Sample records for h5n1 influenza vaccine

  1. Yeast Surface-Displayed H5N1 Avian Influenza Vaccines

    PubMed Central

    Lei, Han; Jin, Sha; Karlsson, Erik; Schultz-Cherry, Stacey

    2016-01-01

    Highly pathogenic H5N1 avian influenza viruses pose a pandemic threat to human health. A rapid vaccine production against fast outbreak is desired. We report, herein, a paradigm-shift influenza vaccine technology by presenting H5N1 hemagglutinin (HA) to the surface of yeast. We demonstrated, for the first time, that the HA surface-presented yeast can be used as influenza vaccines to elicit both humoral and cell-mediated immunity in mice. The HI titer of antisera reached up to 128 in vaccinated mice. A high level of H5N1 HA-specific IgG1 and IgG2a antibody production was detected after boost immunization. Furthermore, we demonstrated that the yeast surface-displayed HA preserves its antigenic sites. It preferentially binds to both avian- and human-type receptors. In addition, the vaccine exhibited high cross-reactivity to both homologous and heterologous H5N1 viruses. A high level production of anti-HA antibodies was detected in the mice five months after vaccination. Finally, our animal experimental results indicated that the yeast vaccine offered complete protection of mice from lethal H5N1 virus challenge. No severe side effect of yeast vaccines was noted in animal studies. This new technology allows for rapid and large-scale production of influenza vaccines for prepandemic preparation. PMID:28078309

  2. H5N1 influenza vaccine induces a less robust neutralizing antibody response than seasonal trivalent and H7N9 influenza vaccines.

    PubMed

    Wong, Sook-San; DeBeauchamp, Jennifer; Zanin, Mark; Sun, Yilun; Tang, Li; Webby, Richard

    2017-01-01

    Conventional inactivated avian influenza vaccines have performed poorly in past vaccine trials, leading to the hypothesis that they are less immunogenic than seasonal influenza vaccines. We tested this hypothesis by comparing the immunogenicity of the H5N1 and H7N9 vaccines (avian influenza vaccines) to a seasonal trivalent inactivated influenza vaccine in naïve ferrets, administered with or without the adjuvants MF59 or AS03. Vaccine immunogenicity was assessed by measuring neutralizing antibody titers against hemagglutinin and neuraminidase and by hemagglutinin -specific IgG levels. Two doses of unadjuvanted vaccines induced low or no HA-specific IgG responses and hemagglutination-inhibiting titers. Adjuvanted vaccines induced comparable IgG-titers, but poorer neutralizing antibody titers for the H5 vaccine. All adjuvanted vaccines elicited detectable anti- neuraminidase -antibodies with the exception of the H5N1 vaccine, likely due to the low amounts of neuraminidase in the vaccine. Overall, the H5N1 vaccine had poorer capacity to induce neutralizing antibodies, but not HA-specific IgG, compared to H7N9 or trivalent inactivated influenza vaccine.

  3. Characterization of cross protection of Swine-Origin Influenza Virus (S-OIV) H1N1 and reassortant H5N1 influenza vaccine in BALB/c mice given a single-dose vaccination

    PubMed Central

    2013-01-01

    Background Influenza virus has antigen drift and antigen shift effect, vaccination with some influenza vaccine might not induce sufficient immunity for host to the threat of other influenza virus strains. S-OIV H1N1 and H5N1 influenza vaccines in single-dose immunization were evaluated in mice for cross protection to the challenge of A/California/7/2009 H1N1 or NIBRG-14 H5N1 virus. Results Both H1N1 and H5N1 induced significant homologous IgG, HAI, and microneutralization antibody responses in the mice, while only vaccines plus adjuvant produced significant heterogeneous IgG and HAI antibody responses. Both alum and MPLA adjuvants significantly reduced the S-OIV H1N1 vaccine dose required to elicit protective HAI antibody titers from 0.05 μg to 0.001 μg. Vaccines alone did not protect mice from challenge with heterogeneous influenza virus, while H5N1 vaccine plus alum and MPLA adjuvants did. Mouse body weight loss was also less significant in the presence of adjuvant than in the vaccine without adjuvant. Furthermore, both H1N1 and H5N1 lung viral titers of immunized mice were significantly reduced post challenge with homologous viruses. Conclusion Only in the presence of MPLA adjuvant could the H5N1 vaccine significantly reduce mouse lung viral titers post H1N1 virus challenge, and not vice versa. MPLA adjuvant induced cross protection with a single dose vaccination to the challenge of heterogeneous influenza virus in mice. Lung viral titer seemed to be a better indicator compared to IgG, neutralization antibody, and HAI titer to predict survival of mice infected with influenza virus. PMID:23517052

  4. Live attenuated H5N1 vaccine with H9N2 internal genes protects chickens from infections by both Highly Pathogenic H5N1 and H9N2 Influenza Viruses

    PubMed Central

    Nang, Nguyen Tai; Song, Byung Min; Kang, Young Myong; Kim, Heui Man; Kim, Hyun Soo; Seo, Sang Heui

    2012-01-01

    Please cite this paper as: Nang et al. (2013) Live attenuated H5N1 vaccine with H9N2 internal genes protects chickens from infections by both Highly Pathogenic H5N1 and H9N2 Influenza Viruses. Influenza and Other Respiratory Viruses 7(2) 120–131. Background  The highly pathogenic H5N1 and H9N2 influenza viruses are endemic in many countries around the world and have caused considerable economic loss to the poultry industry. Objectives  We aimed to study whether a live attenuated H5N1 vaccine comprising internal genes from a cold‐adapted H9N2 influenza virus could protect chickens from infection by both H5N1 and H9N2 viruses. Methods  We developed a cold‐adapted H9N2 vaccine virus expressing hemagglutinin and neuraminidase derived from the highly pathogenic H5N1 influenza virus using reverse genetics. Results and Conclusions  Chickens immunized with the vaccine were protected from lethal infections with homologous and heterologous H5N1 or H9N2 influenza viruses. Specific antibody against H5N1 virus was detected up to 11 weeks after vaccination (the endpoint of this study). In vaccinated chickens, IgA and IgG antibody subtypes were induced in lung and intestinal tissue, and CD4+ and CD8+ T lymphocytes expressing interferon‐gamma were induced in the splenocytes. These data suggest that a live attenuated H5N1 vaccine with cold‐adapted H9N2 internal genes can protect chickens from infection with H5N1 and H9N2 influenza viruses by eliciting humoral and cellular immunity. PMID:22487301

  5. Characterization of a whole, inactivated influenza (H5N1) vaccine.

    PubMed

    Tada, Yoshikazu

    2008-11-01

    Effective vaccines against the highly pathogenic influenza A/H5N1 virus are being developed worldwide. In Japan, two adjuvanted, inactivated, whole-virion influenza vaccines were recently developed and licensed as mock-up, pre-pandemic vaccine formulations by the Ministry of Health and Labor Welfare of Japan. During the vaccine design and development process, various obstacles were overcome and, in this report, we introduce the non clinical production, immunogenicity data in human and development process that was associated with egg-derived adjuvanted, inactivated, whole-virion influenza A (H5N1) vaccine. Pilot lots of H5N1 vaccine were produced using the avirulent H5N1 reference strain A/Vietnam/1194/2004 (H5N1) NIBRG-14 and administered following adsorption with aluminum hydroxide as an adjuvant. Quality control and formulation stability tests were performed before clinical trials were initiated (phase I-III). The research foundation for microbial diseases of Osaka University (BIKEN) carried out vaccine production, quality control, stability testing and the phase I clinical trial in addition to overseeing the licensing of this vaccine. Mitsubishi Chemical Safety Institute Ltd. carried out the non clinical pharmacological toxicity and safety studies and the Japanese medical association carried out the phase II/III trials. Phase I-III trials took place in 2006. The production processes were well controlled by established tests and validations. Vaccine quality was confirmed by quality control, stability and pre-clinical tests, and the vaccine was approved as a mock-up, pre-pandemic vaccine by the Ministry of Health and Labor Welfare of Japan. Numerous safety and efficacy procedures were carried out prior to the approval of the described vaccine formulation. Some of these procedures were of particular importance e.g., vaccine development, validation, and quality control tests that included strict monitoring of the hemagglutinin (HA) content of the vaccine

  6. Vaccination with virus-like particles containing H5 antigens from three H5N1 clades protects chickens from H5N1 and H5N8 influenza viruses

    PubMed Central

    Kapczynski, Darrell R.; Tumpey, Terrence M.; Hidajat, Rachmat; Zsak, Aniko; Chrzastek, Klaudia; Tretyakova, Irina; Pushko, Peter

    2016-01-01

    Highly pathogenic avian influenza (HPAI) viruses, especially H5N1 strains, represent a public health threat and cause widespread morbidity and mortality in domestic poultry. Recombinant virus-like particles (VLPs) represent a promising novel vaccine approach to control avian influenza including HPAI strains. Influenza VLPs contain viral hemagglutinin (HA), which can be expressed in cell culture within highly immunogenic VLPs that morphologically and antigenically resemble influenza virions, except VLPs are non-infectious. Here we describe a recombinant VLP containing HA proteins derived from three distinct clades of H5N1 viruses as an experimental, broadly protective H5 avian influenza vaccine. A baculovirus vector was configured to co-express the H5 genes from recent H5N1 HPAI isolates A/chicken/Germany/2014 (clade 2.3.4.4), A/chicken/West Java/Subang/29/2007 (clade 2.1.3) and A/chicken/Egypt/121/2012 (clade 2.2.1). Co-expression of these genes in Sf9 cells along with influenza neuraminidase (NA) and retrovirus gag genes resulted in production of triple-clade H555 VLPs that exhibited hemagglutination activity and morphologically resembled influenza virions. Vaccination of chickens with these VLPs resulted in induction of serum antibody responses and efficient protection against experimental challenges with three different viruses including the recent U.S. H5N8 HPAI isolate. We conclude that these novel triple-clade VLPs represent a feasible strategy for simultaneously evoking protective antibodies against multiple variants of H5 influenza virus. PMID:26868083

  7. Puzzling inefficiency of H5N1 influenza vaccines in Egyptian poultry

    PubMed Central

    Kim, Jeong-Ki; Kayali, Ghazi; Walker, David; Forrest, Heather L.; Ellebedy, Ali H.; Griffin, Yolanda S.; Rubrum, Adam; Bahgat, Mahmoud M.; Kutkat, M. A.; Ali, M. A. A.; Aldridge, Jerry R.; Negovetich, Nicholas J.; Krauss, Scott; Webby, Richard J.; Webster, Robert G.

    2010-01-01

    In Egypt, efforts to control highly pathogenic H5N1 avian influenza virus in poultry and in humans have failed despite increased biosecurity, quarantine, and vaccination at poultry farms. The ongoing circulation of HP H5N1 avian influenza in Egypt has caused >100 human infections and remains an unresolved threat to veterinary and public health. Here, we describe that the failure of commercially available H5 poultry vaccines in Egypt may be caused in part by the passive transfer of maternal H5N1 antibodies to chicks, inhibiting their immune response to vaccination. We propose that the induction of a protective immune response to H5N1 is suppressed for an extended period in young chickens. This issue, among others, must be resolved and additional steps must be taken before the outbreaks in Egypt can be controlled. PMID:20534457

  8. Cross-protective immunity against influenza A/H1N1 virus challenge in mice immunized with recombinant vaccine expressing HA gene of influenza A/H5N1 virus

    PubMed Central

    2013-01-01

    Background Influenza virus undergoes constant antigenic evolution, and therefore influenza vaccines must be reformulated each year. Time is necessary to produce a vaccine that is antigenically matched to a pandemic strain. A goal of many research works is to produce universal vaccines that can induce protective immunity to influenza A viruses of various subtypes. Despite intensive studies, the precise mechanisms of heterosubtypic immunity (HSI) remain ambiguous. Method In this study, mice were vaccinated with recombinant virus vaccine (rL H5), in which the hemagglutinin (HA) gene of influenza A/H5N1 virus was inserted into the LaSota Newcastle disease virus (NDV) vaccine strain. Following a challenge with influenza A/H1N1 virus, survival rates and lung index of mice were observed. The antibodies to influenza virus were detected using hemagglutination inhibition (HI). The lung viral loads, lung cytokine levels and the percentages of both IFN-γ+CD4+ and IFN-γ+CD8+ T cells in spleen were detected using real-time RT-PCR, ELISA and flow cytometry respectively. Results In comparison with the group of mice given phosphate-buffered saline (PBS), the mice vaccinated with rL H5 showed reductions in lung index and viral replication in the lungs after a challenge with influenza A/H1N1 virus. The antibody titer in group 3 (H1N1-H1N1) was significantly higher than that in other groups which only low levels of antibody were detected. IFN-γ levels increased in both group 1 (rL H5-H1N1) and group 2 (rL H5 + IL-2-H1N1). And the IFN-γ level of group 2 was significantly higher than that of group 1. The percentages of both IFN-γ+CD4+ and IFN-γ+CD8+ T cells in group 1 (rL H5-H1N1) and group 2 (rL H5 + IL-2-H1N1) increased significantly, as measured by flow cytometry. Conclusion After the mice were vaccinated with rL H5, cross-protective immune response was induced, which was against heterosubtypic influenza A/H1N1 virus. To some extent, cross-protective immune response can

  9. Heterologous Humoral Response against H5N1, H7N3, and H9N2 Avian Influenza Viruses after Seasonal Vaccination in a European Elderly Population

    PubMed Central

    Sanz, Ivan; Rojo, Silvia; Tamames, Sonia; Eiros, José María; Ortiz de Lejarazu, Raúl

    2017-01-01

    Avian influenza viruses are currently one of the main threats to human health in the world. Although there are some screening reports of antibodies against these viruses in humans from Western countries, most of these types of studies are conducted in poultry and market workers of Asian populations. The presence of antibodies against avian influenza viruses was evaluated in an elderly European population. An experimental study was conducted, including pre- and post-vaccine serum samples obtained from 174 elderly people vaccinated with seasonal influenza vaccines of 2006–2007, 2008–2009, 2009–2010, and 2010–2011 Northern Hemisphere vaccine campaigns. The presence of antibodies against A/H5N1, A/H7N3, and A/H9N2 avian influenza viruses were tested by using haemaglutination inhibition assays. Globally, heterotypic antibodies were found before vaccination in 2.9% of individuals against A/H5N1, 1.2% against A/H7N3, and 25.9% against A/H9N2. These pre-vaccination antibodies were present at titers ≥1/40 in 1.1% of individuals against A/H5N1, in 1.1% against H7N3, and in 0.6% against the A/H9N2 subtype. One 76 year-old male showed pre-vaccine antibodies (Abs) against those three avian influenza viruses, and another three individuals presented Abs against two different viruses. Seasonal influenza vaccination induced a significant number of heterotypic seroconversions against A/H5N1 (14.4%) and A/H9N2 (10.9%) viruses, but only one seroconversion was observed against the A/H7N3 subtype. After vaccination, four individuals showed Abs titers ≥1/40 against those three avian viruses, and 55 individuals against both A/H5N1 and A/H9N2. Seasonal vaccination is able to induce some weak heterotypic responses to viruses of avian origin in elderly individuals with no previous exposure to them. However, this response did not accomplish the European Medicament Agency criteria for influenza vaccine efficacy. The results of this study show that seasonal vaccines induce a broad

  10. Generation of a reassortant avian influenza virus H5N2 vaccine strain capable of protecting chickens against infection with Egyptian H5N1 and H9N2 viruses.

    PubMed

    Kandeil, Ahmed; Moatasim, Yassmin; Gomaa, Mokhtar R; Shehata, Mahmoud M; El-Shesheny, Rabeh; Barakat, Ahmed; Webby, Richard J; Ali, Mohamed A; Kayali, Ghazi

    2016-01-04

    Avian influenza H5N1 viruses have been enzootic in Egyptian poultry since 2006. Avian influenza H9N2 viruses which have been circulating in Egyptian poultry since 2011 showed high replication rates in embryonated chicken eggs and mammalian cells. To investigate which gene segment was responsible for increasing replication, we constructed reassortant influenza viruses using the low pathogenic H1N1 PR8 virus as backbone and included individual genes from A/chicken/Egypt/S4456B/2011(H9N2) virus. Then, we invested this finding to improve a PR8-derived H5N1 influenza vaccine strain by incorporation of the NA segment of H9N2 virus instead of the NA of H5N1. The growth properties of this virus and several other forms of reassortant H5 viruses were compared. Finally, we tested the efficacy of this reassortant vaccine strain in chickens. We observed an increase in replication for a reassortant virus expressing the neuraminidase gene (N2) of H9N2 virus relative to that of either parental viruses or reassortant PR8 viruses expressing other genes. Then, we generated an H5N2 vaccine strain based on the H5 from an Egyptian H5N1 virus and the N2 from an Egyptian H9N2 virus on a PR8 backbone. This strain had better replication rates than an H5N2 reassortant strain on an H9N2 backbone and an H5N1 reassortant on a PR8 backbone. This virus was then used to develop a killed, oil-emulsion vaccine and tested for efficacy against H5N1 and H9N2 viruses in chickens. Results showed that this vaccine was immunogenic and reduced mortality and shedding. Our findings suggest that an inactivated PR8-derived H5N2 influenza vaccine is efficacious in poultry against H5N1 and H9N2 viruses and the vaccine seed replicates at a high rate thus improving vaccine production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Vaccination with virus-like particles containing H5 antigens from three H5N1 clades protects chickens from H5N1 and H5N8 influenza viruses

    USDA-ARS?s Scientific Manuscript database

    Highly pathogenic avian influenza (HPAI) viruses, especially H5N1 strains, represent a public health threat and cause widespread morbidity and mortality in domestic poultry. Recombinant virus-like particles (VLPs) represent a promising novel vaccine approach to control avian influenza including HPAI...

  12. An H5N1-based matrix protein 2 ectodomain tetrameric peptide vaccine provides cross-protection against lethal infection with H7N9 influenza virus.

    PubMed

    Leung, Ho-Chuen; Chan, Chris Chung-Sing; Poon, Vincent Kwok-Man; Zhao, Han-Jun; Cheung, Chung-Yan; Ng, Fai; Huang, Jian-Dong; Zheng, Bo-Jian

    2015-04-01

    In March 2013, a patient infected with a novel avian influenza A H7N9 virus was reported in China. Since then, there have been 458 confirmed infection cases and 177 deaths. The virus contains several human-adapted markers, indicating that H7N9 has pandemic potential. The outbreak of this new influenza virus highlighted the need for the development of universal influenza vaccines. Previously, we demonstrated that a tetrameric peptide vaccine based on the matrix protein 2 ectodomain (M2e) of the H5N1 virus (H5N1-M2e) could protect mice from lethal infection with different clades of H5N1 and 2009 pandemic H1N1 influenza viruses. In this study, we investigated the cross-protection of H5N1-M2e against lethal infection with the new H7N9 virus. Although five amino acid differences existed at positions 13, 14, 18, 20, and 21 between M2e of H5N1 and H7N9, H5N1-M2e vaccination with either Freund's adjuvant or the Sigma adjuvant system (SAS) induced a high level of anti-M2e antibody, which cross-reacted with H7N9-M2e peptide. A mouse-adapted H7N9 strain, A/Anhui/01/2013m, was used for lethal challenge in animal experiments. H5N1-M2e vaccination provided potent cross-protection against lethal challenge of the H7N9 virus. Reduced viral replication and histopathological damage of mouse lungs were also observed in the vaccinated mice. Our results suggest that the tetrameric H5N1-M2e peptide vaccine could protect against different subtypes of influenza virus infections. Therefore, this vaccine may be an ideal candidate for developing a universal vaccine to prevent the reemergence of avian influenza A H7N9 virus and the emergence of potential novel reassortants of influenza virus.

  13. Live, Attenuated Influenza A H5N1 Candidate Vaccines Provide Broad Cross-Protection in Mice and Ferrets

    PubMed Central

    Mills, Kimberly L; Jin, Hong; Duke, Greg; Lu, Bin; Luke, Catherine J; Murphy, Brian; Swayne, David E; Kemble, George; Subbarao, Kanta

    2006-01-01

    Background Recent outbreaks of highly pathogenic influenza A H5N1 viruses in humans and avian species that began in Asia and have spread to other continents underscore an urgent need to develop vaccines that would protect the human population in the event of a pandemic. Methods and Findings Live, attenuated candidate vaccines possessing genes encoding a modified H5 hemagglutinin (HA) and a wild-type (wt) N1 neuraminidase from influenza A H5N1 viruses isolated in Hong Kong and Vietnam in 1997, 2003, and 2004, and remaining gene segments derived from the cold-adapted (ca) influenza A vaccine donor strain, influenza A/Ann Arbor/6/60 ca (H2N2), were generated by reverse genetics. The H5N1 ca vaccine viruses required trypsin for efficient growth in vitro, as predicted by the modification engineered in the gene encoding the HA, and possessed the temperature-sensitive and attenuation phenotypes specified by the internal protein genes of the ca vaccine donor strain. More importantly, the candidate vaccines were immunogenic in mice. Four weeks after receiving a single dose of 106 50% tissue culture infectious doses of intranasally administered vaccines, mice were fully protected from lethality following challenge with homologous and antigenically distinct heterologous wt H5N1 viruses from different genetic sublineages (clades 1, 2, and 3) that were isolated in Asia between 1997 and 2005. Four weeks after receiving two doses of the vaccines, mice and ferrets were fully protected against pulmonary replication of homologous and heterologous wt H5N1 viruses. Conclusions The promising findings in these preclinical studies of safety, immunogenicity, and efficacy of the H5N1 ca vaccines against antigenically diverse H5N1 vaccines provide support for their careful evaluation in Phase 1 clinical trials in humans. PMID:16968127

  14. Efficacy of an AS03A-adjuvanted split H5N1 influenza vaccine against an antigenically distinct low pathogenic H5N1 virus in pigs.

    PubMed

    De Vleeschauwer, Annebel R; Baras, Benoît; Kyriakis, Constantinos S; Jacob, Valérie; Planty, Camille; Giannini, Sandra L; Mossman, Sally; Van Reeth, Kristien

    2012-08-10

    We used the pig model of influenza to examine the efficacy of an AS03(A)-adjuvanted split H5N1 (A/Indonesia/05/2005) vaccine against challenge with a low pathogenic (LP) H5N1 avian influenza (AI) virus (duck/Minnesota/1525/1981) with only 85% amino acid homology in its HA1. Influenza seronegative pigs were vaccinated twice intramuscularly with adjuvanted vaccine at 3 antigen doses, unadjuvanted vaccine or placebo. All pigs were challenged 4 weeks after the second vaccination and euthanized 2 days later. After 2 vaccinations, all pigs in the adjuvanted vaccine groups had high hemagglutination inhibiting (HI) antibody titers to the vaccine strain (160-640), and lower antibody titers to the A/Vietnam/1194/04 H5N1 strain and to 2 LP H5 viruses with 90-91% amino acid homology to the vaccine strain (20-160). Eight out of 12 pigs had HI titers (10-20) to the challenge virus immediately before challenge. Neuraminidase inhibiting antibodies to the challenge virus were detected in most pigs (7/12) and virus neutralizing antibodies in all pigs. There was no antigen-dose dependent effect on the antibody response among the pigs immunized with adjuvanted H5N1 vaccines. After challenge, these pigs showed a complete clinical protection, reduced lung lesions and a significant protection against virus replication in the respiratory tract. Though the challenge virus showed only moderate replication efficiency in pigs, our study suggests that AS03(A)-adjuvanted H5N1 vaccine may confer a broader protection than generally assumed. The pros and cons of the pig as an H5N1 challenge model are also discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Cross-reactivity to highly pathogenic avian influenza H5N1 viruses after vaccination with nonadjuvanted and MF59-adjuvanted influenza A/Duck/Singapore/97 (H5N3) vaccine: a potential priming strategy.

    PubMed

    Stephenson, Iain; Bugarini, Roberto; Nicholson, Karl G; Podda, Audino; Wood, John M; Zambon, Maria C; Katz, Jacqueline M

    2005-04-15

    Antigenically well-matched vaccines against highly pathogenic avian influenza H5N1 viruses are urgently required. Human serum samples after immunization with MF59 or nonadjuvanted A/duck/Singapore/97 (H5N3) vaccine were tested for antibody to 1997-2004 human H5N1 viruses. Antibody responses to 3 doses of nonadjuvanted vaccine were poor and were higher after MF59-adjuvanted vaccine, with seroconversion rates to A/HongKong/156/97, A/HongKong/213/03, A/Thailand/16/04, and A/Vietnam/1203/04 of 100% (P < .0001), 100% (P < .0001), 71% (P = .0004), and 43% (P = .0128) in 14 subjects, respectively, compared with 27%, 27%, 0%, and 0% in 11 who received nonadjuvanted vaccine. These findings have implications for the rational design of pandemic vaccines against influenza H5.

  16. Comparative safety, immunogenicity, and efficacy of several anti‐H5N1 influenza experimental vaccines in a mouse and chicken models (Testing of killed and live H5 vaccine)

    PubMed Central

    Gambaryan, Alexandra S.; Lomakina, Natalia F.; Boravleva, Elizaveta Y.; Kropotkina, Ekaterina A.; Mashin, Vadim V.; Krasilnikov, Igor V.; Klimov, Alexander I.; Rudenko, Larisa G.

    2011-01-01

    Please cite this paper as: Gambaryan et al. (2011) Comparative safety, immunogenicity, and efficacy of several anti‐H5N1 influenza experimental vaccines in a mouse and chicken models. Parallel testing of killed and live H5 vaccine. Influenza and Other Respiratory Viruses 6(3), 188–195. Objective  Parallel testing of inactivated (split and whole virion) and live vaccine was conducted to compare the immunogenicity and protective efficacy against homologous and heterosubtypic challenge by H5N1 highly pathogenic avian influenza virus. Method  Four experimental live vaccines based on two H5N1 influenza virus strains were tested; two of them had hemagglutinin (HA) of A/Vietnam/1203/04 strain lacking the polybasic HA cleavage site, and two others had hemagglutinins from attenuated H5N1 virus A/Chicken/Kurgan/3/05, with amino acid substitutions of Asp54/Asn and Lys222/Thr in HA1 and Val48/Ile and Lys131/Thr in HA2 while maintaining the polybasic HA cleavage site. The neuraminidase and non‐glycoprotein genes of the experimental live vaccines were from H2N2 cold‐adapted master strain A/Leningrad/134/17/57 (VN‐Len and Ku‐Len) or from the apathogenic H6N2 virus A/Gull/Moscow/3100/2006 (VN‐Gull and Ku‐Gull). Inactivated H5N1 and H1N1 and live H1N1 vaccine were used for comparison. All vaccines were applied in a single dose. Safety, immunogenicity, and protectivity against the challenge with HPAI H5N1 virus A/Chicken/Kurgan/3/05 were estimated. Results  All experimental live H5 vaccines tested were apathogenic as determined by weight loss and conferred more than 90% protection against lethal challenge with A/Chicken/Kurgan/3/05 infection. Inactivated H1N1 vaccine in mice offered no protection against challenge with H5N1 virus, while live cold‐adapted H1N1 vaccine reduced the mortality near to zero level. Conclusions  The high yield, safety, and protectivity of VN‐Len and Ku‐Len made them promising strains for the production of inactivated and live

  17. Boosting heterosubtypic neutralization antibodies in recipients of 2009 pandemic H1N1 influenza vaccine.

    PubMed

    Qiu, Chao; Huang, Yang; Wang, Qian; Tian, Di; Zhang, Wanju; Hu, Yunwen; Yuan, Zhenghong; Zhang, Xiaoyan; Xu, Jianqing

    2012-01-01

    A mass vaccination has been implemented to prevent the spread of 2009 pandemic influenza virus in China. Highly limited information is available on whether this vaccine induces cross-reactive neutralization antibodies against other subtypes of influenza viruses. We employed pseudovirus-based assays to analyze heterosubtypic neutralization responses in serum samples of 23 recipients of 2009 pandemic influenza vaccine. One dose of pandemic vaccine not only stimulated good neutralization antibodies against cognate influenza virus 2009 influenza A (H1N1), but also raised broad cross-reactive neutralization activities against seasonal H3N2 and highly pathogenic avian influenza virus H5N1 and lesser to H2N2. The cross-reactive neutralization activities were completely abolished after the removal of immunoglobin G (IgG). In contrast, H1N1 vaccination alone in influenza-naive mice elicited only vigorous homologous neutralizing activities but not cross-reactive neutralization activities. Our data suggest that the cross-reactive neutralization epitopes do exist in this vaccine and could elicit significant cross-reactive neutralizing IgG antibodies in the presence of preexisting responses. The exposure to H1N1 vaccine is likely to modify the hierarchical order of preexisting immune responses to influenza viruses. These findings provide insights into the evolution of human immunity to influenza viruses after experiencing multiple influenza virus infections and vaccinations.

  18. A(H1N1)pdm09 influenza infection: vaccine inefficiency.

    PubMed

    Friedman, Nehemya; Drori, Yaron; Pando, Rakefet; Glatman-Freedman, Aharona; Sefty, Hanna; Bassal, Ravit; Stein, Yaniv; Shohat, Tamy; Mendelson, Ella; Hindiyeh, Musa; Mandelboim, Michal

    2017-05-16

    The last influenza pandemic, caused by the swine A(H1N1)pdm09 influenza virus, began in North America at 2009. Since then, the World Health Organization (WHO) recommended integration of the swine-based virus A/California/07/2009 strain in yearly vaccinations. Yet, infections with A(H1N1)pdm09 have continued in subsequent years. The reasons for this are currently unknown. During the 2015-2016 influenza season, we noted an increased prevalence of A(H1N1)pdm09 influenza virus infection in Israel. Our phylogenetic analysis indicated that the circulating A(H1N1)pdm09 strains belonged to 6B.1 and 6B.2 clades and differed from the vaccinating strain, with approximately 18 amino acid differences found between the circulating strains and the immunizing A/California/07/2009 strain. Hemmaglutination inhibition (HI) assays demonstrated higher antibodies titer against the A/California/07/2009 vaccinating strain as compared to the circulating Israeli strains. We thus suggest that the current vaccination was not sufficiently effective and propose inclusion of the current circulating A(H1N1)pdm09 influenza viruses in the annual vaccine composition.

  19. Sensitization with vaccinia virus encoding H5N1 hemagglutinin restores immune potential against H5N1 influenza virus.

    PubMed

    Yasui, Fumihiko; Itoh, Yasushi; Ikejiri, Ai; Kitabatake, Masahiro; Sakaguchi, Nobuo; Munekata, Keisuke; Shichinohe, Shintaro; Hayashi, Yukiko; Ishigaki, Hirohito; Nakayama, Misako; Sakoda, Yoshihiro; Kida, Hiroshi; Ogasawara, Kazumasa; Kohara, Michinori

    2016-11-28

    H5N1 highly pathogenic avian influenza (H5N1 HPAI) virus causes elevated mortality compared with seasonal influenza viruses like H1N1 pandemic influenza (H1N1 pdm) virus. We identified a mechanism associated with the severe symptoms seen with H5N1 HPAI virus infection. H5N1 HPAI virus infection induced a decrease of dendritic cell number in the splenic extrafollicular T-cell zone and impaired formation of the outer layers of B-cell follicles, resulting in insufficient levels of antibody production after infection. However, in animals vaccinated with a live recombinant vaccinia virus expressing the H5 hemagglutinin, infection with H5N1 HPAI virus induced parafollicular dendritic cell accumulation and efficient antibody production. These results indicate that a recombinant vaccinia encoding H5 hemagglutinin gene does not impair dendritic cell recruitment and can be a useful vaccine candidate.

  20. Cross-protective efficacies of highly-pathogenic avian influenza H5N1 vaccines against a recent H5N8 virus.

    PubMed

    Park, Su-Jin; Si, Young-Jae; Kim, Jihye; Song, Min-Suk; Kim, Se-Mi; Kim, Eun-Ha; Kwon, Hyeok-Il; Kim, Young-Il; Lee, Ok-Jun; Shin, Ok Sarah; Kim, Chul-Joong; Shin, Eui-Cheol; Choi, Young Ki

    2016-11-01

    To investigate cross-protective vaccine efficacy of highly-pathogenic avian influenza H5N1 viruses against a recent HPAI H5N8 virus, we immunized C57BL/6 mice and ferrets with three alum-adjuvanted inactivated whole H5N1 vaccines developed through reverse-genetics (Rg): [Vietnam/1194/04xPR8 (clade 1), Korea/W149/06xPR8 (clade 2.2), and Korea/ES223N/03xPR8 (clade 2.5)]. Although relatively low cross-reactivities (10-40 HI titer) were observed against heterologous H5N8 virus, immunized animals were 100% protected from challenge with the 20 mLD50 of H5N8 virus, with the exception of mice vaccinated with 3.5μg of Rg Vietnam/1194/04xPR8. Of note, the Rg Korea/ES223N/03xPR8 vaccine provided not only effective protection, but also markedly inhibited viral replication in the lungs and nasal swabs of vaccine recipients within five days of HPAI H5N8 virus challenge. Further, we demonstrated that antibody-dependent cell-mediated cytotoxicity (ADCC) of an antibody-coated target cell by cytotoxic effector cells also plays a role in the heterologous protection of H5N1 vaccines against H5N8 challenge. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Acceptance of 2009 H1N1 influenza vaccine among pregnant women in Delaware.

    PubMed

    Drees, Marci; Johnson, Oluwakemi; Wong, Esther; Stewart, Ashley; Ferisin, Stephanie; Silverman, Paul R; Ehrenthal, Deborah B

    2012-04-01

    Due to disproportionately high mortality from 2009 H1N1 influenza, pregnant women were given highest priority for H1N1 vaccination. We surveyed postpartum women to determine vaccine uptake and reasons for lack of vaccination. We performed a cross-sectional survey of postpartum women delivering at our institution from February 1 to April 15, 2010. The 12-question survey ascertained maternal characteristics and vaccination concerns. Among 307 postpartum women, 191 (62%) had received H1N1 vaccination and 98 (32%) had declined. Factors associated with H1N1 vaccination included older age (relative risk [RR] 1.3, 95% confidence interval [CI] 1.1 to 1.5 for age ≥35 years compared with 20 to 34 years), at least college education (RR 1.5, 95% CI 1.3 to 1.8), prior influenza vaccination (RR 1.6, 95% CI 1.3 to 2.0), provider recommendation (RR 3.9, 95% CI 2.1 to 7.4), vaccination of family members (RR 1.6, 95% CI 1.3 to 1.9), and receipt of seasonal influenza vaccination (RR 2.2, 95% CI 1.7 to 2.9). Non-Hispanic black women were less likely to have been vaccinated (RR 0.6, 95% CI 0.5 to 0.8) than non-Hispanic white women. Safety concerns were cited by the majority (66%) of nonvaccinated women. H1N1 vaccine uptake among pregnant women was substantially higher than reported influenza vaccination rates during previous seasons. Safety concerns were the major barrier to vaccination. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  2. H5N1 vaccines in humans

    PubMed Central

    Baz, Mariana; Luke, Catherine J; Cheng, Xing; Jin, Hong; Subbarao, Kanta

    2013-01-01

    The spread of highly pathogenic avian H5N1 influenza viruses since 1997 and their virulence for poultry and humans has raised concerns about their potential to cause an influenza pandemic. Vaccines offer the most viable means to combat a pandemic threat. However, it will be a challenge to produce, distribute and implement a new vaccine if a pandemic spreads rapidly. Therefore, efforts are being undertaken to develop pandemic vaccines that use less antigen and induce cross-protective and long-lasting responses, that can be administered as soon as a pandemic is declared or possibly even before, in order to prime the population and allow for a rapid and protective antibody response. In the last few years, several vaccine manufacturers have developed candidate pandemic and pre-pandemic vaccines, based on reverse genetics and have improved the immunogenicity by formulating these vaccines with different adjuvants. Some of the important and consistent observations from clinical studies with H5N1 vaccines are as follows: two doses of inactivated vaccine are generally necessary to elicit the level of immunity required to meet licensure criteria, less antigen can be used if an oil-in-water adjuvant is included, in general antibody titers decline rapidly but can be boosted with additional doses of vaccine and if high titers of antibody are elicited, cross-reactivity against other clades is observed. Prime-boost strategies elicit a more robust immune response. In this review, we discuss data from clinical trials with a variety of H5N1 influenza vaccines. We also describe studies conducted in animal models to explore the possibility of reassortment between pandemic live attenuated vaccine candidates and seasonal influenza viruses, since this is an important consideration for the use of live vaccines in a pandemic setting. PMID:23726847

  3. Extrapolating theoretical efficacy of inactivated influenza A/H5N1 virus vaccine from human immunogenicity studies

    PubMed Central

    Feldstein, Leora R.; Matrajt, Laura; Halloran, M. Elizabeth; Keitel, Wendy A.; Longini, Ira M.

    2016-01-01

    Influenza A virus subtype H5N1 has been a public health concern for almost 20 years due to its potential ability to become transmissible among humans. Phase I and II clinical trials have assessed safety, reactogenicity and immunogenicity of inactivated influenza A/H5N1 virus vaccines. A shortage of vaccine is likely to occur during the first months of a pandemic. Hence, determining whether to give one dose to more people or two doses to fewer people to best protect the population is essential. We use hemagglutination-inhibition antibody titers as an immune correlate for avian influenza vaccines. Using an established relationship to obtain a theoretical vaccine efficacy from immunogenicity data from thirteen arms of six phase I and phase II clinical trials of inactivated influenza A/H5N1 virus vaccines, we assessed: 1) the proportion of theoretical vaccine efficacy achieved after a single dose (defined as primary response level), and 2) whether theoretical efficacy increases after a second dose, with and without adjuvant. Participants receiving vaccine with AS03 adjuvant had higher primary response levels (range: 0.48–0.57) compared to participants receiving vaccine with MF59 adjuvant (range: 0.32–0.47), with no observed trends in primary response levels by antigen dosage. After the first and second doses, vaccine with AS03 at dosage levels 3.75, 7.5 and 15 mcg had the highest estimated theoretical vaccine efficacy: Dose 1) 45% (95%CI: 36–57%), 53% (95%CI: 42–63%) and 55% (95%CI: 44–64%), respectively and Dose 2) 93% (95%CI: 89–96%), 97% (95%CI: 95–98%) and 97% (95%CI: 96–100%), respectively. On average, the estimated theoretical vaccine efficacy of lower dose adjuvanted vaccines (AS03 and MF59) was 17% higher than that of higher dose unadjuvanted vaccines, suggesting that including an adjuvant is dose-sparing. These data indicate adjuvanted inactivated influenza A/H5N1 virus vaccine produces high theoretical efficacy after two doses to protect

  4. Reassortant H1N1 influenza virus vaccines protect pigs against pandemic H1N1 influenza virus and H1N2 swine influenza virus challenge.

    PubMed

    Yang, Huanliang; Chen, Yan; Shi, Jianzhong; Guo, Jing; Xin, Xiaoguang; Zhang, Jian; Wang, Dayan; Shu, Yuelong; Qiao, Chuanling; Chen, Hualan

    2011-09-28

    Influenza A (H1N1) virus has caused human influenza outbreaks in a worldwide pandemic since April 2009. Pigs have been found to be susceptible to this influenza virus under experimental and natural conditions, raising concern about their potential role in the pandemic spread of the virus. In this study, we generated a high-growth reassortant virus (SC/PR8) that contains the hemagglutinin (HA) and neuraminidase (NA) genes from a novel H1N1 isolate, A/Sichuan/1/2009 (SC/09), and six internal genes from A/Puerto Rico/8/34 (PR8) virus, by genetic reassortment. The immunogenicity and protective efficacy of this reassortant virus were evaluated at different doses in a challenge model using a homologous SC/09 or heterologous A/Swine/Guangdong/1/06(H1N2) virus (GD/06). Two doses of SC/PR8 virus vaccine elicited high-titer serum hemagglutination inhibiting (HI) antibodies specific for the 2009 H1N1 virus and conferred complete protection against challenge with either SC/09 or GD/06 virus, with reduced lung lesions and viral shedding in vaccine-inoculated animals compared with non-vaccinated control animals. These results indicated for the first time that a high-growth SC/PR8 reassortant H1N1 virus exhibits properties that are desirable to be a promising vaccine candidate for use in swine in the event of a pandemic H1N1 influenza. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. A Live Attenuated Influenza A(H5N1) Vaccine Induces Long-Term Immunity in the Absence of a Primary Antibody Response

    PubMed Central

    Talaat, Kawsar R.; Luke, Catherine J.; Khurana, Surender; Manischewitz, Jody; King, Lisa R.; McMahon, Bridget A.; Karron, Ruth A.; Lewis, Kristen D. C.; Qin, Jing; Follmann, Dean A.; Golding, Hana; Neuzil, Kathleen M.; Subbarao, Kanta

    2014-01-01

    Background. Highly pathogenic avian influenza A(H5N1) causes severe infections in humans. We generated 2 influenza A(H5N1) live attenuated influenza vaccines for pandemic use (pLAIVs), but they failed to elicit a primary immune response. Our objective was to determine whether the vaccines primed or established long-lasting immunity that could be detected by administration of inactivated subvirion influenza A(H5N1) vaccine (ISIV). Methods. The following groups were invited to participate in the study: persons who previously received influenza A(H5N1) pLAIV; persons who previously received an irrelevant influenza A(H7N3) pLAIV; and community members who were naive to influenza A(H5N1) and LAIV. LAIV-experienced subjects received a single 45-μg dose of influenza A(H5N1) ISIV. Influenza A(H5N1)– and LAIV-naive subjects received either 1 or 2 doses of ISIV. Results. In subjects who had previously received antigenically matched influenza A(H5N1) pLAIV followed by 1 dose of ISIV compared with those who were naive to influenza A(H5N1) and LAIV and received 2 doses of ISIV, we observed an increased frequency of antibody response (82% vs 50%, by the hemagglutination inhibition assay) and a significantly higher antibody titer (112 vs 76; P = .04). The affinity of antibody and breadth of cross-clade neutralization was also enhanced in influenza A(H5N1) pLAIV–primed subjects. Conclusions. ISIV administration unmasked long-lasting immunity in influenza A(H5N1) pLAIV recipients, with a rapid, high-titer, high-quality antibody response that was broadly cross-reactive across several influenza A(H5N1) clades. Clinical Trials Registration. NCT01109329. PMID:24604819

  6. Vaccine Efficacy of Inactivated, Chimeric Hemagglutinin H9/H5N2 Avian Influenza Virus and Its Suitability for the Marker Vaccine Strategy

    PubMed Central

    Kim, Se Mi; Kim, Young-Il; Park, Su-Jin; Kim, Eun-Ha; Kwon, Hyeok-il; Si, Young-Jae; Lee, In-Won; Song, Min-Suk

    2017-01-01

    ABSTRACT In order to produce a dually effective vaccine against H9 and H5 avian influenza viruses that aligns with the DIVA (differentiating infected from vaccinated animals) strategy, we generated a chimeric H9/H5N2 recombinant vaccine that expressed the whole HA1 region of A/CK/Korea/04163/04 (H9N2) and the HA2 region of recent highly pathogenic avian influenza (HPAI) A/MD/Korea/W452/14 (H5N8) viruses. The chimeric H9/H5N2 virus showed in vitro and in vivo growth properties and virulence that were similar to those of the low-pathogenic avian influenza (LPAI) H9 virus. An inactivated vaccine based on this chimeric virus induced serum neutralizing (SN) antibodies against both H9 and H5 viruses but induced cross-reactive hemagglutination inhibition (HI) antibody only against H9 viruses. Thus, this suggests its compatibility for use in the DIVA strategy against H5 strains. Furthermore, the chimeric H9/H5N2 recombinant vaccine protected immunized chickens against lethal challenge by HPAI H5N8 viruses and significantly attenuated virus shedding after infection by both H9N2 and HPAI H5N8 viruses. In mice, serological analyses confirmed that HA1- and HA2 stalk-specific antibody responses were induced by vaccination and that the DIVA principle could be employed through the use of an HI assay against H5 viruses. Furthermore, each HA1- and HA2 stalk-specific antibody response was sufficient to inhibit viral replication and protect the chimeric virus-immunized mice from lethal challenge with both mouse-adapted H9N2 and wild-type HPAI H5N1 viruses, although differences in vaccine efficacy against a homologous H9 virus (HA1 head domain immune-mediated protection) and a heterosubtypic H5 virus (HA2 stalk domain immune-mediated protection) were observed. Taken together, these results demonstrate that the novel chimeric H9/H5N2 recombinant virus is a low-pathogenic virus, and this chimeric vaccine is suitable for a DIVA vaccine with broad-spectrum neutralizing antibody against H5

  7. Human infection with highly pathogenic H5N1 influenza virus.

    PubMed

    Gambotto, Andrea; Barratt-Boyes, Simon M; de Jong, Menno D; Neumann, Gabriele; Kawaoka, Yoshihiro

    2008-04-26

    Highly pathogenic H5N1 influenza A viruses have spread relentlessly across the globe since 2003, and they are associated with widespread death in poultry, substantial economic loss to farmers, and reported infections of more than 300 people with a mortality rate of 60%. The high pathogenicity of H5N1 influenza viruses and their capacity for transmission from birds to human beings has raised worldwide concern about an impending human influenza pandemic similar to the notorious H1N1 Spanish influenza of 1918. Since many aspects of H5N1 influenza research are rapidly evolving, we aim in this Seminar to provide an up-to-date discussion on select topics of interest to influenza clinicians and researchers. We summarise the clinical features and diagnosis of infection and present therapeutic options for H5N1 infection of people. We also discuss ideas relating to virus transmission, host restriction, and pathogenesis. Finally, we discuss vaccine development in view of the probable importance of vaccination in pandemic control.

  8. Pre-Existing Cross-Reactive Antibodies to Avian Influenza H5N1 and 2009 Pandemic H1N1 in US Military Personnel

    PubMed Central

    Pichyangkul, Sathit; Krasaesub, Somporn; Jongkaewwattana, Anan; Thitithanyanont, Arunee; Wiboon-ut, Suwimon; Yongvanitchit, Kosol; Limsalakpetch, Amporn; Kum-Arb, Utaiwan; Mongkolsirichaikul, Duangrat; Khemnu, Nuanpan; Mahanonda, Rangsini; Garcia, Jean-Michel; Mason, Carl J.; Walsh, Douglas S.; Saunders, David L.

    2014-01-01

    We studied cross-reactive antibodies against avian influenza H5N1 and 2009 pandemic (p) H1N1 in 200 serum samples from US military personnel collected before the H1N1 pandemic. Assays used to measure antibodies against viral proteins involved in protection included a hemagglutination inhibition (HI) assay and a neuraminidase inhibition (NI) assay. Viral neutralization by antibodies against avian influenza H5N1 and 2009 pH1N1 was assessed by influenza (H5) pseudotyped lentiviral particle-based and H1N1 microneutralization assays. Some US military personnel had cross-neutralizing antibodies against H5N1 (14%) and 2009 pH1N1 (16.5%). The odds of having cross-neutralizing antibodies against 2009 pH1N1 were 4.4 times higher in subjects receiving more than five inactivated whole influenza virus vaccinations than those subjects with no record of vaccination. Although unclear if the result of prior vaccination or disease exposure, these pre-existing antibodies may prevent or reduce disease severity. PMID:24277784

  9. Avian Influenza A(H5N1) Virus in Egypt.

    PubMed

    Kayali, Ghazi; Kandeil, Ahmed; El-Shesheny, Rabeh; Kayed, Ahmed S; Maatouq, Asmaa M; Cai, Zhipeng; McKenzie, Pamela P; Webby, Richard J; El Refaey, Samir; Kandeel, Amr; Ali, Mohamed A

    2016-03-01

    In Egypt, avian influenza A subtype H5N1 and H9N2 viruses are enzootic in poultry. The control plan devised by veterinary authorities in Egypt to prevent infections in poultry focused mainly on vaccination and ultimately failed. Recently, widespread H5N1 infections in poultry and a substantial increase in the number of human cases of H5N1 infection were observed. We summarize surveillance data from 2009 through 2014 and show that avian influenza viruses are established in poultry in Egypt and are continuously evolving genetically and antigenically. We also discuss the epidemiology of human infection with avian influenza in Egypt and describe how the true burden of disease is underestimated. We discuss the failures of relying on vaccinating poultry as the sole intervention tool. We conclude by highlighting the key components that need to be included in a new strategy to control avian influenza infections in poultry and humans in Egypt.

  10. Avian Influenza A(H5N1) Virus in Egypt

    PubMed Central

    Kandeil, Ahmed; El-Shesheny, Rabeh; Kayed, Ahmed S.; Maatouq, Asmaa M.; Cai, Zhipeng; McKenzie, Pamela P.; Webby, Richard J.; El Refaey, Samir; Kandeel, Amr; Ali, Mohamed A.

    2016-01-01

    In Egypt, avian influenza A subtype H5N1 and H9N2 viruses are enzootic in poultry. The control plan devised by veterinary authorities in Egypt to prevent infections in poultry focused mainly on vaccination and ultimately failed. Recently, widespread H5N1 infections in poultry and a substantial increase in the number of human cases of H5N1 infection were observed. We summarize surveillance data from 2009 through 2014 and show that avian influenza viruses are established in poultry in Egypt and are continuously evolving genetically and antigenically. We also discuss the epidemiology of human infection with avian influenza in Egypt and describe how the true burden of disease is underestimated. We discuss the failures of relying on vaccinating poultry as the sole intervention tool. We conclude by highlighting the key components that need to be included in a new strategy to control avian influenza infections in poultry and humans in Egypt. PMID:26886164

  11. Stockpiled pre-pandemic H5N1 influenza virus vaccines with AS03 adjuvant provide cross-protection from H5N2 clade 2.3.4.4 virus challenge in ferrets

    PubMed Central

    Sun, Xiangjie; Belser, Jessica A.; Pulit-Penaloza, Joanna A.; Creager, Hannah M.; Guo, Zhu; Jefferson, Stacie N.; Liu, Feng; York, Ian A.; Stevens, James; Maines, Taronna R.; Jernigan, Daniel B.; Katz, Jacqueline M.; Levine, Min Z.; Tumpey, Terrence M.

    2018-01-01

    Avian influenza viruses, notably H5 subtype viruses, pose a continuous threat to public health due to their pandemic potential. In recent years, influenza virus H5 subtype split vaccines with novel oil-in-water emulsion based adjuvants (e.g. AS03, MF59) have been shown to be safe, immunogenic, and able to induce broad immune responses in clinical trials, providing strong scientific support for vaccine stockpiling. However, whether such vaccines can provide protection from infection with emerging, antigenically distinct clades of H5 viruses has not been adequately addressed. Here, we selected two AS03-adjuvanted H5N1 vaccines from the US national prepandemic influenza vaccine stockpile and assessed whether the 2004–05 vaccines could provide protection against a 2014 highly pathogenic avian influenza (HPAI) H5N2 virus (A/northern pintail/Washington/40964/2014), a clade 2.3.4.4 virus responsible for mass culling of poultry in North America. Ferrets received two doses of adjuvanted vaccine containing 7.5 μg of hemagglutinin (HA) from A/Vietnam/1203/2004 (clade 1) or A/Anhui/1/2005 (clade 2.3.4) virus either in a homologous or heterologous prime-boost vaccination regime. We found that both vaccination regimens elicited robust antibody responses against the 2004–05 vaccine viruses and could reduce virus-induced morbidity and viral replication in the lower respiratory tract upon heterologous challenge despite the low level of cross-reactive antibody titers to the challenge H5N2 virus. This study supports the value of existing stockpiled 2004–05 influenza H5N1 vaccines, combined with AS03-adjuvant for early use in the event of an emerging pandemic with H5N2-like clade 2.3.4.4 viruses. PMID:28554058

  12. Evaluation of In Vitro Cross-Reactivity to Avian H5N1 and Pandemic H1N1 2009 Influenza Following Prime Boost Regimens of Seasonal Influenza Vaccination in Healthy Human Subjects: A Randomised Trial

    DTIC Science & Technology

    2013-03-26

    virus (IIV) vaccine (dose 0.5 mL intramuscularly, purchased in Thailand from Sanofi Pasteur). Both vaccines contained the three strains for the 2009/10...H1N1 2009 Influenza Following Prime Boost Regimens of Seasonal Influenza Vaccination in Healthy Human Subjects: A Randomised Trial. 5a. CONTRACT NUMBER...reported by WHO since 2003 [1]. Current seasonal trivalent influenza vaccines rely on predicted antigens based on the previous season’s circulating

  13. Emergence of H5N1 high pathogenicity avian influenza strains in Indonesia that are resistant to vaccines

    USDA-ARS?s Scientific Manuscript database

    Vaccines have been used to protect poultry in Asia against H5N1 high pathogenicity avian influenza (HPAI) since 2002. Reports of vaccine “failures” began to emerge in 2006 in Indonesia, with identification of clinical disease consistent with HPAI or isolation of H5N1 HPAIV in vaccinated flocks or in...

  14. A Candidate H1N1 Pandemic Influenza Vaccine Elicits Protective Immunity in Mice

    PubMed Central

    Steitz, Julia; Barlow, Peter G.; Hossain, Jaber; Kim, Eun; Okada, Kaori; Kenniston, Tom; Rea, Sheri; Donis, Ruben O.; Gambotto, Andrea

    2010-01-01

    Background In 2009 a new pandemic disease appeared and spread globally. The recent emergence of the pandemic influenza virus H1N1 first isolated in Mexico and USA raised concerns about vaccine availability. We here report our development of an adenovirus-based influenza H1N1 vaccine tested for immunogenicity and efficacy to confer protection in animal model. Methods We generated two adenovirus(Ad5)-based influenza vaccine candidates encoding the wildtype or a codon-optimized hemagglutinin antigen (HA) from the recently emerged swine influenza isolate A/California/04/2009 (H1N1)pdm. After verification of antigen expression, immunogenicity of the vaccine candidates were tested in a mouse model using dose escalations for subcutaneous immunization. Sera of immunized animals were tested in microneutalization and hemagglutination inhibition assays for the presence of HA-specific antibodies. HA-specific T-cells were measured in IFNγ Elispot assays. The efficiency of the influenza vaccine candidates were evaluated in a challenge model by measuring viral titer in lung and nasal turbinate 3 days after inoculation of a homologous H1N1 virus. Conclusions/Significance A single immunization resulted in robust cellular and humoral immune response. Remarkably, the intensity of the immune response was substantially enhanced with codon-optimized antigen, indicating the benefit of manipulating the genetic code of HA antigens in the context of recombinant influenza vaccine design. These results highlight the value of advanced technologies in vaccine development and deployment in response to infections with pandemic potential. Our study emphasizes the potential of an adenoviral-based influenza vaccine platform with the benefits of speed of manufacture and efficacy of a single dose immunization. PMID:20463955

  15. Comparative safety, immunogenicity, and efficacy of several anti-H5N1 influenza experimental vaccines in a mouse and chicken models (Testing of killed and live H5 vaccine).

    PubMed

    Gambaryan, Alexandra S; Lomakina, Natalia F; Boravleva, Elizaveta Y; Kropotkina, Ekaterina A; Mashin, Vadim V; Krasilnikov, Igor V; Klimov, Alexander I; Rudenko, Larisa G

    2012-05-01

    Parallel testing of inactivated (split and whole virion) and live vaccine was conducted to compare the immunogenicity and protective efficacy against homologous and heterosubtypic challenge by H5N1 highly pathogenic avian influenza virus. Four experimental live vaccines based on two H5N1 influenza virus strains were tested; two of them had hemagglutinin (HA) of A/Vietnam/1203/04 strain lacking the polybasic HA cleavage site, and two others had hemagglutinins from attenuated H5N1 virus A/Chicken/Kurgan/3/05, with amino acid substitutions of Asp54/Asn and Lys222/Thr in HA1 and Val48/Ile and Lys131/Thr in HA2 while maintaining the polybasic HA cleavage site. The neuraminidase and non-glycoprotein genes of the experimental live vaccines were from H2N2 cold-adapted master strain A/Leningrad/134/17/57 (VN-Len and Ku-Len) or from the apathogenic H6N2 virus A/Gull/Moscow/3100/2006 (VN-Gull and Ku-Gull). Inactivated H5N1 and H1N1 and live H1N1 vaccine were used for comparison. All vaccines were applied in a single dose. Safety, immunogenicity, and protectivity against the challenge with HPAI H5N1 virus A/Chicken/Kurgan/3/05 were estimated. All experimental live H5 vaccines tested were apathogenic as determined by weight loss and conferred more than 90% protection against lethal challenge with A/Chicken/Kurgan/3/05 infection. Inactivated H1N1 vaccine in mice offered no protection against challenge with H5N1 virus, while live cold-adapted H1N1 vaccine reduced the mortality near to zero level. The high yield, safety, and protectivity of VN-Len and Ku-Len made them promising strains for the production of inactivated and live vaccines against H5N1 viruses. © 2011 Blackwell Publishing Ltd.

  16. Pandemic influenza A (H1N1) 2009 vaccine: an update.

    PubMed

    Goel, M K; Goel, M; Khanna, P; Mittal, K

    2011-01-01

    The world witnessed a the first influenza pandemic in this century and fourth overall since first flu pandemic was reported during the World War I. The past experiences with influenza viruses and this pandemic of H1N1 place a consider-able strain on health services and resulted in serious illnesses and a large number of deaths. Develop-ing countries were declared more likely to be at risk from the pandemic effects, as they faced the dual problem of highly vulnerable populations and limited resources to respond H1N1. The public health experts agreed that vaccination is the most effective ways to mitigate the negative effects of the pandemic. The vaccines for H1N1 virus have been used in over 40 countries and administered to over 200 million people helped in a great way and on August 10, 2010, World Health Organization (WHO) announced H1N1 to be in postpandemic period. But based on knowledge about past pandemics, the H1N1 (2009) virus is expected to continue to circulate as a seasonal virus and may undergo some agenic-variation. As WHO strongly recommends vaccination, vigilance for regular updating of the composition of influenza vaccines, based on an assessment of the future impact of circulating viruses along with safety surveillance of the vaccines is necessary. This review has been done to take a stock of the currently available H1N1 vaccines and their possible use as public health intervention in the postpandemic period.

  17. The Contribution of Systemic and Pulmonary Immune Effectors to Vaccine-Induced Protection from H5N1 Influenza Virus Infection

    PubMed Central

    Lau, Yuk-Fai; Wright, Amber R.

    2012-01-01

    Live attenuated influenza vaccines (LAIVs) are effective in providing protection against influenza challenge in animal models and in preventing disease in humans. We previously showed that LAIVs elicit a range of immune effectors and that successful induction of pulmonary cellular and humoral immunity in mice requires pulmonary replication of the vaccine virus. An upper respiratory tract immunization (URTI) model was developed in mice to mimic the human situation, in which the vaccine virus does not replicate in the lower respiratory tract, allowing us to assess the protective efficacy of an H5N1 LAIV against highly pathogenic H5N1 virus challenge in the absence of significant pulmonary immunity. Our results show that, after one dose of an H5N1 LAIV, pulmonary influenza-specific lymphocytes are the main contributors to clearance of challenge virus from the lungs and that contributions of influenza-specific enzyme-linked immunosorbent assay (ELISA) antibodies in serum and splenic CD8+ T cells were negligible. Complete protection from H5N1 challenge was achieved after two doses of H5N1 LAIV and was associated with maturation of the antibody response. Although passive transfer of sera from mice that received two doses of vaccine prevented lethality in naive recipients following challenge, the mice showed significant weight loss, with high pulmonary titers of the H5N1 virus. These data highlight the importance of mucosal immunity in mediating optimal protection against H5N1 infection. Understanding the requirements for effective induction and establishment of these protective immune effectors in the respiratory tract paves the way for a more rational and effective vaccine approach in the future. PMID:22379093

  18. Influenza Virus Vaccines: Lessons from the 2009 H1N1 pandemic

    PubMed Central

    Broadbent, Andrew J.; Subbarao, Kanta

    2011-01-01

    Reflecting on the 2009 H1N1 pandemic, we summarize lessons regarding influenza vaccines that can be applied in the future. The two major challenges to vaccination during the 2009 H1N1 pandemic were timing and availability of vaccine. Vaccines were, however, well-tolerated and immunogenic, with inactivated vaccines containing 15μg of HA generally inducing antibody titers ≥1:40 in adults within 2 weeks of the administration of a single dose. Moreover, the use of oil-in-water adjuvants in Europe permitted dose- reduction, with vaccines containing as little as 3.75 or 7.5μg HA being immunogenic. Case-control studies demonstrated that monovalent 2009 H1N1 vaccines were effective in preventing infection with the 2009 H1N1 virus, but preliminary data suggests that it is important for individuals to be re-immunized annually. PMID:22125588

  19. Mammalian-transmissible H5N1 influenza: facts and perspective.

    PubMed

    Osterholm, Michael T; Kelley, Nicholas S

    2012-01-01

    Two recently submitted (but as yet unpublished) studies describe success in creating mutant isolates of H5N1 influenza A virus that can be transmitted via the respiratory route between ferrets; concern has been raised regarding human-to-human transmissibility of these or similar laboratory-generated influenza viruses. Furthermore, the potential release of methods used in these studies has engendered a great deal of controversy around publishing potential dual-use data and also has served as a catalyst for debates around the true case-fatality rate of H5N1 influenza and the capability of influenza vaccines and antivirals to impact any future unintentional or intentional release of H5N1 virus. In this report, we review available seroepidemiology data for H5N1 infection and discuss how case-finding strategies may influence the overall case-fatality rate reported by the WHO. We also provide information supporting the position that if an H5N1 influenza pandemic occurred, available medical countermeasures would have limited impact on the associated morbidity and mortality. Copyright © 2012 Osterholm et al.

  20. Seasonal and 2009 H1N1 influenza vaccine uptake, predictors of vaccination and self-reported barriers to vaccination among secondary school teachers and staff

    PubMed Central

    Painter, Julia E; Sales, Jessica M; Morfaw, Christopher; Jones, LaDawna M; Murray, Dennis; Wingood, Gina M; DiClemente, Ralph J; Hughes, James M

    2011-01-01

    Objective Teachers, like healthcare workers, may be a strategic target for influenza immunization programs. Influenza vaccination is critical to protect both teachers and the students they come into contact with. This study assessed factors associated with seasonal and H1N1 influenza vaccine uptake among middle- and high-school teachers. Results Seventy-eight percent of teachers who planned to receive seasonal influenza vaccine and 36% of those who planned to receive H1N1 influenza vaccine at baseline reported that they did so. Seasonal vaccine uptake was significantly associated with perceived severity (odds ratio [OR] 1.57, p = 0.05) and self-efficacy (OR 4.46, p = 0.006). H1N1 vaccine uptake was associated with perceived barriers (OR 0.7, p = 0.014) and social norms (OR 1.39, p = 0.05). The number one reason for both seasonal and H1N1 influenza vaccine uptake was to avoid getting seasonal/H1N1 influenza disease. The number one reason for seasonal influenza vaccine refusal was a concern it would make them sick and for H1N1 influenza vaccine refusal was concern about vaccine side effects. Methods Participants were recruited from two counties in rural Georgia. Data were collected from surveys in September 2009 and May 2010. Multivariate logistic regression was used to assess the association between teachers' attitudes toward seasonal and H1N1 influenza vaccination and vaccine uptake. Conclusions There is a strong association between the intention to be vaccinated against influenza (seasonal or 2009 H1N1) and actual vaccination uptake. Understanding and addressing factors associated with teachers' influenza vaccine uptake may enhance future influenza immunization efforts. PMID:21263225

  1. Distribution of avian influenza H5N1 viral RNA in tissues of AI-vaccinated and unvaccinated contact chickens after experimental infection.

    PubMed

    Hassan, Mohamed K; Kilany, Walid H; Abdelwhab, E M; Arafa, Abdel-Satar; Selim, Abdullah; Samy, Ahmed; Samir, M; Le Brun, Yvon; Jobre, Yilma; Aly, Mona M

    2012-05-01

    Avian influenza due to highly pathogenic avian influenza (HPAIV) H5N1 virus is not a food-borne illness but a serious panzootic disease with the potential to be pandemic. In this study, broiler chickens were vaccinated with commercial H5N1 or H5N2 inactivated vaccines prior to being challenged with an HPAIV H5N1 (clade 2.2.1 classic) virus. Challenged and non-challenged vaccinated chickens were kept together, and unvaccinated chickens served as contact groups. Post-challenge samples from skin and edible internal organs were collected from dead and sacrificed (after a 14-day observation period) birds and tested using qRT-PCR for virus detection and quantification. H5N1 vaccine protected chickens against morbidity, mortality and transmission. Virus RNA was not detected in the meat or edible organs of chickens vaccinated with H5N1 vaccine. Conversely, H5N2 vaccine did not confer clinical protection, and a significant virus load was detected in the meat and internal organs. Phylogenetic analysis showed that the H5N1 virus vaccine and challenge virus strains are closely related. The results of the present study strongly suggest a need for proper selection of vaccines and their routine evaluation against newly emergent field viruses. These actions will help to reduce human exposure to HPAIV H5N1 virus from both infected live birds and slaughtered poultry. In addition, rigorous preventive measures should be put in place in order to minimize the public-health risks of avian influenza at the human-animal interface.

  2. Outbreak of Influenza A(H1N1) in a Kidney Transplant Unit-Protective Effect of Vaccination.

    PubMed

    Helanterä, I; Anttila, V-J; Lappalainen, M; Lempinen, M; Isoniemi, H

    2015-09-01

    Seasonal influenza vaccination is recommended for patients with end-stage renal disease (ESRD), despite suggested inferior efficacy among these patients. We characterize an outbreak of influenza A(H1N1) in a kidney transplant unit. Altogether 23 patients were treated on the ward for postoperative care after kidney transplantation during the outbreak. After the first positive case, all patients were tested with nasopharyngeal swab tests and 7 patients were diagnosed with influenza A(H1N1). Altogether 17/23 patients had received adequate seasonal influenza vaccination, of whom 2/17 tested positive for influenza (one asymptomatic, one with mild cough). Five of six unvaccinated patients were diagnosed with influenza A(H1N1); 3/5 suffered from severe respiratory failure and were treated with ventilator support in the ICU, but all died due to acute respiratory distress syndrome, whereas 2/5 suffered from mild viral pneumonitis and recovered fully. The risk of influenza infection and mortality was significantly increased in unvaccinated patients (odds ratio 37.5 [95% CI 2.7-507.5, p = 0.01] and 6.7 [95% CI 2.3-18.9, p = 0.003], respectively). Influenza A(H1N1) had a high mortality in our cohort of nonvaccinated immunosuppressed patients early after kidney transplantation. None of the vaccinated patients developed serious disease, supporting the role of vaccination also for ESRD patients. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.

  3. Efficacy of a pandemic (H1N1) 2009 virus vaccine in pigs against the pandemic influenza virus is superior to commercially available swine influenza vaccines.

    PubMed

    Loeffen, W L A; Stockhofe, N; Weesendorp, E; van Zoelen-Bos, D; Heutink, R; Quak, S; Goovaerts, D; Heldens, J G M; Maas, R; Moormann, R J; Koch, G

    2011-09-28

    In April 2009 a new influenza A/H1N1 strain, currently named "pandemic (H1N1) influenza 2009" (H1N1v), started the first official pandemic in humans since 1968. Several incursions of this virus in pig herds have also been reported from all over the world. Vaccination of pigs may be an option to reduce exposure of human contacts with infected pigs, thereby preventing cross-species transfer, but also to protect pigs themselves, should this virus cause damage in the pig population. Three swine influenza vaccines, two of them commercially available and one experimental, were therefore tested and compared for their efficacy against an H1N1v challenge. One of the commercial vaccines is based on an American classical H1N1 influenza strain, the other is based on a European avian H1N1 influenza strain. The experimental vaccine is based on reassortant virus NYMC X179A (containing the hemagglutinin (HA) and neuraminidase (NA) genes of A/California/7/2009 (H1N1v) and the internal genes of A/Puerto Rico/8/34 (H1N1)). Excretion of infectious virus was reduced by 0.5-3 log(10) by the commercial vaccines, depending on vaccine and sample type. Both vaccines were able to reduce virus replication especially in the lower respiratory tract, with less pathological lesions in vaccinated and subsequently challenged pigs than in unvaccinated controls. In pigs vaccinated with the experimental vaccine, excretion levels of infectious virus in nasal and oropharyngeal swabs, were at or below 1 log(10)TCID(50) per swab and lasted for only 1 or 2 days. An inactivated vaccine containing the HA and NA of an H1N1v is able to protect pigs from an infection with H1N1v, whereas swine influenza vaccines that are currently available are of limited efficaciousness. Whether vaccination of pigs against H1N1v will become opportune remains to be seen and will depend on future evolution of this strain in the pig population. Close monitoring of the pig population, focussing on presence and evolution of

  4. Key points in evaluating immunogenicity of pandemic influenza vaccines: A lesson from immunogenicity studies of influenza A(H1N1)pdm09 vaccine.

    PubMed

    Ohfuji, Satoko; Kobayashi, Masayuki; Ide, Yuichiro; Egawa, Yumi; Saito, Tomoko; Kondo, Kyoko; Ito, Kazuya; Kase, Tetsuo; Maeda, Akiko; Fukushima, Wakaba; Hirota, Yoshio

    2017-09-18

    Immunogenicity studies on pandemic influenza vaccine are necessary to inform rapid development and implementation of a vaccine during a pandemic. Thus, strategies for immunogenicity assessment are required. To identify essential factors to consider when evaluating the immunogenicity of pandemic influenza vaccines using the experience in Japan with the influenza A(H1N1)pdm09 vaccine. We conducted a search of observational studies using PubMed and IchushiWeb. Search terms included "influenza vaccine AND (immunogenicity OR immune response) AND Japan AND (2009 OR pdm09) NOT review," and was limited to studies conducted in humans. A total of 33 articles were identified, of which 16 articles met the inclusion criteria. Immunogenicity of the commercially available influenza A(H1N1)pdm09 vaccine satisfied the international criteria for influenza vaccine immunogenicity in all study populations. The most remarkable immune response was observed in junior high school students, while the lowest immune response was observed in hematological malignancy patients. Similar to immunogenicity studies on seasonal influenza vaccines, factors such as patient background (e.g., age, underlying condition, pre-vaccination titer, body mass index, etc.) and study procedure (e.g., concurrent measurement of pre- and post-vaccination antibody titer, effects of infection during the study period) may have affected the assessment of immunogenicity to the influenza A(H1N1)pdm09 vaccine. In addition, prior vaccination with the seasonal influenza vaccine may inhibit antibody induction by the influenza A(H1N1)pdm09 vaccine. This review discusses factors and strategies that must be considered and addressed during immunogenicity assessments of pandemic influenza vaccines, which may provide useful information for future influenza pandemics. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  5. Heterologous Prime-Boost Vaccination Using an AS03B-Adjuvanted Influenza A(H5N1) Vaccine in Infants and Children <3 Years of Age

    PubMed Central

    Nolan, Terry; Izurieta, Patricia; Lee, Bee-Wah; Chan, Poh Chong; Marshall, Helen; Booy, Robert; Drame, Mamadou; Vaughn, David W.

    2014-01-01

    Background. Protecting young children from pandemic influenza should also reduce transmission to susceptible adults, including pregnant women. Methods. An open study assessed immunogenicity and reactogenicity of a heterologous booster dose of A/turkey/Turkey/1/2005(H5N1)-AS03B (AS03B is an Adjuvant System containing α-tocopherol and squalene in an oil-in-water emulsion [5.93 mg tocopherol]) in infants and children aged 6 to < 36 months that was given 6 months following 2-dose primary vaccination with A/Indonesia/05/2005(H5N1)-AS03B. Vaccines contained 1.9 µg of hemagglutinin antigen and AS03B. Hemagglutinin inhibition (HI) responses, microneutralization titers, and antineuraminidase antibody levels were assessed for 6 months following the booster vaccination. Results. For each age stratum (defined on the basis of the subject's age at first vaccination as 6 to < 12 months, 12 to < 24 months, and 24 to < 36 months) and overall (n = 113), European influenza vaccine licensure criteria were fulfilled for responses to A/turkey/Turkey/1/2005(H5N1) 10 days following the booster vaccination. Local pain and fever increased with consecutive doses. Anamnestic immune responses were demonstrated for HI, neutralizing, and antineuraminidase antibodies against vaccine-homologous/heterologous strains. Antibody responses to vaccine-homologous/heterologous strains persisted in all children 6 months following the booster vaccination. Conclusions. Prevaccination of young children with a clade 2 strain influenza A(H5N1) AS03-adjuvanted vaccine followed by heterologous booster vaccination boosted immune responses to the homologous strain and a related clade, with persistence for at least 6 months. The results support a prime-boost vaccination approach in young children for pandemic influenza preparedness. Clinical Trials Registration. NCT01323946. PMID:24973461

  6. Development of a dual-protective live attenuated vaccine against H5N1 and H9N2 avian influenza viruses by modifying the NS1 gene.

    PubMed

    Choi, Eun-hye; Song, Min-Suk; Park, Su-Jin; Pascua, Philippe Noriel Q; Baek, Yun Hee; Kwon, Hyeok-il; Kim, Eun-Ha; Kim, Semi; Jang, Hyung-Kwan; Poo, Haryoung; Kim, Chul-Joong; Choi, Young Ki

    2015-07-01

    An increasing number of outbreaks of avian influenza H5N1 and H9N2 viruses in poultry have caused serious economic losses and raised concerns for human health due to the risk of zoonotic transmission. However, licensed H5N1 and H9N2 vaccines for animals and humans have not been developed. Thus, to develop a dual H5N1 and H9N2 live-attenuated influenza vaccine (LAIV), the HA and NA genes from a virulent mouse-adapted avian H5N2 (A/WB/Korea/ma81/06) virus and a recently isolated chicken H9N2 (A/CK/Korea/116/06) virus, respectively, were introduced into the A/Puerto Rico/8/34 backbone expressing truncated NS1 proteins (NS1-73, NS1-86, NS1-101, NS1-122) but still possessing a full-length NS gene. Two H5N2/NS1-LAIV viruses (H5N2/NS1-86 and H5N2/NS1-101) were highly attenuated compared with the full-length and remaining H5N2/NS-LAIV viruses in a mouse model. Furthermore, viruses containing NS1 modifications were found to induce more IFN-β activation than viruses with full-length NS1 proteins and were correspondingly attenuated in mice. Intranasal vaccination with a single dose (10(4.0) PFU/ml) of these viruses completely protected mice from a lethal challenge with the homologous A/WB/Korea/ma81/06 (H5N2), heterologous highly pathogenic A/EM/Korea/W149/06 (H5N1), and heterosubtypic highly virulent mouse-adapted H9N2 viruses. This study clearly demonstrates that the modified H5N2/NS1-LAIV viruses attenuated through the introduction of mutations in the NS1 coding region display characteristics that are desirable for live attenuated vaccines and hold potential as vaccine candidates for mammalian hosts.

  7. Effect of Repeated Vaccination With the Same Vaccine Component Against 2009 Pandemic Influenza A(H1N1) Virus.

    PubMed

    Martínez-Baz, Iván; Casado, Itziar; Navascués, Ana; Díaz-González, Jorge; Aguinaga, Aitziber; Barrado, Laura; Delfrade, Josu; Ezpeleta, Carmen; Castilla, Jesús

    2017-03-15

    The 2009 pandemic influenza A(H1N1) (A[H1N1]pdm09) vaccine component has remained unchanged from 2009. We estimate the effectiveness of current and prior inactivated influenza A(H1N1)pdm09 vaccination from influenza seasons 2010-2011 to 2015-2016. Patients attended with influenza-like illness were tested for influenza. Four periods with continued A(H1N1)pdm09 circulation were included in a test-negative design. We enrolled 1278 cases and 2343 controls. As compared to individuals never vaccinated against influenza A(H1N1)pdm09, the highest effectiveness (66%; 95% confidence interval, 49%-78%) was observed in those vaccinated in the current season who had received 1-2 prior doses. The effectiveness was not statistically lower in individuals vaccinated in the current season only (52%) or in those without current vaccination and >2 prior doses (47%). However, the protection was lower in individuals vaccinated in the current season after >2 prior doses (38%; P = .009) or those currently unvaccinated with 1-2 prior doses (10%; P < .001). Current-season vaccination improved the effect in individuals with 1-2 prior doses and did not modify significantly the risk of influenza in individuals with >2 prior doses. Current vaccination or several prior doses were needed for high protection. Despite the decreasing effect of repeated vaccination, current-season vaccination was not inferior to no current-season vaccination. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  8. High-yield production of a stable Vero cell-based vaccine candidate against the highly pathogenic avian influenza virus H5N1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Fangye; Zhou, Jian; Ma, Lei

    Highlights: Black-Right-Pointing-Pointer Vero cell-based HPAI H5N1 vaccine with stable high yield. Black-Right-Pointing-Pointer Stable high yield derived from the YNVa H3N2 backbone. Black-Right-Pointing-Pointer H5N1/YNVa has a similar safety and immunogenicity to H5N1delta. -- Abstract: Highly pathogenic avian influenza (HPAI) viruses pose a global pandemic threat, for which rapid large-scale vaccine production technology is critical for prevention and control. Because chickens are highly susceptible to HPAI viruses, the supply of chicken embryos for vaccine production might be depleted during a virus outbreak. Therefore, developing HPAI virus vaccines using other technologies is critical. Meeting vaccine demand using the Vero cell-based fermentation process hasmore » been hindered by low stability and yield. In this study, a Vero cell-based HPAI H5N1 vaccine candidate (H5N1/YNVa) with stable high yield was achieved by reassortment of the Vero-adapted (Va) high growth A/Yunnan/1/2005(H3N2) (YNVa) virus with the A/Anhui/1/2005(H5N1) attenuated influenza vaccine strain (H5N1delta) using the 6/2 method. The reassorted H5N1/YNVa vaccine maintained a high hemagglutination (HA) titer of 1024. Furthermore, H5N1/YNVa displayed low pathogenicity and uniform immunogenicity compared to that of the parent virus.« less

  9. Infant Respiratory Outcomes Associated with Prenatal Exposure to Maternal 2009 A/H1N1 Influenza Vaccination.

    PubMed

    Fell, Deshayne B; Wilson, Kumanan; Ducharme, Robin; Hawken, Steven; Sprague, Ann E; Kwong, Jeffrey C; Smith, Graeme; Wen, Shi Wu; Walker, Mark C

    2016-01-01

    Infants are at high risk for influenza illness, but are ineligible for vaccination before 6 months. Transfer of maternal antibodies to the fetus has been demonstrated for 2009 A/H1N1 pandemic vaccines; however, clinical effectiveness is unknown. Our objective was to evaluate the association between 2009 A/H1N1 pandemic vaccination during pregnancy and rates of infant influenza and pneumonia. We linked a population-based birth cohort to administrative databases to measure rates of influenza and pneumonia diagnosed during ambulatory physician visits, hospitalizations and emergency department visits during one year of follow-up. We estimated incidence rate ratios and 95% confidence intervals (95% CI) using Poisson regression, comparing infants born to A/H1N1-vaccinated women (vaccine-exposed infants) with unexposed infants, adjusted for confounding using high-dimensional propensity scores. Among 117,335 infants in the study, 36,033 (31%) were born to A/H1N1-vaccinated women. Crude rates of influenza during the pandemic (per 100,000 infant-days) for vaccine-exposed and unexposed infants were similar (2.19, 95% CI: 1.27-3.76 and 3.60, 95% CI: 2.51-5.14, respectively), as were crude rates of influenza and pneumonia combined. We did not observe any significant differences in rates of study outcomes between study groups during the second wave of the 2009 A/H1N1 pandemic, nor during any post-pandemic time period. We observed no difference in rates of study outcomes among infants born to A/H1N1-vaccinated mothers relative to unexposed infants born during the second A/H1N1 pandemic wave; however, due to late availability of the pandemic vaccine, the available follow-up time during the pandemic time period was very limited.

  10. Protective efficacy of an inactivated Eurasian avian-like H1N1 swine influenza vaccine against homologous H1N1 and heterologous H1N1 and H1N2 viruses in mice.

    PubMed

    Sui, Jinyu; Yang, Dawei; Qiao, Chuanling; Xu, Huiyang; Xu, Bangfeng; Wu, Yunpu; Yang, Huanliang; Chen, Yan; Chen, Hualan

    2016-07-19

    Eurasian avian-like H1N1 (EA H1N1) swine influenza viruses are prevalent in pigs in Europe and Asia, but occasionally cause human infection, which raises concern about their pandemic potential. Here, we produced a whole-virus inactivated vaccine with an EA H1N1 strain (A/swine/Guangxi/18/2011, SW/GX/18/11) and evaluated its efficacy against homologous H1N1 and heterologous H1N1 and H1N2 influenza viruses in mice. A strong humoral immune response, which we measured by hemagglutination inhibition (HI) and virus neutralization (VN), was induced in the vaccine-inoculated mice upon challenge. The inactivated SW/GX/18/11 vaccine provided complete protection against challenge with homologous SW/GX/18/11 virus in mice and provided effective protection against challenge with heterologous H1N1 and H1N2 viruses with distinctive genomic combinations. Our findings suggest that this EA H1N1 vaccine can provide protection against both homologous H1N1 and heterologous H1N1 or H1N2 virus infection. As such, it is an excellent vaccine candidate to prevent H1N1 swine influenza. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Influenza Vaccine Effectiveness Against 2009 Pandemic Influenza A(H1N1) Virus Differed by Vaccine Type During 2013–2014 in the United States

    PubMed Central

    Gaglani, Manjusha; Pruszynski, Jessica; Murthy, Kempapura; Clipper, Lydia; Robertson, Anne; Reis, Michael; Chung, Jessie R.; Piedra, Pedro A.; Avadhanula, Vasanthi; Nowalk, Mary Patricia; Zimmerman, Richard K.; Jackson, Michael L.; Jackson, Lisa A.; Petrie, Joshua G.; Ohmit, Suzanne E.; Monto, Arnold S.; McLean, Huong Q.; Belongia, Edward A.; Fry, Alicia M.; Flannery, Brendan

    2016-01-01

    Background. The predominant strain during the 2013–2014 influenza season was 2009 pandemic influenza A(H1N1) virus (A[H1N1]pdm09). This vaccine-component has remained unchanged from 2009. Methods. The US Flu Vaccine Effectiveness Network enrolled subjects aged ≥6 months with medically attended acute respiratory illness (MAARI), including cough, with illness onset ≤7 days before enrollment. Influenza was confirmed by reverse-transcription polymerase chain reaction (RT-PCR). We determined the effectiveness of trivalent or quadrivalent inactivated influenza vaccine (IIV) among subjects ages ≥6 months and the effectiveness of quadrivalent live attenuated influenza vaccine (LAIV4) among children aged 2–17 years, using a test-negative design. The effect of prior receipt of any A(H1N1)pdm09-containing vaccine since 2009 on the effectiveness of current-season vaccine was assessed. Results. We enrolled 5999 subjects; 5637 (94%) were analyzed; 18% had RT-PCR–confirmed A(H1N1)pdm09-related MAARI. Overall, the effectiveness of vaccine against A(H1N1)pdm09-related MAARI was 54% (95% confidence interval [CI], 46%–61%). Among fully vaccinated children aged 2–17 years, the effectiveness of LAIV4 was 17% (95% CI, −39% to 51%) and the effectiveness of IIV was 60% (95% CI, 36%–74%). Subjects aged ≥9 years showed significant residual protection of any prior A(H1N1)pdm09-containing vaccine dose(s) received since 2009, as did children <9 years old considered fully vaccinated by prior season. Conclusions. During 2013–2014, IIV was significantly effective against A(H1N1)pdm09. Lack of LAIV4 effectiveness in children highlights the importance of continued annual monitoring of effectiveness of influenza vaccines in the United States. PMID:26743842

  12. Willingness to accept H1N1 pandemic influenza vaccine: a cross-sectional study of Hong Kong community nurses.

    PubMed

    Wong, Samuel Y S; Wong, Eliza L Y; Chor, Josette; Kung, Kenny; Chan, Paul K S; Wong, Carmen; Griffiths, Sian M

    2010-10-29

    The 2009 pandemic of influenza A (H1N1) infection has alerted many governments to make preparedness plan to control the spread of influenza A (H1N1) infection. Vaccination for influenza is one of the most important primary preventative measures to reduce the disease burden. Our study aims to assess the willingness of nurses who work for the community nursing service (CNS) in Hong Kong on their acceptance of influenza A (H1N1) influenza vaccination. 401 questionnaires were posted from June 24, 2009 to June 30, 2009 to community nurses with 67% response rate. Results of the 267 respondents on their willingness to accept influenza A (H1N1) vaccine were analyzed. Twenty-seven percent of respondents were willing to accept influenza vaccination if vaccines were available. Having been vaccinated for seasonable influenza in the previous 12 months were significantly independently associated with their willingness to accept influenza A (H1N1) vaccination (OR = 4.03; 95% CI: 2.03-7.98). Similar to previous findings conducted in hospital healthcare workers and nurses, we confirmed that the willingness of community nurses to accept influenza A (H1N1) vaccination is low. Future studies that evaluate interventions to address nurses' specific concerns or interventions that aim to raise the awareness among nurses on the importance of influenza A (H1N1) vaccination to protect vulnerable patient populations is needed.

  13. Recombinant Parainfluenza Virus 5 Expressing Hemagglutinin of Influenza A Virus H5N1 Protected Mice against Lethal Highly Pathogenic Avian Influenza Virus H5N1 Challenge

    PubMed Central

    Li, Zhuo; Mooney, Alaina J.; Gabbard, Jon D.; Gao, Xiudan; Xu, Pei; Place, Ryan J.; Hogan, Robert J.; Tompkins, S. Mark

    2013-01-01

    A safe and effective vaccine is the best way to prevent large-scale highly pathogenic avian influenza virus (HPAI) H5N1 outbreaks in the human population. The current FDA-approved H5N1 vaccine has serious limitations. A more efficacious H5N1 vaccine is urgently needed. Parainfluenza virus 5 (PIV5), a paramyxovirus, is not known to cause any illness in humans. PIV5 is an attractive vaccine vector. In our studies, a single dose of a live recombinant PIV5 expressing a hemagglutinin (HA) gene of H5N1 (rPIV5-H5) from the H5N1 subtype provided sterilizing immunity against lethal doses of HPAI H5N1 infection in mice. Furthermore, we have examined the effect of insertion of H5N1 HA at different locations within the PIV5 genome on the efficacy of a PIV5-based vaccine. Interestingly, insertion of H5N1 HA between the leader sequence, the de facto promoter of PIV5, and the first viral gene, nucleoprotein (NP), did not lead to a viable virus. Insertion of H5N1 HA between NP and the next gene, V/phosphorprotein (V/P), led to a virus that was defective in growth. We have found that insertion of H5N1 HA at the junction between the small hydrophobic (SH) gene and the hemagglutinin-neuraminidase (HN) gene gave the best immunity against HPAI H5N1 challenge: a dose as low as 1,000 PFU was sufficient to protect against lethal HPAI H5N1 challenge in mice. The work suggests that recombinant PIV5 expressing H5N1 HA has great potential as an HPAI H5N1 vaccine. PMID:23077314

  14. Suboptimal protection against H5N1 highly pathogenic avian influenza viruses from Vietnam in ducks vaccinated with commercial poultry vaccines

    USDA-ARS?s Scientific Manuscript database

    Highly pathogenic (HP) H5N1 avian influenza (AI) viruses continue to circulate in Asia and other regions of the world. Vaccination is used as part of H5N1 HPAI control programs in many countries; however, eradication of the disease has not been possible due to the emergence and spread of new viruses...

  15. Design and Characterization of a Computationally Optimized Broadly Reactive Hemagglutinin Vaccine for H1N1 Influenza Viruses

    PubMed Central

    Carter, Donald M.; Darby, Christopher A.; Lefoley, Bradford C.; Crevar, Corey J.; Alefantis, Timothy; Oomen, Raymond; Anderson, Stephen F.; Strugnell, Tod; Cortés-Garcia, Guadalupe; Vogel, Thorsten U.; Parrington, Mark; Kleanthous, Harold

    2016-01-01

    ABSTRACT One of the challenges of developing influenza A vaccines is the diversity of antigenically distinct isolates. Previously, a novel hemagglutinin (HA) for H5N1 influenza was derived from a methodology termed computationally optimized broadly reactive antigen (COBRA). This COBRA HA elicited a broad antibody response against H5N1 isolates from different clades. We now report the development and characterization of a COBRA-based vaccine for both seasonal and pandemic H1N1 influenza virus isolates. Nine prototype H1N1 COBRA HA proteins were developed and tested in mice using a virus-like particle (VLP) format for the elicitation of broadly reactive, functional antibody responses and protection against viral challenge. These candidates were designed to recognize H1N1 viruses isolated within the last 30 years. In addition, several COBRA candidates were designed based on sequences of H1N1 viruses spanning the past 100 years, including modern pandemic H1N1 isolates. Four of the 9 H1N1 COBRA HA proteins (X1, X3, X6, and P1) had the broadest hemagglutination inhibition (HAI) activity against a panel of 17 H1N1 viruses. These vaccines were used in cocktails or prime-boost combinations. The most effective regimens that both elicited the broadest HAI response and protected mice against a pandemic H1N1 challenge were vaccines that contained the P1 COBRA VLP and either the X3 or X6 COBRA VLP vaccine. These mice had little or no detectable viral replication, comparable to that observed with a matched licensed vaccine. This is the first report describing a COBRA-based HA vaccine strategy that elicits a universal, broadly reactive, protective response against seasonal and pandemic H1N1 isolates. IMPORTANCE Universal influenza vaccine approaches have the potential to be paradigm shifting for the influenza vaccine field, with the goal of replacing the current standard of care with broadly cross-protective vaccines. We have used COBRA technology to develop an HA head

  16. Isolation of avian influenza H5N1 virus from vaccinated commercial layer flock in Egypt

    PubMed Central

    2012-01-01

    Background Uninterrupted transmission of highly pathogenic avian influenza virus (HPAIV) H5N1 of clade 2.2.1 in Egypt since 2006 resulted in establishment of two main genetic clusters. The 2.2.1/C group where all recent human and majority of backyard origin viruses clustered together, meanwhile the majority of viruses derived from vaccinated poultry in commercial farms grouped in 2.2.1.1 clade. Findings In the present investigation, an HPAIV H5N1 was isolated from twenty weeks old layers chickens that were vaccinated with a homologous H5N1 vaccine at 1, 7 and 16 weeks old. At twenty weeks of age, birds showed cyanosis of comb and wattle, decrease in egg production and up to 27% mortality. Examined serum samples showed low antibody titer in HI test (Log2 3.2± 4.2). The hemagglutinin (HA) and neuraminidase (NA) genes of the isolated virus were closely related to viruses in 2.2.1/C group isolated from poultry in live bird market (LBM) and backyards or from infected people. Conspicuous mutations in the HA and NA genes including a deletion within the receptor binding domain in the HA globular head region were observed. Conclusions Despite repeated vaccination of layer chickens using a homologous H5N1 vaccine, infection with HPAIV H5N1 resulted in significant morbidity and mortality. In endemic countries like Egypt, rigorous control measures including enforcement of biosecurity, culling of infected birds and constant update of vaccine virus strains are highly required to prevent circulation of HPAIV H5N1 between backyard birds, commercial poultry, LBM and humans. PMID:23185975

  17. Influenza vaccination in the Americas: Progress and challenges after the 2009 A(H1N1) influenza pandemic

    PubMed Central

    Ropero-Álvarez, Alba María; El Omeiri, Nathalie; Kurtis, Hannah Jane; Danovaro-Holliday, M. Carolina; Ruiz-Matus, Cuauhtémoc

    2016-01-01

    ABSTRACT Background: There has been considerable uptake of seasonal influenza vaccines in the Americas compared to other regions. We describe the current influenza vaccination target groups, recent progress in vaccine uptake and in generating evidence on influenza seasonality and vaccine effectiveness for immunization programs. We also discuss persistent challenges, 5 years after the A(H1N1) 2009 influenza pandemic. Methods: We compiled and summarized data annually reported by countries to the Pan American Health Organization/World Health Organization (PAHO/WHO) through the WHO/UNICEF joint report form on immunization, information obtained through PAHO's Revolving Fund for Vaccine Procurement and communications with managers of national Expanded Programs on Immunization (EPI). Results: Since 2008, 25 countries/territories in the Americas have introduced new target groups for vaccination or expanded the age ranges of existing target groups. As of 2014, 40 (89%) out of 45 countries/territories have policies established for seasonal influenza vaccination. Currently, 29 (64%) countries/territories target pregnant women for vaccination, the highest priority group according to WHO´s Stategic Advisory Group of Experts and PAHO/WHO's Technical Advisory Group on Vaccine-preventable Diseases, compared to only 7 (16%) in 2008. Among 23 countries reporting coverage data, on average, 75% of adults ≥60 years, 45% of children aged 6–23 months, 32% of children aged 5–2 years, 59% of pregnant women, 78% of healthcare workers, and 90% of individuals with chronic conditions were vaccinated during the 2013–14 Northern Hemisphere or 2014 Southern Hemisphere influenza vaccination activities. Difficulties however persist in the estimation of vaccination coverage, especially for pregnant women and persons with chronic conditions. Since 2007, 6 tropical countries have changed their vaccine formulation from the Northern to the Southern Hemisphere formulation and the timing of

  18. Influenza vaccination in the Americas: Progress and challenges after the 2009 A(H1N1) influenza pandemic.

    PubMed

    Ropero-Álvarez, Alba María; El Omeiri, Nathalie; Kurtis, Hannah Jane; Danovaro-Holliday, M Carolina; Ruiz-Matus, Cuauhtémoc

    2016-08-02

    There has been considerable uptake of seasonal influenza vaccines in the Americas compared to other regions. We describe the current influenza vaccination target groups, recent progress in vaccine uptake and in generating evidence on influenza seasonality and vaccine effectiveness for immunization programs. We also discuss persistent challenges, 5 years after the A(H1N1) 2009 influenza pandemic. We compiled and summarized data annually reported by countries to the Pan American Health Organization/World Health Organization (PAHO/WHO) through the WHO/UNICEF joint report form on immunization, information obtained through PAHO's Revolving Fund for Vaccine Procurement and communications with managers of national Expanded Programs on Immunization (EPI). Since 2008, 25 countries/territories in the Americas have introduced new target groups for vaccination or expanded the age ranges of existing target groups. As of 2014, 40 (89%) out of 45 countries/territories have policies established for seasonal influenza vaccination. Currently, 29 (64%) countries/territories target pregnant women for vaccination, the highest priority group according to WHO´s Stategic Advisory Group of Experts and PAHO/WHO's Technical Advisory Group on Vaccine-preventable Diseases, compared to only 7 (16%) in 2008. Among 23 countries reporting coverage data, on average, 75% of adults ≥60 years, 45% of children aged 6-23 months, 32% of children aged 5-2 years, 59% of pregnant women, 78% of healthcare workers, and 90% of individuals with chronic conditions were vaccinated during the 2013-14 Northern Hemisphere or 2014 Southern Hemisphere influenza vaccination activities. Difficulties however persist in the estimation of vaccination coverage, especially for pregnant women and persons with chronic conditions. Since 2007, 6 tropical countries have changed their vaccine formulation from the Northern to the Southern Hemisphere formulation and the timing of their campaigns to April-May following the

  19. Clinical efficacy of seasonal influenza vaccination: characteristics of two outbreaks of influenza A(H1N1) in immunocompromised patients.

    PubMed

    Helanterä, I; Janes, R; Anttila, V-J

    2018-06-01

    Influenza A(H1N1) causes serious complications in immunocompromised patients. The efficacy of seasonal vaccination in these patients has been questioned. To describe two outbreaks of influenza A(H1N1) in immunocompromised patients. Two outbreaks of influenza A(H1N1) occurred in our institution: on the kidney transplant ward in 2014 including patients early after kidney or simultaneous pancreas-kidney transplantation, and on the oncology ward in 2016 including patients receiving chemotherapy for malignant tumours. Factors leading to these outbreaks and the clinical efficacy of seasonal influenza vaccination were analysed. Altogether 86 patients were exposed to influenza A(H1N1) during the outbreaks, among whom the seasonal influenza vaccination status was unknown in 10. Only three out of 38 vaccinated patients were infected with influenza A(H1N1), compared with 20 out of 38 unvaccinated patients (P = 0.02). The death of one out of 38 vaccinated patients was associated with influenza, compared with seven out of 38 unvaccinated patients (P = 0.06). Shared factors behind the two outbreaks included outdated facilities not designed for the treatment of immunosuppressed patients. Vaccination coverage among patients was low, between 40% and 70% despite vaccination being offered to all patients free of charge. Vaccination coverage of healthcare workers on the transplant ward was low (46%), but, despite high coverage on the oncology ward (92%), the outbreak occurred. Seasonal influenza vaccination was clinically effective with both a reduced risk of influenza infection and a trend towards reduced mortality in these immunocompromised patients. Several possible causes were identified behind these two outbreaks, requiring continuous awareness in healthcare professionals to prevent further outbreaks. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  20. Efficacy of Live-Attenuated H9N2 Influenza Vaccine Candidates Containing NS1 Truncations against H9N2 Avian Influenza Viruses.

    PubMed

    Chen, Sujuan; Zhu, Yinbiao; Yang, Da; Yang, Yang; Shi, Shaohua; Qin, Tao; Peng, Daxin; Liu, Xiufan

    2017-01-01

    H9N2 avian influenza virus is a zoonotic agent with a broad host range that can contribute genetic information to H5 or H7N9 subtype viruses, which are significant threats to both humans and birds. Thus, there is a great need for a vaccine to control H9N2 avian influenza. Three mutant viruses of an H9N2 virus A/chicken/Taixing/10/2010 (rTX-NS1-73, rTX-NS1-100, and rTX-NS1-128) were constructed with different NS1 gene truncations and confirmed by western blot analysis. The genetic stability, pathogenicity, transmissibility, and host immune responses toward these mutants were evaluated. The mutant virus rTX-NS1-128 exhibited the most attenuated phenotype and lost transmissibility. The expression levels of interleukin 12 in the nasal and tracheal tissues from chickens immunized with rTX-NS1-128 were significantly upregulated on day 3 post-immunization and the IgA and IgG antibody levels were significantly increased on days 7, 14, and 21 post-immunization when compared to chickens that received an inactivated vaccine. rTX-NS1-128 also protected chickens from challenge by homologous and heterologous H9N2 avian influenza viruses. The results indicate that rTX-NS1-128 can be used as a potential live-attenuated vaccine against H9N2 avian influenza.

  1. Pandemic vaccination strategies and influenza severe outcomes during the influenza A(H1N1)pdm09 pandemic and the post-pandemic influenza season: the Nordic experience.

    PubMed

    Gil Cuesta, Julita; Aavitsland, Preben; Englund, Hélène; Gudlaugsson, Ólafur; Hauge, Siri Helene; Lyytikäinen, Outi; Sigmundsdóttir, Guðrún; Tegnell, Anders; Virtanen, Mikko; Krause, Tyra Grove

    2016-04-21

    During the 2009/10 influenza A(H1N1)pdm09 pandemic, the five Nordic countries adopted different approaches to pandemic vaccination. We compared pandemic vaccination strategies and severe influenza outcomes, in seasons 2009/10 and 2010/11 in these countries with similar influenza surveillance systems. We calculated the cumulative pandemic vaccination coverage in 2009/10 and cumulative incidence rates of laboratory confirmed A(H1N1)pdm09 infections, intensive care unit (ICU) admissions and deaths in 2009/10 and 2010/11. We estimated incidence risk ratios (IRR) in a Poisson regression model to compare those indicators between Denmark and the other countries. The vaccination coverage was lower in Denmark (6.1%) compared with Finland (48.2%), Iceland (44.1%), Norway (41.3%) and Sweden (60.0%). In 2009/10 Denmark had a similar cumulative incidence of A(H1N1)pdm09 ICU admissions and deaths compared with the other countries. In 2010/11 Denmark had a significantly higher cumulative incidence of A(H1N1)pdm09 ICU admissions (IRR: 2.4; 95% confidence interval (CI): 1.9-3.0) and deaths (IRR: 8.3; 95% CI: 5.1-13.5). Compared with Denmark, the other countries had higher pandemic vaccination coverage and experienced less A(H1N1)pdm09-related severe outcomes in 2010/11. Pandemic vaccination may have had an impact on severe influenza outcomes in the post-pandemic season. Surveillance of severe outcomes may be used to compare the impact of influenza between seasons and support different vaccination strategies.

  2. Vaccination and auto-immune rheumatic diseases: lessons learnt from the 2009 H1N1 influenza virus vaccination campaign.

    PubMed

    Touma, Zahi; Gladman, Dafna D; Urowitz, Murray B

    2013-03-01

    To determine the safety and efficacy of adjuvant and nonadjuvant influenza A/H1NI vaccination in patients with rheumatic diseases. Due to immune abnormalities and the use of steroids and immunosuppressant treatment, patients with rheumatic diseases are susceptible to infections including influenza. Infections continue to be one of the leading causes of morbidity and mortality in rheumatic diseases, partly due to the disease processes and partly due to medications. Viral infections are particularly an issue, so vaccinations would be advisable. However, because of the abnormalities in immune mechanisms in many rheumatic diseases, it is not clear whether vaccinations are well tolerated and effective. A number of studies confirmed the efficacy and safety of adjuvant and nonadjuvant influenza A/H1NI vaccination in patients with rheumatic diseases. The potential side effects associated with H1N1 vaccines were not different from those observed with seasonal influenza vaccine. The use of steroids and immunosuppressant therapies may alter the efficacy of the vaccines. Adjuvant and nonadjuvant influenza A/H1NI vaccinations have no clinically important effect on production or levels of autoantibodies in patients with rheumatic diseases. H1N1 vaccination should be given to patients with rheumatic diseases.

  3. Cell-Based Systems Biology Analysis of Human AS03-Adjuvanted H5N1 Avian Influenza Vaccine Responses: A Phase I Randomized Controlled Trial.

    PubMed

    Howard, Leigh M; Hoek, Kristen L; Goll, Johannes B; Samir, Parimal; Galassie, Allison; Allos, Tara M; Niu, Xinnan; Gordy, Laura E; Creech, C Buddy; Prasad, Nripesh; Jensen, Travis L; Hill, Heather; Levy, Shawn E; Joyce, Sebastian; Link, Andrew J; Edwards, Kathryn M

    2017-01-01

    Vaccine development for influenza A/H5N1 is an important public health priority, but H5N1 vaccines are less immunogenic than seasonal influenza vaccines. Adjuvant System 03 (AS03) markedly enhances immune responses to H5N1 vaccine antigens, but the underlying molecular mechanisms are incompletely understood. We compared the safety (primary endpoint), immunogenicity (secondary), gene expression (tertiary) and cytokine responses (exploratory) between AS03-adjuvanted and unadjuvanted inactivated split-virus H5N1 influenza vaccines. In a double-blinded clinical trial, we randomized twenty adults aged 18-49 to receive two doses of either AS03-adjuvanted (n = 10) or unadjuvanted (n = 10) H5N1 vaccine 28 days apart. We used a systems biology approach to characterize and correlate changes in serum cytokines, antibody titers, and gene expression levels in six immune cell types at 1, 3, 7, and 28 days after the first vaccination. Both vaccines were well-tolerated. Nine of 10 subjects in the adjuvanted group and 0/10 in the unadjuvanted group exhibited seroprotection (hemagglutination inhibition antibody titer > 1:40) at day 56. Within 24 hours of AS03-adjuvanted vaccination, increased serum levels of IL-6 and IP-10 were noted. Interferon signaling and antigen processing and presentation-related gene responses were induced in dendritic cells, monocytes, and neutrophils. Upregulation of MHC class II antigen presentation-related genes was seen in neutrophils. Three days after AS03-adjuvanted vaccine, upregulation of genes involved in cell cycle and division was detected in NK cells and correlated with serum levels of IP-10. Early upregulation of interferon signaling-related genes was also found to predict seroprotection 56 days after first vaccination. Using this cell-based systems approach, novel mechanisms of action for AS03-adjuvanted pandemic influenza vaccination were observed. ClinicalTrials.gov NCT01573312.

