, -9 (MMP-2, -9), tissue inhibitor of metalloproteinase-1 (TIMP-1), and the pro-inflammatory mediators, interleukin-6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1), released into the culture medium were assessed by ELISA. Matrix metalloproteinase activity was confirmed by zymographic analysis. In the absence of IHP, levels of MMP-2, TIMP-1, IL-6, and MCP-1 in the chondrocyte culture medium increased in a time-dependent manner. Application of IHP decreased MMP-2 levels at all time periods tested, relative to unloaded control cultures maintained for the same time periods. Although 84/82 kDa bands were faintly detectable by zymography, MMP-9 levels were not quantifiable in medium from loaded or unloaded cultures by ELISA. TIMP-1 levels were not altered in response to IHP at any time period tested. IL-6 and MCP-1 levels decreased in cultures exposed to IHP at 12 and 24 h, relative to unloaded control cultures maintained for the same time periods. IHP decreased release of MMP-2, IL-6 and MCP-1 by osteoarthritic chondrocytes in vitro suggesting that pressure influences cartilage stability by modulating chondrocyte expression of these degradative and pro-inflammatory proteins in vivo.
The effect of the rate of hydrostatic pressure depressurization on cells in culture.
Tworkoski, Ellen; Glucksberg, Matthew R; Johnson, Mark
2018-01-01
Changes in hydrostatic pressure, at levels as low as 10 mm Hg, have been reported in some studies to alter cell function in vitro; however, other studies have found no detectable changes using similar methodologies. We here investigate the hypothesis that the rate of depressurization, rather than elevated hydrostatic pressure itself, may be responsible for these reported changes. Hydrostatic pressure (100 mm Hg above atmospheric pressure) was applied to bovine aortic endothelial cells (BAECs) and PC12 neuronal cells using pressurized gas for periods ranging from 3 hours to 9 days, and then the system was either slowly (~30 minutes) or rapidly (~5 seconds) depressurized. Cell viability, apoptosis, proliferation, and F-actin distribution were then assayed. Our results did not show significant differences between rapidly and slowly depressurized cells that would explain differences previously reported in the literature. Moreover, we found no detectable effect of elevated hydrostatic pressure (with slow depressurization) on any measured variables. Our results do not confirm the findings of other groups that modest increases in hydrostatic pressure affect cell function, but we are not able to explain their findings.
The effect of the rate of hydrostatic pressure depressurization on cells in culture
Tworkoski, Ellen; Glucksberg, Matthew R.
2018-01-01
Changes in hydrostatic pressure, at levels as low as 10 mm Hg, have been reported in some studies to alter cell function in vitro; however, other studies have found no detectable changes using similar methodologies. We here investigate the hypothesis that the rate of depressurization, rather than elevated hydrostatic pressure itself, may be responsible for these reported changes. Hydrostatic pressure (100 mm Hg above atmospheric pressure) was applied to bovine aortic endothelial cells (BAECs) and PC12 neuronal cells using pressurized gas for periods ranging from 3 hours to 9 days, and then the system was either slowly (~30 minutes) or rapidly (~5 seconds) depressurized. Cell viability, apoptosis, proliferation, and F-actin distribution were then assayed. Our results did not show significant differences between rapidly and slowly depressurized cells that would explain differences previously reported in the literature. Moreover, we found no detectable effect of elevated hydrostatic pressure (with slow depressurization) on any measured variables. Our results do not confirm the findings of other groups that modest increases in hydrostatic pressure affect cell function, but we are not able to explain their findings. PMID:29315329
USDA-ARS?s Scientific Manuscript database
The effect of high hydrostatic pressure (HHP) treatment on inactivation, injury and recovery of Salmonella Enteritidis and Escherichia coli O157:H7 cocktail inoculated in tomato juice (pH 4.1) and phosphate buffer saline (PBS. pH 7.2) at 8.0 log CFU/ml and treated at 350, 400, 450 MPa for 20 min at ...
Torres, E F; González-M, G; Klotz, B; Rodrigo, D
2016-03-01
The aim of this study was to evaluate the effect of high hydrostatic pressure treatment combined with moderate processing temperatures (25 ℃-50 ℃) on the inactivation of Escherichia coli O157: H7 (ATCC 700728), E. coli K12 (ATCC 23716), and pectin methyl esterase in orange juice, using pressures of 250 to 500 MPa with times ranging between 1 and 30 min. Loss of viability of E. coli O157:H7 increased significantly as pressure and treatment time increased, achieving a 6.5 log cycle reduction at 400 MPa for 3 min at 25 ℃ of treatment. With regard to the inactivation of pectin methyl esterase, the greatest reduction obtained was 90.05 ± 0.01% at 50 ℃ and 500 MPa of pressure for 15 min; therefore, the pectin methyl esterase enzyme was highly resistant to the treatments by high hydrostatic pressure. The results obtained in this study showed a synergistic effect between the high pressure and moderate temperatures in inactivating E. coli cells. © The Author(s) 2016.
Yancey, Paul H; Blake, Wendy R; Conley, James
2002-11-01
Shallow-living marine invertebrates use free amino acids as cellular osmolytes, while most teleosts use almost no organic osmolytes. Recently we found unusual osmolyte compositions in deep-sea animals. Trimethylamine N-oxide (TMAO) increases with depth in muscles of some teleosts, skates, and crustaceans (up to 300 mmol/kg at 2900 m). Other deep-sea animals had high levels of (1). scyllo-inositol in echinoderms, gastropods, and polychaetes, (2). that polyol plus beta-alanine and betaine in octopods, (3). hypotaurine, N-methyltaurine, and unidentified methylamines in vestimentiferans from hydrothermal vents and cold seeps, and (4). a depth-correlated serine-phosphate osmolyte in vesicomyid clams from trench seeps. We hypothesize that some of these solutes counteract effects of hydrostatic pressure. With lactate dehydrogenase, actin, and pyruvate kinase, 250 mM TMAO (but not glycine) protected both ligand binding and protein stability against pressure. To test TMAO in living cells, we grew yeast under pressure. After 1 h at 71 MPa, 3.5 h at 71 MPa, and 17 h at 30 MPa, 150 mM TMAO generally doubled the number of cells that formed colonies. Sulfur-based osmolytes which are not correlated with depth, such as hypotaurine and thiotaurine, are probably involved in sulfide metabolism and detoxification. Thus deep-sea osmolytes may have at least two other roles beyond acting as simple compatible osmotica.
Chen, Lin; Hernandez, M. Rosario
2009-01-01
Purpose Investigate the effect of hydrostatic pressure (HP) on 3′, 5′-cyclic adenosine monophosphate (cAMP) levels and downstream signaling in cultures of normal optic nerve head (ONH) astrocytes from Caucasian American (CA) and African American (AA) donors. Methods Intracellular cAMP levels were assayed after exposing ONH astrocytes to HP for varying times. Quantitative RT–PCR was used to determine the expression levels of selected cAMP pathway genes in human ONH astrocytes after HP treatment. Western blots were used to measure changes in the phosphorylation state of cAMP response element binding protein (CREB) in astrocytes subjected to HP, ATP, and phosphodiesterase or kinase inhibitors. Results The basal intracellular cAMP level is similar among AA and CA astrocytes. After exposure to HP for 15 min and 30 min in the presence of a phosphodiesterase inhibitor a further increase of intracellular cAMP was observed in AA astrocytes, but not in CA astrocytes. Consistent with activation of the cAMP-dependent protein kinase pathway, CREB phosphorylation (Ser-133) was increased to a greater extent in AA than in CA astrocytes after 3 h of HP. Exposure to elevated HP for 3–6 h differentially altered the expression levels of selected cAMP pathway genes (ADCY3, ADCY9, PTHLH, PDE7B) in AA compared to CA astrocytes. Treatment with ATP increased more CREB phosphorylation in CA than in AA astrocytes, suggesting differential Ca2+ signaling in these populations. Conclusions Activation of the cAMP-dependent signaling pathway by pressure may be an important contributor to increased susceptibility to elevated intraocular pressure and glaucoma in AA, a population at higher risk for the disease. PMID:19710943
Miyanishi, Keita; Trindade, Michael C D; Lindsey, Derek P; Beaupré, Gary S; Carter, Dennis R; Goodman, Stuart B; Schurman, David J; Smith, R Lane
2006-06-01
This study examined the effects of intermittent hydrostatic pressure (IHP) and transforming growth factor-beta 3 on chondrogenesis of adult human mesenchymal stem cells (hMSCs) in vitro. Chondrogenic gene expression was determined by quantifying mRNA signal levels for SOX9, a transcription factor critical for cartilage development and the cartilage matrix proteins, aggrecan and type II collagen. Extracellular matrix production was determined by weight and histology. IHP was applied to hMSCs in pellet culture at a level of 10 MPa and a frequency of 1 Hz for 4 h per day for periods of 3, 7, and 14 days. hMSCs responded to addition of TGF-beta 3 (10 ng/mL) with a greater than 10-fold increase (p < 0.01) in mRNA levels for each, SOX9, type II collagen, and aggrecan during a 14-day culture period. Applying IHP in the presence of TGF-beta 3 further increased the mRNA levels for these proteins by 1.9-, 3.3-, and 1.6-fold, respectively, by day 14. Chondrogenic mRNA levels were increased with just exposure to IHP. Extracellular matrix deposition of type II collagen and aggrecan increased in the pellets as a function of treatment conditions and time of culture. This study demonstrated adjunctive effects of IHP on TGF-beta 3-induced chondrogenesis and suggests that mechanical loading can facilitate articular cartilage tissue engineering.
USDA-ARS?s Scientific Manuscript database
Differences in membrane damage including leakage of intracellular UV-materials and loss of viability of Salmonella spp. and Escherichia coli O157:H7 bacteria in apple juice, pH 3.1 following thermal-death-time (TDT) disk and high hydrostatic pressure (HHP) treatments were investigated. Salmonella an...
pH dependence of the dissociation of multimeric hemoglobin probed by high hydrostatic pressure.
Bispo, Jose A C; Santos, Jose L R; Landini, Gustavo F; Goncalves, Juliana M; Bonafe, Carlos F S
2007-02-01
We investigated the thermodynamic features of the classic alkaline dissociation of multimeric hemoglobin (3.1 MDa) from Glossoscolex paulistus (Annelidea) using high hydrostatic pressure. Light scattering measurements up to microscopic thermodynamic equilibrium indicated a high pH dependency of dissociation and association. Electron microscopy and gel filtration corroborated these findings. The volume change of dissociation decreased in absolute values from -48.0 mL/mol of subunit at pH 6.0 to -19.2 mL/mol at pH 9.0, suggesting a lack of protein interactions under alkaline conditions. Concomitantly, an increase in pH reduced the Gibbs free energy of dissociation from 37.7 to 27.5 kJ/mol of subunit. The stoichiometry of proton release calculated from the pressure-induced dissociation curves was +0.602 mol of H(+)/mol of subunit. These results provide a direct quantification of proton participation in stabilizing the aggregated state of the hemoglobin, and contribute to our understanding of protein-protein interactions and of the surrounding conditions that modulate the process of aggregation.
Hydrostatic temperature calculations. [in synoptic meteorology
NASA Technical Reports Server (NTRS)
Raymond, William H.
1987-01-01
Comparisons are made between hydrostatically computed temperatures and ambient temperatures associated with nine different data sources, including analyses, forecasts and conventional observations. Five-day averages and the day-to-day variations in the root-mean-square temperature differences are presented. Several different numerical and interpolation procedures are examined. Error correction and a constrained optimum procedure that minimizes ambient minus calculated hydrostatic temperature differences are introduced. Systematic differences between ambient and hydrostatic temperatures are found to be associated with the sinoptic situation. When compared with ambient temperatures, hydrostatic temperatures at 500 mb tend to be too warm at or in front of a trough and too cold behind the trough. In the vertical direction, for the eight-level configuration tested, the average hydrostatic temperatures are too cold at low levels (850, 700 mb) and too warm at upper levels, (300, 250 mb).
LoCuSS: Testing hydrostatic equilibrium in galaxy clusters
NASA Astrophysics Data System (ADS)
Smith, G. P.; Mazzotta, P.; Okabe, N.; Ziparo, F.; Mulroy, S. L.; Babul, A.; Finoguenov, A.; McCarthy, I. G.; Lieu, M.; Bahé, Y. M.; Bourdin, H.; Evrard, A. E.; Futamase, T.; Haines, C. P.; Jauzac, M.; Marrone, D. P.; Martino, R.; May, P. E.; Taylor, J. E.; Umetsu, K.
2016-02-01
We test the assumption of hydrostatic equilibrium in an X-ray luminosity selected sample of 50 galaxy clusters at 0.15 < z < 0.3 from the Local Cluster Substructure Survey (LoCuSS). Our weak-lensing measurements of M500 control systematic biases to sub-4 per cent, and our hydrostatic measurements of the same achieve excellent agreement between XMM-Newton and Chandra. The mean ratio of X-ray to lensing mass for these 50 clusters is β_X= 0.95± 0.05, and for the 44 clusters also detected by Planck, the mean ratio of Planck mass estimate to LoCuSS lensing mass is β_P= 0.95± 0.04. Based on a careful like-for-like analysis, we find that LoCuSS, the Canadian Cluster Comparison Project, and Weighing the Giants agree on β_P ≃ 0.9-0.95 at 0.15 < z < 0.3. This small level of hydrostatic bias disagrees at ˜5σ with the level required to reconcile Planck cosmology results from the cosmic microwave background and galaxy cluster counts.
Microstructure and properties of ultrafine grain nickel 200 after hydrostatic extrusion processes
NASA Astrophysics Data System (ADS)
Sitek, R.; Krajewski, C.; Kamiński, J.; Spychalski, M.; Garbacz, H.; Pachla, W.; Kurzydłowski, K. J.
2012-09-01
This paper presents the results of the studies of the structure and properties of ultrafine grained nickel 200 obtained by hydrostatic extrusion processes. Microstructure was characterized by means of optical microscopy and electron transmission microscopy. Corrosion resistance was studied by impedance and potentiodynamic methods using an AutoLab PGSTAT 100 potentiostat in 0.1 M Na2SO4 solution and in acidified (by addition of H2SO4) 0.1 M NaCl solution at pH = 4.2 at room temperature. Microhardness tests were also performed. The results showed that hydrostatic extrusion produces a heterogeneous, ultrafine-grained microstructure in nickel 200. The corrosive resistance tests showed that the grain refinement by hydrostatic extrusion is accompanied by a decreased corrosive resistance of nickel 200.
Natsu-Ume, Takashi; Majima, Tokifumi; Reno, Carol; Shrive, Nigel G; Frank, Cyril B; Hart, David A
2005-07-01
The purpose of this study was to examine the influence of removing menisci from their in vivo loading environment on gene expression patterns and to determine whether in vitro loading can maintain the tissues in their in vivo phenotype. Lateral and medial rabbit meniscal explants from one leg were cultured in vitro and subjected to intermittent cyclic hydrostatic pressure (CHP) of 1 MPa at 0.5 Hz for 1 min and a rest period of 14 min (4 h of culture). The contralateral menisci were incubated at atmospheric pressure for 4 h. Menisci from both legs of another set of rabbits were frozen immediately to yield time zero values reflective of in vivo mRNA levels. Total RNA was isolated from all groups and processed for reverse transcription-polymerase chain reaction analysis for a subset of relevant genes (matrix molecules, cytokines, proteinases and inhibitors, enzymes). It was found that mRNA levels for MMP-1, MMP-3, TIMPs, iNOS, COX-2, interleukin-1beta in both menisci, and interleukin-6 in medial menisci were significantly elevated in tissues cultured under nonloading conditions compared to the time zero controls. Subjecting menisci to CHP significantly prevented these increases in mRNA levels for nearly all of the indicated molecules. In contrast, there were no significant differences in mRNA levels for collagens, biglycan, MMP-13, or TIMP-4 between the time zero values and those cultured under either nonloading or loading conditions. These studies demonstrate that removing rabbit menisci from their normal in vivo mechanical environment leads to an apparent up-regulation of a subset of potent effector molecules that could mediate catabolic activities, and that in vitro CHP can largely prevent this apparent up-regulation.
Brown, Alastair; Thatje, Sven; Morris, James P; Oliphant, Andrew; Morgan, Elizabeth A; Hauton, Chris; Jones, Daniel O B; Pond, David W
2017-11-01
The changing climate is shifting the distributions of marine species, yet the potential for shifts in depth distributions is virtually unexplored. Hydrostatic pressure is proposed to contribute to a physiological bottleneck constraining depth range extension in shallow-water taxa. However, bathymetric limitation by hydrostatic pressure remains undemonstrated, and the mechanism limiting hyperbaric tolerance remains hypothetical. Here, we assess the effects of hydrostatic pressure in the lithodid crab Lithodes maja (bathymetric range 4-790 m depth, approximately equivalent to 0.1 to 7.9 MPa hydrostatic pressure). Heart rate decreased with increasing hydrostatic pressure, and was significantly lower at ≥10.0 MPa than at 0.1 MPa. Oxygen consumption increased with increasing hydrostatic pressure to 12.5 MPa, before decreasing as hydrostatic pressure increased to 20.0 MPa; oxygen consumption was significantly higher at 7.5-17.5 MPa than at 0.1 MPa. Increases in expression of genes associated with neurotransmission, metabolism and stress were observed between 7.5 and 12.5 MPa. We suggest that hyperbaric tolerance in L maja may be oxygen-limited by hyperbaric effects on heart rate and metabolic rate, but that L maja 's bathymetric range is limited by metabolic costs imposed by the effects of high hydrostatic pressure. These results advocate including hydrostatic pressure in a complex model of environmental tolerance, where energy limitation constrains biogeographic range, and facilitate the incorporation of hydrostatic pressure into the broader metabolic framework for ecology and evolution. Such an approach is crucial for accurately projecting biogeographic responses to changing climate, and for understanding the ecology and evolution of life at depth. © 2017. Published by The Company of Biologists Ltd.
Dumard, Carlos Henrique; Barroso, Shana P C; Santos, Ana Clara V; Alves, Nathalia S; Couceiro, José Nelson S S; Gomes, Andre M O; Santos, Patricia S; Silva, Jerson L; Oliveira, Andréa C
2017-12-01
Avian influenza A viruses can cross naturally into mammals and cause severe diseases, as observed for H5N1. The high lethality of human infections causes major concerns about the real risk of a possible pandemic of severe diseases to which human susceptibility may be high and universal. High hydrostatic pressure (HHP) is a valuable tool for studies regarding the folding of proteins and the assembly of macromolecular structures such as viruses; furthermore, HHP has already been demonstrated to promote viral inactivation. Here, we investigated the structural stability of avian and human influenza viruses using spectroscopic and light-scattering techniques. We found that both particles have similar structural stabilities and that HHP promotes structural changes. HHP induced slight structural changes to both human and avian influenza viruses, and these changes were largely reversible when the pressure returned to its initial level. The spectroscopic data showed that H3N2 was more pressure-sensitive than H3N8. Structural changes did not predict changes in protein function, as H3N2 fusion activity was not affected, while H3N8 fusion activity drastically decreased. The fusion activity of H1N1 was also strongly affected by HHP. In all cases, HHP caused inactivation of the different influenza viruses. HHP may be a useful tool for vaccine development, as it induces minor and reversible structural changes that may be associated with partial preservation of viral biological activities and may potentiate their immunogenic response while abolishing their infectivity. We also confirmed that, although pressure does not promote drastic changes in viral particle structure, it can distinctly affect viral fusion activity. Copyright © 2017 Elsevier B.V. All rights reserved.
DuRaine, G D; Athanasiou, K A
2015-04-01
The objective of this study was to identify ERK 1/2 involvement in the changes in compressive and tensile mechanical properties associated with hydrostatic pressure treatment of self-assembled cartilage constructs. In study 1, ERK 1/2 phosphorylation was detected by immunoblot, following application of hydrostatic pressure (1 h of static 10 MPa) applied at days 10-14 of self-assembly culture. In study 2, ERK 1/2 activation was blocked during hydrostatic pressure application on days 10-14. With pharmacological inhibition of the ERK pathway by the MEK1/ERK inhibitor U0126 during hydrostatic pressure application on days 10-14, the increase in Young's modulus induced by hydrostatic pressure was blocked. Furthermore, this reduction in Young's modulus with U0126 treatment during hydrostatic pressure application corresponded to a decrease in total collagen expression. However, U0126 did not inhibit the increase in aggregate modulus or GAG induced by hydrostatic pressure. These findings demonstrate a link between hydrostatic pressure application, ERK signalling and changes in the biomechanical properties of a tissue-engineered construct. Copyright © 2012 John Wiley & Sons, Ltd.
Karjalainen, Hannu M; Sironen, Reijo K; Elo, Mika A; Kaarniranta, Kai; Takigawa, Masaharu; Helminen, Heikki J; Lammi, Mikko J
2003-01-01
Mechanical forces have a profound effect on cartilage tissue and chondrocyte metabolism. Strenuous loading inhibits the cellular metabolism, while optimal level of loading at correct frequency raises an anabolic response in chondrocytes. In this study, we used Atlas Human Cancer cDNA array to investigate mRNA expression profiles in human chondrosarcoma cells stretched 8% for 6 hours at a frequency of 0.5 Hz. In addition, cultures were exposed to continuous and cyclic (0.5 Hz) 5 MPa hydrostatic pressure. Cyclic stretch had a more profound effect on the gene expression profiles than 5 MPa hydrostatic pressure. Several genes involved with the regulation of cell cycle were increased in stretched cells, as well as mRNAs for PDGF-B, glucose-1-phosphate uridylyltransferase, Tiam1, cdc37 homolog, Gem, integrin alpha6, and matrix metalloproteinase-3. Among down-regulated genes were plakoglobin, TGF-alpha, retinoic acid receptor-alpha and Wnt8b. A smaller number of changes was detected after pressure treatments. Plakoglobin was increased under cyclic and continuous 5 MPa hydrostatic pressure, while mitogen-activated protein kinase-9, proliferating cell nuclear antigen, Rad6, CD9 antigen, integrins alphaE and beta8, and vimentin were decreased. Cyclic and continuous pressurization induces a number of specific changes. In conclusion, a different set of genes were affected by three different types of mechanical stimuli applied on chondrosarcoma cells.
The CaCl2 transition in Stishovite
NASA Astrophysics Data System (ADS)
Cohen, R. E.
2001-12-01
Rutile-structured SiO2, or stishovite, has been the subject of intense theoretical study for the development and testing of theoretical methods.1 The pressure induced phase transition of stishovite to the CaCl2 structure is one of the few cases of phase transitions predicted from first-principles electronic structure theory before being proven experimentally. Such tests are important, because one does not know to what level to trust theoretical predictions unless there are test predictions that are fulfilled. There were some indications of a phase transition from earlier ionic model calculations,3 but confidence in the predicted pressure was low because the model was not sufficiently accurate for the equation of state. Then, Linearized Augmented Plane Wave (LAPW) calculations, which make no assumptions abouyt ionicity, were performed for SiO2, and clearly showed an elastic instability at about 45 GPa.2 Non-hydrostatic experiments showed evidence for a transition, but at about 100 GPa.4 Raman experiments showed softening of the B1g Raman mode frequency, which, if extrapolated, would vanish at about 100 GPa.5 Theory predicted an transition, where the elastic anomaly c11-c12=0, at which point the Raman mode would begin to increase in frequency. A hydrostatic single crystal Raman experiment was done to higher pressures, and the transition was found at about 45-50 GPa, and the Raman spectra were in good agreement with the theoretical predictions.5 Single crystal hydrostatic x-ray studies have verified the transition, and showed that the transition is weakly first-order, with some hysteresis.7 Progress in theoretical studies of stishovite and the transition will be reviewed. 1 Cohen, R. E. In: Silica: Physical Behavior, Geochemistry, and Materials Applications. P. Heaney, C. T. Prewitt and G. V. Gibbs. Washington, D.C., Mineralogical Society of America. 29: 369-402, 1994. 2 Cohen, R. E., In: High Pressure Research in Mineral Physics: Application to Earth and Planetary Science. M. H. Manghnani and Y. Syono. Washington, D.C., AGU: 425-432, 1992. 3 Cohen, R. E. Geophys. Res. Lett. 14: 37-40, 1987. 4 Tsuchida, Y. and T. Yagi, Nature 340: 217-220, 1989. 5 Hemley, R. J., In: High-Pressure Research in Mineral Physics. M. H. Manghnani and Y. Syono. Tokyo, Terra Scientific: 347-359, 1987. 6 Kingma, K. J., R. E. Cohen, R. J. Hemley and H. K. Mao, Nature 374: 243-245, 1995. 7 Hemley, R. J., J. Shu, M. A. Carpenter, J. Hu, H. K. Mao and K. J. Kingma, Solid State Comm. 114: 527-532, 2000.
Hypoxic pulmonary vasoconstriction does not affect hydrostatic pulmonary edema formation.
Cheney, F W; Bishop, M J; Eisenstein, B L; Artman, L D
1987-02-01
We studied the effects of regional hypoxic pulmonary vasoconstriction (HPV) on lobar flow diversion in the presence of hydrostatic pulmonary edema. Ten anesthetized dogs with the left lower lobe (LLL) suspended in a net for continuous weighing were ventilated with a bronchial divider so the LLL could be ventilated with either 100% O2 or a hypoxic gas mixture (90% N2-5% CO2-5% O2). A balloon was inflated in the left atrium until hydrostatic pulmonary edema occurred, as evidenced by a continuous increase in LLL weight. Left lower lobe flow (QLLL) was measured by electromagnetic flow meter and cardiac output (QT) by thermal dilution. At a left atrial pressure of 30 +/- 5 mmHg, ventilation of the LLL with the hypoxic gas mixture caused QLLL/QT to decrease from 17 +/- 4 to 11 +/- 3% (P less than 0.05), pulmonary arterial pressure to increase from 35 +/- 5 to 37 +/- 6 mmHg (P less than 0.05), and no significant change in rate of LLL weight gain. Gravimetric confirmation of our results was provided by experiments in four animals where the LLL was ventilated with an hypoxic gas mixture for 2 h while the right lung was ventilated with 100% O2. In these animals there was no difference in bloodless lung water between the LLL and right lower lobe. We conclude that in the presence of left atrial pressures high enough to cause hydrostatic pulmonary edema, HPV causes significant flow diversion from an hypoxic lobe but the decrease in flow does not affect edema formation.
USDA-ARS?s Scientific Manuscript database
Differences in membrane damage including leakage of intracellular UV-materials and loss of viability of Salmonella spp. and Escherichia coli O157:H7 bacteria in apple juice following thermal death time disk (TDT) and high hydrostatic pressure treatments were investigated. Salmonella and E. coli O157...
Shim, J W; Elder, S H
2006-11-01
The goal of this study was to demonstrate whether cyclically imposed hydrostatic pressure, compressive in nature, could induce fibrocartilaginous metaplasia in a purely tendinous cell source in vitro. The effect of short-duration cyclic hydrostatic pressure on tendon fibroblasts (tenocytes) expanded from rat Achilles tendon was studied. Total RNA was isolated either immediately after loading or 24 h later. The mRNA expression of tendon and cartilage specific markers - Collagen types I and II, Sox9, and Aggrecan was quantified by real-time reverse transcription polymerase chain reaction over multiple biological samples (n=6). For immediately isolated RNA samples, there were statistically significant increases in mRNA expression of Aggrecan and Collagen type II, while Collagen type I significantly decreased. Noticeably, for RNA samples isolated 24 h later, there were further increases in mRNA expression of Aggrecan and Collagen type II, whereas Collagen type I increased roughly three-fold relative to the non-loaded control. These findings support the hypothesis that cyclic hydrostatic pressurization can induce fibrocartilaginous metaplasia in tenocytes by upregulation of cartilaginous gene expression. Also, it was demonstrated that changes in mRNA expression as a result of single 2 h pressurization persist even up to 24 h.
Neetoo, Hudaa; Chen, Haiqiang
2010-05-01
Alfalfa sprouts contaminated with Salmonella and Escherichia coli O157:H7 have been implicated in several outbreaks of foodborne illnesses in recent years. The seed used for sprouting appears to be the primary source of pathogens. Seed decontamination prior to sprouting presents a unique challenge for the sprouting industry since cells of the pathogenic survivors although undetectable after sanitizing treatments, can potentially multiply back to hazardous levels. The focus of this study was to therefore test the efficacy of high hydrostatic pressure to eliminate a approximately 5 log CFU/g load of Salmonella and E. coli O157:H7 on alfalfa seeds. Pressure treatment of 600 MPa for up to 25 min at 20 degrees C could not result in complete inactivation of Salmonella. High-pressure treatment was then carried out either at sub-ambient (4 degrees C) or elevated (40, 45 and 50 degrees C) temperatures to test the ability of high pressure to eliminate Salmonella. Pressure treatment at 4 and 20 degrees C did not deliver any satisfactory inactivation of Salmonella while high pressure at elevated temperatures achieved complete kill. Pre-soaking seeds prior to high-pressure treatment also enhanced pressure inactivation of Salmonella but at the expense of seed viability. High-pressure treatment of 500 MPa for 2 min at 45 degrees C was able to eliminate wild-type Salmonella and E. coli O157:H7 strains without bringing about any appreciable decrease in the seed viability. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
Sokołowska, Barbara; Skapska, Sylwia; Fonberg-Broczek, Monika; Niezgoda, Jolanta; Porebska, Izabela; Dekowska, Agnieszka; Rzoska, Sylwester J
2015-01-01
Given the importance of spoilage caused by Alicyclobacillus acidoterrestris for the fruit juice industry, the objective of this work was to study the germination and inactivation of A. acidoterrestris spores induced by moderate hydrostatic pressure. Hydrostatic pressure treatment can induce the germination and inactivation of A. acidoterrestris spores. At low pH, spore germination of up to 3.59-3.75 log and inactivation of 1.85-2.04 log was observed in a low pressure window (200-300 MPa) applied at 50 degrees C for 20 min. Neutral pH suppressed inactivation, the number of spores inactivated at pH 7.0 was only 0.24-1.06 log. The pressurization temperature significantly affected spore germination and inactivation. The degree of germination in apple juice after pressurization for 30 min with 200 MPa at 20 degrees C was 2.04 log, with only 0.61 log of spores being inactivated, while at 70 degrees C spore germination was 5.94 log and inactivation 4.72 log. This temperature strongly stimulated germination and inactivation under higher (500 MPa) than lower (200 MPa) pressure. When the oscillatory mode was used, the degree of germination and inactivation was slightly higher than at continuous mode. The degree of germination and inactivation was inversely proportional to the soluble solids content and was lowest in concentrated apple juice.
The effect of high pressure on the lattice structure and dynamics of phenacenes
NASA Astrophysics Data System (ADS)
Capitani, F.; Höppner, M.; Malavasi, L.; Marini, C.; Dore, P.; Boeri, L.; Postorino, Paolo
2017-10-01
We studied the effect of high pressure on three phenacenes, aromatic molecules with a zig-zag configuration of the benzene rings. The lattice structure and vibrational dynamics of crystalline phenanthrene (C14H10, three benzene rings), chrysene (C18H12, four), and picene (C22H14, five) were investigated by means of X-ray diffraction and Raman measurements. Raman spectra were compared with theoretical ones obtained from ab-initio Density Functional Theory calculations. Experimental and theoretical results allowed to identify the onset of a structural transition in phenanthrene at 7.8 GPa under hydrostatic conditions and at 5.7 GPa under non-hydrostatic conditions. We found that this transition is related to a reorientantion of the molecules in the ab plane. On the contrary, chrysene and picene do not undergo any phase transition in the investigated pressure range, thus suggesting that molecular size plays an important role in the occurence of pressure induced structural modifications in aromatic compounds.
Sheen, Shiowshuh; Huang, Chi-Yun; Ramos, Rommel; Chien, Shih-Yung; Scullen, O Joseph; Sommers, Christopher
2018-03-01
Pathogenic Escherichia coli, intestinal (O157:H7) as well as extraintestinal types (for example, Uropathogenic E. coli [UPEC]) are commonly found in many foods including raw chicken meat. The resistance of E. coli O157:H7 to UPEC in chicken meat under the stresses of high hydrostatic Pressure (HHP, also known as HPP-high pressure processing) and trans-cinnamaldehyde (an essential oil) was investigated and compared. UPEC was found slightly less resistant than O157:H7 in our test parameter ranges. With the addition of trans-cinnamaldehyde as an antimicrobial to meat, HPP lethality enhanced both O157:H7 and UPEC inactivation. To facilitate the predictive model development, a central composite design (CCD) was used to assess the 3-parameter effects, that is, pressure (300 to 400 MPa), trans-cinnamaldehyde dose (0.2 to 0.5%, w/w), and pressure-holding time (15 to 25 min), on the inactivation of E. coli O157:H7 and UPEC in ground chicken. Linear models were developed to estimate the lethality of E. coli O157:H7 (R 2 = 0.86) and UPEC (R 2 = 0.85), as well as dimensionless nonlinear models. All models were validated with data obtained from separated CCD combinations. Because linear models of O157:H7 and UPEC had similar R 2 and the significant lethality difference of CCD points was only 9 in 20; all data were combined to generate models to include both O157:H7 and UPEC. The results provide useful information/tool to predict how pathogenic E. coli may survive HPP in the presence of trans-cinnamaldehyde and to achieve a great than 5 log CFU/g reduction in chicken meat. The models may be used for process optimization, product development and to assist the microbial risk assessment. The study provided an effective means to reduce the high hydrostatic pressure level with incorporation of antimicrobial compound to achieve a 5-log reduction of pathogenic E. coli without damaging the raw meat quality. The developed models may be used to predict the high pressure processing lethality (and process optimization), product development (ingredient selection), and to assist the microbial risk assessment. © 2018 Institute of Food Technologists®.
Montagne, Kevin; Onuma, Yasuko; Ito, Yuzuru; Aiki, Yasuhiko; Furukawa, Katsuko S; Ushida, Takashi
2017-01-01
Due to the high water content of cartilage, hydrostatic pressure is likely one of the main physical stimuli sensed by chondrocytes. Whereas, in the physiological range (0 to around 10 MPa), hydrostatic pressure exerts mostly pro-chondrogenic effects in chondrocyte models, excessive pressures have been reported to induce detrimental effects on cartilage, such as increased apoptosis and inflammation, and decreased cartilage marker expression. Though some genes modulated by high pressure have been identified, the effects of high pressure on the global gene expression pattern have still not been investigated. In this study, using microarray technology and real-time PCR validation, we analyzed the transcriptome of ATDC5 chondrocyte progenitors submitted to a continuous pressure of 25 MPa for up to 24 h. Several hundreds of genes were found to be modulated by pressure, including some not previously known to be mechano-sensitive. High pressure markedly increased the expression of stress-related genes, apoptosis-related genes and decreased that of cartilage matrix genes. Furthermore, a large set of genes involved in the progression of osteoarthritis were also induced by high pressure, suggesting that hydrostatic pressure could partly mimic in vitro some of the genetic alterations occurring in osteoarthritis.
NASA Astrophysics Data System (ADS)
Zhao, Hong Jian; Liu, Xiao Qiang; Chen, Xiang Ming; Bellaiche, L.
2014-11-01
The effects of chemical and hydrostatic pressures on structural, magnetic, and electronic properties of R2NiMn O6 double perovskites, with R being a rare-earth ion, have been systematically studied by using specific first-principles calculations. These latter reproduce well the correlation between several properties (e.g., lattice parameters, Ni-O-Mn bond angles, magnetic Curie temperature, and electronic band gap) and the rare-earth ionic radius (i.e., the chemical pressure). They also provide novel predictions awaiting experimental confirmation, such as (i) that many physical quantities respond in dramatically different manners to chemical versus hydrostatic pressure, unlike as commonly thought for perovskites containing rare-earth ions, and (ii) a dependence of antipolar displacements on chemical and hydrostatic pressures, which would further explain why the recently predicted electrical polarization of L a2NiMn O6/R2NiMn O6 superlattices [H. J. Zhao, W. Ren, Y. Yang, J. Íñiguez, X. M. Chen, and L. Bellaiche, Nat. Commun. 5, 4021 (2014), 10.1038/ncomms5021] can be created and controlled by playing with the rare-earth element.
Pascarelli, Nicola Antonio; Collodel, Giulia; Moretti, Elena; Cheleschi, Sara; Fioravanti, Antonella
2015-10-30
The aim of this study was to examine the ultrastructure and cytoskeletal organization in human normal and Osteoarhritic (OA) chondrocytes, exposed to interleukin-1β (IL-1β) and cyclic hydrostatic pressure (HP). Morphological examination by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) revealed differences between normal and OA chondrocytes at the nuclear and cytoplasmic level. IL-1β (5 ng/mL) induced a decrease of the number of mitochondria and Golgi bodies and a significant increase on the percentage of cells rich in vacuolization and in marginated chromatin. Cyclical HP (1-5 MPa, 0.25 Hz, for 3 h) did not change the morphology of normal chondrocytes, but had a beneficial effect on OA chondrocytes increasing the number of organelles. Normal and OA cells subjected to IL-1β and HP recovered cytoplasmic ultrastructure. Immunofluorescence (IF) examination of normal chondrocytes showed an actin signal polarized on the apical sides of the cytoplasm, tubulin and vimentin uniformly distributed throughout cytoplasm and vinculin revealed a punctuated pattern under the plasma membrane. In OA chondrocytes, these proteins partially lost their organization. Stimulation with IL-1β caused, in both type of cells, modification in the cytoskeletal organization; HP counteracted the negative effects of IL-1β. Our results showed structural differences at nuclear, cytoplasmic and cytoskeletal level between normal and OA chondrocytes. IL-1β induced ultrastructural and cytoskeletal modifications, counteracted by a cyclical low HP.
Pascarelli, Nicola Antonio; Collodel, Giulia; Moretti, Elena; Cheleschi, Sara; Fioravanti, Antonella
2015-01-01
The aim of this study was to examine the ultrastructure and cytoskeletal organization in human normal and Osteoarhritic (OA) chondrocytes, exposed to interleukin-1β (IL-1β) and cyclic hydrostatic pressure (HP). Morphological examination by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) revealed differences between normal and OA chondrocytes at the nuclear and cytoplasmic level. IL-1β (5 ng/mL) induced a decrease of the number of mitochondria and Golgi bodies and a significant increase on the percentage of cells rich in vacuolization and in marginated chromatin. Cyclical HP (1–5 MPa, 0.25 Hz, for 3 h) did not change the morphology of normal chondrocytes, but had a beneficial effect on OA chondrocytes increasing the number of organelles. Normal and OA cells subjected to IL-1β and HP recovered cytoplasmic ultrastructure. Immunofluorescence (IF) examination of normal chondrocytes showed an actin signal polarized on the apical sides of the cytoplasm, tubulin and vimentin uniformly distributed throughout cytoplasm and vinculin revealed a punctuated pattern under the plasma membrane. In OA chondrocytes, these proteins partially lost their organization. Stimulation with IL-1β caused, in both type of cells, modification in the cytoskeletal organization; HP counteracted the negative effects of IL-1β. Our results showed structural differences at nuclear, cytoplasmic and cytoskeletal level between normal and OA chondrocytes. IL-1β induced ultrastructural and cytoskeletal modifications, counteracted by a cyclical low HP. PMID:26528971
Mevenkamp, Lisa; Brown, Alastair; Hauton, Chris; Kordas, Anna; Thatje, Sven; Vanreusel, Ann
2017-11-01
Potential deep-sea mineral extraction poses new challenges for ecotoxicological research since little is known about effects of abiotic conditions present in the deep sea on the toxicity of heavy metals. Due to the difficulty of collecting and maintaining deep-sea organisms alive, a first step would be to understand the effects of high hydrostatic pressure and low temperatures on heavy metal toxicity using shallow-water relatives of deep-sea species. Here, we present the results of acute copper toxicity tests on the free-living shallow-water marine nematode Halomonhystera disjuncta, which has close phylogenetic and ecological links to the bathyal species Halomonhystera hermesi. Copper toxicity was assessed using a semi-liquid gellan gum medium at two levels of hydrostatic pressure (0.1MPa and 10MPa) and temperature (10°C and 20°C) in a fully crossed design. Mortality of nematodes in each treatment was assessed at 4 time intervals (24 and 48h for all experiments and additionally 72 and 96h for experiments run at 10°C). LC 50 values ranged between 0.561 and 1.864mg Cu 2+ L -1 and showed a decreasing trend with incubation time. Exposure to high hydrostatic pressure significantly increased sensitivity of nematodes to copper, whereas lower temperature resulted in an apparently increased copper tolerance, possibly as a result of a slower metabolism under low temperatures. These results indicate that hydrostatic pressure and temperature significantly affect metal toxicity and therefore need to be considered in toxicity assessments for deep-sea species. Any application of pollution limits derived from studies of shallow-water species to the deep-sea mining context must be done cautiously, with consideration of the effects of both stressors. Copyright © 2017 Elsevier B.V. All rights reserved.
Increased hydrostatic pressure enhances motility of lung cancer cells.
Kao, Yu-Chiu; Lee, Chau-Hwang; Kuo, Po-Ling
2014-01-01
Interstitial fluid pressures within most solid tumors are significantly higher than that in the surrounding normal tissues. Therefore, cancer cells must proliferate and migrate under the influence of elevated hydrostatic pressure while a tumor grows. In this study, we developed a pressurized cell culture device and investigated the influence of hydrostatic pressure on the migration speeds of lung cancer cells (CL1-5 and A549). The migration speeds of lung cancer cells were increased by 50-60% under a 20 mmHg hydrostatic pressure. We also observed that the expressions of aquaporin in CL1-5 and A549 cells were increased under the hydrostatic pressure. Our preliminary results indicate that increased hydrostatic pressure plays an important role in tumor metastasis.
Vercammen, Anne; Vivijs, Bram; Lurquin, Ine; Michiels, Chris W
2012-01-16
Acidothermophilic bacteria like Alicyclobacillus acidoterrestris and Bacillus coagulans can cause spoilage of heat-processed acidic foods because they form spores with very high heat resistance and can grow at low pH. The objective of this work was to study the germination and inactivation of A. acidoterrestris and B. coagulans spores by high hydrostatic pressure (HP) treatment at temperatures up to 60°C and both at low and neutral pH. In a first experiment, spores suspended in buffers at pH 4.0, 5.0 and 7.0 were processed for 10min at different pressures (100-800MPa) at 40°C. None of these treatments caused any significant inactivation, except perhaps at 800MPa in pH 4.0 buffer where close to 1 log inactivation of B. coagulans was observed. Spore germination up to about 2 log was observed for both bacteria but occurred mainly in a low pressure window (100-300MPa) for A. acidoterrestris and only in a high pressure window (600-800MPa) for B. coagulans. In addition, low pH suppressed germination in A. acidoterrestris, but stimulated it in B. coagulans. In a second series of experiments, spores were treated in tomato sauce of pH 4.2 and 5.0 at 100 - 800MPa at 25, 40 and 60°C for 10min. At 40°C, results for B. coagulans were similar as in buffer. For A. acidoterrestris, germination levels in tomato sauce were generally higher than in buffer, and showed little difference at low and high pressure. Remarkably, the pH dependence of A. acidoterrestris spore germination was reversed in tomato sauce, with more germination at the lowest pH. Furthermore, HP treatments in the pH 4.2 sauce caused between 1 and 1.5 log inactivation of A. acidoterrestris. Germination of spores in the high pressure window was strongly temperature dependent, whereas germination of A. acidoterrestris in the low pressure window showed little temperature dependence. When HP treatment was conducted at 60°C, most of the germinated spores were also inactivated. For the pH 4.2 tomato sauce, this resulted in up to 3.5 and 2.0 log inactivation for A. acidoterrestris and B. coagulans respectively. We conclude that HP treatment can induce germination and inactivation of spores from thermoacidophilic bacteria in acidic foods, and may thus be useful to reduce spoilage of such foods caused by these bacteria. Copyright © 2011 Elsevier B.V. All rights reserved.
Chemical Abundances of Hydrostatic and Explosive Alpha-elements in Sagittarius Stream Stars
NASA Astrophysics Data System (ADS)
Carlin, Jeffrey L.; Sheffield, Allyson A.; Cunha, Katia; Smith, Verne V.
2018-05-01
We analyze chemical abundances of stars in the Sagittarius (Sgr) tidal stream using high-resolution Gemini+GRACES spectra of 42 members of the highest surface-brightness portions of both the trailing and leading arms. Targets were chosen using a 2MASS+WISE color–color selection, combined with the Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) radial velocities. In this Letter, we analyze [Fe/H] and α-elements produced by both hydrostatic (O, Mg) and explosive (Si, Ca, Ti) nucleosynthetic processes. The average [Fe/H] for our Sgr stream stars is lower than that for stars in the Sgr core, and stars in the trailing and leading arms show systematic differences in [Fe/H]. Both hydrostatic and explosive elements are depleted relative to Milky Way (MW) disk and halo stars, with a larger gap between the MW trend and Sgr stars for the hydrostatic elements. Chemical abundances of Sgr stream stars show similar patterns to those measured in the core of the Sgr dSph. We explore the ratio of hydrostatic to explosive α-elements [α h/ex] (which we refer to as the “HEx ratio”). Our observed HEx ratio trends for Sgr debris are deficient relative to MW stars. Via simple chemical evolution modeling, we show that these HEx ratio patterns are consistent with a Sgr IMF that lacks the most massive stars. This study provides a link between the chemical properties in the intact Sgr core and the significant portion of the Sgr system’s luminosity that is estimated to currently reside in the streams.
Comparing effects of perfusion and hydrostatic pressure on gene profiles of human chondrocyte.
Zhu, Ge; Mayer-Wagner, Susanne; Schröder, Christian; Woiczinski, Matthias; Blum, Helmut; Lavagi, Ilaria; Krebs, Stefan; Redeker, Julia I; Hölzer, Andreas; Jansson, Volkmar; Betz, Oliver; Müller, Peter E
2015-09-20
Hydrostatic pressure and perfusion have been shown to regulate the chondrogenic potential of articular chondrocytes. In order to compare the effects of hydrostatic pressure plus perfusion (HPP) and perfusion (P) we investigated the complete gene expression profiles of human chondrocytes under HPP and P. A simplified bioreactor was constructed to apply loading (0.1 MPa for 2 h) and perfusion (2 ml) through the same piping by pressurizing the medium directly. High-density monolayer cultures of human chondrocytes were exposed to HPP or P for 4 days. Controls (C) were maintained in static cultures. Gene expression was evaluated by sequencing (RNAseq) and quantitative real-time PCR analysis. Both treatments changed gene expression levels of human chondrocytes significantly. Specifically, HPP and P increased COL2A1 expression and decreased COL1A1 and MMP-13 expression. Despite of these similarities, RNAseq revealed a list of cartilage genes including ACAN, ITGA10 and TNC, which were differentially expressed by HPP and P. Of these candidates, adhesion related molecules were found to be upregulated in HPP. Both HPP and P treatment had beneficial effects on chondrocyte differentiation and decreased catabolic enzyme expression. The study provides new insight into how hydrostatic pressure and perfusion enhance cartilage differentiation and inhibit catabolic effects. Copyright © 2015 Elsevier B.V. All rights reserved.
Effect of hydrostatic pressure on regional bond strengths of compomers to dentine.
Zheng, L; Pereira, P N; Somphone, P; Nikaido, T; Tagami, J
2000-09-01
The aim of this study was to evaluate the effect of hydrostatic pressure on the regional bond strengths of compomers to dentine. Thirty freshly extracted molars were ground flat to expose the dentine and randomly divided into two groups for bonding: no hydrostatic pressure and hydrostatic pressure of 15cm H(2)O. Xeno CF, Dyract AP and F 2000 were applied to dentine surfaces pretreated by the respective bonding systems following the manufactures' instructions, and then restored with Clearfil AP-X. After 24h storage in water, the teeth were sectioned into 0.7-mm thick slabs and visually divided into three regional subgroups: the region communicating with the pulp through dentinal tubules (pulp horn); the region between the pulp horns (center); and the region between the pulp horn and DEJ (periphery). The specimens were trimmed to a cross-sectional area of 1mm(2) and subjected to the micro-tensile bond test. The data were analyzed by one- and three-way ANOVA, and Fisher's PLSD (p<0.05). There were no significant regional differences of bond strengths for all the compomers tested (p>0.05). However, hydrostatic pressure significantly decreased the bond strength of F 2000 to all regions (p<0.05), while the bond strength of Dyract AP significantly decreased only at the pulp horn region (p<0.05). On the other hand, the bond strengths of Xeno CF seemed not to be affected by hydrostatic pressure (p>0.05). For Dyract AP and F 2000, the fracture modes were affected by hydrostatic pressure, while, for Xeno CF, there were no significant differences between the fracture modes with non- or positive hydrostatic pressure. Simulated pulpal pressure of 15cm H(2)O had a greater influence on the bond strengths of compomers to dentine than did dentine regions. Therefore, when measuring the bond strengths of compomers to dentine under the simulated in vivo conditions, the wetness of the dentine surface, as well as the intrinsic properties of each material should be seriously considered.
Xuan, Xiao-Ting; Cui, Yan; Lin, Xu-Dong; Yu, Jing-Feng; Liao, Xiao-Jun; Ling, Jian-Gang; Shang, Hai-Tao
2018-02-01
The effects of high hydrostatic pressure (HHP) treatments (200, 300, and 400 MPa for 1, 3, 5 and 10 min) on the shelling efficacy (the rate of shelling, the rate of integrity and yield of razor clam meat) and the physicochemical (drip loss, water-holding capacity, pH, conductivity, lipid oxidation, Ca 2+ -ATPase activity, myofibrillar protein content), microbiological (total viable counts) and microstructural properties of fresh razor clam (Sinonovacula constricta) were investigated. HHP treatments significantly (P < 0.05) increased shelling efficiency, water-holding capacity, pH, conductivity, and lipid oxidation, and HHP-treated razor clam showed lower levels of microorganisms and drip loss than untreated razor clam. Levels of thiobarbituric acid reacting substances (TBA) in HHP-treated razor clam were greatly increased (up to 0.93 ± 0.09 mg MDA/kg at 400 MPa for 10 min) which was caused by the formation of hydroperoxides during HHP treatment. All HHP treatments were found to have adverse effects on the activity of Ca 2+ -ATPase and the content of myofibrillar protein (MP), which might be due to the substantial damage to the tertiary structure of proteins at high pressure. Moreover, scanning electron microscopy (SEM) revealed the compaction of the muscle fibers and a decrease in the extracellular space with increasing pressure and holding time. This phenomenon was mainly correlated with the compaction of muscle fibers and denaturation, aggregation, and gelation of muscle protein triggered by high pressure. In general, HHP could be applied as a safe and effective nonthermal technology to produce high-quality shelled razor clam. High hydrostatic pressure (HHP) is now well known as a nonthermal processing technology and becoming increasingly acknowledged. However, it has not been widely applied to shell seafood due to its uncertain influence on its quality and shelling property. This study could provide valuable information regarding the shelling efficacy, physicochemical properties, and microstructure of razor clam treated by HHP. And it demonstrated that HHP showed a positive impact on quality of razor clam treated by HHP. © 2018 Institute of Food Technologists®.
46 CFR 64.83 - Hydrostatic test.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 2 2012-10-01 2012-10-01 false Hydrostatic test. 64.83 Section 64.83 Shipping COAST... HANDLING SYSTEMS Periodic Inspections and Tests of MPTs § 64.83 Hydrostatic test. (a) The hydrostatic test..., removing tank insulation; (5) Filling the tank with water and pressurizing to the test pressure indicated...
Tök, Levent; Nazıroğlu, Mustafa; Uğuz, Abdülhadi Cihangir; Tök, Ozlem
2014-10-01
Despite the importance of oxidative stress and apoptosis through mitochondrial depolarization in neurodegenerative diseases, their roles in etiology of glaucoma are poorly understood. We aimed to investigate whether oxidative stress and apoptosis formation are altered in rat pheochromocytoma-derived cell line-12 (PC12) neuronal cell cultures exposed to elevated different hydrostatic pressures as a cell culture model of glaucoma. Cultured PC12 cells were subjected to 0, 15 and 70 mmHg hydrostatic pressure for 1 and 24 h. Then, the following values were analyzed: (a) cell viability; (b) lipid peroxidation and intracellular reactive oxygen species production; (c) mitochondrial membrane depolarization; (d) cell apoptosis; (e) caspase-3 and caspase-9 activities; (f) reduced glutathione (GSH) and glutathione peroxidase (GSH-Px). The hydrostatic pressures (15 and 70 mmHg) increased oxidative cell damage through a decrease of GSH and GSH-Px values, and increasing mitochondrial membrane potential. Additionally, 70 mmHg hydrostatic pressure for 24 h indicated highest apoptotic effects, as demonstrated by plate reader analyses of apoptosis, caspase-3 and -9 values. The present data indicated oxidative stress, apoptosis and mitochondrial changes in PC12 cell line during different hydrostatic pressure as a cell culture model of glaucoma. This findings support the view that mitochondrial oxidative injury contributes early to glaucomatous optic neuropathy.
Guo, Tingwang; Ren, Peng; Li, Xiaofei; Luo, Tiantian; Gong, Yuhua; Hao, Shilei; Wang, Bochu
2018-06-15
Mass effect induced by growing hematoma is one of the mechanisms by which intracerebral hemorrhage (ICH) may result in brain injuries. Our goal was to investigate the damage mechanism of hydrostatic pressure associated with mass effect and the cooperative effect of hydrostatic pressure plus hemoglobin on neural injuries. Loading hydrostatic pressure on neurons and injecting agarose gel in the right striatum of rats was performed to establish the in vitro and vivo ICH models, respectively. The elevated hydrostatic pressure associated with ICH suppressed neurons and neural tissues viability, and disturbed the axons and dendrites in vitro and vivo. Moreover, hydrostatic pressure could upregulate the expression of cleaved-caspase-3 and BAX, and downregulate Bcl-2 and Bcl-xL. Meanwhile, the toxicity of hemoglobin would be enhanced when conducted with hydrostatic pressure together. Furthermore, the exclusive hydrostatic pressure could upregulate the Piezo-2 expression, which reached a plateau at 8 h after ICH. And hemoglobin increased Piezo-2 expression significantly in vivo, and that was also promoted significantly by the elevated volume of Gel in the cooperative groups. Results indicated that hydrostatic pressure induced by mass effect not only gave rise to brain injuries directly, but also increased the toxicity of hemoglobin in the progress of secondary brain injury after ICH.
Wang, Shuchao; Hu, Tu; Wang, Zhen; Li, Na; Zhou, Lihong; Liao, Lvshuang; Wang, Mi; Liao, Libin; Wang, Hui; Zeng, Leping; Fan, Chunling; Zhou, Hongkang; Xiong, Kun; Huang, Jufang; Chen, Dan
2017-01-01
Many studies on retinal injury and repair following elevated intraocular pressure suggest that the survival ratio of retinal neurons has been improved by various measures. However, the visual function recovery is far lower than expected. The homeostasis of retinal synapses in the visual signal pathway is the key structural basis for the delivery of visual signals. Our previous studies found that complicated changes in the synaptic structure between retinal neurons occurred much earlier than obvious degeneration of retinal ganglion cells in rat retinae. The lack of consideration of these earlier retinal synaptic changes in the rescue strategy may be partly responsible for the limited visual function recovery with the types of protective methods for retinal neurons used following elevated intraocular pressure. Thus, research on the modulatory mechanisms of the synaptic changes after elevated intraocular pressure injury may give new light to visual function rescue. In this study, we found that thrombospondin 2, an important regulator of synaptogenesis in central nervous system development, was distributed in retinal macroglia cells, and its receptor α2δ-1 was in retinal neurons. Cell cultures including mixed retinal macroglia cells/neuron cultures and retinal neuron cultures were exposed to elevated hydrostatic pressure for 2 h. The expression levels of glial fibrillary acidic protein (the marker of activated macroglia cells), thrombospondin 2, α2δ-1 and presynaptic proteins were increased following elevated hydrostatic pressure in mixed cultures, but the expression levels of postsynaptic proteins were not changed. SiRNA targeting thrombospondin 2 could decrease the upregulation of presynaptic proteins induced by the elevated hydrostatic pressure. However, in retinal neuron cultures, elevated hydrostatic pressure did not affect the expression of presynaptic or postsynaptic proteins. Rather, the retinal neuron cultures with added recombinant thrombospondin 2 protein upregulated the level of presynaptic proteins. Finally, gabapentin decreased the expression of presynaptic proteins in mixed cultures by blocking the interaction of thrombospondin 2 and α2δ-1. Taken together, these results indicate that activated macroglia cells may participate in alterations of presynaptic proteins of retinal neurons following elevated hydrostatic pressure, and macroglia-derived thrombospondin 2 may modulate these changes via binding to its neuronal receptor α2δ-1.
46 CFR 154.562 - Cargo hose: Hydrostatic test.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Hose § 154.562 Cargo hose: Hydrostatic test. Each cargo hose must pass a hydrostatic pressure test at ambient temperature of at least one and a half times its specified maximum working pressure but not more... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo hose: Hydrostatic test. 154.562 Section 154.562...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlos-Pinedo, C.; Rodríguez-Vargas, I.; Martínez-Orozco, J. C.
In this work we present the results obtained from the calculation of the level structure of a n-type delta-doped well Field Effect Transistor when is subjected to hydrostatic pressure. We study the energy level structure as a function of hydrostatic pressure within the range of 0 to 6 kbar for different Schottky barrier height (SBH). We use an analytical expression for the effect of hydrostatic pressure on the SBH and the pressure dependence of the basic parameters of the system as the effective mass m(P) and the dielectric constant ε(P) of GaAs. We found that due to the effects ofmore » hydrostatic pressure, in addition to electronic level structure alteration, the profile of the differential capacitance per unit area C{sup −2} is affected.« less
De Palma, Anna; Cheleschi, Sara; Pascarelli, Nicola Antonio; Giannotti, Stefano; Galeazzi, Mauro; Fioravanti, Antonella
2018-01-03
Mechanical stimuli and hydrostatic pressure (HP) play an important role in the regulation of chondrocytes metabolism. Growing evidence demonstrated the ability of mechanical loading to modulate the expression of microRNA (miRNA) involved in chondrocytes homeostasis and in the pathogenesis of osteoarthritis (OA). The expression of miR-155, miR-181a and miR-223 in normal and OA chondrocyte cultures, and their potential modifications following exposure to three hours of a cyclic HP (1-5 MPa, frequency 0.25 Hz) were investigated. Also evaluated the expression of Chuk, regulator of the NF-kB pathway activation, which is a target gene of miR-223, was evaluated. Chondrocytes were collected immediately after pressurization (T0), and following 12, 24, and 48 h. Total RNA was extracted, reverse transcribed and used for real-time PCR. At basal condition, a significant increase of miR-155 and miR-181a was observed in OA in comparison to normal cells; on the contrary, no differences in miR-223 and Chuk expression levels were detected between normal and OA chondrocytes. miR-155 and miR-181a resulted significantly downregulated immediately after pressurization (T0) in OA cells. The pressure effect on miR-155 and miR-181a levels was maintained over time. No modifications of miR-223 were observed in response to HP, while Chuk levels resulted significantly reduced at T0 and after 12 h. Pressurization did not cause any modifications in normal cells. In conclusion, HP was able to modulate the expression of miRNA associated to OA pathogenesis. The preliminary results about Chuk response to pressure raised interest in its involvement in the possible HP induced NF-kB pathway modulation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Safshekan, Farzaneh; Tafazzoli-Shadpour, Mohammad; Shokrgozar, Mohammad Ali; Haghighipour, Nooshin; Mahdian, Reza; Hemmati, Alireza
2012-12-01
Hydrostatic pressure (HP) plays an essential role in regulating function of chondrocytes and chondrogenic differentiation. The objective of this study was to examine effects of intermittent HP on chondrogenic differentiation of human adipose-derived mesenchymal stem cells (hASCs) in the presence or absence of chemical chondrogenic medium. Cells were isolated from abdominal fat tissue and confirmed for expression of ASC surface proteins and differentiation potential. Passage 3 pellets were treated with chemical (growth factor), mechanical (HP of 5 MPa and 0.5 Hz with duration of 4 h/day for 7 consecutive days), and combined chemical-mechanical stimuli. Using real-time polymerase chain reaction, the expression of Sox9, collagen II, and aggrecan as three major chondrogenic markers were quantified among three experimental groups and compared to those of stem cells and human cartilage tissue. In comparison to the chemical and mechanical groups, the chemical-mechanical group showed the highest expression for all three chondrogenic genes close to that of cartilage tissue. Results show the beneficial role of intermittent HP on chondrogenic differentiation of hASCs, and that this loading regime in combination with chondrogenic medium can be used in cartilage tissue engineering. © 2012, Copyright the Authors. Artificial Organs © 2012, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Mizuno, Shuichi
2005-02-01
Chondrocytes in articular cartilage are exposed to hydrostatic pressure and distortional stress during weight bearing and joint loading. Because these stresses occur simultaneously in articular cartilage, the mechanism of mechanosignal transduction due to hydrostatic pressure alone in chondrocytes is not clear. In this study, we attempted to characterize the change in intracellular calcium concentration ([Ca2+]i) in response to the application of hydrostatic fluid pressure (HFP) to cultured bovine articular chondrocytes isolated from defined surface (SZ) and middle zones (MZ) by using a fluorescent indicator (X-rhod-1 AM), a novel custom-made pressure-proof optical chamber, and laser confocal microscopy. Critical methodology implemented in this experiment involved application of high levels of HFP to the cells and the use of a novel imaging apparatus to measure the peak [Ca2+]i in individual cells. The peak [Ca2+]i in MZ cells cultured for 5 days showed a significant twofold increase after the application of HFP at constant 0.5 MPa for 5 min. The peak [Ca2+]i in SZ cells was lower (43%) than that of MZ cells. The peak was suppressed with an inhibitor of dantrolene, gadolinium, or a calcium ion-free buffer, but not with verapamil. This study indicated that the increase in [Ca2+]i in chondrocytes to HFP is dependent on the zonal origin. HFP stimulates calcium mobilization and stretch-activated channels.
Duwal, Sakun; Yoo, Choong-Shik
2016-02-16
Pressure-induced structural and electronic transformations of tungsten disulfide (WS 2) have been studied to 60 GPa, in both hydrostatic and non-hydrostatic conditions, using four-probe electrical resistance measurements, micro-Raman spectroscopy and synchrotron x-ray diffraction. Our results show the evidence for an isostructural phase transition from hexagonal 2H c phase to hexagonal 2H a phase, which accompanies the metallization at ~37 GPa. This isostructural transition occurs displacively over a large pressure range between 15 and 45 GPa and is driven by the presence of strong shear stress developed in the layer structure of WS 2 under non-hydrostatic compression. Interestingly, this transition ismore » absent in hydrostatic conditions using He pressure medium, underscoring its strong dependence on the state of stress. We also attribute the absence to the incorporation of He atoms between the layers, mitigating the development of shear stress. We also conjecture a possibility of magnetic ordering in WS 2 that may occur at low temperature near the metallization.« less
NASA Astrophysics Data System (ADS)
Hayrapetyan, David B.; Kotanjyan, Tigran V.; Tevosyan, Hovhannes Kh.; Kazaryan, Eduard M.
2016-12-01
The effects of hydrostatic pressure and size quantization on the binding energies of a hydrogen-like donor impurity in cylindrical GaAs quantum dot (QD) with Morse confining potential are studied using the variational method and effective-mass approximation. In the cylindrical QD, the effect of hydrostatic pressure on the binding energy of electron has been investigated and it has been found that the application of the hydrostatic pressure leads to the blue shift. The dependence of the absorption edge on geometrical parameters of cylindrical QD is obtained. Selection rules are revealed for transitions between levels with different quantum numbers. It is shown that for the radial quantum number, transitions are allowed between the levels with the same quantum numbers, and any transitions between different levels are allowed for the principal quantum number.
Somolinos, Maria; García, Diego; Pagán, Rafael; Mackey, Bernard
2008-01-01
The aim was to investigate (i) the occurrence of sublethal injury in Listeria monocytogenes, Escherichia coli, and Saccharomyces cerevisiae after high hydrostatic pressure (HHP) treatment as a function of the treatment medium pH and composition and (ii) the relationship between the occurrence of sublethal injury and the inactivating effect of a combination of HHP and two antimicrobial compounds, tert-butyl hydroquinone (TBHQ) and citral. The three microorganisms showed a high proportion of sublethally injured cells (up to 99.99% of the surviving population) after HHP. In E. coli and L. monocytogenes, the extent of inactivation and sublethal injury depended on the pH and the composition of the treatment medium, whereas in S. cerevisiae, inactivation and sublethal injury were independent of medium pH or composition under the conditions tested. TBHQ alone was not lethal to E. coli or L. monocytogenes but acted synergistically with HHP and 24-h refrigeration, resulting in a viability decrease of >5 log10 cycles of both organisms. The antimicrobial effect of citral depended on the microorganism and the treatment medium pH. Acting alone for 24 h under refrigeration, 1,000 ppm of citral caused a reduction of 5 log10 cycles of E. coli at pH 7.0 and almost 3 log10 cycles of L. monocytogenes at pH 4.0. The combination of citral and HHP also showed a synergistic effect. Our results have confirmed that the detection of sublethal injury after HHP may contribute to the identification of those treatment conditions under which HHP may act synergistically with other preserving processes. PMID:18952869
Yu, Sheng-ji; Qiu, Gui-xing; Burton, Yang; Sandra, Roth; Cari, Whyne; Albert, Yee
2005-12-15
To investigate the expression of integrin alpha5 and actin in the cells of intervertebral disc under cyclic hydrostatic pressure in vitro. The porcine lumbar intervertebral disc cells were isolated and cultured in vitro, and the cells underwent cyclic hydrostatic loading. After that, the expression of integrin alpha5 and actin in intervertebral disc cells were studied by means of morphology observing, Western blot and immunohistochemistry staining. The morphology of intervertebral disc cells were changed into smaller and flatten shape, and the expression of integrin alpha5 and actin were decreased after loading. The expression of integrin alpha5 decreases under cyclic hydrostatic pressure, and the actin is affected at the same time when signals are transferred into the cells by integrin alpha5. That may be one of the important mechanisms of the mechanotransduction in the cells of intervertebral disc.
Effect of high hydrostatic pressure on overall quality parameters of watermelon juice.
Liu, Y; Zhao, X Y; Zou, L; Hu, X S
2013-06-01
High hydrostatic pressure as a kind of non-thermal processing might maintain the quality of thermo-sensitive watermelon juice. So, the effect of high hydrostatic pressure treatment on enzymes and quality of watermelon juice was investigated. After high hydrostatic pressure treatment, the activities of polyphenol oxidase, peroxidase, and pectin methylesterase of juice decreased significantly with the pressure (P < 0.05). Inactivation of polyphenol oxidase and peroxidase could be fitted by two-fraction model and that of pectin methylesterase could be described by first-order reaction model. Titratable acidity, pH, and total soluble solid of juice did not change significantly (P > 0.05). No significant difference was observed in lycopene and total phenolics after high hydrostatic pressure treatment when compared to the control (P > 0.05). Cloudiness and viscosity increased with pressure (P < 0.05) but did not change significantly with treatment time (P > 0.05). a*- and b*-value both unchanged after high hydrostatic pressure treatment (P > 0.05) while L*-value increased but the values had no significant difference among treated juices. Browning degree after high hydrostatic pressure treatment decreased with increase in pressure and treatment time (P < 0.05). Through the comparison of total color difference values, high hydrostatic pressure had little effect on color of juice. The results of this study demonstrated the efficacy of high hydrostatic pressure in inactivating enzymes and maintaining the quality of watermelon juice.
Injection by hydrostatic pressure in conjunction with electrokinetic force on a microfluidic chip.
Gai, Hongwei; Yu, Linfen; Dai, Zhongpeng; Ma, Yinfa; Lin, Bingcheng
2004-06-01
A simple method was developed for injecting a sample on a cross-form microfluidic chip by means of hydrostatic pressure combined with electrokinetic forces. The hydrostatic pressure was generated simply by adjusting the liquid level in different reservoirs without any additional driven equipment such as a pump. Two dispensing strategies using a floating injection and a gated injection, coupled with hydrostatic pressure loading, were tested. The fluorescence observation verified the feasibility of hydrostatic pressure loading in the separation of a mixture of fluorescein sodium salt and fluorescein isothiocyanate. This method was proved to be effective in leading cells to a separation channel for single cell analysis.
NASA Astrophysics Data System (ADS)
Magaldi, Marcello G.; Haine, Thomas W. N.
2015-02-01
The cascade of dense waters of the Southeast Greenland shelf during summer 2003 is investigated with two very high-resolution (0.5-km) simulations. The first simulation is non-hydrostatic. The second simulation is hydrostatic and about 3.75 times less expensive. Both simulations are compared to a 2-km hydrostatic run, about 31 times less expensive than the 0.5 km non-hydrostatic case. Time-averaged volume transport values for deep waters are insensitive to the changes in horizontal resolution and vertical momentum dynamics. By this metric, both lateral stirring and vertical shear instabilities associated with the cascading process are accurately parameterized by the turbulent schemes used at 2-km horizontal resolution. All runs compare well with observations and confirm that the cascade is mainly driven by cyclones which are linked to dense overflow boluses at depth. The passage of the cyclones is also associated with the generation of internal gravity waves (IGWs) near the shelf. Surface fields and kinetic energy spectra do not differ significantly between the runs for horizontal scales L > 30 km. Complex structures emerge and the spectra flatten at scales L < 30 km in the 0.5-km runs. In the non-hydrostatic case, additional energy is found in the vertical kinetic energy spectra at depth in the 2 km < L < 10 km range and with frequencies around 7 times the inertial frequency. This enhancement is missing in both hydrostatic runs and is here argued to be due to the different IGW evolution and propagation offshore. The different IGW behavior in the non-hydrostatic case has strong implications for the energetics: compared to the 2-km case, the baroclinic conversion term and vertical kinetic energy are about 1.4 and at least 34 times larger, respectively. This indicates that the energy transfer from the geostrophic eddy field to IGWs and their propagation away from the continental slope is not properly represented in the hydrostatic runs.
