Sample records for h5n2 highly pathogenic

  1. Infectivity, transmission and pathogenicity of H5 highly pathogenic avian influenza clade 2.3.4.4 (H5N8 and H5N2) United States index viruses in Pekin ducks and Chinese geese

    USDA-ARS?s Scientific Manuscript database

    In late 2014, a H5N8 highly pathogenic avian influenza (HPAI) virus, clade 2.3.4.4, spread by migratory birds into North America mixing with low pathogenicity AI viruses to produce a H5N2 HPAI virus. The H5N8 and H5N2 HPAI viruses were detected initially in wild waterfowl and backyard birds, and lat...

  2. Live attenuated H5N1 vaccine with H9N2 internal genes protects chickens from infections by both Highly Pathogenic H5N1 and H9N2 Influenza Viruses

    PubMed Central

    Nang, Nguyen Tai; Song, Byung Min; Kang, Young Myong; Kim, Heui Man; Kim, Hyun Soo; Seo, Sang Heui

    2012-01-01

    Please cite this paper as: Nang et al. (2013) Live attenuated H5N1 vaccine with H9N2 internal genes protects chickens from infections by both Highly Pathogenic H5N1 and H9N2 Influenza Viruses. Influenza and Other Respiratory Viruses 7(2) 120–131. Background  The highly pathogenic H5N1 and H9N2 influenza viruses are endemic in many countries around the world and have caused considerable economic loss to the poultry industry. Objectives  We aimed to study whether a live attenuated H5N1 vaccine comprising internal genes from a cold‐adapted H9N2 influenza virus could protect chickens from infection by both H5N1 and H9N2 viruses. Methods  We developed a cold‐adapted H9N2 vaccine virus expressing hemagglutinin and neuraminidase derived from the highly pathogenic H5N1 influenza virus using reverse genetics. Results and Conclusions  Chickens immunized with the vaccine were protected from lethal infections with homologous and heterologous H5N1 or H9N2 influenza viruses. Specific antibody against H5N1 virus was detected up to 11 weeks after vaccination (the endpoint of this study). In vaccinated chickens, IgA and IgG antibody subtypes were induced in lung and intestinal tissue, and CD4+ and CD8+ T lymphocytes expressing interferon‐gamma were induced in the splenocytes. These data suggest that a live attenuated H5N1 vaccine with cold‐adapted H9N2 internal genes can protect chickens from infection with H5N1 and H9N2 influenza viruses by eliciting humoral and cellular immunity. PMID:22487301

  3. Partial heterologous protection by low pathogenic H9N2 virus against natural H9N2-PB1 gene reassortant highly pathogenic H5N1 virus in chickens.

    PubMed

    Dash, Sandeep Kumar; Kumar, Manoj; Kataria, Jag Mohan; Nagarajan, Shanmugasundaram; Tosh, Chakradhar; Murugkar, Harshad V; Kulkarni, Diwakar D

    2016-06-01

    Low pathogenic avian influenza H9N2 and highly pathogenic avian influenza H5N1 viruses continue to co-circulate in chickens. Prior infection with low pathogenic avian influenza can modulate the outcome of H5N1 infection. In India, low pathogenic H9N2 and highly pathogenic H5N1 avian influenza viruses are co-circulating in poultry. Herein, by using chickens with prior infection of A/chicken/India/04TI05/2012 (H9N2) virus we explored the outcome of infection with H5N1 virus A/turkey/India/10CA03/2012 natural PB1 gene reassortant from H9N2. Four groups (E1-E4) of SPF chickens (n = 6) prior inoculated with 10(6) EID50 of H9N2 virus were challenged with 10(6) EID50 of H5N1 natural reassortant (PB1-H9N2) virus at days 1 (group E1); 3 (group E2); 7 (group E3) and 14 (group E4) post H9N2 inoculation. The survival percentage in groups E1-E4 was 0, 100, 66.6 and 50%, respectively. Virus shedding periods for groups E1-E4 were 3, 4, 7 and 9 days, respectively post H5N1 challenge. Birds of group E1 and E2 were shedding both H9N2 and H5N1 viruses and mean viral RNA copy number was higher in oropharyngeal swabs than cloacal swabs. In group, E3 and E4 birds excreted only H5N1 virus and mean viral RNA copy number was higher in most cloacal swabs than oral swabs. These results indicate that prior infection with H9N2 virus could protect from lethal challenge of reassortant H5N1 virus as early as with three days prior H9N2 inoculation and protection decreased in groups E3 and E4 as time elapsed. However, prior infection with H9N2 did not prevent infection with H5N1 virus and birds continue to excrete virus in oropharyngeal and cloacal swabs. Amino acid substitution K368E was found in HA gene of excreted H5N1 virus of group E3. Hence, concurrent infection can also cause emergence of viruses with mutations leading to virus evolution. The results of this study are important for the surveillance and epidemiological data analysis where both H9N2 and H5N1 viruses are co

  4. Live Bird Markets of Bangladesh: H9N2 Viruses and the Near Absence of Highly Pathogenic H5N1 Influenza

    PubMed Central

    Negovetich, Nicholas J.; Feeroz, Mohammed M.; Jones-Engel, Lisa; Walker, David; Alam, S. M. Rabiul; Hasan, Kamrul; Seiler, Patrick; Ferguson, Angie; Friedman, Kim; Barman, Subrata; Franks, John; Turner, Jasmine; Krauss, Scott; Webby, Richard J.; Webster, Robert G.

    2011-01-01

    Avian influenza surveillance in Bangladesh has been passive, relying on poultry farmers to report suspected outbreaks of highly pathogenic H5N1 influenza. Here, the results of an active surveillance effort focusing on the live-bird markets are presented. Prevalence of influenza infection in the birds of the live bird markets is 23.0%, which is similar to that in poultry markets in other countries. Nearly all of the isolates (94%) were of the non-pathogenic H9N2 subtype, but viruses of the H1N2, H1N3, H3N6, H4N2, H5N1, and H10N7 subtypes were also observed. The highly pathogenic H5N1-subtype virus was observed at extremely low prevalence in the surveillance samples (0.08%), and we suggest that the current risk of infection for humans in the retail poultry markets in Bangladesh is negligible. However, the high prevalence of the H9 subtype and its potential for interaction with the highly pathogenic H5N1-subtype, i.e., reassortment and attenuation of host morbidity, highlight the importance of active surveillance of the poultry markets. PMID:21541296

  5. Changes in adaptation of H5N2 highly pathogenic avian influenza H5 clade 2.3.4.4 viruses in chickens and mallards

    PubMed Central

    DeJesus, Eric; Costa-Hurtado, Mar; Smith, Diane; Lee, Dong-Hun; Spackman, Erica; Kapczynski, Darrell R.; Torchetti, Mia Kim; Killian, Mary Lea; Suarez, David L.; Swayne, David E.; Pantin-Jackwood, Mary J.

    2016-01-01

    H5N2 highly pathogenic avian influenza (HPAI) viruses caused a severe poultry outbreak in the United States (U.S.) during 2015. In order to examine changes in adaptation of this viral lineage, the infectivity, pathogenesis and transmission of poultry H5N2 viruses were investigated in chickens and mallards in comparison to the wild duck 2014 U.S. index H5N2 virus. The four poultry isolates examined had a lower mean bird infectious dose than the index virus but still transmitted poorly to direct contacts. In mallards, two of the H5N2 poultry isolates had similar high infectivity and transmissibility as the index H5N2 virus, the H5N8 U.S. index virus, and a 2005 H5N1 clade 2.2 virus. Mortality occurred with the H5N1 virus and, interestingly, with one of two poultry H5N2 isolates. Increased virus adaptation to chickens was observed with the poultry H5N2 viruses; however these viruses retained high adaptation to mallards but pathogenicity was differently affected. PMID:27632565

  6. Pathogenesis and Transmission of Novel Highly Pathogenic Avian Influenza H5N2 and H5N8 Viruses in Ferrets and Mice

    PubMed Central

    Pulit-Penaloza, Joanna A.; Sun, Xiangjie; Creager, Hannah M.; Zeng, Hui; Belser, Jessica A.; Maines, Taronna R.

    2015-01-01

    ABSTRACT A novel highly pathogenic avian influenza (HPAI) H5N8 virus, first detected in January 2014 in poultry and wild birds in South Korea, has spread throughout Asia and Europe and caused outbreaks in Canada and the United States by the end of the year. The spread of H5N8 and the novel reassortant viruses, H5N2 and H5N1 (H5Nx), in domestic poultry across multiple states in the United States pose a potential public health risk. To evaluate the potential of cross-species infection, we determined the pathogenicity and transmissibility of two Asian-origin H5Nx viruses in mammalian animal models. The newly isolated H5N2 and H5N8 viruses were able to cause severe disease in mice only at high doses. Both viruses replicated efficiently in the upper and lower respiratory tracts of ferrets; however, the clinical symptoms were generally mild, and there was no evidence of systemic dissemination of virus to multiple organs. Moreover, these influenza H5Nx viruses lacked the ability to transmit between ferrets in a direct contact setting. We further assessed viral replication kinetics of the novel H5Nx viruses in a human bronchial epithelium cell line, Calu-3. Both H5Nx viruses replicated to a level comparable to a human seasonal H1N1 virus, but significantly lower than a virulent Asian-lineage H5N1 HPAI virus. Although the recently isolated H5N2 and H5N8 viruses displayed moderate pathogenicity in mammalian models, their ability to rapidly spread among avian species, reassort, and generate novel strains underscores the need for continued risk assessment in mammals. IMPORTANCE In 2015, highly pathogenic avian influenza (HPAI) H5 viruses have caused outbreaks in domestic poultry in multiple U.S. states. The economic losses incurred with H5N8 and H5N2 subtype virus infection have raised serious concerns for the poultry industry and the general public due to the potential risk of human infection. This recent outbreak underscores the need to better understand the pathogenesis and

  7. Experimental infection of mandarin duck with highly pathogenic avian influenza A (H5N8 and H5N1) viruses.

    PubMed

    Kang, Hyun-Mi; Lee, Eun-Kyoung; Song, Byung-Min; Heo, Gyeong-Beom; Jung, Joojin; Jang, Il; Bae, You-Chan; Jung, Suk Chan; Lee, Youn-Jeong

    2017-01-01

    A highly pathogenic avian influenza (HPAI) H5N8 virus was first detected in poultry and wild birds in South Korea in January 2014. Here, we determined the pathogenicity and transmissibility of three different clades of H5 viruses in mandarin ducks to examine the potential for wild bird infection. H5N8 (clade 2.3.4.4) replicated more efficiently in the upper and lower respiratory tract of mandarin ducks than two previously identified H5N1 virus clades (clades 2.2 and 2.3.2.1). However, none of the mandarin ducks infected with H5N8 and H5N1 viruses showed severe clinical signs or mortality, and gross lesions were only observed in a few tissues. Viral replication and shedding were greater in H5N8-infected ducks than in H5N1-infected ducks. Recovery of all viruses from control duck in contact with infected ducks indicated that the highly pathogenic H5 viruses spread horizontally through contact. Taken together, these results suggest that H5N8 viruses spread efficiently in mandarin ducks. Further studies of pathogenicity in wild birds are required to examine possible long-distance dissemination via migration routes. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Infectivity, transmission and pathogenicity of H5 highly pathogenic avian influenza clade 2.3.4.4 (H5N8 and H5N2) United States index viruses in Pekin ducks and Chinese geese.

    PubMed

    Pantin-Jackwood, Mary J; Costa-Hurtado, Mar; Bertran, Kateri; DeJesus, Eric; Smith, Diane; Swayne, David E

    2017-06-07

    In late 2014, a H5N8 highly pathogenic avian influenza (HPAI) virus, clade 2.3.4.4, spread by migratory waterfowl into North America reassorting with low pathogenicity AI viruses to produce a H5N2 HPAI virus. Since domestic waterfowl are common backyard poultry frequently in contact with wild waterfowl, the infectivity, transmissibility, and pathogenicity of the United States H5 HPAI index viruses (H5N8 and H5N2) was investigated in domestic ducks and geese. Ducks infected with the viruses had an increase in body temperature but no or mild clinical signs. Infected geese did not show increase in body temperature and most only had mild clinical signs; however, some geese presented severe neurological signs. Ducks became infected and transmitted the viruses to contacts when inoculated with high virus doses [(10 4 and 10 6 50% embryo infective dose (EID 50 )], but not with a lower dose (10 2 EID 50 ). Geese inoculated with the H5N8 virus became infected regardless of the virus dose given, and transmitted the virus to direct contacts. Only geese inoculated with the higher doses of the H5N2 and their contacts became infected, indicating differences in infectivity between the two viruses and the two waterfowl species. Geese shed higher titers of virus and for a longer period of time than ducks. In conclusion, the H5 HPAI viruses can infect domestic waterfowl and easily transmit to contact birds, with geese being more susceptible to infection and disease than ducks. The disease is mostly asymptomatic, but infected birds shed virus for several days representing a risk to other poultry species.

  9. Multiple introductions of highly pathogenic avian influenza H5N1 viruses into Bangladesh

    PubMed Central

    Marinova-Petkova, Atanaska; Feeroz, Mohammed M; Rabiul Alam, SM; Kamrul Hasan, M; Akhtar, Sharmin; Jones-Engel, Lisa; Walker, David; McClenaghan, Laura; Rubrum, Adam; Franks, John; Seiler, Patrick; Jeevan, Trushar; McKenzie, Pamela; Krauss, Scott; Webby, Richard J; Webster, Robert G

    2014-01-01

    Highly pathogenic H5N1 and low pathogenic H9N2 influenza viruses are endemic to poultry markets in Bangladesh and have cocirculated since 2008. H9N2 influenza viruses circulated constantly in the poultry markets, whereas highly pathogenic H5N1 viruses occurred sporadically, with peaks of activity in cooler months. Thirty highly pathogenic H5N1 influenza viruses isolated from poultry were characterized by antigenic, molecular, and phylogenetic analyses. Highly pathogenic H5N1 influenza viruses from clades 2.2.2 and 2.3.2.1 were isolated from live bird markets only. Phylogenetic analysis of the 30 H5N1 isolates revealed multiple introductions of H5N1 influenza viruses in Bangladesh. There was no reassortment between the local H9N2 influenza viruses and H5N1 genotype, despite their prolonged cocirculation. However, we detected two reassortant H5N1 viruses, carrying the M gene from the Chinese H9N2 lineage, which briefly circulated in the Bangladesh poultry markets and then disappeared. On the other hand, interclade reassortment occurred within H5N1 lineages and played a role in the genesis of the currently dominant H5N1 viruses in Bangladesh. Few ‘human-like' mutations in H5N1 may account for the limited number of human cases. Antigenically, clade 2.3.2.1 H5N1 viruses in Bangladesh have evolved since their introduction and are currently mainly homogenous, and show evidence of recent antigenic drift. Although reassortants containing H9N2 genes were detected in live poultry markets in Bangladesh, these reassortants failed to supplant the dominant H5N1 lineage. PMID:26038508

  10. Pathogenesis and Transmission of Novel Highly Pathogenic Avian Influenza H5N2 and H5N8 Viruses in Ferrets and Mice.

    PubMed

    Pulit-Penaloza, Joanna A; Sun, Xiangjie; Creager, Hannah M; Zeng, Hui; Belser, Jessica A; Maines, Taronna R; Tumpey, Terrence M

    2015-10-01

    A novel highly pathogenic avian influenza (HPAI) H5N8 virus, first detected in January 2014 in poultry and wild birds in South Korea, has spread throughout Asia and Europe and caused outbreaks in Canada and the United States by the end of the year. The spread of H5N8 and the novel reassortant viruses, H5N2 and H5N1 (H5Nx), in domestic poultry across multiple states in the United States pose a potential public health risk. To evaluate the potential of cross-species infection, we determined the pathogenicity and transmissibility of two Asian-origin H5Nx viruses in mammalian animal models. The newly isolated H5N2 and H5N8 viruses were able to cause severe disease in mice only at high doses. Both viruses replicated efficiently in the upper and lower respiratory tracts of ferrets; however, the clinical symptoms were generally mild, and there was no evidence of systemic dissemination of virus to multiple organs. Moreover, these influenza H5Nx viruses lacked the ability to transmit between ferrets in a direct contact setting. We further assessed viral replication kinetics of the novel H5Nx viruses in a human bronchial epithelium cell line, Calu-3. Both H5Nx viruses replicated to a level comparable to a human seasonal H1N1 virus, but significantly lower than a virulent Asian-lineage H5N1 HPAI virus. Although the recently isolated H5N2 and H5N8 viruses displayed moderate pathogenicity in mammalian models, their ability to rapidly spread among avian species, reassort, and generate novel strains underscores the need for continued risk assessment in mammals. In 2015, highly pathogenic avian influenza (HPAI) H5 viruses have caused outbreaks in domestic poultry in multiple U.S. states. The economic losses incurred with H5N8 and H5N2 subtype virus infection have raised serious concerns for the poultry industry and the general public due to the potential risk of human infection. This recent outbreak underscores the need to better understand the pathogenesis and transmission of

  11. Evidence for common ancestry among viruses isolated from wild birds in Beringia and highly pathogenic intercontinental reassortant H5N1 and H5N2 influenza A viruses

    USGS Publications Warehouse

    Ramey, Andy M.; Reeves, Andrew; Teslaa, Joshua L.; Nashold, Sean W.; Donnelly, Tyrone F.; Bahl, Justin; Hall, Jeffrey S.

    2016-01-01

    Highly pathogenic clade 2.3.4.4 H5N8, H5N2, and H5N1 influenza A viruses were first detected in wild, captive, and domestic birds in North America in November–December 2014. In this study, we used wild waterbird samples collected in Alaska prior to the initial detection of clade 2.3.4.4 H5 influenza A viruses in North America to assess the evidence for: (1) dispersal of highly pathogenic influenza A viruses from East Asia to North America by migratory birds via Alaska and (2) ancestral origins of clade 2.3.4.4 H5 reassortant viruses in Beringia. Although we did not detect highly pathogenic influenza A viruses in our sample collection from western Alaska, we did identify viruses that contained gene segments sharing recent common ancestry with intercontinental reassortant H5N2 and H5N1 viruses. Results of phylogenetic analyses and estimates for times of most recent common ancestry support migratory birds sampled in Beringia as maintaining viral diversity closely related to novel highly pathogenic influenza A virus genotypes detected in North America. Although our results do not elucidate the route by which highly pathogenic influenza A viruses were introduced into North America, genetic evidence is consistent with the hypothesized trans-Beringian route of introduction via migratory birds.