  4. Prior infection of chickens with H1N1 or H1N2 avian influenza elicits partial heterologous protection against highly pathogenic H5N1.

    PubMed

    Nfon, Charles; Berhane, Yohannes; Pasick, John; Embury-Hyatt, Carissa; Kobinger, Gary; Kobasa, Darwyn; Babiuk, Shawn

    2012-01-01

    There is a critical need to have vaccines that can protect against emerging pandemic influenza viruses. Commonly used influenza vaccines are killed whole virus that protect against homologous and not heterologous virus. Using chickens we have explored the possibility of using live low pathogenic avian influenza (LPAI) A/goose/AB/223/2005 H1N1 or A/WBS/MB/325/2006 H1N2 to induce immunity against heterologous highly pathogenic avian influenza (HPAI) A/chicken/Vietnam/14/2005 H5N1. H1N1 and H1N2 replicated in chickens but did not cause clinical disease. Following infection, chickens developed nucleoprotein and H1 specific antibodies, and reduced H5N1 plaque size in vitro in the absence of H5 neutralizing antibodies at 21 days post infection (DPI). In addition, heterologous cell mediated immunity (CMI) was demonstrated by antigen-specific proliferation and IFN-γ secretion in PBMCs re-stimulated with H5N1 antigen. Following H5N1 challenge of both pre-infected and naïve controls chickens housed together, all naïve chickens developed acute disease and died while H1N1 or H1N2 pre-infected chickens had reduced clinical disease and 70-80% survived. H1N1 or H1N2 pre-infected chickens were also challenged with H5N1 and naïve chickens placed in the same room one day later. All pre-infected birds were protected from H5N1 challenge but shed infectious virus to naïve contact chickens. However, disease onset, severity and mortality was reduced and delayed in the naïve contacts compared to directly inoculated naïve controls. These results indicate that prior infection with LPAI virus can generate heterologous protection against HPAI H5N1 in the absence of specific H5 antibody.

  5. Prior Infection of Chickens with H1N1 or H1N2 Avian Influenza Elicits Partial Heterologous Protection against Highly Pathogenic H5N1

    PubMed Central

    Nfon, Charles; Berhane, Yohannes; Pasick, John; Embury-Hyatt, Carissa; Kobinger, Gary; Kobasa, Darwyn; Babiuk, Shawn

    2012-01-01

    There is a critical need to have vaccines that can protect against emerging pandemic influenza viruses. Commonly used influenza vaccines are killed whole virus that protect against homologous and not heterologous virus. Using chickens we have explored the possibility of using live low pathogenic avian influenza (LPAI) A/goose/AB/223/2005 H1N1 or A/WBS/MB/325/2006 H1N2 to induce immunity against heterologous highly pathogenic avian influenza (HPAI) A/chicken/Vietnam/14/2005 H5N1. H1N1 and H1N2 replicated in chickens but did not cause clinical disease. Following infection, chickens developed nucleoprotein and H1 specific antibodies, and reduced H5N1 plaque size in vitro in the absence of H5 neutralizing antibodies at 21 days post infection (DPI). In addition, heterologous cell mediated immunity (CMI) was demonstrated by antigen-specific proliferation and IFN-γ secretion in PBMCs re-stimulated with H5N1 antigen. Following H5N1 challenge of both pre-infected and naïve controls chickens housed together, all naïve chickens developed acute disease and died while H1N1 or H1N2 pre-infected chickens had reduced clinical disease and 70–80% survived. H1N1 or H1N2 pre-infected chickens were also challenged with H5N1 and naïve chickens placed in the same room one day later. All pre-infected birds were protected from H5N1 challenge but shed infectious virus to naïve contact chickens. However, disease onset, severity and mortality was reduced and delayed in the naïve contacts compared to directly inoculated naïve controls. These results indicate that prior infection with LPAI virus can generate heterologous protection against HPAI H5N1 in the absence of specific H5 antibody. PMID:23240067

  6. Factors Mediating Seasonal and Influenza A (H1N1) Vaccine Acceptance among Ethnically Diverse Populations in the Urban South

    PubMed Central

    Frew, Paula M.; Painter, Julia E.; Hixson, Brooke; Kulb, Carolyn; Moore, Kathryn; del Rio, Carlos; Esteves-Jaramillo, Alejandra; Omer, Saad B.

    2012-01-01

    Objective We examined the acceptability of the influenza A (H1N1) and seasonal vaccinations immediately following government manufacture approval to gauge potential product uptake in minority communities. We studied correlates of vaccine acceptance including attitudes, beliefs, perceptions, and influenza immunization experiences, and sought to identify communication approaches to increase influenza vaccine coverage in community settings. Methods Adults ≥ 18 years participated in a cross-sectional survey from September through December 2009. Venue-based sampling was used to recruit participants of racial and ethnic minorities. Results The sample (N=503) included mostly lower income (81.9%, n=412) participants and African Americans (79.3%, n=399). Respondents expressed greater acceptability of the H1N1 vaccination compared to seasonal flu immunization (t=2.86, p=0.005) although H1N1 vaccine acceptability was moderately low (38%, n=191). Factors associated with acceptance of the H1N1 vaccine included positive attitudes about immunizations [OR=0.23, CI (0.16, 0.33)], community perceptions of H1N1 [OR=2.15, CI (1.57, 2.95)], and having had a flu shot in the past 5 years [OR=2.50, CI (1.52, 4.10). The factors associated with acceptance of the seasonal flu vaccine included positive attitudes about immunization [OR=0.43, CI (0.32, 0.59)], community perceptions of H1N1 [OR=1.53, CI (1.16, 2.01)], and having had the flu shot in the past 5 years [OR=3.53, CI (2.16, 5.78)]. Participants were most likely to be influenced to take a flu shot by physicians [OR=1.94, CI (1.31, 2.86)]. Persons who obtained influenza vaccinations indicated that Facebook (χ2=11.7, p=.02) and Twitter (χ2=18.1, p=.001) could be useful vaccine communication channels and that churches (χ2=21.5, p<.001) and grocery stores (χ2=21.5, p<.001) would be effective “flu shot stops” in their communities. Conclusions In this population, positive vaccine attitudes and community perceptions, along with

  7. [Pandemic influenza A (H1N1)v vaccination status and factors affecting vaccination: Ankara and Diyarbakır 2009 data from Turkey].

    PubMed

    Ertek, Mustafa; Sevencan, Funda; Kalaycıoğlu, Handan; Gözalan, Ayşegül; Simşek, Ciğdem; Culha, Gönül; Dorman, Vedat; Ozlü, Ahmet; Arıkan, Füsun; Aktaş, Dilber; Akın, Levent; Korukluoğlu, Gülay; Sevindi, Demet Furkan

    2011-10-01

    In this study, it was aimed to determine the frequency of the symptoms of influenza-like illness during influenza A (H1N1)v pandemic in two provinces where sentinel influenza surveillance was conducted and also to obtain opinions about H1N1 influenza and vaccination, H1N1 vaccination status and factors affecting vaccination. This cross-sectional study was conducted in the provinces of Ankara (capital city, located at Central Anatolia) and Diyarbakır (located at southeastern Anatolia). It was planned to include 455 houses in Ankara and 276 houses in Diyarbakır. The household participation rate in the study was 78.9% and 53.6% for Ankara and Diyarbakır, respectively. Our study was carried out between January-February 2010, with 1164 participants from Ankara and 804 from Diyarbakır, including every household subjects except for infants younger than 11 months and patients with primary/secondary immunodeficiency diseases. Data was collected by site teams consisting of a physician and a healthcare staff with informed consent. Of the participants 45.5% from Ankara and 35.3% from Diyarbakır stated that they had gone through an influenza-like illness. The most frequently indicated clinical symptoms were fatigue/weakness, rhinitis, sore throat and cough. The rates of admission to a physician with influenza like illness complaints were 50.6% and 58.7%; rates of hospitalization due to influenza-like illness were 1% and 1.5%, and rates of antiviral drug use were 3.8% and 1.9%, in Ankara ve Diyarbakır participants, respectively. The rate of personal precautions taken by the subjects for prevention from pandemic influenza were 59% and 53.3%, in Ankara and Diyarbakır, respectively. These precautions most frequently were "hand washing" and "avoiding crowded public areas". H1N1 influenza vaccine was applied in 9.3% of the participants in Ankara and in 3.7% of the participants in Diyarbakır. Vaccination rate was higher in both of the provinces in adults over 25 years old than

  8. AF03-adjuvanted and non-adjuvanted pandemic influenza A (H1N1) 2009 vaccines induce strong antibody responses in seasonal influenza vaccine-primed and unprimed mice.

    PubMed

    Caillet, Catherine; Piras, Fabienne; Bernard, Marie-Clotilde; de Montfort, Aymeric; Boudet, Florence; Vogel, Frederick R; Hoffenbach, Agnès; Moste, Catherine; Kusters, Inca

    2010-04-19

    Pandemic influenza vaccines have been manufactured using the A/California/07/2009 (H1N1) strain as recommended by the World Health Organization. We evaluated in mice the immunogenicity of pandemic (H1N1) 2009 vaccine and the impact of prior vaccination against seasonal trivalent influenza vaccines (TIV) on antibody responses against pandemic (H1N1) 2009. In naïve mice, a single dose of unadjuvanted H1N1 vaccine (3 microg of HA) was shown to elicit hemagglutination inhibition (HI) antibody titers >40, a titer associated with protection in humans against seasonal influenza. A second vaccine dose of pandemic (H1N1) 2009 vaccine strongly increased these titers, which were consistently higher in mice previously primed with TIV than in naïve mice. At a low immunization dose (0.3 microg of HA), the AF03-adjuvanted vaccine elicited higher HI antibody titers than the corresponding unadjuvanted vaccines in both naïve and TIV-primed animals, suggesting a potential for antigen dose-sparing. These results are in accordance with the use in humans of a split-virion inactivated pandemic (H1N1) 2009 vaccine formulated with or without AF03 adjuvant to protect children and young adults against influenza A (H1N1) 2009 infection. Copyright 2010 Elsevier Ltd. All rights reserved.

  9. Association Between Pandemic Influenza A(H1N1) Vaccination in Pregnancy and Early Childhood Morbidity in Offspring.

    PubMed

    Hviid, Anders; Svanström, Henrik; Mølgaard-Nielsen, Ditte; Lambach, Philipp

    2017-03-01

    Several studies investigating potential adverse effects of the pandemic A(H1N1) vaccine have supported that influenza A(H1N1) vaccination does not increase the risk for major pregnancy and birth adverse outcomes, but little is known about possible adverse effects in offspring of A(H1N1)-vaccinated mothers beyond the perinatal period and into early childhood. To evaluate whether pandemic influenza A(H1N1) vaccination in pregnancy increases the risk for early childhood morbidity in offspring. Register-based cohort study comprising all live-born singleton children in Denmark from pregnancies overlapping the A(H1N1) influenza vaccination campaign in Denmark, from November 2, 2009, to March 31, 2010. From a cohort of 61 359 pregnancies, offspring exposed and unexposed to the influenza A(H1N1) vaccine during pregnancy were matched 1:4 on propensity scores. Vaccination in pregnancy with a monovalent inactivated AS03-adjuvanted split virion influenza A(H1N1)pdm09 vaccine (Pandemrix; GlaxoSmithKline Biologicals). Rate ratios of hospitalization in early childhood until 5 years of age. Hospitalization was defined as (1) first inpatient hospital admission, (2) all inpatient hospital admissions, and (3) first hospital contact for selected diseases, which included individual infectious diseases and individual neurologic, autoimmune, and behavioral conditions. The mean (SD) age at end of follow-up was 4.6 (0.40) years for the 61 359 children included in the study. In the cohort, the mothers of 55 048 children were unvaccinated, 349 mothers were vaccinated in the first trimester, and 5962 mothers were vaccinated in the second or third trimesters. Children exposed in the first trimester were not more likely to be hospitalized in early childhood than unexposed children (hospitalization rates per 1000 person-years, 300.6 for exposed vs 257.5 for unexposed; rate ratio, 1.17; 95% CI, 0.94-1.45). Similarly, children exposed in the second or third trimester were not more likely to

  10. Responses to A(H1N1)pdm09 Influenza Vaccines in Participants Previously Vaccinated With Seasonal Influenza Vaccine: A Randomized, Observer-Blind, Controlled Study

    PubMed Central

    Roy-Ghanta, Sumita; Van der Most, Robbert; Li, Ping; Vaughn, David W.

    2014-01-01

    Background. Prior receipt of a trivalent seasonal influenza vaccine (TIV) can affect hemagglutination inhibition (HI) antibody responses to pandemic influenza vaccines. We investigated the effect of TIV priming on humoral responses to AS03-adjuvanted and nonadjuvanted A(H1N1)pdm09 vaccines, the role of AS03 on cell-mediated immune (CMI) responses, and vaccine safety. Methods. Healthy adults (aged 19–40 years) were randomized 1:1:1:1 to receive TIV or saline followed 4 months later by 2 doses, 3 weeks apart, of adjuvanted or nonadjuvanted A(H1N1)pdm09 vaccine and followed up to study end (day 507). Pre- and postvaccination responses of HI and neutralizing antibody, CD4+/CD8+ T cells, memory B cells, and plasmablasts were assessed. Results. Ninety-nine of the 133 participants enrolled completed the study. No vaccine-related serious adverse events were recorded. In TIV-primed participants, A(H1N1)pdm09-specific antibody and CD4+ T-cell and memory B-cell responses to the pandemic vaccine tended to be diminished. Vaccine adjuvantation led to increased responses of vaccine-homologous and -heterologous HI and neutralizing antibodies and CD4+ T cells, homologous memory B cells, and plasmablasts. Conclusions. In healthy adults, prior TIV administration decreased humoral and CMI responses to A(H1N1)pdm09 vaccine. Adjuvantation of A(H1N1)pdm09 antigen helped to overcome immune interference between the influenza vaccines. No safety concerns were observed. Registration. Clinical Trials.gov identifier NCT00707967. PMID:24864125

  11. Heterologous post-infection immunity against Egyptian avian influenza virus (AIV) H9N2 modulates the course of subsequent infection by highly pathogenic AIV H5N1, but vaccination immunity does not.

    PubMed

    Naguib, Mahmoud M; Grund, Christian; Arafa, Abdel-Satar; Abdelwhab, E M; Beer, Martin; Harder, Timm C

    2017-06-01

    In Egypt, zoonotic A/goose/Guangdong/1/96 (gs/GD-like) highly pathogenic avian influenza virus (HPAIV) H5N1 of clade 2.2.1.2 is entrenched in poultry populations and has co-circulated with low-pathogenic avian influenza virus H9N2 of the G1 lineage since 2010. Here, the impact of H9N2 infection or vaccination on the course of consecutive infection with a lethal Egyptian HPAIV H5N1 is studied. Three-week-old chickens were infected with H9N2 or vaccinated with inactivated H9N2 or H5N1 antigens and challenged three weeks later by an HPAIV H5N1. Interestingly, pre-infection of chickens with H9N2 decreased the oral excretion of H5N1 to levels that were comparable to those of H5N1-immunized chickens, but vaccination with inactivated H9N2 did not. H9N2 pre-infection modulated but did not conceal clinical disease by HPAIV H5N1. By contrast, homologous H5 vaccination abolished clinical syndromic surveillance, although vaccinated clinical healthy birds were capable of spreading the virus.

  12. Cell-Based Systems Biology Analysis of Human AS03-Adjuvanted H5N1 Avian Influenza Vaccine Responses: A Phase I Randomized Controlled Trial

    PubMed Central

    Samir, Parimal; Galassie, Allison; Allos, Tara M.; Niu, Xinnan; Gordy, Laura E.; Creech, C. Buddy; Prasad, Nripesh; Jensen, Travis L.; Hill, Heather; Levy, Shawn E.; Joyce, Sebastian; Link, Andrew J.; Edwards, Kathryn M.

    2017-01-01

    Background Vaccine development for influenza A/H5N1 is an important public health priority, but H5N1 vaccines are less immunogenic than seasonal influenza vaccines. Adjuvant System 03 (AS03) markedly enhances immune responses to H5N1 vaccine antigens, but the underlying molecular mechanisms are incompletely understood. Objective and Methods We compared the safety (primary endpoint), immunogenicity (secondary), gene expression (tertiary) and cytokine responses (exploratory) between AS03-adjuvanted and unadjuvanted inactivated split-virus H5N1 influenza vaccines. In a double-blinded clinical trial, we randomized twenty adults aged 18–49 to receive two doses of either AS03-adjuvanted (n = 10) or unadjuvanted (n = 10) H5N1 vaccine 28 days apart. We used a systems biology approach to characterize and correlate changes in serum cytokines, antibody titers, and gene expression levels in six immune cell types at 1, 3, 7, and 28 days after the first vaccination. Results Both vaccines were well-tolerated. Nine of 10 subjects in the adjuvanted group and 0/10 in the unadjuvanted group exhibited seroprotection (hemagglutination inhibition antibody titer > 1:40) at day 56. Within 24 hours of AS03-adjuvanted vaccination, increased serum levels of IL-6 and IP-10 were noted. Interferon signaling and antigen processing and presentation-related gene responses were induced in dendritic cells, monocytes, and neutrophils. Upregulation of MHC class II antigen presentation-related genes was seen in neutrophils. Three days after AS03-adjuvanted vaccine, upregulation of genes involved in cell cycle and division was detected in NK cells and correlated with serum levels of IP-10. Early upregulation of interferon signaling-related genes was also found to predict seroprotection 56 days after first vaccination. Conclusions Using this cell-based systems approach, novel mechanisms of action for AS03-adjuvanted pandemic influenza vaccination were observed. Trial Registration ClinicalTrials.gov NCT

  13. Immune efficacy of an adenoviral vector-based swine influenza vaccine against antigenically distinct H1N1 strains in mice.

    PubMed

    Wu, Yunpu; Yang, Dawei; Xu, Bangfeng; Liang, Wenhua; Sui, Jinyu; Chen, Yan; Yang, Huanliang; Chen, Hualan; Wei, Ping; Qiao, Chuanling

    2017-11-01

    Avian-like H1N1 swine influenza viruses are prevalent in pigs and have occasionally crossed the species barrier and infected humans, which highlights the importance of preventing swine influenza. Human adenovirus serotype 5 (Ad5) has been tested in human influenza vaccine clinical trials and has exhibited a reliable safety profile. Here, we generated a replication-defective, recombinant adenovirus (designated as rAd5-avH1HA) expressing the hemagglutinin gene of an avian-like H1N1 virus (A/swine/Zhejiang/199/2013, ZJ/199/13). Using a BALB/c mouse model, we showed that a two-dose intramuscular administration of recombinant rAd5-avH1HA induced high levels of hemagglutination inhibition antibodies and prevented homologous and heterologous H1N1 virus-induced weight loss, as well as viral replication in the nasal turbinates and lungs of mice. Furthermore, a prime-boost immunization strategy trial with a recombinant plasmid (designated as pCAGGS-HA) followed by rAd5-avH1HA vaccine provided effective protection against homologous and heterologous H1N1 virus infection in mice. These results indicate that rAd5-avH1HA is an efficacious genetically engineered vaccine candidate against H1N1 swine influenza. Future studies should examine its immune efficacy in pigs. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Vaccination of domestic ducks against H5N1 HPAI

    USDA-ARS?s Scientific Manuscript database

    Domestic ducks play an important role in the epidemiology of H5N1 and H5N8 highly pathogenic avian influenza (HPAI) viruses, and therefore, successful control of HPAI in ducks is vital for the eradication of the disease in poultry. Vaccination can be used as a tool for supporting eradication by inc...

  15. Longitudinal 2 years field study of conventional vaccination against highly pathogenic avian influenza H5N1 in layer hens.

    PubMed

    Rudolf, Miriam; Pöppel, Manfred; Fröhlich, Andreas; Breithaupt, Angele; Teifke, Jens; Blohm, Ulrike; Mettenleiter, Thomas; Beer, Martin; Harder, Timm

    2010-10-04

    A licensed, inactivated vaccine based on a low pathogenic avian influenza virus strain (H5N2) was evaluated in layer hens kept under field conditions during a 2-year period. Vaccine efficacy was investigated by specific antibodies and by challenge-contact experiments using highly pathogenic avian influenza viruses (HPAIV) H5N1. Basic immunization with two applications induced clinical protection. Virus excretion by vaccinated hens was significantly reduced compared to non-vaccinated controls; transmission to non-vaccinated and vaccinated contact birds was not fully interrupted. Vaccination efficacy is influenced by several factors including antigenic relatedness between vaccine and field strains, but also by species, age and type of commercial uses of the host. Limitations and risks of HPAIV vaccination as silent spread of HPAIV and emergence of escape mutants must be considered a priori and appropriate corrective measures have to be installed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Identification and characterization of a highly pathogenic H5N1 avian influenza A virus during an outbreak in vaccinated chickens in Egypt.

    PubMed

    Amen, O; Vemula, S V; Zhao, J; Ibrahim, R; Hussein, A; Hewlett, I K; Moussa, S; Mittal, S K

    2015-12-02

    Highly pathogenic avian influenza A (HPAI) H5N1 viruses continue to be a major veterinary and public health problem in Egypt. Continued surveillance of these viruses is necessary to devise strategies to control the spread of the virus and to monitor its evolutionary patterns. This is a report of the identification of a variant strain of HPAI H5N1 virus during an outbreak in 2010 in vaccinated chicken flocks in a poultry farm in Assiut, Egypt. Vaccination of chickens with an oil-emulsified inactivated A/chicken/Mexico/232/94 (H5N2) vaccine induced high levels of hemagglutination inhibition (HI) antibody titers reaching up to 9 log2. However, all flocks irrespective of the number of vaccine doses and the resultant HI titer levels came down with severe influenza infections. The qRT-PCR and rapid antigen test confirmed the influenza virus to be from H5N1 subtype. Sequencing of the hemagglutinin (HA) gene fragment from ten independent samples demonstrated that a single H5N1 strain was involved. This strain belonged to clade 2.2.1 and had several mutations in the receptor-binding site of the HA protein, thereby producing a variant strain of HPAI H5N1 virus which was antigenically different from the parent clade 2.2.1 virus circulating in Egypt at that time. In order to define the variability in HPAI H5N1 viruses over time in Egypt, we sequenced another H5N1 virus that was causing infections in chickens in 2014. Phylogenetic analysis revealed that both viruses had further distanced from the parent virus circulating during 2010. This study highlights that the antigenic mutations in HPAI H5N1 viruses represent a definitive challenge for the development of an effective vaccine for poultry. Overall, the results emphasize the need for continued surveillance of H5N1 outbreaks and extensive characterization of virus isolates from vaccinated and non-vaccinated poultry populations to better understand genetic changes and their implications. Copyright © 2015 Elsevier B.V. All

  17. Protective Efficacy of Recombinant Turkey Herpes Virus (rHVT-H5) and Inactivated H5N1 Vaccines in Commercial Mulard Ducks against the Highly Pathogenic Avian Influenza (HPAI) H5N1 Clade 2.2.1 Virus

    PubMed Central

    Kilany, Walid H.; Safwat, Marwa; Mohammed, Samy M.; Salim, Abdullah; Fasina, Folorunso Oludayo; Fasanmi, Olubunmi G.; Shalaby, Azhar G.; Dauphin, Gwenaelle; Hassan, Mohammed K.; Lubroth, Juan; Jobre, Yilma M.

    2016-01-01

    In Egypt, ducks kept for commercial purposes constitute the second highest poultry population, at 150 million ducks/year. Hence, ducks play an important role in the introduction and transmission of avian influenza (AI) in the Egyptian poultry population. Attempts to control outbreaks include the use of vaccines, which have varying levels of efficacy and failure. To date, the effects of vaccine efficacy has rarely been determined in ducks. In this study, we evaluated the protective efficacy of a live recombinant vector vaccine based on a turkey Herpes Virus (HVT) expressing the H5 gene from a clade 2.2 H5N1 HPAIV strain (A/Swan/Hungary/499/2006) (rHVT-H5) and a bivalent inactivated H5N1 vaccine prepared from clade 2.2.1 and 2.2.1.1 H5N1 seeds in Mulard ducks. A 0.3ml/dose subcutaneous injection of rHVT-H5 vaccine was administered to one-day-old ducklings (D1) and another 0.5ml/dose subcutaneous injection of the inactivated MEFLUVAC was administered at 7 days (D7). Four separate challenge experiments were conducted at Days 21, 28, 35 and 42, in which all the vaccinated ducks were challenged with 106EID50/duck of H5N1 HPAI virus (A/chicken/Egypt/128s/2012(H5N1) (clade 2.2.1) via intranasal inoculation. Maternal-derived antibody regression and post-vaccination antibody immune responses were monitored weekly. Ducks vaccinated at 21, 28, 35 and 42 days with the rHVT-H5 and MEFLUVAC vaccines were protected against mortality (80%, 80%, 90% and 90%) and (50%, 70%, 80% and 90%) respectively, against challenges with the H5N1 HPAI virus. The amount of viral shedding and shedding rates were lower in the rHVT-H5 vaccine groups than in the MEFLUVAC groups only in the first two challenge experiments. However, the non-vaccinated groups shed significantly more of the virus than the vaccinated groups. Both rHVT-H5 and MEFLUVAC provide early protection, and rHVT-H5 vaccine in particular provides protection against HPAI challenge. PMID:27304069

  18. Protective Efficacy of Recombinant Turkey Herpes Virus (rHVT-H5) and Inactivated H5N1 Vaccines in Commercial Mulard Ducks against the Highly Pathogenic Avian Influenza (HPAI) H5N1 Clade 2.2.1 Virus.

    PubMed

    Kilany, Walid H; Safwat, Marwa; Mohammed, Samy M; Salim, Abdullah; Fasina, Folorunso Oludayo; Fasanmi, Olubunmi G; Shalaby, Azhar G; Dauphin, Gwenaelle; Hassan, Mohammed K; Lubroth, Juan; Jobre, Yilma M

    2016-01-01

    In Egypt, ducks kept for commercial purposes constitute the second highest poultry population, at 150 million ducks/year. Hence, ducks play an important role in the introduction and transmission of avian influenza (AI) in the Egyptian poultry population. Attempts to control outbreaks include the use of vaccines, which have varying levels of efficacy and failure. To date, the effects of vaccine efficacy has rarely been determined in ducks. In this study, we evaluated the protective efficacy of a live recombinant vector vaccine based on a turkey Herpes Virus (HVT) expressing the H5 gene from a clade 2.2 H5N1 HPAIV strain (A/Swan/Hungary/499/2006) (rHVT-H5) and a bivalent inactivated H5N1 vaccine prepared from clade 2.2.1 and 2.2.1.1 H5N1 seeds in Mulard ducks. A 0.3ml/dose subcutaneous injection of rHVT-H5 vaccine was administered to one-day-old ducklings (D1) and another 0.5ml/dose subcutaneous injection of the inactivated MEFLUVAC was administered at 7 days (D7). Four separate challenge experiments were conducted at Days 21, 28, 35 and 42, in which all the vaccinated ducks were challenged with 106EID50/duck of H5N1 HPAI virus (A/chicken/Egypt/128s/2012(H5N1) (clade 2.2.1) via intranasal inoculation. Maternal-derived antibody regression and post-vaccination antibody immune responses were monitored weekly. Ducks vaccinated at 21, 28, 35 and 42 days with the rHVT-H5 and MEFLUVAC vaccines were protected against mortality (80%, 80%, 90% and 90%) and (50%, 70%, 80% and 90%) respectively, against challenges with the H5N1 HPAI virus. The amount of viral shedding and shedding rates were lower in the rHVT-H5 vaccine groups than in the MEFLUVAC groups only in the first two challenge experiments. However, the non-vaccinated groups shed significantly more of the virus than the vaccinated groups. Both rHVT-H5 and MEFLUVAC provide early protection, and rHVT-H5 vaccine in particular provides protection against HPAI challenge.

  19. A computationally optimized broadly reactive H5 hemagglutinin vaccine provides protection against homologous and heterologous H5N1 highly pathogenic avian influenza virus infection in chickens

    USDA-ARS?s Scientific Manuscript database

    Since its emergence in 1996 in China, H5N1 highly pathogenic avian influenza (HPAI) virus has continuously evolved into different genetic clades that have created challenges to maintaining antigenically relevant H5N1 vaccine seeds. Therefore, a universal (multi-hemagglutinin [HA] subtype) or more c...

  20. Protection of human influenza vaccines against a reassortant swine influenza virus of pandemic H1N1 origin using a pig model.

    PubMed

    Arunorat, Jirapat; Charoenvisal, Nataya; Woonwong, Yonlayong; Kedkovid, Roongtham; Jittimanee, Supattra; Sitthicharoenchai, Panchan; Kesdangsakonwut, Sawang; Poolperm, Pariwat; Thanawongnuwech, Roongroje

    2017-10-01

    Since the pandemic H1N1 emergence in 2009 (pdmH1N1), many reassortant pdmH1N1 viruses emerged and found circulating in the pig population worldwide. Currently, commercial human subunit vaccines are used commonly to prevent the influenza symptom based on the WHO recommendation. In case of current reassortant swine influenza viruses transmitting from pigs to humans, the efficacy of current human influenza vaccines is of interest. In this study, influenza A negative pigs were vaccinated with selected commercial human subunit vaccines and challenged with rH3N2. All sera were tested with both HI and SN assays using four representative viruses from the surveillance data in 2012 (enH1N1, pdmH1N1, rH1N2 and rH3N2). The results showed no significant differences in clinical signs and macroscopic and microscopic findings among groups. However, all pig sera from vaccinated groups had protective HI titers to the enH1N1, pdmH1N1 and rH1N2 at 21DPV onward and had protective SN titers only to pdmH1N1and rH1N2 at 21DPV onward. SN test results appeared more specific than those of HI tests. All tested sera had no cross-reactivity against the rH3N2. Both studied human subunit vaccines failed to protect and to stop viral shedding with no evidence of serological reaction against rH3N2. SIV surveillance is essential for monitoring a novel SIV emergence potentially for zoonosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Risk of Guillain–Barré syndrome following pandemic influenza A(H1N1) 2009 vaccination in Germany†

    PubMed Central

    Prestel, Jürgen; Volkers, Peter; Mentzer, Dirk; Lehmann, Helmar C; Hartung, Hans-Peter; Keller-Stanislawski, Brigitte

    2014-01-01

    Purpose A prospective, epidemiologic study was conducted to assess whether the 2009 pandemic influenza A(H1N1) vaccination in Germany almost exclusively using an AS03-adjuvanted vaccine (Pandemrix) impacts the risk of Guillain–Barré syndrome (GBS) and its variant Fisher syndrome (FS). Methods Potential cases of GBS/FS were reported by 351 participating hospitals throughout Germany. The self-controlled case series methodology was applied to all GBS/FS cases fulfilling the Brighton Collaboration (BC) case definition (levels 1–3 of diagnostic certainty) with symptom onset between 1 November 2009 and 30 September 2010 reported until end of December 2010. Results Out of 676 GBS/FS reports, in 30 cases, GBS/FS (BC levels 1–3) occurred within 150 days following influenza A(H1N1) vaccination. The relative incidence of GBS/FS within the primary risk period (days 5–42 post-vaccination) compared with the control period (days 43–150 post-vaccination) was 4.65 (95%CI [2.17, 9.98]). Similar results were found when stratifying for infections within 3 weeks prior to onset of GBS/FS and when excluding cases with additional seasonal influenza vaccination. The overall result of temporally adjusted analyses supported the primary finding of an increased relative incidence of GBS/FS following influenza A(H1N1) vaccination. Conclusions The results indicate an increased risk of GBS/FS in temporal association with pandemic influenza A(H1N1) vaccination in Germany. © 2014 The Authors. Pharmacoepidemiology and Drug Safety published by John Wiley & Sons, Ltd. PMID:24817531

  2. Antibody Persistence and Booster Responses to Split-Virion H5N1 Avian Influenza Vaccine in Young and Elderly Adults

    PubMed Central

    Lazarus, Rajeka; Kelly, Sarah; Snape, Matthew D.; Vandermeulen, Corinne; Voysey, Merryn; Hoppenbrouwers, Karel; Hens, Annick; Van Damme, Pierre; Pepin, Stephanie; Leroux-Roels, Isabel; Leroux-Roels, Geert; Pollard, Andrew J.

    2016-01-01

    Avian influenza continues to circulate and remains a global health threat not least because of the associated high mortality. In this study antibody persistence, booster vaccine response and cross-clade immune response between two influenza A(H5N1) vaccines were compared. Participants aged over 18-years who had previously been immunized with a clade 1, A/Vietnam vaccine were re-immunized at 6-months with 7.5 μg of the homologous strain or at 22-months with a clade 2, alum-adjuvanted, A/Indonesia vaccine. Blood sampled at 6, 15 and 22-months after the primary course was used to assess antibody persistence. Antibody concentrations 6-months after primary immunisation with either A/Vietnam vaccine 30 μg alum-adjuvanted vaccine or 7.5 μg dose vaccine were lower than 21-days after the primary course and waned further with time. Re-immunization with the clade 2, 30 μg alum-adjuvanted vaccine confirmed cross-clade reactogenicity. Antibody cross-reactivity between A(H5N1) clades suggests that in principle a prime-boost vaccination strategy may provide both early protection at the start of a pandemic and improved antibody responses to specific vaccination once available. Trial Registration: ClinicalTrials.gov NCT00415129 PMID:27814377

  3. Suboptimal protection against H5N1 highly pathogenic avian influenza viruses from Vietnam in ducks vaccinated with commercial poultry vaccines.

    PubMed

    Cha, Ra Mi; Smith, Diane; Shepherd, Eric; Davis, C Todd; Donis, Ruben; Nguyen, Tung; Nguyen, Hoang Dang; Do, Hoa Thi; Inui, Ken; Suarez, David L; Swayne, David E; Pantin-Jackwood, Mary

    2013-10-09

    Domestic ducks are the second most abundant poultry species in many Asian countries including Vietnam, and play a critical role in the epizootiology of H5N1 highly pathogenic avian influenza (HPAI) [FAO]. In this study, we examined the protective efficacy in ducks of two commercial H5N1 vaccines widely used in Vietnam; Re-1 containing A/goose/Guangdong/1/1996 hemagglutinin (HA) clade 0 antigens, and Re-5 containing A/duck/Anhui/1/2006 HA clade 2.3.4 antigens. Ducks received two doses of either vaccine at 7 and at 14 or 21 days of age followed by challenge at 30 days of age with viruses belonging to the HA clades 1.1, 2.3.4.3, 2.3.2.1.A and 2.3.2.1.B isolated between 2008 and 2011 in Vietnam. Ducks vaccinated with the Re-1 vaccine were protected after infection with the two H5N1 HPAI viruses isolated in 2008 (HA clades 1.1 and 2.3.4.3) showing no mortality and limited virus shedding. The Re-1 and Re-5 vaccines conferred 90-100% protection against mortality after challenge with the 2010 H5N1 HPAI viruses (HA clade 2.3.2.1.A); but vaccinated ducks shed virus for more than 7 days after challenge. Similarly, the Re-1 and Re-5 vaccines only showed partial protection against the 2011 H5N1 HPAI viruses (HA clade 2.3.2.1.A and 2.3.2.1.B), with a high proportion of vaccinated ducks shedding virus for more than 10 days. Furthermore, 50% mortality was observed in ducks vaccinated with Re-1 and challenged with the 2.3.2.1.B virus. The HA proteins of the 2011 challenge viruses had the greatest number of amino acid differences from the two vaccines as compared to the viruses from 2008 and 2009, which correlates with the lesser protection observed with these viruses. These studies demonstrate the suboptimal protection conferred by the Re-1 and Re-5 commercial vaccines in ducks against H5N1 HPAI clade 2.3.2.1 viruses, and underscore the importance of monitoring vaccine efficacy in the control of H5N1 HPAI in ducks. Published by Elsevier Ltd.

  4. [Influenza A/H5N1 virus outbreaks and prepardness to avert flu pandemic].

    PubMed

    Haque, A; Lucas, B; Hober, D

    2007-01-01

    This review emphasizes the need to improve the knowledge of the biology of H5N1 virus, a candidate for causing the next influenza pandemic. In-depth knowledge of mode of infection, mechanisms of pathogenesis and immune response will help in devising an efficient and practical control strategy against this flu virus. We have discussed limitations of currently available vaccines and proposed novel approaches for making better vaccines against H5N1 influenza virus. They include cell-culture system, reverse genetics, adjuvant development. Our review has also underscored the concept of therapeutic vaccine (anti-disease vaccine), which is aimed at diminishing 'cytokine storm' seen in acute respiratory distress syndrome and/or hemophagocytosis.

  5. Prime-boost immunization using a DNA vaccine delivered by attenuated Salmonella enterica serovar typhimurium and a killed vaccine completely protects chickens from H5N1 highly pathogenic avian influenza virus.

    PubMed

    Pan, Zhiming; Zhang, Xiaoming; Geng, Shizhong; Fang, Qiang; You, Meng; Zhang, Lei; Jiao, Xinan; Liu, Xiufan

    2010-04-01

    H5N1 highly pathogenic avian influenza virus (HPAIV) has posed a great threat not only for the poultry industry but also for human health. However, an effective vaccine to provide a full spectrum of protection is lacking in the poultry field. In the current study, a novel prime-boost vaccination strategy against H5N1 HPAIV was developed: chickens were first orally immunized with a hemagglutinin (HA) DNA vaccine delivered by attenuated Salmonella enterica serovar Typhimurium, and boosting with a killed vaccine followed. Chickens in the combined vaccination group but not in single vaccination and control groups were completely protected against disease following H5N1 HPAIV intranasal challenge, with no clinical signs and virus shedding. Chickens in the prime-boost group also generated significantly higher serum hemagglutination inhibition (HI) titers and intestinal mucosal IgA titers against avian influenza virus (AIV) and higher host immune cellular responses than those from other groups before challenge. These results demonstrated that the prime-boost vaccination strategy provides an effective way to prevent and control H5N1 highly pathogenic avian influenza virus.

  6. Protective Efficacy of an H5N1 Inactivated Vaccine Against Challenge with Lethal H5N1, H5N2, H5N6, and H5N8 Influenza Viruses in Chickens.

    PubMed

    Zeng, Xianying; Chen, Pucheng; Liu, Liling; Deng, Guohua; Li, Yanbing; Shi, Jianzhong; Kong, Huihui; Feng, Huapeng; Bai, Jie; Li, Xin; Shi, Wenjun; Tian, Guobin; Chen, Hualan

    2016-05-01

    The Goose/Guangdong-lineage H5 viruses have evolved into diverse clades and subclades based on their hemagglutinin (HA) gene during their circulation in wild birds and poultry. Since late 2013, the clade 2.3.4.4 viruses have become widespread in poultry and wild bird populations around the world. Different subtypes of the clade 2.3.4.4 H5 viruses, including H5N1, H5N2, H5N6, and H5N8, have caused vast disease outbreaks in poultry in Asia, Europe, and North America. In this study, we developed a new H5N1 inactivated vaccine by using a seed virus (designated as Re-8) that contains the HA and NA genes from a clade 2.3.4.4 virus, A/chicken/Guizhou/4/13(H5N1) (CK/GZ/4/13), and its six internal genes from the high-growth A/Puerto Rico/8/1934 (H1N1) virus. We evaluated the protective efficacy of this vaccine in chickens challenged with one H5N1 clade 2.3.2.1b virus and six different subtypes of clade 2.3.4.4 viruses, including H5N1, H5N2, H5N6, and H5N8 strains. In the clade 2.3.2.1b virus DK/GX/S1017/13-challenged groups, half of the vaccinated chickens shed virus through the oropharynx and two birds (20%) died during the observation period. All of the control chickens shed viruses and died within 6 days of infection with challenge virus. All of the vaccinated chickens remained healthy following challenge with the six clade 2.3.4.4 viruses, and virus shedding was not detected from any of these birds; however, all of the control birds shed viruses and died within 4 days of challenge with the clade 2.3.4.4 viruses. Our results indicate that the Re-8 vaccine provides protection against different subtypes of clade 2.3.4.4 H5 viruses.

  7. Heterovariant Cross-Reactive B-Cell Responses Induced by the 2009 Pandemic Influenza Virus A Subtype H1N1 Vaccine

    PubMed Central

    He, Xiao-Song; Sasaki, Sanae; Baer, Jane; Khurana, Surender; Golding, Hana; Treanor, John J.; Topham, David J.; Sangster, Mark Y.; Jin, Hong; Dekker, Cornelia L.; Subbarao, Kanta; Greenberg, Harry B.

    2013-01-01

    Background. The generation of heterovariant immunity is a highly desirable feature of influenza vaccines. The goal of this study was to compare the heterovariant B-cell response induced by the monovalent inactivated 2009 pandemic influenza A virus subtype H1N1 (A[H1N1]pdm09) vaccine with that induced by the 2009 seasonal trivalent influenza vaccine (sTIV) containing a seasonal influenza A virus subtype H1N1 (A[H1N1]) component in young and elderly adults. Methods. Plasmablast-derived polyclonal antibodies (PPAb) from young and elderly recipients of A(H1N1)pdm09 vaccine or sTIV were tested for binding activity to various influenza antigens. Results. In A(H1N1)pdm09 recipients, the PPAb titers against homotypic A(H1N1)pdm09 vaccine were similar to those against the heterovariant seasonal A(H1N1) vaccine and were similar between young and elderly subjects. The PPAb avidity was higher among elderly individuals, compared with young individuals. In contrast, the young sTIV recipients had 10-fold lower heterovariant PPAb titers against the A(H1N1)pdm09 vaccine than against the homotypic seasonal A(H1N1) vaccine. In binding assays with recombinant head and stalk domains of hemagglutinin, PPAb from the A(H1N1)pdm09 recipients but not PPAb from the sTIV recipients bound to the conserved stalk domain. Conclusion. The A(H1N1)pdm09 vaccine induced production of PPAb with heterovariant reactivity, including antibodies targeting the conserved hemagglutinin stalk domain. PMID:23107783

  8. Healthcare workers as parents: attitudes toward vaccinating their children against pandemic influenza A/H1N1.

    PubMed

    Torun, Sebahat D; Torun, Fuat; Catak, Binali

    2010-10-10

    Both the health care workers (HCWs) and children are target groups for pandemic influenza vaccination. The coverage of the target populations is an important determinant for impact of mass vaccination. The objective of this study is to determine the attitudes of HCWs as parents, toward vaccinating their children with pandemic influenza A/H1N1 vaccine. A cross-sectional questionnaire survey was conducted with health care workers (HCWs) in a public hospital during December 2009 in Istanbul. All persons employed in the hospital with or without a health-care occupation are accepted as HCW. The HCWs who are parents of children 6 months to 18 years of age were included in the study. Pearson's chi-square test and logistic regression analysis was applied for the statistical analyses. A total of 389 HCWs who were parents of children aged 6 months-18 years participated study. Among all participants 27.0% (n = 105) reported that themselves had been vaccinated against pandemic influenza A/H1N1. Two third (66.1%) of the parents answered that they will not vaccinate their children, 21.1% already vaccinated and 12.9% were still undecided. Concern about side effect was most reported reason among who had been not vaccinated their children and among undecided parents. The second reason for refusing the pandemic vaccine was concerns efficacy of the vaccine. Media was the only source of information about pandemic influenza in nearly one third of HCWs. Agreement with vaccine safety, self receipt of pandemic influenza A/H1N1 vaccine, and trust in Ministry of Health were found to be associated with the positive attitude toward vaccinating their children against pandemic influenza A/H1N1. Persuading parents to accept a new vaccine seems not be easy even if they are HCWs. In order to overcome the barriers among HCWs related to pandemic vaccines, determination of their misinformation, attitudes and behaviors regarding the pandemic influenza vaccination is necessary. Efforts for orienting

  9. Healthcare workers as parents: attitudes toward vaccinating their children against pandemic influenza A/H1N1

    PubMed Central

    2010-01-01

    Background Both the health care workers (HCWs) and children are target groups for pandemic influenza vaccination. The coverage of the target populations is an important determinant for impact of mass vaccination. The objective of this study is to determine the attitudes of HCWs as parents, toward vaccinating their children with pandemic influenza A/H1N1 vaccine. Methods A cross-sectional questionnaire survey was conducted with health care workers (HCWs) in a public hospital during December 2009 in Istanbul. All persons employed in the hospital with or without a health-care occupation are accepted as HCW. The HCWs who are parents of children 6 months to 18 years of age were included in the study. Pearson's chi-square test and logistic regression analysis was applied for the statistical analyses. Results A total of 389 HCWs who were parents of children aged 6 months-18 years participated study. Among all participants 27.0% (n = 105) reported that themselves had been vaccinated against pandemic influenza A/H1N1. Two third (66.1%) of the parents answered that they will not vaccinate their children, 21.1% already vaccinated and 12.9% were still undecided. Concern about side effect was most reported reason among who had been not vaccinated their children and among undecided parents. The second reason for refusing the pandemic vaccine was concerns efficacy of the vaccine. Media was the only source of information about pandemic influenza in nearly one third of HCWs. Agreement with vaccine safety, self receipt of pandemic influenza A/H1N1 vaccine, and trust in Ministry of Health were found to be associated with the positive attitude toward vaccinating their children against pandemic influenza A/H1N1. Conclusions Persuading parents to accept a new vaccine seems not be easy even if they are HCWs. In order to overcome the barriers among HCWs related to pandemic vaccines, determination of their misinformation, attitudes and behaviors regarding the pandemic influenza vaccination

  10. Antibody responses to influenza a H1N1 vaccine compared to the circulating strain in influenza vaccine recipients during the 2013/2014 season in North America.

    PubMed

    Barron, Michelle A; Frank, Daniel N; Claypool, David; Ir, Diana; Ning, Mariangeli F; Curtis, Donna; Weinberg, Adriana

    2016-10-01

    Influenza strain A/California/07/2009 H1N1 (H1N1-09) reemerged in 2013/2014 as the predominant cause of illness. We sought to determine if antigenic drift may have contributed to the decreased responses to influenza vaccine. Fifty adults who received trivalent inactivated influenza vaccine (IIV3) and 56 children who received live attenuated quadrivalent influenza vaccine (LAIV4) had hemagglutination inhibition (HAI) and microneutralizing (MN) antibodies measured in plasma against H1N1-09 and H1N1 2013/2014 (H1N1-14) influenza. Partial sequencing of the hemagglutinin gene (nt 280-780) was performed on 38 clinical isolates and the vaccine prototype. In IIV3 recipients, HAI and MN titers against H1N1-14 were significantly lower than against H1N1-09 (p<0.0001 and 0.04, respectively). In LAIV4 recipients, only MN titers were significantly lower (p=0.02) for H1N1-09 compared with H1N1-14. A combined analysis showed significantly lower HAI and MN titers for H1N1-14 compared with H1N1-09 (p=0. 016 and 0.008, respectively). All 38 clinical isolates encoded the HA gene K166Q non-synonymous substitution; other non-synonymous substitutions were observed in <10% of the clinical isolates. 2013/2014 IIV3 and LAIV4 recipients had consistently lower MN antibody titers against H1N1-14 compared with H1N1-09. The HA K166Q mutation, located in a neutralizing epitope, probably contributed to these findings. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Comprehensive Serological Analysis of Two Successive Heterologous Vaccines against H5N1 Avian Influenza Virus in Exotic Birds in Zoos▿

    PubMed Central

    Vergara-Alert, Júlia; Fernández-Bellon, Hugo; Busquets, Núria; Alcántara, Gabriel; Delclaux, María; Pizarro, Bienvenido; Sánchez, Celia; Sánchez, Azucena; Majó, Natàlia; Darji, Ayub

    2011-01-01

    In 2005, European Commission directive 2005/744/EC allowed controlled vaccination against avian influenza (AI) virus of valuable avian species housed in zoos. In 2006, 15 Spanish zoos and wildlife centers began a vaccination program with a commercial inactivated H5N9 vaccine. Between November 2007 and May 2008, birds from 10 of these centers were vaccinated again with a commercial inactivated H5N3 vaccine. During these campaigns, pre- and postvaccination samples from different bird orders were taken to study the response against AI virus H5 vaccines. Sera prior to vaccinations with both vaccines were examined for the presence of total antibodies against influenza A nucleoprotein (NP) by a commercial competitive enzyme-linked immunosorbent assay (cELISA). Humoral responses to vaccination were evaluated using a hemagglutination inhibition (HI) assay. In some taxonomic orders, both vaccines elicited comparatively high titers of HI antibodies against H5. Interestingly, some orders, such as Psittaciformes, which did not develop HI antibodies to either vaccine formulation when used alone, triggered notable HI antibody production, albeit in low HI titers, when primed with H5N9 and during subsequent boosting with the H5N3 vaccine. Vaccination with successive heterologous vaccines may represent the best alternative to widely protect valuable and/or endangered bird species against highly pathogenic AI virus infection. PMID:21430124

  12. Comprehensive serological analysis of two successive heterologous vaccines against H5N1 avian influenza virus in exotic birds in zoos.

    PubMed

    Vergara-Alert, Júlia; Fernández-Bellon, Hugo; Busquets, Núria; Alcántara, Gabriel; Delclaux, María; Pizarro, Bienvenido; Sánchez, Celia; Sánchez, Azucena; Majó, Natàlia; Darji, Ayub

    2011-05-01

    In 2005, European Commission directive 2005/744/EC allowed controlled vaccination against avian influenza (AI) virus of valuable avian species housed in zoos. In 2006, 15 Spanish zoos and wildlife centers began a vaccination program with a commercial inactivated H5N9 vaccine. Between November 2007 and May 2008, birds from 10 of these centers were vaccinated again with a commercial inactivated H5N3 vaccine. During these campaigns, pre- and postvaccination samples from different bird orders were taken to study the response against AI virus H5 vaccines. Sera prior to vaccinations with both vaccines were examined for the presence of total antibodies against influenza A nucleoprotein (NP) by a commercial competitive enzyme-linked immunosorbent assay (cELISA). Humoral responses to vaccination were evaluated using a hemagglutination inhibition (HI) assay. In some taxonomic orders, both vaccines elicited comparatively high titers of HI antibodies against H5. Interestingly, some orders, such as Psittaciformes, which did not develop HI antibodies to either vaccine formulation when used alone, triggered notable HI antibody production, albeit in low HI titers, when primed with H5N9 and during subsequent boosting with the H5N3 vaccine. Vaccination with successive heterologous vaccines may represent the best alternative to widely protect valuable and/or endangered bird species against highly pathogenic AI virus infection.

  13. Silent spread of highly pathogenic Avian Influenza H5N1 virus amongst vaccinated commercial layers.

    PubMed

    Poetri, Okti Nadia; Van Boven, Michiel; Claassen, Ivo; Koch, Guus; Wibawan, I Wayan; Stegeman, Arjan; Van den Broek, Jan; Bouma, Annemarie

    2014-12-01

    The aim of this study was to determine whether a single vaccination of commercial layer type chickens with an inactivated vaccine containing highly pathogenic avian influenza virus strain H5N1 A/chicken/Legok/2003, carried out on the farm, was sufficient to protect against infection with the homologous virus strain. A transmission experiment was carried out with pairs of chicken of which one was inoculated with H5N1 virus and the other contact-exposed. Results showed that the majority of the vaccinated birds developed haemagglutination inhibition (HI) titres below 4log2. No clinical signs were observed in the vaccinated birds and virus shedding was limited. However, nearly all vaccinated birds showed a four-fold or higher increase of HI titres after challenge or contact-exposure, which is an indication of infection. This implies that virus transmission most likely has occurred. This study showed that a single vaccination applied under field conditions induced clinical protection, but was insufficient to induce protection against virus transmission, suggesting that silent spread of virus in vaccinated commercial flocks may occur. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. [Results of clinical trials on reactogenicity, safety, and immunogenicity of influenza allantoic intranasal live vaccine "Ultragrivac" (type A/H5N2)].

    PubMed

    Mazurkova, N A; Ryndiuk, N N; Shishkina, L N; Ternovoĭ, V A; Tumanov, Iu V; Bulychev, L E; Skarnovich, M O; Kabanov, A S; Panchenko, S G; Aleĭnikov, R P; Il'ina, T N; Kuzubov, V I; Mel'nikov, S Ia; Mironov, A N; Korovkin, S A; Sergeev, A N; Drozdov, I G

    2010-01-01

    Results of phase II of a clinical trial of the influenza allantoic intranasal live vaccine "Ultragrivac" (type A/H5N2) are presented. The vaccine was developed based on strain /17/Duck/Potsdam/86/92 H5N2 [17/H5] - reassortant of two viruses, /Leningrad/134/17/57 (H2N2) and /Duck/Potsdam/1402-86 (H5N2), obtained from the Virology Department, St. Petersburg Institute of Experimental Medicine.Two schemes of immunization (with revaccination on days 10 and 21) were used. Evaluation of vaccine immunogenicity included determination of local, cellular and humoral immunity. A significant rise in the level of secretory IgA in the nasal cavity of vaccinated volunteers (with revaccination on days 10 and 21) was documented after application of the vaccine. The postvaccination humoral immune response was estimated from the level of significant (4-fold and more) antibody seroconversions, geometric mean titers of antibodies to two strains of influenza virus /17/Duck/Potsdam/86/92 H5N2 [17/H5] and /Chicken/Suzdalka/Nov-11/2005 (H5N1), and their incremental rate. Results of measurement of antibody titers in hemagglutination-inhibition assay are presented, with two antigens being used to analyse all serum samples from volunteers twice vaccinated with influenza vaccine "Ultragrivac" at 10 and 21 day intervals. Result of phase II of this clinical study show that influenza allantoic intranasal live vaccine "Ultragrivac" is nonreactogenic and safe for both vaccinated and surrounding individuals. Moreover, it is sufficiently immunogenic with respect not only to homologous virus A(H5N2) but also to the A(H5N1) strain.

  15. Relative Efficacy of AS03-Adjuvanted Pandemic Influenza A(H1N1) Vaccine in Children: Results of a Controlled, Randomized Efficacy Trial

    PubMed Central

    Nolan, Terry; Roy-Ghanta, Sumita; Montellano, May; Weckx, Lily; Ulloa-Gutierrez, Rolando; Lazcano-Ponce, Eduardo; Kerdpanich, Angkool; Safadi, Marco Aurélio Palazzi; Cruz-Valdez, Aurelio; Litao, Sandra; Lim, Fong Seng; de Los Santos, Abiel Mascareñas; Weber, Miguel Angel Rodriguez; Tinoco, Juan-Carlos; Mezerville, Marcela Hernandez-de; Faingezicht, Idis; Kosuwon, Pensri; Lopez, Pio; Borja-Tabora, Charissa; Li, Ping; Durviaux, Serge; Fries, Louis; Dubin, Gary; Breuer, Thomas; Innis, Bruce L.; Vaughn, David W.

    2014-01-01

    Background. The vaccine efficacy (VE) of 1 or 2 doses of AS03-adjuvanted influenza A(H1N1) vaccine relative to that of 2 doses of nonadjuvanted influenza A(H1N1) vaccine in children 6 months to <10 years of age in a multinational study conducted during 2010–2011. Methods. A total of 6145 children were randomly assigned at a ratio of 1:1:1 to receive 2 injections 21 days apart of A/California/7/2009(H1N1)-AS03 vaccine at dose 1 and saline placebo at dose 2, 2 doses 21 days apart of A/California/7/2009(H1N1)-AS03 vaccine (the Ad2 group), or 2 doses 21 days apart of nonadjuvanted A/California/7/2009(H1N1) vaccine (the NAd2 group). Active surveillance for influenza-like illnesses continued from days 14 to 385. Nose and throat samples obtained during influenza-like illnesses were tested for A/California/7/2009(H1N1), using reverse-transcriptase polymerase chain reaction. Immunogenicity, reactogenicity, and safety were assessed. Results. There were 23 cases of confirmed 2009 pandemic influenza A(H1N1) (A[H1N1]pdm09) infection for the primary relative VE analysis. The VE in the Ad2 group relative to that in the NAd2 group was 76.8% (95% confidence interval, 18.5%–93.4%). The benefit of the AS03 adjuvant was demonstrated in terms of the greater immunogenicity observed in the Ad2 group, compared with the NAd2 group. Conclusion. The 4–8-fold antigen-sparing adjuvanted pandemic influenza vaccine demonstrated superior and clinically important prevention of A(H1N1)pdm09 infection, compared with nonadjuvanted vaccine, with no observed increase in medically attended or serious adverse events. These data support the use of adjuvanted influenza vaccines during influenza pandemics. Clinical Trials Registration. NCT01051661. PMID:24652494

  16. Pandemic influenza H1N1 2009 infection in Victoria, Australia: no evidence for harm or benefit following receipt of seasonal influenza vaccine in 2009.

    PubMed

    Kelly, Heath A; Grant, Kristina A; Fielding, James E; Carville, Kylie S; Looker, Clare O; Tran, Thomas; Jacoby, Peter

    2011-08-26

    Conflicting findings regarding the level of protection offered by seasonal influenza vaccination against pandemic influenza H1N1 have been reported. We performed a test-negative case control study using sentinel patients from general practices in Victoria to estimate seasonal influenza vaccine effectiveness against laboratory proven infection with pandemic influenza. Cases were defined as patients with an influenza-like illness who tested positive for influenza while controls had an influenza-like illness but tested negative. We found no evidence of significant protection from seasonal vaccine against pandemic influenza virus infection in any age group. Age-stratified point estimates, adjusted for pandemic phase, ranged from 44% in persons aged less than 5 years to -103% (odds ratio=2.03) in persons aged 50-64 years. Vaccine effectiveness, adjusted for age group and pandemic phase, was 3% (95% CI -48 to 37) for all patients. Our study confirms the results from our previous interim report, and other studies, that failed to demonstrate benefit or harm from receipt of seasonal influenza vaccine in patients with confirmed infection with pandemic influenza H1N1 2009. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Immunogenicity of heterologous H5N1 influenza booster vaccination 6 or 18 months after primary vaccination in adults: a randomized controlled clinical trial.

    PubMed

    Langley, Joanne M; Frenette, Louise; Jeanfreau, Robert; Halperin, Scott A; Kyle, Michael; Chu, Laurence; McNeil, Shelly; Dramé, Mamadou; Moris, Philippe; Fries, Louis; Vaughn, David W

    2015-01-15

    Highly pathogenic avian influenza A/H5N1 viruses continue to circulate in birds and infect humans causing serious illness and death. In this randomized, observer-blinded study, adults ≥18 years of age (n=841) received 3.75 or 7.5 μg hemagglutinin antigen (HA) of an AS03-adjuvanted (AS03A or AS03B) A/Indonesia/5/2005 H5N1 (subclade 2.1) vaccine (priming), followed by the same HA dose of AS03-adjuvanted A/turkey/Turkey/1/05 H5N1 (clade 2.2) influenza vaccine as a booster 6 or 18 months after priming; an unprimed group received placebo at Day 0, and 3.75 μg HA of AS03A-adjuvanted booster vaccine at 6 and 18 months. Antibody responses were assessed by hemagglutination-inhibition assay (HI). Microneutralization (MN) antibody and cellular immunoassays were assessed in a subset of participants. Geometric mean titers (GMTs) and seroconversion rates (SCRs) were higher in primed vs. unprimed subjects against the booster strain 10 days following booster vaccination at month 6 and month 18. After the booster at 18 months, the lower limit of the 97.5% confidence interval for the difference in SCR and GMT ratios between primed and unprimed subjects was >15% and >2.0, respectively, fulfilling the primary endpoint criteria for superiority against the booster strain. MN and cellular immune responses corresponded with the immunogenicity seen in HI measures. Adults primed with a dose-sparing oil-in-water adjuvanted H5N1 subclade vaccine had rapid and durable antibody responses to a heterologous subclade boosting vaccine given 6 or 18 months later. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Effectiveness of monovalent 2009 pandemic influenza A virus subtype H1N1 and 2010-2011 trivalent inactivated influenza vaccines in Wisconsin during the 2010-2011 influenza season.

    PubMed

    Bateman, Allen C; Kieke, Burney A; Irving, Stephanie A; Meece, Jennifer K; Shay, David K; Belongia, Edward A

    2013-04-15

    The 2009 influenza A virus subtype H1N1 (A[H1N1]pdm09) did not exhibit antigenic drift during the 2010-2011 influenza season, providing an opportunity to investigate the duration of protection after vaccination. We estimated the independent effects of 2010-2011 seasonal trivalent inactivated influenza vaccine (TIV) and A(H1N1)pdm09 vaccine for preventing medically attended influenza A virus infection during the 2010-2011 season. Individuals were tested for influenza A virus by real-time reverse transcription polymerase chain reaction (rRT-PCR) after a clinical encounter for acute respiratory illness. Case-control analyses compared participants with rRT-PCR-confirmed influenza A virus infection and test-negative controls. Vaccine effectiveness was estimated separately for monovalent pandemic vaccine and TIV and was calculated as 100 × [1 - adjusted odds ratio], where the odds ratio was adjusted for potential confounders. The effectiveness of TIV against influenza A virus infection was 63% (95% confidence interval [CI], 37%-78%). The effectiveness of TIV against A(H1N1)pdm09 infection was 77% (95% CI, 44%-90%). Monovalent vaccine administered between October 2009 and April 2010 was not protective during the 2010-2011 season, with an effectiveness of -1% (95% CI, -146% to 59%) against A(H1N1)pdm09 infection.  Monovalent vaccine provided no sustained protection against A(H1N1)pdm09 infection during the 2010-2011 season. This waning effectiveness supports the need for annual revaccination, even in the absence of antigenic drift in A(H1N1)pdm09.

  19. Long lasting immunity in chickens induced by a single shot of influenza vaccine prepared from inactivated non-pathogenic H5N1 virus particles against challenge with a highly pathogenic avian influenza virus.

    PubMed

    Sasaki, Takashi; Kokumai, Norihide; Ohgitani, Toshiaki; Sakamoto, Ryuichi; Takikawa, Noriyasu; Lin, Zhifeng; Okamatsu, Masatoshi; Sakoda, Yoshihiro; Kida, Hiroshi

    2009-08-20

    An influenza vaccine was prepared from inactivated whole particles of the non-pathogenic strain A/duck/Hokkaido/Vac-1/04 (H5N1) virus using an oil adjuvant containing anhydromannitol-octadecenoate-ether (AMOE). The vaccine was injected intramuscularly into five 4-week-old chickens, and 138 weeks after vaccination, they were challenged intranasally with 100 times 50% chicken lethal dose of the highly pathogenic avian influenza (HPAI) virus A/chicken/Yamaguchi/7/04 (H5N1). All 5 chickens survived without exhibiting clinical signs of influenza, although 2 days post-challenge, 3 vaccinated chickens shed limited titres of viruses in laryngopharyngeal swabs.

  20. Birth outcomes following immunization of pregnant women with pandemic H1N1 influenza vaccine 2009-2010.

    PubMed

    Eaton, Abigail; Lewis, Ned; Fireman, Bruce; Hansen, John; Baxter, Roger; Gee, Julianne; Klein, Nicola P

    2018-05-03

    Following the H1N1 influenza pandemic in 2009, pregnant women were recommended to receive both seasonal (TIV) and H1N1 influenza vaccines. This study presents incidence of adverse birth and pregnancy outcomes among a population of pregnant women immunized with TIV and H1N1 vaccines at Kaiser Permanente Northern California during 2009-2010. We telephone surveyed pregnant Kaiser Permanente Northern California members to assess non-medically-attended reactions following H1N1, TIV or both vaccines during 2009-2010 (n=5365) in a separate study. Here we assessed preterm birth (<37weeks), very preterm birth (<32weeks), low birth weight (<2500 g, LBW), very low birth weight (<1500g), small for gestational age, spontaneous abortions, stillbirths and congenital anomalies among this cohort by comparing incidence and 95% confidence intervals between the following immunization groups: TIV only, H1N1 only, H1N1 prior to TIV immunization, TIV prior to H1N1 and both immunizations given at the same time. Results did not vary significantly between groups. Comparing H1N1 with TIV, incidence were similar for preterm births (6.37vs 6.28/100 births), very preterm births (5.30vs 8.29/1000 births), LBW (4.19vs 2.90/100 births), very LBW (4.54vs 5.52/1000 births), small for gestational age (9.99vs 9.24/1000 births), spontaneous abortion (7.10vs 6.83/1000 pregnancies), stillbirths (7.10vs 4.57/1000 pregnancies), and congenital anomalies (2.66vs 2.43/100 births). Although constrained by small sample size, complex vaccine groups, and differential vaccine availability during 2009-2010, this study found no difference in adverse birth outcomes between H1N1 vaccine and TIV. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Humoral and cellular responses to a non-adjuvanted monovalent H1N1 pandemic influenza vaccine in hospital employees

    PubMed Central

    2013-01-01

    Background The efficacy of the H1N1 influenza vaccine relies on the induction of both humoral and cellular responses. This study evaluated the humoral and cellular responses to a monovalent non-adjuvanted pandemic influenza A/H1N1 vaccine in occupationally exposed subjects who were previously vaccinated with a seasonal vaccine. Methods Sixty healthy workers from a respiratory disease hospital were recruited. Sera and peripheral blood mononuclear cells (PBMCs) were obtained prior to and 1 month after vaccination with a non-adjuvanted monovalent 2009 H1N1 vaccine (Influenza A (H1N1) 2009 Monovalent Vaccine Panenza, Sanofi Pasteur). Antibody titers against the pandemic A/H1N1 influenza virus were measured via hemagglutination inhibition (HI) and microneutralization assays. Antibodies against the seasonal HA1 were assessed by ELISA. The frequency of IFN-γ-producing cells as well as CD4+ and CD8+ T cell proliferation specific to the pandemic virus A/H1N peptides, seasonal H1N1 peptides and seasonal H3N2 peptides were assessed using ELISPOT and flow cytometry. Results At baseline, 6.7% of the subjects had seroprotective antibody titers. The seroconversion rate was 48.3%, and the seroprotection rate was 66.7%. The geometric mean titers (GMTs) were significantly increased (from 6.8 to 64.9, p < 0.05). Forty-nine percent of the subjects had basal levels of specific IFN-γ-producing T cells to the pandemic A/H1N1 peptides that were unchanged post-vaccination. CD4+ T cell proliferation in response to specific pandemic A/H1N1 virus peptides was also unchanged; in contrast, the antigen-specific proliferation of CD8+ T cells significantly increased post-vaccination. Conclusion Our results indicate that a cellular immune response that is cross-reactive to pandemic influenza antigens may be present in populations exposed to the circulating seasonal influenza virus prior to pandemic or seasonal vaccination. Additionally, we found that the pandemic vaccine induced a

  2. Bell’s palsy and influenza(H1N1)pdm09 containing vaccines: A self-controlled case series

    PubMed Central

    Wijnans, Leonoor; Weibel, Daniel; Sturkenboom, Miriam

    2017-01-01

    Background An association between AS03 adjuvanted pandemic influenza vaccine and the occurrence of Bell’s palsy was found in a population based cohort study in Stockholm, Sweden. To evaluate this association in a different population, we conducted a self-controlled case series in a primary health care database, THIN, in the United Kingdom. The aim of this study was to determine whether there was an increased risk of Bell’s palsy following vaccination with any influenza vaccine containing A/California/7/2009 (H1N1)-like viral strains. Secondly, we investigated whether risks were different following pandemic influenza A(H1N1)pdm09 vaccines and seasonal influenza vaccines containing the influenza A(H1N1)pdm09 strain. Methods The study population comprised all incident Bell’s palsy cases between 1 June 2009 and 30 June 2013 identified in THIN. We determined the relative incidence (RI) of Bell’s palsy during the 6 weeks following vaccination with either pandemic or seasonal influenza vaccine. All analyses were adjusted for seasonality and confounding variables. Results We found an incidence rate of Bell’s palsy of 38.7 per 100,000 person years. Both acute respiratory infection (ARI) consultations and pregnancy were found to be confounders. When adjusted for seasonality, ARI consultations and pregnancies, the RI during the 42 days after vaccination with an influenza vaccine was 0.85 (95% CI: 0.72–1.01). The RI was similar during the 42 days following seasonal vaccine (0.96, 95%CI: 0.82–1.13) or pandemic vaccine (0.73, 95%CI: 0.47–1.12). Conclusion We found no evidence for an increased incidence of Bell’s palsy following seasonal influenza vaccination overall, nor for monovalent pandemic influenza vaccine in 2009. PMID:28467420

  3. Memory T-cell immune response in healthy young adults vaccinated with live attenuated influenza A (H5N2) vaccine.

    PubMed

    Chirkova, T V; Naykhin, A N; Petukhova, G D; Korenkov, D A; Donina, S A; Mironov, A N; Rudenko, L G

    2011-10-01

    Cellular immune responses of both CD4 and CD8 memory/effector T cells were evaluated in healthy young adults who received two doses of live attenuated influenza A (H5N2) vaccine. The vaccine was developed by reassortment of nonpathogenic avian A/Duck/Potsdam/1402-6/68 (H5N2) and cold-adapted A/Leningrad/134/17/57 (H2N2) viruses. T-cell responses were measured by standard methods of intracellular cytokine staining of gamma interferon (IFN-γ)-producing cells and a novel T-cell recognition of antigen-presenting cells by protein capture (TRAP) assay based on the trogocytosis phenomenon, namely, plasma membrane exchange between interacting immune cells. TRAP enables the detection of activated trogocytosis-positive T cells after virus stimulation. We showed that two doses of live attenuated influenza A (H5N2) vaccine promoted both CD4 and CD8 T-memory-cell responses in peripheral blood of healthy young subjects in the clinical study. Significant differences in geometric mean titers (GMTs) of influenza A (H5N2)-specific IFN-γ(+) cells were observed at day 42 following the second vaccination, while peak levels of trogocytosis(+) T cells were detected earlier, on the 21st day after the second vaccination. The inverse correlation of baseline levels compared to postvaccine fold changes in GMTs of influenza-specific CD4 and CD8 T cells demonstrated that baseline levels of these specific cells could be considered a predictive factor of vaccine immunogenicity.

  4. Comparative Efficacy of Hemagglutinin, Nucleoprotein, and Matrix 2 Protein Gene-Based Vaccination against H5N1 Influenza in Mouse and Ferret

    PubMed Central

    Rao, Srinivas S.; Kong, Wing-Pui; Wei, Chih-Jen; Van Hoeven, Neal; Gorres, J. Patrick; Nason, Martha; Andersen, Hanne; Tumpey, Terrence M.; Nabel, Gary J.

    2010-01-01

    Efforts to develop a broadly protective vaccine against the highly pathogenic avian influenza A (HPAI) H5N1 virus have focused on highly conserved influenza gene products. The viral nucleoprotein (NP) and ion channel matrix protein (M2) are highly conserved among different strains and various influenza A subtypes. Here, we investigate the relative efficacy of NP and M2 compared to HA in protecting against HPAI H5N1 virus. In mice, previous studies have shown that vaccination with NP and M2 in recombinant DNA and/or adenovirus vectors or with adjuvants confers protection against lethal challenge in the absence of HA. However, we find that the protective efficacy of NP and M2 diminishes as the virulence and dose of the challenge virus are increased. To explore this question in a model relevant to human disease, ferrets were immunized with DNA/rAd5 vaccines encoding NP, M2, HA, NP+M2 or HA+NP+M2. Only HA or HA+NP+M2 vaccination conferred protection against a stringent virus challenge. Therefore, while gene-based vaccination with NP and M2 may provide moderate levels of protection against low challenge doses, it is insufficient to confer protective immunity against high challenge doses of H5N1 in ferrets. These immunogens may require combinatorial vaccination with HA, which confers protection even against very high doses of lethal viral challenge. PMID:20352112

  5. Safety and immunogenicity of adjuvanted inactivated split-virion and whole-virion influenza A (H5N1) vaccines in children: a phase I-II randomized trial.

    PubMed

    Wu, Jiang; Liu, Shu-Zhen; Dong, Shan-Shan; Dong, Xiao-Ping; Zhang, Wu-Li; Lu, Min; Li, Chang-Gui; Zhou, Ji-Chen; Fang, Han-Hua; Liu, Yan; Liu, Li-Ying; Qiu, Yuan-Zheng; Gao, Qiang; Zhang, Xiao-Mei; Chen, Jiang-Ting; Zhong, Xiang; Yin, Wei-Dong; Feng, Zi-Jian

    2010-08-31

    Highly pathogenic avian influenza A virus H5N1 has the potential to cause a pandemic. Many prototype pandemic influenza A (H5N1) vaccines had been developed and well evaluated in adults in recent years. However, data in children are limited. Herein we evaluate the safety and immunogenicity of adjuvanted split-virion and whole-virion H5N1 vaccines in children. An open-labelled phase I trial was conducted in children aged 3-11 years to receive aluminum-adjuvated, split-virion H5N1 vaccine (5-30 microg) and in children aged 12-17 years to receive aluminum-adjuvated, whole-virion H5N1 vaccine (5-15 microg). Safety of the two formulations was assessed. Then a randomized phase II trial was conducted, in which 141 children aged 3-11 years received the split-virion vaccine (10 or 15 microg) and 280 children aged 12-17 years received the split-virion vaccine (10-30 microg) or the whole-virion vaccine (5 microg). Serum samples were collected for hemagglutination-inhibition (HI) assays. 5-15 microg adjuvated split-virion vaccines were well tolerated in children aged 3-11 years and 5-30 microg adjuvated split-virion vaccines and 5 microg adjuvated whole-virion vaccine were well tolerated in children aged 12-17 years. Most local and systemic reactions were mild or moderate. Before vaccination, all participants were immunologically naïve to H5N1 virus. Immune responses were induced after the first dose and significantly boosted after the second dose. In 3-11 years children, the 10 and 15 microg split-virion vaccine induced similar responses with 55% seroconversion and seroprotection (HI titer >or=1:40) rates. In 12-17 years children, the 30 microg split-virion vaccine induced the highest immune response with 71% seroconversion and seroprotection rates. The 5 microg whole-virion vaccine induced higher response than the 10 microg split-virion vaccine did. The aluminum-adjuvanted, split-virion prototype pandemic influenza A (H5N1) vaccine showed good safety and immunogenicity in

  6. Absence of cross‐reactive antibodies to influenza A (H1N1) 2009 before and after vaccination with 2009 Southern Hemisphere seasonal trivalent influenza vaccine in children aged 6 months–9 years: a prospective study

    PubMed Central

    McVernon, Jodie; Laurie, Karen; Barr, Ian; Kelso, Anne; Skeljo, Maryanne; Nolan, Terry

    2010-01-01

    Please cite this paper as: McVernon et al. (2010) Absence of cross‐reactive antibodies to influenza A (H1N1) 2009 before and after vaccination with 2009 Southern Hemisphere seasonal trivalent influenza vaccine in children aged 6 months–9 years: a prospective study. Influenza and Other Respiratory Viruses 5(1), 7–11. Background  Early outbreaks of the pandemic influenza A (H1N1) 2009 virus predominantly involved young children, who fuelled transmission through spread in homes and schools. Seroprevalence studies conducted on stored serum collections indicated low levels of antibody to the novel strain in this age group, leading many to recommend priority immunisation of paediatric populations. Objectives  In a prospective study, we sought evidence of cross‐reactive antibodies to the pandemic virus in children who were naïve to seasonal influenza vaccines, at baseline and following two doses of the 2009 Southern Hemisphere trivalent influenza vaccine (TIV). Patients/Methods  Twenty children were recruited, with a median age of 4 years (interquartile range 3–5 years); all received two age appropriate doses of TIV. Paired sera were collected pre‐ and post‐vaccination for the assessment of vaccine immunogenicity, using haemagglutination inhibition and microneutralisation assays against vaccine‐related viruses and influenza A (H1N1) 2009. Results  Robust responses to H3N2 were observed regardless of age or pre‐vaccination titre, with 100% seroconversion. Fewer seroconverted to the seasonal H1N1 component. Only two children were weakly seropositive (HI titre 40) to the pandemic H1N1 strain at study entry, and none showed evidence of seroconversion by HI assay following TIV administration. Conclusions  Administration of 2009 Southern Hemisphere TIV did little to elicit cross‐reactive antibodies to the pandemic H1N1 virus in children, in keeping with assay results on stored sera from studies of previous seasonal vaccines. Our findings

  7. Avian influenza A (H5N1).

    PubMed

    de Jong, Menno D; Hien, Tran Tinh

    2006-01-01

    Since their reemergence in 2003, highly pathogenic avian influenza A (H5N1) viruses have reached endemic levels among poultry in several southeast Asian countries and have caused a still increasing number of more than 100 reported human infections with high mortality. These developments have ignited global fears of an imminent influenza pandemic. The current knowledge of the virology, clinical spectrum, diagnosis and treatment of human influenza H5N1 virus infections is reviewed herein.

  8. Possible Impact of Yearly Childhood Vaccination With Trivalent Inactivated Influenza Vaccine (TIV) on the Immune Response to the Pandemic Strain H1N1.

    PubMed

    Amer, Ahdi; Fischer, Howard; Li, Xiaoming; Asmar, Basim

    2016-03-01

    Annual vaccination of children against seasonal influenza with trivalent inactivated influenza vaccine (TIV) has shown to be beneficial. However, this yearly practice may have unintended effect. Studies have shown that infection with wild type influenza A viruses can stimulate protective heterotypic immunity against unrelated or new influenza subtypes. We hypothesized that a consequence of yearly TIV vaccination is lack of induction of heterotypic immunity against the recent H1N1 pandemic. This was a retrospective case-control study. We reviewed the medical records of polymerase chain reaction-confirmed cases of 2009 H1N1 influenza infection in children 6 months to 18 years and a matched control group seen during the pandemic. We identified 353 polymerase chain reaction-confirmed H1N1 cases and 396 matching control subjects. Among the H1N1 group, 202/353 (57%) cases received a total of 477 doses of seasonal TIV compared with 218/396 (55%) in the control group who received a total of 435 doses. Seasonal TIV uptake was significantly higher in the H1N1 group 477/548 (87%) than in the control group, 435/532 (81%) (P = .017). Seasonal TIV uptake was significantly higher in H1N1-infected group. The finding suggests that the practice of yearly vaccination with TIV might have negatively affected the immune response against the novel pandemic H1N1 strain. Given the rarity of pandemic novel influenza viruses, and the high predictability of seasonal influenza occurrence, the practice of yearly influenza vaccination should be continued. However, the use of live attenuated intranasal vaccine, as opposed to TIV, may allow for the desirable development of a vigorous heterotypic immune response against future pandemics. © The Author(s) 2015.

  9. Intranasal H5N1 vaccines, adjuvanted with chitosan derivatives, protect ferrets against highly pathogenic influenza intranasal and intratracheal challenge.

    PubMed

    Mann, Alex J; Noulin, Nicolas; Catchpole, Andrew; Stittelaar, Koert J; de Waal, Leon; Veldhuis Kroeze, Edwin J B; Hinchcliffe, Michael; Smith, Alan; Montomoli, Emanuele; Piccirella, Simona; Osterhaus, Albert D M E; Knight, Alastair; Oxford, John S; Lapini, Giulia; Cox, Rebecca; Lambkin-Williams, Rob

    2014-01-01

    We investigated the protective efficacy of two intranasal chitosan (CSN and TM-CSN) adjuvanted H5N1 Influenza vaccines against highly pathogenic avian Influenza (HPAI) intratracheal and intranasal challenge in a ferret model. Six groups of 6 ferrets were intranasally vaccinated twice, 21 days apart, with either placebo, antigen alone, CSN adjuvanted antigen, or TM-CSN adjuvanted antigen. Homologous and intra-subtypic antibody cross-reacting responses were assessed. Ferrets were inoculated intratracheally (all treatments) or intranasally (CSN adjuvanted and placebo treatments only) with clade 1 HPAI A/Vietnam/1194/2004 (H5N1) virus 28 days after the second vaccination and subsequently monitored for morbidity and mortality outcomes. Clinical signs were assessed and nasal as well as throat swabs were taken daily for virology. Samples of lung tissue, nasal turbinates, brain, and olfactory bulb were analysed for the presence of virus and examined for histolopathological findings. In contrast to animals vaccinated with antigen alone, the CSN and TM-CSN adjuvanted vaccines induced high levels of antibodies, protected ferrets from death, reduced viral replication and abrogated disease after intratracheal challenge, and in the case of CSN after intranasal challenge. In particular, the TM-CSN adjuvanted vaccine was highly effective at eliciting protective immunity from intratracheal challenge; serologically, protective titres were demonstrable after one vaccination. The 2-dose schedule with TM-CSN vaccine also induced cross-reactive antibodies to clade 2.1 and 2.2 H5N1 viruses. Furthermore ferrets immunised with TM-CSN had no detectable virus in the respiratory tract or brain, whereas there were signs of virus in the throat and lungs, albeit at significantly reduced levels, in CSN vaccinated animals. This study demonstrated for the first time that CSN and in particular TM-CSN adjuvanted intranasal vaccines have the potential to protect against significant mortality and

  10. Effect of previous and current vaccination against influenza A(H1N1)pdm09, A(H3N2), and B during the post-pandemic period 2010-2016 in Spain.

    PubMed

    Gherasim, Alin; Martínez-Baz, Iván; Castilla, Jesús; Pozo, Francisco; Larrauri, Amparo

    2017-01-01

    Recent studies suggest that the protective effect of the current influenza vaccine could be influenced by vaccination in previous seasons. We estimated the combined effect of the previous and current influenza vaccines from the 2010-2011 season to the 2015-2016 season in Spain. We performed a test-negative case-control study in patients ≥9 years old. We estimated the influenza vaccine effectiveness (IVE) against influenza A(H1N1)pdm09, A(H3N2), and B virus. We included 1206 influenza A(H1N1)pdm09 cases, 1358 A(H3N2) cases and 1079 B cases. IVE against A(H1N1)pdm09 virus in the pooled-season analysis was 53% (95% Confidence Interval (CI): 21% to 72%) for those vaccinated only in the current season and 50% (95%CI: 23% to 68%) for those vaccinated in the both current and previous seasons. Against the influenza A(H3N2) virus, IVE was 17% (95%CI: -43% to 52%) for those vaccinated only in the current season and 3% (95%CI: -33% to 28%) for those vaccinated in both seasons. Regarding influenza B, we obtained similar IVEs for those vaccinated only in the current and those vaccinated in both seasons: 57% (95%CI: 12% to 79%) and 56% (95%CI: 36% to 70%), respectively. Our results suggested no interference between the previous and current influenza vaccines against A(H1N1)pdm09 and B viruses, but a possible negative interference against A(H3N2) virus.

  11. Efficacy of a trivalent influenza vaccine against seasonal strains and against 2009 pandemic H1N1: A randomized, placebo-controlled trial.

    PubMed

    Mcbride, William J H; Abhayaratna, Walter P; Barr, Ian; Booy, Robert; Carapetis, Jonathan; Carson, Simon; De Looze, Ferdinandus; Ellis-Pegler, Rod; Heron, Leon; Karrasch, Jeff; Marshall, Helen; Mcvernon, Jodie; Nolan, Terry; Rawlinson, William; Reid, Jim; Richmond, Peter; Shakib, Sepehr; Basser, Russell L; Hartel, Gunter F; Lai, Michael H; Rockman, Steven; Greenberg, Michael E

    2016-09-22

    Before pandemic H1N1 vaccines were available, the potential benefit of existing seasonal trivalent inactivated influenza vaccines (IIV3s) against influenza due to the 2009 pandemic H1N1 influenza strain was investigated, with conflicting results. This study assessed the efficacy of seasonal IIV3s against influenza due to 2008 and 2009 seasonal influenza strains and against the 2009 pandemic H1N1 strain. This observer-blind, randomized, placebo-controlled study enrolled adults aged 18-64years during 2008 and 2009 in Australia and New Zealand. Participants were randomized 2:1 to receive IIV3 or placebo. The primary objective was to demonstrate the efficacy of IIV3 against laboratory-confirmed influenza. Participants reporting an influenza-like illness during the period from 14days after vaccination until 30 November of each study year were tested for influenza by real-time reverse transcription polymerase chain reaction. Over a study period of 2years, 15,044 participants were enrolled (mean age±standard deviation: 35.5±14.7years; 54.4% female). Vaccine efficacy of the 2008 and 2009 IIV3s against influenza due to any strain was 42% (95% confidence interval [CI]: 30%, 52%), whereas vaccine efficacy against influenza due to the vaccine-matched strains was 60% (95% CI: 44%, 72%). Vaccine efficacy of the 2009 IIV3 against influenza due to the 2009 pandemic H1N1 strain was 38% (95% CI: 19%, 53%). No vaccine-related deaths or serious adverse events were reported. Solicited local and systemic adverse events were more frequent in IIV3 recipients than placebo recipients (local: IIV3 74.6% vs placebo 20.4%, p<0.001; systemic: IIV3 46.6% vs placebo 39.1%, p<0.001). The 2008 and 2009 IIV3s were efficacious against influenza due to seasonal influenza strains and the 2009 IIV3 demonstrated moderate efficacy against influenza due to the 2009 pandemic H1N1 strain. Funded by CSL Limited, ClinicalTrials.gov identifier NCT00562484. Copyright © 2016 The Authors. Published by Elsevier

  12. Influence of maternal immunity on vaccine efficacy and susceptibility of one day old chicks against Egyptian highly pathogenic avian influenza H5N1.

    PubMed

    Abdelwhab, E M; Grund, Christian; Aly, Mona M; Beer, Martin; Harder, Timm C; Hafez, Hafez M

    2012-02-24

    In Egypt, continuous circulation of highly pathogenic avian influenza (HPAI) H5N1 viruses of clade 2.2.1 in vaccinated commercial poultry challenges strenuous control efforts. Here, vaccine-derived maternal AIV H5 specific immunity in one-day old chicks was investigated as a factor of vaccine failure in long-term blanket vaccination campaigns in broiler chickens. H5 seropositive one-day old chicks were derived from breeders repeatedly immunized with a commercial inactivated vaccine based on the Potsdam/H5N2 strain. When challenged using the antigenically related HPAIV strain Italy/98 (H5N2) clinical protection was achieved until at least 10 days post-hatch although virus replication was not fully suppressed. No protection at all was observed against the Egyptian HPAIV strain EGYvar/H5N1 representing a vaccine escape lineage. Other groups of chicks with maternal immunity were vaccinated once at 3 or 14 days of age using either the Potsdam/H5N2 vaccine or a vaccine based on EGYvar/H5N1. At day 35 of age these chicks were challenged with the Egyptian HPAIV strain EGYcls/H5N1 which co-circulates with EGYvar/H5N1 but does not represent an antigenic drift variant. The Potsdam/H5N2 vaccinated groups were not protected against EGYcls/H5N1 infection while, in contrast, the EGYvar/H5N1 vaccinated chicks withstand challenge with EGYvar/H5N1 infection. In addition, the results showed that maternal antibodies could interfere with the immune response when a homologous vaccine strain was used. Copyright © 2011. Published by Elsevier B.V.

  13. Aerosol Delivery of a Candidate Universal Influenza Vaccine Reduces Viral Load in Pigs Challenged with Pandemic H1N1 Virus

    PubMed Central

    Morgan, Sophie B.; Hemmink, Johanneke D.; Porter, Emily; Harley, Ross; Shelton, Holly; Aramouni, Mario; Everett, Helen E.; Brookes, Sharon M.; Bailey, Michael; Townsend, Alain M.; Charleston, Bryan

    2016-01-01

    Influenza A viruses are a major health threat to livestock and humans, causing considerable mortality, morbidity, and economic loss. Current inactivated influenza vaccines are strain specific and new vaccines need to be produced at frequent intervals to combat newly arising influenza virus strains, so that a universal vaccine is highly desirable. We show that pandemic H1N1 influenza virus in which the hemagglutinin signal sequence has been suppressed (S-FLU), when administered to pigs by aerosol can induce CD4 and CD8 T cell immune responses in blood, bronchoalveolar lavage (BAL), and tracheobronchial lymph nodes. Neutralizing Ab was not produced. Detection of a BAL response correlated with a reduction in viral titer in nasal swabs and lungs, following challenge with H1N1 pandemic virus. Intratracheal immunization with a higher dose of a heterologous H5N1 S-FLU vaccine induced weaker BAL and stronger tracheobronchial lymph node responses and a lesser reduction in viral titer. We conclude that local cellular immune responses are important for protection against influenza A virus infection, that these can be most efficiently induced by aerosol immunization targeting the lower respiratory tract, and that S-FLU is a promising universal influenza vaccine candidate. PMID:27183611

  14. In Silico Identification of Highly Conserved Epitopes of Influenza A H1N1, H2N2, H3N2, and H5N1 with Diagnostic and Vaccination Potential

    PubMed Central

    Muñoz-Medina, José Esteban; Sánchez-Vallejo, Carlos Javier; Méndez-Tenorio, Alfonso; Monroy-Muñoz, Irma Eloísa; Angeles-Martínez, Javier; Santos Coy-Arechavaleta, Andrea; Santacruz-Tinoco, Clara Esperanza; González-Ibarra, Joaquín; Anguiano-Hernández, Yu-Mei; González-Bonilla, César Raúl; Ramón-Gallegos, Eva; Díaz-Quiñonez, José Alberto

    2015-01-01

    The unpredictable, evolutionary nature of the influenza A virus (IAV) is the primary problem when generating a vaccine and when designing diagnostic strategies; thus, it is necessary to determine the constant regions in viral proteins. In this study, we completed an in silico analysis of the reported epitopes of the 4 IAV proteins that are antigenically most significant (HA, NA, NP, and M2) in the 3 strains with the greatest world circulation in the last century (H1N1, H2N2, and H3N2) and in one of the main aviary subtypes responsible for zoonosis (H5N1). For this purpose, the HMMER program was used to align 3,016 epitopes reported in the Immune Epitope Database and Analysis Resource (IEDB) and distributed in 34,294 stored sequences in the Pfam database. Eighteen epitopes were identified: 8 in HA, 5 in NA, 3 in NP, and 2 in M2. These epitopes have remained constant since they were first identified (~91 years) and are present in strains that have circulated on 5 continents. These sites could be targets for vaccination design strategies based on epitopes and/or as markers in the implementation of diagnostic techniques. PMID:26346523

  15. Effect of previous and current vaccination against influenza A(H1N1)pdm09, A(H3N2), and B during the post-pandemic period 2010-2016 in Spain

    PubMed Central

    Castilla, Jesús; Pozo, Francisco

    2017-01-01

    Background Recent studies suggest that the protective effect of the current influenza vaccine could be influenced by vaccination in previous seasons. We estimated the combined effect of the previous and current influenza vaccines from the 2010–2011 season to the 2015–2016 season in Spain. Methods We performed a test-negative case-control study in patients ≥9 years old. We estimated the influenza vaccine effectiveness (IVE) against influenza A(H1N1)pdm09, A(H3N2), and B virus. Results We included 1206 influenza A(H1N1)pdm09 cases, 1358 A(H3N2) cases and 1079 B cases. IVE against A(H1N1)pdm09 virus in the pooled-season analysis was 53% (95% Confidence Interval (CI): 21% to 72%) for those vaccinated only in the current season and 50% (95%CI: 23% to 68%) for those vaccinated in the both current and previous seasons. Against the influenza A(H3N2) virus, IVE was 17% (95%CI: -43% to 52%) for those vaccinated only in the current season and 3% (95%CI: -33% to 28%) for those vaccinated in both seasons. Regarding influenza B, we obtained similar IVEs for those vaccinated only in the current and those vaccinated in both seasons: 57% (95%CI: 12% to 79%) and 56% (95%CI: 36% to 70%), respectively. Conclusion Our results suggested no interference between the previous and current influenza vaccines against A(H1N1)pdm09 and B viruses, but a possible negative interference against A(H3N2) virus. PMID:28614376

  16. Use of a tetanus toxoid marker to allow differentiation of infected from vaccinated poultry without affecting the efficacy of a H5N1 avian influenza virus vaccine.

    PubMed

    James-Berry, C M; Middleton, D; Mansfield, J P; Fenwick, S G; Ellis, T M

    2010-10-30

    Tetanus toxoid (TT) was assessed as a positive marker for avian influenza (AI) virus vaccination in chickens, in a vaccination and challenge study. Chickens were vaccinated twice with inactivated AI H5N2 virus vaccine, and then challenged three weeks later with highly pathogenic AI H5N1 virus. Vaccinated chickens were compared with other groups that were either sham-vaccinated or vaccinated with virus with the TT marker. All sham-vaccinated chickens died by 36 hours postinfection, whereas all vaccinated chickens, with or without the TT marker, were protected from morbidity and mortality following exposure to the challenge virus. Serological testing for H5-specific antibodies identified anamnestic responses to H5 in some of the vaccinated birds, indicating active virus infection.

  17. Humans and Ferrets with Prior H1N1 Influenza Virus Infections Do Not Exhibit Evidence of Original Antigenic Sin after Infection or Vaccination with the 2009 Pandemic H1N1 Influenza Virus

    PubMed Central

    O'Donnell, Christopher D.; Wright, Amber; Vogel, Leatrice; Boonnak, Kobporn; Treanor, John J.

    2014-01-01

    The hypothesis of original antigenic sin (OAS) states that the imprint established by an individual's first influenza virus infection governs the antibody response thereafter. Subsequent influenza virus infection results in an antibody response against the original infecting virus and an impaired immune response against the newer influenza virus. The purpose of our study was to seek evidence of OAS after infection or vaccination with the 2009 pandemic H1N1 (2009 pH1N1) virus in ferrets and humans previously infected with H1N1 viruses with various antigenic distances from the 2009 pH1N1 virus, including viruses from 1935 through 1999. In ferrets, seasonal H1N1 priming did not diminish the antibody response to infection or vaccination with the 2009 pH1N1 virus, nor did it diminish the T-cell response, indicating the absence of OAS in seasonal H1N1 virus-primed ferrets. Analysis of paired samples of human serum taken before and after vaccination with a monovalent inactivated 2009 pH1N1 vaccine showed a significantly greater-fold rise in the titer of antibody against the 2009 pH1N1 virus than against H1N1 viruses that circulated during the childhood of each subject. Thus, prior experience with H1N1 viruses did not result in an impairment of the antibody response against the 2009 pH1N1 vaccine. Our data from ferrets and humans suggest that prior exposure to H1N1 viruses did not impair the immune response against the 2009 pH1N1 virus. PMID:24648486

  18. Humans and ferrets with prior H1N1 influenza virus infections do not exhibit evidence of original antigenic sin after infection or vaccination with the 2009 pandemic H1N1 influenza virus.

    PubMed

    O'Donnell, Christopher D; Wright, Amber; Vogel, Leatrice; Boonnak, Kobporn; Treanor, John J; Subbarao, Kanta

    2014-05-01

    The hypothesis of original antigenic sin (OAS) states that the imprint established by an individual's first influenza virus infection governs the antibody response thereafter. Subsequent influenza virus infection results in an antibody response against the original infecting virus and an impaired immune response against the newer influenza virus. The purpose of our study was to seek evidence of OAS after infection or vaccination with the 2009 pandemic H1N1 (2009 pH1N1) virus in ferrets and humans previously infected with H1N1 viruses with various antigenic distances from the 2009 pH1N1 virus, including viruses from 1935 through 1999. In ferrets, seasonal H1N1 priming did not diminish the antibody response to infection or vaccination with the 2009 pH1N1 virus, nor did it diminish the T-cell response, indicating the absence of OAS in seasonal H1N1 virus-primed ferrets. Analysis of paired samples of human serum taken before and after vaccination with a monovalent inactivated 2009 pH1N1 vaccine showed a significantly greater-fold rise in the titer of antibody against the 2009 pH1N1 virus than against H1N1 viruses that circulated during the childhood of each subject. Thus, prior experience with H1N1 viruses did not result in an impairment of the antibody response against the 2009 pH1N1 vaccine. Our data from ferrets and humans suggest that prior exposure to H1N1 viruses did not impair the immune response against the 2009 pH1N1 virus.

  19. Evaluating interest in an influenza A(H5N1) vaccine among laboratory workers who work with highly-pathogenic avian influenza viruses in the United States.

    PubMed

    Russell, Kate E; Bresee, J S; Katz, J M; Olsen, S J

    2018-01-04

    Highly pathogenic avian influenza A (HPAI) viruses found in poultry and wild birds occasionally infect humans and can cause serious disease. In 2014, the Advisory Committee on Immunization Practices (ACIP) reviewed data from one licensed ASO3-adjuvanted influenza A(H5N1) vaccine for consideration of use during inter-pandemic periods among persons with occupational exposure. To guide vaccine policy decisions, we conducted a survey of laboratory workers to assess demand for HPAI vaccination. We designed an anonymous web survey (EpiInfo 7.0) to collect information on demographics, type of work and time spent with HPAI viruses, and interest in HPAI vaccination. Eligible participants were identified from 42 entities registered with United States Department of Agriculture's Agricultural Select Agent program in 2016 and emailed electronic surveys. Personnel with Biosafety Level 3 enhanced (BSL-3E) laboratory access were surveyed. Descriptive analysis was performed. Overall, 131 responses were received from 33 principal investigators, 26 research scientists, 24 technicians, 15 postdoctoral fellows, 6 students, and 27 others. The estimated response rate was 15% among the laboratory personnel of responding principal investigators. One hundred respondents reported working in a BSL-3E area where HPAI experiments occurred with a mean time of 5.1-11.7 h per week. Overall, 49% were interested in receiving an A(H5N1) vaccine. By role, interest was highest among students (80%) and among those who spent >50% of their time in a BSL-3E area (64%). Most (61%) of those who said they might be or were not interested in vaccine believed it would not provide additional protection to current safety practices. Half of responding laboratory workers was interested in receiving an influenza A(H5N1) vaccine. HPAI vaccination of laboratory workers at risk of occupational exposure could be used along with existing safety practices to protect this population. Published by Elsevier Ltd.

  20. Immunogenicity and safety of cell-derived MF59®-adjuvanted A/H1N1 influenza vaccine for children

    PubMed Central

    Knuf, Markus; Leroux-Roels, Geert; Rümke, Hans; Rivera, Luis; Pedotti, Paola; Arora, Ashwani Kumar; Lattanzi, Maria; Kieninger, Dorothee; Cioppa, Giovanni Della

    2015-01-01

    Mass immunization of children has the potential to decrease infection rates and prevent the transmission of influenza. We evaluated the immunogenicity, safety, and tolerability of different formulations of cell-derived MF59-adjuvanted and nonadjuvanted A/H1N1 influenza vaccine in children and adolescents. This was a randomized, single-blind, multicenter study with a total of 666 healthy subjects aged 6 months–17 y in one of 3 vaccination groups, each receiving formulations containing different amounts of influenza A/H1N1 antigen with or without MF59. A booster trivalent seasonal MF59 vaccine was administered one year after primary vaccinations. Antibody titers were assessed by hemagglutination inhibition (HI) and microneutralization assays obtained on days 1, 22, 43, 366, and 387 (3 weeks post booster). Safety was monitored throughout the study. One vaccination with 3.75 μg of A/H1N1 antigen formulated with 50% MF59 (3.75_halfMF59) or 7.5 μg of A/H1N1 antigen formulated with 100% MF59 (7.5_fullMF59) induced an HI titer ≥1:40 in >70% of children in the 1–<3, 3–8, and 9–17 y cohorts; however, 2 vaccinations with nonadjuvanted 15 μg A/H1N1 antigen were needed to achieve this response in the 1–<3 and 3–8 y cohorts. Among children aged 6–11 months, 1 dose of 7.5_fullMF59 resulted in an HI titer ≥1:40 in >70% while 2 doses of 3.75_halfMF59 were required to achieve this result. All vaccines were well tolerated. Our findings support the immunogenicity and safety of the 3.75_halfMF59 (2 doses for children <12 months) and 7.5_fullMF59 vaccine formulations for use in children and adolescents aged 6 months to 17 y The use of the 3.75_halfMF59 could have the benefit of antigen and adjuvant sparing, increasing the available vaccine doses allowing vaccination of more people. PMID:25621884

  1. Profiling of humoral response to influenza A(H1N1)pdm09 infection and vaccination measured by a protein microarray in persons with and without history of seasonal vaccination.

    PubMed

    Huijskens, Elisabeth G W; Reimerink, Johan; Mulder, Paul G H; van Beek, Janko; Meijer, Adam; de Bruin, Erwin; Friesema, Ingrid; de Jong, Menno D; Rimmelzwaan, Guus F; Peeters, Marcel F; Rossen, John W A; Koopmans, Marion

    2013-01-01

    The influence of prior seasonal influenza vaccination on the antibody response produced by natural infection or vaccination is not well understood. We compared the profiles of antibody responses of 32 naturally infected subjects and 98 subjects vaccinated with a 2009 influenza A(H1N1) monovalent MF59-adjuvanted vaccine (Focetria, Novartis), with and without a history of seasonal influenza vaccination. Antibodies were measured by hemagglutination inhibition (HI) assay for influenza A(H1N1)pdm09 and by protein microarray (PA) using the HA1 subunit for seven recent and historic H1, H2 and H3 influenza viruses, and three avian influenza viruses. Serum samples for the infection group were taken at the moment of collection of the diagnostic sample, 10 days and 30 days after onset of influenza symptoms. For the vaccination group, samples were drawn at baseline, 3 weeks after the first vaccination and 5 weeks after the second vaccination. We showed that subjects with a history of seasonal vaccination generally exhibited higher baseline titers for the various HA1 antigens than subjects without a seasonal vaccination history. Infection and pandemic influenza vaccination responses in persons with a history of seasonal vaccination were skewed towards historic antigens. Seasonal vaccination is of significant influence on the antibody response to subsequent infection and vaccination, and further research is needed to understand the effect of annual vaccination on protective immunity.

  2. Pre-clinical evaluation of a replication-competent recombinant adenovirus serotype 4 vaccine expressing influenza H5 hemagglutinin.

    PubMed

    Alexander, Jeff; Ward, Simone; Mendy, Jason; Manayani, Darly J; Farness, Peggy; Avanzini, Jenny B; Guenther, Ben; Garduno, Fermin; Jow, Lily; Snarsky, Victoria; Ishioka, Glenn; Dong, Xin; Vang, Lo; Newman, Mark J; Mayall, Tim

    2012-01-01

    Influenza virus remains a significant health and social concern in part because of newly emerging strains, such as avian H5N1 virus. We have developed a prototype H5N1 vaccine using a recombinant, replication-competent Adenovirus serotype 4 (Ad4) vector, derived from the U.S. military Ad4 vaccine strain, to express the hemagglutinin (HA) gene from A/Vietnam/1194/2004 influenza virus (Ad4-H5-Vtn). Our hypothesis is that a mucosally-delivered replicating Ad4-H5-Vtn recombinant vector will be safe and induce protective immunity against H5N1 influenza virus infection and disease pathogenesis. The Ad4-H5-Vtn vaccine was designed with a partial deletion of the E3 region of Ad4 to accommodate the influenza HA gene. Replication and growth kinetics of the vaccine virus in multiple human cell lines indicated that the vaccine virus is attenuated relative to the wild type virus. Expression of the HA transgene in infected cells was documented by flow cytometry, western blot analysis and induction of HA-specific antibody and cellular immune responses in mice. Of particular note, mice immunized intranasally with the Ad4-H5-Vtn vaccine were protected against lethal H5N1 reassortant viral challenge even in the presence of pre-existing immunity to the Ad4 wild type virus. Several non-clinical attributes of this vaccine including safety, induction of HA-specific humoral and cellular immunity, and efficacy were demonstrated using an animal model to support Phase 1 clinical trial evaluation of this new vaccine.

  3. [H1N1 influenza vaccines in Tunisia: efficiency and safety].