Skarlatos, S; Brand, P H; Metting, P J; Britton, S L
1994-01-01
1. Previous work has demonstrated a positive relationship between experimentally induced changes in arterial pressure (AP) and renal interstitial hydrostatic pressure (RIHP). The purpose of the present study was to test the hypothesis that RIHP is positively correlated with the normal changes in AP that occur spontaneously in conscious rats. 2. Rats were chronically instrumented for the recording of AP (via an aortic catheter) and RIHP. RIHP was measured by implanting a Millar microtransducer, whose tip had been encapsulated in a 35 microns pore polyethylene matrix (5 mm long, 2 mm o.d.), approximately 5 mm below the renal cortical surface. 3. A total of 56 h of simultaneous analog recording of AP and RIHP was obtained from ten rats. Each 1 h segment was digitized and evaluated at frequencies of 1, 0.1, 0.02 and 0.01 Hz. 4. In forty-nine out of fifty-six of these 1 h recordings taken at 1 Hz, there were significant positive linear correlations between AP and RIHP (mean r = 0.32) with a mean slope of 0.11 mmHg RIHP/1 mmHg AP. Low-pass filtering to 0.01 Hz significantly increased the r value to 0.48. 5. These results demonstrate that spontaneous changes in AP and RIHP are positively correlated. The spontaneous coupling of AP and RIHP may be of importance in the regulation of salt and water excretion by the pressure diuresis mechanism. PMID:7707240
New Outlook on the High-Pressure Behavior of Pentaerythritol Tetranitrate
2007-09-01
energetic materials, such as Octahydro-1, 3, 5, 7-tetranitro- 1, 3, 5, 7-tetrazocine ( HMX ) and RDX , and this phenomenon is most likely caused by...H.; Smith, L. C. Studies on the Polymorphs of HMX . Los Alamos Technical Report No. LAMS-2652, 1962. 2. Halleck, P. M.; Wackerle, J. Dynamic...429, 827. 10. Sorescu, D. C.; Rice, B. M.; Thompson, D. L. Theoretical Studies of the Hydrostatic Compression of RDX , HMX , HNIW, and PETN Crystals
Alperin, Noam; Lee, Sang H; Bagci, Ahmet M
2015-10-01
To add the hydrostatic component of the cerebrospinal fluid (CSF) pressure to magnetic resonance imaging (MRI)-derived intracranial pressure (ICP) measurements in the upright posture for derivation of pressure value in a central cranial location often used in invasive ICP measurements. Additional analyses were performed using data previously collected from 10 healthy subjects scanned in supine and sitting positions with a 0.5T vertical gap MRI scanner (GE Medical). Pulsatile blood and CSF flows to and from the brain were quantified using cine phase-contrast. Intracranial compliance and pressure were calculated using a previously described method. The vertical distance between the location of the CSF flow measurement and a central cranial location was measured manually in the mid-sagittal T1 -weighted image obtained in the upright posture. The hydrostatic pressure gradient of a CSF column with similar height was then added to the MR-ICP value. After adjustment for the hydrostatic component, the mean ICP value was reduced by 7.6 mmHg. Mean ICP referenced to the central cranial level was -3.4 ± 1.7 mmHg compared to the unadjusted value of +4.3 ± 1.8 mmHg. In the upright posture, the hydrostatic pressure component needs to be added to the MRI-derived ICP values for compatibility with invasive ICP at a central cranial location. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Kim, Min Young; Jang, Gwi Yeong; Lee, Sang Hoon; Kim, Kyung Mi; Lee, Junsoo; Jeong, Heon Sang
2018-04-01
We investigated the influence of high hydrostatic pressure (HHP) treatment on the estrogenic properties and conversion of the phenolic compounds in germinated black soybean. The black soybean was germinated for two- or four-days, and then subjected to HHP at 0.1, 50, 100, or 150 MPa for 12 or 24 h. The highest total polyphenol content (3.9 mg GAE/g), flavonoid content (0.8 mg CE/g), phenolic acid content (940 ± 18.96 μg/g), and isoflavonone content (2600 μg/g) were observed after germination for four days and HHP treatment at 100 MPa for 24 h. In terms of isoflavone composition, the malonyl, acetyl and β-glycoside contents decreased, while the aglycone content increased with HHP. The highest proliferative effect (150%) is observed at four days germination and HHP treatment at 100 MPa. These results suggest that application of HHP may provide useful information regarding the utility of black soybean as alternative hormone replacement therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Chun; Leung, L. Ruby; Park, Sang-Hun
Advances in computing resources are gradually moving regional and global numerical forecasting simulations towards sub-10 km resolution, but global high resolution climate simulations remain a challenge. The non-hydrostatic Model for Prediction Across Scales (MPAS) provides a global framework to achieve very high resolution using regional mesh refinement. Previous studies using the hydrostatic version of MPAS (H-MPAS) with the physics parameterizations of Community Atmosphere Model version 4 (CAM4) found notable resolution dependent behaviors. This study revisits the resolution sensitivity using the non-hydrostatic version of MPAS (NH-MPAS) with both CAM4 and CAM5 physics. A series of aqua-planet simulations at global quasi-uniform resolutionsmore » ranging from 240 km to 30 km and global variable resolution simulations with a regional mesh refinement of 30 km resolution over the tropics are analyzed, with a primary focus on the distinct characteristics of NH-MPAS in simulating precipitation, clouds, and large-scale circulation features compared to H-MPAS-CAM4. The resolution sensitivity of total precipitation and column integrated moisture in NH-MPAS is smaller than that in H-MPAS-CAM4. This contributes importantly to the reduced resolution sensitivity of large-scale circulation features such as the inter-tropical convergence zone and Hadley circulation in NH-MPAS compared to H-MPAS. In addition, NH-MPAS shows almost no resolution sensitivity in the simulated westerly jet, in contrast to the obvious poleward shift in H-MPAS with increasing resolution, which is partly explained by differences in the hyperdiffusion coefficients used in the two models that influence wave activity. With the reduced resolution sensitivity, simulations in the refined region of the NH-MPAS global variable resolution configuration exhibit zonally symmetric features that are more comparable to the quasi-uniform high-resolution simulations than those from H-MPAS that displays zonal asymmetry in simulations inside the refined region. Overall, NH-MPAS with CAM5 physics shows less resolution sensitivity compared to CAM4. These results provide a reference for future studies to further explore the use of NH-MPAS for high-resolution climate simulations in idealized and realistic configurations.« less
Wang, Qi; Zhang, Chun; Liu, Liping; Li, Zenglan; Guo, Fangxia; Li, Xiunan; Luo, Jian; Zhao, Dawei; Liu, Yongdong; Su, Zhiguo
2017-07-20
Human ferritin (HFn) nanocaging is becoming an appealing platform for anticancer drugs delivery. However, protein aggregation always occurs during the encapsulation process, resulting in low production efficiency. A new approach using high hydrostatic pressure (HHP) was explored in this study to overcome the problem of loading doxorubicin (DOX) in HFn. At the pressure of 500MPa and pH 5.5, DOX molecules were found to be encapsulated into HFn. Meanwhile, combining it with an additive of 20mM arginine completely inhibited precipitation and aggregation, resulting in highly monodispersed nanoparticles with almost 100% protein recovery. Furthermore, stepwise decompression and incubation of the complex in atmospheric pressure at pH 7.4 for another period could further increase the DOX encapsulation ratio. The HFn-DOX nanoparticles (NPs) showed similar morphology and structural features to the hollow cage and no notable drug leakage occurred for HFn-DOX NPs when stored at 4°C and pH 7.4 for two weeks. HFn-DOX NPs prepared through HHP also showed significant cytotoxicity in vitro and higher antitumor bioactivity in vivo than naked DOX. Moreover, This HHP encapsulation strategy could economize on DOX that was greatly wasted during the conventional preparation process simply through a desalting column. These results indicated that HHP could offer a feasible approach with high efficiency for the production of HFn-DOX NPs. Copyright © 2017 Elsevier B.V. All rights reserved.
Theoretical studies of optical gain tuning by hydrostatic pressure in GaInNAs/GaAs quantum wells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gladysiewicz, M.; Wartak, M. S.; Department of Physics and Computer Science, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5
In order to describe theoretically the tuning of the optical gain by hydrostatic pressure in GaInNAs/GaAs quantum wells (QWs), the optical gain calculations within kp approach were developed and applied for N-containing and N-free QWs. The electronic band structure and the optical gain for GaInNAs/GaAs QW were calculated within the 10-band kp model which takes into account the interaction of electron levels in the QW with the nitrogen resonant level in GaInNAs. It has been shown that this interaction increases with the hydrostatic pressure and as a result the optical gain for GaInNAs/GaAs QW decreases by about 40% and 80%more » for transverse electric and transverse magnetic modes, respectively, for the hydrostatic pressure change from 0 to 40 kilobars. Such an effect is not observed for N-free QWs where the dispersion of electron and hole energies remains unchanged with the hydrostatic pressure. This is due to the fact that the conduction and valence band potentials in GaInAs/GaAs QW scale linearly with the hydrostatic pressure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luettge, U.; Nobel, P.S.
1984-07-01
Malate concentration and stem osmotic pressure concomitantly increase during nighttime CO/sub 2/ fixation and then decrease during the daytime in the obligate Crassulacean acid metabolism (CAM) plant, Cereus validus (Cactaceae). Changes in malate osmotic pressure calculated using the Van't Hoff relation match the changes in stem osmotic pressure, indicating that changes in malate level affected the water relations of the succulent stems. In contrast to stem osmotic pressure, stem water potential showed little day-night changes, suggesting that changes in cellular hydrostatic pressure occurred. This was corroborated by direct measurements of hydrostatic pressure using the Juelich pressure probe where a smallmore » oil-filled micropipette is inserted directly into chlorenchyma cells, which indicated a 4-fold increase in hydrostatic pressure from dusk to dawn. A transient increase of hydrostatic pressure at the beginning of the dark period was correlated with a short period of stomatal closing between afternoon and nighttime CO/sub 2/ fixation, suggesting that the rather complex hydrostatic pressure patterns could be explained by an interplay between the effects of transpiration and malate levels. A second CAM plant, Agave deserti, showed similar day-night changes in hydrostatic pressure in its succulent leaves. It is concluded that, in addition to the inverted stomatal rhythm, the oscillations of malate markedly affect osmotic pressures and hence water relations of CAM plants. 13 references, 4 figures.« less
Deviatoric stresses promoted metallization in rhenium disulfide
NASA Astrophysics Data System (ADS)
Zhuang, Yukai; Dai, Lidong; Li, Heping; Hu, Haiying; Liu, Kaixiang; Yang, Linfei; Pu, Chang; Hong, Meiling; Liu, Pengfei
2018-04-01
The structural, vibrational and electronic properties of ReS2 were investigated up to ~34 GPa by Raman spectroscopy, AC impedance spectroscopy, atomic force microscopy and high-resolution transmission electron microscopy, combining with first-principle calculations under two different pressure environments. The experimental results showed that ReS2 endured a structural transition at ~2.5 GPa both under non-hydrostatic and hydrostatic conditions. We found that a metallization occurred at ~27.5 GPa under non-hydrostatic conditions and at ~35.4 GPa under hydrostatic conditions. The occurrence of distinct metallization point attributed to the influence of deviatoric stresses, which significantly affected the layered structure and the weak van der Waals interaction for ReS2.
Arsenolite: a quasi-hydrostatic solid pressure-transmitting medium.
Sans, J A; Manjón, F J; Popescu, C; Muñoz, A; Rodríguez-Hernández, P; Jordá, J L; Rey, F
2016-11-30
This study reports the experimental characterization of the hydrostatic properties of arsenolite (As4O6), a molecular solid which is one of the softest minerals in the absence of hydrogen bonding. The high compressibility of arsenolite and its stability up to 15 GPa have been proved by x-ray diffraction measurements, and the progressive loss of hydrostaticity with increasing pressure up to 20 GPa has been monitored by ruby photoluminescence. Arsenolite has been found to exhibit hydrostatic behavior up to 2.5 GPa and a quasi-hydrostatic behavior up to 10 GPa at room temperature. This result opens the way to explore other molecular solids as possible quasi-hydrostatic pressure-transmitting media. The validity of arsenolite as an insulating, stable, non-penetrating and quasi-hydrostatic medium is explored by the study of the x-ray diffraction of zeolite ITQ-29 at high pressure.
46 CFR 61.15-5 - Steam piping.
Code of Federal Regulations, 2010 CFR
2010-10-01
... hydrostatic test equal to 11/4 times the maximum allowable working pressure at the same periods prescribed for boilers in § 61.05-10. The hydrostatic test shall be applied from the boiler drum to the throttle valve... should be subjected to a hydrostatic test at a pressure of 11/4 times the maximum allowable working...
Enhanced chondrogenesis with upregulation of PKR using a novel hydrostatic pressure bioreactor.
Kim, Jeonghyun; Montagne, Kevin; Ushida, Takashi; Furukawa, Katsuko
2015-01-01
In this study, we developed a novel bioreactor to load hydrostatic pressure to promote chondrogenesis of prechondrogenic ATDC5 cells in as little as 3 days. Furthermore, we showed that loading hydrostatic pressure induced the upregulation of PKR, which is known to participate in mechanotransduction in various models.
Nordberg, Rachel C; Bodle, Josie C; Loboa, Elizabeth G
2018-01-01
It is critical that human adipose stem cell (hASC) tissue-engineering therapies possess appropriate mechanical properties in order to restore function of the load bearing tissues of the musculoskeletal system. In an effort to elucidate the hASC response to mechanical stimulation and develop mechanically robust tissue engineered constructs, recent research has utilized a variety of mechanical loading paradigms including cyclic tensile strain, cyclic hydrostatic pressure, and mechanical unloading in simulated microgravity. This chapter describes methods for applying these mechanical stimuli to hASC to direct differentiation for functional tissue engineering of the musculoskeletal system.
Hydrostatic pulpal pressure effect upon microleakage.
Roberts, Howard W; Pashley, David H
2012-02-01
To evaluate if hydrostatic pulpal pressure plays a role in reducing microleakage. Uniform Class 5 preparations were accomplished on human molars with one margin on root dentin. Prepared teeth were randomly placed in one of three groups: (1) Hydrostatic pressure simulation at 20 cm pulpal pressure; (2) Hydrostatic pressure simulation but no pressure applied (positive control); and (3) Conventional microleakage method. Specimens were subjected to 24 hours methylene blue dye, sectioned, and microleakage assessed as a function of microleakage length versus entire preparation wall length using a traveling microscope. Hydrostatic pressure specimens demonstrated less gingival wall microleakage than the control groups while no difference was found between occlusal preparation walls.
Siphon effects on continuous subcutaneous insulin infusion pump delivery performance.
Zisser, Howard C; Bevier, Wendy; Dassau, Eyal; Jovanovic, Lois
2010-01-01
The objective was to quantify hydrostatic effects on continuous subcutaneous insulin infusion (CSII) pumps during basal and bolus insulin delivery. We tested CSII pumps from Medtronic Diabetes (MiniMed 512 and 515), Smiths Medical (Deltec Cozmo 1700), and Insulet (OmniPod) using insulin aspart (Novolog, Novo Nordisk). Pumps were filled and primed per manufacturer's instructions. The fluid level change was measured using an inline graduated glass pipette (100 microl) when the pipette was moved in relation to the pump (80 cm Cosmo and 110 cm Medtronics) and when level. Pumps were compared during 1 and 5 U boluses and basal insulin delivery of 1.0 and 1.5 U/h. Pronounced differences were seen during basal delivery in pumps using 80-100 cm tubing. For the 1 U/h rate, differences ranged from 74.5% of the expected delivery when the pumps were below the pipettes and pumping upward to 123.3% when the pumps were above the pipettes and pumping downward. For the 1.5 U/h rate, differences ranged from 86.7% to 117.0% when the pumps were below or above the pipettes, respectively. Compared to pumps with tubing, OmniPod performed with significantly less variation in insulin delivery. Changing position of a conventional CSII pump in relation to its tubing results in significant changes in insulin delivery. The siphon effect in the tubing may affect the accuracy of insulin delivery, especially during low basal rates. This effect has been reported when syringe pumps were moved in relation to infusion sites but has not been reported with CSII pumps. 2010 Diabetes Technology Society.
NASA Technical Reports Server (NTRS)
Massaglia, S.; Ferrari, A.; Bodo, G.; Kalkofen, W.; Rosner, R.
1985-01-01
The stability of current-driven filamentary modes in magnetic flux tubes embedded in a plane-parallel atmosphere in LTE and in hydrostatic equilibrium is discussed. Within the tube, energy transport by radiation only is considered. The dominant contribution to the opacity is due to H- ions and H atoms (in the Paschen continuum). A region in the parameter space of the equilibrium configuration in which the instability is effective is delimited, and the relevance of this process for the formation of structured coronae in late-type stars and accretion disks is discussed.
Moon, Sohee; Lee, Mak-Soon; Jung, Sunyoon; Kang, Bori; Kim, Seog-Young; Park, Seonyoung; Son, Hye-Yeon; Kim, Chong-Tai; Jo, Young-Hee; Kim, In-Hwan; Kim, Young Soon; Kim, Yangha
2017-09-01
Stress contributes to physiological changes such as weight loss and hormonal imbalances. The aim of the present study was to investigate antistress effects of high hydrostatic pressure extract of ginger (HPG) in immobilization-stressed rats. Male Sprague-Dawley rats (n = 24) were divided into three groups as follows: control (C), immobilization stress (2 h daily, for 2 weeks) (S), and immobilization stress (2 h daily, for 2 weeks) plus oral administration of HPG (150 mg/kg body weight/day) (S+G). Immobilization stress reduced the body weight gain and thymus weight by 50.2% and 31.3%, respectively, compared to the control group. The levels of serum aspartate transaminase, alanine transaminase, and corticosterone were significantly higher in the stress group, compared to the control group. Moreover, immobilization stress elevated the mRNA levels of tyrosine hydroxylase (Th), dopamine beta-hydroxylase (Dbh), and cytochrome P450 side-chain cleavage (P450scc), which are related to catecholamine and corticosterone synthesis in the adrenal gland. HPG administration also increased the body weight gain and thymus weight by 12.7% and 16.6%, respectively, compared to the stress group. Furthermore, the mRNA levels of Th, Dbh, phenylethanolamine-N-methyltransferase, and P450scc were elevated by the HPG treatment when compared to the stress group. These results suggest that HPG would have antistress effects partially via the reversal of stress-induced physiological changes and suppression of mRNA expression of genes related to corticosterone and catecholamine synthetic enzymes.
Aschoff, A; Kremer, P; Benesch, C; Fruh, K; Klank, A; Kunze, S
1995-04-01
When vertical body position is simulated, conventional differential pressure valves show an absolutely unphysiological flow, which is 2-170 times the normal liquor production rate. Although this is compensated in part by the resistance of the silicon tubes, which may produce up to 94% of the resistance of the complete shunt system, a negative intracranial pressure (ICP) of up to 30-44 cmH2O is an unavoidable consequence, which can be followed by subdural hematomas, slit ventricles, and other well-known complications. Modern shunt technology offers programmable, hydrostatic, and "flow-controlled" valves and anti-siphon devices; we have tested 13 different designs from 7 manufacturers (56 specimens), using the "Heidelberg Valve Test Inventory" with 16 subtests. "Programmable" valves reduce, but cannot exclude, unphysiological flow rates: even in the highest position and in combination with a standard catheter typical programmable Medos-Hakim valves allow a flow of 93-232 ml/h, Sophy SU-8-valves 86-168 ml/h with 30 cmH2O. The effect of hydrostatic valves (Hakim-Lumbar, Chhabra) can be inactivated by movements of daily life. The weight of the metal balls in most valves was too low for adequate flow reduction. Antisiphon devices are highly dependent on external, i.e. subcutaneous, pressure which has unpredictable influences on shunt function, and clinically is sometimes followed by shunt insufficiency. Two new Orbis-Sigma valves showed relatively physiological flow rates even when the vertical position (30 cmH2O) was simulated. One showed an insufficient flow (5.7 ml/h), and one was primarily obstructed. These have by far the smallest outlet of all valves. Additionally, the ruby pin tends to stick. Therefore, a high susceptibility to obliterations and blockade is unavoidable. Encouraging results obtained in pediatric patients contrast with disappointing experiences in some German and Swedish hospitals, which suggests that our laboratory findings are confirmed by clinical results. The concept of strict flow limitation seems to be inadaequate for adult patients, who need a relatively high flow during (nocturnal) ICP crises. The problem of shunt overdrainage remains unsolved.
Guan, Haining; Diao, Xiaoqin; Jiang, Fan; Han, Jianchun; Kong, Baohua
2018-04-15
Enzymatic hydrolysis of soy protein isolate by Corolase PP under high hydrostatic pressure conditions was studied and the effects of hydrolysis on antioxidant and antihypertensive activities were investigated. As observed, high hydrostatic pressure (80-300MPa) enhanced the hydrolytic efficiency of Corolase PP and decreased the surface hydrophobicity of the hydrolysates. Hydrolysates obtained at 200MPa for 4h had higher bioactivities (reducing power, ABTS radical-scavenging and ACE inhibitory activities). The molecular weight (MW) determination indicated that hydrolysis at high hydrostatic pressure could increase the production of small peptides (<3kDa) and the amino acid sequences of these peptides with different inhibitory abilities, less than 3kDa, in hydrolysates were identified using matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI TOF MS). These results indicated that high hydrostatic pressure combined with Corolase PP treatments could be used as a potential technology to produce bioactive peptides from soy protein isolate. Copyright © 2017 Elsevier Ltd. All rights reserved.
Liao, Lvshuang; Shang, Lei; Li, Na; Wang, Shuchao; Wang, Mi; Huang, Yanxia; Chen, Dan; Huang, Jufang; Xiong, Kun
2017-10-01
Receptor-interacting protein 3 (RIP3) is an essential component of the necroptosis signaling pathway. Phosphorylation of its downstream target, mixed lineage kinase domain-like protein (MLKL), has been proposed to induce necroptosis by initiating Ca2+ influx. Our previous studies have shown that RGC-5 retinal ganglion cells undergo RIP3-mediated necroptosis following elevated hydrostatic pressure (EHP). However, the molecular mechanism underlying necroptosis induction downstream of RIP3 is still not well understood. Here, we investigated the effects of MLKL during EHP-induced necroptosis, and primarily explored the relationship between MLKL and Ca2+ influx. Immunofluorescence staining showed that the expression of MLKL was increased 12 h after EHP. Western blot analysis demonstrated that the phosphorylated and unphosphorylated forms of both RIP3 and MLKL were up-regulated 12 h after EHP, while inhibition of RIP3 by GSK'872 decreased the expression of phosphorylated MLKL at the same stage. Propidium iodide staining, lactate dehydrogenase release assays, flow cytometry, and electron microscopy revealed the increased necrosis of RGC-5 cells 12 h after EHP, which coincided with elevated cytosolic Ca2+ concentrations. Depletion of extracellular Ca2+ and siRNA-mediated silencing of MLKL significantly reduced EHP-induced necrosis. Both MLKL-specific siRNA and GSK'872 treatment diminished Ca2+ influx. Thus, our findings suggest that MLKL may be the key mediator of necroptosis downstream of RIP3 phosphorylation and may be involved in increasing intracellular Ca2+ concentrations in EHP-induced RGC-5 necroptosis. © The Author 2017. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taghvaei, Amir Hossein, E-mail: Amirtaghvaei@gmail.com; Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz; Stoica, Mihai
2014-06-01
The influence of ball milling on the atomic structure and magnetic properties of the Co{sub 40}Fe{sub 22}Ta{sub 8}B{sub 30} metallic glass with a high thermal stability and excellent soft magnetic properties has been investigated. After 14 h of milling, the obtained powders were found to consist mainly of an amorphous phase and a small fraction of the (Co,Fe){sub 21}Ta{sub 2}B{sub 6} nanocrystals. The changes in the reduced pair correlation functions suggest noticeable changes in the atomic structure of the amorphous upon ball milling. Furthermore, it has been shown that milling is accompanied by introduction of compressive and dilatational sites inmore » the glassy phase and increasing the fluctuation of the atomic-level hydrostatic stress without affecting the coordination number of the nearest neighbors. Ball milling has decreased the thermal stability and significantly affected the magnetic properties through increasing the saturation magnetization, Curie temperature of the amorphous phase and coercivity. - Highlights: • Ball milling affected the atomic structure of Co{sub 40}Fe{sub 22}Ta{sub 8}B{sub 30} metallic glass. • Mechanically-induced crystallization started after 4 h milling. • Milling increased the fluctuation of the atomic-level hydrostatic stress in glass. • Ball milling influenced the thermal stability and magnetic properties.« less
Pannwitz, Andrea; Poirier, Stéphanie; Bélanger-Desmarais, Nicolas; Prescimone, Alessandro; Wenger, Oliver S; Reber, Christian
2018-06-04
Two luminescent heteroleptic Ru II complexes with a 2,2'-biimidazole (biimH 2 ) ligand form doubly hydrogen-bonded salt bridges to 4-sulfobenzoate anions in single crystals. The structure of one of these cation-anion adducts shows that the biimH 2 ligand is deprotonated. Its 3 MLCT luminescence band does not shift significantly under the influence of an external hydrostatic pressure, a behavior typical for these electronic transitions. In contrast, hydrostatic pressure on the other crystalline cation-anion adduct induces a shift of proton density from the peripheral N-H groups of biimH 2 towards benzoate, leading to a pronounced redshift of the 3 MLCT luminescence band. Such a significant and pressure-tunable influence from an interaction in the second coordination sphere is unprecedented in artificial small-molecule-based systems. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effect of high hydrostatic pressure and whey proteins on the disruption of casein micelle isolates.
Harte, Federico M; Gurram, Subba Rao; Luedecke, Lloyd O; Swanson, Barry G; Barbosa-Cánovas, Gustavo V
2007-11-01
High hydrostatic pressure disruption of casein micelle isolates was studied by analytical ultracentrifugation and transmission electron microscopy. Casein micelles were isolated from skim milk and subjected to combinations of thermal treatment (85 degrees C, 20 min) and high hydrostatic pressure (up to 676 MPa) with and without whey protein added. High hydrostatic pressure promoted extensive disruption of the casein micelles in the 250 to 310 MPa pressure range. At pressures greater than 310 MPa no further disruption was observed. The addition of whey protein to casein micelle isolates protected the micelles from high hydrostatic pressure induced disruption only when the mix was thermally processed before pressure treatment. The more whey protein was added (up to 5 g/l) the more the protection against high hydrostatic pressure induced micelle disruption was observed in thermally treated samples subjected to 310 MPa.
Heath, E M; Adams, T D; Daines, M M; Hunt, S C
1998-08-01
To compare hydrostatic weighing with and without head submersion and bioelectric impedance analysis (BIA) for measurement of body composition of persons who are morbidly obese. Body composition was determined using 3 methods: hydrostatic weighing with and without head submersion and BIA. Residual volume for the hydrostatic weighing calculation was determined by body plethysmography. Subjects were 16 morbidly obese men (142.5 kg mean body weight) and 30 morbidly obese women (125.9 kg mean body weight) living in the Salt Lake County, Utah, area. Morbid obesity was defined as 40 kg or more over ideal weight. One-way, repeated-measures analysis of variance was followed by Scheffé post hoc tests; body-fat measurement method served as the repeated variable and percentage of body fat as the dependent variable. Men and women were analyzed separately. In addition, degree of agreement between the 3 methods of determining body composition was determined. A regression equation was used to calculate body density for hydrostatic weighing without head submersion. Two new BIA regression equations were developed from the data of the 16 men and 30 women. Values for percentage body fat from hydrostatic weighing with and without head submersion (41.8% vs 41.7%, respectively) were the same for men but differed for women (52.2% vs 49.4%, respectively, P < .0001). Values for body fat percentage measured by BIA were significantly lower for men (36.1%) and women (43.1%) (for both, P < .0001) compared with values from hydrostatic weighing methods. BIA underpredicted percentage body fat by a mean of 5.7% in men and 9.1% in women compared with the traditional hydrostatic weighing method. BIA tended to underpredict the measurement of percentage body fat in male and female subjects who were morbidly obese. Hydrostatic weighing without head submersion provides an accurate, acceptable, and convenient alternative method for body composition assessment of the morbidly obese population in comparison with the traditional hydrostatic weighing method. In population screening or other settings where underwater weighing is impractical, population-specific BIA regression equations should be used because general BIA equations lead to consistent underprediction of percentage body fat compared with hydrostatic weighing.
Promoting the hydrostatic conceptual change test (HCCT) with four-tier diagnostic test item
NASA Astrophysics Data System (ADS)
Purwanto, M. G.; Nurliani, R.; Kaniawati, I.; Samsudin, A.
2018-05-01
Hydrostatic Conceptual Change Test (HCCT) is a diagnostic test instrument to identify students’ conception on Hydrostatic field. It is very important to support the learning process in the classroom. Based on that point of view, the researcher decided to develop HCCT instrument test into four-tier test diagnostic items. The resolve of this research is planned as the first step of four-tier test-formatted HCCT development as one of investigative test instrument on Hydrostatic. The research method used the 4D model which has four comprehensive steps: 1) defining, 2) designing, 3) developing and 4) disseminating. The instrument developed has been tried to 30 students in one of senior high schools. The data showed that four-tier- test-formatted HCCT is able to identify student’s conception level of Hydrostatic. In conclusion, the development of four-tier test-formatted HCCT is one of potential diagnostic test instrument that able to classify the category of students who misconception, no understanding, understanding, partial understanding and no codeable about concept of Hydrostatic.
LONG TERM STABILITY STUDY AT FNAL AND SLAC USING BINP DEVELOPED HYDROSTATIC LEVEL SYSTEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seryi, Andrei
2003-05-28
Long term ground stability is essential for achieving the performance goals of the Next Linear Collider. To characterize ground motion on relevant time scales, measurements have been performed at three geologically different locations using a hydrostatic level system developed specifically for these studies. Comparative results from the different sites are presented in this paper.
Hydrostatic Stress Effect On the Yield Behavior of Inconel 100
NASA Technical Reports Server (NTRS)
Allen, Phillip A.; Wilson, Christopher D.
2002-01-01
Classical metal plasticity theory assumes that hydrostatic stress has no effect on the yield and postyield behavior of metals. Recent reexaminations of classical theory have revealed a significant effect of hydrostatic stress on the yield behavior of notched geometries. New experiments and nonlinear finite element analyses (FEA) of Inconel 100 (IN 100) equal-arm bend and double-edge notch tension (DENT) test specimens have revealed the effect of internal hydrostatic tensile stresses on yielding. Nonlinear FEA using the von Mises (yielding is independent of hydrostatic stress) and the Drucker-Prager (yielding is linearly dependent on hydrostatic stress) yield functions was performed. In all test cases, the von Mises constitutive model, which is independent of hydrostatic pressure, overestimated the load for a given displacement or strain. Considering the failure displacements or strains, the Drucker-Prager FEMs predicted loads that were 3% to 5% lower than the von Mises values. For the failure loads, the Drucker Prager FEMs predicted strains that were 20% to 35% greater than the von Mises values. The Drucker-Prager yield function seems to more accurately predict the overall specimen response of geometries with significant internal hydrostatic stress influence.
Hydrostatic Stress Effects in Metal Plasticity
NASA Technical Reports Server (NTRS)
Wilson, Christopher D.
1999-01-01
Since the 1940s, the theory of plasticity has assumed that hydrostatic stress does not affect the yield or postyield behavior of metals. This assumption is based on the early work of Bridgman. Bridgman found that hydrostatic pressure (compressive stress) does not affect yield behavior until a substantial amount of pressure (greater than 100 ksi) is present. The objective of this study was to determine the effect of hydrostatic tension on yield behavior. Two different specimen geometries were examined: an equal-arm bend specimen and a double edge notch specimen. The presence of a notch is sufficient to develop high enough hydrostatic tensile stresses to affect yield. The von Mises yield function, which does not have a hydrostatic component, and the Drucker-Prager yield function, which includes a hydrostatic component, were used in finite element analyses of the two specimen geometries. The analyses were compared to test data from IN 100 specimens. For both geometries, the analyses using the Drucker-Prager yield function more closely simulated the test data. The von Mises yield function lead to 5-10% overprediction of the force-displacement or force-strain response of the test specimens.
Pressure-induced positive electrical resistivity coefficient in Ni-Nb-Zr-H glassy alloy
NASA Astrophysics Data System (ADS)
Fukuhara, M.; Gangli, C.; Matsubayashi, K.; Uwatoko, Y.
2012-06-01
Measurements under hydrostatic pressure of the electrical resistivity of (Ni0.36Nb0.24Zr0.40)100-xHx (x = 9.8, 11.5, and 14) glassy alloys have been made in the range of 0-8 GPa and 0.5-300 K. The resistivity of the (Ni0.36Nb0.24Zr0.40)86H14 alloy changed its sign from negative to positive under application of 2-8 GPa in the temperature range of 300-22 K, coming from electron-phonon interaction in the cluster structure under pressure, accompanied by deformation of the clusters. In temperature region below 22 K, the resistivity showed negative thermal coefficient resistance by Debye-Waller factor contribution, and superconductivity was observed at 1.5 K.
NASA Astrophysics Data System (ADS)
Subasi, B. G.; Alpas, H.
2017-01-01
The aim of this study was to investigate the effect of high hydrostatic pressure (HHP) treatment (200, 300, 400 MPa; 5°C, 15°C and 25°C; 5 and 10 min) on some quality properties of pomegranate juice. Juice samples are obtained under industrial conditions at two different squeezing pressure levels (100 and 150 psi - 0.689 and 1.033 MPa, respectively). Results are compared against conventional thermal treatment (85°C/10 min) and raw sample. For all three processing temperature, HHP combinations at 400 MPa for 10 min were sufficient to decrease the microbial load around 4.0 log cycles for both squeeze levels. All HHP treatments showed no significant decrease at antioxidant activity, total phenolic content and monomeric anthocyanin pigment concentrations, while there was a significant decrease (p ≤ .05) in thermal-treated samples. Being the highest sugar alcohol in pomegranate juice, mannitol content must be considered for determining the authenticity, and mannitol content increased with squeezing pressure and thermal treatment.
NASA Astrophysics Data System (ADS)
Mehmood Khan, Nasir; Mu, Tai-Hua; Sun, Hong-Nan; Zhang, Miao; Chen, Jing-Wang
2015-04-01
In this study, secondary structures of sweet potato protein (SPP) after high hydrostatic pressure (HHP) treatment (200-600 MPa) were evaluated and emulsifying properties of emulsions with HHP-treated SPP solutions in different pH values (3, 6, and 9) were investigated. Circular dichroism analysis confirmed the modification of the SPP secondary structure. Surface hydrophobicity increased at pH 3 and decreased at 6 and 9. Emulsifying activity index at pH 6 increased with an increase in pressure, whereas emulsifying stability index increased at pH 6 and 9. Oil droplet sizes decreased, while volume frequency distribution of the smaller droplets increased at pH 3 and 6 with the HHP treatment. Emulsion viscosity increased at pH 6 and 9 and pseudo-plastic flow behaviors were not altered for all emulsions produced with HHP-treated SPP. These results suggested that HHP could modify the SPP structure for better emulsifying properties, which could increase the use of SPP emulsion in the food industry.
Rao, Fang; Yang, Ren-Qiang; Chen, Xiao-Shu; Xu, Jin-Song; Fu, Hui-Min; Su, Hai; Wang, Ling
2014-01-01
Hypertension is known to be associated with platelet overactivity, but the direct effects of hydrostatic pressure on platelet function remain unclear. The present study sought to investigate whether elevated hydrostatic pressure is responsible for platelet activation and to address the potential role of peroxisome proliferator-activated receptor-γ (PPARγ). We observed that hypertensive patients had significantly higher platelet volume and rate of ADP-induced platelets aggregation compared to the controls. In vitro, Primary human platelets were cultured under standard (0 mmHg) or increased (120, 180, 240 mmHg) hydrostatic pressure for 18 h. Exposure to elevated pressure was associated with morphological changes in platelets. Platelet aggregation and PAC-1 (the active confirmation of GPIIb/IIIa) binding were increased, CD40L was translocated from cytoplasm to the surface of platelet and soluble CD40L (sCD40L) was released into the medium in response to elevated hydrostatic pressure (180 and 240 mmHg). The PPARγ activity was up-regulated as the pressure was increased from 120 mmHg to 180 mmHg. Pressure-induced platelet aggregation, PAC-1 binding, and translocation and release of CD40L were all attenuated by the PPARγ agonist Thiazolidinediones (TZDs). These results demonstrate that platelet activation and aggregation are increased by exposure to elevated pressure and that PPARγ may modulate platelet activation induced by high hydrostatic pressure.
Chen, Xiao-Shu; Xu, Jin-Song; Fu, Hui-Min; Su, Hai; Wang, Ling
2014-01-01
Hypertension is known to be associated with platelet overactivity, but the direct effects of hydrostatic pressure on platelet function remain unclear. The present study sought to investigate whether elevated hydrostatic pressure is responsible for platelet activation and to address the potential role of peroxisome proliferator-activated receptor-γ (PPARγ). We observed that hypertensive patients had significantly higher platelet volume and rate of ADP-induced platelets aggregation compared to the controls. In vitro, Primary human platelets were cultured under standard (0 mmHg) or increased (120, 180, 240 mmHg) hydrostatic pressure for 18 h. Exposure to elevated pressure was associated with morphological changes in platelets. Platelet aggregation and PAC-1 (the active confirmation of GPIIb/IIIa) binding were increased, CD40L was translocated from cytoplasm to the surface of platelet and soluble CD40L (sCD40L) was released into the medium in response to elevated hydrostatic pressure (180 and 240 mmHg). The PPARγ activity was up-regulated as the pressure was increased from 120 mmHg to 180 mmHg. Pressure-induced platelet aggregation, PAC-1 binding, and translocation and release of CD40L were all attenuated by the PPARγ agonist Thiazolidinediones (TZDs). These results demonstrate that platelet activation and aggregation are increased by exposure to elevated pressure and that PPARγ may modulate platelet activation induced by high hydrostatic pressure. PMID:24586940
46 CFR 133.45 - Tests and inspections of lifesaving equipment and arrangements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... and inflatable lifejacket has been serviced as required under this chapter; (5) That each hydrostatic release unit, other than a disposable hydrostatic release unit, has been serviced as required under this...
Neetoo, Hudaa; Chen, Haiqiang
2011-02-01
Alfalfa sprouts are recurrently implicated in outbreaks of food-borne illnesses as a result of contamination with Salmonella or Escherichia coli O157:H7. In the majority of these outbreaks, the seeds themselves have been shown to be the most likely source of contamination. The aims of this study were to comparatively assess the efficacy of dry heat treatments alone or in conjunction with high hydrostatic pressure (HHP) to eliminate a ∼5 log CFU/g load of Salmonella and E. coli O157:H7 on alfalfa seeds. Dry heat treatments at mild temperatures of 55 and 60 °C achieved ≤1.6 and 2.2 log CFU/g reduction in the population of Salmonella spp. after a 10-d treatment, respectively. However, subjecting alfalfa seeds to more aggressive temperatures of 65 °C for 10 days or 70 °C for 24 h eliminated a ∼5 log population of Salmonella and E. coli O157:H7. We subsequently showed that the sequential application of dry heating followed by HHP could substantially reduce the dry heating exposure time while achieving equivalent decontamination results. Dry heating at 55, 60, 65 and 70 °C for 96, 24, 12 and 6 h, respectively followed by a pressure treatment of 600 MPa for 2 min at 35 °C were able to eliminate a ∼5 log CFU/g initial population of both pathogens. Finally, we evaluated the impact of selected treatments on the seed germination percentages and yield ratios and showed that dry heating at 65 °C for 10 days did not bring about any considerable decrease in the germination percentage. However, the sprout yield of treated alfalfa seeds was reduced by 21%. Dry heating at 60 and 65 °C for 24 and 12 h respectively followed by the pressure treatment of 600 MPa for 2 min at 35 °C did not significantly (P > 0.05) affect the germination percentage of alfalfa seeds although a reduction in the sprouting yield was observed. Copyright © 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeuch, David Henry; Montgomery, Stephen Tedford; Lee, Moo Yul
Sandia is currently developing a lead-zirconate-titanate ceramic 95/5-2Nb (or PNZT) from chemically prepared ('chem-prep') precursor powders. Previous PNZT ceramic was fabricated from the powders prepared using a 'mixed-oxide' process. The specimens of unpoled PNZT ceramic from batch HF803 were tested under hydrostatic, uniaxial, and constant stress difference loading conditions within the temperature range of -55 to 75 C and pressures to 500 MPa. The objective of this experimental study was to obtain mechanical properties and phase relationships so that the grain-scale modeling effort can develop and test its models and codes using realistic parameters. The stress-strain behavior of 'chem-prep' PNZTmore » under different loading paths was found to be similar to that of 'mixed-oxide' PNZT. The phase transformation from ferroelectric to antiferroelectric occurs in unpoled ceramic with abrupt increase in volumetric strain of about 0.7 % when the maximum compressive stress, regardless of loading paths, equals the hydrostatic pressure at which the transformation otherwise takes place. The stress-volumetric strain relationship of the ceramic undergoing a phase transformation was analyzed quantitatively using a linear regression analysis. The pressure (P{sub T1}{sup H}) required for the onset of phase transformation with respect to temperature is represented by the best-fit line, P{sub T1}{sup H} (MPa) = 227 + 0.76 T (C). We also confirmed that increasing shear stress lowers the mean stress and the volumetric strain required to trigger phase transformation. At the lower bound (-55 C) of the tested temperature range, the phase transformation is permanent and irreversible. However, at the upper bound (75 C), the phase transformation is completely reversible as the stress causing phase transformation is removed.« less
How Much Does a Half-Kilogram of Water "Weigh"?
ERIC Educational Resources Information Center
Koumaras, Panagiotis; Pierratos, Theodoros
2015-01-01
Many educators have utilized the phenomenon of the so-called "hydrostatic paradox" to actively engage students in classroom instructional activities related to hydrostatic equilibrium. Various approaches requiring different levels of mathematical knowledge have been proposed in the literature to provide students clear explanations of…
NASA Astrophysics Data System (ADS)
Bougher, Stephen; Ridley, Aaron; Majeed, Tariq; Waite, J. Hunter; Gladstone, Randy; Bell, Jared
2016-07-01
The primary objectives for development and validation of a new 3-D non-hydrostatic model of Jupiter's upper atmosphere is to improve our understanding of Jupiter's thermosphere-ionosphere-magnetosphere system and to provide a global context within which to analyze the data retrieved from the new JUNO mission. The new J-GITM model presently incorporates the progress made on the previous Jupiter-TGCM code (i.e. key parameterizations, ion-neutral chemistry, IR cooling) while also employing the non-hydrostatic numerical core of the Earth Global Ionosphere-Thermosphere Model (GITM). The GITM numerical framework has been successfully applied to Earth, Mars, and Titan (see Ridley et al. [2006], Bougher et al. [2015], Bell [2008, 2010]). Moreover, it has been shown to simulate the effects of strong, localized heat sources (such as joule heating and auroral heating) more accurately than strictly hydrostatic GCMs (Deng et al. [2007, 2008]). Thus far, in the J-GITM model development and testing, model capability has been progressively augmented to capture the neutral composition (e.g. H, H2, He major species), 3-component neutral winds, and thermal structure, as well as the ion composition (H3+, H2+, and H+ among others) above 250 km. Presently, J-GITM: (a) provides an interactive calculation for auroral particle precipitation (i.e. heating, ionization), an improvement over the static formulation used previously in the J-TGCM (Bougher et al., 2005; Majeed et al., 2005, 2009, 2015); (b) self-consistently calculates an ionosphere using updated ion-neutral chemistry, ion dynamics, and electron transport; (c) simulates the chemistry that forms key hydrocarbons at the base of the thermosphere, focusing on CH4, C2H2, and C2H6; (d) allows the production of H3+, CH4, C2H2, and C2H6 to modify the global thermal balance of Jupiter through their non-LTE radiative cooling; (e) provides a calculation of H2 vibrational chemistry to regulate H+ densities; and (f) uses the improved ionosphere to provide more realistic Pederson and Hall conductivities (i.e. which will eventually be combined with updated representations of the convection electric field to drive the high-latitude ion dynamics). Thus far, Joule heating has not yet been implemented and turned on in the J-GITM framework. However, a small set of J-GITM simulations has been conducted in order to perform J-GITM versus J-TGCM benchmark comparisons making use of auroral forcing only. A summary of these simulation results will be presented.
Menke, Jan; Kahl, Fritz
2015-03-01
In children with ileocolic intussusception sonography is increasingly being used for diagnosis, whereas fluoroscopy is frequently used for guiding non-invasive reduction. This study assessed the success rate of radiation-free sonography-guided hydrostatic reduction in children with ileocolic intussusception, using novel well-defined success rate indices. All children were evaluated who presented from 2005 to 2013 to the local university hospital with ileocolic intussusception. The patients were treated with sonography-guided hydrostatic reduction unless primary surgery was clinically indicated. The according success rate was determined by indices of Bekdash et al. They represent the ratio of persistently successful non-surgical reductions versus four different denominators, depending on including/excluding cases with primary surgery and including/excluding cases requiring bowel resection/intervention. Fifty-six consecutive patients were included (age, 3 months to 7.8 years). About 80% of the patients presented until 24 h and 20% until 48 h after the onset of symptoms. Seven patients underwent primary surgery, with bowel resection required in three cases. Hydrostatic reduction was attempted in 49 patients, being permanently successful in 41 cases (selective reduction rate 41/49 = 83.7%; crude reduction rate 41/56 = 73.2%). The remaining eight patients underwent secondary surgery, with just two patients not requiring surgical bowel resection/intervention (corrected selective reduction rate 41/43 = 95.3%). The composite reduction rate was 87.2% (successful/feasible reductions, 41/47). Radiation-free sonography-guided hydrostatic reduction has a good success rate in children with ileocolic intussusception. It may be particularly valuable in centers that are already experienced with using sonography for the diagnosis.
Wirkert, Florian J; Paulus, Michael; Nase, Julia; Möller, Johannes; Kujawski, Simon; Sternemann, Christian; Tolan, Metin
2014-01-01
A high-pressure cell for in situ X-ray reflectivity measurements of liquid/solid interfaces at hydrostatic pressures up to 500 MPa (5 kbar), a pressure regime that is particularly important for the study of protein unfolding, is presented. The original set-up of this hydrostatic high-pressure cell is discussed and its unique properties are demonstrated by the investigation of pressure-induced adsorption of the protein lysozyme onto hydrophobic silicon wafers. The presented results emphasize the enormous potential of X-ray reflectivity studies under high hydrostatic pressure conditions for the in situ investigation of adsorption phenomena in biological systems.
Barba, Francisco J; Esteve, Maria J; Frigola, Ana
2010-09-22
Variations in levels of antioxidant compounds (ascorbic acid, total phenolics, and total carotenoids), total antioxidant capacity, and color changes in a vegetable (tomato, green pepper, green celery, onion, carrot, lemon, and olive oil) beverage treated by high hydrostatic pressure (HHP) were evaluated in this work. The effects of HHP treatment, four different pressures (100, 200, 300, and 400 MPa) and four treatment times for each pressure (from 120 to 540 s) were compared with those of thermal treatment (90-98 °C for 15 and 21 s). High pressure treatment retained significantly more ascorbic acid in the vegetable beverage than thermal treatment. However, no significant changes in total phenolics were observed between HHP treated and thermally processed vegetable beverage and unprocessed beverage. Color changes (a*, b*, L, chroma, h°, and ΔE) were less for pressurized beverage than thermally treated samples compared with unprocessed beverage.
Hydrostatic pressure modulates mRNA expressions for matrix proteins in human meniscal cells.
Suzuki, Toru; Toyoda, Takashi; Suzuki, Hiroshi; Hisamori, Noriyuki; Matsumoto, Hideo; Toyama, Yoshiaki
2006-01-01
There have been few reports describing the effects of mechanical loading on the metabolism of meniscal cells. The aim of this study was to investigate the effects of hydrostatic pressure on meniscal cell metabolism. Human meniscal cells were cultured in alginate beads for 3 days. They were then subjected to 4 MPa hydrostatic pressure for 4 hours in either a static or cyclic (1 Hz) mode using a specially designed and constructed system. Immediately after the pressure application, the messenger RNA levels for aggrecan, type I collagen, matrix metalloproteinases (MMP) -1, -3, -9, -13 and tissue inhibitors of metalloproteinases (TIMP) -1 and -2 were measured. It was found that the application of static hydrostatic pressure caused a significant decrease in mRNA expression for MMP-1 and -13 (p<0.05). In contrast, the application of cyclic hydrostatic pressure was associated with a significant increase in type I collagen (p<0.01), TIMP-1 and -2 mRNA expression (p<0.01). These results would suggest that hydrostatic pressure in isolation can modulate mRNA expressions for matrix proteins in meniscal cells.
Wang, Fan; Du, Bao-Lei; Cui, Zheng-Wei; Xu, Li-Ping; Li, Chun-Yang
2017-03-01
The aim of this study was to investigate the effects of high hydrostatic pressure and thermal processing on microbiological quality, bioactive compounds, antioxidant activity, and volatile profile of mulberry juice. High hydrostatic pressure processing at 500 MPa for 10 min reduced the total viable count from 4.38 log cfu/ml to nondetectable level and completely inactivated yeasts and molds in raw mulberry juice, ensuring the microbiological safety as thermal processing at 85 ℃ for 15 min. High hydrostatic pressure processing maintained significantly (p < 0.05) higher contents of total phenolic, total flavonoid and resveratrol, and antioxidant activity of mulberry juice than thermal processing. The main volatile compounds of mulberry juice were aldehydes, alcohols, and ketones. High hydrostatic pressure processing enhanced the volatile compound concentrations of mulberry juice while thermal processing reduced them in comparison with the control. These results suggested that high hydrostatic pressure processing could be an alternative to conventional thermal processing for production of high-quality mulberry juice.
Effect of high-hydrostatic pressure and moderate-intensity pulsed electric field on plum.
García-Parra, J; González-Cebrino, F; Delgado-Adámez, J; Cava, R; Martín-Belloso, O; Élez-Martínez, P; Ramírez, R
2018-03-01
Moderate intensity pulse electric fields were applied in plum with the aim to increase bioactive compounds content of the fruit, while high-hydrostatic pressure was applied to preserve the purées. High-hydrostatic pressure treatment was compared with an equivalent thermal treatment. The addition of ascorbic acid during purée manufacture was also evaluated. The main objective of this study was to assess the effects on microorganisms, polyphenoloxidase, color and bioactive compounds of high-hydrostatic pressure, or thermal-processed plum purées made of moderate intensity pulse electric field-treated or no-moderate intensity pulse electric field-treated plums, after processing during storage. The application of moderate intensity pulse electric field to plums slightly increased the levels of anthocyanins and the antioxidant activity of purées. The application of Hydrostatic-high pressure (HHP) increased the levels of bioactive compounds in purées, while the thermal treatment preserved better the color during storage. The addition of ascorbic acid during the manufacture of plum purée was an important factor for the final quality of purées. The color and the bioactive compounds content were better preserved in purées with ascorbic acid. The no inactivation of polyphenoloxidase enzyme with treatments applied in this study affected the stability purées. Probably more intense treatments conditions (high-hydrostatic pressure and thermal treatment) would be necessary to reach better quality and shelf life during storage.
He, Min; Zhong, Zhiqiang; Li, Xing; Gong, Xiaobo; Wang, Zhibiao; Li, Faqi
2017-05-01
It is well-known that acoustic cavitation associated with the high intensity focused ultrasound (HIFU) treatment often would change the morphology and size of lesions in its treatment. In most studies reported in literature, high ambient hydrostatic pressure was used to suppress the cavitation completely. Investigation of the effects by varying the ambient hydrostatic pressure (P stat ) is still lacking. In this paper, the effects of HIFU on lesions in ex vivo bovine liver specimens under various P stat are systematically investigated. A 1MHz HIFU transducer, with an aperture diameter of 70mm and a focal length of 55mm, was used to generate two groups US exposure of different acoustic intensities and exposure time (6095W/cm 2 ×8s and 9752W/cm 2 ×5s), while keeping the same acoustic energies per unit area (48760J/cm 2 ). The peak acoustic negative pressures (p - ) of the two groups were p 1 - =9.58MPa and p 2 - =10.82MPa, respectively, with the difference p d - =p 2 - -p 1 - =1.24MPa. A passive cavitation detection (PCD) was used to monitor the ultrasonic cavitation signal during exposure of the two groups. The US exposures were done under the following ambient hydrostatic pressures, P stat : atmospheric pressure, 0.5MPa, 1.0MPa, 1.5MPa, 2.0MPa, 2.5MPa and3.0MPa, respectively. The result of PCD showed that there was a statistically significant increase above background noise level in broadband emissions at dose of 9752W/cm 2 ×5s, but not at dose of 6095W/cm 2 ×8s under atmospheric pressure; i.e., the acoustic cavitation took place for p 2 - but not for p 1 - when under atmospheric pressure. The results also showed that there was no statistically difference of the morphology and size of lesions for 6095W/cm 2 ×8s exposure under the aforementioned different ambient hydrostatic pressures. But the lesions generated at 9752W/cm 2 ×5s exposure under P stat =atmospheric pressure, 0.5MPa, 1.0MPa (all of them are less than p d - ), were larger than those under 1.5MPa, 2.0MPa, 2.5MPa and 3.0MPa (all of them are over than p d - ) which were consistence with 6095W/cm 2 ×8s group. It was concluded that when P stat >p d - , the acoustic cavitation was suppressed and prompted that there was no need to elevate P stat higher than p - to suppress the acoustic cavitation in tissue, just need P stat higher than p d - . Copyright © 2016 Elsevier B.V. All rights reserved.
König, Nico; Paulus, Michael; Julius, Karin; Schulze, Julian; Voetz, Matthias; Tolan, Metin
2017-12-01
In the present work two subclasses of the human antibody Immunoglobulin G (IgG) have been investigated by Small-Angle X-ray Scattering under high hydrostatic pressures up to 5kbar. It is shown that IgG adopts a symmetric T-shape in solution which differs significantly from available crystal structures. Moreover, high-pressure experiments verify the high stability of the IgG molecule. It is not unfolded by hydrostatic pressures of up to 5kbar but a slight increase of the radius of gyration was observed at elevated pressures. Copyright © 2017 Elsevier B.V. All rights reserved.
Yan, Xiu-Ping; Yin, Xue-Bo; Jiang, Dong-Qing; He, Xi-Wen
2003-04-01
A novel method for speciation analysis of mercury was developed by on-line hyphenating capillary electrophoresis (CE) with atomic fluorescence spectrometry (AFS). The four mercury species of inorganic mercury Hg(II), methymercury MeHg(I), ethylmercury EtHg(I), and phenylmercury PhHg(I) were separated as mercury-cysteine complexes by CE in a 50-cm x 100-microm-i.d. fused-silica capillary at 15 kV and using a mixture of 100 mmol L(-1) of boric acid and 12% v/v methanol (pH 9.1) as electrolyte. A novel technique, hydrostatically modified electroosmotic flow (HSMEOF) in which the electroosmotic flow (EOF) was modified by applying hydrostatical pressure opposite to the direction of EOF was used to improve resolution. A volatile species generation technique was used to convert the mercury species into their respective volatile species. A newly developed CE-AFS interface was employed to provide an electrical connection for stable electrophoretic separations and to allow on-line volatile species formation. The generated volatile species were on-line detected with AFS. The precisions (RSD, n = 5) were in the range of 1.9-2.5% for migration time, 1.8-6.3% for peak area response, and 2.3-6.1% for peak height response for the four mercury species. The detection limits ranged from 6.8 to 16.5 microg L(-1) (as Hg). The recoveries of the four mercury species in the water samples were in the range of 86.6-111%. The developed technique was successfully applied to speciation analysis of mercury in a certified reference material (DORM-2, dogfish muscle).
NASA Astrophysics Data System (ADS)
Faulkner, D.; Leclere, H.; Bedford, J. D.; Behnsen, J.; Wheeler, J.
2017-12-01
Compaction of porous rocks can occur uniformly or within localized deformation bands. The formation of compaction bands and their effects on deformation behaviour are poorly understood. Porosity may be primary and compaction can occur with burial, or it can be produced by metamorphic reactions with a solid volume reduction, that can then undergo collapse. We report results from hydrostatic compaction experiments on porous bassanite (CaSO4.0.5H2O) aggregates. Gypsum (CaSO4.2H2O) is first dehydrated under low effective pressure, 4 MPa, to produce a bassanite aggregate with a porosity of 27%. Compaction is induced by increasing confining pressure at rates from 0.001 MPa/s to 0.02 MPa/s while the sample is maintained at a temperature of 115°C. At slow compaction rates, porosity collapse proceeds smoothly. At higher compaction rates, sudden increases in the pore-fluid pressure occur with a magnitude of 5 MPa. Microstructural investigations using X-ray microtomography and SEM observations show that randomly oriented localized compaction features occur in all samples, where the bulk porosity of 18% outside the band is reduced to 5% inside the band. Previous work on deformation bands has suggested that localized compactive features only form under an elevated differential stress and not under a hydrostatic stress state. The magnitude of the pore-pressure pulses can be explained by the formation of compaction bands. The results indicate that the compaction bands can form by rapid (unstable) propagation across the sample above a critical strain rate, or quasi-statically at low compaction rates without pore-fluid pressure bursts. The absence of pore-fluid pressure bursts at slow compaction rates can be explained by viscous deformation of the bassanite aggregate around the tip of a propagating compaction band, relaxing stress, and promoting stable propagation. Conversely, at higher compaction rates, viscous deformation cannot relax the stress sufficiently and unstable, brittle propagation occurs. In nature, this type of compaction behaviour might result in a mechanism to produce pulses of pore pressure within porous rocks which might have a significant effect on the deformation behaviour at depth.
Giant Negative Area Compressibility Tunable in a Soft Porous Framework Material.
Cai, Weizhao; Gładysiak, Andrzej; Anioła, Michalina; Smith, Vincent J; Barbour, Leonard J; Katrusiak, Andrzej
2015-07-29
A soft porous material [Zn(L)2(OH)2]n·Guest (where L is 4-(1H-naphtho[2,3-d]imidazol-1-yl)benzoate, and Guest is water or methanol) exhibits the strongest ever observed negative area compressibility (NAC), an extremely rare property, as at hydrostatic pressure most materials shrink in all directions and few expand in one direction. This is the first NAC reported in metal-organic frameworks (MOFs), and its magnitude, clearly visible and by far the highest of all known materials, can be reversibly tuned by exchanging guests adsorbed from hydrostatic fluids. This counterintuitive strong NAC of [Zn(L)2(OH)2]n·Guest arises from the interplay of flexible [-Zn-O(H)-]n helices with layers of [-Zn-L-]4 quadrangular puckered rings comprising large channel voids. The compression of helices and flattening of puckered rings combine to give a giant piezo-mechanical response, applicable in ultrasensitive sensors and actuators. The extrinsic NAC response to different hydrostatic fluids is due to varied host-guest interactions affecting the mechanical strain within the range permitted by exceptionally high flexibility of the framework.
Clarification of the recovery mechanism of Escherichia coli after hydrostatic pressure treatment
NASA Astrophysics Data System (ADS)
Ohshima, Shuto; Nomura, Kazuki; Iwahashi, Hitoshi
2013-06-01
High hydrostatic pressure (HP) technology has gained more attention as a non-thermal food pasteurization technology. Recently, a limitation of the HP technology was reported by Koseki and Yamamoto [Recovery of Escherichia coli ATCC 25922 in phosphate buffered saline after treatment with high hydrostatic pressure. Int. J. Food Microbiol. 2006;110:108-111], who completely recovered Escherichia coli species after HP treatment. We investigated the recovery mechanism of E. coli after HP treatment. The cells were treated with 200-300 MPa at 0-25°C for 24 h. The HP-treated E. coli was recovered in phosphate-buffered saline (PBS) during 120 h of incubation at 25°C, confirming the results reported by them. However, E. coli did not grow in PBS but grew with inactivated cells in PBS. In addition, the results of our "population size experiments" demonstrated that the recovery of E. coli cells depended on both the degree of pressure and the population size. These results suggest that some portion of cells recovered from the damage and then grew by using inactivated cells.
NASA Astrophysics Data System (ADS)
McKinnon, W. B.
2011-10-01
The global shape of Enceladus is not consistent with a simultaneously hydrostatic and fully differentiated body, but hypotheses that Enceladus is either undifferentiated or preserves a globally unrelaxed figure from an earlier position closer to Saturn are implausible. Enceladus' geophysical activity (and surface) is best understood in the context of a differentiated (rock separated from ice) interior. Topographic profiles indicate that Enceladus' surface conforms to a triaxial shape, consistent with relaxation to a global geoid. Enceladus' rocky core need not be hydrostatic, however. A modestly "lumpy" core, either in terms of topography or density, and dynamically aligned, will act to enhance the global geoid. Explaining the global shape of Enceladus requires ~12 km of excess core polar ellipticity and ~5 km of excess core equatorial ellipticity, for a uniform density core. The stresses in Enceladus' core associated with this modest level of dynamically excess topography can be sustained indefinitely. Enceladus' icy shell should be isostatic with respect to the satellite's degree-2 gravity, but because the rocky core is not hydrostatic, Enceladus' degree-2 gravity coefficients J2 and C22 should not conform to the hydrostatic ratio of 10/3. The moments-of-inertia implied also indicate that Enceladus could be near a low-order spin-orbit librational resonance, and thus tidal heating associated with this resonance type could have contributed to the moon's phenomenal heat flow. Finally, the core c-axis will be depressed by some 8 km with respect to a hydrostatic shape. This true topographic variation can help preserve polar ocean remnants against freezing (and grounding elsewhere) during epochs of low tidal heating.
Healing microstructures of experimental and natural fault gouge
NASA Astrophysics Data System (ADS)
Keulen, Nynke; Stünitz, Holger; Heilbronner, RenéE.
2008-06-01
The healing of fault gouge was studied by examining microstructures of naturally and experimentally produced granitoid fault rock. We performed deformation experiments on intact granitoid rock samples at T = 300-500°C, Pc = 500 MPa, and ? = 1.2 × 10-4 - 1.3 × 10-7 s-1 with 0.2 wt% H2O added. Healing experiments were carried out on deformed samples at T = 200-500°C, Pc = 500 MPa, for 4 h to 14 days under hydrostatic and nonhydrostatic conditions. The grain size distributions (GSD) of the deformed samples were quantified using the D> value (slope of log(frequency) -log(radius) of the GSD) for quartz and feldspar fault gouge. Healing causes a decrease in the D> value from >2.0 to ˜1.5. The time dependence of the D> decrease is described by a hydrostatic healing law of the form ΔD = D>(t) - Df = A · e(-λ·t). The results of the laboratory experiments were compared to three natural fault systems, (1) Nojima Fault Zone (Japan), (2) fault zones in the Black Forest (Germany), and (3) Orobic Thrust (Italian Alps). Natural and experimental gouges have similar D> values. Healing is only observed in monomineralic aggregates; polymineralic (i.e., mixed) fault gouges retain their high D> value after extended healing times because grain growth is inhibited. Healing under nonhydrostatic conditions is more rapid than hydrostatic healing. The low strain rates, which were measured during nonhydrostatic healing, are temperature-dependent and suggest that diffusive mass transfer processes take place during deformation. Thus, fault rocks at upper to midcrustal depth may deform by combined cataclasis and diffusive mass transfer.
Talbert, Erin E; Flynn, Michael G; Bell, Jeffrey W; Carrillo, Andres E; Dill, Marquita D; Christensen, Christiania N; Thompson, Colleen M
2009-01-01
(1) To compare the Lafayette Instruments (LI) skinfold caliper to the Lange (L) and Harpenden (H) calipers using a diverse subject population. (2) To determine the validity of the LI caliper in a subset of subjects by comparing body compositions from skinfold thicknesses to those measured by hydrostatic weighing (HW) and air displacement plethysmography (ADP). (3) To compare measurements obtained by experienced (EX) and inexperienced (IX) technicians using all three calipers. Skinfold measurements were performed by both EX and IX technicians using three different calipers on 21 younger (21.2 ± 1.5 yrs) and 20 older (59.2 ± 4 yrs) subjects. Body compositions were calculated using the Jackson-Pollock seven-site and three-site formulas. HW and ADP tests were performed on a subset of subjects (10 younger, 10 older). No significant differences existed between LI and L or H when measurements were made by EX. Further, the LI-EX measurements were highly correlated to both H-EX and L-EX. No significant differences existed in the subgroup between LI-EX and HW or ADP. Skinfold determinations made by EX and IX were similar. Similar body compositions determined using LI, H, and L suggest that LI determines body composition as effectively as H and L. High correlations between the three calipers support this notion. Similar results between LI and HW/ADP subgroup suggest that the LI caliper may be a valid method of measuring body composition. Overall, performance by IX was similar to EX and suggests similar ease of use for all three calipers.
TALBERT, ERIN E.; FLYNN, MICHAEL G.; BELL, JEFFREY W.; CARRILLO, ANDRES E.; DILL, MARQUITA D.; CHRISTENSEN, CHRISTIANIA N.; THOMPSON, COLLEEN M.
2009-01-01
Purposes (1) To compare the Lafayette Instruments (LI) skinfold caliper to the Lange (L) and Harpenden (H) calipers using a diverse subject population. (2) To determine the validity of the LI caliper in a subset of subjects by comparing body compositions from skinfold thicknesses to those measured by hydrostatic weighing (HW) and air displacement plethysmography (ADP). (3) To compare measurements obtained by experienced (EX) and inexperienced (IX) technicians using all three calipers. Methods Skinfold measurements were performed by both EX and IX technicians using three different calipers on 21 younger (21.2 ± 1.5 yrs) and 20 older (59.2 ± 4 yrs) subjects. Body compositions were calculated using the Jackson-Pollock seven-site and three-site formulas. HW and ADP tests were performed on a subset of subjects (10 younger, 10 older). Results No significant differences existed between LI and L or H when measurements were made by EX. Further, the LI-EX measurements were highly correlated to both H-EX and L-EX. No significant differences existed in the subgroup between LI-EX and HW or ADP. Skinfold determinations made by EX and IX were similar. Conclusions Similar body compositions determined using LI, H, and L suggest that LI determines body composition as effectively as H and L. High correlations between the three calipers support this notion. Similar results between LI and HW/ADP subgroup suggest that the LI caliper may be a valid method of measuring body composition. Overall, performance by IX was similar to EX and suggests similar ease of use for all three calipers. PMID:28572871
How Much Does a Half-Kilogram of Water "Weigh"?
NASA Astrophysics Data System (ADS)
Koumaras, Panagiotis; Pierratos, Theodoros
2015-03-01
Many educators have utilized the phenomenon of the so-called "hydrostatic paradox" to actively engage students in classroom instructional activities related to hydrostatic equilibrium.1 Various approaches requiring different levels of mathematical knowledge have been proposed in the literature to provide students clear explanations of this paradox.2 However, these attempts take for granted that students have already been taught and have internalized the concepts of force and pressure. The hydrostatic paradox is then usually introduced as an application problem for the evaluation of the knowledge acquired.
Abdolhosseini, Saeed; Kohandani, Reza; Kaatuzian, Hassan
2017-09-10
This paper represents the influences of temperature and hydrostatic pressure variations on GaAs/AlGaAs multiple quantum well slow light systems based on coherence population oscillations. An analytical model in non-integer dimension space is used to study the considerable effects of these parameters on optical properties of the slow light apparatus. Exciton oscillator strength and fractional dimension constants have special roles on the analytical model in fractional dimension. Hence, the impacts of hydrostatic pressure and temperature on exciton oscillator strength and fractional dimension quantity are investigated theoretically in this paper. Based on the achieved results, temperature and hydrostatic pressure play key roles on optical parameters of the slow light systems, such as the slow down factor and central energy of the device. It is found that the slope and value of the refractive index real part change with alterations of temperature and hydrostatic pressure in the range of 5-40 deg of Kelvin and 1 bar to 2 kbar, respectively. Thus, the peak value of the slow down factor can be adjusted by altering these parameters. Moreover, the central energy of the device shifts when the hydrostatic pressure is applied to the slow light device or temperature is varied. In comparison with previous reported experimental results, our simulations follow them successfully. It is shown that the maximum value of the slow down factor is estimated close to 5.5×10 4 with a fine adjustment of temperature and hydrostatic pressure. Meanwhile, the central energy shift of the slow light device rises up to 27 meV, which provides an appropriate basis for different optical devices in which multiple quantum well slow light is one of their essential subsections. This multiple quantum well slow light device has potential applications for use as a tunable optical buffer and pressure/temperature sensors.
NASA Astrophysics Data System (ADS)
Hiraki, Toshiki; Usui, Keiko; Abe, Fumiyoshi
2010-12-01
Tryptophan uptake in yeast Saccharomyces cerevisiae is susceptible to high hydrostatic pressure and it limits the growth of tryptophan auxotrophic (Trp-) strains under pressures of 15-25 MPa. The susceptibility of tryptophan uptake is accounted for by the pressure-induced degradation of tryptophan permease Tat2 occurring in a Rsp5 ubiquitin ligase-dependent manner. Ear1 and Ssh4 are multivesicular body proteins that physically interact with Rsp5. We found that overexpression of either of the EAR1 or SSH4 genes enabled the Trp- cells to grow at 15-25 MPa. EAR1 and SSH4 appeared to provide stability to the Tat2 protein when overexpressed. The result suggests that Ear1 and Ssh4 negatively regulate Rsp5 on ubiquitination of Tat2. Currently, high hydrostatic pressure is widely used in bioscience and biotechnology for structurally perturbing macromolecules such as proteins and lipids or in food processing and sterilizing microbes. We suggest that hydrostatic pressure is an operative experimental parameter to screen yeast genes specifically for regulation of Tat2 through the function of Rsp5 ubiquitin ligase.