  12. 2.1 Natural History of Highly Pathogenic Avian Influenza H5N1

    PubMed Central

    Sonnberg, Stephanie; Webby, Richard J.; Webster, Robert G.

    2013-01-01

    The ecology of highly pathogenic avian influenza (HPAI) H5N1 has significantly changed from sporadic outbreaks in terrestrial poultry to persistent circulation in terrestrial and aquatic poultry and potentially in wild waterfowl. A novel genotype of HPAI H5N1 arose in 1996 in southern China and through ongoing mutation, reassortment, and natural selection, has diverged into distinct lineages and expanded into multiple reservoir hosts. The evolution of Goose/Guangdong-lineage highly pathogenic H5N1 viruses is ongoing: while stable interactions exist with some reservoir hosts, these viruses are continuing to evolve and adapt to others, and pose an un-calculable risk to sporadic hosts, including humans. PMID:23735535

  13. Genesis and Dissemination of Highly Pathogenic H5N6 Avian Influenza Viruses

    PubMed Central

    Yang, Lei; Zhu, Wenfei; Li, Xiaodan; Bo, Hong; Zhang, Ye; Zou, Shumei; Gao, Rongbao; Dong, Jie; Zhao, Xiang; Chen, Wenbing; Dong, Libo; Zou, Xiaohui; Xing, Yongcai

    2016-01-01

    ABSTRACT Clade 2.3.4.4 highly pathogenic avian influenza viruses (H5Nx) have spread from Asia to other parts of the world. Since 2014, human infections with clade 2.3.4.4 highly pathogenic avian influenza H5N6 viruses have been continuously reported in China. To investigate the genesis of the virus, we analyzed 123 H5 or N6 environmental viruses sampled from live-poultry markets or farms from 2012 to 2015 in Mainland China. Our results indicated that clade 2.3.4.4 H5N2/N6/N8 viruses shared the same hemagglutinin gene as originated in early 2009. From 2012 to 2015, the genesis of highly pathogenic avian influenza H5N6 viruses occurred via two independent pathways. Three major reassortant H5N6 viruses (reassortants A, B, and C) were generated. Internal genes of reassortant A and B viruses and reassortant C viruses derived from clade 2.3.2.1c H5N1 and H9N2 viruses, respectively. Many mammalian adaption mutations and antigenic variations were detected among the three reassortant viruses. Considering their wide circulation and dynamic reassortment in poultry, we highly recommend close monitoring of the viruses in poultry and humans. IMPORTANCE Since 2014, clade 2.3.4.4 highly pathogenic avian influenza (H5Nx) viruses have caused many outbreaks in both wild and domestic birds globally. Severe human cases with novel H5N6 viruses in this group were also reported in China in 2014 and 2015. To investigate the genesis of the genetic diversity of these H5N6 viruses, we sequenced 123 H5 or N6 environmental viruses sampled from 2012 to 2015 in China. Sequence analysis indicated that three major reassortants of these H5N6 viruses had been generated by two independent evolutionary pathways. The H5N6 reassortant viruses had been detected in most provinces of southern China and neighboring countries. Considering the mammalian adaption mutations and antigenic variation detected, the spread of these viruses should be monitored carefully due to their pandemic potential. PMID:28003485

  14. Pathogenesis and transmission of H7 and H5 highly pathogenic avian influenza viruses in mallards including the recent intercontinental H5 viruses (H5N8 and H5N2)

    USDA-ARS?s Scientific Manuscript database

    Highly pathogenic avian influenza viruses (HPAIV’s) remain a threat to poultry worldwide. Avian influenza viruses, including HPAIV, are usually non-pathogenic for ducks and other wild aquatic birds, with the exception of Asian lineage H5N1, and recently H5N8, HPAIVs, which can cause moderate to sev...

  15. Genetic Diversity of Highly Pathogenic Avian Influenza A(H5N8/H5N5) Viruses in Italy, 2016-17.

    PubMed

    Fusaro, Alice; Monne, Isabella; Mulatti, Paolo; Zecchin, Bianca; Bonfanti, Lebana; Ormelli, Silvia; Milani, Adelaide; Cecchettin, Krizia; Lemey, Philippe; Moreno, Ana; Massi, Paola; Dorotea, Tiziano; Marangon, Stefano; Terregino, Calogero

    2017-09-01

    In winter 2016-17, highly pathogenic avian influenza A(H5N8) and A(H5N5) viruses of clade 2.3.4.4 were identified in wild and domestic birds in Italy. We report the occurrence of multiple introductions and describe the identification in Europe of 2 novel genotypes, generated through multiple reassortment events.

  16. Changes in adaptation of H5N2 highly pathogenic avian influenza H5 clade 2.3.4.4 viruses in chickens and mallards

    USDA-ARS?s Scientific Manuscript database

    H5N2 highly pathogenic avian influenza (HPAI) viruses caused a severe poultry outbreak in the United States (U.S.) during 2015. In order to examine changes in adaptation of this viral lineage, the infectivity, transmission and pathogenesis of poultry H5N2 viruses was investigated in chickens and mal...

  17. Experimental infection of highly pathogenic avian influenza viruses, Clade 2.3.4.4 H5N6 and H5N8, in Mandarin ducks from South Korea.

    PubMed

    Son, K; Kim, Y-K; Oem, J-K; Jheong, W-H; Sleeman, J M; Jeong, J

    2018-06-01

    Outbreaks of highly pathogenic avian influenza (HPAI) have been reported worldwide. Wild waterfowl play a major role in the maintenance and transmission of HPAI. Highly pathogenic avian influenza subtype H5N6 and H5N8 viruses simultaneously emerged in South Korea. In this study, the comparative pathogenicity and infectivity of Clade 2.3.4.4 Group B H5N8 and Group C H5N6 viruses were evaluated in Mandarin duck (Aix galericulata). None of the ducks infected with H5N6 or H5N8 viruses showed clinical signs or mortality. Serological assays revealed that the HA antigenicity of H5N8 and H5N6 viruses was similar to each other. Moreover, both the viruses did not replicate after cross-challenging with H5N8 and H5N6 viruses, respectively, as the second infection. Although both the viruses replicated in most of the internal organs of the ducks, viral replication and shedding through cloaca were higher in H5N8-infected ducks than in H5N6-infected ducks. The findings of this study provide preliminary information to help estimate the risks involved in further evolution and dissemination of Clade 2.3.4.4 HPAI viruses among wild birds. © 2017 The Authors. Transboundary and Emerging Diseases Published by Blackwell Verlag GmbH.

  18. Highly Pathogenic Avian Influenza H5N1 Clade 2.3.2.1c Virus in Lebanon, 2016.

    PubMed

    El Romeh, Ali; Zecchin, Bianca; Fusaro, Alice; Ibrahim, Elias; El Bazzal, Bassel; El Hage, Jeanne; Milani, Adelaide; Zamperin, Gianpiero; Monne, Isabella

    2017-06-01

    We report the phylogenetic analysis of the first outbreak of H5N1 highly pathogenic avian influenza virus detected in Lebanon from poultry in April 2016. Our whole-genome sequencing analysis revealed that the Lebanese H5N1 virus belongs to genetic clade 2.3.2.1c and clusters with viruses from Europe and West Africa.

  19. Genetic Diversity of Highly Pathogenic Avian Influenza A(H5N8/H5N5) Viruses in Italy, 2016–17

    PubMed Central

    Monne, Isabella; Mulatti, Paolo; Zecchin, Bianca; Bonfanti, Lebana; Ormelli, Silvia; Milani, Adelaide; Cecchettin, Krizia; Lemey, Philippe; Moreno, Ana; Massi, Paola; Dorotea, Tiziano; Marangon, Stefano; Terregino, Calogero

    2017-01-01

    In winter 2016–17, highly pathogenic avian influenza A(H5N8) and A(H5N5) viruses of clade 2.3.4.4 were identified in wild and domestic birds in Italy. We report the occurrence of multiple introductions and describe the identification in Europe of 2 novel genotypes, generated through multiple reassortment events. PMID:28661831

  20. Reduced experimental infectivity and transmissibility of intercontinental H5 (H5N8 and H5N2) compared to Eurasian H5N1 highly pathogenic avian influenza viruses for chickens, turkeys, and Japanese quail

    USDA-ARS?s Scientific Manuscript database

    H5N1 high pathogenicity avian influenza (HPAI) virus (HPAIV) emerged in 1996 in Guangdong China and has since spread to infect and cause deaths in wild birds, poultry and humans in over 63 countries in Asia, Europe and Africa; and more recently a reassortant H5N8 clade 2.3.4.4 HPAI virus has spread ...

  1. Novel Highly Pathogenic Avian A(H5N2) and A(H5N8) Influenza Viruses of Clade 2.3.4.4 from North America Have Limited Capacity for Replication and Transmission in Mammals

    PubMed Central

    Kaplan, Bryan S.; Russier, Marion; Jeevan, Trushar; Marathe, Bindumadhav; Govorkova, Elena A.; Russell, Charles J.; Kim-Torchetti, Mia; Choi, Young Ki; Brown, Ian; Saito, Takehiko; Stallknecht, David E.; Krauss, Scott

    2016-01-01

    ABSTRACT Highly pathogenic influenza A(H5N8) viruses from clade 2.3.4.4 were introduced to North America by migratory birds in the fall of 2014. Reassortment of A(H5N8) viruses with avian viruses of North American lineage resulted in the generation of novel A(H5N2) viruses with novel genotypes. Through sequencing of recent avian influenza viruses, we identified PB1 and NP gene segments very similar to those in the viruses isolated from North American waterfowl prior to the introduction of A(H5N8) to North America, highlighting these bird species in the origin of reassortant A(H5N2) viruses. While they were highly virulent and transmissible in poultry, we found A(H5N2) viruses to be low pathogenic in mice and ferrets, and replication was limited in both hosts compared with those of recent highly pathogenic avian influenza (HPAI) H5N1 viruses. Molecular characterization of the hemagglutinin protein from A(H5N2) viruses showed that the receptor binding preference, cleavage, and pH of activation were highly adapted for replication in avian species and similar to those of other 2.3.4.4 viruses. In addition, North American and Eurasian clade 2.3.4.4 H5NX viruses replicated to significantly lower titers in differentiated normal human bronchial epithelial cells than did seasonal human A(H1N1) and highly pathogenic A(H5N1) viruses isolated from a human case. Thus, despite their having a high impact on poultry, our findings suggest that the recently emerging North American A(H5N2) viruses are not expected to pose a substantial threat to humans and other mammals without further reassortment and/or adaptation and that reassortment with North American viruses has not had a major impact on viral phenotype. IMPORTANCE Highly pathogenic H5 influenza viruses have been introduced into North America from Asia, causing extensive morbidity and mortality in domestic poultry. The introduced viruses have reassorted with North American avian influenza viruses, generating viral genotypes

  2. Novel Highly Pathogenic Avian A(H5N2) and A(H5N8) Influenza Viruses of Clade 2.3.4.4 from North America Have Limited Capacity for Replication and Transmission in Mammals.

    PubMed

    Kaplan, Bryan S; Russier, Marion; Jeevan, Trushar; Marathe, Bindumadhav; Govorkova, Elena A; Russell, Charles J; Kim-Torchetti, Mia; Choi, Young Ki; Brown, Ian; Saito, Takehiko; Stallknecht, David E; Krauss, Scott; Webby, Richard J

    2016-01-01

    Highly pathogenic influenza A(H5N8) viruses from clade 2.3.4.4 were introduced to North America by migratory birds in the fall of 2014. Reassortment of A(H5N8) viruses with avian viruses of North American lineage resulted in the generation of novel A(H5N2) viruses with novel genotypes. Through sequencing of recent avian influenza viruses, we identified PB1 and NP gene segments very similar to those in the viruses isolated from North American waterfowl prior to the introduction of A(H5N8) to North America, highlighting these bird species in the origin of reassortant A(H5N2) viruses. While they were highly virulent and transmissible in poultry, we found A(H5N2) viruses to be low pathogenic in mice and ferrets, and replication was limited in both hosts compared with those of recent highly pathogenic avian influenza (HPAI) H5N1 viruses. Molecular characterization of the hemagglutinin protein from A(H5N2) viruses showed that the receptor binding preference, cleavage, and pH of activation were highly adapted for replication in avian species and similar to those of other 2.3.4.4 viruses. In addition, North American and Eurasian clade 2.3.4.4 H5NX viruses replicated to significantly lower titers in differentiated normal human bronchial epithelial cells than did seasonal human A(H1N1) and highly pathogenic A(H5N1) viruses isolated from a human case. Thus, despite their having a high impact on poultry, our findings suggest that the recently emerging North American A(H5N2) viruses are not expected to pose a substantial threat to humans and other mammals without further reassortment and/or adaptation and that reassortment with North American viruses has not had a major impact on viral phenotype. IMPORTANCE Highly pathogenic H5 influenza viruses have been introduced into North America from Asia, causing extensive morbidity and mortality in domestic poultry. The introduced viruses have reassorted with North American avian influenza viruses, generating viral genotypes not seen on

  3. Experimental infection of H5N1 and H5N8 highly pathogenic avian influenza viruses in Northern Pintail (Anas acuta).

    PubMed

    Kwon, J-H; Lee, D-H; Swayne, D E; Noh, J-Y; Yuk, S-S; Jeong, S; Lee, S-H; Woo, C; Shin, J-H; Song, C-S

    2018-05-04

    The wide geographic spread of Eurasian Goose/Guangdong lineage highly pathogenic avian influenza (HPAI) clade 2.3.4.4 viruses by wild birds is of great concern. In December 2014, an H5N8 HPAI clade 2.3.4.4 Group A (2.3.4.4A) virus was introduced to North America. Long-distance migratory wild aquatic birds between East Asia and North America, such as Northern Pintail (Anas acuta), were strongly suspected of being a source of intercontinental transmission. In this study, we evaluated the pathogenicity, infectivity and transmissibility of an H5N8 HPAI clade 2.3.4.4A virus in Northern Pintails and compared the results to that of an H5N1 HPAI clade 2.3.2.1 virus. All of Northern Pintails infected with either H5N1 or H5N8 virus lacked clinical signs and mortality, but the H5N8 clade 2.3.4.4 virus was more efficient at replicating within and transmitting between Northern Pintails than the H5N1 clade 2.3.2.1 virus. The H5N8-infected birds shed high titre of viruses from oropharynx and cloaca, which in the field supported virus transmission and spread. This study highlights the role of wild waterfowl in the intercontinental spread of some HPAI viruses. Migratory aquatic birds should be carefully monitored for the early detection of H5 clade 2.3.4.4 and other HPAI viruses. © 2018 Blackwell Verlag GmbH.

  4. Evolution, global spread, and pathogenicity of highly pathogenic avian influenza H5Nx clade 2.3.4.4

    USDA-ARS?s Scientific Manuscript database

    Novel subtypes of Eurasian-origin (Goose/Guangdong lineage) H5 highly pathogenic avian influenza (HPAI) viruses belonging to clade 2.3.4 such as H5N2, H5N5, H5N6, and H5N8 have been identified in China since 2008 and subsequently evolved into four genetically distinct groups (A – D) of clade 2.3.4.4...

  5. Risk of Human Infections With Highly Pathogenic H5N2 and Low Pathogenic H7N1 Avian Influenza Strains During Outbreaks in Ostriches in South Africa

    PubMed Central

    Venter, Marietjie; Treurnicht, Florette K.; Buys, Amelia; Tempia, Stefano; Samudzi, Rudo; McAnerney, Johanna; Jacobs, Charlene A.; Thomas, Juno; Blumberg, Lucille

    2017-01-01

    Background Risk factors for human infection with highly pathogenic (HP) and low-pathogenic (LP) avian influenza (AI) H5N2 and H7N1 were investigated during outbreaks in ostriches in the Western Cape province, South Africa. Methods Serum surveys were conducted for veterinarians, farmworkers, and laboratory and abattoir workers involved in 2 AI outbreaks in the Western Cape province: (1) controlling and culling of 42 000 ostriches during (HPAI)H5N2 outbreaks in ostriches (2011) (n = 207); (2) movement control during (LPAI)H7N1 outbreaks in 2012 (n = 66). A third serosurvey was conducted on state veterinarians from across the country in 2012 tasked with disease control in general (n = 37). Antibodies to H5 and H7 were measured by means of hemagglutination inhibition and microneutralization assays, with microneutralization assay titers >40 considered positive. Results Two of 207 (1%) participants were seropositive for H5 and 4 of 207 (2%) for H7 in 2011, compared with 1 of 66 (1.5%) and 8 of 66 (13%) in 2012. Although individuals in all professions tested seropositive, abattoir workers (10 of 97; 10.3%) were significantly more at risk of influenza A(H7N1) infection (P = .001) than those in other professions (2 of 171;1.2%). Among state veterinarians, 4 of 37(11%) were seropositive for H7 and 1 of 37 (2.7%) for H5. Investigations of (LP)H7N1-associated fatalities in wild birds and quarantined exotic birds in Gauteng, AI outbreaks in poultry in KwaZulu-Natal, and ostriches in Western Cape province provide possible exposure events. Conclusion (LPAI)H7N1 strains pose a greater infection-risk than (HPAI)H5N2 strains to persons involved in control of outbreaks in infected birds, with ostrich abattoir workers at highest risk. PMID:28934458

  6. Evolution, global spread, and pathogenicity of highly pathogenic avian influenza H5Nx clade 2.3.4.4

    PubMed Central

    Lee, Dong-Hun; Bertran, Kateri; Kwon, Jung-Hoon

    2017-01-01

    Novel subtypes of Asian-origin (Goose/Guangdong lineage) H5 highly pathogenic avian influenza (HPAI) viruses belonging to clade 2.3.4, such as H5N2, H5N5, H5N6, and H5N8, have been identified in China since 2008 and have since evolved into four genetically distinct clade 2.3.4.4 groups (A–D). Since 2014, HPAI clade 2.3.4.4 viruses have spread rapidly via migratory wild aquatic birds and have evolved through reassortment with prevailing local low pathogenicity avian influenza viruses. Group A H5N8 viruses and its reassortant viruses caused outbreaks in wide geographic regions (Asia, Europe, and North America) during 2014–2015. Novel reassortant Group B H5N8 viruses caused outbreaks in Asia, Europe, and Africa during 2016–2017. Novel reassortant Group C H5N6 viruses caused outbreaks in Korea and Japan during the 2016–2017 winter season. Group D H5N6 viruses caused outbreaks in China and Vietnam. A wide range of avian species, including wild and domestic waterfowl, domestic poultry, and even zoo birds, seem to be permissive for infection by and/or transmission of clade 2.3.4.4 HPAI viruses. Further, compared to previous H5N1 HPAI viruses, these reassortant viruses show altered pathogenicity in birds. In this review, we discuss the evolution, global spread, and pathogenicity of H5 clade 2.3.4.4 HPAI viruses. PMID:28859267

  7. Characteristics of two highly pathogenic avian influenza H5N8 viruses with different pathogenicity in mice.

    PubMed

    Wang, Xiao; Meng, Feifei; Wang, Dandan; Liu, Xing; Chen, Sujuan; Qin, Tao; Peng, Daxin; Liu, Xiufan

    2016-12-01

    Novel reassortant influenza A (H5N8) viruses are becoming a potential threat not only to the poultry industry but also to public health. Many molecular markers for pathogenicity in mammalian hosts have been identified in other H5 subtype avian influenza viruses (AIVs). However, the pathogenicity of H5N8 AIVs to mammals remains unclear. It is believed that selection of a pair of isolates with a similar genetic background but with different virulence to mammals is a prerequisite for studying the pathogenic mechanism of AIVs. Two avian-origin H5N8 isolates, A/goose/Eastern China/CZ/2013 (CZ13) and A/duck/ Eastern China /JY/2014 (JY14), which shared a similar genetic background (H5 clade 2.3.4.4) and amino acid substitutions that were shown previously to be molecular markers of pathogenicity, were used to determine their biological characteristics and pathogenicity. Hemagglutination assays using α-2,3-sialidase-treated goose red blood cells demonstrated that both viruses exhibited a dual-receptor-binding preference. Viral growth kinetics in vitro indicated that both viruses replicated to high titers in CEF cells (about 10 8.0 TCID 50 /mL). In MDCK cells, however, CZ13 replicated efficiently (10 7.0 TCID 50 /mL), while JY14 grew to peak titers below 10 4.0 TCID 50 /mL. Animal studies indicated that although both viruses were highly virulent in chickens, they exhibited significantly different virulence in mice. CZ13 was highly pathogenic (MLD 50 = 10 1.6 EID 50 ), whereas JY14 had low virulence (MLD 50  > 10 6.5 EID 50 ). Therefore, this pair of viruses can be used to search for unknown molecular markers of virulence and to investigate specific pathogenic mechanisms in mice.