    PubMed

    Chaabane, Amel; Aouam, Karim; Ben Fredj, Nadia; Toumi, Adnen; Braham, Dorra; A Boughattas, Naceur; Chakroun, Mohamed

    2011-01-01

    We carried out this study in order to evaluate the effectiveness and the safety of the two H1N1 vaccines available in Tunisia: Focetria(®) and Panenza(®). It's a prospective epidemiological study including 601 vaccinated subjects. The vaccine effectiveness was based on the occurrence of flu clinical symptoms after vaccination. The safety was based on the occurrence of unexpected events after vaccines administration. The vaccines imputability was established according to Begaud et al. method. The number of subjects vaccinated by Focetria(®) is more important than Panenza(®). The efficiency of vaccines would be 93.6%. Neither the medical statue nor the type of the vaccine used influence the occurrence of a flu episode after vaccination. We recorded 406 adverse effects (32.4%) with a high score of imputability (I3). Focetria(®) adverse effects were more frequent than Panenza(®) ones (p = 0.009). Almost all adverse events disappeared within few days. The two vaccines used in Tunisia remain enough efficient to face the influenza (H1N1) pandemia and are well tolerated independently of the demographic and pathological statue of the vaccinated person as well as nature of the vaccine used. © 2011 Société Française de Pharmacologie et de Thérapeutique.

  4. Challenge for One Health: Co-Circulation of Zoonotic H5N1 and H9N2 Avian Influenza Viruses in Egypt.

    PubMed

    Kim, Shin-Hee

    2018-03-09

    Highly pathogenic avian influenza (HPAI) H5N1 viruses are currently endemic in poultry in Egypt. Eradication of the viruses has been unsuccessful due to improper application of vaccine-based control strategies among other preventive measures. The viruses have evolved rapidly with increased bird-to-human transmission efficacy, thus affecting both animal and public health. Subsequent spread of potentially zoonotic low pathogenic avian influenza (LPAI) H9N2 in poultry has also hindered efficient control of avian influenza. The H5N1 viruses acquired enhanced bird-to-human transmissibility by (1) altering amino acids in hemagglutinin (HA) that enable binding affinity to human-type receptors, (2) loss of the glycosylation site and 130 loop in the HA protein and (3) mutation of E627K in the PB2 protein to enhance viral replication in mammalian hosts. The receptor binding site of HA of Egyptian H9N2 viruses has been shown to contain the Q234L substitution along with a H191 mutation, which can increase human-like receptor specificity. Therefore, co-circulation of H5N1 and H9N2 viruses in poultry farming and live bird markets has increased the risk of human exposure, resulting in complication of the epidemiological situation and raising a concern for potential emergence of a new influenza A virus pandemic. For efficient control of infection and transmission, the efficacy of vaccine and vaccination needs to be improved with a comprehensive control strategy, including enhanced biosecurity, education, surveillance, rapid diagnosis and culling of infected poultry.

  5. Challenge for One Health: Co-Circulation of Zoonotic H5N1 and H9N2 Avian Influenza Viruses in Egypt

    PubMed Central

    2018-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 viruses are currently endemic in poultry in Egypt. Eradication of the viruses has been unsuccessful due to improper application of vaccine-based control strategies among other preventive measures. The viruses have evolved rapidly with increased bird-to-human transmission efficacy, thus affecting both animal and public health. Subsequent spread of potentially zoonotic low pathogenic avian influenza (LPAI) H9N2 in poultry has also hindered efficient control of avian influenza. The H5N1 viruses acquired enhanced bird-to-human transmissibility by (1) altering amino acids in hemagglutinin (HA) that enable binding affinity to human-type receptors, (2) loss of the glycosylation site and 130 loop in the HA protein and (3) mutation of E627K in the PB2 protein to enhance viral replication in mammalian hosts. The receptor binding site of HA of Egyptian H9N2 viruses has been shown to contain the Q234L substitution along with a H191 mutation, which can increase human-like receptor specificity. Therefore, co-circulation of H5N1 and H9N2 viruses in poultry farming and live bird markets has increased the risk of human exposure, resulting in complication of the epidemiological situation and raising a concern for potential emergence of a new influenza A virus pandemic. For efficient control of infection and transmission, the efficacy of vaccine and vaccination needs to be improved with a comprehensive control strategy, including enhanced biosecurity, education, surveillance, rapid diagnosis and culling of infected poultry. PMID:29522492

  6. H1N1 influenza (Swine flu)

    MedlinePlus

    Swine flu; H1N1 type A influenza ... The H1N1 virus is now considered a regular flu virus. It is one of the three viruses included in the regular (seasonal) flu vaccine . You cannot get H1N1 flu virus from ...

  7. Serum IgG titres, but not avidity, correlates with neutralizing antibody response after H5N1 vaccination.

    PubMed

    Pedersen, Gabriel Kristian; Höschler, Katja; Øie Solbak, Sara Marie; Bredholt, Geir; Pathirana, Rishi Delan; Afsar, Aram; Breakwell, Lucy; Nøstbakken, Jane Kristin; Raae, Arnt Johan; Brokstad, Karl Albert; Sjursen, Haakon; Zambon, Maria; Cox, Rebecca Jane

    2014-07-31

    Influenza H5N1 virus constitutes a pandemic threat and development of effective H5N1 vaccines is a global priority. Anti-influenza antibodies directed towards the haemagglutinin (HA) define a correlate of protection. Both antibody concentration and avidity may be important for virus neutralization and resolving influenza disease. We conducted a phase I clinical trial of a virosomal H5N1 vaccine adjuvanted with the immunostimulating complex Matrix M™. Sixty adults were intramuscularly immunized with two vaccine doses (21 days apart) of 30 μg HA alone or 1.5, 7.5 or 30 μg HA adjuvanted with Matrix M™. Serum H5 HA1-specific antibodies and virus neutralization were determined at days 0, 21, 42, 180 and 360 and long-term memory B cells at day 360 post-vaccination. The binding of the HA specific antibodies was measured by avidity NaSCN-elution ELISA and surface plasmon resonance (SPR). The H5 HA1-specific IgG response peaked after the second dose (day 42), was dominated by IgG1 and IgG3 and was highest in the adjuvanted vaccine groups. IgG titres correlated significantly with virus neutralization at all time points (Spearman r≥0.66, p<0.0001). By elution ELISA, serum antibody avidity was highest at days 180 and 360 post vaccination and did not correlate with virus neutralization. Long-lasting H5 HA1-specific memory B cells produced high IgG antibody avidity similar to serum IgG. Maturation of serum antibody avidity continued up to day 360 after influenza H5N1 vaccination. Virus neutralization correlated with serum H5 HA1-specific IgG antibody concentrations and not antibody avidity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Infection of mice with a human influenza A/H3N2 virus induces protective immunity against lethal infection with influenza A/H5N1 virus.

    PubMed

    Kreijtz, J H C M; Bodewes, R; van den Brand, J M A; de Mutsert, G; Baas, C; van Amerongen, G; Fouchier, R A M; Osterhaus, A D M E; Rimmelzwaan, G F

    2009-08-06

    The transmission of highly pathogenic avian influenza (HPAI) A viruses of the H5N1 subtype from poultry to man and the high case fatality rate fuels the fear for a pandemic outbreak caused by these viruses. However, prior infections with seasonal influenza A/H1N1 and A/H3N2 viruses induce heterosubtypic immunity that could afford a certain degree of protection against infection with the HPAI A/H5N1 viruses, which are distantly related to the human influenza A viruses. To assess the protective efficacy of such heterosubtypic immunity mice were infected with human influenza virus A/Hong Kong/2/68 (H3N2) 4 weeks prior to a lethal infection with HPAI virus A/Indonesia/5/05 (H5N1). Prior infection with influenza virus A/Hong Kong/2/68 reduced clinical signs, body weight loss, mortality and virus replication in the lungs as compared to naive mice infected with HPAI virus A/Indonesia/5/05. Priming by infection with respiratory syncytial virus, a non-related virus did not have a beneficial effect on the outcome of A/H5N1 infections, indicating that adaptive immune responses were responsible for the protective effect. In mice primed by infection with influenza A/H3N2 virus cytotoxic T lymphocytes (CTL) specific for NP(366-374) epitope ASNENMDAM and PA(224-232) SCLENFRAYV were observed. A small proportion of these CTL was cross-reactive with the peptide variant derived from the influenza A/H5N1 virus (ASNENMEVM and SSLENFRAYV respectively) and upon challenge infection with the influenza A/H5N1 virus cross-reactive CTL were selectively expanded. These CTL, in addition to those directed to conserved epitopes, shared by the influenza A/H3N2 and A/H5N1 viruses, most likely contributed to accelerated clearance of the influenza A/H5N1 virus infection. Although also other arms of the adaptive immune response may contribute to heterosubtypic immunity, the induction of virus-specific CTL may be an attractive target for development of broad protective vaccines. Furthermore the

  9. Seasonal Influenza Vaccine and Protection against Pandemic (H1N1) 2009-Associated Illness among US Military Personnel

    PubMed Central

    Johns, Matthew C.; Eick, Angelia A.; Blazes, David L.; Lee, Seung-eun; Perdue, Christopher L.; Lipnick, Robert; Vest, Kelly G.; Russell, Kevin L.; DeFraites, Robert F.; Sanchez, Jose L.

    2010-01-01

    Introduction A novel A/H1N1 virus is the cause of the present influenza pandemic; vaccination is a key countermeasure, however, few data assessing prior seasonal vaccine effectiveness (VE) against the pandemic strain of H1N1 (pH1N1) virus are available. Materials and Methods Surveillance of influenza-related medical encounter data of active duty military service members stationed in the United States during the period of April–October 2009 with comparison of pH1N1-confirmed cases and location and date-matched controls. Crude odds ratios (OR) and VE estimates for immunized versus non-immunized were calculated as well as adjusted OR (AOR) controlling for sex, age group, and history of prior influenza vaccination. Separate stratified VE analyses by vaccine type (trivalent inactivated [TIV] or live attenuated [LAIV]), age groups and hospitalization status were also performed. For the period of April 20 to October 15, 2009, a total of 1,205 cases of pH1N1-confirmed cases were reported, 966 (80%) among males and over one-half (58%) under 25 years of age. Overall VE for service members was found to be 45% (95% CI, 33 to 55%). Immunization with prior season's TIV (VE = 44%, 95% CI, 32 to 54%) as well as LAIV (VE = 24%, 95% CI, 6 to 38%) were both found to be associated with protection. Of significance, VE against a severe disease outcome was higher (VE = 62%, 95% CI, 14 to 84%) than against milder outcomes (VE = 42%, 95% CI, 29 to 53%). Conclusion A moderate association with protection against clinically apparent, laboratory-confirmed Pandemic (H1N1) 2009-associated illness was found for immunization with either TIV or LAIV 2008–09 seasonal influenza vaccines. This association with protection was found to be especially apparent for severe disease as compared to milder outcome, as well as in the youngest and older populations. Prior vaccination with seasonal influenza vaccines in 2004–08 was also independently associated with protection. PMID:20502705

  10. Immune Responses in Pigs Vaccinated with Adjuvanted and Non-Adjuvanted A(H1N1)pdm/09 Influenza Vaccines Used in Human Immunization Programmes

    PubMed Central

    Lefevre, Eric A.; Carr, B. Veronica; Inman, Charlotte F.; Prentice, Helen; Brown, Ian H.; Brookes, Sharon M.; Garcon, Fanny; Hill, Michelle L.; Iqbal, Munir; Elderfield, Ruth A.; Barclay, Wendy S.; Gubbins, Simon; Bailey, Mick; Charleston, Bryan

    2012-01-01

    Following the emergence and global spread of a novel H1N1 influenza virus in 2009, two A(H1N1)pdm/09 influenza vaccines produced from the A/California/07/09 H1N1 strain were selected and used for the national immunisation programme in the United Kingdom: an adjuvanted split virion vaccine and a non-adjuvanted whole virion vaccine. In this study, we assessed the immune responses generated in inbred large white pigs (Babraham line) following vaccination with these vaccines and after challenge with A(H1N1)pdm/09 virus three months post-vaccination. Both vaccines elicited strong antibody responses, which included high levels of influenza-specific IgG1 and haemagglutination inhibition titres to H1 virus. Immunisation with the adjuvanted split vaccine induced significantly higher interferon gamma production, increased frequency of interferon gamma-producing cells and proliferation of CD4−CD8+ (cytotoxic) and CD4+CD8+ (helper) T cells, after in vitro re-stimulation. Despite significant differences in the magnitude and breadth of immune responses in the two vaccinated and mock treated groups, similar quantities of viral RNA were detected from the nasal cavity in all pigs after live virus challenge. The present study provides support for the use of the pig as a valid experimental model for influenza infections in humans, including the assessment of protective efficacy of therapeutic interventions. PMID:22427834

  11. Antibody response after a single dose of an AS03-adjuvanted split-virion influenza A (H1N1) vaccine in heart transplant recipients.

    PubMed

    Meyer, Sven; Adam, Matti; Schweiger, Brunhilde; Ilchmann, Corina; Eulenburg, Christine; Sattinger, Edgar; Runte, Hendrik; Schlüter, Michael; Deuse, Tobias; Reichenspurner, Hermann; Costard-Jäckle, Angelika

    2011-05-15

    Influenza A (H1N1) has emerged as a considerable threat for recipients of organ transplants. Vaccination against the novel influenza A (H1N1) virus has generally been advocated. There is limited experience with AS03-adjuvanted A/H1N1 pandemic influenza vaccines in immunosuppressed patients. We conducted an observational, nonrandomized single-center study to assess antibody response and vaccine-related adverse effects in 47 heart transplant recipients (44 men; age, 56±13 years). The AS03-adjuvanted, inactivated split-virion A/California/7/2009 H1N1v pandemic vaccine was administered. Antibody titers were measured using hemagglutination inhibition; immunoglobulin G (IgG) response was assessed using a new pandemic influenza A IgG enzyme-linked immunosorbent assay (ELISA) test kit and compared with hemagglutination-inhibition titers. Adverse effects of vaccination were assessed by a questionnaire. Postvaccination antibody titers of greater than or equal to 1:40 were found in only 15 patients, corresponding to a seroprotection rate of 32% (95% confidence interval, 19%-47%). Sensitivity, specificity, positive predictive value, and negative predictive value of ELISA testing were 80.0%, 68.8%, 54.5%, and 88.0%, respectively. Age, time posttransplantation, and immunosuppressive regimen did not impact antibody response. Vaccination was well tolerated. Single-dose administration of an AS03-adjuvanted vaccine against the novel influenza A (H1N1) virus did not elicit seroprotective antibody concentrations in a substantial proportion of heart transplant recipients; the new pandemic influenza A IgG ELISA test kit proved to be of limited clinical use.

  12. Antibodies Against the Current Influenza A(H1N1) Vaccine Strain Do Not Protect Some Individuals From Infection With Contemporary Circulating Influenza A(H1N1) Virus Strains.

    PubMed

    Petrie, Joshua G; Parkhouse, Kaela; Ohmit, Suzanne E; Malosh, Ryan E; Monto, Arnold S; Hensley, Scott E

    2016-12-15

    During the 2013-2014 influenza season, nearly all circulating 2009 pandemic influenza A(H1N1) virus (A[H1N1]pdm09) strains possessed an antigenically important mutation in hemagglutinin (K166Q). Here, we performed hemagglutination-inhibition (HAI) assays, using sera collected from 382 individuals prior to the 2013-2014 season, and we determined whether HAI titers were associated with protection from A(H1N1)pdm09 infection. Protection was associated with HAI titers against an A(H1N1)pdm09 strain possessing the K166Q mutation but not with HAI titers against the current A(H1N1)pdm09 vaccine strain, which lacks this mutation. These data indicate that contemporary A(H1N1)pdm09 strains are antigenically distinct from the current A(H1N1)pdm09 vaccine strain. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  13. Assessment of efficacy and safety of pandemic A/H1N1/2009 influenza vaccine in a group of health care workers.

    PubMed

    Mascagni, P; Vicenzi, Elisa; Kajaste-Rudnitski, Anna; Pellicciotta, G; Monti, A; Cervi, Carla; Vitalucci, Roberta; Toffoletto, F

    2012-01-01

    The development in an extremely short time of an efficacious and safe vaccine against the pandemi A/H1N1 virus was a challenge that involved the entire scientific community. To assess the immunological and clinical efficacy of the new H1N1v monovalent influenza vaccine (Focetria Novartis Vaccines, Siena, Italy) in a group of health care workers (HCWs). A total of 148 volunteer HCWs were enrolled between Mid-Novembre 2009 and December 2009. After measuring antibody titers, a single intramuscular dose of 7.5 microg of Focetria monovalent vaccine against A/H1N1/2009 influenza virus with MF59C.1 adjuvant was administered. Antibody titers (median value) before and after a single dose of vaccine, measured by means of standard beam-agglutination inhibition test (HAI), increased from 32 to 256 (p < 0.001). After vaccination, 79.7% of the subjects showed antibody seroconversion, and in 97.3% seroprotection was achieved. The ratio between the geometric means of antibody titers (GMTR) was 6.69. For the 3 subjects who reported symptoms of ILI (Influenza-like illness), a regular nasal-pharyngeal swab sample was taken to identify the virus type by RT-PCR, the laboratory results of tests performed on these samples were negative for pandemic A/H1N1/2009 virus. During the entire follow-up period of 6 months no severe adverse events occurred. The vaccine against pandemic A/H1N1/2009 virus provided protection against the virus and not only contributed to a significant immunization (according to EMEA criteria), but kept all 148 subjects under study free from A/H1N1/2009 influenza illness.

  14. Immediate hypersensitivity reactions following monovalent 2009 pandemic influenza A (H1N1) vaccines: reports to VAERS.

    PubMed

    Halsey, Neal A; Griffioen, Mari; Dreskin, Stephen C; Dekker, Cornelia L; Wood, Robert; Sharma, Devindra; Jones, James F; LaRussa, Philip S; Garner, Jenny; Berger, Melvin; Proveaux, Tina; Vellozzi, Claudia; Broder, Karen; Setse, Rosanna; Pahud, Barbara; Hrncir, David; Choi, Howard; Sparks, Robert; Williams, Sarah Elizabeth; Engler, Renata J; Gidudu, Jane; Baxter, Roger; Klein, Nicola; Edwards, Kathryn; Cano, Maria; Kelso, John M

    2013-12-09

    Hypersensitivity disorders following vaccinations are a cause for concern. To determine the type and rate by age, gender, and vaccine received for reported hypersensitivity reactions following monovalent 2009 pandemic influenza A (H1N1) vaccines. A systematic review of reports to the Vaccine Adverse Event Reporting System (VAERS) following monovalent 2009 pandemic influenza A (H1N1) vaccines. US Civilian reports following vaccine received from October 1, 2009 through May 31, 2010. Age, gender, vaccines received, diagnoses, clinical signs, and treatment were reviewed by nurses and physicians with expertise in vaccine adverse events. A panel of experts, including seven allergists reviewed complex illnesses and those with conflicting evidence for classification of the event. Of 1984 reports, 1286 were consistent with immediate hypersensitivity disorders and 698 were attributed to anxiety reactions, syncope, or other illnesses. The female-to-male ratio was ≥4:1 for persons 20-to-59 years of age, but approximately equal for children under 10. One hundred eleven reports met Brighton Collaboration criteria for anaphylaxis; only one-half received epinephrine for initial therapy. The overall rate of reported hypersensitivity reactions was 10.7 per million vaccine doses distributed, with a 2-fold higher rate for live vaccine. Underreporting, especially of mild events, would result in an underestimate of the true rate of immediate hypersensitivity reactions. Selective reporting of events in adult females could have resulted in higher rates than reported for males. Adult females may be at higher risk of hypersensitivity reactions after influenza vaccination than men. Although the risk of hypersensitivity reactions following 2009 pandemic influenza A (H1N1) vaccines was low, all clinics administering vaccines should be familiar with treatment guidelines for these adverse events, including the use of intramuscular epinephrine early in the course of serious hypersensitivity

  15. Virus-like particles displaying H5, H7, H9 hemagglutinins and N1 neuraminidase elicit protective immunity to heterologous avian influenza viruses in chickens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pushko, Peter, E-mail: ppushko@medigen-usa.com

    Avian influenza (AI) viruses circulating in wild birds pose a serious threat to public health. Human and veterinary vaccines against AI subtypes are needed. Here we prepared triple-subtype VLPs that co-localized H5, H7 and H9 antigens derived from H5N1, H7N3 and H9N2 viruses. VLPs also contained influenza N1 neuraminidase and retroviral gag protein. The H5/H7/H9/N1/gag VLPs were prepared using baculovirus expression. Biochemical, functional and antigenic characteristics were determined including hemagglutination and neuraminidase enzyme activities. VLPs were further evaluated in a chicken AI challenge model for safety, immunogenicity and protective efficacy against heterologous AI viruses including H5N2, H7N3 and H9N2 subtypes.more » All vaccinated birds survived challenges with H5N2 and H7N3 highly pathogenic AI (HPAI) viruses, while all controls died. Immune response was also detectable after challenge with low pathogenicity AI (LPAI) H9N2 virus suggesting that H5/H7/H9/N1/gag VLPs represent a promising approach for the development of broadly protective AI vaccine. - Highlights: •VLPs were prepared that co-localized H5, H7 and H9 subtypes in a VLP envelope. •VLPs were characterized including electron microscopy, HA assay and NA enzyme activity. •Experimental VLP vaccine was evaluated in an avian influenza challenge model. •VLPs induced immune responses against heterologous H5, H7 and H9 virus challenges.« less

  16. The response of mute swans (Cygnus olor, Gm. 1789) to vaccination against avian influenza with an inactivated H5N2 vaccine.

    PubMed

    Dolka, Beata; Żbikowski, Artur; Dolka, Izabella; Szeleszczuk, Piotr

    2016-10-22

    Recent epidemics of highly pathogenic avian influenza (HPAI) produced an unprecedented number of cases in mute swans (Cygnus olor) in European countries, which indicates that these birds are very sensitive to the H5N1 virus. The HPAI outbreaks stirred a debate on the controversial stamping-out policy in populations of protected bird species. After preventive vaccination had been approved in the European Union, several countries have introduced vaccination schemes to protect poultry, captive wild birds or exotic birds in zoos against HPAI. The aim of this study was to investigate the immune response of wild mute swans to immunization with an inactivated AI H5N2 vaccine approved for use in poultry. The serological responses of mute swans were assessed by comparison with racing pigeons (Columba livia), a species which is characterized by different susceptibility to infection with the H5N1 HPAI virus and plays a questionable role in the ecology of influenza (H5N1) viruses. Swans were vaccinated once or twice at an interval of 4 weeks. The humoral immune response was evaluated by hemagglutination inhibition (HI) and NP-ELISA. The lymphocyte blast transformation test was used to determine the cell-mediated immune response. Higher values of the geometric mean titer (GMT) and 100 % seroconversion (HI ≥32) were noted in double vaccinated swans (1448.2) than in single vaccinated swans (128.0) or in double vaccinated pigeons (215.3). Significant differences in HI titers were observed between swans and pigeons, but no variations in ELISA scores were noted after the booster dose. Immunization of swans had no effect on the proliferative activity of lymphocytes. The inactivated H5N2 vaccine was safe and immunogenic for mute swans and pigeons. Vaccination may have practical implications for swans kept in zoos, wildlife parks or rehabilitation centers. However, challenge studies are needed to prove the efficacy of the H5N2 AI vaccine.

  17. Efficacy of a high-growth reassortant H1N1 influenza virus vaccine against the classical swine H1N1 subtype influenza virus in mice and pigs.

    PubMed

    Wen, Feng; Yu, Hai; Yang, Fu-Ru; Huang, Meng; Yang, Sheng; Zhou, Yan-Jun; Li, Ze-Jun; Tong, Guang-Zhi

    2014-11-01

    Swine influenza (SI) is an acute, highly contagious respiratory disease caused by swine influenza A viruses (SwIVs), and it poses a potential global threat to human health. Classical H1N1 (cH1N1) SwIVs are still circulating and remain the predominant subtype in the swine population in China. In this study, a high-growth reassortant virus (GD/PR8) harboring the hemagglutinin (HA) and neuraminidase (NA) genes from a novel cH1N1 isolate in China, A/Swine/Guangdong/1/2011 (GD/11) and six internal genes from the high-growth A/Puerto Rico/8/34(PR8) virus was generated by plasmid-based reverse genetics and tested as a candidate seed virus for the preparation of an inactivated vaccine. The protective efficacy of this vaccine was evaluated in mice and pigs challenged with GD/11 virus. Prime and boost inoculation of GD/PR8 vaccine yielded high-titer serum hemagglutination inhibiting (HI) antibodies and IgG antibodies for GD/11 in both mice and pigs. Complete protection of mice and pigs against cH1N1 SIV challenge was observed, with significantly fewer lung lesions and reduced viral shedding in vaccine-inoculated animals compared with unvaccinated control animals. Our data demonstrated that the GD/PR8 may serve as the seed virus for a promising SwIVs vaccine to protect the swine population.

  18. Influence of Birth Cohort on Effectiveness of 2015-2016 Influenza Vaccine Against Medically Attended Illness Due to 2009 Pandemic Influenza A(H1N1) Virus in the United States.

    PubMed

    Flannery, Brendan; Smith, Catherine; Garten, Rebecca J; Levine, Min Z; Chung, Jessie R; Jackson, Michael L; Jackson, Lisa A; Monto, Arnold S; Martin, Emily T; Belongia, Edward A; McLean, Huong Q; Gaglani, Manjusha; Murthy, Kempapura; Zimmerman, Richard; Nowalk, Mary Patricia; Griffin, Marie R; Keipp Talbot, H; Treanor, John J; Wentworth, David E; Fry, Alicia M

    2018-06-20

    The effectiveness of influenza vaccine during 2015-2016 was reduced in some age groups as compared to that in previous 2009 pandemic influenza A(H1N1) virus (A[H1N1]pdm09 virus)-predominant seasons. We hypothesized that the age at first exposure to specific influenza A(H1N1) viruses could influence vaccine effectiveness (VE). We estimated the effectiveness of influenza vaccine against polymerase chain reaction-confirmed influenza A(H1N1)pdm09-associated medically attended illness from the 2010-2011 season through the 2015-2016 season, according to patient birth cohort using data from the Influenza Vaccine Effectiveness Network. Birth cohorts were defined a priori on the basis of likely immunologic priming with groups of influenza A(H1N1) viruses that circulated during 1918-2015. VE was calculated as 100 × [1 - adjusted odds ratio] from logistic regression models comparing the odds of vaccination among influenza virus-positive versus influenza test-negative patients. A total of 2115 A(H1N1)pdm09 virus-positive and 14 696 influenza virus-negative patients aged ≥6 months were included. VE was 61% (95% confidence interval [CI], 56%-66%) against A(H1N1)pdm09-associated illness during the 2010-2011 through 2013-2014 seasons, compared with 47% (95% CI, 36%-56%) during 2015-2016. During 2015-2016, A(H1N1)pdm09-specific VE was 22% (95% CI, -7%-43%) among adults born during 1958-1979 versus 61% (95% CI, 54%-66%) for all other birth cohorts combined. Findings suggest an association between reduced VE against influenza A(H1N1)pdm09-related illness during 2015-2016 and early exposure to specific influenza A(H1N1) viruses.

  19. Domestic Ducks and H5N1 Influenza Epidemic, Thailand

    PubMed Central

    Songserm, Thaweesak; Jam-on, Rungroj; Sae-Heng, Numdee; Meemak, Noppadol; Hulse-Post, Diane J.; Sturm-Ramirez, Katharine M.

    2006-01-01

    In addition to causing 12 human deaths and 17 cases of human infection, the 2004 outbreak of H5N1 influenza virus in Thailand resulted in the death or slaughter of 60 million domestic fowl and the disruption of poultry production and trade. After domestic ducks were recognized as silent carriers of H5N1 influenza virus, government teams went into every village to cull flocks in which virus was detected; these team efforts markedly reduced H5N1 infection. Here we examine the pathobiology and epidemiology of H5N1 influenza virus in the 4 systems of duck raising used in Thailand in 2004. No influenza viruses were detected in ducks raised in "closed" houses with high biosecurity. However, H5N1 influenza virus was prevalent among ducks raised in "open" houses, free-ranging (grazing) ducks, and backyard ducks. PMID:16704804

  20. Emergence of novel clade 2.3.4 influenza A (H5N1) virus subgroups in Yunnan Province, China.

    PubMed

    Hu, Tingsong; Song, Jianling; Zhang, Wendong; Zhao, Huanyun; Duan, Bofang; Liu, Qingliang; Zeng, Wei; Qiu, Wei; Chen, Gang; Zhang, Yingguo; Fan, Quanshui; Zhang, Fuqiang

    2015-07-01

    From December 2013 to March 2014, a major wave of highly pathogenic avian influenza outbreak occurred in poultry in Yunnan Province, China. We isolated and characterized eight highly pathogenic avian influenza A (H5N1) viruses from poultry. Full genome influenza sequences and analyses have been performed. Sequence analyses revealed that they belonged to clade 2.3.4 but did not fit within the three defined subclades. The isolated viruses were provisional subclade 2.3.4.4e. The provisional subclade 2.3.4.4e viruses with six internal genes from avian influenza A (H5N2) viruses in 2013 were the novel reassortant influenza A (H5N1) viruses which were associated with the outbreak of H5N1 occurred in egg chicken farms in Yunnan Province. The HA genes were similar to subtype H5 viruses isolated from January to March of 2014 in Asia including H5N6 and H5N8. The NA genes were most closely related to A/chicken/Vietnam/NCVD-KA423/2013 (H5N1) from the subclade 2.3.2. The HI assay demonstrated a lack of antigenic relatedness between clades 2.3.4.4e and 2.3.4.1 (RE-5 vaccine strain) or 2.3.2.2 (RE-6 vaccine strain). Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Virus-like particles displaying H5, H7, H9 hemagglutinins and N1 neuraminidase elicit protective immunity to heterologous avian influenza viruses in chickens

    PubMed Central

    Pushko, Peter; Tretyakova, Irina; Hidajat, Rachmat; Zsak, Aniko; Chrzastek, Klaudia; Tumpey, Terrence M.; Kapczynski, Darrell R.

    2016-01-01

    Avian influenza (AI) viruses circulating in wild birds pose a serious threat to public health. Human and veterinary vaccines against AI subtypes are needed. Here we prepared triple-subtype VLPs that co-localized H5, H7 and H9 antigens derived from H5N1, H7N3 and H9N2 viruses. VLPs also contained influenza N1 neuraminidase and retroviral gag protein. The H5/H7/H9/N1/gag VLPs were prepared using baculovirus expression. Biochemical, functional and antigenic characteristics were determined including hemagglutination and neuraminidase enzyme activities. VLPs were further evaluated in a chicken AI challenge model for safety, immunogenicity and protective efficacy against heterologous AI viruses including H5N2, H7N3 and H9N2 subtypes. All vaccinated birds survived challenges with H5N2 and H7N3 highly pathogenic AI (HPAI) viruses, while all controls died. Immune response was also detectable after challenge with low pathogenicity AI (LPAI) H9N2 virus suggesting that H5/H7/H9/N1/gag VLPs represent a promising approach for the development of broadly protective AI vaccine. PMID:27936463

  2. Incidence of narcolepsy after H1N1 influenza and vaccinations: Systematic review and meta-analysis.

    PubMed

    Sarkanen, Tomi O; Alakuijala, Anniina P E; Dauvilliers, Yves A; Partinen, Markku M

    2018-04-01

    An increased incidence of narcolepsy was seen in many countries after the pandemic H1N1 influenza vaccination campaign in 2009-2010. The H1N1 vaccine - narcolepsy connection is based on observational studies that are prone to various biases, e.g., confounding by H1N1 infection, and ascertainment, recall and selection biases. A direct pathogenic link has, however, remained elusive. We conducted a systematic review and meta-analysis to analyze the magnitude of H1N1 vaccination related risk and to examine if there was any association with H1N1 infection itself. We searched all articles from PubMed, Web of Science and Scopus, and other relevant sources reporting the incidence and risk of post-vaccine narcolepsy. In our paper, we show that the risk appears to be limited to only one vaccine (Pandemrix ® ). During the first year after vaccination, the relative risk of narcolepsy was increased 5 to 14-fold in children and adolescents and 2 to 7-fold in adults. The vaccine attributable risk in children and adolescents was around 1 per 18,400 vaccine doses. Studies from Finland and Sweden also appear to demonstrate an extended risk of narcolepsy into the second year following vaccination, but such conclusions should be interpreted with a word of caution due to possible biases. Benefits of immunization outweigh the risk of vaccination-associated narcolepsy, which remains a rare disease. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Pandemic influenza A (H1N1) 2009 vaccination in children: a UK perspective.

    PubMed

    de Whalley, Philip C S; Pollard, Andrew J

    2013-03-01

    Pandemic H1N1 influenza infection was common in the UK in 2009 and children were particularly vulnerable. Most cases were mild or subclinical, but there was significant mortality, predominantly in those with pre-existing disease. Despite the rapid development of monovalent pandemic vaccines, and the fast-tracked approval process, these products were not available for large-scale use until the end of the second wave of infection. Vaccine uptake was relatively low, both among children and health-care workers. The monovalent pandemic vaccines and the 2010/2011 trivalent seasonal influenza vaccines were immunogenic and effective, and they probably reduced the impact of the third wave of infection. Vaccines containing novel adjuvants enabled antigen sparing, but safety concerns could limit the future use of these adjuvanted influenza vaccines in children. Public perceptions that the threat of the pandemic was exaggerated by the authorities, and concerns about vaccine safety, might prompt an inadequate response to the next influenza pandemic, potentially compromising public health. © 2012 The Authors. Journal of Paediatrics and Child Health © 2012 Paediatrics and Child Health Division (Royal Australasian College of Physicians).

  4. Responses to pandemic ASO3-adjuvanted A/California/07/09 H1N1 influenza vaccine in human immunodeficiency virus-infected individuals.

    PubMed

    Kelly, Deborah; Burt, Kimberley; Missaghi, Bayan; Barrett, Lisa; Keynan, Yoav; Fowke, Keith; Grant, Michael

    2012-08-31

    Influenza infection may be more serious in human immunodeficiency virus (HIV)-infected individuals, therefore, vaccination against seasonal and pandemic strains is highly advised. Seasonal influenza vaccines have had no significant negative effects in well controlled HIV infection, but the impact of adjuvanted pandemic A/California/07/2009 H1N1 influenza hemaglutinin (HA) vaccine, which was used for the first time in the Canadian population as an authorized vaccine in autumn 2009, has not been extensively studied. Assess vaccine-related effects on CD4(+) T cell counts and humoral responses to the vaccine in individuals attending the Newfoundland and Labrador Provincial HIV clinic. A single dose of Arepanrix™ split vaccine including 3.75 μg A/California/07/2009 H1N1 HA antigen and ASO3 adjuvant was administered to 81 HIV-infected individuals by intramuscular injection. Plasma samples from shortly before, and 1-5 months after vaccination were collected from 80/81 individuals to assess humoral anti-H1N1 HA responses using a sensitive microbead-based array assay. Data on CD4(+) T cell counts, plasma viral load, antiretroviral therapy and patient age were collected from clinical records of 81 individuals. Overall, 36/80 responded to vaccination either by seroconversion to H1N1 HA or with a clear increase in anti-H1N1 HA antibody levels. Approximately 1/3 (28/80) had pre-existing anti-H1N1 HA antibodies and were more likely to respond to vaccination (22/28). Responders had higher baseline CD4(+) T cell counts and responders without pre-existing antibodies against H1N1 HA were younger than either non-responders or responders with pre-existing antibodies. Compared to changes in their CD4(+) T cell counts observed over a similar time period one year later, vaccine recipients displayed a minor, transient fall in CD4(+) T cell numbers, which was greater amongst responders. We observed low response rates to the 2009 pandemic influenza vaccine among HIV-infected individuals

  5. Genome-Wide Analysis of Evolutionary Markers of Human Influenza A(H1N1)pdm09 and A(H3N2) Viruses May Guide Selection of Vaccine Strain Candidates.

    PubMed

    Belanov, Sergei S; Bychkov, Dmitrii; Benner, Christian; Ripatti, Samuli; Ojala, Teija; Kankainen, Matti; Kai Lee, Hong; Wei-Tze Tang, Julian; Kainov, Denis E

    2015-11-27

    Here we analyzed whole-genome sequences of 3,969 influenza A(H1N1)pdm09 and 4,774 A(H3N2) strains that circulated during 2009-2015 in the world. The analysis revealed changes at 481 and 533 amino acid sites in proteins of influenza A(H1N1)pdm09 and A(H3N2) strains, respectively. Many of these changes were introduced as a result of random drift. However, there were 61 and 68 changes that were present in relatively large number of A(H1N1)pdm09 and A(H3N2) strains, respectively, that circulated during relatively long time. We named these amino acid substitutions evolutionary markers, as they seemed to contain valuable information regarding the viral evolution. Interestingly, influenza A(H1N1)pdm09 and A(H3N2) viruses acquired non-overlapping sets of evolutionary markers. We next analyzed these characteristic markers in vaccine strains recommended by the World Health Organization for the past five years. Our analysis revealed that vaccine strains carried only few evolutionary markers at antigenic sites of viral hemagglutinin (HA) and neuraminidase (NA). The absence of these markers at antigenic sites could affect the recognition of HA and NA by human antibodies generated in response to vaccinations. This could, in part, explain moderate efficacy of influenza vaccines during 2009-2014. Finally, we identified influenza A(H1N1)pdm09 and A(H3N2) strains, which contain all the evolutionary markers of influenza A strains circulated in 2015, and which could be used as vaccine candidates for the 2015/2016 season. Thus, genome-wide analysis of evolutionary markers of influenza A(H1N1)pdm09 and A(H3N2) viruses may guide selection of vaccine strain candidates. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  6. Safety and immunogenicity of 2010-2011 H1N12009-containing trivalent inactivated influenza vaccine in children 12-59 months of age previously given AS03-adjuvanted H1N12009 pandemic vaccine: a PHAC/CIHR Influenza Research Network (PCIRN) study.

    PubMed

    Langley, Joanne M; Scheifele, David W; Quach, Caroline; Vanderkooi, Otto G; Ward, Brian; McNeil, Shelly; Dobson, Simon; Kellner, James D; Kuhn, Susan; Kollman, Tobias; MacKinnon-Cameron, Donna; Smith, Bruce; Li, Yan; Halperin, Scott A

    2012-05-14

    Concern arose in 2010 that reactogenicity, particularly febrile seizures, to influenza A/H1N1-containing 2010-2011 trivalent seasonal inactivated influenza vaccine (TIV) could occur in young children who had been previously immunized and/or infected with the pandemic strain. We conducted a pre-season study of 2010-2011 TIV safety and immunogenicity in children 12-59 months of age to inform public health decision making. Children immunized with 1 or 2 doses of the pandemic vaccine, with or without the 2009-10 TIV, received 1 or 2 doses of 2010-11 TIV in an observational, multicentre Canadian study. Standard safety monitoring was enhanced by a telephone call at ~24 h post-TIV when adverse events were expected to peak. Summary safety reports were rapidly reported to public health before the launch of public programs. TIV immunogenicity was assessed day 0, and 21 days after final vaccination. Clinical Trials Registration NCT01180621. Among 207 children, a general adverse event was reported by 60.9% of children post-dose one and by 58.3% post-dose two. Only severe fever (>38.5°C) was more common in two-dose compared to one dose recipients (16.7%, n=4 v. 1.0%, n=2). At baseline 99.0% of participants had A/H1N1 hemagglutinin inhibition (HAI) titers ≥10, and 85.5% had a protective titer of ≥40 (95% CI 80.0, 90.0). Baseline geometric mean titers (GMT) were higher in recipients of a 2-dose schedule of pandemic vaccine compared to one-dose recipients: 153.1 (95% CI 126.2, 185.7) v. 78.8 ((58.1, 106.8, p<0.001). At 21 days, all regulatory criteria for influenza vaccine immunogenicity were exceeded for A/H1N1 and H3N2, but responses to the B antigen were poor. No correlations between reactogenicity and either baseline high influenza titers or serologic response to revaccination were evident. Infants and toddlers who received AS03-adjuvanted A/H1N1 2009 vaccine up to 11 months earlier retained high titers in the subsequent season but re-exposure to A/H1N1 2009 antigen in

  7. Efficacy of commercial vaccines against newly emerging avian influenza H5N8 virus in Egypt.

    PubMed

    Kandeil, Ahmed; Sabir, Jamal S M; Abdelaal, Ahmed; Mattar, Ehab H; El-Taweel, Ahmed N; Sabir, Mumdooh J; Khalil, Ahmed Aly; Webby, Richard; Kayali, Ghazi; Ali, Mohamed A

    2018-06-26

    The newly emerging, highly pathogenic avian influenza (HPAI) H5N8 virus of clade 2.3.4.4 was recently detected in wild birds and domestic poultry in Egypt in the 2016/2017 winter season. Vaccination based on commercial H5 vaccines is used as an essential control strategy in Egyptian poultry. Here, we studied the efficacy of the eight most common commercial H5 poultry vaccines in the Egyptian market and compared them with an experimental vaccine based on the Egyptian LPAI H5N8 virus that was prepared by using reverse genetics. The experimental vaccine and Re-5 commercial vaccine were able to completely protect chickens and significantly reduce virus shedding. Our results indicate that most of the commercial poultry H5 vaccines used in the present study were ineffective because the seed viruses in these vaccines are genetically distinct from the H5N8 viruses currently circulating in Egypt. Although some of the commercial vaccines protected chickens from mortality, they failed to prevent chickens from shedding the virus. Accordingly, we recommend updating and reinforcing the H5N8 prevention and control strategies in Egypt. The vaccination strategy should be reconsidered based on currently circulating viruses.

  8. Antibody Persistence in Adults Two Years after Vaccination with an H1N1 2009 Pandemic Influenza Virus-Like Particle Vaccine

    PubMed Central

    Villasís-Keever, Miguel Ángel; Núñez-Valencia, Adriana; Boscó-Gárate, Ilka; Lozano-Dubernard, Bernardo; Lara-Puente, Horacio; Espitia, Clara; Alpuche-Aranda, Celia; Bonifaz, Laura C.; Arriaga-Pizano, Lourdes; Pastelin-Palacios, Rodolfo; Isibasi, Armando; López-Macías, Constantino

    2016-01-01

    The influenza virus is a human pathogen that causes epidemics every year, as well as potential pandemic outbreaks, as occurred in 2009. Vaccination has proven to be sufficient in the prevention and containment of viral spreading. In addition to the current egg-based vaccines, new and promising vaccine platforms, such as cell culture-derived vaccines that include virus-like particles (VLPs), have been developed. VLPs have been shown to be both safe and immunogenic against influenza infections. Although antibody persistence has been studied in traditional egg-based influenza vaccines, studies on antibody response durations induced by VLP influenza vaccines in humans are scarce. Here, we show that subjects vaccinated with an insect cell-derived VLP vaccine, in the midst of the 2009 H1N1 influenza pandemic outbreak in Mexico City, showed antibody persistence up to 24 months post-vaccination. Additionally, we found that subjects that reported being revaccinated with a subsequent inactivated influenza virus vaccine showed higher antibody titres to the pandemic influenza virus than those who were not revaccinated. These findings provide insights into the duration of the antibody responses elicited by an insect cell-derived pandemic influenza VLP vaccine and the possible effects of subsequent influenza vaccination on antibody persistence induced by this VLP vaccine in humans. PMID:26919288

  9. Immune response to pandemic H1N1 2009 influenza a vaccination in pediatric liver transplant recipients.

    PubMed

    Haller, Wolfram; Buttery, Jim; Laurie, Karen; Beyerle, Kathe; Hardikar, Winita; Alex, George

    2011-08-01

    After the announcement of a worldwide pandemic in June 2009, a single dose of a monovalent pandemic H1N1 2009 influenza A (pH1N1/09) vaccine was advocated for all Australians who were 10 years and older because of excellent immunogenicity trial results for healthy children and adults. Immunocompromised patients have previously been shown to have lower seroconversion rates after routine vaccinations. There is a lack of data concerning the immune response of this patient group after pH1N1/09 vaccination. The aim of this study was to assess the immunogenicity of a pH1N1/09 vaccine in pediatric liver transplant recipients 10 years of age or older. Liver transplant recipients ≥ 10 years were prospectively recruited. All participants were administered a single intramuscular injection of the pH1N1/09 vaccine (15 μg). Serum antibody levels were determined by hemagglutination immediately before and ≥ 6 weeks after vaccination. Clinical and laboratory data (age, time since transplantation, immunosuppression, and lymphocyte counts) were analyzed comparing seroconverters and nonconverters with the Student's t test. A second dose of the vaccine was offered to all those who displayed no seroprotective titers after the first vaccination. Antibody levels were again determined 6 weeks later. Twenty-one of 28 liver transplant patients completed the study. The seroconversion rate was 62% after the first dose and 89.5% after the second dose. At baseline, 7 of 21 patients (33.4%) were already seropositive. Increasing time since transplantation positively correlated with successful seroconversion. In conclusion, a single dose of a pandemic influenza A vaccine does not elicit a reliable immune response in adolescent pediatric liver transplant patients. A second dose of the vaccine is warranted in this group of patients, at least in a pandemic scenario. There is an urgent need to further assess vaccine strategies in this high-risk group. Copyright © 2011 American Association for the

  10. Impact of vaccination on infection with Vietnam H5N1 high pathogenicity avian influenza virus in hens and the eggs they lay

    USDA-ARS?s Scientific Manuscript database

    High pathogenicity avian influenza virus (HPAIV) infections in chickens decrease egg production and eggs that are laid contain HPAIV. Vaccination once or twice was examined as a way to protect chickens from Vietnamese H5N1 HPAIV. Eighty-three percent of hens without vaccination died within 3 days ...

  11. The influence of the multi-basic cleavage site of the H5 hemagglutinin on the attenuation, immunogenicity and efficacy of a live attenuated influenza A h5N1 cold-adapted vaccine virus

    USDA-ARS?s Scientific Manuscript database

    A recombinant live attenuated influenza virus (LAIV) deltaH5N1 vaccine with a modified hemagglutinin (HA) and intact neuraminidase genes from A/Vietnam/1203/04 (H5N1) and the six remaining genome segments from A/Ann Arbor/6/60 (H2N2) cold-adapted (AA ca) virus was attenuated in chickens, mice and fe...

  12. Protection Afforded by a Recombinant Turkey Herpesvirus-H5 Vaccine Against the 2014 European Highly Pathogenic H5N8 Avian Influenza Strain.

    PubMed

    Steensels, M; Rauw, F; van den Berg, Th; Marché, S; Gardin, Y; Palya, V; Lambrecht, B

    2016-05-01

    A highly pathogenic avian influenza (HPAI) H5N8 (clade 2.3.4.4) virus, circulating in Asia (South Korea, Japan, and southern China) since the beginning of 2014, reached the European continent in November 2014. Germany, the Netherlands, the United Kingdom, Italy, and Hungary confirmed H5N8 infection of poultry farms of different species and of several wild bird species. Unlike the Asian highly pathogenic (HP) H5N1, this HP H5N8 also went transatlantic and reached the American West Coast by the end of 2014, affecting wild birds as well as backyard and commercial poultry. This strain induces high mortality and morbidity in Galliformes, whereas wild birds seem only moderately affected. A recombinant turkey herpesvirus (rHVT) vector vaccine expressing the H5 gene of a clade 2.2 H5N1 strain (rHVT-H5) previously demonstrated a highly efficient clinical protection and reduced viral excretion against challenge with Asian HP H5N1 strains of various clades (2.2, 2.2.1, 2.2.1.1, 2.1.3, 2.1.3.2, and 2.3.2.1) and was made commercially available in various countries where the disease is endemic. To evaluate the protective efficacy of the rHVT-H5 vaccine against the first German H5N8 turkey isolate (H5N8 GE), a challenge experiment was set up in specific-pathogen-free (SPF) chickens, and the clinical and excretional protection was evaluated. SPF chickens were vaccinated subcutaneously at 1 day old and challenged oculonasally at 4 wk of age with two viral dosages, 10(5) and 10(6) 50% egg infective doses. Morbidity and mortality were monitored daily in unvaccinated and vaccinated groups, whereas viral shedding by oropharyngeal and cloacal routes was evaluated at 2, 5, 9, and 14 days postinoculation (dpi). Serologic monitoring after vaccination and challenge was also carried out. Despite its high antigenic divergence of the challenge H5N8 strain, a single rHVT-H5 vaccine administration at 1 day old resulted in a full clinical protection against challenge and a significant reduction

  13. Acceptance of a vaccine against novel influenza A (H1N1) virus among health care workers in two major cities in Mexico.

    PubMed

    Esteves-Jaramillo, Alejandra; Omer, Saad B; Gonzalez-Diaz, Esteban; Salmon, Daniel A; Hixson, Brooke; Navarro, Francisco; Kawa-Karasik, Simon; Frew, Paula; Morfin-Otero, Rayo; Rodriguez-Noriega, Eduardo; Ramirez, Ylean; Rosas, Araceli; Acosta, Edgar; Varela-Badillo, Vianey; Del Rio, Carlos

    2009-11-01

    Further cases of novel influenza A (H1N1) outbreak are expected in the coming months. Vaccination has been proven to be essential to control a pandemic of influenza; therefore, considerable efforts and resources have been devoted to develop a vaccine against the influenza A (H1N1) virus. With the current availability of the vaccine, it will be important to immunize as many people as possible. However, previous data with seasonal influenza vaccines have shown that there are multiple barriers related to perceptions and attitudes of the population that influence vaccine use. The aim of the study was to evaluate the acceptance of a newly developed vaccine against pandemic (H1N1) 2009 influenza A among healthcare workers (HCW) in Mexico. We conducted a cross-sectional study among HCW in three hospitals in the two largest cities in Mexico-Mexico City and Guadalajara-between June and September 2009. A total of 1097 HCW participated in the survey. Overall, 80% (n = 880) intended to accept the H1N1 pandemic vaccine and 71.6% (n = 786) reported they would recommend the vaccine to their patients. Doctors were more likely to accept and recommend the vaccine than nurses. HCWs who intend to be immunized will be more likely to do so if they know that the vaccine is safe and effective. Knowledge of the willingness to accept the vaccine can be used to plan strategies that will effectively respond to the needs of the population studied, reducing the health and economic impact of novel influenza A (H1N1) virus.

  14. International collaboration to assess the risk of Guillain Barré Syndrome following Influenza A (H1N1) 2009 monovalent vaccines.

    PubMed

    Dodd, Caitlin N; Romio, Silvana A; Black, Steven; Vellozzi, Claudia; Andrews, Nick; Sturkenboom, Miriam; Zuber, Patrick; Hua, Wei; Bonhoeffer, Jan; Buttery, Jim; Crawford, Nigel; Deceuninck, Genevieve; de Vries, Corinne; De Wals, Philippe; Gutierrez-Gimeno, M Victoria; Heijbel, Harald; Hughes, Hayley; Hur, Kwan; Hviid, Anders; Kelman, Jeffrey; Kilpi, Tehri; Chuang, S K; Macartney, Kristine; Rett, Melisa; Lopez-Callada, Vesta Richardson; Salmon, Daniel; Gimenez-Sanchez, Francisco; Sanz, Nuria; Silverman, Barbara; Storsaeter, Jann; Thirugnanam, Umapathi; van der Maas, Nicoline; Yih, Katherine; Zhang, Tao; Izurieta, Hector

    2013-09-13

    The global spread of the 2009 novel pandemic influenza A (H1N1) virus led to the accelerated production and distribution of monovalent 2009 Influenza A (H1N1) vaccines (pH1N1). This pandemic provided the opportunity to evaluate the risk of Guillain-Barré syndrome (GBS), which has been an influenza vaccine safety concern since the swine flu pandemic of 1976, using a common protocol among high and middle-income countries. The primary objective of this project was to demonstrate the feasibility and utility of global collaboration in the assessment of vaccine safety, including countries both with and without an established infrastructure for vaccine active safety surveillance. A second objective, included a priori, was to assess the risk of GBS following pH1N1 vaccination. The primary analysis used the self-controlled case series (SCCS) design to estimate the relative incidence (RI) of GBS in the 42 days following vaccination with pH1N1 vaccine in a pooled analysis across databases and in analysis using a meta-analytic approach. We found a relative incidence of GBS of 2.42 (95% CI 1.58-3.72) in the 42 days following exposure to pH1N1 vaccine in analysis of pooled data and 2.09 (95% CI 1.28-3.42) using the meta-analytic approach. This study demonstrates that international collaboration to evaluate serious outcomes using a common protocol is feasible. The significance and consistency of our findings support a conclusion of an association between 2009 H1N1 vaccination and GBS. Given the rarity of the event the relative incidence found does not provide evidence in contradiction to international recommendations for the continued use of influenza vaccines. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. The influence of the multi-basic cleavage site of the H5 hemagglutinin on the attenuation, immunogenicity and efficacy of a live attenuated influenza A H5N1 cold-adapted vaccine virus

    PubMed Central

    Suguitan, Amorsolo L.; Marino, Michael P.; Desai, Purvi D.; Chen, Li-Mei; Matsuoka, Yumiko; Donis, Ruben O.; Jin, Hong; Swayne, David E.; Kemble, George; Subbarao, Kanta

    2009-01-01

    A recombinant live attenuated influenza virus ΔH5N1 vaccine with a modified hemagglutinin (HA) and intact neuraminidase genes from A/Vietnam/1203/04 (H5N1) and six remaining genome segments from A/Ann Arbor/6/60 (H2N2) cold-adapted (AA ca) virus was previously shown to be attenuated in chickens, mice and ferrets. Evaluation of the recombinant H5N1 viruses in mice indicated that three independent factors contributed to the attenuation of the ΔH5N1 vaccine: the attenuating mutations specified by the AA ca loci had the greatest influence, followed by the deletion of the H5 HA multi-basic cleavage site (MBS), and the constellation effects of the AA genes acting in concert with the H5N1 glycoproteins. Restoring the MBS in the H5 HA of the vaccine virus improved its immunogenicity and efficacy, likely as a consequence of increased virus replication, indicating that removal of the MBS had a deleterious effect on the immunogenicity and efficacy of the ΔH5N1 vaccine in mice. PMID:19833372

  16. The influence of the multi-basic cleavage site of the H5 hemagglutinin on the attenuation, immunogenicity and efficacy of a live attenuated influenza A H5N1 cold-adapted vaccine virus.

    PubMed

    Suguitan, Amorsolo L; Marino, Michael P; Desai, Purvi D; Chen, Li-Mei; Matsuoka, Yumiko; Donis, Ruben O; Jin, Hong; Swayne, David E; Kemble, George; Subbarao, Kanta

    2009-12-20

    A recombinant live attenuated influenza virus DeltaH5N1 vaccine with a modified hemagglutinin (HA) and intact neuraminidase genes from A/Vietnam/1203/04 (H5N1) and six remaining genome segments from A/Ann Arbor/6/60 (H2N2) cold-adapted (AA ca) virus was previously shown to be attenuated in chickens, mice and ferrets. Evaluation of the recombinant H5N1 viruses in mice indicated that three independent factors contributed to the attenuation of the DeltaH5N1 vaccine: the attenuating mutations specified by the AA ca loci had the greatest influence, followed by the deletion of the H5 HA multi-basic cleavage site (MBS), and the constellation effects of the AA genes acting in concert with the H5N1 glycoproteins. Restoring the MBS in the H5 HA of the vaccine virus improved its immunogenicity and efficacy, likely as a consequence of increased virus replication, indicating that removal of the MBS had a deleterious effect on the immunogenicity and efficacy of the DeltaH5N1 vaccine in mice.

  17. 2015/16 I-MOVE/I-MOVE+ multicentre case-control study in Europe: Moderate vaccine effectiveness estimates against influenza A(H1N1)pdm09 and low estimates against lineage-mismatched influenza B among children.

    PubMed

    Kissling, Esther; Valenciano, Marta; Pozo, Francisco; Vilcu, Ana-Maria; Reuss, Annicka; Rizzo, Caterina; Larrauri, Amparo; Horváth, Judit Krisztina; Brytting, Mia; Domegan, Lisa; Korczyńska, Monika; Meijer, Adam; Machado, Ausenda; Ivanciuc, Alina; Višekruna Vučina, Vesna; van der Werf, Sylvie; Schweiger, Brunhilde; Bella, Antonino; Gherasim, Alin; Ferenczi, Annamária; Zakikhany, Katherina; O Donnell, Joan; Paradowska-Stankiewicz, Iwona; Dijkstra, Frederika; Guiomar, Raquel; Lazar, Mihaela; Kurečić Filipović, Sanja; Johansen, Kari; Moren, Alain

    2018-07-01

    During the 2015/16 influenza season in Europe, the cocirculating influenza viruses were A(H1N1)pdm09 and B/Victoria, which was antigenically distinct from the B/Yamagata component in the trivalent influenza vaccine. We used the test-negative design in a multicentre case-control study in twelve European countries to measure 2015/16 influenza vaccine effectiveness (VE) against medically attended influenza-like illness (ILI) laboratory-confirmed as influenza. General practitioners swabbed a systematic sample of consulting ILI patients and a random sample of influenza-positive swabs was sequenced. We calculated adjusted VE against influenza A(H1N1)pdm09, A(H1N1)pdm09 genetic group 6B.1 and influenza B overall and by age group. We included 11 430 ILI patients, of which 2272 were influenza A(H1N1)pdm09 and 2901 were influenza B cases. Overall VE against influenza A(H1N1)pdm09 was 32.9% (95% CI: 15.5-46.7). Among those aged 0-14, 15-64 and ≥65 years, VE against A(H1N1)pdm09 was 31.9% (95% CI: -32.3 to 65.0), 41.4% (95% CI: 20.5-56.7) and 13.2% (95% CI: -38.0 to 45.3), respectively. Overall VE against influenza A(H1N1)pdm09 genetic group 6B.1 was 32.8% (95% CI: -4.1 to 56.7). Among those aged 0-14, 15-64 and ≥65 years, VE against influenza B was -47.6% (95% CI: -124.9 to 3.1), 27.3% (95% CI: -4.6 to 49.4) and 9.3% (95% CI: -44.1 to 42.9), respectively. Vaccine effectiveness (VE) against influenza A(H1N1)pdm09 and its genetic group 6B.1 was moderate in children and adults, and low among individuals ≥65 years. Vaccine effectiveness (VE) against influenza B was low and heterogeneous among age groups. More information on effects of previous vaccination and previous infection is needed to understand the VE results against influenza B in the context of a mismatched vaccine. © 2017 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  18. Knowledge, attitudes and anxiety towards influenza A/H1N1 vaccination of healthcare workers in Turkey.

    PubMed

    Savas, Esen; Tanriverdi, Derya

    2010-09-23

    This study aimed to analyze the factors associated with knowledge and attitudes about influenza A (H1N1) and vaccination, and possible relations of these factors with anxiety among healthcare workers (HCW). The study used a cross-sectional descriptive design, and it was carried out between 23 November and 4 December 2009. A total of 300 HCW from two hospitals completed a questionnaire. Data collection tools comprised a questionnaire and the State-Trait Anxiety Inventory (STAI). Vaccination rate for 2009 pandemic influenza A(H1N1) among HCW was low (12.7%). Most of the respondents believed the vaccine was not safe and protective. Vaccination refusal was mostly related to the vaccine's side effects, disbelief to vaccine's protectiveness, negative news about the vaccine and the perceived negative attitude of the Prime Minister to the vaccine. State anxiety was found to be high in respondents who felt the vaccine was unsafe. HCW considered the seriousness of the outbreak, their vaccination rate was low. In vaccination campaigns, governments have to aim at providing trust, and media campaigns should be used to reinforce this trust as well. Accurate reporting by the media of the safety and efficacy of influenza vaccines and the importance of vaccines for the public health would likely have a positive influence on vaccine uptake. Uncertain or negative reporting about the vaccine is detrimental to vaccination efforts.

  19. Virus-like particles displaying H5, H7, H9 hemagglutinins and N1 neuraminidase elicit protective immunity to heterologous avian influenza viruses in chickens.

    PubMed

    Pushko, Peter; Tretyakova, Irina; Hidajat, Rachmat; Zsak, Aniko; Chrzastek, Klaudia; Tumpey, Terrence M; Kapczynski, Darrell R

    2017-01-15

    Avian influenza (AI) viruses circulating in wild birds pose a serious threat to public health. Human and veterinary vaccines against AI subtypes are needed. Here we prepared triple-subtype VLPs that co-localized H5, H7 and H9 antigens derived from H5N1, H7N3 and H9N2 viruses. VLPs also contained influenza N1 neuraminidase and retroviral gag protein. The H5/H7/H9/N1/gag VLPs were prepared using baculovirus expression. Biochemical, functional and antigenic characteristics were determined including hemagglutination and neuraminidase enzyme activities. VLPs were further evaluated in a chicken AI challenge model for safety, immunogenicity and protective efficacy against heterologous AI viruses including H5N2, H7N3 and H9N2 subtypes. All vaccinated birds survived challenges with H5N2 and H7N3 highly pathogenic AI (HPAI) viruses, while all controls died. Immune response was also detectable after challenge with low pathogenicity AI (LPAI) H9N2 virus suggesting that H5/H7/H9/N1/gag VLPs represent a promising approach for the development of broadly protective AI vaccine. Copyright © 2016. Published by Elsevier Inc.

  20. Lessons from pandemic influenza A(H1N1): the research-based vaccine industry's perspective.

    PubMed

    Abelin, Atika; Colegate, Tony; Gardner, Stephen; Hehme, Norbert; Palache, Abraham

    2011-02-01

    As A(H1N1) influenza enters the post-pandemic phase, health authorities around the world are reviewing the response to the pandemic. To ensure this process enhances future preparations, it is essential that perspectives are included from all relevant stakeholders, including vaccine manufacturers. This paper outlines the contribution of R&D-based influenza vaccine producers to the pandemic response, and explores lessons that can be learned to improve future preparedness. The emergence of 2009 A(H1N1) influenza led to unprecedented collaboration between global health authorities, scientists and manufacturers, resulting in the most comprehensive pandemic response ever undertaken, with a number of vaccines approved for use three months after the pandemic declaration. This response was only possible because of the extensive preparations undertaken during the last decade. During this period, manufacturers greatly increased influenza vaccine production capacity, and estimates suggest a further doubling of capacity by 2014. Producers also introduced cell-culture technology, while adjuvant and whole virion technologies significantly reduced pandemic vaccine antigen content. This substantially increased pandemic vaccine production capacity, which in July 2009 WHO estimated reached 4.9 billion doses per annum. Manufacturers also worked with health authorities to establish risk management plans for robust vaccine surveillance during the pandemic. Individual producers pledged significant donations of vaccine doses and tiered-pricing approaches for developing country supply. Based on the pandemic experience, a number of improvements would strengthen future preparedness. Technical improvements to rapidly select optimal vaccine viruses, and processes to speed up vaccine standardization, could accelerate and extend vaccine availability. Establishing vaccine supply agreements beforehand would avoid the need for complex discussions during a period of intense time pressure. Enhancing

  1. Fully human broadly neutralizing monoclonal antibodies against influenza A viruses generated from the memory B cells of a 2009 pandemic H1N1 influenza vaccine recipient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Weibin; Chen, Aizhong; Miao, Yi

    Whether the 2009 pandemic H1N1 influenza vaccine can induce heterosubtypic cross-protective anti-hemagglutinin (HA) neutralizing antibodies is an important issue. We obtained a panel of fully human monoclonal antibodies from the memory B cells of a 2009 pandemic H1N1 influenza vaccine recipient. Most of the monoclonal antibodies targeted the HA protein but not the HA1 fragment. Among the analyzed antibodies, seven mAbs exhibited neutralizing activity against several influenza A viruses of different subtypes. The conserved linear epitope targeted by the neutralizing mAbs (FIEGGWTGMVDGWYGYHH) is part of the fusion peptide on HA2. Our work suggests that a heterosubtypic neutralizing antibody response primarilymore » targeting the HA stem region exists in recipients of the 2009 pandemic H1N1 influenza vaccine. The HA stem region contains various conserved neutralizing epitopes with the fusion peptide as an important one. This work may aid in the design of a universal influenza A virus vaccine.« less

  2. H5N1 influenza viruses: outbreaks and biological properties

    PubMed Central

    Neumann, Gabriele; Chen, Hualan; Gao, George F; Shu, Yuelong; Kawaoka, Yoshihiro

    2010-01-01

    All known subtypes of influenza A viruses are maintained in wild waterfowl, the natural reservoir of these viruses. Influenza A viruses are isolated from a variety of animal species with varying morbidity and mortality rates. More importantly, influenza A viruses cause respiratory disease in humans with potentially fatal outcome. Local or global outbreaks in humans are typically characterized by excess hospitalizations and deaths. In 1997, highly pathogenic avian influenza viruses of the H5N1 subtype emerged in Hong Kong that transmitted to humans, resulting in the first documented cases of human death by avian influenza virus infection. A new outbreak started in July 2003 in poultry in Vietnam, Indonesia, and Thailand, and highly pathogenic avian H5N1 influenza viruses have since spread throughout Asia and into Europe and Africa. These viruses continue to infect humans with a high mortality rate and cause worldwide concern of a looming pandemic. Moreover, H5N1 virus outbreaks have had devastating effects on the poultry industries throughout Asia. Since H5N1 virus outbreaks appear to originate from Southern China, we here examine H5N1 influenza viruses in China, with an emphasis on their biological properties. PMID:19884910

  3. Phase II, randomized, open, controlled study of AS03-adjuvanted H5N1 pre-pandemic influenza vaccine in children aged 3 to 9 years: follow-up of safety and immunogenicity persistence at 24 months post-vaccination.

    PubMed

    Díez-Domingo, Javier; Baldó, José-María; Planelles-Catarino, Maria Victoria; Garcés-Sánchez, María; Ubeda, Isabel; Jubert-Rosich, Angels; Marès, Josep; Garcia-Corbeira, Pilar; Moris, Philippe; Teko, Maurice; Vanden Abeele, Carline; Gillard, Paul

    2015-03-01

    An AS03-adjuvanted H5N1 influenza vaccine elicited broad and persistent immune responses with an acceptable safety profile up to 6 months following the first vaccination in children aged 3-9 years. In this follow-up of the Phase II study, we report immunogenicity persistence and safety at 24 months post-vaccination in children aged 3-9 years. The randomized, open-label study assessed two doses of H5N1 A/Vietnam/1194/2004 influenza vaccine (1·9 μg or 3·75 μg hemagglutinin antigen) formulated with AS03A or AS03B (11·89 mg or 5·93 mg tocopherol, respectively). Control groups received seasonal trivalent influenza vaccine. Safety was assessed prospectively and included potential immune-mediated diseases (pIMDs). Immunogenicity was assessed by hemagglutination-inhibition assay 12 and 24 months after vaccination; cross-reactivity and cell-mediated responses were also assessed. (NCT00502593). The safety population included 405 children. Over 24 months, five events fulfilled the criteria for pIMDs, of which four occurred in H5N1 vaccine recipients, including uveitis (n = 1) and autoimmune hepatitis (n = 1), which were considered to be vaccine-related. Overall, safety profiles of the vaccines were clinically acceptable. Humoral immune responses at 12 and 24 months were reduced versus those observed after the second dose of vaccine, although still within the range of those observed after the first dose. Persistence of cell-mediated immunity was strong, and CD4(+) T cells with a TH 1 profile were observed. Two doses of an AS03-adjuvanted H5N1 influenza vaccine in children showed low but persistent humoral immune responses and a strong persistence of cell-mediated immunity, with clinically acceptable safety profiles up to 24 months following first vaccination. © 2014 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  4. Antibody titer has positive predictive value for vaccine protection against challenge with natural antigenic-drift variants of H5N1 high-pathogenicity avian influenza viruses from Indonesia

    USDA-ARS?s Scientific Manuscript database

    Beginning with Hong Kong in 2002, vaccines have been used as part of an integrated control strategy in 14 countries/regions to protect poultry against H5N1 high pathogenicity avian influenza (HPAI). H5N1 HPAI was first reported in Indonesia in 2003 and vaccination was initiated the following year. ...

  5. Standardization of inactivated H5N2 influenza vaccine and efficacy against lethal A/Chicken/Pennsylvania/1370/83 infection.

    PubMed

    Wood, J M; Kawaoka, Y; Newberry, L A; Bordwell, E; Webster, R G

    1985-01-01

    The hemagglutinin concentration of beta-propiolactone-inactivated influenza vaccine containing A/Duck/N.Y./189/82 (H5N2) virus was measured by single-radial-immunodiffusion (SRD) test. After administration of vaccine to chickens in Freund's complete adjuvant, vaccine efficacy was assessed by challenge with lethal A/Chicken/Penn./1370/83 (H5N2) virus. SRD potency values correlated with post-vaccination antibody levels and protection against infection.

  6. Efficacy of a Recombinant Turkey Herpesvirus H5 Vaccine Against Challenge With H5N1 Clades 1.1.2 and 2.3.2.1 Highly Pathogenic Avian Influenza Viruses in Domestic Ducks (Anas platyrhynchos domesticus).

    PubMed

    Pantin-Jackwood, Mary J; Kapczynski, Darrell R; DeJesus, Eric; Costa-Hurtado, Mar; Dauphin, Gwenaelle; Tripodi, Astrid; Dunn, John R; Swayne, David E

    2016-03-01

    Domestic ducks are the second most abundant poultry species in many Asian countries and have played a critical role in the epizootiology of H5N1 highly pathogenic avian influenza (HPAI).In this study, the protective efficacy of a live recombinant vector vaccine based on a turkey herpesvirus (HVT) expressing the H5 gene from a clade 2.2 H5N1 HPAI strain (A/Swan/Hungary/4999/ 2006) (rHVT-H5/2.2), given at 3 days of age, was examined in Pekin ducks (Anas platyrhynchos domesticus). The vaccine was given alone or in combination with an inactivated H5N1 clade 2.3.2.1 reverse genetic (rgGD/2.3.2.1) vaccine given at 16 days of age, either as a single vaccination or in a prime-boost regime. At 30 days of age, ducks were challenged with one of two H5N1 HPAI viruses: A/duck/Vietnam/NCVD-2721/2013 (clade 1.1.2) or A/duck/Vietnam/NCVD-1584/2012 (clade 2.3.2.1.C). These viruses produced 100% mortality in less than 5 days in nonvaccinated control ducks. Ducks vaccinated with the rgGD/2.3.2.1 vaccine, with or without the rHVT-H5/2.2 vaccine, were 90%-100% protected against mortality after challenge with either of the two H5N1 HPAI viruses. The rHVT-H5/2.2 vaccine alone, however, conferred only 30% protection against mortality after challenge with either H5N1 HPAI virus; the surviving ducks from these groups shed higher amount of virus and for longer than the single-vaccinated rgGD/2.3.2.1 group. Despite low protection, ducks vaccinated with the rHVT-H5/2.2 vaccine and challenged with the clade 1.1.2 Vietnam virus had a longer mean death time than nonvaccinated controls (P = 0.02). A booster effect was found on reduction of virus shedding when using both vaccines, with lower oropharyngeal viral titers at 4 days after challenge with either HPAI virus (P < 0.05). Neither rHVT-H5/2.2 nor standard HVT vaccine could be detected in samples collected from multiple tissues at different time points, indicting minimal levels of viral replication. In conclusion, although a minor effect on

  7. Elicitation of Protective Antibodies against a Broad Panel of H1N1 Viruses in Ferrets Preimmune to Historical H1N1 Influenza Viruses.

    PubMed

    Carter, Donald M; Darby, Christopher A; Johnson, Scott K; Carlock, Michael A; Kirchenbaum, Greg A; Allen, James D; Vogel, Thorsten U; Delagrave, Simon; DiNapoli, Joshua; Kleanthous, Harold; Ross, Ted M

    2017-12-15

    Most preclinical animal studies test influenza vaccines in immunologically naive animal models, even though the results of vaccination may not accurately reflect the effectiveness of vaccine candidates in humans that have preexisting immunity to influenza. In this study, novel, broadly reactive influenza vaccine candidates were assessed in preimmune ferrets. These animals were infected with different H1N1 isolates before being vaccinated or infected with another influenza virus. Previously, our group has described the design and characterization of computationally optimized broadly reactive hemagglutinin (HA) antigens (COBRA) for H1N1 isolates. Vaccinating ferrets with virus-like particle (VLP) vaccines expressing COBRA HA proteins elicited antibodies with hemagglutination inhibition (HAI) activity against more H1N1 viruses in the panel than VLP vaccines expressing wild-type HA proteins. Specifically, ferrets infected with the 1986 virus and vaccinated with a single dose of the COBRA HA VLP vaccines elicited antibodies with HAI activity against 11 to 14 of the 15 H1N1 viruses isolated between 1934 and 2013. A subset of ferrets was infected with influenza viruses expressing the COBRA HA antigens. These COBRA preimmune ferrets had superior breadth of HAI activity after vaccination with COBRA HA VLP vaccines than COBRA preimmune ferrets vaccinated with VLP vaccines expressing wild-type HA proteins. Overall, priming naive ferrets with COBRA HA based viruses or using COBRA HA based vaccines to boost preexisting antibodies induced by wild-type H1N1 viruses, COBRA HA antigens elicited sera with the broadest HAI reactivity against multiple antigenic H1N1 viral variants. This is the first report demonstrating the effectiveness of a broadly reactive or universal influenza vaccine in a preimmune ferret model. IMPORTANCE Currently, many groups are testing influenza vaccine candidates to meet the challenge of developing a vaccine that elicits broadly reactive and long

  8. Elicitation of Protective Antibodies against a Broad Panel of H1N1 Viruses in Ferrets Preimmune to Historical H1N1 Influenza Viruses

    PubMed Central

    Carter, Donald M.; Darby, Christopher A.; Johnson, Scott K.; Carlock, Michael A.; Kirchenbaum, Greg A.; Allen, James D.; Vogel, Thorsten U.; Delagrave, Simon; DiNapoli, Joshua; Kleanthous, Harold

    2017-01-01

    ABSTRACT Most preclinical animal studies test influenza vaccines in immunologically naive animal models, even though the results of vaccination may not accurately reflect the effectiveness of vaccine candidates in humans that have preexisting immunity to influenza. In this study, novel, broadly reactive influenza vaccine candidates were assessed in preimmune ferrets. These animals were infected with different H1N1 isolates before being vaccinated or infected with another influenza virus. Previously, our group has described the design and characterization of computationally optimized broadly reactive hemagglutinin (HA) antigens (COBRA) for H1N1 isolates. Vaccinating ferrets with virus-like particle (VLP) vaccines expressing COBRA HA proteins elicited antibodies with hemagglutination inhibition (HAI) activity against more H1N1 viruses in the panel than VLP vaccines expressing wild-type HA proteins. Specifically, ferrets infected with the 1986 virus and vaccinated with a single dose of the COBRA HA VLP vaccines elicited antibodies with HAI activity against 11 to 14 of the 15 H1N1 viruses isolated between 1934 and 2013. A subset of ferrets was infected with influenza viruses expressing the COBRA HA antigens. These COBRA preimmune ferrets had superior breadth of HAI activity after vaccination with COBRA HA VLP vaccines than COBRA preimmune ferrets vaccinated with VLP vaccines expressing wild-type HA proteins. Overall, priming naive ferrets with COBRA HA based viruses or using COBRA HA based vaccines to boost preexisting antibodies induced by wild-type H1N1 viruses, COBRA HA antigens elicited sera with the broadest HAI reactivity against multiple antigenic H1N1 viral variants. This is the first report demonstrating the effectiveness of a broadly reactive or universal influenza vaccine in a preimmune ferret model. IMPORTANCE Currently, many groups are testing influenza vaccine candidates to meet the challenge of developing a vaccine that elicits broadly reactive and long

  9. Experimental and Field Results Regarding Immunity Induced by a Recombinant Turkey Herpesvirus H5 Vector Vaccine Against H5N1 and Other H5 Highly Pathogenic Avian Influenza Virus Challenges.

    PubMed

    Gardin, Yannick; Palya, Vilmos; Dorsey, Kristi Moore; El-Attrache, John; Bonfante, Francesco; Wit, Sjaak de; Kapczynski, Darrell; Kilany, Walid Hamdy; Rauw, Fabienne; Steensels, Mieke; Soejoedono, Retno D

    2016-05-01

    Vaccination against H5N1 highly pathogenic avian influenza (AI) virus (HPAIV) is one of the possible complementary means available for affected countries to control AI when the disease has become, or with a high risk of becoming, endemic. Efficacy of the vaccination against AI relies essentially, but not exclusively, on the capacity of the vaccine to induce immunity against the targeted virus (which is prone to undergo antigenic variations), as well as its capacity to overcome interference with maternal immunity transmitted by immunized breeding hens to their progeny. This property of the vaccine is a prerequisite for its administration at the hatchery, which assures higher and more reliable vaccine coverage of the populations than vaccination at the farm. A recombinant vector vaccine (Vectormune® AI), based on turkey herpesvirus expressing the hemagglutinin gene of an H5N1 HPAIV as an insert, has been used in several experiments conducted in different research laboratories, as well as in controlled field trials. The results have demonstrated a high degree of homologous and cross protection against different genetic clades of the H5N1 HPAIV. Furthermore, vaccine-induced immunity was not impaired by the presence of passive immunity, but on the contrary, cumulated with it for improved early protection. The demonstrated levels of protection against the different challenge viruses exhibited variations in terms of postchallenge mortality, as well as challenge virus shedding. The data presented here highlight the advantages of this vaccine as a useful and reliable tool to complement biosecurity and sanitary policies for better controlling the disease due to HPAIV of H5 subtypes, when the vaccination is applied as a control measure.

  10. A/H1N1 influenza vaccination in patients with systemic lupus erythematosus: safety and immunity.

    PubMed

    Lu, Chun-Chi; Wang, Yeau-Ching; Lai, Jenn-Haung; Lee, Tony Szu-Hsien; Lin, Hui-Tsu; Chang, Deh-Ming

    2011-01-10

    To determine the safety of and immunogenicity induced by A/H1N1 influenza vaccination in patients with systemic lupus erythematosus (SLE). The study population comprised 21 SLE patients and 15 healthy control subjects who underwent split-virion, inactivated monovalent A/H1N1 vaccination between December 2009 and January 2010. Sera were obtained before, three weeks after, and six months after vaccination. SLE disease activity index (SLEDAI) scores and autoantibodies were measured at every visit in SLE patients. Haemagglutination inhibition and the serum immunoglobulin G (IgG) level were calculated using the World Health Organization (WHO) procedure to evaluate the antibody responses. We also recorded current medications and past seasonal influenza vaccinations to analyse the interactions between vaccinations and the autoimmunity of SLE patients. The mean age of the enrolled population was 34.3 years for SLE patients and 39.4 years for control subjects. The average SLEDAI score for SLE patients was 4.1 at vaccination, 4.5 at three weeks, and 4.3 at six months. The seroprotection rate at three weeks was 76.2% in SLE patients and 80.0% in healthy control subjects; by six months, the seroprotection rate was 66.7% in SLE patients and 60% in healthy control subjects. The seroconversion rate was 76.2% in SLE patients and 80% in healthy controls at three weeks; by six months, the seroconversion rate was 52.4% in SLE patients and 53.3% in healthy controls. The response in SLE patients met the criteria of the European Committee for Proprietary Medicinal Products guidelines at three weeks, while the percentage of seroprotection did not at six months. The clinical disease activity and SLEDAI scores did not differ significantly from before to after vaccination in SLE patients, although the level of anticardiolipin IgG increased at three weeks after vaccination, but with no apparent clinical manifestations. The A/H1N1 influenza vaccine is safe and effective in SLE patients and

  11. Impact of vaccination on infection with Vietnam H5N1 high pathogenicity avian influenza virus in hens and the eggs they lay.

    PubMed

    Bertran, Kateri; Moresco, Kira; Swayne, David E

    2015-03-10

    High pathogenicity avian influenza virus (HPAIV) infections in chickens negatively impact egg production and cause egg contamination. Previously, vaccination maintained egg production and reduced egg contamination when challenged with a North American H5N2 HPAIV. However, Asian H5N1 HPAIV infection has some characteristics of increased pathogenicity compared to other H5 HPAIV such as more rapid drop and complete cessation in egg production. Sham (vaccinated at 25 and 28 weeks of age), inactivated H5N1 Once (1X-H5-Vax; vaccinated at 28 weeks of age only) and inactivated H5N1 Twice (2X-H5-Vax; vaccinated at 25 and 28 weeks of age) vaccinated adult White Leghorn hens were challenged intranasally at 31 weeks of age with 6.1 log10 mean embryo infectious doses (EID50) of clade 2.3.2.1a H5N1 HPAIV (A/chicken/Vietnam/NCVD-675/2011) which was homologous to the inactivated vaccine. Sham-vaccinated layers experienced 100% mortality within 3 days post-challenge; laid soft and thin-shelled eggs; had recovery of virus from oral swabs and in 53% of the eggs from eggshell surface (35%), yolk (24%), and albumin (41%); and had very high titers of virus (average 7.91 log10 EID50/g) in all segments of the oviduct and ovary. By comparison, 1X- and 2X-H5-Vax challenged hens survived infection, laid similar number of eggs pre- and post-challenge, all eggs had normal egg shell quality, and had significantly fewer contaminated eggs with reduced virus quantity. The 2X-H5-Vax hens had significantly higher HI titers by the day of challenge (304 GMT) and at termination (512 GMT) than 1X-H5-Vax hens (45 GMT and 128 GMT). The current study demonstrated that AIV infections caused by clade 2.3.2.1a H5N1 variants can be effectively controlled by either double or single homologous vaccination. Published by Elsevier Ltd.

  12. Guillain-Barré Syndrome and Adjuvanted Pandemic Influenza A (H1N1) 2009 Vaccines: A Multinational Self-Controlled Case Series in Europe

    PubMed Central

    Dieleman, Jeanne P.; Olberg, Henning K.; de Vries, Corinne S.; Sammon, Cormac; Andrews, Nick; Svanström, Henrik; Mølgaard-Nielsen, Ditte; Hviid, Anders; Lapeyre-Mestre, Maryse; Sommet, Agnès; Saussier, Christel; Castot, Anne; Heijbel, Harald; Arnheim-Dahlström, Lisen; Sparen, Par; Mosseveld, Mees; Schuemie, Martijn; van der Maas, Nicoline; Jacobs, Bart C.; Leino, Tuija; Kilpi, Terhi; Storsaeter, Jann; Johansen, Kari; Kramarz, Piotr; Bonhoeffer, Jan; Sturkenboom, Miriam C. J. M.

    2014-01-01

    Background The risk of Guillain-Barré syndrome (GBS) following the United States' 1976 swine flu vaccination campaign in the USA led to enhanced active surveillance during the pandemic influenza (A(H1N1)pdm09) immunization campaign. This study aimed to estimate the risk of GBS following influenza A(H1N1)pdm09 vaccination. Methods A self-controlled case series (SCCS) analysis was performed in Denmark, Finland, France, Netherlands, Norway, Sweden, and the United Kingdom. Information was collected according to a common protocol and standardised procedures. Cases classified at levels 1–4a of the Brighton Collaboration case definition were included. The risk window was 42 days starting the day after vaccination. Conditional Poisson regression and pooled random effects models estimated adjusted relative incidences (RI). Pseudo likelihood and vaccinated-only methods addressed the potential contraindication for vaccination following GBS. Results Three hundred and three (303) GBS and Miller Fisher syndrome cases were included. Ninety-nine (99) were exposed to A(H1N1)pdm09 vaccination, which was most frequently adjuvanted (Pandemrix and Focetria). The unadjusted pooled RI for A(H1N1)pdm09 vaccination and GBS was 3.5 (95% Confidence Interval (CI): 2.2–5.5), based on all countries. This lowered to 2.0 (95% CI: 1.2–3.1) after adjustment for calendartime and to 1.9 (95% CI: 1.1–3.2) when we accounted for contra-indications. In a subset (Netherlands, Norway, and United Kingdom) we further adjusted for other confounders and there the RI decreased from 1.7 (adjusted for calendar month) to 1.4 (95% CI: 0.7–2.8), which is the main finding. Conclusion This study illustrates the potential of conducting European collaborative vaccine safety studies. The main, fully adjusted analysis, showed that the RI of GBS was not significantly elevated after influenza A(H1N1)pdm09 vaccination (RI = 1.4 (95% CI: 0.7–2.8). Based on the upper limits of the pooled estimate we can rule

  13. Global alert to avian influenza virus infection: From H5N1 to H7N9

    PubMed Central

    Poovorawan, Yong; Pyungporn, Sunchai; Prachayangprecha, Slinporn; Makkoch, Jarika

    2013-01-01

    Outbreak of a novel influenza virus is usually triggered by mutational change due to the process known as ‘antigenic shift’ or re-assortment process that allows animal-to-human or avian-to-human transmission. Birds are a natural reservoir for the influenza virus, and subtypes H5, H7, and H9 have all caused outbreaks of avian influenza in human populations. An especially notorious strain is the HPAI influenza virus H5N1, which has a mortality rate of approximately 60% and which has resulted in numerous hospitalizations, deaths, and significant economic loss. In March 2013, in Eastern China, there was an outbreak of the novel H7N9 influenza virus, which although less pathogenic in avian species, resulted in 131 confirmed cases and 36 deaths in humans over a two-month span. The rapid outbreak of this virus caused global concern but resulted in international cooperation to control the outbreak. Furthermore, cooperation led to valuable research-sharing including genome sequencing of the virus, the development of rapid and specific diagnosis, specimen sharing for future studies, and vaccine development. Although a H7N9 pandemic in the human population is possible due to its rapid transmissibility and extensive surveillance, the closure of the live-bird market will help mitigate the possibility of another H7N9 outbreak. In addition, further research into the source of the outbreak, pathogenicity of the virus, and the development of specific and sensitive detection assays will be essential for controlling and preparing for future H7N9 outbreaks. PMID:23916331

  14. Safety and Immune Responses in Children After Concurrent or Sequential 2009 H1N1 and 2009–2010 Seasonal Trivalent Influenza Vaccinations

    PubMed Central

    Frey, Sharon E.; Bernstein, David I.; Gerber, Michael A.; Keyserling, Harry L.; Munoz, Flor M.; Winokur, Patricia L.; Turley, Christine B.; Rupp, Richard E.; Hill, Heather; Wolff, Mark; Noah, Diana L.; Ross, Allison C.; Cress, Gretchen; Belshe, Robert B.

    2012-01-01

    Background. Administering 2 separate vaccines for seasonal and pandemic influenza was necessary in 2009. Therefore, we conducted a randomized trial of monovalent 2009 H1N1 influenza vaccine (2009 H1N1 vaccine) and seasonal trivalent inactivated influenza vaccine (TIV; split virion) given sequentially or concurrently in previously vaccinated children. Methods. Children randomized to 4 study groups and stratified by age received 1 dose of seasonal TIV and 2 doses of 2009 H1N1 vaccine in 1 of 4 combinations. Injections were given at 21-day intervals and serum samples for hemagglutination inhibition antibody responses were obtained prior to and 21 days after each vaccination. Reactogenicity and adverse events were monitored. Results. All combinations of vaccines were safe in the 531 children enrolled. Generally, 1 dose of 2009 H1N1 vaccine and 1 dose of TIV, regardless of sequence or concurrency of administration, was immunogenic in children ≥10 years of age; children <10 years of age required 2 doses of 2009 H1N1 vaccine. Conclusions. Vaccines were generally well tolerated. The immune responses to 2009 H1N1 vaccine were adequate regardless of the sequence of vaccination in all age groups but the sequence affected titers to TIV antigens. Two doses of 2009 H1N1 vaccine were required to achieve a protective immune response in children <10 years of age. Clinical Trials Registration. NCT00943202. PMID:22802432

  15. The Social Ecological Model as a Framework for Determinants of 2009 H1N1 Influenza Vaccine Uptake in the United States

    ERIC Educational Resources Information Center

    Kumar, Supriya; Quinn, Sandra Crouse; Kim, Kevin H.; Musa, Donald; Hilyard, Karen M.; Freimuth, Vicki S.

    2012-01-01

    Research on influenza vaccine uptake has focused largely on intrapersonal determinants (perceived risk, past vaccine acceptance, perceived vaccine safety) and on physician recommendation. The authors used a social ecological framework to examine influenza vaccine uptake during the 2009 H1N1 pandemic. Surveying an adult population (n = 2,079) in…

  16. Vaccination against the 2009 pandemic influenza A (H1N1) among healthcare workers in the major teaching hospital of Sicily (Italy).

    PubMed

    Amodio, Emanuele; Anastasi, Giovanna; Marsala, Maria Grazia Laura; Torregrossa, Maria Valeria; Romano, Nino; Firenze, Alberto

    2011-02-04

    The aim of the study was to investigate factors involved in vaccination acceptance among healthcare workers (HCWs) and adverse reactions rates associated with pandemic influenza vaccination. The study was carried out in the major teaching hospital of Sicily from November 2009 to February 2010 on 2267 HCWs. A total of 407 (18%) HCWs were vaccinated against the 2009 pandemic influenza A (H1N1). A logistic regression analysis indicates an increased risk of non-vaccination against pandemic influenza in females (OR=1.6; 95% CI=1.3-2.1) compared to males, in nurses/technicians/administrative workers (OR=1.7; 95% CI=1.3-2.2) compared to doctors/biologists, and in HCWs who were non-vaccinated against seasonal influenza in 2008-2009 (OR=4.9; 95% CI=3.7-6.5) compared to vaccinated HCWs. Overall, 302 (74.2%) out of 407 questionnaires distributed to vaccinated HCWs were returned within the observation period. One hundred fifty-two workers (50.3%) experienced at least one adverse reaction (30.1%, local reactions; 6.6% systemic reactions and 13.6% both of them). The most frequent side effect of vaccination was pain at the injection site (43.4%). Twelve (3.9%) out of 302 HCWs stated they experienced influenza-like illness episodes during the follow-up period. The use of an adjuvanted vaccine against pandemic influenza A (H1N1) appears to be an effective and safe preventive strategy, showing a prevalence of both local and systemic adverse reactions not very different from that seen after vaccination with non-adjuvanted seasonal influenza vaccine. Despite this finding, vaccination coverage among HCWs remains very low, suggesting the need to implement educational campaigns directed to groups with lower coverage rates. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Antibody Titer Has Positive Predictive Value for Vaccine Protection against Challenge with Natural Antigenic-Drift Variants of H5N1 High-Pathogenicity Avian Influenza Viruses from Indonesia

    PubMed Central

    Suarez, David L.; Spackman, Erica; Jadhao, Samadhan; Dauphin, Gwenaelle; Kim-Torchetti, Mia; McGrane, James; Weaver, John; Daniels, Peter; Wong, Frank; Selleck, Paul; Wiyono, Agus; Indriani, Risa; Yupiana, Yuni; Sawitri Siregar, Elly; Prajitno, Teguh; Smith, Derek; Fouchier, Ron

    2015-01-01

    ABSTRACT Vaccines are used in integrated control strategies to protect poultry against H5N1 high-pathogenicity avian influenza (HPAI). H5N1 HPAI was first reported in Indonesia in 2003, and vaccination was initiated in 2004, but reports of vaccine failures began to emerge in mid-2005. This study investigated the role of Indonesian licensed vaccines, specific vaccine seed strains, and emerging variant field viruses as causes of vaccine failures. Eleven of 14 licensed vaccines contained the manufacturer's listed vaccine seed strains, but 3 vaccines contained a seed strain different from that listed on the label. Vaccines containing A/turkey/Wisconsin/1968 (WI/68), A/chicken/Mexico/28159-232/1994 (Mex/94), and A/turkey/England/N28/1973 seed strains had high serological potency in chickens (geometric mean hemagglutination inhibition [HI] titers, ≥1:169), but vaccines containing strain A/chicken/Guangdong/1/1996 generated by reverse genetics (rg; rgGD/96), A/chicken/Legok/2003 (Legok/03), A/chicken/Vietnam/C57/2004 generated by rg (rgVN/04), or A/chicken/Legok/2003 generated by rg (rgLegok/03) had lower serological potency (geometric mean HI titers, ≤1:95). In challenge studies, chickens immunized with any of the H5 avian influenza vaccines were protected against A/chicken/West Java/SMI-HAMD/2006 (SMI-HAMD/06) and were partially protected against A/chicken/Papua/TA5/2006 (Papua/06) but were not protected against A/chicken/West Java/PWT-WIJ/2006 (PWT/06). Experimental inactivated vaccines made with PWT/06 HPAI virus or rg-generated PWT/06 low-pathogenicity avian influenza (LPAI) virus seed strains protected chickens from lethal challenge, as did a combination of a commercially available live fowl poxvirus vaccine expressing the H5 influenza virus gene and inactivated Legok/03 vaccine. These studies indicate that antigenic variants did emerge in Indonesia following widespread H5 avian influenza vaccine usage, and efficacious inactivated vaccines can be developed using

  18. Cold-Adapted Influenza and Recombinant Adenovirus Vaccines Induce Cross-Protective Immunity against pH1N1 Challenge in Mice

    PubMed Central

    Soboleski, Mark R.; Gabbard, Jon D.; Price, Graeme E.; Misplon, Julia A.; Lo, Chia-Yun; Perez, Daniel R.; Ye, Jianqiang; Tompkins, S. Mark; Epstein, Suzanne L.

    2011-01-01

    Background The rapid spread of the 2009 H1N1 pandemic influenza virus (pH1N1) highlighted problems associated with relying on strain-matched vaccines. A lengthy process of strain identification, manufacture, and testing is required for current strain-matched vaccines and delays vaccine availability. Vaccines inducing immunity to conserved viral proteins could be manufactured and tested in advance and provide cross-protection against novel influenza viruses until strain-matched vaccines became available. Here we test two prototype vaccines for cross-protection against the recent pandemic virus. Methodology/Principal Findings BALB/c and C57BL/6 mice were intranasally immunized with a single dose of cold-adapted (ca) influenza viruses from 1977 or recombinant adenoviruses (rAd) expressing 1934 nucleoprotein (NP) and consensus matrix 2 (M2) (NP+M2-rAd). Antibodies against the M2 ectodomain (M2e) were seen in NP+M2-rAd immunized BALB/c but not C57BL/6 mice, and cross-reacted with pH1N1 M2e. The ca-immunized mice did not develop antibodies against M2e. Despite sequence differences between vaccine and challenge virus NP and M2e epitopes, extensive cross-reactivity of lung T cells with pH1N1 peptides was detected following immunization. Both ca and NP+M2-rAd immunization protected BALB/c and C57BL/6 mice against challenge with a mouse-adapted pH1N1 virus. Conclusion/Significance Cross-protective vaccines such as NP+M2-rAd and ca virus are effective against pH1N1 challenge within 3 weeks of immunization. Protection was not dependent on recognition of the highly variable external viral proteins and could be achieved with a single vaccine dose. The rAd vaccine was superior to the ca vaccine by certain measures, justifying continued investigation of this experimental vaccine even though ca vaccine is already available. This study highlights the potential for cross-protective vaccines as a public health option early in an influenza pandemic. PMID:21789196

  19. A duck enteritis virus-vectored bivalent live vaccine provides fast and complete protection against H5N1 avian influenza virus infection in ducks.

    PubMed

    Liu, Jinxiong; Chen, Pucheng; Jiang, Yongping; Wu, Li; Zeng, Xianying; Tian, Guobin; Ge, Jinying; Kawaoka, Yoshihiro; Bu, Zhigao; Chen, Hualan

    2011-11-01

    Ducks play an important role in the maintenance of highly pathogenic H5N1 avian influenza viruses (AIVs) in nature, and the successful control of AIVs in ducks has important implications for the eradication of the disease in poultry and its prevention in humans. The inactivated influenza vaccine is expensive, labor-intensive, and usually needs 2 to 3 weeks to induce protective immunity in ducks. Live attenuated duck enteritis virus (DEV; a herpesvirus) vaccine is used routinely to control lethal DEV infections in many duck-producing areas. Here, we first established a system to generate the DEV vaccine strain by using the transfection of overlapping fosmid DNAs. Using this system, we constructed two recombinant viruses, rDEV-ul41HA and rDEV-us78HA, in which the hemagglutinin (HA) gene of the H5N1 virus A/duck/Anhui/1/06 was inserted and stably maintained within the ul41 gene or between the us7 and us8 genes of the DEV genome. Duck studies indicated that rDEV-us78HA had protective efficacy similar to that of the live DEV vaccine against lethal DEV challenge; importantly, a single dose of 10(6) PFU of rDEV-us78HA induced complete protection against a lethal H5N1 virus challenge in as little as 3 days postvaccination. The protective efficacy against both lethal DEV and H5N1 challenge provided by rDEV-ul41HA inoculation in ducks was slightly weaker than that provided by rDEV-us78HA. These results demonstrate, for the first time, that recombinant DEV is suitable for use as a bivalent live attenuated vaccine, providing rapid protection against both DEV and H5N1 virus infection in ducks.

  20. No effect of 2008/09 seasonal influenza vaccination on the risk of pandemic H1N1 2009 influenza infection in England.

    PubMed

    Pebody, Richard; Andrews, Nick; Waight, Pauline; Malkani, Rashmi; McCartney, Christine; Ellis, Joanna; Miller, Elizabeth

    2011-03-21

    This study reports effectiveness of trivalent influenza vaccine (TIV) against confirmed pandemic influenza infection in England using a retrospective test-negative case-control study. Cases and controls were frequency matched by age, swabbing-week and region. On univariable and multivariable analysis adjusted for underlying clinical risk factors, cases were no more or less likely than controls to be vaccinated with 2008-09 or 2007-08 season TIV. Adjusted vaccine effectiveness for the former was -6% (-43% to 22%). Vaccine effectiveness did not differ significantly by age-group or hospitalisation status. There was no evidence prior vaccination with TIV significantly altered subsequent risk of pandemic influenza H1N1 2009 infection. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. The emergence of influenza A H7N9 in human beings 16 years after influenza A H5N1: a tale of two cities.

    PubMed

    To, Kelvin K W; Chan, Jasper F W; Chen, Honglin; Li, Lanjuan; Yuen, Kwok-Yung

    2013-09-01

    Infection with either influenza A H5N1 virus in 1997 or avian influenza A H7N9 virus in 2013 caused severe pneumonia that did not respond to typical or atypical antimicrobial treatment, and resulted in high mortality. Both viruses are reassortants with internal genes derived from avian influenza A H9N2 viruses that circulate in Asian poultry. Both viruses have genetic markers of mammalian adaptation in their haemagglutinin and polymerase PB2 subunits, which enhanced binding to human-type receptors and improved replication in mammals, respectively. Hong Kong (affected by H5N1 in 1997) and Shanghai (affected by H7N9 in 2013) are two rapidly flourishing cosmopolitan megacities that were increasing in human population and poultry consumption before the outbreaks. Both cities are located along the avian migratory route at the Pearl River delta and Yangtze River delta. Whether the widespread use of the H5N1 vaccine in east Asia-with suboptimum biosecurity measures in live poultry markets and farms-predisposed to the emergence of H7N9 or other virus subtypes needs further investigation. Why H7N9 seems to be more readily transmitted from poultry to people than H5N1 is still unclear. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. A tool for the economic analysis of mass prophylaxis operations with an application to H1N1 influenza vaccination clinics.

    PubMed

    Cho, Bo-Hyun; Hicks, Katherine A; Honeycutt, Amanda A; Hupert, Nathaniel; Khavjou, Olga; Messonnier, Mark; Washington, Michael L

    2011-01-01

    This article uses the 2009 H1N1 influenza vaccination program experience to introduce a cost analysis approach that may be relevant for planning mass prophylaxis operations, such as vaccination clinics at public health centers, work sites, schools, or pharmacy-based clinics. These costs are important for planning mass influenza vaccination activities and are relevant for all public health emergency preparedness scenarios requiring countermeasure dispensing. We demonstrate how costs vary depending on accounting perspective, staffing composition, and other factors. We also describe a mass vaccination clinic budgeting tool that clinic managers may use to estimate clinic costs and to examine how costs vary depending on the availability of volunteers or donated supplies and on the number of patients vaccinated per hour. Results from pilot tests with school-based H1N1 influenza vaccination clinic managers are described. The tool can also contribute to planning efforts for universal seasonal influenza vaccination.

  3. Sensitivity of influenza rapid diagnostic tests to H5N1 and 2009 pandemic H1N1 viruses.

    PubMed

    Sakai-Tagawa, Yuko; Ozawa, Makoto; Tamura, Daisuke; Le, Mai thi Quynh; Nidom, Chairul A; Sugaya, Norio; Kawaoka, Yoshihiro

    2010-08-01

    Simple and rapid diagnosis of influenza is useful for making treatment decisions in the clinical setting. Although many influenza rapid diagnostic tests (IRDTs) are available for the detection of seasonal influenza virus infections, their sensitivity for other viruses, such as H5N1 viruses and the recently emerged swine origin pandemic (H1N1) 2009 virus, remains largely unknown. Here, we examined the sensitivity of 20 IRDTs to various influenza virus strains, including H5N1 and 2009 pandemic H1N1 viruses. Our results indicate that the detection sensitivity to swine origin H1N1 viruses varies widely among IRDTs, with some tests lacking sufficient sensitivity to detect the early stages of infection when the virus load is low.

  4. Antigenic variation of H1N1, H1N2 and H3N2 swine influenza viruses in Japan and Vietnam.

    PubMed

    Takemae, Nobuhiro; Nguyen, Tung; Ngo, Long Thanh; Hiromoto, Yasuaki; Uchida, Yuko; Pham, Vu Phong; Kageyama, Tsutomu; Kasuo, Shizuko; Shimada, Shinichi; Yamashita, Yasutaka; Goto, Kaoru; Kubo, Hideyuki; Le, Vu Tri; Van Vo, Hung; Do, Hoa Thi; Nguyen, Dang Hoang; Hayashi, Tsuyoshi; Matsuu, Aya; Saito, Takehiko

    2013-04-01

    The antigenicity of the influenza A virus hemagglutinin is responsible for vaccine efficacy in protecting pigs against swine influenza virus (SIV) infection. However, the antigenicity of SIV strains currently circulating in Japan and Vietnam has not been well characterized. We examined the antigenicity of classical H1 SIVs, pandemic A(H1N1)2009 (A(H1N1)pdm09) viruses, and seasonal human-lineage SIVs isolated in Japan and Vietnam. A hemagglutination inhibition (HI) assay was used to determine antigenic differences that differentiate the recent Japanese H1N2 and H3N2 SIVs from the H1N1 and H3N2 domestic vaccine strains. Minor antigenic variation between pig A(H1N1)pdm09 viruses was evident by HI assay using 13 mAbs raised against homologous virus. A Vietnamese H1N2 SIV, whose H1 gene originated from a human strain in the mid-2000s, reacted poorly with post-infection ferret serum against human vaccine strains from 2000-2010. These results provide useful information for selection of optimal strains for SIV vaccine production.

  5. Enhanced pneumonia and disease in pigs vaccinated with an inactivated human-like (δ-cluster) H1N2 vaccine and challenged with pandemic 2009 H1N1 influenza virus.

    PubMed

    Gauger, Phillip C; Vincent, Amy L; Loving, Crystal L; Lager, Kelly M; Janke, Bruce H; Kehrli, Marcus E; Roth, James A

    2011-03-24

    Influenza is an economically important respiratory disease affecting swine world-wide with potential zoonotic implications. Genetic reassortment and drift has resulted in genetically and antigenically distinct swine influenza viruses (SIVs). Consequently, prevention of SIV infection is challenging due to the increased rate of genetic change and a potential lack of cross-protection between vaccine strains and circulating novel isolates. This report describes a vaccine-heterologous challenge model in which pigs were administered an inactivated H1N2 vaccine with a human-like (δ-cluster) H1 six and three weeks before challenge with H1 homosubtypic, heterologous 2009 pandemic H1N1. At necropsy, macroscopic and microscopic pneumonia scores were significantly higher in the vaccinated and challenged (Vx/Ch) group compared to non-vaccinated and challenged (NVx/Ch) pigs. The Vx/Ch group also demonstrated enhanced clinical disease and a significantly elevated pro-inflammatory cytokine profile in bronchoalveolar lavage fluid compared to the NVx/Ch group. In contrast, viral shedding and replication were significantly higher in NVx/Ch pigs although all challenged pigs, including Vx/Ch pigs, were shedding virus in nasal secretions. Hemagglutination inhibition (HI) and serum neutralizing (SN) antibodies were detected to the priming antigen in the Vx/Ch pigs but no measurable cross-reacting HI or SN antibodies were detected to pandemic H1N1 (pH1N1). Overall, these results suggest that inactivated SIV vaccines may potentiate clinical signs, inflammation and pneumonia following challenge with divergent homosubtypic viruses that do not share cross-reacting HI or SN antibodies. Published by Elsevier Ltd.