Sahin, Cihan; Aysal, Bilge Kagan; Ergun, Ozge
2016-08-01
Ergun et al previously demonstrated the efficacy of hydrostatic dilation in a TRAM flap model in an experimental study. We investigated the effect of hydrostatic dilation on a fasciocutaneous flap model. Eighteen female Wistar rats were equally divided into 3 groups, of which 1 served as a control. In the second, the abdominal fasciocutaneous flap surgical delay procedure was performed by division of the left superficial inferior epigastric (SIE) vessels. In the third, hydrostatic dilation was performed on the left SIE artery and vein, with a mean pressure of 300 mm Hg, while elevating the flap on the right-sided SIE pedicle. The groups were compared by microangiography and by the survival ratio of abdominal flaps 7 days after elevation. The mean (SD) flap necrosis rates were as follows: control group, 44.75% (4.31%); delay group, 33.32% (7.11%); and hydrostatic dilation group, 32.51% (5.03%). There was a significant difference between the control group and the other 2 groups (P < 0.05). There was no difference between the delay and hydrostatic dilation groups with respect to surface area necrosis. The microangiographies showed remarkable increased vascularity in the delay and hydrostatic dilation groups. Hydrostatic dilation is a new method of enhancing flap viability that could be used in clinical cases in place of surgical delay once further studies and clinical trials are completed.
Vázquez-Gutiérrez, José Luis; Quiles, Amparo; Vonasek, Erica; Jernstedt, Judith A; Hernando, Isabel; Nitin, Nitin; Barrett, Diane M
2016-12-01
The "Hachiya" persimmon is the most common astringent cultivar grown in California and it is rich in tannins and carotenoids. Changes in the microstructure and some physicochemical properties during high hydrostatic pressure processing (200-400 MPa, 3 min, 25 ℃) and subsequent refrigerated storage were analyzed in this study in order to evaluate the suitability of this non-thermal technology for preservation of fresh-cut Hachiya persimmons. The effects of high-hydrostatic pressure treatment on the integrity and location of carotenoids and tannins during storage were also analyzed. Significant changes, in particular diffusion of soluble compounds which were released as a result of cell wall and membrane damage, were followed using confocal microscopy. The high-hydrostatic pressure process also induced changes in physicochemical properties, e.g. electrolyte leakage, texture, total soluble solids, pH and color, which were a function of the amount of applied hydrostatic pressure and may affect the consumer acceptance of the product. Nevertheless, the results indicate that the application of 200 MPa could be a suitable preservation treatment for Hachiya persimmon. This treatment seems to improve carotenoid extractability and tannin polymerization, which could improve functionality and remove astringency of the fruit, respectively. © The Author(s) 2016.
Zhang, Yifeng; Jiao, Shunshan; Lian, Zixuan; Deng, Yun; Zhao, Yanyun
2015-05-01
This study investigated the effect of single- and two-cycle high hydrostatic pressure (HHP) treatments on water properties, physicochemical, and microbial qualities of squids (Todarodes pacificus) during 4 °C storage for up to 10 d. Single-cycle treatments were applied at 200, 400, or 600 MPa for 20 min (S-200, S-400, and S-600), and two-cycle treatments consisted of two 10 min cycles at 200, 400, or 600 MPa, respectively (T-200, T-400, and T-600). HHP-treated samples had higher (P < 0.05) content of P2b (immobilized water) and P21 (myofibril water), but lower P22 (free water) than those of control. The single- and two-cycle HHP treatments at the same pressure level caused no significant difference in water state of squids. The two-cycle HHP treatment was more effective in controlling total volatile basic nitrogen, pH, and total plate counts (TPC) of squids during storage, in which TPC of S-600 and T-600 was 2.9 and 1.8 log CFU/g at 10 d, respectively, compared with 7.5 log CFU/g in control. HHP treatments delayed browning discoloration of the squids during storage, and the higher pressure level and two-cycle HHP were more effective. Water properties highly corresponded with color and texture indices of squids. This study demonstrated that the two-cycle HHP treatment was more effective in controlling microbial growth and quality deterioration while having similar impact on the physicochemical and water properties of squids in comparison with the single-cycle treatment, thus more desirable for extending shelf-life of fresh squids. © 2015 Institute of Food Technologists®
Effect of high hydrostatic pressure on the enzymatic hydrolysis of bovine serum albumin.
De Maria, Serena; Ferrari, Giovanna; Maresca, Paola
2017-08-01
The extent of enzymatic proteolysis mainly depends on accessibility of the peptide bonds, which stabilize the protein structure. The high hydrostatic pressure (HHP) process is able to induce, at certain operating conditions, protein displacement, thus suggesting that this technology can be used to modify protein resistance to the enzymatic attack. This work aims at investigating the mechanism of enzymatic hydrolysis assisted by HHP performed under different processing conditions (pressure level, treatment time). Bovine serum albumin was selected for the experiments, solubilized in sodium phosphate buffer (25 mg mL -1 , pH 7.5) with α-chymotrypsin or trypsin (E/S ratio = 1/10) and HPP treatment (100-500 MPa, 15-25 min). HHP treatment enhanced the extent of the hydrolysis reaction of globular proteins, being more effective than conventional hydrolysis. At HHP treatment conditions maximizing the protein unfolding, the hydrolysis degree of proteins was increased as a consequence of the increased exposure of peptide bonds to the attack of proteolytic enzymes. The maximum hydrolysis degree (10% and 7% respectively for the samples hydrolyzed with α-chymotrypsin and trypsin) was observed for the samples processed at 400 MPa for 25 min. At pressure levels higher than 400 MPa the formation of aggregates was likely to occur; thus the degree of hydrolysis decreased. Protein unfolding represents the key factor controlling the efficiency of HHP-assisted hydrolysis treatments. The peptide produced under high pressure showed lower dimensions and a different structure with respect to those of the hydrolysates obtained when the hydrolysis was carried out at atmospheric pressure, thus opening new frontiers of application in food science and nutrition. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Non-hydrostatic semi-elastic hybrid-coordinate SISL extension of HIRLAM. Part II: numerical testing
NASA Astrophysics Data System (ADS)
Rõõm, Rein; Männik, Aarne; Luhamaa, Andres; Zirk, Marko
2007-10-01
The semi-implicit semi-Lagrangian (SISL), two-time-level, non-hydrostatic numerical scheme, based on the non-hydrostatic, semi-elastic pressure-coordinate equations, is tested in model experiments with flow over given orography (elliptical hill, mountain ridge, system of successive ridges) in a rectangular domain with emphasis on the numerical accuracy and non-hydrostatic effect presentation capability. Comparison demonstrates good (in strong primary wave generation) to satisfactory (in weak secondary wave reproduction in some cases) consistency of the numerical modelling results with known stationary linear test solutions. Numerical stability of the developed model is investigated with respect to the reference state choice, modelling dynamics of a stationary front. The horizontally area-mean reference temperature proves to be the optimal stability warrant. The numerical scheme with explicit residual in the vertical forcing term becomes unstable for cross-frontal temperature differences exceeding 30 K. Stability is restored, if the vertical forcing is treated implicitly, which enables to use time steps, comparable with the hydrostatic SISL.
NASA Astrophysics Data System (ADS)
Broda, Krzysztof; Filipek, Wiktor
2012-10-01
In order to describe the fluid flow through the porous centre, made of identical spheres, it is necessary to know the pressure, but in fact - the pressure distribution. For the flows in the range that was traditionally called laminar flow (i. e. for Reynolds numbers (Bear, 1988; Duckworth, 1983; Troskolański, 1957) from the range 0,01 to 3) it is virtually impossible with the use of the tools directly available on the market. Therefore, many scientists who explore this problem have concentrated only on the research of the velocity distribution of the medium that penetrates the intended centre (Bear, 1988) or pressure distribution at high hydraulic gradients (Trzaska & Broda, 1991, 2000; Trzaska et al., 2005). It may result from the inaccessibility to the measurement methods that provide measurement of very low hydrostatic pressures, such as pressure resulting from the weight of liquid located in the gravitational field (Duckworth, 1983; Troskolański, 1957). The pressure value c. 10 Pa (Troskolański, 1957) can be generated even by 1 mm height difference between the two levels of the free water surface, which in fact constitutes the definition of gauging tools of today measuring the level of the hydrostatic pressure. Authors proposed a method of hydrostatic pressure measurement and devised a gauging tool. Then a series of tests was conducted aiming at establishing what is the influence of various factors, such as temperature, atmospheric pressure, velocity of measurement completion, etc. on the accuracy and method of measurements. A method for considerable reduction of hysteresis that occurs during measurement was also devised. The method of measurement of small hydrostatic difference measurements allows for the accuracy of measurement of up to 0.5 Pa. Measurement results can be improved successfully by one order of magnitude, which for sure would entail necessary temperature stabilization of the tool. It will be more difficult though to compensate the influence of atmospheric pressure on the measurement process.
Puetzer, Jennifer; Williams, John; Gillies, Allison; Bernacki, Susan
2013-01-01
This study investigates the effects of cyclic hydrostatic pressure (CHP) on chondrogenic differentiation of human adipose-derived stem cells (hASCs) in three-dimensional (3-D) agarose constructs maintained in a complete growth medium without soluble chondrogenic inducing factors. hASCs were seeded in 2% agarose hydrogels and exposed to 7.5 MPa CHP for 4 h per day at a frequency of 1 Hz for up to 21 days. On days 0, 7, 14, and 21, the expression levels of collagen II, Sox9, aggrecan, and cartilage oligomeric matrix protein (COMP) were examined by real-time reverse transcriptase–polymerase chain reaction analysis. Gene expression analysis found collagen II mRNA expression in only the CHP-loaded construct at day 14 and at no other time during the study. CHP-loaded hASCs exhibited upregulated mRNA expression of Sox9, aggrecan, and COMP at day 7 relative to unloaded controls, suggesting that CHP initiated chondrogenic differentiation of hASCs in a manner similar to human bone marrow-derived mesenchymal stem cells (hMSC). By day 14, however, loaded hASC constructs exhibited significantly lower mRNA expression of the chondrogenic markers than unloaded controls. Additionally, by day 21, the samples exhibited little measurable mRNA expression at all, suggesting a decreased viability. Histological analysis validated the lack of mRNA expression at day 21 for both the loaded and unloaded control samples with a visible decrease in the cell number and change in morphology. A comparative study with hASCs and hMSCs further examined long-term cell viability in 3-D agarose constructs of both cell types. Decreased cell metabolic activity was observed throughout the 21-day experimental period in both the CHP-loaded and control constructs of both hMSCs and hASCs, suggesting a decrease in cell metabolic activity, alluding to a decrease in cell viability. This suggests that a 2% agarose hydrogel may not optimally support hASC or hMSC viability in a complete growth medium in the absence of soluble chondrogenic inducing factors over long culture durations. This is the first study to examine the ability of mechanical stimuli alone, in the absence of chondrogenic factors transforming growth factor beta (TGF-β)3, TGF-β1 and/or bone morphogenetic protein 6 (BMP6) to induce hASC chondrogenic differentiation. The findings of this study suggest that CHP initiates hASC chondrogenic differentiation, even in the absence of soluble chondrogenic inductive factors, confirming the importance of considering both mechanical stimuli and appropriate 3-D culture for cartilage tissue engineering using hASCs. PMID:22871265
Lee, Seohyun; Joo, Hyunjin; Kim, Chong-Tai; Kim, In-Hwan; Kim, Yangha
2012-06-19
Cardiovascular disease (CVD) is the number one cause of mortality worldwide and a low high-density lipoprotein cholesterol (HDL-C) level is an important marker of CVD risk. Garlic (Allium sativum) has been widely used in the clinic for treatment of CVD and regulation of lipid metabolism. This study investigated the effects of a high hydrostatic pressure extract of garlic (HEG) on HDL-C level and regulation of hepatic apolipoprotein A-I (apoA-I) gene expression. Male Sprague-Dawley rats were divided into two groups and maintained on a high-fat control diet (CON) or high-fat control diet supplemented with high hydrostatic pressure extract of garlic (HEG) for 5 weeks. Changes in the expression of genes related to HDL-C metabolism were analyzed in liver, together with biometric and blood parameters. In the HEG group, the plasma triglyceride (TG) and low-density lipoprotein cholesterol (LDL-C) levels were significantly decreased in comparison with the CON group (P < 0.05). Dietary HEG also lowered the hepatic TG and total cholesterol (TC) levels compared to the CON group. While the plasma HDL-C level and mRNA level of hepatic apoA-I, which is one of primarily proteins of HDL-C particle, were significantly increased in the HEG group compared to the CON group (P < 0.05). The gene expression of ATP-binding cassette transporter A1 (ABCA1) and lecithin:cholesterol acyltransferase (LCAT), importantly involved in the biogenesis in HDL, were also up-regulated by dietary HEG. These results suggest that HEG ameliorates plasma lipid profiles and attenuates hepatic lipid accumulation in the high-fat fed rats. Our findings provides that the effects of HEG on the increase of the plasma HDL-C level was at least partially mediated by up-regulation of hepatic genes expression such as apoA-I, ABCA1, and LCAT in rats fed a high-fat diet.
Performance of an Electro-Hydrostatic Actuator on the F-18 Systems Research Aircraft
NASA Technical Reports Server (NTRS)
Navarro, Robert
1997-01-01
An electro-hydrostatic actuator was evaluated at NASA Dryden Flight Research Center, Edwards, California. The primary goal of testing this actuator system was the flight demonstration of power-by-wire technology on a primary flight control surface. The electro-hydrostatic actuator uses an electric motor to drive a hydraulic pump and relies on local hydraulics for force transmission. This actuator replaced the F-18 standard left aileron actuator on the F-18 Systems Research Aircraft and was evaluated throughout the Systems Research Aircraft flight envelope. As of July 24, 1997 the electro-hydrostatic actuator had accumulated 23.5 hours of flight time. This paper presents the electro-hydrostatic actuator system configuration and component description, ground and flight test plans, ground and flight test results, and lessons learned. This actuator performs as well as the standard actuator and has more load capability than required by aileron actuator specifications of McDonnell- Douglas Aircraft, St. Louis, Missouri. The electro-hydrostatic actuator system passed all of its ground tests with the exception of one power-off test during unloaded dynamic cycling.
Super-fine rice-flour production by enzymatic treatment with high hydrostatic pressure processing
NASA Astrophysics Data System (ADS)
Kido, Miyuki; Kobayashi, Kaneto; Chino, Shuji; Nishiwaki, Toshikazu; Homma, Noriyuki; Hayashi, Mayumi; Yamamoto, Kazutaka; Shigematsu, Toru
2013-06-01
In response to the recent expansion of rice-flour use, we established a new rice-flour manufacturing process through the application of high hydrostatic pressure (HP) to the enzyme-treated milling method. HP improved both the activity of pectinase, which is used in the enzyme-treated milling method and the water absorption capacity of rice grains. These results indicate improved damage to the tissue structures of rice grains. In contrast, HP suppressed the increase in glucose, which may have led to less starch damage. The manufacturing process was optimized to HP treatment at 200 MPa (40°C) for 1 h and subsequent wet-pulverization at 11,000 rpm. Using this process, rice flour with an exclusively fine mean particle size less than 20 μm and starch damage less than 5% was obtained from rice grains soaked in an enzyme solution and distilled water. This super-fine rice flour is suitable for bread, pasta, noodles and Western-style sweets.
A new hydrostatic anti-G suit vs. a pneumatic anti-G system: preliminary comparison.
Eiken, O; Kölegård, R; Lindborg, B; Aldman, M; Karlmar, K E; Linder, J; Kölegoård, R
2002-07-01
A newly developed hydrostatic anti-G suit is now commercially available. The suit is said to offer a high level of protection against +Gz acceleration. However, past experience shows that it is difficult to produce a hydrostatic suit with effective high-G protection. Careful testing is, therefore, needed to verify its efficacy. The G-protective properties of the hydrostatic anti-G suit (Libelle; L) were compared with those of a pneumatic anti-G ensemble (AGE-39) used in the Swedish JAS 39 Cripen aircraft. Three pilots were studied during vertical (+Gz) acceleration in a centrifuge using the following: 1) the L-suit with varied straining maneuvers; 2) the AGE-39 in combination with full anti-G straining maneuvers (AGSM) throughout each high-G exposure (full maneuver; FM); and 3) the AGE-39 in combination with AGSM during the initial part of each high-G exposure (reduced maneuver; RM). G-intensity tolerance was established during exposures to rapid onset rate (ROR) profiles with G-plateau levels ranging from +6.0 to +9.0 Gz. G-endurance was studied during simulated aerial combat maneuvers (SACM) consisting of 10 cycles of 5.5 to 7.5 G. All three pilots tolerated 9.0 G with the pneumatic system both in the RM and FM conditions; their tolerances averaged 6.3 G (range 6.0 to 7.0 G) for the L suit. Thus, during the ROR exposures only the 6.0 G profile was completed by all subjects in all three conditions. At this G-load both muscle straining (as indicated by electromyographic activity in thigh and abdomen) and heart rate were higher in the L than in the RM condition. Mean arterial pressure at eye level was higher in the FM than in the L and RM conditions. Only one subject was able to complete the SACM profile in the L condition. In the RM condition all subjects completed the SACM profile and in the FM condition two subjects completed the SACM. Whether the AGE-39 was used in combination with maximal AGSM throughout the duration of each high-G exposure or with AGSM only during the initial part of the high-G exposure, G-intensity tolerance was 9.0 G. While wearing the L-suit, G-tolerance was 6.3 G. Thus, under the conditions tested, the G-protection afforded by the L-suit is not adequate for use in a 9-G aircraft.
Hydrostatic pressure modifies the action of octanol and atropine on frog endplate conductance.
Ashford, M. L.; Macdonald, A. G.; Wann, K. T.
1984-01-01
The effects of octanol, ethanol and atropine were examined on the time course of decay (tau D) of miniature endplate currents (m.e.p.cs) in the frog neuromuscular junction at normal and high pressure. Octanol (25-100 microM) decreased reversibly the tau D of m.e.p.cs in a dose-dependent manner, 100 microM reducing tau D to 0.39 of the control value. Higher concentrations (200-500 microM) additionally depressed the amplitude of m.e.p.cs. Hydrostatic pressure (3.19 and 5.25 MPa) reduced the tau D of octanol (25-100 microM)-shortened m.e.p.cs. Thus 3.19 MPa and 5.25 MPa reduced the tau D in the presence of 100 microM octanol to 0.75 and 0.78 of the octanol treated values. This effect was not completely reversed on decompression. The m.e.p.c. amplitude is reversibly decreased by pressure in the presence of octanol. Hydrostatic pressure (3.19-15.55 MPa) did not modify the effect of ethanol on tau D. At 10.40 and 15.55 MPa the tau D was increased equally in the absence or presence of ethanol. Atropine (60 microM) reduced the tau D and amplitude of m.e.p.cs to 0.33 and 0.63 of the control values. These effects were completely reversible. Hydrostatic pressure (3.19 and 5.25 MPa) reduced the tau D of atropine-shortened m.e.p.cs to 0.82 and 0.77 of the atropine-treated values respectively. This effect was not completely reversed on decompression. Hydrostatic pressure also reversibly depressed the amplitude of atropine-treated m.e.p.cs. The implications of these drug-hydrostatic pressure interactions are discussed. PMID:6333262
Wang, Wei; Zhou, Fang; Zhao, Liang; Zhang, Jian-Rong; Zhu, Jun-Jie
2008-02-01
A simple method of hydrostatic pressure sample injection towards a disposable microchip CE device was developed. The liquid level in the sample reservoir was higher than that in the sample waste reservoir (SWR) by tilting microchip and hydrostatic pressure was generated, the sample was driven to pass through injection channel into SWR. After sample loading, the microchip was levelled for separation under applied high separation voltage. Effects of tilted angle, initial liquid height and injection duration on electrophoresis were investigated. With enough injection duration, the injection result was little affected by tilted angle and initial liquid heights in the reservoirs. Injection duration for obtaining a stable sample plug was mainly dependent on the tilted angle rather than the initial height of liquid. Experimental results were consistent with theoretical prediction. Fluorescence observation and electrochemical detection of dopamine and catechol were employed to verify the feasibility of tilted microchip hydrostatic pressure injection. Good reproducibility of this injection method was obtained. Because the instrumentation was simplified and no additional hardware was needed in this technology, the proposed method would be potentially useful in disposable devices.
Soluble intercellular adhesion molecule-1 and clinical outcomes in patients with acute lung injury
Eisner, Mark D.; Parsons, Polly E.; Thompson, B. Taylor; Conner, Edward R.; Matthay, Michael A.; Ware, Lorraine B.
2009-01-01
Objective To determine if levels of soluble intercellular adhesion molecule-1 (sICAM-1), a marker of alveolar epithelial and endothelial injury, differ in patients with hydrostatic pulmonary edema and acute lung injury (ALI) and are associated with clinical outcomes in patients with ALI. Design, setting, and participants Measurement of sICAM-1 levels in (1) plasma and edema fluid from 67 patients with either hydrostatic pulmonary edema or ALI enrolled in an observational, prospective single center study, and (2) in plasma from 778 patients with ALI enrolled in a large multi-center randomized controlled trial of ventilator strategy. Results In the single-center study, levels of sICAM-1 were significantly higher in both edema fluid and plasma (median 938 and 545 ng/ml, respectively) from ALI patients compared to hydrostatic edema patients (median 384 and 177 ng/ml, P < 0.03 for both comparisons). In the multi-center study, higher plasma sICAM-1 levels were associated with poor clinical outcomes in both unadjusted and multivariable models. Subjects with ALI whose plasma sICAM-1 levels increased over the first 3 days of the study had a higher risk of death, after adjusting for other important predictors of outcome (odds ratio 1.48; 95% CI 1.03–2.12, P = 0.03). Conclusions Both plasma and edema fluid levels of sICAM-1 are higher in patients with ALI than in patients with hydrostatic pulmonary edema. Higher plasma sICAM-1 levels and increasing sICAM-1 levels over time are associated with poor clinical outcomes in ALI. Measurement of sICAM-1 levels may be useful for identifying patients at highest risk of poor outcomes from ALI. PMID:18670758
Ma, Dandan; Kou, Xiaoxing; Jin, Jing; Xu, Taotao; Wu, Mengjie; Deng, Liquan; Fu, Lusi; Liu, Yi; Wu, Gang; Lu, Haiping
2016-11-07
Reduced mechanical stimuli in many pathological cases, such as hemimastication and limited masticatory movements, can significantly affect the metabolic activity of mandibular condylar chondrocytes and the growth of mandibles. However, the molecular mechanisms for these phenomena remain unclear. In this study, we hypothesized that integrin-focal adhesion kinase (FAK)-ERK (extracellular signal-regulated kinase)/PI3K (phosphatidylinositol-3-kinase) signaling pathway mediated the cellular response of condylar chondrocytes to mechanical loading. Primary condylar chondrocytes were exposed to hydrostatic compressive forces (HCFs) of different magnitudes (0, 50, 100, 150, 200, and 250 kPa) for 2 h. We measured the viability, morphology, and apoptosis of the chondrocytes with different treatments as well as the gene, protein expression, and phosphorylation of mechanosensitivity-related molecules, such as integrin α2, integrin α5, integrin β1, FAK, ERK, and PI3K. HCFs could significantly increase the viability and surface area of condylar chondrocytes and decrease their apoptosis in a dose-dependent manner. HCF of 250 kPa resulted in a 1.51 ± 0.02-fold increase of cell viability and reduced the ratio of apoptotic cells from 18.10% ± 0.56% to 7.30% ± 1.43%. HCFs could significantly enhance the mRNA and protein expression of integrin α2, integrin α5, and integrin β1 in a dose-dependent manner, but not ERK1, ERK2, or PI3K. Instead, HCF could significantly increase phosphorylation levels of FAK, ERK1/2, and PI3K in a dose-dependent manner. Cilengitide, the potent integrin inhibitor, could dose-dependently block such effects of HCFs. HCFs enhances the viability and decreases the apoptosis of condylar chondrocytes through the integrin-FAK-ERK/PI3K pathway.
Ma, Dandan; Kou, Xiaoxing; Jin, Jing; Xu, Taotao; Wu, Mengjie; Deng, Liquan; Fu, Lusi; Liu, Yi; Wu, Gang; Lu, Haiping
2016-01-01
Reduced mechanical stimuli in many pathological cases, such as hemimastication and limited masticatory movements, can significantly affect the metabolic activity of mandibular condylar chondrocytes and the growth of mandibles. However, the molecular mechanisms for these phenomena remain unclear. In this study, we hypothesized that integrin-focal adhesion kinase (FAK)-ERK (extracellular signal–regulated kinase)/PI3K (phosphatidylinositol-3-kinase) signaling pathway mediated the cellular response of condylar chondrocytes to mechanical loading. Primary condylar chondrocytes were exposed to hydrostatic compressive forces (HCFs) of different magnitudes (0, 50, 100, 150, 200, and 250 kPa) for 2 h. We measured the viability, morphology, and apoptosis of the chondrocytes with different treatments as well as the gene, protein expression, and phosphorylation of mechanosensitivity-related molecules, such as integrin α2, integrin α5, integrin β1, FAK, ERK, and PI3K. HCFs could significantly increase the viability and surface area of condylar chondrocytes and decrease their apoptosis in a dose-dependent manner. HCF of 250 kPa resulted in a 1.51 ± 0.02-fold increase of cell viability and reduced the ratio of apoptotic cells from 18.10% ± 0.56% to 7.30% ± 1.43%. HCFs could significantly enhance the mRNA and protein expression of integrin α2, integrin α5, and integrin β1 in a dose-dependent manner, but not ERK1, ERK2, or PI3K. Instead, HCF could significantly increase phosphorylation levels of FAK, ERK1/2, and PI3K in a dose-dependent manner. Cilengitide, the potent integrin inhibitor, could dose-dependently block such effects of HCFs. HCFs enhances the viability and decreases the apoptosis of condylar chondrocytes through the integrin-FAK-ERK/PI3K pathway. PMID:27827993
Zellner, J; Mueller, M; Xin, Y; Krutsch, W; Brandl, A; Kujat, R; Nerlich, M; Angele, P
2015-06-01
This study analyses the influence of dynamic hydrostatic pressure on chondrogenesis of human meniscus-derived fibrochondrocytes and explores the differences in chondrogenic differentiation under loading conditions between cells derived from the avascular inner zone and vascularized outer region of the meniscus. Aggregates of human fibrochondrocytes with cell origin from the inner region or with cell origin from the outer region were generated. From the two groups of either cell origin, aggregates were treated with dynamic hydrostatic pressure (1Hz for 4h; 0.55-5.03MPa, cyclic sinusoidal) from day 1 to day 7. The other aggregates served as unloaded controls. At day 0, 7, 14 and 21 aggregates were harvested for evaluation including histology, immunostaining and ELISA analysis for glycosaminoglycan (GAG) and collagen II. Loaded aggregates were found to be macroscopically larger and revealed immunohistochemically enhanced chondrogenesis compared to the corresponding controls. Loaded or non-loaded meniscal cells from the outer zone showed a higher potential and earlier onset of chondrogenesis compared to the cells from the inner part of the meniscus. This study suggests that intrinsic factors like cell properties in the different areas of the meniscus and their reaction on mechanical load might play important roles in designing Tissue Engineering strategies for meniscal repair in vivo. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Porębska, I.; Rutkowska, M.; Sokołowska, B.
2015-01-01
Alicyclobacillus acidoterrestris is a spore-forming bacterium, causing spoilage of juices. The spores of these bacteria have the ability to survive in the typical conditions used for thermal pasteurization. Therefore, the use of other techniques such as high hydrostatic pressure is considered for their inactivation. The effect of hydrostatic pressure of 200-500 MPa, at temperatures 4-50 °C for 15 min, on the dynamics of germination of A. acidoterrestris spores in apple juice and pH 4 buffer was studied. To estimate the share of germinated spores, the method of determining the optical density at a wavelength of 660 nm (OD660) was used. Parameters of hydrostatic pressure treatment used in this work affected the dynamics of germination of A. acidoterrestris spores in apple juice, and the temperature had the greatest effect. The results indicate that nutrients present in apple juice can promote the germination of A. acidoterrestris spores. This paper was presented at the 8th International Conference on High Pressure Bioscience & Biotechnology (HPBB 2014) in Nantes (France) 15-18 July 2014.
Modeling of Cardiovascular Response to Weightlessness
NASA Technical Reports Server (NTRS)
Sharp, M. Keith
1999-01-01
It was the hypothesis of this Project that the Simple lack of hydrostatic pressure in microgravity generates several purely physical reactions that underlie and may explain, in part, the cardiovascular response to weightlessness. For instance, hydrostatic pressure within the ventricles of the heart may improve cardiac performance by promoting expansion of ventricular volume during diastole. The lack of hydrostatic pressure in microgravity might, therefore, reduce diastolic filling and cardiac performance. The change in transmural pressure is possible due to the difference in hydrostatic pressure gradients between the blood inside the ventricle and the lung tissue surrounding the ventricle due to their different densities. On the other hand, hydrostatic pressure within the vasculature may reduce cardiac inlet pressures because of the typical location of the heart above the hydrostatic indifference level (the level at which pressure remains constant throughout changes in gravity). Additional physical responses of the body to changing gravitational conditions may influence cardiovascular performance. For instance, fluid shifts from the lower body to the thorax in microgravity may serve to increase central venous pressure (CVP) and boost cardiac output (CO). The concurrent release of gravitational force on the rib cage may tend to increase chest girth and decrease pedcardial pressure, augmenting ventricular filling. The lack of gravity on pulmonary tissue may allow an upward shifting of lung mass, causing a further decrease in pericardial pressure and increased CO. Additional effects include diuresis early in the flight, interstitial fluid shifts, gradual spinal extension and movement of abdominal mass, and redistribution of circulatory impedance because of venous distention in the upper body and the collapse of veins in the lower body. In this project, the cardiovascular responses to changes in intraventricular hydrostatic pressure, in intravascular hydrostatic pressure and, to a limited extent, in extravascular and pedcardial hydrostatic pressure were investigated. A complete hydraulic model of the cardiovascular system was built and flown aboard the NASA KC-135 and a computer model was developed and tested in simulated microgravity. Results obtained with these models have confirmed that a simple lack of hydrostatic pressure within an artificial ventricle causes a decrease in stroke volume. When combined with the acute increase in ventricular pressure associated with the elimination of hydrostatic pressure within the vasculature and the resultant cephalad fluid shift with the models in the upright position, however, stroke volume increased in the models. Imposition of a decreased pedcardial pressure in the computer model and in a simplified hydraulic model increased stroke volume. Physiologic regional fluid shifting was also demonstrated by the models. The unifying parameter characterizing of cardiac response was diastolic ventricular transmural pressure (DVDELTAP) The elimination of intraventricular hydrostatic pressure in O-G decreased DVDELTAP stroke volume, while the elimination of intravascular hydrostatic pressure increased DVDELTAP and stroke volume in the upright posture, but reduced DVDELTAP and stroke volume in the launch posture. The release of gravity on the chest wall and its associated influence on intrathoracic pressure, simulated by a drop in extraventricular pressure4, increased DVDELTAP ans stroke volume.
Accurate pressure gradient calculations in hydrostatic atmospheric models
NASA Technical Reports Server (NTRS)
Carroll, John J.; Mendez-Nunez, Luis R.; Tanrikulu, Saffet
1987-01-01
A method for the accurate calculation of the horizontal pressure gradient acceleration in hydrostatic atmospheric models is presented which is especially useful in situations where the isothermal surfaces are not parallel to the vertical coordinate surfaces. The present method is shown to be exact if the potential temperature lapse rate is constant between the vertical pressure integration limits. The technique is applied to both the integration of the hydrostatic equation and the computation of the slope correction term in the horizontal pressure gradient. A fixed vertical grid and a dynamic grid defined by the significant levels in the vertical temperature distribution are employed.
Observation of a second metastable spin-ordered state in ferrimagnet Cu2OSeO3
NASA Astrophysics Data System (ADS)
Huang, C. L.; Tseng, K. F.; Chou, C. C.; Mukherjee, S.; Her, J. L.; Matsuda, Y. H.; Kindo, K.; Berger, H.; Yang, H. D.
2011-02-01
dc and ac magnetization measurements were performed on single-crystal Cu2OSeO3 under magnetic field (H) and hydrostatic pressure (P) conditions. Increasing H shifts the ferrimagnetic transition observed at TC~60 K to a higher-temperature region. Moreover, the TC increases linearly and magnetization is enhanced with P. Features of the ladder in the M-vs-H curve or the peak in the dM/dH-vs-H curve are observed at HSF~0.5 kOe, suggesting a competing ordered state under magnetic fields below TC. Remarkably, a second shoulder is observed at ˜1 kOe in the dM/dH-vs-H curve, revealing another metastable spin-ordered state in Cu2OSeO3. This state is retained and enhanced by applying pressure. As H rises to 55 T, no further slope changes in the M-H curve are observed. These magnetic properties indicate a complex spin orientation in the geometrically spin-frustrated system Cu2OSeO3.
2014-01-01
Background RIP3 (Receptor-interacting protein 3) pathway was mainly described as the molecular mechanism of necroptosis (programmed necrosis). But recently, non-RIP3 pathways were found to mediate necroptosis. We deliberate to investigate the effect of calpain, a molecule to induce necroptosis as reported (Cell Death Differ 19:245–256, 2012), in RGC-5 following elevated hydrostatic pressure. Results First, we identified the existence of necroptosis of RGC-5 after insult by using necrostatin-1 (Nec-1, necroptosis inhibitor) detected by flow cytometry. Immunofluorescence staining and western blot were used to detect the expression of calpain. Western blot analysis was carried out to describe the truncated AIF (tAIF) expression with or without pretreatment of ALLN (calpain activity inhibitor). Following elevated hydrostatic pressure, necroptotic cells pretreated with or without ALLN was stained by Annexin V/PI, The activity of calpain was also examined to confirm the inhibition effect of ALLN. The results showed that after cell injury there was an upregulation of calpain expression. Upon adding ALLN, the calpain activity was inhibited, and tAIF production was reduced upon injury along with the decreased number of necroptosis cells. Conclusion Our study found that calpain may induce necroptosis via tAIF-modulation in RGC-5 following elevated hydrostatic pressure. PMID:24884644
Fluid shifts in weightlessness
NASA Technical Reports Server (NTRS)
Thornton, William E.; Moore, Thomas P.; Pool, Sam L.
1987-01-01
Studies of leg volumes in space by multiple girth measurements showed reductions of 1.9 l (12.8 percent of leg volume), with 1.1 l from the nondominant leg, on Skylab 4. On landing, 65 percent of postflight leg volume increase was complete at 1.5 h. Measurement of the dominant leg during the equivalent period on Shuttle showed a mean loss of 0.9 l which was 90-percent complete at 150 min. Postflight increases were 87-percent complete at 1.5 h postlanding. Mass measurements during and after Skylab 4 showed a loss of 2.5 kg over the first 4 d on orbit, with a gain of 2.7 kg over the first 4 d of recovery. These changes are assumed to be tissue fluids secondary to changes in hydrostatic pressures and are much greater than those seen in bed rest. Rate and magnitude of inflight and postflight changes have significant operational impact.
Evaluation of quantum confinement effect in nanocrystal Si dot layer by Raman spectroscopy.
Mizukami, Y; Kosemura, D; Numasawa, Y; Ohshita, Y; Ogura, A
2012-11-01
Quantum confinement effect in the nanocrystal-Si (nc-Si) was evaluated by Raman spectroscopy. The nc-Si dot layers were fabricated by the H2 plasma treatment for the nucleation site formation followed by the SiH4 irradiation for the nc-Si growth. Post-oxidation annealing was also performed to improve the crystalline quality. After post-oxidation annealing for 5 or 10 min, the asymmetric broadening on the lower frequency sides in Raman spectra were obtained, which can be attributed to the phonon confinement effect in nc-Si. Furthermore we confirmed that hydrostatic stress of approximately 500 MPa was induced in nc-Si after post-oxidation annealing.
Brown, Alastair; Thatje, Sven; Hauton, Chris
2017-09-05
Mineral prospecting in the deep sea is increasing, promoting concern regarding potential ecotoxicological impacts on deep-sea fauna. Technological difficulties in assessing toxicity in deep-sea species has promoted interest in developing shallow-water ecotoxicological proxy species. However, it is unclear how the low temperature and high hydrostatic pressure prevalent in the deep sea affect toxicity, and whether adaptation to deep-sea environmental conditions moderates any effects of these factors. To address these uncertainties we assessed the effects of temperature and hydrostatic pressure on lethal and sublethal (respiration rate, antioxidant enzyme activity) toxicity in acute (96 h) copper and cadmium exposures, using the shallow-water ecophysiological model organism Palaemon varians. Low temperature reduced toxicity in both metals, but reduced cadmium toxicity significantly more. In contrast, elevated hydrostatic pressure increased copper toxicity, but did not affect cadmium toxicity. The synergistic interaction between copper and cadmium was not affected by low temperature, but high hydrostatic pressure significantly enhanced the synergism. Differential environmental effects on toxicity suggest different mechanisms of action for copper and cadmium, and highlight that mechanistic understanding of toxicity is fundamental to predicting environmental effects on toxicity. Although results infer that sensitivity to toxicants differs across biogeographic ranges, shallow-water species may be suitable ecotoxicological proxies for deep-sea species, dependent on adaptation to habitats with similar environmental variability.
Wagner, Diane R; Lindsey, Derek P; Li, Kelvin W; Tummala, Padmaja; Chandran, Sheena E; Smith, R Lane; Longaker, Michael T; Carter, Dennis R; Beaupre, Gary S
2008-05-01
This study demonstrated the chondrogenic effect of hydrostatic pressure on human bone marrow stromal cells (MSCs) cultured in a mixed medium containing osteogenic and chondrogenic factors. MSCs seeded in type I collagen sponges were exposed to 1 MPa of intermittent hydrostatic pressure at a frequency of 1 Hz for 4 h per day for 10 days, or remained in identical culture conditions but without exposure to pressure. Afterwards, we compared the proteoglycan content of loaded and control cell/scaffold constructs with Alcian blue staining. We also used real-time PCR to evaluate the change in mRNA expression of selected genes associated with chondrogenic and osteogenic differentiation (aggrecan, type I collagen, type II collagen, Runx2 (Cbfa-1), Sox9, and TGF-beta1). With the hydrostatic pressure loading regime, proteoglycan staining increased markedly. Correspondingly, the mRNA expression of chondrogenic genes such as aggrecan, type II collagen, and Sox9 increased significantly. We also saw a significant increase in the mRNA expression of type I collagen, but no change in the expression of Runx2 or TGF-beta1 mRNA. This study demonstrated that hydrostatic pressure enhanced differentiation of MSCs in the presence of multipotent differentiation factors in vitro, and suggests the critical role that this loading regime may play during cartilage development and regeneration in vivo.
Design and validation of an automated hydrostatic weighing system.
McClenaghan, B A; Rocchio, L
1986-08-01
The purpose of this study was to design and evaluate the validity of an automated technique to assess body density using a computerized hydrostatic weighing system. An existing hydrostatic tank was modified and interfaced with a microcomputer equipped with an analog-to-digital converter. Software was designed to input variables, control the collection of data, calculate selected measurements, and provide a summary of the results of each session. Validity of the data obtained utilizing the automated hydrostatic weighing system was estimated by: evaluating the reliability of the transducer/computer interface to measure objects of known underwater weight; comparing the data against a criterion measure; and determining inter-session subject reliability. Values obtained from the automated system were found to be highly correlated with known underwater weights (r = 0.99, SEE = 0.0060 kg). Data concurrently obtained utilizing the automated system and a manual chart recorder were also found to be highly correlated (r = 0.99, SEE = 0.0606 kg). Inter-session subject reliability was determined utilizing data collected on subjects (N = 16) tested on two occasions approximately 24 h apart. Correlations revealed high relationships between measures of underwater weight (r = 0.99, SEE = 0.1399 kg) and body density (r = 0.98, SEE = 0.00244 g X cm-1). Results indicate that a computerized hydrostatic weighing system is a valid and reliable method for determining underwater weight.
The Baryonic and Dark Matter Distributions in Abell 401
NASA Astrophysics Data System (ADS)
Nevalainen, J.; Markevitch, M.; Forman, W.
1999-11-01
We combine spatially resolved ASCA temperature data with ROSAT imaging data to constrain the total mass distribution in the cluster A401, assuming that the cluster is in hydrostatic equilibrium, but without the assumption of gas isothermality. We obtain a total mass within the X-ray core (290 h-150 kpc) of 1.2+0.1-0.5×1014 h-150 Msolar at the 90% confidence level, 1.3 times larger than the isothermal estimate. The total mass within r500 (1.7 h-150 Mpc) is M500=0.9+0.3-0.2×1015 h-150 Msolar at 90% confidence, in agreement with the optical virial mass estimate, and 1.2 times smaller than the isothermal estimate. Our M500 value is 1.7 times smaller than that estimated using the mass-temperature scaling law predicted by simulations. The best-fit dark matter density profile scales as r-3.1 at large radii, which is consistent with the Navarro, Frenk & White (NFW) ``universal profile'' as well as the King profile of the galaxy density in A401. From the imaging data, the gas density profile is shallower than the dark matter profile, scaling as r-2.1 at large radii, leading to a monotonically increasing gas mass fraction with radius. Within r500 the gas mass fraction reaches a value of fgas=0.21+0.06-0.05 h-3/250 (90% confidence errors). Assuming that fgas (plus an estimate of the stellar mass) is the universal value of the baryon fraction, we estimate the 90% confidence upper limit of the cosmological matter density to be Ωm<0.31, in conflict with an Einstein-deSitter universe. Even though the NFW dark matter density profile is statistically consistent with the temperature data, its central temperature cusp would lead to convective instability at the center, because the gas density does not have a corresponding peak. One way to reconcile a cusp-shaped total mass profile with the observed gas density profile, regardless of the temperature data, is to introduce a significant nonthermal pressure in the center. Such a pressure must satisfy the hydrostatic equilibrium condition without inducing turbulence. Alternately, significant mass drop-out from the cooling flow would make the temperature less peaked and the NFW profile acceptable. However, the quality of data is not adequate to test this possibility.
Hydrostatic paradox: experimental verification of pressure equilibrium
NASA Astrophysics Data System (ADS)
Kodejška, Č.; Ganci, S.; Říha, J.; Sedláčková, H.
2017-11-01
This work is focused on the experimental verification of the balance between the atmospheric pressure acting on the sheet of paper, which encloses the cylinder completely or partially filled with water from below, where the hydrostatic pressure of the water column acts against the atmospheric pressure. First of all this paper solves a theoretical analysis of the problem, which is based, firstly, on the equation for isothermal process and, secondly, on the equality of pressures inside and outside the cylinder. From the measured values the confirmation of the theoretical quadratic dependence of the air pressure inside the cylinder on the level of the liquid in the cylinder is obtained, the maximum change in the volume of air within the cylinder occurs for the height of the water column L of one half of the total height of the vessel H. The measurements were made for different diameters of the cylinder and with plates made of different materials located at the bottom of the cylinder to prevent liquid from flowing out of the cylinder. The measured values were subjected to statistical analysis, which demonstrated the validity of the zero hypothesis, i.e. that the measured values are not statistically significantly different from the theoretically calculated ones at the statistical significance level α = 0.05.
Amrani, Amira; Bergon, Aurélie; Holota, Hélène; Tamburini, Christian; Garel, Marc; Ollivier, Bernard; Imbert, Jean; Dolla, Alain; Pradel, Nathalie
2014-01-01
RNA-seq was used to study the response of Desulfovibrio hydrothermalis, isolated from a deep-sea hydrothermal chimney on the East-Pacific Rise at a depth of 2,600 m, to various hydrostatic pressure growth conditions. The transcriptomic datasets obtained after growth at 26, 10 and 0.1 MPa identified only 65 differentially expressed genes that were distributed among four main categories: aromatic amino acid and glutamate metabolisms, energy metabolism, signal transduction, and unknown function. The gene expression patterns suggest that D. hydrothermalis uses at least three different adaptation mechanisms, according to a hydrostatic pressure threshold (HPt) that was estimated to be above 10 MPa. Both glutamate and energy metabolism were found to play crucial roles in these mechanisms. Quantitation of the glutamate levels in cells revealed its accumulation at high hydrostatic pressure, suggesting its role as a piezolyte. ATP measurements showed that the energy metabolism of this bacterium is optimized for deep-sea life conditions. This study provides new insights into the molecular mechanisms linked to hydrostatic pressure adaptation in sulfate-reducing bacteria. PMID:25215865
Amrani, Amira; van Helden, Jacques; Bergon, Aurélie; Aouane, Aicha; Ben Hania, Wajdi; Tamburini, Christian; Loriod, Béatrice; Imbert, Jean; Ollivier, Bernard; Pradel, Nathalie; Dolla, Alain
2016-08-01
Desulfovibrio piezophilus strain C1TLV30(T) is a mesophilic piezophilic sulfate-reducer isolated from Wood Falls at 1700 m depth in the Mediterranean Sea. In this study, we analysed the effect of the hydrostatic pressure on this deep-sea living bacterium at the physiologic and transcriptomic levels. Our results showed that lactate oxidation and energy metabolism were affected by the hydrostatic pressure. Especially, acetyl-CoA oxidation pathway and energy conservation through hydrogen and formate recycling would be more important when the hydrostatic pressure is above (26 MPa) than below (0.1 MPa) the optimal one (10 MPa). This work underlines also the role of the amino acid glutamate as a piezolyte for the Desulfovibrio genus. The transcriptomic analysis revealed 146 differentially expressed genes emphasizing energy production and conversion, amino acid transport and metabolism and cell motility and signal transduction mechanisms as hydrostatic pressure responding processes. This dataset allowed us to identify a sequence motif upstream of a subset of differentially expressed genes as putative pressure-dependent regulatory element. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
Orbit transfer vehicle engine technology program. Task B-6 high speed turbopump bearings
NASA Technical Reports Server (NTRS)
1992-01-01
Bearing types were evaluated for use on the Orbit Transfer Vehicle (OTV) high pressure fuel pump. The high speed, high load, and long bearing life requirements dictated selection of hydrostatic bearings as the logical candidate for this engine. Design and fabrication of a bearing tester to evaluate these cryogenic hydrostatic bearings was then conducted. Detailed analysis, evaluation of bearing materials, and design of the hydrostatic bearings were completed resulting in fabrication of Carbon P5N and Kentanium hydrostatic bearings. Rotordynamic analyses determined the exact bearing geometry chosen. Instrumentation was evaluated and data acquisition methods were determined for monitoring shaft motion up to speeds in excess of 200,000 RPM in a cryogenic atmosphere. Fabrication of all hardware was completed, but assembly and testing was conducted outside of this contract.
Involvement of Smad3 pathway in atrial fibrosis induced by elevated hydrostatic pressure.
Wei, Wei; Rao, Fang; Liu, Fangzhou; Xue, Yumei; Deng, Chunyu; Wang, Zhaoyu; Zhu, Jiening; Yang, Hui; Li, Xin; Zhang, Mengzhen; Fu, Yongheng; Zhu, Wensi; Shan, Zhixin; Wu, Shulin
2018-06-01
Hypertension is a main risk factor for atrial fibrillation, but the direct effects of hydrostatic pressure on the atrial fibrosis are still unknown. The present study investigated whether hydrostatic pressure is responsible for atrial fibrosis, and addressed a potential role of the Smad pathway in this pathology. Biochemical assays were used to study regulation and expression of fibrotic factors in spontaneously hypertensive rats (SHRs) and Wistar rats, and in cardiac fibroblasts (CFs) cultured under standard (0 mmHg) and elevated (20, 40 mmHg) hydrostatic pressure. Levels of atrial fibrosis and protein expression of fibrotic factors Col-1A1/-3A1, TGF-β1, and MMP-2 in SHRs' left atrial tissues were higher than those in Wistar rats. Exposure to elevated pressure was associated with the proliferation of CFs. The protein expression of Col-1A1/-3A1, TGF-β1, and MMP-2 in CFs was also up-regulated in a pressure-dependent manner. The proliferation of CFs and increased expressions of fibrotic markers induced by elevated hydrostatic pressure could be reversed by the Smad3 inhibitor naringenin. The activation of Smad3 pathway was also stimulated by elevated hydrostatic pressure. These results demonstrate that CF secretory function and proliferation can be up-regulated by exposure to elevated pressure, and that Smad3 may modulate CF activation induced by high hydrostatic pressure. © 2017 Wiley Periodicals, Inc.
Sappington, Rebecca M.; Sidorova, Tatiana; Long, Daniel J.; Calkins, David J.
2013-01-01
Purpose Elevated hydrostatic pressure induces retinal ganglion cell (RGC) apoptosis in culture. The authors investigated whether the transient receptor potential vanilloid 1 (TRPV1) channel, which contributes to pressure sensing and Ca2+-dependent cell death in other systems, also contributes to pressure-induced RGC death and whether this contribution involves Ca2+. Methods trpv1 mRNA expression in RGCs was probed with the use of PCR and TRPV1 protein localization through immunocytochemistry. Subunit-specific antagonism (iodo-resiniferatoxin) and agonism (capsaicin) were used to probe how TRPV1 activation affects the survival of isolated RGCs at ambient and elevated hydrostatic pressure (+70 mm Hg). Finally, for RGCs under pressure, the authors tested whether EGTA chelation of Ca2+ improves survival and whether, with the Ca2+ dye Fluo-4 AM, TRPV1 contributes to increased intracellular Ca2+. Results RGCs express trpv1 mRNA, with robust TRPV1 protein localization to the cell body and axon. For isolated RGCs under pressure, TRPV1 antagonism increased cell density and reduced apoptosis to ambient levels (P ≤ 0.05), whereas for RGCs at ambient pressure, TRPV1 agonism reduced density and increased apoptosis to levels for elevated pressure (P ≤ 0.01). Chelation of extracellular Ca2+ reduced RGC apoptosis at elevated pressure by nearly twofold (P ≤ 0.01). Exposure to elevated hydrostatic pressure induced a fourfold increase in RGC intracellular Ca2+ that was reduced by half with TRPV1 antagonism. Finally, in the DBA/2 mouse model of glaucoma, levels of TRPV1 in RGCs increased with elevated IOP. Conclusions RGC apoptosis induced by elevated hydrostatic pressure arises substantially through TRPV1, likely through the influx of extracellular Ca2+. PMID:18952924
NASA Astrophysics Data System (ADS)
Pytharoulis, I.; Kotsopoulos, S.; Tegoulias, I.; Kartsios, S.; Bampzelis, D.; Karacostas, T.
2016-03-01
This study investigates an intense precipitation event and its lightning activity that affected northern Greece and primarily Thessaloniki on 15 July 2014. The precipitation measurement of 98.5 mm in 15 h at the Aristotle University of Thessaloniki set a new absolute record maximum. The thermodynamic analysis indicated that the event took place in an environment that could support deep thunderstorm activity. The development of this intense event was associated with significant low-level convergence and upper-level divergence even before its triggering and a positive vertical gradient of relative vorticity advection. The high resolution (1.667 km × 1.667 km) non-hydrostatic WRF-ARW numerical weather prediction model was used to simulate this intense precipitation event, while the Lightning Potential Index was utilized to calculate the potential for lightning activity. Sensitivity experiments suggested that although the strong synoptic forcing assumed primary role in the occurrence of intense precipitation and lightning activity, their spatiotemporal variability was affected by topography. The application of the very fine resolution topography of NASA Shuttle Radar Topographic Mission improved the simulated precipitation and the calculated lightning potential.
Smith, R L; Lin, J; Trindade, M C; Shida, J; Kajiyama, G; Vu, T; Hoffman, A R; van der Meulen, M C; Goodman, S B; Schurman, D J; Carter, D R
2000-01-01
The normal loading of joints during daily activities causes the articular cartilage to be exposed to high levels of intermittent hydrostatic pressure. This study quantified effects of intermittent hydrostatic pressure on expression of mRNA for important extracellular matrix constituents. Normal adult bovine articular chondrocytes were isolated and tested in primary culture, either as high-density monolayers or formed aggregates. Loaded cells were exposed to 10 MPa of intermittent hydrostatic pressure at a frequency of 1 Hz for periods of 2, 4, 8, 12, and 24 hrs. Other cells were intermittently loaded for a period of 4 hrs per day for 4 days. Semiquantitative reverse transcription polymerase chain reaction assays were used to assess mRNA signal levels for collagen types II and I and aggrecan. The results showed that type II collagen mRNA signal levels exhibited a biphasic pattern, with an initial increase of approximately five-fold at 4 and 8 hrs that subsequently decreased by 24 hrs. In contrast, aggrecan mRNA signal increased progressively up to three-fold throughout the loading period. Changing the loading profile to 4 hrs per day for 4 days increased the mRNA signal levels for type II collagen nine-fold and for aggrecan twenty-fold when compared to unloaded cultures. These data suggest that specific mechanical loading protocols may be required to optimally promote repair and regeneration of diseased joints.
NASA Astrophysics Data System (ADS)
Pandey, Sudip; Us Saleheen, Ahmad; Quetz, Abdiel; Chen, Jing-Han; Aryal, Anil; Dubenko, Igor; Stadler, Shane; Ali, Naushad
2018-05-01
The magnetic, thermal, and magnetocaloric properties of Ni45Mn43CrSn11 Heusler alloy have been investigated using differential scanning calorimetry and magnetization with hydrostatic pressure measurements. A shift in the martensitic transition temperature (TM) to higher temperatures was observed with the application of pressure. The application of pressure stabilizes the martensitic state and demonstrated that pressure can be a parameter used to control and tune the martensitic transition temperature (the temperature where the largest magnetocaloric effect is observed). The magnetic entropy change significantly decreases from 33 J/kg K to 16 J/kg K under the application of a hydrostatic pressure of 0.95 GPa. The critical field of the direct metamagnetic transition increases, whereas the initial susceptibility (dM/dH) in the low magnetic field region drastically decreases with increasing pressure. The relevant parameters that affect the magnetocaloric properties are discussed.
Mukhopadhyay, Sudarsan; Sokorai, Kimberly; Ukuku, Dike; Fan, Xuetong; Juneja, Vijay
2017-01-01
The objective of this study was to investigate and evaluate the effects of high hydrostatic pressure (HHP) applied to cantaloupe puree (CP) on microbial loads and product quality during storage for 10days at 4°C. Freshly prepared, double sealed and double bagged CP (ca. 5g) was pressure treated at 300, 400 and 500MPa at 8°C and 15°C for 5min. Microflora populations, soluble solid content, pH, color, antioxidant activity, appearance and aroma were measured at 1, 6, and 10d of storage. Results showed that high pressure treatment of 300MPa (8°C and 15°C) resulted in reduction of total aerobic plate count from 3.3 to 1.8logCFU/g. The treatment reduced the populations of native aerobic plate count to non-detectable levels (detection limit 1logCFU/g) at 400MPa and 500MPa pressures at 15°C. Pressure treatment completely inactivated mold and yeast in puree below the limits of detection at day 1 and no regrowth was observed during 10days of storage at 4°C while mold and yeast in untreated puree survived during the storage. High pressure treatment did not show any adverse impact on physical properties as soluble solid content (SSC, 11.2°Brix) and acidity (pH, 6.9). The instrumental color parameters (L*, a*, b*) were affected due to HHP treatment creating a slightly lighter product, compared to control, as indicated by higher L.* and lower a* values. However the change was not detected by the sensory panel while evaluating appearance scores. Pressure treatment did not affect the antioxidant capacity of puree product compared to control. Visual appearance and sniffing aroma test by panel revealed no adverse changes in the sensory parameters as a result of HHP treatment. HHP method described in this study appears to be a promising way to inactivate spoilage microorganisms in the cantaloupe puree and maintain quality. This study provides a viable option for preservation and marketing this product. Published by Elsevier Ltd.
Lemaire, Benjamin; Mignolet, Eric; Debier, Cathy; Calderon, Pedro Buc; Thomé, Jean Pierre; Rees, Jean François
2016-04-01
Hydrostatic pressure (HP) increases by about 1 atmosphere (0.1MPa) for each ten-meter depth increase in the water column. This thermodynamical parameter could well influence the response to and effects of xenobiotics in the deep-sea biota, but this possibility remains largely overlooked. To grasp the extent of HP adaptation in deep-sea fish, comparative studies with living cells of surface species exposed to chemicals at high HP are required. We initially conducted experiments with precision-cut liver slices of a deep-sea fish (Coryphaenoides rupestris), co-exposed for 15h to the aryl hydrocarbon receptor (AhR) agonist 3-methylcholanthrene at HP levels representative of the surface (0.1MPa) and deep-sea (5-15MPa; i.e., 500-1500m depth) environments. The transcript levels of a suite of stress-responsive genes, such as the AhR battery CYP1A, were subsequently measured (Lemaire et al., 2012; Environ. Sci. Technol. 46, 10310-10316). Strikingly, the AhR agonist-mediated increase of CYP1A mRNA content was pressure-dependently reduced in C. rupestris. Here, the same co-exposure scenario was applied for 6 or 15h to liver slices of a surface fish, Dicentrarchus labrax, a coastal species presumably not adapted to high HP. Precision-cut liver slices of D. labrax were also used in 1h co-exposure studies with the pro-oxidant tert-butylhydroperoxide (tBHP) as to investigate the pressure-dependence of the oxidative stress response (i.e., reactive oxygen production, glutathione and lipid peroxidation status). Liver cells remained viable in all experiments (adenosine triphosphate content). High HP precluded the AhR agonist-mediated increase of CYP1A mRNA expression in D. labrax, as well as that of glutathione peroxidase, and significantly reduced that of heat shock protein 70. High HP (1h) also tended per se to increase the level of oxidative stress in liver cells of the surface fish. Trends to an increased resistance to tBHP were also noted. Whether the latter observation truly reflects a protective response to oxidative stress will be addressed in future co-exposure studies with both surface and deep-sea fish liver cells, using additional pro-oxidant chemicals. Altogether, data on CYP1A inducibility with D. labrax and C. rupestris support the view that high HP represses AhR signaling in marine fishes, and that only species adapted to thrive in the deep-sea have evolved the molecular adaptations necessary to counteract to some extent this inhibition. Copyright © 2016 Elsevier B.V. All rights reserved.
Enceladus' Internal Structure Inferred from Analysis of Cassini-derived Gravity and Topography
NASA Astrophysics Data System (ADS)
Hemingway, D.; Nimmo, F.; Iess, L.
2013-12-01
The interior of the small Saturnian satellite, Enceladus, is of great interest as it bears on the body's unusually extensive and on-going geological activity [1,2]. The moon's shape, estimated from limb profiles [3,4], differs significantly from the expected hydrostatic shape and is perhaps related to lateral variations in ice shell thickness [5]. Recent Cassini radio tracking analysis [Iess et al., in preparation] has yielded preliminary estimates of the degree-2 gravity field and J3. Like the topography, the gravity field is not precisely hydrostatic, but both can be separated into their hydrostatic and non-hydrostatic components by assuming a particular moment of inertia. Here, we employ an admittance analysis [6,7] (ratio of gravity to topography) in an attempt to constrain Enceladus' moment of inertia. We estimate the non-hydrostatic admittance separately for both J2 and C22, over a range of possible moments of inertia. Assuming the true admittance is isotropic, the two estimates should converge for the correct moment of inertia. We find the best agreement between the two estimates with normalized moments of inertia (C/MR2) in the range 0.332-0.336, with a 2-sigma lower bound of 0.309 and a 2-sigma upper bound of 0.341, suggesting a differentiated Enceladus with a core density between ~2300 and ~3500 kg/m3 [1]. The admittance estimated from J3 is broadly consistent with this result in that the computed degree-2 and degree-3 admittances are related by approximately the expected ratio of 5/7. These admittance estimates are ~1/3 of what is expected for uncompensated topography, suggesting that the topography is significantly compensated. Assuming a fully isostatic model in which compensation occurs where the ice shell encounters a subsurface liquid ocean [8], and neglecting the role of the silicate interior [9], best estimates for the ice shell thickness range from 25-75 km. If surface loading dominates, our results are incompatible with an average elastic thickness in excess of ~100 m. [1] Schubert, G., Anderson, J. D., Travis, B. J. & Palguta, J., Icarus 188, 345-355 (2007). [2] Spencer, J. R. & Nimmo, F., Annu. Rev. Earth Planet. Sci. 41, 693-717 (2013). [3] Porco, C. C. et al., Science 311, 1393-1401 (2006). [4] Nimmo, F., Bills, B. G. & Thomas, P. C., J. Geophys. Res. 116, E11001 (2011). [5] Schenk, P. M. & McKinnon, W. B., Geophys. Res. Lett. 36, L16202 (2009). [6] McKenzie, D., Icarus 112, 55-88 (1994). [7] Hemingway, D., Nimmo, F., Zebker, H. & Iess, L., Nature (in press). [8] Collins, G. C. & Goodman, J. C., Icarus 189, 72-82 (2007). [9] McKinnon, W. B., AGU Fall Mtg. 2012, P32A-04 (2012).
Diffusion coalescence in НоBa2Cu3O7-x single crystals under the application of hydrostatic pressure
NASA Astrophysics Data System (ADS)
Boiko, Y. I.; Bogdanov, V. V.; Vovk, R. V.; Khadzhaj, G. Ya; Kamchatnaya, S. N.; Goulatis, I. L.; Chroneos, A.
2017-09-01
Experimental results on the effect of external hydrostatic pressure up to 5 kbar on the ρ(T) dependence in the ab plane of HoBa2Cu3O7-x single crystals (x ≈ 0.35) in the temperature range from 300 K to the superconducting transition temperature T c are presented and discussed. It was established that the application of external hydrostatic pressure P = 5 kbar significantly intensified the process of diffusion coalescence of oxygen clusters, causing the growth of their average size. This leads to an increase in the number of negative U-centers, the presence of which results to the appearance of a phase capable of generating paired carriers of electric charge and, correspondingly, characterized by a higher transition temperature T c. Employing this hypothesis that concerns the mechanism of the diffusion coalescence of oxygen clusters, the change in the form of the temperature and time dependences of the electrical resistivity under the application of external hydrostatic pressure is discussed.
Non-LTE Line-Blanketed Model Atmospheres of B-type Stars
NASA Astrophysics Data System (ADS)
Lanz, T.; Hubeny, I.
2005-12-01
We present an extension of our OSTAR2002 grid of NLTE model atmospheres to B-type stars. We have calculated over 1,300 metal line-blanketed, NLTE, plane-parallel, hydrostatic model atmospheres for the basic parameters appropriate to B stars. The grid covers 16 effective temperatures from 15,000 to 30,000 K, with 1000 K steps, 13 surface gravities, log g≤ 4.75 down to the Eddington limit, and 5 compositions (2, 1, 0.5, 0.2, and 0.1 times solar). We have adopted a microturbulent velocity of 2 km/s for all models. In the lower surface gravity range (log g≤ 3.0), we supplemented the main grid with additional model atmospheres accounting for higher microtutbulent velocity (10 km/s) and for alterated surface composition (He and N-rich, C-deficient), as observed in B supergiants. The models incorporate basically all known atomic levels of 46 ions of H, He, C, N, O, Ne, Mg, Al, Si, S, and Fe, which are grouped into 1127 superlevels. Models and spectra will be available at our Web site, http://nova.astro.umd.edu.
Pollock, David W.
1986-01-01
Many parts of the Great Basin have thick zones of unsaturated alluvium which might be suitable for disposing of high-level radioactive wastes. A mathematical model accounting for the coupled transport of energy, water (vapor and liquid), and dry air was used to analyze one-dimensional, vertical transport above and below an areally extensive repository. Numerical simulations were conducted for a hypothetical repository containing spent nuclear fuel and located 100 m below land surface. Initial steady state downward water fluxes of zero (hydrostatic) and 0.0003 m yr−1were considered in an attempt to bracket the likely range in natural water flux. Predicted temperatures within the repository peaked after approximately 50 years and declined slowly thereafter in response to the decreasing intensity of the radioactive heat source. The alluvium near the repository experienced a cycle of drying and rewetting in both cases. The extent of the dry zone was strongly controlled by the mobility of liquid water near the repository under natural conditions. In the case of initial hydrostatic conditions, the dry zone extended approximately 10 m above and 15 m below the repository. For the case of a natural flux of 0.0003 m yr−1 the relative permeability of water near the repository was initially more than 30 times the value under hydrostatic conditions, consequently the dry zone extended only about 2 m above and 5 m below the repository. In both cases a significant perturbation in liquid saturation levels persisted for several hundred years. This analysis illustrates the extreme sensitivity of model predictions to initial conditions and parameters, such as relative permeability and moisture characteristic curves, that are often poorly known.
Stewart, John; Hughes, Julian M
2014-04-01
Physoclist fish are able to regulate their buoyancy by secreting gas into their hydrostatic organ, the swim bladder, as they descend through the water column and by resorbing gas from their swim bladder as they ascend. Physoclists are restricted in their vertical movements due to increases in swim bladder gas volume that occur as a result of a reduction in hydrostatic pressure, causing fish to become positively buoyant and risking swim bladder rupture. Buoyancy control, rates of swim bladder gas exchange and restrictions to vertical movements are little understood in marine teleosts. We used custom-built hyperbaric chambers and laboratory experiments to examine these aspects of physiology for two important fishing target species in southern Australia, pink snapper (Pagrus auratus) and mulloway (Argyrosomus japonicus). The swim bladders of pink snapper and mulloway averaged 4.2 and 4.9 % of their total body volumes, respectively. The density of pink snapper was not significantly different to the density of seawater (1.026 g/ml), whereas mulloway were significantly denser than seawater. Pink snapper secreted gas into their swim bladders at a rate of 0.027 ± 0.005 ml/kg/min (mean ± SE), almost 4 times faster than mulloway (0.007 ± 0.001 ml/kg/min). Rates of swim bladder gas resorption were 11 and 6 times faster than the rates of gas secretion for pink snapper and mulloway, respectively. Pink snapper resorbed swim bladder gas at a rate of 0.309 ± 0.069 ml/kg/min, 7 times faster than mulloway (0.044 ± 0.009 ml/kg/min). Rates of gas exchange were not affected by water pressure or water temperature over the ranges examined in either species. Pink snapper were able to acclimate to changes in hydrostatic pressure reasonably quickly when compared to other marine teleosts, taking approximately 27 h to refill their swim bladders from empty. Mulloway were able to acclimate at a much slower rate, taking approximately 99 h to refill their swim bladders. We estimated that the swim bladders of pink snapper and mulloway ruptured after decreases in ~2.5 and 2.75 times the hydrostatic pressure to which the fish were acclimated, respectively. Differences in buoyancy, gas exchange rates, limitations to vertical movements and acclimation times between the two species are discussed in terms of their differing behaviour and ecology.
Kaufman, W Reuben; Kaufman, S; Flynn, Peter C
2016-05-01
Female Amblyomma hebraeum ticks (Acari: Ixodidae) increase their weight ∼10-fold during a 'slow phase of engorgement' (7-9 days), and a further 10-fold during the 'rapid phase' (12-24h). During the rapid phase, the cuticle thins by half, with a plastic (permanent) deformation of greater than 40% in two orthogonal directions. A stress of 2.5 MPa or higher is required to achieve this degree of deformation (Flynn and Kaufman, 2015). Using a dimensional analysis of the tick body and applying the Laplace equation, we calculated that the tick must achieve high internal hydrostatic pressures in order to engorge fully: greater than 55 kPa at a fed:unfed mass ratio of ∼20:1, when cuticle thinning commences (Flynn and Kaufman, 2011). In this study we used a telemetric pressure transducer system to measure the internal hydrostatic pressure of ticks during feeding. Sustained periods of irregular high frequency (>20 Hz) pulsatile bursts of high pressure (>55 kPa) were observed in two ticks: they had been cannulated just prior to the rapid phase of engorgement, and given access to a host rabbit for completion of the feeding cycle. The pattern of periods of high pressure generation varied over the feeding cycle and between the two specimens. We believe that these pressures exceed those reported so far for any other animal. Copyright © 2016 Elsevier Ltd. All rights reserved.
A Multipurpose Device for Some Hydrostatics Questions
ERIC Educational Resources Information Center
Ganci, Salvatore
2008-01-01
A number of well-known hydrostatics problems dealing with Archimedes' principle concern a loaded boat floating in a pool. Examples of this sort of problem include: 1. (a) If a stone is thrown overboard from a boat floating in a pool, does the water level in the pool rise, fall, or remain unchanged? (b) If a hole is made in the bottom of the boat…
AN ANALYTIC MODEL OF DUSTY, STRATIFIED, SPHERICAL H ii REGIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodríguez-Ramírez, J. C.; Raga, A. C.; Lora, V.
2016-12-20
We study analytically the effect of radiation pressure (associated with photoionization processes and with dust absorption) on spherical, hydrostatic H ii regions. We consider two basic equations, one for the hydrostatic balance between the radiation-pressure components and the gas pressure, and another for the balance among the recombination rate, the dust absorption, and the ionizing photon rate. Based on appropriate mathematical approximations, we find a simple analytic solution for the density stratification of the nebula, which is defined by specifying the radius of the external boundary, the cross section of dust absorption, and the luminosity of the central star. Wemore » compare the analytic solution with numerical integrations of the model equations of Draine, and find a wide range of the physical parameters for which the analytic solution is accurate.« less
Gao, Junyuan; Sun, Xiurong; Moore, Leon C.; White, Thomas W.; Brink, Peter R.