  8. Experimental infection of clade 1.1.2 (H5N1), clade 2.3.2.1c (H5N1) and clade 2.3.4.4 (H5N6) highly pathogenic avian influenza viruses in dogs.

    PubMed

    Lyoo, K S; Na, W; Phan, L V; Yoon, S W; Yeom, M; Song, D; Jeong, D G

    2017-12-01

    Since the emergence of highly pathogenic avian influenza (HPAI) H5N1 in Asia, the haemagglutinin (HA) gene of this virus lineage has continued to evolve in avian populations, and H5N1 lineage viruses now circulate concurrently worldwide. Dogs may act as an intermediate host, increasing the potential for zoonotic transmission of influenza viruses. Virus transmission and pathologic changes in HPAI clade 1.1.2 (H5N1)-, 2.3.2.1c (H5N1)- and 2.3.4.4 (H5N6)-infected dogs were investigated. Mild respiratory signs and antibody response were shown in dogs intranasally infected with the viruses. Lung histopathology showed lesions that were associated with moderate interstitial pneumonia in the infected dogs. In this study, HPAI H5N6 virus replication in dogs was demonstrated for the first time. Dogs have been suspected as a "mixing vessel" for reassortments between avian and human influenza viruses to occur. The replication of these three subtypes of the H5 lineage of HPAI viruses in dogs suggests that dogs could serve as intermediate hosts for avian-human influenza virus reassortment if they are also co-infected with human influenza viruses. © 2017 Blackwell Verlag GmbH.

  9. Human infection with highly pathogenic H5N1 influenza virus.

    PubMed

    Gambotto, Andrea; Barratt-Boyes, Simon M; de Jong, Menno D; Neumann, Gabriele; Kawaoka, Yoshihiro

    2008-04-26

    Highly pathogenic H5N1 influenza A viruses have spread relentlessly across the globe since 2003, and they are associated with widespread death in poultry, substantial economic loss to farmers, and reported infections of more than 300 people with a mortality rate of 60%. The high pathogenicity of H5N1 influenza viruses and their capacity for transmission from birds to human beings has raised worldwide concern about an impending human influenza pandemic similar to the notorious H1N1 Spanish influenza of 1918. Since many aspects of H5N1 influenza research are rapidly evolving, we aim in this Seminar to provide an up-to-date discussion on select topics of interest to influenza clinicians and researchers. We summarise the clinical features and diagnosis of infection and present therapeutic options for H5N1 infection of people. We also discuss ideas relating to virus transmission, host restriction, and pathogenesis. Finally, we discuss vaccine development in view of the probable importance of vaccination in pandemic control.

  10. Assessment of pathogenicity and antigenicity of American lineage influenza H5N2 viruses in Taiwan.

    PubMed

    Lin, Chun-Yang; Chia, Min-Yuan; Chen, Po-Ling; Yeh, Chia-Tsui; Cheng, Ming-Chu; Su, Ih-Jen; Lee, Min-Shi

    2017-08-01

    During December 2003 and March 2004, large scale epidemics of low-pathogenic avian influenza (LPAI) H5N2 occurred in poultry farms in central and southern Taiwan. Based on genomic analysis, these H5N2 viruses contain HA and NA genes of American-lineage H5N2 viruses and six internal genes from avian influenza A/H6N1 viruses endemic in poultry in Taiwan. After disappearing for several years, these novel influenza H5N2 viruses caused outbreaks in poultry farms again in 2008, 2010 and 2012, and have evolved into high pathogenic AI (HPAI) since 2010. Moreover, asymptomatic infections of influenza H5N2 were detected serologically in poultry workers in 2012. Therefore, we evaluated antigenicity and pathogenicity of the novel H5N2 viruses in ferrets. We found that no significant antigenic difference was detected among the novel H5N2 viruses isolated from 2003 to 2014 and the novel H5N2 viruses could cause mild infections in ferrets. Monitoring zoonotic transmission of the novel H5N2 viruses is necessary. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Prior infection of chickens with H1N1 or H1N2 avian influenza elicits partial heterologous protection against highly pathogenic H5N1.

    PubMed

    Nfon, Charles; Berhane, Yohannes; Pasick, John; Embury-Hyatt, Carissa; Kobinger, Gary; Kobasa, Darwyn; Babiuk, Shawn

    2012-01-01

    There is a critical need to have vaccines that can protect against emerging pandemic influenza viruses. Commonly used influenza vaccines are killed whole virus that protect against homologous and not heterologous virus. Using chickens we have explored the possibility of using live low pathogenic avian influenza (LPAI) A/goose/AB/223/2005 H1N1 or A/WBS/MB/325/2006 H1N2 to induce immunity against heterologous highly pathogenic avian influenza (HPAI) A/chicken/Vietnam/14/2005 H5N1. H1N1 and H1N2 replicated in chickens but did not cause clinical disease. Following infection, chickens developed nucleoprotein and H1 specific antibodies, and reduced H5N1 plaque size in vitro in the absence of H5 neutralizing antibodies at 21 days post infection (DPI). In addition, heterologous cell mediated immunity (CMI) was demonstrated by antigen-specific proliferation and IFN-γ secretion in PBMCs re-stimulated with H5N1 antigen. Following H5N1 challenge of both pre-infected and naïve controls chickens housed together, all naïve chickens developed acute disease and died while H1N1 or H1N2 pre-infected chickens had reduced clinical disease and 70-80% survived. H1N1 or H1N2 pre-infected chickens were also challenged with H5N1 and naïve chickens placed in the same room one day later. All pre-infected birds were protected from H5N1 challenge but shed infectious virus to naïve contact chickens. However, disease onset, severity and mortality was reduced and delayed in the naïve contacts compared to directly inoculated naïve controls. These results indicate that prior infection with LPAI virus can generate heterologous protection against HPAI H5N1 in the absence of specific H5 antibody.

  12. Prior Infection of Chickens with H1N1 or H1N2 Avian Influenza Elicits Partial Heterologous Protection against Highly Pathogenic H5N1

    PubMed Central

    Nfon, Charles; Berhane, Yohannes; Pasick, John; Embury-Hyatt, Carissa; Kobinger, Gary; Kobasa, Darwyn; Babiuk, Shawn

    2012-01-01

    There is a critical need to have vaccines that can protect against emerging pandemic influenza viruses. Commonly used influenza vaccines are killed whole virus that protect against homologous and not heterologous virus. Using chickens we have explored the possibility of using live low pathogenic avian influenza (LPAI) A/goose/AB/223/2005 H1N1 or A/WBS/MB/325/2006 H1N2 to induce immunity against heterologous highly pathogenic avian influenza (HPAI) A/chicken/Vietnam/14/2005 H5N1. H1N1 and H1N2 replicated in chickens but did not cause clinical disease. Following infection, chickens developed nucleoprotein and H1 specific antibodies, and reduced H5N1 plaque size in vitro in the absence of H5 neutralizing antibodies at 21 days post infection (DPI). In addition, heterologous cell mediated immunity (CMI) was demonstrated by antigen-specific proliferation and IFN-γ secretion in PBMCs re-stimulated with H5N1 antigen. Following H5N1 challenge of both pre-infected and naïve controls chickens housed together, all naïve chickens developed acute disease and died while H1N1 or H1N2 pre-infected chickens had reduced clinical disease and 70–80% survived. H1N1 or H1N2 pre-infected chickens were also challenged with H5N1 and naïve chickens placed in the same room one day later. All pre-infected birds were protected from H5N1 challenge but shed infectious virus to naïve contact chickens. However, disease onset, severity and mortality was reduced and delayed in the naïve contacts compared to directly inoculated naïve controls. These results indicate that prior infection with LPAI virus can generate heterologous protection against HPAI H5N1 in the absence of specific H5 antibody. PMID:23240067

  13. Evidence of infection by H5N2 highly pathogenic avian influenza viruses in healthy wild waterfowl

    USGS Publications Warehouse

    Gaidet, N.; Cattoli, G.; Hammoumi, S.; Newman, S.H.; Hagemeijer, W.; Takekawa, John Y.; Cappelle, J.; Dodman, T.; Joannis, T.; Gil, P.; Monne, I.; Fusaro, A.; Capua, I.; Manu, S.; Micheloni, P.; Ottosson, U.; Mshelbwala, J.H.; Lubroth, J.; Domenech, J.; Monicat, F.

    2008-01-01

    The potential existence of a wild bird reservoir for highly pathogenic avian influenza (HPAI) has been recently questioned by the spread and the persisting circulation of H5N1 HPAI viruses, responsible for concurrent outbreaks in migratory and domestic birds over Asia, Europe, and Africa. During a large-scale surveillance programme over Eastern Europe, the Middle East, and Africa, we detected avian influenza viruses of H5N2 subtype with a highly pathogenic (HP) viral genotype in healthy birds of two wild waterfowl species sampled in Nigeria. We monitored the survival and regional movements of one of the infected birds through satellite telemetry, providing a rare evidence of a non-lethal natural infection by an HP viral genotype in wild birds. Phylogenetic analysis of the H5N2 viruses revealed close genetic relationships with H5 viruses of low pathogenicity circulating in Eurasian wild and domestic ducks. In addition, genetic analysis did not reveal known gallinaceous poultry adaptive mutations, suggesting that the emergence of HP strains could have taken place in either wild or domestic ducks or in non-gallinaceous species. The presence of coexisting but genetically distinguishable avian influenza viruses with an HP viral genotype in two cohabiting species of wild waterfowl, with evidence of non-lethal infection at least in one species and without evidence of prior extensive circulation of the virus in domestic poultry, suggest that some strains with a potential high pathogenicity for poultry could be maintained in a community of wild waterfowl.

  14. Risk of Human Infections With Highly Pathogenic H5N2 and Low Pathogenic H7N1 Avian Influenza Strains During Outbreaks in Ostriches in South Africa.

    PubMed

    Venter, Marietjie; Treurnicht, Florette K; Buys, Amelia; Tempia, Stefano; Samudzi, Rudo; McAnerney, Johanna; Jacobs, Charlene A; Thomas, Juno; Blumberg, Lucille

    2017-09-15

    Risk factors for human infection with highly pathogenic (HP) and low-pathogenic (LP) avian influenza (AI) H5N2 and H7N1 were investigated during outbreaks in ostriches in the Western Cape province, South Africa. Serum surveys were conducted for veterinarians, farmworkers, and laboratory and abattoir workers involved in 2 AI outbreaks in the Western Cape province: (1) controlling and culling of 42000 ostriches during (HPAI)H5N2 outbreaks in ostriches (2011) (n = 207); (2) movement control during (LPAI)H7N1 outbreaks in 2012 (n = 66). A third serosurvey was conducted on state veterinarians from across the country in 2012 tasked with disease control in general (n = 37). Antibodies to H5 and H7 were measured by means of hemagglutination inhibition and microneutralization assays, with microneutralization assay titers >40 considered positive. Two of 207 (1%) participants were seropositive for H5 and 4 of 207 (2%) for H7 in 2011, compared with 1 of 66 (1.5%) and 8 of 66 (13%) in 2012. Although individuals in all professions tested seropositive, abattoir workers (10 of 97; 10.3%) were significantly more at risk of influenza A(H7N1) infection (P = .001) than those in other professions (2 of 171;1.2%). Among state veterinarians, 4 of 37(11%) were seropositive for H7 and 1 of 37 (2.7%) for H5. Investigations of (LP)H7N1-associated fatalities in wild birds and quarantined exotic birds in Gauteng, AI outbreaks in poultry in KwaZulu-Natal, and ostriches in Western Cape province provide possible exposure events. (LPAI)H7N1 strains pose a greater infection-risk than (HPAI)H5N2 strains to persons involved in control of outbreaks in infected birds, with ostrich abattoir workers at highest risk. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  15. Altered virulence of Highly Pathogenic Avian Influenza (HPAI) H5N8 reassortant viruses in mammalian models.

    PubMed

    Park, Su-Jin; Kim, Eun-Ha; Kwon, Hyeok-Il; Song, Min-Suk; Kim, Se Mi; Kim, Young-Il; Si, Young-Jae; Lee, In-Won; Nguyen, Hiep Dinh; Shin, Ok Sarah; Kim, Chul-Joong; Choi, Young Ki

    2018-01-01

    Recently identified highly pathogenic avian influenza (HPAI) H5N8 viruses (clade 2.3.4.4) are relatively low to moderately pathogenic in mammalian hosts compared with HPAI H5N1 viruses. In this study, we generated reassortant viruses comprised of A/MD/Korea/W452/2014(H5N8) with substitution of individual genes from A/EM/Korea/W149/2006(H5N1) to understand the contribution of each viral gene to virulence in mammals. Substituting the PB2 gene segment or the NA gene segment of the H5N8 virus by that from the H5N1 virus resulted in significantly enhanced pathogenicity compared with the parental H5N8 virus in mice. Of note, substitution of the PB2 gene segment of the H5N8 virus by that from the H5N1 virus resulted in a 1000-fold increase in virulence for mice compared with the parental virus (MLD 50 decreased from 10 5.8 to 10 2.5 EID 50 ). Further, the W452 W149PB2 virus also induced the highest virus titers in lungs at all time points and the highest levels of inflammatory cytokine responses among all viruses tested. This high virulence phenotype was also confirmed by high viral titers in the respiratory tracts of infected ferrets. Further, a mini-genome assay revealed that W452 W149PB2 has significantly increased polymerase activity (p < 0.001). Taken together, our study demonstrates that a single gene substitution from other avian influenza viruses can alter the pathogenicity of recent H5N8 viruses, and therefore emphasizes the need for intensive monitoring of reassortment events among co-circulating avian and mammalian viruses.

  16. Protection Afforded by a Recombinant Turkey Herpesvirus-H5 Vaccine Against the 2014 European Highly Pathogenic H5N8 Avian Influenza Strain.

    PubMed

    Steensels, M; Rauw, F; van den Berg, Th; Marché, S; Gardin, Y; Palya, V; Lambrecht, B

    2016-05-01

    A highly pathogenic avian influenza (HPAI) H5N8 (clade 2.3.4.4) virus, circulating in Asia (South Korea, Japan, and southern China) since the beginning of 2014, reached the European continent in November 2014. Germany, the Netherlands, the United Kingdom, Italy, and Hungary confirmed H5N8 infection of poultry farms of different species and of several wild bird species. Unlike the Asian highly pathogenic (HP) H5N1, this HP H5N8 also went transatlantic and reached the American West Coast by the end of 2014, affecting wild birds as well as backyard and commercial poultry. This strain induces high mortality and morbidity in Galliformes, whereas wild birds seem only moderately affected. A recombinant turkey herpesvirus (rHVT) vector vaccine expressing the H5 gene of a clade 2.2 H5N1 strain (rHVT-H5) previously demonstrated a highly efficient clinical protection and reduced viral excretion against challenge with Asian HP H5N1 strains of various clades (2.2, 2.2.1, 2.2.1.1, 2.1.3, 2.1.3.2, and 2.3.2.1) and was made commercially available in various countries where the disease is endemic. To evaluate the protective efficacy of the rHVT-H5 vaccine against the first German H5N8 turkey isolate (H5N8 GE), a challenge experiment was set up in specific-pathogen-free (SPF) chickens, and the clinical and excretional protection was evaluated. SPF chickens were vaccinated subcutaneously at 1 day old and challenged oculonasally at 4 wk of age with two viral dosages, 10(5) and 10(6) 50% egg infective doses. Morbidity and mortality were monitored daily in unvaccinated and vaccinated groups, whereas viral shedding by oropharyngeal and cloacal routes was evaluated at 2, 5, 9, and 14 days postinoculation (dpi). Serologic monitoring after vaccination and challenge was also carried out. Despite its high antigenic divergence of the challenge H5N8 strain, a single rHVT-H5 vaccine administration at 1 day old resulted in a full clinical protection against challenge and a significant reduction

  17. Novel H5N8 clade 2.3.4.4 highly pathogenic avian influenza virus in wild awuatic birds, Russia, 2016

    USDA-ARS?s Scientific Manuscript database

    H5N1 high pathogenicity avian influenza virus (HPAIV) emerged in 1996 in Guangdong China (Gs/GD) and has evolved into multiple genetic clades. Since 2008, HPAIV H5 clade 2.3.4 with N2, N5 and N8 neuraminidase subtypes have been identified in mainland China and outbreak of HPAIV H5N8 clade 2.3.4.4 ou...