  6. Clinical and Immune Responses to Inactivated Influenza A(H1N1)pdm09 Vaccine in Children

    PubMed Central

    Kotloff, Karen L.; Halasa, Natasha B.; Harrison, Christopher J.; Englund, Janet A.; Walter, Emmanuel B.; King, James C.; Creech, C. Buddy; Healy, Sara A.; Dolor, Rowena J.; Stephens, Ina; Edwards, Kathryn M.; Noah, Diana L.; Hill, Heather; Wolff, Mark

    2014-01-01

    Background As the influenza AH1N1 pandemic emerged in 2009, children were found to experience high morbidity and mortality and were prioritized for vaccination. This multicenter, randomized, double-blind, age-stratified trial assessed the safety and immunogenicity of inactivated influenza A(H1N1)pdm09 vaccine in healthy children aged 6 months to 17 years. Methods Children received two doses of approximately 15 μg or 30 μg hemagglutin antigen 21 days apart. Reactogenicity was assessed for 8 days after each dose, adverse events through day 42, and serious adverse events or new-onset chronic illnesses through day 201. Serum hemagglutination inhibition (HAI) titers were measured on days 0 (pre-vaccination), 8, 21, 29, and 42. Results A total of 583 children received the first dose and 571 received the second dose of vaccine. Vaccinations were generally well-tolerated and no related serious adverse events were observed. The 15 μg dosage elicited a seroprotective HAI (≥1:40) in 20%, 47%, and 93% of children in the 6-35 month, 3-9 year, and 10-17 year age strata 21 days after dose 1 and in 78%, 82%, and 98% of children 21 days after dose 2, respectively. The 30 μg vaccine dosage induced similar responses. Conclusions The inactivated influenza A(H1N1)pdm09 vaccine exhibited a favorable safety profile at both dosage levels. While a single 15 or 30 μg dose induced seroprotective antibody responses in most 10-17 year olds, younger children required 2 doses, even when receiving dosages 4-6 fold higher than recommended. Well-tolerated vaccines are needed that induce immunity after a single dose for use in young children during influenza pandemics. PMID:25222307

  7. A/H1N1 pandemic influenza vaccination: A retrospective evaluation of adverse maternal, fetal and neonatal outcomes in a cohort of pregnant women in Italy.

    PubMed

    Fabiani, Massimo; Bella, Antonino; Rota, Maria C; Clagnan, Elena; Gallo, Tolinda; D'Amato, Maurizio; Pezzotti, Patrizio; Ferrara, Lorenza; Demicheli, Vittorio; Martinelli, Domenico; Prato, Rosa; Rizzo, Caterina

    2015-05-05

    Although concerns about safety of influenza vaccination during pregnancy have been raised in the past, vaccination of pregnant women was recommended in many countries during the 2009 A/H1N1 pandemic influenza. A retrospective cohort study was conducted to evaluate the risk of adverse maternal, fetal and neonatal outcomes among pregnant women vaccinated with a MF59-adjuvanted A/H1N1 pandemic influenza vaccine. The study was carried out in four Italian regions (Piemonte, Friuli-Venezia-Giulia, Lazio, and Puglia) among 102,077 pregnant women potentially exposed during the second or third trimester of gestation to the vaccination campaign implemented in 2009/2010. Based on data retrieved from the regional administrative databases, the statistical analysis was performed using the Cox proportional-hazards model, adjusting for the propensity score to account for the potential confounding effect due to the socio-demographic characteristics and the clinical and reproductive history of women. A total of 100,332 pregnant women were eligible for the analysis. Of these, 2003 (2.0%) received the A/H1N1 pandemic influenza vaccination during the second or third trimester of gestation. We did not observe any statistically significant association between the A/H1N1 pandemic influenza vaccination and different maternal outcomes (hospital admissions for influenza, pneumonia, hypertension, eclampsia, diabetes, thyroid disease, and anaemia), fetal outcomes (fetal death after the 22nd gestational week) and neonatal outcomes (pre-term birth, low birth weight, low 5-min Apgar score, and congenital malformations). Pre-existing health-risk conditions (hospital admissions and drug prescriptions for specific diseases before the onset of pregnancy) were observed more frequently among vaccinated women, thus suggesting that concomitant chronic conditions increased vaccination uptake. The results of this study add some evidence on the safety of A/H1N1 pandemic influenza vaccination during

  8. H1N1 antibody persistence 1 year after immunization with an adjuvanted or whole-virion pandemic vaccine and immunogenicity and reactogenicity of subsequent seasonal influenza vaccine: a multicenter follow-on study.

    PubMed

    Walker, Woolf T; de Whalley, Philip; Andrews, Nick; Oeser, Clarissa; Casey, Michelle; Michaelis, Louise; Hoschler, Katja; Harrill, Caroline; Moulsdale, Phoebe; Thompson, Ben; Jones, Claire; Chalk, Jem; Kerridge, Simon; John, Tessa M; Okike, Ifeanyichukwu; Ladhani, Shamez; Tomlinson, Richard; Heath, Paul T; Miller, Elizabeth; Faust, Saul N; Snape, Matthew D; Finn, Adam; Pollard, Andrew J

    2012-03-01

    We investigated antibody persistence in children 1 year after 2 doses of either an AS03(B)-adjuvanted split-virion or nonadjuvanted whole-virion monovalent pandemic influenza vaccine and assessed the immunogenicity and reactogenicity of a subsequent dose of trivalent influenza vaccine (TIV). Children previously immunized at age 6 months to 12 years in the original study were invited to participate. After a blood sample was obtained to assess persistence of antibody against swine influenza A/H1N1(2009) pandemic influenza, children received 1 dose of 2010/2011 TIV, reactogenicity data were collected for 7 days, and another blood sample was obtained 21 days after vaccination. Of 323 children recruited, 302 received TIV. Antibody persistence (defined as microneutralization [MN] titer ≥1:40) 1 year after initial vaccination was significantly higher in the AS03(B)-adjuvanted compared with the whole-virion vaccine group, 100% (95% confidence interval [CI], 94.1%-100%) vs 32.4% (95% CI, 21.5%-44.8%) in children immunized <3 years old and 96.9% (95% CI, 91.3%-99.4%) vs 65.9% (95% CI, 55.3%-75.5%) in those 3-12 years old at immunization, respectively (P < .001 for both groups). All children receiving TIV had post-vaccination MN titers ≥1:40. Although TIV was well tolerated in all groups, reactogenicity in children <5 years old was slightly greater in those who originally received AS03(B)-adjuvanted vaccine. This study provides serological evidence that 2 doses of AS03(B)-adjuvanted pandemic influenza vaccine may be sufficient to maintain protection across 2 influenza seasons. Administration of TIV to children who previously received 2 doses of either pandemic influenza vaccine is safe and is immunogenic for the H1N1 strain.

  9. H1N1 Antibody Persistence 1 Year After Immunization With an Adjuvanted or Whole-Virion Pandemic Vaccine and Immunogenicity and Reactogenicity of Subsequent Seasonal Influenza Vaccine: A Multicenter Follow-on Study

    PubMed Central

    Walker, Woolf T.; de Whalley, Philip; Andrews, Nick; Oeser, Clarissa; Casey, Michelle; Michaelis, Louise; Hoschler, Katja; Harrill, Caroline; Moulsdale, Phoebe; Thompson, Ben; Jones, Claire; Chalk, Jem; Kerridge, Simon; John, Tessa M.; Okike, Ifeanyichukwu; Ladhani, Shamez; Tomlinson, Richard; Heath, Paul T.; Miller, Elizabeth; Snape, Matthew D.; Finn, Adam; Pollard, Andrew J.

    2012-01-01

    Background. We investigated antibody persistence in children 1 year after 2 doses of either an AS03B-adjuvanted split-virion or nonadjuvanted whole-virion monovalent pandemic influenza vaccine and assessed the immunogenicity and reactogenicity of a subsequent dose of trivalent influenza vaccine (TIV). Methods. Children previously immunized at age 6 months to 12 years in the original study were invited to participate. After a blood sample was obtained to assess persistence of antibody against swine influenza A/H1N1(2009) pandemic influenza, children received 1 dose of 2010/2011 TIV, reactogenicity data were collected for 7 days, and another blood sample was obtained 21 days after vaccination. Results. Of 323 children recruited, 302 received TIV. Antibody persistence (defined as microneutralization [MN] titer ≥1:40) 1 year after initial vaccination was significantly higher in the AS03B-adjuvanted compared with the whole-virion vaccine group, 100% (95% confidence interval [CI], 94.1%–100%) vs 32.4% (95% CI, 21.5%–44.8%) in children immunized <3 years old and 96.9% (95% CI, 91.3%–99.4%) vs 65.9% (95% CI, 55.3%–75.5%) in those 3–12 years old at immunization, respectively (P < .001 for both groups). All children receiving TIV had post-vaccination MN titers ≥1:40. Although TIV was well tolerated in all groups, reactogenicity in children <5 years old was slightly greater in those who originally received AS03B-adjuvanted vaccine. Conclusions. This study provides serological evidence that 2 doses of AS03B-adjuvanted pandemic influenza vaccine may be sufficient to maintain protection across 2 influenza seasons. Administration of TIV to children who previously received 2 doses of either pandemic influenza vaccine is safe and is immunogenic for the H1N1 strain. PMID:22267719

  10. Prime-boost vaccination with recombinant H5-fowlpox and Newcastle disease virus vectors affords lasting protection in SPF Muscovy ducks against highly pathogenic H5N1 influenza virus.

    PubMed

    Niqueux, Eric; Guionie, Olivier; Amelot, Michel; Jestin, Véronique

    2013-08-28

    Vaccination protocols were evaluated in one-day old Muscovy ducklings, using an experimental Newcastle disease recombinant vaccine (vNDV-H5) encoding an optimized synthetic haemagglutinin gene from a clade 2.2.1 H5N1 highly pathogenic (HP) avian influenza virus (AIV), either as a single administration or as a boost following a prime inoculation with a fowlpox vectored vaccine (vFP89) encoding a different H5 HP haemagglutinin from an Irish H5N8 strain. These vaccination schemes did not induce detectable levels of serum antibodies in HI test using a clade 2.2.1 H5N1 antigen, and only induced H5 ELISA positive response in less than 10% of vaccinated ducks. However, following challenge against a clade 2.2.1 HPAIV, both protocols afforded full clinical protection at six weeks of age, and full protection against mortality at nine weeks. Only the prime-boost vaccination (vFP89+vNDV-H5) was still fully protecting Muscovy ducks against disease and mortality at 12 weeks of age. Reduction of oropharyngeal shedding levels was also constantly observed from the onset of the follow-up at 2.5 or three days post-infection in vaccinated ducks compared to unvaccinated controls, and was significantly more important for vFP89+vNDV-H5 vaccination than for vNDV-H5 alone. Although the latter vaccine is shown immunogenic in one-day old Muscovy ducks, the present work is original in demonstrating the high efficacy of the successive administration of two different vector vaccines encoding two different H5 in inducing lasting protection (at least similar to the one induced by an inactivated reassortant vaccine, Re-5). In addition, such a prime-boost schedule allows implementation of a DIVA strategy (to differentiate vaccinated from infected ducks) contrary to Re-5, involves easy practice on the field (with injection at the hatchery and mass vaccination later on), and should avoid eventual interference with NDV maternally derived antibodies. Last, the HA insert could be updated according to

  11. Correlates of 2009 H1N1 Influenza Vaccine Acceptability among Parents and Their Adolescent Children

    ERIC Educational Resources Information Center

    Painter, Julia E.; Gargano, Lisa M.; Sales, Jessica M.; Morfaw, Christopher; Jones, LaDawna M.; Murray, Dennis; DiClemente, Ralph J.; Hughes, James M.

    2011-01-01

    School-aged children were a priority group for receipt of the pandemic (2009) H1N1 influenza vaccine. Both parental and adolescent attitudes likely influence vaccination behaviors. Data were collected from surveys distributed to middle- and high-school students and their parents in two counties in rural Georgia. Multivariable logistic regression…

  12. Guillain-Barré Syndrome During the 2009–2010 H1N1 Influenza Vaccination Campaign: Population-based Surveillance Among 45 Million Americans

    PubMed Central

    Wise, Matthew E.; Viray, Melissa; Sejvar, James J.; Lewis, Paige; Baughman, Andrew L.; Connor, Walter; Danila, Richard; Giambrone, Greg P.; Hale, Christa; Hogan, Brenna C.; Meek, James I.; Murphree, Rendi; Oh, John Y.; Reingold, Arthur; Tellman, Norisse; Conner, Susan M.; Singleton, James A.; Lu, Peng-Jun; DeStefano, Frank; Fridkin, Scott K.; Vellozzi, Claudia; Morgan, Oliver W.

    2012-01-01

    Because of widespread distribution of the influenza A (H1N1) 2009 monovalent vaccine (pH1N1 vaccine) and the prior association between Guillain-Barré syndrome (GBS) and the 1976 H1N1 influenza vaccine, enhanced surveillance was implemented to estimate the magnitude of any increased GBS risk following administration of pH1N1 vaccine. The authors conducted active, population-based surveillance for incident cases of GBS among 45 million persons residing at 10 Emerging Infections Program sites during October 2009–May 2010; GBS was defined according to published criteria. The authors determined medical and vaccine history for GBS cases through medical record review and patient interviews. The authors used vaccine coverage data to estimate person-time exposed and unexposed to pH1N1 vaccine and calculated age- and sex-adjusted rate ratios comparing GBS incidence in these groups, as well as age- and sex-adjusted numbers of excess GBS cases. The authors received 411 reports of confirmed or probable GBS. The rate of GBS immediately following pH1N1 vaccination was 57% higher than in person-time unexposed to vaccine (adjusted rate ratio = 1.57, 95% confidence interval: 1.02, 2.21), corresponding to 0.74 excess GBS cases per million pH1N1 vaccine doses (95% confidence interval: 0.04, 1.56). This excess risk was much smaller than that observed during the 1976 vaccine campaign and was comparable to some previous seasonal influenza vaccine risk assessments. PMID:22582209

  13. H5N1-SeroDetect EIA and rapid test: a novel differential diagnostic assay for serodiagnosis of H5N1 infections and surveillance.

    PubMed

    Khurana, Surender; Sasono, Pretty; Fox, Annette; Nguyen, Van Kinh; Le, Quynh Mai; Pham, Quang Thai; Nguyen, Tran Hien; Nguyen, Thanh Liem; Horby, Peter; Golding, Hana

    2011-12-01

    Continuing evolution of highly pathogenic (HP) H5N1 influenza viruses in wild birds with transmission to domestic poultry and humans poses a pandemic threat. There is an urgent need for a simple and rapid serological diagnostic assay which can differentiate between antibodies to seasonal and H5N1 strains and that could provide surveillance tools not dependent on virus isolation and nucleic acid technologies. Here we describe the establishment of H5N1 SeroDetect enzyme-linked immunosorbent assay (ELISA) and rapid test assays based on three peptides in HA2 (488-516), PB1-F2 (2-75), and M2e (2-24) that are highly conserved within H5N1 strains. These peptides were identified by antibody repertoire analyses of H5N1 influenza survivors in Vietnam using whole-genome-fragment phage display libraries (GFPDLs). To date, both platforms have demonstrated high levels of sensitivity and specificity in detecting H5N1 infections (clade 1 and clade 2.3.4) in Vietnamese patients as early as 7 days and up to several years postinfection. H5N1 virus-uninfected individuals in Vietnam and the United States, including subjects vaccinated with seasonal influenza vaccines or with confirmed seasonal virus infections, did not react in the H5N1-SeroDetect assays. Moreover, sera from individuals vaccinated with H5N1 subunit vaccine with moderate anti-H5N1 neutralizing antibody titers did not react positively in the H5N1-SeroDetect ELISA or rapid test assays. The simple H5N1-SeroDetect ELISA and rapid tests could provide an important tool for large-scale surveillance for potential exposure to HP H5N1 strains in both humans and birds.

  14. The priming effect of previous natural pandemic H1N1 infection on the immunogenicity to subsequent 2010-2011 influenza vaccination in children: a prospective cohort study.

    PubMed

    Kang, Eun Kyeong; Eun, Byung Wook; Kim, Nam Hee; Lim, Jung Sub; Lee, Jun Ah; Kim, Dong Ho

    2016-08-22

    The effect of previous natural pandemic H1N1 (H1N1 pdm09) influenza infection on the immunogenicity to subsequent inactivated influenza vaccination in children has not been well studied. We aimed to evaluate the effect of H1N1 pdm09 natural infection and vaccination on the immunogenicity to subsequent 2010-2011 seasonal inactivated influenza vaccination in children. From October 2010 to May 2011, we conducted an open-label, multi-center study in children aged 6 months -18 years in Korea. We measured antibody titers with a hemagglutination-inhibition (HI) assay at baseline, 1 month, and 6 months after vaccination with trivalent split or subunit vaccines containing H1N1 pdm, A/H3N2, and B. The subjects were classified into 4 groups depending on the presence of laboratory-confirmed H1N1 pdm09 infection and/or vaccination in the 2009-2010 season; Group I: vaccination (-)/infection(-), Group II: vaccination (-)/infection(+), Group III: vaccination (+)/infection(-), Group IV: vaccination (+)/infection(+). Among the subjects in group I, 47 subjects who had a baseline titer >1:10 were considered to have an asymptomatic infection. They were included into the final group II (n = 80). We defined the new group II as the infection-primed (IP) group and group III as the vaccine-primed (VP) group. Seroconversion rate (57.5 % vs 35.9 %, p = 0.001), seroprotection rate at 6 months after vaccination (70.8 % vs 61.8 %, p = 0.032), and GMT at 1 month after vaccination (129.9 vs 66.5, p = 0.002) were significantly higher in the IP group than in the VP group. In the 9-18 year-old group, seroconversion rate and immunogenicity at 1 and 6 months were significantly higher in the IP group than in the VP group. However in the 1-7 year-old age group, there was no significant difference between the two groups. Previous H1N1 pdm09 infection appears to have positive effects on immunogenicity of subsequent inactivated influenza vaccines against H1N1 pdm09 in older

  15. Combinatorial antibody libraries from survivors of the Turkish H5N1 avian influenza outbreak reveal virus neutralization strategies.

    PubMed

    Kashyap, Arun K; Steel, John; Oner, Ahmet F; Dillon, Michael A; Swale, Ryann E; Wall, Katherine M; Perry, Kimberly J; Faynboym, Aleksandr; Ilhan, Mahmut; Horowitz, Michael; Horowitz, Lawrence; Palese, Peter; Bhatt, Ramesh R; Lerner, Richard A

    2008-04-22

    The widespread incidence of H5N1 influenza viruses in bird populations poses risks to human health. Although the virus has not yet adapted for facile transmission between humans, it can cause severe disease and often death. Here we report the generation of combinatorial antibody libraries from the bone marrow of five survivors of the recent H5N1 avian influenza outbreak in Turkey. To date, these libraries have yielded >300 unique antibodies against H5N1 viral antigens. Among these antibodies, we have identified several broadly reactive neutralizing antibodies that could be used for passive immunization against H5N1 virus or as guides for vaccine design. The large number of antibodies obtained from these survivors provide a detailed immunochemical analysis of individual human solutions to virus neutralization in the setting of an actual virulent influenza outbreak. Remarkably, three of these antibodies neutralized both H1 and H5 subtype influenza viruses.

  16. A duplex real-time RT-PCR assay for detecting H5N1 avian influenza virus and pandemic H1N1 influenza virus.

    PubMed

    Kang, Xiao-ping; Jiang, Tao; Li, Yong-qiang; Lin, Fang; Liu, Hong; Chang, Guo-hui; Zhu, Qing-yu; Qin, E-de; Qin, Cheng-feng; Yang, Yin-hui

    2010-06-02

    A duplex real-time reverse transcriptase polymerase chain reaction (RT-PCR) assay was improved for simultaneous detection of highly pathogenic H5N1 avian influenza virus and pandemic H1N1 (2009) influenza virus, which is suitable for early diagnosis of influenza-like patients and for epidemiological surveillance. The sensitivity of this duplex real-time RT-PCR assay was 0.02 TCID50 (50% tissue culture infective dose) for H5N1 and 0.2 TCID50 for the pandemic H1N1, which was the same as that of each single-target RT-PCR for pandemic H1N1 and even more sensitive for H5N1 with the same primers and probes. No cross reactivity of detecting other subtype influenza viruses or respiratory tract viruses was observed. Two hundred and thirty-six clinical specimens were tested by comparing with single real-time RT-PCR and result from the duplex assay was 100% consistent with the results of single real-time RT-PCR and sequence analysis.

  17. Influenza A (H1N1) 2009 monovalent and seasonal influenza vaccination among adults 25 to 64 years of age with high-risk conditions—United States, 2010

    PubMed Central

    Lu, Peng-jun; Gonzalez-Feliciano, Amparo; Ding, Helen; Bryan, Leah N.; Yankey, David; Monsell, Elizabeth A.; Greby, Stacie M.; Euler, Gary L.

    2018-01-01

    Background Seasonal influenza vaccination has been routinely recommended for adults with high-risk conditions. The Advisory Committee on Immunization Practices recommended that persons 25 to 64 years of age with high-risk conditions be one of the initial target groups to receive H1N1 vaccination during the 2009-2010 season. Methods We used data from the 2009-2010 Behavioral Risk Factor Surveillance System survey. Vaccination levels of H1N1 and seasonal influenza vaccination among respondents 25 to 64 years with high-risk conditions were assessed. Multivariable logistic regression models were performed to identify factors independently associated with vaccination. Results Overall, 24.8% of adults 25 to 64 years of age were identified to have high-risk conditions. Among adults 25 to 64 years of age with high-risk conditions, H1N1 and seasonal vaccination coverage were 26.3% and 47.6%, respectively. Characteristics independently associated with an increased likelihood of H1N1 vaccination were as follows: higher age; Hispanic race/ethnicity; medical insurance; ability to see a doctor if needed; having a primary doctor; a routine checkup in the previous year; not being a current smoker; and having high-risk conditions other than asthma, diabetes, and heart disease. Characteristics independently associated with seasonal influenza vaccination were similar compared with factors associated with H1N1 vaccination. Conclusion Immunization programs should work with provider organizations to review efforts made to reach adults with high-risk conditions during the recent pandemic and assess how and where they can increase vaccination coverage during future pandemics. PMID:23419613

  18. Optimal H1N1 vaccination strategies based on self-interest versus group interest.

    PubMed

    Shim, Eunha; Meyers, Lauren Ancel; Galvani, Alison P

    2011-02-25

    Influenza vaccination is vital for reducing H1N1 infection-mediated morbidity and mortality. To reduce transmission and achieve herd immunity during the initial 2009-2010 pandemic season, the US Centers for Disease Control and Prevention (CDC) recommended that initial priority for H1N1 vaccines be given to individuals under age 25, as these individuals are more likely to spread influenza than older adults. However, due to significant delay in vaccine delivery for the H1N1 influenza pandemic, a large fraction of population was exposed to the H1N1 virus and thereby obtained immunity prior to the wide availability of vaccines. This exposure affects the spread of the disease and needs to be considered when prioritizing vaccine distribution. To determine optimal H1N1 vaccine distributions based on individual self-interest versus population interest, we constructed a game theoretical age-structured model of influenza transmission and considered the impact of delayed vaccination. Our results indicate that if individuals decide to vaccinate according to self-interest, the resulting optimal vaccination strategy would prioritize adults of age 25 to 49 followed by either preschool-age children before the pandemic peak or older adults (age 50-64) at the pandemic peak. In contrast, the vaccine allocation strategy that is optimal for the population as a whole would prioritize individuals of ages 5 to 64 to curb a growing pandemic regardless of the timing of the vaccination program. Our results indicate that for a delayed vaccine distribution, the priorities that are optimal at a population level do not align with those that are optimal according to individual self-interest. Moreover, the discordance between the optimal vaccine distributions based on individual self-interest and those based on population interest is even more pronounced when vaccine availability is delayed. To determine optimal vaccine allocation for pandemic influenza, public health agencies need to consider

  19. Safety and immunogenicity of an MF59-adjuvanted A/H1N1 pandemic influenza vaccine in children from three to seventeen years of age.

    PubMed

    Knuf, Markus; Leroux-Roels, Geert; Rümke, Hans C; Abarca, Katia; Rivera, Luis; Lattanzi, Maria; Pedotti, Paola; Arora, Ashwani; Kieninger-Baum, Dorothee; Della Cioppa, Giovanni

    2015-01-01

    This study was designed to identify the optimal dose of an MF59-adjuvanted, monovalent, A/H1N1 influenza vaccine in healthy paediatric subjects. Subjects aged 3-8 years (n=194) and 9-17 years (n=160) were randomized to receive two primary doses of A/H1N1 vaccine containing either 3.75 μg antigen with half a standard dose of MF59 adjuvant, 7.5 μg antigen with a full dose of MF59, or (children 3-8 years only), a non-adjuvanted 15 μg formulation. A booster dose of MF59-adjuvanted seasonal influenza vaccine including homologous A/H1N1 strain was given one year after priming. Immunogenicity was assessed by haemagglutination inhibition (HI) and microneutralization assays. Vaccine safety was assessed throughout the study (up to 18 months). A single priming dose of either MF59-adjuvanted formulation was sufficient to meet the European licensure criteria for pandemic influenza vaccines (HI titres ≥1:40>70%; seroconversion>40%; and GMR>2.5). Two non-adjuvanted vaccine doses were required to meet the same licensure criteria. After first and second doses, percentage of subjects with HI titres ≥1:40 were between 97% and 100% in the adjuvanted vaccine groups compared with 68% and 91% in the non-adjuvanted group, respectively. Postvaccination seroconversion rates ranged from 91% to 98% in adjuvanted groups and were 68% (first dose) and 98% (second dose) in the non-adjuvanted group. HI titres ≥1:330 after primary doses were achieved in 69% to 90% in adjuvanted groups compared with 41% in the non-adjuvanted group. Long-term antibody persistence after priming and a robust antibody response to booster immunization were observed in all vaccination groups. All A/H1N1 vaccine formulations were generally well tolerated. No vaccine-related serious adverse events occurred, and no subjects were withdrawn from the study due to an adverse event. An MF59-adjuvanted influenza vaccine containing 3.75 μg of A/H1N1 antigen was well tolerated and sufficiently immunogenic to meet all the

  20. Continued dominance of pandemic A(H1N1) 2009 influenza in Victoria, Australia in 2010

    PubMed Central

    Grant, Kristina; Franklin, Lucinda; Kaczmarek, Marlena; Hurt, Aeron; Kostecki, Renata; Kelly, Heath

    2011-01-01

    The 2010 Victorian influenza season was characterized by normal seasonal influenza activity and the dominance of the pandemic A(H1N1) 2009 strain. General Practice Sentinel Surveillance rates peaked at 9.4 ILI cases per 1000 consultations in week 36 for metropolitan practices, and at 10.5 ILI cases per 1000 in the following week for rural practices. Of the 678 ILI cases, 23% were vaccinated, a significantly higher percentage than in previous years. A significantly higher percentage of ILI patients were swabbed in 2010 compared to 2003–2008, but similar to 2009, with a similar percentage being positive for influenza as in previous years. Vaccination rates increased with patient age. Melbourne Medical Deputising Service rates peaked in week 35 at 19.1 ILI cases per 1000 consultations. Of the 1914 cases of influenza notified to the Department of Health, Victoria, 1812 (95%) were influenza A infections – 1001 (55%) pandemic A(H1N1) 2009, 4 (< 1%) A(H3N2) and 807 (45%) not subtyped; 88 (5%) were influenza B; and 14 (< 1%) were influenza A and B co-infections. The World Health Organization Collaborating Centre for Reference and Research on Influenza tested 403 isolates of which 261 were positive for influenza, 250 of which were influenza A and 11 were influenza B. Ninety-two per cent of the influenza A viruses were pandemic A(H1N1) 2009, and following antigenic analysis all of these were found to be similar to the current vaccine strain. Three viruses (0.9%) were found to be oseltamivir resistant due to an H275Y mutation in the neuraminidase gene. PMID:23908889

  1. Role of vaccination-induced immunity and antigenic distance in the transmission dynamics of highly pathogenic avian influenza H5N1

    PubMed Central

    Rousou, Xanthoula; Kalthoff, Donata; Beer, Martin

    2016-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 epidemics in poultry cause huge economic losses as well as sporadic human morbidity and mortality. Vaccination in poultry has often been reported as being ineffective in preventing transmission and as a potential driving force in the selection of immune escape mutants. We conducted transmission experiments to evaluate the transmission dynamics of HPAI H5N1 strains in chickens vaccinated with high and low doses of immune escape mutants we have previously selected, and analysed the data using mathematical models. Remarkably, we demonstrate that the effect of antigenic distances between the vaccine and challenge strains used in this study is too small to influence the transmission dynamics of the strains used. This is because the effect of a sufficient vaccine dose on antibody levels against the challenge viruses is large enough to compensate for any decrease in antibody titres due to antigenic differences between vaccine and challenge strains. Our results show that at least under experimental conditions, vaccination will remain effective even after antigenic changes as may be caused by the initial selection in vaccinated birds. PMID:26763336

  2. Interim estimates of the effectiveness of the influenza vaccine against A(H3N2) influenza in adults in South Korea, 2016-2017 season.

    PubMed

    Noh, Ji Yun; Lim, Sooyeon; Song, Joon Young; Choi, Won Suk; Jeong, Hye Won; Heo, Jung Yeon; Lee, Jacob; Seo, Yu Bin; Lee, Jin-Soo; Wie, Seong Heon; Kim, Young Keun; Park, Kyung Hwa; Jung, Sook-In; Kim, Shin Woo; Lee, Sun Hee; Lee, Han Sol; Yoon, Young Hoon; Cheong, Hee Jin; Kim, Woo Joo

    2017-01-01

    In the 2016-2017 season, the A(H3N2) influenza epidemic presented an unusual early peak pattern compared with past seasons in South Korea. The interim vaccine effectiveness (VE) of influenza vaccination in preventing laboratory-confirmed influenza was estimated using test-negative design through the tertiary hospital-based influenza surveillance system in South Korea. From 1 September, 2016 to 7 January, 2017, adjusted VE of influenza vaccination in preventing laboratory-confirmed A(H3N2) was -52.1% (95% confidence interval [CI], -147.2 to 6.4); -70.0% (95% CI, -212.0 to 7.4) in 19-64 years and 4.3% (95% CI, -137.8 to 61.5) in the elderly. Circulating A(H3N2) viruses belonged to the three phylogenetic subclades of 3C.2a, differently to A/Hong Kong/4801/2014, the current vaccine strain. Amino acid substitutions in hemagglutinin of circulating viruses seem to contribute to low VE. In conclusion, interim VE analysis presented that the protection of laboratory-confirmed influenza by seasonal influenza vaccination did not show the statistical significance in South Korea in the 2016-2017 influenza season.

  3. Avian influenza virus (H5N1): a threat to human health.

    PubMed

    Peiris, J S Malik; de Jong, Menno D; Guan, Yi

    2007-04-01

    Pandemic influenza virus has its origins in avian influenza viruses. The highly pathogenic avian influenza virus subtype H5N1 is already panzootic in poultry, with attendant economic consequences. It continues to cross species barriers to infect humans and other mammals, often with fatal outcomes. Therefore, H5N1 virus has rightly received attention as a potential pandemic threat. However, it is noted that the pandemics of 1957 and 1968 did not arise from highly pathogenic influenza viruses, and the next pandemic may well arise from a low-pathogenicity virus. The rationale for particular concern about an H5N1 pandemic is not its inevitability but its potential severity. An H5N1 pandemic is an event of low probability but one of high human health impact and poses a predicament for public health. Here, we review the ecology and evolution of highly pathogenic avian influenza H5N1 viruses, assess the pandemic risk, and address aspects of human H5N1 disease in relation to its epidemiology, clinical presentation, pathogenesis, diagnosis, and management.

  4. Treatment and Prevention of Pandemic H1N1 Influenza.

    PubMed

    Rewar, Suresh; Mirdha, Dashrath; Rewar, Prahlad

    2015-01-01

    Swine influenza is a respiratory infection common to pigs worldwide caused by type A influenza viruses, principally subtypes H1N1, H1N2, H2N1, H3N1, H3N2, and H2N3. Swine influenza viruses also can cause moderate to severe illness in humans and affect persons of all age groups. People in close contact with swine are at especially high risk. Until recently, epidemiological study of influenza was limited to resource-rich countries. The World Health Organization declared an H1N1 pandemic on June 11, 2009, after more than 70 countries reported 30,000 cases of H1N1 infection. In 2015, incidence of swine influenza increased substantially to reach a 5-year high. In India in 2015, 10,000 cases of swine influenza were reported with 774 deaths. The Centers for Disease Control and Prevention recommend real-time polymerase chain reaction as the method of choice for diagnosing H1N1. Antiviral drugs are the mainstay of clinical treatment of swine influenza and can make the illness milder and enable the patient to feel better faster. Antiviral drugs are most effective when they are started within the first 48 hours after the clinical signs begin, although they also may be used in severe or high-risk cases first seen after this time. The Centers for Disease Control and Prevention recommends use of oseltamivir (Tamiflu, Genentech) or zanamivir (Relenza, GlaxoSmithKline). Prevention of swine influenza has 3 components: prevention in swine, prevention of transmission to humans, and prevention of its spread among humans. Because of limited treatment options, high risk for secondary infection, and frequent need for intensive care of individuals with H1N1 pneumonia, environmental control, including vaccination of high-risk populations and public education are critical to control of swine influenza out breaks. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Cumulative Risk of Guillain–Barré Syndrome Among Vaccinated and Unvaccinated Populations During the 2009 H1N1 Influenza Pandemic

    PubMed Central

    Iqbal, Shahed; Stewart, Brock; Tokars, Jerome; DeStefano, Frank

    2014-01-01

    Objectives. We sought to assess risk of Guillain–Barré syndrome (GBS) among influenza A (H1N1) 2009 monovalent (pH1N1) vaccinated and unvaccinated populations at the end of the 2009 pandemic. Methods. We applied GBS surveillance data from a US population catchment area of 45 million from October 15, 2009, through May 31, 2010. GBS cases meeting Brighton Collaboration criteria were included. We calculated the incidence density ratio (IDR) among pH1N1 vaccinated and unvaccinated populations. We also estimated cumulative GBS risk using life table analysis. Additionally, we used vaccine coverage data and census population estimates to calculate denominators. Results. There were 392 GBS cases; 64 (16%) occurred after pH1N1vaccination. The vaccinated population had lower average risk (IDR = 0.83, 95% confidence interval = 0.63, 1.08) and lower cumulative risk (6.6 vs 9.2 cases per million persons, P = .012) of GBS. Conclusions. Our findings suggest that at the end of the influenza season cumulative GBS risk was less among the pH1N1vaccinated than the unvaccinated population, suggesting the benefit of vaccination as it relates to GBS. The observed potential protective effect on GBS attributed to vaccination warrants further study. PMID:24524517

  6. Long-Term Immunogenicity of an Inactivated Split-Virion 2009 Pandemic Influenza A H1N1 Virus Vaccine with or without Aluminum Adjuvant in Mice

    PubMed Central

    Xu, Wenting; Zheng, Mei; Zhou, Feng

    2015-01-01

    In 2009, a global epidemic of influenza A(H1N1) virus caused the death of tens of thousands of people. Vaccination is the most effective means of controlling an epidemic of influenza and reducing the mortality rate. In this study, the long-term immunogenicity of influenza A/California/7/2009 (H1N1) split vaccine was observed as long as 15 months (450 days) after immunization in a mouse model. Female BALB/c mice were immunized intraperitoneally with different doses of aluminum-adjuvanted vaccine. The mice were challenged with a lethal dose (10× 50% lethal dose [LD50]) of homologous virus 450 days after immunization. The results showed that the supplemented aluminum adjuvant not only effectively enhanced the protective effect of the vaccine but also reduced the immunizing dose of the vaccine. In addition, the aluminum adjuvant enhanced the IgG antibody level of mice immunized with the H1N1 split vaccine. The IgG level was correlated to the survival rate of the mice. Aluminum-adjuvanted inactivated split-virion 2009 pandemic influenza A H1N1 vaccine has good immunogenicity and provided long-term protection against lethal influenza virus challenge in mice. PMID:25589552

  7. Epidemiology of pandemic influenza A/H1N1 virus during 2009-2010 in Taiwan.

    PubMed

    Lan, Yu-Ching; Su, Mei-Chi; Chen, Chao-Hsien; Huang, Su-Hua; Chen, Wan-Li; Tien, Ni; Lin, Cheng-Wen

    2013-10-01

    Outbreak of swine-origin influenza A/H1N1 virus (pdmH1N1) occurred in 2009. Taiwanese authorities implemented nationwide vaccinations with pdmH1N1-specific inactivated vaccine as of November 2009. This study evaluates prevalence, HA phylogenetic relationship, and transmission dynamic of influenza A and B viruses in Taiwan in 2009-2010. Respiratory tract specimens were analyzed for influenza A and B viruses. The pdmH1N1 peaked in November 2009, was predominant from August 2009 to January 2010, then sharply dropped in February 2010. Significant prevalence peaks of influenza B in April-June of 2010 and H3N2 virus in July and August were observed. Highest percentage of pdmH1N1- and H3N2-positive cases appeared among 11-15-year-olds; influenza B-positive cases were dominant among those 6-10 years old. Maximum likelihood phylogenetic trees showed 11 unique clusters of pdmH1N1, seasonal H3N2 influenza A and B viruses, as well as transmission clusters and mixed infections of influenza strains in Taiwan. The 2009 pdmH1N1 virus was predominant in Taiwan from August 2009 to January 2010; seasonal H3N2 influenza A and B viruses exhibited small prevalence peaks after nationwide vaccinations. Phylogenetic evidence indicated transmission clusters and multiple independent clades of co-circulating influenza A and B strains in Taiwan. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  8. A single vaccination of commercial broilers does not reduce transmission of H5N1 highly pathogenic avian influenza

    PubMed Central

    2011-01-01

    Vaccination of chickens has become routine practice in Asian countries in which H5N1 highly pathogenic avian influenza (HPAI) is endemically present. This mainly applies to layer and breeder flocks, but broilers are usually left unvaccinated. Here we investigate whether vaccination is able to reduce HPAI H5N1 virus transmission among broiler chickens. Four sets of experiments were carried out, each consisting of 22 replicate trials containing a pair of birds. Experiments 1-3 were carried out with four-week-old birds that were unvaccinated, and vaccinated at day 1 or at day 10 of age. Experiment 4 was carried out with unvaccinated day-old broiler chicks. One chicken in each trial was inoculated with H5N1 HPAI virus. One chicken in each trial was inoculated with virus. The course of the infection chain was monitored by serological analysis, and by virus isolation performed on tracheal and cloacal swabs. The analyses were based on a stochastic SEIR model using a Bayesian inferential framework. When inoculation was carried out at the 28th day of life, transmission was efficient in unvaccinated birds, and in birds vaccinated at first or tenth day of life. In these experiments estimates of the latent period (~1.0 day), infectious period (~3.3 days), and transmission rate parameter (~1.4 per day) were similar, as were estimates of the reproduction number (~4) and generation interval (~1.4 day). Transmission was significantly less efficient in unvaccinated chickens when inoculation was carried out on the first day of life. These results show that vaccination of broiler chickens does not reduce transmission, and suggest that this may be due to the interference of maternal immunity. PMID:21635732

  9. Vaccine-elicited antibody that neutralizes H5N1 influenza and variants binds the receptor site and polymorphic sites

    DOE PAGES

    Winarski, Katie L.; Thornburg, Natalie J.; Yu, Yingchun; ...

    2015-07-13

    Antigenic drift of circulating seasonal influenza viruses necessitates an international vaccine effort to reduce the impact on human health. A critical feature of the seasonal vaccine is that it stimulates an already primed immune system to diversify memory B cells to recognize closely related, but antigenically distinct, influenza glycoproteins (hemagglutinins). Influenza pandemics arise when hemagglutinins to which no preexisting adaptive immunity exists acquire the capacity to infect humans. Hemagglutinin 5 is one subtype to which little preexisting immunity exists and is only a few acquired mutations away from the ability to transmit efficiently between ferrets, and possibly humans. In thismore » paper, we describe the structure and molecular mechanism of neutralization by H5.3, a vaccine-elicited antibody that neutralizes hemagglutinin 5 viruses and variants with expanded host range. H5.3 binds in the receptor-binding site, forming contacts that recapitulate many of the sialic acid interactions, as well as multiple peripheral interactions, yet is not sensitive to mutations that alter sialic acid binding. H5.3 is highly specific for a subset of H5 strains, and this specificity arises from interactions to the periphery of the receptor-binding site. Finally, H5.3 is also extremely potent, despite retaining germ line-like conformational flexibility.« less

  10. Vaccine-elicited antibody that neutralizes H5N1 influenza and variants binds the receptor site and polymorphic sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winarski, Katie L.; Thornburg, Natalie J.; Yu, Yingchun

    Antigenic drift of circulating seasonal influenza viruses necessitates an international vaccine effort to reduce the impact on human health. A critical feature of the seasonal vaccine is that it stimulates an already primed immune system to diversify memory B cells to recognize closely related, but antigenically distinct, influenza glycoproteins (hemagglutinins). Influenza pandemics arise when hemagglutinins to which no preexisting adaptive immunity exists acquire the capacity to infect humans. Hemagglutinin 5 is one subtype to which little preexisting immunity exists and is only a few acquired mutations away from the ability to transmit efficiently between ferrets, and possibly humans. In thismore » paper, we describe the structure and molecular mechanism of neutralization by H5.3, a vaccine-elicited antibody that neutralizes hemagglutinin 5 viruses and variants with expanded host range. H5.3 binds in the receptor-binding site, forming contacts that recapitulate many of the sialic acid interactions, as well as multiple peripheral interactions, yet is not sensitive to mutations that alter sialic acid binding. H5.3 is highly specific for a subset of H5 strains, and this specificity arises from interactions to the periphery of the receptor-binding site. Finally, H5.3 is also extremely potent, despite retaining germ line-like conformational flexibility.« less

  11. Impacts of a mass vaccination campaign against pandemic H1N1 2009 influenza in Taiwan: a time-series regression analysis.

    PubMed

    Wu, Un-In; Wang, Jann-Tay; Chang, Shan-Chwen; Chuang, Yu-Chung; Lin, Wei-Ru; Lu, Min-Chi; Lu, Po-Liang; Hu, Fu-Chang; Chuang, Jen-Hsiang; Chen, Yee-Chun

    2014-06-01

    A multicenter, hospital-wide, clinical and epidemiological study was conducted to assess the effectiveness of the mass influenza vaccination program during the 2009 H1N1 influenza pandemic, and the impact of the prioritization strategy among people at different levels of risk. Among the 34 359 medically attended patients who displayed an influenza-like illness and had a rapid influenza diagnostic test (RIDT) at one of the three participating hospitals, 21.0% tested positive for influenza A. The highest daily number of RIDT-positive cases in each hospital ranged from 33 to 56. A well-fitted multiple linear regression time-series model (R(2)=0.89) showed that the establishment of special community flu clinics averted an average of nine cases daily (p=0.005), and an increment of 10% in daily mean level of population immunity against pH1N1 through vaccination prevented five cases daily (p<0.001). Moreover, the regression model predicted five-fold or more RIDT-positive cases if the mass influenza vaccination program had not been implemented, and 39.1% more RIDT-positive cases if older adults had been prioritized for vaccination above school-aged children. Mass influenza vaccination was an effective control measure, and school-aged children should be assigned a higher priority for vaccination than older adults during an influenza pandemic. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Vaccination with Killed but Metabolically Active E. coli Over-expressing Hemagglutinin Elicits Neutralizing Antibodies to H1N1 Swine Origin Influenza A Virus

    PubMed Central

    Liu, Pei-Feng; Wang, Yanhan; Liu, Yu-Tsueng; Huang, Chun-Ming

    2017-01-01

    There is a need for a fast and simple method for vaccine production to keep up with the pace of a rapidly spreading virus in the early phases of the influenza pandemic. The use of whole viruses produced in chicken eggs or recombinant antigens purified from various expression systems has presented considerable challenges, especially with lengthy processing times. Here, we use the killed but metabolically active (KBMA) Escherichia coli (E. coli) to harbor the hemagglutinin (HA) of swine origin influenza A (H1N1) virus (S-OIV) San Diego/01/09 (SD/H1N1-S-OIV). Intranasal vaccination of mice with KBMA E. coli SD/H1N1-S-OIV HA without adding exogenous adjuvants provoked detectable neutralizing antibodies against the virus-induced hemagglutination within three weeks. Boosting vaccination enhanced the titers of neutralizing antibodies, which can decrease viral infectivity in Madin-Darby canine kidney (MDCK) cells. The antibodies were found to specifically neutralize the SD/H1N1-S-OIV-, but not seasonal influenza viruses (H1N1 and H3N2), -induced hemagglutination. The use of KBMA E. coli as an egg-free system to produce anti-influenza vaccines makes unnecessary the rigorous purification of an antigen prior to immunization, providing an alternative modality to combat influenza virus in future outbreaks. PMID:28492063

  13. Vaccination with Recombinant Parainfluenza Virus 5 Expressing Neuraminidase Protects against Homologous and Heterologous Influenza Virus Challenge

    PubMed Central

    Mooney, Alaina J.; Gabbard, Jon D.; Li, Zhuo; Dlugolenski, Daniel A.; Johnson, Scott K.

    2017-01-01

    ABSTRACT Seasonal human influenza virus continues to cause morbidity and mortality annually, and highly pathogenic avian influenza (HPAI) viruses along with other emerging influenza viruses continue to pose pandemic threats. Vaccination is considered the most effective measure for controlling influenza; however, current strategies rely on a precise vaccine match with currently circulating virus strains for efficacy, requiring constant surveillance and regular development of matched vaccines. Current vaccines focus on eliciting specific antibody responses against the hemagglutinin (HA) surface glycoprotein; however, the diversity of HAs across species and antigenic drift of circulating strains enable the evasion of virus-inhibiting antibody responses, resulting in vaccine failure. The neuraminidase (NA) surface glycoprotein, while diverse, has a conserved enzymatic site and presents an appealing target for priming broadly effective antibody responses. Here we show that vaccination with parainfluenza virus 5 (PIV5), a promising live viral vector expressing NA from avian (H5N1) or pandemic (H1N1) influenza virus, elicited NA-specific antibody and T cell responses, which conferred protection against homologous and heterologous influenza virus challenges. Vaccination with PIV5-N1 NA provided cross-protection against challenge with a heterosubtypic (H3N2) virus. Experiments using antibody transfer indicate that antibodies to NA have an important role in protection. These findings indicate that PIV5 expressing NA may be effective as a broadly protective vaccine against seasonal influenza and emerging pandemic threats. IMPORTANCE Seasonal influenza viruses cause considerable morbidity and mortality annually, while emerging viruses pose potential pandemic threats. Currently licensed influenza virus vaccines rely on the antigenic match of hemagglutinin (HA) for vaccine strain selection, and most vaccines rely on HA inhibition titers to determine efficacy, despite the growing

  14. Vaccination with Recombinant Parainfluenza Virus 5 Expressing Neuraminidase Protects against Homologous and Heterologous Influenza Virus Challenge.

    PubMed

    Mooney, Alaina J; Gabbard, Jon D; Li, Zhuo; Dlugolenski, Daniel A; Johnson, Scott K; Tripp, Ralph A; He, Biao; Tompkins, S Mark

    2017-12-01

    Seasonal human influenza virus continues to cause morbidity and mortality annually, and highly pathogenic avian influenza (HPAI) viruses along with other emerging influenza viruses continue to pose pandemic threats. Vaccination is considered the most effective measure for controlling influenza; however, current strategies rely on a precise vaccine match with currently circulating virus strains for efficacy, requiring constant surveillance and regular development of matched vaccines. Current vaccines focus on eliciting specific antibody responses against the hemagglutinin (HA) surface glycoprotein; however, the diversity of HAs across species and antigenic drift of circulating strains enable the evasion of virus-inhibiting antibody responses, resulting in vaccine failure. The neuraminidase (NA) surface glycoprotein, while diverse, has a conserved enzymatic site and presents an appealing target for priming broadly effective antibody responses. Here we show that vaccination with parainfluenza virus 5 (PIV5), a promising live viral vector expressing NA from avian (H5N1) or pandemic (H1N1) influenza virus, elicited NA-specific antibody and T cell responses, which conferred protection against homologous and heterologous influenza virus challenges. Vaccination with PIV5-N1 NA provided cross-protection against challenge with a heterosubtypic (H3N2) virus. Experiments using antibody transfer indicate that antibodies to NA have an important role in protection. These findings indicate that PIV5 expressing NA may be effective as a broadly protective vaccine against seasonal influenza and emerging pandemic threats. IMPORTANCE Seasonal influenza viruses cause considerable morbidity and mortality annually, while emerging viruses pose potential pandemic threats. Currently licensed influenza virus vaccines rely on the antigenic match of hemagglutinin (HA) for vaccine strain selection, and most vaccines rely on HA inhibition titers to determine efficacy, despite the growing

  15. Mosaic H5 Hemagglutinin Provides Broad Humoral and Cellular Immune Responses against Influenza Viruses

    PubMed Central

    Kamlangdee, Attapon; Kingstad-Bakke, Brock

    2016-01-01

    ABSTRACT The most effective way to prevent influenza virus infection is via vaccination. However, the constant mutation of influenza viruses due to antigenic drift and shift compromises vaccine efficacy. This represents a major challenge to the development of a cross-protective vaccine that can protect against circulating viral antigenic diversity. Using the modified vaccinia Ankara (MVA) virus, we had previously generated a recombinant vaccine against highly pathogenic avian influenza virus (H5N1) based on an in silico mosaic approach. This MVA-H5M construct protected mice against multiple clades of H5N1 and H1N1 viruses. We have now further characterized the immune responses using immunodepletion of T cells and passive serum transfer, and these studies indicate that antibodies are the main contributors in homosubtypic protection (H5N1 clades). Compared to a MVA construct expressing hemagglutinin (HA) from influenza virus A/VN/1203/04 (MVA-HA), the MVA-H5M vaccine markedly increased and broadened B cell and T cell responses against H5N1 virus. The MVA-H5M also provided effective protection with no morbidity against H5N1 challenge, whereas MVA-HA-vaccinated mice showed clinical signs and experienced significant weight loss. In addition, MVA-H5M induced CD8+ T cell responses that play a major role in heterosubtypic protection (H1N1). Finally, expression of the H5M gene as either a DNA vaccine or a subunit protein protected mice against H5N1 challenge, indicating the effectiveness of the mosaic sequence without viral vectors for the development of a universal influenza vaccine. IMPORTANCE Influenza viruses infect up to one billion people around the globe each year and are responsible for 300,000 to 500,000 deaths annually. Vaccines are still the main intervention to prevent infection, but they fail to provide effective protection against heterologous strains of viruses. We developed broadly reactive H5N1 vaccine based on an in silico mosaic approach and previously

  16. Cost-Effectiveness of 2009 Pandemic Influenza A(H1N1) Vaccination in the United States

    PubMed Central

    Prosser, Lisa A.; Lavelle, Tara A.; Fiore, Anthony E.; Bridges, Carolyn B.; Reed, Carrie; Jain, Seema; Dunham, Kelly M.; Meltzer, Martin I.

    2011-01-01

    Background Pandemic influenza A(H1N1) (pH1N1) was first identified in North America in April 2009. Vaccination against pH1N1 commenced in the U.S. in October 2009 and continued through January 2010. The objective of this study was to evaluate the cost-effectiveness of pH1N1 vaccination. Methodology A computer simulation model was developed to predict costs and health outcomes for a pH1N1 vaccination program using inactivated vaccine compared to no vaccination. Probabilities, costs and quality-of-life weights were derived from emerging primary data on pH1N1 infections in the US, published and unpublished data for seasonal and pH1N1 illnesses, supplemented by expert opinion. The modeled target population included hypothetical cohorts of persons aged 6 months and older stratified by age and risk. The analysis used a one-year time horizon for most endpoints but also includes longer-term costs and consequences of long-term sequelae deaths. A societal perspective was used. Indirect effects (i.e., herd effects) were not included in the primary analysis. The main endpoint was the incremental cost-effectiveness ratio in dollars per quality-adjusted life year (QALY) gained. Sensitivity analyses were conducted. Results For vaccination initiated prior to the outbreak, pH1N1 vaccination was cost-saving for persons 6 months to 64 years under many assumptions. For those without high risk conditions, incremental cost-effectiveness ratios ranged from $8,000–$52,000/QALY depending on age and risk status. Results were sensitive to the number of vaccine doses needed, costs of vaccination, illness rates, and timing of vaccine delivery. Conclusions Vaccination for pH1N1 for children and working-age adults is cost-effective compared to other preventive health interventions under a wide range of scenarios. The economic evidence was consistent with target recommendations that were in place for pH1N1 vaccination. We also found that the delays in vaccine availability had a substantial

  17. Antibody Dynamics of 2009 Influenza A (H1N1) Virus in Infected Patients and Vaccinated People in China

    PubMed Central

    Liu, Yang; Wu, Jibin; Di, Biao; Chen, Xi; Xu, Xinhong; Lu, Enjie; Li, Kuibiao; Liu, Yanhui; Wu, Yejian; Chen, Xiongfei; He, Peng; Wang, Yulin; Liu, Jianhua

    2011-01-01

    Background To evaluate the risk of the recurrence and the efficiency of the vaccination, we followed-up antibody responses in patients with the 2009 pandemic H1N1 influenza and persons who received the pandemic H1N1 vaccine in Guangzhou China. Methods We collected serum samples from 129 patients and 86 vaccinated persons at day 0, 15, 30, 180 after the disease onset or the vaccination, respectively. Antibody titers in these serum samples were determined by haemagglutination inhibition (HI) assay using a local isolated virus strain A/Guangdong Liwan/SWL1538/2009(H1N1). Results HI antibody positive rate of the patients increased significantly from 0% to 60% at day 15 (χ2 = 78, P<0.001) and 100% at day 30 (χ2 = 23, P<0.001), but decreased significantly to 52% at day 180 (χ2 = 38, P<0.001), while that of vaccinated subjects increased from 0% to 78% at day 15 (χ2 = 110, P<0.001) and 81% at day 30 (χ2 = 0.32, P = 0.57), but decreased significantly to 34% at day 180 (χ2 = 39, P<0.001). Geometric mean titers (GMT) of HI antibodies in positive samples from the patients did not change significantly between day 15 and day 30 (T = 0.92, P = 0.36), but it decreased significantly from 80 at day 30 to 52 at day 180 (T = 4.5, P<0.001). GMT of vaccinated persons increased significantly from 100 at day 15 to 193 at day 30 (T = 4.5, P<0.001), but deceased significantly to 74 at day 180 (T = 5.1, P<0.001). Compared to the patients, the vaccinated subjects showed lower seroconversion rate (χ2 = 11, P<0.001; χ2 = 5.9, P = 0.015), but higher GMT (T = 6.0, P<0.001; T = 3.6, P = 0.001) at day 30 and day 180, respectively. Conclusion Vaccination of 2009 influenza A (H1N1) was effective. However, about half or more recovered patients and vaccinated persons might have lost sufficient immunity against the recurrence of the viral infection after half a year. Vaccination or re-vaccination may be necessary for

  18. Sustained low influenza vaccination in health care workers after H1N1 pandemic: a cross sectional study in an Italian health care setting for at-risk patients.

    PubMed

    Giannattasio, Antonietta; Mariano, Miriam; Romano, Roberto; Chiatto, Fabrizia; Liguoro, Ilaria; Borgia, Guglielmo; Guarino, Alfredo; Lo Vecchio, Andrea

    2015-08-12

    Despite consistent recommendations by all Public Health Authorities in support of annual influenza vaccination for at-risk categories, there is still a low uptake of influenza vaccine in these groups including health care workers (HCWs). Aim of this observational two-phase study was to estimate the immunization rates for influenza in four subsequent seasons and for pandemic H1N1 influenza in HCWs of a University Hospital, and to investigate its distribution pattern and the main determinants of immunization. Phase 1 data collection was performed in 2009-2010, during the peak of H1N1 pandemic. Phase 2 data collection, aimed to investigate seasonal influenza vaccination coverage in the three seasons after pandemic, was performed in 2012-2013. The overall H1N1 vaccination rate was derived by the Hospital immunization registry. In 2010, the personnel of three Departments (Infectious Diseases, Pediatrics and Gynecology/Obstetrics) completed a survey on influenza. A second-phase analysis was performed in 2012 to investigate influenza vaccination coverage in three consecutive seasons. The first-phase survey showed a low coverage for influenza in all categories (17 %), with the lowest rate in nurses (8.1 %). A total of 37 % of health care workers received H1N1 vaccine, with the highest rate among physicians and the lowest in nurses. H1N1 vaccination was closely related to the Department, being higher in the Department of Infectious Diseases (53.7 %) and Pediatrics (42.4 %) than in Gynecology/Obstetrics (8.3 %). The second-phase survey showed the lowest rate of influenza vaccination in 2012/13 season. The main reasons for not being vaccinated were "Unsure of the efficacy of vaccine" and "Feel not at-risk of getting influenza or its complications". Despite recommendations, influenza vaccine uptake remains poor. Immunization is largely perceived as a personal protection rather than a measure needed to prevent disease spreading to at-risk patients. Compulsory vaccination

  19. A novel hemagglutinin protein produced in bacteria protects chickens against H5N1 highly pathogenic avian influenza viruses by inducing H5 subtype-specific neutralizing antibodies

    PubMed Central

    Sączyńska, Violetta; Romanik, Agnieszka; Florys, Katarzyna; Cecuda-Adamczewska, Violetta; Kęsik-Brodacka, Małgorzata; Śmietanka, Krzysztof; Olszewska, Monika; Domańska-Blicharz, Katarzyna; Minta, Zenon; Szewczyk, Bogusław; Płucienniczak, Grażyna; Płucienniczak, Andrzej

    2017-01-01

    The highly pathogenic (HP) H5N1 avian influenza viruses (AIVs) cause a mortality rate of up to 100% in infected chickens and pose a permanent pandemic threat. Attempts to obtain effective vaccines against H5N1 HPAIVs have focused on hemagglutinin (HA), an immunodominant viral antigen capable of eliciting neutralizing antibodies. The vast majority of vaccine projects have been performed using eukaryotic expression systems. In contrast, we used a bacterial expression system to produce vaccine HA protein (bacterial HA) according to our own design. The HA protein with the sequence of the H5N1 HPAIV strain was efficiently expressed in Escherichia coli, recovered in the form of inclusion bodies and refolded by dilution between two chromatographic purification steps. Antigenicity studies showed that the resulting antigen, referred to as rH5-E. coli, preserves conformational epitopes targeted by antibodies specific for H5-subtype HAs, inhibiting hemagglutination and/or neutralizing influenza viruses in vitro. The proper conformation of this protein and its ability to form functional oligomers were confirmed by a hemagglutination test. Consistent with the biochemical characteristics, prime-boost immunizations with adjuvanted rH5-E. coli protected 100% and 70% of specific pathogen-free, layer-type chickens against challenge with homologous and heterologous H5N1 HPAIVs, respectively. The observed protection was related to the positivity in the FluAC H5 test (IDVet) but not to hemagglutination-inhibiting antibody titers. Due to full protection, the effective contact transmission of the homologous challenge virus did not occur. Survivors from both challenges did not or only transiently shed the viruses, as established by viral RNA detection in oropharyngeal and cloacal swabs. Our results demonstrate that vaccination with rH5-E. coli could confer control of H5N1 HPAIV infection and transmission rates in chicken flocks, accompanied by reduced virus shedding. Moreover, the role of

  20. Importance of background rates of disease in assessment of vaccine safety during mass immunisation with pandemic H1N1 influenza vaccines

    PubMed Central

    Black, Steven; Eskola, Juhani; Siegrist, Claire-Anne; Halsey, Neal; MacDonald, Noni; Law, Barbara; Miller, Elizabeth; Andrews, Nick; Stowe, Julia; Salmon, Daniel; Vannice, Kirsten; Izurieta, Hector S; Akhtar, Aysha; Gold, Mike; Oselka, Gabriel; Zuber, Patrick; Pfeifer, Dina; Vellozzi, Claudia

    2010-01-01

    Because of the advent of a new influenza A H1N1 strain, many countries have begun mass immunisation programmes. Awareness of the background rates of possible adverse events will be a crucial part of assessment of possible vaccine safety concerns and will help to separate legitimate safety concerns from events that are temporally associated with but not caused by vaccination. We identified background rates of selected medical events for several countries. Rates of disease events varied by age, sex, method of ascertainment, and geography. Highly visible health conditions, such as Guillain-Barré syndrome, spontaneous abortion, or even death, will occur in coincident temporal association with novel influenza vaccination. On the basis of the reviewed data, if a cohort of 10 million individuals was vaccinated in the UK, 21·5 cases of Guillain-Barré syndrome and 5·75 cases of sudden death would be expected to occur within 6 weeks of vaccination as coincident background cases. In female vaccinees in the USA, 86·3 cases of optic neuritis per 10 million population would be expected within 6 weeks of vaccination. 397 per 1 million vaccinated pregnant women would be predicted to have a spontaneous abortion within 1 day of vaccination. PMID:19880172

  1. [Dynamics of cytokine production in adults after administration of influenza vaccine from A/California/7/2009 (H1N1) strain].

    PubMed

    Terkacheva, O A; Kostinov, M P; Zhirova, S N; Cherdantsev, A P

    2012-01-01

    Study dynamics of IFNalpha, IFNgamma, TNFalpha cytokines in healthy adults after administration of inactivated subunit monovalent influenza vaccine, A/California/7/2009 (H1N1) strain. Levels of IFNalpha, IFNgamma, TNFalpha cytokines were studied in blood sera of 58 mostly healthy adults aged 18 - 60 years. Kits for enzyme immunoassay determination of cytokine levels (Vector-Best, Novosibirsk) were used in the study. Antibody titers to A/California/7/2009 (H1N1) strain were determined at analogous time by using microneutralization reaction (MNR). Changes in the level of IFNalpha, IFNgamma, TNFalpha in healthy volunteers immunized by pandemic influenza vaccine were evaluated. Vaccine was safe. Two immunizations did not result in an increase of TNFalpha level that is an additional evidence of vaccine safety. IFNalpha level had a tendency to increase in vaccinated volunteers. IFNgamma levels in volunteers with normal level of this cytokine (below 10 pg/ml) were increased significantly after the second immunization (from 2.66 +/- 2.48 to 5.21 +/- 2.56). Correlation analysis showed that there is a strong negative association between IFNalpha, IFNgamma and seroconversion.

  2. Influenza Viral Vectors Expressing Two Kinds of HA Proteins as Bivalent Vaccine Against Highly Pathogenic Avian Influenza Viruses of Clade 2.3.4.4 H5 and H7N9

    PubMed Central

    Li, Jinping; Hou, Guangyu; Wang, Yan; Wang, Suchun; Peng, Cheng; Yu, Xiaohui; Jiang, Wenming

    2018-01-01

    The H5 and H7N9 subtypes of highly pathogenic avian influenza viruses (HPAIVs) in China pose a serious challenge to public health and the poultry industry. In this study, a replication competent recombinant influenza A virus of the Í5N1 subtype expressing the H7 HA1 protein from a tri-cistronic NS segment was constructed. A heterologous dimerization domain was used to combine with the truncated NS1 protein of 73 amino acids to increase protein stability. H7 HA1, nuclear export protein coding region, and the truncated NS1 were fused in-frame into a single open reading frame via 2A self-cleaving peptides. The resulting PR8-H5-NS1(73)H7 stably expressed the H5 HA and H7 HA1 proteins, and exhibited similar growth kinetics as the parental PR8-H5 virus in vitro. PR8-H5-NS1(73)H7 induced specific hemagglutination inhibition (HI) antibody against H5, which was comparable to that of the combination vaccine of PR8-H5 and PR8-H7. The HI antibody titers against H7 virus were significantly lower than that by the combination vaccine. PR8-H5-NS1(73)H7 completely protected chickens from challenge with both H5 and H7 HPAIVs. These results suggest that PR8-H5-NS1(73)H7 is highly immunogenic and efficacious against both H5 and H7N9 HPAIVs in chickens. Highlights: - PR8-H5-NS1(73)H7 simultaneously expressed two HA proteins of different avian influenza virus subtypes. - PR8-H5-NS1(73)H7 was highly immunogenic in chickens. - PR8-H5-NS1(73)H7 provided complete protection against challenge with both H5 and H7N9 HPAIVs. PMID:29670587

  3. Emergence and evolution of avian H5N2 influenza viruses in chickens in Taiwan.

    PubMed

    Lee, Chang-Chun David; Zhu, Huachen; Huang, Pei-Yu; Peng, Liuxia; Chang, Yun-Cheng; Yip, Chun-Hung; Li, Yao-Tsun; Cheung, Chung-Lam; Compans, Richard; Yang, Chinglai; Smith, David K; Lam, Tommy Tsan-Yuk; King, Chwan-Chuen; Guan, Yi

    2014-05-01

    Sporadic activity by H5N2 influenza viruses has been observed in chickens in Taiwan from 2003 to 2012. The available information suggests that these viruses were generated by reassortment between a Mexican-like H5N2 virus and a local enzootic H6N1 virus. Yet the origin, prevalence, and pathogenicity of these H5N2 viruses have not been fully defined. Following the 2012 highly pathogenic avian influenza (HPAI) outbreaks, surveillance was conducted from December 2012 to July 2013 at a live-poultry wholesale market in Taipei. Our findings showed that H5N2 and H6N1 viruses cocirculated at low levels in chickens in Taiwan. Phylogenetic analyses revealed that all H5N2 viruses had hemagglutinin (HA) and neuraminidase (NA) genes derived from a 1994 Mexican-like virus, while their internal gene complexes were incorporated from the enzootic H6N1 virus lineage by multiple reassortment events. Pathogenicity studies demonstrated heterogeneous results even though all tested viruses had motifs (R-X-K/R-R) supportive of high pathogenicity. Serological surveys for common subtypes of avian viruses confirmed the prevalence of the H5N2 and H6N1 viruses in chickens and revealed an extraordinarily high seroconversion rate to an H9N2 virus, a subtype that is not found in Taiwan but is prevalent in mainland China. These findings suggest that reassortant H5N2 viruses, together with H6N1 viruses, have become established and enzootic in chickens throughout Taiwan and that a large-scale vaccination program might have been conducted locally that likely led to the introduction of the 1994 Mexican-like virus to Taiwan in 2003. H5N2 avian influenza viruses first appeared in chickens in Taiwan in 2003 and caused a series of outbreaks afterwards. Phylogenetic analyses show that the chicken H5N2 viruses have H5 and N2 genes that are closely related to those of a vaccine strain originating from Mexico in 1994, while the contemporary duck H5N2 viruses in Taiwan belong to the Eurasian gene pool. The

  4. Emergence and Evolution of Avian H5N2 Influenza Viruses in Chickens in Taiwan

    PubMed Central

    Lee, Chang-Chun David; Zhu, Huachen; Huang, Pei-Yu; Peng, Liuxia; Chang, Yun-Cheng; Yip, Chun-Hung; Li, Yao-Tsun; Cheung, Chung-Lam; Compans, Richard; Yang, Chinglai; Smith, David K.; Lam, Tommy Tsan-Yuk

    2014-01-01

    ABSTRACT Sporadic activity by H5N2 influenza viruses has been observed in chickens in Taiwan from 2003 to 2012. The available information suggests that these viruses were generated by reassortment between a Mexican-like H5N2 virus and a local enzootic H6N1 virus. Yet the origin, prevalence, and pathogenicity of these H5N2 viruses have not been fully defined. Following the 2012 highly pathogenic avian influenza (HPAI) outbreaks, surveillance was conducted from December 2012 to July 2013 at a live-poultry wholesale market in Taipei. Our findings showed that H5N2 and H6N1 viruses cocirculated at low levels in chickens in Taiwan. Phylogenetic analyses revealed that all H5N2 viruses had hemagglutinin (HA) and neuraminidase (NA) genes derived from a 1994 Mexican-like virus, while their internal gene complexes were incorporated from the enzootic H6N1 virus lineage by multiple reassortment events. Pathogenicity studies demonstrated heterogeneous results even though all tested viruses had motifs (R-X-K/R-R) supportive of high pathogenicity. Serological surveys for common subtypes of avian viruses confirmed the prevalence of the H5N2 and H6N1 viruses in chickens and revealed an extraordinarily high seroconversion rate to an H9N2 virus, a subtype that is not found in Taiwan but is prevalent in mainland China. These findings suggest that reassortant H5N2 viruses, together with H6N1 viruses, have become established and enzootic in chickens throughout Taiwan and that a large-scale vaccination program might have been conducted locally that likely led to the introduction of the 1994 Mexican-like virus to Taiwan in 2003. IMPORTANCE H5N2 avian influenza viruses first appeared in chickens in Taiwan in 2003 and caused a series of outbreaks afterwards. Phylogenetic analyses show that the chicken H5N2 viruses have H5 and N2 genes that are closely related to those of a vaccine strain originating from Mexico in 1994, while the contemporary duck H5N2 viruses in Taiwan belong to the

  5. Characterization and efficacy determination of commercially available Central American H5N2 avian influenza vaccines for poultry

    USDA-ARS?s Scientific Manuscript database

    H5N2 low pathogenicity avian influenza (LPAI) was first identified in Mexican poultry during May 1994. A vaccination program was implemented, but after 14 years and 2 billion doses, H5N2 LPAI is still present in parts of Mexico and has spread to El Salvador, Guatemala, Dominican Republic, and Haiti...

  6. Technology transfer of oil-in-water emulsion adjuvant manufacturing for pandemic influenza vaccine production in Romania: Preclinical evaluation of split virion inactivated H5N1 vaccine with adjuvant.

    PubMed

    Stavaru, Crina; Onu, Adrian; Lupulescu, Emilia; Tucureanu, Catalin; Rasid, Orhan; Vlase, Ene; Coman, Cristin; Caras, Iuliana; Ghiorghisor, Alina; Berbecila, Laurentiu; Tofan, Vlad; Bowen, Richard A; Marlenee, Nicole; Hartwig, Airn; Bielefeldt-Ohmann, Helle; Baldwin, Susan L; Van Hoeven, Neal; Vedvick, Thomas S; Huynh, Chuong; O'Hara, Michael K; Noah, Diana L; Fox, Christopher B

    2016-04-02

    Millions of seasonal and pandemic influenza vaccine doses containing oil-in-water emulsion adjuvant have been administered in order to enhance and broaden immune responses and to facilitate antigen sparing. Despite the enactment of a Global Action Plan for Influenza Vaccines and a multi-fold increase in production capabilities over the past 10 years, worldwide capacity for pandemic influenza vaccine production is still limited. In developing countries, where routine influenza vaccination is not fully established, additional measures are needed to ensure adequate supply of pandemic influenza vaccines without dependence on the shipment of aid from other, potentially impacted first-world countries. Adaptation of influenza vaccine and adjuvant technologies by developing country influenza vaccine manufacturers may enable antigen sparing and corresponding increases in global influenza vaccine coverage capacity. Following on previously described work involving the technology transfer of oil-in-water emulsion adjuvant manufacturing to a Romanian vaccine manufacturing institute, we herein describe the preclinical evaluation of inactivated split virion H5N1 influenza vaccine with emulsion adjuvant, including immunogenicity, protection from virus challenge, antigen sparing capacity, and safety. In parallel with the evaluation of the bioactivity of the tech-transferred adjuvant, we also describe the impact of concurrent antigen manufacturing optimization activities. Depending on the vaccine antigen source and manufacturing process, inclusion of adjuvant was shown to enhance and broaden functional antibody titers in mouse and rabbit models, promote protection from homologous virus challenge in ferrets, and facilitate antigen sparing. Besides scientific findings, the operational lessons learned are delineated in order to facilitate adaptation of adjuvant technologies by other developing country institutes to enhance global pandemic influenza preparedness.

  7. Trivalent inactivated influenza vaccine effective against influenza A(H3N2) variant viruses in children during the 2014/15 season, Japan

    PubMed Central

    Sugaya, Norio; Shinjoh, Masayoshi; Kawakami, Chiharu; Yamaguchi, Yoshio; Yoshida, Makoto; Baba, Hiroaki; Ishikawa, Mayumi; Kono, Mio; Sekiguchi, Shinichiro; Kimiya, Takahisa; Mitamura, Keiko; Fujino, Motoko; Komiyama, Osamu; Yoshida, Naoko; Tsunematsu, Kenichiro; Narabayashi, Atsushi; Nakata, Yuji; Sato, Akihiro; Taguchi, Nobuhiko; Fujita, Hisayo; Toki, Machiko; Myokai, Michiko; Ookawara, Ichiro; Takahashi, Takao

    2016-01-01

    The 2014/15 influenza season in Japan was characterised by predominant influenza A(H3N2) activity; 99% of influenza A viruses detected were A(H3N2). Subclade 3C.2a viruses were the major epidemic A(H3N2) viruses, and were genetically distinct from A/New York/39/2012(H3N2) of 2014/15 vaccine strain in Japan, which was classified as clade 3C.1. We assessed vaccine effectiveness (VE) of inactivated influenza vaccine (IIV) in children aged 6 months to 15 years by test-negative case–control design based on influenza rapid diagnostic test. Between November 2014 and March 2015, a total of 3,752 children were enrolled: 1,633 tested positive for influenza A and 42 for influenza B, and 2,077 tested negative. Adjusted VE was 38% (95% confidence intervals (CI): 28 to 46) against influenza virus infection overall, 37% (95% CI: 27 to 45) against influenza A, and 47% (95% CI: -2 to 73) against influenza B. However, IIV was not statistically significantly effective against influenza A in infants aged 6 to 11 months or adolescents aged 13 to 15 years. VE in preventing hospitalisation for influenza A infection was 55% (95% CI: 42 to 64). Trivalent IIV that included A/New York/39/2012(H3N2) was effective against drifted influenza A(H3N2) virus, although vaccine mismatch resulted in low VE. PMID:27784529

  8. Immunogenicity and safety of pandemic influenza A (H1N1) 2009 vaccine: systematic review and meta-analysis.

    PubMed

    Yin, J Kevin; Khandaker, Gulam; Rashid, Harunor; Heron, Leon; Ridda, Iman; Booy, Robert

    2011-09-01

    The emergence of the 2009 H1N1 pandemic has highlighted the need to have immunogenicity and safety data on the new pandemic vaccines. There is already considerable heterogeneity in the types of vaccine available and of study performed around the world. A systematic review and meta-analysis is needed to assess the immunogenicity and safety of pandemic influenza A (H1N1) 2009 vaccines. We searched Medline, EMBASE, the Cochrane Library and other online databases up to 1st October 2010 for studies in any language comparing different pandemic H1N1 vaccines, with or without placebo, in healthy populations aged at least 6 months. The primary outcome was seroprotection according to haemagglutination inhibition (HI). Safety outcomes were adverse events. Meta-analysis was performed for the primary outcome. We identified 18 articles, 1 only on safety and 17 on immunogenicity, although 1 was a duplicate. We included 16 articles in the meta-analysis, covering 17,921 subjects. Adequate seroprotection (≥70%) was almost invariably achieved in all age groups, and even after one dose and at low antigen content (except in children under 3 years receiving one dose of non-adjuvanted vaccine). Non-adjuvanted vaccine from international companies and adjuvanted vaccines containing oil in water emulsion (e.g. AS03, MF59), rather than aluminium, performed better. Two serious vaccination-associated adverse events were reported, both of which resolved fully. No death or case of Guillain-Barré syndrome was reported. The pandemic influenza (H1N1) 2009 vaccine, with or without adjuvant, appears generally to be seroprotective after just one dose and safe among healthy populations aged ≥36 months; very young children (6-35 months) may need to receive two doses of non-adjuvanted vaccine or one dose of AS03(A/B)-adjuvanted product to achieve seroprotection. © 2011 Blackwell Publishing Ltd.

  9. [Attitudes and side effects related to pandemic influenza A (H1N1) vaccination in healthcare personnel].

    PubMed

    Ormen, Bahar; Türker, Nesrin; Vardar, Ilknur; Kaptan, Figen; El, Sibel; Ural, Serap; Kaya, Fatih; Coşkun, Nejat Ali

    2012-01-01

    The aims of this study were to evaluate the attitudes towards H1N1 vaccination and to determine the safety and side effects following 2009 pandemic influenza A (H1N1) vaccination. Pandemic influenza vaccine had been administered to the healthcare personnel in our research and training hospital in December 2009. The rate being vaccinated was established as 40% (800/2000). Four months following vaccination, the opinions about vaccination were asked to the healthcare workers, and also side effects were questioned to the vaccinated group. Two different questionnaires (for vaccinated and unvaccinated subjects) were delivered to the volunteers who agreed to participate in the study. Demographic features, reasons related to being vaccinated or not, were questioned. The vaccinated group was also questioned for the presence of chronic diseases, previous vaccinations (pandemic/seasonal influenza), local or systemic reactions that develop after vaccination. A total of 332 volunteers participated in the questionnaire. Of them 247 (74.4%) were vaccinated and 85 (25.6%) were unvaccinated. Male/female ratio of the participants was 1.2, and 55.7% of them were older than 30-year-old. Most of the participants (82.8%) were highly educated (high school and faculty-graduated). Vaccination rates were found statistically significant in advanced age group compared to young adults (p= 0.042); in male gender compared to females (p= 0.001) and in parents compared to subjects who didn't have children (p= 0.021). Vaccination rates were observed to be higher (57.5%) in non-medical staff (cleaning employers, administrative personnel, etc.) than the physicians (29.1%) and nurses (13.4%), and the rate was also high (54.7%) in personnel who worked in intensive care units, emergency department and administrative units than the personnel who worked in the clinics of internal medicine (22.3%) and surgery (23.1%) (p= 0.001). The most important causes of rejecting vaccination were being afraid of the

  10. Higher titers of some H5N1 and recent human H1N1 and H3N2 influenza viruses in Mv1 Lu vs. MDCK cells

    PubMed Central

    2011-01-01

    Background The infectivity of influenza A viruses can differ among the various primary cells and continuous cell lines used for such measurements. Over many years, we observed that all things equal, the cytopathic effects caused by influenza A subtype H1N1, H3N2, and H5N1 viruses were often detected earlier in a mink lung epithelial cell line (Mv1 Lu) than in MDCK cells. We asked whether virus yields as measured by the 50% tissue culture infectious dose and plaque forming titer also differed in MDCK and Mv1 Lu cells infected by the same influenza virus subtypes. Results The 50% tissue culture infectious dose and plaque forming titer of many influenza A subtype H1N1, H3N2, and H5N1 viruses was higher in Mv1 Lu than in MDCK cells. Conclusions The yields of influenza subtype H1N1, H3N2, and H5N1 viruses can be higher in Mv1 Lu cells than in MDCK cells. PMID:21314955

  11. A Single Immunization with Soluble Recombinant Trimeric Hemagglutinin Protects Chickens against Highly Pathogenic Avian Influenza Virus H5N1

    PubMed Central

    Cornelissen, Lisette A. H. M.; de Vries, Robert P.; de Boer-Luijtze, Els A.; Rigter, Alan; Rottier, Peter J. M.; de Haan, Cornelis A. M.

    2010-01-01

    Background The highly pathogenic avian influenza (HPAI) virus H5N1 causes multi-organ disease and death in poultry, resulting in significant economic losses in the poultry industry. In addition, it poses a major public health threat as it can be transmitted directly from infected poultry to humans with very high (60%) mortality rate. Effective vaccination against HPAI H5N1 would protect commercial poultry and would thus provide an important control measure by reducing the likelihood of bird-to-bird and bird-to-human transmission. Methodology/Principal Findings In the present study we evaluated the vaccine potential of recombinant soluble trimeric subtype 5 hemagglutinin (sH53) produced in mammalian cells. The secreted, purified sH53 was biologically active as demonstrated by its binding to ligands in a sialic acid-dependent manner. It was shown to protect chickens, in a dose-dependent manner, against a lethal challenge with H5N1 after a single vaccination. Protected animals did not shed challenge virus as determined by a quantitative RT-PCR on RNA isolated from trachea and cloaca swabs. Also in mice, vaccination with sH53 provided complete protection against challenge with HPAI H5N1. Conclusions/Significance Our results demonstrate that sH53 constitutes an attractive vaccine antigen for protection of chickens and mammals against HPAI H5N1. As these recombinant soluble hemagglutinin preparations can be produced with high yields and with relatively short lead time, they enable a rapid response to circulating and potentially pandemic influenza viruses. PMID:20498717

  12. Comparison of the efficacy of a commercial inactivated influenza A/H1N1/pdm09 virus (pH1N1) vaccine and two experimental M2e-based vaccines against pH1N1 challenge in the growing pig model.

    PubMed

    Opriessnig, Tanja; Gauger, Phillip C; Gerber, Priscilla F; Castro, Alessandra M M G; Shen, Huigang; Murphy, Lita; Digard, Paul; Halbur, Patrick G; Xia, Ming; Jiang, Xi; Tan, Ming

    2018-01-01

    Swine influenza A viruses (IAV-S) found in North American pigs are diverse and the lack of cross-protection among heterologous strains is a concern. The objective of this study was to compare a commercial inactivated A/H1N1/pdm09 (pH1N1) vaccine and two novel subunit vaccines, using IAV M2 ectodomain (M2e) epitopes as antigens, in a growing pig model. Thirty-nine 2-week-old IAV negative pigs were randomly assigned to five groups and rooms. At 3 weeks of age and again at 5 weeks of age, pigs were vaccinated intranasally with an experimental subunit particle vaccine (NvParticle/M2e) or a subunit complex-based vaccine (NvComplex/M2e) or intramuscularly with a commercial inactivated vaccine (Inact/pH1N1). At 7 weeks of age, the pigs were challenged with pH1N1 virus or sham-inoculated. Necropsy was conducted 5 days post pH1N1 challenge (dpc). At the time of challenge one of the Inact/pH1N1 pigs had seroconverted based on IAV nucleoprotein-based ELISA, Inact/pH1N1 pigs had significantly higher pdm09H1N1 hemagglutination inhibition (HI) titers compared to all other groups, and M2e-specific IgG responses were detected in the NvParticle/M2e and the NvComplex/M2e pigs with significantly higher group means in the NvComplex/M2e group compared to SHAMVAC-NEG pigs. After challenge, nasal IAV RNA shedding was significantly reduced in Inact/pH1N1 pigs compared to all other pH1N1 infected groups and this group also had reduced IAV RNA in oral fluids. The macroscopic lung lesions were characterized by mild-to-severe, multifocal-to-diffuse, cranioventral dark purple consolidated areas typical of IAV infection and were similar for NvParticle/M2e, NvComplex/M2e and SHAMVAC-IAV pigs. Lesions were significantly less severe in the SHAMVAC-NEG and the Inact/pH1N1pigs. Under the conditions of this study, a commercial Inact/pH1N1 specific vaccine effectively protected pigs against homologous challenge as evidenced by reduced clinical signs, virus shedding in nasal secretions and oral fluids

  13. Comparison of the efficacy of a commercial inactivated influenza A/H1N1/pdm09 virus (pH1N1) vaccine and two experimental M2e-based vaccines against pH1N1 challenge in the growing pig model

    PubMed Central

    Gauger, Phillip C.; Gerber, Priscilla F.; Castro, Alessandra M. M. G.; Shen, Huigang; Murphy, Lita; Digard, Paul; Halbur, Patrick G.; Xia, Ming; Jiang, Xi; Tan, Ming

    2018-01-01

    Swine influenza A viruses (IAV-S) found in North American pigs are diverse and the lack of cross-protection among heterologous strains is a concern. The objective of this study was to compare a commercial inactivated A/H1N1/pdm09 (pH1N1) vaccine and two novel subunit vaccines, using IAV M2 ectodomain (M2e) epitopes as antigens, in a growing pig model. Thirty-nine 2-week-old IAV negative pigs were randomly assigned to five groups and rooms. At 3 weeks of age and again at 5 weeks of age, pigs were vaccinated intranasally with an experimental subunit particle vaccine (NvParticle/M2e) or a subunit complex-based vaccine (NvComplex/M2e) or intramuscularly with a commercial inactivated vaccine (Inact/pH1N1). At 7 weeks of age, the pigs were challenged with pH1N1 virus or sham-inoculated. Necropsy was conducted 5 days post pH1N1 challenge (dpc). At the time of challenge one of the Inact/pH1N1 pigs had seroconverted based on IAV nucleoprotein-based ELISA, Inact/pH1N1 pigs had significantly higher pdm09H1N1 hemagglutination inhibition (HI) titers compared to all other groups, and M2e-specific IgG responses were detected in the NvParticle/M2e and the NvComplex/M2e pigs with significantly higher group means in the NvComplex/M2e group compared to SHAMVAC-NEG pigs. After challenge, nasal IAV RNA shedding was significantly reduced in Inact/pH1N1 pigs compared to all other pH1N1 infected groups and this group also had reduced IAV RNA in oral fluids. The macroscopic lung lesions were characterized by mild-to-severe, multifocal-to-diffuse, cranioventral dark purple consolidated areas typical of IAV infection and were similar for NvParticle/M2e, NvComplex/M2e and SHAMVAC-IAV pigs. Lesions were significantly less severe in the SHAMVAC-NEG and the Inact/pH1N1pigs. Under the conditions of this study, a commercial Inact/pH1N1 specific vaccine effectively protected pigs against homologous challenge as evidenced by reduced clinical signs, virus shedding in nasal secretions and oral fluids

  14. An avian influenza H5N1 virus vaccine candidate based on the extracellular domain produced in yeast system as subviral particles protects chickens from lethal challenge.

    PubMed

    Pietrzak, Maria; Macioła, Agnieszka; Zdanowski, Konrad; Protas-Klukowska, Anna Maria; Olszewska, Monika; Śmietanka, Krzysztof; Minta, Zenon; Szewczyk, Bogusław; Kopera, Edyta

    2016-09-01

    Highly pathogenic avian influenza is an on-going problem in poultry and a potential human pandemic threat. Pandemics occur suddenly and vaccine production must be fast and effective to be of value in controlling the spread of the virus. In this study we evaluated the potential of a recombinant protein from the extracellular domain of an H5 hemagglutinin protein produced in a yeast expression system to act as an effective vaccine. Protein production was efficient, with up to 200 mg purified from 1 L of culture medium. We showed that the deletion of the multibasic cleavage site from the protein improves oligomerization and, consequentially, its immunogenicity. We also showed that immunization with this deleted protein protected chickens from challenge with a highly pathogenic avian influenza H5N1 virus. Our results suggest that this recombinant protein produced in yeast may be an effective vaccine against H5N1 virus in poultry. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  15. The European I-MOVE Multicentre 2013-2014 Case-Control Study. Homogeneous moderate influenza vaccine effectiveness against A(H1N1)pdm09 and heterogenous results by country against A(H3N2).

    PubMed

    Valenciano, Marta; Kissling, Esther; Reuss, Annicka; Jiménez-Jorge, Silvia; Horváth, Judit K; Donnell, Joan M O; Pitigoi, Daniela; Machado, Ausenda; Pozo, Francisco

    2015-06-04

    In the first five I-MOVE (Influenza Monitoring Vaccine Effectiveness in Europe) influenza seasons vaccine effectiveness (VE) results were relatively homogenous among participating study sites. In 2013-2014, we undertook a multicentre case-control study based on sentinel practitioner surveillance networks in six European Union (EU) countries to measure 2013-2014 influenza VE against medically-attended influenza-like illness (ILI) laboratory-confirmed as influenza. Influenza A(H3N2) and A(H1N1)pdm09 viruses co-circulated during the season. Practitioners systematically selected ILI patients to swab within eight days of symptom onset. We compared cases (ILI positive to influenza A(H3N2) or A(H1N1)pdm09) to influenza negative patients. We calculated VE for the two influenza A subtypes and adjusted for potential confounders. We calculated heterogeneity between sites using the I(2) index and Cochrane's Q test. If the I(2) was <50%, we estimated pooled VE as (1 minus the OR)×100 using a one-stage model with study site as a fixed effect. If the I(2) was >49% we used a two-stage random effects model. We included in the A(H1N1)pdm09 analysis 531 cases and 1712 controls and in the A(H3N2) analysis 623 cases and 1920 controls. For A(H1N1)pdm09, the Q test (p=0.695) and the I(2) index (0%) suggested no heterogeneity of adjusted VE between study sites. Using a one-stage model, the overall pooled adjusted VE against influenza A(H1N1)pdm2009 was 47.5% (95% CI: 16.4-67.0). For A(H3N2), the I(2) was 51.5% (p=0.067). Using a two-stage model for the pooled analysis, the adjusted VE against A(H3N2) was 29.7 (95% CI: -34.4-63.2). The results suggest a moderate 2013-2014 influenza VE against A(H1N1)pdm09 and a low VE against A(H3N2). The A(H3N2) estimates were heterogeneous among study sites. Larger sample sizes by study site are needed to prevent statistical heterogeneity, decrease variability and allow for two-stage pooled VE for all subgroup analyses. Copyright © 2015 The Authors

  16. Fever following immunization with influenza A (H1N1) vaccine in children: a survey-based study in the Netherlands.

    PubMed

    Broos, Nancy; van Puijenbroek, Eugène P; van Grootheest, Kees

    2010-12-01

    In November 2009, all children in the Netherlands from 6 months up to 4 years of age were indicated to receive the Influenza A (H1N1) vaccine. Fever is a common adverse event following immunization in children. Pandemrix®, an inactivated, split-virus influenza A (H1N1) vaccine, was used for this age group. A clinical study mentioned in the Summary of Product Characteristics of Pandemrix® found an increased reactogenicity after the second dose in comparison with the first dose, particularly in the rate of fever. In the Netherlands, this adverse reaction was a point of concern for the parents or caregivers of these children. To investigate the course and height of fever following the first and second dose of Pandemrix® in children aged from 6 months up to 4 years. The secondary aim was to evaluate the use of an online survey during a vaccination campaign. Survey-based descriptive study. Adverse drug reaction reporting database of the Netherlands Pharmacovigilance Centre (Lareb). Parents or caregivers (n = 839) of vaccinated children who reported fever to Lareb following the first immunization with Pandemrix®. Questionnaires were sent by email to parents or caregivers of eligible children following the first and second doses of Pandremix®. Time between vaccination and the occurrence of fever, the maximum measured temperature, the occurrence of other adverse events after first and second vaccination, the decision to get the second vaccination and the social implication of the fever in terms of absence from work, nursery or school, and hospitalization. Following the first vaccination against Influenza A (H1N1), the height of the fever was between 39.0 and 40.0°C in 359/639 (56.2%) of the children. In most of these children (235/639 [36.8%]), the onset of fever was between 6 and 12 hours following vaccination. 450/639 (70.4%) children recovered within 2 days. Of the 539 responders to the second questionnaire, 380 (70.5%) received the second vaccination against

  17. Characterization and efficacy determination of commercially available Central American H5N2 avian influenza vaccines for poultry.

    PubMed

    Eggert, Dawn; Thomas, Colleen; Spackman, Erica; Pritchard, Nikki; Rojo, Francisco; Bublot, Michel; Swayne, David E

    2010-06-23

    A poultry vaccination program was implemented in Central America beginning in January 1995 to control both H5N2 low (LPAI) and high pathogenicity avian influenza. This study was conducted to identify seed strain composition and the efficacy of 10 commercially available H5 vaccines against challenge with H5N2 LPAI viruses isolated from Latin America in 2003. The original 1994 vaccine seed virus in commercial inactivated vaccines did not significantly reduce challenge virus shed titers. However, two seed strains of inactivated vaccines, genetically more closely related to the challenge virus, did significantly reduce titers of challenge virus shed from respiratory tract. In addition, a live recombinant fowlpox virus vaccine containing a more distantly related Eurasian lineage H5 gene insert significantly reduced respiratory shedding as compared to sham vaccinates. These results demonstrate the feasibility of identifying vaccine seed strains in commercial finished products for regulatory verification and the need for periodic challenge testing against current field strains in order to select efficacious vaccine seed strains. (c) 2010 Elsevier Ltd. All rights reserved.

  18. Antibody response to influenza A(H1N1)pdm09 among healthcare personnel receiving trivalent inactivated vaccine: effect of prior monovalent inactivated vaccine.

    PubMed

    Gaglani, Manjusha; Spencer, Sarah; Ball, Sarah; Song, Juhee; Naleway, Allison; Henkle, Emily; Bozeman, Sam; Reynolds, Sue; Sessions, Wendy; Hancock, Kathy; Thompson, Mark

    2014-06-01

    Few data are available on the immunogenicity of repeated annual doses of influenza A(H1N1)pdm09-containing vaccines. We enrolled healthcare personnel (HCP) in direct patient care during the autumn of 2010 at 2 centers with voluntary immunization. We verified the receipt of A(H1N1)pdm09-containing monovalent inactivated influenza vaccine (MIIV) and 2010-2011 trivalent inactivated vaccine (TIV). We performed hemagglutination inhibition antibody (HI) assays on preseason, post-TIV, and end-of-season serum samples. We compared the proportion of HCPs with HI titer ≥ 40 against A(H1N1)pdm09 per receipt of prior-season MIIV, current-season TIV, both, or neither. At preseason (n = 1417), HI ≥ 40 was significantly higher among those who received MIIV (34%) vs those who did not (14%) (adjusted relative risk [ARR], 3.26; 95% confidence interval [CI], 2.72-3.81). At post-TIV (n = 865), HI ≥ 40 was lower among HCP who received MIIV and TIV (66%) than among those receiving only TIV (85%) (ARR, 0.93 [95% CI, .84-.997]). At end-of-season (n = 1254), HI ≥ 40 was 40% among those who received both MIIV and TIV and 67% among those receiving only TIV (ARR, 0.76 [95% CI, .65-.88]), 52% among those who received MIIV only, and 12% among those receiving neither. HCP immunization programs should consider effects of host immune response and vaccine antigenic distance on immunogenicity of repeated annual doses of influenza vaccines.

  19. A Duck Enteritis Virus-Vectored Bivalent Live Vaccine Provides Fast and Complete Protection against H5N1 Avian Influenza Virus Infection in Ducks ▿ † §

    PubMed Central

    Liu, Jinxiong; Chen, Pucheng; Jiang, Yongping; Wu, Li; Zeng, Xianying; Tian, Guobin; Ge, Jinying; Kawaoka, Yoshihiro; Bu, Zhigao; Chen, Hualan

    2011-01-01

    Ducks play an important role in the maintenance of highly pathogenic H5N1 avian influenza viruses (AIVs) in nature, and the successful control of AIVs in ducks has important implications for the eradication of the disease in poultry and its prevention in humans. The inactivated influenza vaccine is expensive, labor-intensive, and usually needs 2 to 3 weeks to induce protective immunity in ducks. Live attenuated duck enteritis virus (DEV; a herpesvirus) vaccine is used routinely to control lethal DEV infections in many duck-producing areas. Here, we first established a system to generate the DEV vaccine strain by using the transfection of overlapping fosmid DNAs. Using this system, we constructed two recombinant viruses, rDEV-ul41HA and rDEV-us78HA, in which the hemagglutinin (HA) gene of the H5N1 virus A/duck/Anhui/1/06 was inserted and stably maintained within the ul41 gene or between the us7 and us8 genes of the DEV genome. Duck studies indicated that rDEV-us78HA had protective efficacy similar to that of the live DEV vaccine against lethal DEV challenge; importantly, a single dose of 106 PFU of rDEV-us78HA induced complete protection against a lethal H5N1 virus challenge in as little as 3 days postvaccination. The protective efficacy against both lethal DEV and H5N1 challenge provided by rDEV-ul41HA inoculation in ducks was slightly weaker than that provided by rDEV-us78HA. These results demonstrate, for the first time, that recombinant DEV is suitable for use as a bivalent live attenuated vaccine, providing rapid protection against both DEV and H5N1 virus infection in ducks. PMID:21865383

  20. Induction of neutralising antibodies by virus-like particles harbouring surface proteins from highly pathogenic H5N1 and H7N1 influenza viruses

    PubMed Central

    Szécsi, Judit; Boson, Bertrand; Johnsson, Per; Dupeyrot-Lacas, Pia; Matrosovich, Mikhail; Klenk, Hans-Dieter; Klatzmann, David; Volchkov, Viktor; Cosset, François-Loïc

    2006-01-01

    There is an urgent need to develop novel approaches to vaccination against the emerging, highly pathogenic avian influenza viruses. Here, we engineered influenza viral-like particles (Flu-VLPs) derived from retroviral core particles that mimic the properties of the viral surface of two highly pathogenic influenza viruses of either H7N1 or H5N1 antigenic subtype. We demonstrate that, upon recovery of viral RNAs from a field strain, one can easily generate expression vectors that encode the HA, NA and M2 surface proteins of either virus and prepare high-titre Flu-VLPs. We characterise these Flu-VLPs incorporating the HA, NA and M2 proteins and we show that they induce high-titre neutralising antibodies in mice. PMID:16948862

  1. Multiple introductions of highly pathogenic avian influenza H5N1 viruses into Bangladesh

    PubMed Central

    Marinova-Petkova, Atanaska; Feeroz, Mohammed M; Rabiul Alam, SM; Kamrul Hasan, M; Akhtar, Sharmin; Jones-Engel, Lisa; Walker, David; McClenaghan, Laura; Rubrum, Adam; Franks, John; Seiler, Patrick; Jeevan, Trushar; McKenzie, Pamela; Krauss, Scott; Webby, Richard J; Webster, Robert G

    2014-01-01

    Highly pathogenic H5N1 and low pathogenic H9N2 influenza viruses are endemic to poultry markets in Bangladesh and have cocirculated since 2008. H9N2 influenza viruses circulated constantly in the poultry markets, whereas highly pathogenic H5N1 viruses occurred sporadically, with peaks of activity in cooler months. Thirty highly pathogenic H5N1 influenza viruses isolated from poultry were characterized by antigenic, molecular, and phylogenetic analyses. Highly pathogenic H5N1 influenza viruses from clades 2.2.2 and 2.3.2.1 were isolated from live bird markets only. Phylogenetic analysis of the 30 H5N1 isolates revealed multiple introductions of H5N1 influenza viruses in Bangladesh. There was no reassortment between the local H9N2 influenza viruses and H5N1 genotype, despite their prolonged cocirculation. However, we detected two reassortant H5N1 viruses, carrying the M gene from the Chinese H9N2 lineage, which briefly circulated in the Bangladesh poultry markets and then disappeared. On the other hand, interclade reassortment occurred within H5N1 lineages and played a role in the genesis of the currently dominant H5N1 viruses in Bangladesh. Few ‘human-like' mutations in H5N1 may account for the limited number of human cases. Antigenically, clade 2.3.2.1 H5N1 viruses in Bangladesh have evolved since their introduction and are currently mainly homogenous, and show evidence of recent antigenic drift. Although reassortants containing H9N2 genes were detected in live poultry markets in Bangladesh, these reassortants failed to supplant the dominant H5N1 lineage. PMID:26038508

  2. Antibody responses to influenza A/H1N1pdm09 virus after pandemic and seasonal influenza vaccination in healthcare workers: a five-year follow-up study.

    PubMed

    Trieu, Mai-Chi; Jul-Larsen, Åsne; Sævik, Marianne; Madsen, Anders; Nøstbakken, Jane Kristin; Zhou, Fan; Skrede, Steinar; Cox, Rebecca Jane

    2018-06-09

    The 2009 influenza pandemic was caused by A/H1N1pdm09 virus, which was subsequently included in the seasonal vaccine as the A/H1N1 strain up to 2016/17. This provided a unique opportunity to investigate the antibody response to H1N1pdm09 over time. Healthcare workers (HCWs) were immunized with the AS03-adjuvanted H1N1pdm09 vaccine in 2009 (N=250), and subsequently vaccinated with seasonal vaccines containing H1N1pdm09 for 4 seasons (repeated group), <4 seasons (occasional group), or received no further vaccinations (single group). Blood samples were collected at 21-days, 3-, 6- and 12-months after each vaccination or annually (pre-season) from 2010 in the single group. The H1N1pdm09-specific antibodies were measured by the hemagglutination inhibition (HI) assay. Pandemic vaccination robustly induced HI antibodies that persisted above the 50% protective threshold (HI titers ≥40) over 12-months post-vaccination. Previous seasonal vaccination and the duration of adverse events after pandemic vaccination influenced the decision to vaccinate in subsequent seasons. During 2010/11-2013/14, antibodies were boosted after each seasonal vaccination, although no significant difference was observed between the repeated and occasional groups. In the single group without seasonal vaccination, 32% of HCWs seroconverted (≥4 fold-increase HI titers) during the four subsequent years, most of whom had HI titers <40 prior to seroconversion. When excluding these seroconverted HCWs, HI titers gradually declined from 12- to 60-months post-pandemic vaccination. Pandemic vaccination elicited durable antibodies, supporting the incorporation of adjuvant. Our findings support the current recommendation of annual influenza vaccination in HCWs.

  3. Development of Clade-Specific and Broadly Reactive Live Attenuated Influenza Virus Vaccines against Rapidly Evolving H5 Subtype Viruses

    PubMed Central

    Boonnak, Kobporn; Matsuoka, Yumiko; Wang, Weijia; Suguitan, Amorsolo L.; Chen, Zhongying; Paskel, Myeisha; Baz, Mariana; Moore, Ian; Jin, Hong

    2017-01-01

    ABSTRACT We have developed pandemic live attenuated influenza vaccines (pLAIVs) against clade 1 H5N1 viruses on an Ann Arbor cold-adapted (ca) backbone that induced long-term immune memory. In 2015, many human infections caused by a new clade (clade 2.2.1.1) of goose/Guangdong (gs/GD) lineage H5N1 viruses were reported in Egypt, which prompted updating of the H5N1 pLAIV. We explored two strategies to generate suitable pLAIVs. The first approach was to modify the hemagglutinin gene of a highly pathogenic wild-type (wt) clade 2.2.1.1 virus, A/Egypt/N03434/2009 (Egy/09) (H5N1), with its unmodified neuraminidase (NA) gene; this virus was designated Egy/09 ca. The second approach was to select a low-pathogenicity avian influenza H5 virus that elicited antibodies that cross-reacted with a broad range of H5 viruses, including the Egypt H5N1 viruses, and contained a novel NA subtype for humans. We selected the low-pathogenicity A/duck/Hokkaido/69/2000 (H5N3) (dk/Hok/00) virus for this purpose. Both candidate vaccines were attenuated and immunogenic in ferrets, inducing antibodies that neutralized homologous and heterologous H5 viruses with different degrees of cross-reactivity; Egy/09 ca vaccine antisera were more specific for the gs/GD lineage viruses but did not neutralize recent North American isolates (clade 2.3.4.4), whereas antisera from dk/Hok/69 ca-vaccinated ferrets cross-reacted with clade 2.3.4.4 and 2.2.1 viruses but not clade 1 or 2.1 viruses. When vaccinated ferrets were challenged with homologous and heterologous H5 viruses, challenge virus replication was reduced in the respiratory tract. Thus, the two H5 pLAIV candidates are suitable for clinical development to protect humans from infection with different clades of H5 viruses. IMPORTANCE In response to the continuing evolution of H5N1 avian influenza viruses and human infections, new candidate H5 live attenuated vaccines were developed by using two different approaches: one targeted a specific circulating

  4. Development of Clade-Specific and Broadly Reactive Live Attenuated Influenza Virus Vaccines against Rapidly Evolving H5 Subtype Viruses.