2011-01-01
We recently modeled fluid flow through gap junction channels coupling the pigmented and nonpigmented layers of the ciliary body. The model suggested the channels could transport the secretion of aqueous humor, but flow would be driven by hydrostatic pressure rather than osmosis. The pressure required to drive fluid through a single layer of gap junctions might be just a few mmHg and difficult to measure. In the lens, however, there is a circulation of Na+ that may be coupled to intracellular fluid flow. Based on this hypothesis, the fluid would cross hundreds of layers of gap junctions, and this might require a large hydrostatic gradient. Therefore, we measured hydrostatic pressure as a function of distance from the center of the lens using an intracellular microelectrode-based pressure-sensing system. In wild-type mouse lenses, intracellular pressure varied from ∼330 mmHg at the center to zero at the surface. We have several knockout/knock-in mouse models with differing levels of expression of gap junction channels coupling lens fiber cells. Intracellular hydrostatic pressure in lenses from these mouse models varied inversely with the number of channels. When the lens’ circulation of Na+ was either blocked or reduced, intracellular hydrostatic pressure in central fiber cells was either eliminated or reduced proportionally. These data are consistent with our hypotheses: fluid circulates through the lens; the intracellular leg of fluid circulation is through gap junction channels and is driven by hydrostatic pressure; and the fluid flow is generated by membrane transport of sodium. PMID:21624945
Upper cretaceous microbial petroleum systems in north-central Montana
Lillis, Paul G.
2007-01-01
Methanogenesis began soon after the deposition (early-stage methanogenesis) of the Cenomanian to Campanian source sediments, and was either sustained or rejuvenated by episodic meteoric water influx until sometime in the Paleogene. Methanogenesis probably continued until CO2 and hydrogen were depleted or the pore size was compacted to below tolerance levels of the methanogens. The composition of the Montana and Colorado Group gases and coproduced formation water precludes a scenario of late-stage methanogenesis like the Antrim gas system in the Michigan basin. Some portion of the methane charge was originally dissolved in the pore waters, and subsequent reduction in hydrostatic pressure caused the methane to exsolve and migrate into local stratigraphic and structural traps. The critical moment of the microbial gas systems is this timing of exsolution rather than the time of generation (methanogenesis). Other studies suggest that the reduction in hydrostatic pressure may have been caused by multiple geologic events including the lowering of sea level in the Late Cretaceous, and subsequent uplift and erosion events, the youngest of which began about 5 Ma.
Behaviour of levee on softsoil caused by rapid drawdown
NASA Astrophysics Data System (ADS)
Upomo, Togani Cahyadi; Effendi, Mahmud Kori; Kusumawardani, Rini
2018-03-01
Rapid Drawdown is a condition where the water elevation that has reached the peak suddenly drops. As the water level reaches the peak, hydrostatic pressure helps in the stability of the slope. When water elevation decreases there will be two effects. First, reduced hydrostatic pressure and second, modification of pore water pressure. Rapid draw down usually comon in hydraulic structure such as dam and levee. This study will discuss behaviour of levee on softsoil caused by rapid drawdown. The analysis based on method which developed by US Army Corps Engineer and modified method which developed by Duncan, Wright, dan Wong. Results of analysis show that in drawdown condition, at 1 m drop of water, safety factor obtained based on US Army Corps Engineer method was 1.16 and 0.976 while based on Duncan, Wright, and Wong methods were 1.244 and 1.117. At 0.5 m water level, safety factor based on US Army Corps Engineer method was 1.287 and 1.09 while Duncan, Wright, and Wong were 1.357 and 1.194.
NASA Astrophysics Data System (ADS)
Sang, Lina; Gutiérrez, Joffre; Cai, Chuanbing; Dou, Shixue; Wang, Xiaolin
2018-07-01
We report on the effect of in situ hydrostatic pressure on the enhancement of the in-magnetic-field critical current density parallel to the crystallographic c-axis and vortex pinning in epitaxial Y(Dy0.5)Ba2Cu3O7‑δ coated conductors prepared by metal organic deposition. Our results show that in situ hydrostatic pressure greatly enhances the critical current density at high fields and high temperatures. At 80 K and 5 T we observe a ten-fold increase in the critical current density under the pressure of 1.2 GPa, and the irreversibility line is shifted to higher fields without changing the critical temperature. The normalized magnetic relaxation rate shows that vortex creep rates are strongly suppressed due to applied pressure, and the pinning energy is significantly increased based on the collective creep theory. After releasing the pressure, we recover the original superconducting properties. Therefore, we speculate that the in situ hydrostatic pressure exerted on the coated conductor enhances the pinning of existing extended defects. This is totally different from what has been observed in REBa2Cu3O7‑δ melt-textured crystals, where the effect of pressure generates point-like defects.
Induction of rice mutations by high hydrostatic pressure.
Zhang, Wei; Liu, Xuncheng; Zheng, Feng; Zeng, Songjun; Wu, Kunlin; da Silva, Jaime A Teixeira; Duan, Jun
2013-09-01
High hydrostatic pressure (HHP) is an extreme thermo-physical factor that affects the synthesis of DNA, RNA and proteins and induces mutagenesis in microorganisms. Our previous studies showed that exposure to 25-100 MPa HHP for 12 h retarded the germination and affected the viability of rice (Oryza sativa L.) seeds, increased the tolerance of rice plants to cold stress and altered gene expression patterns in germinating rice seeds. However, the mutagenic effect of HHP on rice remains unknown. In this study, exposure to 25, 50, 75 or 100 MPa for 12 h HHP could efficiently induce variation in rice plants. Furthermore, presoaking time and HHP strength during HHP treatment affected the efficiency of mutation. In addition, the Comet assay revealed that exposure to 25-100 MPa HHP for 12 h induced DNA strand breakage in germinating seeds and may have been the source of mutations. Our results suggest that HHP is a promising physical mutagen in rice breeding. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Le Maitre, Christine Lyn; Frain, Jennie; Fotheringham, Andrew P; Freemont, Anthony J; Hoyland, Judith Alison
2008-01-01
The intervertebral disc (IVD) is one of the body's most important load-bearing structures with the major mechanical force experienced in the nucleus pulposus (NP) being hydrostatic pressure (HP). Physiological levels of HP have an anabolic effect on IVD matrix metabolism in cells derived from non-degenerate animal and herniated IVD while excessive HP has a catabolic effect. However, no studies have investigated the response of non-degenerate and degenerate human disc cells derived from non-herniated discs to HP. Here we investigate the effect of physiological HP on such cells using a novel loading rig. Human IVD cells (both NP and AF) cultured in alginate were subjected to dynamic HP (0.8-1.7 MPa 0.5 Hz) for 2 h. Cell viability was assessed, RNA extracted and qRT-PCR for 18 s, c-fos, Sox-9, collagen type II, aggrecan and MMP-3 performed. Cell viability was unaffected by the loading regime. In non-degenerate NP cells, HP increased c-fos, aggrecan, Sox-9 and collagen type II (significantly so in the case of c-fos and aggrecan), but not MMP-3 gene expression. In contrast, application of HP to AF or degenerate NP cells had no effect on target gene expression. Our data shows that cells obtained from the healthy NP respond to dynamic HP by up-regulating genes indicative of healthy matrix homeostasis. However, responses differed in degenerate NP cells suggesting that an altered mechanotransduction pathway may be operational.
Zhao, Ying; Yi, Fei-Zhou; Zhao, Yin-Hua; Chen, Yong-Jin; Ma, Heng; Zhang, Min
2016-10-01
This study aimed to investigate the differential and synergistic effects of mechanical stimulation and estrogen on the proliferation and osteogenic or chondrogenic differentiation potential of bone marrow mesenchymal stem cells (BMSCs) and the roles of estrogen receptor (ER) in them. BMSCs were isolated and cultured using the whole bone marrow adherence method, and flow cytometry was used to identify the surface marker molecules of BMSCs. Cells were pre-treated with 1 nM 17β-estradiol or 1 nM of the estrogen receptor antagonist tamoxifen. Then, the cells were stimulated with hydrostatic pressure. Assessment included flow cytometry analysis of the cell cycle; immunofluorescent staining for F-actin; protein quantification for MAPK protein; and mRNA analysis for Col I, OCN, OPN and BSP after osteogenic induction and Sox-9, Aggrecan and Col-II after chondrogenic induction. Hydrostatic pressure (90 kPa/1 h) and 1 nM 17β-estradiol enhanced the cellular proliferation ability and the cytoskeleton activity but without synergistic biological effects. Estrogen activated ERKs and JNKs simultaneously and promoted the osteogenic differentiation, whereas the pressure just caused JNK-1/2 activation and promoted the chondrogenic differentiation of BMSCs. Estrogen had antagonism effect on chondrogenic promotion of hydrostatic pressure. Mechanobiological effects of hydrostatic pressure are closely associated with ERα activity. MAPK molecules and F-actin were likely to be important mediator molecules in the ER-mediated mechanotransduction of BMSCs.
Electrical transport measurements of thin film samples under high hydrostatic pressure
NASA Astrophysics Data System (ADS)
Zabaleta, J.; Parks, S. C.; Baum, B.; Teker, A.; Syassen, K.; Mannhart, J.
2017-03-01
We present a method to perform electrical measurements of epitaxial films and heterostructures a few nanometers thick under high hydrostatic pressures in a diamond anvil cell (DAC). Hydrostatic pressure offers the possibility to tune the rich landscape of properties shown by epitaxial heterostructures, systems in which the combination of different materials, performed with atomic precision, can give rise to properties not present in their individual constituents. Measuring electrical conductivity under hydrostatic pressure in these systems requires a robust method that can address all the challenges: the preparation of the sample with side length and thickness that fits in the DAC setup, a contacting method compatible with liquid media, a gasket insulation that resists high forces, as well as an accurate procedure to place the sample in the pressure chamber. We prove the robustness of the method described by measuring the resistance of a two dimensional electron system buried at the interface between two insulating oxides under hydrostatic conditions up to ˜5 GPa. The setup remains intact until ˜10 GPa, where large pressure gradients affect the two dimensional conductivity.
Electrical transport measurements of thin film samples under high hydrostatic pressure.
Zabaleta, J; Parks, S C; Baum, B; Teker, A; Syassen, K; Mannhart, J
2017-03-01
We present a method to perform electrical measurements of epitaxial films and heterostructures a few nanometers thick under high hydrostatic pressures in a diamond anvil cell (DAC). Hydrostatic pressure offers the possibility to tune the rich landscape of properties shown by epitaxial heterostructures, systems in which the combination of different materials, performed with atomic precision, can give rise to properties not present in their individual constituents. Measuring electrical conductivity under hydrostatic pressure in these systems requires a robust method that can address all the challenges: the preparation of the sample with side length and thickness that fits in the DAC setup, a contacting method compatible with liquid media, a gasket insulation that resists high forces, as well as an accurate procedure to place the sample in the pressure chamber. We prove the robustness of the method described by measuring the resistance of a two dimensional electron system buried at the interface between two insulating oxides under hydrostatic conditions up to ∼5 GPa. The setup remains intact until ∼10 GPa, where large pressure gradients affect the two dimensional conductivity.
USDA-ARS?s Scientific Manuscript database
The objective of this study was to investigate and evaluate the effects of high hydrostatic pressure (HHP) applied to cantaloupe puree (CP) on microbial loads and product quality during storage for 10 days at 4 degrees C. Freshly prepared, double sealed and double bagged CP (ca. 5 g) was pressure tr...
USDA-ARS?s Scientific Manuscript database
Pathogenic Escherichia coli, intestinal (O157:H7) as well as extraintestinal types (Uropathogenic E. coli (UPEC)) are commonly found in many foods including chicken meat. In this study we compared the resistance of E. coli O157:H7 to UPEC in chicken meat under the stresses of high hydrostatic pressu...
2012-01-01
Background Cardiovascular disease (CVD) is the number one cause of mortality worldwide and a low high-density lipoprotein cholesterol (HDL-C) level is an important marker of CVD risk. Garlic (Allium sativum) has been widely used in the clinic for treatment of CVD and regulation of lipid metabolism. This study investigated the effects of a high hydrostatic pressure extract of garlic (HEG) on HDL-C level and regulation of hepatic apolipoprotein A-I (apoA-I) gene expression. Methods Male Sprague–Dawley rats were divided into two groups and maintained on a high-fat control diet (CON) or high-fat control diet supplemented with high hydrostatic pressure extract of garlic (HEG) for 5 weeks. Changes in the expression of genes related to HDL-C metabolism were analyzed in liver, together with biometric and blood parameters. Results In the HEG group, the plasma triglyceride (TG) and low-density lipoprotein cholesterol (LDL-C) levels were significantly decreased in comparison with the CON group (P < 0.05). Dietary HEG also lowered the hepatic TG and total cholesterol (TC) levels compared to the CON group. While the plasma HDL-C level and mRNA level of hepatic apoA-I, which is one of primarily proteins of HDL-C particle, were significantly increased in the HEG group compared to the CON group (P < 0.05). The gene expression of ATP-binding cassette transporter A1 (ABCA1) and lecithin:cholesterol acyltransferase (LCAT), importantly involved in the biogenesis in HDL, were also up-regulated by dietary HEG. Conclusions These results suggest that HEG ameliorates plasma lipid profiles and attenuates hepatic lipid accumulation in the high-fat fed rats. Our findings provides that the effects of HEG on the increase of the plasma HDL-C level was at least partially mediated by up-regulation of hepatic genes expression such as apoA-I, ABCA1, and LCAT in rats fed a high-fat diet. PMID:22713542
NASA Astrophysics Data System (ADS)
Aouami, A. El; Feddi, E.; Talbi, A.; Dujardin, F.; Duque, C. A.
2018-06-01
In this study, we have investigated the simultaneous influence of magnetic field combined to the hydrostatic pressure and the geometrical confinement on the behavior of a single dopant confined in GaN/InGaN core/shell quantum dots. Within the scheme of the effective-mass approximation, the eigenvalues equation has solved by using the variational method with one-parameter trial wavefunctions. Variation of the ground state binding energy of the single dopant is determined according to the magnetic field and hydrostatic pressure for several dimensions of the heterostructure. The results show that the binding energy is strongly dependent on the core/shell sizes, the magnetic field, and the hydrostatic pressure. The analysis of the photoionization cross section, corresponding to optical transitions associated to the first donor energy level and the conduction band, shows clearly that the reduction of the dot dimensions and/or the simultaneous influences of applied magnetic field, combined to the hydrostatic pressure strength, cause a shift in resonance peaks towards the higher energies with important variations in the magnitude of the resonant peaks.
NASA Astrophysics Data System (ADS)
Denis, C.; Amalvict, M.; Rogister, Y.; Tomecka-Suchoń, S.
1998-03-01
After general comments (Section 1) on using variational procedures to compute the oblateness of internal strata in the Earth and slowly rotating planets, we recall briefly some basic concepts about barotropic equilibrium figures (Section 2), and then proceed to discuss several accurate methods to derive the internal flattening. The algorithms given in Section 3 are based on the internal gravity field theory of Clairaut, Laplace and Lyapunov. They make explicit use of the concept of a level surface. The general formulation given here leads to a number of formulae which are of both theoretical and practical use in studying the Earth's structure, dynamics and rotational evolution. We provide exact solutions for the figure functions of three Earth models, and apply the formalism to yield curves for the internal flattening as a function of the spin frequency. Two more methods, which use the general deformation equations, are discussed in Section 4. The latter do not rely explicitly on the existence of level surfaces. They offer an alternative to the classical first-order internal field theory, and can actually be used to compute changes of the flattening on short timescales produced by variations in the LOD. For short durations, the Earth behaves elastically rather than hydrostatically. We discuss in some detail static deformations and Longman's static core paradox (Section 5), and demonstrate that in general no static solution exists for a realistic Earth model. In Section 6 we deal briefly with differential rotation occurring in cylindrical shells, and show why differential rotation of the inner core such as has been advocated recently is incompatible with the concept of level surfaces. In Section 7 we discuss first-order hydrostatic theory in relation to Earth structure, and show how to derive a consistent reference Earth model which is more suitable for geodynamical modelling than are modern Earth models such as 1066-A, PREM or CORE11. An important result is that a consistent application of hydrostatic theory leads to an inertia factor of about 0.332 instead of the value 0.3308 used until now. This change automatically brings `hydrostatic' values of the flattening, the dynamic shape factor and the precessional constant into much better agreement with their observed counterparts than has been assumed hitherto. Of course, we do not imply that non-hydrostatic effects are unimportant in modelling geodynamic processes. Finally, we discuss (Sections 7-8) some implications of our way of looking at things for Earth structure and some current problems of geodynamics. We suggest very significant changes for the structure of the core, in particular a strong reduction of the density jump at the inner core boundary. The theoretical value of the free core nutation period, which may be computed by means of our hydrostatic Earth models CGGM or PREMM, is in somewhat better agreement with the observed value than that based on PREM or 1066-A, although a significant residue remains. We attribute the latter to inadequate modelling of the deformation, and hence of the change in the inertia tensor, because the static deformation equations were used. We argue that non-hydrostatic effects, though present, cannot explain the large observed discrepancy of about 30 days.
Escobedo-Avellaneda, Zamantha; Pérez-Simón, Izaskun; Lavilla-Martín, María; Baranda-González, Ana; Welti-Chanes, Jorge
2017-03-01
A new approach to the use of high hydrostatic pressure is its combination with high and intermediate temperatures applied to obtain safe foods of high quality. The effect of high hydrostatic pressure on color, residual polyphenol oxidase and pectin methylesterase activity, and total phenolic and l-ascorbic acid contents of orange-strawberry-banana beverages was evaluated. Beverages were treated at 500 and 600 MPa at 19-64 ℃ during 2-10 min. The effect of the come up time was also evaluated and results were compared with the untreated and the thermally processed (80 ℃/7 min) products. Untreated beverages had total phenolic content of 210.2±12.3 mg gallic acid/100 g and 19.1 ± 0.6 mg l-ascorbic acid/100 g. For most high hydrostatic pressure treatment conditions, total phenolic content, l-ascorbic acid, and color did not change significantly. Maximum levels of inactivation of polyphenol oxidase and pectin methylesterase were 96.2 and 48% at 600 MPa/64 ℃/10 min, while the thermal treatment led to inactivation of 99.6 and 94.1% of both enzymes, but with negative color changes. l-ascorbic acid content was slightly decreased with the thermal treatment while total phenolic content was not affected. High hydrostatic pressure treatments of beverages at 600 MPa/64 ℃/10 min are recommended to retain maximal total phenolic content and l-ascorbic acid and achieve an acceptable polyphenol oxidase inactivation level.
Montagne, Kevin; Uchiyama, Hiroki; Furukawa, Katsuko S; Ushida, Takashi
2014-01-22
Membrane biomechanical properties are critical in modulating nutrient and metabolite exchange as well as signal transduction. Biological membranes are predominantly composed of lipids, cholesterol and proteins, and their fluidity is tightly regulated by cholesterol and lipid desaturases. To determine whether such membrane fluidity regulation occurred in mammalian cells under pressure, we investigated the effects of pressure on membrane lipid order of mouse chondrogenic ATDC5 cells and desaturase gene expression. Hydrostatic pressure linearly increased membrane lipid packing and simultaneously repressed lipid desaturase gene expression. We also showed that cholesterol mimicked and cholesterol depletion reversed those effects, suggesting that desaturase gene expression was controlled by the membrane physical state itself. This study demonstrates a new effect of hydrostatic pressure on mammalian cells and may help to identify the molecular mechanisms involved in hydrostatic pressure sensing in chondrocytes. © 2013 Elsevier Ltd. All rights reserved.
Hydrostatic and Flow Measurements on Wrinkled Membrane Walls
NASA Astrophysics Data System (ADS)
Ozsun, Ozgur; Ekinci, Kamil
2013-03-01
In this study, we investigate structural properties of wrinkled silicon nitride (SiN) membranes, under both hydrostatic perturbations and flow conditions, through surface profile measurements. Rectangular SiN membranes with linear dimensions of 15 mm × 1 . 5 mm × 1 μ m are fabricated on a 500 - μ m-thick silicon substrate using standard lithography techniques. These thin, initially flat, tension-dominated membranes are wrinkled by bending the silicon substrate. The wrinkled membranes are subsequently incorporated as walls into rectangular micro-channels, which allow both hydrostatic and flow measurements. The structural response of the wrinkles to hydrostatic pressure provides a measure of the various energy scales in the problem. Flow experiments show that the elastic properties and the structural undulations on a compliant membrane completely dominate the flow, possibly providing drag reduction. These measurements pave the way for building and using compliant walls for drag reduction in micro-channels.
Keenan, Derek F; Brunton, Nigel; Gormley, Ronan; Butler, Francis
2011-01-26
The aim of the present study was the evaluation of high hydrostatic pressure (HHP) processing on the levels of polyphenolic compounds and selected quality attributes of fruit smoothies compared to fresh and mild conventional pasteurization processing. Fruit smoothie samples were thermally (P(70) > 10 min) or HHP processed (450 MPa/1, 3, or 5 min/20 °C) (HHP1, HHP3, and HHP5, respectively). The polyphenolic content, color difference (ΔE), sensory acceptability, and rheological (G'; G''; G*) properties of the smoothies were assessed over a storage period of 30 days at 4 °C. Processing had a significant effect (p < 0.001) on the levels of polyphenolic compounds in smoothies. However, this effect was not consistent for all compound types. HHP processed samples (HHP1 and HHP3) had higher (p < 0.001) levels of phenolic compounds, for example, procyanidin B1 and hesperidin, than HHP5 samples. Levels of flavanones and hydroxycinnamic acid compounds decreased (p < 0.001) after 30 days of storage at 2-4 °C). Decreases were particularly notable between days 10 and 20 (hesperidin) and days 20 and 30 (chlorogenic acid) (p < 0.001). There was a wide variation in ΔE values recorded over the 30 day storage period (p < 0.001), with fresh and thermally processed smoothies exhibiting lower color change than their HHP counterparts (p < 0.001). No effect was observed for the type of process on complex modulus (G*) data, but all smoothies became less rigid during the storage period (p < 0.001). Despite minor product deterioration during storage (p < 0.001), sensory acceptability scores showed no preference for either fresh or processed (thermal/HHP) smoothies, which were deemed acceptable (>3) by panelists.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volk, James; Hansen, Sten; Johnson, Todd
2012-01-01
Particle accelerators require very tight tolerances on the alignment and stability of their elements: magnets, accelerating cavities, vacuum chambers, etc. In this article we describe the Hydrostatic Level Sensors (HLS) for very low frequency measurements used in a variety of facilities at Fermilab. We present design features of the sensors, outline their technical parameters, describe their test and calibration procedures, discuss different regimes of operation and give few illustrative examples of the experimental data. Detail experimental results of the ground motion measurements with these detectors will be presented in subsequent papers.
Sato, Hironori; Koshimizu, Hiroshi; Yamashita, Shingo; Ogura, Toshihiko
2013-01-01
Accurate measurement of blood pressure at wrist requires the heart and wrist to be kept at the same level to avoid the effects of hydrostatic pressure. Although a blood pressure monitor with a position sensor that guides appropriate forearm angle without use of a chair and desk has already been proposed, a similar functioning device for measuring upper arm blood pressure with a chair and desk is needed. In this study, a calculation model was first used to explore design of such a system. The findings were then implemented into design of a new blood pressure monitor. Results of various methods were compared. The calculation model of the wrist level from arthrosis angles and interarticulars lengths was developed and considered using published anthropometric dimensions. It is compared with 33 volunteer persons' experimental results. The calculated difference of level was -4.1 to 7.9 (cm) with a fixed chair and desk. The experimental result was -3.0 to 5.5 (cm) at left wrist and -2.1 to 6.3(cm) at right wrist. The absolute difference level equals ±4.8 (mmHg) of blood pressure readings according to the calculated result. This meets the AAMI requirements for a blood pressure monitor. In the conclusion, the calculation model is able to effectively evaluate the difference between the heart and wrist level. Improving the method for maintaining wrist to heart level will improve wrist blood pressure measurement accuracy when also sitting in the chair at a desk. The leading angle of user's forearm using a position sensor is shown to work for this purpose.
Syed, Qamar-Abbas; Buffa, Martin; Guamis, Buenaventura; Saldo, Jordi
2016-01-01
Although, the High Hydrostatic Pressure (HHP) technology has been gaining gradual popularity in food industry since last two decades, intensive research is needed to explore the missing information. Bacterial inactivation in food by using HHP applications can be enhanced by getting deeper insights of the process. Some of these aspects have been already studied in detail (like pressure, time, and temperature, etc.), while some others still need to be investigated in more details (like pH, rates of compression, and decompression, etc.). Selection of process parameters is mainly dependent on type of matrix and target bacteria. This intensive review provides comprehensive information about the variety of aspects that can determine the bacterial inactivation potential of HHP process indicating the fields of future research on this subject including pH shifts of the pressure treated samples and critical limits of compression and decompression rates to accelerate the process efficacy.
Temperature compensated liquid level sensor using FBGs and a Bourdon tube
NASA Astrophysics Data System (ADS)
Sengupta, D.; Shankar, M. Sai; Rao, P. Vengal; Reddy, P. Saidi; Sai Prasad, R. L. N.; Kishore, P.; Srimannarayana, K.
2011-12-01
A temperature compensated liquid level sensor using FBGs and a bourdon tube that works on hydrostatic pressure is presented. An FBG (FBG1) is fixed between free end and a fixed end of the bourdon tube. When hydrostatic pressure applied to the bourdon tube FBG1 experience an axial strain due to the movement of free end. Experimental result shows, a good linearity in shift in Bragg wavelength with the applied pressure. The performance of this arrangement is tested for 21metre water column pressure. Another FBG (FBG2) is included for temperature compensation. The design of the sensor head is simple and easy mountable external to any tank for liquid level measurements.
[Laser flash photolysis, EPR and Raman studies of liquids at elevated pressures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eyring, E.M.
1992-01-01
The proposed research will solve a number of analytical chemical problems in solutions with measurement techniques that benefit from the use of elevated hydrostatic pressures: stopped-flow spectrophotometry (Gd[sup 3+] + L(ligand), [RuL[sub 5]H[sub 2]O][sup 2+], laser flash photolysis of Mo(CO)[sub 6] + L, flash photolysis of binuclear metalloproteins), EPR spectroscopy (Gd[sup 3+] ion-exchanged into ETS-10 and ETAS-10 molecular sieves), laser flash photolysis kinetic studies of Mo(CO)[sub 6]-2,2'-bipyridine, and electrochemical studies of metalloporphyrins using resonance Raman spectroscopy.
[Laser flash photolysis, EPR and Raman studies of liquids at elevated pressures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eyring, E.M.
1992-10-01
The proposed research will solve a number of analytical chemical problems in solutions with measurement techniques that benefit from the use of elevated hydrostatic pressures: stopped-flow spectrophotometry (Gd{sup 3+} + L(ligand), [RuL{sub 5}H{sub 2}O]{sup 2+}, laser flash photolysis of Mo(CO){sub 6} + L, flash photolysis of binuclear metalloproteins), EPR spectroscopy (Gd{sup 3+} ion-exchanged into ETS-10 and ETAS-10 molecular sieves), laser flash photolysis kinetic studies of Mo(CO){sub 6}-2,2`-bipyridine, and electrochemical studies of metalloporphyrins using resonance Raman spectroscopy.
1987-03-01
etctagrsa seta forth inor AR1 3515 n udr h ft. ~ ~ ~ ~ ~ ~ ~ I& AmTUACYIC" 0~~a - -( id n.ee IejDIbNboc mbr he pur os DS RB TO ST T N(of this Re’i p...along Crows Creek was submerged , permitting saturation of the basal layer and subjecting the confined aquifer system to a hydrostatic pressure head...along the banks of Crows Creek became submerged . The discharge area became the recharge area initially, completing saturation of the aquifer and then
Nakajima, Masatoshi; Hosaka, Keiichi; Yamauti, Monica; Foxton, Richard M; Tagami, Junji
2006-06-01
To evaluate the bonding durability of a self-etching primer system to normal and caries-affected dentin under hydrostatic pulpal pressure. 18 extracted human molars with occlusal caries were used. Their occlusal dentin surfaces were ground flat to expose normal and caries-affected dentin using #600 SiC paper under running water. Clearfil SE Bond was placed on the dentin surface including the caries-affected dentin according to the manufacturer's instructions and then the crowns were built up with resin composite (Clearfil AP-X) under either a pulpal pressure of 15 cm H2O or none (control). The bonded specimens were stored in 100% humidity for 1 day (control) or for 1 week and 1 month with hydrostatic pulpal pressure. After storage, the specimens were serially sectioned into 0.7 mm-thick slabs and trimmed to an hour-glass shape with a 1 mm2 cross-section, isolated by normal or caries-affected dentin, and then subjected to the micro-tensile bond test. Data were analyzed by two-way ANOVA and Tukey's test (P< 0.05). Hydrostatic pulpal pressure significantly reduced the bond strength to normal dentin after 1-month storage (P< 0.05), but did not affect the bond strength to caries-affected dentin.
A second metastable spin-ordered state on ferrimagnetic single crystal Cu2 OSeO 3
NASA Astrophysics Data System (ADS)
Chou, Chih Chieh; Huang, C. L.; Tseng, K. F.; Mukherjee, S.; Her, J. L.; Matsuda, Y. H.; Kindo, K.; Berger, H.; Yang, H. D.
2011-03-01
DC and AC susceptibilities were executed on ferrimagnetic single crystal Cu 2 OSe O3 under magnetic field (H) and hydrostatic pressure (P) circumstance. With increasing H , the ferrimagnetic transition at TC ~ 60 K tends to a higher temperature. Furthermore, the TC rises with a linear slope and magnetization is enhanced with increasing P . Features of the ladder shown in the M vs. H curve or the peak observed in the d M / d H vs. H curve are noted at HSF ~ 0.5 kOe, exhibiting a competing ordered state in magnetic fields below TC . Remarkably, another shoulder is observed at ~ 1 kOe in the d M / d H vs. H curve, revealing a metastable spin ordered state in Cu 2 OSe O3 . In addition, the novel state is retained and enhanced by applied pressure. However, at H up to 55 T, there is no more observable slop change in magnetization. These magnetic properties suggest a complex spin orientation in the spin-frustrated system Cu 2 OSe O3 .
Angelis, Apostolis; Urbain, Aurélie; Halabalaki, Maria; Aligiannis, Nektarios; Skaltsounis, Alexios-Leandros
2011-09-01
The value-added γ-oryzanol was purified in one step from crude rice bran oil (RBO) using a preparative hydrostatic countercurrent chromatography (hydrostatic CCC) method, operating in the dual mode. The fractionation was performed using a non-aqueous biphasic solvent system consisting of heptane-acetonitrile-butanol (1.8:1.4:0.7, v/v/v), leading rapidly to the target compounds. Transfer of the analytical CCC method to large-scale isolation was also carried out yielding a high quantity-high purity fraction of γ-oryzanol. In addition, a fraction of hydroxylated triterpene alcohol ferulates (polar γ-oryzanol) was clearly separated and obtained. Furthermore, a fast HPLC-APCI(±)-HRMS method was developed and applied for the identification of γ-oryzanol as well as the polar γ-oryzanol in RBO and the resulting fractions. The purity of γ-oryzanol fraction was estimated as 97% based on HPLC-APCI-HRMS analysis. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Glycine Insertion Makes Yellow Fluorescent Protein Sensitive to Hydrostatic Pressure
Watanabe, Tomonobu M.; Imada, Katsumi; Yoshizawa, Keiko; Nishiyama, Masayoshi; Kato, Chiaki; Abe, Fumiyoshi; Morikawa, Takamitsu J.; Kinoshita, Miki; Fujita, Hideaki; Yanagida, Toshio
2013-01-01
Fluorescent protein-based indicators for intracellular environment conditions such as pH and ion concentrations are commonly used to study the status and dynamics of living cells. Despite being an important factor in many biological processes, the development of an indicator for the physicochemical state of water, such as pressure, viscosity and temperature, however, has been neglected. We here found a novel mutation that dramatically enhances the pressure dependency of the yellow fluorescent protein (YFP) by inserting several glycines into it. The crystal structure of the mutant showed that the tyrosine near the chromophore flipped toward the outside of the β-can structure, resulting in the entry of a few water molecules near the chromophore. In response to changes in hydrostatic pressure, a spectrum shift and an intensity change of the fluorescence were observed. By measuring the fluorescence of the YFP mutant, we succeeded in measuring the intracellular pressure change in living cell. This study shows a new strategy of design to engineer fluorescent protein indicators to sense hydrostatic pressure. PMID:24014139
Mootian, Gabriel K; Flimlin, George E; Karwe, Mukund V; Schaffner, Donald W
2013-02-01
Shellfish may internalize dangerous pathogens during filter feeding. Traditional methods of depuration have been found ineffective against certain pathogens. The objective was to explore high hydrostatic pressure (HHP) as an alternative to the traditional depuration process. The effect of HHP on the survival of Vibrio parahaemolyticus in live clams (Mercanaria mercanaria) and the impact of HHP on physical characteristics of clam meat were investigated. Clams were inoculated with up to 7 log CFU/g of a cocktail of V. parahaemolyticus strains via filter feeding. Clams were processed at pressures ranging from 250 to 552 MPa for hold times ranging between 2 and 6 min. Processing conditions of 450 MPa for 4 min and 350 MPa for 6 min reduced the initial concentration of V. parahaemolyticus to a nondetectable level (<10(1) CFU/g), achieving >5 log reductions. The volume of clam meat (processed in shell) increased with negligible change in mass after exposure to pressure at 552 MPa for 3 min, while the drip loss was reduced. Clams processed at 552 MPa were softer compared to those processed at 276 MPa. However, all HHP processed clams were found to be harder compared to unprocessed. The lightness (L*) of the meat increased although the redness (a*) decreased with increasing pressure. Although high pressure-processed clams may pose a significantly lower risk from V. parahaemolyticus, the effect of the accompanied physical changes on the consumer's decision to purchase HHP clams remains to be determined. Shellfish may contain dangerous foodborne pathogens. Traditional methods of removing those pathogen have been found ineffective against certain pathogens. The objective of this research was to determine the effect of high hydrostatic pressure on V. parahaemolyticus in clams. Processing conditions of 450 MPa for 4 min and 350 MPa for 6 min reduced the initial concentration of V. parahaemolyticus to a nondetectable level, achieving >5 log reductions. © 2013 Institute of Food Technologists®
Tolerance of budding yeast Saccharomyces cerevisiae to ultra high pressure
NASA Astrophysics Data System (ADS)
Ono, Fumihisa; Shibata, Michiko; Torigoe, Motoki; Matsumoto, Yuta; Yamamoto, Shinsuke; Takizawa, Noboru; Hada, Yoshio; Mori, Yoshihisa; Takarabe, Kenichi
2013-06-01
In our previous studies on the tolerance of small plants and animals to the high hydrostatic pressure of 7.5 GPa, it was shown that all the living samples could be borne at this high pressure, which is more than one order of magnitude higher than the proteinic denaturation pressure. To make this inconsistency clear, we have extended these studies to a smaller sized fungus, budding yeast Saccharomyces cerevisiae. A several pieces of budding yeast (dry yeast) were sealed in a small teflon capsule with a liquid pressure medium fluorinate (PC72, Sumitomo 3M), and exposed to 7.5 GPa by using a cubic anvil press. The pressure was kept constant for various duration of time from 2 to 24 h. After the pressure was released, the specimens were brought out from the teflon capsule, and they were cultivated on a potato dextrose agar (PDA). It was found that the budding yeast exposed to 7.5 GPa for up to 6 h showed multiplication. However, those exposed to 7.5 GPa for 12 and 24 h were found dead. The high pressure tolerance of budding yeast is weaker than that of tardigrades.
Chondrocyte response to cyclic hydrostatic pressure in alginate versus pellet culture.
Elder, Steven H; Sanders, Shawn W; McCulley, William R; Marr, Misti L; Shim, Joon W; Hasty, Karen A
2006-04-01
Cells are often cultured at high density (e.g., confluent monolayer and as pellets) to promote chondrogenic differentiation and to maintain the chondrocyte phenotype. They are also frequently suspended in hydrogels such as agarose or alginate for the same purposes. These culture techniques differ markedly with respect to frequency of direct contact between cells and overall intercellular spacing. Because these factors may significantly affect mechanotransduction, the purpose of this study was to determine if the response of articular chondrocytes to cyclic hydrostatic pressure would depend on the culture condition. Primary articular chondrocytes from young and mature pigs were cultured either as pellets or suspended in alginate beads. Both groups were exposed to dynamic hydrostatic pressure (4 MPa, 1 Hz, 5400 cycles per day) for 7 days. Cell proliferation was unaffected by pressure, but pressurized chondrocytes in pellet culture had significantly greater sGAG content and incorporated [3H]proline at a higher rate than nonpressurized controls. Electron microscopy revealed a fibrous extracellular matrix (ECM) surrounding pellets, but not cells in alginate. In addition, expression of Connexin 43 (Cx43) mRNA was slightly lower in alginate than in pellet cultures and was not significantly altered by loading. Thus, metabolic response of chondrocytes to dynamic hydrostatic pressure was affected by culture technique; chondrocytes cultured as pellets exhibited the classical anabolic response to dynamic hydrostatic pressure, but those in alginate did not. Although cell-ECM interaction could be important, the differential response is not likely attributable to differential expression of Cx43 mRNA. Copyright 2006 Orthopaedic Research Society
Wong, Marcy; Siegrist, Mark; Goodwin, Kelly
2003-10-01
Endochondral ossification is regulated by many factors, including mechanical stimuli, which can suppress or accelerate chondrocyte maturation. Mathematical models of endochondral ossification have suggested that tension (or shear stress) can accelerate the formation of endochondral bone, while hydrostatic stress preserves the cartilage phenotype. The goal of this study was to test this hypothesis by examining the expression of hypertrophic chondrocyte markers (transcription factor Cbfa1, MMP-13, type X collagen, VEGF, CTGF) and cartilage matrix proteins under cyclic tension and cyclic hydrostatic pressure. Chondrocyte-seeded alginate constructs were exposed to one of the two loading modes for a period of 3 h per day for 3 days. Gene expression was analyzed using real-time RT-PCR. Cyclic tension upregulated the expression of Cbfa1, MMP-13, CTGF, type X collagen and VEGF and downregulated the expression of TIMP-1. Cyclic tension also upregulated the expression of type 2 collagen, COMP and lubricin, but did not change the expression of SOX9 and aggrecan. Cyclic hydrostatic pressure downregulated the expression of MMP-13 and type I collagen and upregulated expression of TIMP-1 compared to the unloaded controls. Hydrostatic pressure may slow chondrocyte differentiation and have a chondroprotective, anti-angiogenic influence on cartilage tissue. Our results suggest that cyclic tension activates the Cbfa1/MMP-13 pathway and increases the expression of terminal differentiation hypertrophic markers. Mammalian chondrocytes appear to have evolved complex mechanoresponsive mechanisms, the effects of which can be observed in the histomorphologic establishment of the cartilaginous skeleton during development and maturation.
Kopakkala-Tani, M; Elo, M A; Sironen, R K; Helminen, H J; Lammi, M J
2004-06-01
High continuous hydrostatic pressure has been shown to affect many cellular functions within the pressurised cells, for instance, accumulation of heat shock protein 70 occurs during pressurisation. Various signal transduction pathways are likely to mediate these changes, however, at the present time our knowledge of the pathways involved is rather limited. The aim of this study was to investigate whether some of the well known transduction pathways are activated by the exposure of human chondrosarcoma cells to 15-30 MPa hydrostatic pressure. The results showed an increased presence of the active, phosphorylated forms of extracellular signal-related kinase (ERK) and phosphoinositide 3-kinase (PI3K) in cells exposed to 15 and 30 MPa continuous hydrostatic pressure, while 0.5 Hz cyclic loading had weaker effects. Inhibition of ERK-pathway with UO126 did not prevent the accumulation of heat shock protein 70. No activation of c-Jun N-terminal protein kinase (JNK) or p38 could be noticed in pressurised cells. In conclusion, we could identify at least two different signal transduction pathways that are activated under high continuous hydrostatic pressure. Accumulation of heat shock protein 70 was independent of ERK-activation.
Toledo Del Árbol, Julia; Pérez Pulido, Rubén; Grande, Ma José; Gálvez, Antonio; Lucas, Rosario
2015-11-01
Salmorejo is a traditional tomato-based creamy product. Because salmorejo is not heat-processed, there is a risk of contamination with foodborne pathogens from raw materials. Even though bacterial growth in salmorejo is strongly inhibited because of its acidic pH (close to 3.9), the growth and survival of 3 foodborne pathogens in this food has not been studied before. In this study, 3 cocktails consisting of Escherichia coli O157, Salmonella enterica serovar Enteritidis, and Listeria monocytogenes strains were inoculated in freshly prepared salmorejo. The food was treated by high hydrostatic pressure (HHP) at 400, 500, or 600 MPa for 8 min, or left untreated, and stored at 4 °C for 30 d. Viable cell counts were determined on selective media and also by the triple-layer agar method in order to detect sublethally injured cells. In control samples, L. monocytogenes viable cells decreased by 2.4 log cycles at day 7 and were undetectable by day 15. S. enterica cells decreased by 0.5 or 2.4 log cycles at days 7 and 15 respectively, but still were detectable at day 30. E. coli O157 cells survived much better in salmorejo, decreasing only by 1.5 log cycles at day 30. Treatments at pressures of 400 MPa or higher reduced viable counts of L. monocytogenes and S. enterica to undetectable levels. HHP treatments significantly (P < 0.05) reduced E. coli counts by approximately 5.2 to 5.4 log cycles, but also yielded surviving cells that apparently were sublethally injured. Only samples treated at 600 MPA for 8 min were devoid of detectable E. coli cells during storage. Salmorejo is a traditional, vitamin-rich food, usually produced on a small scale. HHP treatment at 600 MPa for 8 min can be an efficient nonthermal method for industrial-scale preparation of preservative-free salmorejo with improved safety against transmission of foodborne pathogens L. monocytogenes serotyes 4a and 4b, S. enterica serovar Enteritidis, and E. coli O157. © 2015 Institute of Food Technologists®
Regulation of Cell Cycle and Stress Responses to Hydrostatic Pressure in Fission Yeast
George, Vinoj T.; Brooks, Gavin
2007-01-01
We have investigated the cellular responses to hydrostatic pressure by using the fission yeast Schizosaccharomyces pombe as a model system. Exposure to sublethal levels of hydrostatic pressure resulted in G2 cell cycle delay. This delay resulted from Cdc2 tyrosine-15 (Y-15) phosphorylation, and it was abrogated by simultaneous disruption of the Cdc2 kinase regulators Cdc25 and Wee1. However, cell cycle delay was independent of the DNA damage, cytokinesis, and cell size checkpoints, suggesting a novel mechanism of Cdc2-Y15 phosphorylation in response to hydrostatic pressure. Spc1/Sty1 mitogen-activated protein (MAP) kinase, a conserved member of the eukaryotic stress-activated p38, mitogen-activated protein (MAP) kinase family, was rapidly activated after pressure stress, and it was required for cell cycle recovery under these conditions, in part through promoting polo kinase (Plo1) phosphorylation on serine 402. Moreover, the Spc1 MAP kinase pathway played a key role in maintaining cell viability under hydrostatic pressure stress through the bZip transcription factor, Atf1. Further analysis revealed that prestressing cells with heat increased barotolerance, suggesting adaptational cross-talk between these stress responses. These findings provide new insight into eukaryotic homeostasis after exposure to pressure stress. PMID:17699598
NASA Astrophysics Data System (ADS)
Jonas, G.; Csehi, B.; Palotas, P.; Toth, A.; Kenesei, Gy; Pasztor-Huszar, K.; Friedrich, L.
2017-10-01
The aim of this study was to investigate the effect of sodium nitrite and high hydrostatic pressure on the color, water holding capacity (WHC) and texture characteristics of frankfurter. Three hundred, 450 and 600 MPa (5 minutes; 20 °C) and 50, 75, 100 and 125 ppm (calculated on weight of meat) sodium nitrite were applied. Parameters were measured right after the pressure treatment. Data were evaluated with two-way analysis of variance (p 0.05) with pressure levels and sodium nitrite amounts as factors. Nitrite reduction significantly increased lightness (L*) and resulted in decreased redness (a*) value. The pressure treatments decreased the lightness at all nitrite concentrations and did not significantly affect the red color of frankfurters. Fifty and 75 ppm nitrite and pressurization at 300 or 450 MPa improved the water holding property of frankfurter. The pressure treatment did not significantly affect the WHC but changing the nitrite amount had significant effect on it. Interactive effect occurred between pressure levels and nitrite concentrations for hardness. The pressure treatment increased and the nitrite reduction decreased hardness. Significant changes were found in cohesiveness at 450 and 600 MPa in frankfurters containing 50 and 75 ppm nitrite: pressure treatment at higher levels and nitrite reduction decreased the value of cohesiveness.
The chromospheric structure of the cool giant star g Herculis
NASA Technical Reports Server (NTRS)
Luttermoser, Donald G.; Johnson, Hollis R.; Eaton, Joel
1994-01-01
Non-Local Thermodynamic Equilibrium (LTE) calculations of semiempirical chromospheric models are presented for 30 g Her (M6 III). This star is one of the coolest (T(sub eff) = 3250 K) SRb (semiregular) variable stars and has a mass perhaps as great as 4 solar mass. Chromospheric features we have observed in its spectrum include Mg II h and k; C II) UV0.01, which is sensitive to electron density; Mg I lambda 2852; Ca II H, K, and IRT; Ca I lambda 4227 and lambda 6573; Al II) UV 1; and H alpha. We pay special attention to fitting the C II intersystem lines and the Mg II resonance lines but use all the other features as constraints to some extent. The equations of radiative transfer and statistical equilibrium are solved self-consistently for H I, H(-), H2, He I, C I, C II, Na I, Mg I, Mg II, Al I, Al II, Ca I, and Ca II with the equivalent two-level technique. To simplify these calculations, a one-dimensional hydrostatic, plane-parallel atmosphere is assumed. We investigate 10 separate 'classical' chromospheric models, differing most importantly in total mass column density above the temperature minimum. Synthetic spectra from these models fit some but not all of the observations. These comparisons are discussed in detail. However, we find that no single-component classical model in hydrostatic equilibrium is able to reproduce both the Mg II line profiles and the relative strengths of the CII) lines. In all these models, chromospheric emission features are formed relatively close to the star (approximately less than 0.05 R(sub *). The circumstellar environment has a thick, cool component overlying the Mg II emission region, which is relatively static and very turbulent. Finally, we find that thermalization in the Mg II h and k lines in the coolest giant stars is controlled by continuum absorption from Ca I 4p 4p3 P0 bound-free opacity and not collisional de-excitation as is the case for warmer K giants.
NASA Astrophysics Data System (ADS)
Syed, Qamar Abbas; Buffa, Martin; Guamis, Buenaventura; Saldo, Jordi
2013-03-01
The effect of compression and decompression rates of high hydrostatic pressure (HHP) on Escherichia coli O157:H7 was investigated. Samples of orange juice, skimmed milk and Tris buffer were inoculated with E. coli O157:H7 and subjected to 600 MPa for 3 min at 4°C with fast, medium and slow compression and decompression. Analyses immediately after HHP treatment revealed that E. coli in milk and juice treated with fast compression suffered more than slow compression rates. Slow decompression resulted in higher inactivation of E. coli in all matrices. After overnight storage, highest stress-recovery (1.19 log cfu/mL) was observed in Tris buffer. Healthy cells were<1 log cfu/mL in milk and buffer samples, but no growth was detected in orange juice for any of the treatments immediately after HHP. After 15 days at 4°C, E. coli cells in skimmed milk and Tris buffer recovered significantly, whereas the recovery of sublethally injured cells was inhibited in orange juice.
Modeling of stress distributions on the microstructural level in Alloy 600
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozaczek, K.J.; Petrovic, B.G.; Ruud, C.O.
1995-04-01
Stress distribution in a random polycrystalline material (Alloy 600) was studied using a topologically correct microstructural model. Distributions of von Mises and hydrostatic stresses at the grain vertices, which could be important in intergranular stress corrosion cracking, were analyzed as functions of microstructure, grain orientations and loading conditions. Grain size, shape, and orientation had a more pronounced effect on stress distribution than loading conditions. At grain vertices the stress concentration factor was higher for hydrostatic stress (1.7) than for von Mises stress (1.5). The stress/strain distribution in the volume (grain interiors) is a normal distribution and does not depend onmore » the location of the studied material volume i.e., surface vs/bulk. The analysis of stress distribution in the volume showed the von Mises stress concentration of 1.75 and stress concentration of 2.2 for the hydrostatic pressure. The observed stress concentration is high enough to cause localized plastic microdeformation, even when the polycrystalline aggregate is in the macroscopic elastic regime. Modeling of stresses and strains in polycrystalline materials can identify the microstructures (grain size distributions, texture) intrinsically susceptible to stress/strain concentrations and justify the correctness of applied stress state during the stress corrosion cracking tests. Also, it supplies the information necessary to formulate the local failure criteria and interpret of nondestructive stress measurements.« less
Bernsdorff, C; Wolf, A; Winter, R; Gratton, E
1997-01-01
The effect of high hydrostatic pressure on the lipid bilayer hydration, the mean order parameter, and rotational dynamics of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) cholesterol vesicles has been studied by time-resolved fluorescence spectroscopy up to 1500 bar. Whereas the degree of hydration in the lipid headgroup and interfacial region was assessed from fluorescence lifetime data using the probe 1-(4-trimethylammonium-phenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPH), the corresponding information in the upper acyl chain region was estimated from its effect on the fluorescence lifetime of and 3-(diphenylhexatrienyl)propyl-trimethylammonium (TMAP-DPH). The lifetime data indicate a greater level of interfacial hydration for DPPC bilayers than for POPC bilayers, but there is no marked difference in interchain hydration of the two bilayer systems. The addition of cholesterol at levels from 30 to 50 mol% to DPPC has a greater effect on the increase of hydrophobicity in the interfacial region of the bilayer than the application of hydrostatic pressure of several hundred to 1000 bar. Although the same trend is observed in the corresponding system, POPC/30 mol% cholesterol, the observed effects are markedly less pronounced. Whereas the rotational correlation times of the fluorophores decrease in passing the pressure-induced liquid-crystalline to gel phase transition of DPPC, the wobbling diffusion coefficient remains essentially unchanged. The wobbling diffusion constant of the two fluorophores changes markedly upon incorporation of 30 mol% cholesterol, and increases at higher pressures, also in the case of POPC/30 mol% cholesterol. The observed effects are discussed in terms of changes in the rotational characteristics of the fluorophores and the phase-state of the lipid mixture. The results demonstrate the ability of cholesterol to adjust the structural and dynamic properties of membranes composed of different phospholipid components, and to efficiently regulate the motional freedom and hydrophobicity of membranes, so that they can withstand even drastic changes in environmental conditions, such as high external hydrostatic pressure. PMID:9138572
NASA Astrophysics Data System (ADS)
Iezzi, Gianluca; Liu, Zhenxian; Della Ventura, Giancarlo
2009-06-01
The high-pressure behavior of three synthetic amphiboles crystallized with space group P21/ m at room conditions in the system Li2O-Na2O-MgO-SiO2-H2O has been studied by in situ synchrotron infrared absorption spectroscopy. The amphiboles have compositions ANa B(Na x Li1 - x Mg1) CMg5 Si8 O22(OH)2 with x = 0.6, 0.2 and 0.0, respectively. The high- P experiments up to 32 GPa were carried out on the U2A beamline at Brookhaven National Laboratory (NY, USA) using a diamond anvil cell under non-hydrostatic or quasi-hydrostatic conditions. The two most intense absorption bands in the OH-stretching infrared spectra can be assigned to two non-equivalent O-H dipoles in the P21/ m structure, bonded to the same local environment M1M3Mg3-OH-ANa, and pointing toward two differently kinked tetrahedral rings. In all samples these bands progressively merge to give a unique symmetrical absorption with increasing pressure, suggesting a change in symmetry from P21/ m to C2/ m. The pressure at which the transition occurs appears to be linearly correlated to the aggregate B-site dimension. The infrared spectra collected for amphibole B(Na0.2Li0.8Mg1) in the frequency range 50 to 1,400 cm-1 also show a series of changes with increasing pressure. The data reported here support the inference of Iezzi et al. (Am Miner 91:479-482, 2006a) regarding a new high-pressure amphibole polymorph.
Effects of High Hydrostatic Pressure on Coastal Bacterial Community Abundance and Diversity
Marietou, Angeliki
2014-01-01
Hydrostatic pressure is an important parameter influencing the distribution of microbial life in the ocean. In this study, the response of marine bacterial populations from surface waters to pressures representative of those under deep-sea conditions was examined. Southern California coastal seawater collected 5 m below the sea surface was incubated in microcosms, using a range of temperatures (16 to 3°C) and hydrostatic pressure conditions (0.1 to 80 MPa). Cell abundance decreased in response to pressure, while diversity increased. The morphology of the community also changed with pressurization to a predominant morphotype of small cocci. The pressure-induced community changes included an increase in the relative abundance of Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, and Flavobacteria largely at the expense of Epsilonproteobacteria. Culturable high-pressure-surviving bacteria were obtained and found to be phylogenetically similar to isolates from cold and/or deep-sea environments. These results provide novel insights into the response of surface water bacteria to changes in hydrostatic pressure. PMID:25063663
Ülger, Fatma Esra Bahadır; Ülger, Aykut; Karakaya, Ali Erdal; Tüten, Fatih; Katı, Ömer; Çolak, Mustafa
2014-03-01
Intussusception is one of the important causes of intestinal obstruction in children. Hydrostatic reduction under ultrasound guidance is a popular treatment method for intussusception. In the present study, we aimed to explain the demographic characteristics of and treatment approaches in patients diagnosed with intussusception by ultrasound. Forty-one patients diagnosed with intussusception by ultrasound between August 2011 and May 2013 were retrospectively analyzed. Twenty-four of these patients who had no contraindications had been treated with ultrasound-guided hydrostatic reduction. Twenty-four of the patients were male and 17 were female, a 1.4/1 male-to-female ratio. The majority of the patients were between the ages of 6-24 months and 2-5 years. The mean age was 31.12±26.32 months (range 3-125). Patients were more frequently diagnosed in April and May. Seventeen patients who had clinical contraindications enrolled directly for surgery. In 20 of the 24 patients who underwent ultrasound-guided hydrostatic reduction, reduction was achieved. Three experienced recurrence. In two of these patients, successful reduction was achieved with the second attempt. The remaining patient was enrolled for surgery. Hydrostatic reduction was performed 26 times on these 24 patients, and in 22, success was achieved (84.6%). No procedure-related complications occurred in the patients. Ultrasound-guided hydrostatic reduction, with its high success rates and lack of radiation risk, should be the first choice therapeutic approach for children diagnosed with intussusception.
Childs, Paul; Wong, Allan C L; Fu, H Y; Liao, Yanbiao; Tam, Hwayaw; Lu, Chao; Wai, P K A
2010-12-20
We measured the hydrostatic pressure dependence of the birefringence and birefringent dispersion of a Sagnac interferometric sensor incorporating a length of highly birefringent photonic crystal fiber using Fourier analysis. Sensitivity of both the phase and chirp spectra to hydrostatic pressure is demonstrated. Using this analysis, phase-based measurements showed a good linearity with an effective sensitivity of 9.45 nm/MPa and an accuracy of ±7.8 kPa using wavelength-encoded data and an effective sensitivity of -55.7 cm(-1)/MPa and an accuracy of ±4.4 kPa using wavenumber-encoded data. Chirp-based measurements, though nonlinear in response, showed an improvement in accuracy at certain pressure ranges with an accuracy of ±5.5 kPa for the full range of measured pressures using wavelength-encoded data and dropping to within ±2.5 kPa in the range of 0.17 to 0.4 MPa using wavenumber-encoded data. Improvements of the accuracy demonstrated the usefulness of implementing chirp-based analysis for sensing purposes.
Molecular Basis of the Behavior of Hepatitis A Virus Exposed to High Hydrostatic Pressure
D'Andrea, Lucía; Pérez-Rodríguez, Francisco J.; Costafreda, M. Isabel; Beguiristain, Nerea; Fuentes, Cristina; Aymerich, Teresa; Guix, Susana; Bosch, Albert
2014-01-01
Food-borne hepatitis A outbreaks may be prevented by subjecting foods at risk of virus contamination to moderate treatments of high hydrostatic pressure (HHP). A pretreatment promoting hepatitis A virus (HAV) capsid-folding changes enhances the virucidal effect of HHP, indicating that its efficacy depends on capsid conformation. HAV populations enriched in immature capsids (125S provirions) are more resistant to HHP, suggesting that mature capsids (150S virions) are more susceptible to this treatment. In addition, the monoclonal antibody (MAb) K24F2 epitope contained in the immunodominant site is a key factor for the resistance to HHP. Changes in capsid folding inducing a loss of recognition by MAb K24F2 render more susceptible conformations independently of the origin of such changes. Accordingly, codon usage-associated folding changes and changes stimulated by pH-dependent breathings, provided they confer a loss of recognition by MAb K24F2, induce a higher susceptibility to HHP. In conclusion, the resistance of HAV to HHP treatments may be explained by a low proportion of 150S particles combined with a good accessibility of the epitope contained in the immunodominant site close to the 5-fold axis. PMID:25107980
Multiscale modeling of growth plate cartilage mechanobiology.
Gao, Jie; Williams, John L; Roan, Esra
2017-04-01
Growth plate chondrocytes are responsible for bone growth through proliferation and differentiation. However, the way they experience physiological loads and regulate bone formation, especially during the later developmental phase in the mature growth plate, is still under active investigation. In this study, a previously developed multiscale finite element model of the growth plate is utilized to study the stress and strain distributions within the cartilage at the cellular level when rapidly compressed to 20 %. Detailed structures of the chondron are included in the model to examine the hypothesis that the same combination of mechanoregulatory signals shown to maintain cartilage or stimulate osteogenesis or fibrogenesis in the cartilage anlage or fracture callus also performs the same function at the cell level within the chondrons of growth plate cartilage. Our cell-level results are qualitatively and quantitatively in agreement with tissue-level theories when both hydrostatic cellular stress and strain are considered simultaneously in a mechanoregulatory phase diagram similar to that proposed at the tissue level by Claes and Heigele for fracture healing. Chondrocytes near the reserve/proliferative zone border are subjected to combinations of high compressive hydrostatic stresses ([Formula: see text] MPa), and cell height and width strains of [Formula: see text] to [Formula: see text] respectively, that maintain cartilage and keep chondrocytes from differentiating and provide conditions favorable for cell division, whereas chondrocytes closer to the hypertrophic/calcified zone undergo combinations of lower compressive hydrostatic stress ([Formula: see text] MPa) and cell height and width strains as low as [Formula: see text] to +4 %, respectively, that promote cell differentiation toward osteogenesis; cells near the outer periphery of the growth plate structure experience a combination of low compressive hydrostatic stress (0 to [Formula: see text] MPa) and high maximum principal strain (20-29 %) that stimulate cell differentiation toward fibrocartilage or fibrous tissue.
A hybrid hydrostatic and non-hydrostatic numerical model for shallow flow simulations
NASA Astrophysics Data System (ADS)
Zhang, Jingxin; Liang, Dongfang; Liu, Hua
2018-05-01
Hydrodynamics of geophysical flows in oceanic shelves, estuaries, and rivers, are often studied by solving shallow water model equations. Although hydrostatic models are accurate and cost efficient for many natural flows, there are situations where the hydrostatic assumption is invalid, whereby a fully hydrodynamic model is necessary to increase simulation accuracy. There is a growing concern about the decrease of the computational cost of non-hydrostatic pressure models to improve the range of their applications in large-scale flows with complex geometries. This study describes a hybrid hydrostatic and non-hydrostatic model to increase the efficiency of simulating shallow water flows. The basic numerical model is a three-dimensional hydrostatic model solved by the finite volume method (FVM) applied to unstructured grids. Herein, a second-order total variation diminishing (TVD) scheme is adopted. Using a predictor-corrector method to calculate the non-hydrostatic pressure, we extended the hydrostatic model to a fully hydrodynamic model. By localising the computational domain in the corrector step for non-hydrostatic pressure calculations, a hybrid model was developed. There was no prior special treatment on mode switching, and the developed numerical codes were highly efficient and robust. The hybrid model is applicable to the simulation of shallow flows when non-hydrostatic pressure is predominant only in the local domain. Beyond the non-hydrostatic domain, the hydrostatic model is still accurate. The applicability of the hybrid method was validated using several study cases.
Suzuki, Asaha; Mochizuki, Takahiro; Uemura, Satoshi; Hiraki, Toshiki; Abe, Fumiyoshi
2013-07-01
Cells of Saccharomyces cerevisiae express two tryptophan permeases, Tat1 and Tat2, which have different characteristics in terms of their affinity for tryptophan and intracellular localization. Although the high-affinity permease Tat2 has been well documented in terms of its ubiquitin-dependent degradation, the low-affinity permease Tat1 has not yet been characterized fully. Here we show that a high hydrostatic pressure of 25 MPa triggers a degradation of Tat1 which depends on Rsp5 ubiquitin ligase and the EH domain-containing protein End3. Tat1 was resistant to a 3-h cycloheximide treatment, suggesting that it is highly stable under normal growth conditions. The ubiquitination of Tat1 most likely occurs at N-terminal lysines 29 and 31. Simultaneous substitution of arginine for the two lysines prevented Tat1 degradation, but substitution of either of them alone did not, indicating that the roles of lysines 29 and 31 are redundant. When cells were exposed to high pressure, Tat1-GFP was completely lost from the plasma membrane, while substantial amounts of Tat1(K29R-K31R)-GFP remained. The HPG1-1 (Rsp5(P514T)) and rsp5-ww3 mutations stabilized Tat1 under high pressure, but any one of the rsp5-ww1, rsp5-ww2, and bul1Δ bul2Δ mutations or single deletions of genes encoding arrestin-related trafficking adaptors did not. However, simultaneous loss of 9-arrestins and Bul1/Bul2 prevented Tat1 degradation at 25 MPa. The results suggest that multiple PPxY motif proteins share some essential roles in regulating Tat1 ubiquitination in response to high hydrostatic pressure.
49 CFR 230.36 - Hydrostatic testing of boilers.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Appurtenances Pressure Testing of Boilers § 230.36 Hydrostatic testing of boilers. (a) Time of test. The... to any hydrostatic pressure. Hydrostatic testing required by these rules shall be conducted at 25... following any hydrostatic test where the pressure exceeds MAWP. ...
An FBG Optical Approach to Thermal Expansion Measurements under Hydrostatic Pressure
Rosa, Priscila Ferrari Silveira; Thomas, Sean Michael; Balakirev, Fedor Fedorovich; ...
2017-11-04
We report on an optical technique for measuring thermal expansion and magnetostriction at cryogenic temperatures and under applied hydrostatic pressures of 2.0 GPa. Optical fiber Bragg gratings inside a clamp-type pressure chamber are used to measure the strain in a millimeter-sized sample of CeRhIn 5. We describe the simultaneous measurement of two Bragg gratings in a single optical fiber using an optical sensing instrument capable of resolving changes in length [dL/L = (L- L 0)/L 0] on the order of 10 -7. Our results demonstrate the possibility of performing high-resolution thermal expansion measurements under hydrostatic pressure, a capability previously hinderedmore » by the small working volumes typical of pressure cells.« less
An FBG Optical Approach to Thermal Expansion Measurements under Hydrostatic Pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosa, Priscila Ferrari Silveira; Thomas, Sean Michael; Balakirev, Fedor Fedorovich
We report on an optical technique for measuring thermal expansion and magnetostriction at cryogenic temperatures and under applied hydrostatic pressures of 2.0 GPa. Optical fiber Bragg gratings inside a clamp-type pressure chamber are used to measure the strain in a millimeter-sized sample of CeRhIn 5. We describe the simultaneous measurement of two Bragg gratings in a single optical fiber using an optical sensing instrument capable of resolving changes in length [dL/L = (L- L 0)/L 0] on the order of 10 -7. Our results demonstrate the possibility of performing high-resolution thermal expansion measurements under hydrostatic pressure, a capability previously hinderedmore » by the small working volumes typical of pressure cells.« less
Argyri, Anthoula A; Panagou, Efstathios Z; Nychas, George-John E; Tassou, Chrysoula C
2014-01-01
Green fermented olives cv. Halkidiki were subjected to different treatments of high hydrostatic pressure (HHP) processing (400, 450, and 500 MPa for 15 or 30 min). Total viable counts, lactic acid bacteria and yeasts/moulds, and the physicochemical characteristics of the product (pH, colour, and firmness) were monitored right after the treatment and after 7 days of storage at 20(°)C to allow for recovery of injured cells. The treatments at 400 MPa for 15 and 30 min, 450 MPa for 15 and 30 min, and 500 MPa for 15 min were found insufficient as a recovery of the microbiota was observed. The treatment at 500 MPa for 30 min was effective in reducing the olive microbiota below the detection limit of the enumeration method after the treatment and after 1 week of storage and was chosen as being more appropriate for storing olives for an extended time period (5 months). After 5 months of storage at 20(°)C, no microbiota was detected in treated samples, while significant changes for both HHP treated and untreated olives were observed for colour parameters only (minor degradation). In conclusion, HHP treatment may introduce a reliable nonthermal pasteurization method to extend the microbiological shelf-life of fermented table olives.
Argyri, Anthoula A.; Panagou, Efstathios Z.; Nychas, George-John E.; Tassou, Chrysoula C.
2014-01-01
Green fermented olives cv. Halkidiki were subjected to different treatments of high hydrostatic pressure (HHP) processing (400, 450, and 500 MPa for 15 or 30 min). Total viable counts, lactic acid bacteria and yeasts/moulds, and the physicochemical characteristics of the product (pH, colour, and firmness) were monitored right after the treatment and after 7 days of storage at 20°C to allow for recovery of injured cells. The treatments at 400 MPa for 15 and 30 min, 450 MPa for 15 and 30 min, and 500 MPa for 15 min were found insufficient as a recovery of the microbiota was observed. The treatment at 500 MPa for 30 min was effective in reducing the olive microbiota below the detection limit of the enumeration method after the treatment and after 1 week of storage and was chosen as being more appropriate for storing olives for an extended time period (5 months). After 5 months of storage at 20°C, no microbiota was detected in treated samples, while significant changes for both HHP treated and untreated olives were observed for colour parameters only (minor degradation). In conclusion, HHP treatment may introduce a reliable nonthermal pasteurization method to extend the microbiological shelf-life of fermented table olives. PMID:25243146
Phillips, Brett E.; Cancel, Limary; Tarbell, John M.; Antonetti, David A.
2008-01-01
Purpose The aim of this study was to determine the function of the tight junction protein occludin in the control of permeability, under diffusive and hydrostatic pressures, and its contribution to the control of cell division in retinal pigment epithelium. Methods Occludin expression was inhibited in the human retinal pigment epithelial cell line ARPE-19 by siRNA. Depletion of occludin was confirmed by Western blot, confocal microscopy, and RT-PCR. Paracellular permeability of cell monolayers to fluorescently labeled 70 kDa dextran, 10 kDa dextran, and 467 Da tetramethylrhodamine (TAMRA) was examined under diffusive conditions or after the application of 10 cm H2O transmural pressure. Cell division rates were determined by tritiated thymidine incorporation and Ki67 immunoreactivity. Cell cycle inhibitors were used to determine whether changes in cell division affected permeability. Results Occludin depletion increased diffusive paracellular permeability to 467 Da TAMRA by 15%, and permeability under hydrostatic pressure was increased 50% compared with control. Conversely, depletion of occludin protein with siRNA did not alter diffusive permeability to 70 kDa and 10 kDa RITC-dextran, and permeability to 70 kDa dextran was twofold lower in occludin-depleted cells under hydrostatic pressure conditions. Occludin depletion also increased thymidine incorporation by 90% and Ki67-positive cells by 50%. Finally, cell cycle inhibitors did not alter the effect of occludin siRNA on paracellular permeability. Conclusions The data suggest that occludin regulates tight junction permeability in response to changes in hydrostatic pressure. Furthermore, these data suggest that occludin also contributes to the control of cell division, demonstrating a novel function for this tight junction protein. PMID:18263810
An evaluation of a bioelectrical impedance analyser for the estimation of body fat content.
Maughan, R J
1993-01-01
Measurement of body composition is an important part of any assessment of health or fitness. Hydrostatic weighing is generally accepted as the most reliable method for the measurement of body fat content, but is inconvenient. Electrical impedance analysers have recently been proposed as an alternative to the measurement of skinfold thickness. Both these latter methods are convenient, but give values based on estimates obtained from population studies. This study compared values of body fat content obtained by hydrostatic weighing, skinfold thickness measurement and electrical impedance on 50 (28 women, 22 men) healthy volunteers. Mean(s.e.m.) values obtained by the three methods were: hydrostatic weighing, 20.5(1.2)%; skinfold thickness, 21.8(1.0)%; impedance, 20.8(0.9)%. The results indicate that the correlation between the skinfold method and hydrostatic weighing (0.931) is somewhat higher than that between the impedance method and hydrostatic weighing (0.830). This is, perhaps, not surprising given the fact that the impedance method is based on an estimate of total body water which is then used to calculate body fat content. The skinfold method gives an estimate of body density, and the assumptions involved in the conversion from body density to body fat content are the same for both methods. PMID:8457817
The simultaneous discharge of liquid and grains from a silo
NASA Astrophysics Data System (ADS)
Cervantes-Álvarez, A. M.; Hidalgo-Caballero, S.; Pacheco-Vázquez, F.
2018-04-01
The flow rate of water through an orifice at the bottom of a container depends on the hydrostatic pressure whereas for a dry granular material it is nearly constant. But what happens during the simultaneous discharge of grains and liquid from a silo? By measuring the flow rate as a function of time, we found that (i) different regimes appear, going from the constant flow rate to a hydrostatic-like discharge depending on the aperture size and grain diameter, (ii) the mixed material is always discharged faster than dry grains but slower than liquid, (iii) for the mixture, the liquid level drops faster than the grain level, but they are always linearly proportional to one another, and (iv) a sudden growth in the flow rate happens during the transition from a biphasic discharge to a single phase discharge. These results are associated to the competition between the decrease in hydrostatic pressure above the granular bed and the hydrodynamic resistance. A model combining Darcy's law with Bernoulli and mass conservation equations is proposed, and the numerical results are in good agreement with experiments.