  18. Pathogenicity and transmission of H5 highly pathogenic avian influenza clade 2.3.4.4 viruses (H5N8 and H5N2) in domestic waterfowl (Pekin ducks and Chinese geese)

    USDA-ARS?s Scientific Manuscript database

    Domestic ducks and geese are common backyard poultry in many countries, frequently in contact with wild waterfowl, which are natural reservoirs of avian influenza viruses and have played a key role in the spread of Asian-lineage H5N1 highly pathogenic avian influenza (HPAI). In late 2014, a reassor...

  19. Altered virulence of Highly Pathogenic Avian Influenza (HPAI) H5N8 reassortant viruses in mammalian models

    PubMed Central

    Park, Su-Jin; Kim, Eun-Ha; Kwon, Hyeok-Il; Song, Min-Suk; Kim, Se Mi; Kim, Young-Il; Si, Young-Jae; Lee, In-Won; Nguyen, Hiep Dinh; Shin, Ok Sarah; Kim, Chul-Joong; Choi, Young Ki

    2018-01-01

    ABSTRACT Recently identified highly pathogenic avian influenza (HPAI) H5N8 viruses (clade 2.3.4.4) are relatively low to moderately pathogenic in mammalian hosts compared with HPAI H5N1 viruses. In this study, we generated reassortant viruses comprised of A/MD/Korea/W452/2014(H5N8) with substitution of individual genes from A/EM/Korea/W149/2006(H5N1) to understand the contribution of each viral gene to virulence in mammals. Substituting the PB2 gene segment or the NA gene segment of the H5N8 virus by that from the H5N1 virus resulted in significantly enhanced pathogenicity compared with the parental H5N8 virus in mice. Of note, substitution of the PB2 gene segment of the H5N8 virus by that from the H5N1 virus resulted in a 1000-fold increase in virulence for mice compared with the parental virus (MLD50 decreased from 105.8 to 102.5 EID50). Further, the W452W149PB2 virus also induced the highest virus titers in lungs at all time points and the highest levels of inflammatory cytokine responses among all viruses tested. This high virulence phenotype was also confirmed by high viral titers in the respiratory tracts of infected ferrets. Further, a mini-genome assay revealed that W452W149PB2 has significantly increased polymerase activity (p < 0.001). Taken together, our study demonstrates that a single gene substitution from other avian influenza viruses can alter the pathogenicity of recent H5N8 viruses, and therefore emphasizes the need for intensive monitoring of reassortment events among co-circulating avian and mammalian viruses. PMID:28873012

  20. Rapid Emergence of Highly Pathogenic Avian Influenza Subtypes from a Subtype H5N1 Hemagglutinin Variant.

    PubMed

    de Vries, Erik; Guo, Hongbo; Dai, Meiling; Rottier, Peter J M; van Kuppeveld, Frank J M; de Haan, Cornelis A M

    2015-05-01

    In 2014, novel highly pathogenic avian influenza A H5N2, H5N5, H5N6, and H5N8 viruses caused outbreaks in Asia, Europe, and North America. The H5 genes of these viruses form a monophyletic group that evolved from a clade 2.3.4 H5N1 variant. This rapid emergence of new H5Nx combinations is unprecedented in the H5N1 evolutionary history.

  1. Highly Pathogenic Influenza A(H5Nx) Viruses with Altered H5 Receptor-Binding Specificity

    PubMed Central

    Guo, Hongbo; de Vries, Erik; McBride, Ryan; Dekkers, Jojanneke; Peng, Wenjie; Bouwman, Kim M.; Nycholat, Corwin; Verheije, M. Helene; Paulson, James C.; van Kuppeveld, Frank J.M.

    2017-01-01

    Emergence and intercontinental spread of highly pathogenic avian influenza A(H5Nx) virus clade 2.3.4.4 is unprecedented. H5N8 and H5N2 viruses have caused major economic losses in the poultry industry in Europe and North America, and lethal human infections with H5N6 virus have occurred in Asia. Knowledge of the evolution of receptor-binding specificity of these viruses, which might affect host range, is urgently needed. We report that emergence of these viruses is accompanied by a change in receptor-binding specificity. In contrast to ancestral clade 2.3.4 H5 proteins, novel clade 2.3.4.4 H5 proteins bind to fucosylated sialosides because of substitutions K222Q and S227R, which are unique for highly pathogenic influenza virus H5 proteins. North American clade 2.3.4.4 virus isolates have retained only the K222Q substitution but still bind fucosylated sialosides. Altered receptor-binding specificity of virus clade 2.3.4.4 H5 proteins might have contributed to emergence and spread of H5Nx viruses. PMID:27869615

  2. Reassortant clade 2.3.4.4 of highly pathogenic avian influenza A (H5N6) virus, Taiwan, 2017

    USDA-ARS?s Scientific Manuscript database

    A highly pathogenic avian influenza A(H5N6) virus of clade 2.3.4.4 was detected in a domestic duck found dead in Taiwan during February 2017. The endemic situation and continued evolution of various reassortant highly pathogenic avian influenza viruses in Taiwan warrant concern about further reassor...

  3. Novel Reassortant Highly Pathogenic Avian Influenza (H5N8) Virus in Zoos, India.

    PubMed

    Nagarajan, Shanmugasundaram; Kumar, Manoj; Murugkar, Harshad V; Tripathi, Sushil; Shukla, Shweta; Agarwal, Sonam; Dubey, Garima; Nagi, Raunaq Singh; Singh, Vijendra Pal; Tosh, Chakradhar

    2017-04-01

    Highly pathogenic avian influenza (H5N8) viruses were detected in waterfowl at 2 zoos in India in October 2016. Both viruses were different 7:1 reassortants of H5N8 viruses isolated in May 2016 from wild birds in the Russian Federation and China, suggesting virus spread during southward winter migration of birds.

  4. Novel Reassortant Highly Pathogenic Avian Influenza (H5N8) Virus in Zoos, India

    PubMed Central

    Nagarajan, Shanmugasundaram; Kumar, Manoj; Murugkar, Harshad V.; Tripathi, Sushil; Shukla, Shweta; Agarwal, Sonam; Dubey, Garima; Nagi, Raunaq Singh; Singh, Vijendra Pal

    2017-01-01

    Highly pathogenic avian influenza (H5N8) viruses were detected in waterfowl at 2 zoos in India in October 2016. Both viruses were different 7:1 reassortants of H5N8 viruses isolated in May 2016 from wild birds in the Russian Federation and China, suggesting virus spread during southward winter migration of birds. PMID:28117031

  5. Low-pathogenic avian influenza virus A/turkey/Ontario/6213/1966 (H5N1) is the progenitor of highly pathogenic A/turkey/Ontario/7732/1966 (H5N9)

    PubMed Central

    Ping, Jihui; Selman, Mohammed; Tyler, Shaun; Forbes, Nicole; Keleta, Liya

    2012-01-01

    The first confirmed outbreak of highly pathogenic avian influenza (HPAI) virus infections in North America was caused by A/turkey/Ontario/7732/1966 (H5N9); however, the phylogeny of this virus is largely unknown. This study performed genomic sequence analysis of 11 avian influenza isolates from 1956 to 1979 for comparison with A/turkey/Ontario/7732/1966 (H5N9). Phylogenetic and genetic analyses included these viruses in combination with all known full-genome sequences of avian viruses isolated before 1981. It was shown that a low-pathogenic avian influenza virus, A/turkey/Ontario/6213/1966 (H5N1), that had been isolated 3 months previously, was the closest known genetic relative with six genome segments of common lineage encoding the polymerase subunits PB2, PB1 and PA, nucleoprotein (NP), haemagglutinin (HA) and non-structural (NS) proteins. The lineages of these genome segments included reassortment with other North American turkey viruses that were all rooted in North American wild waterfowl with the HA gene originating from the H5N2 serotype. The phylogenies demonstrated adaptation from North American wild birds to turkeys with the possible involvement of domestic waterfowl. The turkey isolate, A/turkey/Wisconsin/1968 (H5N9), was the second most closely related poultry isolate to A/turkey/Ontario/7732/1966 (H5N9), possessing five common lineage genome segments (PB2, PB1, PA, HA and neuraminidase). The A/turkey/Ontario/6213/1966 (H5N1) virus was more virulent than A/turkey/Wisconsin/68 (H5N9) for chicken embryos and mice, indicating a greater biological similarity to A/turkey/Ontario/7732/1966 (H5N9). Thus, A/turkey/Ontario/6213/1966 (H5N1) was identified as the closest known ancestral relative of HPAI A/turkey/Ontario/7732/1966 (H5N9), which will serve as a useful reference virus for characterizing the early genetic and biological properties associated with the emergence of pathogenic avian influenza strains. PMID:22592261

  6. Pathogenicity and Transmission of H5 and H7 Highly Pathogenic Avian Influenza Viruses in Mallards

    PubMed Central

    Costa-Hurtado, Mar; Shepherd, Eric; DeJesus, Eric; Smith, Diane; Spackman, Erica; Kapczynski, Darrell R.; Suarez, David L.; Stallknecht, David E.; Swayne, David E.

    2016-01-01

    ABSTRACT Wild aquatic birds have been associated with the intercontinental spread of H5 subtype highly pathogenic avian influenza (HPAI) viruses of the A/goose/Guangdong/1/96 (Gs/GD) lineage during 2005, 2010, and 2014, but dispersion by wild waterfowl has not been implicated with spread of other HPAI viruses. To better understand why Gs/GD H5 HPAI viruses infect and transmit more efficiently in waterfowl than other HPAI viruses, groups of mallard ducks were challenged with one of 14 different H5 and H7 HPAI viruses, including a Gs/GD lineage H5N1 (clade 2.2) virus from Mongolia, part of the 2005 dispersion, and the H5N8 and H5N2 index HPAI viruses (clade 2.3.4.4) from the United States, part of the 2014 dispersion. All virus-inoculated ducks and contact exposed ducks became infected and shed moderate to high titers of the viruses, with the exception that mallards were resistant to Ck/Pennsylvania/83 and Ck/Queretaro/95 H5N2 HPAI virus infection. Clinical signs were only observed in ducks challenged with the H5N1 2005 virus, which all died, and with the H5N8 and H5N2 2014 viruses, which had decreased weight gain and fever. These three viruses were also shed in higher titers by the ducks, which could facilitate virus transmission and spread. This study highlights the possible role of wild waterfowl in the spread of HPAI viruses. IMPORTANCE The spread of H5 subtype highly pathogenic avian influenza (HPAI) viruses of the Gs/GD lineage by migratory waterfowl is a serious concern for animal and public health. H5 and H7 HPAI viruses are considered to be adapted to gallinaceous species (chickens, turkeys, quail, etc.) and less likely to infect and transmit in wild ducks. In order to understand why this is different with certain Gs/GD lineage H5 HPAI viruses, we compared the pathogenicity and transmission of several H5 and H7 HPAI viruses from previous poultry outbreaks to Gs/GD lineage H5 viruses, including H5N1 (clade 2.2), H5N8 and H5N2 (clade 2.3.4.4) viruses, in

  7. Highly Pathogenic Avian Influenza Virus (H5N8) Clade 2.3.4.4 Infection in Migratory Birds, Egypt.

    PubMed

    Selim, Abdullah A; Erfan, Ahmed M; Hagag, Naglaa; Zanaty, Ali; Samir, Abdel-Hafez; Samy, Mohamed; Abdelhalim, Ahmed; Arafa, Abdel-Satar A; Soliman, Mohamed A; Shaheen, Momtaz; Ibraheem, Essam M; Mahrous, Ibrahim; Hassan, Mohamed K; Naguib, Mahmoud M

    2017-06-01

    We isolated highly pathogenic avian influenza virus (H5N8) of clade 2.3.4.4 from the common coot (Fulica atra) in Egypt, documenting its introduction into Africa through migratory birds. This virus has a close genetic relationship with subtype H5N8 viruses circulating in Europe. Enhanced surveillance to detect newly emerging viruses is warranted.

  8. Comparative analysis of selected innate immune-related genes following infection of immortal DF-1 cells with highly pathogenic (H5N1) and low pathogenic (H9N2) avian influenza viruses.

    PubMed

    Liu, Ai-Ling; Li, Yu-Feng; Qi, Wenbao; Ma, Xiu-Li; Yu, Ke-Xiang; Huang, Bing; Liao, Ming; Li, Feng; Pan, Jie; Song, Min-Xun

    2015-04-01

    H5N1 and H9N2 viruses are important causes of avian influenza in China. H5N1 is typically associated with severe to fatal disease in poultry, while H9N2 is usually associated with mild disease. Differences in viral virulence prompted us to investigate whether innate immune responses would be differentially regulated following infection by H5N1 and H9N2 viruses. To address this hypothesis, expression of a panel of innate immune-related genes including IFN-α, IFN-β, Mx1, OASL, ISG12, IFIT5, IRF7, USP18, SST, and KHSRP in immortal DF-1 cells following H5N1 and H9N2 infection was analyzed and compared by real-time quantitative RT-PCR. Cells infected by either virus overall exhibited a similar expression profile for four ISGs (Mx1, OASL, ISG12, and IFIT5), IFN-α, IFN-β, and SST gene. However, two immune-regulatory genes (IRF7 and KHSRP) were not responsive to highly pathogenic H5N1 infection but were strongly up-regulated in DF-1 cells infected with low pathogenic H9N2 infection. The subtype-dependent host response observed in this study offers new insights into the potential roles of IRF7 and KHSRP in control and modulation of the replication and virulence of different subtypes or strains of avian influenza A virus.

  9. Cross-protective efficacies of highly-pathogenic avian influenza H5N1 vaccines against a recent H5N8 virus.

    PubMed

    Park, Su-Jin; Si, Young-Jae; Kim, Jihye; Song, Min-Suk; Kim, Se-Mi; Kim, Eun-Ha; Kwon, Hyeok-Il; Kim, Young-Il; Lee, Ok-Jun; Shin, Ok Sarah; Kim, Chul-Joong; Shin, Eui-Cheol; Choi, Young Ki

    2016-11-01

    To investigate cross-protective vaccine efficacy of highly-pathogenic avian influenza H5N1 viruses against a recent HPAI H5N8 virus, we immunized C57BL/6 mice and ferrets with three alum-adjuvanted inactivated whole H5N1 vaccines developed through reverse-genetics (Rg): [Vietnam/1194/04xPR8 (clade 1), Korea/W149/06xPR8 (clade 2.2), and Korea/ES223N/03xPR8 (clade 2.5)]. Although relatively low cross-reactivities (10-40 HI titer) were observed against heterologous H5N8 virus, immunized animals were 100% protected from challenge with the 20 mLD50 of H5N8 virus, with the exception of mice vaccinated with 3.5μg of Rg Vietnam/1194/04xPR8. Of note, the Rg Korea/ES223N/03xPR8 vaccine provided not only effective protection, but also markedly inhibited viral replication in the lungs and nasal swabs of vaccine recipients within five days of HPAI H5N8 virus challenge. Further, we demonstrated that antibody-dependent cell-mediated cytotoxicity (ADCC) of an antibody-coated target cell by cytotoxic effector cells also plays a role in the heterologous protection of H5N1 vaccines against H5N8 challenge. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Highly Pathogenic Avian Influenza H5N8 in Germany: Outbreak Investigations.

    PubMed

    Conraths, F J; Sauter-Louis, C; Globig, A; Dietze, K; Pannwitz, G; Albrecht, K; Höreth-Böntgen, D; Beer, M; Staubach, C; Homeier-Bachmann, T

    2016-02-01

    Epidemiological outbreak investigations were conducted in highly pathogenic avian influenza virus of the subtype H5N8 (HPAIV H5N8)-affected poultry holdings and a zoo to identify potential routes of entry of the pathogen via water, feedstuffs, animals, people, bedding material, other fomites (equipment, vehicles etc.) and the presence of wild birds near affected holdings. Indirect introduction of HPAIV H5N8 via material contaminated by infected wild bird seems the most reasonable explanation for the observed outbreak series in three commercial holdings in Mecklenburg-Western Pomerania and Lower Saxony, while direct contact to infected wild birds may have led to outbreaks in a zoo in Rostock and in two small free-range holdings in Anklam, Mecklenburg-Western Pomerania. © 2015 Blackwell Verlag GmbH.

  11. Reassortant Clade 2.3.4.4 of Highly Pathogenic Avian Influenza A(H5N6) Virus, Taiwan, 2017.

    PubMed

    Chen, Li-Hsuan; Lee, Dong-Hun; Liu, Yu-Pin; Li, Wan-Chen; Swayne, David E; Chang, Jen-Chieh; Chen, Yen-Ping; Lee, Fan; Tu, Wen-Jane; Lin, Yu-Ju

    2018-06-01

    A highly pathogenic avian influenza A(H5N6) virus of clade 2.3.4.4 was detected in a domestic duck found dead in Taiwan during February 2017. The endemic situation and continued evolution of various reassortant highly pathogenic avian influenza viruses in Taiwan warrant concern about further reassortment and a fifth wave of intercontinental spread.

  12. Highly Pathogenic Avian Influenza A(H5N1) Virus Struck Migratory Birds in China in 2015.

    PubMed

    Bi, Yuhai; Zhang, Zhenjie; Liu, Wenjun; Yin, Yanbo; Hong, Jianmin; Li, Xiangdong; Wang, Haiming; Wong, Gary; Chen, Jianjun; Li, Yunfeng; Ru, Wendong; Gao, Ruyi; Liu, Di; Liu, Yingxia; Zhou, Boping; Gao, George F; Shi, Weifeng; Lei, Fumin

    2015-08-11

    Approximately 100 migratory birds, including whooper swans and pochards, were found dead in the Sanmenxia Reservoir Area of China during January 2015. The causative agent behind this outbreak was identified as H5N1 highly pathogenic avian influenza virus (HPAIV). Genetic and phylogenetic analyses revealed that this Sanmenxia H5N1 virus was a novel reassortant, possessing a Clade 2.3.2.1c HA gene and a H9N2-derived PB2 gene. Sanmenxia Clade 2.3.2.1c-like H5N1 viruses possess the closest genetic identity to A/Alberta/01/2014 (H5N1), which recently caused a fatal respiratory infection in Canada with signs of meningoencephalitis, a highly unusual symptom with influenza infections in humans. Furthermore, this virus was shown to be highly pathogenic to both birds and mammals, and demonstrate tropism for the nervous system. Due to the geographical location of Sanmenxia, these novel H5N1 viruses also have the potential to be imported to other regions through the migration of wild birds, similar to the H5N1 outbreak amongst migratory birds in Qinghai Lake during 2005. Therefore, further investigation and monitoring is required to prevent this novel reassortant virus from becoming a new threat to public health.