    PubMed

    Boonnak, Kobporn; Matsuoka, Yumiko; Wang, Weijia; Suguitan, Amorsolo L; Chen, Zhongying; Paskel, Myeisha; Baz, Mariana; Moore, Ian; Jin, Hong; Subbarao, Kanta

    2017-08-01

    We have developed pandemic live attenuated influenza vaccines (pLAIVs) against clade 1 H5N1 viruses on an Ann Arbor cold-adapted ( ca ) backbone that induced long-term immune memory. In 2015, many human infections caused by a new clade (clade 2.2.1.1) of goose/Guangdong (gs/GD) lineage H5N1 viruses were reported in Egypt, which prompted updating of the H5N1 pLAIV. We explored two strategies to generate suitable pLAIVs. The first approach was to modify the hemagglutinin gene of a highly pathogenic wild-type ( wt ) clade 2.2.1.1 virus, A/Egypt/N03434/2009 (Egy/09) (H5N1), with its unmodified neuraminidase (NA) gene; this virus was designated Egy/09 ca The second approach was to select a low-pathogenicity avian influenza H5 virus that elicited antibodies that cross-reacted with a broad range of H5 viruses, including the Egypt H5N1 viruses, and contained a novel NA subtype for humans. We selected the low-pathogenicity A/duck/Hokkaido/69/2000 (H5N3) (dk/Hok/00) virus for this purpose. Both candidate vaccines were attenuated and immunogenic in ferrets, inducing antibodies that neutralized homologous and heterologous H5 viruses with different degrees of cross-reactivity; Egy/09 ca vaccine antisera were more specific for the gs/GD lineage viruses but did not neutralize recent North American isolates (clade 2.3.4.4), whereas antisera from dk/Hok/69 ca -vaccinated ferrets cross-reacted with clade 2.3.4.4 and 2.2.1 viruses but not clade 1 or 2.1 viruses. When vaccinated ferrets were challenged with homologous and heterologous H5 viruses, challenge virus replication was reduced in the respiratory tract. Thus, the two H5 pLAIV candidates are suitable for clinical development to protect humans from infection with different clades of H5 viruses. IMPORTANCE In response to the continuing evolution of H5N1 avian influenza viruses and human infections, new candidate H5 live attenuated vaccines were developed by using two different approaches: one targeted a specific circulating

  5. Generation and protective efficacy of a cold-adapted attenuated avian H9N2 influenza vaccine.

    PubMed

    Wei, Yandi; Qi, Lu; Gao, Huijie; Sun, Honglei; Pu, Juan; Sun, Yipeng; Liu, Jinhua

    2016-07-26

    To prevent H9N2 avian influenza virus infection in chickens, a long-term vaccination program using inactivated vaccines has been implemented in China. However, the protective efficacy of inactivated vaccines against antigenic drift variants is limited, and H9N2 influenza virus continues to circulate in vaccinated chicken flocks in China. Therefore, developing a cross-reactive vaccine to control the impact of H9N2 influenza in the poultry industry remains a high priority. In the present study, we developed a live cold-adapted H9N2 influenza vaccine candidate (SD/01/10-ca) by serial passages in embryonated eggs at successively lower temperatures. A total of 13 amino acid mutations occurred during the cold-adaptation of this H9N2 virus. The candidate was safe in chickens and induced robust hemagglutination-inhibition antibody responses and influenza virus-specific CD4(+) and CD8(+) T cell immune responses in chickens immunized intranasally. Importantly, the candidate could confer protection of chickens from homologous and heterogenous H9N2 viruses. These results demonstrated that the cold-adapted attenuated H9N2 virus would be selected as a vaccine to control the infection of prevalent H9N2 influenza viruses in chickens.

  6. Generation and protective efficacy of a cold-adapted attenuated avian H9N2 influenza vaccine

    PubMed Central

    Wei, Yandi; Qi, Lu; Gao, Huijie; Sun, Honglei; Pu, Juan; Sun, Yipeng; Liu, Jinhua

    2016-01-01

    To prevent H9N2 avian influenza virus infection in chickens, a long-term vaccination program using inactivated vaccines has been implemented in China. However, the protective efficacy of inactivated vaccines against antigenic drift variants is limited, and H9N2 influenza virus continues to circulate in vaccinated chicken flocks in China. Therefore, developing a cross-reactive vaccine to control the impact of H9N2 influenza in the poultry industry remains a high priority. In the present study, we developed a live cold-adapted H9N2 influenza vaccine candidate (SD/01/10-ca) by serial passages in embryonated eggs at successively lower temperatures. A total of 13 amino acid mutations occurred during the cold-adaptation of this H9N2 virus. The candidate was safe in chickens and induced robust hemagglutination-inhibition antibody responses and influenza virus–specific CD4+ and CD8+ T cell immune responses in chickens immunized intranasally. Importantly, the candidate could confer protection of chickens from homologous and heterogenous H9N2 viruses. These results demonstrated that the cold-adapted attenuated H9N2 virus would be selected as a vaccine to control the infection of prevalent H9N2 influenza viruses in chickens. PMID:27457755

  7. Purification and immunogenicity of hemagglutinin from highly pathogenic avian influenza virus H5N1 expressed in Nicotiana benthamiana

    PubMed Central

    Pua, Teen-Lee; Chan, Xiao Ying; Loh, Hwei-San; Omar, Abdul Rahman; Yusibov, Vidadi; Musiychuk, Konstantin; Hall, Alexandra C.; Coffin, Megan V.; Shoji, Yoko; Chichester, Jessica A.; Bi, Hong; Streatfield, Stephen J.

    2017-01-01

    ABSTRACT Highly pathogenic avian influenza (HPAI) H5N1 is an ongoing global health concern due to its severe sporadic outbreaks in Asia, Africa and Europe, which poses a potential pandemic threat. The development of safe and cost-effective vaccine candidates for HPAI is considered the best strategy for managing the disease and addressing the pandemic preparedness. The most potential vaccine candidate is the antigenic determinant of influenza A virus, hemagglutinin (HA). The present research was aimed at developing optimized expression in Nicotiana benthamiana and protein purification process for HA from the Malaysian isolate of H5N1 as a vaccine antigen for HPAI H5N1. Expression of HA from the Malaysian isolate of HPAI in N. benthamiana was confirmed, and more soluble protein was expressed as truncated HA, the HA1 domain over the entire ectodomain of HA. Two different purification processes were evaluated for efficiency in terms of purity and yield. Due to the reduced yield, protein degradation and length of the 3-column purification process, the 2-column method was chosen for target purification. Purified HA1 was found immunogenic in mice inducing H5 HA-specific IgG and a hemagglutination inhibition antibody. This paper offers an alternative production system of a vaccine candidate against a locally circulating HPAI, which has a regional significance. PMID:27929750

  8. Enhanced genetic characterization of influenza A(H3N2) viruses and vaccine effectiveness by genetic group, 2014–2015

    PubMed Central

    Flannery, Brendan; Zimmerman, Richard K.; Gubareva, Larisa V.; Garten, Rebecca J.; Chung, Jessie R.; Nowalk, Mary Patricia; Jackson, Michael L.; Jackson, Lisa A.; Monto, Arnold S.; Ohmit, Suzanne E.; Belongia, Edward A.; McLean, Huong Q.; Gaglani, Manjusha; Piedra, Pedro A.; Mishin, Vasiliy P.; Chesnokov, Anton P.; Spencer, Sarah; Thaker, Swathi N.; Barnes, John R.; Foust, Angie; Sessions, Wendy; Xu, Xiyan; Katz, Jacqueline; Fry, Alicia M.

    2018-01-01

    Background During the 2014–15 US influenza season, expanded genetic characterization of circulating influenza A(H3N2) viruses was used to assess the impact of genetic variability of influenza A(H3N2) viruses on influenza vaccine effectiveness (VE). Methods A novel pyrosequencing assay was used to determine genetic group based on hemagglutinin (HA) gene sequences of influenza A(H3N2) viruses from patients enrolled US Flu Vaccine Effectiveness network sites. Vaccine effectiveness was estimated using a test-negative design comparing vaccination among patients infected with influenza A(H3N2) viruses and uninfected patients. Results Among 9710 enrollees, 1868 (19%) tested positive for influenza A(H3N2); genetic characterization of 1397 viruses showed 1134 (81%) belonged to one HA genetic group (3C.2a) of antigenically drifted H3N2 viruses. Effectiveness of 2014–15 influenza vaccination varied by A(H3N2) genetic group from 1% (95% confidence interval [CI], −14% to 14%) against illness caused by antigenically drifted A(H3N2) group 3C.2a viruses versus 44% (95% CI, 16% to 63%) against illness caused by vaccine-like A(H3N2) group 3C.3b viruses. Conclusion Effectiveness of 2014–15 influenza vaccination varied by genetic group of influenza A(H3N2) virus. Changes in hemagglutinin genes related to antigenic drift were associated with reduced vaccine effectiveness. PMID:27190176

  9. Experimental infection of clade 1.1.2 (H5N1), clade 2.3.2.1c (H5N1) and clade 2.3.4.4 (H5N6) highly pathogenic avian influenza viruses in dogs.

    PubMed

    Lyoo, K S; Na, W; Phan, L V; Yoon, S W; Yeom, M; Song, D; Jeong, D G

    2017-12-01

    Since the emergence of highly pathogenic avian influenza (HPAI) H5N1 in Asia, the haemagglutinin (HA) gene of this virus lineage has continued to evolve in avian populations, and H5N1 lineage viruses now circulate concurrently worldwide. Dogs may act as an intermediate host, increasing the potential for zoonotic transmission of influenza viruses. Virus transmission and pathologic changes in HPAI clade 1.1.2 (H5N1)-, 2.3.2.1c (H5N1)- and 2.3.4.4 (H5N6)-infected dogs were investigated. Mild respiratory signs and antibody response were shown in dogs intranasally infected with the viruses. Lung histopathology showed lesions that were associated with moderate interstitial pneumonia in the infected dogs. In this study, HPAI H5N6 virus replication in dogs was demonstrated for the first time. Dogs have been suspected as a "mixing vessel" for reassortments between avian and human influenza viruses to occur. The replication of these three subtypes of the H5 lineage of HPAI viruses in dogs suggests that dogs could serve as intermediate hosts for avian-human influenza virus reassortment if they are also co-infected with human influenza viruses. © 2017 Blackwell Verlag GmbH.

  10. [Trends in and challenges for highly pathogenic avian influenza A (H5N1)].

    PubMed

    Kudo, Koichiro; Manabe, Toshie; Izumi, Shinyu; Takasaki, Jin

    2010-09-01

    A new pandemic influenza A (H1N1) virus had emerged and rapidly spread throughout the world. The clinical pathological observations associated with severe cases of pandemic (H1N1) 2009 are similar to that of high pathogenic avian influenza (H5N1). In order to find the most effective treatment methods for this pandemic influenza (H1N1), we describe our experiences, investigations and collaboration studies of avian influenza (H5N1) in Vietnam in association of our cooperative study of pandemic (H1N1) 2009 in Mexico. Effective treatment methods for critical illness due to influenza will be discussed from medical, regional and global points of view, which may be applied for the treatment of any type of influenza virus.

  11. Assessment of squalene adjuvanted and non-adjuvanted vaccines against pandemic H1N1 influenza in children 6 months to 17 years of age

    PubMed Central

    Vesikari, Timo; Pepin, Stéphanie; Kusters, Inca; Hoffenbach, Agnès; Denis, Martine

    2012-01-01

    Vaccines were urgently needed in 2009 against A/H1N1 pandemic influenza. Based on the H5N1 experience, it was originally thought that 2 doses of an adjuvanted vaccine were needed for adequate immunogenicity. We tested H1N1 vaccines with or without AF03, a squalene-based adjuvant, in children. Two randomized, open-label, trials were conducted. Participants 3–17 y received two injections of 3.8 µg or 7.5 µg hemagglutinin (HA) with adjuvant or 15 µg HA without adjuvant. Participants aged 6–35 mo received two injections of 1.9 µg or 3.8 µg HA with full or half dose adjuvant or 7.5 µg HA without adjuvant. All subjects 3 to 17 y reached seroprotection (hemagglutination inhibition (HI) titer ≥ 40) after the first dose of the adjuvanted vaccine, and 94% and 98% in the 3–8 and 9–17 y groups respectively with the non-adjuvanted vaccine. In children aged 6–35 mo responses were modest after one dose, but after two doses virtually all children were seroprotected regardless of HA or adjuvant dose. In this age group, antibody titers were 5 to 7 times higher after adjuvanted than non-adjuvanted vaccine. The higher responses with the adjuvanted vaccine were also reflected as better antibody persistence. There was no clustering of adverse events that would be suggestive of a safety signal. While a single injection was sufficient in subjects from 3 y, in children aged 6–35 mo two injections of this A/H1N1 pandemic influenza vaccine were required. Formulation of this vaccine with adjuvant provided a significant advantage for immunogenicity in the latter age group. PMID:22906943

  12. Pandemic influenza A H1N1 vaccine in recipients of solid organ transplants: immunogenicity and tolerability outcomes after vero cell derived, non-adjuvanted, whole-virion vaccination.

    PubMed

    Lagler, Heimo; Wenisch, Judith M; Tobudic, Selma; Gualdoni, Guido A; Rödler, Susanne; Rasoul-Rockenschaub, Susanne; Jaksch, Peter; Redlberger-Fritz, Monika; Popow-Kraupp, Theresia; Burgmann, Heinz

    2011-09-16

    During the 2009/10 pandemic of influenza A (H1N1), the American Society of Transplantation and other health organizations recommended that immunocompromised patients should be vaccinated as the key preventive measure. Since there are no data available for the immunogenicity of the unadjuvanted pandemic influenza vaccine in immunocompromised patients - as opposed to the adjuvanted preparation - the objective of this study was to evaluate the immunogenicity of an adjuvant-free H1N1 vaccine in recipients of solid organ transplants. Patients were recruited at the Vienna General Hospital, Austria. The vaccination schedule consisted of 2 doses of a whole-virion, vero cell derived, inactivated, non-adjuvanted influenza A/California/07/2009 (H1N1) vaccine given with an interval of 3 weeks. A hemagglutination inhibition (HI) assay on blood samples obtained prior to the first and after each vaccination was used for serologic analysis. The primary immunologic endpoint was the seroconversion rate, defined as the proportion of subjects with an individual 4-fold increase in HI titer of at least 1:40. In addition, virus-specific IgG antibodies to the pandemic H1N1 strain were measured using a commercially available ELISA. Twenty-five organ transplant patients (16 males, 9 females) aged 25-79 years were vaccinated and provided blood samples for serologic analysis. The time elapsed since transplantation was 10 months to 25 years (mean: 9 years; 95% CI 6-13 years). The vaccine was well tolerated and no local adverse events were noticed. After two vaccinations 37% of the patients demonstrated seroconversion in the HI assay as defined above and 70% had virus-specific IgG antibodies. Among the HI vaccine responders were 6 of 14 heart transplant recipients and 1 of 4 liver transplant recipients. The number and type of immunosuppressive agents did not significantly differ in their effect on the immune response. Our results show that the novel vero cell derived and adjuvant-free pandemic

  13. A systematic review and meta-analysis of fetal outcomes following the administration of influenza A/H1N1 vaccination during pregnancy.

    PubMed

    Zhang, Chuan; Wang, Xiaodong; Liu, Dan; Zhang, Lingli; Sun, Xin

    2018-05-01

    Pregnant women were identified as a population of priority for vaccination during the H1N1 influenza pandemic outbreak in 2009. To assess adverse fetal outcomes following the administration of H1N1 pandemic vaccination during pregnancy. PubMed, Embase, and Cochrane Library were searched up to January 2017. Cohort studies investigating fetal outcomes after H1N1 influenza vaccination during pregnancy were eligible. The language was limited to English. Pairs of reviewers independently screened studies for eligibility, assessed the risk of bias, and extracted data from the included studies. A total of 19 cohort studies were eligible. The use of vaccines during any period of pregnancy was associated with lower risk of stillbirth (adjusted hazard ratio 0.80, 95% confidence interval 0.69-0.92). No significant differences were found between the vaccinated versus unvaccinated groups in terms of the risks of spontaneous abortion, premature birth, and small for gestational age. The administration of H1N1 vaccines during pregnancy might reduce the risk of stillbirth, a complication associated with H1N1 infection. The quality of evidence was, however, not adequate to reach a definitive conclusion. © 2017 International Federation of Gynecology and Obstetrics.

  14. A genetically engineered H5 protein expressed in insect cells confers protection against different clades of H5N1 highly pathogenic avian influenza viruses in chickens.

    PubMed

    Oliveira Cavalcanti, Marcia; Vaughn, Eric; Capua, Ilaria; Cattoli, Giovanni; Terregino, Calogero; Harder, Timm; Grund, Christian; Vega, Carlos; Robles, Francisco; Franco, Julio; Darji, Ayub; Arafa, Abdel-Satar; Mundt, Egbert

    2017-04-01

    The evolution of highly pathogenic H5N1 avian influenza viruses (HPAI-H5N1) has resulted in the appearance of a number of diverse groups of HPAI-H5N1 based on the presence of genetically similar clusters of their haemagglutinin sequences (clades). An H5 antigen encoded by a recombinant baculovirus and expressed in insect cells was used for oil-emulsion-based vaccine prototypes. In several experiments, vaccination was performed at 10 days of age, followed by challenge infection on day 21 post vaccination (PV) with HPAI-H5N1 clades 2.2, 2.2.1, and 2.3.2. A further challenge infection with HPAI-H5N1 clade 2.2.1 was performed at day 42 PV. High haemagglutination inhibition titres were observed for the recH5 vaccine antigen, and lower haemagglutination inhibition titres for the challenge virus antigens. Nevertheless, the rate of protection from mortality and clinical signs was 100% when challenged at 21 days PV and 42 days PV, indicating protection over the entire broiler chicken rearing period without a second vaccination. The unvaccinated control chickens mostly died between two and five days after challenge infection. A low level of viral RNA was detected by reverse transcription followed by a quantitative polymerase chain reaction in a limited number of birds for a short period after challenge infection, indicating a limited spread of HPAI-H5N1 at flock level. Furthermore, it was observed that the vaccine can be used in a differentiation infected from vaccinated animals (DIVA) approach, based on the detection of nucleoprotein antibodies in vaccinated/challenged chickens. The vaccine fulfilled all expectations of an inactivated vaccine after one vaccination against challenge with different clades of H5N1-HPAI and is suitable for a DIVA approach.

  15. Association between the 2008-09 seasonal influenza vaccine and pandemic H1N1 illness during Spring-Summer 2009: four observational studies from Canada.

    PubMed

    Skowronski, Danuta M; De Serres, Gaston; Crowcroft, Natasha S; Janjua, Naveed Z; Boulianne, Nicole; Hottes, Travis S; Rosella, Laura C; Dickinson, James A; Gilca, Rodica; Sethi, Pam; Ouhoummane, Najwa; Willison, Donald J; Rouleau, Isabelle; Petric, Martin; Fonseca, Kevin; Drews, Steven J; Rebbapragada, Anuradha; Charest, Hugues; Hamelin, Marie-Eve; Boivin, Guy; Gardy, Jennifer L; Li, Yan; Kwindt, Trijntje L; Patrick, David M; Brunham, Robert C

    2010-04-06

    In late spring 2009, concern was raised in Canada that prior vaccination with the 2008-09 trivalent inactivated influenza vaccine (TIV) was associated with increased risk of pandemic influenza A (H1N1) (pH1N1) illness. Several epidemiologic investigations were conducted through the summer to assess this putative association. (1) test-negative case-control design based on Canada's sentinel vaccine effectiveness monitoring system in British Columbia, Alberta, Ontario, and Quebec; (2) conventional case-control design using population controls in Quebec; (3) test-negative case-control design in Ontario; and (4) prospective household transmission (cohort) study in Quebec. Logistic regression was used to estimate odds ratios for TIV effect on community- or hospital-based laboratory-confirmed seasonal or pH1N1 influenza cases compared to controls with restriction, stratification, and adjustment for covariates including combinations of age, sex, comorbidity, timeliness of medical visit, prior physician visits, and/or health care worker (HCW) status. For the prospective study risk ratios were computed. Based on the sentinel study of 672 cases and 857 controls, 2008-09 TIV was associated with statistically significant protection against seasonal influenza (odds ratio 0.44, 95% CI 0.33-0.59). In contrast, estimates from the sentinel and three other observational studies, involving a total of 1,226 laboratory-confirmed pH1N1 cases and 1,505 controls, indicated that prior receipt of 2008-09 TIV was associated with increased risk of medically attended pH1N1 illness during the spring-summer 2009, with estimated risk or odds ratios ranging from 1.4 to 2.5. Risk of pH1N1 hospitalization was not further increased among vaccinated people when comparing hospitalized to community cases. Prior receipt of 2008-09 TIV was associated with increased risk of medically attended pH1N1 illness during the spring-summer 2009 in Canada. The occurrence of bias (selection, information) or

  16. Neurologic complications of influenza A(H1N1)pdm09

    PubMed Central

    Khandaker, Gulam; Zurynski, Yvonne; Buttery, Jim; Marshall, Helen; Richmond, Peter C.; Dale, Russell C.; Royle, Jenny; Gold, Michael; Snelling, Tom; Whitehead, Bruce; Jones, Cheryl; Heron, Leon; McCaskill, Mary; Macartney, Kristine; Elliott, Elizabeth J.

    2012-01-01

    Objective: We sought to determine the range and extent of neurologic complications due to pandemic influenza A (H1N1) 2009 infection (pH1N1′09) in children hospitalized with influenza. Methods: Active hospital-based surveillance in 6 Australian tertiary pediatric referral centers between June 1 and September 30, 2009, for children aged <15 years with laboratory-confirmed pH1N1′09. Results: A total of 506 children with pH1N1′09 were hospitalized, of whom 49 (9.7%) had neurologic complications; median age 4.8 years (range 0.5–12.6 years) compared with 3.7 years (0.01–14.9 years) in those without complications. Approximately one-half (55.1%) of the children with neurologic complications had preexisting medical conditions, and 42.8% had preexisting neurologic conditions. On presentation, only 36.7% had the triad of cough, fever, and coryza/runny nose, whereas 38.7% had only 1 or no respiratory symptoms. Seizure was the most common neurologic complication (7.5%). Others included encephalitis/encephalopathy (1.4%), confusion/disorientation (1.0%), loss of consciousness (1.0%), and paralysis/Guillain-Barré syndrome (0.4%). A total of 30.6% needed intensive care unit (ICU) admission, 24.5% required mechanical ventilation, and 2 (4.1%) died. The mean length of stay in hospital was 6.5 days (median 3 days) and mean ICU stay was 4.4 days (median 1.5 days). Conclusions: Neurologic complications are relatively common among children admitted with influenza, and can be life-threatening. The lack of specific treatment for influenza-related neurologic complications underlines the importance of early diagnosis, use of antivirals, and universal influenza vaccination in children. Clinicians should consider influenza in children with neurologic symptoms even with a paucity of respiratory symptoms. PMID:22993280

  17. Potency of an inactivated influenza vaccine prepared from A/duck/Hokkaido/162/2013 (H2N1) against a challenge with A/swine/Missouri/2124514/2006 (H2N3) in mice

    PubMed Central

    SUZUKI, Mizuho; OKAMATSU, Masatoshi; HIONO, Takahiro; MATSUNO, Keita; SAKODA, Yoshihiro

    2017-01-01

    H2N2 influenza virus caused a pandemic starting in 1957 but has not been detected in humans since 1968. Thus, most people are immunologically naive to viruses of the H2 subtype. In contrast, H2 influenza viruses are continually isolated from wild birds, and H2N3 viruses were isolated from pigs in 2006. H2 influenza viruses could cause a pandemic if re-introduced into humans. In the present study, a vaccine against H2 influenza was prepared as an effective control measure against a future human pandemic. A/duck/Hokkaido/162/2013 (H2N1), which showed broad antigenic cross-reactivity, was selected from the candidate H2 influenza viruses recently isolated from wild birds in Asian countries. Sufficient neutralizing antibodies against homologous and heterologous viruses were induced in mice after two subcutaneous injections of the inactivated whole virus particle vaccine. The inactivated vaccine induced protective immunity sufficient to reduce the impact of challenges with A/swine/Missouri/2124514/2006 (H2N3). This study demonstrates that the inactivated whole virus particle vaccine prepared from an influenza virus library would be useful against a future H2 influenza pandemic. PMID:28993601

  18. Avian influenza A H5N1 virus: a continuous threat to humans

    PubMed Central

    To, Kelvin KW; Ng, Kenneth HL; Que, Tak-Lun; Chan, Jacky MC; Tsang, Kay-Yan; Tsang, Alan KL; Chen, Honglin; Yuen, Kwok-Yung

    2012-01-01

    We report the first case of severe pneumonia due to co-infection with the emerging avian influenza A (H5N1) virus subclade 2.3.2.1 and Mycoplasma pneumoniae. The patient was a returning traveller who had visited a poultry market in South China. We then review the epidemiology, virology, interspecies barrier limiting poultry-to-human transmission, clinical manifestation, laboratory diagnosis, treatment and control measures of H5N1 clades that can be transmitted to humans. The recent controversy regarding the experiments involving aerosol transmission of recombinant H5N1 virus between ferrets is discussed. We also review the relative contribution of the poor response to antiviral treatment and the virus-induced hyperinflammatory damage to the pathogenesis and the high mortality of this infection. The factors related to the host, virus or medical intervention leading to the difference in disease mortality of different countries remain unknown. Because most developing countries have difficulty in instituting effective biosecurity measures, poultry vaccination becomes an important control measure. The rapid evolution of the virus would adversely affect the efficacy of poultry vaccination unless a correctly matched vaccine was chosen, manufactured and administered in a timely manner. Vigilant surveillance must continue to allow better preparedness for another poultry or human pandemic due to new viral mutants. PMID:26038430

  19. Seroprevalence of influenza A H1N1 and seroconversion of mothers and infants induced by a single dose of monovalent vaccine.

    PubMed

    Chao, Anne; Huang, Yhu-Chering; Chang, Yao-Lung; Wang, Tzu-Hao; Chang, Shuenn-Dyh; Wu, Ting-Shu; Wu, Tsu-Lan; Chao, An-Shine

    2013-09-01

    To determine the prevalence of preexisting antibodies against the pandemic 2009 Influenza A (H1N1) virus in pregnant women and to evaluate the seroprotection of the mothers and infants by a single injection of monovalent vaccine during the pandemic. Seropositivity rate of H1N1 among the nonvaccinated were compared with the vaccinated women. A single dose of vaccine, either nonadjuvanted AdimFlu-S or MF59-adjuvanted vaccine, was injected to the voluntarily vaccinated group. Maternal and cord blood sera were collected to evaluate the antibody response of the H1N1 virus. Seropositivity was defined as a hemagglutination inhibition titer to H1N1 (A/Taiwan/126/09) ≥ 1:40. A total of 210 healthy, singleton, pregnant women were enrolled between January 2010 and May 2010. Seropositivity (≥ 1:40) of maternal hemagglutination inhibition was significantly higher in the vaccinated group (78%) than the nonvaccinated group (9.5%); 41.6% (20/48) of seropositive titers were >1:80. In nine vaccinated cases resulting in negative serum titers (<1:40), the prevalence of negative titer in the women received AdimFlu-S (14.8%, 4/31) was lower (p = 0.025) than those received MF59-adjuvanted vaccine (50%, 5/10). Subclinical infection against H1N1 was low in Taiwanese pregnant women in the pandemic 2009. Seropositivity >75% could be achieved in the paired maternal and cord serum samples by a single injection of monovalent H1N1 vaccine. Copyright © 2013. Published by Elsevier B.V.

  20. The transmissibility and control of pandemic influenza A (H1N1) virus.

    PubMed

    Yang, Yang; Sugimoto, Jonathan D; Halloran, M Elizabeth; Basta, Nicole E; Chao, Dennis L; Matrajt, Laura; Potter, Gail; Kenah, Eben; Longini, Ira M

    2009-10-30

    Pandemic influenza A (H1N1) 2009 (pandemic H1N1) is spreading throughout the planet. It has become the dominant strain in the Southern Hemisphere, where the influenza season has now ended. Here, on the basis of reported case clusters in the United States, we estimated the household secondary attack rate for pandemic H1N1 to be 27.3% [95% confidence interval (CI) from 12.2% to 50.5%]. From a school outbreak, we estimated that a typical schoolchild infects 2.4 (95% CI from 1.8 to 3.2) other children within the school. We estimated the basic reproductive number, R0, to range from 1.3 to 1.7 and the generation interval to range from 2.6 to 3.2 days. We used a simulation model to evaluate the effectiveness of vaccination strategies in the United States for fall 2009. If a vaccine were available soon enough, vaccination of children, followed by adults, reaching 70% overall coverage, in addition to high-risk and essential workforce groups, could mitigate a severe epidemic.

  1. A bivalent live-attenuated influenza vaccine for the control and prevention of H3N8 and H3N2 canine influenza viruses.

    PubMed

    Rodriguez, Laura; Nogales, Aitor; Murcia, Pablo R; Parrish, Colin R; Martínez-Sobrido, Luis

    2017-08-03

    Canine influenza viruses (CIVs) cause a contagious respiratory disease in dogs. CIV subtypes include H3N8, which originated from the transfer of H3N8 equine influenza virus (EIV) to dogs; and the H3N2, which is an avian-origin virus adapted to infect dogs. Only inactivated influenza vaccines (IIVs) are currently available against the different CIV subtypes. However, the efficacy of these CIV IIVs is not optimal and improved vaccines are necessary for the efficient prevention of disease caused by CIVs in dogs. Since live-attenuated influenza vaccines (LAIVs) induce better immunogenicity and protection efficacy than IIVs, we have combined our previously described H3N8 and H3N2 CIV LAIVs to create a bivalent vaccine against both CIV subtypes. Our findings show that, in a mouse model of infection, the bivalent CIV LAIV is safe and able to induce, upon a single intranasal immunization, better protection than that induced by a bivalent CIV IIV against subsequent challenge with H3N8 or H3N2 CIVs. These protection results also correlated with the ability of the bivalent CIV LAIV to induce better humoral immune responses. This is the first description of a bivalent LAIV for the control and prevention of H3N8 and H3N2 CIV infections in dogs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Safety and immunogenicity of prepandemic H5N1 influenza vaccines: a systematic review of the literature.

    PubMed

    Prieto-Lara, Elisa; Llanos-Méndez, Aurora

    2010-06-11

    A systematic review was performed to assess the safety and immunogenicity of the prepandemic H5N1 influenza vaccines licensed so far. A bibliographic search according to the COSI protocol was carried out and 8 of 235 potentially relevant publications were selected. Quality assessment was defined with both CASP and Jadad checklists. Taken together, the results from the present systematic review suggest that the inactivated split-virion formulation that includes a low antigen dose (3.8 microg) and an oil-in-water emulsion-based adjuvant, represents the best option in the case of a pandemic, due to its antigen-sparing capacity and its favorable safety profile. (c) 2010 Elsevier Ltd. All rights reserved.

  3. Immunogenicity and tolerability after two doses of non-adjuvanted, whole-virion pandemic influenza A (H1N1) vaccine in HIV-infected individuals.

    PubMed

    Lagler, Heimo; Grabmeier-Pfistershammer, Katharina; Touzeau-Römer, Veronique; Tobudic, Selma; Ramharter, Michael; Wenisch, Judith; Gualdoni, Guido Andrés; Redlberger-Fritz, Monika; Popow-Kraupp, Theresia; Rieger, Armin; Burgmann, Heinz

    2012-01-01

    During the influenza pandemic of 2009/10, the whole-virion, Vero-cell-derived, inactivated, pandemic influenza A (H1N1) vaccine Celvapan® (Baxter) was used in Austria. Celvapan® is adjuvant-free and was the only such vaccine at that time in Europe. The objective of this observational, non-interventional, prospective single-center study was to evaluate the immunogenicity and tolerability of two intramuscular doses of this novel vaccine in HIV-positive individuals. A standard hemagglutination inhibition (HAI) assay was used for evaluation of the seroconversion rate and seroprotection against the pandemic H1N1 strain. In addition, H1N1-specific IgG antibodies were measured using a recently developed ELISA and compared with the HAI results. Tolerability of vaccination was evaluated up to one month after the second dose. A total of 79 HIV-infected adults with an indication for H1N1 vaccination were evaluated. At baseline, 55 of the 79 participants had an HAI titer ≥1:40 and two patients showed a positive IgG ELISA. The seroconversion rate was 31% after the first vaccination, increasing to 41% after the second; the corresponding seroprotection rates were 92% and 83% respectively. ELISA IgG levels were positive in 25% after the first vaccination and in 37% after the second. Among the participants with baseline HAI titers <1:40, 63% seroconverted. Young age was clearly associated with lower HAI titers at baseline and with higher seroconversion rates, whereas none of the seven patients >60 years of age had a baseline HAI titer <1:40 or seroconverted after vaccination. The vaccine was well tolerated. The non-adjuvanted pandemic influenza A (H1N1) vaccine was well tolerated and induced a measurable immune response in a sample of HIV-infected individuals.

  4. Immunogenicity and Tolerability after Two Doses of Non-Adjuvanted, Whole-Virion Pandemic Influenza A (H1N1) Vaccine in HIV-Infected Individuals

    PubMed Central

    Lagler, Heimo; Grabmeier-Pfistershammer, Katharina; Touzeau-Römer, Veronique; Tobudic, Selma; Ramharter, Michael; Wenisch, Judith; Gualdoni, Guido Andrés; Redlberger-Fritz, Monika; Popow-Kraupp, Theresia; Rieger, Armin; Burgmann, Heinz

    2012-01-01

    Background During the influenza pandemic of 2009/10, the whole-virion, Vero-cell-derived, inactivated, pandemic influenza A (H1N1) vaccine Celvapan® (Baxter) was used in Austria. Celvapan® is adjuvant-free and was the only such vaccine at that time in Europe. The objective of this observational, non-interventional, prospective single-center study was to evaluate the immunogenicity and tolerability of two intramuscular doses of this novel vaccine in HIV-positive individuals. Methods and Findings A standard hemagglutination inhibition (HAI) assay was used for evaluation of the seroconversion rate and seroprotection against the pandemic H1N1 strain. In addition, H1N1-specific IgG antibodies were measured using a recently developed ELISA and compared with the HAI results. Tolerability of vaccination was evaluated up to one month after the second dose. A total of 79 HIV-infected adults with an indication for H1N1 vaccination were evaluated. At baseline, 55 of the 79 participants had an HAI titer ≥1∶40 and two patients showed a positive IgG ELISA. The seroconversion rate was 31% after the first vaccination, increasing to 41% after the second; the corresponding seroprotection rates were 92% and 83% respectively. ELISA IgG levels were positive in 25% after the first vaccination and in 37% after the second. Among the participants with baseline HAI titers <1∶40, 63% seroconverted. Young age was clearly associated with lower HAI titers at baseline and with higher seroconversion rates, whereas none of the seven patients >60 years of age had a baseline HAI titer <1∶40 or seroconverted after vaccination. The vaccine was well tolerated. Conclusion The non-adjuvanted pandemic influenza A (H1N1) vaccine was well tolerated and induced a measurable immune response in a sample of HIV-infected individuals. PMID:22629330

  5. Influenza A non-H1N1 associated with acute respiratory failure and acute renal failure in a previously vaccinated cystic fibrosis patient

    PubMed Central

    Penteado, Louise Piva; Osório, Cecília Susin; Balbinotto, Antônio; Dalcin, Paulo de Tarso Roth

    2018-01-01

    In the 2014 - 2015 season, most influenza infections were due to A (H3N2) viruses. More than two-thirds of circulating A (H3N2) viruses are antigenically and genetically different (drifted) from the A (H3N2) vaccine component of 2014 - 2015 northern and southern Hemisphere seasonal influenza vaccines. The purpose of this paper is to report a case of seasonal influenza A non-H1N1 infection that occurred in June 2015 in an adult cystic fibrosis patient with severe lung disease previously vaccinated with the anti-flu trivalent vaccine. The patient evolved to respiratory and renal failure (without rhabdomyolysis) and was placed under mechanical ventilation and hemodialysis. The clinical outcome was positive after 39 days of hospital stay. In addition, the patient was clinically stable after 18 months of follow-up. With the recent advances in critical care medicine and in cystic fibrosis treatment, survival with advanced pulmonary disease in cystic fibrosis presents new questions and potential problems, which are still being formulated. PMID:29742226

  6. Lack of H5N1 Avian Influenza Transmission to Hospital Employees, Hanoi, 2004

    PubMed Central

    Liem, Nguyen Thanh; Lim, Wilina

    2005-01-01

    To establish whether human-to-human transmission of influenza A H5N1 occurred in the healthcare setting in Vietnam, we conducted a cross-sectional seroprevalence survey among hospital employees exposed to 4 confirmed and 1 probable H5N1 case-patients or their clinical specimens. Eighty-three (95.4%) of 87 eligible employees completed a questionnaire and provided a serum sample, which was tested for antibodies to influenza A H5N1. Ninety-five percent reported exposure to >1 H5N1 case-patients; 59 (72.0%) reported symptoms, and 2 (2.4%) fulfilled the definition for a possible H5N1 secondary case-patient. No study participants had detectable antibodies to influenza A H5N1. The data suggest that the H5N1 viruses responsible for human cases in Vietnam in January 2004 are not readily transmitted from person to person. However, influenza viruses are genetically variable, and transmissibility is difficult to predict. Therefore, persons providing care for H5N1 patients should continue to take measures to protect themselves. PMID:15752437

  7. Immunogenicity and safety of two doses of a non-adjuvanted influenza A H1N1/2009 vaccine in young autoimmune rheumatic diseases patients.

    PubMed

    Aikawa, N E; Trudes, G; Campos, L M A; Pereira, R M R; Moraes, J C B; Ribeiro, A C; Miraglia, J; Timenetsky, M do Carmo S; Bonfa, E; Silva, Ca

    2013-11-01

    The aim of this study was to evaluate the immunogenicity and safety of the influenza A H1N1/2009 vaccine in children under 9 years old with autoimmune rheumatic diseases (ARD). Thirty-eight ARD patients and 11 healthy children received two doses of non-adjuvanted influenza A/California/7/2009 (H1N1) virus-like vaccine. Subjects were evaluated before and 21 days after vaccination. Seroprotection (SP) and seroconversion (SC) rates, geometric mean titers (GMT) and factor increases (FI) in GMT were calculated. Mean ages were comparable between patients and controls. Pre-vaccination SP and GMT were similar in patients and controls (p > 0.05). Three weeks after immunization, SP (81.6% vs. 81.8%, p = 1.0), SC (81.6% vs. 90.9%, p = 0.66), GMT (151.5 vs. 282.1, p = 0.26) and the FI in GMT (16.7 vs. 36.3, p = 0.23) were similar in patients and controls, with both groups achieving an adequate response, according to the European Medicines Agency and Food and Drug Administration standards. Analysis of the possible factors influencing SC showed no difference in demographic data, leukocyte/lymphocyte counts or immunosuppressant use between seroconverted and non-seroconverted patients (p > 0.05). The vaccine demonstrated a satisfactory safety profile in this population. Two doses of influenza A H1N1/2009 vaccination induced an effective antibody response and caused adverse events in rare instances, suggesting this vaccine is appropriate and can be recommended for this age group.

  8. Cross-protection among lethal H5N2 influenza viruses induced by DNA vaccine to the hemagglutinin.

    PubMed Central

    Kodihalli, S; Haynes, J R; Robinson, H L; Webster, R G

    1997-01-01

    Inoculation of mice with hemagglutinin (HA)-expressing DNA affords reliable protection against lethal influenza virus infection, while in chickens the same strategy has yielded variable results. Here we show that gene gun delivery of DNA encoding an H5 HA protein confers complete immune protection to chickens challenged with lethal H5 viruses. In tests of the influence of promoter selection on vaccine efficacy, close correlations were obtained between immune responses and the dose of DNA administered, whether a cytomegalovirus (CMV) immediate-early promoter or a chicken beta-actin promoter was used. Perhaps most important, the HA-DNA vaccine conferred 95% cross-protection against challenge with lethal antigenic variants that differed from the primary antigen by 11 to 13% (HA1 amino acid sequence homology). Overall, the high levels of protection seen with gene gun delivery of HA-DNA were as good as, if not better than, those achieved with a conventional whole-virus vaccine, with fewer instances of morbidity and death. The absence of detectable antibody titers after primary immunization, together with the rapid appearance of high titers immediately after challenge, implicates efficient B-cell priming as the principal mechanism of DNA-mediated immune protection. Our results suggest that the efficacy of HA-DNA influenza virus vaccine in mice extends to chickens and probably to other avian species as well. Indeed, the H5 preparation we describe offers an attractive means to protect the domestic poultry industry in the United States from lethal H5N2 viruses, which continue to circulate in Mexico. PMID:9094608

  9. Obstetricians and the 2009-2010 H1N1 vaccination effort: implications for future pandemics.

    PubMed

    Clark, Sarah J; Cowan, Anne E; Wortley, Pascale M

    2013-09-01

    Our objective was to describe the experiences of obstetricians during the 2009-2010 H1N1 vaccination campaign in order to identify possible improvements for future pandemic situations. We conducted a cross-sectional mail survey of a national random sample of 4,000 obstetricians, fielded in Summer 2010. Survey items included availability, recommendation, and patient acceptance of H1N1 vaccine; prioritization of H1N1 vaccine when supply was limited; problems with H1N1 vaccination; and likelihood of providing vaccine during a future influenza pandemic. Response rate was 66 %. Obstetricians strongly recommended H1N1 vaccine during the second (85 %) and third (86 %) trimesters, and less often during the first trimester (71 %) or the immediate postpartum period (76 %); patient preferences followed a similar pattern. H1N1 vaccine was typically available in outpatient obstetrics clinics (80 %). Overall vaccine supply was a major problem for 30 % of obstetricians, but few rated lack of thimerosal-free vaccine as a major problem (12 %). Over half of obstetricians had no major problems with the H1N1 vaccine campaign. Based on this experience, 74 % would be "very likely" and 12 % "likely" to provide vaccine in the event of a future influenza pandemic. Most obstetricians strongly recommended H1N1 vaccine, had few logistical problems beyond limited vaccine supply, and are willing to vaccinate in a future pandemic. Addressing concerns about first-trimester vaccination, developing guidance for prioritization of vaccine in the event of severe supply constraints, and continued facilitation of the logistical aspects of vaccination should be emphasized in future influenza pandemics.

  10. Incidence and Epidemiology of Hospitalized Influenza Cases in Rural Thailand during the Influenza A (H1N1)pdm09 Pandemic, 2009–2010

    PubMed Central

    Baggett, Henry C.; Chittaganpitch, Malinee; Thamthitiwat, Somsak; Prapasiri, Prabda; Naorat, Sathapana; Sawatwong, Pongpun; Ditsungnoen, Darunee; Olsen, Sonja J.; Simmerman, James M.; Srisaengchai, Prasong; Chantra, Somrak; Peruski, Leonard F.; Sawanpanyalert, Pathom; Maloney, Susan A.; Akarasewi, Pasakorn

    2012-01-01

    Background Data on the burden of the 2009 influenza pandemic in Asia are limited. Influenza A(H1N1)pdm09 was first reported in Thailand in May 2009. We assessed incidence and epidemiology of influenza-associated hospitalizations during 2009–2010. Methods We conducted active, population-based surveillance for hospitalized cases of acute lower respiratory infection (ALRI) in all 20 hospitals in two rural provinces. ALRI patients were sampled 1∶2 for participation in an etiology study in which nasopharyngeal swabs were collected for influenza virus testing by PCR. Results Of 7,207 patients tested, 902 (12.5%) were influenza-positive, including 190 (7.8%) of 2,436 children aged <5 years; 86% were influenza A virus (46% A(H1N1)pdm09, 30% H3N2, 6.5% H1N1, 3.5% not subtyped) and 13% were influenza B virus. Cases of influenza A(H1N1)pdm09 first peaked in August 2009 when 17% of tested patients were positive. Subsequent peaks during 2009 and 2010 represented a mix of influenza A(H1N1)pdm09, H3N2, and influenza B viruses. The estimated annual incidence of hospitalized influenza cases was 136 per 100,000, highest in ages <5 years (477 per 100,000) and >75 years (407 per 100,000). The incidence of influenza A(H1N1)pdm09 was 62 per 100,000 (214 per 100,000 in children <5 years). Eleven influenza-infected patients required mechanical ventilation, and four patients died, all adults with influenza A(H1N1)pdm09 (1) or H3N2 (3). Conclusions Influenza-associated hospitalization rates in Thailand during 2009–10 were substantial and exceeded rates described in western countries. Influenza A(H1N1)pdm09 predominated, but H3N2 also caused notable morbidity. Expanded influenza vaccination coverage could have considerable public health impact, especially in young children. PMID:23139802

  11. Development and characterization of a panel of cross-reactive monoclonal antibodies generated using H1N1 influenza virus.

    PubMed

    Guo, Chun-yan; Tang, Yi-gui; Qi, Zong-li; Liu, Yang; Zhao, Xiang-rong; Huo, Xue-ping; Li, Yan; Feng, Qing; Zhao, Peng-hua; Wang, Xin; Li, Yuan; Wang, Hai-fang; Hu, Jun; Zhang, Xin-jian

    2015-08-01

    To characterize the antigenic epitopes of the hemagglutinin (HA) protein of H1N1 influenza virus, a panel consisting of 84 clones of murine monoclonal antibodies (mAbs) were generated using the HA proteins from the 2009 pandemic H1N1 vaccine lysate and the seasonal influenza H1N1(A1) vaccines. Thirty-three (39%) of the 84 mAbs were found to be strain-specific, and 6 (7%) of the 84 mAbs were subtype-specific. Twenty (24%) of the 84 mAbs recognized the common HA epitopes shared by 2009 pandemic H1N1, seasonal A1 (H1N1), and A3 (H3N2) influenza viruses. Twenty-five of the 84 clones recognized the common HA epitopes shared by the 2009 pandemic H1N1, seasonal A1 (H1N1) and A3 (H3N2) human influenza viruses, and H5N1 and H9N2 avian influenza viruses. We found that of the 16 (19%) clones of the 84 mAbs panel that were cross-reactive with human respiratory pathogens, 15 were made using the HA of the seasonal A1 (H1N1) virus and 1 was made using the HA of the 2009 pandemic H1N1 influenza virus. Immunohistochemical analysis of the tissue microarray (TMA) showed that 4 of the 84 mAb clones cross-reacted with human tissue (brain and pancreas). Our results indicated that the influenza virus HA antigenic epitopes not only induce type-, subtype-, and strain-specific monoclonal antibodies against influenza A virus but also cross-reactive monoclonal antibodies against human tissues. Further investigations of these cross-reactive (heterophilic) epitopes may significantly improve our understanding of viral antigenic variation, epidemics, pathophysiologic mechanisms, and adverse effects of influenza vaccines. Copyright © 2015 Elsevier GmbH. All rights reserved.

  12. Outbreaks of avian influenza A (H5N2), (H5N8), and (H5N1) among birds--United States, December 2014-January 2015.

    PubMed

    Jhung, Michael A; Nelson, Deborah I

    2015-02-06

    During December 15, 2014-January 16, 2015, the U.S. Department of Agriculture received 14 reports of birds infected with Asian-origin, highly pathogenic avian influenza A (HPAI) (H5N2), (H5N8), and (H5N1) viruses. These reports represent the first reported infections with these viruses in U.S. wild or domestic birds. Although these viruses are not known to have caused disease in humans, their appearance in North America might increase the likelihood of human infection in the United States. Human infection with other avian influenza viruses, such as HPAI (H5N1) and (H5N6) viruses and (H7N9) virus, has been associated with severe, sometimes fatal, disease, usually following contact with poultry.

  13. Profiles of influenza A/H1N1 vaccine response using hemagglutination-inhibition titers.

    PubMed

    Jacobson, Robert M; Grill, Diane E; Oberg, Ann L; Tosh, Pritish K; Ovsyannikova, Inna G; Poland, Gregory A

    2015-01-01

    To identify distinct antibody profiles among adults 50-to-74 years old using influenza A/H1N1 HI titers up to 75 days after vaccination. Healthy subjects 50 to 74 years old received the 2010-2011 trivalent inactivated influenza vaccine. We measured venous samples from Days 0, 28, and 75 for HI and VNA and B-cell ELISPOTs. Of 106 subjects, HI titers demonstrated a ceiling effect for 11 or 10% for those with a pre-vaccination HI titer of 1:640 where no subject post-vaccination had an increase in titer. Of the remaining 95 subjects, only 37 or 35% overall had at least a 4-fold increase by Day 28. Of these 37, 3 waned at least 4-fold, and 13 others 2-fold. Thus 15% of the subjects showed waning antibody titers by Day 75. More than half failed to respond at all. The profiles populated by these subjects as defined by HI did not vary with age or gender. The VNA results mimicked the HI profiles, but the profiles for B-cell ELISPOT did not. HI titers at Days 0, 28, and 75 populate 4 biologically plausible profiles. Limitations include lack of consensus for operationally defining waning as well as for the apparent ceiling. Furthermore, though well accepted as a marker for vaccine response, assigning thresholds with HI has limitations. However, VNA closely matches HI in populating these profiles. Thus, we hold that these profiles, having face- and content-validity, may provide a basis for understanding variation in genomic and transcriptomic response to influenza vaccination in this age group.

  14. Evolution of highly pathogenic avian influenza H5N1 viruses in Egypt indicating progressive adaptation

    USDA-ARS?s Scientific Manuscript database

    Highly pathogenic avian influenza (HPAI) virus of the H5N1 subtype was first diagnosed in poultry in Egypt in 2006, and since then the disease became enzootic in poultry throughout the country affecting the poultry industry and village poultry as well as infecting humans. Vaccination has been used ...

  15. Recombinant human interferon reduces titer of the 1918 pandemic and H5N1 influenza viruses in a guinea pig model

    USDA-ARS?s Scientific Manuscript database

    Although H5N1 subtype influenza viruses have yet to acquire the ability to transmit efficiently among humans, the geographic expansion, genetic diversity and persistence of H5N1 viruses in birds indicates that pandemic potential of these viruses remains high. Vaccination remains the primary means f...

  16. Reassortant Avian Influenza A(H5N1) Viruses with H9N2-PB1 Gene in Poultry, Bangladesh

    PubMed Central

    Yamage, Mat; Dauphin, Gwenaëlle; Claes, Filip; Ahmed, Garba; Giasuddin, Mohammed; Salviato, Annalisa; Ormelli, Silvia; Bonfante, Francesco; Schivo, Alessia; Cattoli, Giovanni

    2013-01-01

    Bangladesh has reported a high number of outbreaks of highly pathogenic avian influenza (HPAI) (H5N1) in poultry. We identified a natural reassortant HPAI (H5N1) virus containing a H9N2-PB1 gene in poultry in Bangladesh. Our findings highlight the risks for prolonged co-circulation of avian influenza viruses and the need to monitor their evolution. PMID:24047513

  17. Twin Peaks: A/H1N1 Pandemic Influenza Virus Infection and Vaccination in Norway, 2009–2010

    PubMed Central

    Van Effelterre, Thierry; Dos Santos, Gaël; Shinde, Vivek

    2016-01-01

    Background Vaccination campaigns against A/H1N1 2009 pandemic influenza virus (A/H1N1p) began in autumn 2009 in Europe, after the declaration of the pandemic at a global level. This study aimed to estimate the proportion of individuals vaccinated against A/H1N1p in Norway who were already infected (asymptomatically or symptomatically) by A/H1N1p before vaccination, using a mathematical model. Methods A dynamic, mechanistic, mathematical model of A/H1N1p transmission was developed for the Norwegian population. The model parameters were estimated by calibrating the model-projected number of symptomatic A/H1N1p cases to the number of laboratory-confirmed A/H1N1p cases reported to the surveillance system, accounting for potential under-reporting. It was assumed in the base case that the likelihood of vaccination was independent of infection/disease state. A sensitivity analysis explored the effects of four scenarios in which current or previous symptomatic A/H1N1p infection would influence the likelihood of being vaccinated. Results The number of model-projected symptomatic A/H1N1p cases by week during the epidemic, accounting for under-reporting and timing, closely matched that of the laboratory-confirmed A/H1N1p cases reported to the surveillance system. The model-projected incidence of symptomatic A/H1N1p infection was 27% overall, 55% in people <10 years old and 41% in people 10–20 years old. The model-projected percentage of individuals vaccinated against A/H1N1p who were already infected with A/H1N1p before being vaccinated was 56% overall, 62% in people <10 years old and 66% in people 10–20 years old. The results were sensitive to assumptions about the independence of vaccination and infection; however, even when current or previous symptomatic A/H1N1p infection was assumed to reduce the likelihood of vaccination, the estimated percentage of individuals who were infected before vaccination remained at least 32% in all age groups. Conclusion This analysis

  18. MF59-adjuvanted H5N1 vaccine induces immunologic memory and heterotypic antibody responses in non-elderly and elderly adults.

    PubMed

    Banzhoff, Angelika; Gasparini, Roberto; Laghi-Pasini, Franco; Staniscia, Tommaso; Durando, Paolo; Montomoli, Emanuele; Capecchi, Pier Leopoldo; Capecchi, Pamela; di Giovanni, Pamela; Sticchi, Laura; Gentile, Chiara; Hilbert, Anke; Brauer, Volker; Tilman, Sandrine; Podda, Audino

    2009-01-01

    Pathogenic avian influenza virus (H5N1) has the potential to cause a major global pandemic in humans. Safe and effective vaccines that induce immunologic memory and broad heterotypic response are needed. Healthy adults aged 18-60 and > 60 years (n = 313 and n = 173, respectively) were randomized (1:1) to receive two primary and one booster injection of 7.5 microg or 15 microg doses of a subunit MF59-adjuvanted H5N1 (A/Vietnam/1194/2004) (clade 1) vaccine. Safety was monitored until 6 months after booster. Immunogenicity was assessed by hemagglutination inhibition (HI), single radial hemolysis (SRH) and microneutralization assays (MN). Mild injection-site pain was the most common adverse reaction. No serious adverse events relating to the vaccine were reported. The humoral immune responses to 7.5 microg and 15 microg doses were comparable. The rates for seroprotection (HI>40; SRH>25 mm(2); MN > or = 40) after the primary vaccination ranged 72-87%. Six months after primary vaccination with the 7.5 microg dose, 18% and 21% of non-elderly and elderly adults were seroprotected; rates increased to 90% and 84%, respectively, after the booster vaccination. In the 15 microg group, seroprotection rates among non-elderly and elderly adults increased from 25% and 62% after primary vaccination to 92% and 88% after booster vaccination, respectively. A heterologous immune response to the H5N1/turkey/Turkey/05 strain was elicited after second and booster vaccinations. Both formulations of MF59-adjuvanted influenza H5N1 vaccine were well tolerated. The European Union requirement for licensure for pre-pandemic vaccines was met by the lower dose tested. The presence of cross-reactive antibodies to a clade 2 heterologous strain demonstrates that this vaccine may be appropriate for pre-pandemic programs. (ClinicalTrials.gov) NCT00311480.

  19. 75 FR 10268 - Pandemic Influenza Vaccines-Amendment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-05

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Office of the Secretary Pandemic Influenza Vaccines... Preparedness Act for H5N1, H2, H6, H7, H9 and 2009-H1N1 Vaccines: Whereas there are or may be multiple animal... through February 28, 2010 for vaccines against influenza virus strains named in the Declaration other than...

  20. Using surveillance data to estimate pandemic vaccine effectiveness against laboratory confirmed influenza A(H1N1)2009 infection: two case-control studies, Spain, season 2009-2010

    PubMed Central

    2011-01-01

    Background Physicians of the Spanish Influenza Sentinel Surveillance System report and systematically swab patients attended to their practices for influenza-like illness (ILI). Within the surveillance system, some Spanish regions also participated in an observational study aiming at estimating influenza vaccine effectiveness (cycEVA study). During the season 2009-2010, we estimated pandemic influenza vaccine effectiveness using both the influenza surveillance data and the cycEVA study. Methods We conducted two case-control studies using the test-negative design, between weeks 48/2009 and 8/2010 of the pandemic season. The surveillance-based study included all swabbed patients in the sentinel surveillance system. The cycEVA study included swabbed patients from seven Spanish regions. Cases were laboratory-confirmed pandemic influenza A(H1N1)2009. Controls were ILI patients testing negative for any type of influenza. Variables collected in both studies included demographic data, vaccination status, laboratory results, chronic conditions, and pregnancy. Additionally, cycEVA questionnaire collected data on previous influenza vaccination, smoking, functional status, hospitalisations, visits to the general practitioners, and obesity. We used logistic regression to calculate adjusted odds ratios (OR), computing pandemic influenza vaccine effectiveness as (1-OR)*100. Results We included 331 cases and 995 controls in the surveillance-based study and 85 cases and 351 controls in the cycEVA study. We detected nine (2.7%) and two (2.4%) vaccine failures in the surveillance-based and cycEVA studies, respectively. Adjusting for variables collected in surveillance database and swabbing month, pandemic influenza vaccine effectiveness was 62% (95% confidence interval (CI): -5; 87). The cycEVA vaccine effectiveness was 64% (95%CI: -225; 96) when adjusting for common variables with the surveillance system and 75% (95%CI: -293; 98) adjusting for all variables collected. Conclusion

  1. Vaccine protection of poultry against H5 clade 2.3.4.4 highly pathogenic avian influenza

    USDA-ARS?s Scientific Manuscript database

    Following the 2014-2015 outbreaks of H5N2 and H5N8 (clade 2.3.4.4) highly pathogenic avian influenza (HPAI) in the U.S., studies were performed to identify vaccines with potential to be used as a control mechanism in the event of future outbreaks. We tested both inactivated and recombinant vaccine...

  2. Low pathogenic avian influenza (H9N2) in chicken: Evaluation of an ancestral H9-MVA vaccine.

    PubMed

    Ducatez, Mariette F; Becker, Jens; Freudenstein, Astrid; Delverdier, Maxence; Delpont, Mattias; Sutter, Gerd; Guérin, Jean-Luc; Volz, Asisa

    2016-06-30

    Modified Vaccinia Ankara (MVA) has proven its efficacy as a recombinant vector vaccine for numerous pathogens including influenza virus. The present study aimed at evaluating a recombinant MVA candidate vaccine against low pathogenic avian influenza virus subtype H9N2 in the chicken model. As the high genetic and antigenic diversity of H9N2 viruses increases vaccine design complexity, one strategy to widen the range of vaccine coverage is to use an ancestor sequence. We therefore generated a recombinant MVA encoding for the gene sequence of an ancestral hemagglutinin H9 protein (a computationally derived amino acid sequence of the node of the H9N2 G1 lineage strains was obtained using the ANCESCON program). We analyzed the genetics and the growth properties of the MVA vector virus confirming suitability for use under biosafety level 1 and tested its efficacy when applied either as an intra-muscular (IM) or an oral vaccine in specific pathogen free chickens challenged with A/chicken/Tunisia/12/2010(H9N2). Two control groups were studied in parallel (unvaccinated and inoculated birds; unvaccinated and non-inoculated birds). IM vaccinated birds seroconverted as early as four days post vaccination and neutralizing antibodies were detected against A/chicken/Tunisia/12/2010(H9N2) in all the birds before challenge. The role of local mucosal immunity is unclear here as no antibodies were detected in eye drop or aerosol vaccinated birds. Clinical signs were not detected in any of the infected birds even in absence of vaccination. Virus replication was observed in both vaccinated and unvaccinated chickens, suggesting the MVA-ancestral H9 vaccine may not stop virus spread in the field. However vaccinated birds showed less histological damage, fewer influenza-positive cells and shorter virus shedding than their unvaccinated counterparts. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Febrile seizures after 2009 influenza A (H1N1) vaccination and infection: a nationwide registry-based study.

    PubMed

    Bakken, Inger Johanne; Aaberg, Kari Modalsli; Ghaderi, Sara; Gunnes, Nina; Trogstad, Lill; Magnus, Per; Håberg, Siri Eldevik

    2015-11-09

    During the 2009 influenza A (H1N1) pandemic, a monovalent pandemic strain vaccine containing the oil-in-water adjuvant AS03 (Pandemrix®) was offered to the Norwegian population. The coverage among children reached 54%. Our aim was to estimate the risk of febrile seizure in children after exposure to pandemic influenza vaccination or infection. The study population comprised 226,889 children born 2006-2009 resident in Norway per October 1st, 2009. Febrile seizure episodes were defined by emergency hospital admissions / emergency outpatient hospital care with International Classification of Diseases, Version 10, codes R56.0 or R56.8. The self-controlled case series method was applied to estimate incidence rate ratios (IRRs) in pre-defined risk periods compared to the background period. The total observation window was ± 180 days from exposure day. Among 113,068 vaccinated children, 656 (0.6%) had at least one febrile seizure episode. The IRR of febrile seizures 1-3 days after vaccination was 2.00 (95% confidence interval [CI]: 1.15-3.51). In the period 4-7 days after vaccination, no increased risk was observed. Among the 8172 children diagnosed with pandemic influenza, 84 (1.0%) had at least one febrile seizure episode. The IRR of febrile seizures on the same day as a diagnosis of influenza was 116.70 (95% CI: 62.81-216.90). In the period 1-3 days after a diagnosis of influenza, a tenfold increased risk was observed (IRR 10.12, 95% CI: 3.82 - 26.82). In this large population-based study with precise timing of exposures and outcomes, we found a twofold increased risk of febrile seizures 1-3 days after pandemic influenza vaccination. However, we found that pandemic influenza infection was associated with a much stronger increase in risk of febrile seizures.

  4. H1N1 viral proteome peptide microarray predicts individuals at risk for H1N1 infection and segregates infection versus Pandemrix® vaccination

    PubMed Central

    Ambati, Aditya; Valentini, Davide; Montomoli, Emanuele; Lapini, Guilia; Biuso, Fabrizio; Wenschuh, Holger; Magalhaes, Isabelle; Maeurer, Markus

    2015-01-01

    A high content peptide microarray containing the entire influenza A virus [A/California/08/2009(H1N1)] proteome and haemagglutinin proteins from 12 other influenza A subtypes, including the haemagglutinin from the [A/South Carolina/1/1918(H1N1)] strain, was used to gauge serum IgG epitope signatures before and after Pandemrix® vaccination or H1N1 infection in a Swedish cohort during the pandemic influenza season 2009. A very narrow pattern of pandemic flu-specific IgG epitope recognition was observed in the serum from individuals who later contracted H1N1 infection. Moreover, the pandemic influenza infection generated IgG reactivity to two adjacent epitopes of the neuraminidase protein. The differential serum IgG recognition was focused on haemagglutinin 1 (H1) and restricted to classical antigenic sites (Cb) in both the vaccinated controls and individuals with flu infections. We further identified a novel epitope VEPGDKITFEATGNL on the Ca antigenic site (251–265) of the pandemic flu haemagglutinin, which was exclusively recognized in serum from individuals with previous vaccinations and never in serum from individuals with H1N1 infection (confirmed by RNA PCR analysis from nasal swabs). This epitope was mapped to the receptor-binding domain of the influenza haemagglutinin and could serve as a correlate of immune protection in the context of pandemic flu. The study shows that unbiased epitope mapping using peptide microarray technology leads to the identification of biologically and clinically relevant target structures. Most significantly an H1N1 infection induced a different footprint of IgG epitope recognition patterns compared with the pandemic H1N1 vaccine. PMID:25639813

  5. Modelling the risk-benefit impact of H1N1 influenza vaccines.

    PubMed

    Phillips, Lawrence D; Fasolo, Barbara; Zafiropoulous, Nikolaos; Eichler, Hans-Georg; Ehmann, Falk; Jekerle, Veronika; Kramarz, Piotr; Nicoll, Angus; Lönngren, Thomas

    2013-08-01

    Shortly after the H1N1 influenza virus reached pandemic status in June 2009, the benefit-risk project team at the European Medicines Agency recognized this presented a research opportunity for testing the usefulness of a decision analysis model in deliberations about approving vaccines soon based on limited data or waiting for more data. Undertaken purely as a research exercise, the model was not connected to the ongoing assessment by the European Medicines Agency, which approved the H1N1 vaccines on 25 September 2009. A decision tree model constructed initially on 1 September 2009, and slightly revised subsequently as new data were obtained, represented an end-of-September or end-of-October approval of vaccines. The model showed combinations of uncertain events, the severity of the disease and the vaccines' efficacy and safety, leading to estimates of numbers of deaths and serious disabilities. The group based their probability assessments on available information and background knowledge about vaccines and similar pandemics in the past. Weighting the numbers by their joint probabilities for all paths through the decision tree gave a weighted average for a September decision of 216 500 deaths and serious disabilities, and for a decision delayed to October of 291 547, showing that an early decision was preferable. The process of constructing the model facilitated communications among the group's members and led to new insights for several participants, while its robustness built confidence in the decision. These findings suggest that models might be helpful to regulators, as they form their preferences during the process of deliberation and debate, and more generally, for public health issues when decision makers face considerable uncertainty.

  6. Virological characterization of influenza H1N1pdm09 in Vietnam, 2010-2013.

    PubMed

    Nguyen, Hang K L; Nguyen, Phuong T K; Nguyen, Thach C; Hoang, Phuong V M; Le, Thanh T; Vuong, Cuong D; Nguyen, Anh P; Tran, Loan T T; Nguyen, Binh G; Lê, Mai Q

    2015-07-01

    Influenza A/H1N1pdm09 virus was first detected in Vietnam on May 31, 2009, and continues to circulate in Vietnam as a seasonal influenza virus. This study has monitored genotypic and phenotypic changes in this group of viruses during 2010-2013 period. We sequenced hemagglutinin (HA) and neuraminidase (NA) genes from representative influenza A/H1N1pdm09 and compared with vaccine strain A/California/07/09 and other contemporary isolates from neighboring countries. Hemagglutination inhibition (HI) and neuraminidase inhibition (NAI) assays also were performed on these isolates. Representative influenza A/H1N1pdm09 isolates (n = 61) from ILI and SARI surveillances in northern Vietnam between 2010 and 2013. The HA and NA phylogenies revealed six and seven groups, respectively. Five isolates (8·2%) had substitutions G155E and N156K in the HA, which were associated with reduced HI titers by antiserum raised against the vaccine virus A/California/07/2009. One isolate from 2011 and one isolate from 2013 had a predicted H275Y substitution in the neuraminidase molecule, which was associated with reduced susceptibility to oseltamivir in a NAI assay. We also identified a D222N change in the HA of a virus isolated from a fatal case in 2013. Significant genotypic and phenotypic changes in A/ H1N1pdm09 influenza viruses were detected by the National Influenza Surveillance System (NISS) in Vietnam between 2010 and 2013 highlighting the value of this system to Vietnam and to the region. Sustained NISS and continued virological monitoring of seasonal influenza viruses are required for vaccine policy development in Vietnam. 3. © 2015 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  7. The Continuing Evolution of H5N1 and H9N2 Influenza Viruses in Bangladesh

    PubMed Central

    Marinova-Petkova, Atanaska; Shanmuganatham, Karthik; Feeroz, Mohammed M.; Jones-Engel, Lisa; Hassan, M. Kamrul; Akhtar, Sharmin; Turner, Jasmine; Walker, David; Seiler, Patrick; Franks, John; McKenzie, Pamela; Krauss, Scott; Webby, Richard J.; Webster, Robert G.

    2017-01-01

    Summary In 2011, avian influenza surveillance at the Bangladesh live bird markets (LBMs) showed complete replacement of the highly pathogenic avian influenza (HPAI) H5N1 virus of clade 2.2.2 (Qinghai-like H5N1 lineage) by the HPAI H5N1 clade 2.3.2.1. This clade, which continues to circulate in Bangladesh and neighboring countries, is an intra- and inter-clade reassortant; its HA, PB1, PA and NS genes come from subclade 2.3.2.1a; PB2 from subclade 2.3.2.1c; and NA, NP, and M from clade 2.3.4.2. The H9N2 influenza viruses co-circulating in the Bangladesh LBMs are also reassortants, possessing five genes (NS, M, NP, PA, and PB1) from a HPAI H7N3 virus previously isolated in Pakistan. Despite frequent co-infection of chickens and ducks, reassortment between these H5N1 and H9N2 viruses has been rare. However, all such reassortants detected in 2011 through 2013 have carried 7 genes from HPAI H5N1 clade 2.3.2.1a and the PB1 gene from the Bangladeshi H9N2 clade G1 Mideast, itself derived from HPAI H7N3 virus. Although, the live birds which we sampled in Bangladesh showed no clinical signs of morbidity, the emergence of this reassortant HPAI H5N1 lineage further complicates endemic circulation of H5N1 viruses in Bangladesh, posing a threat to both poultry and humans. PMID:27309046

  8. Different cross protection scopes of two avian influenza H5N1 vaccines against infection of layer chickens with a heterologous highly pathogenic virus.

    PubMed

    Poetri, Okti Nadia; Van Boven, Michiel; Koch, Guus; Stegeman, Arjan; Claassen, Ivo; Wayan Wisaksana, I; Bouma, Annemarie

    2017-10-01

    Avian influenza (AI) virus strains vary in antigenicity, and antigenic differences between circulating field virus and vaccine virus will affect the effectiveness of vaccination of poultry. Antigenic relatedness can be assessed by measuring serological cross-reactivity using haemagglutination inhibition (HI) tests. Our study aims to determine the relation between antigenic relatedness expressed by the Archetti-Horsfall ratio, and reduction of virus transmission of highly pathogenic H5N1 AI strains among vaccinated layers. Two vaccines were examined, derived from H5N1 AI virus strains A/Ck/WJava/Sukabumi/006/2008 and A/Ck/CJava/Karanganyar/051/2009. Transmission experiments were carried out in four vaccine and two control groups, with six sets of 16 specified pathogen free (SPF) layer chickens. Birds were vaccinated at 4weeks of age with one strain and challenge-infected with the homologous or heterologous strain at 8weeks of age. No transmission or virus shedding occurred in groups challenged with the homologous strain. In the group vaccinated with the Karanganyar strain, high cross-HI responses were observed, and no transmission of the Sukabumi strain occurred. However, in the group vaccinated with the Sukabumi strain, cross-HI titres were low, virus shedding was not reduced, and multiple transmissions to contact birds were observed. This study showed large differences in cross-protection of two vaccines based on two different highly pathogenic H5N1 virus strains. This implies that extrapolation of in vitro data to clinical protection and reduction of virus transmission might not be straightforward. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Codon optimization of antigen coding sequences improves the immune potential of DNA vaccines against avian influenza virus H5N1 in mice and chickens.

    PubMed

    Stachyra, Anna; Redkiewicz, Patrycja; Kosson, Piotr; Protasiuk, Anna; Góra-Sochacka, Anna; Kudla, Grzegorz; Sirko, Agnieszka

    2016-08-26

    Highly pathogenic avian influenza viruses are a serious threat to domestic poultry and can be a source of new human pandemic and annual influenza strains. Vaccination is the main strategy of protection against influenza, thus new generation vaccines, including DNA vaccines, are needed. One promising approach for enhancing the immunogenicity of a DNA vaccine is to maximize its expression in the immunized host. The immunogenicity of three variants of a DNA vaccine encoding hemagglutinin (HA) from the avian influenza virus A/swan/Poland/305-135V08/2006 (H5N1) was compared in two animal models, mice (BALB/c) and chickens (broilers and layers). One variant encoded the wild type HA while the other two encoded HA without proteolytic site between HA1 and HA2 subunits and differed in usage of synonymous codons. One of them was enriched for codons preferentially used in chicken genes, while in the other modified variant the third position of codons was occupied in almost 100 % by G or C nucleotides. The variant of the DNA vaccine containing almost 100 % of the GC content in the third position of codons stimulated strongest immune response in two animal models, mice and chickens. These results indicate that such modification can improve not only gene expression but also immunogenicity of DNA vaccine. Enhancement of the GC content in the third position of the codon might be a good strategy for development of a variant of a DNA vaccine against influenza that could be highly effective in distant hosts, such as birds and mammals, including humans.

  10. Collaborative studies on the development of national reference standards for potency determination of H7N9 influenza vaccine

    PubMed Central

    Li, Changgui; Xu, Kangwei; Hashem, Anwar; Shao, Ming; Liu, Shuzhen; Zou, Yong; Gao, Qiang; Zhang, Yongchao; Yuan, Liyong; Xu, Miao; Li, Xuguang; Wang, Junzhi

    2015-01-01

    The outbreak of human infections of a novel avian influenza virus A (H7N9) prompted the development of the vaccines against this virus. Like all types of influenza vaccines, H7N9 vaccine must be tested for its potency prior to being used in humans. However, the unavailability of international reference reagents for the potency determination of H7N9 vaccines substantially hinders the progress in vaccine development. To facilitate clinical development, we enlisted 5 participants in a collaborative study to develop critical reagents used in Single Radial Immunodiffusion (SRID), the currently acceptable assay for potency determination of influenza vaccine. Specifically, the hemagglutinin (HA) content of one vaccine bulk for influenza A (H7N9), herein designated as Primary Liquid Standard (PLS), was determined by SDS-PAGE. In addition, the freeze-dried antigen references derived from PLS were prepared to enhance the stability for long term storage. The final HA content of lyophilized antigen references were calibrated against PLS by SRID assay in a collaborative study. Importantly, application of these national reference standards to potency analyses greatly facilitated the development of H7N9 vaccines in China. PMID:25970793

  11. Construction and cellular immune response induction of HA-based alphavirus replicon vaccines against human-avian influenza (H5N1).

    PubMed

    Yang, Shi-gui; Wo, Jian-er; Li, Min-wei; Mi, Fen-fang; Yu, Cheng-bo; Lv, Guo-liang; Cao, Hong-Cui; Lu, Hai-feng; Wang, Bao-hong; Zhu, Hanping; Li, Lan-Juan

    2009-12-09

    Several approaches are being taken worldwide to develop vaccines against H5N1 viruses; most of them, however, pose both practical and immunological challenges. One potential strategy for improving the immunogenicity of vaccines involves the use of alphavirus replicons and VP22, a herpes simplex type 1 (HSV-1) protein. In this study, we analysed the antigenic peptides and homogeneity of the HA sequences (human isolates of the H5N1 subtype, from 1997 to 2003) and explored a novel alphavirus replicon system of VP22 fused with HA, to assess whether the immunogenicity of an HA-based replicon vaccine could be induced and augmented via fusion with VP22. Further, replicon particles expressing VP22, and enhanced green fluorescent protein (EGFP) were individually used as controls. Cellular immune responses in mice immunised with replicons were evaluated by identifying specific intracellular cytokine production with flow cytometry (FCM). Animal-based experimentation indicated that both the IL-4 expression of CD4(+) T cells and the IFN-gamma expression of CD8(+) T cells were significantly increased in mice immunised with VPR-HA and VPR-VP22/HA. A dose titration effect vis-à-vis both IL-4 expression and IFN-gamma expression were observed in VPR-HA- and VPR-VP22/HA-vaccinated mice. Our results revealed that both VPR-VP22/HA and VPR-HA replicon particles presented a promising approach for developing vaccines against human-avian influenza, and VP22 could enhance the immunogenicity of the HA antigens to which it is fused.

  12. Introduction and enzootic of A/H5N1 in Egypt: Virus evolution, pathogenicity and vaccine efficacy ten years on.

    PubMed

    Abdelwhab, E M; Hassan, M K; Abdel-Moneim, A S; Naguib, M M; Mostafa, A; Hussein, I T M; Arafa, A; Erfan, A M; Kilany, W H; Agour, M G; El-Kanawati, Z; Hussein, H A; Selim, A A; Kholousy, S; El-Naggar, H; El-Zoghby, E F; Samy, A; Iqbal, M; Eid, A; Ibraheem, E M; Pleschka, S; Veits, J; Nasef, S A; Beer, M; Mettenleiter, T C; Grund, C; Ali, M M; Harder, T C; Hafez, H M

    2016-06-01

    It is almost a decade since the highly pathogenic H5N1 avian influenza virus (A/H5N1) of clade 2.2.1 was introduced to Egypt in 2005, most likely, via wild birds; marking the longest endemic status of influenza viruses in poultry outside Asia. The endemic A/H5N1 in Egypt still compromises the poultry industry, poses serious hazards to public health and threatens to become potentially pandemic. The control strategies adopted for A/H5N1 in Egyptian poultry using diverse vaccines in commercialized poultry neither eliminated the virus nor did they decrease its evolutionary rate. Several virus clades have evolved, a few of them disappeared and others prevailed. Disparate evolutionary traits in both birds and humans were manifested by accumulation of clade-specific mutations across viral genomes driven by a variety of selection pressures. Viruses in vaccinated poultry populations displayed higher mutation rates at the immunogenic epitopes, promoting viral escape and reducing vaccine efficiency. On the other hand, viruses isolated from humans displayed changes in the receptor binding domain, which increased the viral affinity to bind to human-type glycan receptors. Moreover, viral pathogenicity exhibited several patterns in different hosts. This review aims to provide an overview of the viral evolution, pathogenicity and vaccine efficacy of A/H5N1 in Egypt during the last ten years. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Influenza A (H5N1) Viruses from Pigs, Indonesia

    PubMed Central

    Nidom, Chairul A.; Takano, Ryo; Yamada, Shinya; Sakai-Tagawa, Yuko; Daulay, Syafril; Aswadi, Didi; Suzuki, Takashi; Suzuki, Yasuo; Shinya, Kyoko; Iwatsuki-Horimoto, Kiyoko; Muramoto, Yukiko

    2010-01-01

    Pigs have long been considered potential intermediate hosts in which avian influenza viruses can adapt to humans. To determine whether this potential exists for pigs in Indonesia, we conducted surveillance during 2005–2009. We found that 52 pigs in 4 provinces were infected during 2005–2007 but not 2008–2009. Phylogenetic analysis showed that the viruses had been introduced into the pig population in Indonesia on at least 3 occasions. One isolate had acquired the ability to recognize a human-type receptor. No infected pig had influenza-like symptoms, indicating that influenza A (H5N1) viruses can replicate undetected for prolonged periods, facilitating avian virus adaptation to mammalian hosts. Our data suggest that pigs are at risk for infection during outbreaks of influenza virus A (H5N1) and can serve as intermediate hosts in which this avian virus can adapt to mammals. PMID:20875275

  14. Entrapment of H1N1 Influenza Virus Derived Conserved Peptides in PLGA Nanoparticles Enhances T Cell Response and Vaccine Efficacy in Pigs.

    PubMed

    Hiremath, Jagadish; Kang, Kyung-il; Xia, Ming; Elaish, Mohamed; Binjawadagi, Basavaraj; Ouyang, Kang; Dhakal, Santosh; Arcos, Jesus; Torrelles, Jordi B; Jiang, X; Lee, Chang Won; Renukaradhya, Gourapura J

    2016-01-01

    Pigs are believed to be one of the important sources of emerging human and swine influenza viruses (SwIV). Influenza virus conserved peptides have the potential to elicit cross-protective immune response, but without the help of potent adjuvant and delivery system they are poorly immunogenic. Biodegradable polylactic-co-glycolic acid (PLGA) nanoparticle (PLGA-NP) based vaccine delivery system enhances cross-presentation of antigens by the professional antigen presenting cells. In this study, Norovirus P particle containing SwIV M2e (extracellular domain of the matrix protein 2) chimera and highly conserved two each of H1N1 peptides of pandemic 2009 and classical human influenza viruses were entrapped in PLGA-NPs. Influenza antibody-free pigs were vaccinated with PLGA-NPs peptides cocktail vaccine twice with or without an adjuvant, Mycobacterium vaccae whole cell lysate, intranasally as mist. Vaccinated pigs were challenged with a virulent heterologous zoonotic SwIV H1N1, and one week later euthanized and the lung samples were analyzed for the specific immune response and viral load. Clinically, pigs vaccinated with PLGA-NP peptides vaccine had no fever and flu symptoms, and the replicating challenged SwIV was undetectable in the bronchoalveolar lavage fluid. Immunologically, PLGA-NP peptides vaccination (without adjuvant) significantly increased the frequency of antigen-specific IFNγ secreting CD4 and CD8 T cells response in the lung lymphocytes, despite not boosting the antibody response both at pre- and post-challenge. In summary, our data indicated that nanoparticle-mediated delivery of conserved H1N1 influenza peptides induced the virus specific T cell response in the lungs and reduced the challenged heterologous virus load in the airways of pigs.

  15. 2015/16 seasonal vaccine effectiveness against hospitalisation with influenza A(H1N1)pdm09 and B among elderly people in Europe: results from the I-MOVE+ project

    PubMed Central

    Rondy, Marc; Larrauri, Amparo; Casado, Itziar; Alfonsi, Valeria; Pitigoi, Daniela; Launay, Odile; Syrjänen, Ritva K; Gefenaite, Giedre; Machado, Ausenda; Vučina, Vesna Višekruna; Horváth, Judith Krisztina; Paradowska-Stankiewicz, Iwona; Marbus, Sierk D; Gherasim, Alin; Díaz-González, Jorge Alberto; Rizzo, Caterina; Ivanciuc, Alina E; Galtier, Florence; Ikonen, Niina; Mickiene, Aukse; Gomez, Veronica; Kurečić Filipović, Sanja; Ferenczi, Annamária; Korcinska, Monika R; van Gageldonk-Lafeber, Rianne; Valenciano, Marta

    2017-01-01

    We conducted a multicentre test-negative case–control study in 27 hospitals of 11 European countries to measure 2015/16 influenza vaccine effectiveness (IVE) against hospitalised influenza A(H1N1)pdm09 and B among people aged ≥ 65 years. Patients swabbed within 7 days after onset of symptoms compatible with severe acute respiratory infection were included. Information on demographics, vaccination and underlying conditions was collected. Using logistic regression, we measured IVE adjusted for potential confounders. We included 355 influenza A(H1N1)pdm09 cases, 110 influenza B cases, and 1,274 controls. Adjusted IVE against influenza A(H1N1)pdm09 was 42% (95% confidence interval (CI): 22 to 57). It was 59% (95% CI: 23 to 78), 48% (95% CI: 5 to 71), 43% (95% CI: 8 to 65) and 39% (95% CI: 7 to 60) in patients with diabetes mellitus, cancer, lung and heart disease, respectively. Adjusted IVE against influenza B was 52% (95% CI: 24 to 70). It was 62% (95% CI: 5 to 85), 60% (95% CI: 18 to 80) and 36% (95% CI: -23 to 67) in patients with diabetes mellitus, lung and heart disease, respectively. 2015/16 IVE estimates against hospitalised influenza in elderly people was moderate against influenza A(H1N1)pdm09 and B, including among those with diabetes mellitus, cancer, lung or heart diseases. PMID:28797322

  16. Timing of Influenza A(H5N1) in Poultry and Humans and Seasonal Influenza Activity Worldwide, 2004–2013

    PubMed Central

    Durand, Lizette O.; Glew, Patrick; Gross, Diane; Kasper, Matthew; Trock, Susan; Kim, Inkyu K.; Bresee, Joseph S.; Donis, Ruben; Uyeki, Timothy M.; Widdowson, Marc-Alain

    2015-01-01

    Co-circulation of influenza A(H5N1) and seasonal influenza viruses among humans and animals could lead to co-infections, reassortment, and emergence of novel viruses with pandemic potential. We assessed the timing of subtype H5N1 outbreaks among poultry, human H5N1 cases, and human seasonal influenza in 8 countries that reported 97% of all human H5N1 cases and 90% of all poultry H5N1 outbreaks. In these countries, most outbreaks among poultry (7,001/11,331, 62%) and half of human cases (313/625, 50%) occurred during January–March. Human H5N1 cases occurred in 167 (45%) of 372 months during which outbreaks among poultry occurred, compared with 59 (10%) of 574 months that had no outbreaks among poultry. Human H5N1 cases also occurred in 59 (22%) of 267 months during seasonal influenza periods. To reduce risk for co-infection, surveillance and control of H5N1 should be enhanced during January–March, when H5N1 outbreaks typically occur and overlap with seasonal influenza virus circulation. PMID:25625302

  17. H1N1 vaccination in pediatric renal transplant patients.

    PubMed

    Kelen, K; Ferenczi, D; Jankovics, I; Varga, M; Molnar, M Z; Sallay, P; Reusz, G; Langer, R M; Pasti, K; Gerlei, Z; Szabo, A J

    2011-05-01

    Solid organ transplant recipients undergoing immunosuppressive therapy are considered to be at high risk of serious infectious complications. In 2009, a new influenza pandemic caused serious infections and deaths, especially among children and immunocompromised patients. Herein we have reported the safety and efficacy of a single-shot monovalent whole-virus vaccine against H1N1 infection in the pediatric renal transplant population. In November and December 2009, we vaccinated 37 renal transplant children and adolescents and measured their antibody responses. Seroprotection, seroconversion, and seroconversion factors were analyzed at 21 days after vaccination. None of the vaccinated patients experienced vaccine-related side effects. None of the patients had an H1N1 influenza infection after vaccination. All of the patients showed elevations in antibody titer at 21 days after vaccination. In contrast, only 29.72% of the patients achieved a safe seroprotection level and only 18.75% a safe seroconversion rate. More intense immunosuppressive treatment displayed negative effect on seroprotection and seroconversion, and antibody production significantly increased with age. No other factor was observed to influence seroprotection. We recommend vaccination of children and adolescent renal transplant recipients against H1N1 virus. However, a single shot of vaccine may not be sufficient; to achieve seroprotection, a booster vaccination and measurement of the antibody response are needed to assure protection of our patients. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Broadly-reactive human monoclonal antibodies elicited following pandemic H1N1 influenza virus exposure protect mice from highly pathogenic H5N1 challenge.

    PubMed

    Nachbagauer, Raffael; Shore, David; Yang, Hua; Johnson, Scott K; Gabbard, Jon D; Tompkins, S Mark; Wrammert, Jens; Wilson, Patrick C; Stevens, James; Ahmed, Rafi; Krammer, Florian; Ellebedy, Ali H

    2018-06-13

    Broadly cross-reactive antibodies that recognize conserved epitopes within the influenza virus hemagglutinin (HA) stalk domain are of particular interest for their potential use as therapeutic and prophylactic agents against multiple influenza virus subtypes including zoonotic virus strains. Here, we characterized four human HA stalk-reactive monoclonal antibodies (mAbs) for their binding breadth and affinity, in vitro neutralization capacity, and in vivo protective potential against an highly pathogenic avian influenza virus. The monoclonal antibodies were isolated from individuals shortly following infection with (70-1F02 and 1009-3B05) or vaccination against (05-2G02 and 09-3A01) A(H1N1)pdm09. Three of the mAbs bound HAs from multiple strains of group 1 viruses, and one mAb, 05-2G02, bound to both group 1 and group 2 influenza A HAs. All four antibodies prophylactically protected mice against a lethal challenge with the highly pathogenic A/Vietnam/1203/04 (H5N1) strain. Two mAbs, 70-1F02 and 09-3A01, were further tested for their therapeutic efficacy against the same strain and showed good efficacy in this setting as well. One mAb, 70-1F02, was co-crystallized with H5 HA and showed similar heavy chain only interactions as a the previously described anti-stalk antibody CR6261. Finally, we showed that antibodies that compete with these mAbs are prevalent in serum from an individual recently infected with A(H1N1)pdm09 virus. The antibodies described here can be developed into broad-spectrum antiviral therapeutics that could be used to combat infections with zoonotic or emerging pandemic influenza viruses. IMPORTANCE The rise in zoonotic infections of humans with emerging influenza viruses is a worldwide public health concern. The majority of recent zoonotic human influenza cases were caused by H7N9 and H5Nx viruses and were associated with high morbidity and mortality. In addition, seasonal influenza viruses are estimated to cause up to 650,000 deaths annually

  19. Waning vaccine protection against influenza A (H3N2) illness in children and older adults during a single season.

    PubMed

    Belongia, Edward A; Sundaram, Maria E; McClure, David L; Meece, Jennifer K; Ferdinands, Jill; VanWormer, Jeffrey J

    2015-01-01

    Recent studies have suggested that vaccine-induced protection against influenza may decline within one season. We reanalyzed data from a study of influenza vaccine effectiveness to determine if time since vaccination was an independent predictor of influenza A (H3N2). Patients with acute respiratory illness were actively recruited during the 2007-2008 season. Respiratory swabs were tested for influenza, and vaccination dates were determined by a validated immunization registry. The association between influenza RT-PCR result and vaccination interval (days) was examined using multivariable logistic regression, adjusting for calendar time, age and other confounders. There were 629 vaccinated participants, including 177 influenza A (H3N2) cases and 452 test negative controls. The mean (SD) interval from vaccination to illness onset was 101.7 (25.9) days for influenza cases and 93.0 (29.9) days for controls. There was a significant association between vaccination interval and influenza result in the main effects model. The adjusted odds ratio (aOR) for influenza was 1.12 (CI 1.01, 1.26) for every 14 day increase in the vaccination interval. Age modified the association between vaccination interval and influenza (p=0.005 for interaction). Influenza was associated with increasing vaccination interval in young children and older adults, but not in adolescents or non-elderly adults. Similar results were found when calendar week of vaccine receipt was assessed as the primary exposure variable. Identification of influenza A (H3N2) was associated with increasing time since vaccination among young children and older adults during a single influenza season. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Population‐based surveillance for 2009 pandemic influenza A (H1N1) virus in Guatemala, 2009

    PubMed Central

    Reyes, Lissette; Arvelo, Wences; Estevez, Alejandra; Gray, Jennifer; Moir, Juan C.; Gordillo, Betty; Frenkel, Gal; Ardón, Francisco; Moscoso, Fabiola; Olsen, Sonja J.; Fry, Alicia M.; Lindstrom, Steve; Lindblade, Kim A.

    2010-01-01

    Please cite this paper as: Reyes et al. (2010) Population‐based surveillance for 2009 pandemic influenza A (H1N1) virus in Guatemala, 2009. Influenza and Other Respiratory Viruses 4(3), 129–140. Background  In April 2009, 2009 pandemic influenza A H1N1 (2009 H1N1) was first identified in Mexico but did not cause widespread transmission in neighboring Guatemala until several weeks later. Methodology and principle findings  Using a population‐based surveillance system for hospitalized pneumonia and influenza‐like illness ongoing before the 2009 H1N1 pandemic began, we tracked the onset of 2009 H1N1 infection in Guatemala. We identified 239 individuals infected with influenza A (2009 H1N1) between May and December 2009, of whom 76 were hospitalized with pneumonia and 11 died (case fatality proportion: 4·6%, 95% confidence interval [CI] 2·3–8·1%). The median age of patients infected with 2009 H1N1 was 8·8 years, the median age of those hospitalized with pneumonia was 4·2 years, and five (45·5%) deaths occurred in children <5 years old. Crude rates of hospitalization between May and December 2009 were highest for children <5 years old. Twenty‐one (27·6%) of the patients hospitalized with 2009 H1N1 were admitted to the intensive care unit and eight (10·5%) required mechanical ventilation. Underlying chronic conditions were noted in 14 (18·4%) of patients with pneumonia hospitalized with 2009 H1N1 infection. Conclusions and significance  Chronic illnesses may be underdiagnosed in Guatemala, making it difficult to identify this risk group for vaccination. Children 6 months to 5 years old should be among priority groups for vaccination to prevent serious consequences because of 2009 H1N1 infection. PMID:20409209

  1. Guillain-Barré syndrome and adjuvanted pandemic influenza A (H1N1) 2009 vaccine: multinational case-control study in Europe

    PubMed Central

    Dieleman, Jeanne; Romio, Silvana; Johansen, Kari; Weibel, Daniel; Bonhoeffer, Jan

    2011-01-01

    Objective To assess the association between pandemic influenza A (H1N1) 2009 vaccine and Guillain-Barré syndrome. Design Case-control study. Setting Five European countries. Participants 104 patients with Guillain-Barré syndrome and its variant Miller-Fisher syndrome matched to one or more controls. Case status was classified according to the Brighton Collaboration definition. Controls were matched to cases on age, sex, index date, and country. Main outcome measures Relative risk estimate for Guillain-Barré syndrome after pandemic influenza vaccine. Results Case recruitment and vaccine coverage varied considerably between countries; the most common vaccines used were adjuvanted (Pandemrix and Focetria). The unadjusted pooled risk estimate for all countries was 2.8 (95% confidence interval 1.3 to 6.0). After adjustment for influenza-like illness/upper respiratory tract infection and seasonal influenza vaccination, receipt of pandemic influenza vaccine was not associated with an increased risk of Guillain-Barré syndrome (adjusted odds ratio 1.0, 0.3 to 2.7). The 95% confidence interval shows that the absolute effect of vaccination could range from one avoided case of Guillain-Barré syndrome up to three excess cases within six weeks after vaccination in one million people. Conclusions The risk of occurrence of Guillain-Barré syndrome is not increased after pandemic influenza vaccine, although the upper limit does not exclude a potential increase in risk up to 2.7-fold or three excess cases per one million vaccinated people. When assessing the association between pandemic influenza vaccines and Guillain-Barré syndrome it is important to account for the effects of influenza-like illness/upper respiratory tract infection, seasonal influenza vaccination, and calendar time. PMID:21750072

  2. The responses of Aboriginal Canadians to adjuvanted pandemic (H1N1) 2009 influenza vaccine

    PubMed Central

    Rubinstein, Ethan; Predy, Gerald; Sauvé, Laura; Hammond, Greg W.; Aoki, Fred; Sikora, Chris; Li, Yan; Law, Barbara; Halperin, Scott; Scheifele, David

    2011-01-01

    Background: Because many Aboriginal Canadians had severe cases of pandemic (H1N1) 2009 influenza, they were given priority access to vaccine. However, it was not known if the single recommended dose would adequately protect people at high risk, prompting our study to assess responses to the vaccine among Aboriginal Canadians. Methods: We enrolled First Nations and Métis adults aged 20–59 years in our prospective cohort study. Participants were given one 0.5-mL dose of ASO3-adjuvanted pandemic (H1N1) 2009 vaccine (Arepanrix, GlaxoSmithKline Canada). Blood samples were taken at baseline and 21–28 days after vaccination. Paired sera were tested for hemagglutination-inhibiting antibodies at a reference laboratory. To assess vaccine safety, we monitored the injection site symptoms of each participant for seven days. We also monitored patients for general symptoms within 7 days of vaccination and any use of the health care system for 21–28 days after vaccination. Results: We enrolled 138 participants in the study (95 First Nations, 43 Métis), 137 of whom provided all safety data and 136 of whom provided both blood samples. First Nations and Métis participants had similar characteristics, including high rates of chronic health conditions (74.4%–76.8%). Pre-existing antibody to the virus was detected in 34.3% of the participants, all of whom boosted strongly with vaccination (seroprotection rate [titre ≥ 40] 100%, geometric mean titre 531–667). Particpants with no pre-existing antibody also responded well. Fifty-eight of 59 (98.3%) First Nations participants showed seroprotection and a geometric mean titre of 353.6; all 30 Métis participants with no pre-existing antibody showed seroprotection and a geometric mean titre of 376.2. Pain at the injection site and general symptoms frequently occurred but were short-lived and generally not severe, although three participants (2.2%) sought medical attention for general symptoms. Interpretation: First Nations and

  3. Formulation and immunological evaluation of a trivalent vaccine comprising emulsified submicron particles and inactivated virions of H5N1/EV71/JEV

    PubMed Central

    Lin, Chih-Wei; Chang, Ching-Yun; Chen, Wei-Lin; Lin, Shih-Chang; Liao, Chien-Chun; Chang, Jui-Yuan; Liu, Chia-Chyi; Hu, Alan Yung-Chih; Lu, Tsung-Chun; Chou, Ai-Hsiang; Wu, Suh-Chin; Chong, Pele; Huang, Ming-Hsi

    2013-01-01

    Combination vaccines can reduce the number of injections and simplify the immunization schedule required to prevent different diseases. Here we assessed the immunogenicity in a mouse model of a vaccine composition comprising inactivated influenza viruses (H5N1/H1N1), enterovirus 71 (EV71), and/or Japanese encephalitis virus (JEV) and investigated whether the vaccine formulations can overcome the immunologic interference between the individual vaccine components. We demonstrated that the antigenic competition happens between H5N1/H1N1 or H5N1/EV71 inactivated virions when the vaccine combinations either formulated with Alum suspensions or without adjuvant. In the presence of PELC emulsified particles, EV71-specific immune responses before and after incorporating H5N1 virus into EV71 vaccine were detected of no significant difference; in addition, H5N1- and EV71-specific immune responses were found at the same level when H5N1/EV71/JEV consolidating into combination vaccine. Emulsified vaccine formulation was represented as a potential tool that is found to reduce the number of injections required to prevent multiple infectious strains causing the same disease (H5N1/H1N1) and/or that protect against different diseases (H5N1/EV71). Combination vaccines can also include a third component to protect against H5N1/EV71/JEV at the same time. PMID:23838466

  4. Spatial distribution and risk factors of highly pathogenic avian influenza (HPAI) H5N1 in China

    USGS Publications Warehouse

    Martin, Vincent; Pfeiffer, Dirk U.; Zhou, Xiaoyan; Xiao, Xiangming; Prosser, Diann J.; Guo, Fusheng; Gilbert, Marius

    2011-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 was first encountered in 1996 in Guangdong province (China) and started spreading throughout Asia and the western Palearctic in 2004–2006. Compared to several other countries where the HPAI H5N1 distribution has been studied in some detail, little is known about the environmental correlates of the HPAI H5N1 distribution in China. HPAI H5N1 clinical disease outbreaks, and HPAI virus (HPAIV) H5N1 isolated from active risk-based surveillance sampling of domestic poultry (referred to as HPAIV H5N1 surveillance positives in this manuscript) were modeled separately using seven risk variables: chicken, domestic waterfowl population density, proportion of land covered by rice or surface water, cropping intensity, elevation, and human population density. We used bootstrapped logistic regression and boosted regression trees (BRT) with cross-validation to identify the weight of each variable, to assess the predictive power of the models, and to map the distribution of HPAI H5N1 risk. HPAI H5N1 clinical disease outbreak occurrence in domestic poultry was mainly associated with chicken density, human population density, and elevation. In contrast, HPAIV H5N1 infection identified by risk-based surveillance was associated with domestic waterfowl density, human population density, and the proportion of land covered by surface water. Both models had a high explanatory power (mean AUC ranging from 0.864 to 0.967). The map of HPAIV H5N1 risk distribution based on active surveillance data emphasized areas south of the Yangtze River, while the distribution of reported outbreak risk extended further North, where the density of poultry and humans is higher. We quantified the statistical association between HPAI H5N1 outbreak, HPAIV distribution and post-vaccination levels of seropositivity (percentage of effective post-vaccination seroconversion in vaccinated birds) and found that provinces with either outbreaks or HPAIV H5N1 surveillance

  5. Spatial distribution and risk factors of highly pathogenic avian influenza (HPAI) H5N1 in China.

    PubMed

    Martin, Vincent; Pfeiffer, Dirk U; Zhou, Xiaoyan; Xiao, Xiangming; Prosser, Diann J; Guo, Fusheng; Gilbert, Marius

    2011-03-01

    Highly pathogenic avian influenza (HPAI) H5N1 was first encountered in 1996 in Guangdong province (China) and started spreading throughout Asia and the western Palearctic in 2004-2006. Compared to several other countries where the HPAI H5N1 distribution has been studied in some detail, little is known about the environmental correlates of the HPAI H5N1 distribution in China. HPAI H5N1 clinical disease outbreaks, and HPAI virus (HPAIV) H5N1 isolated from active risk-based surveillance sampling of domestic poultry (referred to as HPAIV H5N1 surveillance positives in this manuscript) were modeled separately using seven risk variables: chicken, domestic waterfowl population density, proportion of land covered by rice or surface water, cropping intensity, elevation, and human population density. We used bootstrapped logistic regression and boosted regression trees (BRT) with cross-validation to identify the weight of each variable, to assess the predictive power of the models, and to map the distribution of HPAI H5N1 risk. HPAI H5N1 clinical disease outbreak occurrence in domestic poultry was mainly associated with chicken density, human population density, and elevation. In contrast, HPAIV H5N1 infection identified by risk-based surveillance was associated with domestic waterfowl density, human population density, and the proportion of land covered by surface water. Both models had a high explanatory power (mean AUC ranging from 0.864 to 0.967). The map of HPAIV H5N1 risk distribution based on active surveillance data emphasized areas south of the Yangtze River, while the distribution of reported outbreak risk extended further North, where the density of poultry and humans is higher. We quantified the statistical association between HPAI H5N1 outbreak, HPAIV distribution and post-vaccination levels of seropositivity (percentage of effective post-vaccination seroconversion in vaccinated birds) and found that provinces with either outbreaks or HPAIV H5N1 surveillance

  6. Spatial Distribution and Risk Factors of Highly Pathogenic Avian Influenza (HPAI) H5N1 in China

    PubMed Central

    Martin, Vincent; Pfeiffer, Dirk U.; Zhou, Xiaoyan; Xiao, Xiangming; Prosser, Diann J.; Guo, Fusheng; Gilbert, Marius

    2011-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 was first encountered in 1996 in Guangdong province (China) and started spreading throughout Asia and the western Palearctic in 2004–2006. Compared to several other countries where the HPAI H5N1 distribution has been studied in some detail, little is known about the environmental correlates of the HPAI H5N1 distribution in China. HPAI H5N1 clinical disease outbreaks, and HPAI virus (HPAIV) H5N1 isolated from active risk-based surveillance sampling of domestic poultry (referred to as HPAIV H5N1 surveillance positives in this manuscript) were modeled separately using seven risk variables: chicken, domestic waterfowl population density, proportion of land covered by rice or surface water, cropping intensity, elevation, and human population density. We used bootstrapped logistic regression and boosted regression trees (BRT) with cross-validation to identify the weight of each variable, to assess the predictive power of the models, and to map the distribution of HPAI H5N1 risk. HPAI H5N1 clinical disease outbreak occurrence in domestic poultry was mainly associated with chicken density, human population density, and elevation. In contrast, HPAIV H5N1 infection identified by risk-based surveillance was associated with domestic waterfowl density, human population density, and the proportion of land covered by surface water. Both models had a high explanatory power (mean AUC ranging from 0.864 to 0.967). The map of HPAIV H5N1 risk distribution based on active surveillance data emphasized areas south of the Yangtze River, while the distribution of reported outbreak risk extended further North, where the density of poultry and humans is higher. We quantified the statistical association between HPAI H5N1 outbreak, HPAIV distribution and post-vaccination levels of seropositivity (percentage of effective post-vaccination seroconversion in vaccinated birds) and found that provinces with either outbreaks or HPAIV H5N1 surveillance

  7. Pandemic influenza A 2009 (H1N1) vaccination in high risk children with chronic renal diseases: acceptance and perceptions.

    PubMed

    Printza, Nikoleta; Farmaki, Evagelia; Bosdou, Julia; Gkogka, Chrysa; Papachristou, Fotios

    2010-10-01

    We aimed to evaluate the acceptance of pandemic influenza A 2009 vaccination in our high risk children with chronic renal diseases. A total of 64 children/parents of pediatric nephrology department were approached to fill in a standardised questionnaire on influenza immunization profile. The H1N1 vaccination rates were 57.1% for transplant recipients, 61.5% for patients on peritoneal dialysis (PD), 36.4% for patients with various stages of chronic renal disease (CRD) and 26.7% for patients with glomerulonephritis (GN) on immunosuppressive therapy. Children on renal transplantation or PD had a fourfold higher rate of being vaccinated than children with GN (p=0.04). Causes of denying vaccination included fear of adverse effects (48.9%), lack of sufficient data on the new vaccine (31.9%) and others (19.2%). Patients being vaccinated were all urged by their pediatric nephrologist (100%), while patients not vaccinated were negatively influenced by media (41.4%), friends (24.1%), pediatrician (20.7%) and others (13.8%). Regarding parents education, higher level was associated with increased rate of children vaccination (p=0.04). It seems that patients with severe renal disease had better compliance with vaccination. The pediatric nephrologists had the most significant positive influence in contrast to the media which had the most negative influence.

  8. Duck migration and past influenza A (H5N1) outbreak areas

    USGS Publications Warehouse

    Gaidet, Nicolas; Newman, Scott H.; Hagemeijer, Ward; Dodman, Tim; Cappelle, Julien; Hammoumi, Saliha; De Simone, Lorenzo; Takekawa, John Y.