The Buoyancy Approach to U-tube Problems
NASA Astrophysics Data System (ADS)
Binder, P.-M.; Magowan, M. A.
2016-02-01
In this note we unify two physical situations treatable with hydrostatics: an object floating on a denser fluid and an open U-shaped tube with two immiscible fluids. We begin by reviewing the problem of a partially floating uniform, rectangular prism of horizontal area A immersed in a denser fluid, with respective densities ρ1 < ρh for the prism and fluid (the subscripts stand for light and heavy): see Fig. 1. We define three horizontal levels within the solid, y0, y1, and y2, corresponding to the bottom, flotation line, and top of the prism. The buoyant force is ρh (y1 - y0)gA upwards, and the weight of the prism is ρ1 (y2 - y0)gA downwards. By Newton's second law, these two forces balance at equilibrium. After dividing by the common horizontal area, one obtains y/1-y0 y2-y0 =ρ/1 ρh . A detailed derivation can be found for example in Ref. 1, Section 13-7.
NASA Astrophysics Data System (ADS)
Song, H.-J.; Huang, F.
2011-09-01
A wave-function-based intermolecular potential of the β phase 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (HMX) molecule has been constructed from first principles using the Williams-Stone-Misquitta method and the symmetry-adapted perturbation theory. Using the potential and its derivatives, we have accurately predicted not only the structure and lattice energy of the crystalline β-HMX at 0 K, but also its densities at temperatures of 0-403 K within an accuracy of 1% of density. The calculated densities at pressures within 0-6 GPa excellently agree with the results from the experiments on hydrostatic compression.
Kim, Keun-Young; Lindsey, James D.; Angert, Mila; Patel, Ankur; Scott, Ray T.; Liu, Quan; Crowston, Jonathan G.; Ellisman, Mark H.; Perkins, Guy A.; Weinreb, Robert N.
2009-01-01
Purpose This study was conducted to determine whether elevated hydrostatic pressure alters mitochondrial structure, triggers release of the dynamin-related guanosine triphosphatase (GTPase) optic atrophy type 1 (OPA1) or cytochrome C from mitochondria, alters OPA1 gene expression, and can directly induce apoptotic cell death in cultured retinal ganglion cell (RGC)-5 cells. Methods Differentiated RGC-5 cells were exposed to 30 mmHg for three days in a pressurized incubator. As a control, differentiated RGC-5 cell cultures were incubated simultaneously in a conventional incubator. Live RGC-5 cells were then labeled with MitoTracker Red and mitochondrial morphology was assessed by fluorescence microscopy. Mitochondrial structural changes were also assessed by electron microscopy and three-dimenstional (3D) electron microscope tomography. OPA1 mRNA was measured by Taqman quantitative PCR. The cellular distribution of OPA1 protein and cytochrome C was assessed by immunocytochemistry and western blot. Caspase-3 activation was examined by western blot. Apoptotic cell death was evaluated by the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) method. Results Mitochondrial fission, characterized by the conversion of tubular fused mitochondria into isolated small organelles, was triggered after three days exposure to elevated hydrostatic pressure. Electron microscopy confirmed the fission and noted no changes to mitochondrial architecture, nor outer membrane rupture. Electron microscope tomography showed that elevated pressure depleted mitochondrial cristae content by fourfold. Elevated hydrostatic pressure increased OPA1 gene expression by 35±14% on day 2, but reduced expression by 36±4% on day 3. Total OPA1 protein content was not changed on day 2 or 3. However, pressure treatment induced release of OPA1 and cytochrome C from mitochondria to the cytoplasm. Elevated pressure also activated caspase-3 and induced apoptotic cell death. Conclusions Elevated hydrostatic pressure triggered mitochondrial changes including mitochondrial fission and abnormal cristae depletion, alteration of OPA1 gene expression, and release of OPA1 and cytochrome C into the cytoplasm before the onset of apoptotic cell death in differentiated RGC-5 cells. These results suggest that sustained moderate pressure elevation may directly damage RGC integrity by injuring mitochondria. PMID:19169378
Malin, S K; Kirwan, J P
2012-09-01
Lifestyle modification, consisting of exercise and weight loss, delays the progression from prediabetes to type 2 diabetes (T2D). However, no study has determined the efficacy of exercise training on glucose metabolism in the different prediabetes subtypes. Seventy-six older (65.1 ± 0.6 years) obese adults with impaired fasting glucose (IFG; n = 12), impaired glucose tolerance (IGT; n = 9) and combined glucose intolerance (IFG + IGT = CGI; n = 22) were compared with normal glucose tolerant (NGT; n = 15) and T2D (n = 18) groups after 12 weeks of exercise training (60 min/day for 5 days/week at ~85% HR(max)). An oral glucose tolerance test was used to assess glucose levels. Insulin sensitivity (IS; euglycaemic hyperinsulinaemic clamp at 40 mU/m(2)/min), β-cell function (glucose-stimulated insulin secretion corrected for IS), body composition (hydrostatic weighing/computed tomography scan) and cardiovascular fitness (treadmill VO(2) max) were also assessed. Exercise training reduced weight and increased cardiovascular fitness (p < 0.05). Exercise training lowered fasting glucose levels in IFG, CGI and T2D (p < 0.05) and 2-h glucose levels in IGT, CGI and T2D (p < 0.05). However, 2-h glucose levels were not normalized in adults with CGI compared with IGT (p < 0.05). β-Cell function improved similarly across groups (p < 0.05). Although not statistically significant, IS increased approximately 40% in IFG and IGT, but only 17% in CGI. The magnitude of improvement in glucose metabolism after 12 weeks of exercise training is not uniform across the prediabetes subtypes. Given the high risk of progressing to T2D, adults with CGI may require more aggressive therapies to prevent diabetes. © 2012 Blackwell Publishing Ltd.
Hinz, Rebecca
2015-01-01
Chronic inflammation, which is caused by recurrent infections, is one of the factors contributing to the pathogenesis of cholesteatoma. If reimplantation of autologous ossicles after a surgical intervention is intended, inactivation of planktonic bacteria and biofilms is desirable. High hydrostatic pressure treatment is a procedure, which has been used to inactivate cholesteatoma cells on ossicles. Here we discuss the potential inactivating effect of high hydrostatic pressure on microbial pathogens including biofilms. Recent experimental data suggest an incomplete inactivation at a pressure level, which is tolerable for the bone substance of ossicles and results at least in a considerable reduction of pathogen load. Further studies are necessary to access how far this quantitative reduction of pathogens is sufficient to prevent ongoing chronic infections, for example, due to forming of biofilms. PMID:25705686
Shang, Lei; Ding, Wei; Li, Na; Liao, Lvshuang; Chen, Dan; Huang, Jufang; Xiong, Kun
2017-02-06
Necroptosis is a type of regulated cell death that has been implicated in various diseases. Receptor-interacting protein 3 (RIP3), a member of the RIP family, is an important mediator of the necroptotic pathway. Cleavage of RIP3 at Asp328 by caspase-8 abolishes the kinase activity of RIP3, which is critical for necroptosis. Moreover, RIP3 is significantly upregulated during the early stages of acute high intra-ocular pressure and oxygen glucose deprivation. In this study, the effects of RIP3 during elevated hydrostatic pressure (EHP) were investigated and the possible mechanism through which caspase-8 regulated RIP3 cleavage was explored. Flow cytometry analysis revealed that the number of EHP-induced necrotic retinal ganglion cell 5 (RGC-5) cells was reduced after RIP3-knockdown. Furthermore, malondialdehyde (MDA) levels and glycogen phosphorylase (PYGL) activity in normal RGC-5 cells were much higher than those in RIP3-knockdown cells after EHP. EHP-induced RGC-5 necrosis was significantly reduced after treatment with butylated hydroxyanisole (BHA), a reactive oxygen species (ROS) scavenger. MDA levels and PYGL activity were lower in normal RGC-5 cells than those in cells with caspase-8 inhibition after EHP. Western blot analysis demonstrated that the RIP3 cleavage product was upregulated in cells with caspase-8 inhibition. Additionally, flow cytometry analysis revealed that the number of EHP-induced necrotic RGC-5 cells was increased after caspase-8 inhibition. Our results suggested that RGC-5 necroptosis following EHP was mediated by RIP3 through induction of PYGL activity and subsequent ROS accumulation. Thus, caspase-8 may participate in the regulation of RGC-5 necroptosis via RIP3 cleavage. © The Author 2016. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
46 CFR 131.585 - Periodic servicing of hydrostatic-release units.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Periodic servicing of hydrostatic-release units. 131.585... OPERATIONS Tests, Drills, and Inspections § 131.585 Periodic servicing of hydrostatic-release units. (a) Except a disposable hydrostatic-release unit with an expiration date, each hydrostatic-release unit must...
46 CFR 185.740 - Periodic servicing of hydrostatic release units.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Periodic servicing of hydrostatic release units. 185.740... Equipment § 185.740 Periodic servicing of hydrostatic release units. (a) Each hydrostatic release unit... specified by the Commandant. (b) Each disposable hydrostatic release unit must be marked with an expiration...
Implementation and testing of the gridded Vienna Mapping Function 1 (VMF1)
NASA Astrophysics Data System (ADS)
Kouba, J.
2008-04-01
The new gridded Vienna Mapping Function (VMF1) was implemented and compared to the well-established site-dependent VMF1, directly and by using precise point positioning (PPP) with International GNSS Service (IGS) Final orbits/clocks for a 1.5-year GPS data set of 11 globally distributed IGS stations. The gridded VMF1 data can be interpolated for any location and for any time after 1994, whereas the site-dependent VMF1 data are only available at selected IGS stations and only after 2004. Both gridded and site-dependent VMF1 PPP solutions agree within 1 and 2 mm for the horizontal and vertical position components, respectively, provided that respective VMF1 hydrostatic zenith path delays (ZPD) are used for hydrostatic ZPD mapping to slant delays. The total ZPD of the gridded and site-dependent VMF1 data agree with PPP ZPD solutions with RMS of 1.5 and 1.8 cm, respectively. Such precise total ZPDs could provide useful initial a priori ZPD estimates for kinematic PPP and regional static GPS solutions. The hydrostatic ZPDs of the gridded VMF1 compare with the site-dependent VMF1 ZPDs with RMS of 0.3 cm, subject to some biases and discontinuities of up to 4 cm, which are likely due to different strategies used in the generation of the site-dependent VMF1 data. The precision of gridded hydrostatic ZPD should be sufficient for accurate a priori hydrostatic ZPD mapping in all precise GPS and very long baseline interferometry (VLBI) solutions. Conversely, precise and globally distributed geodetic solutions of total ZPDs, which need to be linked to VLBI to control biases and stability, should also provide a consistent and stable reference frame for long-term and state-of-the-art numerical weather modeling.
Effect of simulated pulpal pressure on all-in-one adhesive bond strengths to dentine.
Hosaka, Keiichi; Nakajima, Masatoshi; Yamauti, Monica; Aksornmuang, Juthatip; Ikeda, Masaomi; Foxton, Richard M; Pashley, David H; Tagami, Junji
2007-03-01
To evaluate the durability of all-in-one adhesive systems bonded to dentine with and without simulated hydrostatic pulpal pressure (PP). Flat dentine surfaces of extracted human molars were prepared. Two all-in-one adhesive systems, One-Up Bond F (OBF) (Tokuyama Corp., Tokyo, Japan), and Fluoro Bond Shake One (FBS) (Shofu Co., Kyoto, Japan) were applied to the dentine surfaces under either a PP of 0 or 15cm H(2)O. Then, resin composite build-ups were made. The specimens bonded under pressure were stored in 37 degrees C water for 24h, 1 and 3 months under 15cm H(2)O PP. Specimens not bonded under pressure were stored under zero PP. After storage, the specimens were sectioned into slabs that were trimmed to hourglass shapes and subjected to micro-tensile bond testing (muTBS). The data were analysed using two-way ANOVA and Holm-Sidak HSD multiple comparison tests (alpha=0.05). The muTBS of OBF fell significantly (p<0.05) when PP was applied during bonding and storage, regardless of storage time. In contrast, although the muTBS of OBF specimens bonded and stored without hydrostatic pressure storage fell significantly over the 3 months period, the decrease was less than half as much as specimens stored under PP. In FBS bonded specimens, although there was no significant difference between the muTBS with and without hydrostatic pulpal pressure at 24h, by 1 and 3 months of storage under PP, significant reductions were seen compared with the control group without PP. The muTBS of OBF bonded specimens was lowered more by simulated PP than by storage time; specimens bonded with FBS were not sensitive to storage time in the absence of PP, but showed lower bond strengths at 1 and 3 months in the presence of PP.
NASA Astrophysics Data System (ADS)
Pavlović, Vladan; Šušnjar, Marko; Petrović, Katarina; Stevanović, Ljiljana
2018-04-01
In this paper the effects of size, hydrostatic pressure and temperature on electromagnetically induced transparency, as well as on absorption and the dispersion properties of multilayered spherical quantum dot with hydrogenic impurity are theoretically investigated. Energy eigenvalues and wavefunctions of quantum systems in three-level and four-level configurations are calculated using the shooting method, while optical properties are obtained using the density matrix formalism and master equations. It is shown that peaks of the optical properties experience a blue-shift with increasing hydrostatic pressure and red-shift with increasing temperature. The changes of optical properties as a consequence of changes in barrier wells widths are non-monotonic, and these changes are discussed in detail.
Mießler, Katharina S; Markov, Alexander G; Amasheh, Salah
2018-01-01
During lactation, accumulation of milk in mammary glands (MG) causes hydrostatic pressure (HP) and concentration of bioactive compounds. Previously, a changed expression of tight junction (TJ) proteins was observed in mice MGs by accumulation of milk, in vivo. The TJ primarily determines the integrity of the MG epithelium. The present study questioned whether HP alone can affect the TJ in a mammary epithelial cell model, in vitro. Therefore, monolayers of HC11, a mammary epithelial cell line, were mounted into modified Ussing chambers and incubated with 10 kPa bilateral HP for 4 h. Short circuit current and transepithelial resistance were recorded and compared to controls, and TJ proteins were analyzed by Western blotting and immunofluorescent staining. In our first approach HC11 cells could withstand the pressure incubation and a downregulation of occludin was observed. In a second approach, using prolactin- and dexamethasone-induced cells, a decrease of short circuit current was observed, beginning after 2 h of incubation. With the addition of 1 mM barium chloride to the bathing solution the decrease could be blocked temporarily. On molecular level an upregulation of ZO-1 could be observed in hormone-induced cells, which was downregulated after the incubation with barium chloride. In conclusion, bilateral HP incubation affects mammary epithelial monolayers, in vitro. Both, the reduction of short circuit current and the change in TJ proteins may be interpreted as physiological requirements for lactation. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Jiang, Xin-He; Shi, Jun-Jie; Zhang, Min; Zhong, Hong-Xia; Huang, Pu; Ding, Yi-Min; He, Ying-Ping; Cao, Xiong
2015-12-01
To resolve the p-type doping problem of Al-rich AlGaN alloys, we investigate the influence of biaxial and hydrostatic strains on the activation energy, formation energy and band gap of Mg-doped GaN, AlN, Al0.83Ga0.17N disorder alloy and (AlN)5/(GaN)1 superlattice based on first-principles calculations by combining the standard DFT and hybrid functional. We find that the Mg acceptor activation energy {{E}\\text{A}} , the formation energy {{E}\\text{f}} and the band gap {{E}\\text{g}} decrease with increasing the strain ɛ. The hydrostatic strain has a more remarkable impact on {{E}\\text{g}} and {{E}\\text{A}} than the biaxial strain. Both {{E}\\text{A}} and {{E}\\text{g}} have a linear dependence on the hydrostatic strain. For the biaxial strain, {{E}\\text{g}} shows a parabolic dependence on ɛ if \\varepsilon ≤slant 0 while it becomes linear if \\varepsilon ≥slant 0 . In GaN and (AlN)5/(GaN)1, {{E}\\text{A}} parabolically depends on the biaxial compressive strain and linearly depends on the biaxial tensible strain. However, the dependence is approximately linear over the whole biaxial strain range in AlN and Al0.83Ga0.17N. The Mg acceptor activation energy in (AlN)5/(GaN)1 can be reduced from 0.26 eV without strain to 0.16 (0.22) eV with the hydrostatic (biaxial) tensible strain 3%.
49 CFR 178.814 - Hydrostatic pressure test.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Hydrostatic pressure test. 178.814 Section 178.814... Testing of IBCs § 178.814 Hydrostatic pressure test. (a) General. The hydrostatic pressure test must be... preparation for the hydrostatic pressure test. For metal IBCs, the test must be carried out before the fitting...
46 CFR 122.740 - Periodic servicing of hydrostatic release units.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Periodic servicing of hydrostatic release units. 122.740... hydrostatic release units. (a) Each hydrostatic release unit, other than a disposable unit, must be serviced... hydrostatic release unit must be marked in clearly legible letters with an expiration date of two years after...
Mukhopadhyay, Sudarsan; Sokorai, Kimberly; Ukuku, Dike; Fan, Xuetong; Juneja, Vijay; Sites, Joseph; Cassidy, Jennifer
2016-10-17
The objective of this research was to evaluate and develop a method for inactivation of Salmonella enterica and Listeria monocytogenes in cantaloupe puree (CP) by high hydrostatic pressure (HHP). Cantaloupe being the most netted varieties of melons presents a greater risk of pathogen transmission. Freshly prepared CP with or without 0.1% ascorbic acid (AA) was inoculated with a bacterial cocktail composed of a three serotype mixture of S. enterica (S. Poona, S. Newport H1275 and S. Stanley H0558) and a mixture of three strains of L. monocytogenes (Scott A, 43256 and 51742) to a population of ca. 10(8)CFU/g. Double sealed and double bagged inoculated CP (ca. 5g) were pressure treated at 300, 400 and 500MPa at 8°C and 15°C for 5min. Data indicated increased inactivation of both Salmonella and Listeria spp. with higher pressure. Log reduction for CP at 300MPa, 8°C for 5min was 2.4±0.2 and 1.6±0.5logCFU/g for Salmonella and Listeria, respectively. Survivability of the pathogens was significantly compromised at 400MPa and 8°C, inactivating 4.5±0.3logCFU/g of Salmonella and 3.0±0.4logCFU/g of Listeria spp. Complete inactivation of the pathogens in the puree (log reduction >6.7logCFU/g), with or without AA, was achieved when the pressure was further increased to 500MPa, except that for Listeria containing no AA at 8°C. Listeria presented higher resistance to pressure treatment compared to Salmonella spp. Initial temperatures (8 and 15°C) had no significant influence on Salmonella log reductions. Log reduction of pathogens increased but not significantly with increase of temperature. AA did not show any significant antimicrobial activity. Viable counts were about 0.2-0.4logCFU/g less in presence of 0.1% AA. These data validate that HHP can be used as an effective method for decontamination of cantaloupe puree. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salazar Mejía, C., E-mail: Catalina.Salazar@cpfs.mpg.de; Mydeen, K.; Naumov, P.
2016-06-27
We report on the effect of hydrostatic pressure on the magnetic and structural properties of the shape-memory Heusler alloy Ni{sub 50}Mn{sub 35}In{sub 15}. Magnetization and x-ray diffraction experiments were performed at hydrostatic pressures up to 5 GPa using diamond anvil cells. Pressure stabilizes the martensitic phase, shifting the martensitic transition to higher temperatures, and suppresses the ferromagnetic austenitic phase. Above 3 GPa, where the martensitic-transition temperature approaches the Curie temperature in the austenite, the magnetization shows no longer indications of ferromagnetic ordering. We further find an extended temperature region with a mixture of martensite and austenite phases, which directly relates to themore » magnetic properties.« less
Jiang, Zongliang; Harrington, Patrick; Zhang, Ming; Marjani, Sadie L.; Park, Joonghoon; Kuo, Lynn; Pribenszky, Csaba; Tian, Xiuchun (Cindy)
2016-01-01
High hydrostatic pressure (HHP) has been used to pre-condition embryos before essential, yet potentially detrimental procedures such as cryopreservation. However, the mechanisms for HHP are poorly understood. We treated bovine blastocysts with three different HHP (40, 60 and 80 MPa) in combination with three recovery periods (0, 1 h, 2 h post HHP). Re-expansion rates were significantly higher at 40 and 60 but lower at 80 MPa after vitrification-warming in the treated groups than controls. Microarray analysis revealed 399 differentially expressed transcripts, representing 254 unique genes, among different groups. Gene ontology analysis indicated that HHP at 40 and 60 MPa promoted embryo competence through down-regulation of genes in cell death and apoptosis, and up-regulation of genes in RNA processing, cellular growth and proliferation. In contrast, 80 MPa up-regulated genes in apoptosis, and down-regulated protein folding and cell cycle-related genes. Moreover, gene expression was also influenced by the length of the recovery time after HHP. The significantly over-represented categories were apoptosis and cell death in the 1 h group, and protein folding, response to unfolded protein and cell cycle in the 2 h group compared to 0 h. Taken together, HHP promotes competence of vitrified bovine blastocysts through modest transcriptional changes. PMID:26883277
NASA Technical Reports Server (NTRS)
Aschwanden, Markus J.; Alexander, David; Hurlburt, Neal; Newmark, Jeffrey S.; Neupert, Werner M.; Klimchuk, J. A.; Gary, G. Allen
1999-01-01
In this paper we study the three-dimensional (3D) structure of hot (T(sub e) approximately equals 1.5 - 2.5 MK) loops in solar active region NOAA 7986, observed on 1996 August 30 with the Extreme-ultraviolet Imaging Telescope (EIT) onboard the Solar and Heliospheric Observatory (SoHO). This complements a first study on cooler (T(sub e) approximately equals 1.0 - 1.5 MK) loops of the same active region, using the same method of Dynamic Stereoscopy to reconstruct the 3D geometry. We reconstruct the 3D-coordinates x(s), y(s), z(s), the density n(sub e)(s), and temperature profile T(sub e)(s) of 35 individual loop segments (as function of the loop coordinate s) using EIT 195 A and 284 A images. The major findings are: (1) All loops are found to be in hydrostatic equilibrium, in the entire temperature regime of T(sub e) = 1.0 - 2.5 MK; (2) The analyzed loops have a height of 2-3 scale heights, and thus only segments extending over about one vertical scale height have sufficient emission measure contrast for detection; (3) The temperature gradient over the lowest scale height is of order dT/ds is approximately 1 - 4 K/km; (4) The radiative loss rate is found to exceed the conductive loss rate by about two orders or magnitude, making thermal conduction negligible to explain the temperature structure of the loops; (5) A steady-state can only be achieved when the heating rate E(sub H) matches the radiative loss rate in hydrostatic equilibrium, requiring a heat deposition length lambda(sub H) of the half density scale height lambda, predicting a scaling law with the loop base pressure, EH varies as p(sub 0 exp 2). This favors coronal heating mechanisms that operate near the loop footpoints; (6) We find a reciprocal correlation between the loop pressure p(sub 0) and loop length L, i.e. p(sub 0) varies as 1/L, implying a scaling law of the steady-state requirement with loop length, i.e. E(sub H ) varies as 1/L(exp 2). The heating rate shows no correlation with the loop-aligned magnetic field component B(sub z) at the footpoints, but is correlated with the azimuthal field B(sub phi) = Bz(RDelta Phi/L) of a twisted loop, and is thus consistent with heating mechanisms based on field-aligned currents.
Hayslett, John P.
1973-01-01
The effect of increased hydrostatic pressure in the peritubular vessels on net sodium reabsorption from the proximal tubule was examined in the Necturus. An increase in the pressure gradient of 2.0 cm H2O across the wall of the proximal tubule, produced by ligation of the postcaval vein was associated with a marked reduction in net reabsorption and an increased back flux of water and electrolytes. This change was accompanied by a slight, but significant drop in the transepithelial electrical potential but not by an alteration in the steady-state chemical gradient. These studies highlight the importance of changes in the permeability characteristics of the proximal tubule on net sodium transport. Images PMID:4703221
Inferences About the Early Moon from Gravity and Topography
NASA Technical Reports Server (NTRS)
Smith, David E.; Zuber, Maria T.
1998-01-01
Recent spacecraft missions to the Moon have significantly improved our knowledge of the lunar gravity and topography fields and have raised some new and old questions about the early lunar history. It has frequently been assumed that the shape of the Moon today reflects an earlier equilibrium state and that the Moon has retained some internal strength. Recent analysis indicating a superisostatic state of some lunar basins lends support to this hypothesis. On its simplest level the present shape of the Moon is slightly flattened by 2.2 +/- 0.2 km while its gravity field, represented by an equipotential surface, is flattened only about 0.5 km. The hydrostatic component to the flattening arising from the Moon's present-day rotation contributes only 7 m. This difference between the topographic shape of the Moon and the shape of its gravitational equipotential has frequently been explained as the "memory" of an earlier Moon that was rotating faster and had a correspondingly larger hydrostatic flattening. To obtain this amount of hydrostatic flattening from rotation alone, and accounting for the contribution of the present-day gravity field, the Moon's rotation rate would need to be about 15 times greater than at present leading to a period of under 2 days. Maintaining its synchronous rotation with Earth would require a radius for the Moon's orbit of order 9 earth radii. Unfortunately, our confidence in the observed lunar flattening is not as great as we would like.
Non-hydrostatic semi-elastic hybrid-coordinate SISL extension of HIRLAM. Part I: numerical scheme
NASA Astrophysics Data System (ADS)
Rõõm, Rein; Männik, Aarne; Luhamaa, Andres
2007-10-01
Two-time-level, semi-implicit, semi-Lagrangian (SISL) scheme is applied to the non-hydrostatic pressure coordinate equations, constituting a modified Miller-Pearce-White model, in hybrid-coordinate framework. Neutral background is subtracted in the initial continuous dynamics, yielding modified equations for geopotential, temperature and logarithmic surface pressure fluctuation. Implicit Lagrangian marching formulae for single time-step are derived. A disclosure scheme is presented, which results in an uncoupled diagnostic system, consisting of 3-D Poisson equation for omega velocity and 2-D Helmholtz equation for logarithmic pressure fluctuation. The model is discretized to create a non-hydrostatic extension to numerical weather prediction model HIRLAM. The discretization schemes, trajectory computation algorithms and interpolation routines, as well as the physical parametrization package are maintained from parent hydrostatic HIRLAM. For stability investigation, the derived SISL model is linearized with respect to the initial, thermally non-equilibrium resting state. Explicit residuals of the linear model prove to be sensitive to the relative departures of temperature and static stability from the reference state. Relayed on the stability study, the semi-implicit term in the vertical momentum equation is replaced to the implicit term, which results in stability increase of the model.
Ospina, D A; Mora-Ramos, M E; Duque, C A
2017-02-01
The properties of the electronic structure of a finite-barrier semiconductor multiple quantum well are investigated taking into account the effects of the application of a static electric field and hydrostatic pressure. With the information of the allowed quasi-stationary energy states, the coefficients of linear and nonlinear optical absorption and of the relative refractive index change associated to transitions between allowed subbands are calculated with the use of a two-level scheme for the density matrix equation of motion and the rotating wave approximation. It is noticed that the hydrostatic pressure enhances the amplitude of the nonlinear contribution to the optical response of the multiple quantum well, whilst the linear one becomes reduced. Besides, the calculated coefficients are blueshifted due to the increasing of the applied electric field, and shows systematically dependence upon the hydrostatic pressure. The comparison of these results with those related with the consideration of a stationary spectrum of states in the heterostructure-obtained by placing infinite confining barriers at a conveniently far distance-shows essential differences in the pressure-induced effects in the sense of resonant frequency shifting as well as in the variation of the amplitudes of the optical responses.
Geodesy of Amalthea and the Galilean Satellites of Jupiter
NASA Astrophysics Data System (ADS)
Schubert, G.; Anderson, J. D.; Jacobson, R. A.; Lau, E. L.; Moore, W. B.; Palguta, J.
2003-12-01
An important scientific legacy of the Galileo mission is the determination of the masses and quadrupole components of the gravitational fields of the Galilean satellites. A final report of the mission results is given including values of GM (G is the universal gravitational constant, M is satellite mass), the gravitational coefficients J2 and C22, and the correlation coefficient μ between J2 and C22. The values of J2 and C22 are deduced using the a priori assumption J2 = (10/3)C22. The least squares method for fitting the Doppler residuals does not fix this ratio, but allows J2 and C22 to vary independently and determines the correlation between them. The a priori assumption is consistent with the hydrostatic equilibrium of a satellite, but it does not require hydrostaticity. Values of μ show that J2 and C22 are independently determined only for Io; the ratio of J2 and C22 is consistent with a hydrostatic Io. J2 and C22 are not independently determined for Ganymede even though there are both equatorial and polar flybys of the satellite. A quadrupole field is insufficient to fit the Ganymede data to the noise level. The additional signal is interpreted in terms of mascon anomalies at the surface of Ganymede. The gravitational coefficients, together with the assumption that the degree~2 gravitational fields of the satellites derive from their hydrostatic distortions to rotation and the Jovian tidal force, are used to infer the moments of inertia of the satellites and their internal structures. The mass and closest approach distance for Amalthea can be determined from Doppler data from the Galileo encounter of 5~November 2002. The final results indicate a density that is significantly smaller than the approximate 1000~kg\\ m-3 density of water ice. The quadrupole components of Amalthea's gravitational field are undetectable in the encounter Doppler data.
Pressure dependence of resistivity and magnetic properties in a Mn1.9Cr0.1Sb alloy
NASA Astrophysics Data System (ADS)
Repaka, D. V. Maheswar; Sharma, Vinay; Chanda, Amit; Mahendiran, R.; Ramanujan, R. V.
2017-12-01
We report magnetic-field and hydrostatic pressure dependent electrical resistivity and magnetic properties of a Mn1.9Cr0.1Sb alloy. Upon cooling, the magnetization of Mn1.9Cr0.1Sb exhibits a first-order ferrimagnetic to antiferromagnetic transition at the exchange inversion temperature, TS = 261 K under a 0.1 T magnetic field. Our experimental results show that TS decreases with increasing magnetic field but increase with increasing hydrostatic pressure. The pressure induced transition is accompanied by a large positive baro-resistance of 30.5% for a hydrostatic pressure change of 0.69 GPa. These results show that the lattice parameters as well as the bond distance between Mn-Mn atoms play a crucial role in the magnetic and electronic transport properties of Mn1.9Cr0.1Sb. This sample also exhibits a large inverse magnetocaloric effect with a magnetic entropy change of ΔSm = +6.75 J/kg.K and negative magnetoresistance (44.5%) for a field change of 5 T at TS in ambient pressure which may be useful for magnetic cooling and spintronics applications.
NASA Astrophysics Data System (ADS)
Kimizuka, Hajime; Ogata, Shigenobu; Shiga, Motoyuki
2018-01-01
Understanding the underlying mechanism of the nanostructure-mediated high diffusivity of H in Pd is of recent scientific interest and also crucial for industrial applications. Here, we present a decisive scenario explaining the emergence of the fast lattice-diffusion mode of interstitial H in face-centered cubic Pd, based on the quantum mechanical natures of both electrons and nuclei under finite strains. Ab initio path-integral molecular dynamics was applied to predict the temperature- and strain-dependent free energy profiles for H migration in Pd over a temperature range of 150-600 K and under hydrostatic tensile strains of 0.0%-2.4%; such strain conditions are likely to occur in real systems, especially around the elastic fields induced by nanostructured defects. The simulated results revealed that, for preferential H location at octahedral sites, as in unstrained Pd, the activation barrier for H migration (Q ) was drastically increased with decreasing temperature owing to nuclear quantum effects. In contrast, as tetrahedral sites increased in stability with lattice expansion, nuclear quantum effects became less prominent and ceased impeding H migration. This implies that the nature of the diffusion mechanism gradually changes from quantum- to classical-like as the strain is increased. For H atoms in Pd at the hydrostatic strain of ˜2.4 % , we determined that the mechanism promoted fast lattice diffusion (Q =0.11 eV) of approximately 20 times the rate of conventional H diffusion (Q =0.23 eV) in unstrained Pd at a room temperature of 300 K.
NASA Astrophysics Data System (ADS)
Saeidi, Parviz; Nourbakhsh, Zahra
2018-04-01
Topological phase of Gd1-xYxAuPb (x = 0, 0.25, 0.5, 0.75, 1) alloys have been studied utilizing density function theory by WIEN2k code. The generalized gradient approximation (GGA), generalized gradient approximation plus Hubbard parameter (GGA + U), Modified Becke and Johnson (MBJ) and GGA Engel-vosko in the presence of spin orbit coupling have been used to investigate the topological band structure of Gd1-xYxAuPb alloys at zero pressure. The topological phase and band order of these alloys within GGA and GGA + U approaches under hydrostatic pressure are also investigated. We find that under hydrostatic pressure in some percentages of Gd1-xYxAuPb (x = 0, 0.25, 0.5, 0.75, 1) alloys in both GGA and GGA + U approaches, the trivial topological phase is converted into nontrivial topological phase. In addition, the band inversion strength versus lattice constant of these alloys is studied. Moreover, the schematic plan is represented in order to show the trivial and nontrivial topological phase of Gd1-xYxAuPb (x = 0, 0.25, 0.5, 0.75, 1) alloys in both GGA and GGA + U approaches.
Flying-patch patch-clamp study of G22E-MscL mutant under high hydrostatic pressure.
Petrov, Evgeny; Rohde, Paul R; Martinac, Boris
2011-04-06
High hydrostatic pressure (HHP) present in natural environments impacts on cell membrane biophysical properties and protein quaternary structure. We have investigated the effect of high hydrostatic pressure on G22E-MscL, a spontaneously opening mutant of Escherichia coli MscL, the bacterial mechanosensitive channel of large conductance. Patch-clamp technique combined with a flying-patch device and hydraulic setup allowed the study of the effects of HHP up to 90 MPa (as near the bottom of the Marianas Trench) on the MscL mutant channel reconstituted into liposome membranes, in addition to recording in situ from the mutant channels expressed in E. coli giant spheroplasts. In general, against thermodynamic predictions, hydrostatic pressure in the range of 0.1-90 MPa increased channel open probability by favoring the open state of the channel. Furthermore, hydrostatic pressure affected the channel kinetics, as manifested by the propensity of the channel to gate at subconducting levels with an increase in pressure. We propose that the presence of water molecules around the hydrophobic gate of the G22E MscL channel induce hydration of the hydrophobic lock under HHP causing frequent channel openings and preventing the channel closure in the absence of membrane tension. Furthermore, our study indicates that HHP can be used as a valuable experimental approach toward better understanding of the gating mechanism in complex channels such as MscL. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Reinwald, Yvonne; El Haj, Alicia J
2018-03-01
Topographical and mechanical cues are vital for cell fate, tissue development in vivo, and to mimic the native cell growth environment in vitro. To date, the combinatory effect of mechanical and topographical cues as not been thoroughly investigated. This study investigates the effect of PCL nanofiber alignment and hydrostatic pressure on stem cell differentiation for bone tissue regeneration. Bone marrow-derived human mesenchymal stem cells were seeded onto standard tissue culture plastic and electrospun random and aligned nanofibers. These substrates were either cultured statically or subjected to intermittent hydrostatic pressure at 270 kPa, 1 Hz for 60 min daily over 21 days in osteogenic medium. Data revealed higher cell metabolic activities for all mechanically stimulated cell culture formats compared with non-stimulated controls; and random fibers compared with aligned fibers. Fiber orientation influenced cell morphology and patterns of calcium deposition. Significant up-regulation of Collagen-I, ALP, and Runx-2 were observed for random and aligned fibers following mechanical stimulation; highest levels of osteogenic markers were expressed when hydrostatic pressure was applied to random fibers. These results indicate that fiber alignment and hydrostatic pressure direct stem cell fate and are important stimulus for tissue regeneration. © 2017 The Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc. J Biomed Mater Res Part A: A: 629-640, 2018. © 2017 The Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc.
El Haj, Alicia J.
2017-01-01
Abstract Topographical and mechanical cues are vital for cell fate, tissue development in vivo, and to mimic the native cell growth environment in vitro. To date, the combinatory effect of mechanical and topographical cues as not been thoroughly investigated. This study investigates the effect of PCL nanofiber alignment and hydrostatic pressure on stem cell differentiation for bone tissue regeneration. Bone marrow‐derived human mesenchymal stem cells were seeded onto standard tissue culture plastic and electrospun random and aligned nanofibers. These substrates were either cultured statically or subjected to intermittent hydrostatic pressure at 270 kPa, 1 Hz for 60 min daily over 21 days in osteogenic medium. Data revealed higher cell metabolic activities for all mechanically stimulated cell culture formats compared with non‐stimulated controls; and random fibers compared with aligned fibers. Fiber orientation influenced cell morphology and patterns of calcium deposition. Significant up‐regulation of Collagen‐I, ALP, and Runx‐2 were observed for random and aligned fibers following mechanical stimulation; highest levels of osteogenic markers were expressed when hydrostatic pressure was applied to random fibers. These results indicate that fiber alignment and hydrostatic pressure direct stem cell fate and are important stimulus for tissue regeneration. © 2017 The Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc. J Biomed Mater Res Part A: A: 629–640, 2018. PMID:28984025
NASA Astrophysics Data System (ADS)
Shi, Li-Bin; Li, Ming-Biao; Xiu, Xiao-Ming; Liu, Xu-Yang; Zhang, Kai-Cheng; Li, Chun-Ran; Dong, Hai-Kuan
2017-04-01
La2O3 is a potential dielectric material with high permittivity (high-κ) for metal-oxide-semiconductor (MOS) devices. However, band offsets and oxide defects should still be concerned. Smaller band offsets and carrier traps increase leakage current, and degenerate performance of the devices. In this paper, the interface behaviors of La2O3/GaAs under biaxial strain and hydrostatic pressure are investigated, which is performed by first principles calculations based on density functional theory (DFT). Strain engineering is attempted to improve performance of the metal/La2O3/GaAs devices. First of all, we creatively realize band alignment of La2O3/GaAs interface under biaxial strain and hydrostatic pressure. The proper biaxial tensile strain can effectively increase valence band offsets (VBO) and conduction band offsets (CBO), which can be used to suppress leakage current. However, the VBO will decrease with the increase of hydrostatic pressure, indicating that performance of the devices is degenerated. Then, a direct tunneling leakage current model is used to investigate current and voltage characteristics of the metal/La2O3/GaAs. The impact of biaxial strain and hydrostatic pressure on leakage current is discussed. At last, formation energies and transition levels of oxygen interstitial (Oi) and oxygen vacancy (VO) in La2O3 are assessed. We investigate how they will affect performance of the devices.
Negative-pressure-induced enhancement in a freestanding ferroelectric
NASA Astrophysics Data System (ADS)
Wang, Jin; Wylie-van Eerd, Ben; Sluka, Tomas; Sandu, Cosmin; Cantoni, Marco; Wei, Xian-Kui; Kvasov, Alexander; McGilly, Leo John; Gemeiner, Pascale; Dkhil, Brahim; Tagantsev, Alexander; Trodahl, Joe; Setter, Nava
2015-10-01
Ferroelectrics are widespread in technology, being used in electronics and communications, medical diagnostics and industrial automation. However, extension of their operational temperature range and useful properties is desired. Recent developments have exploited ultrathin epitaxial films on lattice-mismatched substrates, imposing tensile or compressive biaxial strain, to enhance ferroelectric properties. Much larger hydrostatic compression can be achieved by diamond anvil cells, but hydrostatic tensile stress is regarded as unachievable. Theory and ab initio treatments predict enhanced properties for perovskite ferroelectrics under hydrostatic tensile stress. Here we report negative-pressure-driven enhancement of the tetragonality, Curie temperature and spontaneous polarization in freestanding PbTiO3 nanowires, driven by stress that develops during transformation of the material from a lower-density crystal structure to the perovskite phase. This study suggests a simple route to obtain negative pressure in other materials, potentially extending their exploitable properties beyond their present levels.
Kishen, A; Vedantam, S
2007-10-01
This investigation is to understand the role of free water in the dentinal tubules on the mechanical integrity of bulk dentine. Three different experiments were conducted in this study. In experiment 1, three-dimensional models of dentine with gradient elastic modulus, homogenous elastic modulus, and with and without hydrostatic pressure were simulated using the finite element method. Static compressive loads of 15, 50 and 100 N were applied and the distribution of the principal stresses, von Mises stresses, and strains in loading direction were determined. In experiment 2, experimental compression testing of fully hydrated and partially dehydrated dentine (21 degrees C for 72 h) was conducted using a Universal testing machine. In experiment 3, Fourier transform infrared spectroscopic analysis of hydrated and partially dehydrated dentine was carried out. The finite element analysis revealed that the dentine model with simulated hydrostatic pressure displayed residual tensile stresses and strains in the inner region adjacent to the root canal. When external compressive loads were applied to the model, the residual stresses and strains counteracted the applied loads. Similarly the hydrated specimens subjected to experimental compression loads showed greater toughness when compared to the partially dehydrated specimens. The stress at fracture was significantly higher in partially dehydrated specimens (p=0.014), while the strain at fracture was significantly higher in hydrated dentine specimens (p=0.037). These experiments highlighted the distinct role of free water in the dentinal tubules and hydrostatic pressure on the stress-strain distribution within the bulk dentine.
Deterministic modeling of the impact of underground structures on urban groundwater temperature.
Attard, Guillaume; Rossier, Yvan; Winiarski, Thierry; Eisenlohr, Laurent
2016-12-01
Underground structures have a major influence on groundwater temperature and have a major contribution on the anthropogenic heat fluxes into urban aquifers. Groundwater temperature is crucial for resource management as it can provide operational sustainability indicators for groundwater quality and geothermal energy. Here, a three dimensional heat transport modeling approach was conducted to quantify the thermally affected zone (TAZ, i.e. increase in temperature of more than +0.5°C) caused by two common underground structures: (1) an impervious structure and (2) a draining structure. These design techniques consist in (1) ballasting the underground structure in order to resist hydrostatic pressure, or (2) draining the groundwater under the structure in order to remove the hydrostatic pressure. The volume of the TAZ caused by these underground structures was shown to range from 14 to 20 times the volume of the underground structure. Additionally, the cumulative impact of underground structures was assessed under average thermal conditions at the scale of the greater Lyon area (France). The heat island effect caused by underground structures was highlighted in the business center of the city. Increase in temperature of more than +4.5°C were locally put in evidence. The annual heat flow from underground structures to the urban aquifer was computed deterministically and represents 4.5GW·h. Considering these impacts, the TAZ of deep underground structures should be taken into account in the geothermal potential mapping. Finally, the amount of heat energy provided should be used as an indicator of heating potential in these areas. Copyright © 2016 Elsevier B.V. All rights reserved.
Meyer, E G; Buckley, C T; Steward, A J; Kelly, D J
2011-10-01
Mechanical signals can play a key role in regulating the chondrogenic differentiation of mesenchymal stem cells (MSCs). The objective of this study was to determine if the long-term application of cyclic hydrostatic pressure could be used to improve the functional properties of cartilaginous tissues engineered using bone marrow derived MSCs. MSCs were isolated from the femora of two porcine donors, expanded separately under identical conditions, and then suspended in cylindrical agarose hydrogels. Constructs from both donors were maintained in a chemically defined media supplemented with TGF-β3 for 42 days. TGF-β3 was removed from a subset of constructs from day 21 to 42. Loaded groups were subjected to 10 MPa of cyclic hydrostatic pressurisation at 1 Hz for one hour/day, five days/week. Loading consisted either of continuous hydrostatic pressure (CHP) initiated at day 0, or delayed hydrostatic pressure (DHP) initiated at day 21. Free swelling (FS) constructs were cultured in parallel as controls. Constructs were assessed at days 0, 21 and 42. MSCs isolated from both donors were morphologically similar, demonstrated comparable colony forming unit-fibroblast (CFU-F) numbers, and accumulated near identical levels of collagen and GAG following 42 days of free swelling culture. Somewhat unexpectedly the two donors displayed a differential response to hydrostatic pressure. For one donor the application of CHP resulted in increased collagen and GAG accumulation by day 42, resulting in an increased dynamic modulus compared to FS controls. In contrast, CHP had no effect on matrix accumulation for the other donor. The application of DHP had no effect on either matrix accumulation or construct mechanical properties for both donors. Variability in the response to hydrostatic pressure was also observed for three further donors. In conclusion, this study demonstrates that the application of long-term hydrostatic pressure can be used to improve the functional properties of cartilaginous tissues engineered using bone marrow derived MSCs by enhancing collagen and GAG accumulation. The response to such loading however is donor dependent, which has implications for the clinical utilisation of such a stimulus when engineering cartilaginous grafts using autologous MSCs. Copyright © 2011 Elsevier Ltd. All rights reserved.
Intrathoracic and venous pressure relationships during responses to changes in body position
NASA Technical Reports Server (NTRS)
Avasthey, P.; Wood, E. H.
1974-01-01
Simultaneous end-expiratory pressures, referred to midthoracic level, in the superior and abdominal venae cavae, pericardial space, and right and left heart, were recorded without thoracotomy in three anesthetized dogs during sudden changes from supine to vertical head-up or head-down body positions. Intrathoracic and dependent great vein pressures referred to midchest level (sixth thoracic vertebra) decreased and showed simple hydrostatic gradients in either vertical position. However, a discontinuity in the large vein hydrostatic gradient occurred just distal to the superior margin of the thorax in either body position and was resumed again above this level. It is concluded that, just as the cerebrospinal fluid and intraperitoneal pressures minimize the effects of gravitational and inertial forces on the cerebral and visceral circulations, the pericardial and pleural pressures have a similar role for the heart proper.
Fiber-optic liquid level sensor
Weiss, Jonathan D.
1991-01-01
A fiber-optic liquid level sensor measures the height of a column of liquid through the hydrostatic pressure it produces. The sensor employs a fiber-optic displacement sensor to detect the pressure-induced displacement of the center of a corrugated diaphragm.
Huang, Hsiao-Wen; Chen, Bang-Yuan; Wang, Chung-Yi
2018-05-01
This study validated high hydrostatic pressure processing (HPP) for achieving greater than 5-log reductions of Escherichia coli O157:H7 in carambola juice and determined shelf life of processed juice stored at 4 °C. Carambola juice processed at 600 MPa for 150 s was identified capable of achieving greater than 5.15-log reductions of E. coli O157:H7, and the quality was compared with that of high temperature short time (HTST)-pasteurized juice at 110 °C for 8.6 s. Aerobic, psychrotrophic, E. coli /coliform, and yeasts and moulds in the juice were reduced by HPP or HTST to levels below the minimum detection limit (< 1.0 log CFU/mL), and showed no outgrowth after refrigerated storage of 40 days. There were no significant differences in pH and titratable acidity between the untreated, HPP, and HTST juices. However, HTST treatment significantly changed the color of juice, while no significant difference was observed between the control and HPP samples. HPP and HTST treatments reduced the total soluble solids in the juice, but maintained higher sucrose, glucose, fructose, and total sugar contents than untreated juice. The total phenolic and ascorbic acid contents were higher in juice treated with HPP than untreated and HTST juice, but there was no significant difference in the flavonoid content. Aroma score analysis showed that HPP had no effect on aroma, maintaining the highest score during cold storage. The results of this study suggest that appropriate HPP conditions can achieve the same microbial safety as HTST, while maintaining the quality and extending the shelf life of carambola juice.
DuRaine, G D; Athanasiou, K A
2015-01-01
The objective of this study was to identify the ERK 1/2 involvement in the changes in compressive and tensile mechanical properties associated with hydrostatic pressure treatment of self-assembled cartilage constructs. In study 1, ERK 1/2 phosphorylation was detected by immunoblot following application of hydrostatic pressure (1 hour of static 10MPa) applied at day 10-14 of self-assembly culture. In study 2, ERK 1/2 activation was blocked during hydrostatic pressure application on days 10-14. With pharmacological inhibition of the ERK pathway by the MEK1/ERK inhibitor U0126 during hydrostatic pressure application on days 10-14, the increase in Young’s modulus induced by hydrostatic pressure was blocked. Furthermore, this reduction in Young’s modulus with U0126 treatment during hydrostatic pressure application corresponded with a decrease in total collagen expression. However, U0126 did not inhibit the increase in aggregate modulus or GAG induced by hydrostatic pressure. These findings demonstrate a link between hydrostatic pressure application, ERK signaling, and changes in biomechanical properties of a tissue engineered construct. PMID:23255524
Lee, Mel S; Trindade, Michael C D; Ikenoue, Takashi; Schurman, David J; Goodman, Stuart B; Smith, R Lane
2003-02-01
To test the effects of intermittent hydrostatic pressure (IHP) on nitric oxide (NO) release induced by shear stress and matrix macromolecule gene expression in human osteoarthritic chondrocytes in vitro. Chondrocytes isolated from cartilage samples from 9 patients with osteoarthritis were cultured and exposed to either shear stress or an NO donor. Nitrite concentration was measured using the Griess reaction. Matrix macromolecule mRNA signal levels were determined using reverse-transcriptase polymerase chain reaction and quantified by imaging analysis software. Exposure to shear stress upregulated NO release in a dose and time-dependent manner. Application of IHP inhibited shear stress induced NO release but did not alter NO release from chondrocytes not exposed to shear stress. Shear stress induced NO or addition of an NO donor (sodium nitroprusside) was associated with decreased mRNA signal levels for the cartilage matrix proteins, aggrecan, and type II collagen. Intermittent hydrostatic pressure blocked the inhibitory effects of sodium nitroprusside but did not alter the inhibitory effects of shear stress on cartilage macromolecule gene expression. Our data show that shear stress and IHP differentially alter chondrocyte metabolism and suggest that a balance of effects between different loading forces preserve cartilage extracellular matrix in vivo.
NASA Astrophysics Data System (ADS)
Zhang, Yuanlei; He, Xijia; Li, Zhe; Xu, Kun; Liu, Changqin; Huang, Yinsheng; Jing, Chao
2018-04-01
The electrical transport properties at martensitic transformation (MT) in polycrystalline Ni43.7Fe5.3Mn35.4In15.6 have been intensively investigated under different hydrostatic pressures. For this alloy, the experimental results show that applying a higher hydrostatic pressure can convert its MT from the metamagnetic type into the paramagnetic type. It provides a unique opportunity to separate the relative contributions of electron-spin and electron-lattice scatterings across the metamagnetic MT based on the dynamical Clausius-Clapeyron equation, which delivers a deeper insight into the resistivity change of metamagnetic MT for the Mn-rich Ni-Mn based Heusler alloys. In addition, the studied alloy also reveals a giant positive baroresistance (BR) effect with a saturated value of 115% at 242 K. This performance originates from the combined effect of electron-spin and electron-lattice scatterings associated with a prominent hydrostatic pressure-induced MT, which contribute 46% and 69% to the overall BR ratio, respectively.
Engineering Characteristics of Chemically Treated Water-Repellent Kaolin
Choi, Youngmin; Choo, Hyunwook; Yun, Tae Sup; Lee, Changho; Lee, Woojin
2016-01-01
Water-repellent soils have a potential as alternative construction materials that will improve conventional geotechnical structures. In this study, the potential of chemically treated water-repellent kaolin clay as a landfill cover material is explored by examining its characteristics including hydraulic and mechanical properties. In order to provide water repellency to the kaolin clay, the surface of clay particle is modified with organosilanes in concentrations (CO) ranging from 0.5% to 10% by weight. As the CO increases, the specific gravity of treated clay tends to decrease, whereas the total organic carbon content of the treated clay tends to increase. The soil-water contact angle increases with an increase in CO until CO = 2.5%, and then maintains an almost constant value (≈134.0°). Resistance to water infiltration is improved by organosilane treatment under low hydrostatic pressure. However, water infiltration resistance under high hydrostatic pressure is reduced or exacerbated to the level of untreated clay. The maximum compacted dry weight density decreases with increasing CO. As the CO increases, the small strain shear modulus increases, whereas the effect of organosilane treatment on the constrained modulus is minimal. The results indicate that water-repellent kaolin clay possesses excellent engineering characteristics for a landfill cover material. PMID:28774098
NASA Astrophysics Data System (ADS)
Nguyen, B. V.; Challagulla, K. S.; Venkatesh, T. A.; Hadjiloizi, D. A.; Georgiades, A. V.
2016-12-01
Unit-cell based finite element models are developed to completely characterize the role of porosity distribution and porosity volume fraction in determining the elastic, dielectric and piezoelectric properties as well as relevant figures of merit of 3-3 type piezoelectric foam structures. Eight classes of foam structures which represent structures with different types and degrees of uniformity of porosity distribution are identified; a Base structure (Class I), two H-type foam structures (Classes II, and III), a Cross-type foam structure (Class IV) and four Line-type foam structures (Classes V, VI, VII, and VIII). Three geometric factors that influence the electromechanical properties are identified: (i) the number of pores per face, pore size and the distance between the pores; (ii) pore orientation with respect to poling direction; (iii) the overall symmetry of the pore distribution with respect to the center of the face of the unit cell. To assess the suitability of these structures for such applications as hydrophones, bone implants, medical imaging and diagnostic devices, five figures of merit are determined via the developed finite element model; the piezoelectric coupling constant (K t ), the acoustic impedance (Z), the piezoelectric charge coefficient (d h ), the hydrostatic voltage coefficient (g h ), and the hydrostatic figure of merit (d h g h ). At high material volume fractions, foams with non-uniform Line-type porosity (Classes V and VII) where the pores are preferentially distributed perpendicular to poling direction, are found to exhibit the best combination of desirable piezoelectric figures of merit. For example, at about 50% volume fraction, the d h , g h , and d h g h figures of merit are 55%, 1600% and 2500% higher, respectively, for Classes V and VII of Line-like foam structures compared with the Base structure.
Processes governing the temperature structure of the tropical tropopause layer (Invited)
NASA Astrophysics Data System (ADS)
Birner, T.
2013-12-01
The tropical tropopause layer (TTL) is among the most important but least understood regions of the global climate system. The TTL sets the boundary condition for atmospheric tracers entering the stratosphere. Specifically, TTL temperatures control stratospheric water vapor concentrations, which play a key role in the radiative budget of the entire stratosphere with implications for tropospheric and surface climate. The TTL shows a curious stratification structure: temperature continues to decrease beyond the level of main convective outflow (~200 hPa) up to the cold point tropopause (~100 hPa), but TTL lapse rates are smaller than in the upper troposphere. A cold point tropopause well separated from the level of main convective outflow requires TTL cooling which may be the result of: 1) the detailed radiative balance in the TTL, 2) large-scale upwelling (forced by extratropical or tropical waves), 3) the large-scale hydrostatic response aloft deep convective heating, 4) overshooting convection, 5) breaking gravity waves. All of these processes may act in isolation or combine to produce the observed TTL temperature structure. Here, a critical discussion of these processes / mechanisms and their role in lifting the cold point tropopause above the level of main convective outflow is presented. Results are based on idealized radiative-convective equilibrium model simulations, contrasting single-column with cloud-resolving simulations, as well on simulations with chemistry-climate models and reanalysis data. While all of the above processes are capable of producing a TTL-like region in isolation, their combination is found to produce important feedbacks. In particular, both water vapor and ozone are found to have strong radiative effects on TTL temperatures, highlighting important feedbacks between transport circulations setting temperatures and tracer structures and the resulting tracer structures in turn affecting temperatures.
Zhao, Jing; Ross, Nancy L; Wang, Di; Angel, Ross J
2011-11-16
The structural evolution of orthorhombic CaTiO3 perovskite has been studied using high-pressure single-crystal x-ray diffraction under hydrostatic conditions up to 8.1 GPa and under a non-hydrostatic stress field formed in a diamond anvil cell (DAC) up to 4.7 GPa. Under hydrostatic conditions, the TiO6 octahedra become more tilted and distorted with increasing pressure, similar to other 2:4 perovskites. Under non-hydrostatic conditions, the experiments do not show any apparent difference in the internal structural variation from hydrostatic conditions and no additional tilts and distortions in the TiO6 octahedra are observed, even though the lattice itself becomes distorted due to the non-hydrostatic stress. The similarity between the hydrostatic and non-hydrostatic cases can be ascribed to the fact that CaTiO3 perovskite is nearly elastically isotropic and, as a consequence, its deviatoric unit-cell volume strain produced by the non-hydrostatic stress is very small; in other words, the additional octahedral tilts relevant to the extra unit-cell volume associated with the deviatoric unit-cell volume strain may be totally neglected. This study further addresses the role that three factors--the elastic properties, the crystal orientation and the pressure medium--have on the structural evolution of an orthorhombic perovskite loaded in a DAC under non-hydrostatic conditions. The influence of these factors can be clearly visualized by plotting the three-dimensional distribution of the deviatoric unit-cell volume strain in relation to the cylindrical axis of the DAC and indicates that, if the elasticity of a perovskite is nearly isotropic as it is for CaTiO3, the other two factors become relatively insignificant.
Converging shocks in elastic-plastic solids.
Ortega, A López; Lombardini, M; Hill, D J
2011-11-01
We present an approximate description of the behavior of an elastic-plastic material processed by a cylindrically or spherically symmetric converging shock, following Whitham's shock dynamics theory. Originally applied with success to various gas dynamics problems, this theory is presently derived for solid media, in both elastic and plastic regimes. The exact solutions of the shock dynamics equations obtained reproduce well the results obtained by high-resolution numerical simulations. The examined constitutive laws share a compressible neo-Hookean structure for the internal energy e=e(s)(I(1))+e(h)(ρ,ς), where e(s) accounts for shear through the first invariant of the Cauchy-Green tensor, and e(h) represents the hydrostatic contribution as a function of the density ρ and entropy ς. In the strong-shock limit, reached as the shock approaches the axis or origin r=0, we show that compression effects are dominant over shear deformations. For an isothermal constitutive law, i.e., e(h)=e(h)(ρ), with a power-law dependence e(h) is proportional to ρ(α), shock dynamics predicts that for a converging shock located at r=R(t) at time t, the Mach number increases as M is proportional to [log(1/R)](α), independently of the space index s, where s=2 in cylindrical geometry and 3 in spherical geometry. An alternative isothermal constitutive law with p(ρ) of the arctanh type, which enforces a finite density in the strong-shock limit, leads to M is proportional to R(-(s-1)) for strong shocks. A nonisothermal constitutive law, whose hydrostatic part e(h) is that of an ideal gas, is also tested, recovering the strong-shock limit M is proportional to R(-(s-1)/n(γ)) originally derived by Whitham for perfect gases, where γ is inherently related to the maximum compression ratio that the material can reach, (γ+1)/(γ-1). From these strong-shock limits, we also estimate analytically the density, radial velocity, pressure, and sound speed immediately behind the shock. While the hydrostatic part of the energy essentially commands the strong-shock behavior, the shear modulus and yield stress modify the compression ratio and velocity of the shock far from the axis or origin. A characterization of the elastic-plastic transition in converging shocks, which involves an elastic precursor and a plastic compression region, is finally exposed.
Naftalin, R J; Tripathi, S
1985-01-01
Water flows generated by osmotic and hydrostatic pressure and electrical currents were measured in sheets of isolated rabbit ileum at 20 degrees C. Flows across the mucosal and serosal surfaces were monitored continuously by simultaneous measurement of tissue volume change (with an optical lever) and net water flows across one surface of the tissue (with a capacitance transducer). Osmotic gradients were imposed across the mucosal and serosal surfaces of the tissue separately, using probe molecules of various sizes from ethanediol (68 Da) to dextrans (161 000 Da). Flows across each surface were elicited with very short delay. The magnitudes of the flows were proportional to the osmotic gradient and related to the size of the probe molecule. Osmotic flow across the mucosal surface was associated with streaming potentials which were due to electro-osmotic water flow. The mucosal surface is a heteroporous barrier with narrow (0.7 nm radius, Lp (hydraulic conductivity) = (7.6 +/- 1.6) X 10(-9) cm s-1 cmH2O-1) cation-selective channels in parallel with wide neutral pores (ca. 6.5 nm radius, Lp = (2.3 +/- 0.2) X 10(-7) cm s-1 cmH2O-1) which admit large pressure-driven backflows from the submucosa to the lumen. There is additional evidence for a further set of narrow electroneutral pores less than 0.4 nm radius with Lp less than 7 X 10(-9) cm s-1 cmH2O-1. The serosal surface has neutral pores of uniform radius (ca. 6.5 nm), Lp = (7.6 +/- 1.6) X 10(-8) cm s-1 cmH2O-1. Hypertonic serosal solutions (100 mM-sucrose) cause osmotic transfer of fluid from isotonic mucosal solutions into the submucosa, expand it, and elevate the tissue pressure to 19.6 +/- 3.2 cmH2O (n = 4). Conversely, hypertonic mucosal solutions (100 mM-sucrose) draw fluid out of the submucosa in the presence of isotonic serosal solutions, collapse the submucosa, and lower the tissue pressure to -87.7 +/- 4.6 cmH2O (n = 5). Water flows coupled to cation movement could be generated across the mucosal surface in both directions by brief direct current pulses. The short latency of onset and cessation of flow (less than 2 s), absence of polarization potentials, and high electro-osmotic coefficients (range 50-520 mol water F-1), together with the presence of streaming potentials during osmotically generated water flows indicate electro-osmotic water flow through hydrated channels in the tight junctions and/or lateral intercellular spaces.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:3989717
Wave Response during Hydrostatic and Geostrophic Adjustment. Part I: Transient Dynamics.
NASA Astrophysics Data System (ADS)
Chagnon, Jeffrey M.; Bannon, Peter R.
2005-05-01
The adjustment of a compressible, stably stratified atmosphere to sources of hydrostatic and geostrophic imbalance is investigated using a linear model. Imbalance is produced by prescribed, time-dependent injections of mass, heat, or momentum that model those processes considered “external” to the scales of motion on which the linearization and other model assumptions are justifiable. Solutions are demonstrated in response to a localized warming characteristic of small isolated clouds, larger thunderstorms, and convective systems.For a semi-infinite atmosphere, solutions consist of a set of vertical modes of continuously varying wavenumber, each of which contains time dependencies classified as steady, acoustic wave, and buoyancy wave contributions. Additionally, a rigid lower-boundary condition implies the existence of a discrete mode—the Lamb mode— containing only a steady and acoustic wave contribution. The forced solutions are generalized in terms of a temporal Green's function, which represents the response to an instantaneous injection.The response to an instantaneous warming with geometry representative of a small, isolated cloud takes place in two stages. Within the first few minutes, acoustic and Lamb waves accomplish an expansion of the heated region. Within the first quarter-hour, nonhydrostatic buoyancy waves accomplish an upward displacement inside of the heated region with inflow below, outflow above, and weak subsidence on the periphery—all mainly accomplished by the lowest vertical wavenumber modes, which have the largest horizontal group speed. More complicated transient patterns of inflow aloft and outflow along the lower boundary are accomplished by higher vertical wavenumber modes. Among these is an outwardly propagating rotor along the lower boundary that effectively displaces the low-level inflow upward and outward.A warming of 20 min duration with geometry representative of a large thunderstorm generates only a weak acoustic response in the horizontal by the Lamb waves. The amplitude of this signal increases during the onset of the heating and decreases as the heating is turned off. The lowest vertical wavenumber buoyancy waves still dominate the horizontal adjustment, and the horizontal scale of displacements is increased by an order of magnitude. Within a few hours the transient motions remove the perturbations and an approximately trivial balanced state is established.A warming of 2 h duration with geometry representative of a large convective system generates a weak but discernible Lamb wave signal. The response to the conglomerate system is mainly hydrostatic. After several hours, the only signal in the vicinity of the heated region is that of inertia-gravity waves oscillating about a nontrivial hydrostatic and geostrophic state.This paper is the first of two parts treating the transient dynamics of hydrostatic and geostrophic adjustment. Part II examines the potential vorticity conservation and the partitioning of total energy.
Recovery of tobacco BY-2 cells after high hydrostatic pressure treatment.
Kusube, Masataka; Nishino, Takumi; Nishikawa, Yuki; Goto, Masaki; Matsuki, Hitoshi; Iwahashi, Hitoshi
2010-02-01
The recovery of Nicotiana tabacum L. cv. Bright Yellow 2 (BY-2) cells in Linsmaire and Skoog medium after treatment at high hydrostatic pressure was investigated using an Evans Blue staining method to discriminate live from dead cells. The survival of BY-2 cells just after the high-pressure treatment at 5 degrees C and 25 degrees C decreased abruptly at pressures higher than 50 MPa and 100 MPa, respectively. Furthermore, almost all of the BY-2 cells treated at 5 degrees C and 25 degrees C recovered pressures below 25 MPa and 75 MPa, respectively. However, no BY-2 cells recovered at pressures above 100 MPa at either temperature.
Germination of vegetable seeds exposed to very high pressure
NASA Astrophysics Data System (ADS)
Mori, Y.; Yokota, S.; Ono, F.
2012-07-01
Effects of high hydrostatic pressure were investigated on vegetable seeds in the GPa range to examine the potentialities of breed improvement by high-pressure processing. Specimens of several seeds of broccoli (Brassica oleracea var. italica), Turnip leaf (Brassica rapa var. perviridis) and Potherb Mustard (Brassica rapa var. nipposinica) were put in a teflon capsule with liquid high pressure medium, fluorinate, and inserted into a pyrophillite cube. By using a cubic anvil press a hydrostatic pressure of 5.5 GP a was applied to these seeds for 15 minutes. After being brought back to ambient pressure, they were seeded on humid soil in a plant pot. Many of these vegetable seeds began to germinate within 6 days after seeded.
Unreacted equation of states of typical energetic materials under static compression: A review
NASA Astrophysics Data System (ADS)
Zhaoyang, Zheng; Jijun, Zhao
2016-07-01
The unreacted equation of state (EOS) of energetic materials is an important thermodynamic relationship to characterize their high pressure behaviors and has practical importance. The previous experimental and theoretical works on the equation of state of several energetic materials including nitromethane, 1,3,5-trinitrohexahydro-1,3,5-triazine (RDX), 1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane (HMX), hexanitrostilbene (HNS), hexanitrohexaazaisowurtzitane (HNIW or CL-20), pentaerythritol tetranitrate (PETN), 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105), triamino-trinitrobenzene (TATB), 1,1-diamino-2,2-dinitroethene (DADNE or FOX-7), and trinitrotoluene (TNT) are reviewed in this paper. The EOS determined from hydrostatic and non-hydrostatic compressions are discussed and compared. The theoretical results based on ab initio calculations are summarized and compared with the experimental data. Project supported by the National Natural Science Foundation of China (Grant Nos. 11174045 and 11404050).
Neetoo, Hudaa; Lu, Yingjian; Wu, Changqing
2012-01-01
Green onions grown in soil and hydroponic medium contaminated with Escherichia coli O157:H7 and Salmonella were found to take up the pathogens in their roots, bulbs, stems, and leaves. Pressure treatment at 400 to 500 MPa for 2 min at 20 to 40°C eliminated both pathogens that were internalized within green onions during plant growth. PMID:22247156
{Linking permeability and mechanical damage for basalt from Mt Etna Volcano, Italy}
NASA Astrophysics Data System (ADS)
Faoro, I.; Vinciguerra, S.; Marone, C.; Elsworth, D.
2009-04-01
Volcanic edifices, such as Mt. Etna volcano (Italy), are affected from repeated episodes of pressurisation due to magma emplacement from deep reservoirs to shallow depths. This mechanism pressurizes the large aquifers within the edifice and increases the level of crack damage within the rocks of the edifice over extended periods of times. In order to improve our understanding of the complex coupling between circulating fluids and the development of crack damage, we performed flow-through tests using cylindrical cores of Etna Basalt (Etna, Italy) to evaluate permeabilty changes as a function of approach to failure under non-hydrostatic stresses at confining pressures from 5 to 60 MPa. Samples were loaded to failure by increasing increments of axial stress or by cyclic stresses of increasing amplitude. Both intact samples and pre-drilled samples (1.18mm) were tested. Under hydrostatic stresses, the permeability values of the intact sample decrease linearly with the increments of pressure and range between 5.2*10-17 m2and 1.5*10-17m2Under non-hydrostatic conditions, at low deviatoric stresses from (up to 18 MPa), the permeability values ranged between 5.5*10-17 m2and 4*10-17m2 and tended to completely recover the initial value each time the sample was unloaded, indicating an elastic regime. At higher deviatoric stresses (up to 60 MPa) the permeability values range between 2*10-17 m2 and 0.6*10-17m2. We hypothesize that from 5MPa to 40MPa axial stress, anelastic deformation mechanisms start to occur, with progressive pore collapse and opening of microfractures, resulting in a change of permeability. Under incremental uniaxial cyclic loading up to peak stresses of 160 MPa permeability decreases up to 2 orders of magnitude from initial values of 1*10-15 m2 to 2*10-14m2 Higher initial permeability values are related to the presence of an open fracture in the sample. We interpreted the reduction as a result of progressive closure of the voids space, as the axial load is incremented. Overall it is shown that permeability on Etna basalt rocks is strongly dependent on the loading conditions. Ongoing work is expected to elucidate the mechanisms relating increasing damage mechanical damage to changes of permeability.
49 CFR 178.47 - Specification 4DS welded stainless steel cylinders for aircraft use.
Code of Federal Regulations, 2013 CFR
2013-10-01
... be manufactured using equipment and processes adequate to ensure that each cylinder produced conforms... °F ±25° after process treatment and before hydrostatic test. (h) Openings in container. Openings must... a fitting, boss, or pad must be adequate to prevent leakage. Threads must comply with the following...
49 CFR 178.47 - Specification 4DS welded stainless steel cylinders for aircraft use.
Code of Federal Regulations, 2012 CFR
2012-10-01
... be manufactured using equipment and processes adequate to ensure that each cylinder produced conforms... °F ±25° after process treatment and before hydrostatic test. (h) Openings in container. Openings must... a fitting, boss, or pad must be adequate to prevent leakage. Threads must comply with the following...