  13. Highly pathogenic influenza H5N1 virus of clade 2.3.2.1c in Western Siberia.

    PubMed

    Marchenko, V Y; Susloparov, I M; Kolosova, N P; Goncharova, N I; Shipovalov, A V; Ilyicheva, T N; Durymanov, A G; Chernyshova, O A; Kozlovskiy, L I; Chernyshova, T V; Pryadkina, E N; Karimova, T V; Mikheev, V N; Ryzhikov, A B

    2016-06-01

    In the spring of 2015, avian influenza virus surveillance in Western Siberia resulted in isolation of several influenza H5N1 virus strains. The strains were isolated from several wild bird species. Investigation of biological features of those strains demonstrated their high pathogenicity for mammals. Phylogenetic analysis of the HA gene showed that the strains belong to clade 2.3.2.1c.

  14. Single gene reassortment of highly pathogenic avian influenza A H5N1 in the low pathogenic H9N2 backbone and its impact on pathogenicity and infectivity of novel reassortant viruses.

    PubMed

    Moatasim, Yassmin; Kandeil, Ahmed; Mostafa, Ahmed; Elghaffar, Sary Khaleel Abd; El Shesheny, Rabeh; Elwahy, Ahmed Helmy M; Ali, Mohamed Ahmed

    2017-10-01

    Avian influenza A H5N1 and H9N2 viruses have been extensively circulating in various avian species and frequently infect mammals, including humans. The synchronous circulation of both viruses in Egypt provides an opportunity for possible genetic assortment, posing a probable threat to global public health. To assess the potential risk of the IAV reassortants derived from co-circulation of these two AI subtypes, reverse genetics technology was used to generate a set of IAV reassortants carrying single genetic segments of clade 2.2.1.2 virus A/duck/Egypt/Q4596D/2012 (H5N1), a representative of the most prevalent H5N1 clade in Egypt, in the genetic backbone of A/chicken/Egypt/S4456B/2011 (H9N2), a representative of G1-like H9N2 lineage which is widely circulating in Egypt. Furthermore, the genetic compatibility, growth kinetics and virulence were evaluated in vitro in mammalian systems using the MDCK cell line and avian system using SPF embryonated chicken eggs. Pathogenicity and virus shedding were further tested using SPF chickens. Out of the eight desired H9-reassortants, we could rescue only 5 reassortant viruses, either due to difficulty in cloning (PB1 of H5N1 virus) or genetic incompatibility (NP-H5/H9 and NA-H5/H9). Results revealed higher replication rates for the H9N2 virus having the NS segment of H5N1 virus. The lowest survival rate in both SPF eggs and SPF chickens was associated with the H5N1 parent virus infection, followed by the HA-H5/H9 virus. Our findings also suggest that all other reassortant viruses were of lower pathogenicity than the wild type H5N1 virus.

  15. Pathogenicity of the Korean H5N8 highly pathogenic avian influenza virus in commercial domestic poultry species.

    PubMed

    Lee, Dong-Hun; Kwon, Jung-Hoon; Noh, Jin-Yong; Park, Jae-Keun; Yuk, Seong-Su; Erdene-Ochir, Tseren-Ochir; Lee, Joong-Bok; Park, Seung-Yong; Choi, In-Soo; Lee, Sang-Won; Song, Chang-Seon

    2016-01-01

    In 2014, the highly pathogenic avian influenza (HPAI) virus H5N8 triggered outbreaks in wild birds and poultry farms in South Korea. In the present study, we investigated the pathogenicity of the H5N8 HPAI virus, belonging to the clade 2.3.4.4, in different species of poultry. For this, we examined clinical signs and viral shedding levels following intranasal inoculation of the virus in 3-week-old commercial layer chickens and quails, 10-week-old Korean native chickens, and 8-week-old Muscovy ducks. Intranasal inoculation with 10(6.0) viruses at 50% egg-infective dose resulted in 100% mortality in the layer chickens (8/8) and quails (4/4), but 60% and 0% deaths in the Korean native chickens (3/5) and Muscovy ducks (0/4), respectively. In addition, transmission of the inoculated virus to contact-exposed birds was evident in all the species used in this study. Based on our results, we conclude that the H5N8 HPAI virus has lower pathogenicity and transmissibility in poultry species compared with previously reported H5N1 HPAI viruses.

  16. Reassortant highly pathogenic influenza A H5N2 virus containing gene segments related to Eurasian H5N8 in British Columbia, Canada, 2014.

    PubMed

    Pasick, John; Berhane, Yohannes; Joseph, Tomy; Bowes, Victoria; Hisanaga, Tamiko; Handel, Katherine; Alexandersen, Soren

    2015-03-25

    In late November 2014 higher than normal death losses in a meat turkey and chicken broiler breeder farm in the Fraser Valley of British Columbia initiated a diagnostic investigation that led to the discovery of a novel reassortant highly pathogenic avian influenza (HPAI) H5N2 virus. This virus, composed of 5 gene segments (PB2, PA, HA, M and NS) related to Eurasian HPAI H5N8 and the remaining gene segments (PB1, NP and NA) related to North American lineage waterfowl viruses, represents the first HPAI outbreak in North American poultry due to a virus with Eurasian lineage genes. Since its first appearance in Korea in January 2014, HPAI H5N8 spread to Western Europe in November 2014. These European outbreaks happened to temporally coincide with migratory waterfowl movements. The fact that the British Columbia outbreaks also occurred at a time associated with increased migratory waterfowl activity along with reports by the USA of a wholly Eurasian H5N8 virus detected in wild birds in Washington State, strongly suggest that migratory waterfowl were responsible for bringing Eurasian H5N8 to North America where it subsequently reassorted with indigenous viruses.

  17. Reassortant Highly Pathogenic Influenza A H5N2 Virus Containing Gene Segments Related to Eurasian H5N8 in British Columbia, Canada, 2014

    PubMed Central

    Pasick, John; Berhane, Yohannes; Joseph, Tomy; Bowes, Victoria; Hisanaga, Tamiko; Handel, Katherine; Alexandersen, Soren

    2015-01-01

    In late November 2014 higher than normal death losses in a meat turkey and chicken broiler breeder farm in the Fraser Valley of British Columbia initiated a diagnostic investigation that led to the discovery of a novel reassortant highly pathogenic avian influenza (HPAI) H5N2 virus. This virus, composed of 5 gene segments (PB2, PA, HA, M and NS) related to Eurasian HPAI H5N8 and the remaining gene segments (PB1, NP and NA) related to North American lineage waterfowl viruses, represents the first HPAI outbreak in North American poultry due to a virus with Eurasian lineage genes. Since its first appearance in Korea in January 2014, HPAI H5N8 spread to Western Europe in November 2014. These European outbreaks happened to temporally coincide with migratory waterfowl movements. The fact that the British Columbia outbreaks also occurred at a time associated with increased migratory waterfowl activity along with reports by the USA of a wholly Eurasian H5N8 virus detected in wild birds in Washington State, strongly suggest that migratory waterfowl were responsible for bringing Eurasian H5N8 to North America where it subsequently reassorted with indigenous viruses. PMID:25804829

  18. Novel Highly Pathogenic Avian Influenza A(H5N6) Virus in the Netherlands, December 2017.

    PubMed

    Beerens, Nancy; Koch, Guus; Heutink, Rene; Harders, Frank; Vries, D P Edwin; Ho, Cynthia; Bossers, Alex; Elbers, Armin

    2018-04-17

    A novel highly pathogenic avian influenza A(H5N6) virus affecting wild birds and commercial poultry was detected in the Netherlands in December 2017. Phylogenetic analysis demonstrated that the virus is a reassortant of H5N8 clade 2.3.4.4 viruses and not related to the Asian H5N6 viruses that caused human infections.

  19. Comparative Epidemiology of Human Fatal Infections with Novel, High (H5N6 and H5N1) and Low (H7N9 and H9N2) Pathogenicity Avian Influenza A Viruses

    PubMed Central

    Wu, Zu-Qun; Zhang, Yi; Zhao, Na; Yu, Zhao; Pan, Hao; Chan, Ta-Chien; Zhang, Zhi-Ruo; Liu, She-Lan

    2017-01-01

    This study aimed to assess the mortality risks for human infection with high (HPAI) and low (LPAI) pathogenicity avian influenza viruses. The HPAI case fatality rate (CFR) was far higher than the LPAI CFR [66.0% (293/444) vs. 68.75% (11/16) vs. 40.4% (265/656) vs. 0.0% (0/18) in the cases with H5N1, H5N6, H7N9, and H9N2 viruses, respectively; p < 0.001]. Similarly, the CFR of the index cases was greater than the secondary cases with H5N1 [100% (43/43) vs. 43.3% (42/97), p < 0.001]. Old age [22.5 vs. 17 years for H5N1, p = 0.018; 61 vs. 49 years for H7H9, p < 0.001], concurrent diseases [18.8% (15/80) vs. 8.33% (9/108) for H5N1, p = 0.046; 58.6% (156/266) vs. 34.8% (135/388) for H7H9, p < 0.001], delayed confirmation [13 vs. 6 days for H5N1, p < 0.001; 10 vs. 8 days for H7N9, p = 0.011] in the fatalities and survivors, were risk factors for deaths. With regard to the H5N1 clusters, exposure to poultry [67.4% (29/43) vs. 45.2% (19/42), p = 0.039] was the higher risk for the primary than the secondary deaths. In conclusion, old age, comorbidities, delayed confirmation, along with poultry exposure are the major risks contributing to fatal outcomes in human HPAI and LPAI infections. PMID:28273867

  20. Comparative Epidemiology of Human Fatal Infections with Novel, High (H5N6 and H5N1) and Low (H7N9 and H9N2) Pathogenicity Avian Influenza A Viruses.

    PubMed

    Wu, Zu-Qun; Zhang, Yi; Zhao, Na; Yu, Zhao; Pan, Hao; Chan, Ta-Chien; Zhang, Zhi-Ruo; Liu, She-Lan

    2017-03-04

    This study aimed to assess the mortality risks for human infection with high (HPAI) and low (LPAI) pathogenicity avian influenza viruses. The HPAI case fatality rate (CFR) was far higher than the LPAI CFR [66.0% (293/444) vs. 68.75% (11/16) vs. 40.4% (265/656) vs. 0.0% (0/18) in the cases with H5N1, H5N6, H7N9, and H9N2 viruses, respectively; p < 0.001]. Similarly, the CFR of the index cases was greater than the secondary cases with H5N1 [100% (43/43) vs. 43.3% (42/97), p < 0.001]. Old age [22.5 vs. 17 years for H5N1, p = 0.018; 61 vs. 49 years for H7H9, p < 0.001], concurrent diseases [18.8% (15/80) vs. 8.33% (9/108) for H5N1, p = 0.046; 58.6% (156/266) vs. 34.8% (135/388) for H7H9, p < 0.001], delayed confirmation [13 vs. 6 days for H5N1, p < 0.001; 10 vs. 8 days for H7N9, p = 0.011] in the fatalities and survivors, were risk factors for deaths. With regard to the H5N1 clusters, exposure to poultry [67.4% (29/43) vs. 45.2% (19/42), p = 0.039] was the higher risk for the primary than the secondary deaths. In conclusion, old age, comorbidities, delayed confirmation, along with poultry exposure are the major risks contributing to fatal outcomes in human HPAI and LPAI infections.

  1. Characterization of clade 2.3.4.4 highly pathogenic H5 avian influenza viruses in ducks and chickens.

    PubMed

    Sun, Honglei; Pu, Juan; Hu, Jiao; Liu, Litao; Xu, Guanlong; Gao, George F; Liu, Xiufan; Liu, Jinhua

    2016-01-01

    Worldwide dissemination of reassortant variants of H5 clade 2.3.4.4 highly pathogenic avian influenza (HPAI) viruses has posed a great threat to the poultry industry. Here, we systematically characterized the H5N2, H5N6 and H5N8 influenza viruses in poultry and compared them with those of previous clade 2.3.4 H5N1 virus. All the three H5 subtype reassortants caused systematic infection in ducks, and exhibited efficient direct transmission in ducks. All of them were highly pathogenic in chickens; however, the H5 reassortants have reduced virulence compared to the parental H5N1 virus. Antigenicity analysis revealed that the current vaccines that are widely used in China may fail to confer protection against the H5 reassortants. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Highly Pathogenic Avian Influenza A(H5N1) Virus Struck Migratory Birds in China in 2015

    PubMed Central

    Bi, Yuhai; Zhang, Zhenjie; Liu, Wenjun; Yin, Yanbo; Hong, Jianmin; Li, Xiangdong; Wang, Haiming; Wong, Gary; Chen, Jianjun; Li, Yunfeng; Ru, Wendong; Gao, Ruyi; Liu, Di; Liu, Yingxia; Zhou, Boping; Gao, George F.; Shi, Weifeng; Lei, Fumin

    2015-01-01

    Approximately 100 migratory birds, including whooper swans and pochards, were found dead in the Sanmenxia Reservoir Area of China during January 2015. The causative agent behind this outbreak was identified as H5N1 highly pathogenic avian influenza virus (HPAIV). Genetic and phylogenetic analyses revealed that this Sanmenxia H5N1 virus was a novel reassortant, possessing a Clade 2.3.2.1c HA gene and a H9N2-derived PB2 gene. Sanmenxia Clade 2.3.2.1c-like H5N1 viruses possess the closest genetic identity to A/Alberta/01/2014 (H5N1), which recently caused a fatal respiratory infection in Canada with signs of meningoencephalitis, a highly unusual symptom with influenza infections in humans. Furthermore, this virus was shown to be highly pathogenic to both birds and mammals, and demonstrate tropism for the nervous system. Due to the geographical location of Sanmenxia, these novel H5N1 viruses also have the potential to be imported to other regions through the migration of wild birds, similar to the H5N1 outbreak amongst migratory birds in Qinghai Lake during 2005. Therefore, further investigation and monitoring is required to prevent this novel reassortant virus from becoming a new threat to public health. PMID:26259704

  3. An Egyptian HPAI H5N1 isolate from clade 2.2.1.2 is highly pathogenic in an experimentally infected domestic duck breed (Sudani duck).

    PubMed

    Samir, M; Hamed, M; Abdallah, F; Kinh Nguyen, V; Hernandez-Vargas, E A; Seehusen, F; Baumgärtner, W; Hussein, A; Ali, A A H; Pessler, F

    2018-06-01

    The highly pathogenic avian influenza (HPAI) H5N1 viruses continue to cause major problems in poultry and can, although rarely, cause human infection. Being enzootic in domestic poultry, Egyptian isolates are continuously evolving, and novel clades vary in their pathogenicity in avian hosts. Considering the importance of domestic ducks as natural hosts of HPAI H5N1 viruses and their likelihood of physical contact with other avian hosts and humans, it is of utmost importance to characterize the pathogenicity of newly emerged HPAI strains in the domestic duck. The most recently identified Egyptian clade 2.2.1.2 HPAI H5N1 viruses have been isolated from naturally infected pigeons, turkeys and humans. However, essentially nothing is known about their pathogenicity in domestic ducks. We therefore characterized the pathogenicity of an Egyptian HPAI H5N1 isolate A/chicken/Faquos/amn12/2011 (clade 2.2.1.2) in Sudani duck, a domestic duck breed commonly reared in Egypt. While viral transcription (HA mRNA) was highest in lung, heart and kidney peaking between 40 and 48 hpi, lower levels were detected in brain. Weight loss of infected ducks started at 16 hpi and persisted until 120 hpi. The first severe clinical signs were noted by 32 hpi and peaked in severity at 72 and 96 hpi. Haematological analyses showed a decline in total leucocytes, granulocytes, platelets and granulocyte/lymphocyte ratio, but lymphocytosis. Upon necropsy, lesions were obvious in heart, liver, spleen and pancreas and consisted mainly of necrosis and petechial haemorrhage. Histologically, lungs were the most severely affected organs, whereas brain only showed mild neuronal degeneration and gliosis at 48 hpi despite obvious neurological clinical signs. Taken together, our results provide first evidence that this HPAI H5N1 isolate (clade 2.2.1.2) is highly pathogenic to Sudani ducks and highlight the importance of this breed as potential reservoir and disseminator of HPAI strains from this clade.

  4. Enhanced virulence of clade 2.3.2.1 highly pathogenic avian influenza A(H5N1) viruses in ferrets

    USDA-ARS?s Scientific Manuscript database

    Sporadic avian to human transmission of highly pathogenic avian influenza (HPAI) A (H5N1) viruses necessitates the analysis of currently circulating and evolving clades to assess their potential risk. Following the spread and sustained circulation of clade 2 viruses across multiple continents, num...

  5. Comparison of the pathogenic potential of highly pathogenic avian influenza (HPAI) H5N6, and H5N8 viruses isolated in South Korea during the 2016-2017 winter season.

    PubMed

    Kwon, Hyeok-Il; Kim, Eun-Ha; Kim, Young-Il; Park, Su-Jin; Si, Young-Jae; Lee, In-Won; Nguyen, Hiep Dinh; Yu, Kwang Min; Yu, Min-Ah; Jung, Ju Hwan; Choi, Won-Suk; Kwon, Jin Jung; Ahn, Su Jeong; Baek, Yun Hee; Van Lai, Dam; Lee, Ok-Jun; Kim, Si-Wook; Song, Min-Suk; Yoon, Sun-Woo; Kim, Chul-Joong; Webby, Richard J; Mo, In-Pil; Choi, Young Ki

    2018-03-14

    Highly pathogenic avian influenza (HPAI) A(H5N6) and A(H5N8) virus infections resulted in the culling of more than 37 million poultry in the Republic of Korea during the 2016/17 winter season. Here we characterize two representative viruses, A/Environment/Korea/W541/2016 [Em/W541(H5N6)] and A/Common Teal/Korea/W555/2017 [CT/W555(H5N8)], and evaluate their zoonotic potential in various animal models. Both Em/W541(H5N6) and CT /W555(H5N8) are novel reassortants derived from various gene pools of wild bird viruses present in migratory waterfowl arising from eastern China. Despite strong preferential binding to avian virus-type receptors, the viruses were able to grow in human respiratory tract tissues. Em/W541(H5N6) was found to be highly pathogenic in both chickens and ducks, while CT/W555(H5N8) caused lethal infections in chickens but did not induce remarkable clinical illness in ducks. In mice, both viruses appeared to be moderately pathogenic and displayed limited tissue tropism relative to HPAI H5N1 viruses. Em/W541(H5N6) replicated to moderate levels in the upper respiratory tract of ferrets and was detected in the lungs, brain, spleen, liver, and colon. Unexpectedly, two of three ferrets in direct contact with Em/W541(H5N6)-infected animals shed virus and seroconverted at 14 dpi. CT/W555(H5N8) was less pathogenic than the H5N6 virus in ferrets and no transmission was detected. Given the co-circulation of different, phenotypically distinct, subtypes of HPAI H5Nx viruses for the first time in South Korea, detailed virologic investigations are imperative given the capacity of these viruses to evolve and cause human infections.