    2008-01-01

    In 2005 and 2006, the highly pathogenic avian influenza (HPAI) virus subtype H5N1 rapidly spread from Asia through Europe, the Middle East, and Africa. Waterbirds are considered the natural reservoir of low pathogenic avian influenza viruses (1), but their potential role in the spread of HPAI (H5N1), along with legal and illegal poultry and wildlife trade (2), is yet to be clarified.

  9. Antigenic Drift in H5N1 Avian Influenza Virus in Poultry Is Driven by Mutations in Major Antigenic Sites of the Hemagglutinin Molecule Analogous to Those for Human Influenza Virus▿†

    PubMed Central

    Cattoli, Giovanni; Milani, Adelaide; Temperton, Nigel; Zecchin, Bianca; Buratin, Alessandra; Molesti, Eleonora; Aly, Mona Meherez; Arafa, Abdel; Capua, Ilaria

    2011-01-01

    H5N1 highly pathogenic avian influenza virus has been endemic in poultry in Egypt since 2008, notwithstanding the implementation of mass vaccination and culling of infected birds. Extensive circulation of the virus has resulted in a progressive genetic evolution and an antigenic drift. In poultry, the occurrence of antigenic drift in avian influenza viruses is less well documented and the mechanisms remain to be clarified. To test the hypothesis that H5N1 antigenic drift is driven by mechanisms similar to type A influenza viruses in humans, we generated reassortant viruses, by reverse genetics, that harbored molecular changes identified in genetically divergent viruses circulating in the vaccinated population. Parental and reassortant phenotype viruses were antigenically analyzed by hemagglutination inhibition (HI) test and microneutralization (MN) assay. The results of the study indicate that the antigenic drift of H5N1 in poultry is driven by multiple mutations primarily occurring in major antigenic sites at the receptor binding subdomain, similarly to what has been described for human influenza H1 and H3 subtype viruses. PMID:21734057

  10. Local health department 2009 H1N1 influenza vaccination clinics-CDC staffing model comparison and other best practices.

    PubMed

    Porter, Dayna; Hall, Mark; Hartl, Brian; Raevsky, Cathy; Peacock, Roberta; Kraker, David; Walls, Sandra; Brink, Gail

    2011-01-01

    Mass vaccination clinic staffing models, such as the Centers for Disease Control and Prevention Large-Scale Vaccination Clinic Output and Staff Estimates: An Example, provide guidance on appropriate roles and number of staff for successful mass vaccination clinics within local and state health departments. The Kent County Health Department used this model as a starting point for mass vaccination clinics in response to 2009 H1N1 influenza. In addition to discussion of successful modification of the Centers for Disease Control and Prevention model to maximize local health department mass vaccination clinic efficiency, additional best practices including use of the Incident Command System and a reservation system are provided. Use of the provided modified staffing model and additional best practices will increase the success of health department mass vaccination clinics, and should be considered not only for future public health emergencies, but also for seasonal influenza vaccination campaigns.

  11. Vaccine protection of chickens against antigenically diverse H5 highly pathogenic avian influenza isolates with a live HVT vector vaccine expressing the influenza hemagglutinin gene derived from a clade 2.2 avian influenza virus.

    PubMed

    Kapczynski, Darrell R; Esaki, Motoyuki; Dorsey, Kristi M; Jiang, Haijun; Jackwood, Mark; Moraes, Mauro; Gardin, Yannick

    2015-02-25

    Vaccination is an important tool in the protection of poultry against avian influenza (AI). For field use, the overwhelming majority of AI vaccines produced are inactivated whole virus formulated into an oil emulsion. However, recombinant vectored vaccines are gaining use for their ability to induce protection against heterologous isolates and ability to overcome maternal antibody interference. In these studies, we compared protection of chickens provided by a turkey herpesvirus (HVT) vector vaccine expressing the hemagglutinin (HA) gene from a clade 2.2 H5N1 strain (A/swan/Hungary/4999/2006) against homologous H5N1 as well as heterologous H5N1 and H5N2 highly pathogenic (HP) AI challenge. The results demonstrated all vaccinated birds were protected from clinical signs of disease and mortality following homologous challenge. In addition, oral and cloacal swabs taken from challenged birds demonstrated that vaccinated birds had lower incidence and titers of viral shedding compared to sham-vaccinated birds. Following heterologous H5N1 or H5N2 HPAI challenge, 80-95% of birds receiving the HVT vector AI vaccine at day of age survived challenge with fewer birds shedding virus after challenge than sham vaccinated birds. In vitro cytotoxicity analysis demonstrated that splenic T lymphocytes from HVT-vector-AI vaccinated chickens recognized MHC-matched target cells infected with H5, as well as H6, H7, or H9 AI virus. Taken together, these studies provide support for the use of HVT vector vaccines expressing HA to protect poultry against multiple lineages of HPAI, and that both humoral and cellular immunity induced by live vaccines likely contributes to protection. Published by Elsevier Ltd.

  12. Association between the 2008–09 Seasonal Influenza Vaccine and Pandemic H1N1 Illness during Spring–Summer 2009: Four Observational Studies from Canada

    PubMed Central

    Skowronski, Danuta M.; De Serres, Gaston; Crowcroft, Natasha S.; Janjua, Naveed Z.; Boulianne, Nicole; Hottes, Travis S.; Rosella, Laura C.; Dickinson, James A.; Gilca, Rodica; Sethi, Pam; Ouhoummane, Najwa; Willison, Donald J.; Rouleau, Isabelle; Petric, Martin; Fonseca, Kevin; Drews, Steven J.; Rebbapragada, Anuradha; Charest, Hugues; Hamelin, Marie-Ève; Boivin, Guy; Gardy, Jennifer L.; Li, Yan; Kwindt, Trijntje L.; Patrick, David M.; Brunham, Robert C.

    2010-01-01

    Background In late spring 2009, concern was raised in Canada that prior vaccination with the 2008–09 trivalent inactivated influenza vaccine (TIV) was associated with increased risk of pandemic influenza A (H1N1) (pH1N1) illness. Several epidemiologic investigations were conducted through the summer to assess this putative association. Methods and Findings Studies included: (1) test-negative case-control design based on Canada's sentinel vaccine effectiveness monitoring system in British Columbia, Alberta, Ontario, and Quebec; (2) conventional case-control design using population controls in Quebec; (3) test-negative case-control design in Ontario; and (4) prospective household transmission (cohort) study in Quebec. Logistic regression was used to estimate odds ratios for TIV effect on community- or hospital-based laboratory-confirmed seasonal or pH1N1 influenza cases compared to controls with restriction, stratification, and adjustment for covariates including combinations of age, sex, comorbidity, timeliness of medical visit, prior physician visits, and/or health care worker (HCW) status. For the prospective study risk ratios were computed. Based on the sentinel study of 672 cases and 857 controls, 2008–09 TIV was associated with statistically significant protection against seasonal influenza (odds ratio 0.44, 95% CI 0.33–0.59). In contrast, estimates from the sentinel and three other observational studies, involving a total of 1,226 laboratory-confirmed pH1N1 cases and 1,505 controls, indicated that prior receipt of 2008–09 TIV was associated with increased risk of medically attended pH1N1 illness during the spring–summer 2009, with estimated risk or odds ratios ranging from 1.4 to 2.5. Risk of pH1N1 hospitalization was not further increased among vaccinated people when comparing hospitalized to community cases. Conclusions Prior receipt of 2008–09 TIV was associated with increased risk of medically attended pH1N1 illness during the spring

  13. B Cell Response and Hemagglutinin Stalk-Reactive Antibody Production in Different Age Cohorts following 2009 H1N1 Influenza Virus Vaccination

    PubMed Central

    Baer, Jane; Santiago, Felix W.; Fitzgerald, Theresa; Ilyushina, Natalia A.; Sundararajan, Aarthi; Henn, Alicia D.; Krammer, Florian; Yang, Hongmei; Luke, Catherine J.; Zand, Martin S.; Wright, Peter F.; Treanor, John J.; Topham, David J.

    2013-01-01

    The 2009 pandemic H1N1 (pH1N1) influenza virus carried a swine-origin hemagglutinin (HA) that was closely related to the HAs of pre-1947 H1N1 viruses but highly divergent from the HAs of recently circulating H1N1 strains. Consequently, prior exposure to pH1N1-like viruses was mostly limited to individuals over the age of about 60 years. We related age and associated differences in immune history to the B cell response to an inactivated monovalent pH1N1 vaccine given intramuscularly to subjects in three age cohorts: 18 to 32 years, 60 to 69 years, and ≥70 years. The day 0 pH1N1-specific hemagglutination inhibition (HAI) and microneutralization (MN) titers were generally higher in the older cohorts, consistent with greater prevaccination exposure to pH1N1-like viruses. Most subjects in each cohort responded well to vaccination, with early formation of circulating virus-specific antibody (Ab)-secreting cells and ≥4-fold increases in HAI and MN titers. However, the response was strongest in the 18- to 32-year cohort. Circulating levels of HA stalk-reactive Abs were increased after vaccination, especially in the 18- to 32-year cohort, raising the possibility of elevated levels of cross-reactive neutralizing Abs. In the young cohort, an increase in MN activity against the seasonal influenza virus A/Brisbane/59/07 after vaccination was generally associated with an increase in the anti-Brisbane/59/07 HAI titer, suggesting an effect mediated primarily by HA head-reactive rather than stalk-reactive Abs. Our findings support recent proposals that immunization with a relatively novel HA favors the induction of Abs against conserved epitopes. They also emphasize the need to clarify how the level of circulating stalk-reactive Abs relates to resistance to influenza. PMID:23576673

  14. Correlates of 2009 Pandemic H1N1 Influenza Vaccine Acceptance among Middle and High School Teachers in Rural Georgia

    ERIC Educational Resources Information Center

    Gargano, Lisa M.; Painter, Julia E.; Sales, Jessica M.; Morfaw, Christopher; Jones, LaDawna M.; Weiss, Paul; Murray, Dennis; DiClemente, Ralph J.; Hughes, James M.

    2011-01-01

    Background: Teachers play an essential role in the school community, and H1N1 vaccination of teachers is critical to protect not only themselves but also adolescents they come in contact within the classroom through herd immunity. School-aged children have a greater risk of developing H1N1 disease than seasonal influenza. The goal of this study…

  15. A DNA Vaccine That Targets Hemagglutinin to Antigen-Presenting Cells Protects Mice against H7 Influenza

    PubMed Central

    Andersen, Tor Kristian; Zhou, Fan; Cox, Rebecca; Bogen, Bjarne

    2017-01-01

    ABSTRACT Zoonotic influenza H7 viral infections have a case fatality rate of about 40%. Currently, no or limited human to human spread has occurred, but we may be facing a severe pandemic threat if the virus acquires the ability to transmit between humans. Novel vaccines that can be rapidly produced for global distribution are urgently needed, and DNA vaccines may be the only type of vaccine that allows for the speed necessary to quench an emerging pandemic. Here, we constructed DNA vaccines encoding the hemagglutinin (HA) from influenza A/chicken/Italy/13474/99 (H7N1). In order to increase the efficacy of DNA vaccination, HA was targeted to either major histocompatibility complex class II molecules or chemokine receptors 1, 3, and 5 (CCR1/3/5) that are expressed on antigen-presenting cells (APC). A single DNA vaccination with APC-targeted HA significantly increased antibody levels in sera compared to nontargeted control vaccines. The antibodies were confirmed neutralizing in an H7 pseudotype-based neutralization assay. Furthermore, the APC-targeted vaccines increased the levels of antigen-specific cytotoxic T cells, and a single DNA vaccination could confer protection against a lethal challenge with influenza A/turkey/Italy/3889/1999 (H7N1) in mice. In conclusion, we have developed a vaccine that rapidly could contribute protection against a pandemic threat from avian influenza. IMPORTANCE Highly pathogenic avian influenza H7 constitute a pandemic threat that can cause severe illness and death in infected individuals. Vaccination is the main method of prophylaxis against influenza, but current vaccine strategies fall short in a pandemic situation due to a prolonged production time and insufficient production capabilities. In contrast, a DNA vaccine can be rapidly produced and deployed to prevent the potential escalation of a highly pathogenic influenza pandemic. We here demonstrate that a single DNA delivery of hemagglutinin from an H7 influenza could mediate full

  16. Asymptomatic ratio for seasonal H1N1 influenza infection among schoolchildren in Taiwan.

    PubMed

    Hsieh, Ying-Hen; Tsai, Chen-An; Lin, Chien-Yu; Chen, Jin-Hua; King, Chwan-Chuen; Chao, Day-Yu; Cheng, Kuang-Fu

    2014-02-12

    Studies indicate that asymptomatic infections do indeed occur frequently for both seasonal and pandemic influenza, accounting for about one-third of influenza infections. Studies carried out during the 2009 pH1N1 pandemic have found significant antibody response against seasonal H1N1 and H3N2 vaccine strains in schoolchildren receiving only pandemic H1N1 monovalent vaccine, yet reported either no symptoms or only mild symptoms. Serum samples of 255 schoolchildren, who had not received vaccination and had pre-season HI Ab serotiters <40, were collected from urban, rural areas and an isolated island in Taiwan during the 2005-2006 influenza season. Their hemagglutination inhibition antibody (HI Ab) serotiters against the 2005 A/New Caledonia/20/99 (H1N1) vaccine strain at pre-season and post-season were measured to determine the symptoms with the highest correlation with infection, as defined by 4-fold rise in HI titer. We estimate the asymptomatic ratio, or the proportion of asymptomatic infections, for schoolchildren during the 2005-6 influenza season when this vaccine strain was found to be antigenically related to the circulating H1N1 strain. Fever has the highest correlation with the 2005-06 seasonal influenza A(H1N1) infection, followed by headache, cough, vomiting, and sore throat. Asymptomatic ratio for the schoolchildren is found to range between 55.6% (95% CI: 44.7-66.4)-77.9% (68.8-87.0) using different sets of predictive symptoms. Moreover, the asymptomatic ratio was 66.9% (56.6-77.2) when using US-CDC criterion of fever + (cough/sore throat), and 73.0 (63.3-82.8) when under Taiwan CDC definition of Fever + (cough or sore throat or nose) + ( headache or pain or fatigue). Asymptomatic ratio for children is found to be substantially higher than that of the general population in literature. In providing reasonable quantification of the asymptomatic infected children spreading pathogens to others in a seasonal epidemic or a pandemic, our estimates

  17. Antibody Immunity Induced by H7N9 Avian Influenza Vaccines: Evaluation Criteria, Affecting Factors, and Implications for Rational Vaccine Design

    PubMed Central

    Hu, Zenglei; Jiao, Xinan; Liu, Xiufan

    2017-01-01

    Severe H7N9 avian influenza virus (AIV) infections in humans have public health authorities around the world on high alert for the potential development of a human influenza pandemic. Currently, the newly-emerged highly pathogenic avian influenza A (H7N9) virus poses a dual challenge for public health and poultry industry. Numerous H7N9 vaccine candidates have been generated using various platforms. Immunization trials in animals and humans showed that H7N9 vaccines are apparently poorly immunogenic because they induced low hemagglutination inhibition and virus neutralizing antibody titers. However, H7N9 vaccines elicit comparable levels of total hemagglutinin (HA)-reactive IgG antibody as the seasonal influenza vaccines, suggesting H7N9 vaccines are as immunogenic as their seasonal counterparts. A large fraction of overall IgG antibody is non-neutralizing antibody and they target unrecognized epitopes outside of the traditional antigenic sites in HA. Further, the Treg epitope identified in H7 HA may at least partially contribute to regulation of antibody immunity. Here, we review the latest advances for the development of H7N9 vaccines and discuss the influence of serological criteria on evaluation of immunogenicity of H7N9 vaccines. Next, we discuss factors affecting antibody immunity induced by H7N9 vaccines, including the change in antigenic epitopes in HA and the presence of the Treg epitope. Last, we present our perspectives for the unique features of antibody immunity of H7N9 vaccines and propose some future directions to improve or modify antibody response induced by H7N9 vaccines. This perspective would provide critical implications for rational design of H7N9 vaccines for human and veterinary use. PMID:29018438

  18. Antibody responses to natural influenza A/H1N1/09 disease or following immunization with adjuvanted vaccines, in immunocompetent and immunocompromised children.

    PubMed

    Meier, Sara; Bel, Michael; L'huillier, Arnaud; Crisinel, Pierre-Alex; Combescure, Christophe; Kaiser, Laurent; Grillet, Stéphane; Pósfay-Barbe, Klara; Siegrist, Claire-Anne

    2011-04-27

    To compare antibody responses elicited by influenza A/H1N1/09 disease and immunization with adjuvanted vaccines, in immunocompetent or immunocompromised children. Prospective parallel cohort field study enrolling children with confirmed influenza A/H1N1/09 disease or immunized with 1 (immunocompetent) or 2 (immunocompromised) doses of influenza A/H1N1/09 squalene-based AS03- or MF59-adjuvanted vaccines. Antibody geometric mean titers (GMT) were measured by hemagglutination inhibition (HAI) and microneutralization (MN) assays 4-6 weeks after vaccination/disease. Vaccine adverse events were self-recorded in a 7-day diary. Antibody titers were as high in 48 immunocompetent children after a single immunization (HAI and MN seroprotection rates: 98%; HAI-GMT: 395, MN-GMT: 370) as in 51 convalescent children (seroprotection rates: 98% (HAI) and 92% (MN); GMT: 350 (HAI) and 212 (MN). Twenty-seven immunocompromised children reached slightly lower seroprotection rates (HAI: 89%, MN: 85%) but similar antibody titers (HAI-GMT: 306, MN-GMT: 225) after 2 immunizations. Adverse events increased with age (P=0.01) and were more frequent with Pandemrix® than Focetria® (P=0.03). Similarly high seroresponses may be expected in immunocompetent children after a single dose of adjuvanted vaccines as responses of convalescent children. Two vaccine doses were sufficient for most immunocompromised children. NCT0102293 and NCT01022905. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Immunogenicity and Safety of a Trivalent Inactivated Influenza Vaccine in Children 6 Months to 17 Years of Age, Previously Vaccinated with an AS03-Adjuvanted A(H1N1)Pdm09 Vaccine: Two Open-label, Randomized Trials.

    PubMed

    Vesikari, Timo; Richardus, Jan Hendrik; Berglund, Johan; Korhonen, Tiina; Flodmark, Carl-Erik; Lindstrand, Ann; Silfverdal, Sven Arne; Bambure, Vinod; Caplanusi, Adrian; Dieussaert, Ilse; Roy-Ghanta, Sumita; Vaughn, David W

    2015-07-01

    During the influenza pandemic 2009-2010, an AS03-adjuvanted A(H1N1)pdm09 vaccine was used extensively in children 6 months of age and older, and during the 2010-2011 influenza season, the A(H1N1)pdm09 strain was included in the seasonal trivalent inactivated influenza vaccine (TIV) without adjuvant. We evaluated the immunogenicity and safety of TIV in children previously vaccinated with the AS03-adjuvanted A(H1N1)pdm09 vaccine. Healthy children were randomized (1:1) to receive TIV or a control vaccine. Children were aged 6 months to 9 years (n = 154) and adolescents 10-17 years (n = 77) when they received AS03-adjuvanted A(H1N1)pdm09 vaccine at least 6 months before study enrolment. Hemagglutination inhibition (HI) and neutralizing antibody responses against the A(H1N1)pdm09 strain were evaluated before (day 0) and at day 28 and month 6 after study vaccination. Reactogenicity was assessed during the 7 day postvaccination period, and safety was assessed for 6 months. At day 0, >93.9% of all children had HI titers ≥1:40 for the A(H1N1)pdm09 strain, which increased to 100% at both day 28 and month 6 in the TIV group. Between days 0 and 28, HI antibody geometric mean titers against A(H1N1)pdm09 increased by 9-fold and 4-fold in children 6 months to 9 years of age and 10-17 years of age, respectively. AS03-adjuvanted A(H1N1)pdm09 vaccine-induced robust immune responses in children that persisted into the next season, yet were still boosted by TIV containing A(H1N1)pdm09. The reactogenicity and safety profile of TIV did not appear compromised by prior receipt of AS03-adjuvanted A(H1N1)pdm09 vaccine.

  20. Protective efficacy of a recombinant HVT-H5 vaccine against lethal H5N1 and H5N2 avian influenza challenge

    USDA-ARS?s Scientific Manuscript database

    Vaccination is an important tool in the protection of poultry against avian influenza (AI). For field use, the overwhelming majority of AI vaccines produced are inactivated whole virus formulated into an oil emulsion. However, recombinant vectored vaccines (e.g. expressing AI genes) are gaining us...

  1. A modified vaccinia Ankara vaccine vector expressing a mosaic H5 hemagglutinin reduces viral shedding in rhesus macaques.

    PubMed

    Florek, Nicholas W; Kamlangdee, Attapon; Mutschler, James P; Kingstad-Bakke, Brock; Schultz-Darken, Nancy; Broman, Karl W; Osorio, Jorge E; Friedrich, Thomas C

    2017-01-01

    The rapid antigenic evolution of influenza viruses requires frequent vaccine reformulations. Due to the economic burden of continuous vaccine reformulation and the threat of new pandemics, there is intense interest in developing vaccines capable of eliciting broadly cross-reactive immunity to influenza viruses. We recently constructed a "mosaic" hemagglutinin (HA) based on subtype 5 HA (H5) and designed to stimulate cellular and humoral immunity to multiple influenza virus subtypes. Modified vaccinia Ankara (MVA) expressing this H5 mosaic (MVA-H5M) protected mice against multiple homosubtypic H5N1 strains and a heterosubtypic H1N1 virus. To assess its potential as a human vaccine we evaluated the ability of MVA-H5M to provide heterosubtypic immunity to influenza viruses in a non-human primate model. Rhesus macaques received an initial dose of either MVA-H5M or plasmid DNA encoding H5M, followed by a boost of MVA-H5M, and then were challenged, together with naïve controls, with the heterosubtypic virus A/California/04/2009 (H1N1pdm). Macaques receiving either vaccine regimen cleared H1N1pdm challenge faster than naïve controls. Vaccination with H5M elicited antibodies that bound H1N1pdm HA, but did not neutralize the H1N1pdm challenge virus. Plasma from vaccinated macaques activated NK cells in the presence of H1N1pdm HA, suggesting that vaccination elicited cross-reactive antibodies capable of mediating antibody-dependent cell-mediated cytotoxicity (ADCC). Although HA-specific T cell responses to the MVA-H5M vaccine were weak, responses after challenge were stronger in vaccinated macaques than in control animals. Together these data suggest that mosaic HA antigens may provide a means for inducing broadly cross-reactive immunity to influenza viruses.

  2. A modified vaccinia Ankara vaccine vector expressing a mosaic H5 hemagglutinin reduces viral shedding in rhesus macaques

    PubMed Central

    Mutschler, James P.; Kingstad-Bakke, Brock; Schultz-Darken, Nancy; Broman, Karl W.; Osorio, Jorge E.

    2017-01-01

    The rapid antigenic evolution of influenza viruses requires frequent vaccine reformulations. Due to the economic burden of continuous vaccine reformulation and the threat of new pandemics, there is intense interest in developing vaccines capable of eliciting broadly cross-reactive immunity to influenza viruses. We recently constructed a “mosaic” hemagglutinin (HA) based on subtype 5 HA (H5) and designed to stimulate cellular and humoral immunity to multiple influenza virus subtypes. Modified vaccinia Ankara (MVA) expressing this H5 mosaic (MVA-H5M) protected mice against multiple homosubtypic H5N1 strains and a heterosubtypic H1N1 virus. To assess its potential as a human vaccine we evaluated the ability of MVA-H5M to provide heterosubtypic immunity to influenza viruses in a non-human primate model. Rhesus macaques received an initial dose of either MVA-H5M or plasmid DNA encoding H5M, followed by a boost of MVA-H5M, and then were challenged, together with naïve controls, with the heterosubtypic virus A/California/04/2009 (H1N1pdm). Macaques receiving either vaccine regimen cleared H1N1pdm challenge faster than naïve controls. Vaccination with H5M elicited antibodies that bound H1N1pdm HA, but did not neutralize the H1N1pdm challenge virus. Plasma from vaccinated macaques activated NK cells in the presence of H1N1pdm HA, suggesting that vaccination elicited cross-reactive antibodies capable of mediating antibody-dependent cell-mediated cytotoxicity (ADCC). Although HA-specific T cell responses to the MVA-H5M vaccine were weak, responses after challenge were stronger in vaccinated macaques than in control animals. Together these data suggest that mosaic HA antigens may provide a means for inducing broadly cross-reactive immunity to influenza viruses. PMID:28771513

  3. Randomized controlled ferret study to assess the direct impact of 2008-09 trivalent inactivated influenza vaccine on A(H1N1)pdm09 disease risk.

    PubMed

    Skowronski, Danuta M; Hamelin, Marie-Eve; De Serres, Gaston; Janjua, Naveed Z; Li, Guiyun; Sabaiduc, Suzana; Bouhy, Xavier; Couture, Christian; Leung, Anders; Kobasa, Darwyn; Embury-Hyatt, Carissa; de Bruin, Erwin; Balshaw, Robert; Lavigne, Sophie; Petric, Martin; Koopmans, Marion; Boivin, Guy

    2014-01-01

    During spring-summer 2009, several observational studies from Canada showed increased risk of medically-attended, laboratory-confirmed A(H1N1)pdm09 illness among prior recipients of 2008-09 trivalent inactivated influenza vaccine (TIV). Explanatory hypotheses included direct and indirect vaccine effects. In a randomized placebo-controlled ferret study, we tested whether prior receipt of 2008-09 TIV may have directly influenced A(H1N1)pdm09 illness. Thirty-two ferrets (16/group) received 0.5 mL intra-muscular injections of the Canadian-manufactured, commercially-available, non-adjuvanted, split 2008-09 Fluviral or PBS placebo on days 0 and 28. On day 49 all animals were challenged (Ch0) with A(H1N1)pdm09. Four ferrets per group were randomly selected for sacrifice at day 5 post-challenge (Ch+5) and the rest followed until Ch+14. Sera were tested for antibody to vaccine antigens and A(H1N1)pdm09 by hemagglutination inhibition (HI), microneutralization (MN), nucleoprotein-based ELISA and HA1-based microarray assays. Clinical characteristics and nasal virus titers were recorded pre-challenge then post-challenge until sacrifice when lung virus titers, cytokines and inflammatory scores were determined. Baseline characteristics were similar between the two groups of influenza-naïve animals. Antibody rise to vaccine antigens was evident by ELISA and HA1-based microarray but not by HI or MN assays; virus challenge raised antibody to A(H1N1)pdm09 by all assays in both groups. Beginning at Ch+2, vaccinated animals experienced greater loss of appetite and weight than placebo animals, reaching the greatest between-group difference in weight loss relative to baseline at Ch+5 (7.4% vs. 5.2%; p = 0.01). At Ch+5 vaccinated animals had higher lung virus titers (log-mean 4.96 vs. 4.23pfu/mL, respectively; p = 0.01), lung inflammatory scores (5.8 vs. 2.1, respectively; p = 0.051) and cytokine levels (p>0.05). At Ch+14, both groups had recovered. Findings in influenza

  4. Events supposedly attributable to vaccination or immunization during pandemic influenza A (H1N1) vaccination campaigns in Latin America and the Caribbean.

    PubMed

    Ropero-Álvarez, A M; Whittembury, A; Bravo-Alcántara, P; Kurtis, H J; Danovaro-Holliday, M C; Velandia-González, M

    2015-01-01

    As part of the vaccination activities against influenza A[H1N1]pdm vaccine in 2009-2010, countries in Latin American and the Caribbean (LAC) implemented surveillance of events supposedly attributable to vaccines and immunization (ESAVI). We describe the serious ESAVI reported in LAC in order to further document the safety profile of this vaccine and highlight lessons learned. We reviewed data from serious H1N1 ESAVI cases from LAC countries reported to the Pan American Health Organization/World Health Organization. We estimated serious ESAVI rates by age and target group, as well as by clinical diagnosis, and completed descriptive analyses of final outcomes and classifications given in country. A total of 1000 serious ESAVI were reported by 18 of the 29 LAC countries that vaccinated against A[H1N1]pdm. The overall reporting rate in LAC was 6.91 serious ESAVI per million doses, with country reporting rates ranging from 0.77 to 64.68 per million doses. Rates were higher among pregnant women (16.25 per million doses) when compared to health care workers (13.54 per million doses) and individuals with chronic disease (4.03 per million doses). The top three most frequent diagnoses were febrile seizures (12.0%), Guillain-Barré Syndrome (10.5%) and acute pneumonia (8.0%). Almost half (49.1%) of the serious ESAVI were reported among children aged <18 years of age; within this group, the highest proportion of cases was reported among those aged <2 years (53.1%). Of all serious ESAVI reported, 37.8% were classified as coincidental, 35.3% as related to vaccine components, 26.4% as non-conclusive and 0.5% as a programmatic error. This regional overview of A[H1N1]pdm vaccine safety data in LAC estimated the rate of serious ESAVI at lower levels than other studies. However, the ESAVI diagnosis distribution is comparable to the published literature. Lessons learned can be applied in the response to future pandemics. Copyright © 2014. Published by Elsevier Ltd.

  5. Protection of guinea pigs by vaccination with a recombinant swinepox virus co-expressing HA1 genes of swine H1N1 and H3N2 influenza viruses.

    PubMed

    Xu, Jiarong; Yang, Deji; Huang, Dongyan; Xu, Jiaping; Liu, Shichao; Lin, Huixing; Zhu, Haodan; Liu, Bao; Lu, Chengping

    2013-03-01

    Swine influenza (SI) is an acute respiratory infectious disease of swine caused by swine influenza virus (SIV). SIV is not only an important respiratory pathogen in pigs but also a potent threat to human health. Here, we report the construction of a recombinant swinepox virus (rSPV/H3-2A-H1) co-expressing hemagglutinin (HA1) of SIV subtypes H1N1 and H3N2. Immune responses and protection efficacy of the rSPV/H3-2A-H1 were evaluated in guinea pigs. Inoculation of rSPV/H3-2A-H1 yielded neutralizing antibodies against SIV H1N1 and H3N2. The IFN-γ and IL-4 concentrations in the supernatant of lymphocytes stimulated with purified SIV HA1 antigen were significantly higher (P < 0.01) than those of the control groups. Complete protection of guinea pigs against SIV H1N1 or H3N2 challenge was observed. No SIV shedding was detected from guinea pigs vaccinated with rSPV/H3-2A-H1 after challenge. Most importantly, the guinea pigs immunized with rSPV/H3-2A-H1 did not show gross and micrographic lung lesions. However, the control guinea pigs experienced distinct gross and micrographic lung lesions at 7 days post-challenge. Our data suggest that the recombinant swinepox virus encoding HA1 of SIV H1N1 and H3N2 might serve as a promising candidate vaccine for protection against SIV H1N1 and H3N2 infections.

  6. The Influenza Virus and the 2009 H1N1 Outbreak

    DTIC Science & Technology

    2016-04-08

    Envelope L’ol • Sequencing Figure 1 Influenza Virus Anatomy -Neuramlnldase (Sialldase) ’ Hemagglutlnln 9 Key laboratory techniques...discover the 2009 H1 N1 influenza virus Phylogenetic Tree Out of the over 400 human H1 ’s USAFSAM sequenced this season no specimen has had less than a...surveillance/vaccine contents • Shot Versus Flu Mist • How does Tamiflu work • Sequencing HA - Culture, HAI, PCR, Serology ••• • t.tt

  7. Induction of protective immunity against H1N1 influenza A(H1N1)pdm09 with spray-dried and electron-beam sterilised vaccines in non-human primates.

    PubMed

    Scherließ, Regina; Ajmera, Ankur; Dennis, Mike; Carroll, Miles W; Altrichter, Jens; Silman, Nigel J; Scholz, Martin; Kemter, Kristina; Marriott, Anthony C

    2014-04-17

    Currently, the need for cooled storage and the impossibility of terminal sterilisation are major drawbacks in vaccine manufacturing and distribution. To overcome current restrictions a preclinical safety and efficacy study was conducted to evaluate new influenza A vaccine formulations regarding thermal resistance, resistance against irradiation-mediated damage and storage stability. We evaluated the efficacy of novel antigen stabilizing and protecting solutions (SPS) to protect influenza A(H1N1)pdm09 split virus antigen under experimental conditions in vitro and in vivo. Original or SPS re-buffered vaccine (Pandemrix) was spray-dried and terminally sterilised by irradiation with 25 kGy (e-beam). Antigen integrity was monitored by SDS-PAGE, dynamic light scattering, size exclusion chromatography and functional haemagglutination assays. In vitro screening experiments revealed a number of highly stable compositions containing glycyrrhizinic acid (GA) and/or chitosan. The most stable composition was selected for storage tests and in vivo assessment of seroconversion in non-human primates (Macaca fascicularis) using a prime-boost strategy. Redispersed formulations with original adjuvant were administered intramuscularly. Storage data revealed high stability of protected vaccines at 4°C and 25°C, 60% relative humidity, for at least three months. Animals receiving original Pandemrix exhibited expected levels of seroconversion after 21 days (prime) and 48 days (boost) as assessed by haemagglutination inhibition and microneutralisation assays. Animals vaccinated with spray-dried and irradiated Pandemrix failed to exhibit seroconversion after 21 days whereas spray-dried and irradiated, SPS-protected vaccines elicited similar seroconversion levels to those vaccinated with original Pandemrix. Boost immunisation with SPS-protected vaccine resulted in a strong increase in seroconversion but had only minor effects in animals treated with non SPS-protected vaccine. In conclusion

  8. Association of vaccine handling conditions with effectiveness of live attenuated influenza vaccine against H1N1pdm09 viruses in the United States.

    PubMed

    Caspard, Herve; Coelingh, Kathleen L; Mallory, Raburn M; Ambrose, Christopher S

    2016-09-30

    This analysis examined potential causes of the lack of vaccine effectiveness (VE) of live attenuated influenza vaccine (LAIV) against A/H1N1pdm09 viruses in the United States (US) during the 2013-2014 season. Laboratory studies have demonstrated reduced thermal stability of A/California/07/2009, the A/H1N1pdm09 strain utilized in LAIV from 2009 through 2013-2014. Post hoc analyses of a 2013-2014 test-negative case-control (TNCC) effectiveness study investigated associations between vaccine shipping conditions and LAIV lot effectiveness. Investigational sites provided the LAIV lot numbers administered to each LAIV recipient enrolled in the study, and the vaccine distributor used by the site for commercially purchased vaccine. Additionally, a review was conducted of 2009-2014 pediatric observational TNCC effectiveness studies of LAIV, summarizing effectiveness by type/subtype, season, and geographic location. From the 2013 to 2014 TNCC study, the proportion of LAIV recipients who tested positive for H1N1pdm09 was significantly higher among children who received a lot released between August 1 and September 15, 2013, compared with a lot shipped either earlier or later (21% versus 4%; P<0.01). A linear relationship was observed between the proportion of subjects testing positive for H1N1pdm09 and outdoor temperatures during truck unloading at distributors' central locations. The review of LAIV VE studies showed that in the 2010-2011 and 2013-2014 influenza seasons, no significant effectiveness of LAIV against H1N1pdm09 was demonstrated for the trivalent or quadrivalent formulations of LAIV in the US, respectively, in contrast to significant effectiveness against A/H3N2 and B strains during 2010-2014. This study showed that the lack of VE observed with LAIV in the US against H1N1pdm09 viruses was associated with exposure of some LAIV lots to temperatures above recommended storage conditions during US distribution, and is likely explained by the increased susceptibility

  9. [Adverse effects of seasonal flu vaccine and new influenza A (H1N1) vaccine in health care workers].

    PubMed

    Torruella, Joan Inglés; Soto, Rosa Gil; Valls, Rosa Carreras; Lozano, Judit Valverde; Carreras, Dolors Benito; Cunillera, Arnau Besora

    2013-01-01

    To assess and compare adverse effects of Seasonal Influenza Vaccine (SIV) and new Influenza A(H1N1) Vaccine (AIV) in health care workers. Multicenter cross-sectional study in health care workers from acute care hospitals, primary health care centers, social centers, mental health centers and a geriatric hospital participating in the 2009 vaccination campaign. Self-administered questionnaires were sent to all workers vaccinated with SIV and/or AIV. 527 valid questionnaires were collected out of 1123 sent to SIV vaccinated workers (46.9%), and 241 out of 461 sent to AIV vaccinated workers (52.%%). Participant workers include 527 vaccinated only with SIV, 117 first vaccinated with SIV and later with AIV (SIV+AIV), and 125 vaccinated only with AIV. Overall, 18.4% (95%CI 15.1-21.7) of workers vaccinated only with SIV reported adverse effects, as compared to 45.3% (95I 36.3-54.3) reporting adverse effects to AIV in the SIV+AIV group and 46.4% (95%CI 37.7-55.1) of workers vaccinated only with AIV. In all participants the most common adverseeffect was a local reaction. Women wre more reactive to both SIV and AIV than men. In all age groups SIV vaccination alone caused fewer reactions that either AIV only or the combination of SIV+AIV, with the exception of workers below 29 years of age. AIV was associated with more reactions than SIV, with no differences observed in relation to administration sequence. There were differences by sex and age, but reactions always occurred more commonly with AIV. Copyright belongs to the Societat Catalana de Seguretat i Medicina del Treball.

  10. Leptin and leptin-related gene polymorphisms, obesity, and influenza A/H1N1 vaccine-induced immune responses in older individuals.

    PubMed

    Ovsyannikova, Inna G; White, Sarah J; Larrabee, Beth R; Grill, Diane E; Jacobson, Robert M; Poland, Gregory A

    2014-02-07

    Obesity is a risk factor for complicated influenza A/H1N1 disease and poor vaccine immunogenicity. Leptin, an adipocyte-derived hormone/cytokine, has many immune regulatory functions and therefore could explain susceptibility to infections and poor vaccine outcomes. We recruited 159 healthy adults (50-74 years old) who were immunized with inactivated TIV influenza vaccine that contained A/California/7/2009/H1N1 virus. We found a strong correlation between leptin concentration and BMI (r=0.55, p<0.0001), but no association with hemagglutination antibody inhibition (HAI), B-cell, or granzyme B responses. We found a slight correlation between leptin concentration and an immunosenescence marker (TREC: T-cell receptor excision circles) level (r=0.23, p=0.01). We found eight SNPs in the LEP/LEPR/GHRL genes that were associated with leptin levels and four SNPs in the PTPN1/LEPR/STAT3 genes associated with peripheral blood TREC levels (p<0.05). Heterozygosity of the synonymous variant rs2230604 in the PTPN1 gene was associated with a significantly lower (531 vs. 259, p=0.005) TREC level, as compared to the homozygous major variant. We also found eight SNPs in the LEP/PPARG/CRP genes associated with variations in influenza-specific HAI and B-cell responses (p<0.05). Our results suggest that specific allelic variations in the leptin-related genes may influence adaptive immune responses to influenza vaccine. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Impact of anti-rheumatic treatment on immunogenicity of pandemic H1N1 influenza vaccine in patients with arthritis.

    PubMed

    Kapetanovic, Meliha C; Kristensen, Lars-Erik; Saxne, Tore; Aktas, Teodora; Mörner, Andreas; Geborek, Pierre

    2014-01-02

    An adjuvanted pandemic H1N1 influenza (pH1N1) vaccine (Pandemrix) was reported as highly immunogenic resulting in seroconversion in 77 to 94% of adults after administration of a single dose. The aim of the study was to investigate the impact of different anti-rheumatic treatments on antibody response to pH1N1 vaccination in patients with rheumatoid arthritis (RA) and spondylarthropathy (SpA). Patients with arthritis (n = 291; mean age 57 years, 64% women) participated. Hemagglutination inhibition (HI) assay was performed on blood samples drawn before and after a mean (SD) of 8.3 (4) months following vaccination. A positive immune response i.e. seroconversion was defined as negative prevaccination serum and postvaccination HI titer ≥40 or a ≥4-fold increase in HI titer. All patients were divided into predefined groups based on diagnosis (RA or SpA) and ongoing treatment: methotrexate (MTX), anti-tumor necrosis factor (anti-TNF) as monotherapy, MTX combined with anti-TNF, other biologics (abatacept, rituximab, tocilizumab) and non-steroidal anti-inflammatory drugs (NSAIDs)/analgesics. Predictors of positive immune response were studied using logistic regression analysis. The percentage of patients with positive immune response in the different treatment groups was: 1. RA on MTX 42%; 2. RA on anti-TNF monotherapy 53%; 3. RA on anti-TNF + MTX 43%; 4. RA on other biologics (abatacept 20%, rituximab 10% and tocilizumab 50%); 5. SpA on anti-TNF monotherapy 76%; 6. SpA on anti-TNF + MTX 47%; and 7. SpA on NSAIDs/analgesics 59%. RA patients on rituximab had significantly lower (P < 0.001) and SpA on anti-TNF monotherapy significantly better response rates compared to other treatment groups (P 0.001 to 0.033). Higher age (P < 0.001) predicted impaired immune response. Antibody titers 3 to 6 months after vaccination was generally lower compared to those within the first 3 months but no further decrease in titers were observed 6 to 22 months after

  12. Diversity of the murine antibody response targeting influenza A(H1N1pdm09) hemagglutinin

    PubMed Central

    Wilson, Jason R.; Tzeng, Wen-Pin; Spesock, April; Music, Nedzad; Guo, Zhu; Barrington, Robert; Stevens, James; Donis, Ruben O.; Katz, Jacqueline M.; York, Ian A.

    2016-01-01

    We infected mice with the 2009 influenza A pandemic virus (H1N1pdm09), boosted with an inactivated vaccine, and cloned immunoglobulins (Igs) from HA-specific B cells. Based on the redundancy in germline gene utilization, we inferred that between 72–130 unique IgH VDJ and 35 different IgL VJ combinations comprised the anti-HA recall response. The IgH VH1 and IgL VK14 variable gene families were employed most frequently. A representative panel of antibodies were cloned and expressed to confirm reactivity with H1N1pdm09 HA. The majority of the recombinant antibodies were of high avidity and capable of inhibiting H1N1pdm09 hemagglutination. Three of these antibodies were subtype-specific cross-reactive, binding to the HA of A/South Carolina/1/1918(H1N1), and one further reacted with A/swine/Iowa/15/1930(H1N1). These results help define the genetic diversity of the influenza anti-HA antibody repertoire profile induced following infection and vaccination, which may facilitate the development of influenza vaccines that are more protective and broadly neutralizing. Importance Protection against influenza viruses is mediated mainly by antibodies, and in most cases this antibody response is narrow, only providing protection against closely-related viruses. In spite of this limited range of protection, recent findings indicate individuals immune to one influenza virus may contain antibodies (generally a minority of the overall response) that are more broadly reactive. These findings have raised the possibility that influenza vaccines could induce a more broadly protective response, reducing the need for frequent vaccine strain changes. However, interpretation of these observations is hampered by the lack of quantitative characterization of the antibody repertoire. In this study, we used single-cell cloning of influenza HA-specific B cells to assess the diversity and nature of the antibody response to influenza hemagglutinin in mice. Our findings help put bounds on the

  13. Diversity of the murine antibody response targeting influenza A(H1N1pdm09) hemagglutinin.

    PubMed

    Wilson, Jason R; Tzeng, Wen-Pin; Spesock, April; Music, Nedzad; Guo, Zhu; Barrington, Robert; Stevens, James; Donis, Ruben O; Katz, Jacqueline M; York, Ian A

    2014-06-01

    We infected mice with the 2009 influenza A pandemic virus (H1N1pdm09), boosted with an inactivated vaccine, and cloned immunoglobulins (Igs) from HA-specific B cells. Based on the redundancy in germline gene utilization, we inferred that between 72-130 unique IgH VDJ and 35 different IgL VJ combinations comprised the anti-HA recall response. The IgH VH1 and IgL VK14 variable gene families were employed most frequently. A representative panel of antibodies were cloned and expressed to confirm reactivity with H1N1pdm09 HA. The majority of the recombinant antibodies were of high avidity and capable of inhibiting H1N1pdm09 hemagglutination. Three of these antibodies were subtype-specific cross-reactive, binding to the HA of A/South Carolina/1/1918(H1N1), and one further reacted with A/swine/Iowa/15/1930(H1N1). These results help to define the genetic diversity of the influenza anti-HA antibody repertoire profile induced following infection and vaccination, which may facilitate the development of influenza vaccines that are more protective and broadly neutralizing. Protection against influenza viruses is mediated mainly by antibodies, and in most cases this antibody response is narrow, only providing protection against closely related viruses. In spite of this limited range of protection, recent findings indicate that individuals immune to one influenza virus may contain antibodies (generally a minority of the overall response) that are more broadly reactive. These findings have raised the possibility that influenza vaccines could induce a more broadly protective response, reducing the need for frequent vaccine strain changes. However, interpretation of these observations is hampered by the lack of quantitative characterization of the antibody repertoire. In this study, we used single-cell cloning of influenza HA-specific B cells to assess the diversity and nature of the antibody response to influenza hemagglutinin in mice. Our findings help to put bounds on the

  14. Immunization of Chickens with Newcastle Disease Virus Expressing H5 Hemagglutinin Protects against Highly Pathogenic H5N1 Avian Influenza Viruses

    PubMed Central

    Nayak, Baibaswata; Rout, Subrat N.; Kumar, Sachin; Khalil, Mohammed S.; Fouda, Moustafa M.; Ahmed, Luay E.; Earhart, Kenneth C.; Perez, Daniel R.; Collins, Peter L.; Samal, Siba K.

    2009-01-01

    Background Highly-pathogenic avian influenza virus (HPAIV) and Newcastle disease virus (NDV) are the two most important poultry viruses in the world. Natural low-virulence NDV strains have been used as vaccines over the past 70 years with proven track records. We have previously developed a reverse genetics system to produce low-virulent NDV vaccine strain LaSota from cloned cDNA. This system allows us to use NDV as a vaccine vector for other avian pathogens. Methodology/Principal Finding Here, we constructed two recombinant NDVs (rNDVs) each of which expresses the hemagglutinin (HA) gene of HPAIV H5N1strain A/Vietnam/1203/2004 from an added gene. In one, rNDV (rNDV-HA), the open reading frame (ORF) of HA gene was expressed without modification. In the second, rNDV (rNDV-HAF), the ORF was modified so that the transmembrane and cytoplasmic domains of the encoded HA gene were replaced with those of the NDV F protein. The insertion of either version of the HA ORF did not increase the virulence of the rNDV vector. The HA protein was found to be incorporated into the envelopes of both rNDV-HA and rNDV-HAF. However, there was an enhanced incorporation of the HA protein in rNDV-HAF. Chickens immunized with a single dose of either rNDV-HA or rNDV-HAF induced a high titer of HPAIV H5-specific antibodies and were completely protected against challenge with NDV as well as lethal challenges of both homologous and heterologous HPAIV H5N1. Conclusion and Significance Our results suggest that these chimeric viruses have potential as safe and effective bivalent vaccines against NDV and. HPAIV. These vaccines will be convenient and affordable, which will be highly beneficial to the poultry industry. Furthermore, immunization with these vaccines will permit serological differentiation of vaccinated and avian influenza field virus infected animals. PMID:19654873

  15. Neutralizing Antibody Responses to Antigenically Drifted Influenza A(H3N2) Viruses among Children and Adolescents following 2014-2015 Inactivated and Live Attenuated Influenza Vaccination

    PubMed Central

    Martin, Judith M.; Gross, F. Liaini; Jefferson, Stacie; Cole, Kelly Stefano; Archibald, Crystal Ann; Nowalk, Mary Patricia; Susick, Michael; Moehling, Krissy; Spencer, Sarah; Chung, Jessie R.; Flannery, Brendan; Zimmerman, Richard K.

    2016-01-01

    Human influenza A(H3N2) viruses that predominated during the moderately severe 2014-2015 influenza season differed antigenically from the vaccine component, resulting in reduced vaccine effectiveness (VE). To examine antibody responses to 2014-2015 inactivated influenza vaccine (IIV) and live-attenuated influenza vaccine (LAIV) among children and adolescents, we collected sera before and after vaccination from 150 children aged 3 to 17 years enrolled at health care facilities. Hemagglutination inhibition (HI) assays were used to assess the antibody responses to vaccine strains. We evaluated cross-reactive antibody responses against two representative A(H3N2) viruses that had antigenically drifted from the A(H3N2) vaccine component using microneutralization (MN) assays. Postvaccination antibody titers to drifted A(H3N2) viruses were higher following receipt of IIV (MN geometric mean titers [GMTs], 63 to 68; 38 to 45% achieved seroconversion) versus LAIV (MN GMT, 22; only 3 to 5% achieved seroconversion). In 9- to 17-year-olds, the highest MN titers were observed among IIV-vaccinated individuals who had received LAIV in the previous season. Among all IIV recipients aged 3 to 17 years, the strongest predictor of antibody responses to the drifted viruses was the prevaccination titers to the vaccine strain. The results of our study suggest that in an antigenically drifted influenza season, vaccination still induced cross-reactive antibody responses to drifted circulating A(H3N2) viruses, although higher antibody titers may be required for protection. Antibody responses to drifted A(H3N2) viruses following vaccination were influenced by multiple factors, including vaccine type and preexisting immunity from prior exposure. PMID:27558294

  16. H2N2 live attenuated influenza vaccine is safe and immunogenic for healthy adult volunteers

    PubMed Central

    Isakova-Sivak, Irina; Stukova, Marina; Erofeeva, Mariana; Naykhin, Anatoly; Donina, Svetlana; Petukhova, Galina; Kuznetsova, Victoria; Kiseleva, Irina; Smolonogina, Tatiana; Dubrovina, Irina; Pisareva, Maria; Nikiforova, Alexandra; Power, Maureen; Flores, Jorge; Rudenko, Larisa

    2015-01-01

    H2N2 influenza viruses have not circulated in the human population since 1968, but they are still being regularly detected in the animal reservoir, suggesting their high pandemic potential. To prepare for a possible H2N2 pandemic, a number of H2N2 vaccine candidates have been generated and tested in preclinical and clinical studies. Here we describe the results of a randomized, double-blind placebo-controlled phase 1 clinical trial of an H2N2 live attenuated influenza vaccine (LAIV) candidate prepared from a human influenza virus isolated in 1966. The vaccine candidate was safe and well-tolerated by healthy adults, and did not cause serious adverse events or an increased rate of moderate or severe reactogenicities. The H2N2 vaccine virus was infectious for Humans. It was shed by 78.6% and 74.1% volunteers after the first and second dose, respectively, most probably due to the human origin of the virus. Importantly, no vaccine virus transmission to unvaccinated subjects was detected during the study. We employed multiple immunological tests to ensure the adequate assessment of the H2N2 pandemic LAIV candidate and demonstrated that the majority (92.6%) of the vaccinated subjects responded to the H2N2 LAIV in one or more immunological tests, including 85.2% of subjects with antibody responses and 55.6% volunteers with cell-mediated immune responses. In addition, we observed strong correlation between the H2N2 LAIV virus replication in the upper respiratory tract and the development of antibody responses. PMID:25831405

  17. US school morbidity and mortality, mandatory vaccination, institution closure, and interventions implemented during the 2009 influenza A H1N1 pandemic.

    PubMed

    Rebmann, Terri; Elliott, Michael B; Swick, Zachary; Reddick, David

    2013-03-01

    The 2009 H1N1 pandemic disproportionately affected school-aged children, but only school-based outbreak case studies have been conducted. The purposes of this study were to evaluate US academic institutions' experiences during the 2009 H1N1 pandemic in terms of infection prevention interventions implemented and to examine factors associated with school closure during the pandemic. An online survey was sent to school nurses in May through July 2011. Hierarchical logistic regressions were used to determine predictive models for having a mandatory H1N1 vaccination policy for school nurses and school closure. In all, 1,997 nurses from 26 states participated. Very few nurses (3.3%, n=65) reported having a mandatory H1N1 influenza vaccination policy; nurses were more likely than all other school employees (p<.001) to be mandated to receive vaccine. Determinants of having a mandatory H1N1 vaccination policy were being employed by a hospital or public health agency, and the school being located in a western or northeastern state. Factors related to school closure included being in a western or northeastern state, having higher H1N1-related morbidity/mortality, being a school nurse employed by a public health agency or hospital, and being a private school. The most commonly implemented interventions included encouraging staff and students to exercise hand hygiene and increasing classroom cleaning; least commonly implemented interventions included discouraging face-to-face meetings, training staff on H1N1 influenza and/or respiratory hygiene, and discouraging handshaking. Schools should develop and continue to improve their pandemic plans, including collaborating with community response agencies.

  18. Genetic Characterization of Influenza A (H1N1) Pandemic 2009 Virus Isolates from Mumbai.

    PubMed

    Gohil, Devanshi; Kothari, Sweta; Shinde, Pramod; Meharunkar, Rhuta; Warke, Rajas; Chowdhary, Abhay; Deshmukh, Ranjana

    2017-08-01

    Pandemic influenza A (H1N1) 2009 virus was first detected in India in May 2009 which subsequently became endemic in many parts of the country. Influenza A viruses have the ability to evade the immune response through its ability of antigenic variations. The study aims to characterize influenza A (H1N1) pdm 09 viruses circulating in Mumbai during the pandemic and post-pandemic period. Nasopharyngeal swabs positive for influenza A (H1N1) pdm 09 viruses were inoculated on Madin-Darby canine kidney cell line for virus isolation. Molecular and phylogenetic analysis of influenza A (H1N1) pdm 09 isolates was conducted to understand the evolution and genetic diversity of the strains. Nucleotide and amino acid sequences of the HA gene of Mumbai isolates when compared to A/California/07/2009-vaccine strain revealed 14 specific amino acid differences located at the antigenic sites. Amino acid variations in HA and NA gene resulted in changes in the N-linked glycosylation motif which may lead to immune evasion. Phylogenetic analysis of the isolates revealed their evolutionary position with vaccine strain A/California/07/2009 but had undergone changes gradually. The findings in the present study confirm genetic variability of influenza viruses and highlight the importance of continuous surveillance during influenza outbreaks.

  19. Measures against transmission of pandemic H1N1 influenza in Japan in 2009: simulation model.

    PubMed

    Yasuda, H; Suzuki, K

    2009-11-05

    The first outbreak of pandemic H1N1 influenza in Japan was contained in the Kansai region in May 2009 by social distancing measures. Modelling methods are needed to estimate the validity of these measures before their implementation on a large scale. We estimated the transmission coefficient from outbreaks of pandemic H1N1 influenza among school children in Japan in summer 2009; using this transmission coefficient, we simulated the spread of pandemic H1N1 influenza in a virtual community called the virtual Chuo Line which models an area to the west of metropolitan Tokyo. Measures evaluated in our simulation included: isolation at home, school closure, post-exposure prophylaxis and mass vaccinations of school children. We showed that post-exposure prophylaxis combined with isolation at home and school closure significantly decreases the total number of cases in the community and can mitigate the spread of pandemic H1N1 influenza, even when there is a delay in the availability of vaccine.

  20. The influence of social-cognitive factors on personal hygiene practices to protect against influenzas: using modelling to compare avian A/H5N1 and 2009 pandemic A/H1N1 influenzas in Hong Kong.

    PubMed

    Liao, Qiuyan; Cowling, Benjamin J; Lam, Wendy Wing Tak; Fielding, Richard

    2011-06-01

    Understanding population responses to influenza helps optimize public health interventions. Relevant theoretical frameworks remain nascent. To model associations between trust in information, perceived hygiene effectiveness, knowledge about the causes of influenza, perceived susceptibility and worry, and personal hygiene practices (PHPs) associated with influenza. Cross-sectional household telephone surveys on avian influenza A/H5N1 (2006) and pandemic influenza A/H1N1 (2009) gathered comparable data on trust in formal and informal sources of influenza information, influenza-related knowledge, perceived hygiene effectiveness, worry, perceived susceptibility, and PHPs. Exploratory factor analysis confirmed domain content while confirmatory factor analysis was used to evaluate the extracted factors. The hypothesized model, compiled from different theoretical frameworks, was optimized with structural equation modelling using the A/H5N1 data. The optimized model was then tested against the A/H1N1 dataset. The model was robust across datasets though corresponding path weights differed. Trust in formal information was positively associated with perceived hygiene effectiveness which was positively associated with PHPs in both datasets. Trust in formal information was positively associated with influenza worry in A/H5N1 data, and with knowledge of influenza cause in A/H1N1 data, both variables being positively associated with PHPs. Trust in informal information was positively associated with influenza worry in both datasets. Independent of information trust, perceived influenza susceptibility associated with influenza worry. Worry associated with PHPs in A/H5N1 data only. Knowledge of influenza cause and perceived PHP effectiveness were associated with PHPs. Improving trust in formal information should increase PHPs. Worry was significantly associated with PHPs in A/H5N1.

  1. Compatibility of ASO3-adjuvanted H1N1pdm09 and seasonal trivalent influenza vaccines in adults: results of a randomized, controlled trial.

    PubMed

    Scheifele, David W; Ward, Brian J; Dionne, Marc; Vanderkooi, Otto G; Loeb, Mark; Coleman, Brenda L; Li, Yan

    2012-07-06

    When Canada chose a novel adjuvanted vaccine to combat the 2009 influenza pandemic, seasonal trivalent inactivated vaccine (TIV) was also available but compatibility of the two had not been assessed. To compare responses after concurrent or sequential administration of these vaccines, adults 20-59 years old were randomly assigned (1:1) to receive ASO3-adjuvanted H1N1pdm09 vaccine (Arepanrix, GSK, Quebec City, Quebec), with TIV (Vaxigrip, Sanofi Pasteur, Toronto) given concurrently or 21 days later. Blood was obtained at baseline and 21 days after each vaccination to measure hemagglutination inhibition (HAI) titers. Adverse effects were assessed using symptom diaries and personal interviews. 282 participants completed the study (concurrent vaccines 145, sequential vaccines 137). HAI titers to H1N1pdm09 were ≥ 40 at baseline in 15-18% of participants and following vaccination in 91-92%. Initially seropositive subjects (titer ≥ 10) had lower H1N1pdm09 geometric mean HAI titers (GMT) after concurrent than separate vaccinations (320.0 vs 476.5, p=0.039) but both exceeded GM responses of initially naïve participants, which were unaffected by concurrent TIV. Responses to TIV were not lower after concurrent than separate vaccination. Adverse event rates were not increased by concurrent vaccinations above those with H1N1pdm09 vaccine alone. This adjuvanted H1N1pdm09 vaccine was immunogenic and compatible with concurrently administered TIV. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Intranasal co-administration of 1,8-cineole with influenza vaccine provide cross-protection against influenza virus infection.

    PubMed

    Li, Yun; Xu, Yu-Ling; Lai, Yan-Ni; Liao, Shang-Hui; Liu, Ni; Xu, Pei-Ping

    2017-10-15

    Vaccination is the most efficient means for protection against influenza. However, the various vaccines have low efficacy to protect against pandemic strains because of antigenic drift and recombination of influenza virus. Adjuvant therapy is one of the attempts to improve influenza vaccine effective cross-protection against influenza virus infection. Our previous study confirmed that 1,8-cineole inhibits the NF-κB, reduces pro-inflammatory cytokines, and relieves the pathological changes of viral pneumonia in mice infected with influenza virus. 1,8-cineole, administered via intranasal (i.n.) route, may also have the capacity to be an adjuvant of the influenza vaccine. This study was designed to investigate the potential use of i.n. co-administration of 1,8-cineole, a major component of the Eucalyptus essential oils, with influenza vaccine and whether could provide cross-protection against influenza virus infection in a mouse model. I.n. co-administration of 1,8-cineole in two doses (6.25 and 12.5 mg/kg) with influenza vaccine was investigated in a mouse model in order to see whether it could provide cross-protection against influenza virus infection. The mice were intranasally immunized three times at the 0, 7 and 14 day with vaccine containing 0.2 µg hemagglutinin (HA) and/or without 1,8-cineole. Seven days after the 3rd immunization dose, the mice were infected with 50 µl of 15 LD 50 (50% mouse lethal dose) influenza virus A/FM/1/47 (H1N1). On day 6 post-infection, 10 mice per group were sacrificed to collect samples, to take the body weight and lung, and detect the viral load, pathological changes in the lungs and antibody, etc. The collected samples included blood serum and nasal lavage fluids. In addition, the survival experiments were carried out  to investigate the survival of mice. Mice i.n. inoculated with influenza vaccine and 12.5 mg/kg 1,8-cineole increased the production of influenza-specific serum immunoglobulin (Ig) G2a antibodies

  3. Trivalent influenza vaccine-induced antibody response to circulating influenza a (H3N2) viruses in 2010/11 and 2011/12 seasons.

    PubMed

    Hiroi, Satoshi; Morikawa, Saeko; Nakata, Keiko; Maeda, Akiko; Kanno, Tsuneji; Irie, Shin; Ohfuji, Satoko; Hirota, Yoshio; Kase, Tetsuo

    2015-01-01

    To evaluate antibody response induced by trivalent inactivated influenza vaccine (TIV) against circulating influenza A (H3N2) strains in healthy adults during the 2010/11 and 2011/12 seasons, a hemagglutination-inhibition (HI) assay was utilized to calculate geometric mean antibody titer (GMT), seroprotection rate (post vaccination HI titers of ≥1 :40), and seroresponse rate (4-fold increase in antibody level). In the 2010/11 season, GMT increased 1.8- to 2.0-fold following the first dose of TIV against 3 circulating strains and 2.2-fold following the second compared to before vaccination. The seroresponse rate ranged from 22% to 26% following the first dose of TIV and from 31% to 33% following the second (n = 54 ). The seroprotection rate increased from a range of 6% to 13% to a range of 26% to 33% following the first dose of TIV and to a range of 37% to 42% following the second (n = 54 ). In the 2011/12 season, GMT increased 1.4-fold against A/Osaka/110/2011 and 1.8-fold against A/Osaka/5/2012. For A/Osaka/110/2011, the seroresponse rate was 29%, and the seroprotection rate increased from 26% to 55% following vaccination (n = 31 ). For A/Osaka/5/2012, the seroresponse rate was 26%, and the seroprotection rate increased from 68% to 84% following vaccination (n = 31 ). HI assays with reference antisera demonstrated that the strains in the 2011/12 season were antigenically distinct from vaccine strain (A/Victoria/210/2009). In conclusion, the vaccination increased the seroprotection rate against circulating H3N2 strains in the 2010/11 and 2011/12 seasons. Vaccination of TIV might have potential to induce reactive antibodies against antigenically distinct circulating H3N2 viruses.

  4. Fatal influenza A (H5N1) virus Infection in zoo-housed Tigers in Yunnan Province, China

    PubMed Central

    Hu, Tingsong; Zhao, Huanyun; Zhang, Yan; Zhang, Wendong; Kong, Qiang; Zhang, Zhixiao; Cui, Qinghua; Qiu, Wei; Deng, Bo; Fan, Quanshui; Zhang, Fuqiang

    2016-01-01

    From 2014 to 2015, three cases of highly pathogenic avian influenza infection occurred in zoo-housed north-east China tigers (Panthera tigris ssp.altaica) and four tigers died of respiratory distress in succession in Yunnan Province, China. We isolated and characterized three highly pathogenic avian influenza A(H5N1) viruses from these tigers. Phylogenetic analysis indicated that A/tiger /Yunnan /tig1404 /2014(H5N1) belongs to the provisional subclade 2.3.4.4e which were novel reassortant influenza A (H5N1) viruses with six internal genes from avian influenza A (H5N2) viruses. The HA gene of the isolated A/tiger /Yunnan /tig1412 /2014(H5N1) virus belongs to the subclade 2.3.2.1b. The isolated A/tiger /Yunnan /tig1508/2015 (H5N1) virus was a novel reassortant influenza A (H5N1) virus with three internal genes (PB2, PB1 and M) from H9N2 virus and belongs to the subclade 2.3.2.1c. PMID:27162026

  5. Fatal influenza A (H5N1) virus Infection in zoo-housed Tigers in Yunnan Province, China.

    PubMed

    Hu, Tingsong; Zhao, Huanyun; Zhang, Yan; Zhang, Wendong; Kong, Qiang; Zhang, Zhixiao; Cui, Qinghua; Qiu, Wei; Deng, Bo; Fan, Quanshui; Zhang, Fuqiang

    2016-05-10

    From 2014 to 2015, three cases of highly pathogenic avian influenza infection occurred in zoo-housed north-east China tigers (Panthera tigris ssp.altaica) and four tigers died of respiratory distress in succession in Yunnan Province, China. We isolated and characterized three highly pathogenic avian influenza A(H5N1) viruses from these tigers. Phylogenetic analysis indicated that A/tiger /Yunnan /tig1404 /2014(H5N1) belongs to the provisional subclade 2.3.4.4e which were novel reassortant influenza A (H5N1) viruses with six internal genes from avian influenza A (H5N2) viruses. The HA gene of the isolated A/tiger /Yunnan /tig1412 /2014(H5N1) virus belongs to the subclade 2.3.2.1b. The isolated A/tiger /Yunnan /tig1508/2015 (H5N1) virus was a novel reassortant influenza A (H5N1) virus with three internal genes (PB2, PB1 and M) from H9N2 virus and belongs to the subclade 2.3.2.1c.

  6. Incidence of narcolepsy before and after MF59-adjuvanted influenza A(H1N1)pdm09 vaccination in South Korean soldiers.

    PubMed

    Kim, Woo Jung; Lee, Sang Don; Lee, Eun; Namkoong, Kee; Choe, Kang-Won; Song, Joon Young; Cheong, Hee Jin; Jeong, Hye Won; Heo, Jung Yeon

    2015-09-11

    Previous reports mostly from Europe suggested an association between an occurrence of narcolepsy and an influenza A(H1N1)pdm09 vaccine adjuvanted with AS03 (Pandemrix(®)). During the 2009 H1N1 pandemic vaccination campaign, the Korean military performed a vaccination campaign with one type of influenza vaccine containing MF59-adjuvants. This study was conducted to investigate the background incidence rate of narcolepsy in South Korean soldiers and the association of the MF59-adjuvanted vaccine with the occurrence of narcolepsy in a young adult group. To assess the incidence of narcolepsy, we retrospectively reviewed medical records of suspicious cases of narcolepsy in 2007-2013 in the whole 20 military hospitals of the Korean military. The screened cases were classified according to the Brighton Collaboration case definition of narcolepsy. After obtaining the number of confirmed cases of narcolepsy per 3 months in 2007-2013, we compared the crude incidence rate of narcolepsy before and after the vaccination campaign. We included 218 narcolepsy suspicious cases in the initial review, which were screened by the diagnostic code on the computerized disease registry in 2007-2013. Forty-one cases were finally diagnosed with narcolepsy in 2007-2013 (male sex, 95%; median age, 21 years). The average background incidence rate of narcolepsy in Korean soldiers was 0.91 cases per 100,000 persons per year. During the 9 months before vaccination implementation (April to December 2009), 6 narcolepsy cases occurred, whereas during the next 9 months (January to September 2010) including the 3-month vaccination campaign, 5 cases occurred. The incidence of narcolepsy in South Korean soldiers was not increased after the pandemic vaccination campaign using the MF59-adjuvanted vaccine. Our results suggest that the MF59-adjuvanted H1N1 vaccine did not contribute to the occurrence of narcolepsy in this young adult group. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Health and economic benefits of early vaccination and nonpharmaceutical interventions for a human influenza A (H7N9) pandemic: a modeling study.

    PubMed

    Khazeni, Nayer; Hutton, David W; Collins, Cassandra I F; Garber, Alan M; Owens, Douglas K

    2014-05-20

    Vaccination for the 2009 pandemic did not occur until late in the outbreak, which limited its benefits. Influenza A (H7N9) is causing increasing morbidity and mortality in China, and researchers have modified the A (H5N1) virus to transmit via aerosol, which again heightens concerns about pandemic influenza preparedness. To determine how quickly vaccination should be completed to reduce infections, deaths, and health care costs in a pandemic with characteristics similar to influenza A (H7N9) and A (H5N1). Dynamic transmission model to estimate health and economic consequences of a severe influenza pandemic in a large metropolitan city. Literature and expert opinion. Residents of a U.S. metropolitan city with characteristics similar to New York City. Lifetime. Societal. Vaccination of 30% of the population at 4 or 6 months. Infections and deaths averted and cost-effectiveness. In 12 months, 48 254 persons would die. Vaccinating at 9 months would avert 2365 of these deaths. Vaccinating at 6 months would save 5775 additional lives and $51 million at a city level. Accelerating delivery to 4 months would save an additional 5633 lives and $50 million. If vaccination were delayed for 9 months, reducing contacts by 8% through nonpharmaceutical interventions would yield a similar reduction in infections and deaths as vaccination at 4 months. The model is not designed to evaluate programs targeting specific populations, such as children or persons with comorbid conditions. Vaccination in an influenza A (H7N9) pandemic would need to be completed much faster than in 2009 to substantially reduce morbidity, mortality, and health care costs. Maximizing non-pharmaceutical interventions can substantially mitigate the pandemic until a matched vaccine becomes available. Agency for Healthcare Research and Quality, National Institutes of Health, and Department of Veterans Affairs.

  8. High-Yield Expression of M2e Peptide of Avian Influenza Virus H5N1 in Transgenic Duckweed Plants.

    PubMed

    Firsov, Aleksey; Tarasenko, Irina; Mitiouchkina, Tatiana; Ismailova, Natalya; Shaloiko, Lyubov; Vainstein, Alexander; Dolgov, Sergey

    2015-07-01

    Avian influenza is a major viral disease in poultry. Antigenic variation of this virus hinders vaccine development. However, the extracellular domain of the virus-encoded M2 protein (peptide M2e) is nearly invariant in all influenza A strains, enabling the development of a broad-range vaccine against them. Antigen expression in transgenic plants is becoming a popular alternative to classical expression methods. Here we expressed M2e from avian influenza virus A/chicken/Kurgan/5/2005(H5N1) in nuclear-transformed duckweed plants for further development of avian influenza vaccine. The N-terminal fragment of M2, including M2e, was selected for expression. The M2e DNA sequence fused in-frame to the 5' end of β-glucuronidase was cloned into pBI121 under the control of CaMV 35S promoter. The resulting plasmid was successfully used for duckweed transformation, and western analysis with anti-β-glucuronidase and anti-M2e antibodies confirmed accumulation of the target protein (M130) in 17 independent transgenic lines. Quantitative ELISA of crude protein extracts from these lines showed M130-β-glucuronidase accumulation ranging from 0.09-0.97 mg/g FW (0.12-1.96 % of total soluble protein), equivalent to yields of up to 40 μg M2e/g plant FW. This relatively high yield holds promise for the development of a duckweed-based expression system to produce an edible vaccine against avian influenza.

  9. Turnover of Village Chickens Undermines Vaccine Coverage to Control HPAI H5N1.

    PubMed

    Villanueva-Cabezas, J P; Campbell, P T; McCaw, J M; Durr, P A; McVernon, J

    2017-02-01

    Highly pathogenic avian influenza (HPAI) subtype H5N1 remains an enzootic disease of village chickens in Indonesia, posing ongoing risk at the animal-human interface. Previous modelling showed that the fast natural turnover of chicken populations might undermine herd immunity after vaccination, although actual details of how this effect applies to Indonesia's village chicken population have not been determined. We explored the turnover effect in Indonesia's scavenging and mixed populations of village chickens using an extended Leslie matrix model parameterized with data collected from village chicken flocks in Java region, Indonesia. Population dynamics were simulated for 208 weeks; the turnover effect was simulated for 16 weeks after vaccination in two 'best case' scenarios, where the whole population (scenario 1), or birds aged over 14 days (scenario 2), were vaccinated. We found that the scavenging and mixed populations have different productive traits. When steady-state dynamics are reached, both populations are dominated by females (54.5%), and 'growers' and 'chicks' represent the most abundant age stages with 39% and 38% in the scavenging, and 60% and 25% in the mixed population, respectively. Simulations showed that the population turnover might reduce the herd immunity below the critical threshold that prevents the re-emergence of HPAI H5N1 4-8 weeks (scavenging) and 6-9 weeks (mixed population) after vaccination in scenario 1, and 2-6 weeks (scavenging) and 4-7 weeks (mixed population) after vaccination in scenario 2. In conclusion, we found that Indonesia's village chicken population does not have a unique underlying population dynamic and therefore, different turnover effects on herd immunity may be expected after vaccination; nonetheless, our simulations carried out in best case scenarios highlight the limitations of current vaccine technologies to control HPAI H5N1. This suggests that the improvements and complementary strategies are necessary

  10. Immunogenicity and Safety of Varying Dosages of a Monovalent 2009 H1N1 Influenza Vaccine Given With and Without AS03 Adjuvant System in Healthy Adults and Older Persons

    PubMed Central

    Jackson, Lisa A.; Chen, Wilbur H.; Stapleton, Jack T.; Dekker, Cornelia L.; Wald, Anna; Brady, Rebecca C.; Edupuganti, Srilatha; Winokur, Patricia; Mulligan, Mark J.; Keyserling, Harry L.; Kotloff, Karen L.; Rouphael, Nadine; Noah, Diana L.; Hill, Heather; Wolff, Mark C.

    2012-01-01

    Background. Adjuvanted vaccines have the potential to improve influenza pandemic response. AS03 adjuvant has been shown to enhance the immune response to inactivated influenza vaccines. Methods. This trial was designed to evaluate the immunogenicity and safety of an inactivated 2009 H1N1 influenza vaccine at varying dosages of hemagglutinin with and without extemporaneously mixed AS03 adjuvant system in adults ≥18 years of age. Adults were randomized to receive 2 doses of 1 of 5 vaccine formulations (3.75 µg, 7.5 µg, or 15 µg with AS03 or 7.5 µg or 15 µg without adjuvant). Results. The study population included 544 persons <65 years of age and 245 persons ≥65 years of age. Local adverse events tended to be more frequent in the adjuvanted vaccine groups, but severe reactions were uncommon. In both age groups, hemagglutination inhibition antibody geometric mean titers after dose one were higher in the adjuvanted groups, compared with the 15 µg unadjuvanted group, and this difference was statistically significant for the comparison of the 15 µg adjuvanted group with the 15 µg unadjuvanted group. Conclusions. AS03 adjuvant system improves the immune response to inactivated 2009 H1N1 influenza vaccine in both younger and older adults and is generally well tolerated. ClinicalTrials.gov NCT00963157 PMID:22782949

  11. Intercontinental circulation of human influenza A(H1N2) reassortant viruses during the 2001-2002 influenza season.

    PubMed

    Xu, Xiyan; Smith, Catherine B; Mungall, Bruce A; Lindstrom, Stephen E; Hall, Henrietta E; Subbarao, Kanta; Cox, Nancy J; Klimov, Alexander

    2002-11-15

    Reassortant influenza A viruses bearing the H1 subtype of hemagglutinin (HA) and the N2 subtype of neuraminidase (NA) were isolated from humans in the United States, Canada, Singapore, Malaysia, India, Oman, Egypt, and several countries in Europe during the 2001-2002 influenza season. The HAs of these H1N2 viruses were similar to that of the A/New Caledonia/20/99(H1N1) vaccine strain both antigenically and genetically, and the NAs were antigenically and genetically related to those of recent human H3N2 reference strains, such as A/Moscow/10/99(H3N2). All 6 internal genes of the H1N2 reassortants examined originated from an H3N2 virus. This article documents the first widespread circulation of H1N2 reassortants on 4 continents. The current influenza vaccine is expected to provide good protection against H1N2 viruses, because it contains the A/New Caledonia/20/99(H1N1) and A/Moscow/10/99(H3N2)-like viruses, which have H1 and N2 antigens that are similar to those of recent H1N2 viruses.

  12. Live attenuated pandemic influenza vaccine: clinical studies on A/17/California/2009/38 (H1N1) and licensing of the Russian-developed technology to WHO for pandemic influenza preparedness in developing countries.

    PubMed

    Rudenko, Larisa; van den Bosch, Han; Kiseleva, Irina; Mironov, Alexander; Naikhin, Anatoly; Larionova, Natalie; Bushmenkov, Dimitry

    2011-07-01

    In February 2009, Nobilon granted the World Health Organization (WHO) a non-exclusive licence to develop, register, manufacture, use and sell seasonal a pandemic live attenuated influenza vaccine (LAIV) produced on embryonated chicken eggs. WHO was permitted to grant sub-licences to vaccine manufacturers in developing countries within the framework of its influenza vaccine technology transfer initiative. In parallel, the Institute of Experimental Medicine (IEM), Russia, concluded an agreement with WHO for the supply of Russian LAIV reassortants for use by these manufacturers. Also in 2009, IEM carried out a study on a novel A/17/California/2009/38 (H1N1) pandemic LAIV candidate derived from the pandemic-related A/California/07/2009 (H1N1) influenza virus and the attenuated A/Leningrad/134/17/57 (H2N2) master donor virus, using routine reassortant technique in embryonated chicken eggs. Following successful preclinical studies in eggs and in ferrets, a double-blind, controlled, randomized clinical trial was carried out in immunologically naïve study participants between 12-18 and 18-60 years old. Collectively, the immunogenicity data (haemagglutinin inhibition test, ELISA and cytokine tests for the detection of memory T cells) support the use of a single dose of the pandemic H1N1 LAIV in 12-60 year olds. The outcome of the studies showed no significant adverse reactions attributable to the vaccine, and suggests that the vaccine is as safe and immunogenic as seasonal influenza vaccines. Importantly, it was clearly demonstrated that reliance on the HAI assay alone is not recommended for testing LAIV. To date, via the licence agreement with WHO, the H1N1 LAIV has been transferred to the Government Pharmaceutical Organization in Thailand, the Serum Institute of India, and the Zhejiang Tianyuan Bio-Pharmaceutical Co., Ltd. in China. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Nonreplicating Influenza A Virus Vaccines Confer Broad Protection against Lethal Challenge

    PubMed Central

    Baz, Mariana; Boonnak, Kobporn; Paskel, Myeisha; Santos, Celia; Powell, Timothy; Townsend, Alain

    2015-01-01

    ABSTRACT New vaccine technologies are being investigated for their ability to elicit broadly cross-protective immunity against a range of influenza viruses. We compared the efficacies of two intranasally delivered nonreplicating influenza virus vaccines (H1 and H5 S-FLU) that are based on the suppression of the hemagglutinin signal sequence, with the corresponding H1N1 and H5N1 cold-adapted (ca) live attenuated influenza virus vaccines in mice and ferrets. Administration of two doses of H1 or H5 S-FLU vaccines protected mice and ferrets from lethal challenge with homologous, heterologous, and heterosubtypic influenza viruses, and two doses of S-FLU and ca vaccines yielded comparable effects. Importantly, when ferrets immunized with one dose of H1 S-FLU or ca vaccine were challenged with the homologous H1N1 virus, the challenge virus failed to transmit to naive ferrets by the airborne route. S-FLU technology can be rapidly applied to any emerging influenza virus, and the promising preclinical data support further evaluation in humans. PMID:26489862

  14. H7N9 Influenza Virus Is More Virulent in Ferrets than 2009 Pandemic H1N1 Influenza Virus.

    PubMed

    Yum, Jung; Ku, Keun Bon; Kim, Hyun Soo; Seo, Sang Heui

    2015-12-01

    The novel H7N9 influenza virus has been infecting humans in China since February 2013 and with a mortality rate of about 40%. This study compared the pathogenicity of the H7N9 and 2009 pandemic H1N1 influenza viruses in a ferret model, which shows similar symptoms to those of humans infected with influenza viruses. The H7N9 influenza virus caused a more severe disease than did the 2009 pandemic H1N1 influenza virus. All of the ferrets infected with the H7N9 influenza virus had died by 6 days after infection, while none of those infected with the 2009 pandemic H1N1 influenza virus died. Ferrets infected with the H7N9 influenza virus had higher viral titers in their lungs than did those infected with the 2009 pandemic H1N1 influenza virus. Histological findings indicated that hemorrhagic pneumonia was caused by infection with the H7N9 influenza virus, but not with the 2009 pandemic H1N1 influenza virus. In addition, the lung tissues of ferrets infected with the H7N9 influenza virus contained higher levels of chemokines than did those of ferrets infected with the 2009 pandemic H1N1 influenza virus. This study suggests that close monitoring is needed to prevent human infection by the lethal H7N9 influenza virus.

  15. Pandemic (H1N1) 2009 and Hajj Pilgrims Who Received Predeparture Vaccination, Egypt

    PubMed Central

    Kandeel, Amr; Abdel Kereem, Eman; El-Refay, Samir; Afifi, Salma; Abukela, Mohammed; Earhart, Kenneth; El-Sayed, Nasr; El-Gabaly, Hatem

    2011-01-01

    In Egypt, vaccination against pandemic (H1N1) 2009 virus was required of pilgrims departing for the 2009 Hajj. A survey of 551 pilgrims as they returned to Egypt found 542 (98.1% [weighted]) reported receiving the vaccine; 6 (1.0% [weighted]) were infected with influenza virus A (H3N2) but none with pandemic (H1N1) 2009 virus. PMID:21762583

  16. Where are we in our understanding of the association between narcolepsy and one of the 2009 adjuvanted influenza A (H1N1) vaccines?

    PubMed

    Johansen, K; Brasseur, D; MacDonald, N; Nohynek, H; Vandeputte, J; Wood, D; Neels, P

    2016-07-01

    Evaluating new rare serious vaccine safety signals is difficult and complex work. To further assess the observed increase in narcolepsy cases seen in Europe with the 2009 pandemic H1N1 influenza vaccine, the International Alliance for Biological Standardization (IABS) invited a wide range of experts to a one day meeting in Geneva in October 2015 to present data and to discuss the implications. The presentations covered the following topics: clinical picture of childhood narcolepsy following the 2009 H1N1 pandemic vaccination campaigns; epidemiological studies conducted to assess the risk of narcolepsy, other neurological and immune-related diseases following 2009 pandemic H1N1 influenza vaccine; potential biases influencing the different epidemiological study designs; potential genetic contribution to the development of narcolepsy; potential biological mechanisms for development of narcolepsy in this setting including the role of the virus itself, antigenic differences between the vaccines and differences in AS03-adjuvanted vaccines. The presentations were followed by fulsome roundtable discussions. Members from affected families also attended and made informal comments to round out the day's deliberations. This meeting emphasized the value added in bringing together in a neutral setting a wide range of experts and vaccine producers to discuss such a complex new serious adverse event following immunization. Copyright © 2016.

  17. Towards a sane and rational approach to management of Influenza H1N1 2009.

    PubMed

    Gallaher, William R

    2009-05-07

    Beginning in March 2009, an outbreak of influenza in North America was found to be caused by a new strain of influenza virus, designated Influenza H1N1 2009, which is a reassortant of swine, avian and human influenza viruses. Over a thousand total cases were identified with the first month, chiefly in the United States and Mexico, but also involving several European countries. Actions concerning Influenza H1N1 2009 need to be based on fact and science, following recommendations of public health officials, and not fueled by political, legal or other interests. Every influenza outbreak or pandemic is unique, so the facts of each one must be studied before an appropriate response can be developed. While reports are preliminary, through the first 4 weeks of the outbreak it does not appear to be severe either in terms of the attack rate in communities or in the virulence of the virus itself. However, there are significant changes in both the hemagglutinin and neuraminidase proteins of the new virus, 27.2% and 18.2% of the amino acid sequence, from prior H1N1 isolates in 2008 and the current vaccine. Such a degree of change qualifies as an "antigenic shift", even while the virus remains in the H1N1 family of influenza viruses, and may give influenza H1N1 2009 significant pandemic potential. Perhaps balancing this shift, the novel virus retains more of the core influenza proteins from animal strains than successful human influenza viruses, and may be inhibited from its maximum potential until further reassortment or mutation better adapts it to multiplication in humans. While contact and respiratory precautions such as frequent handwashing will slow the virus through the human population, it is likely that development of a new influenza vaccine tailored to this novel Influenza H1N1 2009 strain will be essential to blunt its ultimate pandemic impact.

  18. Towards a sane and rational approach to management of Influenza H1N1 2009

    PubMed Central

    Gallaher, William R

    2009-01-01

    Beginning in March 2009, an outbreak of influenza in North America was found to be caused by a new strain of influenza virus, designated Influenza H1N1 2009, which is a reassortant of swine, avian and human influenza viruses. Over a thousand total cases were identified with the first month, chiefly in the United States and Mexico, but also involving several European countries. Actions concerning Influenza H1N1 2009 need to be based on fact and science, following recommendations of public health officials, and not fueled by political, legal or other interests. Every influenza outbreak or pandemic is unique, so the facts of each one must be studied before an appropriate response can be developed. While reports are preliminary, through the first 4 weeks of the outbreak it does not appear to be severe either in terms of the attack rate in communities or in the virulence of the virus itself. However, there are significant changes in both the hemagglutinin and neuraminidase proteins of the new virus, 27.2% and 18.2% of the amino acid sequence, from prior H1N1 isolates in 2008 and the current vaccine. Such a degree of change qualifies as an "antigenic shift", even while the virus remains in the H1N1 family of influenza viruses, and may give influenza H1N1 2009 significant pandemic potential. Perhaps balancing this shift, the novel virus retains more of the core influenza proteins from animal strains than successful human influenza viruses, and may be inhibited from its maximum potential until further reassortment or mutation better adapts it to multiplication in humans. While contact and respiratory precautions such as frequent handwashing will slow the virus through the human population, it is likely that development of a new influenza vaccine tailored to this novel Influenza H1N1 2009 strain will be essential to blunt its ultimate pandemic impact. PMID:19422701

  19. MF59®-Adjuvanted H5N1 Vaccine Induces Immunologic Memory and Heterotypic Antibody Responses in Non-Elderly and Elderly Adults

    PubMed Central

    Banzhoff, Angelika; Gasparini, Roberto; Laghi-Pasini, Franco; Staniscia, Tommaso; Durando, Paolo; Montomoli, Emanuele; Capecchi, Pamela; di Giovanni, Pamela; Sticchi, Laura; Gentile, Chiara; Hilbert, Anke; Brauer, Volker; Tilman, Sandrine; Podda, Audino

    2009-01-01

    Background Pathogenic avian influenza virus (H5N1) has the potential to cause a major global pandemic in humans. Safe and effective vaccines that induce immunologic memory and broad heterotypic response are needed. Methods and Findings Healthy adults aged 18–60 and >60 years (n = 313 and n = 173, respectively) were randomized (11) to receive two primary and one booster injection of 7.5 μg or 15 μg doses of a subunit MF59-adjuvanted H5N1 (A/Vietnam/1194/2004) (clade 1) vaccine. Safety was monitored until 6 months after booster. Immunogenicity was assessed by hemagglutination inhibition (HI), single radial hemolysis (SRH) and microneutralization assays (MN). Mild injection-site pain was the most common adverse reaction. No serious adverse events relating to the vaccine were reported. The humoral immune responses to 7.5 μg and 15 μg doses were comparable. The rates for seroprotection (HI>40; SRH>25mm2; MN ≥40) after the primary vaccination ranged 72–87%. Six months after primary vaccination with the 7.5 μg dose, 18% and 21% of non-elderly and elderly adults were seroprotected; rates increased to 90% and 84%, respectively, after the booster vaccination. In the 15 μg group, seroprotection rates among non-elderly and elderly adults increased from 25% and 62% after primary vaccination to 92% and 88% after booster vaccination, respectively. A heterologous immune response to the H5N1/turkey/Turkey/05 strain was elicited after second and booster vaccinations. Conclusions Both formulations of MF59-adjuvanted influenza H5N1 vaccine were well tolerated. The European Union requirement for licensure for pre-pandemic vaccines was met by the lower dose tested. The presence of cross-reactive antibodies to a clade 2 heterologous strain demonstrates that this vaccine may be appropriate for pre-pandemic programs. Trial Registration ClinicalTrials.gov NCT00311480 PMID:19197383

  20. Virucidal activity of a scorpion venom peptide variant mucroporin-M1 against measles, SARS-CoV and influenza H5N1 viruses.

    PubMed

    Li, Qiaoli; Zhao, Zhenhuan; Zhou, Dihan; Chen, Yaoqing; Hong, Wei; Cao, Luyang; Yang, Jingyi; Zhang, Yan; Shi, Wei; Cao, Zhijian; Wu, Yingliang; Yan, Huimin; Li, Wenxin

    2011-07-01

    Outbreaks of SARS-CoV, influenza A (H5N1, H1N1) and measles viruses in recent years have raised serious concerns about the measures available to control emerging and re-emerging infectious viral diseases. Effective antiviral agents are lacking that specifically target RNA viruses such as measles, SARS-CoV and influenza H5N1 viruses, and available vaccinations have demonstrated variable efficacy. Therefore, the development of novel antiviral agents is needed to close the vaccination gap and silence outbreaks. We previously identified mucroporin, a cationic host defense peptide from scorpion venom, which can effectively inhibit standard bacteria. The optimized mucroporin-M1 can inhibit gram-positive bacteria at low concentrations and antibiotic-resistant pathogens. In this investigation, we further tested mucroporin and the optimized mucroporin-M1 for their antiviral activity. Surprisingly, we found that the antiviral activities of mucroporin-M1 against measles, SARS-CoV and influenza H5N1 viruses were notably increased with an EC₅₀ of 7.15 μg/ml (3.52 μM) and a CC₅₀ of 70.46 μg/ml (34.70 μM) against measles virus, an EC₅₀ of 14.46 μg/ml (7.12 μM) against SARS-CoV and an EC₅₀ of 2.10 μg/ml (1.03 μM) against H5N1, while the original peptide mucroporin showed no antiviral activity against any of these three viruses. The inhibition model could be via a direct interaction with the virus envelope, thereby decreasing the infectivity of virus. This report provides evidence that host defense peptides from scorpion venom can be modified for antiviral activity by rational design and represents a practical approach for developing broad-spectrum antiviral agents, especially against RNA viruses. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Chicken faeces garden fertilizer: possible source of human avian influenza H5N1 infection.

    PubMed

    Kandun, I N; Samaan, G; Harun, S; Purba, W H; Sariwati, E; Septiawati, C; Silitonga, M; Dharmayanti, N P I; Kelly, P M; Wandra, T

    2010-06-01

    Avian influenza H5N1 infection in humans is typically associated with close contact with infected poultry or other infected avian species. We report on human cases of H5N1 infection in Indonesia where exposure to H5N1-infected animals could not be established, but where the investigation found chicken faeces contaminated with viable H5N1 virus in the garden fertilizer. Human cases of avian influenza H5N1 warrant extensive investigations to determine likely sources of illness and to minimize risk to others. Authorities should regulate the sale and transportation of chicken faeces as fertilizer from areas where H5N1 outbreaks are reported.

  2. Sequential Seasonal H1N1 Influenza Virus Infections Protect Ferrets against Novel 2009 H1N1 Influenza Virus

    PubMed Central

    Carter, Donald M.; Bloom, Chalise E.; Nascimento, Eduardo J. M.; Marques, Ernesto T. A.; Craigo, Jodi K.; Cherry, Joshua L.; Lipman, David J.

    2013-01-01

    Individuals <60 years of age had the lowest incidence of infection, with ∼25% of these people having preexisting, cross-reactive antibodies to novel 2009 H1N1 influenza. Many people >60 years old also had preexisting antibodies to novel H1N1. These observations are puzzling because the seasonal H1N1 viruses circulating during the last 60 years were not antigenically similar to novel H1N1. We therefore hypothesized that a sequence of exposures to antigenically different seasonal H1N1 viruses can elicit an antibody response that protects against novel 2009 H1N1. Ferrets were preinfected with seasonal H1N1 viruses and assessed for cross-reactive antibodies to novel H1N1. Serum from infected ferrets was assayed for cross-reactivity to both seasonal and novel 2009 H1N1 strains. These results were compared to those of ferrets that were sequentially infected with H1N1 viruses isolated prior to 1957 or more-recently isolated viruses. Following seroconversion, ferrets were challenged with novel H1N1 influenza virus and assessed for viral titers in the nasal wash, morbidity, and mortality. There was no hemagglutination inhibition (HAI) cross-reactivity in ferrets infected with any single seasonal H1N1 influenza viruses, with limited protection to challenge. However, sequential H1N1 influenza infections reduced the incidence of disease and elicited cross-reactive antibodies to novel H1N1 isolates. The amount and duration of virus shedding and the frequency of transmission following novel H1N1 challenge were reduced. Exposure to multiple seasonal H1N1 influenza viruses, and not to any single H1N1 influenza virus, elicits a breadth of antibodies that neutralize novel H1N1 even though the host was never exposed to the novel H1N1 influenza viruses. PMID:23115287

  3. Nasal delivery of Protollin-adjuvanted H5N1 vaccine induces enhanced systemic as well as mucosal immunity in mice.

    PubMed

    Cao, Weiping; Kim, Jin Hyang; Reber, Adrian J; Hoelscher, Mary; Belser, Jessica A; Lu, Xiuhua; Katz, Jacqueline M; Gangappa, Shivaprakash; Plante, Martin; Burt, David S; Sambhara, Suryaprakash

    2017-06-05

    Sporadic, yet frequent human infections with avian H5N1 influenza A viruses continue to pose a potential pandemic threat. Poor immunogenicity of unadjuvanted H5N1 vaccines warrants developing novel adjuvants and formulations as well as alternate delivery systems to improve their immunogenicity and efficacy. Here, we show that Protollin, a nasal adjuvant composed of Neisseria meningitides outer membrane proteins non-covalently linked to Shigella flexneri 2a lipopolysaccharide, is a potent nasal adjuvant for an inactivated split virion H5N1 clade 1 A/Viet Nam1203/2004 (A/VN/1203/04) vaccine in a mouse model. Protollin-adjuvanted vaccines elicited enhanced serum protective hemagglutination inhibition titers, mucosal IgA responses, and H5N1-specific cell-mediated immunity that resulted in complete protection against a lethal challenge with a homologous virus as well as a heterologous clade 2 virus A/Indonesia/05/2005 (A/IN/05/05). Detailed analysis of adaptive immunity revealed that Protollin increased the frequency of lymphoid- as well as local tissue-resident antibody-secreting cells, local germinal center reaction of B cells, broad-spectrum of CD4 T cell response. Our findings suggest that nasal delivery of H5N1 vaccine with Protollin adjuvant can overcome the poor immunogenicity of H5N1 vaccines, induce both cellular and humoral immune responses, enhance protection against challenge with clade 1 and clade 2 H5N1 viruses and achieve significant antigen dose-sparing. Copyright © 2017. Published by Elsevier Ltd.

  4. Experimental transmission of avian-like swine H1N1 influenza virus between immunologically naïve and vaccinated pigs.

    PubMed

    Lloyd, Lucy E; Jonczyk, Magdalena; Jervis, Carley M; Flack, Deborah J; Lyall, John; Foote, Alasdair; Mumford, Jennifer A; Brown, Ian H; Wood, James L; Elton, Debra M

    2011-09-01

    Infection of pigs with swine influenza has been studied experimentally and in the field; however, little information is available on the natural transmission of this virus in pigs. Two studies in an experimental transmission model are presented here, one in immunologically naïve and one in a combination of vaccinated and naïve pigs. To investigate the transmission of a recent 'avian-like' swine H1N1 influenza virus in naive piglets, to assess the antibody response to a commercially available vaccine and to determine the efficiency of transmission in pigs after vaccination. Transmission chains were initiated by intranasal challenge of two immunologically naïve pigs. Animals were monitored daily for clinical signs and virus shedding. Pairs of pigs were sequentially co-housed, and once virus was detected in recipients, prior donors were removed. In the vaccination study, piglets were vaccinated and circulating antibody levels were monitored by haemagglutination inhibition assay. To study transmission in vaccinates, a pair of infected immunologically naïve animals was co-housed with vaccinated recipient pigs and further pairs of vaccinates were added sequentially as above. The chain was completed by the addition of naive pigs. Transmission of the H1N1 virus was achieved through a chain of six pairs of naïve piglets and through four pairs of vaccinated animals. Transmission occurred with minimal clinical signs and, in vaccinates, at antibody levels higher than previously reported to protect against infection. © 2011 Blackwell Publishing Ltd.

  5. Vaccination with NS1-truncated H3N2 swine influenza virus primes T cells and confers cross-protection against an H1N1 heterosubtypic challenge in pigs

    USDA-ARS?s Scientific Manuscript database

    The diversity of contemporary swine influenza virus (SIV) strains impedes effective immunization of swine herds. Mucosally delivered, attenuated virus vaccines are one approach with potential to provide broad cross-protection. Reverse genetics-derived H3N2 SIV virus with truncated NS1 (NS1delta126 T...

  6. A novel H6N1 virus-like particle vaccine induces long-lasting cross-clade antibody immunity against human and avian H6N1 viruses.

    PubMed

    Yang, Ji-Rong; Chen, Chih-Yuan; Kuo, Chuan-Yi; Cheng, Chieh-Yu; Lee, Min-Shiuh; Cheng, Ming-Chu; Yang, Yu-Chih; Wu, Chia-Ying; Wu, Ho-Sheng; Liu, Ming-Tsan; Hsiao, Pei-Wen

    2016-02-01

    Avian influenza A(H6N1) virus is one of the most common viruses isolated from migrating birds and domestic poultry in many countries. The first and only known case of human infection by H6N1 virus in the world was reported in Taiwan in 2013. This led to concern that H6N1 virus may cause a threat to public health. In this study, we engineered a recombinant H6N1 virus-like particle (VLP) and investigated its vaccine effectiveness compared to the traditional egg-based whole inactivated virus (WIV) vaccine. The H6N1-VLPs exhibited similar morphology and functional characteristics to influenza viruses. Prime-boost intramuscular immunization in mice with unadjuvanted H6N1-VLPs were highly immunogenic and induced long-lasting antibody immunity. The functional activity of the VLP-elicited IgG antibodies was proved by in vitro seroprotective hemagglutination inhibition and microneutralization titers against the homologous human H6N1 virus, as well as in vivo viral challenge analyses which showed H6N1-VLP immunization significantly reduced viral load in the lung, and protected against human H6N1 virus infection. Of particular note, the H6N1-VLPs but not the H6N1-WIVs were able to confer cross-reactive humoral immunity; antibodies induced by H6N1-VLP vaccine robustly inhibited the hemagglutination activities and in vitro replication of distantly-related heterologous avian H6N1 viruses. Furthermore, the H6N1-VLPs were found to elicit significantly greater anti-HA2 antibody responses in immunized mice than H6N1-WIVs. Collectively, we demonstrated for the first time a novel H6N1-VLP vaccine that effectively provides broadly protective immunity against both human and avian H6N1 viruses. These results, which uncover the underlying mechanisms for induction of wide-range immunity against influenza viruses, may be useful for future influenza vaccine development. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Evaluation of protective efficacy of three novel H3N2 canine influenza vaccines.

    PubMed

    Tu, Liqing; Zhou, Pei; Li, Lutao; Li, Xiuzhen; Hu, Renjun; Jia, Kun; Sun, Lingshuang; Yuan, Ziguo; Li, Shoujun

    2017-11-17

    Canine influenza virus (CIV) has the potential risk to spread in different areas and dog types. Thus, there is a growing need to develop an effective vaccine to control CIV disease. Here, we developed three vaccine candidates: 1) a recombinant pVAX1 vector expressing H3N2 CIV hemagglutinin (pVAX1-HA); 2) a live attenuated canine adenovirus type 2 expressing H3N2 CIV hemagglutinin (rCAV2-HA); and 3) an inactivated H3N2 CIV (A/canine/Guangdong/01/2006 (H3N2)). Mice received an initial intramuscular immunization that followed two booster injections at 2 and 4 weeks post-vaccination (wpv). The splenic lymphocytes were collected to assess the immune responses at 6 wpv. The protective efficacy was evaluated by challenging H3N2 CIV after vaccination (at 6 wpv). Our results demonstrated that all three vaccine candidates elicited cytokine and antibody responses in mice. The rCAV2-HA vaccine and the inactivated vaccine generated efficient protective efficacy in mice, whereas limited protection was provided by the pVAX1-HA DNA vaccine. Therefore, both the rCAV2-HA live recombinant virus and the inactivated CIV could be used as potential novel vaccines against H3N2CIV. This study provides guidance for choosing the most appropriate vaccine for the prevention and control of CIV disease.

  8. Immunogenicity and sustainability of the immune response in Brazilian HIV-1-infected individuals vaccinated with inactivated triple influenza vaccine.

    PubMed

    Souza, Thiago Moreno L; Santini-Oliveira, Marilia; Martorelli, Andressa; Luz, Paula M; Vasconcellos, Mauricio T L; Giacoia-Gripp, Carmem B W; Morgado, Mariza; Nunes, Estevão P; Lemos, Alberto S; Ferreira, Ana C G; Moreira, Ronaldo I; Veloso, Valdiléa G; Siqueira, Marilda; Grinsztejn, Beatriz; Camacho, Luiz A B

    2016-03-01

    HIV-infected individuals have a higher risk of serious illnesses following infection by infection with influenza. Although anti-influenza vaccination is recommended, immunosuppression may limit their response to active immunization. We followed-up a cohort of HIV-infected individuals vaccinated against influenza to assess the immunogenicity and sustainability of the immune response to vaccination. Individuals were vaccinated 2011 with inactivated triple influenza vaccine (TIV), and they had received in 2010 the monovalent anti-A(H1N1)pdm09 vaccine. The sustainability of the immune response to A(H1N1)pdm09 at 12 months after monovalent vaccination fell, both in individuals given two single or two double doses. For these individuals, A(H1N1)pdm09 component from TIV acted as a booster, raising around 40% the number of seroprotected individuals. Almost 70% of the HIV-infected individuals were already seroprotected to A/H3N2 at baseline. Again, TIV boosted over 90% the seroprotection to A/H3N2. Anti-A/H3N2 titers dropped by 20% at 6 months after vaccination. Pre-vaccination seroprotection rate to influenza B (victoria lineage) was the lowest among those tested, seroconversion rates were higher after vaccination. Seroconversion/protection after TIV vaccination did not differ significantly across categories of clinical and demographic variables. Anti-influenza responses in Brazilian HIV-infected individuals reflected both the previous history of virus circulation in Brazil and vaccination. © 2015 Wiley Periodicals, Inc.

  9. A phase III, randomized, open-label study to assess the tolerability and immunogenicity of an H5N1 influenza vaccine administered to healthy adults with a 1-, 2-, 3-, or 6-week interval between first and second doses.

    PubMed

    Beran, Jiri; Abdel-Messih, Ibrahim A; Raupachova, Jolana; Hobzova, Lenka; Fragapane, Elena

    2010-12-01

    Preparedness for an H5N1 influenza pre-pandemic requires effective and well-tolerated emergency vaccination strategies that provide both pandemic strain-specific and heterologous protection. This was a pivotal study for the regulatory approval process for a candidate MF59-adjuvanted H5N1 vaccine. Its goals were to identify the preferred primary 2-dose vaccination schedule in adults and to assess whether the vaccine met European Committee for Medicinal Products for Human Use (CHMP) licensure criteria. Healthy volunteers aged 18 to 60 years received 1 of 4 randomized schedules in which the 2 doses of vaccine were separated by a 1-, 2-, 3-, or 6-week interval. Three blood samples (~20 mL(-1)) were obtained from each subject: the first sample, immediately before administration of the first dose of vaccine; the second, immediately before administration of the second dose; and the third, 21 days after administration of the second dose. Hemagglutination inhibition (HI), microneutralization (MN), and single radial hemolysis (SRH) were assayed after each dose. Immunogenicity was assessed based on the CHMP licensure criteria for annual influenza vaccines (number of seroconversions or significant increase in HI titer >40%; mean geometric increase >2.5; and proportion of subjects achieving an HI titer ≥40 or SRH titer >25 mm(2) should be >70% [seroprotection]). Subjects recorded all adverse events occurring within 7 days of vaccine administration; information on any serious adverse events was collected throughout the study (duration, 202 days). All study participants (N = 240) were white, with a mean age of 33 years and a mean body mass index of 24.6 kg/m(2). Equal numbers of men and women were assigned to each vaccination schedule. The CHMP criterion for seroprotection was achieved when the 2 doses of vaccine were separated by 2 (76%), 3 (72%), and 6 (79%) weeks; similar results were obtained on MN and SRH analysis. On the SRH analysis, the candidate vaccine showed a

  10. Impact of Body Mass Index on Immunogenicity of Pandemic H1N1 Vaccine in Children and Adults

    PubMed Central

    Callahan, S. Todd; Wolff, Mark; Hill, Heather R.; Edwards, Kathryn M.; Keitel, Wendy; Atmar, Robert; Patel, Shital; Sahly, Hana El; Munoz, Flor; Paul Glezen, W.; Brady, Rebecca; Frenck, Robert; Bernstein, David; Harrison, Christopher; Jackson, Mary Anne; Swanson, Douglas; Newland, Jason; Myers, Angela; Livingston, Robyn A; Walter, Emmanuel; Dolor, Rowena; Schmader, Kenneth; Mulligan, Mark J.; Edupuganti, Srilatha; Rouphael, Nadine; Whitaker, Jennifer; Spearman, Paul; Keyserling, Harry; Shane, Andi; Eckard, Allison Ross; Jackson, Lisa A.; Frey, Sharon E.; Belshe, Robert B.; Graham, Irene; Anderson, Edwin; Englund, Janet A.; Healy, Sara; Winokur, Patricia; Stapleton, Jack; Meier, Jeffrey; Kotloff, Karen; Chen, Wilbur; Hutter, Julia; Stephens, Ina; Wooten, Susan; Wald, Anna; Johnston, Christine; Edwards, Kathryn M.; Buddy Creech, C.; Todd Callahan, S.