49 CFR 178.47 - Specification 4DS welded stainless steel cylinders for aircraft use.
Code of Federal Regulations, 2014 CFR
2014-10-01
... be manufactured using equipment and processes adequate to ensure that each cylinder produced conforms... °F ±25° after process treatment and before hydrostatic test. (h) Openings in container. Openings must... a fitting, boss, or pad must be adequate to prevent leakage. Threads must comply with the following...
Anomalous tensoelectric effects in gallium arsenide tunnel diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alekseeva, Z.M.; Vyatkin, A.P.; Krivorotov, N.P.
Anomalous tensoelectric phenomena induced in a tunnel p-n junction by a concentrated load and by hydrostatic compression were studied. The anomalous tensoelectric effects are caused by the action of concentrators of mechanical stresses in the vicinity of the p-n junction, giving rise to local microplastic strain. Under the conditions of hydrostatic compression prolate inclusions approx.100-200 A long play the role of concentrators. Analysis of irreversible changes in the current-voltage characteristics of tunnel p-n junctions made it possible to separate the energy levels of the defects produced with plastic strain of gallium arsenide.
49 CFR 178.605 - Hydrostatic pressure test.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Hydrostatic pressure test. 178.605 Section 178.605... Testing of Non-bulk Packagings and Packages § 178.605 Hydrostatic pressure test. (a) General. The hydrostatic pressure test must be conducted for the qualification of all metal, plastic, and composite...
49 CFR 178.605 - Hydrostatic pressure test.
Code of Federal Regulations, 2012 CFR
2012-10-01
... hydraulic pressure (gauge) applied, taken at the top of the receptacle, and determined by any one of the... 49 Transportation 3 2012-10-01 2012-10-01 false Hydrostatic pressure test. 178.605 Section 178.605... Packagings and Packages § 178.605 Hydrostatic pressure test. (a) General. The hydrostatic pressure test must...
49 CFR 178.605 - Hydrostatic pressure test.
Code of Federal Regulations, 2014 CFR
2014-10-01
... hydraulic pressure (gauge) applied, taken at the top of the receptacle, and determined by any one of the... 49 Transportation 3 2014-10-01 2014-10-01 false Hydrostatic pressure test. 178.605 Section 178.605... Packagings and Packages § 178.605 Hydrostatic pressure test. (a) General. The hydrostatic pressure test must...
Kimura, Tsuyoshi; Nibe, Yoichi; Funamoto, Seiichi; Okada, Masahiro; Furuzono, Tsutomu; Ono, Tsutomu; Yoshizawa, Hidekazu; Fujisato, Toshiya; Nam, Kwangwoo; Kishida, Akio
2011-01-01
Our previous research showed that poly(vinyl alcohol) (PVA) nanoparticles incorporating DNA with hydrogen bonds obtained by high hydrostatic pressurization are able to deliver DNA without any significant cytotoxicity. To enhance transfection efficiency of PVA/DNA nanoparticles, we describe a novel method to prepare PVA/DNA nanoparticles encapsulating nanoscaled hydroxyapatites (HAps) prepared by high hydrostatic pressurization (980 MPa), which is designed to facilitate endosomal escape induced by dissolving HAps in an endosome. Scanning electron microscopic observation and dynamic light scattering measurement revealed that HAps were significantly encapsulated in PVA/HAp/DNA nanoparticles. The cytotoxicity, cellular uptake, and transgene expression of PVA/HAp/DNA nanoparticles were investigated using COS-7 cells. It was found that, in contrast to PVA/DNA nanoparticles, their internalization and transgene expression increased without cytotoxicity occurring. Furthermore, a similar level of transgene expression between plasmid DNA and PVA/HAp/DNA nanoparticles was achieved using in vivo hydrodynamic injection. Our results show a novel method of preparing PVA/DNA nanoparticles encapsulating HAp nano-crystals by using high hydrostatic pressure technology and the potential use of HAps as an enhancer of the transfection efficiency of PVA/DNA nanoparticles without significant cytotoxicity.
Forecast Vienna Mapping Functions 1 for real-time analysis of space geodetic observations
NASA Astrophysics Data System (ADS)
Boehm, J.; Kouba, J.; Schuh, H.
2009-05-01
The Vienna Mapping Functions 1 (VMF1) as provided by the Institute of Geodesy and Geophysics (IGG) at the Vienna University of Technology are the most accurate mapping functions for the troposphere delays that are available globally and for the entire history of space geodetic observations. So far, the VMF1 coefficients have been released with a time delay of almost two days; however, many scientific applications require their availability in near real-time, e.g. the Ultra Rapid solutions of the International GNSS Service (IGS) or the analysis of the Intensive sessions of the International VLBI Service (IVS). Here we present coefficients of the VMF1 as well as the hydrostatic and wet zenith delays that have been determined from forecasting data of the European Centre for Medium-Range Weather Forecasts (ECMWF) and provided on global grids. The comparison with parameters derived from ECMWF analysis data shows that the agreement is at the 1 mm level in terms of station height, and that the differences are larger for the wet mapping functions than for the hydrostatic mapping functions and the hydrostatic zenith delays. These new products (VMF1-FC and hydrostatic zenith delays from forecast data) can be used in real-time analysis of geodetic data without significant loss of accuracy.
Responses of growth cones to changes in osmolality of the surrounding medium.
Bray, D; Money, N P; Harold, F M; Bamburg, J R
1991-04-01
The possible involvement of osmotically generated hydrostatic pressure in driving actin-rich extensions of the cell surface was examined using cultures of chick neurons. Estimation of the excess internal osmotic pressure of chick neural tissue by vapor pressure deficit osmometry, and of the excess internal hydrostatic pressure in cultured chick neurons using a calibrated pressure pipette, gave upper limits of 10 mosM and 0.1 atmosphere (1 atmosphere = 101325 Pa), respectively. Increases in the osmolality of the medium surrounding cultured neurons by addition of sucrose, mannitol or polyethylene glycol by amounts that should eliminate any internal pressure not only failed to arrest the growth of filopodia but caused them to increase in length up to twofold in 3-5 min. Lamellipodia remained unchanged following hyperosmotic shifts of 20 mosM, but higher levels caused a small decrease in area. Reduction of osmolality by the addition of water to the culture fluid down to 50% of its normal value failed to show any detectable change in either filopodial length or lamellipodia area. These observations argue against an osmotic mechanism for growth cone extension and show that the growth of filopodia, in particular, is unlikely to be driven by osmotically generated hydrostatic pressure. In contrast to the short-term effects on growth cone morphology, the slower elongation of the neuritic cylinder showed a consistent osmotic response. Growth rates were reduced following addition of osmolytes and increased in rate (as much as sixfold) following addition of water to the culture medium.(ABSTRACT TRUNCATED AT 250 WORDS)
Ishimori, Takateru; Takahashi, Katsutoshi; Goto, Masato; Nakagawa, Suguru; Kasai, Yoshiaki; Konagaya, Yukifumi; Batori, Hiroshi; Kobayashi, Atsushi
2012-01-01
The synergistic effects of high hydrostatic pressure (HHP), mild heating, and amino acids on the germination of Clostridium sporogenes spores were examined by determining the number of surviving spores that returned to vegetative growth after pasteurization following these treatments. Pressurization at 200 MPa at a temperature higher than 40°C and treatment with some of the 19 l-amino acids at 10 mM or higher synergistically facilitated germination. When one of these factors was omitted, the level of germination was insignificant. Pressures of 100 and 400 MPa were less effective than 200 MPa. The spores were effectively inactivated by between 1.8 and 4.8 logs by pasteurization at 80°C after pressurization at 200 MPa at 45°C for 120 min with one of the amino acids with moderate hydrophobicity, such as Leu, Phe, Cys Met, Ala, Gly, or Ser. However, other amino acids showed poor inactivation effects of less than 0.9 logs. Spores in solutions containing 80 mM of either Leu, Phe, Cys, Met, Ala, Gly, or Ser were successfully inactivated by pasteurization by more than 5.4 logs after pressurization at 200 MPa at 70°C for 15 to 120 min. Ala and Met reduced the spore viability by 2.8 and 1.8 logs, respectively, by pasteurization at a concentration of 1 mM under 200 MPa at 70°C. These results indicate that germination of the spores is facilitated by a combination of high hydrostatic pressure, mild heating, and amino acids. PMID:22983975
Israel, R G; Evans, P; Pories, W J; O'Brien, K F; Donnelly, J E
1990-01-01
This study compared two methods of hydrostatic weighing without head submersion to conventional hydrostatic weighting in morbidly obese females. We concluded that hydrostatic weighing without head submersion is a valid alternative to conventional hydrostatic weighing especially when subjects are apprehensive in the water. The use of anthropometric head measures (HWNS-A) did not significantly improve the accuracy of the body composition assessment; therefore, elimination of these time consuming measurements in favor of the direct correction of head above Db is recommended.
Abe, Fumiyoshi
1998-01-01
The extent of intracellular accumulation of the fluorescent dye carboxyfluorescein or carboxydichlorofluorescein (CDCF) in Saccharomyces cerevisiae was found to be increased 5- to 10-fold under a nonlethal hydrostatic pressure of 30 to 50 MPa. This observation was confirmed by analysis of individual labeled cells by flow cytometry. The pressure-induced enhancement of staining with CDCF required d-glucose and was markedly inhibited by 2-deoxy-d-glucose, suggesting that glucose metabolism has a role in the process. PMID:9501452
Vitzthum, Constanze; Clauss, Wolfgang G; Fronius, Martin
2015-11-01
The cystic fibrosis transmembrane conductance regulator (CFTR) is a Cl(-) channel that is essential for electrolyte and fluid homeostasis. Preliminary evidence indicates that CFTR is a mechanosensitive channel. In lung epithelia, CFTR is exposed to different mechanical forces such as shear stress (Ss) and membrane distention. The present study questioned whether Ss and/or stretch influence CFTR activity (wild type, ∆F508, G551D). Human CFTR (hCFTR) was heterologously expressed in Xenopus oocytes and the response to the mechanical stimulus and forskolin/IBMX (FI) was measured by two-electrode voltage-clamp experiments. Ss had no influence on hCFTR activity. Injection of an intracellular analogous solution to increase cell volume alone did not affect hCFTR activity. However, hCFTR activity was augmented by injection after pre-stimulation with FI. The response to injection was similar in channels carrying the common mutations ∆F508 and G551D compared to wild type hCFTR. Stretch-induced CFTR activation was further assessed in Ussing chamber measurements using Xenopus lung preparations. Under control conditions increased hydrostatic pressure (HP) decreased the measured ion current including activation of a Cl(-) secretion that was unmasked by the CFTR inhibitor GlyH-101. These data demonstrate activation of CFTR in vitro and in a native pulmonary epithelium in response to mechanical stress. Mechanosensitive regulation of CFTR is highly relevant for pulmonary physiology that relies on ion transport processes facilitated by pulmonary epithelial cells. Copyright © 2015 Elsevier B.V. All rights reserved.
Bock, I; Raveh-Amit, H; Losonczi, E; Carstea, A C; Feher, A; Mashayekhi, K; Matyas, S; Dinnyes, A; Pribenszky, C
2016-04-01
The efficiency of various assisted reproductive techniques can be improved by preconditioning the gametes and embryos with sublethal hydrostatic pressure treatment. However, the underlying molecular mechanism responsible for this protective effect remains unknown and requires further investigation. Here, we studied the effect of optimised hydrostatic pressure treatment on the global gene expression of mouse oocytes after embryonic genome activation. Based on a gene expression microarray analysis, a significant effect of treatment was observed in 4-cell embryos derived from treated oocytes, revealing a transcriptional footprint of hydrostatic pressure-affected genes. Functional analysis identified numerous genes involved in protein synthesis that were downregulated in 4-cell embryos in response to hydrostatic pressure treatment, suggesting that regulation of translation has a major role in optimised hydrostatic pressure-induced stress tolerance. We present a comprehensive microarray analysis and further delineate a potential mechanism responsible for the protective effect of hydrostatic pressure treatment.
ANSYS Modeling of Hydrostatic Stress Effects
NASA Technical Reports Server (NTRS)
Allen, Phillip A.
1999-01-01
Classical metal plasticity theory assumes that hydrostatic pressure has no effect on the yield and postyield behavior of metals. Plasticity textbooks, from the earliest to the most modem, infer that there is no hydrostatic effect on the yielding of metals, and even modem finite element programs direct the user to assume the same. The object of this study is to use the von Mises and Drucker-Prager failure theory constitutive models in the finite element program ANSYS to see how well they model conditions of varying hydrostatic pressure. Data is presented for notched round bar (NRB) and "L" shaped tensile specimens. Similar results from finite element models in ABAQUS are shown for comparison. It is shown that when dealing with geometries having a high hydrostatic stress influence, constitutive models that have a functional dependence on hydrostatic stress are more accurate in predicting material behavior than those that are independent of hydrostatic stress.
Organic Chemistry of Low-Mass Star-Forming Cores. I. 7 mm Spectroscopy of Chamaeleon MMSl
NASA Technical Reports Server (NTRS)
Cordiner, Martn A.; Charnley, Steven B.; Wirtstroem, Eva S.; Smith, Robert G.
2012-01-01
Observations are presented of emission lines from organic molecules at frequencies 32-50 GHz in the vicinity of Chamaeleon MMS1. This chemically rich dense cloud core harbors an extremely young, very low luminosity protostellar object and is a candidate first hydrostatic core. Column densities are derived and emission maps are presented for species including polyynes, cyanopolyynes, sulphuretted carbon chains, and methanol. The polyyne emission peak lies about 5000 AU from the protostar, whereas methanol peaks about 15,000 AU away. Averaged over the telescope beam, the molecular hydrogen number density is calculated to be 10(exp 6) / cubic cm and the gas kinetic temperature is in the range 5-7 K. The abundances of long carbon chains are very large and are indicative of a nonequilibrium carbon chemistry; C6H and HC7N column densities are 5.9(sup +2.9) (sub -1.3) x 10(exp 11) /cubic cm and 3.3 (sup +8.0)(sub -1.5) x 10(exp 12)/sq cm, respectively, which are similar to the values found in the most carbon-chain-rich protostars and prestellar cores known, and are unusually large for star-forming gas. Column density upper limits were obtained for the carbon chain anions C4H(-) and C6H(-), with anion-to-neutral ratios [C4H(-)]/[C4H] < 0.02% and [C6H(-l)]/[C6H] < 10%, consistent with previous observations in interstellar clouds and low-mass protostars. Deuterated HC,3 and c-C3H2 were detected. The [DC3N]/[HC,N] ratio of approximately 4% is consistent with the value typically found in cold interstellar gas.
46 CFR 61.30-10 - Hydrostatic test.
Code of Federal Regulations, 2010 CFR
2010-10-01
... all accessible parts under pressure. The thermal fluid may be used as the hydrostatic test medium. ... 46 Shipping 2 2010-10-01 2010-10-01 false Hydrostatic test. 61.30-10 Section 61.30-10 Shipping... INSPECTIONS Tests and Inspections of Fired Thermal Fluid Heaters § 61.30-10 Hydrostatic test. All new...
46 CFR 64.83 - Hydrostatic test.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., the heating coil passing a hydrostatic test at a pressure of 200 psig or more or 50 percent or more above the rated pressure of the coil, whichever is greater. (b) If the tank passes the hydrostatic test... 46 Shipping 2 2010-10-01 2010-10-01 false Hydrostatic test. 64.83 Section 64.83 Shipping COAST...
46 CFR 54.10-10 - Standard hydrostatic test (modifies UG-99).
Code of Federal Regulations, 2014 CFR
2014-10-01
... PRESSURE VESSELS Inspection, Reports, and Stamping § 54.10-10 Standard hydrostatic test (modifies UG-99). (a) All pressure vessels shall satisfactorily pass the hydrostatic test prescribed by this section, except those pressure vessels noted under § 54.10-15(a). (b) The hydrostatic-test pressure must be at...
49 CFR 178.605 - Hydrostatic pressure test.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Hydrostatic pressure test. 178.605 Section 178.605... Packagings and Packages § 178.605 Hydrostatic pressure test. (a) General. The hydrostatic pressure test must... intended to contain liquids and be performed periodically as specified in § 178.601(e). This test is not...
49 CFR 178.605 - Hydrostatic pressure test.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Hydrostatic pressure test. 178.605 Section 178.605... Packagings and Packages § 178.605 Hydrostatic pressure test. (a) General. The hydrostatic pressure test must... intended to contain liquids and be performed periodically as specified in § 178.601(e). This test is not...
49 CFR 178.814 - Hydrostatic pressure test.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., 21B, and 21N, for Packing Group I solids: 250 kPa (36 psig) gauge pressure. (4) For rigid plastic IBC... 49 Transportation 3 2012-10-01 2012-10-01 false Hydrostatic pressure test. 178.814 Section 178.814... Hydrostatic pressure test. (a) General. The hydrostatic pressure test must be conducted for the qualification...
49 CFR 178.814 - Hydrostatic pressure test.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., 21B, and 21N, for Packing Group I solids: 250 kPa (36 psig) gauge pressure. (4) For rigid plastic IBC... 49 Transportation 3 2011-10-01 2011-10-01 false Hydrostatic pressure test. 178.814 Section 178.814... Hydrostatic pressure test. (a) General. The hydrostatic pressure test must be conducted for the qualification...
49 CFR 178.814 - Hydrostatic pressure test.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., 21B, and 21N, for Packing Group I solids: 250 kPa (36 psig) gauge pressure. (4) For rigid plastic IBC... 49 Transportation 3 2014-10-01 2014-10-01 false Hydrostatic pressure test. 178.814 Section 178.814... Hydrostatic pressure test. (a) General. The hydrostatic pressure test must be conducted for the qualification...
49 CFR 178.814 - Hydrostatic pressure test.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., 21B, and 21N, for Packing Group I solids: 250 kPa (36 psig) gauge pressure. (4) For rigid plastic IBC... 49 Transportation 3 2013-10-01 2013-10-01 false Hydrostatic pressure test. 178.814 Section 178.814... Hydrostatic pressure test. (a) General. The hydrostatic pressure test must be conducted for the qualification...
Inamoto, Ryuhei; Miyashita, Takenori; Matsubara, Ai; Hoshikawa, Hiroshi; Mori, Nozomu
2017-06-01
The purpose of the study was to investigate the difference in the responses of endolymphatic hydrostatic pressure to isoproterenol, β-adrenergic receptor agonist, between pars superior and pars inferior. The hydrostatic pressure of endolymph and perilymph and endolymphatic potential in the ampulla and the cochlea during the intravenous administration of isoproterenol were recorded using a servo-null system in guinea pigs. The hydrostatic pressure of endolymph and perilymph in the ampulla and cochlea was similar in magnitude. Isoproterenol significantly increased hydrostatic pressure of ampullar and cochlear endolymph and perilymph with no change in the ampullar endolymphatic potential and endocochlear potential, respectively. The isoproterenol-induced maximum change of endolymphatic hydrostatic pressure in ampulla was significantly (p<0.01) smaller than that in the cochlea. In ears with an obstructed endolymphatic sac, the action of isoproterenol on endolymphatic hydrostatic pressure in the ampulla disappeared like that in the cochlea. Isoproterenol elevates endolymphatic hydrostatic pressure in different manner between the vestibule and the cochlea. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
WATER LEVEL DRAWDOWN TRIGGERS SYSTEM-WIDE BUBBLE RELEASE FROM RESERVOIR SEDIMENTS
Reservoirs are an important anthropogenic source of methane and ebullition is a key pathway by which methane stored in reservoir sediments can be released to the atmosphere. Changes in hydrostatic pressure during periods of falling water levels can trigger bubbling events, sugge...
Suzuki, Asaha; Mochizuki, Takahiro; Uemura, Satoshi; Hiraki, Toshiki
2013-01-01
Cells of Saccharomyces cerevisiae express two tryptophan permeases, Tat1 and Tat2, which have different characteristics in terms of their affinity for tryptophan and intracellular localization. Although the high-affinity permease Tat2 has been well documented in terms of its ubiquitin-dependent degradation, the low-affinity permease Tat1 has not yet been characterized fully. Here we show that a high hydrostatic pressure of 25 MPa triggers a degradation of Tat1 which depends on Rsp5 ubiquitin ligase and the EH domain-containing protein End3. Tat1 was resistant to a 3-h cycloheximide treatment, suggesting that it is highly stable under normal growth conditions. The ubiquitination of Tat1 most likely occurs at N-terminal lysines 29 and 31. Simultaneous substitution of arginine for the two lysines prevented Tat1 degradation, but substitution of either of them alone did not, indicating that the roles of lysines 29 and 31 are redundant. When cells were exposed to high pressure, Tat1-GFP was completely lost from the plasma membrane, while substantial amounts of Tat1K29R-K31R-GFP remained. The HPG1-1 (Rsp5P514T) and rsp5-ww3 mutations stabilized Tat1 under high pressure, but any one of the rsp5-ww1, rsp5-ww2, and bul1Δ bul2Δ mutations or single deletions of genes encoding arrestin-related trafficking adaptors did not. However, simultaneous loss of 9-arrestins and Bul1/Bul2 prevented Tat1 degradation at 25 MPa. The results suggest that multiple PPxY motif proteins share some essential roles in regulating Tat1 ubiquitination in response to high hydrostatic pressure. PMID:23666621
Hu, Xiao-Pei; Zhang, Bao; Jin, Zheng-Yu; Xu, Xue-Ming; Chen, Han-Qing
2017-10-01
In this study, the effects of high hydrostatic pressure and retrogradation (HHPR) treatments on in vitro digestibility, structural and physicochemical properties of waxy wheat starch were investigated. The waxy wheat starch slurries (10%, w/v) were treated with high hydrostatic pressures of 300, 400, 500, 600MPa at 20°C for 30min, respectively, and then retrograded at 4°C for 4d. The results indicated that the content of slowly digestible starch (SDS) in HHPR-treated starch samples increased with increasing pressure level, and it reached the maximum (31.12%) at 600MPa. HHPR treatment decreased the gelatinization temperatures, the gelatinization enthalpy, the relative crystallinity and the peak viscosity of the starch samples. Moreover, HHPR treatment destroyed the surface and interior structures of starch granules. These results suggest that the in vitro digestibility, physicochemical, and structural properties of waxy wheat starch are effectively modified by HHPR. Copyright © 2017 Elsevier Ltd. All rights reserved.
Numerical simulation of turbulent convective flow over wavy terrain
NASA Astrophysics Data System (ADS)
Dörnbrack, A.; Schumann, U.
1993-09-01
By means of a large-eddy simulation, the convective boundary layer is investigated for flows over wavy terrain. The lower surface varies sinusoidally in the downstream direction while remaining constant in the other. Several cases are considered with amplitude δ up to 0.15 H and wavelength λ of H to 8 H, where H is the mean fluid-layer height. At the lower surface, the vertical heat flux is prescribed to be constant and the momentum flux is determined locally from the Monin-Obukhov relationship with a roughness length z o=10-4 H. The mean wind is varied between zero and 5 w *, where w * is the convective velocity scale. After rather long times, the flow structure shows horizontal scales up to 4 H, with a pattern similar to that over flat surfaces at corresponding shear friction. Weak mean wind destroys regular spatial structures induced by the surface undulation at zero mean wind. The surface heating suppresses mean-flow recirculation-regions even for steep surface waves. Short surface waves cause strong drag due to hydrostatic and dynamic pressure forces in addition to frictional drag. The pressure drag increases slowly with the mean velocity, and strongly with δ/ H. The turbulence variances increase mainly in the lower half of the mixed layer for U/w *>2.
Versatile Experimental Kevlar Array Hydrophones: USRD Type H78
1979-04-05
the design of a small deop-submergence noise-measuring hydropl,one for the infra - sonic and low-audio frequency range, three hydrophone...llenriquez and L.-E. Ivey, -Standard Ilydrophone for the Infrasonic and Audio- F.-equency Range at H~ydrostatic Pressure to 10,000 psig," J. A cous. qoc. Am...Piezoelectric Ceramic Ilydrophone for Infrasonic and Audio Frequencies IJSRD Type 1148," NRL Report 7260, 15 Mar. 1971. 9. S.W. Meeks and R.W. Timme, "Effects
49 CFR Appendix D to Part 230 - Civil Penalty Schedule
Code of Federal Regulations, 2010 CFR
2010-10-01
... the boiler 1,000 2,000 230.36Hydrostatic testing of boilers: (a) Failure to perform hydrostatic test of boiler as required 1,500 3,000 (b) Failure to properly perform hydrostatic test 1,500 3,000 (c) Failure to properly inspect boiler after conducting hydrostatic test above MAWP 1,500 3,000 230.37 Failure...
Switching skeletons: hydrostatic support in molting crabs
NASA Technical Reports Server (NTRS)
Taylor, Jennifer R A.; Kier, William M.; Walker, I. D. (Principal Investigator)
2003-01-01
Skeletal support systems are essential for support, movement, muscular antagonism, and locomotion. Crustaceans shed their rigid exoskeleton at each molt yet are still capable of forceful movement. We hypothesize that the soft water-inflated body of newly molted crabs may rely on a hydrostatic skeleton, similar to that of worms and polyps. We measured internal hydrostatic pressure and the force exerted during claw adduction and observed a strong correlation between force and hydrostatic pressure, consistent with hydrostatic skeletal support. This alternation between the two basic skeletal types may be widespread among arthropods.
Modelling non-hydrostatic processes in sill regions
NASA Astrophysics Data System (ADS)
Souza, A.; Xing, J.; Davies, A.; Berntsen, J.
2007-12-01
We use a non-hydrostatic model to compute tidally induced flow and mixing in the region of bottom topography representing the sill at the entrance to Loch Etive (Scotland). This site is chosen since detailed measurements were recently made there. With non-hydrostatic dynamics in the model our results showed that the model could reproduce the observed flow characteristics, e.g., hydraulic transition, flow separation and internal waves. However, when calculations were performed using the model in the hydrostatic form, significant artificial convective mixing occurred. This influenced the computed temperature and flow field. We will discuss in detail the effects of non-hydrostatic dynamics on flow over the sill, especially investigate non-linear and non-hydrostatic contributions to modelled internal waves and internal wave energy fluxes.
Omer, M K; Prieto, B; Rendueles, E; Alvarez-Ordoñez, A; Lunde, K; Alvseike, O; Prieto, M
2015-10-01
The aim of this trial was to describe physicochemical, microbiological and organoleptic characteristics of dry fermented sausages produced from high hydrostatic pressure (HHP) pre-processed trimmings. During ripening of the meat products pH, weight, water activity (aw), and several microbiological parameters were measured at zero, eight, fifteen days and after 6weeks. Sensory characteristics were estimated at day 15 and after six weeks by a test panel by using several sensory tests. Enterobacteriaceae were not detected in sausages from HHP-processed trimmings. Fermentation was little affected, but weight and aw of the HHP-processed sausages decreased faster during ripening. HHP-treated sausages were consistently less favoured than non HHP-treated sausages, but the strategy may be an alternative approach if the process is optimized. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Levandowski, W. B.; Walsh, F. R. R.; Yeck, W.
2016-12-01
Quantifying the increase in pore-fluid pressure necessary to cause slip on specific fault planes can provide actionable information for stakeholders to potentially mitigate hazard. Although the M5.8 Pawnee earthquake occurred on a previously unmapped fault, we can retrospectively estimate the pore-pressure perturbation responsible for this event. We first estimate the normalized local stress tensor by inverting focal mechanisms surrounding the Pawnee Fault. Faults are generally well oriented for slip, with instabilities averaging 96% of maximum. Next, with an estimate of the weight of local overburden we solve for the pore pressure needed at the hypocenters. Specific to the Pawnee fault, we find that hypocentral pressure 43-104% of hydrostatic (accounting for uncertainties in all relevant parameters) would have been sufficient to cause slip. The dominant source of uncertainty is the pressure on the fault prior to fluid injection. Importantly, we find that lower pre-injection pressure requires lower resultant pressure to cause slip, decreasing from a regional average of 30% above hydrostatic pressure if the hypocenters begin at hydrostatic pressure to 6% above hydrostatic pressure with no pre-injection fluid. This finding suggests that underpressured regions such as northern Oklahoma are predisposed to injection-induced earthquakes. Although retrospective and forensic, similar analyses of other potentially induced events and comparisons to natural earthquakes will provide insight into the relative importance of fault orientation, the magnitude of the local stress field, and fluid-pressure migration in intraplate seismicity.
Superconductivity at 52.5 K in the lanthanum-barium-copper-oxide system
NASA Technical Reports Server (NTRS)
Chu, C. W.; Hor, P. H.; Meng, R. L.; Gao, L.; Huang, Z. J.
1987-01-01
The electrical properties of the (La/0/9/Ba/0.1/)CuO/4-y/ system are examined under ambient and hydrostatic pressures. The resistance, ac magnetic susceptibility, and superconductivity onset, midpoint, and intercept temperatures are measured. It is observed that at ambient pressure the resistance decreases with temperature decreases, and the ac susceptibility shows diamagnetic shifts starting at about 32 K. Under hydrostatic pressure a superconducting transition with an onset temperature of 52.5 K is observed, and the resistance increases at lower temperatures. The data reveal that the electrical properties of the La-Ba-Cu-O system are dependent on samples and preparation conditions. Various causes for the high temperature superconductivity of the system are proposed.
NASA Astrophysics Data System (ADS)
Fomin, Vladimir; Diansky, Nikolay; Gusev, Anatoly; Kabatchenko, Ilia; Panasenkova, Irina
2017-04-01
The diagnosis and forecast system for simulating hydrometeorological characteristics of the Russian Western Arctic seas is presented. It performs atmospheric forcing computation with the regional non-hydrostatic atmosphere model Weather Research and Forecasting model (WRF) with spatial resolution 15 km, as well as computation of circulation, sea level, temperature, salinity and sea ice with the marine circulation model INMOM (Institute of Numerical Mathematics Ocean Model) with spatial resolution 2.7 km, and the computation of wind wave parameters using the Russian wind-wave model (RWWM) with spatial resolution 5 km. Verification of the meteorological characteristics is done for air temperature, air pressure, wind velocity, water temperature, currents, sea level anomaly, wave characteristics such as wave height and wave period. The results of the hydrometeorological characteristic verification are presented for both retrospective and forecast computations. The retrospective simulation of the hydrometeorological characteristics for the White, Barents, Kara and Pechora Seas was performed with the diagnosis and forecast system for the period 1986-2015. The important features of the Kara Sea circulation are presented. Water exchange between Pechora and Kara Seas is described. The importance is shown of using non-hydrostatic atmospheric circulation model for the atmospheric forcing computation in coastal areas. According to the computation results, extreme values of hydrometeorological characteristics were obtained for the Russian Western Arctic seas.
Liao, Zhipeng; Chen, Junning; Li, Wei; Darendeliler, M Ali; Swain, Michael; Li, Qing
2016-06-01
This paper aimed to precisely locate centres of resistance (CRe) of maxillary teeth and investigate optimal orthodontic force by identifying the effective zones of orthodontic tooth movement (OTM) from hydrostatic stress thresholds in the periodontal ligament (PDL). We applied distally-directed tipping and bodily forces ranging from 0.075 N to 3 N (7.5 g to 300 g) onto human maxillary teeth. The hydrostatic stress was quantified from nonlinear finite element analysis (FEA) and compared with normal capillary and systolic blood pressure for driving the tissue remodelling. Two biomechanical stimuli featuring localised and volume-averaged hydrostatic stresses were introduced to describe OTM. Locations of CRe were determined through iterative FEA simulation. Accurate locations of CRes of teeth and ranges of optimal orthodontic forces were obtained. By comparing with clinical results in literature, the volume average of hydrostatic stress in PDL was proved to describe the process of OTM more indicatively. The optimal orthodontic forces obtained from the in-silico modelling study echoed with the clinical results in vivo. A universal moment to force (M/F) ratio is not recommended due to the variation in patients and loading points. Accurate computational determination of CRe location can be applied in practice to facilitate orthodontic treatment. Global measurement of hydrostatic pressure in the PDL better characterised OTM, implying that OTM occurs only when the majority of PDL volume is critically stressed. The FEA results provide new insights into relevant orthodontic biomechanics and help establish optimal orthodontic force for a specific patient. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effects of Hydrostatic Pressure on Carcinogenic Properties of Epithelia.
Tokuda, Shinsaku; Kim, Young Hak; Matsumoto, Hisako; Muro, Shigeo; Hirai, Toyohiro; Mishima, Michiaki; Furuse, Mikio
2015-01-01
The relationship between chronic inflammation and cancer is well known. The inflammation increases the permeability of blood vessels and consequently elevates pressure in the interstitial tissues. However, there have been only a few reports on the effects of hydrostatic pressure on cultured cells, and the relationship between elevated hydrostatic pressure and cell properties related to malignant tumors is less well understood. Therefore, we investigated the effects of hydrostatic pressure on the cultured epithelial cells seeded on permeable filters. Surprisingly, hydrostatic pressure from basal to apical side induced epithelial stratification in Madin-Darby canine kidney (MDCK) I and Caco-2 cells, and cavities with microvilli and tight junctions around their surfaces were formed within the multi-layered epithelia. The hydrostatic pressure gradient also promoted cell proliferation, suppressed cell apoptosis, and increased transepithelial ion permeability. The inhibition of protein kinase A (PKA) promoted epithelial stratification by the hydrostatic pressure whereas the activation of PKA led to suppressed epithelial stratification. These results indicate the role of the hydrostatic pressure gradient in the regulation of various epithelial cell functions. The findings in this study may provide clues for the development of a novel strategy for the treatment of the carcinoma.
Effects of Hydrostatic Pressure on Carcinogenic Properties of Epithelia
Tokuda, Shinsaku; Kim, Young Hak; Matsumoto, Hisako; Muro, Shigeo; Hirai, Toyohiro; Mishima, Michiaki; Furuse, Mikio
2015-01-01
The relationship between chronic inflammation and cancer is well known. The inflammation increases the permeability of blood vessels and consequently elevates pressure in the interstitial tissues. However, there have been only a few reports on the effects of hydrostatic pressure on cultured cells, and the relationship between elevated hydrostatic pressure and cell properties related to malignant tumors is less well understood. Therefore, we investigated the effects of hydrostatic pressure on the cultured epithelial cells seeded on permeable filters. Surprisingly, hydrostatic pressure from basal to apical side induced epithelial stratification in Madin-Darby canine kidney (MDCK) I and Caco-2 cells, and cavities with microvilli and tight junctions around their surfaces were formed within the multi-layered epithelia. The hydrostatic pressure gradient also promoted cell proliferation, suppressed cell apoptosis, and increased transepithelial ion permeability. The inhibition of protein kinase A (PKA) promoted epithelial stratification by the hydrostatic pressure whereas the activation of PKA led to suppressed epithelial stratification. These results indicate the role of the hydrostatic pressure gradient in the regulation of various epithelial cell functions. The findings in this study may provide clues for the development of a novel strategy for the treatment of the carcinoma. PMID:26716691
WEIGHING GALAXY CLUSTERS WITH GAS. I. ON THE METHODS OF COMPUTING HYDROSTATIC MASS BIAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lau, Erwin T.; Nagai, Daisuke; Nelson, Kaylea, E-mail: erwin.lau@yale.edu
2013-11-10
Mass estimates of galaxy clusters from X-ray and Sunyeav-Zel'dovich observations assume the intracluster gas is in hydrostatic equilibrium with their gravitational potential. However, since galaxy clusters are dynamically active objects whose dynamical states can deviate significantly from the equilibrium configuration, the departure from the hydrostatic equilibrium assumption is one of the largest sources of systematic uncertainties in cluster cosmology. In the literature there have been two methods for computing the hydrostatic mass bias based on the Euler and the modified Jeans equations, respectively, and there has been some confusion about the validity of these two methods. The word 'Jeans' wasmore » a misnomer, which incorrectly implies that the gas is collisionless. To avoid further confusion, we instead refer these methods as 'summation' and 'averaging' methods respectively. In this work, we show that these two methods for computing the hydrostatic mass bias are equivalent by demonstrating that the equation used in the second method can be derived from taking spatial averages of the Euler equation. Specifically, we identify the correspondences of individual terms in these two methods mathematically and show that these correspondences are valid to within a few percent level using hydrodynamical simulations of galaxy cluster formation. In addition, we compute the mass bias associated with the acceleration of gas and show that its contribution is small in the virialized regions in the interior of galaxy clusters, but becomes non-negligible in the outskirts of massive galaxy clusters. We discuss future prospects of understanding and characterizing biases in the mass estimate of galaxy clusters using both hydrodynamical simulations and observations and their implications for cluster cosmology.« less
Weighing Galaxy Clusters with Gas. I. On the Methods of Computing Hydrostatic Mass Bias
NASA Astrophysics Data System (ADS)
Lau, Erwin T.; Nagai, Daisuke; Nelson, Kaylea
2013-11-01
Mass estimates of galaxy clusters from X-ray and Sunyeav-Zel'dovich observations assume the intracluster gas is in hydrostatic equilibrium with their gravitational potential. However, since galaxy clusters are dynamically active objects whose dynamical states can deviate significantly from the equilibrium configuration, the departure from the hydrostatic equilibrium assumption is one of the largest sources of systematic uncertainties in cluster cosmology. In the literature there have been two methods for computing the hydrostatic mass bias based on the Euler and the modified Jeans equations, respectively, and there has been some confusion about the validity of these two methods. The word "Jeans" was a misnomer, which incorrectly implies that the gas is collisionless. To avoid further confusion, we instead refer these methods as "summation" and "averaging" methods respectively. In this work, we show that these two methods for computing the hydrostatic mass bias are equivalent by demonstrating that the equation used in the second method can be derived from taking spatial averages of the Euler equation. Specifically, we identify the correspondences of individual terms in these two methods mathematically and show that these correspondences are valid to within a few percent level using hydrodynamical simulations of galaxy cluster formation. In addition, we compute the mass bias associated with the acceleration of gas and show that its contribution is small in the virialized regions in the interior of galaxy clusters, but becomes non-negligible in the outskirts of massive galaxy clusters. We discuss future prospects of understanding and characterizing biases in the mass estimate of galaxy clusters using both hydrodynamical simulations and observations and their implications for cluster cosmology.
Induction of Shiga Toxin-Encoding Prophage by Abiotic Environmental Stress in Food.
Fang, Yuan; Mercer, Ryan G; McMullen, Lynn M; Gänzle, Michael G
2017-10-01
The prophage-encoded Shiga toxin is a major virulence factor in Stx-producing Escherichia coli (STEC). Toxin production and phage production are linked and occur after induction of the RecA-dependent SOS response. However, food-related stress and Stx-prophage induction have not been studied at the single-cell level. This study investigated the effects of abiotic environmental stress on stx expression by single-cell quantification of gene expression in STEC O104:H4 Δ stx2 :: gfp :: amp r In addition, the effect of stress on production of phage particles was determined. The lethality of stressors, including heat, HCl, lactic acid, hydrogen peroxide, and high hydrostatic pressure, was selected to reduce cell counts by 1 to 2 log CFU/ml. The integrity of the bacterial membrane after exposure to stress was measured by propidium iodide (PI). The fluorescent signals of green fluorescent protein (GFP) and PI were quantified by flow cytometry. The mechanism of prophage induction by stress was evaluated by relative gene expression of recA and cell morphology. Acid (pH < 3.5) and H 2 O 2 (2.5 mM) induced the expression of stx 2 in about 18% and 3% of the population, respectively. The mechanism of prophage induction by acid differs from that of induction by H 2 O 2 H 2 O 2 induction but not acid induction corresponded to production of infectious phage particles, upregulation of recA , and cell filamentation. Pressure (200 MPa) or heat did not induce the Stx2-encoding prophage (Stx2-prophage). Overall, the quantification method developed in this study allowed investigation of prophage induction and physiological properties at the single-cell level. H 2 O 2 and acids mediate different pathways to induce Stx2-prophage. IMPORTANCE Induction of the Stx-prophage in STEC results in production of phage particles and Stx and thus relates to virulence as well as the transduction of virulence genes. This study developed a method for a detection of the induction of Stx-prophages at the single-cell level; membrane permeability and an indication of SOS response to environmental stress were additionally assessed. H 2 O 2 and mitomycin C induced expression of the prophage and activated a SOS response. In contrast, HCl and lactic acid induced the Stx-prophage but not the SOS response. The lifestyle of STEC exposes the organism to intestinal and extraintestinal environments that impose oxidative and acid stress. A more thorough understanding of the influence of food processing-related stressors on Stx-prophage expression thus facilitates control of STEC in food systems by minimizing prophage induction during food production and storage. Copyright © 2017 American Society for Microbiology.
Induction of Shiga Toxin-Encoding Prophage by Abiotic Environmental Stress in Food
Fang, Yuan; Mercer, Ryan G.; McMullen, Lynn M.
2017-01-01
ABSTRACT The prophage-encoded Shiga toxin is a major virulence factor in Stx-producing Escherichia coli (STEC). Toxin production and phage production are linked and occur after induction of the RecA-dependent SOS response. However, food-related stress and Stx-prophage induction have not been studied at the single-cell level. This study investigated the effects of abiotic environmental stress on stx expression by single-cell quantification of gene expression in STEC O104:H4 Δstx2::gfp::ampr. In addition, the effect of stress on production of phage particles was determined. The lethality of stressors, including heat, HCl, lactic acid, hydrogen peroxide, and high hydrostatic pressure, was selected to reduce cell counts by 1 to 2 log CFU/ml. The integrity of the bacterial membrane after exposure to stress was measured by propidium iodide (PI). The fluorescent signals of green fluorescent protein (GFP) and PI were quantified by flow cytometry. The mechanism of prophage induction by stress was evaluated by relative gene expression of recA and cell morphology. Acid (pH < 3.5) and H2O2 (2.5 mM) induced the expression of stx2 in about 18% and 3% of the population, respectively. The mechanism of prophage induction by acid differs from that of induction by H2O2. H2O2 induction but not acid induction corresponded to production of infectious phage particles, upregulation of recA, and cell filamentation. Pressure (200 MPa) or heat did not induce the Stx2-encoding prophage (Stx2-prophage). Overall, the quantification method developed in this study allowed investigation of prophage induction and physiological properties at the single-cell level. H2O2 and acids mediate different pathways to induce Stx2-prophage. IMPORTANCE Induction of the Stx-prophage in STEC results in production of phage particles and Stx and thus relates to virulence as well as the transduction of virulence genes. This study developed a method for a detection of the induction of Stx-prophages at the single-cell level; membrane permeability and an indication of SOS response to environmental stress were additionally assessed. H2O2 and mitomycin C induced expression of the prophage and activated a SOS response. In contrast, HCl and lactic acid induced the Stx-prophage but not the SOS response. The lifestyle of STEC exposes the organism to intestinal and extraintestinal environments that impose oxidative and acid stress. A more thorough understanding of the influence of food processing-related stressors on Stx-prophage expression thus facilitates control of STEC in food systems by minimizing prophage induction during food production and storage. PMID:28778890
Yang, Zixuan; Kan, Bo; Li, Jinxu; Qiao, Lijie; Volinsky, Alex A; Su, Yanjing
2017-11-14
Hydrostatic pressure effects on pitting initiation and propagation in X70 steel are investigated by evaluating metastable pitting probability using electrochemical methods and immersion corrosion tests in containing chlorine ion solution. Potentiodynamic tests indicated that hydrostatic pressure can decrease the breakdown potential and lead to a reduced transpassivity region. Metastable test results revealed that hydrostatic pressure can increase metastable pitting formation frequency and promote stabilization of metastable pitting growth. Electrochemical impedance spectroscopy (EIS) results indicate that Hydrostatic pressure decreases the charge transfer resistance and increases the dissolution rate within the cavities. Corrosion test results also indicated that pitting initiation and propagation are accelerated by hydrostatic pressure. Result validity was verified by evaluating metastable pitting to predict pitting corrosion resistance.
Yang, Zixuan; Kan, Bo; Li, Jinxu; Su, Yanjing; Qiao, Lijie; Volinsky, Alex A.
2017-01-01
Hydrostatic pressure effects on pitting initiation and propagation in X70 steel are investigated by evaluating metastable pitting probability using electrochemical methods and immersion corrosion tests in containing chlorine ion solution. Potentiodynamic tests indicated that hydrostatic pressure can decrease the breakdown potential and lead to a reduced transpassivity region. Metastable test results revealed that hydrostatic pressure can increase metastable pitting formation frequency and promote stabilization of metastable pitting growth. Electrochemical impedance spectroscopy (EIS) results indicate that Hydrostatic pressure decreases the charge transfer resistance and increases the dissolution rate within the cavities. Corrosion test results also indicated that pitting initiation and propagation are accelerated by hydrostatic pressure. Result validity was verified by evaluating metastable pitting to predict pitting corrosion resistance. PMID:29135912
Bashari, Mohanad; Abbas, Shabbar; Xu, Xueming; Jin, Zhengyu
2014-07-01
In this research work, dextranase was immobilized onto calcium alginate beads by the combination of ultrasonic irradiation and high hydrostatic pressure (US/HHP) treatments. Effects of US/HHP treatments on loading efficiency and immobilization yield of dextranase enzyme onto calcium alginate beads were investigated. Furthermore, the activities of immobilized enzymes prepared with and without US/HHP treatments and that prepared with ultrasonic irradiation (US) and high hydrostatic pressure (HHP), as a function of pH, temperature, recyclability and enzyme kinetic parameters, were compared with that for free enzyme. The maximum loading efficiency and the immobilization yield were observed when the immobilized dextranase was prepared with US (40 W at 25 kHz for 15 min) combined with HHP (400 MPa for 15 min), under which the loading efficiency and the immobilization yield increased by 88.92% and 80.86%, respectively, compared to immobilized enzymes prepared without US/HHP treatment. On the other hand, immobilized enzyme prepared with US/HHP treatment showed Vmax, KM, catalytic and specificity constants values higher than that for the immobilized enzyme prepared with HHP treatment, indicated that, this new US/HHP method improved the catalytic kinetics activity of immobilized dextranase at all the reaction conditions studied. Compared to immobilized enzyme prepared either with US or HHP, the immobilized enzymes prepared with US/HHP method exhibited a higher: pH optimum, optimal reaction temperature, thermal stability and recyclability, and lower activation energy, which, illustrating the effectiveness of the US/HHP method. These results indicated that, the combination of US and HHP treatments could be an effective method for improving the immobilization of enzymes in polymers. Copyright © 2014 Elsevier B.V. All rights reserved.
Hacker, B.R.; Kirby, S.H.
1993-01-01
We conducted deformation experiments on Carrara marble in the aragonite and calcite stability fields to observe the synkinematic transformation of calcite to aragonite, and to identify any relationships between transformation and deformation or sample strength. Deformation-induced microstructures in calcite crystals varied most significantly with temperature, ranging from limited slip and twinning at 400??C, limited recrystallization at 500??C, widespread recrystallization at 600 and 700??C, to grain growth at 800-900??C. Variations in confining pressure from 0.3 to 2.0 GPa have no apparent effect on calcite deformation microstructures. Aragonite grew in 10-6-10-7 s-1strain rate tests conducted for 18-524 h at confining pressures of 1.7-2.0 GPa and temperatures of 500-600??C. As in our previously reported hydrostatic experiments on this same transformation, the aragonite nucleated on calcite grain boundaries. The extent of transformation varied from a few percent conversion near pistons at 400??C, 2.0 GPa and 10-4 s-1 strain rate in a 0.8 h long experiment, to 98% transformation in a 21-day test at a strain rate of 10-7 s-7, a temperature of 600??C and a pressure of 2.0 GPa. At 500??C, porphyroblastic 100-200 ??m aragonite crystals grew at a rate faster than 8 ?? 10-1m s-1. At 600??C, the growth of aragonite neoblasts was slower, ???6 ?? 10-1 m s -1, and formed 'glove-and-finger' cellularprecipitation-like textures identical to those observed in hydrostatic experiments. The transformation to aragonite is not accompanied by a shear instability or anisotropic aragonite growth, consistent with its relatively small volume change and latent heat in comparison with compounds that do display those features. ?? 1993.
Crayfish respiration as a function of water oxygenation.
Dejours, P; Beekenkamp, H
1977-06-01
Crayfish, Astacus leptodactylus, for several hours breathed water equilibrated either with a hypoxic gas mixture, or air, or oxygen. The hydrostatic pressure in the right epibranchial cavity was recorded and the left epibranchial water sempled from time to time. The higher the water oxygenation, the less the duration of ventilation, the frequency of the scaphognathite beats which ensure water convection, the negative of the water hydrostatic pressure relative to ambient water pressure, and the respired water flow. The water convection per unit quantity of oxygen consumed decreased by a factor of about 20 when the animal passed from hypoxic water at PO2 of 72 torr to hyperoxic water at PO2 of 697 torr. Prolonged hyperoxia, up to 100 days, results in a hypercapnic acidosis of the prebranchial blood. pH decreased about 0.2 unit, PCO2 increased from 2.5 torr to a value of 6 torr, and [HCO-3] from 6 to a value of 9 meq-L-1. This hypercapnic acidosis remained uncompensated during several weeks exposure to hyperoxia. Observations on the fresh water crayfish, a marine crab, and several species of fish, suggest that in aquatic animals (1) the ventilatory activity depends greatly on the degree of water oxygenation: the higher the water oxygenation, the lower the ventilation; (2) the change of ventilation may be accompanied by a new equilibrium of the blood acid-base status, quite different from that observed in normoxia.
Regulation of exocytotic fusion by cell inflation.
Solsona, C; Innocenti, B; Fernández, J M
1998-01-01
We have inflated patch-clamped mast cells by 3.8 +/- 1.6 times their volume by applying a hydrostatic pressure of 5-15 cm H2O to the interior of the patch pipette. Inflation did not cause changes in the cell membrane conductance and caused only a small reversible change in the cell membrane capacitance (36 +/- 5 fF/cm H2O). The specific cell membrane capacitance of inflated cells was found to be 0.5 microF/cm2. High-resolution capacitance recordings showed that inflation reduced the frequency of exocytotic fusion events by approximately 70-fold, with the remaining fusion events showing an unusual time course. Shortly after the pressure was returned to 0 cm H2O, mast cells regained their normal size and appearance and degranulated completely, even after remaining inflated for up to 60 min. We interpret these observations as an indication that inflated mast cells reversibly disassemble the structures that regulate exocytotic fusion. Upon returning to its normal size, the cell cytosol reassembles the fusion pore scaffolds and allows exocytosis to proceed, suggesting that exocytotic fusion does not require soluble proteins. Reassembly of the fusion pore can be prevented by inflating the cells with solutions containing the protease pronase, which completely blocked exocytosis. We also interpret these results as evidence that the activity of the fusion pore is sensitive to the tension of the plasma membrane. PMID:9533718
NASA Astrophysics Data System (ADS)
Akhbari, D.; Hesse, M. A.; Larson, T.
2014-12-01
The Bravo Dome field in northeast New Mexico is one of the largest gas accumulations worldwide and the largest natural CO2 accumulation in North America. The field is only 580-900 m deep and located in the Permian Tubb sandstone that unconformably overlies the granitic basement. Sathaye et al. (2014) estimated that 1.3 Gt of CO2 is stored at the reservoir. A major increase in the pore pressure relative to the hydrostatic pressure is expected due to the large amount of CO2 injected into the reservoir. However, the pre-production gas pressures indicate that most parts of the reservoir are approximately 5 MPa below hydrostatic pressure. Three processes could explain the under pressure in the Bravo Dome reservoir; 1) erosional unloading, 2) CO2 dissolution into the ambient brine, 3) cooling of CO2after injection. Analytical solutions suggest that an erosion rate of 180 m/Ma is required to reduce the pore pressures to the values observed at Bravo Dome. Given that the current erosion rate is only 5 m/Ma (Nereson et al. 2013); the sub-hydrostatic pressures at Bravo Dome are likely due to CO2dissolution and cooling. To investigate the impact of CO2 dissolution on the pore pressure we have developed new analytical solutions and conducted laboratory experiments. We assume that gaseous CO2 was confined to sandstones during emplacement due to the high entry pressure of the siltstones. After emplacement the CO2 dissolves in to the brine contained in the siltstones and the pressure in the sandstones declines. Assuming the sandstone-siltstone system is closed, the pressure decline due to CO2 dissolution is controlled by a single dimensionless number, η = KHRTVw /Vg. Herein, KH is Henry's constant, R is ideal gas constant, T is temperature, Vw is water volume, and Vg is CO2 volume. The pressure drop is controlled by the ratio of water volume to CO2 volume and η varies between 0.1 to 8 at Bravo Dome. This corresponds to pressure drops between 0.8-7.5 MPa and can therefore account for the observed 5 MPa drop in pore pressures at Bravo Dome. This is consistent with geochemical observation suggesting significant dissolution of CO2 at Bravo Dome (Gilfillan 2009). The observation of sub-hydrostatic pressures in CO2 reservoirs is important because they illustrate that CO2 dissolution may mitigate problems due to injection induced overpressure in the long-term.
HICOSMO: cosmology with a complete sample of galaxy clusters - II. Cosmological results
NASA Astrophysics Data System (ADS)
Schellenberger, G.; Reiprich, T. H.
2017-10-01
The X-ray bright, hot gas in the potential well of a galaxy cluster enables systematic X-ray studies of samples of galaxy clusters to constrain cosmological parameters. HIFLUGCS consists of the 64 X-ray brightest galaxy clusters in the Universe, building up a local sample. Here, we utilize this sample to determine, for the first time, individual hydrostatic mass estimates for all the clusters of the sample and, by making use of the completeness of the sample, we quantify constraints on the two interesting cosmological parameters, Ωm and σ8. We apply our total hydrostatic and gas mass estimates from the X-ray analysis to a Bayesian cosmological likelihood analysis and leave several parameters free to be constrained. We find Ωm = 0.30 ± 0.01 and σ8 = 0.79 ± 0.03 (statistical uncertainties, 68 per cent credibility level) using our default analysis strategy combining both a mass function analysis and the gas mass fraction results. The main sources of biases that we correct here are (1) the influence of galaxy groups (incompleteness in parent samples and differing behaviour of the Lx-M relation), (2) the hydrostatic mass bias, (3) the extrapolation of the total mass (comparing various methods), (4) the theoretical halo mass function and (5) other physical effects (non-negligible neutrino mass). We find that galaxy groups introduce a strong bias, since their number density seems to be over predicted by the halo mass function. On the other hand, incorporating baryonic effects does not result in a significant change in the constraints. The total (uncorrected) systematic uncertainties (∼20 per cent) clearly dominate the statistical uncertainties on cosmological parameters for our sample.
Phase stability limit of c-BN under hydrostatic and non-hydrostatic pressure conditions
NASA Astrophysics Data System (ADS)
Xiao, Jianwei; Du, Jinglian; Wen, Bin; Melnik, Roderick; Kawazoe, Yoshiyuki; Zhang, Xiangyi
2014-04-01
Phase stability limit of cubic boron nitride (c-BN) has been investigated by the crystal structure search technique. It indicated that this limit is ˜1000 GPa at hydrostatic pressure condition. Above this pressure, c-BN turns into a metastable phase with respect to rocksalt type boron nitride (rs-BN). However, rs-BN cannot be retained at 0 GPa owing to its instability at pressure below 250 GPa. For non-hydrostatic pressure conditions, the phase stability limit of c-BN is substantially lower than that under hydrostatic pressure conditions and it is also dramatically different for other pressure mode.
Phase stability limit of c-BN under hydrostatic and non-hydrostatic pressure conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Jianwei; Du, Jinglian; Wen, Bin, E-mail: wenbin@ysu.edu.cn
2014-04-28
Phase stability limit of cubic boron nitride (c-BN) has been investigated by the crystal structure search technique. It indicated that this limit is ∼1000 GPa at hydrostatic pressure condition. Above this pressure, c-BN turns into a metastable phase with respect to rocksalt type boron nitride (rs-BN). However, rs-BN cannot be retained at 0 GPa owing to its instability at pressure below 250 GPa. For non-hydrostatic pressure conditions, the phase stability limit of c-BN is substantially lower than that under hydrostatic pressure conditions and it is also dramatically different for other pressure mode.
Lemaire, Benjamin; Debier, Cathy; Calderon, Pedro Buc; Thomé, Jean Pierre; Stegeman, John; Mork, Jarle; Rees, Jean François
2012-09-18
While deep-sea fish accumulate high levels of persistent organic pollutants (POPs), the toxicity associated with this contamination remains unknown. Indeed, the recurrent collection of moribund individuals precludes experimental studies to investigate POP effects in this fauna. We show that precision-cut liver slices (PCLS), an in vitro tool commonly used in human and rodent toxicology, can overcome such limitation. This technology was applied to individuals of the deep-sea grenadier Coryphaenoides rupestris directly upon retrieval from 530-m depth in Trondheimsfjord (Norway). PCLS remained viable and functional for 15 h when maintained in an appropriate culture media at 4 °C. This allowed experimental exposure of liver slices to the model POP 3-methylcholanthrene (3-MC; 25 μM) at levels of hydrostatic pressure mimicking shallow (0.1 megapascal or MPa) and deep-sea (5-15 MPa; representative of 500-1500 m depth) environments. As in shallow water fish, 3-MC induced the transcription of the detoxification enzyme cytochrome P4501A (CYP1A; a biomarker of exposure to POPs). This induction was diminished at elevated pressure, suggesting a limited responsiveness of C. rupestris toward POPs in its native environment. This very first in vitro toxicological investigation on a deep-sea fish opens the route for understanding pollutants effects in this highly exposed fauna.
Tropospheric delays from GNSS for application in coastal altimetry
NASA Astrophysics Data System (ADS)
Fernandes, M. Joana; Pires, Nelson; Lázaro, Clara; Nunes, Alexandra L.
2013-04-01
In the scope of the development of an improved methodology for the computation of the wet tropospheric correction for coastal altimetry, based on the use of tropospheric delays derived from GNSS (Global Navigation Satellite Systems), various studies have been conducted aiming to improve the estimation, at global scale, of GNSS-derived tropospheric delays.Amongst these studies, two are presented in this paper: (1) a global assessment of zenith total delays (ZTD) determined at international data centres such as EPN (EUREF Permanent Network) and IGS (International GNSS Service) by comparison with ZTD solutions computed at the University of Porto (U.Porto) using state-of-the-art methodologies and ZTD estimated from ERA Interim, the latest reanalysis dataset from ECMWF (European Centre for Medium-Range Weather Forecasts), (2) evaluation of the accuracy of the hydrostatic component of the tropospheric delay (zenith hydrostatic delay, ZHD) estimation from different sources of surface pressure.When compared with ERA Interim, both IGS and U.Porto ZTD are homogeneous with a mean standard deviation of the differences, for all analysed sites, of 12 mm. The U.Porto and IGS ZTD agree within 4 mm (1σ), while for EPN the same result is only valid for the period after November 2006. Before that date, the EPN solutions are slightly degraded and require an adequate correction.Aiming to evaluate the accuracy of ZHD determination from various sources of atmospheric pressure, a study is presented that compares ZHD values determined with in situ measurements of surface pressure at a global set of 63 coastal barometric sites (GNSS stations), the corresponding values obtained from ECMWF operational model, ERA Interim sea level pressure (SLP) and ZHD from the Vienna Mapping Functions 1 (VMF1).Results show that the global grids of sea level pressure provided by ECMWF operational model, either at 0.25° or 0.125° spacing, or the ERA Interim reanalysis product at 1.5°, allow the estimation of the hydrostatic component of the tropospheric delay with an accuracy of 1 to 3 mm at global scale, provided an adequate model for the height dependence of atmospheric pressure is adopted. In comparison, for VMF1 grids provided at 2.5° spacing, although the overall accuracy of ZHD estimation is 2-4 mm in most sites, in regions with high variability and strong seasonal signal in the surface pressure, VMF1 can reveal errors with a clear annual pattern and epochs for which the error exceeds the centimetre level. When used to estimate the wet component of the tropospheric delay (zenith wet delay, ZWD) for coastal altimetry, these errors can translate into errors of similar magnitude in sea level studies.
USDA-ARS?s Scientific Manuscript database
Queso Fresco (QF), a popular high-moisture, high-pH Hispanic-style cheese sold in the U.S., underwent high-pressure processing (HPP), which has the potential to improve the safety of cheese, to determine the effects of this process on quality traits of the cheese. Starter-free rennet-set QF (manufa...
Strength Differential Measured in Inconel 718: Effects of Hydrostatic Pressure Studied
NASA Technical Reports Server (NTRS)
Lewandowski, John J.; Wesseling, Paul; Prabhu, Nishad S.; Larose, Joel; Lissenden, Cliff J.; Lerch, Bradley A.
2003-01-01
Aeropropulsion components, such as disks, blades, and shafts, are commonly subjected to multiaxial stress states at elevated temperatures. Experimental results from loadings as complex as those experienced in service are needed to help guide the development of accurate viscoplastic, multiaxial deformation models that can be used to improve the design of these components. During a recent study on multiaxial deformation (ref. 1) on a common aerospace material, Inconel 718, it was shown that the material in the aged state exhibits a strength differential effect (SDE), whereby the uniaxial compressive yield and subsequent flow behavior are significantly higher than those in uniaxial tension. Thus, this material cannot be described by a standard von Mises yield formulation. There have been other formulations postulated (ref. 2) that involve other combinations of the stress invariants, including the effect of hydrostatic stress. The question remained as to which invariants are necessary in the flow model. To capture the physical mechanisms occurring during deformation and reflect them in the plasticity formulation, researchers examined the flow of Inconel 718 under various amounts of hydrostatic stress to determine whether or not hydrostatic stress is needed in the formulation. Under NASA Grant NCC3-464, monitored by the NASA Glenn Research Center, a series of tensile tests were conducted at Case Western Reserve University on aged (precipitation hardened) Inconel 718 at 650 C and with superimposed hydrostatic pressure. Dogbone shaped tensile specimens (3-mm-diameter gauge by 16-mm gauge length) and cylindrical compression specimens (3-mm-diameter gauge by 6-mm gauge length) were strain gauged and loaded in a high-pressure testing apparatus. Hydrostatic pressures were obtained with argon and ranged from 210 to 630 MPa. The aged Inconel 718 showed a pronounced difference in the tension and compression yield strength (i.e., an SDE), as previously observed. Also, there were no significant effects of hydrostatic pressure on either the tensile and compressive yield strength (see the graph) or on the magnitude of the SDE. This behavior is not consistent with the pressure-dependent theory of the SDE, which postulates that the SDE is associated with pressure-dependent and/or internal friction dependent deformation associated with non-Schmid effects at the crystal level (refs. 3 and 4). Flow in Inconel 718 appears to be independent of hydrostatic pressure, suggesting that this invariant may be removed from the phenomenological constitutive model. As part of an ongoing effort to develop advanced constitutive models, Glenn s Life Prediction Branch coordinated this work with that of research on the multiaxial deformation behavior of Inconel 718 being conducted at Pennsylvania State University under NASA Grant NCC597.
Strong environmental tolerance of Artemia under very high pressure
NASA Astrophysics Data System (ADS)
Minami, K.; Ono, F.; Mori, Y.; Takarabe, K.; Saigusa, M.; Matsushima, Y.; Saini, N. L.; Yamashita, M.
2010-03-01
It was shown by the present authors group that a tardigrade in its tun-state can survive after exposed to 7.5 GPa for 13 hours. We have extended this experiment to other tiny animals searching for lives under extreme conditions of high hydrostatic pressure. Artemia, a kind of planktons, in its dried egg-state have strong environmental tolerance. Dozens of Artemia eggs were sealed in a small Teflon capsule together with a liquid pressure medium, and exposed to the high hydrostatic pressure of 7.5 GPa. After the pressure was released, they were soaked in seawater to observe hatching rate. It was proved that 80-90% of the Artemia eggs were alive and hatched into Nauplii after exposed to the maximum pressure of 7.5 GPa for up to 48 hours. Comparing with Tardigrades, Artemia are four-times stronger against high pressure.
Pressure-Dependent Photoluminescence Study of Wurtzite InP Nanowires.
Chauvin, Nicolas; Mavel, Amaury; Patriarche, Gilles; Masenelli, Bruno; Gendry, Michel; Machon, Denis
2016-05-11
The elastic properties of InP nanowires are investigated by photoluminescence measurements under hydrostatic pressure at room temperature and experimentally deduced values of the linear pressure coefficients are obtained. The pressure-induced energy shift of the A and B transitions yields a linear pressure coefficient of αA = 88.2 ± 0.5 meV/GPa and αB = 89.3 ± 0.5 meV/GPa with a small sublinear term of βA = βB = -2.7 ± 0.2 meV/GPa(2). Effective hydrostatic deformation potentials of -6.12 ± 0.04 and -6.2 ± 0.04 eV are derived from the results for the A and B transitions, respectively. A decrease of the integrated intensity is observed above 0.5 GPa and is interpreted as a carrier transfer from the first to the second conduction band of the wurtzite InP.
NASA Astrophysics Data System (ADS)
Zhang, Wencong; Zhang, Lingjia; Feng, Yangju; Cui, Guorong; Chen, Wenzhen
2018-04-01
Plates of 2.5 vol. % TiB whisker-reinforced Ti6Al4V titanium matrix composites (TiBw/Ti64) with network structure were successfully fabricated by hot-hydrostatic extrusion with steel cup at 1100 °C. The dimensions of plates were about 150mm in length, 27mm in width and 2mm in thickness. After extrusion, the original equiaxed-network structure formed by TiB whiskers still existed, but was compressed in cross-section and stretched in longitudinal section and then the TiB whiskers were directional distribution along the extrusion direction. Furthermore, the mechanical properties results showed that the strength, hardness and ductility of the plates were significantly improved compared to as-sintered composites.
Sunwoo, Hoon H; Kim, Chong-Tai; Kim, Do-Yeon; Maeng, Jin-Soo; Cho, Chang-Won; Lee, Soo-Jeong
2013-07-01
A combination of high hydrostatic pressure (HHP) and enzymatic hydrolysis (HHP-EH) was applied for the extraction of ginsenosides from fresh ginseng roots (Panax ginseng C.A. Myer). The highest yield of ginsenosides was obtained by using a mixture of three enzymes (Celluclast + Termamyl + Viscozyme) along with HHP (100 MPa, at 50 °C for 12 h) in comparison to control samples (no enzymes, atmosphere pressure, P < 0.05). Total ginsenosides increased by 184% while Rg1 + Rb1 increased by 273%. Application of these conditions significantly increased total ginsenosides by 49% and Rg1 + Rb1 by 103% compared to HHP treatment alone (P < 0.05). The effect of HHP on increased yield of ginsenosides is likely due in part, to acceleration of enzyme activity. Thus HHP-EH significantly improves the extraction of ginsenosides from fresh ginseng roots.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-11
... Hydrostatic Testing Provision of the Portable Fire Extinguishers Standard; Extension of the Office of... the information collection requirements contained in the Hydrostatic Testing provision of the Portable... 48729
Two pad axially grooved hydrostatic bearing
NASA Technical Reports Server (NTRS)
San Andres, Luis A. (Inventor)
1995-01-01
A hydrostatic bearing having two axial grooves on opposite sides of the bearing for breaking the rotational symmetry in the dynamic force coefficients thus reducing the whirl frequency ratio and increasing the damping and stiffness of the hydrostatic bearing.
Measurements on stress dependent permeability
NASA Astrophysics Data System (ADS)
Risnes, R.; Faldaas, I.; Korsnes, R. I.; Norland, T.
2003-04-01
Hydrostatic loading is the conventional test procedure to determine the stress dependence of permeability. However, hydrostatic tests do not truly reflect the deviatoric stress state that exists in most reservoirs. The main objective of the present project was to study permeability changes under deviatoric stresses, like encountered in standard triaxial tests. However in measuring permeability in a triaxial cell, end effects may be important. The friction between the axial steel pistons and the sample may cause stress concentrations and thereby a non-homogeneous strain pattern towards the sample ends. To overcome this problem, the cell was modified to have pressure outlets from the mid-section of the sample, with the pressure tubes connected to the outside of the cell for pressure recording. The cell was designed for 1.5 in plugs with plug lengths of about 80 mm. Tests have been performed on two types of high porosity outcrop chalk: Liège chalk with porosity around 40 percent and permeability 1-2 millidarcy, and Aalborg chalk with porosity around 45 percent and permeability in the range 3-5 millidarcy. Methanol was used as saturating fluid for the chalks. In addition some sandstone samples from core material were included. The porosity values were rather high, around 30 percent, and the permeability ranged from around 50 millidarcy to over one Darcy. Synthetic oil was used as saturating fluid for the sandstone samples, to avoid any reactions with clay minerals. The results so far can be summarized as follows:(1) In almost all the tests, the permeability calculated by the overall pressure drop is smaller than the mid-section permeability. The reduction could typically be around 20 percent. This means that end-effects play an important role.(2) The permeability generally decrease with increasing hydrostatic stresses. This is in agreement with observations from other sources.(3) During deviatoric phases the average stress level is increasing, but the changes in permeability are rather small, even if the tests are run beyond yield. The mid-section permeability seems to show a small increasing trend with increasing deviatoric stresses after yield. But the yield point does not seem to have any drastic effect on the permeability.(4) The overall permeability seems in general to show a decreasing trend under deviatoric stresses. The results indicate that permeability changes with pressure depletion under reservoir conditions may be much less than expected from hydrostatic tests or tests uncorrected for end-effects.
Validity of body composition assessment methods for older men with cardiac disease.