  6. Pathobiological features of a novel, highly pathogenic avian influenza A(H5N8) virus

    PubMed Central

    Kim, Young-Il; Pascua, Philippe Noriel Q; Kwon, Hyeok-Il; Lim, Gyo-Jin; Kim, Eun-Ha; Yoon, Sun-Woo; Park, Su-Jin; Kim, Se Mi; Choi, Eun-Ji; Si, Young-Jae; Lee, Ok-Jun; Shim, Woo-Sub; Kim, Si-Wook; Mo, In-Pil; Bae, Yeonji; Lim, Yong Taik; Sung, Moon Hee; Kim, Chul-Joong; Webby, Richard J; Webster, Robert G; Choi, Young Ki

    2014-01-01

    The endemicity of highly pathogenic avian influenza (HPAI) A(H5N1) viruses in Asia has led to the generation of reassortant H5 strains with novel gene constellations. A newly emerged HPAI A(H5N8) virus caused poultry outbreaks in the Republic of Korea in 2014. Because newly emerging high-pathogenicity H5 viruses continue to pose public health risks, it is imperative that their pathobiological properties be examined. Here, we characterized A/mallard duck/Korea/W452/2014 (MDk/W452(H5N8)), a representative virus, and evaluated its pathogenic and pandemic potential in various animal models. We found that MDk/W452(H5N8), which originated from the reassortment of wild bird viruses harbored by migratory waterfowl in eastern China, replicated systemically and was lethal in chickens, but appeared to be attenuated, albeit efficiently transmitted, in ducks. Despite predominant attachment to avian-like virus receptors, MDk/W452(H5N8) also exhibited detectable human virus-like receptor binding and replicated in human respiratory tract tissues. In mice, MDk/W452(H5N8) was moderately pathogenic and had limited tissue tropism relative to previous HPAI A(H5N1) viruses. It also induced moderate nasal wash titers in inoculated ferrets; additionally, it was recovered in extrapulmonary tissues and one of three direct-contact ferrets seroconverted without shedding. Moreover, domesticated cats appeared to be more susceptible than dogs to virus infection. With their potential to become established in ducks, continued circulation of A(H5N8) viruses could alter the genetic evolution of pre-existing avian poultry strains. Overall, detailed virological investigation remains a necessity given the capacity of H5 viruses to evolve to cause human illness with few changes in the viral genome. PMID:26038499

  7. Pathobiological features of a novel, highly pathogenic avian influenza A(H5N8) virus.

    PubMed

    Kim, Young-Il; Pascua, Philippe Noriel Q; Kwon, Hyeok-Il; Lim, Gyo-Jin; Kim, Eun-Ha; Yoon, Sun-Woo; Park, Su-Jin; Kim, Se Mi; Choi, Eun-Ji; Si, Young-Jae; Lee, Ok-Jun; Shim, Woo-Sub; Kim, Si-Wook; Mo, In-Pil; Bae, Yeonji; Lim, Yong Taik; Sung, Moon Hee; Kim, Chul-Joong; Webby, Richard J; Webster, Robert G; Choi, Young Ki

    2014-10-01

    The endemicity of highly pathogenic avian influenza (HPAI) A(H5N1) viruses in Asia has led to the generation of reassortant H5 strains with novel gene constellations. A newly emerged HPAI A(H5N8) virus caused poultry outbreaks in the Republic of Korea in 2014. Because newly emerging high-pathogenicity H5 viruses continue to pose public health risks, it is imperative that their pathobiological properties be examined. Here, we characterized A/mallard duck/Korea/W452/2014 (MDk/W452(H5N8)), a representative virus, and evaluated its pathogenic and pandemic potential in various animal models. We found that MDk/W452(H5N8), which originated from the reassortment of wild bird viruses harbored by migratory waterfowl in eastern China, replicated systemically and was lethal in chickens, but appeared to be attenuated, albeit efficiently transmitted, in ducks. Despite predominant attachment to avian-like virus receptors, MDk/W452(H5N8) also exhibited detectable human virus-like receptor binding and replicated in human respiratory tract tissues. In mice, MDk/W452(H5N8) was moderately pathogenic and had limited tissue tropism relative to previous HPAI A(H5N1) viruses. It also induced moderate nasal wash titers in inoculated ferrets; additionally, it was recovered in extrapulmonary tissues and one of three direct-contact ferrets seroconverted without shedding. Moreover, domesticated cats appeared to be more susceptible than dogs to virus infection. With their potential to become established in ducks, continued circulation of A(H5N8) viruses could alter the genetic evolution of pre-existing avian poultry strains. Overall, detailed virological investigation remains a necessity given the capacity of H5 viruses to evolve to cause human illness with few changes in the viral genome.

  8. Experimental infection of SPF and Korean native chickens with highly pathogenic avian influenza virus (H5N8).

    PubMed

    Lee, Eun-Kyoung; Song, Byung-Min; Kang, Hyun-Mi; Woo, Sang-Hee; Heo, Gyeong-Beom; Jung, Suk Chan; Park, Yong Ho; Lee, Youn-Jeong; Kim, Jae-Hong

    2016-05-01

    In 2014, an H5N8 outbreak of highly pathogenic avian influenza (HPAI) occurred in South Korea. The H5N8 strain produced mild to moderate clinical signs and mortality rates in commercial chicken farms, especially Korean native chicken farms. To understand the differences between their pathogenicity in SPF chicken and Korean native chicken., we evaluated the mean bird lethal doses (BLD50) of the Korean representative H5N8 virus (A/broiler duck/Korea/Buan2/2014) The BLD50values of the H5N8 virus were 10(5.3)EID50 and 10(6.7)EID50 in SPF and Korean native chickens, respectively. In addition, the mean death time was much longer, and the viral titers in tissues of H5N8-infected chickens were significantly lower, in the Korean group than in the SPF group. These features of the H5N8 virus likely account for its mild-to-moderate pathogenicity in commercial chicken farms, especially Korean native chicken flocks, despite the fact that it is a highly pathogenic virus according to the OIE criteria. To improve current understanding and management of HPAI, pathogenic characterization of novel emerging viruses should be performed by natural route in major poultry species in each country. © 2016 Poultry Science Association Inc.

  9. The pathobiology of highly pathogenic H5N2 avian influenza virus in Ruddy ducks and Lesser Scaup

    USDA-ARS?s Scientific Manuscript database

    The susceptibility and pathogenesis of avian influenza virus (AIV) has not been characterized in numerous duck species, especially diving ducks, some of which migrate across the continental U.S. The pathobiology of highly pathogenic (HP) H5N2 AIV was characterized in two diving duck species, Ruddy ...

  10. Human infection with a novel, highly pathogenic avian influenza A (H5N6) virus: Virological and clinical findings.

    PubMed

    Pan, Ming; Gao, Rongbao; Lv, Qiang; Huang, Shunhe; Zhou, Zhonghui; Yang, Lei; Li, Xiaodan; Zhao, Xiang; Zou, Xiaohui; Tong, Wenbin; Mao, Suling; Zou, Shumei; Bo, Hong; Zhu, Xiaoping; Liu, Lei; Yuan, Heng; Zhang, Minghong; Wang, Daqing; Li, Zumao; Zhao, Wei; Ma, Maoli; Li, Yaqiang; Li, Tianshu; Yang, Huiping; Xu, Jianan; Zhou, Lijun; Zhou, Xingyu; Tang, Wei; Song, Ying; Chen, Tao; Bai, Tian; Zhou, Jianfang; Wang, Dayan; Wu, Guizhen; Li, Dexin; Feng, Zijian; Gao, George F; Wang, Yu; He, Shusen; Shu, Yuelong

    2016-01-01

    Severe infection with avian influenza A (H5N6) virus in humans was identified first in 2014 in China. Before that, it was unknown or unclear if the disease or the pathogen affected people. This study illustrates the virological and clinical findings of a fatal H5N6 virus infection in a human patient. We obtained and analyzed the clinical, epidemiological, and virological data from the patient. Reverse transcription polymerase chain reaction (RT-PCR), viral culture, and sequencing were conducted for determination of the causative pathogen. The patient, who presented with fever, severe pneumonia, leucopenia, and lymphopenia, developed septic shock and acute respiratory distress syndrome (ARDS), and died on day 10 after illness onset. A novel reassortant avian-origin influenza A (H5N6) virus was isolated from the throat swab or trachea aspirate of the patient. The virus was reassorted with the HA gene of clade 2.3.4.4 H5, the internal genes of clade 2.3.2.1 H5, and the NA gene of the H6N6 avian virus. The cleavage site of the HA gene contained multiple basic amino acids, indicating that the novel H5N6 virus was highly pathogenic in chicken. A novel, highly pathogenic avian influenza H5N6 virus with a backbone of H5N1 virus acquired from the NA gene from the H6N6 virus has been identified. It caused human infection resulting in severe respiratory disease. Copyright © 2015 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  11. Novel Reassortant H5N6 Influenza A Virus from the Lao People's Democratic Republic Is Highly Pathogenic in Chickens.

    PubMed

    Butler, Jeffrey; Stewart, Cameron R; Layton, Daniel S; Phommachanh, Phouvong; Harper, Jennifer; Payne, Jean; Evans, Ryan M; Valdeter, Stacey; Walker, Som; Harvey, Gemma; Shan, Songhua; Bruce, Matthew P; Rootes, Christina L; Gough, Tamara J; Rohringer, Andreas; Peck, Grantley R; Fardy, Sarah J; Karpala, Adam J; Johnson, Dayna; Wang, Jianning; Douangngeun, Bounlom; Morrissy, Christopher; Wong, Frank Y K; Bean, Andrew G D; Bingham, John; Williams, David T

    2016-01-01

    Avian influenza viruses of H5 subtype can cause highly pathogenic disease in poultry. In March 2014, a new reassortant H5N6 subtype highly pathogenic avian influenza virus emerged in Lao People's Democratic Republic. We have assessed the pathogenicity, pathobiology and immunological responses associated with this virus in chickens. Infection caused moderate to advanced disease in 6 of 6 chickens within 48 h of mucosal inoculation. High virus titers were observed in blood and tissues (kidney, spleen, liver, duodenum, heart, brain and lung) taken at euthanasia. Viral antigen was detected in endothelium, neurons, myocardium, lymphoid tissues and other cell types. Pro-inflammatory cytokines were elevated compared to non-infected birds. Our study confirmed that this new H5N6 reassortant is highly pathogenic, causing disease in chickens similar to that of Asian H5N1 viruses, and demonstrated the ability of such clade 2.3.4-origin H5 viruses to reassort with non-N1 subtype viruses while maintaining a fit and infectious phenotype. Recent detection of influenza H5N6 poultry infections in Lao PDR, China and Viet Nam, as well as six fatal human infections in China, demonstrate that these emergent highly pathogenic H5N6 viruses may be widely established in several countries and represent an emerging threat to poultry and human populations.

  12. High-yield production of a stable Vero cell-based vaccine candidate against the highly pathogenic avian influenza virus H5N1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Fangye; Zhou, Jian; Ma, Lei

    Highlights: Black-Right-Pointing-Pointer Vero cell-based HPAI H5N1 vaccine with stable high yield. Black-Right-Pointing-Pointer Stable high yield derived from the YNVa H3N2 backbone. Black-Right-Pointing-Pointer H5N1/YNVa has a similar safety and immunogenicity to H5N1delta. -- Abstract: Highly pathogenic avian influenza (HPAI) viruses pose a global pandemic threat, for which rapid large-scale vaccine production technology is critical for prevention and control. Because chickens are highly susceptible to HPAI viruses, the supply of chicken embryos for vaccine production might be depleted during a virus outbreak. Therefore, developing HPAI virus vaccines using other technologies is critical. Meeting vaccine demand using the Vero cell-based fermentation process hasmore » been hindered by low stability and yield. In this study, a Vero cell-based HPAI H5N1 vaccine candidate (H5N1/YNVa) with stable high yield was achieved by reassortment of the Vero-adapted (Va) high growth A/Yunnan/1/2005(H3N2) (YNVa) virus with the A/Anhui/1/2005(H5N1) attenuated influenza vaccine strain (H5N1delta) using the 6/2 method. The reassorted H5N1/YNVa vaccine maintained a high hemagglutination (HA) titer of 1024. Furthermore, H5N1/YNVa displayed low pathogenicity and uniform immunogenicity compared to that of the parent virus.« less

  13. Highly Pathogenic Avian Influenza H5N1, Thailand, 2004

    PubMed Central

    Chaitaweesub, Prasit; Songserm, Thaweesak; Chaisingh, Arunee; Hoonsuwan, Wirongrong; Buranathai, Chantanee; Parakamawongsa, Tippawon; Premashthira, Sith; Amonsin, Alongkorn; Gilbert, Marius; Nielen, Mirjam; Stegeman, Arjan

    2005-01-01

    In January 2004, highly pathogenic avian influenza (HPAI) virus of the H5N1 subtype was first confirmed in poultry and humans in Thailand. Control measures, e.g., culling poultry flocks, restricting poultry movement, and improving hygiene, were implemented. Poultry populations in 1,417 villages in 60 of 76 provinces were affected in 2004. A total of 83% of infected flocks confirmed by laboratories were backyard chickens (56%) or ducks (27%). Outbreaks were concentrated in the Central, the southern part of the Northern, and Eastern Regions of Thailand, which are wetlands, water reservoirs, and dense poultry areas. More than 62 million birds were either killed by HPAI viruses or culled. H5N1 virus from poultry caused 17 human cases and 12 deaths in Thailand; a number of domestic cats, captive tigers, and leopards also died of the H5N1 virus. In 2005, the epidemic is ongoing in Thailand. PMID:16318716

  14. Heterologous post-infection immunity against Egyptian avian influenza virus (AIV) H9N2 modulates the course of subsequent infection by highly pathogenic AIV H5N1, but vaccination immunity does not.

    PubMed

    Naguib, Mahmoud M; Grund, Christian; Arafa, Abdel-Satar; Abdelwhab, E M; Beer, Martin; Harder, Timm C

    2017-06-01

    In Egypt, zoonotic A/goose/Guangdong/1/96 (gs/GD-like) highly pathogenic avian influenza virus (HPAIV) H5N1 of clade 2.2.1.2 is entrenched in poultry populations and has co-circulated with low-pathogenic avian influenza virus H9N2 of the G1 lineage since 2010. Here, the impact of H9N2 infection or vaccination on the course of consecutive infection with a lethal Egyptian HPAIV H5N1 is studied. Three-week-old chickens were infected with H9N2 or vaccinated with inactivated H9N2 or H5N1 antigens and challenged three weeks later by an HPAIV H5N1. Interestingly, pre-infection of chickens with H9N2 decreased the oral excretion of H5N1 to levels that were comparable to those of H5N1-immunized chickens, but vaccination with inactivated H9N2 did not. H9N2 pre-infection modulated but did not conceal clinical disease by HPAIV H5N1. By contrast, homologous H5 vaccination abolished clinical syndromic surveillance, although vaccinated clinical healthy birds were capable of spreading the virus.

  15. Highly (H5N1) and Low (H7N2) Pathogenic Avian Influenza Virus Infection in Falcons Via Nasochoanal Route and Ingestion of Experimentally Infected Prey

    PubMed Central

    Bertran, Kateri; Busquets, Núria; Abad, Francesc Xavier; García de la Fuente, Jorge; Solanes, David; Cordón, Iván; Costa, Taiana; Dolz, Roser; Majó, Natàlia

    2012-01-01

    An experimental infection with highly pathogenic avian influenza (HPAI) and low pathogenic avian influenza (LPAI) viruses was carried out on falcons in order to examine the effects of these viruses in terms of pathogenesis, viral distribution in tissues and viral shedding. The distribution pattern of influenza virus receptors was also assessed. Captive-reared gyr-saker (Falco rusticolus x Falco cherrug) hybrid falcons were challenged with a HPAI H5N1 virus (A/Great crested grebe/Basque Country/06.03249/2006) or a LPAI H7N2 virus (A/Anas plathyrhynchos/Spain/1877/2009), both via the nasochoanal route and by ingestion of previously infected specific pathogen free chicks. Infected falcons exhibited similar infection dynamics despite the different routes of exposure, demonstrating the effectiveness of in vivo feeding route. H5N1 infected falcons died, or were euthanized, between 5–7 days post-infection (dpi) after showing acute severe neurological signs. Presence of viral antigen in several tissues was confirmed by immunohistochemistry and real time RT-PCR (RRT-PCR), which were generally associated with significant microscopical lesions, mostly in the brain. Neither clinical signs, nor histopathological findings were observed in any of the H7N2 LPAI infected falcons, although all of them had seroconverted by 11 dpi. Avian receptors were strongly present in the upper respiratory tract of the falcons, in accordance with the consistent oral viral shedding detected by RRT-PCR in both H5N1 HPAI and H7N2 LPAI infected falcons. The present study demonstrates that gyr-saker hybrid falcons are highly susceptible to H5N1 HPAI virus infection, as previously observed, and that they may play a major role in the spreading of both HPAI and LPAI viruses. For the first time in raptors, natural infection by feeding on infected prey was successfully reproduced. The use of avian prey species in falconry husbandry and wildlife rehabilitation facilities could put valuable birds of prey

  16. Highly (H5N1) and low (H7N2) pathogenic avian influenza virus infection in falcons via nasochoanal route and ingestion of experimentally infected prey.