    2014-01-01

    Obesity emerged as a risk factor for morbidity and mortality related to 2009 pandemic influenza A (H1N1) infection. However, few studies examine the immune responses to H1N1 vaccine among children and adults of various body mass indices (BMI). Pooling data from 3 trials of unadjuvanted split-virus H1N1 A/California/07/2009 influenza vaccines, we analyzed serologic responses of participants stratified by BMI grouping. A single vaccine dose produced higher hemagglutination inhibition antibody titers at day 21 in obese compared to nonobese adults, but there were no significant differences in responses to H1N1 vaccine among children or adults of various BMI following 2 doses. PMID:24795475

  11. Added Value of Avian Influenza (H5) Day-Old Chick Vaccination for Disease Control in Egypt.

    PubMed

    Peyre, Marisa; Choisy, Marc; Sobhy, Heba; Kilany, Walid H; Gély, Marie; Tripodi, Astrid; Dauphin, Gwenaëlle; Saad, Mona; Roger, François; Lubroth, Juan; Jobre, Yilma

    2016-05-01

    The immunity profile against H5N1 highly pathogenic avian influenza (HPAI) in the commercial poultry value chain network in Egypt was modeled with the use of different vaccination scenarios. The model estimated the vaccination coverage, the protective seroconversion level, and the duration of immunity for each node of the network and vaccination scenario. Partial budget analysis was used to compare the benefit-cost of the different vaccination scenarios. The model predicted that targeting day-old chick avian influenza (AI) vaccination in industrial and large hatcheries would increase immunity levels in the overall poultry population in Egypt and especially in small commercial poultry farms (from <30% to >60%). This strategy was shown to be more efficient than the current strategy of using inactivated vaccines. Improving HPAI control in the commercial poultry sector in Egypt would have a positive impact to improve disease control.

  12. Efficacy of clade 2.3.2 H5 commercial vaccines in protecting chickens from clade 2.3.4.4 H5N8 highly pathogenic avian influenza infection.

    PubMed

    Yuk, Seong-Su; Erdene-Ochir, T O; Kwon, Jung-Hoon; Noh, Jin-Yong; Hong, Woo-Tack; Jeong, Jei-Hyun; Jeong, Sol; Gwon, Gyeong-Bin; Shin, Jong-Il; Sur, Jung-Hyang; Song, Chang-Seon

    2017-03-01

    Emerging clade 2.3.4.4 of the highly pathogenic avian influenza (HPAI) virus strain H5N8, which had been detected sporadically in domestic poultry in China, started to affect wild birds and poultry in South Korea in 2014. The virus was spread to Germany, Italy, the Netherlands, United Kingdom, and even United States by migratory birds. Here, we tested currently used commercial clade 2.3.2 H5 vaccines to evaluate mortality, clinical signs, virus shedding, and histological damage after experimental infection of chickens with the clade 2.3.4.4 HPAI H5N8 virus. Although the vaccination protected chickens from death, it failed to prevent chickens from shedding the virus and from tissue damage according to histological examination. These results suggest that the use of appropriate vaccines that match the currently epidemic HPAI virus is recommended, and continuous HPAI surveillance and testing of currently used commercial vaccines should be performed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Characterization and long-term persistence of immune response following two doses of an AS03A-adjuvanted H1N1 influenza vaccine in healthy Japanese adults.

    PubMed

    Ikematsu, Hideyuki; Nagai, Hideaki; Kawashima, Masahiro; Kawakami, Yasunobu; Tenjinbaru, Kazuyoshi; Li, Ping; Walravens, Karl; Gillard, Paul; Roman, François

    2012-02-01

    Background Long-term persistence of immune response and safety of two doses of an A/California/07/2009 H1N1 pandemic influenza vaccine adjuvanted with AS03 (an α-tocopherol oil-in-water emulsion-based Adjuvant System) administered 21 d apart was evaluated in Japanese adults [NCT00989612]. Methods One-hundred healthy subjects aged 20-64 y (stratified [1:1] into two age strata 20-40 y and 41-64 y) received 21 d apart, two doses of AS03-adjuvanted 3.75µg haemagglutinin (HA) H1N1 2009 vaccine. Immunogenicity data by haemagglutination inhibition (HI) assay six months after the first vaccine dose (Day 182) and microneutralization assay following each of the two vaccine doses (Days 21 and 42) and at Day 182 are reported here. Results Persistence of strong HI immune response was observed at Day 182 that met the US and European regulatory thresholds for pandemic influenza vaccines (seroprotection rate: 95%; seroconversion rate: 93%; geometric mean fold-rise: 20). The neutralizing antibody response against the A/Netherlands/602/2009 strain (antigenically similar to vaccine-strain) persisted for at least up to Day 182 (vaccine response rate: 76%; geometric mean titer: 114.4) and paralleled the HI immune response at all time points. No marked difference was observed in HI antibody persistence and neutralising antibody response between the two age strata. The vaccine had a clinically-acceptable safety profile. Conclusion Two priming doses of H1N1 2009 pandemic influenza vaccine induced an immune response persisting for at least six months after the first vaccine dose. This could be beneficial in evaluating the importance and effect of vaccination with this AS03-adjuvanted pandemic influenza vaccine.

  14. Higher vaccine effectiveness in seasons with predominant circulation of seasonal influenza A(H1N1) than in A(H3N2) seasons: test-negative case-control studies using surveillance data, Spain, 2003-2011.

    PubMed

    Savulescu, Camelia; Jiménez-Jorge, Silvia; Delgado-Sanz, Concha; de Mateo, Salvador; Pozo, Francisco; Casas, Inmaculada; Larrauri, Amparo

    2014-07-31

    We used data provided by the Spanish influenza surveillance system to measure seasonal influenza vaccine effectiveness (VE) against medically attended cases, laboratory confirmed with the predominately circulating influenza virus over eight seasons (2003-2011). Using the test-negative case-control design, we compared the vaccination status of swabbed influenza-like illnesses (ILI) patients who were laboratory confirmed with predominantly circulating influenza strain in the season (cases) to that of ILI patients testing negative for any influenza (controls). Data on age, sex, vaccination status and laboratory results were available for all seasons. We used logistic regression to calculate adjusted influenza VE for age, week of swabbing, Spanish region and season. We calculated the influenza VE by each season and pooling the seasons with the same predominant type/subtype. Overall influenza VE against infection with A(H3N2) subtype (four seasons) was 31 (95% confidence interval (CI):10; 48). For seasonal influenza A(H1N1) (two seasons), the effectiveness was 86% (95% CI: 65; 94). Against B infection (three seasons), influenza VE was 47% (95% CI: 27; 62). The Spanish influenza surveillance system allowed estimating influenza VE in the studied seasons for the predominant strain. Strengthening the influenza surveillance will result in more precise VE estimates for decision making. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Safety of pandemic H1N1 vaccines in children and adolescents.

    PubMed

    Wijnans, Leonoor; de Bie, Sandra; Dieleman, Jeanne; Bonhoeffer, Jan; Sturkenboom, Miriam

    2011-10-06

    During the 2009 influenza A (H1N1) pandemic several pandemic H1N1 vaccines were licensed using fast track procedures, with relatively limited data on the safety in children and adolescents. Different extensive safety monitoring efforts were put in place to ensure timely detection of adverse events following immunization. These combined efforts have generated large amounts of data on the safety of the different pandemic H1N1 vaccines, also in children and adolescents. In this overview we shortly summarize the safety experience with seasonal influenza vaccines as a background and focus on the clinical and post marketing safety data of the pandemic H1N1 vaccines in children. We identified 25 different clinical studies including 10,505 children and adolescents, both healthy and with underlying medical conditions, between the ages of 6 months and 23 years. In addition, large monitoring efforts have resulted in large amounts of data, with almost 13,000 individual case reports in children and adolescents to the WHO. However, the diversity in methods and data presentation in clinical study publications and publications of spontaneous reports hampered the analysis of safety of the different vaccines. As a result, relatively little has been learned on the comparative safety of these pandemic H1N1 vaccines - particularly in children. It should be a collective effort to give added value to the enormous work going into the individual studies by adhering to available guidelines for the collection, analysis, and presentation of vaccine safety data in clinical studies and to guidance for the clinical investigation of medicinal products in the pediatric population. Importantly the pandemic has brought us the beginning of an infrastructure for collaborative vaccine safety studies in the EU, USA and globally. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Survey of healthcare workers' attitudes, beliefs and willingness to receive the 2009 pandemic influenza A (H1N1) vaccine and the impact of educational campaigns.

    PubMed

    Thoon, Koh Cheng; Chong, Chia Yin

    2010-04-01

    Vaccination against the 2009 pandemic influenza A (H1N1) represents the best method of controlling spread, morbidity and mortality due to the pandemic. While this has been recommended for all healthcare-workers locally, it is unclear if they are willing to accept the vaccination. A cross-sectional survey was conducted before and after an educational talk on pandemic influenza and vaccines to ascertain responses and stated reasons, as well as identify associated factors. For 235 returned forms prior to the talk, 182 (77.4%) responded positively, while 161 of 192 (83.8%) who returned forms after the talk responded positively. Importantly, 12 of 47 (25.5%) initially negative responses turned positive after education. The desire to protect family, self and patients were the 3 most important reasons for staff wanting to receive the vaccine, while the concern regarding potential side effects was the most important reason for refusal. A high rate of willingness to receive pandemic influenza vaccine was found, which was in contrast to acceptance rates elsewhere and during previous influenza seasons. Education can play an important role in altering vaccine acceptance behaviour, with an emphasis on addressing concerns with regard to potential side effects.

  17. Protective Efficacy of Newcastle Disease Virus Expressing Soluble Trimeric Hemagglutinin against Highly Pathogenic H5N1 Influenza in Chickens and Mice

    PubMed Central

    Cornelissen, Lisette A. H. M.; de Leeuw, Olav S.; Tacken, Mirriam G.; Klos, Heleen C.; de Vries, Robert P.; de Boer-Luijtze, Els A.; van Zoelen-Bos, Diana J.; Rigter, Alan; Rottier, Peter J. M.; Moormann, Rob J. M.; de Haan, Cornelis A. M.

    2012-01-01

    Background Highly pathogenic avian influenza virus (HPAIV) causes a highly contagious often fatal disease in poultry, resulting in significant economic losses in the poultry industry. HPAIV H5N1 also poses a major public health threat as it can be transmitted directly from infected poultry to humans. One effective way to combat avian influenza with pandemic potential is through the vaccination of poultry. Several live vaccines based on attenuated Newcastle disease virus (NDV) that express influenza hemagglutinin (HA) have been developed to protect chickens or mammalian species against HPAIV. However, the zoonotic potential of NDV raises safety concerns regarding the use of live NDV recombinants, as the incorporation of a heterologous attachment protein may result in the generation of NDV with altered tropism and/or pathogenicity. Methodology/Principal Findings In the present study we generated recombinant NDVs expressing either full length, membrane-anchored HA of the H5 subtype (NDV-H5) or a soluble trimeric form thereof (NDV-sH53). A single intramuscular immunization with NDV-sH53 or NDV-H5 fully protected chickens against disease after a lethal challenge with H5N1 and reduced levels of virus shedding in tracheal and cloacal swabs. NDV-sH53 was less protective than NDV-H5 (50% vs 80% protection) when administered via the respiratory tract. The NDV-sH53 was ineffective in mice, regardless of whether administered oculonasally or intramuscularly. In this species, NDV-H5 induced protective immunity against HPAIV H5N1, but only after oculonasal administration, despite the poor H5-specific serum antibody response it elicited. Conclusions/Significance Although NDV expressing membrane anchored H5 in general provided better protection than its counterpart expressing soluble H5, chickens could be fully protected against a lethal challenge with H5N1 by using the latter NDV vector. This study thus provides proof of concept for the use of recombinant vector vaccines

  18. Protective effect of A/H1N1 vaccination in immune-mediated disease--a prospectively controlled vaccination study.

    PubMed

    Adler, Sabine; Krivine, Anne; Weix, Janine; Rozenberg, Flore; Launay, Odile; Huesler, Juerg; Guillevin, Loïc; Villiger, Peter M

    2012-04-01

    To assess the 2009 influenza vaccine A/H1N1 on antibody response, side effects and disease activity in patients with immune-mediated diseases. Patients with RA, SpA, vasculitis (VAS) or CTD (n = 149) and healthy individuals (n = 40) received a single dose of adjuvanted A/H1N1 influenza vaccine. Sera were obtained before vaccination, and 3 weeks, 6 weeks and 6 months thereafter. A/H1N1 antibody titres were measured by haemagglutination inhibition (HAI) assay. Seroprotection was defined as specific antibody titre ≥ 1 : 40, seroconversion as 4-fold increase in antibody titre. Titres increased significantly in patients and controls with a maximum at Week 3, declining to levels below protection at Month 6 (P < 0.001). Seroprotection was more frequently reached in SpA and CTD than in RA and VAS (80 and 82% and 57 and 47%, respectively). There was a significantly negative impact by MTX (P < 0.001), rituximab (P = 0.0031) and abatacept (P = 0.045). Other DMARDs, glucocorticoids and TNF blockers did not significantly suppress response (P = 0.06, 0.11 and 0.81, respectively). A linear decline in response was noted in patients with increasing age (P < 0.001). Disease reactivation possibly related to vaccination was suspected in 8/149 patients. No prolonged side effects or A/H1N1 infections were noted. The results show that vaccination response is a function of disease type, intensity and character of medication and age. A single injection of adjuvanted influenza vaccine is sufficient to protect a high percentage of patients. Therefore, differential vaccination recommendations might in the future reduce costs and increase vaccination acceptance.

  19. Influenza vaccination among pregnant women--Massachusetts, 2009-2010.

    PubMed

    2013-11-01

    The emergence of the novel influenza A (H1N1) pdm09 (pH1N1) strain in 2009 required a coordinated public health response, especially among high-risk populations. Because pregnant women were at increased risk for influenza-related complications and hospitalization compared with the general population, the American College of Obstetricians and Gynecologists and the Advisory Committee on Immunization Practices recommended pregnant women receive both the pH1N1 vaccine and the annual seasonal vaccine during the 2009-10 influenza season as a safe and effective way of protecting both mother and infant. To describe acceptance, predictors, and barriers to influenza vaccination among pregnant women in Massachusetts during the 2009-10 influenza season, the Massachusetts Department of Public Health (MDPH) analyzed data from supplemental influenza questions on the Massachusetts Pregnancy Risk Assessment Monitoring System (PRAMS) survey. The results indicated that 67.5% of residents who had live births in Massachusetts during September 2009-May 2010 received the seasonal vaccine, and 57.6% received the pH1N1 vaccine. Women who were non-Hispanic blacks, aged <25 years, Medicaid beneficiaries, or lived in a household with an income at or below the federal poverty level were significantly less likely to receive the seasonal vaccine. For the pH1N1 vaccine, only being non-Hispanic black was associated with being less likely to have been vaccinated. Vaccination rates were significantly higher among women whose provider offered or recommended the seasonal (75.8%) and pH1N1 (68.1%) vaccines compared with those who did not receive a recommendation (32.4% and 8.6%, respectively). Coverage in Massachusetts was among the highest of 29 PRAMS sites and might have reflected strategic efforts by MDPH to support vaccine education and equity across the state.

  20. Expression of H5 hemagglutinin vaccine antigen in common duckweed (Lemna minor) protects against H5N1 high pathogenicity avian influenza virus challenge in immunized chickens.

    PubMed

    Bertran, Kateri; Thomas, Colleen; Guo, Xuan; Bublot, Michel; Pritchard, Nikki; Regan, Jeffrey T; Cox, Kevin M; Gasdaska, John R; Dickey, Lynn F; Kapczynski, Darrell R; Swayne, David E

    2015-07-09

    A synthetic hemagglutinin (HA) gene from the highly pathogenic avian influenza (HPAI) virus A/chicken/Indonesia/7/2003 (H5N1) (Indo/03) was expressed in aquatic plant Lemna minor (rLemna-HA). In Experiment 1, efficacy of rLemna-HA was tested on birds immunized with 0.2μg or 2.3 μg HA and challenged with 10(6) mean chicken embryo infectious doses (EID50) of homologous virus strain. Both dosages of rLemna-HA conferred clinical protection and dramatically reduced viral shedding. Almost all the birds immunized with either dosage of rLemna-HA elicited HA antibody titers against Indo/03 antigen, suggesting an association between levels of anti-Indo/03 antibodies and protection. In Experiment 2, efficacy of rLemna-HA was tested on birds immunized with 0.9 μg or 2.2 μg HA and challenged with 10(6) EID50 of heterologous H5N1 virus strains A/chicken/Vietnam/NCVD-421/2010 (VN/10) or A/chicken/West Java/PWT-WIJ/2006 (PWT/06). Birds challenged with VN/10 exhibited 100% survival regardless of immunization dosage, while birds challenged with PWT/06 had 50% and 30% mortality at 0.9 μg HA and 2.2 μg HA, respectively. For each challenge virus, viral shedding titers from 2.2 μg HA vaccinated birds were significantly lower than those from 0.9μg HA vaccinated birds, and titers from both immunized groups were in turn significantly lower than those from sham vaccinated birds. Even if immunized birds elicited HA titers against the vaccine antigen Indo/03, only the groups challenged with VN/10 developed humoral immunity against the challenge antigen. None (rLemna-HA 0.9 μg HA) and 40% (rLemna-HA 2.2 μg HA) of the immunized birds challenged with PWT/06 elicited pre-challenge antibody titers, respectively. In conclusion, Lemna-expressed HA demonstrated complete protective immunity against homologous challenge and suboptimal protection against heterologous challenge, the latter being similar to results from inactivated whole virus vaccines. Transgenic duckweed-derived HA could be a

  1. Heterosubtypic anti-avian H5N1 influenza antibodies in intravenous immunoglobulins from globally separate populations protect against H5N1 infection in cell culture

    PubMed Central

    Sullivan, John S; Selleck, Paul W; Downton, Teena; Boehm, Ingrid; Axell, Anna-Maree; Ayob, Yasmin; Kapitza, Natalie M; Dyer, Wayne; Fitzgerald, Anna; Walsh, Bradley; Lynch, Garry W

    2009-01-01

    With antigenically novel epidemic and pandemic influenza strains persistently on the horizon it is of fundamental importance that we understand whether heterosubtypic antibodies gained from exposures to circulating human influenzas exist and can protect against emerging novel strains. Our studies of IVIG obtained from an infection-naive population (Australian) enabled us to reveal heterosubtypic influenza antibodies that cross react with H5N1. We now expand those findings for an Australian donor population to include IVIG formulations from a variety of northern hemisphere populations. Examination of IVIGs from European and South East-Asian (Malaysian) blood donor populations further reveal heterosubtypic antibodies to H5N1 in humans from different global regions. Importantly these protect against highly pathogenic avian H5N1 infection in vitro, albeit at low titres of inhibition. Although there were qualitative and quantitative differences in binding and protection between globally different formulations, the heterosubtypic antibody activities for the respective IVIGs were in general quite similar. Of particular note because of the relative geographic proximity to the epicentre of H5N1 and the majority of human infections, was the similarity in the antibody binding responses between IVIGs from the Malayan peninsula, Europe and Australia. These findings highlight the value of employing IVIGs for the study of herd immunity, and particularly heterosubtypic antibody responses to viral antigens such as those conserved between circulating human influenzas and emerging influenza strains such as H5N1. They also open a window into a somewhat ill defined arena of antibody immunity, namely heterosubtypic immunity. PMID:20076794

  2. Influenza A/H1N1 vaccination of patients with SLE: can antimalarial drugs restore diminished response under immunosuppressive therapy?

    PubMed

    Borba, Eduardo F; Saad, Carla G S; Pasoto, Sandra G; Calich, Ana L G; Aikawa, Nadia E; Ribeiro, Ana C M; Moraes, Julio C B; Leon, Elaine P; Costa, Luciana P; Guedes, Lissiane K N; Silva, Clovis A A; Goncalves, Celio R; Fuller, Ricardo; Oliveira, Suzimara A; Ishida, Maria A; Precioso, Alexander R; Bonfa, Eloisa

    2012-06-01

    To assess the efficacy and safety of pandemic 2009 influenza A (H1N1) in SLE under different therapeutic regimens. A total of 555 SLE patients and 170 healthy controls were vaccinated with a single dose of a non-adjuvanted preparation. According to current therapy, patients were initially classified as SLE No Therapy (n = 75) and SLE with Therapy (n = 480). Subsequent evaluations included groups under monotherapy: chloroquine (CQ) (n = 105), prednisone (PRED) ≥20 mg (n = 76), immunosuppressor (IS) (n = 95) and those with a combination of these drugs. Anti-H1N1 titres and seroconversion (SC) rate were evaluated at entry and 21 days post-vaccination. The SLE with Therapy group had lower SC compared with healthy controls (59.0 vs 80.0%; P < 0.0001), whereas the SLE No Therapy group had equivalent SC (72 vs 80.0%; P = 0.18) compared with healthy controls. Further comparison revealed that the SC of SLE No Therapy (72%) was similar to the CQ group (69.5%; P = 0.75), but it was significantly reduced in PRED ≥20 mg (53.9%; P = 0.028), IS (55.7%; P = 0.035) and PRED ≥20 mg + IS (45.4%; P = 0.038). The concomitant use of CQ in each of these later regimens was associated with SC responses comparable with SLE No Therapy group (72%): PRED ≥20 mg + CQ (71.4%; P = 1.00), IS + CQ (65.2%; P = 0.54) and PRED ≥20 mg + IS + CQ (57.4%; P = 0.09). Pandemic influenza A H1N1/2009 vaccine response is diminished in SLE under immunosuppressive therapy and antimalarials seems to restore this immunogenicity. Trial registration. www.clinicaltrials.gov, NCT01151644.

  3. An assessment of prime‐boost vaccination schedules with AS03A‐adjuvanted prepandemic H5N1 vaccines: a randomized study in European adults

    PubMed Central

    Gillard, Paul; Caplanusi, Adrian; Knuf, Markus; Roman, François; Walravens, Karl; Moris, Philippe; Dramé, Mamadou; Schwarz, Tino F.

    2012-01-01

    Please cite this paper as: Gillard et al. (2012) An assessment of prime‐boost vaccination schedules with AS03A‐adjuvanted prepandemic H5N1 vaccines: a randomized study in European adults. Influenza and Other Respiratory Viruses DOI: 10.1111/j.1750‐2659.2012.00349.x. Background  Long‐term persistence of immune response and safety of an H5N1 prepandemic influenza vaccine adjuvanted with AS03 (an α‐tocopherol oil‐in‐water emulsion‐based adjuvant system) was evaluated using various prime‐boost schedules that mimicked potential pandemic scenarios (NCT00430521). Methods  Five hundred and twelve healthy adults aged 18–60 years received primary vaccination with one or two doses (0, 21 days schedule) of the A/Vietnam/1194/2004 H5N1 vaccine followed by a booster dose (A/Vietnam/1194/2004 or A/Indonesia/05/2005 strain) six or twelve months later across eight randomized groups. Immunogenicity results by hemagglutination inhibition [HI] assay, microneutralization assay, and the cell‐mediated immune response (CMI) are reported here for the four groups boosted at Month 12. Results  A one‐dose‐adjuvanted primary administration followed 12 months later by a single‐adjuvanted booster dose containing a heterologous vaccine strain met or exceeded all US and European criteria for both strains. Increasing the interval between the first and second dose (from 21 days to 12 months) resulted in stronger cross‐reactive immune responses against the A/Indonesia/05/2005 strain. The HI antibody response against the two strains persisted for 6 months after the booster dose irrespective of the booster vaccine’s strain. The neutralizing antibody responses and the CMI observed in the study population paralleled the HI immune response. Overall, the vaccine had a clinically acceptable safety profile. Conclusion  The H5N1 vaccine in this study allowed for flexibility in the time interval between primary and booster vaccination and the use of a

  4. Long-term booster schedules with AS03A-adjuvanted heterologous H5N1 vaccines induces rapid and broad immune responses in Asian adults.

    PubMed

    Gillard, Paul; Chu, Daniel Wai Sing; Hwang, Shinn-Jang; Yang, Pan-Chyr; Thongcharoen, Prasert; Lim, Fong Seng; Dramé, Mamadou; Walravens, Karl; Roman, François

    2014-03-15

    The pandemic potential of avian influenza A/H5N1 should not be overlooked, and the continued development of vaccines against these highly pathogenic viruses is a public health priority. This open-label extension booster study followed a Phase III study of 1206 adults who had received two 3.75 μg doses of primary AS03A-adjuvanted or non-adjuvanted H5N1 split-virus vaccine (A/Vietnam/1194/2004; clade 1) (NCT00449670). The aim of the extension study was to evaluate different timings for heterologous AS03A-adjuvanted booster vaccination (A/Indonesia/5/2005; clade 2.1) given at Month 6, 12, or 36 post-primary vaccination. Immunogenicity was assessed 21 days after each booster vaccination and the persistence of immune responses against the primary vaccine strain (A/Vietnam) and the booster strain (A/Indonesia) was evaluated up to Month 48 post-primary vaccination. Reactogenicity and safety were also assessed. After booster vaccination given at Month 6, HI antibody responses to primary vaccine, and booster vaccine strains were markedly higher with one dose of AS03A-H5N1 booster vaccine in the AS03A-adjuvanted primary vaccine group compared with two doses of booster vaccine in the non-adjuvanted primary vaccine group. HI antibody responses were robust against the primary and booster vaccine strains 21 days after boosting at Month 12 or 36. At Month 48, in subjects boosted at Month 6, 12, or 36, HI antibody titers of ≥1:40 against the booster strain persisted in 39.2%, 61.2%, and 95.6% of subjects, respectively. Neutralizing antibody responses and cell-mediated immune responses also showed that AS03A-H5N1 heterologous booster vaccination elicited robust immune responses within 21 days of boosting at Month 6, 12, or 36 post-primary vaccination. The booster vaccine was well tolerated, and no safety concerns were raised. In Asian adults primed with two doses of AS03A-adjuvanted H5N1 pandemic influenza vaccine, strong cross-clade anamnestic antibody responses were

  5. Long-term booster schedules with AS03A-adjuvanted heterologous H5N1 vaccines induces rapid and broad immune responses in Asian adults

    PubMed Central

    2014-01-01

    Background The pandemic potential of avian influenza A/H5N1 should not be overlooked, and the continued development of vaccines against these highly pathogenic viruses is a public health priority. Methods This open-label extension booster study followed a Phase III study of 1206 adults who had received two 3.75 μg doses of primary AS03A-adjuvanted or non-adjuvanted H5N1 split-virus vaccine (A/Vietnam/1194/2004; clade 1) (NCT00449670). The aim of the extension study was to evaluate different timings for heterologous AS03A-adjuvanted booster vaccination (A/Indonesia/5/2005; clade 2.1) given at Month 6, 12, or 36 post-primary vaccination. Immunogenicity was assessed 21 days after each booster vaccination and the persistence of immune responses against the primary vaccine strain (A/Vietnam) and the booster strain (A/Indonesia) was evaluated up to Month 48 post-primary vaccination. Reactogenicity and safety were also assessed. Results After booster vaccination given at Month 6, HI antibody responses to primary vaccine, and booster vaccine strains were markedly higher with one dose of AS03A-H5N1 booster vaccine in the AS03A-adjuvanted primary vaccine group compared with two doses of booster vaccine in the non-adjuvanted primary vaccine group. HI antibody responses were robust against the primary and booster vaccine strains 21 days after boosting at Month 12 or 36. At Month 48, in subjects boosted at Month 6, 12, or 36, HI antibody titers of ≥1:40 against the booster strain persisted in 39.2%, 61.2%, and 95.6% of subjects, respectively. Neutralizing antibody responses and cell-mediated immune responses also showed that AS03A-H5N1 heterologous booster vaccination elicited robust immune responses within 21 days of boosting at Month 6, 12, or 36 post-primary vaccination. The booster vaccine was well tolerated, and no safety concerns were raised. Conclusions In Asian adults primed with two doses of AS03A-adjuvanted H5N1 pandemic influenza vaccine, strong cross

  6. Determinants of Parental Acceptance of the H1N1 Vaccine

    ERIC Educational Resources Information Center

    Hilyard, Karen M.; Quinn, Sandra Crouse; Kim, Kevin H.; Musa, Don; Freimuth, Vicki S.

    2014-01-01

    Although designated as a high-risk group during the 2009-2010 H1N1 pandemic, only about 40% of U.S. children received the vaccine, a relatively low percentage compared with high-risk groups in seasonal influenza, such as the elderly, whose vaccine rates typically top 70%. To better understand parental decision making and predictors of acceptance…

  7. An inactivated, adjuvanted whole virion clade 2.2 H5N1 (A/Chicken/Astana/6/05) influenza vaccine is safe and immunogenic in a single dose in humans.

    PubMed

    Sansyzbay, Abylay R; Erofeeva, Marianna K; Khairullin, Berik M; Sandybayev, Nurlan T; Kydyrbayev, Zhailaubay K; Mamadaliyev, Seidigapbar M; Kassenov, Markhabat M; Sergeeva, Maria V; Romanova, Julia R; Krivitskaya, Vera Z; Kiselev, Oleg I; Stukova, Marina A

    2013-08-01

    In this study, we assessed in humans the immunogenicity and safety of one dose (7.5 or 15 μg of hemagglutinin [HA]) of a whole-virion inactivated prepandemic influenza vaccine adjuvanted with aluminum hydroxide. The vaccine strain was made by reverse genetics from the highly pathogenic avian A/Chicken/Astana/6/05 (H5N1) clade 2.2 strain isolated from a dead bird in Kazakhstan. The humoral immune response was evaluated after a single vaccination by hemagglutination inhibition (HI) and microneutralization (MN) assays. The vaccine was safe and immunogenic, inducing seroconversion in 55% of the evaluated patients, with a geometric mean titer (GMT) of 17.1 and a geometric mean increase (GMI) of 3.42 after a dose of 7.5 μg in the HI test against the vaccine strain. The rate of seroconversion increased up to 70% when the dose of 15 μg was used. The percentages of individuals achieving anti-HA titers of ≥1:40 were 52.5% and 57.5% for the 7.5- and 15-μg dose groups, respectively. Similar results were obtained when antibodies were analyzed in an MN test. Substantial cross-neutralization titers (seroconversion in 35% and 52.5% of subjects in the two dose groups, respectively) were detected against heterologous clade 1 strain NIBRG14 (H5N1). Thus, one dose of this whole-virion prepandemic vaccine adjuvanted with aluminum has the potential to be effective against H5N1 viruses of different clades.

  8. Avian influenza A (H5N1) outbreaks in different poultry farm types in Egypt: the effect of vaccination, closing status and farm size.

    PubMed

    Artois, Jean; Ippoliti, Carla; Conte, Annamaria; Dhingra, Madhur S; Alfonso, Pastor; Tahawy, Abdelgawad El; Elbestawy, Ahmed; Ellakany, Hany F; Gilbert, Marius

    2018-06-18

    The Avian Influenza A (H5N1) virus is endemic in poultry in Egypt. The winter of 2014/2015 was particularly worrying as new clusters of HPAI A (H5N1) virus emerged, leading to an important number of AI A (H5N1) outbreaks in poultry farms and sporadic human cases. To date, few studies have investigated the distribution of HPAI A (H5N1) outbreaks in Egypt in relation to protective / risk factors at the farm level, a gap we intend to fill. The aim of the study was to analyse passive surveillance data that were based on observation of sudden and high mortality of poultry or drop in duck or chicken egg production, as a basis to better understand and discuss the risk of HPAI A (H5N1) presence at the farm level in large parts of the Nile Delta. The probability of HPAI A (H5N1) presence was associated with several characteristics of the farms. Vaccination status, absence of windows/openings in the farm and the number of birds per cycle of production were found to be protective factors, whereas the presence of a duck farm with significant mortality or drop in egg production in the village was found to be a risk factor. Results demonstrate the key role of several prevention and biosecurity measures to reduce HPAI A (H5N1) virus circulation, which could promote better poultry farm biosecurity in Egypt.

  9. In vitro and in vivo efficacy of fluorodeoxycytidine analogs against highly pathogenic avian influenza H5N1, seasonal, and pandemic H1N1 virus infections

    PubMed Central

    Kumaki, Yohichi; Day, Craig W.; Smee, Donald F.; Morrey, John D.; Barnard, Dale L.

    2011-01-01

    Various fluorodeoxyribonucleosides were evaluated for their antiviral activities against influenza virus infections in vitro and in vivo. Among the most potent inhibitors was 2'-deoxy-2'-fluorocytidine (2'-FdC). It inhibited various strains of low and highly pathogenic avian influenza H5N1 viruses, pandemic H1N1 viruses, an oseltamivir-resistant pandemic H1N1 virus, and seasonal influenza viruses (H3N2, H1N1, influenza B) in MDCK cells, with the 90% inhibitory concentrations ranging from 0.13 µM to 4.6 µM, as determined by a virus yield reduction assay. 2'-FdC was then tested for efficacy in BALB/c mice infected with a lethal dose of highly pathogenic influenza A/Vietnam/1203/2004 H5N1 virus. 2’FdC (60 mg/kg/d) administered intraperitoneally (i.p.) twice a day beginning 24 h after virus exposure significantly promoted survival (80% survival) of infected mice (p=0.0001). Equally efficacious were the treatment regimens in which mice were treated with 2'-FdC at 30 or 60 mg/kg/day (bid × 8) beginning 24 h before virus exposure. At these doses, 70–80% of the mice were protected from death due to virus infection (p=0.0005, p=0.0001; respectively). The lungs harvested from treated mice at day four of the infection displayed little surface pathology or histopathology, lung weights were lower, and the 60 mg/kg dose reduced lung virus titers, although not significantly compared to the placebo controls. All doses were well tolerated in uninfected mice. 2'-FdC could also be administered as late as 72 h post virus exposure and still significantly protect 60% mice from the lethal effects of the H5N1 virus infection (p=0.019). Other fluorodeoxyribonucleosides tested in the H5N1 mouse model, 2’-deoxy-5-fluorocytidine and 2'-deoxy-2', 2'-difluorocytidine, were very toxic at higher doses and not inhibitory at lower doses. Finally, 2'-FdC, which was active in the H5N1 mouse model, was also active in a pandemic H1N1 influenza A infection model in mice. When given at 30 mg

  10. Evaluation of protective efficacy of three novel H3N2 canine influenza vaccines

    PubMed Central

    Li, Lutao; Li, Xiuzhen; Hu, Renjun; Jia, Kun; Sun, Lingshuang; Yuan, Ziguo; Li, Shoujun

    2017-01-01

    Canine influenza virus (CIV) has the potential risk to spread in different areas and dog types. Thus, there is a growing need to develop an effective vaccine to control CIV disease. Here, we developed three vaccine candidates: 1) a recombinant pVAX1 vector expressing H3N2 CIV hemagglutinin (pVAX1-HA); 2) a live attenuated canine adenovirus type 2 expressing H3N2 CIV hemagglutinin (rCAV2-HA); and 3) an inactivated H3N2 CIV (A/canine/Guangdong/01/2006 (H3N2)). Mice received an initial intramuscular immunization that followed two booster injections at 2 and 4 weeks post-vaccination (wpv). The splenic lymphocytes were collected to assess the immune responses at 6 wpv. The protective efficacy was evaluated by challenging H3N2 CIV after vaccination (at 6 wpv). Our results demonstrated that all three vaccine candidates elicited cytokine and antibody responses in mice. The rCAV2-HA vaccine and the inactivated vaccine generated efficient protective efficacy in mice, whereas limited protection was provided by the pVAX1-HA DNA vaccine. Therefore, both the rCAV2-HA live recombinant virus and the inactivated CIV could be used as potential novel vaccines against H3N2CIV. This study provides guidance for choosing the most appropriate vaccine for the prevention and control of CIV disease. PMID:29228675

  11. Immune response in domestic ducks following intradermal delivery of inactivated vaccine against H5N1 highly pathogenic avian influenza virus adjuvanted with oligodeoxynucleotides containing CpG motifs.

    PubMed

    Yuk, Seong-Su; Lee, Dong-Hun; Park, Jae-Keun; To, Eredene-Ochir; Kwon, Jung-Hoon; Noh, Jin-Yong; Gomis, Susantha; Song, Chang-Seon

    2015-08-01

    Ducks are a natural reservoir for H5N1 highly pathogenic avian influenza (HPAI) viruses, which produces a range of clinical outcomes from asymptomatic infections to severe disease with mortality. Vaccination against HPAI is one of the few methods available for controlling avian influenza virus (AIV) infection in domestic ducks; therefore, it is necessary to improve vaccine efficacy against HPAI in domestic ducks. However, few studies have focused on enhancing the immune response by testing alternative administration routes and adjuvants. While attempting to maximize the efficacy of a vaccine, it is important to select an appropriate vaccine delivery route and adjuvant to elicit an enhanced immune response. Although several studies have indicated that the vaccination of ducks against HPAI viruses has offered protection against lethal virus challenge, the immunogenicity of the vaccine still requires improvement. In this study, we characterized the immune response following a novel vaccination strategy against H5N1 HPAI virus in domestic ducks. Our novel intradermal delivery system and the application of the cytosine-phosphodiester-guanine (CpG) oligodeoxynucleotide (ODN) adjuvant allowed us to obtain information regarding the sustained vaccine immunity. Compared with the intramuscular route of vaccination, the intradermal route resulted in higher antibody titer as well as lower antibody deviation following secondary vaccination. In addition, the use of a CpG-ODN adjuvant had a dose-sparing effect on antibody titer. Furthermore, when a high dose of antigen was used, the CpG-ODN-adjuvanted vaccine maintained a high mean antibody titer. This data demonstrates that intradermal immunization combined with administration of CpG-ODN as an adjuvant may be a promising strategy for improving vaccine efficacy in domestic ducks. © 2015 Poultry Science Association Inc.

  12. Comparative Pathogenesis of an Avian H5N2 and a Swine H1N1 Influenza Virus in Pigs

    PubMed Central

    De Vleeschauwer, Annebel; Atanasova, Kalina; Van Borm, Steven; van den Berg, Thierry; Rasmussen, Thomas Bruun; Uttenthal, Åse; Van Reeth, Kristien

    2009-01-01

    Pigs are considered intermediate hosts for the transmission of avian influenza viruses (AIVs) to humans but the basic organ pathogenesis of AIVs in pigs has been barely studied. We have used 42 four-week-old influenza naive pigs and two different inoculation routes (intranasal and intratracheal) to compare the pathogenesis of a low pathogenic (LP) H5N2 AIV with that of an H1N1 swine influenza virus. The respiratory tract and selected extra-respiratory tissues were examined for virus replication by titration, immunofluorescence and RT-PCR throughout the course of infection. Both viruses caused a productive infection of the entire respiratory tract and epithelial cells in the lungs were the major target. Compared to the swine virus, the AIV produced lower virus titers and fewer antigen positive cells at all levels of the respiratory tract. The respiratory part of the nasal mucosa in particular showed only rare AIV positive cells and this was associated with reduced nasal shedding of the avian compared to the swine virus. The titers and distribution of the AIV varied extremely between individual pigs and were strongly affected by the route of inoculation. Gross lung lesions and clinical signs were milder with the avian than with the swine virus, corresponding with lower viral loads in the lungs. The brainstem was the single extra-respiratory tissue found positive for virus and viral RNA with both viruses. Our data do not reject the theory of the pig as an intermediate host for AIVs, but they suggest that AIVs need to undergo genetic changes to establish full replication potential in pigs. From a biomedical perspective, experimental LP H5 AIV infection of pigs may be useful to examine heterologous protection provided by H5 vaccines or other immunization strategies, as well as for further studies on the molecular pathogenesis and neurotropism of AIVs in mammals. PMID:19684857

  13. Vitamin D, leptin and impact on immune response to seasonal influenza A/H1N1 vaccine in older persons

    PubMed Central

    Sadarangani, Sapna P.; Ovsyannikova, Inna G.; Goergen, Krista; Grill, Diane E.; Poland, Gregory A.

    2016-01-01

    ABSTRACT Background: Influenza-related complications are highest in the elderly. Vaccine efficacy is lower due to immunosenescence. Vitamin D's immunomodulatory role was studied in the context of vaccine response. Methods: We evaluated the effect of baseline 25-(OH) D on vaccine-induced immunological response in a cohort of 159 healthy subjects ages 50–74 in Rochester, MN, who received one dose of seasonal trivalent 2010–2011 influenza vaccine, containing A/California/H1N1- like virus. We examined correlations between 25-(OH) D, leptin, and leptin-related gene SNPs to understand the role of leptin and vitamin D's effects. Results: The median (IQR) baseline for total 25-(OH) D was 44.4 ng/mL (36.6–52.2 ng/mL). No correlation was observed with age. No correlation between 25-(OH) D levels and humoral immune outcomes existed at any timepoint. There was a weak positive correlation between 25-(OH) D levels and change (Day 75-Day 0) in influenza-specific granzyme-B response (r=0.16, p=0.04). We found significant associations between 3 SNPs in the PPARG gene and 25-(OH) D levels (rs1151996, p=0.01; rs1175540, p= 0.02; rs1175544, p=0.03). Conclusion: Several SNPs in the PPARG gene were significantly associated with baseline 25-(OH) D levels. Understanding the functional and mechanistic relationships between vitamin D and influenza vaccine-induced immunity could assist in directing new influenza vaccine design. PMID:26575832

  14. Human influenza A (H5N1): a brief review and recommendations for travelers.

    PubMed

    Hurtado, Timothy R

    2006-01-01

    Although avian influenza A (H5N1) is common in birds worldwide, it has only recently led to disease in humans. Humans who are infected with the disease (referred to as human influenza A [H5N1]) have a greater than 50% mortality rate. Currently there has not been documented sustained human-to-human transmission; however, should the virus mutate and make this possible, the world could experience an influenza pandemic. Probable risk factors for infection include slaughtering, defeathering, and butchering fowl; close contact with wild birds or caged poultry; ingestion of undercooked poultry products; direct contact with surfaces contaminated with poultry feces; and close contact with infected humans. Possible risk factors include swimming in or ingesting water contaminated with bird feces or dead birds and the use of unprocessed poultry feces as fertilizer. Clinically, early human influenza A (H5N1) resembles typical influenza illnesses, with fever and a preponderance of lower respiratory tract symptoms. Often, patients develop rapidly progressive respiratory failure and require ventilatory support. Treatment is primarily supportive care with the addition of antiviral medications. Currently, travelers to countries with both human and avian influenza A (H5N1) have a low risk of developing the disease. There are no current recommended travel restrictions. Travelers are advised to avoid contact with all birds, especially poultry; avoid surfaces contaminated with poultry feces; and avoid undercooked poultry products. The use of prophylactic antiviral medications is not recommended.

  15. Homosubtypic and heterosubtypic antibodies against highly pathogenic avian influenza H5N1 recombinant proteins in H5N1 survivors and non-H5N1 subjects.

    PubMed

    Noisumdaeng, Pirom; Pooruk, Phisanu; Prasertsopon, Jarunee; Assanasen, Susan; Kitphati, Rungrueng; Auewarakul, Prasert; Puthavathana, Pilaipan

    2014-04-01

    Six recombinant vaccinia viruses containing HA, NA, NP, M or NS gene insert derived from a highly pathogenic avian influenza H5N1 virus, and the recombinant vaccinia virus harboring plasmid backbone as the virus control were constructed. The recombinant proteins were characterized for their expression and subcellular locations in TK(-) cells. Antibodies to the five recombinant proteins were detected in all 13 sequential serum samples collected from four H5N1 survivors during four years of follow-up; and those directed to rVac-H5 HA and rVac-NA proteins were found in higher titers than those directed to the internal proteins as revealed by indirect immunofluorescence assay. Although all 28 non-H5N1 subjects had no neutralizing antibodies against H5N1 virus, they did have cross-reactive antibodies to those five recombinant proteins. A significant increase in cross-reactive antibody titer to rVac-H5 HA and rVac-NA was found in paired blood samples from patients infected with the 2009 pandemic virus. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Lemna (duckweed) expressed hemagglutinin from avian influenza H5N1 protects chickens against H5N1 high pathogenicity avian influenza virus challenge

    USDA-ARS?s Scientific Manuscript database

    In the last two decades, transgenic plants have been explored as safe and cost effective alternative expression platforms for producing recombinant proteins. In this study, a synthetic hemagglutinin (HA) gene from the high pathogenicity avian influenza (HPAI) virus A/chicken/Indonesia/7/2003 (H5N1)...

  17. Surveillance, epidemiological, and virological detection of highly pathogenic H5N1 avian influenza viruses in duck and poultry from Bangladesh.

    PubMed

    Ansari, Wahedul Karim; Parvej, Md Shafiullah; El Zowalaty, Mohamed E; Jackson, Sally; Bustin, Stephen A; Ibrahim, Adel K; El Zowalaty, Ahmed E; Rahman, Md Tanvir; Zhang, Han; Khan, Mohammad Ferdousur Rahman; Ahamed, Md Mostakin; Rahman, Md Fasiur; Rahman, Marzia; Nazir, K H M Nazmul Hussain; Ahmed, Sultan; Hossen, Md Liakot; Kafi, Md Abdul; Yamage, Mat; Debnath, Nitish C; Ahmed, Graba; Ashour, Hossam M; Masudur Rahman, Md; Noreddin, Ayman; Rahman, Md Bahanur

    2016-09-25

    Avian influenza viruses (AIVs) continue to pose a global threat. Waterfowl are the main reservoir and are responsible for the spillover of AIVs to other hosts. This study was conducted as part of routine surveillance activities in Bangladesh and it reports on the serological and molecular detection of H5N1 AIV subtype. A total of 2169 cloacal and 2191 oropharyngeal swabs as well as 1725 sera samples were collected from live birds including duck and chicken in different locations in Bangladesh between the years of 2013 and 2014. Samples were tested using virus isolation, serological tests and molecular methods of RT-PCR. Influenza A viruses were detected using reverse transcription PCR targeting the virus matrix (M) gene in 41/4360 (0.94%) samples including both cloacal and oropharyngeal swab samples, 31 of which were subtyped as H5N1 using subtype-specific primers. Twenty-one live H5N1 virus isolates were recovered from those 31 samples. Screening of 1,868 blood samples collected from the same birds using H5-specific ELISA identified 545/1603 (34%) positive samples. Disconcertingly, an analysis of 221 serum samples collected from vaccinated layer chicken in four districts revealed that only 18 samples (8.1%) were seropositive for anti H5 antibodies, compared to unvaccinated birds (n=105), where 8 samples (7.6%) were seropositive. Our result indicates that the vaccination program as currently implemented should be reviewed and updated. In addition, surveillance programs are crucial for monitoring the efficacy of the current poultry vaccinations programs, and to monitor the circulating AIV strains and emergence of AIV subtypes in Bangladesh. Copyright © 2016. Published by Elsevier B.V.

  18. Guillain-Barré syndrome following receipt of influenza A (H1N1) 2009 monovalent vaccine in Korea with an emphasis on Brighton Collaboration case definition.

    PubMed

    Choe, Young June; Cho, Heeyeon; Bae, Geun-Ryang; Lee, Jong-Koo

    2011-03-03

    In 2009-2010 season, with ongoing of influenza A (H1N1), employment of mass vaccination has generated concerns in issue of adverse events following immunization (AEFI). This study investigates the clinical and laboratory data of reported cases of Guillain-Barré syndrome (GBS) and Fisher syndrome (FS) following receipt of influenza A (H1N1) 2009 monovalent vaccine to the National Vaccine Injury Compensation Program (NVICP) in Korea, with all cases reviewed under case definition developed by Brighton Collaboration GBS Working Group. Retrospective review of medical records for all suspected cases of GBS ad FS following receipt of influenza A (H1N1) monovalent vaccine reported to NVICP from December 1, 2009, through April 28, 2010 was conducted. Additional analyses were performed for identification of levels of diagnostic certainty according to Brighton Collaboration case definition. Of 29 reported cases, 22 were confirmed to meet Brighton criteria level 1, 2, or 3 for GBS (21) or FS (1). Of those, 2 (9.1%) met level 1, 9 (40.9%) met level 2, and 11 (50.0%) met level 3. The male to female ratio was 2:0 in cases with level 1, 8:1 in cases with level 2, and 3:8 in cases with level 3. The mean age was older in cases with level 1 (54.0 ± 26.9) than that of cases with level 2 (25.6 ± 22.8), and level 3 (13.6 ± 2.4, P=0.005). The median onset interval was longer in cases with level 1 (16 days) than that of cases that met level 2 (12.44 days), and 3 (1.09 days, P=0.019). The Brighton case definition was used to improve the quality of AEFI data in Korea, and was applicable in retrospective review of medical records in cases with GBS and FS after influenza A (H1N1) vaccination. These findings suggest that standardized case definition was feasible in clarifying the AEFI data, and to further increase the understanding of possible relationship of influenza vaccine and GBS. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Homologous and heterologous antigenic matched vaccines containing different H5 hemagglutinins provide variable protection of chickens from the 2014 U.S. H5N8 and H5N2 clade 2.3.4.4 highly pathogenic avian influenza viruses.

    PubMed

    Kapczynski, Darrell R; Pantin-Jackwood, Mary J; Spackman, Erica; Chrzastek, Klaudia; Suarez, David L; Swayne, David E

    2017-11-01

    From December 2014 to June 2015, a novel H5 Eurasian A/goose/Guangdong (Gs/GD) lineage clade 2.3.4.4 high pathogenicity avian influenza (HPAI) virus caused the largest animal health emergency in US history resulting in mortality or culling of greater than 48 million poultry. The outbreak renewed interest in developing intervention strategies, including vaccines, for these newly emergent HPAI viruses. In these studies, several existing H5 vaccines or vaccine seed strains with varying genetic relatedness (85-100%) to the 2.3.4.4 HPAI viruses were evaluated for protection in poultry. Chickens received a single dose of either an inactivated whole H5 AI vaccine, or a recombinant fowl poxvirus or turkey herpesvirus-vectored vaccines with H5 AI hemagglutinin gene inserts followed by challenge with either a U.S. wild bird H5N8 (A/gyrfalcon/Washington/40188-6/2014) or H5N2 (A/northern pintail/Washington/40964/2014) clade 2.3.4.4 isolate. Results indicate that most inactivated H5 vaccines provided 100% protection from lethal effects of H5N8 or H5N2 challenge. In contrast, the recombinant live vectored vaccines only provided partial protection which ranged from 40 to 70%. Inactivated vaccine groups, in general, had lower number of birds shedding virus and at lower virus titers then the recombinant vaccine groups. Interestingly, prechallenge antibody titers using the HPAI challenge viruses as antigen in heterologous vaccine groups were typically low (≤2 log 2 ), yet the majority of these birds survived challenge. Taken together, these studies suggest that existing vaccines when used in a single immunization strategy may not provide adequate protection in poultry against the 2.3.4.4 HPAI viruses. Updating the H5 hemagglutinin to be genetically closer to the outbreak virus and/or using a prime-boost strategy may be necessary for optimal protection. Published by Elsevier Ltd.

  20. Live Bird Markets of Bangladesh: H9N2 Viruses and the Near Absence of Highly Pathogenic H5N1 Influenza

    PubMed Central

    Negovetich, Nicholas J.; Feeroz, Mohammed M.; Jones-Engel, Lisa; Walker, David; Alam, S. M. Rabiul; Hasan, Kamrul; Seiler, Patrick; Ferguson, Angie; Friedman, Kim; Barman, Subrata; Franks, John; Turner, Jasmine; Krauss, Scott; Webby, Richard J.; Webster, Robert G.

    2011-01-01

    Avian influenza surveillance in Bangladesh has been passive, relying on poultry farmers to report suspected outbreaks of highly pathogenic H5N1 influenza. Here, the results of an active surveillance effort focusing on the live-bird markets are presented. Prevalence of influenza infection in the birds of the live bird markets is 23.0%, which is similar to that in poultry markets in other countries. Nearly all of the isolates (94%) were of the non-pathogenic H9N2 subtype, but viruses of the H1N2, H1N3, H3N6, H4N2, H5N1, and H10N7 subtypes were also observed. The highly pathogenic H5N1-subtype virus was observed at extremely low prevalence in the surveillance samples (0.08%), and we suggest that the current risk of infection for humans in the retail poultry markets in Bangladesh is negligible. However, the high prevalence of the H9 subtype and its potential for interaction with the highly pathogenic H5N1-subtype, i.e., reassortment and attenuation of host morbidity, highlight the importance of active surveillance of the poultry markets. PMID:21541296

  1. Phylogenetic relationships of the HA and NA genes between vaccine and seasonal influenza A(H3N2) strains in Korea

    PubMed Central

    Park, Sehee; Bae, Joon-Yong; Yoo, Kirim; Cheong, Hee Jin; Noh, Ji Yun; Hong, Kyung Wook; Lemey, Philippe; Vrancken, Bram; Kim, Juwon; Nam, Misun; Yun, Soo-Hyeon; Cho, Woo In; Song, Joon Young; Kim, Woo Joo; Park, Mee Sook; Song, Jin-Won; Kee, Sun-Ho; Song, Ki-Joon; Park, Man-Seong

    2017-01-01

    Seasonal influenza is caused by two influenza A subtype (H1N1 and H3N2) and two influenza B lineage (Victoria and Yamagata) viruses. Of these antigenically distinct viruses, the H3N2 virus was consistently detected in substantial proportions in Korea during the 2010/11-2013/14 seasons when compared to the other viruses and appeared responsible for the influenza-like illness rate peak during the first half of the 2011/12 season. To further scrutinize possible causes for this, we investigated the evolutionary and serological relationships between the vaccine and Korean H3N2 strains during the 2011/12 season for the main antigenic determinants of influenza viruses, the hemagglutinin (HA) and neuraminidase (NA) genes. In the 2011/12 season, when the number of H3N2 cases peaked, the majority of the Korean strains did not belong to the HA clade of A/Perth/16/2009 vaccine, and no Korean strains were of this lineage in the NA segment. In a serological assay, post-vaccinated human sera exhibited much reduced hemagglutination inhibition antibody titers against the non-vaccine clade Korean H3N2 strains. Moreover, Korean strains harbored several amino acid differences in the HA antigenic sites and in the NA with respect to vaccine lineages during this season. Of these, the HA antigenic site C residues 45 and 261 and the NA residue 81 appeared to be the signatures of positive selection. In subsequent seasons, when H3N2 cases were lower, the HA and NA genes of vaccine and Korean strains were more phylogenetically related to each other. Combined, our results provide indirect support for using phylogenetic clustering patterns of the HA and possibly also the NA genes in the selection of vaccine viruses and the assessment of vaccine effectiveness. PMID:28257427

  2. Swine influenza virus vaccine serologic cross-reactivity to contemporary US swine H3N2 and efficacy in pigs infected with an H3N2 similar to 2011-2012 H3N2v.

    PubMed

    Kitikoon, Pravina; Gauger, Phillip C; Anderson, Tavis K; Culhane, Marie R; Swenson, Sabrina; Loving, Crystal L; Perez, Daniel R; Vincent, Amy L

    2013-12-01

    Swine influenza A virus (IAV) reassortment with 2009 H1N1 pandemic (H1N1pdm09) virus has been documented, and new genotypes and subclusters of H3N2 have since expanded in the US swine population. An H3N2 variant (H3N2v) virus with the H1N1pdm09 matrix gene and the remaining genes of swine triple reassortant H3N2 caused outbreaks at agricultural fairs in 2011-2012. To assess commercial swine IAV vaccines' efficacy against H3N2 viruses, including those similar to H3N2v, antisera to three vaccines were tested by hemagglutinin inhibition (HI) assay against contemporary H3N2. Vaccine 1, with high HI cross-reactivity, was further investigated for efficacy against H3N2 virus infection in pigs with or without maternally derived antibodies (MDA). In addition, efficacy of a vaccine derived from whole inactivated virus (WIV) was compared with live attenuated influenza virus (LAIV) against H3N2. Hemagglutinin inhibition cross-reactivity demonstrated that contemporary swine H3N2 viruses have drifted from viruses in current swine IAV vaccines. The vaccine with the highest level of HI cross-reactivity significantly protected pigs without MDA. However, the presence of MDA at vaccination blocked vaccine efficacy. The performance of WIV and LAIV was comparable in the absence of MDA. Swine IAV in the United States is complex and dynamic. Vaccination to minimize virus shedding can help limit transmission of virus among pigs and people. However, vaccines must be updated. A critical review of the use of WIV in sows is required in the context of the current IAV ecology and vaccine application in pigs with MDA. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  3. Safety and Immunogenicity of Influenza A H5 Subunit Vaccines: Effect of Vaccine Schedule and Antigenic Variant

    PubMed Central

    Frey, Sharon E.; Graham, Irene; Mulligan, Mark J.; Edupuganti, Srilatha; Jackson, Lisa A.; Wald, Anna; Poland, Gregory; Jacobson, Robert; Keyserling, Harry L.; Spearman, Paul; Hill, Heather; Wolff, Mark

    2011-01-01

    Background. The current US national stockpile of influenza H5 vaccine was produced using the antigen from the strain A/Vietnam/1203/2004 (a clade 1 H5 virus). Recent H5 disease has been caused by antigenically divergent H5 viruses, including A/Indonesia/05/2005 (a clade 2 H5 virus). Methods. The influence of schedule on the antibody response to 2 doses of H5 vaccines (one a clade 1 hemagglutinin protein [HA] vaccine and one a clade 2 HA vaccine) containing 90 μg of antigen was evaluated in healthy adults 18–49 years of age. Results. Two doses of vaccine were required to induce antibody titers ≥1:10 in most subjects. Accelerated schedules were immunogenic, and antibody developed after vaccinations on days 0 and 7, 0 and 14, and 0 and 28, with the day 0 and 7 schedule inducing lower titers than those induced with the other schedules. With mixed vaccine schedules of clade 1 followed by clade 2 vaccine administration, the first vaccination primed for a heterologous boost. The heterologous response was improved when the second vaccination was given 6 months after the first, compared with the response when the second vaccination was given after an interval of 1 month. Conclusions. An accelerated vaccine schedule of injections administered at days 0 and 14 was as immunogenic as a vaccine schedule of injections at days 0 and 28, but both schedules were inferior to a vaccine schedule of injections administered at 0 and 6 months for priming for heterologous vaccine boosting. Clinical Trial Registry Number: NCT00703053 PMID:21282194

  4. Surveillance for Asian H5N1 avian influenza in the United States

    USGS Publications Warehouse

    Ip, Hon S.; Slota, Paul G.

    2006-01-01

    Increasing concern over the potential for migratory birds to introduce the Asian H5N1 strain of avian influenza to North America prompted the White House Policy Coordinating Committee for Pandemic Influenza Preparedness to request that the U.S. Departments of Agriculture (USDA) and Interior (DOI) develop a plan for the early detection of highly pathogenic avian influenza (HPAI) in the United States. To promote coordination among wildlife, agriculture, and human health agencies on HPAI surveillance efforts, the two Departments worked with representatives from the U.S. Department of Health and Human Services, the International Association of Fish and Wildlife Agencies, and the Alaska Department of Fish and Game to develop the U.S. Interagency Strategic Plan for Early Detection of Asian H5N1 Highly Pathogenic Avian Influenza in Wild Migratory Birds.

  5. Seasonal Oscillation of Human Infection with Influenza A/H5N1 in Egypt and Indonesia

    PubMed Central

    Murray, Eleanor J.; Morse, Stephen S.

    2011-01-01

    As of June 22, 2011, influenza A/H5N1 has caused a reported 329 deaths and 562 cases in humans, typically attributed to contact with infected poultry. Influenza H5N1 has been described as seasonal. Although several studies have evaluated environmental risk factors for H5N1 in poultry, none have considered seasonality of H5N1 in humans. In addition, temperature and humidity are suspected to drive influenza in temperate regions, but drivers in the tropics are unknown, for H5N1 as well as other influenza viruses. An analysis was conducted to determine whether human H5N1 cases occur seasonally in association with changes in temperature, precipitation and humidity. Data analyzed were H5N1 human cases in Indonesia (n = 135) and Egypt (n = 50), from January 1, 2005 (Indonesia) or 2006 (Egypt) through May 1, 2008 obtained from WHO case reports, and average daily weather conditions obtained from NOAA's National Climatic Data Center. Fourier time series analysis was used to determine seasonality of cases and associations between weather conditions and human H5N1 incidence. Human H5N1 cases in Indonesia occurred with a period of 1.67 years/cycle (p<0.05) and in Egypt, a period of 1.18 years/cycle (p≅0.10). Human H5N1 incidence in Egypt, but not Indonesia, was strongly associated with meteorological variables (κ2≥0.94) and peaked in Egypt when precipitation was low, and temperature, absolute humidity and relative humidity were moderate compared to the average daily conditions in Egypt. Weather conditions coinciding with peak human H5N1 incidence in Egypt suggest that human infection may be occurring primarily via droplet transmission from close contact with infected poultry. PMID:21909409

  6. Coadministration of Recombinant Adenovirus Expressing GM-CSF with Inactivated H5N1 Avian Influenza Vaccine Increased the Immune Responses and Protective Efficacy Against a Wild Bird Source of H5N1 Challenge.

    PubMed

    Wang, Xiangwei; Wang, Xinglong; Jia, Yanqing; Wang, Chongyang; Tang, Qiuxia; Han, Qingsong; Xiao, Sa; Yang, Zengqi

    2017-10-01

    Wild birds play a key role in the spread of avian influenza virus (AIV). There is a continual urgent requirement for AIV vaccines to address the ongoing genetic changes of AIV. In the current study, we trialed a novel AIV vaccine against the wild bird source of H5N1 type AIV with recombinant adenovirus expressing granulocyte monocyte colony-stimulating factor (GM-CSF) as an adjuvant. A total of 150-day-old commercial chicks, with AIV-maternal-derived antibody, were divided into 6 groups. The primary vaccination was performed at day 14 followed by a subsequent boosting and intramuscular challenge on day 28 and 42, respectively. Recombinant GM-CSF (rGM-CSF) expressed by adenovirus, named as rAd-GM-CSF, raised the hemagglutination inhibition (HI) titers (log 2 ) against AIV from 7.0 (vaccinate with inactivated vaccine alone) to 8.4 after booster immunization. Moreover, the rGM-CSF addition markedly increased the expression of interferon-γ, interleukin-4, and major histocompatibility complex-II in the lungs, compared with those immunized with inactivated vaccine alone on day 29, that is, 18 h post booster immunization. Following challenge, chicks inoculated with the inactivated AIV vaccine and rAd-GM-CSF together exhibited mild clinical signs and 62% survivals compared to 33% in the group immunized with inactivated AIV vaccine alone. Higher level of HI titers, immune related molecule expressions, and protection ratio demonstrates a good potential of rGM-CSF in improving humoral and cell mediated immune responses of inactivated AIV vaccines.

  7. Influenza vaccines: an Asia-Pacific perspective.

    PubMed

    Jennings, Lance C

    2013-11-01

    This article provides an overview of some aspects of seasonal, pre-pandemic and pandemic influenza vaccines and initiatives aimed to increase influenza vaccine use within the Asia-Pacific region. Expanding the use of influenza vaccines in the Asia-Pacific region faces many challenges. Despite the recent regional history for the emergence of novel viruses, SARS, the H5N1 and H7N9, and the generation of and global seeding of seasonal influenza viruses and initiatives by WHO and other organisations to expand influenza awareness, the use of seasonal influenza vaccines remains low. The improvement in current vaccine technologies with the licensing of quadrivalent, live-attenuated, cell culture-based, adjuvanted and the first recombinant influenza vaccine is an important step. The development of novel influenza vaccines able to provide improved protection and with improved manufacturing capacity is also advancing rapidly. However, of ongoing concern are seasonal influenza impact and the low use of seasonal influenza vaccines in the Asia-Pacific region. Improved influenza control strategies and their implementation in the region are needed. Initiatives by the World Health Organization (WHO), and specifically the Western Pacific Regional Office of WHO, are focusing on consistent vaccine policies and guidelines in countries in the region. The Asian-Pacific Alliance for the Control of Influenza (APACI) is contributing through the coordination of influenza advocacy initiates. © 2013 Blackwell Publishing Ltd.

  8. Trivalent live attenuated intranasal influenza vaccine administered during the 2003-2004 influenza type A (H3N2) outbreak provided immediate, direct, and indirect protection in children.

    PubMed

    Piedra, Pedro A; Gaglani, Manjusha J; Kozinetz, Claudia A; Herschler, Gayla B; Fewlass, Charles; Harvey, Dianne; Zimmerman, Nadine; Glezen, W Paul

    2007-09-01

    Live attenuated influenza vaccine may protect against wild-type influenza illness shortly after vaccine administration by innate immunity. The 2003-2004 influenza A (H3N2) outbreak arrived early, and the circulating strain was antigenically distinct from the vaccine strain. The objective of this study was to determine the effectiveness of influenza vaccines for healthy school-aged children when administered during the influenza outbreak. An open-labeled, nonrandomized, community-based influenza vaccine trial was conducted in children 5 to 18 years old. Age-eligible healthy children received trivalent live attenuated influenza vaccine. Trivalent inactivated influenza vaccine was given to children with underlying health conditions. Influenza-positive illness was compared between vaccinated and nonvaccinated children. Medically attended acute respiratory illness and pneumonia and influenza rates for Scott and White Health Plan vaccinees were compared with age-eligible Scott and White Health Plan nonparticipants in the intervention communities. Herd protection was assessed by comparing age-specific medically attended acute respiratory illness rates in Scott and White Health Plan members in the intervention and comparison communities. We administered 1 dose of trivalent live attenuated influenza vaccine or trivalent inactivated influenza vaccine to 6569 and 1040 children, respectively (31.5% vaccination coverage), from October 10 to December 30, 2003. The influenza outbreak occurred from October 12 to December 20, 2003. Significant protection against influenza-positive illness (37.3%) and pneumonia and influenza events (50%) was detected in children who received trivalent live attenuated influenza vaccine but not trivalent inactivated influenza vaccine. Trivalent live attenuated influenza vaccine recipients had similar protection against influenza-positive illness within 14 days compared with >14 days (10 of 25 vs 9 of 30) after vaccination. Indirect effectiveness

  9. A Model for the Ordering and Distribution of the Influenza Vaccine

    DTIC Science & Technology

    2006-06-01

    virus. The three types of human influenza viruses are H1N1, H1N2 , and H3N2. Influenza type A viruses are constantly changing and this requires...ORDERING AND DISTRIBUTION OF THE INFLUENZA VACCINE by James Richard Gurr June 2006 Thesis Advisor: Walter Owen Second Reader: Moshe...Ordering and Distribution of the Influenza Vaccine 6. AUTHOR(S) James Richard Gurr 5. FUNDING NUMBERS 7. PERFORMING ORGANIZATION NAME(S) AND

  10. The Continuing Evolution of H5N1 and H9N2 Influenza Viruses in Bangladesh Between 2013 and 2014.

    PubMed

    Marinova-Petkova, Atanaska; Shanmuganatham, Karthik; Feeroz, Mohammed M; Jones-Engel, Lisa; Hasan, M Kamrul; Akhtar, Sharmin; Turner, Jasmine; Walker, David; Seiler, Patrick; Franks, John; McKenzie, Pamela; Krauss, Scott; Webby, Richard J; Webster, Robert G

    2016-05-01

    In 2011, avian influenza surveillance at the Bangladesh live bird markets (LBMs) showed complete replacement of the highly pathogenic avian influenza (HPAI) H5N1 virus of clade 2.2.2 (Qinghai-like H5N1 lineage) by the HPAI H5N1 clade 2.3.2.1. This clade, which continues to circulate in Bangladesh and neighboring countries, is an intra-and interclade reassortant; its HA, polymerase basic 1 (PB1), polymerase (PA), and nonstructural (NS) genes come from subclade 2.3.2.1a; the polymerase basic 2 (PB2) comes from subclade 2.3.2.1c; and the NA, nucleocapsid protein (NP), and matrix (M) gene from clade 2.3.4.2. The H9N2 influenza viruses cocirculating in the Bangladesh LBMs are also reassortants, possessing five genes (NS, M, NP, PA, and PB1) from an HPAI H7N3 virus previously isolated in Pakistan. Despite frequent coinfection of chickens and ducks, reassortment between these H5N1 and H9N2 viruses has been rare. However, all such reassortants detected in 2011 through 2013 have carried seven genes from the local HPAI H5N1 lineage and the PB1 gene from the Bangladeshi H9N2 clade G1 Mideast, itself derived from HPAI H7N3 virus. Although the live birds we sampled in Bangladesh showed no clinical signs of morbidity, the emergence of this reassortant HPAI H5N1 lineage further complicates endemic circulation of H5N1 viruses in Bangladesh, posing a threat to both poultry and humans.

  11. 76 FR 79203 - Prospective Grant of Exclusive License: Veterinary Biological Products for Swine Influenza Vaccines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-21

    ... Exclusive License: Veterinary Biological Products for Swine Influenza Vaccines AGENCY: National Institutes....7. The invention relates to compositions and methods of use as Veterinary Influenza Vaccines... to humans. This technology describes DNA vaccines against influenza serotypes H5N1, H1N1, H3N2, and...

  12. Pulmonary immunization of chickens using non-adjuvanted spray-freeze dried whole inactivated virus vaccine completely protects against highly pathogenic H5N1 avian influenza virus.

    PubMed

    Peeters, Ben; Tonnis, Wouter F; Murugappan, Senthil; Rottier, Peter; Koch, Guus; Frijlink, Henderik W; Huckriede, Anke; Hinrichs, Wouter L J

    2014-11-12

    Highly pathogenic avian influenza (HPAI) H5N1 virus is a major threat to public health as well as to the global poultry industry. Most fatal human infections are caused by contact with infected poultry. Therefore, preventing the virus from entering the poultry population is a priority. This is, however, problematic in emergency situations, e.g. during outbreaks in poultry, as there are currently no mass application methods to effectively vaccinate large numbers of birds within a short period of time. To evaluate the suitability of needle-free pulmonary immunization for mass vaccination of poultry against HPAI H5N1, we performed a proof-of-concept study in which we investigated whether non-adjuvanted spray-freeze-dried (SFD) whole inactivated virus (WIV) can be used as a dry powder aerosol vaccine to immunize chickens. Our results show that chickens that received SFD-WIV vaccine as aerosolized powder directly at the syrinx (the site of the tracheal bifurcation), mounted a protective antibody response after two vaccinations and survived a lethal challenge with HPAI H5N1. Furthermore, both the number of animals that shed challenge virus, as well as the level of virus shedding, were significantly reduced. Based on antibody levels and reduction of virus shedding, pulmonary vaccination with non-adjuvanted vaccine was at least as efficient as intratracheal vaccination using live virus. Animals that received aerosolized SFD-WIV vaccine by temporary passive inhalation showed partial protection (22% survival) and a delay in time-to-death, thereby demonstrating the feasibility of the method, but indicating that the efficiency of vaccination by passive inhalation needs further improvement. Altogether our results provide a proof-of-concept that pulmonary vaccination using an SFD-WIV powder vaccine is able to protect chickens from lethal HPAI challenge. If the efficacy of pulmonary vaccination by passive inhalation can be improved, this method might be suitable for mass

  13. Vaccine protection of turkeys against H5N1 highly pathogenic avian influenza virus with a recombinant HVT expressing the hemagglutinin gene of avian influenza

    USDA-ARS?s Scientific Manuscript database

    Outbreaks of H5 highly pathogenic avian influenza (HPAI) in commercial poultry are a constant threat to animal health and food supplies. While vaccination can enhance protection and reduce the spread of disease, there is considerable evidence that the level of immunity required for protection varies...

  14. Avian influenza H5N1 viral and bird migration networks in Asia

    USGS Publications Warehouse

    Tian, Huaivu; Zhou, Sen; Dong, Lu; Van Boeckel, Thomas P.; Cui, Yujun; Newman, Scott H.; Takekawa, John Y.; Prosser, Diann J.; Xiao, Xiangming; Wu, Yarong; Cazelles, Bernard; Huang, Shanqian; Yang, Ruifu; Grenfell, Bryan T.; Xu, Bing

    2015-01-01

    The spatial spread of the highly pathogenic avian influenza virus H5N1 and its long-term persistence in Asia have resulted in avian influenza panzootics and enormous economic losses in the poultry sector. However, an understanding of the regional long-distance transmission and seasonal patterns of the virus is still lacking. In this study, we present a phylogeographic approach to reconstruct the viral migration network. We show that within each wild fowl migratory flyway, the timing of H5N1 outbreaks and viral migrations are closely associated, but little viral transmission was observed between the flyways. The bird migration network is shown to better reflect the observed viral gene sequence data than other networks and contributes to seasonal H5N1 epidemics in local regions and its large-scale transmission along flyways. These findings have potentially far-reaching consequences, improving our understanding of how bird migration drives the periodic reemergence of H5N1 in Asia.

  15. Avian influenza H5N1 viral and bird migration networks in Asia

    PubMed Central

    Tian, Huaiyu; Zhou, Sen; Dong, Lu; Van Boeckel, Thomas P.; Cui, Yujun; Newman, Scott H.; Takekawa, John Y.; Prosser, Diann J.; Xiao, Xiangming; Wu, Yarong; Cazelles, Bernard; Huang, Shanqian; Yang, Ruifu; Grenfell, Bryan T.; Xu, Bing

    2015-01-01

    The spatial spread of the highly pathogenic avian influenza virus H5N1 and its long-term persistence in Asia have resulted in avian influenza panzootics and enormous economic losses in the poultry sector. However, an understanding of the regional long-distance transmission and seasonal patterns of the virus is still lacking. In this study, we present a phylogeographic approach to reconstruct the viral migration network. We show that within each wild fowl migratory flyway, the timing of H5N1 outbreaks and viral migrations are closely associated, but little viral transmission was observed between the flyways. The bird migration network is shown to better reflect the observed viral gene sequence data than other networks and contributes to seasonal H5N1 epidemics in local regions and its large-scale transmission along flyways. These findings have potentially far-reaching consequences, improving our understanding of how bird migration drives the periodic reemergence of H5N1 in Asia. PMID:25535385

  16. Effectiveness of different avian influenza (H5) vaccination regimens in layer chickens on the humoral immune response and interferon-alpha signalling immune marker.

    PubMed

    Hamad, Mustafa; Amen, Omar; Mahmoud, Mohamed; Hassanin, Ola; Saif-Edin, Mostafa

    2018-06-01

    Avian influenza (AI) vaccines are widely used to control and eliminate the ongoing avian influenza virus epidemic in Egypt. A strict vaccination policy with inactivated AI vaccines has been widely applied, however the virus still circulating, evolving and causing great negative impact to the poultry sector in Egypt. Therefore, an updated poultry vaccination policy using different vaccine technologies might be valuable as an innovative additional control strategy of AIV in Egypt. In the present study, the effectiveness of different avian influenza (AI) vaccination schedules was evaluated in 300 commercial layer chicks (ISA White) using either the oil-emulsion baculovirus-H5-prototype vaccine (baculovirus-H5 prototype) or turkey herpesvirus (HVT) vector vaccine containing the hemagglutinin (HA) gene from H5N1 strain (rHVT-H5), applied alone or in combination and in different settings. Vaccination with either two injections of the baculovirus-H5 prototype, a single injection of rHVT-H5 or priming with rHVT-H5 at 1 day old followed by boosting with the baculovirus-H5 prototype induced AI-HI protective antibody responses starting as early as 3 to 4 weeks of age and lasting up to the end of the rearing period (16 weeks). A single vaccination with the baculovirus-H5 prototype did not generate a protective antibody titre for the entire rearing period. Furthermore, the present study elucidated that vaccination once or twice with the baculovirus-H5 vaccine prototype activated the chicken interferon-alpha (Ch-IFN-alpha) signalling pathway via transduction of antiviral components, e.g., Mx1 and IRF7. Birds immunized once with rHVT-H5 at 1 day old did not show activation of the Mx1 and IRF7 transcripts; however, following boosting with the baculovirus-H5 prototype vaccine, up-regulation of Mx1 and IRF7 was observed. Based on our findings, it can be concluded that either reinforcement with two injections of the baculovirus-H5 prototype or prime-boost vaccination (rHVT-H5 at

  17. Influenza A H5N1 and H7N9 in China: A spatial risk analysis

    PubMed Central

    Gardner, Lauren; MacIntyre, Raina; Sarkar, Sahotra

    2017-01-01

    Background Zoonotic avian influenza poses a major risk to China, and other parts of the world. H5N1 has remained endemic in China and globally for nearly two decades, and in 2013, a novel zoonotic influenza A subtype H7N9 emerged in China. This study aimed to improve upon our current understanding of the spreading mechanisms of H7N9 and H5N1 by generating spatial risk profiles for each of the two virus subtypes across mainland China. Methods and findings In this study, we (i) developed a refined data set of H5N1 and H7N9 locations with consideration of animal/animal environment case data, as well as spatial accuracy and precision; (ii) used this data set along with environmental variables to build species distribution models (SDMs) for each virus subtype in high resolution spatial units of 1km2 cells using Maxent; (iii) developed a risk modelling framework which integrated the results from the SDMs with human and chicken population variables, which was done to quantify the risk of zoonotic transmission; and (iv) identified areas at high risk of H5N1 and H7N9 transmission. We produced high performing SDMs (6 of 8 models with AUC > 0.9) for both H5N1 and H7N9. In all our SDMs, H7N9 consistently showed higher AUC results compared to H5N1, suggesting H7N9 suitability could be better explained by environmental variables. For both subtypes, high risk areas were primarily located in south-eastern China, with H5N1 distributions found to be more diffuse and extending more inland compared to H7N9. Conclusions We provide projections of our risk models to public health policy makers so that specific high risk areas can be targeted for control measures. We recommend comparing H5N1 and H7N9 prevalence rates and survivability in the natural environment to better understand the role of animal and environmental transmission in human infections. PMID:28376125

  18. Repeated seasonal influenza vaccination among elderly in Europe: Effects on laboratory confirmed hospitalised influenza.

    PubMed

    Rondy, Marc; Launay, Odile; Castilla, Jesus; Costanzo, Simona; Puig-Barberà, Joan; Gefenaite, Giedre; Larrauri, Amparo; Rizzo, Caterina; Pitigoi, Daniela; Syrjänen, Ritva K; Machado, Ausenda; Kurečić Filipović, Sanja; Krisztina Horváth, Judit; Paradowska-Stankiewicz, Iwona; Marbus, Sierk; Moren, Alain

    2017-08-03

    In Europe, annual influenza vaccination is recommended to elderly. From 2011 to 2014 and in 2015-16, we conducted a multicentre test negative case control study in hospitals of 11 European countries to measure influenza vaccine effectiveness (IVE) against laboratory confirmed hospitalised influenza among people aged ≥65years. We pooled four seasons data to measure IVE by past exposures to influenza vaccination. We swabbed patients admitted for clinical conditions related to influenza with onset of severe acute respiratory infection ≤7days before admission. Cases were patients RT-PCR positive for influenza virus and controls those negative for any influenza virus. We documented seasonal vaccination status for the current season and the two previous seasons. We recruited 5295 patients over the four seasons, including 465A(H1N1)pdm09, 642A(H3N2), 278 B case-patients and 3910 controls. Among patients unvaccinated in both previous two seasons, current seasonal IVE (pooled across seasons) was 30% (95%CI: -35 to 64), 8% (95%CI: -94 to 56) and 33% (95%CI: -43 to 68) against influenza A(H1N1)pdm09, A(H3N2) and B respectively. Among patients vaccinated in both previous seasons, current seasonal IVE (pooled across seasons) was -1% (95%CI: -80 to 43), 37% (95%CI: 7-57) and 43% (95%CI: 1-68) against influenza A(H1N1)pdm09, A(H3N2) and B respectively. Our results suggest that, regardless of patients' recent vaccination history, current seasonal vaccine conferred some protection to vaccinated patients against hospitalisation with influenza A(H3N2) and B. Vaccination of patients already vaccinated in both the past two seasons did not seem to be effective against A(H1N1)pdm09. To better understand the effect of repeated vaccination, engaging in large cohort studies documenting exposures to vaccine and natural infection is needed. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  19. H5N1 influenza viruses: facts, not fear.

    PubMed

    Palese, Peter; Wang, Taia T

    2012-02-14

    The ongoing controversy over publication of two studies involving the transmission in ferrets of H5N1 (H5) subtype influenza viruses and the recommendations of the National Science Advisory Board for Biosecurity to redact key details in the manuscripts call for an examination of relevant scientific facts. In addition, there are calls in the media to destroy the viruses, curtail future research in this area, and protect the public from such "frightening" research efforts. Fear needs to be put to rest with solid science and not speculation.

  20. Immunity to current H5 highly pathogenic avian influenza viruses: From vaccines to adaptive immunity in wild birds

    USDA-ARS?s Scientific Manuscript database

    Following the 2014-2015 outbreaks of H5N2 and H5N8 highly pathogenic avian influenza (HPAI) in the U.S., studies were performed to assess the immunity required for protection against future outbreaks should they occur. We assessed the ability of vaccines to induce protection of chickens and turkeys...

  1. A study of side-effects of Pandemrix® influenza (H1N1) vaccine on board a Norwegian naval vessel.

    PubMed

    Munch, Johan Storm; Johnsen, Bjørn Helge; Birkeland, Ingelin; Finne, Morten; Utkilen, Torun; Bøe, Tommy; Mjølhus, Gry; Sommerfelt-Pettersen, Jan

    2010-01-01

    The frigate His Norwegian Majesty's ship (HNoMS) Fridtjof Nansen was participating in operations in the Gulf of Aden in support of the EU mission tasked with protecting vessels from the threat of piracy. The crew was therefore prioritized and given the first batch of Influenza A (H1N1) vaccine (Pandemrix(®)). To investigate the type, frequency, and intensity of side effects after whole-crew vaccination with Pandemrix vaccine in healthy subjects in a controlled environment. A hundred and thirty-three members of the crew were vaccinated, and then they participated in the study. The side effects of the vaccination were evaluated through a survey. Seventy-five per cent of the vaccinated sailors reported adverse reactions to the vaccine, with 9% not being able to perform their daily duties for one day. Muscle pain, headaches, malaise, and fatigue were the most frequent symptoms reported. The vaccination program using Pandemrix H1N1 vaccine resulted in a high rate of side effects, which were generally mild and resolved within a few days. No serious lasting side effects of the vaccination were reported or registered. The adverse effects of the vaccination did not affect the operational capacity of the vessel.

  2. A highly pathogenic avian influenza virus H5N1 with 2009 pandemic H1N1 internal genes demonstrated increased replication and transmission in pigs

    USDA-ARS?s Scientific Manuscript database

    This study investigated the pathogenicity and transmissibility of a reverse-genetics derived highly pathogenic avian influenza (HPAI) H5N1 influenza A virus (IAV), A/Iraq/775/06, and a reassortant virus comprised of the HA and NA from A/Iraq/775/06 and the internal genes of a 2009 pandemic H1N1, A/N...

  3. Immunogenicity of influenza A(H1N1)pdm09 vaccine in patients with diabetes mellitus: with special reference to age, body mass index, and HbA1c.

    PubMed

    Egawa, Yumi; Ohfuji, Satoko; Fukushima, Wakaba; Yamazaki, Yuko; Morioka, Tomoaki; Emoto, Masanori; Maeda, Kazuhiro; Inaba, Masaaki; Hirota, Yoshio

    2014-01-01

    Subjects with diabetes mellitus are considered to be at high risk of influenza infection and influenza-associated complications. To evaluate the immunogenicity of the influenza A(H1N1)pdm09 vaccine among these subjects, we performed a prospective cohort study and measured hemagglutination inhibition antibody titers at baseline and 3 weeks after vaccination in 49 patients. No serious adverse events were reported. We were able to perform analyses for 48 patients, after excluding one patient with suspected infection. The vaccine induced a rise of about 9-fold in the mean antibody level. The sero-response proportion was 79%, and the sero-protection proportion was 73%. Patients with older age and lower body mass index tended to show lower immune response. Multivariate analysis indicated an independent negative effect of hemoglobin A1c level on the sero-protection proportion. A single A(H1N1)pdm09 vaccination achieved a sufficient level of immunity among diabetic patients, but both clinicians and patients should be aware of the potential for reductions in immune response.

  4. The safety of the H1N1 influenza A vaccine in egg allergic individuals.

    PubMed

    Greenhawt, Matthew J; Chernin, Anna S; Howe, Laura; Li, James T; Sanders, Georgiana

    2010-11-01

    The safety of H1N1 vaccine is unknown in egg allergic (EA) recipients. To establish the safety of administering H1N1 vaccine and to evaluate the predictability of H1N1 skin testing in EA patients. In a controlled, prospective trial, H1N1 skin testing and vaccination was compared between EA patients (n = 105) and non-EA controls (n = 19). Those with negative H1N1 skin test results received a full H1N1 dose; those with a positive skin test result received a graded challenge (10%, 90%). Booster vaccine, if required, was given as a single dose from a different lot without prior testing. Prick and intradermal test results were positive in 3 (2.4%) of 124 and 41 (33.1%) of 124 study participants, respectively. Forty-one individuals received a 2-step graded vaccine challenge, including 13 of 25 with a history of egg anaphylaxis. No significant allergic reactions resulted from either method of vaccination or from subsequent booster doses. All study participants received the H1N1 vaccine without significant allergic reactions. Skin testing is unnecessary and does not predict vaccine tolerance. All study participants who received a graded challenge tolerated a single dose booster from a different, untested lot, including 7 individuals with a history of egg-induced anaphylaxis. We recommend administration of H1N1 vaccine to EA children without prior skin testing or graded challenge dosing. Copyright © 2010 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  5. Long-term outcome of the humoral and cellular immune response of an H5N1 adjuvanted influenza vaccine in elderly persons: 2-year follow-up of a randomised open-label study.

    PubMed

    Gillard, Paul; Giet, Didier; Heijmans, Stéphane; Dramé, Mamadou; Walravens, Karl; Roman, François

    2014-10-29

    Older individuals often have a reduced immune response to influenza vaccination, which might be improved by administering a higher vaccine dose. We compared the immune response to two single doses of the AS03A-adjuvanted H5N1 pandemic vaccine (3.75 μg hemagglutinin of A/Vietnam/1194/2004) with that of two double vaccine doses (7.5 μg hemagglutinin) in adults aged ≥61 years. Here we report the 2-year persistence of the humoral and cellular immune response. In this phase II, open-label study, healthy participants aged 61 to 88 years (median 68 years) were randomised (3:1:3:1) to receive two single doses of the AS03A-adjuvanted vaccine (1xH5N1-AS) or the non-adjuvanted vaccine (1xH5N1), or two double doses of the AS03A-adjuvanted vaccine (2xH5N1-AS) or the non-adjuvanted vaccine (2xH5N1), 21 days apart. Serum haemagglutination inhibition antibodies and cellular immune responses against A/Vietnam/1194/2004 were measured in all groups at months 12 and 24; neutralising antibodies were assessed in a subset of the adjuvanted groups. Serious adverse events and adverse events of specific interest were recorded. At month 24, haemagglutination inhibition antibody seroprotection rates were 37.2% (95% CI 27.0% to 48.3%) for 1xH5N1-AS, 30.9% (95% CI 21.1% to 42.1%) for 2xH5N1-AS, 16.2% (95% CI 6.2% to 32.0%) for 1xH5N1, and 8.3% (95% CI 1.0% to 27.0%) for 2xH5N1. Haemagglutination inhibition antibody geometric mean titres were 17.6 (95% CI 13.7 to 22.5) for 1xH5N1-AS, 18.4 (95% CI 14.2 to 23.8) for 2xH5N1-AS, 12.3 (95% CI 8.9 to 16.9) for 1xH5N1 and 9.8 (95% CI 6.7 to 14.4) for 2xH5N1. The median frequency of antigen-specific CD4+ T cells per 106 T cells (25th quartile; 75th quartile) was 852 (482; 1477) for 1xH5N1-AS, 1147 (662; 1698) for 2xH5N1-AS, 556 (343; 749) for 1x-H5N1 and 673 (465; 1497) for 2xH5N1. Neutralising antibody geometric mean titres were 391.0 (95% CI 295.5 to 517.5) in the 1xH5N1-AS group and 382.8 (95% CI 317.4 to 461.6) in the 2xH5N1-AS group. Antibody

  6. Construction and comparison of different source neuraminidase candidate vaccine strains for human infection with Eurasian avian-like influenza H1N1 virus.

    PubMed

    Liu, Liqi; Lu, Jian; Zhou, Jianfang; Li, Zi; Zhang, Heng; Wang, Dayan; Shu, Yuelong

    2017-12-01

    Human infections with Eurasian avian-like swine influenza H1N1 viruses have been reported in China in past years. One case resulted in death and others were mild case. In 2016, the World Health Organization recommended the use of A/Hunan/42443/2015(H1N1) virus to construct the first candidate vaccine strain for Eurasian avian-like swine influenza H1N1 viruses. Previous reports showed that the neuraminidase of A/Puerto Rico/8/34(H1N1) might improve the viral yield of reassortant viruses. Therefore, we constructed two reassortant candidate vaccine viruses of A/Hunan/42443/2015(H1N1) by reverse genetic technology, with (6+2) and (7+1) gene constitution, respectively. The (6+2) virus had hemagglutinin and neuraminidase from A/Hunan/42443/2015, and the (7+1) one had hemagglutinin from A/Hunan/42443/2015, while all the other genes were from A/Puerto Rico/8/34. Our data revealed that although the neuraminidase of the (7+1) virus was from high yield A/Puerto Rico/8/34, the hemagglutination titer and the hemagglutinin protein content of the (7+1) virus was not higher than that of the (6+2) virus. Both of the (7+1) and (6+2) viruses reached a similar level to that of A/Puerto Rico/8/34 at the usual harvest time in vitro. Therefore, both reassortant viruses are potential candidate vaccine viruses, which could contribute to pandemic preparedness. Copyright © 2017. Published by Elsevier Masson SAS.

  7. Isolation and genetic characterization of a novel 2.2.1.2a H5N1 virus from a vaccinated meat-turkeys flock in Egypt.

    PubMed

    Salaheldin, Ahmed H; Veits, Jutta; Abd El-Hamid, Hatem S; Harder, Timm C; Devrishov, Davud; Mettenleiter, Thomas C; Hafez, Hafez M; Abdelwhab, Elsayed M

    2017-03-09

    Vaccination of poultry to control highly pathogenic avian influenza virus (HPAIV) H5N1 is used in several countries. HPAIV H5N1 of clade 2.2.1 which is endemic in Egypt has diversified into two genetic clades. Clade 2.2.1.1 represents antigenic drift variants in vaccinated commercial poultry while clade 2.2.1.2 variants are detected in humans and backyard poultry. Little is known about H5N1 infection in vaccinated turkeys under field conditions. Here, we describe an HPAI H5N1 outbreak in a vaccinated meat-turkey flock in Egypt. Birds were vaccinated with inactivated H5N2 and H5N1 vaccines at 8 and 34 days of age, respectively. At 72 nd day of age (38 days post last vaccination), turkeys exhibited mild respiratory signs, cyanosis of snood and severe congestion of the internal organs. Survivors had a reduction in feed consumption and body gain. A mortality of ~29% cumulated within 10 days after the onset of clinical signs. Laboratory diagnosis using RT-qPCRs revealed presence of H5N1 but was negative for H7 and H9 subtypes. A substantial antigenic drift against different serum samples from clade 2.2.1.1 and clade 2.3.4.4 was observed. Based on full genome sequence analysis the virus belonged to clade 2.2.1.2 but clustered with recent H5N1 viruses from 2015 in poultry in Israel, Gaza and Egypt in a novel subclade designated here 2.2.1.2a which is distinct from 2014/2015 2.2.1.2 viruses. These viruses possess 2.2.1.2 clade-specific genetic signatures and also mutations in the HA similar to those in clade 2.2.1.1 that enabled evasion from humoral immune response. Taken together, this manuscript describes a recent HPAI H5N1 outbreak in vaccinated meat-turkeys in Egypt after infection with a virus representing novel distinct 2.2.1.2a subclade. Infection with HPAIV H5N1 in commercial turkeys resulted in significant morbidity and mortality despite of vaccination using H5 vaccines. The isolated virus showed antigenic drift and clustered in a novel cluster designated here

  8. Ferrets develop fatal influenza after inhaling small particle aerosols of highly pathogenic avian influenza virus A/Vietnam/1203/2004 (H5N1)

    PubMed Central

    2010-01-01

    Background There is limited knowledge about the potential routes for H5N1 influenza virus transmission to and between humans, and it is not clear whether humans can be infected through inhalation of aerosolized H5N1 virus particles. Ferrets are often used as a animal model for humans in influenza pathogenicity and transmissibility studies. In this manuscript, a nose-only bioaerosol inhalation exposure system that was recently developed and validated was used in an inhalation exposure study of aerosolized A/Vietnam/1203/2004 (H5N1) virus in ferrets. The clinical spectrum of influenza resulting from exposure to A/Vietnam/1203/2004 (H5N1) through intranasal verses inhalation routes was analyzed. Results Ferrets were successfully infected through intranasal instillation or through inhalation of small particle aerosols with four different doses of Influenza virus A/Vietnam/1203/2004 (H5N1). The animals developed severe influenza encephalomyelitis following intranasal or inhalation exposure to 101, 102, 103, or 104 infectious virus particles per ferret. Conclusions Aerosolized Influenza virus A/Vietnam/1203/2004 (H5N1) is highly infectious and lethal in ferrets. Clinical signs appeared earlier in animals infected through inhalation of aerosolized virus compared to those infected through intranasal instillation. PMID:20843329

  9. Highly Pathogenic H5N1 Avian Influenza Viruses Exhibit Few Barriers to Gene Flow in Vietnam

    PubMed Central

    Carrel, Margaret; Wan, Xiu-Feng; Nguyen, Tung; Emch, Michael

    2013-01-01

    Locating areas where genetic change is inhibited can illuminate underlying processes that drive evolution of pathogens. The persistence of highly pathogenic H5N1 avian influenza in Vietnam since 2003, and the continuous molecular evolution of Vietnamese avian influenza viruses, indicates that local environmental factors are supportive not only of incidence but also of viral adaptation. This article explores whether gene flow is constant across Vietnam, or whether there exist boundary areas where gene flow exhibits discontinuity. Using a dataset of 125 highly pathogenic H5N1 avian influenza viruses, principal components analysis and wombling analysis are used to indicate the location, magnitude, and statistical significance of genetic boundaries. Results show that a small number of geographically minor boundaries to gene flow in highly pathogenic H5N1 avian influenza viruses exist in Vietnam, but that overall there is little division in genetic exchange. This suggests that differences in genetic characteristics of viruses from one region to another are not the result of barriers to H5N1 viral exchange in Vietnam, and that H5N1 avian influenza is able to spread relatively unimpeded across the country. PMID:22350419

  10. Safety and long-term humoral immune response in adults after vaccination with an H1N1 2009 pandemic influenza vaccine with or without AS03 adjuvant.

    PubMed

    Ferguson, Murdo; Risi, George; Davis, Matthew; Sheldon, Eric; Baron, Mira; Li, Ping; Madariaga, Miguel; Fries, Louis; Godeaux, Olivier; Vaughn, David

    2012-03-01

    In this study (NCT00985088) we evaluated different formulations of an H1N1 2009 pandemic influenza vaccine that deliver various viral hemagglutinin (HA) doses with or without AS03 (a tocopherol-based oil-in-water adjuvant system). A total of 1340 healthy subjects aged ≥18 years were randomized to receive 1 or 2 doses of an adjuvanted (3.75-μg HA/AS03(A) or 1.9-μg HA/AS03(B)) or nonadjuvanted vaccine formulation. Safety and immunogenicity (by hemagglutination-inhibition [HI] assay) after each dose and 6 months after dose 1 are reported here. A single dose of AS03(A)-adjuvanted 3.75-μg HA H1N1 2009 induced the strongest immune responses in subjects aged 18-64 years (seroprotection rate [SPR], 97.2%; seroconversion rate [SCR], 90.1%) as well as in subjects aged >64 years (SPR, 91.1%; SCR, 78.2%) 21 days after vaccination. Six months after dose 1, subjects who received 2 doses of either the adjuvanted formulation or 1 dose of the adjuvanted 3.75-μg HA formulation continued to meet all Center for Biologics Evaluation and Research and Committee for Medicinal Products for Human Use criteria. All formulations had clinically acceptable safety profiles. A single dose of the 3.75-μg HA AS03(A)-adjuvanted H1N1 2009 influenza vaccine was highly immunogenic in both age strata (18-64 and >64 years), inducing long-term persistence of the immune response until at least 6 months after dose 1.

  11. A consensus-hemagglutinin-based vaccine delivered by an attenuated Salmonella mutant protects chickens against heterologous H7N1 influenza virus.

    PubMed

    Hyoung, Kim Je; Hajam, Irshad Ahmed; Lee, John Hwa

    2017-06-13

    H7N3 and H7N7 are highly pathogenic avian influenza (HPAI) viruses and have posed a great threat not only for the poultry industry but for the human health as well. H7N9, a low pathogenic avian influenza (LPAI) virus, is also highly pathogenic to humans, and there is a great concern that these H7 subtypes would acquire the ability to spread efficiently between humans, thereby becoming a pandemic threat. A vaccine candidate covering all the three subtypes must, therefore, be an integral part of any pandemic preparedness plan. To address this need, we constructed a consensus hemagglutinin (HA) sequence of H7N3, H7N7, and H7N9 based on the data available in the NCBI in early 2012-2015. This artificial sequence was then optimized for protein expression before being transformed into an attenuated auxotrophic mutant of Salmonella Typhimurium, JOL1863 strain. Immunizing chickens with JOL1863, delivered intramuscularly, nasally or orally, elicited efficient humoral and cell mediated immune responses, independently of the route of vaccination. Our results also showed that JOL1863 deliver efficient maturation signals to chicken monocyte derived dendritic cells (MoDCs) which were characterized by upregulation of costimulatory molecules and higher cytokine induction. Moreover, immunization with JOL1863 in chickens conferred a significant protection against the heterologous LPAI H7N1 virus challenge as indicated by reduced viral sheddings in the cloacal swabs. We conclude that this vaccine, based on a consensus HA, could induce broader spectrum of protection against divergent H7 influenza viruses and thus warrants further study.

  12. Non-neutralizing antibodies induced by seasonal influenza vaccine prevent, not exacerbate A(H1N1)pdm09 disease

    PubMed Central

    Kim, Jin Hyang; Reber, Adrian J.; Kumar, Amrita; Ramos, Patricia; Sica, Gabriel; Music, Nedzad; Guo, Zhu; Mishina, Margarita; Stevens, James; York, Ian A.; Jacob, Joshy; Sambhara, Suryaprakash

    2016-01-01

    The association of seasonal trivalent influenza vaccine (TIV) with increased infection by 2009 pandemic H1N1 (A(H1N1)pdm09) virus, initially observed in Canada, has elicited numerous investigations on the possibility of vaccine-associated enhanced disease, but the potential mechanisms remain largely unresolved. Here, we investigated if prior immunization with TIV enhanced disease upon A(H1N1)pdm09 infection in mice. We found that A(H1N1)pdm09 infection in TIV-immunized mice did not enhance the disease, as measured by morbidity and mortality. Instead, TIV-immunized mice cleared A(H1N1)pdm09 virus and recovered at an accelerated rate compared to control mice. Prior TIV immunization was associated with potent inflammatory mediators and virus-specific CD8 T cell activation, but efficient immune regulation, partially mediated by IL-10R-signaling, prevented enhanced disease. Furthermore, in contrast to suggested pathological roles, pre-existing non-neutralizing antibodies (NNAbs) were not associated with enhanced virus replication, but rather with promoted antigen presentation through FcR-bearing cells that led to potent activation of virus-specific CD8 T cells. These findings provide new insights into interactions between pre-existing immunity and pandemic viruses. PMID:27849030

  13. Non-neutralizing antibodies induced by seasonal influenza vaccine prevent, not exacerbate A(H1N1)pdm09 disease.

    PubMed

    Kim, Jin Hyang; Reber, Adrian J; Kumar, Amrita; Ramos, Patricia; Sica, Gabriel; Music, Nedzad; Guo, Zhu; Mishina, Margarita; Stevens, James; York, Ian A; Jacob, Joshy; Sambhara, Suryaprakash

    2016-11-16

    The association of seasonal trivalent influenza vaccine (TIV) with increased infection by 2009 pandemic H1N1 (A(H1N1)pdm09) virus, initially observed in Canada, has elicited numerous investigations on the possibility of vaccine-associated enhanced disease, but the potential mechanisms remain largely unresolved. Here, we investigated if prior immunization with TIV enhanced disease upon A(H1N1)pdm09 infection in mice. We found that A(H1N1)pdm09 infection in TIV-immunized mice did not enhance the disease, as measured by morbidity and mortality. Instead, TIV-immunized mice cleared A(H1N1)pdm09 virus and recovered at an accelerated rate compared to control mice. Prior TIV immunization was associated with potent inflammatory mediators and virus-specific CD8 T cell activation, but efficient immune regulation, partially mediated by IL-10R-signaling, prevented enhanced disease. Furthermore, in contrast to suggested pathological roles, pre-existing non-neutralizing antibodies (NNAbs) were not associated with enhanced virus replication, but rather with promoted antigen presentation through FcR-bearing cells that led to potent activation of virus-specific CD8 T cells. These findings provide new insights into interactions between pre-existing immunity and pandemic viruses.

  14. High proportions of regulatory B and T cells are associated with decreased cellular responses to pH1N1 influenza vaccine in HIV-infected children and youth (IMPAACT P1088)

    PubMed Central

    Weinberg, Adriana; Muresan, Petronella; Fenton, Terence; Richardson, Kelly; Dominguez, Teresa; Bloom, Anthony; Petzold, Elizabeth; Anthony, Patricia; Cunningham, Coleen K.; Spector, Stephen A.; Nachman, Sharon; Siberry, George K.; Handelsman, Edward; Flynn, Patricia M.