Young, H; Porcari, J; Terry, L; Brice, G
1998-01-01
This study was designed to determine which of several body composition assessment methods was most accurate for patients with cardiac disease for the purpose of outcome measurement. Six body composition assessment methods were administered to each of 24 men with cardiac disease. Methods included circumference measurement, skinfold measurement, near-infrared interactance via the Futrex-5000, bioelectrical impedance via the BioAnalogics ElectroLipoGraph and Tanita TBF-150, and hydrostatic weighing, the criterion measure. A repeated measures analysis of variance indicated no significant (P > .05) difference between circumference and skinfold measurements compared to hydrostatic weighing. Near-infrared interactance presented the best standard error of estimates (3.5%) and the best correlation (r = .84) with hydrostatic weighing; however, the constant error was 3.76%. Bioelectrical impedance measured by the ElectroLipoGraph and TBF-150 instruments significantly underestimated percent body fat by 8.81% and 4.8%, respectively. In this study of middle-aged to older men with cardiac disease, the best method for determining body fat was circumferences. This technique was accurate, easy to administer, inexpensive, and had a lower error potential than the other techniques. Skinfold measurements were also closely related to hydrostatic weighing, but should be performed only by experienced practitioners because there is a greater potential for tester error in certain patients. In the future, near-infrared interactance measurements may be a viable technique for body composition assessment in patients with cardiac disease. However, algorithms specific to the population of patients with cardiac disease being tested must be developed before this technique can be routinely recommended for body composition assessment. Bioelectrical impedance assessment by either method is not recommended for patients with cardiac disease, as it consistently underestimated percent body fat when compared to hydrostatic weighing in this population.
30 CFR 250.1623 - Well-control fluids, equipment, and operations.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., (2) A well-control fluid-volume measuring device for determining fluid volumes when filling the hole on trips, and (3) A recording mud-pit-level indicator to determine mud-pit-volume gains and losses... the change in fluid level decreases the hydrostatic pressure 75 psi or every five stands of drill pipe...
NASA Astrophysics Data System (ADS)
Krupski, M.; Stankowski, J.; Przybył, S.; Andrzejewski, B.; Kaczmarek, A.; Hilczer, B.; Marfaing, J.; Caranoni, C.
1999-07-01
The effect of hydrostatic pressure ( p<0.6 GPa) on the superconducting critical temperature Tc in YBa 2Cu 3O 7- δ-Pb(Sc 0.5Ta 0.5)O 3 (YBCO-PST) composite is measured by the method of magnetically modulated microwave absorption (MMMA). The Tc dependence on the PST fraction in weight x (0, 0.25, 0.5 and 0.75) is approximated by an inverted parabola function whereas the influence of pressure on Tc is represented by the equation: d Tc/d p=0.61(2)-1.72(6) x. The result may be explained assuming that PST phase in YBCO-PST composite influences the superconducting carrier concentration similar to the chemical substitution in YBa 2Cu 3O 7 [J.J. Neumeier, H.A. Zimmermann, Phys. Rev. B 47 (1993) 8385]. It is suggested that ions from PST diffuse to YBCO cell during the sintering of the composite.
Weak lensing calibrated M-T scaling relation of galaxy groups in the cosmos field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kettula, K.; Finoguenov, A.; Massey, R.
2013-11-20
The scaling between X-ray observables and mass for galaxy clusters and groups is instrumental for cluster-based cosmology and an important probe for the thermodynamics of the intracluster gas. We calibrate a scaling relation between the weak lensing mass and X-ray spectroscopic temperature for 10 galaxy groups in the COSMOS field, combined with 55 higher-mass clusters from the literature. The COSMOS data includes Hubble Space Telescope imaging and redshift measurements of 46 source galaxies per arcminute{sup 2}, enabling us to perform unique weak lensing measurements of low-mass systems. Our sample extends the mass range of the lensing calibrated M-T relation anmore » order of magnitude lower than any previous study, resulting in a power-law slope of 1.48{sub −0.09}{sup +0.13}. The slope is consistent with the self-similar model, predictions from simulations, and observations of clusters. However, X-ray observations relying on mass measurements derived under the assumption of hydrostatic equilibrium have indicated that masses at group scales are lower than expected. Both simulations and observations suggest that hydrostatic mass measurements can be biased low. Our external weak lensing masses provide the first observational support for hydrostatic mass bias at group level, showing an increasing bias with decreasing temperature and reaching a level of 30%-50% at 1 keV.« less
Model Of Bearing With Hydrostatic Damper
NASA Technical Reports Server (NTRS)
Goggin, David G.
1991-01-01
Improved mathematical model of rotational and vibrational dynamics of bearing package in turbopump incorporates effects of hydrostatic damper. Part of larger finite-element model representing rotational and vibrational dynamics of rotor and housing of pump. Includes representations of deadband and nonlinear stiffness and damping of ball bearings, nonlinear stiffness and damping of hydrostatic film, and stiffness of bearing support. Enables incorporation of effects of hydrostatic damper into overall rotor-dynamic mathematical model without addition of mathematical submodel of major substructure.
Colorectal perforation by self-induced hydrostatic pressure: a report of two cases.
Choi, Pyong Wha
2013-02-01
Most iatrogenic colorectal perforations occur as a result of endoscopic or fluoroscopic studies. Accidents associated with hydrostatic pressure-induced perforation are rarely reported, and self-induced hydrostatic pressure is an extremely rare cause of perforation because the anal sphincter complex may provide a protective barrier against perianal hydrostatic pressure. We present two cases of rectosigmoid colon perforation secondary to self-induced hydrostatic pressure. A 61-year-old man and a 45-year-old man presented with abdominal pain after forceful entry of tap water into the rectum, during rinsing of the anus after defecation in the first case, and during self-administered enema in the second case. Emergency operations were performed with the suspicion of hydrostatic pressure-induced rectal injury, and showed rectosigmoid mesenteric perforation in both cases. Resection of the diseased segment and end colostomy (Hartmann's procedure) was performed in the first case, and primary resection and anastomosis in the second case. The pathologic results showed abrupt loss of the colonic wall in the mesenteric border, without evidence of other inflammatory disease; these findings were consistent with acute mechanical colon injury. The postoperative course in both cases was uneventful. These cases put forth an unusual type of colorectal injury, caused specifically by hydrostatic pressure, thus adding to the available literature on hydrostatic pressure-induced injury. Copyright © 2013 Elsevier Inc. All rights reserved.
Fambri, Francesco; Dumbser, Michael; Casulli, Vincenzo
2014-11-01
Blood flow in arterial systems can be described by the three-dimensional Navier-Stokes equations within a time-dependent spatial domain that accounts for the elasticity of the arterial walls. In this article, blood is treated as an incompressible Newtonian fluid that flows through compliant vessels of general cross section. A three-dimensional semi-implicit finite difference and finite volume model is derived so that numerical stability is obtained at a low computational cost on a staggered grid. The key idea of the method consists in a splitting of the pressure into a hydrostatic and a non-hydrostatic part, where first a small quasi-one-dimensional nonlinear system is solved for the hydrostatic pressure and only in a second step the fully three-dimensional non-hydrostatic pressure is computed from a three-dimensional nonlinear system as a correction to the hydrostatic one. The resulting algorithm is robust, efficient, locally and globally mass conservative, and applies to hydrostatic and non-hydrostatic flows in one, two and three space dimensions. These features are illustrated on nontrivial test cases for flows in tubes with circular or elliptical cross section where the exact analytical solution is known. Test cases of steady and pulsatile flows in uniformly curved rigid and elastic tubes are presented. Wherever possible, axial velocity development and secondary flows are shown and compared with previously published results. Copyright © 2014 John Wiley & Sons, Ltd.
Wong, Brett J.
2011-01-01
Octreotide is a somatostatin analog that constricts the splanchnic circulation, thereby improving orthostatic tolerance. We tested the hypotheses that octreotide improves orthostatic tolerance by 1)increasing cardiac filling (right atrial) pressure via reductions in vascular capacity; 2) by causing an upward (i.e., cranial) shift of the hydrostatic indifferent point; and 3) by increasing arterial pressure via a reduction in total vascular conductance. Studies were carried out in acepromazine-sedated, hexamethonium-treated atrioventricular-blocked conscious dogs lightly restrained in lateral recumbency. Beat-by-beat cardiac output was held constant via computer-controlled ventricular pacing at rest and during 30 s of 30° head-up tilt. Octreotide (1.5 μg/kg iv) raised right atrial pressure by 0.5 mmHg and raised mean arterial pressure by 11 mmHg by reducing total vascular conductance (all P < 0.05). Right atrial pressure fell by a similar amount in response to tilting before and after octreotide, thus there was no difference in location of the hydrostatic indifferent point. These data indicate that octreotide improves orthostatic tolerance by decreasing total vascular conductance and by increasing cardiac filling pressure via a reduction in unstressed vascular volume and not by eliciting a cranial shift of the location of the hydrostatic indifferent point. PMID:21512154
Kirkendall, D T; Grogan, J W; Bowers, R G
1991-01-01
Body composition and appropriate playing weight are frequently requested by coaches. Numerous methods for estimating these figures are available, and each has its own limitation, be it technical or biological. A comparison of three common methods was made-underwater weighting (H2O, the criterion), skinfold thicknesses (SF), and commercial bioelectrical impedance analysis (BIA). Subjects were 29 professional football players measured by each of the three methods after an overnight fast. Data was collected 10 weeks preceding the players' formal training camp. There was no difference for percentage of weight as fat between SF (15.8%) and H2O (14.2%). Bioelectrical impedance analysis significantly (p < .05) overestimated percent fat (19.2%) compared to H20. Error rates when regressing SF on H2O were favorable, whether expressed for the whole sample (3.04%) or by race (1.78% or 3.56% for whites and blacks, respectively). Regression of BIA on H2O showed an elevated, overall error rate (14.12%) and elevated error rates for whites (11.57%) and blacks (13.81%). Of the two estimates of body composition on a racially mixed sample of males, SF provided the best estimate with the least amount of error. J Orthop Sports Phys Ther 1991;13(5):235-239.
Vozzi, Federico; Bianchi, Francesca; Ahluwalia, Arti; Domenici, Claudio
2014-01-01
Abundant experimental evidence demonstrates that endothelial cells are sensitive to flow; however, the effect of fluid pressure or pressure gradients that are used to drive viscous flow is not well understood. There are two principal physical forces exerted on the blood vessel wall by the passage of intra-luminal blood: pressure and shear. To analyze the effects of pressure and shear independently, these two stresses were applied to cultured cells in two different types of bioreactors: a pressure-controlled bioreactor and a laminar flow bioreactor, in which controlled levels of pressure or shear stress, respectively, can be generated. Using these bioreactor systems, endothelin-1 (ET-1) and nitric oxide (NO) release from human umbilical vein endothelial cells were measured under various shear stress and pressure conditions. Compared to the controls, a decrease of ET-1 production by the cells cultured in both bioreactors was observed, whereas NO synthesis was up-regulated in cells under shear stress, but was not modulated by hydrostatic pressure. These results show that the two hemodynamic forces acting on blood vessels affect endothelial cell function in different ways, and that both should be considered when planning in vitro experiments in the presence of flow. Understanding the individual and synergic effects of the two forces could provide important insights into physiological and pathological processes involved in vascular remodeling and adaptation. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Morris, James P; Thatje, Sven; Ravaux, Juliette; Shillito, Bruce; Hauton, Chris
2015-08-01
Hydrostatic pressure is an important, ubiquitous, environmental variable of particular relevance in the marine environment. However, it is widely overlooked despite recent evidence that some marine ectotherms may be demonstrating climate-driven bathymetric range shifts. Wide-ranging effects of increased hydrostatic pressure have been observed from the molecular through to the behavioural level. Still, no study has simultaneously examined these multiple levels of organisation in a single experiment in order to understand the kinetics, hierarchy and interconnected nature of such responses during an acute exposure, and over a subsequent recovery period. Here, we quantify the transcription of a set of previously characterised genes during and after acute pressure exposure in adults of the shrimp Palaemonetes varians. Further, we perform respiratory rate and behavioural analysis over the same period. Increases in expression of genes associated with stress and metabolism were observed during and after high-pressure exposure. Respiratory rate increased during exposure and into the recovery period. Finally, differential behaviour was observed under elevated hydrostatic pressure in comparison to ambient pressure. Characterising generalised responses to acute elevated pressure is a vital precursor to longer-term, acclimation-based pressure studies. Results provide a novel insight into what we term the overall stress response (OSR) to elevated pressure; a concept that we suggest to be applicable to other environmental stressors. We highlight the importance of considering more than a single component of the stress response in physiological studies, particularly in an era where environmental multi-stressor studies are proliferating. © 2015. Published by The Company of Biologists Ltd.
The radius and ellipticity of Uranus from its occultation of SAO 158687
NASA Technical Reports Server (NTRS)
Elliot, J. L.; Dunham, E.; Mink, D. J.; Churms, J.
1980-01-01
From occultation timings obtained from the Kuiper Airborne Observatory and from Cape Town for Mar. 10, 1977 occultation of SAO 158687 by Uranus, the equatorial radius, Re, of the planet has been determined to be 26,228 + or - 30 km and its ellipticity epsilon = 1 - Rp/Re = 0.033 + or - 0.007. These values refer to the 1.0 x 10 to the 14th/cu cm number-density level, under the assumption that the upper atmosphere is composed of H2 and He with a mean molecular weight mu = 2.20. The dominant source of uncertainty is the position of the center of the ring system, which was used to define the center of Uranus in our analysis. A rotation rate of 12.8 + or - 1.7 hours for the planet is implied by our value for the ellipticity, under the assumption that Uranus is in hydrostatic equilibrium below the 1.0 x 10 to the 14th/cu cm number density level.
Accelerated degradation of polyetheretherketone and its composites in the deep sea
NASA Astrophysics Data System (ADS)
Liu, Hao; Wang, Jianzhang; Jiang, Pengfei; Yan, Fengyuan
2018-04-01
The performance of polymer composites in seawater, under high hydrostatic pressure (typically few tens of MPa), for simulating exposures at great depths in seas and oceans, has been little studied. In this paper, polyetheretherketone (PEEK) and its composites reinforced by carbon fibres and glass fibres were prepared. The seawater environment with different seawater hydrostatic pressure ranging from normal pressure to 40 MPa was simulated with special equipment, in which the seawater absorption and wear behaviour of PEEK and PEEK-based composites were examined in situ. The effects of seawater hydrostatic pressure on the mechanical properties, wear resistance and microstructure of PEEK and its composites were focused on. The results showed that seawater absorption of PEEK and its composites were greatly accelerated by increased hydrostatic pressure in the deep sea. Affected by seawater absorption, both for neat PEEK and composites, the degradation on mechanical properties, wear resistance and crystallinity were induced, the degree of which was increasingly serious with the increase of hydrostatic pressure of seawater environment. There existed a good correlation in an identical form of exponential function between the wear rate and the seawater hydrostatic pressure. Moreover, the corresponding mechanisms of the effects of deep-sea hydrostatic pressure were also discussed.
Hydrostatic extrusion of Cu-Ag melt spun ribbon
Hill, M.A.; Bingert, J.F.; Bingert, S.A.; Thoma, D.J.
1998-09-08
The present invention provides a method of producing high-strength and high-conductance copper and silver materials comprising the steps of combining a predetermined ratio of the copper with the silver to produce a composite material, and melt spinning the composite material to produce a ribbon of copper and silver. The ribbon of copper and silver is heated in a hydrogen atmosphere, and thereafter die pressed into a slug. The slug then is placed into a high-purity copper vessel and the vessel is sealed with an electron beam. The vessel and slug then are extruded into wire form using a cold hydrostatic extrusion process. 5 figs.
Bethke, P.M.; Rye, R.O.; Stoffregen, R.E.; Vikre, P.G.
2005-01-01
The Summitville Au-Ag-Cu deposit is a classic volcanic dome-hosted high-sulfidation deposit. It occurs in the Quartz Latite of South Mountain, a composite volcanic dome that was emplaced along the coincident margins of the Platoro and Summitville calderas at 22.5??0.5 Ma, penecontemporaneous with alteration and mineralization. A penecontemporaneous quartz monzonite porphyry intrusion underlies the district and is cut and overlain by pyrite-quartz stockwork veins with traces of chalcopyrite and molybdenite. Alteration and mineralization proceeded through three hypogene stages and a supergene stage, punctuated by at least three periods of hydrothermal brecciation. Intense acid leaching along fractures in the quartz latite produced irregular pipes and lenticular pods of vuggy silica enclosed sequentially by alteration zones of quartz-alunite, quartz-kaolinite, and clay. The acid-sulfate-altered rocks host subsequent covellite+enargite/luzonite+chalcopyrite mineralization accompanied by kaolinite, and later barite-base-metal veins, some containing high Au values and kaolinite. The presence of both liquid- and vapor-rich fluid inclusions indicates the episodic presence of a low-density fluid at all levels of the system. In the mineralized zone, liquid-rich fluid inclusions in healed fractures in quartz phenocrysts and in quartz associated with mineralization homogenize to temperatures between 160 and 390 ??C (90% between 190 and 310 ??C), consistent with the range (200-250 ??C) estimated from the fractionation of sulfur isotopes between coexisting alunite and pyrite. A deep alunite-pyrite pair yielded a sulfur-isotope temperature of 390 ??C, marking a transition from hydrostatic to lithostatic pressure at a depth of about 1.5 km. Two salinity populations dominate the liquid-rich fluid inclusions. One has salinities between 0 and 5 wt.% NaCl equivalent; the other has salinities of up to 43 wt.% NaCl equivalent. The occurrence of high-salinity fluid inclusions in vein quartz associated with mineralization, as well as in the deep stockwork veins, suggests that brines originating deep in the system transported the metals. The ??34S values of sulfides in magnetite (-2.3???) and of sulfate in apatite (5.4???) in unaltered quartz latite indicate that ??34S???S was near 0???. The ??34S values of coexisting alteration alunite and pyrite are 18.2??? to 24.5??? and -8.1??? to -2.2???, respectively. Deep in the system, most of the change in ??34S values occurs in the sulfates, indicating that the fluids were initially H2S-dominant, their redox state buffered at depth by equilibration with igneous rocks. However, in the main alteration zone, most of the change in ??34S values occurs in pyrite, indicating that the fluids moved off the rock buffer and became SO42- -dominant as pyrite precipitated and SO2 disproportionation produced the sulfuric acid requisite for acid leaching. The ??34S values of the late-stage barite and sulfides indicate that the system returned to high H2S/SO42- ratios typical of the original rock-buffered fluid. The ??DH2O of alunite parent fluids was near -45??? and their ??18O ranged from 7??? to -1???, depending on the degree of exchange in the alteration zone at low water-rock ratio, or mixing with unexchanged meteoric water. The low ??D values of some alunite samples are interpreted to result from postdepositional exchange with later ore fluids. Fluid exsolved fr om the magma at depth had ??DH2O and ??18OH2O values near -70??? and 10???, respectively. During and following migration to the top of the magma chamber, the fluid underwent isotopic exchange with the partially crystallized magma and its solid and cooler, but still plastic, carapace just below the transition from a lithostatic to hydrostatic pressure regime. These evolved magmatic fluids had ??DH2O and ??18OH2O values close to -40??? and 5???, respectively, prior to release into the superjacent hydrostatically pressured fracture zone, wherein the fluids separat
2014-04-01
hydrostatic pressure vertical coordinate, which are the same as those used in the Weather Research and Forecasting ( WRF ) model, but a hybrid sigma...hydrostatic pressure vertical coordinate, which are the 33 same as those used in the Weather Research and Forecasting ( WRF ) model, but a hybrid 34 sigma...Weather Research and Forecasting 79 ( WRF ) Model. The Euler equations are in flux form based on the hydrostatic pressure vertical 80 coordinate. In
SHORT COMMUNICATION: An image processing approach to calibration of hydrometers
NASA Astrophysics Data System (ADS)
Lorefice, S.; Malengo, A.
2004-06-01
The usual method adopted for multipoint calibration of glass hydrometers is based on the measurement of the buoyancy by hydrostatic weighing when the hydrometer is plunged in a reference liquid up to the scale mark to be calibrated. An image processing approach is proposed by the authors to align the relevant scale mark with the reference liquid surface level. The method uses image analysis with a data processing technique and takes into account the perspective error. For this purpose a CCD camera with a pixel matrix of 604H × 576V and a lens of 16 mm focal length were used. High accuracy in the hydrometer reading was obtained as the resulting reading uncertainty was lower than 0.02 mm, about a fifth of the usual figure with the visual reading made by an operator.
Numerical Simulation of Regional Circulation in the Monterey Bay Region
NASA Technical Reports Server (NTRS)
Tseng, Y. H.; Dietrich, D. E.; Ferziger, J. H.
2003-01-01
The objective of this study is to produce a high-resolution numerical model of Mon- terey Bay area in which the dynamics are determined by the complex geometry of the coastline, steep bathymetry, and the in uence of the water masses that constitute the CCS. Our goal is to simulate the regional-scale ocean response with realistic dynamics (annual cycle), forcing, and domain. In particular, we focus on non-hydrostatic e ects (by comparing the results of hydrostatic and non-hydrostatic models) and the role of complex geometry, i.e. the bay and submarine canyon, on the nearshore circulation. To the best of our knowledge, the current study is the rst to simulate the regional circulation in the vicinity of Monterey Bay using a non-hydrostatic model. Section 2 introduces the high resolution Monterey Bay area regional model (MBARM). Section 3 provides the results and veri cation with mooring and satellite data. Section 4 compares the results of hydrostatic and non-hydrostatic models.
Crystallization of a Li2O2SiO2 Glass under High Hydrostatic Pressures
NASA Technical Reports Server (NTRS)
Fuss, T.; Day, D. E.; Lesher, C. E.; Ray, C. S.
2004-01-01
The crystallization behavior of a Li2O.2SiO2 (LS2) glass subjected to a uniform hydrostatic pressure of 4.5 or 6 GPa was investigated between 550 and 800 C using XRD, IR, Raman, TEM, NMR, and DTA. The density of the glass subjected to 6 GPa was between 2.52 plus or minus 0.01 and 2.57 plus or minus 0.01 grams per cubic centimeters, depending upon the processing temperatures, and was higher than that of the stoichiometric LS2 crystals, 2.46 plus or minus 0.01 grams per cubic centimeter. Thus, crystallization in 6 GPa glass occurred in a condition of negative volume dilatation, deltaV = V(sub glass) - V(sub crystal), while that for the 4.5 GPa glass occurred in the condition deltaV greater than 0. For deltaV greater than 0, which also includes the control glass at ambient (one atmosphere) pressure, the glasses always crystallize Li2Si2O5 (orthorhombic, Ccc2) crystals, but for deltaV less than 0 (6 GPa), the glasses crystallize Li2SiO3 crystals with a slightly deformed structure. The crystal growth rate vs. temperature curve moved to higher temperature with increasing pressure, and was independent of the sign of deltaV. These results for the effect of hydrostatic pressure on the crystallization of LS2 glass were discussed from thermodynamic considerations.
Hydrostatic pressure enhances mitomycin C induced apoptosis in urothelial carcinoma cells.
Chen, Shao-Kuan; Chung, Chih-Ang; Cheng, Yu-Che; Huang, Chi-Jung; Ruaan, Ruoh-Chyu; Chen, Wen-Yih; Li, Chuan; Tsao, Chia-Wen; Hu, Wei-Wen; Chien, Chih-Cheng
2014-01-01
Urothelial carcinoma (UC) of the bladder is the second most common cancer of the genitourinary system. Clinical UC treatment usually involves transurethral resection of the bladder tumor followed by adjuvant intravesical immunotherapy or chemotherapy to prevent recurrence. Intravesical chemotherapy induces fewer side effects than immunotherapy but is less effective at preventing tumor recurrence. Improvement to intravesical chemotherapy is, therefore, needed. Cellular effects of mitomycin C (MMC) and hydrostatic pressure on UC BFTC905 cells were assessed. The viability of the UC cells was determined using cellular proliferation assay. Changes in apoptotic function were evaluated by caspase 3/7 activities, expression of FasL, and loss of mitochondrial membrane potential. Reduced cell viability was associated with increasing hydrostatic pressure. Caspase 3/7 activities were increased following treatment of the UC cells with MMC or hydrostatic pressure. In combination with 10 kPa hydrostatic pressure, MMC treatment induced increasing FasL expression. The mitochondria of UC cells displayed increasingly impaired membrane potentials following a combined treatment with 10 μg/ml MMC and 10 kPa hydrostatic pressure. Both MMC and hydrostatic pressure can induce apoptosis in UC cells through an extrinsic pathway. Hydrostatic pressure specifically increases MMC-induced apoptosis and might minimize the side effects of the chemotherapy by reducing the concentration of the chemical agent. This study provides a new and alternative approach for treatment of patients with UC following transurethral resection of the bladder tumor. Copyright © 2014 Elsevier Inc. All rights reserved.
- CONUS Double Resolution (Lambert Conformal - 40km) NEMS Non-hydrostatic Multiscale Model on the B grid AWIPS grid 212 Regional - CONUS Double Resolution (Lambert Conformal - 40km) NEMS Non-hydrostatic 132 - Double Resolution (Lambert Conformal - 16km) NEMS Non-hydrostatic Multiscale Model on the B grid
49 CFR 230.40 - Time and method of staybolt testing.
Code of Federal Regulations, 2010 CFR
2010-10-01
... paragraph (a)(2) of this section. All staybolts also shall be hammer tested under hydrostatic pressure any time hydrostatic pressure above the MAWP specified on the boiler specification form (FRA Form No. 4... of hammer testing. If staybolts are tested while the boiler contains water, the hydrostatic pressure...
46 CFR 61.05-10 - Boilers in service.
Code of Federal Regulations, 2010 CFR
2010-10-01
... question, shall be subjected to a hydrostatic test of 11/2 times the maximum allowable working pressure... pressure. (d) In applying hydrostatic pressure to boilers, arrangements shall be made to prevent main and auxiliary stop valves from being simultaneously subjected to the hydrostatic pressure on one side and steam...
46 CFR 61.30-10 - Hydrostatic test.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 2 2012-10-01 2012-10-01 false Hydrostatic test. 61.30-10 Section 61.30-10 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PERIODIC TESTS AND INSPECTIONS Tests and Inspections of Fired Thermal Fluid Heaters § 61.30-10 Hydrostatic test. All new...
External Coulomb-Friction Damping For Hydrostatic Bearings
NASA Technical Reports Server (NTRS)
Buckmann, Paul S.
1992-01-01
External friction device damps vibrations of shaft and hydrostatic ring bearing in which it turns. Does not rely on wear-prone facing surfaces. Hydrostatic bearing ring clamped in radially flexing support by side plates clamped against radial surfaces by spring-loaded bolts. Plates provide friction against radial motions of shaft.
An analysis of the 70-meter antenna hydrostatic bearing by means of computer simulation
NASA Technical Reports Server (NTRS)
Bartos, R. D.
1993-01-01
Recently, the computer program 'A Computer Solution for Hydrostatic Bearings with Variable Film Thickness,' used to design the hydrostatic bearing of the 70-meter antennas, was modified to improve the accuracy with which the program predicts the film height profile and oil pressure distribution between the hydrostatic bearing pad and the runner. This article presents a description of the modified computer program, the theory upon which the computer program computations are based, computer simulation results, and a discussion of the computer simulation results.
Teng, Lei; Zhang, Hongying; Dong, Yongkang; Zhou, Dengwang; Jiang, Taofei; Gao, Wei; Lu, Zhiwei; Chen, Liang; Bao, Xiaoyi
2016-09-15
A temperature-compensated distributed hydrostatic pressure sensor based on Brillouin dynamic gratings (BDGs) is proposed and demonstrated experimentally for the first time, to the best of our knowledge. The principle is to measure the hydrostatic pressure induced birefringence changes through exciting and probing the BDGs in a thin-diameter pure silica polarization-maintaining photonic crystal fiber. The temperature cross-talk to the hydrostatic pressure sensing can be compensated through measuring the temperature-induced Brillouin frequency shift (BFS) changes using Brillouin optical time-domain analysis. A distributed measurement of hydrostatic pressure is demonstrated experimentally using a 4-m sensing fiber, which has a high sensitivity, with a maximum measurement error less than 0.03 MPa at a 20-cm spatial resolution.
Fluid Compressibility Effects on the Dynamic Response of Hydrostatic Journal Bearings
NASA Technical Reports Server (NTRS)
Sanandres, Luis A.
1991-01-01
A theoretical analysis for the dynamic performance characteristics of laminar flow, capillar/orifice compensated hydrostatic journal bearings is presented. The analysis considers in detail the effect of fluid compressibility in the bearing recesses. At high frequency excitations beyond a break frequency, the bearing hydrostatic stiffness increases sharply and it is accompanied by a rapid decrease in direct damping. Also, the potential of pneumatic hammer instability (negative damping) at low frequencies is likely to occur in hydrostatic bearing applications handling highly compressible fluids. Useful design criteria to avoid undesirable dynamic operating conditions at low and high frequencies are determined. The effect of fluid recess compressibility is brought into perspective, and found to be of utmost importance on the entire frequency spectrum response and stability characteristics of hydrostatic/hybrid journal bearings.
Accelerated degradation of polyetheretherketone and its composites in the deep sea
Wang, Jianzhang; Jiang, Pengfei; Yan, Fengyuan
2018-01-01
The performance of polymer composites in seawater, under high hydrostatic pressure (typically few tens of MPa), for simulating exposures at great depths in seas and oceans, has been little studied. In this paper, polyetheretherketone (PEEK) and its composites reinforced by carbon fibres and glass fibres were prepared. The seawater environment with different seawater hydrostatic pressure ranging from normal pressure to 40 MPa was simulated with special equipment, in which the seawater absorption and wear behaviour of PEEK and PEEK-based composites were examined in situ. The effects of seawater hydrostatic pressure on the mechanical properties, wear resistance and microstructure of PEEK and its composites were focused on. The results showed that seawater absorption of PEEK and its composites were greatly accelerated by increased hydrostatic pressure in the deep sea. Affected by seawater absorption, both for neat PEEK and composites, the degradation on mechanical properties, wear resistance and crystallinity were induced, the degree of which was increasingly serious with the increase of hydrostatic pressure of seawater environment. There existed a good correlation in an identical form of exponential function between the wear rate and the seawater hydrostatic pressure. Moreover, the corresponding mechanisms of the effects of deep-sea hydrostatic pressure were also discussed. PMID:29765645
Sato, Hiroshi; Nakasone, Kaoru; Yoshida, Takao; Kato, Chiaki; Maruyama, Tadashi
2015-07-01
When non-extremophiles encounter extreme environmental conditions, which are natural for the extremophiles, stress reactions, e.g., expression of heat shock proteins (HSPs), are thought to be induced for survival. To understand how the extremophiles live in such extreme environments, we studied the effects of high hydrostatic pressure on cellular contents of HSPs and their mRNAs during growth in a piezophilic bacterium, Shewanella violacea. HSPs increased at high hydrostatic pressures even when optimal for growth. The mRNAs and proteins of these HSPs significantly increased at higher hydrostatic pressure in S. violacea. In the non-piezophilic Escherichia coli, however, their mRNAs decreased, while their proteins did not change. Several transcriptional start sites (TSSs) for HSP genes were determined by the primer extension method and some of them showed hydrostatic pressure-dependent increase of the mRNAs. A major refolding target of one of the HSPs, chaperonin, at high hydrostatic pressure was shown to be RplB, a subunit of the 50S ribosome. These results suggested that in S. violacea, HSPs play essential roles, e.g., maintaining protein complex machinery including ribosomes, in the growth and viability at high hydrostatic pressure, and that, in their expression, the transcription is under the control of σ(32).
Accelerated degradation of polyetheretherketone and its composites in the deep sea.
Liu, Hao; Wang, Jianzhang; Jiang, Pengfei; Yan, Fengyuan
2018-04-01
The performance of polymer composites in seawater, under high hydrostatic pressure (typically few tens of MPa), for simulating exposures at great depths in seas and oceans, has been little studied. In this paper, polyetheretherketone (PEEK) and its composites reinforced by carbon fibres and glass fibres were prepared. The seawater environment with different seawater hydrostatic pressure ranging from normal pressure to 40 MPa was simulated with special equipment, in which the seawater absorption and wear behaviour of PEEK and PEEK-based composites were examined in situ . The effects of seawater hydrostatic pressure on the mechanical properties, wear resistance and microstructure of PEEK and its composites were focused on. The results showed that seawater absorption of PEEK and its composites were greatly accelerated by increased hydrostatic pressure in the deep sea. Affected by seawater absorption, both for neat PEEK and composites, the degradation on mechanical properties, wear resistance and crystallinity were induced, the degree of which was increasingly serious with the increase of hydrostatic pressure of seawater environment. There existed a good correlation in an identical form of exponential function between the wear rate and the seawater hydrostatic pressure. Moreover, the corresponding mechanisms of the effects of deep-sea hydrostatic pressure were also discussed.
1990-12-01
Temperature Distance Sensors -. ...................... 188 Start Transient 4.5-7 Distance Sensor Signal as a Function of Speed...189 4.5-8 Distance Sensor Signal as a Function of Speed ......................................... 190 4.5-9 Cryogenic Operation of...Distance Sensors at 72,000 RPM ........................ 192 Steady State 4.5-10 Cryogenic Operation of Distance Sensor Through Start
Model atmospheres for M (sub)dwarf stars. 1: The base model grid
NASA Technical Reports Server (NTRS)
Allard, France; Hauschildt, Peter H.
1995-01-01
We have calculated a grid of more than 700 model atmospheres valid for a wide range of parameters encompassing the coolest known M dwarfs, M subdwarfs, and brown dwarf candidates: 1500 less than or equal to T(sub eff) less than or equal to 4000 K, 3.5 less than or equal to log g less than or equal to 5.5, and -4.0 less than or equal to (M/H) less than or equal to +0.5. Our equation of state includes 105 molecules and up to 27 ionization stages of 39 elements. In the calculations of the base grid of model atmospheres presented here, we include over 300 molecular bands of four molecules (TiO, VO, CaH, FeH) in the JOLA approximation, the water opacity of Ludwig (1971), collision-induced opacities, b-f and f-f atomic processes, as well as about 2 million spectral lines selected from a list with more than 42 million atomic and 24 million molecular (H2, CH, NH, OH, MgH, SiH, C2, CN, CO, SiO) lines. High-resolution synthetic spectra are obtained using an opacity sampling method. The model atmospheres and spectra are calculated with the generalized stellar atmosphere code PHOENIX, assuming LTE, plane-parallel geometry, energy (radiative plus convective) conservation, and hydrostatic equilibrium. The model spectra give close agreement with observations of M dwarfs across a wide spectral range from the blue to the near-IR, with one notable exception: the fit to the water bands. We discuss several practical applications of our model grid, e.g., broadband colors derived from the synthetic spectra. In light of current efforts to identify genuine brown dwarfs, we also show how low-resolution spectra of cool dwarfs vary with surface gravity, and how the high-regulation line profile of the Li I resonance doublet depends on the Li abundance.
Tobey, N A; Gambling, T M; Vanegas, X C; Carson, J L; Orlando, R C
2008-01-01
Dilated intercellular spaces (DIS) within esophageal epithelium (EE) is a histopathologic feature of non-erosive reflux disease and early lesion in acid-damaged rabbit EE associated with increased paracellular permeability. Its cause remains unknown, but the lesion's morphology suggests a significant fluid shift into the intercellular spaces (ICS). Since water follows osmotic forces and consequently ion movements, we explored the role of active (ion) transport and ion gradients in its pathogenesis. This was done by quantifying the effect of inhibited active transport and altered ion gradients on electrical resistance (R(T)) and ICS diameter in acid-exposed Ussing-chambered rabbit EE. Compared with normal Ringer, pH 7.5, 30 minutes of luminal HCl (100 mmol/L), pH 1.1, increased permeability (R(T): +5 +/- 4% vs-52 +/- 4%) and ICS diameter (0.25 +/- 0.01 microm vs 0.42 +/- 0.02 microm), but had no effect on cell morphology or diameter. Ouabain pretreatment significantly reduced active transport but had no effect on the acid-induced changes. However, negating the chloride gradient created by luminal HCl either by adding choline chloride, 100 mmol/L, serosally or by replacing luminal HCl, pH 1.1, with luminal H(2)SO(4), pH 1.1, prevented the development of DIS while maintaining the increase in permeability. DIS was also prevented in the presence of a 100 mmol/L (choline) chloride gradient by luminal exposure at neutral pH. DIS in HCl-damaged EE is caused by an H(+)-induced increase in epithelial permeability; this enables Cl(-) to diffuse along its gradient into the ICS, creating an osmotic force for water movement into and (hydrostatic) dilation of the ICS.
46 CFR 119.435 - Integral fuel tanks.
Code of Federal Regulations, 2010 CFR
2010-10-01
... for certification of a vessel, integral fuel tanks must withstand a hydrostatic pressure test of 35 kPa (5 psig), or the maximum pressure head to which they may be subjected in service, whichever is...
Sterically controlled mechanochemistry under hydrostatic pressure
Yan, Hao; Yang, Fan; Pan, Ding; ...
2018-02-21
Mechanical stimuli can modify the energy landscape of chemical reactions and enable reaction pathways, offering a synthetic strategy that complements conventional chemistry. These mechanochemical mechanisms have been studied extensively in one-dimensional polymers under tensile stress using ring-opening and reorganization, polymer unzipping and disulfide reduction as model reactions. In these systems, the pulling force stretches chemical bonds, initiating the reaction. Additionally, it has been shown that forces orthogonal to the chemical bonds can alter the rate of bond dissociation. Furthermore, these bond activation mechanisms have not been possible under isotropic, compressive stress (that is, hydrostatic pressure). Here we show that mechanochemistrymore » through isotropic compression is possible by molecularly engineering structures that can translate macroscopic isotropic stress into molecular-level anisotropic strain.« less
Linear Hyperfine Tuning of Donor Spins in Silicon Using Hydrostatic Strain
NASA Astrophysics Data System (ADS)
Mansir, J.; Conti, P.; Zeng, Z.; Pla, J. J.; Bertet, P.; Swift, M. W.; Van de Walle, C. G.; Thewalt, M. L. W.; Sklenard, B.; Niquet, Y. M.; Morton, J. J. L.
2018-04-01
We experimentally study the coupling of group V donor spins in silicon to mechanical strain, and measure strain-induced frequency shifts that are linear in strain, in contrast to the quadratic dependence predicted by the valley repopulation model (VRM), and therefore orders of magnitude greater than that predicted by the VRM for small strains |ɛ |<10-5. Through both tight-binding and first principles calculations we find that these shifts arise from a linear tuning of the donor hyperfine interaction term by the hydrostatic component of strain and achieve semiquantitative agreement with the experimental values. Our results provide a framework for making quantitative predictions of donor spins in silicon nanostructures, such as those being used to develop silicon-based quantum processors and memories. The strong spin-strain coupling we measure (up to 150 GHz per strain, for Bi donors in Si) offers a method for donor spin tuning—shifting Bi donor electron spins by over a linewidth with a hydrostatic strain of order 10-6—as well as opportunities for coupling to mechanical resonators.
NASA Astrophysics Data System (ADS)
Meraj, Md.; Deng, Chuang; Pal, Snehanshu
2018-01-01
In this study, the feasibility of stress induced solid-state amorphization (SSA) of nanocrystalline (NC) Ni and NiZr alloys having ˜10 nm grain size has been investigated under constant tensile load (uniaxial and triaxial) via molecular dynamics simulations. In order to track the structural evaluation in both NC Ni and NiZr alloys during the SSA process, various types of analysis have been used, including simulated X-ray diffraction, centro-symmetry parameter, Voronoi cluster, common neighbor analysis, and radial distribution function. It is found that SSA in both NC Ni and NiZr alloys can only be achieved under triaxial loading conditions, and the hydrostatic tensile stress required for SSA is significantly lower when at. % Zr is increased in the NC NiZr alloy. Specifically, SSA in NC Ni and Ni-5 at. % Zr alloy was observed only when the temperature and hydrostatic tensile stress reached 800 K and 6 GPa, while SSA could occur in NC Ni-10 at. % Zr alloy under just 2 GPa of hydrostatic tensile stress at 300 K.
Determination of zenith hydrostatic delay and its impact on GNSS-derived integrated water vapor
NASA Astrophysics Data System (ADS)
Wang, Xiaoming; Zhang, Kefei; Wu, Suqin; He, Changyong; Cheng, Yingyan; Li, Xingxing
2017-08-01
Surface pressure is a necessary meteorological variable for the accurate determination of integrated water vapor (IWV) using Global Navigation Satellite System (GNSS). The lack of pressure observations is a big issue for the conversion of historical GNSS observations, which is a relatively new area of GNSS applications in climatology. Hence the use of the surface pressure derived from either a blind model (e.g., Global Pressure and Temperature 2 wet, GPT2w) or a global atmospheric reanalysis (e.g., ERA-Interim) becomes an important alternative solution. In this study, pressure derived from these two methods is compared against the pressure observed at 108 global GNSS stations at four epochs (00:00, 06:00, 12:00 and 18:00 UTC) each day for the period 2000-2013. Results show that a good accuracy is achieved from the GPT2w-derived pressure in the latitude band between -30 and 30° and the average value of 6 h root-mean-square errors (RMSEs) across all the stations in this region is 2.5 hPa. Correspondingly, an error of 5.8 mm and 0.9 kg m-2 in its resultant zenith hydrostatic delay (ZHD) and IWV is expected. However, for the stations located in the mid-latitude bands between -30 and -60° and between 30 and 60°, the mean value of the RMSEs is 7.3 hPa, and for the stations located in the high-latitude bands from -60 to -90° and from 60 to 90°, the mean value of the RMSEs is 9.9 hPa. The mean of the RMSEs of the ERA-Interim-derived pressure across at the selected 100 stations is 0.9 hPa, which will lead to an equivalent error of 2.1 mm and 0.3 kg m-2 in the ZHD and IWV, respectively, determined from this ERA-Interim-derived pressure. Results also show that the monthly IWV determined using pressure from ERA-Interim has a good accuracy - with a relative error of better than 3 % on a global scale; thus, the monthly IWV resulting from ERA-Interim-derived pressure has the potential to be used for climate studies, whilst the monthly IWV resulting from GPT2w-derived pressure has a relative error of 6.7 % in the mid-latitude regions and even reaches 20.8 % in the high-latitude regions. The comparison between GPT2w and seasonal models of pressure-ZHD derived from ERA-Interim and pressure observations indicates that GPT2w captures the seasonal variations in pressure-ZHD very well.
Effect of high pressure pasteurization on bacterial load and bioactivity of Echinacea purpurea.
Chen, Xiu-Min; Hu, Chun; Raghubeer, Errol; Kitts, David D
2010-09-01
High hydrostatic pressure (HHP) technology was applied to organic Echinacea purpurea (E. purpurea) roots and flowers to determine the feasibility of using this technology for cold herb pasteurization, to produce microbiologically safe and shelf-stable products for the natural health products (NHPs) industry. HHP significantly (P < 0.01) reduced microbial contamination in both roots and flowers without affecting the phytochemical retention of chicoric and chlorogenic acids, and total alkamide contents. The antioxidant activity of E. purpurea methanol-derived extracts, evaluated in both chemical (2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) [ABTS] and oxygen radical absorption capacity [ORAC] assay) and in cell culture models (RAW264, 7 macrophage, H(2)O(2)-induced intracellular oxidation, and lipopolysaccharide [LPS]-induced nitric oxide production), was not adversely affected by the application of HHP at both 2 and 5 min at 600 mPa. Furthermore, HHP did not affect the capacity of E. purpurea extracts to suppress nitric oxide production in LPS-activated macrophage cells. Therefore, our results show that HHP is an effective pasteurization process treatment to reduce microbial-contamination load while not adversely altering chemical and bioactive function of active constituents present in organic E. purpurea. Our study reports for the first time, the effectiveness of using high hydrostatic pressure (HHP) technology pressure to pasteurize E. purpurea root and flower, and the comparative retention of bioactive phytochemicals. Therefore, this technique can be used in food and natural health product industries to produce high-quality, microbiologically safe, and shelf-stable products.
Bruschi, Carolina; Komora, Norton; Castro, Sónia Marília; Saraiva, Jorge; Ferreira, Vânia Borges; Teixeira, Paula
2017-06-01
The effect of high hydrostatic pressure (HHP) on the survival of 14 strains of Listeria monocytogenes from food or clinical origins, selected to represent different pheno and genotypes, was evaluated. Stationary phase cells were submitted to 300, 400 and 500 MPa at 10 °C, for 5 min. A high variability in the resistance of L. monocytogenes to pressure was observed, and particularly two strains isolated from food were significantly more baroresistant than the rest. Strains of L. monocytogenes resistant to one or more antibiotics exhibited significantly higher levels of survival after the high pressure treatment at 400 MPa. No correlation was found between strains' origin or thermal tolerance and resistance to HHP. The suitability of two strains of L. innocua as surrogates of L. monocytogenes, was also investigated. These exhibited significantly higher sensitivities to HHP than observed for some L. monocytogenes. The antimicrobial effect of the antilisterial bacteriocin (bacHA-6111-2) increased after L. monocytogenes cells had been exposed to pressure. The data obtained underlines the importance of strain selection for studies aiming to evaluate HHP efficacy to ensure safety of HHP-treated foods. Copyright © 2017 Elsevier Ltd. All rights reserved.
Munro, Catriona; Morris, James P.; Brown, Alastair; Hauton, Chris; Thatje, Sven
2015-01-01
Extant deep-sea invertebrate fauna represent both ancient and recent invasions from shallow-water habitats. Hydrostatic pressure may present a significant physiological challenge to organisms seeking to colonize deeper waters or migrate ontogenetically. Pressure may be a key factor contributing to bottlenecks in the radiation of taxa and potentially drive speciation. Here, we assess shifts in the tolerance of hydrostatic pressure through early ontogeny of the northern stone crab Lithodes maja, which occupies a depth range of 4–790 m in the North Atlantic. The zoea I, megalopa and crab I stages were exposed to hydrostatic pressures up to 30.0 MPa (equivalent of 3000 m depth), and the relative fold change of genes putatively coding for the N-methyl-d-aspartate receptor-regulated protein 1 (narg gene), two heat-shock protein 70 kDa (HSP70) isoforms and mitochondrial Citrate Synthase (CS gene) were measured. This study finds a significant increase in the relative expression of the CS and hsp70a genes with increased hydrostatic pressure in the zoea I stage, and an increase in the relative expression of all genes with increased hydrostatic pressure in the megalopa and crab I stages. Transcriptional responses are corroborated by patterns in respiratory rates in response to hydrostatic pressure in all stages. These results suggest a decrease in the acute high-pressure tolerance limit as ontogeny advances, as reflected by a shift in the hydrostatic pressure at which significant differences are observed. PMID:26041343
Munro, Catriona; Morris, James P; Brown, Alastair; Hauton, Chris; Thatje, Sven
2015-06-22
Extant deep-sea invertebrate fauna represent both ancient and recent invasions from shallow-water habitats. Hydrostatic pressure may present a significant physiological challenge to organisms seeking to colonize deeper waters or migrate ontogenetically. Pressure may be a key factor contributing to bottlenecks in the radiation of taxa and potentially drive speciation. Here, we assess shifts in the tolerance of hydrostatic pressure through early ontogeny of the northern stone crab Lithodes maja, which occupies a depth range of 4-790 m in the North Atlantic. The zoea I, megalopa and crab I stages were exposed to hydrostatic pressures up to 30.0 MPa (equivalent of 3000 m depth), and the relative fold change of genes putatively coding for the N-methyl-D-aspartate receptor-regulated protein 1 (narg gene), two heat-shock protein 70 kDa (HSP70) isoforms and mitochondrial Citrate Synthase (CS gene) were measured. This study finds a significant increase in the relative expression of the CS and hsp70a genes with increased hydrostatic pressure in the zoea I stage, and an increase in the relative expression of all genes with increased hydrostatic pressure in the megalopa and crab I stages. Transcriptional responses are corroborated by patterns in respiratory rates in response to hydrostatic pressure in all stages. These results suggest a decrease in the acute high-pressure tolerance limit as ontogeny advances, as reflected by a shift in the hydrostatic pressure at which significant differences are observed. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Xie, Xiaolong; Wu, Yang; Wang, Qi; Zhao, Yiyang; Chen, Guobin; Xiang, Bo
2017-08-08
Data of randomly controlled trials comparing the hydrostatic and pneumatic reduction for intussusception in pediatric patients as initial therapy are lacking. The aim of this study was to conduct a randomly controlled trial to compare the effectiveness and safety of the hydrostatic and pneumatic reduction techniques. All intussusception patients who visited West China Hospital of Sichuan University from January 2014 to December 2015 were enrolled in this study in which they underwent pneumatic reduction or hydrostatic reduction. Patients were randomized into ultrasound-guided hydrostatic or X-ray-guided pneumatic reduction group. The data collected includes demographic data, symptoms, signs, and investigations. The primary outcome of the study was the success rate of reduction. And the secondary outcomes of the study were the rates of intestinal perforations and recurrence. A total of 124 children with intussusception who had met the inclusion criteria were enrolled. The overall success rate of this study was 90.32%. Univariable analysis showed that the success rate of hydrostatic reduction with normal saline (96.77%) was significantly higher than that of pneumatic reduction with air (83.87%) (p=0.015). Perforation after reduction was found in only one of the pneumatic reduction group. The recurrence rate of intussusception in the hydrostatic reduction group was 4.84% compared with 3.23% of pneumatic reduction group. Our study found that ultrasound-guided hydrostatic reduction is a simple, safe and effective nonoperative treatment for pediatric patients suffering from intussusceptions, and should be firstly adopted in the treatment of qualified patients. Therapeutic study TYPE OF STUDY: Prospective study. Copyright © 2017 Elsevier Inc. All rights reserved.
Takai, Erica; Mauck, Robert L; Hung, Clark T; Guo, X Edward
2004-09-01
A new trabecular bone explant model was used to examine osteocyte-osteoblast interactions under DHP loading. DHP loading enhanced osteocyte viability as well as osteoblast function measured by osteoid formation. However, live osteocytes were necessary for osteoblasts to form osteoids in response to DHP, which directly show osteoblast-osteocyte interactions in this in vitro culture. A trabecular bone explant model was characterized and used to examine the effect of osteocyte and osteoblast interactions and dynamic hydrostatic pressure (DHP) loading on osteocyte viability and osteoblast function in long-term culture. Trabecular bone cores obtained from metacarpals of calves were cleaned of bone marrow and trabecular surface cells and divided into six groups, (1) live cores + dynamic hydrostatic pressure (DHP), (2) live cores + sham, (3) live cores + osteoblast + DHP, (4) live cores + osteoblast + sham, (5) devitalized cores + osteoblast + DHP, and (6) devitalized cores + osteoblast + sham, with four culture durations (2, 8, 15, and 22 days; n = 4/group). Cores from groups 3-6 were seeded with osteoblasts, and cores from groups 5 and 6 were devitalized before seeding. Groups 1, 3, and 5 were subjected to daily DHP loading. Bone histomorphometry was performed to quantify osteocyte viability based on morphology and to assess osteoblast function based on osteoid surface per bone surface (Os/Bs). TUNEL staining was performed to evaluate the mode of osteocyte death under various conditions. A portion of osteocytes remained viable for the duration of culture. DHP loading significantly enhanced osteocyte viability up to day 8, whereas the presence of seeded osteoblasts significantly decreased osteocyte viability. Cores with live osteocytes showed higher Os/Bs compared with devitalized cores, which reached significant levels over a greater range of time-points when combined with DHP loading. DHP loading did not increase Os/Bs in the absence of live osteocytes. The percentage of apoptotic cells remained the same regardless of treatment or culture duration. Enhanced osteocyte viability with DHP suggests the necessity of mechanical stimulation for osteocyte survival in vitro. Furthermore, osteocytes play a critical role in the transmission of signals from DHP loading to modulate osteoblast function. This explant culture model may be used for mechanotransduction studies in long-term cultures.
Ye, Mu; Lingham, Talaysha; Huang, Yaoxin; Ozbay, Gulnihal; Ji, Lin; Karwe, Mukund; Chen, Haiqiang
2015-06-01
The purpose of the study was to determine the effect of high-hydrostatic pressure (HHP) on inactivation of human norovirus (HuNoV) in oysters and to evaluate organoleptic characteristics of oysters treated at pressure levels required for HuNoV inactivation. Genogroup I.1 (GI.1) or Genogroup II.4 (GII.4) HuNoV was inoculated into oysters and treated at 300 to 600 MPa at 25 and 0 °C for 2 min. After HHP, viral particles were extracted by porcine gastric mucin-conjugated magnetic beads (PGM-MBs) and viral RNA was quantified by real-time RT-PCR. Lower initial temperature (0 °C) significantly enhanced HHP inactivation of HuNoV compared to ambient temperature (25 °C; P < 0.05). HHP at 350 and 500 MPa at 0 °C could achieve more than 4 log10 reduction of GII.4 and GI.1 HuNoV in oysters, respectively. HHP treatments did not significantly change color or texture of oyster tissue. A 1- to 5-scale hedonic sensory evaluation on appearance, aroma, color, and overall acceptability showed that pressure-treated oysters received significantly higher quality scores than the untreated control (P < 0.05). Elevated pressure levels at 450 and 500 MPa did not significantly affect scores compared to 300 MPa at 0 °C, indicating increasing pressure level did not affect sensory acceptability of oysters. Oysters treated at 0 °C had slightly lower acceptability than the group treated at room temperature on day 1 (P < 0.05), but after 1 wk storage, no significant difference in sensory attributes and consumer desirability was observed (P > 0.05). © 2015 Institute of Food Technologists®
USDA-ARS?s Scientific Manuscript database
Detection of human norovirus (HuNoV) usually relies on molecular biology techniques, such as qRT PCR. Since histo-blood group antigens (HBGAs) are the functional receptors for HuNoV, HuNoV can bind to porcine gastric mucin (PGM), which contains HBGA-like antigens. In this study, PGM conjugated magn...
46 CFR 56.97-30 - Hydrostatic tests (modifies 137.4).
Code of Federal Regulations, 2011 CFR
2011-10-01
... system is filling. (b) Test medium and test temperature. (1) Water will be used for a hydrostatic leak... joints, connections and of all regions of high stress, such as regions around openings and thickness... no time during the hydrostatic test may any part of the piping system be subjected to a stress...
46 CFR 56.97-30 - Hydrostatic tests (modifies 137.4).
Code of Federal Regulations, 2010 CFR
2010-10-01
... system is filling. (b) Test medium and test temperature. (1) Water will be used for a hydrostatic leak... joints, connections and of all regions of high stress, such as regions around openings and thickness... no time during the hydrostatic test may any part of the piping system be subjected to a stress...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-24
... degrees Fahrenheit ([deg]F) as a consequence of inservice leak and hydrostatic testing, and as a consequence of scram time testing initiated in conjunction with an inservice leak or hydrostatic test, while... [Limited Conditions of Operation] 3.10.1, Inservice Leak and Hydrostatic Testing Operation Using...
Three-D CFD Analysis of Hydrostatic Bearings
NASA Technical Reports Server (NTRS)
Lin, Shyi-Jang; Hibbs, Robert I., Jr.
1993-01-01
The hydrostatic bearing promises life and speed characteristics currently unachievable with rolling element bearings alone. In order to achieve the speed and life requirements of the next generation of rocket engines, turbopump manufacturers are proposing hydrostatic bearings to be used in place of, or in series with, rolling element bearings. The design of a hydrostatic bearing is dependent on accurate pressure in the bearing. The stiffness and damping of the hydrostatic bearing is very sensitive to the bearing recess pressure ratio. In the conventional approach, usually ad hoc assumptions were made in determining the bearing pressure of this approach is inherently incorrect. In the present paper, a more elaborate approach to obtain bearing pressure is used. The bearing pressure and complete flow features of the bearing are directly computed by solving the complete 3-D Navier Stokes equation. The code used in the present calculation is a modified version of REACT3D code. Several calculations have been performed for the hydrostatic bearing designed and tested at Texas A&M. Good agreement has been obtained between computed and test results. Detailed flow features in the bearing will also be described and discussed.
Hydrostatic pressure mimics gravitational pressure in characean cells
NASA Technical Reports Server (NTRS)
Staves, M. P.; Wayne, R.; Leopold, A. C.
1992-01-01
Hydrostatic pressure applied to one end of a horizontal Chara cell induces a polarity of cytoplasmic streaming, thus mimicking the effect of gravity. A positive hydrostatic pressure induces a more rapid streaming away from the applied pressure and a slower streaming toward the applied pressure. In contrast, a negative pressure induces a more rapid streaming toward and a slower streaming away from the applied pressure. Both the hydrostatic pressure-induced and gravity-induced polarity of cytoplasmic streaming respond identically to cell ligation, UV microbeam irradiation, external Ca2+ concentrations, osmotic pressure, neutral red, TEA Cl-, and the Ca2+ channel blockers nifedipine and LaCl3. In addition, hydrostatic pressure applied to the bottom of a vertically-oriented cell can abolish and even reverse the gravity-induced polarity of cytoplasmic streaming. These data indicate that both gravity and hydrostatic pressure act at the same point of the signal transduction chain leading to the induction of a polarity of cytoplasmic streaming and support the hypothesis that characean cells respond to gravity by sensing a gravity-induced pressure differential between the cell ends.
Hydrostatic pressure mimics gravitational pressure in characean cells.
Staves, M P; Wayne, R; Leopold, A C
1992-01-01
Hydrostatic pressure applied to one end of a horizontal Chara cell induces a polarity of cytoplasmic streaming, thus mimicking the effect of gravity. A positive hydrostatic pressure induces a more rapid streaming away from the applied pressure and a slower streaming toward the applied pressure. In contrast, a negative pressure induces a more rapid streaming toward and a slower streaming away from the applied pressure. Both the hydrostatic pressure-induced and gravity-induced polarity of cytoplasmic streaming respond identically to cell ligation, UV microbeam irradiation, external Ca2+ concentrations, osmotic pressure, neutral red, TEA Cl-, and the Ca2+ channel blockers nifedipine and LaCl3. In addition, hydrostatic pressure applied to the bottom of a vertically-oriented cell can abolish and even reverse the gravity-induced polarity of cytoplasmic streaming. These data indicate that both gravity and hydrostatic pressure act at the same point of the signal transduction chain leading to the induction of a polarity of cytoplasmic streaming and support the hypothesis that characean cells respond to gravity by sensing a gravity-induced pressure differential between the cell ends.
NASA Technical Reports Server (NTRS)
Nixon, C. A.; Achterberg, R. K.; Romani, P. N.; Allen, M.; Zhang, X.; Teanby, N. A.; Irwin, P. G. J.; Flasar, F. M.
2010-01-01
The following six tables give the retrieved temperatures and volume mixing ratios of C2H2 and C2H6 and the formal errors on these results from the retrieval, as described in the manuscript. These are in the form of two-dimensional tables, specified on a latitudinal and vertical grid. The first column is the pressure in bar, and the second column gives the altitude in kilometers calculated from hydrostatic equilibrium, and applies to the equatorial profile only. The top row of the table specifies the planetographic latitude.
NASA Technical Reports Server (NTRS)
Nixon, C. A.; Achterberg, R. K.; Romani, P. N.; Allen, M.; Zhang, X.; Irwin, P. G. J.; Flasar, F. M.
2010-01-01
The following six tables give the retrieved temperatures and volume mixing ratios of C2H2 and C2H6 and the formal errors on these results from the retrieval, as described in the manuscript. These are in the form of two-dimensional tables, specified on a latitudinal and vertical grid. The first column is the pressure in bar, and the second column gives the altitude in kilometers calculated from hydrostatic equilibrium, and applies to the equatorial profile only. The top row of the table specifies the planetographic latitude.
Barton, P.B.; Chou, I.-Ming
1993-01-01
Pressure is the most important of the intensive parameters for relating epirthemal mineralization to the geologic setting. This paper describes the limitations on pressure (and therefore depth) of mineralization that may reasonably be derived from simple observations on the behaviour of fluid inclusions. It is based on the reasonable model that mineralization occurs from a hydrostatically pressured NaCl-CO2-H2O fluid, consistent with the probability that H2O and CO2 are the only gases contributing significantly to the total pressure. -from Authors
Ye, Mu; Huang, Yaoxin; Gurtler, Joshua B; Niemira, Brendan A; Sites, Joseph E; Chen, Haiqiang
2013-05-15
The effects of storage conditions on subsequent high-hydrostatic pressure (HHP) inactivation of Vibrio parahaemolyticus and Vibrio vulnificus in oysters were investigated. Live oysters were inoculated with V. parahaemolyticus or V. vulnificus to ca. 7-8 log MPN/g by feeding and stored at varying conditions (i.e., 21 or 35 °C for 5h, 4 or 10 °C for 1 and 2 days and -18 °C for 2 weeks). Oyster meats were then treated at 225-300 MPa for 2 min at 4, 21 or 35 °C. HHP at 300 MPa for 2 min achieved a >5-log MPN/g reduction of V. parahaemolyticus, completely inactivating V. vulnificus (negative by enrichment) in oysters. Treatment temperatures of 4, 21 and 35 °C did not significantly affect pressure inactivation of V. parahaemolyticus or V. vulnificus (P>0.05). Cold storage at -18, 4 and 10 °C, prior to HHP, decreased V. parahaemolyticus or V. vulnificus populations by 1.5-3.0 log MPN/g, but did not increase their sensitivity to subsequent HHP treatments. The effects of cold storage after HHP on inactivation of V. parahaemolyticus in oysters were also determined. Oysters were inoculated with V. parahaemolyticus and stored at 21 °C for 5h or 4 °C for 1 day. Oyster meats were then treated at 250-300 MPa for 2 min at 21 or 35 °C and stored for 15 days in ice or in a freezer. V. parahaemolyticus populations in HHP-treated oysters gradually decreased during post-HHP ice or frozen storage. A validation study using whole-shell oysters was conducted to determine whether the presence of oyster shells influenced HHP inactivation of V. parahaemolyticus. No appreciable differences in inactivation between shucked oyster meat and whole-shell oysters were observed. HPP at 300 MPa for 2 min at 21 °C, followed by 5-day ice storage or 7-day frozen storage, and HPP at 250 MPa for 2 min at 21 °C, followed by 10-day ice or 7-day frozen storage, completely inactivated V. parahaemolyticus in whole-shell oysters (>7 log reductions). The combination of HHP at a relatively low pressure (e.g., 250 MPa) followed by short-term frozen storage (7 days) could potentially be applied by the shellfish industry as a post-harvest process to eliminate V. parahaemolyticus in oysters. Copyright © 2013 Elsevier B.V. All rights reserved.
Evolution of microstructure and precipitates in 2xxx aluminum alloy after severe plastic deformation
NASA Astrophysics Data System (ADS)
Adamczyk-Cieslak, B.; Zdunek, J.; Mizera, J.
2016-04-01
This paper investigates the influence of precipitation on the microstructure development in a 2xxx aluminum alloy subjected to hydrostatic extrusion. A three step reduction of the diameter was performed using hydrostatic extrusion (HE) process: from 20mm (initial state) to 10 mm, 5 mm and 3 mm, which corresponds to the logarithmic deformations ɛ = 1.4, ɛ = 2.8 and ɛ = 3.8 respectively. The microstructure and precipitation analysis before and after deformation was performed using transmission electron microscope (TEM), and scanning electron microscopy (SEM). As a result of the tests, a very significant influence of precipitation on the degree of refinement and mechanism of microstructure transformation was stated.
Yang, Zhi; Gu, Qinfen; Hemar, Yacine
2013-08-14
The gelatinization of waxy (very low amylose) and high-amylose maize starches by ultra-high hydrostatic pressure (up to 6 GPa) was investigated in situ using synchrotron X-ray powder diffraction on samples held in a diamond anvil cell (DAC). The starch pastes, made by mixing starch and water in a 1:1 ratio, were pressurized and measured at room temperature. X-ray diffraction pattern showed that at 2.7 GPa waxy starch, which displayed A-type XRD pattern at atmospheric pressure, exhibited a faint B-type-like pattern. The B-type crystalline structures of high-amylose starch were not affected even when 1.5 GPa pressure was applied. However, both waxy and high-amylose maize starches can be fully gelatinized at 5.9 GPa and 5.1 GPa, respectively. In the case of waxy maize starch, upon release of pressure (to atmospheric pressure) crystalline structure appeared as a result of amylopectin aggregation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ferguson, D R; Kennedy, I; Burton, T J
1997-01-01
1. The responses of rabbit urinary bladder to hydrostatic pressure changes and to electrical stimulation have been investigated using both the Ussing chamber and a superfusion apparatus. These experiments enabled us to monitor changes in both ionic transport across the tissue and cellular ATP release from it. 2. The urinary bladder of the rabbit maintains an electrical potential difference across its wall as a result largely of active sodium transport from the urinary (mucosal) to the serosal surface. 3. Small hydrostatic pressure differences produced by removal of bathing fluid from one side of the tissue caused reproducible changes in both potential difference and short-circuit current. The magnitude of these changes increases as the volume of fluid removed increases. 3. Amiloride on the mucosal (urinary), but not the serosal, surface of the membrane reduces the transepithelial potential difference and short-circuit current with an IC50 of 300 nM. Amiloride reduces the size of, but does not abolish, transepithelial potential changes caused by alterations in hydrostatic pressure. 4. Field electrical stimulation of strips of bladder tissue produces a reproducible release of ATP. Such release was demonstrated to occur largely from urothelial cells and is apparently non-vesicular as it increases in the absence of calcium and is not abolished by tetrodotoxin. 5. It is proposed that ATP is released from the urothelium as a sensory mediator for the degree of distension of the rabbit urinary bladder and other sensory modalities. PMID:9423189
Javanmard, F; Azadbakht, M; Pourmoradi, M
2016-01-01
In this study, the role of hydrostatic pressure on staurosporine-induced neural differentiation in mouse bone marrow mesenchymal stem cells were investigated. The cells were cultured in treatment medium containing 100 nM of staurosporine for 4 hours; then the cells were affected by hydrostatic pressure (0, 25,50, 100 mmHg). The percentage of cell viability by trypan blue staining and the percentage of cell death by Hoechst/PI differential staining were assessed. We obtained the total neurite length. Expression of β-tubulin III and GFAP (Glial fibrillary acidic protein) proteins were also analyzed by immunocytochemistry. The percentage of cell viability in treatments decreased relative to the increase in hydrostatic pressure and time (p Keywords: bone marrow mesenchymal stem cell, hydrostatic pressure, immunocytochemistry, neural differentiation, neurite length, cell differentiation.
High-pressure resistivity technique for quasi-hydrostatic compression experiments.
Rotundu, C R; Ćuk, T; Greene, R L; Shen, Z-X; Hemley, Russell J; Struzhkin, V V
2013-06-01
Diamond anvil cell techniques are now well established and powerful methods for measuring materials properties to very high pressure. However, high pressure resistivity measurements are challenging because the electrical contacts attached to the sample have to survive to extreme stress conditions. Until recently, experiments in a diamond anvil cell were mostly limited to non-hydrostatic or quasi-hydrostatic pressure media other than inert gases. We present here a solution to the problem by using focused ion beam ultrathin lithography for a diamond anvil cell loaded with inert gas (Ne) and show typical resistivity data. These ultrathin leads are deposited on the culet of the diamond and are attaching the sample to the anvil mechanically, therefore allowing for measurements in hydrostatic or nearly hydrostatic conditions of pressure using noble gases like Ne or He as pressure transmitting media.
Pelaez, Daniel; Huang, Chun-Yuh Charles; Cheung, Herman S
2009-01-01
Mechanical loading has long been shown to modulate cartilage-specific extracellular matrix synthesis. With joint motion, cartilage can experience mechanical loading in the form of compressive, tensile or shearing load, and hydrostatic pressure. Recent studies have demonstrated the capacity of unconfined cyclic compression to induce chondrogenic differentiation of human mesenchymal stem cell (hMSC) in agarose culture. However, the use of a nonbiodegradable material such as agarose limits the applicability of these constructs. Of the possible biocompatible materials available for tissue engineering, fibrin is a natural regenerative scaffold, which possesses several desired characteristics including a controllable degradation rate and low immunogenicity. The objective of the present study was to determine the capability of fibrin gels for supporting chondrogenesis of hMSCs under cyclic compression. To optimize the system, three concentrations of fibrin gel (40, 60, and 80 mg/mL) and three different stimulus frequencies (0.1, 0.5, and 1.0 Hz) were used to examine the effects of cyclic compression on viability, proliferation and chondrogenic differentiation of hMSCs. Our results show that cyclic compression (10% strain) at frequencies >0.5 Hz and gel concentration of 40 mg/mL fibrinogen appears to maintain cellular viability within scaffolds. Similarly, variations in gel component concentration and stimulus frequency can be modified such that a significant chondrogenic response can be achieved by hMSC in fibrin constructs after 8 h of compression spread out over 2 days. This study demonstrates the suitability of fibrin gel for supporting the cyclic compression-induced chondrogenesis of mesenchymal stem cells.
Burst Ductility of Zirconium Clads: The Defining Role of Residual Stress
NASA Astrophysics Data System (ADS)
Kumar, Gulshan; Kanjarla, A. K.; Lodh, Arijit; Singh, Jaiveer; Singh, Ramesh; Srivastava, D.; Dey, G. K.; Saibaba, N.; Doherty, R. D.; Samajdar, Indradev
2016-08-01
Closed end burst tests, using room temperature water as pressurizing medium, were performed on a number of industrially produced zirconium (Zr) clads. A total of 31 samples were selected based on observed differences in burst ductility. The latter was represented as total circumferential elongation or TCE. The selected samples, with a range of TCE values (5 to 35 pct), did not show any correlation with mechanical properties along axial direction, microstructural parameters, crystallographic textures, and outer tube-surface normal ( σ 11) and shear ( τ 13) components of the residual stress matrix. TCEs, however, had a clear correlation with hydrostatic residual stress ( P h), as estimated from tri-axial stress analysis on the outer tube surface. Estimated P h also scaled with measured normal stress ( σ 33) at the tube cross section. An elastic-plastic finite element model with ductile damage failure criterion was developed to understand the burst mechanism of zirconium clads. Experimentally measured P h gradients were imposed on a solid element continuum finite element (FE) simulation to mimic the residual stresses present prior to pressurization. Trends in experimental TCEs were also brought out with computationally efficient shell element-based FE simulations imposing the outer tube-surface P h values. Suitable components of the residual stress matrix thus determined the burst performance of the Zr clads.
Acoustic cymbal performance under hydrostatic pressure
NASA Astrophysics Data System (ADS)
Jenne, Kirk E.; Huang, Dehua; Howarth, Thomas R.