    PubMed

    Bertran, Kateri; Busquets, Núria; Abad, Francesc Xavier; García de la Fuente, Jorge; Solanes, David; Cordón, Iván; Costa, Taiana; Dolz, Roser; Majó, Natàlia

    2012-01-01

    An experimental infection with highly pathogenic avian influenza (HPAI) and low pathogenic avian influenza (LPAI) viruses was carried out on falcons in order to examine the effects of these viruses in terms of pathogenesis, viral distribution in tissues and viral shedding. The distribution pattern of influenza virus receptors was also assessed. Captive-reared gyr-saker (Falco rusticolus x Falco cherrug) hybrid falcons were challenged with a HPAI H5N1 virus (A/Great crested grebe/Basque Country/06.03249/2006) or a LPAI H7N2 virus (A/Anas plathyrhynchos/Spain/1877/2009), both via the nasochoanal route and by ingestion of previously infected specific pathogen free chicks. Infected falcons exhibited similar infection dynamics despite the different routes of exposure, demonstrating the effectiveness of in vivo feeding route. H5N1 infected falcons died, or were euthanized, between 5-7 days post-infection (dpi) after showing acute severe neurological signs. Presence of viral antigen in several tissues was confirmed by immunohistochemistry and real time RT-PCR (RRT-PCR), which were generally associated with significant microscopical lesions, mostly in the brain. Neither clinical signs, nor histopathological findings were observed in any of the H7N2 LPAI infected falcons, although all of them had seroconverted by 11 dpi. Avian receptors were strongly present in the upper respiratory tract of the falcons, in accordance with the consistent oral viral shedding detected by RRT-PCR in both H5N1 HPAI and H7N2 LPAI infected falcons. The present study demonstrates that gyr-saker hybrid falcons are highly susceptible to H5N1 HPAI virus infection, as previously observed, and that they may play a major role in the spreading of both HPAI and LPAI viruses. For the first time in raptors, natural infection by feeding on infected prey was successfully reproduced. The use of avian prey species in falconry husbandry and wildlife rehabilitation facilities could put valuable birds of prey and

  17. The multigenic nature of the differences in pathogenicity of H5N1 highly pathogenic avian influenza viruses in domestic ducks

    USDA-ARS?s Scientific Manuscript database

    The Eurasian H5N1 highly pathogenic avian influenza (HPAI) viruses have evolved into many genetic lineages. The divergent strains that have arisen express distinct pathobiological features and increased virulence for many bird species including domestic waterfowl. The pathogenicity of H5N1 HPAI vi...

  18. Efficacy of clade 2.3.2 H5 commercial vaccines in protecting chickens from clade 2.3.4.4 H5N8 highly pathogenic avian influenza infection.

    PubMed

    Yuk, Seong-Su; Erdene-Ochir, T O; Kwon, Jung-Hoon; Noh, Jin-Yong; Hong, Woo-Tack; Jeong, Jei-Hyun; Jeong, Sol; Gwon, Gyeong-Bin; Shin, Jong-Il; Sur, Jung-Hyang; Song, Chang-Seon

    2017-03-01

    Emerging clade 2.3.4.4 of the highly pathogenic avian influenza (HPAI) virus strain H5N8, which had been detected sporadically in domestic poultry in China, started to affect wild birds and poultry in South Korea in 2014. The virus was spread to Germany, Italy, the Netherlands, United Kingdom, and even United States by migratory birds. Here, we tested currently used commercial clade 2.3.2 H5 vaccines to evaluate mortality, clinical signs, virus shedding, and histological damage after experimental infection of chickens with the clade 2.3.4.4 HPAI H5N8 virus. Although the vaccination protected chickens from death, it failed to prevent chickens from shedding the virus and from tissue damage according to histological examination. These results suggest that the use of appropriate vaccines that match the currently epidemic HPAI virus is recommended, and continuous HPAI surveillance and testing of currently used commercial vaccines should be performed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Vaccine protection of poultry against H5 clade 2.3.4.4 highly pathogenic avian influenza

    USDA-ARS?s Scientific Manuscript database

    Following the 2014-2015 outbreaks of H5N2 and H5N8 (clade 2.3.4.4) highly pathogenic avian influenza (HPAI) in the U.S., studies were performed to identify vaccines with potential to be used as a control mechanism in the event of future outbreaks. We tested both inactivated and recombinant vaccine...

  20. Phylogenetic and molecular analysis of highly pathogenic avian influenza H5N8 and H5N5 viruses detected in Poland in 2016-2017.

    PubMed

    Świętoń, Edyta; Śmietanka, Krzysztof

    2018-06-19

    Sixty-five poultry outbreaks and sixty-eight events in wild birds were reported during the highly pathogenic H5N8/H5N5 avian influenza epidemic in Poland in 2016-2017. The analysis of all gene segment sequences of selected strains revealed cocirculation of at least four different genome configurations (genotypes) generated through reassortment of clade 2.3.4.4 H5N8 viruses detected in Russia and China in mid-2016. The geographical and temporal distribution of three H5N8 genotypes indicates separate introductions. Additionally, an H5N5 virus with a different gene configuration was detected in wild birds. The compilation of the results with those from studies on the virus' diversity in Germany, Italy and the Netherlands revealed that Europe was affected by at least eight different H5N8/H5N5 reassortants. Analysis of the HA gene sequence of a larger subset of samples showed its diversification corresponding to the genotype classification. The close relationship between poultry and wild bird strains from the same locations observed in several cases points to wild birds as the primary source of the outbreaks in poultry. © 2018 Blackwell Verlag GmbH.

  1. Highly pathogenic avian influenza virus (H5N1) isolated from whooper swans, Japan.

    PubMed

    Uchida, Yuko; Mase, Masaji; Yoneda, Kumiko; Kimura, Atsumu; Obara, Tsuyoshi; Kumagai, Seikou; Saito, Takehiko; Yamamoto, Yu; Nakamura, Kikuyasu; Tsukamoto, Kenji; Yamaguchi, Shigeo

    2008-09-01

    On April 21, 2008, four whooper swans were found dead at Lake Towada, Akita prefecture, Japan. Highly pathogenic avian influenza virus of the H5N1 subtype was isolated from specimens of the affected birds. The hemagglutinin (HA) gene of the isolate belongs to clade 2.3.2 in the HA phylogenetic tree.

  2. Novel Reassortant H5N6 Influenza A Virus from the Lao People’s Democratic Republic Is Highly Pathogenic in Chickens

    PubMed Central

    Layton, Daniel S.; Phommachanh, Phouvong; Harper, Jennifer; Payne, Jean; Evans, Ryan M.; Valdeter, Stacey; Walker, Som; Harvey, Gemma; Shan, Songhua; Bruce, Matthew P.; Rootes, Christina L.; Gough, Tamara J.; Rohringer, Andreas; Peck, Grantley R.; Fardy, Sarah J.; Karpala, Adam J.; Johnson, Dayna; Wang, Jianning; Douangngeun, Bounlom; Morrissy, Christopher; Wong, Frank Y. K.; Bean, Andrew G. D.; Bingham, John; Williams, David T.

    2016-01-01

    Avian influenza viruses of H5 subtype can cause highly pathogenic disease in poultry. In March 2014, a new reassortant H5N6 subtype highly pathogenic avian influenza virus emerged in Lao People’s Democratic Republic. We have assessed the pathogenicity, pathobiology and immunological responses associated with this virus in chickens. Infection caused moderate to advanced disease in 6 of 6 chickens within 48 h of mucosal inoculation. High virus titers were observed in blood and tissues (kidney, spleen, liver, duodenum, heart, brain and lung) taken at euthanasia. Viral antigen was detected in endothelium, neurons, myocardium, lymphoid tissues and other cell types. Pro-inflammatory cytokines were elevated compared to non-infected birds. Our study confirmed that this new H5N6 reassortant is highly pathogenic, causing disease in chickens similar to that of Asian H5N1 viruses, and demonstrated the ability of such clade 2.3.4-origin H5 viruses to reassort with non-N1 subtype viruses while maintaining a fit and infectious phenotype. Recent detection of influenza H5N6 poultry infections in Lao PDR, China and Viet Nam, as well as six fatal human infections in China, demonstrate that these emergent highly pathogenic H5N6 viruses may be widely established in several countries and represent an emerging threat to poultry and human populations. PMID:27631618

  3. Highly Pathogenic H5N1 Avian Influenza Viruses Exhibit Few Barriers to Gene Flow in Vietnam

    PubMed Central

    Carrel, Margaret; Wan, Xiu-Feng; Nguyen, Tung; Emch, Michael

    2013-01-01

    Locating areas where genetic change is inhibited can illuminate underlying processes that drive evolution of pathogens. The persistence of highly pathogenic H5N1 avian influenza in Vietnam since 2003, and the continuous molecular evolution of Vietnamese avian influenza viruses, indicates that local environmental factors are supportive not only of incidence but also of viral adaptation. This article explores whether gene flow is constant across Vietnam, or whether there exist boundary areas where gene flow exhibits discontinuity. Using a dataset of 125 highly pathogenic H5N1 avian influenza viruses, principal components analysis and wombling analysis are used to indicate the location, magnitude, and statistical significance of genetic boundaries. Results show that a small number of geographically minor boundaries to gene flow in highly pathogenic H5N1 avian influenza viruses exist in Vietnam, but that overall there is little division in genetic exchange. This suggests that differences in genetic characteristics of viruses from one region to another are not the result of barriers to H5N1 viral exchange in Vietnam, and that H5N1 avian influenza is able to spread relatively unimpeded across the country. PMID:22350419

  4. Reintroduction of highly pathogenic avian influenza A/H5N8 virus of clade 2.3.4.4. in Russia.

    PubMed

    Marchenko, Vasiliy Y; Susloparov, Ivan M; Komissarov, Andrey B; Fadeev, Artem; Goncharova, Nataliya I; Shipovalov, Andrey V; Svyatchenko, Svetlana V; Durymanov, Alexander G; Ilyicheva, Tatyana N; Salchak, Lyudmila K; Svintitskaya, Elena P; Mikheev, Valeriy N; Ryzhikov, Alexander B

    2017-05-01

    In the spring of 2016, a loss of wild birds was observed during the monitoring of avian influenza virus activity in the Republic of Tyva. That outbreak was caused by influenza H5N8 virus of clade 2.3.4.4. In the fall, viruses of H5N8 clade 2.3.4.4 were propagated in European countries. This paper presents some results of analysis of the virus strains isolated during the spring and fall seasons in 2016 in the Russian Federation. The investigated strains were highly pathogenic for mice, and some of their antigenic and genetic features differed from those of an H5N8 strain that circulated in 2014 in Russia.

  5. Experimental infection of dogs with highly pathogenic avian influenza virus (H5N8).

    PubMed

    Yuk, Seong-Su; Lee, Dong-Hun; Park, Jae-Keun; Tseren-Ochir, Erdene-Ochir; Kwon, Jung-Hoon; Noh, Jin-Yong; Song, Chang-Seon

    2017-08-31

    During the highly pathogenic avian influenza (HPAI) H5N8 virus outbreak in Korea, a dog in layer farm contaminated by H5N8 was reported seropositive for HPAI H5N8. To investigate the possibility of adaptation and transmission of HPAI H5N8 to dogs, we experimentally inoculated dogs with H5N8. Viral genes were weakly detected in nasal swabs and seroconversions in inoculated and contact dogs. Although the H5N8 virus did not induced severe clinical signs to dogs, the results suggest that surveillance of farm dogs should continue as a species in which the avian influenza virus may acquire infectivity to mammals through frequent contact with the virus.

  6. Characterization of low-pathogenicity H5N1 avian influenza viruses from North America

    USGS Publications Warehouse

    Spackman, Erica; Swayne, D. E.; Suarez, D. L.; Senne, D. A.; Pedersen, J. C.; Killian, M. L.; Pasick, J.; Handel, K.; Pillai, S. P. S.; Lee, C. -W.; Stallknecht, D.; Slemons, R.; Ip, H. S.; Deliberto, T.

    2007-01-01

    Wild-bird surveillance in North America for avian influenza (AI) viruses with a goal of early identification of the Asian H5N1 highly pathogenic AI virus has identified at least six low-pathogenicity H5N1 AI viruses between 2004 and 2006. The hemagglutinin (HA) and neuraminidase (NA) genes from all 6 H5N1 viruses and an additional 38 North American wild-bird-origin H5 subtype and 28 N1 subtype viruses were sequenced and compared with sequences available in GenBank by phylogenetic analysis. Both HA and NA were phylogenetically distinct from those for viruses from outside of North America and from those for viruses recovered from mammals. Four of the H5N1 AI viruses were characterized as low pathogenicity by standard in vivo pathotyping tests. One of the H5N1 viruses, A/MuteSwan/MI/451072-2/06, was shown to replicate to low titers in chickens, turkeys, and ducks. However, transmission of A/MuteSwan/MI/451072-2/06 was more efficient among ducks than among chickens or turkeys based on virus shed. The 50% chicken infectious dose for A/MuteSwan/MI/451072-2/06 and three other wild-waterfowl-origin H5 viruses were also determined and were between 10 5.3 and 107.5 50% egg infective doses. Finally, seven H5 viruses representing different phylogenetic clades were evaluated for their antigenic relatedness by hemagglutination inhibition assay, showing that the antigenic relatedness was largely associated with geographic origin. Overall, the data support the conclusion that North American H5 wild-bird-origin AI viruses are low-pathogenicity wild-bird-adapted viruses and are antigenically and genetically distinct from the highly pathogenic Asian H5N1 virus lineage. Copyright ?? 2007, American Society for Microbiology. All Rights Reserved.

  7. Characterization of low-pathogenicity H5N1 avian influenza viruses from North America

    USGS Publications Warehouse

    Spackman, Erica; Swayne, David E.; Suarez, David L.; Senne, Dennis A.; Pedersen, Janice C.; Killian, Mary Lea; Pasick, John; Handel, Katherine; Somanathan Pillai, Smitha; Lee, Chang-Won; Stallknecht, David; Slemons, Richard; Ip, Hon S.; Deliberto, Tom

    2007-01-01

    Wild-bird surveillance in North America for avian influenza (AI) viruses with a goal of early identification of the Asian H5N1 highly pathogenic AI virus has identified at least six low-pathogenicity H5N1 AI viruses between 2004 and 2006. The hemagglutinin (HA) and neuraminidase (NA) genes from all 6 H5N1 viruses and an additional 38 North American wild-bird-origin H5 subtype and 28 N1 subtype viruses were sequenced and compared with sequences available in GenBank by phylogenetic analysis. Both HA and NA were phylogenetically distinct from those for viruses from outside of North America and from those for viruses recovered from mammals. Four of the H5N1 AI viruses were characterized as low pathogenicity by standard in vivo pathotyping tests. One of the H5N1 viruses, A/MuteSwan/MI/451072-2/06, was shown to replicate to low titers in chickens, turkeys, and ducks. However, transmission of A/MuteSwan/MI/451072-2/06 was more efficient among ducks than among chickens or turkeys based on virus shed. The 50% chicken infectious dose for A/MuteSwan/MI/451072-2/06 and three other wild-waterfowl-origin H5 viruses were also determined and were between 105.3 and 107.5 50% egg infective doses. Finally, seven H5 viruses representing different phylogenetic clades were evaluated for their antigenic relatedness by hemagglutination inhibition assay, showing that the antigenic relatedness was largely associated with geographic origin. Overall, the data support the conclusion that North American H5 wild-bird-origin AI viruses are low-pathogenicity wild-bird-adapted viruses and are antigenically and genetically distinct from the highly pathogenic Asian H5N1 virus lineage.

  8. Efficacy of a recombinant turkey herpesvirus H5 vaccine against challenge with H5N1 clades 1.1.2 and 2.3.2.1 highly pathogenic avian influenza viruses in domestic ducks (Anas platyrhynchos domesticus)

    USDA-ARS?s Scientific Manuscript database

    The Goose/Guangdong (Gs/GD)-lineage H5N1 highly pathogenic avian influenza (HPAI) viruses continue to circulate and cause great economic losses in poultry in Asia, the Middle East, and Africa. Recently, the Gs/GD-lineage H5N8 HPAI virus belonging to clade 2.3.4.4 and its reassortants have caused out...

  9. Isolation and characterization of highly pathogenic avian influenza virus subtype H5N1 from donkeys

    PubMed Central

    2010-01-01

    Background The highly pathogenic H5N1 is a major avian pathogen that crosses species barriers and seriously affects humans as well as some mammals. It mutates in an intensified manner and is considered a potential candidate for the possible next pandemic with all the catastrophic consequences. Methods Nasal swabs were collected from donkeys suffered from respiratory distress. The virus was isolated from the pooled nasal swabs in specific pathogen free embryonated chicken eggs (SPF-ECE). Reverse transcriptase polymerase chain reaction (RT-PCR) and sequencing of both haemagglutingin and neuraminidase were performed. H5 seroconversion was screened using haemagglutination inhibition (HI) assay on 105 donkey serum samples. Results We demonstrated that H5N1 jumped from poultry to another mammalian host; donkeys. Phylogenetic analysis showed that the virus clustered within the lineage of H5N1 from Egypt, closely related to 2009 isolates. It harboured few genetic changes compared to the closely related viruses from avian and humans. The neuraminidase lacks oseltamivir resistant mutations. Interestingly, HI screening for antibodies to H5 haemagglutinins in donkeys revealed high exposure rate. Conclusions These findings extend the host range of the H5N1 influenza virus, possess implications for influenza virus epidemiology and highlight the need for the systematic surveillance of H5N1 in animals in the vicinity of backyard poultry units especially in endemic areas. PMID:20398268

  10. Age is not a determinant factor in susceptibility of broilers to H5N2 clade 2.3.4.4 high pathogenicity avian influenza virus

    USDA-ARS?s Scientific Manuscript database

    In 2014–2015, the US experienced an unprecedented outbreak of H5 clade 2.3.4.4 highly pathogenic avian influenza (HPAI) virus. The H5N2 HPAI virus outbreak in the Midwest in 2015 affected commercial turkey and layer farms, but not broiler farms. To assess any potential genetic resistance of broilers...

  11. Comparing introduction to Europe of highly pathogenic avian influenza viruses A(H5N8) in 2014 and A(H5N1) in 2005.

    PubMed

    Adlhoch, C; Gossner, C; Koch, G; Brown, I; Bouwstra, R; Verdonck, F; Penttinen, P; Harder, T

    2014-12-18

    Since the beginning of November 2014, nine outbreaks of highly pathogenic avian influenza virus (HPAIV) A(H5N8) in poultry have been detected in four European countries. In this report, similarities and differences between the modes of introduction of HPAIV A(H5N1) and A(H5N8) into Europe are described. Experiences from outbreaks of A(H5N1) in Europe demonstrated that early detection to control HPAIV in poultry has proven pivotal to minimise the risk of zoonotic transmission and prevention of human cases.

  12. Homosubtypic and heterosubtypic antibodies against highly pathogenic avian influenza H5N1 recombinant proteins in H5N1 survivors and non-H5N1 subjects.