    2013-01-01

    HIV-infected individuals have poor responses to inactivated influenza vaccines. To evaluate the potential role of regulatory T (Treg) and B cells (Breg), we analyzed their correlation with humoral and cell-mediated immune (CMI) responses to pandemic influenza (pH1N1) monovalent vaccine in HIV-infected children and youth. Seventy-four HIV-infected, 4- to 25-y old participants in a 2-dose pH1N1 vaccine study had circulating and pH1N1-stimulated Treg and Breg measured by flow cytometry at baseline, post-dose 1 and post-dose 2. Concomitantly, CMI was measured by ELISPOT and flow cytometry; and antibodies by hemagglutination inhibition (HAI). At baseline, most of the participants had pH1N1-specific IFNγ ELISPOT responses, whose magnitude positively correlated with the baseline pH1N1, but not with seasonal H1N1 HAI titers. pH1N1-specific IFNγ ELISPOT responses did not change post-dose 1 and significantly decreased post-dose 2. In contrast, circulating CD4+CD25+% and CD4+FOXP3+% Treg increased after vaccination. The decrease in IFNγ ELISPOT results was marginally associated with higher pH1N1-specific CD19+FOXP3+ and CD4+TGFβ+% Breg and Treg, respectively. In contrast, increases in HAI titers post-dose 1 were associated with significantly higher circulating CD19+CD25+% post-dose 1, whereas increases in IFNγ ELISPOT results post-dose 1 were associated with higher circulating CD4+/C8+CD25+FOXP3+%. In conclusion, in HIV-infected children and youth, influenza-specific Treg and Breg may contribute to poor responses to vaccination. However, robust humoral and CMI responses to vaccination may result in increased circulating Treg and/or Breg, establishing a feed-back mechanism. PMID:23370281

  15. Characterization of a Human H5N1 Influenza A Virus Isolated in 2003

    PubMed Central

    Shinya, Kyoko; Hatta, Masato; Yamada, Shinya; Takada, Ayato; Watanabe, Shinji; Halfmann, Peter; Horimoto, Taisuke; Neumann, Gabriele; Kim, Jin Hyun; Lim, Wilina; Guan, Yi; Peiris, Malik; Kiso, Makoto; Suzuki, Takashi; Suzuki, Yasuo; Kawaoka, Yoshihiro

    2005-01-01

    In 2003, H5N1 avian influenza virus infections were diagnosed in two Hong Kong residents who had visited the Fujian province in mainland China, affording us the opportunity to characterize one of the viral isolates, A/Hong Kong/213/03 (HK213; H5N1). In contrast to H5N1 viruses isolated from humans during the 1997 outbreak in Hong Kong, HK213 retained several features of aquatic bird viruses, including the lack of a deletion in the neuraminidase stalk and the absence of additional oligosaccharide chains at the globular head of the hemagglutinin molecule. It demonstrated weak pathogenicity in mice and ferrets but caused lethal infection in chickens. The original isolate failed to produce disease in ducks but became more pathogenic after five passages. Taken together, these findings portray the HK213 isolate as an aquatic avian influenza A virus without the molecular changes associated with the replication of H5N1 avian viruses in land-based poultry such as chickens. This case challenges the view that adaptation to land-based poultry is a prerequisite for the replication of aquatic avian influenza A viruses in humans. PMID:16014953

  16. Plant-derived H7 VLP vaccine elicits protective immune response against H7N9 influenza virus in mice and ferrets.

    PubMed

    Pillet, S; Racine, T; Nfon, C; Di Lenardo, T Z; Babiuk, S; Ward, B J; Kobinger, G P; Landry, N

    2015-11-17

    In March 2013, the Chinese Centre for Disease Control and Prevention confirmed the first reported case of human infection with an avian influenza A H7N9 virus. Infection with this virus often caused severe pneumonia and acute respiratory distress syndrome resulting in a case fatality rate >35%. The risk of pandemic highlighted, once again, the need for a more rapid and scalable vaccine response capability. Here, we describe the rapid (19 days) development of a plant-derived VLP vaccine based on the hemagglutinin sequence of influenza H7N9 A/Hangzhou/1/2013. The immunogenicity of the H7 VLP vaccine was assessed in mice and ferrets after one or two intramuscular dose(s) with and without adjuvant (alum or GLA-SE™). In ferrets, we also measured H7-specific cell-mediated immunity. The mice and ferrets were then challenged with H7N9 A/Anhui/1/2013 influenza virus. A single immunization with the adjuvanted vaccine elicited a strong humoral response and protected mice against an otherwise lethal challenge. Two doses of unadjuvanted vaccine significantly increased humoral response and resulted in 100% protection with significant reduction of clinical signs leading to nearly asymptomatic infections. In ferrets, a single immunization with the alum-adjuvanted H7 VLP vaccine induced strong humoral and CMI responses with antigen-specific activation of CD3(+) T cells. Compared to animals injected with placebo, ferrets vaccinated with alum-adjuvanted vaccine displayed no weight loss during the challenge. Moreover, the vaccination significantly reduced the viral load in lungs and nasal washes 3 days after the infection. This candidate plant-made H7 vaccine therefore induced protective responses after either one adjuvanted or two unadjuvanted doses. Studies are currently ongoing to better characterize the immune response elicited by the plant-derived VLP vaccines. Regardless, these data are very promising for the rapid production of an immunogenic and protective vaccine against

  17. Comparative Effectiveness of Two Oil Adjuvant-Inactivated Avian Influenza H9N2 Vaccines.

    PubMed

    Kilany, Walid H; Bazid, Abdel-Hamid I; Ali, Ahmed; El-Deeb, Ayman H; El-Abideen, Mohamed A Zain; Sayed, Magdy El; El-Kady, Magdy F

    2016-05-01

    Low pathogenic avian influenza H9N2 virus infection has been an important risk to the Egyptian poultry industry since 2011. Economic losses have occurred from early infection and co-infection with other pathogens. Therefore, H9N2 vaccination of broiler chicks as young as 7 days old was recommended. The current inactivated H9N2 vaccines (0.5 ml/bird) administered at a reduced dose (0.25 ml/bird) do not guarantee the delivery of an effective dose for broilers. In this study, the efficacy of the reduced-dose volume (0.3 ml/bird), compared with the regular vaccine dose (0.5 ml/bird) of inactivated H9N2 vaccines using two different commercially available adjuvants, was investigated. The vaccines were prepared from the local H9N2 virus (Ck/EG/114940v/NLQP/11) using the same antigen content: 300 hemagglutinating units. Postvaccination (PV) immune response was monitored using the hemagglutination inhibition test. At 4 wk PV, both vaccinated groups were challenged using the homologous H9N2 strain at a 50% egg infective dose (EID50) of 10(6) EID50/bird via the intranasal route. Clinical signs, mortality, and virus shedding in oropharyngeal swabs were monitored at 2, 4, 6, and 10 days postchallenge (DPC). The reduced-dose volume of vaccine induced a significantly faster and higher immune response than the regular volume of vaccine at 2 and 3 wk PV. No significant difference in virus shedding between the two vaccine formulas was found (P ≥ 0.05), and both vaccines were able to stop virus shedding by 6 DPC. The reduced-dose volume of vaccine using a suitable oil adjuvant and proper antigen content can be used effectively for early immunization of broiler chicks.

  18. Probable Tiger-to-Tiger Transmission of Avian Influenza H5N1

    PubMed Central

    Thanawongnuwech, Roongroje; Amonsin, Alongkorn; Tantilertcharoen, Rachod; Damrongwatanapokin, Sudarat; Theamboonlers, Apiradee; Payungporn, Sunchai; Nanthapornphiphat, Kamonchart; Ratanamungklanon, Somchuan; Tunak, Eakchai; Songserm, Thaweesak; Vivatthanavanich, Veravit; Lekdumrongsak, Thawat; Kesdangsakonwut, Sawang; Tunhikorn, Schwann

    2005-01-01

    During the second outbreak of avian influenza H5N1 in Thailand, probable horizontal transmission among tigers was demonstrated in the tiger zoo. Sequencing and phylogenetic analysis of those viruses showed no differences from the first isolate obtained in January 2004. This finding has implications for influenza virus epidemiology and pathogenicity in mammals. PMID:15890122

  19. Phylogeography of influenza A H5N1 clade 2.2.1.1 in Egypt

    PubMed Central

    2013-01-01

    Background Influenza A H5N1 has killed millions of birds and raises serious public health concern because of its potential to spread to humans and cause a global pandemic. While the early focus was in Asia, recent evidence suggests that Egypt is a new epicenter for the disease. This includes characterization of a variant clade 2.2.1.1, which has been found almost exclusively in Egypt. We analyzed 226 HA and 92 NA sequences with an emphasis on the H5N1 2.2.1.1 strains in Egypt using a Bayesian discrete phylogeography approach. This allowed modeling of virus dispersion between Egyptian governorates including the most likely origin. Results Phylogeography models of hemagglutinin (HA) and neuraminidase (NA) suggest Ash Sharqiyah as the origin of virus spread, however the support is weak based on Kullback–Leibler values of 0.09 for HA and 0.01 for NA. Association Index (AI) values and Parsimony Scores (PS) were significant (p-value < 0.05), indicating that dispersion of H5N1 in Egypt was geographically structured. In addition, the Ash Sharqiyah to Al Gharbiyah and Al Fayyum to Al Qalyubiyah routes had the strongest statistical support. Conclusion We found that the majority of routes with strong statistical support were in the heavily populated Delta region. In particular, the Al Qalyubiyah governorate appears to represent a popular location for virus transition as it represented a large portion of branches in both trees. However, there remains uncertainty about virus dispersion to and from this location and thus more research needs to be conducted in order to examine this. Phylogeography can highlight the drivers of H5N1 emergence and spread. This knowledge can be used to target public health efforts to reduce morbidity and mortality. For Egypt, future work should focus on using data about vaccination and live bird markets in phylogeography models to study their impact on H5N1 diffusion within the country. PMID:24325606

  20. Risk of Guillain-Barré syndrome after exposure to pandemic influenza A(H1N1)pdm09 vaccination or infection: a Norwegian population-based cohort study.

    PubMed

    Ghaderi, Sara; Gunnes, Nina; Bakken, Inger Johanne; Magnus, Per; Trogstad, Lill; Håberg, Siri Eldevik

    2016-01-01

    Vaccinations and infections are possible triggers of Guillain-Barré syndrome (GBS). However, studies on GBS after vaccinations during the influenza A(H1N1)pmd09 pandemic in 2009, show inconsistent results. Only few studies have addressed the role of influenza infection. We used information from national health data-bases with information on the total Norwegian population (N = 4,832,211). Cox regression analyses with time-varying covariates and self-controlled case series was applied. The risk of being hospitalized with GBS during the pandemic period, within 42 days after an influenza diagnosis or pandemic vaccination was estimated. There were 490 GBS cases during 2009-2012 of which 410 cases occurred after October 1, 2009 of which 46 new cases occurred during the peak period of the influenza pandemic. An influenza diagnosis was registered for 2.47% of the population and the vaccination coverage was 39.25%. The incidence rate ratio of GBS during the pandemic peak relative to other periods was 1.46 [95% confidence interval (CI) 1.08-1.98]. The adjusted hazard ratio (HR) of GBS within 42 days after a diagnosis of pandemic influenza was 4.89 (95% CI 1.17-20.36). After pandemic vaccination the adjusted HR was 1.11 (95% CI 0.51-2.43). Our results indicated that there was a significantly increased risk of GBS during the pandemic season and after pandemic influenza infection. However, vaccination did not increase the risk of GBS. The small number of GBS cases in this study warrants caution in the interpretation of the findings.

  1. 2009 pandemic influenza A (H1N1) in pregnant women requiring intensive care - New York City, 2009.

    PubMed

    2010-03-26

    Pregnant women are at increased risk for severe illness and complications from infection with seasonal influenza and 2009 pandemic influenza A (H1N1). To characterize the severity of 2009 H1N1 infection in pregnant women, the New York City Department of Health and Mental Hygiene (DOHMH) conducted active and passive surveillance for cases of 2009 H1N1 infection in pregnant women requiring intensive care. This report summarizes the results of that surveillance, which found that, during 2009, 16 pregnant women and one who was postpartum were admitted to New York City intensive-care units (ICUs). Two women died. Of the 17 women, 12 had no recognized risk factors for severe influenza complications other than pregnancy. All 17 women received antiviral treatment with oseltamivir; however, treatment was initiated or=5 days after symptom onset in four women. Because initiation of antiviral treatment influenza-like symptoms, and health-care providers should initiate empiric antiviral therapy for these women as soon as possible, even if >2 days after symptom onset. Health departments and health-care providers should educate pregnant and postpartum women regarding the risks posed by influenza and highlight the effectiveness and safety of influenza vaccination. Obstetricians and other health-care providers should offer influenza vaccination to their pregnant patients.

  2. Insight into Alternative Approaches for Control of Avian Influenza in Poultry, with Emphasis on Highly Pathogenic H5N1

    PubMed Central

    Abdelwhab, E. M.; Hafez, Hafez M.

    2012-01-01

    Highly pathogenic avian influenza virus (HPAIV) of subtype H5N1 causes a devastating disease in poultry but when it accidentally infects humans it can cause death. Therefore, decrease the incidence of H5N1 in humans needs to focus on prevention and control of poultry infections. Conventional control strategies in poultry based on surveillance, stamping out, movement restriction and enforcement of biosecurity measures did not prevent the virus spreading, particularly in developing countries. Several challenges limit efficiency of the vaccines to prevent outbreaks of HPAIV H5N1 in endemic countries. Alternative and complementary approaches to reduce the current burden of H5N1 epidemics in poultry should be encouraged. The use of antiviral chemotherapy and natural compounds, avian-cytokines, RNA interference, genetic breeding and/or development of transgenic poultry warrant further evaluation as integrated intervention strategies for control of HPAIV H5N1 in poultry. PMID:23202521

  3. Conjugating influenza a (H1N1) antigen to n-trimethylaminoethylmethacrylate chitosan nanoparticles improves the immunogenicity of the antigen after nasal administration.

    PubMed

    Liu, Qingfeng; Zheng, Xiaoyao; Zhang, Chi; Shao, Xiayan; Zhang, Xi; Zhang, Qizhi; Jiang, Xinguo

    2015-11-01

    As one of the most serious infectious respiratory diseases, influenza A (H1N1) is a great threat to human health, and it has created an urgent demand for effective vaccines. Nasal immunization can induce both systemic and mucosal immune responses against viruses, and it can serve as an ideal route for vaccination. However, the low immunogenicity of antigens on nasal mucosa is a high barrier for the development of nasal vaccines. In this study, we covalently conjugated an influenza A (H1N1) antigen to the surface of N-trimethylaminoethylmethacrylate chitosan (TMC) nanoparticles (H1N1-TMC/NP) through thioester bonds to increase the immunogenicity of the antigen after nasal administration. SDS-PAGE revealed that most of the antigen was conjugated on TMC nanoparticles, and an in vitro biological activity assay confirmed the stability of the antigen after conjugation. After three nasal immunizations, the H1N1-TMC/NP induced significantly higher levels of serum IgG and mucosal sIgA compared with free antigen. A hemagglutination inhibition assay showed that H1N1-TMC/NP induced much more protective antibodies than antigen-encapsulated nanoparticles or alum-precipitated antigen (I.M.). In the mechanistic study, H1N1-TMC/NP was shown to stimulate macrophages to produce IL-1β and IL-6 and to stimulate spleen lymphocytes to produce IL-2 and IFN-γ. These results indicated that H1N1-TMC/NP may be an effective vaccine against influenza A (H1N1) viruses for use in nasal immunization. © 2015 Wiley Periodicals, Inc.

  4. Exploring the effect of previous inactivated influenza vaccination on seasonal influenza vaccine effectiveness against medically attended influenza: Results of the European I-MOVE multicentre test-negative case-control study, 2011/2012-2016/2017.

    PubMed

    Valenciano, Marta; Kissling, Esther; Larrauri, Amparo; Nunes, Baltazar; Pitigoi, Daniela; O'Donnell, Joan; Reuss, Annicka; Horváth, Judit Krisztina; Paradowska-Stankiewicz, Iwona; Rizzo, Caterina; Falchi, Alessandra; Daviaud, Isabelle; Brytting, Mia; Meijer, Adam; Kaic, Bernard; Gherasim, Alin; Machado, Ausenda; Ivanciuc, Alina; Domegan, Lisa; Schweiger, Brunhilde; Ferenczi, Annamária; Korczyńska, Monika; Bella, Antonino; Vilcu, Ana-Maria; Mosnier, Anne; Zakikhany, Katherina; de Lange, Marit; Kurečić Filipovićović, Sanja; Johansen, Kari; Moren, Alain

    2018-04-16

    Results of previous influenza vaccination effects on current season influenza vaccine effectiveness (VE) are inconsistent. To explore previous influenza vaccination effects on current season VE among population targeted for vaccination. We used 2011/2012 to 2016/2017 I-MOVE primary care multicentre test-negative data. For each season, we compared current season adjusted VE (aVE) between individuals vaccinated and unvaccinated in previous season. Using unvaccinated in both seasons as a reference, we then compared aVE between vaccinated in both seasons, current only, and previous only. We included 941, 2645 and 959 influenza-like illness patients positive for influenza A(H1N1)pdm09, A(H3N2) and B, respectively, and 5532 controls. In 2011/2012, 2014/2015 and 2016/2017, A(H3N2) aVE point estimates among those vaccinated in previous season were -68%, -21% and -19%, respectively; among unvaccinated in previous season, these were 33%, 48% and 46%, respectively (aVE not computable for influenza A(H1N1)pdm09 and B). Compared to current season vaccination only, VE for both seasons' vaccination was (i) similar in two of four seasons for A(H3N2) (absolute difference [ad] 6% and 8%); (ii) lower in three of four seasons for influenza A(H1N1)pdm09 (ad 18%, 26% and 29%), in two seasons for influenza A(H3N2) (ad 27% and 39%) and in two of three seasons for influenza B (ad 26% and 37%); (iii) higher in one season for influenza A(H1N1)pdm09 (ad 20%) and influenza B (ad 24%). We did not identify any pattern of previous influenza vaccination effect. Prospective cohort studies documenting influenza infections, vaccinations and vaccine types are needed to understand previous influenza vaccinations' effects. © 2018 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  5. Physician's knowledge, attitudes, and practices regarding seasonal influenza, pandemic influenza, and highly pathogenic avian influenza A (H5N1) virus infections of humans in Indonesia.

    PubMed

    Mangiri, Amalya; Iuliano, A Danielle; Wahyuningrum, Yunita; Praptiningsih, Catharina Y; Lafond, Kathryn E; Storms, Aaron D; Samaan, Gina; Ariawan, Iwan; Soeharno, Nugroho; Kreslake, Jennifer M; Storey, J Douglas; Uyeki, Timothy M

    2017-01-01

    Indonesia has reported highest number of fatal human cases of highly pathogenic avian influenza (HPAI) A (H5N1) virus infection worldwide since 2005. There are limited data available on seasonal and pandemic influenza in Indonesia. During 2012, we conducted a survey of clinicians in two districts in western Java, Indonesia, to assess knowledge, attitudes, and practices (KAP) of clinical diagnosis, testing, and treatment of patients with seasonal influenza, pandemic influenza, or HPAI H5N1 virus infections. Overall, a very low percentage of physician participants reported ever diagnosing hospitalized patients with seasonal, pandemic, or HPAI H5N1 influenza. Use of influenza testing was low in outpatients and hospitalized patients, and use of antiviral treatment was very low for clinically diagnosed influenza patients. Further research is needed to explore health system barriers for influenza diagnostic testing and availability of antivirals for treatment of influenza in Indonesia. © 2016 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  6. Adverse events following pandemic influenza A (H1N1) 2009 monovalent and seasonal influenza vaccinations during the 2009-2010 season in the active component U.S. military and civilians aged 17-44years reported to the Vaccine Adverse Event Reporting System.

    PubMed

    Bardenheier, Barbara H; Duderstadt, Susan K; Engler, Renata J M; McNeil, Michael M

    2016-08-17

    No comparative review of Vaccine Adverse Event Reporting System (VAERS) submissions following pandemic influenza A (H1N1) 2009 and seasonal influenza vaccinations during the pandemic season among U.S. military personnel has been published. We compared military vs. civilian adverse event reporting rates. Adverse events (AEs) following vaccination were identified from VAERS for adults aged 17-44years after pandemic (monovalent influenza [MIV], and seasonal (trivalent inactivated influenza [IIV3], live attenuated influenza [LAIV3]) vaccines. Military vaccination coverage was provided by the Department of Defense's Defense Medical Surveillance System. Civilian vaccination coverage was estimated using data from the National 2009 H1N1 Flu Survey and the Behavioral Risk Factor Surveillance System survey. Vaccination coverage was more than four times higher for MIV and more than twenty times higher for LAIV3 in the military than in the civilian population. The reporting rate of serious AE reports following MIV in service personnel (1.19 per 100,000) was about half that reported by the civilian population (2.45 per 100,000). Conversely, the rate of serious AE reports following LAIV3 among service personnel (1.32 per 100,000) was more than twice that of the civilian population. Although fewer military AEs following MIV were reported overall, the rate of Guillain-Barré Syndrome (GBS) (4.01 per million) was four times greater than that in the civilian population. (1.04 per million). Despite higher vaccination coverage in service personnel, the rate of serious AEs following MIV was about half that in civilians. The rate of GBS reported following MIV was higher in the military. Published by Elsevier Ltd.

  7. 2.1 Natural History of Highly Pathogenic Avian Influenza H5N1

    PubMed Central

    Sonnberg, Stephanie; Webby, Richard J.; Webster, Robert G.

    2013-01-01

    The ecology of highly pathogenic avian influenza (HPAI) H5N1 has significantly changed from sporadic outbreaks in terrestrial poultry to persistent circulation in terrestrial and aquatic poultry and potentially in wild waterfowl. A novel genotype of HPAI H5N1 arose in 1996 in southern China and through ongoing mutation, reassortment, and natural selection, has diverged into distinct lineages and expanded into multiple reservoir hosts. The evolution of Goose/Guangdong-lineage highly pathogenic H5N1 viruses is ongoing: while stable interactions exist with some reservoir hosts, these viruses are continuing to evolve and adapt to others, and pose an un-calculable risk to sporadic hosts, including humans. PMID:23735535

  8. Protective efficacy of an inactivated vaccine against H9N2 avian influenza virus in ducks.

    PubMed

    Teng, Qiaoyang; Shen, Weixia; Liu, Qinfang; Rong, Guangyu; Chen, Lin; Li, Xuesong; Chen, Hongjun; Yang, Jianmei; Li, Zejun

    2015-09-17

    Wild ducks play an important role in the evolution of avian influenza viruses (AIVs). Domestic ducks in China are known to carry and spread H9N2 AIVs that are thought to have contributed internal genes for the recent outbreak of zoonotic H7N9 virus. In order to protect animal and public health, an effective vaccine is urgently needed to block and prevent the spread of H9N2 virus in ducks. We developed an inactivated H9N2 vaccine (with adjuvant Montanide ISA 70VG) based on an endemic H9N2 AIV and evaluated this vaccine in ducks. The results showed that the inactivated H9N2 vaccine was able to induce a strong and fast humoral immune response in vaccinated ducks. The hemagglutination inhibition titer in the sera increased fast, and reached its peak of 12.3 log2 at 5 weeks post-vaccination in immunized birds and remained at a high level for at least 37 weeks post-vaccination. Moreover, viral shedding was completely blocked in vaccinated ducks after challenge with a homologous H9N2 AIV at both 3 and 37 weeks post-vaccination. The results of this study indicate that the inactivated H9N2 vaccine induces high and prolonged immune response in vaccinated ducks and are efficacious in protecting ducks from H9N2 infection.

  9. Antigenic and genomic characterization of human influenza A and B viruses circulating in Argentina after the introduction of influenza A(H1N1)pdm09.

    PubMed

    Russo, Mara L; Pontoriero, Andrea V; Benedetti, Estefania; Czech, Andrea; Avaro, Martin; Periolo, Natalia; Campos, Ana M; Savy, Vilma L; Baumeister, Elsa G

    2014-12-01

    This study was conducted as part of the Argentinean Influenza and other Respiratory Viruses Surveillance Network, in the context of the Global Influenza Surveillance carried out by the World Health Organization (WHO). The objective was to study the activity and the antigenic and genomic characteristics of circulating viruses for three consecutive seasons (2010, 2011 and 2012) in order to investigate the emergence of influenza viral variants. During the study period, influenza virus circulation was detected from January to December. Influenza A and B, and all current subtypes of human influenza viruses, were present each year. Throughout the 2010 post-pandemic season, influenza A(H1N1)pdm09, unexpectedly, almost disappeared. The haemagglutinin (HA) of the A(H1N1)pdm09 viruses studied were segregated in a different genetic group to those identified during the 2009 pandemic, although they were still antigenically closely related to the vaccine strain A/California/07/2009. Influenza A(H3N2) viruses were the predominant strains circulating during the 2011 season, accounting for nearly 76 % of influenza viruses identified. That year, all HA sequences of the A(H3N2) viruses tested fell into the A/Victoria/208/2009 genetic clade, but remained antigenically related to A/Perth/16/2009 (reference vaccine recommended for this three-year period). A(H3N2) viruses isolated in 2012 were antigenically closely related to A/Victoria/361/2011, recommended by the WHO as the H3 component for the 2013 Southern Hemisphere formulation. B viruses belonging to the B/Victoria lineage circulated in 2010. A mixed circulation of viral variants of both B/Victoria and B/Yamagata lineages was detected in 2012, with the former being predominant. A(H1N1)pdm09 viruses remained antigenically closely related to the vaccine virus A/California/7/2009; A(H3N2) viruses continually evolved into new antigenic clusters and both B lineages, B/Victoria/2/87-like and B/Yamagata/16/88-like viruses, were observed

  10. Immunogenicity of influenza vaccine in colorectal cancer patients.

    PubMed

    Kim, Dong Ho; Lee, Yun Yong; Shin, Ui Sup; Moon, Sun Mi

    2013-12-01

    Although influenza is regarded as a major cause of morbidity and mortality in immunocompromised patients, vaccine coverage remains poor. We evaluated the immunogenicity of influenza vaccines in colorectal cancer patients. In this study, 40 colorectal cancer patients who received an influenza vaccine at the Korea Cancer Center Hospital during the 2009-2010 and 2010-2011 influenza seasons were analyzed. The blood samples were collected at prevaccination and 30 days post vaccination, and antibody titers were measured using the hemagglutination-inhibition tests. In the 2009-2011 season, the seroprotection rate for H1N1 (94.7%) was significantly higher than that for H3N2 (42.1%) and B (47.3%). The seroconversion rate was 52.6%, 26.3%, and 36.8% for H1N1, H3N2, and B, respectively. Fold increase of geometric mean titer (MFI) was 3.86, 1.49, and 3.33 for H1N1, H3N2, and B, respectively. In the 2010-2011 season, the seroprotection rate for H1N1 (57.1%) was significantly higher than that for H3N2 (52.4%) and B (38.1%). The seroconversion rate was 52.4%, 47.6% and 33.3% for H1N1, H3N2, and B, respectively. MFI was 12.29, 3.62 and 4.27 for H1N1, H3N2, and B, respectively. Our study cohort showed an acceptable immune response to an influenza vaccine without significant adverse effects, supporting the recommendation for annual influenza vaccination in colorectal cancer patients.

  11. A Single Dose of an Avian H3N8 Influenza Virus Vaccine Is Highly Immunogenic and Efficacious against a Recently Emerged Seal Influenza Virus in Mice and Ferrets

    PubMed Central

    Baz, Mariana; Paskel, Myeisha; Matsuoka, Yumiko; Zengel, James R.; Cheng, Xing; Treanor, John J.; Jin, Hong

    2015-01-01

    ABSTRACT H3N8 influenza viruses are a commonly found subtype in wild birds, usually causing mild or no disease in infected birds. However, they have crossed the species barrier and have been associated with outbreaks in dogs, pigs, donkeys, and seals and therefore pose a threat to humans. A live attenuated, cold-adapted (ca) H3N8 vaccine virus was generated by reverse genetics using the wild-type (wt) hemagglutinin (HA) and neuraminidase (NA) genes from the A/blue-winged teal/Texas/Sg-00079/2007 (H3N8) (tl/TX/079/07) wt virus and the six internal protein gene segments from the ca influenza A virus vaccine donor strain, A/Ann Arbor/6/60 ca (H2N2), the backbone of the licensed seasonal live attenuated influenza vaccine. One dose of the tl/TX/079/07 ca vaccine induced a robust neutralizing antibody response against the homologous (tl/TX/079/07) and two heterologous influenza viruses, including the recently emerged A/harbor seal/New Hampshire/179629/2011 (H3N8) and A/northern pintail/Alaska/44228-129/2006 (H3N8) viruses, and conferred robust protection against the homologous and heterologous influenza viruses. We also analyzed human sera against the tl/TX/079/07 H3N8 avian influenza virus and observed low but detectable antibody reactivity in elderly subjects, suggesting that older H3N2 influenza viruses confer some cross-reactive antibody. The latter observation was confirmed in a ferret study. The safety, immunogenicity, and efficacy of the tl/TX/079/07 ca vaccine in mice and ferrets support further evaluation of this vaccine in humans for use in the event of transmission of an H3N8 avian influenza virus to humans. The human and ferret serology data suggest that a single dose of the vaccine may be sufficient in older subjects. IMPORTANCE Although natural infection of humans with an avian H3N8 influenza virus has not yet been reported, this influenza virus subtype has already crossed the species barrier and productively infected mammals. Pandemic preparedness is an

  12. Personal Decision-Making Criteria Related to Seasonal and Pandemic A(H1N1) Influenza-Vaccination Acceptance among French Healthcare Workers

    PubMed Central

    Bouadma, Lila; Barbier, François; Biard, Lucie; Esposito-Farèse, Marina; Le Corre, Bertrand; Macrez, Annick; Salomon, Laurence; Bonnal, Christine; Zanker, Caroline; Najem, Christophe; Mourvillier, Bruno; Lucet, Jean Christophe; Régnier, Bernard; Wolff, Michel; Tubach, Florence

    2012-01-01

    Background Influenza-vaccination rates among healthcare workers (HCW) remain low worldwide, even during the 2009 A(H1N1) pandemic. In France, this vaccination is free but administered on a voluntary basis. We investigated the factors influencing HCW influenza vaccination. Methods In June–July 2010, HCW from wards of five French hospitals completed a cross-sectional survey. A multifaceted campaign aimed at improving vaccination coverage in this hospital group was conducted before and during the 2009 pandemic. Using an anonymous self-administered questionnaire, we assessed the relationships between seasonal (SIV) and pandemic (PIV) influenza vaccinations, and sociodemographic and professional characteristics, previous and current vaccination statuses, and 33 statements investigating 10 sociocognitive domains. The sociocognitive domains describing HCWs' SIV and PIV profiles were analyzed using the classification-and-regression–tree method. Results Of the HCWs responding to our survey, 1480 were paramedical and 401 were medical with 2009 vaccination rates of 30% and 58% for SIV and 21% and 71% for PIV, respectively (p<0.0001 for both SIV and PIV vaccinations). Older age, prior SIV, working in emergency departments or intensive care units, being a medical HCW and the hospital they worked in were associated with both vaccinations; while work shift was associated only with PIV. Sociocognitive domains associated with both vaccinations were self-perception of benefits and health motivation for all HCW. For medical HCW, being a role model was an additional domain associated with SIV and PIV. Conclusions Both vaccination rates remained low. Vaccination mainly depended on self-determined factors and for medical HCW, being a role model. PMID:22848342

  13. Protective efficacy of a recombinant HVT-H5 vaccine against lethal H5N1 and H5N2 avian influenza challenge

    USDA-ARS?s Scientific Manuscript database

    Protective immunity against highly pathogenic avian influenza (HPAI) largely depends on the development of an antibody response against a subtype-specific lineage of challenge virus. In the poultry industry, inactivated AI vaccines are typically produced with indigenous AI isolates to provide the b...

  14. Genetic Compatibility and Virulence of Reassortants Derived from Contemporary Avian H5N1 and Human H3N2 Influenza A Viruses

    PubMed Central

    Zhou, Hong; Cox, Nancy J.; Donis, Ruben O.

    2008-01-01

    The segmented structure of the influenza virus genome plays a pivotal role in its adaptation to new hosts and the emergence of pandemics. Despite concerns about the pandemic threat posed by highly pathogenic avian influenza H5N1 viruses, little is known about the biological properties of H5N1 viruses that may emerge following reassortment with contemporary human influenza viruses. In this study, we used reverse genetics to generate the 63 possible virus reassortants derived from H5N1 and H3N2 viruses, containing the H5N1 surface protein genes, and analyzed their viability, replication efficiency, and mouse virulence. Specific constellations of avian–human viral genes proved deleterious for viral replication in cell culture, possibly due to disruption of molecular interaction networks. In particular, striking phenotypes were noted with heterologous polymerase subunits, as well as NP and M, or NS. However, nearly one-half of the reassortants replicated with high efficiency in vitro, revealing a high degree of compatibility between avian and human virus genes. Thirteen reassortants displayed virulent phenotypes in mice and may pose the greatest threat for mammalian hosts. Interestingly, one of the most pathogenic reassortants contained avian PB1, resembling the 1957 and 1968 pandemic viruses. Our results reveal the broad spectrum of phenotypes associated with H5N1/H3N2 reassortment and a possible role for the avian PB1 in the emergence of pandemic influenza. These observations have important implications for risk assessment of H5N1 reassortant viruses detected in surveillance programs. PMID:18497857

  15. Signal Immune Reactions of Macrophages Differentiated from THP-1 Monocytes to Infection with Pandemic H1N1PDM09 Virus and H5N2 and H9N2 Avian Influenza A Virus.

    PubMed

    Sokolova, T M; Poloskov, V V; Shuvalov, A N; Rudneva, I A; Timofeeva, T A

    2018-03-01

    In culture of THP-1 cells differentiated into macrophages with PMA (THP-PMA macrophages) infected with influenza viruses of subtypes H1, H5 and H9, we measured the expression of TLR7 and RIG1 receptor genes, sensors of viral RNA and ribonucleoprotein, and the levels of production of inflammatory cytokines IL-1β, TNFα, IL-10, and IFNα. The sensitivity and inflammatory response of THP-PMA macrophages to pandemic influenza A virus H1N1pdm09 and avian influenza H5N2 and H9N2 viruses correlate with the intracellular level of their viral RNA and activation of the RIG1 gene. Abortive infection is accompanied by intensive macrophage secretion of TNFα, IL-1β, and toxic factors inducing cell death. Activity of endosomal TLR7 receptor gene changed insignificantly in 24 h after infection and significantly decreased in 48 and 72 h under the action of H5N2 and H9N2, which correlated with manifestation of the cytopathogenic effect of these viruses. H5N2 and H9N2 avian viruses in THP-PMA macrophages are strong activators of the expression of the gene of the cytoplasmic RIG1 receptor 24 and 48 h after infection, and the pandemic virus H1N1pdm09 is a weak stimulator of RIG1 gene. Avian influenza H5N2 and H9N2 viruses are released by rapid induction of the inflammatory response in macrophages. At the late stages of infection, we observed a minor increase in IL-10 secretion in macrophages and, probably, the polarization of a part of the population in type M2. The studied influenza A viruses are weak inductors of IFN in THP-PMA macrophages. In the culture medium of THP-PMA macrophages infected with H9N2 and H5N2 viruses, MTT test revealed high levels of toxic factors causing the death of Caco-2 cells. In contrast to avian viruses, pandemic virus H1N1pdm09 did not induce production of toxic factors.

  16. Kinetics of lung lesion development and pro-inflammatory cytokine response in pigs with vaccine-associated enhanced respiratory disease induced by challenge with pandemic (2009) A/H1N1 influenza virus.

    PubMed

    Gauger, P C; Vincent, A L; Loving, C L; Henningson, J N; Lager, K M; Janke, B H; Kehrli, M E; Roth, J A

    2012-11-01

    The objective of this report was to characterize the enhanced clinical disease and lung lesions observed in pigs vaccinated with inactivated H1N2 swine δ-cluster influenza A virus and challenged with pandemic 2009 A/H1N1 human influenza virus. Eighty-four, 6-week-old, cross-bred pigs were randomly allocated into 3 groups of 28 pigs to represent vaccinated/challenged (V/C), non-vaccinated/challenged (NV/C), and non-vaccinated/non-challenged (NV/NC) control groups. Pigs were intratracheally inoculated with pH1N1 and euthanized at 1, 2, 5, and 21 days post inoculation (dpi). Macroscopically, V/C pigs demonstrated greater percentages of pneumonia compared to NV/C pigs. Histologically, V/C pigs demonstrated severe bronchointerstitial pneumonia with necrotizing bronchiolitis accompanied by interlobular and alveolar edema and hemorrhage at 1 and 2 dpi. The magnitude of peribronchiolar lymphocytic cuffing was greater in V/C pigs by 5 dpi. Microscopic lung lesion scores were significantly higher in the V/C pigs at 2 and 5 dpi compared to NV/C and NV/NC pigs. Elevated TNF-α, IL-1β, IL-6, and IL-8 were detected in bronchoalveolar lavage fluid at all time points in V/C pigs compared to NV/C pigs. These data suggest H1 inactivated vaccines followed by heterologous challenge resulted in potentiated clinical signs and enhanced pulmonary lesions and correlated with an elevated proinflammatory cytokine response in the lung. The lung alterations and host immune response are consistent with the vaccine-associated enhanced respiratory disease (VAERD) clinical outcome observed reproducibly in this swine model.

  17. Prevention of influenza virus shedding and protection from lethal H1N1 challenge using a consensus 2009 H1N1 HA and NA adenovirus vector vaccine

    PubMed Central

    Jones, Frank R.; Gabitzsch, Elizabeth S.; Xu, Younong; Balint, Joseph P.; Borisevich, Viktoriya; Smith, Jennifer; Smith, Jeanon; Peng, Bi-Hung; Walker, Aida; Salazar, Magda; Paessler, Slobodan

    2013-01-01

    Vaccines against emerging pathogens such as the 2009 H1N1 pandemic virus can benefit from current technologies such as rapid genomic sequencing to construct the most biologically relevant vaccine. A novel platform (Ad5 [E1-, E2b-]) has been utilized to induce immune responses to various antigenic targets. We employed this vector platform to express hemagglutinin (HA) and neuraminidase (NA) genes from 2009 H1N1 pandemic viruses. Inserts were consensuses sequences designed from viral isolate sequences and the vaccine was rapidly constructed and produced. Vaccination induced H1N1 immune responses in mice, which afforded protection from lethal virus challenge. In ferrets, vaccination protected from disease development and significantly reduced viral titers in nasal washes. H1N1 cell mediated immunity as well as antibody induction correlated with the prevention of disease symptoms and reduction of virus replication. The Ad5 [E1-, E2b-] should be evaluated for the rapid development of effective vaccines against infectious diseases. PMID:21821082

  18. Highly Pathogenic Avian Influenza H5N1, Thailand, 2004

    PubMed Central

    Chaitaweesub, Prasit; Songserm, Thaweesak; Chaisingh, Arunee; Hoonsuwan, Wirongrong; Buranathai, Chantanee; Parakamawongsa, Tippawon; Premashthira, Sith; Amonsin, Alongkorn; Gilbert, Marius; Nielen, Mirjam; Stegeman, Arjan

    2005-01-01

    In January 2004, highly pathogenic avian influenza (HPAI) virus of the H5N1 subtype was first confirmed in poultry and humans in Thailand. Control measures, e.g., culling poultry flocks, restricting poultry movement, and improving hygiene, were implemented. Poultry populations in 1,417 villages in 60 of 76 provinces were affected in 2004. A total of 83% of infected flocks confirmed by laboratories were backyard chickens (56%) or ducks (27%). Outbreaks were concentrated in the Central, the southern part of the Northern, and Eastern Regions of Thailand, which are wetlands, water reservoirs, and dense poultry areas. More than 62 million birds were either killed by HPAI viruses or culled. H5N1 virus from poultry caused 17 human cases and 12 deaths in Thailand; a number of domestic cats, captive tigers, and leopards also died of the H5N1 virus. In 2005, the epidemic is ongoing in Thailand. PMID:16318716

  19. Kinetics of lung lesion development and pro-inflammatory cytokine response in pigs with vaccine-associated enhanced respiratory disease induced by challenge with pandemic (2009) A/H1N1 influenza virus

    USDA-ARS?s Scientific Manuscript database

    The objective of this report was to characterize the enhanced clinical disease and lung lesions observed in pigs vaccinated with inactivated H1N2 swine delta-cluster influenza A virus and challenged with pandemic 2009 A/H1N1 human influenza virus. Eighty-four, six-week-old, crossbred pigs were rand...

  20. Antigenic, genetic, and pathogenic characterization of H5N1 highly pathogenic avian influenza viruses isolated from dead whooper swans (Cygnus cygnus) found in northern Japan in 2008.

    PubMed

    Okamatsu, Masatoshi; Tanaka, Tomohisa; Yamamoto, Naoki; Sakoda, Yoshihiro; Sasaki, Takashi; Tsuda, Yoshimi; Isoda, Norikazu; Kokumai, Norihide; Takada, Ayato; Umemura, Takashi; Kida, Hiroshi

    2010-12-01

    In April and May 2008, whooper swans (Cygnus cygnus) were found dead in Hokkaido in Japan. In this study, an adult whooper swan found dead beside Lake Saroma was pathologically examined and the identified H5N1 influenza virus isolates were genetically and antigenically analyzed. Pathological findings indicate that the swan died of severe congestive edema in the lungs. Phylogenetic analysis of the HA genes of the isolates revealed that they are the progeny viruses of isolates from poultry and wild birds in China, Russia, Korea, and Hong Kong. Antigenic analyses indicated that the viruses are distinguished from the H5N1 viruses isolated from wild birds and poultry before 2007. The chickens vaccinated with A/duck/Hokkaido/Vac-1/2004 (H5N1) survived for 14 days after challenge with A/whooper swan/Hokkaido/1/2008 (H5N1), although a small amount of the challenge virus was recovered from the tissues of the birds. These findings indicate that H5N1 highly pathogenic avian influenza viruses are circulating in wild birds in addition to domestic poultry in Asia and exhibit antigenic variation that may be due to vaccination.

  1. Evidence for common ancestry among viruses isolated from wild birds in Beringia and highly pathogenic intercontinental reassortant H5N1 and H5N2 influenza A viruses

    USGS Publications Warehouse

    Ramey, Andy M.; Reeves, Andrew; Teslaa, Joshua L.; Nashold, Sean W.; Donnelly, Tyrone F.; Bahl, Justin; Hall, Jeffrey S.

    2016-01-01

    Highly pathogenic clade 2.3.4.4 H5N8, H5N2, and H5N1 influenza A viruses were first detected in wild, captive, and domestic birds in North America in November–December 2014. In this study, we used wild waterbird samples collected in Alaska prior to the initial detection of clade 2.3.4.4 H5 influenza A viruses in North America to assess the evidence for: (1) dispersal of highly pathogenic influenza A viruses from East Asia to North America by migratory birds via Alaska and (2) ancestral origins of clade 2.3.4.4 H5 reassortant viruses in Beringia. Although we did not detect highly pathogenic influenza A viruses in our sample collection from western Alaska, we did identify viruses that contained gene segments sharing recent common ancestry with intercontinental reassortant H5N2 and H5N1 viruses. Results of phylogenetic analyses and estimates for times of most recent common ancestry support migratory birds sampled in Beringia as maintaining viral diversity closely related to novel highly pathogenic influenza A virus genotypes detected in North America. Although our results do not elucidate the route by which highly pathogenic influenza A viruses were introduced into North America, genetic evidence is consistent with the hypothesized trans-Beringian route of introduction via migratory birds.

  2. Presence of serum antibodies to influenza A subtypes H5 and N1 in swans and ibises in French wetlands, irrespective of highly pathogenic H5N1 natural infection.

    PubMed

    Niqueux, Eric; Guionie, Olivier; Schmitz, Audrey; Hars, Jean; Jestin, Véronique

    2010-03-01

    Highly pathogenic (HP) avian influenza A viruses (AIVs) subtype H5N1 (subclade 2.2) were detected in wild birds during outbreaks in France during winter 2006 and summer 2007 in la Dombes wetlands (eastern France) and in Moselle wetlands (northeastern France), respectively. Blood samples from apparently healthy wild birds were collected in 2006 and 2007 from the end of the outbreak to several weeks after the influenza A outbreak inside and outside the contaminated areas, and in 2008 outside the contaminated areas. The samples were tested for the presence and/or quantitation of serum antibodies to influenza A subtypes H5 and N1 using hemagglutination inhibition tests (HITs), a commercial N1-specific enzyme-linked immunosorbent assay kit, and virus neutralization assay. In the HIT, low pathogenicity (LP) and HP H5 AIVs (belonging to H5N1, H5N2, and H5N3 subtypes) were used as antigens. One hundred mute swans were bled in the la Dombes outbreak area in 2006. During 2007, 46 mallards, 69 common pochards, and 59 mute swans were sampled in the Moselle outbreak area. For comparison, blood samples were also collected in 2007 from 60 mute swans from the Marne department where no HP H5N1 influenza A cases have been reported, and in 2008 from 111 sacred ibises in western France where no HP H5N1 influenza A infections in wild birds have been reported either. Mute swans (irrespective of their origin and time of sampling) and sacred ibises (from an area with no known outbreaks) had the highest prevalence of positive sera in the H5 HIT (49-69% and 64%, respectively). The prevalence of anti-H5 antibodies in mallards and common pochards was lower (28% and 27%, respectively). Positive H5- and N1-antibody responses were also significantly associated in swans (irrespective of their origin and time of sampling) and in sacred ibises. However, in swans from the area without outbreaks, the HIT titer against an H5N1 LPAIV was significantly higher than against an H5N1 2.2.1 HPAIV, whereas no

  3. Development of epitope-blocking ELISA for universal detection of antibodies to human H5N1 influenza viruses.

    PubMed

    Prabakaran, Mookkan; Ho, Hui-Ting; Prabhu, Nayana; Velumani, Sumathy; Szyporta, Milene; He, Fang; Chan, Kwai-Peng; Chen, Li-Mei; Matsuoka, Yumiko; Donis, Ruben O; Kwang, Jimmy

    2009-01-01

    Human infections with highly pathogenic H5N1 avian influenza viruses have generally been confirmed by molecular amplification or culture-based methods. Serologic surveillance has potential advantages which have not been realized because rapid and specific serologic tests to detect H5N1 infection are not widely available. Here we describe an epitope-blocking ELISA to detect specific antibodies to H5N1 viruses in human or animal sera. The assay relies on a novel monoclonal antibody (5F8) that binds to an epitope comprising amino acid residues 274-281 (CNTKCQTP) in the HA1 region of H5 hemagglutinin. Database search analysis of publicly available sequences revealed that this epitope is conserved in 100% of the 163 H5N1 viruses isolated from humans. The sensitivity and specificity of the epitope-blocking ELISA for H5N1 were evaluated using chicken antisera to multiple virus clades and other influenza subtypes as well as serum samples from individuals naturally infected with H5N1 or seasonal influenza viruses. The epitope-blocking ELISA results were compared to those of hemagglutinin inhibition (HI) and microneutralization assays. Antibodies to H5N1 were readily detected in immunized animals or convalescent human sera by the epitope-blocking ELISA whereas specimens with antibodies to other influenza subtypes yielded negative results. The assay showed higher sensitivity and specificity as compared to HI and microneutralization. The epitope-blocking ELISA based on a unique 5F8 mAb provided highly sensitive and 100% specific detection of antibodies to H5N1 influenza viruses in human sera.

  4. Genetic characterization of H5N1 influenza A viruses isolated from zoo tigers in Thailand.

    PubMed

    Amonsin, Alongkorn; Payungporn, Sunchai; Theamboonlers, Apiradee; Thanawongnuwech, Roongroje; Suradhat, Sanipa; Pariyothorn, Nuananong; Tantilertcharoen, Rachod; Damrongwantanapokin, Sudarat; Buranathai, Chantanee; Chaisingh, Arunee; Songserm, Thaweesak; Poovorawan, Yong

    2006-01-20

    The H5N1 avian influenza virus outbreak among zoo tigers in mid-October 2004, with 45 animals dead, indicated that the avian influenza virus could cause lethal infection in a large mammalian species apart from humans. In this outbreak investigation, six H5N1 isolates were identified and two isolates (A/Tiger/Thailand/CU-T3/04 and A/Tiger/Thailand/CU-T7/04) were selected for whole genome analysis. Phylogenetic analysis of the 8 gene segments showed that the viruses clustered within the lineage of H5N1 avian isolates from Thailand and Vietnam. The hemagglutinin (HA) gene of the viruses displayed polybasic amino acids at the cleavage site, identical to those of the 2004 H5N1 isolates, which by definition are highly pathogenic avian influenza (HPAI). In addition, sequence analyses revealed that the viruses isolated from tigers harbored few genetic changes compared with the viruses having infected chicken, humans, tigers and a leopard isolated from the early 2004 H5N1 outbreaks. Sequence analyses also showed that the tiger H5N1 isolated in October 2004 was more closely related to the chicken H5N1 isolated in July than that from January. Interestingly, all the 6 tiger H5N1 isolates contained a lysine substitution at position 627 of the PB2 protein similar to the human, but distinct from the original avian isolates.

  5. Comparative Serological Assays for the Study of H5 and H7 Avian Influenza Viruses

    PubMed Central

    Milani, Adelaide; Terregino, Calogero; Cattoli, Giovanni; Temperton, Nigel J.

    2013-01-01

    The nature of influenza virus to randomly mutate and evolve into new types is an important challenge in the control of influenza infection. It is necessary to monitor virus evolution for a better understanding of the pandemic risk posed by certain variants as evidenced by the highly pathogenic avian influenza (HPAI) viruses. This has been clearly recognized in Egypt following the notification of the first HPAI H5N1 outbreak. The continuous circulation of the virus and the mass vaccination programme undertaken in poultry have resulted in a progressive genetic evolution and a significant antigenic drift near the major antigenic sites. In order to establish if vaccination is sufficient to provide significant intra- and interclade cross-protection, lentiviral pseudotypes derived from H5N1 HPAI viruses (A/Vietnam/1194/04, A/chicken/Egypt-1709-01/2007) and an antigenic drift variant (A/chicken/Egypt-1709-06-2008) were constructed and used in pseudotype-based neutralization assays (pp-NT). pp-NT data obtained was confirmed and correlated with HI and MN assays. A panel of pseudotypes belonging to influenza Groups 1 and 2, with a combination of reporter systems, was also employed for testing avian sera in order to support further application of pp-NT as an alternative valid assay that can improve avian vaccination efficacy testing, vaccine virus selection, and the reliability of reference sera. PMID:24163763

  6. Waning protection of influenza vaccination during four influenza seasons, 2011/2012 to 2014/2015.

    PubMed

    Puig-Barberà, J; Mira-Iglesias, A; Tortajada-Girbés, M; López-Labrador, F X; Librero-López, J; Díez-Domingo, J; Carballido-Fernández, M; Carratalá-Munuera, C; Correcher-Medina, P; Gil-Guillén, V; Limón-Ramírez, R; Mollar-Maseres, J; Otero-Reigada, M C; Schwarz, H

    2017-10-13

    Concerns have been raised about intraseasonal waning of the protection conferred by influenza vaccination. During four influenza seasons, we consecutively recruited individuals aged 18years or older who had received seasonal influenza vaccine and were subsequently admitted to the hospital for influenza infection, asassessed by reverse transcription polymerase chain reaction. We estimated the adjusted odds ratio (aOR) of influenza infection by date of vaccination, defined by tertiles, as early, intermediate or late vaccination. We used a test-negative approach with early vaccination as reference to estimate the aOR of hospital admission with influenza among late vaccinees. We conducted sensitivity analyses by means of conditional logistic regression, Cox proportional hazards regression, and using days between vaccination and hospital admission rather than vaccination date. Among 3615 admitted vaccinees, 822 (23%) were positive for influenza. We observed a lower risk of influenza among late vaccinees during the 2011/2012 and 2014/2015A(H3N2)-dominant seasons: aOR=0.68 (95% CI: 0.47-1.00) and 0.69 (95% CI: 0.50-0.95). We found no differences in the risk of admission with influenza among late versus early vaccinees in the 2012/2013A(H1N1)pdm09-dominant or 2013/2014B/Yamagata lineage-dominant seasons: aOR=1.18 (95% CI: 0.58-2.41) and 0.98 (95% CI: 0.56-1.72). When we restricted our analysis to individuals aged 65years or older, we found a statistically significant lower risk of admission with influenza among late vaccinees during the 2011/2012 and 2014/2015A(H3N2)-dominant seasons: aOR=0.61 (95% CI: 0.41-0.91) and 0.69 (95% CI: 0.49-0.96). We observed 39% (95% CI: 9-59%) and 31% (95% CI: 5-50%) waning of vaccine effectiveness among participants aged 65years or older during the two A(H3N2)-dominant seasons. Similar results were obtained in the sensitivity analyses. Waning of vaccine protection was observed among individuals aged 65years old or over in two A(H3N2

  7. Molecular analysis of hemagglutinin-1 fragment of avian influenza H5N1 viruses isolated from chicken farms in Indonesia from 2008 to 2010.

    PubMed

    Mahardika, Gusti N; Jonas, Melina; Murwijati, Theresia; Fitria, Nur; Suartha, I Nyoman; Suartini, I Gusti A A; Wibawan, I Wayan Teguh

    2016-04-15

    Highly pathogenic avian influenza virus of subtype H5N1 (AIV-H5N1) has been circulating in Indonesia since 2003. To understand the genetic diversity of these viruses, and to predict vaccine efficacy, the hemaglutinin-1 (HA-1) fragment of viruses isolated from chicken farms in Indonesia from 2008 to 2010 was sequenced and analyzed. The effects of these molecular changes were investigated in challenge experiments and HI assays of homologous and heterologous strains. Molecular analysis showed that these AIV-H5N1 isolates had evolved into three distinct sub-lineages from an ancestor circulating since 2003. Although no significant positive selection of residues was detected, 12 negatively selected sites were identified (p<0.05). Moreover, four sites showed evidence of significant episodic diversifying selection. The findings indicated complete protectivity and high HI titers with homologous strains, compared with protectivity ranging from 40 to 100% and lower HI titers with heterologous strains resulting from polymorphisms at antigenic sites. Our findings provide valuable insight into the molecular evolution of AIV and have important implications for vaccine efficacy and future vaccination strategies. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Increased risk of narcolepsy in children and adults after pandemic H1N1 vaccination in France.

    PubMed

    Dauvilliers, Yves; Arnulf, Isabelle; Lecendreux, Michel; Monaca Charley, Christelle; Franco, Patricia; Drouot, Xavier; d'Ortho, Marie-Pia; Launois, Sandrine; Lignot, Séverine; Bourgin, Patrice; Nogues, Béatrice; Rey, Marc; Bayard, Sophie; Scholz, Sabine; Lavault, Sophie; Tubert-Bitter, Pascale; Saussier, Cristel; Pariente, Antoine

    2013-08-01

    An increased incidence of narcolepsy in children was detected in Scandinavian countries where pandemic H1N1 influenza ASO3-adjuvanted vaccine was used. A campaign of vaccination against pandemic H1N1 influenza was implemented in France using both ASO3-adjuvanted and non-adjuvanted vaccines. As part of a study considering all-type narcolepsy, we investigated the association between H1N1 vaccination and narcolepsy with cataplexy in children and adults compared with matched controls; and compared the phenotype of narcolepsy with cataplexy according to exposure to the H1N1 vaccination. Patients with narcolepsy-cataplexy were included from 14 expert centres in France. Date of diagnosis constituted the index date. Validation of cases was performed by independent experts using the Brighton collaboration criteria. Up to four controls were individually matched to cases according to age, gender and geographic location. A structured telephone interview was performed to collect information on medical history, past infections and vaccinations. Eighty-five cases with narcolepsy-cataplexy were included; 23 being further excluded regarding eligibility criteria. Of the 62 eligible cases, 59 (64% males, 57.6% children) could be matched with 135 control subjects. H1N1 vaccination was associated with narcolepsy-cataplexy with an odds ratio of 6.5 (2.1-19.9) in subjects aged<18 years, and 4.7 (1.6-13.9) in those aged 18 and over. Sensitivity analyses considering date of referral for diagnosis or the date of onset of symptoms as the index date gave similar results, as did analyses focusing only on exposure to ASO3-adjuvanted vaccine. Slight differences were found when comparing cases with narcolepsy-cataplexy exposed to H1N1 vaccination (n=32; mostly AS03-adjuvanted vaccine, n=28) to non-exposed cases (n=30), including shorter delay of diagnosis and a higher number of sleep onset rapid eye movement periods for exposed cases. No difference was found regarding history of infections. In

  9. Anti-neuraminidase antibodies against pandemic A/H1N1 influenza viruses in healthy and influenza-infected individuals.

    PubMed

    Desheva, Yulia; Sychev, Ivan; Smolonogina, Tatiana; Rekstin, Andrey; Ilyushina, Natalia; Lugovtsev, Vladimir; Samsonova, Anastasia; Go, Aleksey; Lerner, Anna

    2018-01-01

    The main objective of the study was to evaluate neuraminidase inhibiting (NI) antibodies against A/H1N1pdm09 influenza viruses in the community as a whole and after infection. We evaluated NI serum antibodies against A/California/07/09(H1N1)pdm and A/South Africa/3626/2013(H1N1)pdm in 134 blood donors of different ages using enzyme-linked lectin assay and in 15 paired sera from convalescents with laboratory confirmed influenza. The neuraminidase (NA) proteins of both A/H1N1pdm09 viruses had minimal genetic divergence, but demonstrated different enzymatic and antigenic properties. 5.2% of individuals had NI antibody titers ≥1:20 against A/South Africa/3626/2013(H1N1)pdm compared to 53% of those who were positive to A/California/07/2009(H1N1)pdm NA. 2% of individuals had detectable NI titers against A/South Africa/3626/13(H1N1)pdm and 47.3% were positive to A/California/07/2009(H1N1)pdm NA among participants negative to hemagglutinin (HA) of A/H1N1pdm09 but positive to seasonal A/H1N1. The lowest NI antibody levels to both A/H1N1pdm09 viruses were detected in individuals born between 1956 and 1968. Our data suggest that NI antibodies against A/South Africa/3626/13 (H1N1)pdm found in the blood donors could have resulted from direct infection with a new antigenic A/H1N1pdm09 variant rather than from cross-reaction as a result of contact with previously circulating seasonal A/H1N1 variants. The immune responses against HA and NA were formed simultaneously right after natural infection with A/H1N1pdm09. NI antibodies correlated with virus-neutralizing antibodies when acquired shortly after influenza infection. A group of middle-aged patients with the lowest level of anti-NA antibodies against A/California/07/2009 (H1N1)pdm was identified, indicating the highest-priority vaccination against A/H1N1pdm09 viruses.

  10. Anti-neuraminidase antibodies against pandemic A/H1N1 influenza viruses in healthy and influenza-infected individuals

    PubMed Central

    Sychev, Ivan; Smolonogina, Tatiana; Rekstin, Andrey; Ilyushina, Natalia; Lugovtsev, Vladimir; Samsonova, Anastasia; Go, Aleksey; Lerner, Anna

    2018-01-01

    The main objective of the study was to evaluate neuraminidase inhibiting (NI) antibodies against A/H1N1pdm09 influenza viruses in the community as a whole and after infection. We evaluated NI serum antibodies against A/California/07/09(H1N1)pdm and A/South Africa/3626/2013(H1N1)pdm in 134 blood donors of different ages using enzyme-linked lectin assay and in 15 paired sera from convalescents with laboratory confirmed influenza. The neuraminidase (NA) proteins of both A/H1N1pdm09 viruses had minimal genetic divergence, but demonstrated different enzymatic and antigenic properties. 5.2% of individuals had NI antibody titers ≥1:20 against A/South Africa/3626/2013(H1N1)pdm compared to 53% of those who were positive to A/California/07/2009(H1N1)pdm NA. 2% of individuals had detectable NI titers against A/South Africa/3626/13(H1N1)pdm and 47.3% were positive to A/California/07/2009(H1N1)pdm NA among participants negative to hemagglutinin (HA) of A/H1N1pdm09 but positive to seasonal A/H1N1. The lowest NI antibody levels to both A/H1N1pdm09 viruses were detected in individuals born between 1956 and 1968. Our data suggest that NI antibodies against A/South Africa/3626/13 (H1N1)pdm found in the blood donors could have resulted from direct infection with a new antigenic A/H1N1pdm09 variant rather than from cross-reaction as a result of contact with previously circulating seasonal A/H1N1 variants. The immune responses against HA and NA were formed simultaneously right after natural infection with A/H1N1pdm09. NI antibodies correlated with virus-neutralizing antibodies when acquired shortly after influenza infection. A group of middle-aged patients with the lowest level of anti-NA antibodies against A/California/07/2009 (H1N1)pdm was identified, indicating the highest-priority vaccination against A/H1N1pdm09 viruses. PMID:29742168

  11. A novel approach for preparation of the antisera reagent for potency determination of inactivated H7N9 influenza vaccines.

    PubMed

    Schmeisser, Falko; Jing, Xianghong; Joshi, Manju; Vasudevan, Anupama; Soto, Jackeline; Li, Xing; Choudhary, Anil; Baichoo, Noel; Resnick, Josephine; Ye, Zhiping; McCormick, William; Weir, Jerry P

    2016-03-01

    The potency of inactivated influenza vaccines is determined using a single-radial immunodiffusion (SRID) assay and requires standardized reagents consisting of a Reference Antigen and an influenza strain-specific antiserum. Timely availability of reagents is a critical step in influenza vaccine production, and the need for backup approaches for reagent preparation is an important component of pandemic preparedness. When novel H7N9 viruses emerged in China in 2013, candidate inactivated H7N9 influenza vaccines were developed for evaluation in clinical trials, and reagents were needed to measure vaccine potency. We previously described an alternative approach for generating strain-specific potency antisera, utilizing modified vaccinia virus Ankara vectors to produce influenza hemagglutinin (HA)-containing virus-like particles (VLPs) for immunization. Vector-produced HA antigen is not dependent upon the success of the traditional bromelain-digestion and HA purification. Antiserum for H7N9 vaccines, produced after immunization of sheep with preparations of bromelain-HA (br-HA), was not optimal for the SRID assay, and the supply of antiserum was limited. However, antiserum obtained from sheep boosted with VLPs containing H7 HA greatly improved the ring quality in the SRID assay. Importantly, this antiserum worked well with both egg- and cell-derived antigen and was distributed to vaccine manufacturers. Utilizing a previously developed approach for preparing vaccine potency antiserum, we have addressed a major bottleneck encountered in preparation of H7N9 vaccine reagents. The combination of br-HA and mammalian VLPs for sequential immunization represents the first use of an alternative approach for producing an influenza vaccine potency antiserum. © 2015 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  12. A model for early onset of protection against lethal challenge with highly pathogenic H5N1 influenza virus.

    PubMed

    Röhrs, Susanne; Kalthoff, Donata; Beer, Martin

    2014-05-07

    Highly pathogenic avian influenza viruses of subtype H5N1 sporadically cause severe disease in humans and involve the risk of inducing a pandemic by gaining the ability for human-to-human transmission. In naïve poultry, primarily gallinaceous birds, the virus induces fatal disease and the used inactivated vaccines occasionally are unable to provide efficient and early onset of protection. Therefore, optimized vaccines must be developed and evaluated in model systems. In our study, we tested a novel H5 neuraminidase-deleted influenza A virus variant to analyze the induction of a very early onset of immunity. Ferrets, mice and chickens were each immunized with a single vaccine dose seven, three and one day before lethal challenge infection, respectively. Sound protection was conferred in 100% of animals immunized seven days prior to challenge infection. In these animals, no clinical signs were observed, and no challenge virus RNA was detected by real-time RT-PCR analyses of swabs, nasal washings, and organ samples. Moreover, the attenuated modified-live virus variant protected all chickens, mice, and ferrets as early as three days after vaccination against severe clinical signs. Chickens and ferrets developed hemagglutinin-specific antibodies after seven days, but no neuraminidase-specific antibodies, making this kind of neuraminidase-negative strain suitable for the DIVA ("differentiating vaccinated from infected animals") strategy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Reassortment between Avian H5N1 and human influenza viruses is mainly restricted to the matrix and neuraminidase gene segments.

    PubMed

    Schrauwen, Eefje J A; Bestebroer, Theo M; Rimmelzwaan, Guus F; Osterhaus, Albert D M E; Fouchier, Ron A M; Herfst, Sander

    2013-01-01

    Highly pathogenic avian influenza H5N1 viruses have devastated the poultry industry in many countries of the eastern hemisphere. Occasionally H5N1 viruses cross the species barrier and infect humans, sometimes with a severe clinical outcome. When this happens, there is a chance of reassortment between H5N1 and human influenza viruses. To assess the potential of H5N1 viruses to reassort with contemporary human influenza viruses (H1N1, H3N2 and pandemic H1N1), we used an in vitro selection method to generate reassortant viruses, that contained the H5 hemagglutinin gene, and that have a replication advantage in vitro. We found that the neuraminidase and matrix gene segments of human influenza viruses were preferentially selected by H5 viruses. However, these H5 reassortant viruses did not show a marked increase in replication in MDCK cells and human bronchial epithelial cells. In ferrets, inoculation with a mixture of H5N1-pandemic H1N1 reassortant viruses resulted in outgrowth of reassortant H5 viruses that had incorporated the neuraminidase and matrix gene segment of pandemic 2009 H1N1. This virus was not transmitted via aerosols or respiratory droplets to naïve recipient ferrets. Altogether, these data emphasize the potential of avian H5N1 viruses to reassort with contemporary human influenza viruses. The neuraminidase and matrix gene segments of human influenza viruses showed the highest genetic compatibility with HPAI H5N1 virus.

  14. Knowledge, attitudes, and practices of school personnel regarding influenza, vaccinations, and school outbreaks.

    PubMed

    Ha, Chrysanthy; Rios, Lenoa M; Pannaraj, Pia S

    2013-08-01

    School personnel are important for communicating with parents about school vaccination programs and recognizing influenza outbreaks. This study examined knowledge, attitudes, and practices of school personnel regarding seasonal and 2009 H1N1 influenza, vaccinations, and school outbreak investigations. Data were analyzed from survey interviews of 58 elementary and middle school personnel in 2010. Principals, assistant principals, and nurses have higher knowledge than front office clerks regarding seasonal (odds ratio [OR]: 2.50, 95% confidence interval [CI]: 1.15-5.42) and 2009 H1N1 influenza (OR: 2.04, 95% CI: 1.19-3.71). During 2009-2010, 63.8 and 19.0% of school personnel received seasonal and 2009 H1N1 influenza vaccine, respectively. Personnel were more likely to be vaccinated against seasonal influenza if they believed the vaccine was safe (OR: 2.26, 95% CI: 1.21-4.19). Of those unvaccinated against 2009 H1N1, 48.9% also cited safety concerns. While every principal, assistant principal, and nurse received both infectious diseases and outbreak trainings, only 42.5 and 27.5% of clerks received these trainings, respectively (p < .001), and 30% of clerks believed outbreak recognition was not their responsibility. The level of knowledge regarding influenza illness, vaccination, and outbreaks among subjects was low overall. Education of school personnel may improve school vaccination programs and control of influenza outbreaks. © 2013, American School Health Association.

  15. Seroprevalence survey of avian influenza A(H5N1) among live poultry market workers in northern Viet Nam, 2011.

    PubMed

    Dung, Tham Chi; Dinh, Pham Ngoc; Nam, Vu Sinh; Tan, Luong Minh; Hang, Nguyen Le Khanh; Thanh, Le Thi; Mai, Le Quynh

    2014-01-01

    Highly pathogenic avian influenza A(H5N1) is endemic in poultry in Viet Nam. The country has experienced the third highest number of human infections with influenza A(H5N1) in the world. A study in Hanoi in 2001, before the epizootic that was identified in 2003, found influenza A(H5N1) specific antibodies in 4% of poultry market workers (PMWs). We conducted a seroprevalence survey to determine the seroprevalence of antibodies to influenza A(H5N1) among PMWs in Hanoi, Thaibinh and Thanhhoa provinces. We selected PMWs from five markets, interviewed them and collected blood samples. These were then tested using a horse haemagglutination inhibition assay and a microneutralization assay with all three clades of influenza A(H5N1) viruses that have circulated in Viet Nam since 2004. The overall seroprevalence was 6.1% (95% confidence interval: 4.6-8.3). The highest proportion (7.2%) was found in PMWs in Hanoi, and the majority of seropositive subjects (70.3%) were slaughterers or sellers of poultry. The continued circulation and evolution of influenza A(H5N1) requires comprehensive surveillance of both human and animal sites throughout the country with follow-up studies on PMWs to estimate the risk of avian-human transmission of influenza A(H5N1) in Viet Nam.

  16. Sequential Infection in Ferrets with Antigenically Distinct Seasonal H1N1 Influenza Viruses Boosts Hemagglutinin Stalk-Specific Antibodies

    PubMed Central

    Kirchenbaum, Greg A.; Carter, Donald M.

    2015-01-01

    ABSTRACT Broadly reactive antibodies targeting the conserved hemagglutinin (HA) stalk region are elicited following sequential infection or vaccination with influenza viruses belonging to divergent subtypes and/or expressing antigenically distinct HA globular head domains. Here, we demonstrate, through the use of novel chimeric HA proteins and competitive binding assays, that sequential infection of ferrets with antigenically distinct seasonal H1N1 (sH1N1) influenza virus isolates induced an HA stalk-specific antibody response. Additionally, stalk-specific antibody titers were boosted following sequential infection with antigenically distinct sH1N1 isolates in spite of preexisting, cross-reactive, HA-specific antibody titers. Despite a decline in stalk-specific serum antibody titers, sequential sH1N1 influenza virus-infected ferrets were protected from challenge with a novel H1N1 influenza virus (A/California/07/2009), and these ferrets poorly transmitted the virus to naive contacts. Collectively, these findings indicate that HA stalk-specific antibodies are commonly elicited in ferrets following sequential infection with antigenically distinct sH1N1 influenza virus isolates lacking HA receptor-binding site cross-reactivity and can protect ferrets against a pathogenic novel H1N1 virus. IMPORTANCE The influenza virus hemagglutinin (HA) is a major target of the humoral immune response following infection and/or seasonal vaccination. While antibodies targeting the receptor-binding pocket of HA possess strong neutralization capacities, these antibodies are largely strain specific and do not confer protection against antigenic drift variant or novel HA subtype-expressing viruses. In contrast, antibodies targeting the conserved stalk region of HA exhibit broader reactivity among viruses within and among influenza virus subtypes. Here, we show that sequential infection of ferrets with antigenically distinct seasonal H1N1 influenza viruses boosts the antibody responses

  17. Single-Domain Antibodies Targeting Neuraminidase Protect against an H5N1 Influenza Virus Challenge

    PubMed Central

    Cardoso, Francisco Miguel; Ibañez, Lorena Itatí; Van den Hoecke, Silvie; De Baets, Sarah; Smet, Anouk; Roose, Kenny; Schepens, Bert; Descamps, Francis J.; Fiers, Walter; Muyldermans, Serge

    2014-01-01

    ABSTRACT Influenza virus neuraminidase (NA) is an interesting target of small-molecule antiviral drugs. We isolated a set of H5N1 NA-specific single-domain antibodies (N1-VHHm) and evaluated their in vitro and in vivo antiviral potential. Two of them inhibited the NA activity and in vitro replication of clade 1 and 2 H5N1 viruses. We then generated bivalent derivatives of N1-VHHm by two methods. First, we made N1-VHHb by genetically joining two N1-VHHm moieties with a flexible linker. Second, bivalent N1-VHH-Fc proteins were obtained by genetic fusion of the N1-VHHm moiety with the crystallizable region of mouse IgG2a (Fc). The in vitro antiviral potency against H5N1 of both bivalent N1-VHHb formats was 30- to 240-fold higher than that of their monovalent counterparts, with 50% inhibitory concentrations in the low nanomolar range. Moreover, single-dose prophylactic treatment with bivalent N1-VHHb or N1-VHH-Fc protected BALB/c mice against a lethal challenge with H5N1 virus, including an oseltamivir-resistant H5N1 variant. Surprisingly, an N1-VHH-Fc fusion without in vitro NA-inhibitory or antiviral activity also protected mice against an H5N1 challenge. Virus escape selection experiments indicated that one amino acid residue close to the catalytic site is required for N1-VHHm binding. We conclude that single-domain antibodies directed against influenza virus NA protect against H5N1 virus infection, and when engineered with a conventional Fc domain, they can do so in the absence of detectable NA-inhibitory activity. IMPORTANCE Highly pathogenic H5N1 viruses are a zoonotic threat. Outbreaks of avian influenza caused by these viruses occur in many parts of the world and are associated with tremendous economic loss, and these viruses can cause very severe disease in humans. In such cases, small-molecule inhibitors of the viral NA are among the few treatment options for patients. However, treatment with such drugs often results in the emergence of resistant viruses

  18. Highly Pathogenic Avian Influenza Virus (H5N1) Outbreak in Captive Wild Birds and Cats, Cambodia

    PubMed Central

    Marx, Nick; Ong, Sivuth; Gaidet, Nicolas; Hunt, Matt; Manuguerra, Jean-Claude; Sorn, San; Peiris, Malik; Van der Werf, Sylvie; Reynes, Jean-Marc

    2009-01-01

    From December 2003 through January 2004, the Phnom Tamao Wildlife Rescue Centre, Cambodia, was affected by the highly pathogenic influenza virus (H5N1). Birds from 26 species died. Influenza virus subtype H5N1 was detected in 6 of 7 species tested. Cats from 5 of 7 species were probably infected; none died. PMID:19239769

  19. Serial Vaccination and the Antigenic Distance Hypothesis: Effects on Influenza Vaccine Effectiveness During A(H3N2) Epidemics in Canada, 2010-2011 to 2014-2015.

    PubMed

    Skowronski, Danuta M; Chambers, Catharine; De Serres, Gaston; Sabaiduc, Suzana; Winter, Anne-Luise; Dickinson, James A; Gubbay, Jonathan B; Fonseca, Kevin; Drews, Steven J; Charest, Hugues; Martineau, Christine; Krajden, Mel; Petric, Martin; Bastien, Nathalie; Li, Yan; Smith, Derek J

    2017-04-01

    The antigenic distance hypothesis (ADH) predicts that negative interference from prior season's influenza vaccine (v1) on the current season's vaccine (v2) protection may occur when the antigenic distance is small between v1 and v2 (v1 ≈ v2) but large between v1 and the current epidemic (e) strain (v1 ≠ e). Vaccine effectiveness (VE) against medically attended, laboratory-confirmed influenza A(H3N2) illness was estimated by test-negative design during 3 A(H3N2) epidemics (2010-2011, 2012-2013, 2014-2015) in Canada. Vaccine effectiveness was derived with covariate adjustment across v2 and/or v1 categories relative to no vaccine receipt among outpatients aged ≥9 years. Prior vaccination effects were interpreted within the ADH framework. Prior vaccination effects varied significantly by season, consistent with the ADH. There was no interference by v1 in 2010-2011 when v1 ≠ v2 and v1 ≠ e, with comparable VE for v2 alone or v2 + v1: 34% (95% confidence interval [CI] = -51% to 71%) versus 34% (95% CI = -5% to 58%). Negative interference by v1 was suggested in 2012-2013 with nonsignificant reduction in VE when v1 ≈ v2 and v1 ≠ e: 49% (95% CI = -47% to 83%) versus 28% (95% CI = -12% to 54%). Negative effects of prior vaccination were pronounced and statistically significant in 2014-2015 when v1 ≡ v2 and v1 ≠ e: 65% (95% CI = 25% to 83%) versus -33% (95% CI = -78% to 1%). Effects of repeat influenza vaccination were consistent with the ADH and may have contributed to findings of low VE across recent A(H3N2) epidemics since 2010 in Canada. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  20. Attenuation of the influenza virus by microRNA response element in vivo and protective efficacy against 2009 pandemic H1N1 virus in mice.

    PubMed

    Feng, Chunlai; Tan, Mingming; Sun, Wenkui; Shi, Yi; Xing, Zheng

    2015-09-01

    The 2009 influenza pandemics underscored the need for effective vaccines to block the spread of influenza virus infection. Most live attenuated vaccines utilize cold-adapted, temperature-sensitive virus. An alternative to live attenuated virus is presented here, based on microRNA-induced gene silencing. In this study, miR-let-7b target sequences were inserted into the H1N1 genome to engineer a recombinant virus - miRT-H1N1. Female BALB/c mice were vaccinated intranasally with the miRT-H1N1 and challenged with a lethal dose of homologous virus. This miRT-H1N1 virus was attenuated in mice, while it exhibited wild-type characteristics in chicken embryos. Mice vaccinated intranasally with the miRT-H1N1 responded with robust immunity that protected the vaccinated mice from a lethal challenge with the wild-type 2009 pandemic H1N1 virus. These results indicate that the influenza virus containing microRNA response elements (MREs) is attenuated in vivo and can be used to design a live attenuated vaccine. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Early 2016/17 vaccine effectiveness estimates against influenza A(H3N2): I-MOVE multicentre case control studies at primary care and hospital levels in Europe

    PubMed Central

    Kissling, Esther; Rondy, Marc

    2017-01-01

    We measured early 2016/17 season influenza vaccine effectiveness (IVE) against influenza A(H3N2) in Europe using multicentre case control studies at primary care and hospital levels. IVE at primary care level was 44.1%, 46.9% and 23.4% among 0–14, 15–64 and ≥ 65 year-olds, and 25.7% in the influenza vaccination target group. At hospital level, IVE was 2.5%, 7.9% and 2.4% among ≥ 65, 65–79 and ≥ 80 year-olds. As in previous seasons, we observed suboptimal IVE against influenza A(H3N2). PMID:28230524

  2. Mechanistic insights into influenza vaccine-associated narcolepsy.

    PubMed

    Ahmed, S Sohail; Steinman, Lawrence

    2016-12-01

    We previously reported an increased frequency of antibodies to hypocretin (HCRT) receptor 2 in sera obtained from narcoleptic patients who received the European AS03-adjuvanted vaccine Pandemrix (GlaxoSmithKline Biologicals, s.a.) for the global influenza A H1N1 pandemic in 2009 [A(H1N1)pdm09]. These antibodies cross-reacted with a particular fragment of influenza nucleoprotein (NP) - one of the proteins naturally contained in the virus used to make seasonal influenza vaccine and pandemic influenza vaccines. The purpose of this commentary is to provide additional insights and interpretations of the findings and share additional data not presented in the original paper to help the reader appreciate the key messages of that publication. First, a brief background to narcolepsy and vaccine-induced narcolepsy will be provided. Then, additional insights and clarification will be provided on the following topics: 1) the critical difference identified in the adjuvanted A(H1N1)pdm09 vaccines, 2) the contributing factor likely for the discordant association of narcolepsy between the AS03-adjuvanted pandemic vaccines Pandemrix and Arepanrix (GlaxoSmithKline Biologicals, s.a.), 3) the significance of detecting HCRT receptor 2 (HCRTr2) antibodies in some Finnish control subjects, 4) the approach used for the detection of HCRTr2 antibodies in vaccine-associated narcolepsy, and 5) the plausibility of the proposed mechanism involving HCRTr2 modulation in vaccine-associated narcolepsy.

  3. Pathogenesis of the 1918 pandemic and H5N1 influenza virus infection in a guinea pig model: The antiviral potential of exogenous alpha-interferon to reduce virus shedding

    USDA-ARS?s Scientific Manuscript database

    Although highly pathogenic avian influenza H5N1 viruses have yet to acquire the ability to transmit efficiently among humans, the geographic expansion, and continued outbreaks in humans and avian species underscore the need for more effective influenza vaccines and antivirals. Additional small anim...

  4. Pathogenesis and transmission of H7 and H5 highly pathogenic avian influenza viruses in mallards including the recent intercontinental H5 viruses (H5N8 and H5N2)

    USDA-ARS?s Scientific Manuscript database

    Highly pathogenic avian influenza viruses (HPAIV’s) remain a threat to poultry worldwide. Avian influenza viruses, including HPAIV, are usually non-pathogenic for ducks and other wild aquatic birds, with the exception of Asian lineage H5N1, and recently H5N8, HPAIVs, which can cause moderate to sev...

  5. Influenza vaccine effectiveness assessment through sentinel virological data in three post-pandemic seasons

    PubMed Central

    Torner, Núria; Martínez, Ana; Basile, Luca; Marcos, M Angeles; Antón, Andrés; Mar Mosquera, M; Isanta, Ricard; Cabezas, Carmen; Jané, Mireia; Domínguez, Angela; Program of Catalonia, the PIDIRAC Sentinel Surveillance

    2014-01-01

    Influenza vaccination aims at reducing the incidence of serious disease, complications and death among those with the most risk of severe influenza disease. Influenza vaccine effectiveness (VE) through sentinel surveillance data from the PIDIRAC program (Daily Acute Respiratory Infection Surveillance of Catalonia) during 2010–2011, 2011–2012, and 2012–2013 influenza seasons, with three different predominant circulating influenza virus (IV) types [A(H1N1)pdm09, A(H3N2) and B, respectively] was assessed. The total number of sentinel samples with known vaccination background collected during the study period was 3173, 14.7% of which had received the corresponding seasonal influenza vaccine. 1117 samples (35.2%) were positive for IV. A retrospective negative case control design was used to assess vaccine effectiveness (VE) for the entire period and for each epidemic influenza season. An overall VE of 58.1% (95% CI:46.8–67) was obtained. Differences in VE according to epidemic season were observed, being highest for the 2012–2013 season with predominance of IV type B (69.7% ;95% CI:51.5–81) and for the 2010–2011 season, with predominance of the A(H1N1)pdm09 influenza virus strain (67.2% ;95%CI:49.5–78.8) and lowest for the 2011–2012 season with A(H3N2) subtype predominance (34.2% ;95%CI:4.5–54.6). Influenza vaccination prevents a substantial number of influenza-associated illnesses. Although vaccines with increased effectiveness are needed and the search for a universal vaccine that is not subject to genetic modifications might increase VE, nowadays only the efforts to increase vaccination rates of high-risk population and healthcare personnel let reduce the burden of influenza and its complications. PMID:25483540

  6. A human monoclonal antibody derived from a vaccinated volunteer recognizes heterosubtypically a novel epitope on the hemagglutinin globular head of H1 and H9 influenza A viruses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boonsathorn, Naphatsawan; Panthong, Sumolrat; Japan Science and Technology Agency/Japan International Cooperation Agency, Science and Technology Research Partnership for Sustainable Development

    Highlights: • A human monoclonal antibody against influenza virus was produced from a volunteer. • The antibody was generated from the PBMCs of the volunteer using the fusion method. • The antibody neutralized heterosubtypically group 1 influenza A viruses (H1 and H9). • The antibody targeted a novel epitope in globular head region of the hemagglutinin. • Sequences of the identified epitope are highly conserved among H1 and H9 subtypes. - Abstract: Most neutralizing antibodies elicited during influenza virus infection or by vaccination have a narrow spectrum because they usually target variable epitopes in the globular head region of hemagglutininmore » (HA). In this study, we describe a human monoclonal antibody (HuMAb), 5D7, that was prepared from the peripheral blood lymphocytes of a vaccinated volunteer using the fusion method. The HuMAb heterosubtypically neutralizes group 1 influenza A viruses, including seasonal H1N1, 2009 pandemic H1N1 (H1N1pdm) and avian H9N2, with a strong hemagglutinin inhibition activity. Selection of an escape mutant showed that the HuMAb targets a novel conformational epitope that is located in the HA head region but is distinct from the receptor binding site. Furthermore, Phe114Ile substitution in the epitope made the HA unrecognizable by the HuMAb. Amino acid residues in the predicted epitope region are also highly conserved in the HAs of H1N1 and H9N2. The HuMAb reported here may be a potential candidate for the development of therapeutic/prophylactic antibodies against H1 and H9 influenza viruses.« less

  7. Illness representation on H1N1 influenza and preventive behaviors in the Hong Kong general population.

    PubMed

    Mo, Phoenix K H; Lau, Joseph T F

    2015-12-01

    This study examined illness representations of new influenza Human Swine Influenza A (H1N1) and association with H1N1 preventive behaviors among 300 Chinese adults using a population-based randomized telephone survey. Results showed that relatively few participants thought H1N1 would have serious consequences (12%-15.7%) and few showed negative emotional responses toward H1N1 (9%-24.7%). The majority of the participants thought H1N1 could be controlled by treatment (70.4%-72.7%). Multiple logistic regression analyses showed that treatment control (odds ratio = 1.78) and psychological attribution (odds ratio = .75) were associated with intention to take up influenza vaccination. Emotional representations were associated with lower likelihood of wearing face mask (odds ratio = .77) and hand washing (odds ratio = .67). Results confirm that illness representation variables are associated with H1N1 preventive behaviors. © The Author(s) 2014.

  8. Supplementation of H1N1pdm09 split vaccine with heterologous tandem repeat M2e5x virus-like particles confers improved cross-protection in ferrets.

    PubMed

    Music, Nedzad; Reber, Adrian J; Kim, Min-Chul; York, Ian A; Kang, Sang-Moo

    2016-01-20

    Current influenza vaccines induce strain-specific immunity to the highly variable hemagglutinin (HA) protein. It is therefore a high priority to develop vaccines that induce broadly cross-protective immunity to different strains of influenza. Since influenza A M2 proteins are highly conserved among different strains, five tandem repeats of the extracellular peptide of M2 in a membrane-anchored form on virus-like particles (VLPs) have been suggested to be a promising candidate for universal influenza vaccine. In this study, ferrets were intramuscularly immunized with 2009 H1N1 split HA vaccine ("Split") alone, influenza split vaccine supplemented with M2e5x VLP ("Split+M2e5x"), M2e5x VLP alone ("M2e5x"), or mock immunized. Vaccine efficacy was measured serologically and by protection against a serologically distinct viral challenge. Ferrets immunized with Split+M2e5x induced HA strain specific and conserved M2e immunity. Supplementation of M2e5x VLP to split vaccination significantly increased the immunogenicity of split vaccine compared to split alone. The Split+M2e5x ferret group showed evidence of cross-reactive protection, including faster recovery from weight loss, and reduced inflammation, as inferred from changes in peripheral leukocyte subsets, compared to mock-immunized animals. In addition, ferrets immunized with Split+M2e5x shed lower viral nasal-wash titers than the other groups. Ferrets immunized with M2e5x alone also show some protective effects, while those immunized with split vaccine alone induced no protective effects compared to mock-immunized ferrets. These studies suggest that supplementation of split vaccine with M2e5x-VLP may provide broader and improved cross-protection than split vaccine alone. Published by Elsevier Ltd.

  9. Supplementation of H1N1pdm09 split vaccine with heterologous tandem repeat M2e5x virus-like particles confers improved cross-protection in ferrets

    PubMed Central

    Music, Nedzad; Reber, Adrian J.; Kim, Min-Chul; York, Ian A.; Kang, Sang-Moo

    2015-01-01

    Current influenza vaccines induce strain-specific immunity to the highly variable hemagglutinin (HA) protein. It is therefore a high priority to develop vaccines that induce broadly cross-protective immunity to different strains of influenza. Since influenza A M2 proteins are highly conserved among different strains, five tandem repeats of the extracellular peptide of M2 in a membrane-anchored form on virus-like particles (VLPs) have been suggested to be a promising candidate for universal influenza vaccine. In this study, ferrets were intramuscularly immunized with 2009 H1N1 split HA vaccine (“Split”) alone, influenza split vaccine supplemented with M2e5x VLP (“Split+M2e5x”), M2e5x VLP alone (“M2e5x”), or mock immunized. Vaccine efficacy was measured serologically and by protection against a serologically distinct viral challenge. Ferrets immunized with Split+M2e5x induced HA strain specific and conserved M2e immunity. Supplementation of M2e5x VLP to split vaccination significantly increased the immunogenicity of split vaccine compared to split alone. The Split+M2e5x ferret group showed evidence of cross-reactive protection, including faster recovery from weight loss, and reduced inflammation, as inferred from changes in peripheral leukocyte subsets, compared to mock-immunized animals. In addition, ferrets immunized with Split+M2e5x shed lower viral nasal-wash titers than the other groups. Ferrets immunized with M2e5x alone also show some protective effects, while those immunized with split vaccine alone induced no protective effects compared to mock-immunized ferrets. These studies suggest that supplementation of split vaccine with M2e5x-VLP may provide broader and improved cross-protection than split vaccine alone. PMID:26709639

  10. Inspecting the Mechanism: A Longitudinal Analysis of Socioeconomic Status Differences in Perceived Influenza Risks, Vaccination Intentions, and Vaccination Behaviors during the 2009-2010 Influenza Pandemic.

    PubMed

    Maurer, Jürgen

    2016-10-01

    Influenza vaccination is strongly associated with socioeconomic status, but there is only limited evidence on the respective roles of socioeconomic differences in vaccination intentions versus corresponding differences in follow-through on initial vaccination plans for subsequent socioeconomic differences in vaccine uptake. Nonparametric mean smoothing, linear regression, and probit models were used to analyze longitudinal survey data on perceived influenza risks, behavioral vaccination intentions, and vaccination behavior of adults during the 2009-2010 influenza A/H1N1 ("swine flu") pandemic in the United States. Perceived influenza risks and behavioral vaccination intentions were elicited prior to the availability of H1N1 vaccine using a probability scale question format. H1N1 vaccine uptake was assessed at the end of the pandemic. Education, income, and health insurance coverage displayed positive associations with behavioral intentions to get vaccinated for pandemic influenza while employment was negatively associated with stated H1N1 vaccination intentions. Education and health insurance coverage also displayed significant positive associations with pandemic vaccine uptake. Moreover, behavioral vaccination intentions showed a strong and statistically significant positive partial association with later H1N1 vaccination. Incorporating vaccination intentions in a statistical model for H1N1 vaccine uptake further highlighted higher levels of follow-through on initial vaccination plans among persons with higher education levels and health insurance. Sampling bias, misreporting in self-reported data, and limited generalizability to nonpandemic influenza are potential limitations of the analysis. Closing the socioeconomic gap in influenza vaccination requires multipronged strategies that not only increase vaccination intentions by improving knowledge, attitudes, and beliefs but also facilitate follow-through on initial vaccination plans by improving behavioral

  11. Inspecting the Mechanism: A Longitudinal Analysis of Socioeconomic Status Differences in Perceived Influenza Risks, Vaccination Intentions and Vaccination Behaviors during the 2009-2010 Influenza Pandemic

    PubMed Central

    Maurer, Jürgen

    2015-01-01

    Background Influenza vaccination is strongly associated with socioeconomic status, but there is only limited evidence on the respective roles of socioeconomic differences in vaccination intentions vs. corresponding differences in follow through on initial vaccination plans for subsequent socioeconomic differences in vaccine uptake. Methods Nonparametric mean smoothing, linear regression and Probit models were used to analyze longitudinal survey data on perceived influenza risks, behavioral vaccination intentions and vaccination behavior of adults during the 2009-10 influenza A/H1N1 (“Swine Flu”) pandemic in the United States. Perceived influenza risks and behavioral vaccination intentions were elicited prior to the availability of H1N1 vaccine using a probability scale question format. H1N1 vaccine uptake was assessed at the end of the pandemic. Results Education, income and health insurance coverage displayed positive associations with behavioral intentions to get vaccinated for pandemic influenza while employment was negatively associated with stated H1N1 vaccination intentions. Education and health insurance coverage also displayed significant positive associations with pandemic vaccine uptake. Moreover, behavioral vaccination intentions showed a strong and statistically significant positive partial association with later H1N1 vaccination. Incorporating vaccination intentions in a statistical model for H1N1 vaccine uptake further highlighted higher levels of follow through on initial vaccination plans among persons with higher education levels and health insurance. Limitations Sampling bias, misreporting in self-reported data, and limited generalizability to non-pandemic influenza are potential limitations of the analysis. Conclusions Closing the socioeconomic gap in influenza vaccination requires multi-pronged strategies that not only increase vaccination intentions by improving knowledge, attitudes and beliefs but also facilitate follow through on initial

  12. Characterization of pseudoparticles paired with hemagglutinin and neuraminidase from highly pathogenic H5N1 influenza and avian influenza A (H7N9) viruses.

    PubMed

    Zhang, Fengwei; Wang, Shanshan; Wang, Yanan; Shang, Xuechai; Zhou, Hongjuan; Cai, Long

    2018-05-31

    The reassortment of two highly pathogenic avian influenza (HPAI) H5N1 and H7N9 viruses presents a potential challenge to human health. The hemagglutinins (HAs) and neuraminidases (NAs) of these simultaneously circulating avian influenza viruses were evaluated using the pseudoparticle (pp) system. Native and mismatched virus pps were generated to investigate their biological characteristics. The HAs and NAs of the two viruses reassorted successfully to generate infectious viral particles. H7 was demonstrated to have the ability to reassort with NA from the H5N1 viruses, resulting in the generation of virions that were highly infectious to bronchial epithelial cells. Although the Anhui H5+Anhui N9 combination showed an moderate infectivity to the four cell lines, it was most sensitive to oseltamivir. The H7 in the pps was found to be predominantly HA0. Further, H5 in the pps primarily presented as HA1, owing to the particular mechanisms underlying its maturation. All NAs predominantly existed in monomer form. In our study, HAs/NAs, in all combinations, were functional and able to perform their corresponding function in the viral life cycle. Our data suggest that HAs/NAs from the (HPAI) H5N1 and H7N9 viruses are capable of assembly into infectious virions, posing a threat topublic health. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. A Live Attenuated Equine H3N8 Influenza Vaccine Is Highly Immunogenic and Efficacious in Mice and Ferrets

    PubMed Central

    Baz, Mariana; Paskel, Myeisha; Matsuoka, Yumiko; Zengel, James; Cheng, Xing; Treanor, John J.; Jin, Hong

    2014-01-01

    ABSTRACT Equine influenza viruses (EIV) are responsible for rapidly spreading outbreaks of respiratory disease in horses. Although natural infections of humans with EIV have not been reported, experimental inoculation of humans with these viruses can lead to a productive infection and elicit a neutralizing antibody response. Moreover, EIV have crossed the species barrier to infect dogs, pigs, and camels and therefore may also pose a threat to humans. Based on serologic cross-reactivity of H3N8 EIV from different lineages and sublineages, A/equine/Georgia/1/1981 (eq/GA/81) was selected to produce a live attenuated candidate vaccine by reverse genetics with the hemagglutinin and neuraminidase genes of the eq/GA/81 wild-type (wt) virus and the six internal protein genes of the cold-adapted (ca) A/Ann Arbor/6/60 (H2N2) vaccine donor virus, which is the backbone of the licensed seasonal live attenuated influenza vaccine. In both mice and ferrets, intranasal administration of a single dose of the eq/GA/81 ca vaccine virus induced neutralizing antibodies and conferred complete protection from homologous wt virus challenge in the upper respiratory tract. One dose of the eq/GA/81 ca vaccine also induced neutralizing antibodies and conferred complete protection in mice and nearly complete protection in ferrets upon heterologous challenge with the H3N8 (eq/Newmarket/03) wt virus. These data support further evaluation of the eq/GA/81 ca vaccine in humans for use in the event of transmission of an equine H3N8 influenza virus to humans. IMPORTANCE Equine influenza viruses have crossed the species barrier to infect other mammals such as dogs, pigs, and camels and therefore may also pose a threat to humans. We believe that it is important to develop vaccines against equine influenza viruses in the event that an EIV evolves, adapts, and spreads in humans, causing disease. We generated a live attenuated H3N8 vaccine candidate and demonstrated that the vaccine was immunogenic and

  14. Seroprevalence survey of avian influenza A(H5N1) among live poultry market workers in northern Viet Nam, 2011

    PubMed Central

    Dung, Tham Chi; Dinh, Pham Ngoc; Nam, Vu Sinh; Tan, Luong Minh; Hang, Nguyen Le Khanh; Thanh, Le Thi

    2014-01-01

    Objective Highly pathogenic avian influenza A(H5N1) is endemic in poultry in Viet Nam. The country has experienced the third highest number of human infections with influenza A(H5N1) in the world. A study in Hanoi in 2001, before the epizootic that was identified in 2003, found influenza A(H5N1) specific antibodies in 4% of poultry market workers (PMWs). We conducted a seroprevalence survey to determine the seroprevalence of antibodies to influenza A(H5N1) among PMWs in Hanoi, Thaibinh and Thanhhoa provinces. Methods We selected PMWs from five markets, interviewed them and collected blood samples. These were then tested using a horse haemagglutination inhibition assay and a microneutralization assay with all three clades of influenza A(H5N1) viruses that have circulated in Viet Nam since 2004. Results The overall seroprevalence was 6.1% (95% confidence interval: 4.6–8.3). The highest proportion (7.2%) was found in PMWs in Hanoi, and the majority of seropositive subjects (70.3%) were slaughterers or sellers of poultry. Discussion The continued circulation and evolution of influenza A(H5N1) requires comprehensive surveillance of both human and animal sites throughout the country with follow-up studies on PMWs to estimate the risk of avian–human transmission of influenza A(H5N1) in Viet Nam. PMID:25685601

  15. Protection of White Leghorn chickens by U.S. emergency H5 vaccines against clade 2.3.4.4 H5N2 high pathogenicity avian influenza virus

    USDA-ARS?s Scientific Manuscript database

    During December 2014-June 2015, the U.S. experienced a high pathogenicity avian influenza (HPAI) outbreak caused by clade 2.3.4.4 H5Nx Goose/Guangdong lineage viruses which was the worst HPAI event for the poultry industry. Three vaccines, developed based on updating existing registered vaccines or ...

  16. Cross-reactivity between avian influenza A (H7N9) virus and divergent H7 subtypic- and heterosubtypic influenza A viruses.

    PubMed

    Guo, Li; Wang, Dayan; Zhou, Hongli; Wu, Chao; Gao, Xin; Xiao, Yan; Ren, Lili; Paranhos-Baccalà, Gláucia; Shu, Yuelong; Jin, Qi; Wang, Jianwei

    2016-02-24

    The number of human avian H7N9 influenza infections has been increasing in China. Understanding their antigenic and serologic relationships is crucial for developing diagnostic tools and vaccines. Here, we evaluated the cross-reactivities and neutralizing activities among H7 subtype influenza viruses and between H7N9 and heterosubtype influenza A viruses. We found strong cross-reactivities between H7N9 and divergent H7 subtypic viruses, including H7N2, H7N3, and H7N7. Antisera against H7N2, H7N3, and H7N7 could also effectively neutralize two distinct H7N9 strains. Two-way cross-reactivities exist within group 2, including H3 and H4, whereas one-way cross-reactivities were found across other groups, including H1, H10, H9, and H13. Our data indicate that the hemaglutinins from divergent H7 subtypes may facilitate the development of vaccines for distinct H7N9 infections. Moreover, serologic diagnoses for H7N9 infections need to consider possible interference from the cross-reactivity of H7N9 with other subtype influenza viruses.

  17. Long-term persistence of humoral and cellular immune responses induced by an AS03A-adjuvanted H1N1 2009 influenza vaccine: an open-label, randomized study in adults aged 18-60 years and older.

    PubMed

    Van Damme, Pierre; Kafeja, Froukje; Bambure, Vinod; Hanon, Emmanuel; Moris, Philippe; Roman, François; Gillard, Paul

    2013-07-01

    This manuscript presents data on the persistence of Hemagglutination Inhibition (HI) immune response against the A/California/7/2009 strain, six and 12 mo after adults received one dose (n = 138) or two doses (n = 102; 21 d apart) of a 3.75 µg Hemagglutinin antigen AS03-adjuvanted H1N1 2009 vaccine (NCT00968526). Two hundred forty subjects (18-60 y: 120;>60 y: 120) were vaccinated. Immunogenicity end points were based on the European licensure criteria for pandemic influenza vaccines. Exploratory analyses assessed the cell-mediated immune response (CMI) up to Month 12 and the influence of previous influenza vaccination on persistence of immune response. At Month 6, the CHMP criteria were met in subjects aged 18-60 y who received one or two vaccine doses and in subjects aged>60 y who received two vaccine doses. At Month 12, the CHMP criteria were met only in subjects aged 18-60 y who received two vaccine doses. Persistence of HI immune response against the vaccine strain was higher in subjects without prior influenza vaccination. Exploratory analyses showed that two doses of the H1N1 2009 vaccine induced persistence of H1N1-specific CD4+ T cells up to Month 6 and memory B cells up to Month 12. In conclusion, HI immune responses persisted up to 12 mo after vaccination with one-dose and two-dose regimens of the AS03-adjuvanted 3.75 µg HA H1N1 2009 pandemic influenza vaccine, although not all three CHMP guidance criteria for both groups were met at Month 6 and Month 12. The CD4+ T cell and B cell responses also persisted up to Month 12.

  18. Highly pathogenic avian influenza virus subtype H5N1 in Mute swans in the Czech Republic.

    PubMed

    Nagy, Alexander; Machova, Jirina; Hornickova, Jitka; Tomci, Miroslav; Nagl, Ivan; Horyna, Bedrich; Holko, Ivan

    2007-02-25

    In order to determine the actual prevalence of avian influenza viruses (AIV) in wild birds in the Czech Republic extensive surveillance was carried out between January and April 2006. A total of 2101 samples representing 61 bird species were examined for the presence of influenza A by using PCR, sequencing and cultivation on chicken embryos. AIV subtype H5N1 was detected in 12 Mute swans (Cygnus olor). The viruses were determined as HPAI (highly pathogenic avian influenza) and the hemagglutinin sequence was closely similar to A/mallard/Italy/835/06 and A/turkey/Turkey/1194/05. Following the first H5N1 case, about 300 wild birds representing 33 species were collected from the outbreak region and tested for the presence of AIV without any positive result. This is the first report of highly pathogenic avian influenza subtype H5N1 in the Czech Republic. The potential role of swan as an effective vector of avian influenza virus is also discussed.

  19. Factors Affecting Intention among Students to Be Vaccinated against A/H1N1 Influenza: A Health Belief Model Approach

    PubMed Central

    Teitler-Regev, Sharon; Shahrabani, Shosh; Benzion, Uri

    2011-01-01

    The outbreak of A/H1N1 influenza (henceforth, swine flu) in 2009 was characterized mainly by morbidity rates among young people. This study examined the factors affecting the intention to be vaccinated against the swine flu among students in Israel. Questionnaires were distributed in December 2009 among 387 students at higher-education institutions. The research questionnaire included sociodemographic characteristics and Health Belief Model principles. The results show that the factors positively affecting the intention to take the swine flu vaccine were past experience with seasonal flu shot and three HBM categories: higher levels of perceived susceptibility for catching the illness, perceived seriousness of illness, and lower levels of barriers. We conclude that offering the vaccine at workplaces may raise the intention to take the vaccine among young people in Israel. PMID:22229099

  20. Characterization of duck H5N1 influenza viruses with differing pathogenicity in mallard (Anas platyrhynchos) ducks.

    PubMed

    Tang, Yinghua; Wu, Peipei; Peng, Daxin; Wang, Xiaobo; Wan, Hongquan; Zhang, Pinghu; Long, Jinxue; Zhang, Wenjun; Li, Yanfang; Wang, Wenbin; Zhang, Xiaorong; Liu, Xiufan

    2009-12-01

    A number of H5N1 influenza outbreaks have occurred in aquatic birds in Asia. As aquatic birds are the natural reservoir of influenza A viruses and do not usually show clinical disease upon infection, the repeated H5N1 outbreaks have highlighted the importance of continuous surveillance on H5N1 viruses in aquatic birds. In the present study we characterized the biological properties of four H5N1 avian influenza viruses, which had been isolated from ducks, in different animal models. In specific pathogen free (SPF) chickens, all four isolates were highly pathogenic. In SPF mice, the S and Y isolates were moderately pathogenic. However, in mallard ducks, two isolates had low pathogenicity, while the other two were highly pathogenic and caused lethal infection. A representative isolate with high pathogenicity in ducks caused systemic infection and replicated effectively in all 10 organs tested in challenged ducks, whereas a representative isolate with low pathogenicity in ducks was only detected in some organs in a few challenged ducks. Comparison of complete genomic sequences from the four isolates showed that the same amino acid residues that have been reported to be associated with virulence and host adaption/restriction of influenza viruses were present in the PB2, HA, NA, M and NS genes, while the amino acid residues at the HA cleavage site were diverse. From these results it appeared that the virulence of H5N1 avian influenza viruses was increased for ducks and that amino acid substitutions at the HA cleavage site might have contributed to the differing pathogenicity of these isolates in mallards. A procedure for the intravenous pathogenicity index test in a mallard model for assessing the virulence of H5/H7 subtype avian influenza viruses in waterfowl is described.