2004-05-01
Continual awareness about the need to develop light-weight, low-volume, broadband, underwater acoustic projector and receive arrays that perform consistently in diverse environments is evident in recent Navy acoustic system initiatives. Acoustic cymbals, so named for resemblance to the percussive musical instruments, are miniature flextensional transducers that may perhaps meet the performance criteria for consistent performance under hydrostatic pressure after modifications in the design. These acoustic cymbals consist of a piezoceramic disk (or ring) bonded to two opposing cymbal-shaped metal shells. Operating as mechanical transformers, the two metal shells convert the large generative force inherently within the disk's radial mode into increased volume displacement at the metal shell surface to obtain volume displacement that translates into usable source levels and/or sensitivities at sonar frequencies in a relatively broad band. The air-backed design for standard acoustic cymbal transducers presents a barrier to deepwater applications. A new acoustic cymbal design for high-pressure applications will be presented for the first time. This practical pressure compensation is designed to diminish the effects of hydrostatic pressure to maintain consistent acoustic cymbal performance. Transmit and receive performance data, determined at the Naval Undersea Warfare Center's (NUWC) Acoustic Pressure Tank Facility (APTF), is presented.
Spira, Paz; Bisconsin-Junior, Antonio; Rosenthal, Amauri; Monteiro, Magali
2018-01-01
The effect of high hydrostatic pressure on antioxidant activity, total phenolic compounds, physicochemical characteristics, color, pectin methylesterase activity, and microbiological count were evaluated during the shelf life of Pêra-Rio orange juice. Pressurized (520 MPa, 60 ℃, for 360 s), non-processed and pasteurized (95 ℃/30 s) orange juice were compared at zero time of storage. Pressurized and pasteurized juices were studied during a refrigerated 90-day shelf life. Pressurization did not cause expressive change in physicochemical characteristics of Pêra-Rio orange juice along shelf life, but significantly reduced pectin methylesterase residual activity to 13% and microbiological counts below detection levels up to 68 days of storage, with small counts (30.0 × 10 CFU/mL mesophilic aerobic bacteria and 20.7 × 10 CFU/mL yeast and mold) at 90 days, capable of ensuring the juice's stability along shelf life. Lightness ( L*) and b* values were significantly reduced by high hydrostatic pressure during shelf life, while a* values were significantly higher. Ascorbic acid decreased around 80% during shelf life. Antioxidant activity remained stable after processing and during storage.
A simple explanation of the classic hydrostatic paradox
NASA Astrophysics Data System (ADS)
Kontomaris, Stylianos-Vasileios; Malamou, Anna
2016-07-01
An interesting problem in fluid mechanics, with significant educational importance, is the classic hydrostatic paradox. The hydrostatic paradox states the fact that in different shaped containers, with the same base area, which are filled with a liquid of the same height, the applied force by the liquid on the base of each container is exactly the same. However, if the shape of the container is different, the amount of the liquid (and as a consequence the weight) can greatly vary. In this paper, a simple explanation of the hydrostatic paradox, specifically designed and implemented for educational purposes regarding secondary education, is provided.
A Simple Explanation of the Classic Hydrostatic Paradox
ERIC Educational Resources Information Center
Kontomaris, Stylianos-Vasileios; Malamou, Anna
2016-01-01
An interesting problem in fluid mechanics, with significant educational importance, is the classic hydrostatic paradox. The hydrostatic paradox states the fact that in different shaped containers, with the same base area, which are filled with a liquid of the same height, the applied force by the liquid on the base of each container is exactly the…
Corrosion anisotropy of titanium deformed by the hydrostatic extrusion
NASA Astrophysics Data System (ADS)
Chojnacka, A.; Kawalko, J.; Koscielny, H.; Guspiel, J.; Drewienkiewicz, A.; Bieda, M.; Pachla, W.; Kulczyk, M.; Sztwiertnia, K.; Beltowska-Lehman, E.
2017-12-01
The corrosion behaviour of titanium rods deformed by hydrostatic extrusion (HE) in artificial saliva (Carter-Brugirard's solution of pH 7.6) was investigated using open-circuit potentials (OCPs), (DC) potentiodynamic polarisation curves and (AC) electrochemical impedance spectroscopy (EIS) techniques. Various electrochemical parameters (corrosion potential Ecorr, corrosion current (icorr), polarisation resistance Rp, charge transfer resistance Rct and oxide film resistance Rf) were analysed. Significant coherence was observed between results achieved from these procedures, i.e., all applied techniques showed the same trend for corrosion resistance. The obtained electrochemical data were then related to the microstructure parameters (crystallographic texture, grain size, grain boundary distribution and density) determined using the EBSD/SEM technique. It was found that the corrosion behaviour of titanium processed by the HE method was superior compared to the unprocessed Ti, and this was clearly dependent on the extrusion direction. The highest corrosion resistance was revealed for the HE-deformed Ti rod of the surface oriented longitudinal (parallel) to the extrusion direction.
Liu, Hang; Fan, Huanhuan; Cao, Rong; Blanchard, Christopher; Wang, Min
2016-11-01
A nonthermal processing technology, high hydrostatic pressure (HHP) treatment, was investigated to assess its influence on the physicochemical properties and in vitro digestibility of sorghum starch (SS). There was no change in the 'A'-type crystalline pattern of SS after the pressure treatments at 120-480MPa. However, treatment at 600MPa produced a pattern similar to 'B'-type crystalline. HHP treatment also resulted in SS granules with rough surfaces. Measured amylose content, water absorption capacity, alkaline water retention, pasting temperature and thermostability increased with increasing pressure levels, while the oil absorption capacity, swelling power, relative crystallinity and viscosity decreased. Compared with native starch, HHP-modified SS samples had lower in vitro hydrolysis, reduced amount of rapidly digestible starch, as well as increased levels of slowly digestible starch and resistant starch. These results indicate that HHP treatment is an effective modification method for altering in vitro digestibility and physicochemical properties of SS. Copyright © 2016 Elsevier B.V. All rights reserved.
49 CFR 178.803 - Testing and certification of IBCs.
Code of Federal Regulations, 2010 CFR
2010-10-01
... IBCs Vibration 6 X 6 X 6 X 6 X 6 X 1.5 X Bottom lift 2 X X X X X Top lift 2 X 2 X 2 X 2,5 X Stacking 7... one of the bottom lift or top lift tests must be performed. 3 The leakproofness and hydrostatic...
Cyclic hydrostatic pressure stimulates enhanced bone development in the foetal chick femur in vitro.
Henstock, J R; Rotherham, M; Rose, J B; El Haj, A J
2013-04-01
Mechanical loading of bone and cartilage in vivo results in the generation of cyclic hydrostatic forces as bone compression is transduced to fluid pressure in the canalicular network and the joint synovium. It has therefore been suggested that hydrostatic pressure is an important stimulus by which osteochondral cells and their progenitors sense and respond to mechanical loading in vivo. In this study, hydrostatic pressure regimes of 0-279kPa at 0.005-2Hz were applied to organotypically cultured ex vivo chick foetal femurs (e11) for 1hour per day in a custom designed bioreactor for 14days and bone formation assessed by X-ray microtomography and qualified by histology. We found that the mineralised portion of the developing femur cultured under any cyclic hydrostatic pressure regime was significantly larger and/or denser than unstimulated controls but that constant (non-cycling) hydrostatic pressure had no effect on bone growth. Further experiments showed that the increase in bone formation was directly proportional to stimulation frequency (R(2)=0.917), but independent of the magnitude of the pressure applied, whilst even very low frequencies of stimulation (0.005Hz) had significant effects on bone growth. Expression of Type-II collagen in both epiphyses and diaphysis was significantly upregulated (1.48-fold and 1.95-fold respectively), together with osteogenic genes (osteonectin and osteopontin) and the osteocyte maturation marker CD44. This work demonstrates that cyclic hydrostatic pressure promotes bone growth and mineralisation in a developmental model and supports the hypothesis that hydrostatic forces play an important role in regulating bone growth and remodelling in vivo. Copyright © 2013 Elsevier Inc. All rights reserved.
Hydrostatic Water Level Systems At Homestake DUSEL
NASA Astrophysics Data System (ADS)
Stetler, L. D.; Volk, J. T.
2009-12-01
Two arrays of Fermilab-style hydrostatic water level sensors have been installed in the former Homestake gold mine in Lead, SD, the site of the new Deep Underground Science and Engineering Laboratory (DUSEL). Sensors were constructed at Fermilab from 8.5 cm diameter PVC pipe (housing) that was sealed on the ends and fit with a proximity sensor. The instrument have a height of 10 cm. Two ports in each sensor housing provide for connectivity, the upper port for air and the bottom port for water. Multiple instruments connected in series provide a precise water level and differences in readings between successive sensors provide for ground tilt to be resolved. Sensor resolution is 5 μm per count and has a range of approximately 1.25 cm. Data output from each sensor is relayed to a Fermilab-constructed readout card that also has temperature/relative humidity and barometric pressure sensors connected. All data are relayed out of the mine by fiber optic cable and can be recorded by Ethernet at remote locations. The current arrays have been installed on the 2000-ft level (610 m) and consist of six instruments in each array. Three sensors were placed in a N-S oriented drift and three in an E-W oriented drift. Using this orientation, it is anticipated that tilt direction may be resolved in addition to overall tilt magnitude. To date the data show passage of earth tides and frequency analysis has revealed five components to this signal, three associated with the semi-diurnal (~12.4 hr) and two with the diurnal (~24.9 hr) tides. Currently, installation methods are being analyzed between concrete pillar and rib-mounting using the existing setup on the 2000-ft level. Using these results, two additional arrays of Fermilab instruments will be installed on the 4550-ft and 4850-ft levels (1387 and 1478 m, respectively). In addition to Fermilab instruments, several high resolution Budker tiltmeters (1 μm resolution) will be installed in the mine workings in the near future, some correlated to Fermilab instruments (for comparative analysis) and others in independent arrays. All tiltmeter data will be analyzed with water reduction data (currently being collected from the #6 winze as the mine is dewatered) and data from rock stress/fracture experiments to document net ground settling due to dewatering, potential collapse of stope areas and renewed excavation activities.
NASA Astrophysics Data System (ADS)
Jiang, JianJun; Li, HePing; Dai, LiDong; Hu, HaiYing; Zhao, ChaoShuai
2016-03-01
The Raman spectroscopy of natural molybdenite powder was investigated at simultaneous conditions of high temperature and high pressure in a heatable diamond anvil cell (DAC), to obtain the temperature and pressure dependence of the main Raman vibrational modes (E1g, E2 g 1 ,A1g, and 2LA(M)). Over our experimental temperature and pressure range (300-600 K and 1 atm-18.5 GPa), the Raman modes follow a systematic blue shift with increasing pressure, and red shift with increasing temperature. The results were calculated by three-variable linear fitting. The mutual correlation index of temperature and pressure indicates that the pressure may reduce the temperature dependence of Raman modes. New Raman bands due to structural changes emerged at about 3-4 GPa lower than seen in previous studies; this may be caused by differences in the pressure hydrostaticity and shear stress in the sample cell that promote the interlayer sliding.
NASA Astrophysics Data System (ADS)
Queiroz, C.; Moreira, C. F. F.; Lavinas, F. C.; Lopes, M. L. M.; Fialho, E.; Valente-Mesquita, V. L.
2010-12-01
The cashew apple is native to Brazil, but there is insufficient information regarding the nutritional properties of this fruit. The objective of this study was to evaluate the impact of high pressure processing (HPP) at room temperature (25 °C) on phenolic compound and ascorbic acid contents and antioxidant capacity of cashew apple juice. This study showed that HPP at 250 or 400 MPa for 3, 5 and 7 min did not change pH, acidity, total soluble solids, ascorbic acid or hydrolysable polyphenol contents. However, juice pressurized for 3 and 5 min showed higher soluble polyphenol contents. Antioxidant capacity, measured by the ferric-reducing antioxidant power method, was not altered by HPP, but when treated at 250 MPa for 3 min, it resulted in an increased value when 2,2-diphenyl-1-picrylhydrazyl was used. These data demonstrate that HPP can be used in the food industry for the generation of products with higher nutritional quality.
Maintaining viability of white clover under very high pressure
NASA Astrophysics Data System (ADS)
Nishihira, N.; Iwasaki, T.; Shinpou, R.; Hara, A.; Ono, F.; Hada, Y.; Mori, Y.; Takarabe, K.; Saigusa, M.; Matsushima, Y.; Saini, N. L.; Yamashita, M.
2012-06-01
The high pressure technique developed in physics may give a new possibility if it is applied to a biological study. We have been studying the tolerance of small living samples such as planktons and mosses, and found that all of them were alive after exposed to extremely high hydrostatic pressure of 7.5 GPa. This technique has been extended to a higher plant Trifolium lepens L. (white clover). A few seeds of white clover were exposed to 7.5 GPa for up to 6 days. After the pressure was released, they were seeded on agar, or directly on sowing soil. Seventeen out of the total 22 seeds exposed to the high pressure were found to be alive. Those exposed for up to 1 day and seeded on agar germinated roots. Those exposed for up to 1 h and seeded on soil germinated stems and leaves. The present technique has the possibility of being applied to improve breed of plants and to discover a very strong species that stands against very severe environmental conditions.
46 CFR 61.05-5 - Preparation of boilers for inspection and test.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Preparation of boilers for inspection and test. 61.05-5... PERIODIC TESTS AND INSPECTIONS Tests and Inspections of Boilers § 61.05-5 Preparation of boilers for... preparing the boilers for the hydrostatic test, they shall be filled with water at not less than 70 °F. and...
NASA Astrophysics Data System (ADS)
Kenesei, Gy; Jónás, G.; Salamon, B.; Dalmadi, I.
2017-10-01
In this work, slices of Longissimus dorsi of pork was used as raw material to establish the effects of the sous-vide technology and the high hydrostatic pressure treatments (and their combinations) on meat. The state of the proteins in meat has a very important effect on several quality parameters of the product, such as weight loss, water holding capacity, organoleptic properties. Therefore it is important to follow and analyse the denaturation of the protein content during food processing. The samples were cooked sous-vide (60 °C, 5-480 minutes) or pressurized (100-600 MPa, 5 minutes, room temperature). Also two steps treatments were studied combining both technologies, applying high hydrostatic pressure treatment (300 or 600 MPa, 5 minutes, room temperature) after or previous to sous-vide cooking (60 °C, 30 minutes). The changes in the condition of meat proteins were followed by a differential scanning calorimeter. The DSC curves were analysed using the unit’s own software where denaturation heat was determined. Thermograms show through the change of the sample’s protein state the dissimilar effect of the treatments. Using the Polar Qualification System -previously proved to be effective with NIR measurements- the spectral information was reduced to a two dimensional polar co-ordinate system where each DSC curve is represented by a “quality point”. As a new experiment the applied PQS data reduction method compared to the traditional thermal analysis data processing gave us less information on the differences of our samples although the results are promising as we were able to detect the same trends and characteristics.
NASA Astrophysics Data System (ADS)
Christenson, B. W.; White, S.; Britten, K.; Scott, B. J.
2017-10-01
White Island has a long and varied history of acid spring discharge and shallow ephemeral lake formation on its main crater floor. In the 12 months prior to the onset of the 1976-2000 eruptive episode, mass discharge from the spring system increased ca. 10-fold, pointing to a strong coupling of the hydrothermal environment to the evolving magmatic system. Between 1976 and 1978, the formation of numerous eruption vents to 200 m depth in the Western Sub-crater abruptly changed the hydraulic gradients in the volcano, resulting in the reversal of groundwater flow in the massif towards the newly-formed crater(s). This affected not only the style of volcanic activity (leading to phreatic-phreatomagmatic-magmatic eruption cycles), but also led to the demise of the spring system, with discharge from the main crater declining by a factor > 100 by 1979. Eruptive activity ended shortly after a moderate Strombolian eruption in mid-2000, after which ephemeral lakes started to form in the eruption crater complex. Between 2003 and 2015 there were three complete lake filling and evaporative cycles, reflecting varying heat flow through the conduit system beneath the lake. Over these cycles, lake water concentrations of Cl and SO4 varied between ca. 35-150 and 5-45 g/L respectively, with pH values temporally ranging from + 1.5 to - 1. Springs appeared on the Main Crater floor in 2004, and their discharges varied with lake level, pointing to the lake level being a primary control over the piezometric surface in the crater area. Springs closest to the crater complex show direct evidence of crater lake water infiltration into the crater floor aquifer, whereas distal spring discharges show compositional variations reflecting vertical displacement of the interface between shallow, dilute condensate and underlying acidic brine fluids. Source components for the spring fluids include magmatic vapour, dissolved andesitic host rocks, seawater and meteoric water. Lake waters, on the other hand, consist predominantly of magmatic vapour, meteoric water and solutes derived from host andesites and their altered derivatives. δ2H and δ18O signatures of the enclosing acid brine fluids, indicate they are predominantly seawater which have been affected by both vapour loss, but also mixing with arc-type vapour. An interesting finding of this study is that crater floor deformation correlates directly to both lake level and volatile emissions, in an apparent poroelastic response to the establishment of a hydrostatic water column in the eruption crater complex, and a net decrease in permeability owing to hydrothermal mineralization in the conduit (predominantly elemental sulfur and sulfate minerals). The hydrostatic pressurization of the vent environment also leads to increased gas pressures and flows through fumarolic channels, and consequent expansion of fumarolic areas on the main crater floor. A period of unrest, which commenced in August 2012 and lasted until October 2013, included the extrusion of a small dome into the eruption crater complex. This activity, and related high heat flow, led once again to evaporation of the lake, and ongoing phreatic eruption activity which has provided interesting insights into the role which elemental sulfur, associated hydrothermal alteration minerals and of course water play in regulating pressures in the magmatic-hydrothermal environment.
Li, Wang; Pan, Jian; Xie, Huiming; Yang, Yi; Zhou, Dianfei; Zhu, Zhaona
2012-10-01
The inactivation of the selected vegetative bacteria Escherichia coli, Listeria innocua, and Lactobacillus plantarum by high hydrostatic pressure (HHP) in physiological saline (PS) and in four fruit juices with pHs ranging from 3.4 to 6.3, with or without dissolved CO(2), was investigated. The inactivation effect of HHP on the bacteria was greatly enhanced by dissolved CO(2). Effective inactivation (>7 log) was achieved at 250 MPa for E. coli and 350 MPa for L. innocua and L. plantarum in the presence of 0.2 M CO(2) at room temperature for 15 min in PS, with additional inactivation of more than 4 log for all three bacteria species compared with the results with HHP treatment alone. The combined inactivation by HHP and CO(2) in tomato juice of pH 4.2 and carrot juice of pH 6.3 showed minor differences compared with that in PS. By comparison, the combined effect in orange juice of pH 3.8 was considerably promoted, while the HHP inactivation was enhanced only to a limited extent. In another orange juice with a pH of 3.4, all three strains lost their pressure resistance. HHP alone completely inactivated E. coli at relatively mild pressures of 200 MPa and L. innocua and L. plantarum at 300 MPa. Observations of the survival of the bacteria in treated juices also showed that the combined treatment caused more sublethal injury, which increased further inactivation at a relatively mild pH of 4.2 during storage. The results indicated that the combined treatment of HHP with dissolved CO(2) may provide an effective method for the preservation of low- or medium-acid fruit and vegetable juices at relatively low pressures. HHP alone inactivated bacteria effectively in high-acid fruit juice.
Vanlint, Dietrich; Pype, Brecht J Y; Rutten, Nele; Vanoirbeek, Kristof G A; Michiels, Chris W; Aertsen, Abram
2013-08-16
Application of high hydrostatic pressure (HHP) constitutes a valuable non-thermal pasteurization process in modern food conservation. Triggered by our interest in the rapid adaptive evolution towards HHP resistance in the food-borne pathogen E. coli O157:H7 (strain ATCC 43888) that was demonstrated earlier, we used genetic screening to identify specific loci in which a loss-of-function mutation would be sufficient to markedly increase HHP survival. As such, individual loss of RssB (anti RpoS-factor), CRP (catabolite response protein) and CyaA (adenylate cyclase) were each found to confer significant HHP resistance in the 300MPa range (i.e. >1,000-fold), and this phenotype invariably coincided with increased resistance against heat as well. In contrast to loss of RssB, however, loss of CRP or CyaA also conferred significantly increased resistance to 600MPa (i.e. >10,000-fold), suggesting cAMP/CRP homeostasis to affect extreme HHP resistance independently of increased RpoS activity. Surprisingly, none of the rapidly emerging HHP-resistant mutants of ATCC 43888 that were isolated previously did incur any mutations in rssB, crp or cyaA, indicating that a number of other loci can guide the rapid emergence of HHP resistance in E. coli O157:H7 as well. The inability of spontaneous rssB, crp or cyaA mutants to emerge during selective enrichment under HHP selection likely stems from their decreased competitive fitness during growth. Overall, this study is the first to shed light on the possible genetic strategies supporting the acquisition of HHP resistance in E. coli O157:H7. Copyright © 2013 Elsevier B.V. All rights reserved.
Morimoto, Naoki; Jinno, Chizuru; Mahara, Atsushi; Sakamoto, Michiharu; Kakudo, Natsuko; Inoie, Masukazu; Fujisato, Toshia; Suzuki, Shigehiko; Kusumoto, Kenji; Yamaoka, Tetsuji
2016-01-01
We previously reported that human nevus tissue was inactivated after high hydrostatic pressure (HHP) higher than 200 MPa and that human cultured epidermis (hCE) engrafted on the pressurized nevus at 200 MPa but not at 1000 MPa. In this study, we explore the changes to the epidermal basement membrane in detail and elucidate the cause of the difference in hCE engraftment. Nevus specimens of 8 mm in diameter were divided into five groups (control and 100, 200, 500, and 1000 MPa). Immediately after HHP, immunohistochemical staining was performed to detect the presence of laminin-332 and type VII collagen, and the specimens were observed by transmission electron microscopy (TEM). hCE was placed on the pressurized nevus specimens in the 200, 500, and 1000 MPa groups and implanted into the subcutis of nude mice; the specimens were harvested at 14 days after implantation. Then, human keratinocytes were seeded on the pressurized nevus and the attachment was evaluated. The immunohistochemical staining results revealed that the control and 100 MPa, 200 MPa, and 500 MPa groups were positive for type VII collagen and laminin-332 immediately after HHP. TEM showed that, in all of the groups, the lamina densa existed; however, anchoring fibrils were not clearly observed in the 500 or 1000 MPa groups. Although the hCE took in the 200 and 500 MPa groups, keratinocyte attachment was only confirmed in the 200 MPa group. This result indicates that HHP at 200 MPa is preferable for inactivating nevus tissue to allow its reuse for skin reconstruction in the clinical setting.
Revealing H2D+ Depletion and Compact Structure in Starless and Protostellar Cores with ALMA
NASA Astrophysics Data System (ADS)
Friesen, R. K.; Di Francesco, J.; Bourke, T. L.; Caselli, P.; Jørgensen, J. K.; Pineda, J. E.; Wong, M.
2014-12-01
We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of the submillimeter dust continuum and H2D+ 110-111 emission toward two evolved, potentially protostellar cores within the Ophiuchus molecular cloud, Oph A SM1 and SM1N. The data reveal small-scale condensations within both cores, with mass upper limits of M <~ 0.02 M ⊙ (~20 M Jup). The SM1 condensation is consistent with a nearly symmetric Gaussian source with a width of only 37 AU. The SM1N condensation is elongated and extends 500 AU along its major axis. No evidence for substructure is seen in either source. A Jeans analysis indicates that these sources are unlikely to fragment, suggesting that both will form single stars. H2D+ is only detected toward SM1N, offset from the continuum peak by ~150-200 AU. This offset may be due to either heating from an undetected, young, low-luminosity protostellar source or first hydrostatic core, or HD (and consequently H2D+) depletion in the cold center of the condensation. We propose that SM1 is protostellar and that the condensation detected by ALMA is a warm (T ~ 30-50 K) accretion disk. The less concentrated emission of the SM1N condensation suggests that it is still starless, but we cannot rule out the presence of a low-luminosity source, perhaps surrounded by a pseudodisk. These data observationally reveal the earliest stages of the formation of circumstellar accretion regions and agree with theoretical predictions that disk formation can occur very early in the star formation process, coeval with or just after the formation of a first hydrostatic core or protostar.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlüter, Steffen; Berg, Steffen; Li, Tianyi
2017-06-01
The relaxation dynamics toward a hydrostatic equilibrium after a change in phase saturation in porous media is governed by fluid reconfiguration at the pore scale. Little is known whether a hydrostatic equilibrium in which all interfaces come to rest is ever reached and which microscopic processes govern the time scales of relaxation. Here we apply fast synchrotron-based X-ray tomography (X-ray CT) to measure the slow relaxation dynamics of fluid interfaces in a glass bead pack after fast drainage of the sample. The relaxation of interfaces triggers internal redistribution of fluids, reduces the surface energy stored in the fluid interfaces, andmore » relaxes the contact angle toward the equilibrium value while the fluid topology remains unchanged. The equilibration of capillary pressures occurs in two stages: (i) a quick relaxation within seconds in which most of the pressure drop that built up during drainage is dissipated, a process that is to fast to be captured with fast X-ray CT, and (ii) a slow relaxation with characteristic time scales of 1–4 h which manifests itself as a spontaneous imbibition process that is well described by the Washburn equation for capillary rise in porous media. The slow relaxation implies that a hydrostatic equilibrium is hardly ever attained in practice when conducting two-phase experiments in which a flux boundary condition is changed from flow to no-flow. Implications for experiments with pressure boundary conditions are discussed.« less
46 CFR 56.97-30 - Hydrostatic tests (modifies 137.4).
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 2 2012-10-01 2012-10-01 false Hydrostatic tests (modifies 137.4). 56.97-30 Section 56.97-30 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND APPURTENANCES Pressure Tests § 56.97-30 Hydrostatic tests (modifies 137.4). (a) Provision of air vents at high points. Vents must be...
Araujo, Thaís L S; Borges, Julio Cesar; Ramos, Carlos H; Meyer-Fernandes, José Roberto; Oliveira Júnior, Reinaldo S; Pascutti, Pedro G; Foguel, Debora; Palhano, Fernando L
2014-05-13
We investigated the folding of the 70 kDa human cytosolic inducible protein (Hsp70) in vitro using high hydrostatic pressure as a denaturing agent. We followed the structural changes in Hsp70 induced by high hydrostatic pressure using tryptophan fluorescence, molecular dynamics, circular dichroism, high-performance liquid chromatography gel filtration, dynamic light scattering, ATPase activity, and chaperone activity. Although monomeric, Hsp70 is very sensitive to hydrostatic pressure; after pressure had been removed, the protein did not return to its native sate but instead formed oligomeric species that lost chaperone activity but retained ATPase activity.
A high-order staggered finite-element vertical discretization for non-hydrostatic atmospheric models
Guerra, Jorge E.; Ullrich, Paul A.
2016-06-01
Atmospheric modeling systems require economical methods to solve the non-hydrostatic Euler equations. Two major differences between hydrostatic models and a full non-hydrostatic description lies in the vertical velocity tendency and numerical stiffness associated with sound waves. In this work we introduce a new arbitrary-order vertical discretization entitled the staggered nodal finite-element method (SNFEM). Our method uses a generalized discrete derivative that consistently combines the discontinuous Galerkin and spectral element methods on a staggered grid. Our combined method leverages the accurate wave propagation and conservation properties of spectral elements with staggered methods that eliminate stationary (2Δ x) modes. Furthermore, high-order accuracymore » also eliminates the need for a reference state to maintain hydrostatic balance. In this work we demonstrate the use of high vertical order as a means of improving simulation quality at relatively coarse resolution. We choose a test case suite that spans the range of atmospheric flows from predominantly hydrostatic to nonlinear in the large-eddy regime. Lastly, our results show that there is a distinct benefit in using the high-order vertical coordinate at low resolutions with the same robust properties as the low-order alternative.« less
A high-order staggered finite-element vertical discretization for non-hydrostatic atmospheric models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guerra, Jorge E.; Ullrich, Paul A.
Atmospheric modeling systems require economical methods to solve the non-hydrostatic Euler equations. Two major differences between hydrostatic models and a full non-hydrostatic description lies in the vertical velocity tendency and numerical stiffness associated with sound waves. In this work we introduce a new arbitrary-order vertical discretization entitled the staggered nodal finite-element method (SNFEM). Our method uses a generalized discrete derivative that consistently combines the discontinuous Galerkin and spectral element methods on a staggered grid. Our combined method leverages the accurate wave propagation and conservation properties of spectral elements with staggered methods that eliminate stationary (2Δ x) modes. Furthermore, high-order accuracymore » also eliminates the need for a reference state to maintain hydrostatic balance. In this work we demonstrate the use of high vertical order as a means of improving simulation quality at relatively coarse resolution. We choose a test case suite that spans the range of atmospheric flows from predominantly hydrostatic to nonlinear in the large-eddy regime. Lastly, our results show that there is a distinct benefit in using the high-order vertical coordinate at low resolutions with the same robust properties as the low-order alternative.« less
Choi, Sungjoon; Lee, Haksue; Moon, Wonkyu
2010-09-01
Although an air-backed thin plate is an effective sound receiver structure, it is easily damaged via pressure unbalance caused by external hydrostatic pressure. To overcome this difficulty, a simple pressure-balancing module is proposed. Despite its small size and relative simplicity, with proper design and operation, micro-channel structure provides a solution to the pressure-balancing problem. If the channel size is sufficiently small, the gas-liquid interface may move back and forth without breach by the hydrostatic pressure since the surface tension can retain the interface surface continuously. One input port of the device is opened to an intermediate liquid, while the other port is connected to the air-backing chamber. As the hydrostatic pressure increases, the liquid in the micro-channel compresses the air, and the pressure in the backing chamber is then equalized to match the external hydrostatic pressure. To validate the performance of the proposed mechanism, a micro-channel prototype is designed and integrated with the piezoelectric micro-machined flexural sensor developed in our previous work. The working principle of the mechanism is experimentally verified. In addition, the effect of hydrostatic pressure on receiving sensitivity is evaluated and compared with predicted behavior.
A method to measure the density of seawater accurately to the level of 10-6
NASA Astrophysics Data System (ADS)
Schmidt, Hannes; Wolf, Henning; Hassel, Egon
2016-04-01
A substitution method to measure seawater density relative to pure water density using vibrating tube densimeters was realized and validated. Standard uncertainties of 1 g m-3 at atmospheric pressure, 10 g m-3 up to 10 MPa, and 20 g m-3 to 65 MPa in the temperature range of 5 °C to 35 °C and for salt contents up to 35 g kg-1 were achieved. The realization was validated by comparison measurements with a hydrostatic weighing apparatus for atmospheric pressure. For high pressures, literature values of seawater compressibility were compared with substitution measurements of the realized apparatus.
The Shock and Vibration Digest. Volume 14. Number 3
1982-03-01
for torsional natural frequencies are good example of techniques that have been programmed on small calculators. Recently, in fact, a short paper...obtained and controlled by hydrostatic or hydrodynamic lift. It is important to keep the mating faces as parallel as possible; hence, good tracking...25. Crandall, S.H., "Physical Explanations of the Destabilizing Effect of Damping in Rotating Parts." ibid.. pp 369-382 (1980). 18 ., iA .^., . .J
Ab-initio study of (Ga,Cr)N and (Ga,Mn)N DMSs: under hydrostatic pressure
NASA Astrophysics Data System (ADS)
Rani, Anita; Kumar, Ranjan
2018-03-01
The influence of hydrostatic pressure between 0-100 GPa on structural, electronic and magnetic properties of CrxGa1-xN and MnxGa1-xN (x = 0.25) diluted magnetic semiconductors has been studied. The calculations have been performed using DFT as implemented in code SIESTA. LDA + U as exchange-correlation (XC) potential have been used to study the parameters. Under external pressure, shifting in both valence band and conduction band energy levels from their actual positions has been observed, which lead to modification of electronic properties. Also, N0 α, s-d exchange constant and p-d exchange constants, N0 β have been calculated at different pressures. Both the compounds show half metallic nature at studied pressure range.
NASA Astrophysics Data System (ADS)
Duncan, W. J.; Welzel, O. P.; Harrison, C.; Wang, X. F.; Chen, X. H.; Grosche, F. M.; Niklowitz, P. G.
2010-02-01
We investigate the evolution of the electrical resistivity of BaFe2As2 single crystals with pressure. The samples used were from the same batch, grown using a self-flux method, and showed properties that were highly reproducible. Samples were pressurized using three different pressure media: pentane-isopentane (in a piston-cylinder cell), Daphne oil (in an alumina anvil cell) and steatite (in a Bridgman cell). Each pressure medium has its own intrinsic level of hydrostaticity, which dramatically affects the phase diagram. An increasing uniaxial pressure component in this system quickly reduces the spin density wave order and favours the appearance of superconductivity, which is similar to what is seen in SrFe2As2.
Body Composition Changes Resulting from Fluid Ingestion and Dehydration
ERIC Educational Resources Information Center
Girandola, Robert N.
1977-01-01
It is recommended that when obtaining measures of body density by hydrostatic weighing, the subjects normal level of hydration be ascertained, since variance in body fat calculation from the hyperhydrated to the hydrated state can amount to twenty percent (two percent in actual body fat). (MB)
Physiological loading of joints prevents cartilage degradation through CITED2
Leong, Daniel J.; Li, Yong H.; Gu, Xiang I.; Sun, Li; Zhou, Zuping; Nasser, Philip; Laudier, Damien M.; Iqbal, Jameel; Majeska, Robert J.; Schaffler, Mitchell B.; Goldring, Mary B.; Cardoso, Luis; Zaidi, Mone; Sun, Hui B.
2011-01-01
Both overuse and disuse of joints up-regulate matrix metalloproteinases (MMPs) in articular cartilage and cause tissue degradation; however, moderate (physiological) loading maintains cartilage integrity. Here, we test whether CBP/p300-interacting transactivator with ED-rich tail 2 (CITED2), a mechanosensitive transcriptional coregulator, mediates this chondroprotective effect of moderate mechanical loading. In vivo, hind-limb immobilization of Sprague-Dawley rats up-regulates MMP-1 and causes rapid, histologically detectable articular cartilage degradation. One hour of daily passive joint motion prevents these changes and up-regulates articular cartilage CITED2. In vitro, moderate (2.5 MPa, 1 Hz) intermittent hydrostatic pressure (IHP) treatment suppresses basal MMP-1 expression and up-regulates CITED2 in human chondrocytes, whereas high IHP (10 MPa) down-regulates CITED2 and increases MMP-1. Competitive binding and transcription assays demonstrate that CITED2 suppresses MMP-1 expression by competing with MMP transactivator, Ets-1 for its coactivator p300. Furthermore, CITED2 up-regulation in vitro requires the p38δ isoform, which is specifically phosphorylated by moderate IHP. Together, these studies identify a novel regulatory pathway involving CITED2 and p38δ, which may be critical for the maintenance of articular cartilage integrity under normal physical activity levels.—Leong, D. J., Li, Y. H., Gu, X. I., Sun, L., Zhou, Z., Nasser, P., Laudier, D. M., Iqbal, J., Majeska, R. J., Schaffler, M. B., Goldring, M. B., Cardoso, L., Zaidi, M., Sun, H. B. Physiological loading of joints prevents cartilage degradation through CITED2. PMID:20826544
Chai, Bei-Bei; Huang, Ting-Lin; Zhao, Xiao-Guang; Li, Ya-Jiao
2015-07-01
Microbial communities in three drinking water reservoirs, with different depth in Xi'an city, were quantified by phospholipids fatty acids analysis and multivariate statistical analysis was employed to interpret their response to different hydrostatic pressure and other physico-chemical properties of sediment and overlying water. Principle component analyses of sediment characteristics parameters showed that hydrostatic pressure was the most important effect factor to differentiate the overlying water quality from three drinking water reservoirs from each other. NH4+ content in overlying water was positive by related to hydrostatic pressure, while DO in water-sediment interface and sediment OC in sediment were negative by related with it. Three drinking water reservoir sediments were characterized by microbial communities dominated by common and facultative anaerobic Gram-positive bacteria, as well as, by sulfur oxidizing bacteria. Hydrostatic pressure and physico-chemical properties of sediments (such as sediment OC, sediment TN and sediment TP) were important effect factors to microbial community structure, especially hydrostatic pressure. It is also suggested that high hydrostatic pressure and low dissolved oxygen concentration stimulated Gram-positive and sulfate-reducing bacteria (SRB) bacterial population in drinking water reservoir sediment. This research supplied a successful application of phospholipids fatty acids and multivariate analysis to investigate microbial community composition response to different environmental factors. Thus, few physico-chemical factors can be used to estimate composition microbial of community as reflected by phospholipids fatty acids, which is difficult to detect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heffernan, Karina M.; Ross, Nancy L.; Spencer, Elinor C.
In this study, accurate elastic constants for gadolinium phosphate (GdPO 4) have been measured by single-crystal high-pressure diffraction methods. The bulk modulus of GdPO 4 determined under hydrostatic conditions, 128.1(8) GPa (K'=5.8(2)), is markedly different from that obtained with GdPO 4 under non-hydrostatic conditions (160(2) GPa), which indicates the importance of shear stresses on the elastic response of this phosphate. Finally, high pressure Raman and diffraction analysis indicate that the PO 4 tetrahedra behave as rigid units in response to pressure and that contraction of the GdPO 4 structure is facilitated by bending/twisting of the Gd–O–P links that result inmore » increased distortion in the GdO 9 polyhedra.« less
Gravity currents in rotating channels. Part 1. Steady-state theory
NASA Astrophysics Data System (ADS)
Hacker, J. N.; Linden, P. F.
2002-04-01
A theory is developed for the speed and structure of steady-state non-dissipative gravity currents in rotating channels. The theory is an extension of that of Benjamin (1968) for non-rotating gravity currents, and in a similar way makes use of the steady-state and perfect-fluid (incompressible, inviscid and immiscible) approximations, and supposes the existence of a hydrostatic ‘control point’ in the current some distance away from the nose. The model allows for fully non-hydrostatic and ageostrophic motion in a control volume V ahead of the control point, with the solution being determined by the requirements, consistent with the perfect-fluid approximation, of energy and momentum conservation in V, as expressed by Bernoulli's theorem and a generalized flow-force balance. The governing parameter in the problem, which expresses the strength of the background rotation, is the ratio W = B/R, where B is the channel width and R = (g[prime prime or minute]H)1/2/f is the internal Rossby radius of deformation based on the total depth of the ambient fluid H. Analytic solutions are determined for the particular case of zero front-relative flow within the gravity current. For each value of W there is a unique non-dissipative two-layer solution, and a non-dissipative one-layer solution which is specified by the value of the wall-depth h0. In the two-layer case, the non-dimensional propagation speed c = cf(g[prime prime or minute]H)[minus sign]1/2 increases smoothly from the non-rotating value of 0.5 as W increases, asymptoting to unity for W [rightward arrow] [infty infinity]. The gravity current separates from the left-hand wall of the channel at W = 0.67 and thereafter has decreasing width. The depth of the current at the right-hand wall, h0, increases, reaching the full depth at W = 1.90, after which point the interface outcrops on both the upper and lower boundaries, with the distance over which the interface slopes being 0.881R. In the one-layer case, the wall-depth based propagation speed Froude number c0 = cf(g[prime prime or minute]h0)[minus sign]1/2 = 21/2, as in the non-rotating one-layer case. The current separates from the left-hand wall of the channel at W0 [identical with] B/R0 = 2[minus sign]1/2, and thereafter has width 2[minus sign]1/2R0, where R0 = (g[prime prime or minute]h0)1/2/f is the wall-depth based deformation radius.
Design and Development of a Segmented Magnet Homopolar Torque Converter
1975-07-01
configuration Hydrostatically-positioned seal ( sealed drain) Hydrostatically-positioned seal Power- leakage relationship for a single annular seal lip... Seal 1. conducting wick - stationary/rotating, fiber, foam 2. hydrodynamic/hydrostatic 3. flooded (alternately) labyrinth C. Low-Speed Flooding...between collectors may be used to introduce oil droplets to lubricate the seals and to drain any NaK leakage that might occur Alternatively, they
Experimental controls on D/H and 13C/12C ratios of kerogen, bitumen and oil during hydrous pyrolysis
Schimmelmann, A.; Boudou, J.-P.; Lewan, M.D.; Wintsch, R.P.
2001-01-01
Large isotopic transfers between water-derived hydrogen and organic hydrogen occurred during hydrous pyrolysis experiments of immature source rocks, in spite of only small changes in organic 13C/12C. Experiments at 330 ??C over 72 h using chips or powder containing kerogen types I and III identify the rock/water ratio as a main factor affecting ????D for water and organic hydrogen. Our data suggest that larger rock permeability and smaller rock grain size increase the H-isotopic transfer between water-derived hydrogen and thermally maturing organic matter. Increasing hydrostatic pressure may have a similar effect, but the evidence remains inconclusive. ?? 2001 Elsevier Science Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heffernan, Karina M.; Ross, Nancy L., E-mail: nross@vt.edu; Spencer, Elinor C.
Accurate elastic constants for gadolinium phosphate (GdPO{sub 4}) have been measured by single-crystal high-pressure diffraction methods. The bulk modulus of GdPO{sub 4} determined under hydrostatic conditions, 128.1(8) GPa (K′=5.8(2)), is markedly different from that obtained with GdPO{sub 4} under non-hydrostatic conditions (160(2) GPa), which indicates the importance of shear stresses on the elastic response of this phosphate. High pressure Raman and diffraction analysis indicate that the PO{sub 4} tetrahedra behave as rigid units in response to pressure and that contraction of the GdPO{sub 4} structure is facilitated by bending/twisting of the Gd–O–P links that result in increased distortion in themore » GdO{sub 9} polyhedra. - Graphical abstract: A high-pressure single crystal diffraction study of GdPO{sub 4} with the monazite structure is presented. The elastic behaviour of rare-earth phosphates are believed to be sensitive to shear forces. The bulk modulus of GdPO{sub 4} measured under hydrostatic conditions is 128.1(8) GPa. Compression of the structure is facilitated by bending/twisting of the Gd−O−P links that result in increased distortion in the GdO{sub 9} polyhedra. Display Omitted - Highlights: • The elastic responses of rare-earth phosphates are sensitive to shear forces. • The bulk modulus of GdPO{sub 4} measured under hydrostatic conditions is 128.1(8) GPa. • Twisting of the inter-polyhedral links allows compression of the GdPO{sub 4} structure. • Changes to the GdO{sub 9} polyhedra occur in response to pressure (<7.0 GPa).« less
Pressure regulates osteoclast formation and MCSF expression in marrow culture.
Rubin, J; Biskobing, D; Fan, X; Rubin, C; McLeod, K; Taylor, W R
1997-01-01
One of the forces generated during skeletal loading is hydrostatic pressure. In the work presented here, the ability of increased pressure to influence recruitment of osteoclasts was evaluated. Murine marrow cultures, with pO2 and pCO2 kept constant, were subjected to either control (1.0 atm) or elevated (1.37 or 2.0 atm) hydrostatic pressure. As compared to control, cultures pressurized for 6 days at 1.37 atm formed less osteoclast-like cells (OCLC) (71 +/- 6% of control, P < 0.0001). A similar degree of inhibition occurred in cultures exposed to pressure during days 2-4 only (62 +/- 6%), while treatment during days 5-7 failed to inhibit the OCLC number relative to control (99 +/- 5%). Delivery of 2.0 atm pressure on days 2-4 generated 52 +/- 4% OCLC compared to control. Since macrophage colony stimulating factor (MCSF)-dependent proliferation of osteoclast precursors occurs during the pressure-sensitive period, semiquantitative RT-PCR for MCSF mRNA was performed after 3 days in 1.37 atm (days 2-4). As compared to controls, pressure caused a decrease in mRNA coding for the membrane bound form of MCSF (71.2 +/- 4% (n = 25, P < or = 0.05), while the MCSF RT-PCR product representing the secreted form showed no consistent change. This lack of response of the soluble MCSF RT-PCR product was expected, as levels of bioassayable MCSF were not altered by pressure. Extrapolating these data to in vivo conditions suggests that load-bearing will inhibit the formation of osteoclasts.
49 CFR 178.803 - Testing and certification of IBCs.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Vibration 6 X 6 X 6 X 6 X 6 X 1.5 X Bottom lift 2 X X X X X Top lift 2 X 2 X 2 X 2,5 X Stacking 7 X 7 X 7 X... of the bottom lift or top lift tests must be performed. 3 The leakproofness and hydrostatic pressure...
NASA Technical Reports Server (NTRS)
Wahr, John
1993-01-01
The work done under NASA grant NAG5-485 included modelling the deformation of the earth caused by variations in atmospheric pressure. The amount of deformation near coasts is sensitive to the nature of the oceanic response to the pressure. The PSMSL (Permanent Service for Mean Sea Level) data suggest the response is inverted barometer at periods greater than a couple months. Green's functions were constructed to describe the perturbation of the geoid caused by atmospheric and oceanic loading and by the accompanying load-induced deformation. It was found that perturbation of up to 2 cm are possible. Ice mass balance data was used for continental glaciers to look at the glacial contributions to time-dependent changes in polar motion, the lod, the earth's gravitational field, the position of the earth's center-of-mass, and global sea level. It was found that there can be lateral, non-hydrostatic structure inside the fluid core caused by gravitational forcing from the mantle, from the inner core, or from topography at the core/mantle or inner core/outer core boundaries. The nutational and tidal response of a non-hydrostatic earth with a solid inner core was modeled. Monthly, global tide gauge data from PSMSL was used to look at the 18.6-year ocean tide, the 14-month pole tide, the oceanic response to pressure, the linear trend and inter-annual variability in the earth's gravity field, the global sea level rise, and the effects of post glacial rebound. The effects of mantle anelasticity on nutations, earth tides, and tidal variation in the lod was modeled. Results of this model can be used with Crustal Dynamics observations to look at the anelastic dissipation and dispersion at tidal periods. The effects of surface topography on various components of crustal deformation was also modeled, and numerical models were developed of post glacial rebound.
Magnetic Correlations in URu2Si2 under Chemical and Hydrostatic Pressure
NASA Astrophysics Data System (ADS)
Williams, Travis; Aczel, Adam; Broholm, Collin; Buyers, William; Leao, Juscelino; Luke, Graeme; Rodriguez-Riviera, Jose; Stone, Matthew; Wilson, Murray; Yamani, Zahra
URu2Si2 has been an intense area of study for the last 30 years due to a mysterious hidden order phase that appears below T0 = 17.5 K. The hidden order phase has been shown to be extremely sensitive to perturbations, being destroyed quickly by the application of a magnetic field, hydrostatic or uniaxial pressure, and chemical doping. While attempting to understand the properties of URu2Si2, neutron scattering has found spin correlations that are intimately related to this hidden order phase and which are also suppressed with these perturbations. Here, I will outline some recent neutron scattering work to study these correlations in two exceptional cases where the hidden order phase is enhanced: hydrostatic pressure and chemical pressure using Fe- and Os-doping. In both of these cases, T0 increases before an antiferromagnetic phase emerges. By performing a careful analysis of the neutron data, we show that these two phases are much more related than had been previously appreciated. This implies that the hidden order is likely compatible with an antiferromagnetic ground state, placing constraints on the nature of the missing order parameter.
The validity of ultrasound estimation of muscle volumes.
Infantolino, Benjamin W; Gales, Daniel J; Winter, Samantha L; Challis, John H
2007-08-01
The purpose of this study was to validate ultrasound muscle volume estimation in vivo. To examine validity, vastus lateralis ultrasound images were collected from cadavers before muscle dissection; after dissection, the volumes were determined by hydrostatic weighing. Seven thighs from cadaver specimens were scanned using a 7.5-MHz ultrasound probe (SSD-1000, Aloka, Japan). The perimeter of the vastus lateralis was identified in the ultrasound images and manually digitized. Volumes were then estimated using the Cavalieri principle, by measuring the image areas of sets of parallel two-dimensional slices through the muscles. The muscles were then dissected from the cadavers, and muscle volume was determined via hydrostatic weighing. There was no statistically significant difference between the ultrasound estimation of muscle volume and that estimated using hydrostatic weighing (p > 0.05). The mean percentage error between the two volume estimates was 0.4% +/- 6.9. Three operators all performed four digitizations of all images from one randomly selected muscle; there was no statistical difference between operators or trials and the intraclass correlation was high (>0.8). The results of this study indicate that ultrasound is an accurate method for estimating muscle volumes in vivo.
Kukula-Koch, Wirginia; Mroczek, Tomasz
2015-03-01
A rapid hydrostatic counter-current chromatography-thin-layer chromatography-electrospray-ionization time-of-flight mass spectrometry (CCC-TLC-ESI-TOF-MS) technique was established for use in seeking potent anti-Alzheimer's drugs among the acethylcholinesterase inhibitors in Argemone mexicana L. underground parts, with no need to isolate components in pure form. The dichloromethane extract from the roots of Mexican prickly poppy that was most rich in secondary metabolites was subjected to hydrostatic-CCC-based fractionation in descending mode, using a biphasic system composed of petroleum ether-ethyl acetate-methanol-water at the ratio of 1.5:3:2.1:2 (v/v). The obtained fractions were analyzed in a TLC-based AChE-inhibition "Fast Blue B" test. All active components in the fractions, including berberine, protopine, chelerithrine, sanguinarine, coptisine, palmatine, magnoflorine, and galanthamine, were identified in a direct TLC-HPLC-ESI-TOF-MS assay with high accuracy. This is the first time galanthamine has been reported in the extract of Mexican prickly poppy and the first time it has been identified in any member of the Papaveraceae family, in the significant quantity of 0.77%.
Effect of Coronary Anatomy and Hydrostatic Pressure on Intracoronary Indices of Stenosis Severity.
Härle, Tobias; Luz, Mareike; Meyer, Sven; Kronberg, Kay; Nickau, Britta; Escaned, Javier; Davies, Justin; Elsässer, Albrecht
2017-04-24
The authors sought to analyze height differences within the coronary artery tree in patients in a supine position and to quantify the impact of hydrostatic pressure on intracoronary pressure measurements in vitro. Although pressure equalization of the pressure sensor and the systemic pressure at the catheter tip is mandatory in intracoronary pressure measurements, subsequent measurements may be influenced by hydrostatic pressure related to the coronary anatomy in the supine position. Outlining and quantifying this phenomenon is important to interpret routine and pullback pressure measurements within the coronary tree. Coronary anatomy was analyzed in computed tomography angiographies of 70 patients to calculate height differences between the catheter tip and different coronary segments in the supine position. Using a dynamic pressure simulator, the effect of the expected hydrostatic pressure resulting from such height differences on indices stenosis severity was assessed. In all patients, the left anterior and right posterior descending arteries are the highest points of the coronary tree with a mean height difference of -4.9 ± 1.6 cm and -3.8 ± 1.0 cm; whereas the circumflex artery and right posterolateral branches are the lowest points, with mean height differences of 3.9 ± 0.9 cm and 2.6 ± 1.6 cm compared with the according ostium. In vitro measurements demonstrated a correlation of the absolute pressure differences with height differences (r = 0.993; p < 0.0001) and the slope was 0.77 mm Hg/cm. The Pd/Pa ratio and instantaneous wave-free ratio correlated also with the height difference (fractional flow reserve r = 0.98; p < 0.0001; instantaneous wave-free ratio r = 0.97; p < 0.0001), but both were influenced by the systemic pressure level. Hydrostatic pressure variations resulting from normal coronary anatomy in a supine position influence intracoronary pressure measurements and may affect their interpretation during stenosis severity assessment. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Experimental equipment for measuring physical properties of the annular hydrostatic thrust bearing
NASA Astrophysics Data System (ADS)
Kozdera, Michal; Drábková, Sylva; Bojko, Marian
2014-03-01
The hydraulic circuit, through which the mineral oil is brought, is an important part of hydrostatic bearings. The annular hydrostatic thrust bearing consists of two sliding plates divided by a layer of mineral oil. In the lower plate, there are oil grooves which distribute the liquid between the sliding areas. The hydraulic circuit is made of two basic parts: the energy source and the controlling part. The hydraulic pump, which brings the liquid into the sliding bearing, is the source of the pressure energy. The sliding bearing is weighted down by axial force, which can be changed during the process. That's why in front of the particular oil grooves control components adjusting pressure and flow size are located. This paper deals with a project of a hydraulic circuit for regulation of fluid layer in the annular hydrostatic thrust bearing and the testing equipment for measuring its physical properties. It will include the issue of measuring loading capacity and height of the fluid layer in the annular hydrostatic thrust bearing.
NASA Technical Reports Server (NTRS)
Achtemeier, Gary L.
1991-01-01
The second step in development of MODEL III is summarized. It combines the four radiative transfer equations of the first step with the equations for a geostrophic and hydrostatic atmosphere. This step is intended to bring radiance into a three dimensional balance with wind, height, and temperature. The use of the geostrophic approximation in place of the full set of primitive equations allows for an easier evaluation of how the inclusion of the radiative transfer equation increases the complexity of the variational equations. Seven different variational formulations were developed for geostrophic, hydrostatic, and radiative transfer equations. The first derivation was too complex to yield solutions that were physically meaningful. For the remaining six derivations, the variational method gave the same physical interpretation (the observed brightness temperatures could provide no meaningful input to a geostrophic, hydrostatic balance) at least through the problem solving methodology used in these studies. The variational method is presented and the Euler-Lagrange equations rederived for the geostrophic, hydrostatic, and radiative transfer equations.
Hybrid hydrostatic/ball bearings in high-speed turbomachinery
NASA Technical Reports Server (NTRS)
Nielson, C. E.
1983-01-01
A high speed, high pressure liquid hydrogen turbopump was designed, fabricated, and tested under a previous contract. This design was then modified to incorporate hybrid hydrostatic/ball bearings on both the pump end and turbine end to replace the original conventional ball bearing packages. The design, analysis, turbopump modification, assembly, and testing of the turbopump with hybrid bearings is presented here. Initial design considerations and rotordynamic performance analysis was made to define expected turbopump operating characteristics and are reported. The results of testing the turbopump to speeds of 9215 rad/s (88,000 rpm) using a wide range of hydrostatic bearing supply pressures are presented. The hydrostatic bearing test data and the rotordynamic behavior of the turbopump was closely analyzed and are included in the report. The testing of hybrid hydrostatic/ball bearings on a turbopump to the high speed requirements has indicated the configuration concept is feasible. The program has presented a great deal of information on the technology requirements of integrating the hybrid bearing into high speed turbopump designs for improved bearing life.
Influence of hydrostatic pressure on the switching time and switching coefficient of NiZnCo ferrites
NASA Astrophysics Data System (ADS)
Romanowski, S.; Goldberg, S.
1980-04-01
Results of the investigation of the effect of hydrostatic pressure on the pulse performance of NiZnCo ferrites with square hysteresis loop are given. It is stated that with increasing hydrostatic pressure, the threshold field strength increases, the switching coefficient value decreases, while the switching time value may increase monotonically or reach a maximum depending on the magnetizing field strength.
A Numerical Study of Non-hydrostatic Shallow Flows in Open Channels
NASA Astrophysics Data System (ADS)
Zerihun, Yebegaeshet T.
2017-06-01
The flow field of many practical open channel flow problems, e.g. flow over natural bed forms or hydraulic structures, is characterised by curved streamlines that result in a non-hydrostatic pressure distribution. The essential vertical details of such a flow field need to be accounted for, so as to be able to treat the complex transition between hydrostatic and non-hydrostatic flow regimes. Apparently, the shallow-water equations, which assume a mild longitudinal slope and negligible vertical acceleration, are inappropriate to analyse these types of problems. Besides, most of the current Boussinesq-type models do not consider the effects of turbulence. A novel approach, stemming from the vertical integration of the Reynolds-averaged Navier-Stokes equations, is applied herein to develop a non-hydrostatic model which includes terms accounting for the effective stresses arising from the turbulent characteristics of the flow. The feasibility of the proposed model is examined by simulating flow situations that involve non-hydrostatic pressure and/or nonuniform velocity distributions. The computational results for free-surface and bed pressure profiles exhibit good correlations with experimental data, demonstrating that the present model is capable of simulating the salient features of free-surface flows over sharply-curved overflow structures and rigid-bed dunes.
Esposito, Francesco; Ambrosio, Concetta; De Fronzo, Simona; Panico, Maria Rita; D'Aprano, Marilena; Giugliano, Anna Marcella; Noviello, Domenico; Oresta, Patrizia
2015-06-01
Intussusception is one of the most common causes of paediatric emergency. Fluoroscopy-guided hydrostatic reduction is a common nonoperative management strategy for the treatment of intussusception. The role of pharmacological premedication in increasing the success rate of hydrostatic reduction is still controversial. The purpose of this study was to verify the presence of a possible correlation between pharmacological premedication and the percentage of hydrostatic reduction of intussusception in paediatric patients. This study considered children with a diagnosis of idiopathic intussusception treated at our hospital between January 2007 and June 2013. One group of patients underwent hydrostatic reduction by barium enema without any preliminary therapy. A second group of patients received pharmacological premedication with both a sedative and an anti-oedematous agent before the procedure. A total of 398 patients were treated with barium enema for therapeutic purposes. In the group of patients who received no premedication (n = 254), 165 (65 %) children achieved hydrostatic reduction of the intussusception. Among the patients who received pharmacological premedication prior to barium enema (n = 144), 122 (85 %) children achieved resolution of the intussusception. Our study shows that the use of pharmacological premedication is effective for the reduction of the intussusception, as its limit patient stress, fluoroscopic time and radiation dose.
Liu, Rui; Wang, Zhi-Hua; Xu, Qiang; Yu, Na; Cao, Miao-Cong
2014-02-01
Colorless and pink orthoclase from Balikun granite body, East Zhunger in Xinjiang, served as the samples for the research on hydrostatic pressure experiment. The in-situ hydrostatic pressure test for orthoclases was conducted at the room temperature and pressures from 100 to 600 MPa using cubic zirconia anvil cell, with quartz as pressure gauge. The water located in the orthoclases for the conditions of different hydrostatic pressures was characterized through the methods of Fourier transform infrared (FTIR) and Raman spectra. The results showed that there was a linear correlation between the shifting of Raman bands and hydrostatic pressure applied to the feldspar. All of vibration peaks of M-O structural groups in orthoclases, the bending vibration peaks of Si(Al(IV))-O-Si bond and tetrahedron groups of [SiO4] in Raman spectra shifted toward the higher frequency regularly, the drift distance is 2, 2.19 and less than 2 cm(-1) respectively. The spectra of FTIR suggested that there was more water in colorless orthoclases than the pink one under certain conditions of hydrostatic pressure. The intensity and integral area centered at 3420 cm(-1) in FTIR spectra increased with the rising of hydrostatic pressure. The integral area for colorless and pink feldspar in FTIR spectra rose from 120, 1383 cm(-1) under normal pressure to 1570, 2001 cm(-1) at 600 MPa respectively. The experimental results might indicate that the water in the earth crust could enter the orthoclases in certain condition of the aqueous confining pressure.
Enema reduction of intussusception: the success rate of hydrostatic and pneumatic reduction.
Khorana, Jiraporn; Singhavejsakul, Jesda; Ukarapol, Nuthapong; Laohapensang, Mongkol; Wakhanrittee, Junsujee; Patumanond, Jayanton
2015-01-01
Intussusception is a common surgical emergency in infants and children. The incidence of intussusception is from one to four per 2,000 infants and children. If there is no peritonitis, perforation sign on abdominal radiographic studies, and nonresponsive shock, nonoperative reduction by pneumatic or hydrostatic enema can be performed. The purpose of this study was to compare the success rates of both the methods. Two institutional retrospective cohort studies were performed. All intussusception patients (ICD-10 code K56.1) who had visited Chiang Mai University Hospital and Siriraj Hospital from January 2006 to December 2012 were included in the study. The data were obtained by chart reviews and electronic databases, which included demographic data, symptoms, signs, and investigations. The patients were grouped according to the method of reduction followed into pneumatic reduction and hydrostatic reduction groups with the outcome being the success of the reduction technique. One hundred and seventy episodes of intussusception occurring in the patients of Chiang Mai University Hospital and Siriraj Hospital were included in this study. The success rate of pneumatic reduction was 61% and that of hydrostatic reduction was 44% (P=0.036). Multivariable analysis and adjusting of the factors by propensity scores were performed; the success rate of pneumatic reduction was 1.48 times more than that of hydrostatic reduction (P=0.036, 95% confidence interval [CI] =1.03-2.13). Both pneumatic and hydrostatic reduction can be performed safely according to the experience of the radiologist or pediatric surgeon and hospital setting. This study showed that pneumatic reduction had a higher success rate than hydrostatic reduction.
Reduced prokaryotic heterotrophic production at in situ pressure conditions in the dark ocean
NASA Astrophysics Data System (ADS)
Amano-Sato, Chie; Sintes, Eva; Reinthaler, Thomas; Utsumi, Motoo; Herndl, Gerhard J.
2017-04-01
Prokaryotic heterotrophic production (PHP) is a key process in the ocean's biological carbon cycle. About 50% of the oceanic PHP takes place in the dark ocean characterized by low temperature and high hydrostatic pressure, which increases by 1 MPa (10 atm) every 100 m depth. However, rate measurements of PHP are usually performed under atmospheric pressure conditions. Yet, the difference in pressure conditions and the handling of the samples on board may introduce biases in the PHP measurements. To determine PHP at in situ conditions, we developed an in situ microbial incubator (ISMI) designed to autonomously sample and incubate seawater down to a depth of 4000 m. Natural prokaryotic communities from the North Atlantic and Pacific Oceans were incubated in the ISMI with 5 nM 3H-leucine at different depths ranging between 10 and 3200 m. For comparison, atmospheric pressure incubations at in situ temperature were also conducted. PHP and single cell activity assessed by microautoradiography combined with catalyzed reporter deposition fluorescence in situ hybridization (MICRO-CARD-FISH) were determined. PHP obtained under in situ pressure conditions was generally lower than under atmospheric pressure conditions, suggesting that incubation under atmospheric pressure on board stimulates activity of dark ocean prokaryotes. The ratio between the bulk PHP obtained under in situ and under atmospheric pressure conditions decreased with depth. Moreover, MICRO-CARD-FISH revealed that some specific prokaryotic groups are apparently more affected by the hydrostatic pressure condition than others. Our results suggest that PHP in the dark ocean might be lower than assumed based on measurements under surface pressure conditions.
NASA Astrophysics Data System (ADS)
Di, Pengfei; Chen, Qinghua; Chen, Duofu
2017-06-01
Natural hydrocarbon seeps in the marine environment are important contributors to greenhouse gases in the atmosphere. Such gases include methane, which plays a significant role in global carbon cycling and climate change. To accurately quantify the methane flux from hydrocarbon seeps on the seafloor, a specialized in situ and online gas flux measuring (GFM) device was designed to obtain high-resolution time course gas fluxes using the process of equal volume exchange. The device consists of a 1.0-m diameter, 0.9-m tall, inverted conical tent and a GFM instrument that contains a solenoid valve, level transducer, and gas collection chamber. Rising gas bubbles from seeps were measured by laboratory-calibrated GFM instruments attached to the top of the tent. According to the experimental data, the optimal anti-shake time interval was 5 s. The measurement range of the device was 0-15 L min-1, and the relative error was ± 1.0%. The device was initially deployed at an active seep site in the Lingtou Promontory seep field in South China Sea. The amount of gas released from a single gas vent was 30.5 m3 during the measurement period, and the gas flow rate ranged from 22 to 72 L h-1, depending on tidal period, and was strongly negatively correlated with water depth. The measurement results strongly suggest that oceanic tides and swells had a significant forcing effect on gas flux. Low flow rates were associated with high tides and vice versa. The changes in gas volume escaping from the seafloor seeps could be attributed to the hydrostatic pressure induced by water depth. Our findings suggest that in the marine environment, especially in the shallow shelf area, sea level variation may play an important role in controlling methane release into the ocean. Such releases probably also affect atmospheric methane levels.
Ou, J F; Fang, X Z; Zhao, W J; Lei, S; Xue, M S; Wang, F J; Li, C Q; Lu, Y L; Li, W
2018-05-22
It is generally recognized that superhydrophobic surfaces in water may be used for corrosion resistance due to the entrapped air in the solid/liquid interface and could find potential applications in the protection of ship hull. For a superhydrophobic surface, as its immersion depth into water increases, the resultant hydrostatic pressure is also increased, and the entrapped air can be squeezed out much more easily. It is therefore predicted that high hydrostatic pressure would cause an unexpected decrease in corrosion resistance for the vessels in deep water (e.g., submarines) because of the unstable entrapped air. In this work, in order to clarify the role of hydrostatic pressure in the corrosion behavior of superhydrophobic surfaces, two typical superhydrophobic surfaces (SHSs) were prepared on bare and oxidized aluminum substrates, respectively, and then were immersed into the NaCl aqueous solutions with different depths of ∼0 cm (hydrostatic pressure ∼0 kPa), 10 cm (1 kPa), and 150 cm (15 kPa). It was found out for the SHSs on the oxidized Al, as the hydrostatic pressure increased, the corrosion behavior became severe. However, for the SHSs on the bare Al, their corrosion behavior was complex due to hydrostatic pressure. It was found that the corrosion resistance under 1 kPa was the highest. Further mechanism analysis revealed that this alleviated corrosion behavior under 1 kPa resulted from suppressing the oxygen diffusion through the liquid and reducing the subsequent corrosion rate as compared with 0 kPa, whereas the relatively low hydrostatic pressure (HP) could stabilize the entrapped air and hence enhance the corrosion resistance, compared with 15 kPa. The present study therefore provided a fundamental understanding for the applications of SHSs to prevent the corrosion, especially for various vessels in deep water.
Lee, Hyun-Sun; Lee, Hyun Jung; Yu, Hyung Jo; Ju, Do Weon; Kim, Yoonsook; Kim, Chong-Tai; Kim, Chul-Jin; Cho, Yong-Jin; Kim, Namsoo; Choi, Sin-Yang; Suh, Hyung Joo
2011-06-01
To determine biomaterial components, the components must first be transferred into solution; thus extraction is the first step in biomaterial analysis. High hydrostatic pressure technology was used for ginsenoside extraction from ginseng roots. In the extraction of fresh and red ginseng, high hydrostatic pressure extraction (HHPE) was found to be more effective than heat extraction (HE). In fresh ginseng extraction under HHPE, total ginsenosides (1602.2 µg mL⁻¹) and ginsenoside metabolite (132.6 µg mL⁻¹) levels were slightly higher than those under HE (1259.0 and 78.7 µg mL⁻¹), respectively. In red ginseng, similar results indicated total ginsenoside and ginsenoside metabolite amounts according to the extraction methods. Most volatile compounds by HHPE were higher than by HE treatment. HHPE of red ginseng was conducted under four pressures: 0.1 MPa (1 atm), 30, 50, and 80 MPa. Total sugar, uronic acid, and polyphenol amounts increased until 30 MPa of pressure and then showed decreasing tendencies. Total ginsenoside and ginsenoside metabolite contents linearly increased with increasing pressure, and a maximum was reached at 80 MPa for the metabolites. HHPE used for red ginseng processing contributes to enhanced extraction efficiencies of functional materials such as ginsenosides through cell structure modification. Copyright © 2011 Society of Chemical Industry.
Prokaryotic responses to hydrostatic pressure in the ocean--a review.
Tamburini, Christian; Boutrif, Mehdi; Garel, Marc; Colwell, Rita R; Deming, Jody W
2013-05-01
Effects of hydrostatic pressure on pure cultures of prokaryotes have been studied extensively but impacts at the community level in the ocean are less well defined. Here we consider hydrostatic pressure effects on natural communities containing both unadapted (piezosensitive) prokaryotes originating from surface water and adapted (including piezophilic) prokaryotes from the deep sea. Results from experiments mimicking pressure changes experienced by particle-associated prokaryotes during their descent through the water column show that rates of degradation of organic matter (OM) by surface-originating microorganisms decrease with sinking. Analysis of a much larger data set shows that, under stratified conditions, deep-sea communities adapt to in situ conditions of high pressure, low temperature and low OM. Measurements made using decompressed samples and atmospheric pressure thus underestimate in situ activity. Exceptions leading to overestimates can be attributed to deep mixing events, large influxes of surface particles, or provision of excessive OM during experimentation. The sediment-water interface, where sinking particles accumulate, will be populated by a mixture of piezosensitive, piezotolerant and piezophilic prokaryotes, with piezophilic activity prevailing deeper within sediment. A schematic representation of how pressure shapes prokaryotic communities in the ocean is provided, allowing a reasonably accurate interpretation of the available activity measurements. © 2013 Society for Applied Microbiology and Blackwell Publishing Ltd.
Bravim, Fernanda; Mota, Mainã M; Fernandes, A Alberto R; Fernandes, Patricia M B
2016-08-01
Saccharomyces cerevisiae is a unicellular organism that during the fermentative process is exposed to a variable environment; hence, resistance to multiple stress conditions is a desirable trait. The stress caused by high hydrostatic pressure (HHP) in S. cerevisiae resembles the injuries generated by other industrial stresses. In this study, it was confirmed that gene expression pattern in response to HHP displays an oxidative stress response profile which is expanded upon hydrostatic pressure release. Actually, reactive oxygen species (ROS) concentration level increased in yeast cells exposed to HHP treatment and an incubation period at room pressure led to a decrease in intracellular ROS concentration. On the other hand, ethylic, thermic and osmotic stresses did not result in any ROS accumulation in yeast cells. Microarray analysis revealed an upregulation of genes related to methionine metabolism, appearing to be a specific cellular response to HHP, and not related to other stresses, such as heat and osmotic stresses. Next, we investigated whether enhanced oxidative stress tolerance leads to enhanced tolerance to HHP stress. Overexpression of STF2 is known to enhance tolerance to oxidative stress and we show that it also leads to enhanced tolerance to HHP stress. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.