    PubMed

    Noisumdaeng, Pirom; Pooruk, Phisanu; Prasertsopon, Jarunee; Assanasen, Susan; Kitphati, Rungrueng; Auewarakul, Prasert; Puthavathana, Pilaipan

    2014-04-01

    Six recombinant vaccinia viruses containing HA, NA, NP, M or NS gene insert derived from a highly pathogenic avian influenza H5N1 virus, and the recombinant vaccinia virus harboring plasmid backbone as the virus control were constructed. The recombinant proteins were characterized for their expression and subcellular locations in TK(-) cells. Antibodies to the five recombinant proteins were detected in all 13 sequential serum samples collected from four H5N1 survivors during four years of follow-up; and those directed to rVac-H5 HA and rVac-NA proteins were found in higher titers than those directed to the internal proteins as revealed by indirect immunofluorescence assay. Although all 28 non-H5N1 subjects had no neutralizing antibodies against H5N1 virus, they did have cross-reactive antibodies to those five recombinant proteins. A significant increase in cross-reactive antibody titer to rVac-H5 HA and rVac-NA was found in paired blood samples from patients infected with the 2009 pandemic virus. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Characterization of highly pathogenic avian influenza H5N8 virus from Egyptian domestic waterfowl in 2017.

    PubMed

    Anis, Anis; AboElkhair, Mohammed; Ibrahim, Mahmoud

    2018-08-01

    In 2016, the highly pathogenic avian influenza (HPAI) H5N8 virus was detected in wild birds for the first time in Egypt. In the present study, we identified the HPAI virus H5N8 of clade 2.3.4.4 from domestic waterfowl in Egypt, suggesting its transmission to the domestic poultry from the migratory birds. Based on partial haemagglutinin gene sequence, this virus has a close genetic relationship with subtype H5N8 viruses circulating in Asia and Europe. Pathologically, H5N8 virus in hybrid duck induced nervous signs accompanied by encephalomalacia, haemorrhages, nonsuppurative encephalitis and nonsuppurative vasculitis. The granular layer of cerebellum showed multifocal areas of hydropic degeneration and the Purkinje cell neurons were necrotized or lost. Additionally, the lung, kidney and spleen were congested, and necrotizing pancreatitis was also observed. The co-circulation of both HPAI H5N1 and H5N8 subtypes with the low pathogenic avian influenza H9N2 subtype complicate the control of avian influenza in Egypt with the possibility of emergence of new reassortant viruses. Therefore, continuous monitoring with implementation of strict control measures is required. Research highlights HPAI H5N8 virus clade 2.3.4.4 was detected in domestic ducks and geese in Egypt in 2017. Phylogenetically, the virus was closely related to HPAI H5N8 viruses identified in Asia and Europe Nonsuppurative encephalitis was widely observed in HPAI H5N8 virus-infected ducks. Degeneration of the cerebellar granular layer was found in most of the brain tissues examined.

  14. Isolation and identification of highly pathogenic avian influenza virus subtype H5N1 in peafowl (Pavo cristatus).

    PubMed

    Ismail, Mahmoud Moussa; Khan, Owais Ahmed; Cattoli, Giovanni; Lu, Huaguang

    2010-03-01

    An outbreak of highly pathogenic avian influenza (HPAI) virus subtype H5N1 was first diagnosed in a "backyard" flock of peafowl (Pavo cristatus) raised on palace premises in the Kingdom of Saudi Arabia in December 3, 2007. The flock consisted of 40 peafowl, and their ages ranged from 3 to 5 years old. Affected birds suffered from depression, anorexia, and white diarrhea. Four dead birds were submitted for HPAI diagnosis at the Central Veterinary Diagnostic Laboratory in Riyadh. Brain and liver tissues and tracheal and cloacal swabs were taken from the dead birds and processed for a real-time reverse transcriptase (RT)-PCR test and virus isolation in specific-pathogen-free embryonating chicken eggs. The H5N1 subtype of avian influenza virus was isolated from the four dead birds and identified by a real-time RT-PCR before and after egg inoculation. The virus isolates were characterized as HPAI H5N1 virus by sequencing analysis. Phylogenetic comparisons revealed that the H5N1 viruses isolated from peafowl belong to the genetic clade 2.2 according to the World Health Organization nomenclature. The peafowl H5N1 virus falls into 2.2.2 sublineage II and clusters with the H5N1 viruses isolated from poultry in Saudi Arabia in 2007-08.

  15. Enhanced virulence of clade 2.3.2.1 highly pathogenic avian influenza A H5N1 viruses in ferrets.

    PubMed

    Pearce, Melissa B; Pappas, Claudia; Gustin, Kortney M; Davis, C Todd; Pantin-Jackwood, Mary J; Swayne, David E; Maines, Taronna R; Belser, Jessica A; Tumpey, Terrence M

    2017-02-01

    Sporadic avian to human transmission of highly pathogenic avian influenza (HPAI) A(H5N1) viruses necessitates the analysis of currently circulating and evolving clades to assess their potential risk. Following the spread and sustained circulation of clade 2 viruses across multiple continents, numerous subclades and genotypes have been described. To better understand the pathogenesis associated with the continued diversification of clade 2A(H5N1) influenza viruses, we investigated the relative virulence of eleven human and poultry isolates collected from 2006 to 2013 by determining their ability to cause disease in the ferret model. Numerous clade 2 viruses, including a clade 2.2 avian isolate, a 2.2.2.1 human isolate, and two 2.2.1 human isolates, were found to be of low virulence in the ferret model, though lethality was detected following infection with one 2.2.1 human isolate. In contrast, three of six clade 2.3.2.1 avian isolates tested led to severe disease and death among infected ferrets. Clade 2.3.2.1b and 2.3.2.1c isolates, but not 2.3.2.1a isolates, were associated with ferret lethality. All A(H5N1) viruses replicated efficiently in the respiratory tract of ferrets regardless of their virulence and lethality. However, lethal isolates were characterized by systemic viral dissemination, including detection in the brain and enhanced histopathology in lung tissues. The finding of disparate virulence phenotypes between clade 2A(H5N1) viruses, notably differences between subclades of 2.3.2.1 viruses, suggests there are distinct molecular determinants present within the established subclades, the identification of which will assist in molecular-based surveillance and public health efforts against A(H5N1) viruses. Published by Elsevier Inc.

  16. Enhanced virulence of clade 2.3.2.1 highly pathogenic avian influenza A H5N1 viruses in ferrets

    PubMed Central

    Pearce, Melissa B.; Pappas, Claudia; Gustin, Kortney M.; Davis, C. Todd; Pantin-Jackwood, Mary J.; Swayne, David E.; Maines, Taronna R.; Belser, Jessica A.; Tumpey, Terrence M.

    2017-01-01

    Sporadic avian to human transmission of highly pathogenic avian influenza (HPAI) A(H5N1) viruses necessitates the analysis of currently circulating and evolving clades to assess their potential risk. Following the spread and sustained circulation of clade 2 viruses across multiple continents, numerous subclades and genotypes have been described. To better understand the pathogenesis associated with the continued diversification of clade 2 A(H5N1) influenza viruses, we investigated the relative virulence of eleven human and poultry isolates collected from 2006 to 2013 by determining their ability to cause disease in the ferret model. Numerous clade 2 viruses, including a clade 2.2 avian isolate, a 2.2.2.1 human isolate, and two 2.2.1 human isolates, were found to be of low virulence in the ferret model, though lethality was detected following infection with one 2.2.1 human isolate. In contrast, three of six clade 2.3.2.1 avian isolates tested led to severe disease and death among infected ferrets. Clade 2.3.2.1b and 2.3.2.1c isolates, but not 2.3.2.1a isolates, were associated with ferret lethality. All A(H5N1) viruses replicated efficiently in the respiratory tract of ferrets regardless of their virulence and lethality. However, lethal isolates were characterized by systemic viral dissemination, including detection in the brain and enhanced histopathology in lung tissues. The finding of disparate virulence phenotypes between clade 2 A(H5N1) viruses, notably differences between subclades of 2.3.2.1 viruses, suggests there are distinct molecular determinants present within the established subclades, the identification of which will assist in molecular-based surveillance and public health efforts against A(H5N1) viruses. PMID:28038412

  17. Smartphone-Based Fluorescent Diagnostic System for Highly Pathogenic H5N1 Viruses.

    PubMed

    Yeo, Seon-Ju; Choi, Kyunghan; Cuc, Bui Thi; Hong, Nguyen Ngoc; Bao, Duong Tuan; Ngoc, Nguyen Minh; Le, Mai Quynh; Hang, Nguyen Le Khanh; Thach, Nguyen Co; Mallik, Shyam Kumar; Kim, Hak Sung; Chong, Chom-Kyu; Choi, Hak Soo; Sung, Haan Woo; Yu, Kyoungsik; Park, Hyun

    2016-01-01

    Field diagnostic tools for avian influenza (AI) are indispensable for the prevention and controlled management of highly pathogenic AI-related diseases. More accurate, faster and networked on-site monitoring is demanded to detect such AI viruses with high sensitivity as well as to maintain up-to-date information about their geographical transmission. In this work, we assessed the clinical and field-level performance of a smartphone-based fluorescent diagnostic device with an efficient reflective light collection module using a coumarin-derived dendrimer-based fluorescent lateral flow immunoassay. By application of an optimized bioconjugate, a smartphone-based diagnostic device had a two-fold higher detectability as compared to that of the table-top fluorescence strip reader for three different AI subtypes (H5N3, H7N1, and H9N2). Additionally, in a clinical study of H5N1-confirmed patients, the smartphone-based diagnostic device showed a sensitivity of 96.55% (28/29) [95% confidence interval (CI): 82.24 to 99.91] and a specificity of 98.55% (68/69) (95% CI: 92.19 to 99.96). The measurement results from the distributed individual smartphones were wirelessly transmitted via short messaging service and collected by a centralized database system for further information processing and data mining. Smartphone-based diagnosis provided highly sensitive measurement results for H5N1 detection within 15 minutes. Because of its high sensitivity, portability and automatic reporting feature, the proposed device will enable agile identification of patients and efficient control of AI dissemination.

  18. Smartphone-Based Fluorescent Diagnostic System for Highly Pathogenic H5N1 Viruses

    PubMed Central

    Yeo, Seon-Ju; Choi, Kyunghan; Cuc, Bui Thi; Hong, Nguyen Ngoc; Bao, Duong Tuan; Ngoc, Nguyen Minh; Le, Mai Quynh; Hang, Nguyen Le Khanh; Thach, Nguyen Co; Mallik, Shyam Kumar; Kim, Hak Sung; Chong, Chom-Kyu; Choi, Hak Soo; Sung, Haan Woo; Yu, Kyoungsik; Park, Hyun

    2016-01-01

    Field diagnostic tools for avian influenza (AI) are indispensable for the prevention and controlled management of highly pathogenic AI-related diseases. More accurate, faster and networked on-site monitoring is demanded to detect such AI viruses with high sensitivity as well as to maintain up-to-date information about their geographical transmission. In this work, we assessed the clinical and field-level performance of a smartphone-based fluorescent diagnostic device with an efficient reflective light collection module using a coumarin-derived dendrimer-based fluorescent lateral flow immunoassay. By application of an optimized bioconjugate, a smartphone-based diagnostic device had a two-fold higher detectability as compared to that of the table-top fluorescence strip reader for three different AI subtypes (H5N3, H7N1, and H9N2). Additionally, in a clinical study of H5N1-confirmed patients, the smartphone-based diagnostic device showed a sensitivity of 96.55% (28/29) [95% confidence interval (CI): 82.24 to 99.91] and a specificity of 98.55% (68/69) (95% CI: 92.19 to 99.96). The measurement results from the distributed individual smartphones were wirelessly transmitted via short messaging service and collected by a centralized database system for further information processing and data mining. Smartphone-based diagnosis provided highly sensitive measurement results for H5N1 detection within 15 minutes. Because of its high sensitivity, portability and automatic reporting feature, the proposed device will enable agile identification of patients and efficient control of AI dissemination. PMID:26877781

  19. Highly Pathogenic Avian Influenza H5N6 Viruses Exhibit Enhanced Affinity for Human Type Sialic Acid Receptor and In-Contact Transmission in Model Ferrets

    PubMed Central

    Sun, Honglei; Pu, Juan; Wei, Yandi; Sun, Yipeng; Hu, Jiao; Liu, Litao; Xu, Guanlong; Gao, Weihua; Li, Chong; Zhang, Xuxiao; Huang, Yinhua; Chang, Kin-Chow; Liu, Xiufan

    2016-01-01

    ABSTRACT Since May 2014, highly pathogenic avian influenza H5N6 virus has been reported to cause six severe human infections three of which were fatal. The biological properties of this subtype, in particular its relative pathogenicity and transmissibility in mammals, are not known. We characterized the virus receptor-binding affinity, pathogenicity, and transmissibility in mice and ferrets of four H5N6 isolates derived from waterfowl in China from 2013-2014. All four H5N6 viruses have acquired a binding affinity for human-like SAα2,6Gal-linked receptor to be able to attach to human tracheal epithelial and alveolar cells. The emergent H5N6 viruses, which share high sequence similarity with the human isolate A/Guangzhou/39715/2014 (H5N6), were fully infective and highly transmissible by direct contact in ferrets but showed less-severe pathogenicity than the parental H5N1 virus. The present results highlight the threat of emergent H5N6 viruses to poultry and human health and the need to closely track their continual adaptation in humans. IMPORTANCE Extended epizootics and panzootics of H5N1 viruses have led to the emergence of the novel 2.3.4.4 clade of H5 virus subtypes, including H5N2, H5N6, and H5N8 reassortants. Avian H5N6 viruses from this clade have caused three fatalities out of six severe human infections in China since the first case in 2014. However, the biological properties of this subtype, especially the pathogenicity and transmission in mammals, are not known. Here, we found that natural avian H5N6 viruses have acquired a high affinity for human-type virus receptor. Compared to the parental clade 2.3.4 H5N1 virus, emergent H5N6 isolates showed less severe pathogenicity in mice and ferrets but acquired efficient in-contact transmission in ferrets. These findings suggest that the threat of avian H5N6 viruses to humans should not be ignored. PMID:27122581

  20. Highly Pathogenic Avian Influenza H5N6 Viruses Exhibit Enhanced Affinity for Human Type Sialic Acid Receptor and In-Contact Transmission in Model Ferrets.

    PubMed

    Sun, Honglei; Pu, Juan; Wei, Yandi; Sun, Yipeng; Hu, Jiao; Liu, Litao; Xu, Guanlong; Gao, Weihua; Li, Chong; Zhang, Xuxiao; Huang, Yinhua; Chang, Kin-Chow; Liu, Xiufan; Liu, Jinhua

    2016-07-15

    Since May 2014, highly pathogenic avian influenza H5N6 virus has been reported to cause six severe human infections three of which were fatal. The biological properties of this subtype, in particular its relative pathogenicity and transmissibility in mammals, are not known. We characterized the virus receptor-binding affinity, pathogenicity, and transmissibility in mice and ferrets of four H5N6 isolates derived from waterfowl in China from 2013-2014. All four H5N6 viruses have acquired a binding affinity for human-like SAα2,6Gal-linked receptor to be able to attach to human tracheal epithelial and alveolar cells. The emergent H5N6 viruses, which share high sequence similarity with the human isolate A/Guangzhou/39715/2014 (H5N6), were fully infective and highly transmissible by direct contact in ferrets but showed less-severe pathogenicity than the parental H5N1 virus. The present results highlight the threat of emergent H5N6 viruses to poultry and human health and the need to closely track their continual adaptation in humans. Extended epizootics and panzootics of H5N1 viruses have led to the emergence of the novel 2.3.4.4 clade of H5 virus subtypes, including H5N2, H5N6, and H5N8 reassortants. Avian H5N6 viruses from this clade have caused three fatalities out of six severe human infections in China since the first case in 2014. However, the biological properties of this subtype, especially the pathogenicity and transmission in mammals, are not known. Here, we found that natural avian H5N6 viruses have acquired a high affinity for human-type virus receptor. Compared to the parental clade 2.3.4 H5N1 virus, emergent H5N6 isolates showed less severe pathogenicity in mice and ferrets but acquired efficient in-contact transmission in ferrets. These findings suggest that the threat of avian H5N6 viruses to humans should not be ignored. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  1. Natural Reassortants of Potentially Zoonotic Avian Influenza Viruses H5N1 and H9N2 from Egypt Display Distinct Pathogenic Phenotypes in Experimentally Infected Chickens and Ferrets.

    PubMed

    Naguib, Mahmoud M; Ulrich, Reiner; Kasbohm, Elisa; Eng, Christine L P; Hoffmann, Donata; Grund, Christian; Beer, Martin; Harder, Timm C

    2017-12-01

    The cocirculation of zoonotic highly pathogenic avian influenza virus (HPAIV) of subtype H5N1 and avian influenza virus (AIV) of subtype H9N2 among poultry in Egypt for at least 6 years should render that country a hypothetical hot spot for the emergence of reassortant, phenotypically altered viruses, yet no reassortants have been detected in Egypt. The present investigations proved that reassortants of the Egyptian H5N1 clade 2.2.1.2 virus and H9N2 virus of the G1-B lineage can be generated by coamplification in embryonated chicken eggs. Reassortants were restricted to the H5N1 subtype and acquired between two and all six of the internal segments of the H9N2 virus. Five selected plaque-purified reassortant clones expressed a broad phenotypic spectrum both in vitro and in vivo Two groups of reassortants were characterized to have retarded growth characteristics in vitro compared to the H5N1 parent virus. One clone provoked reduced mortality in inoculated chickens, although the characteristics of a highly pathogenic phenotype were retained. Enhanced zoonotic properties were not predicted for any of these clones, and this prediction was confirmed by ferret inoculation experiments: neither the H5N1 parent virus nor two selected clones induced severe clinical symptoms or were transmitted to sentinel ferrets by contact. While the emergence of reassortants of Egyptian HPAIV of subtype H5N1 with internal gene segments of cocirculating H9N2 viruses is possible in principle, the spread of such viruses is expected to be governed by their fitness to outcompete the parental viruses in the field. The eventual spread of attenuated phenotypes, however, would negatively impact syndrome surveillance on poultry farms and might foster enzootic virus circulation. IMPORTANCE Despite almost 6 years of the continuous cocirculation of highly pathogenic avian influenza virus H5N1 and avian influenza virus H9N2 in poultry in Egypt, no reassortants of the two subtypes have been reported

  2. Natural Reassortants of Potentially Zoonotic Avian Influenza Viruses H5N1 and H9N2 from Egypt Display Distinct Pathogenic Phenotypes in Experimentally Infected Chickens and Ferrets

    PubMed Central

    Naguib, Mahmoud M.; Ulrich, Reiner; Kasbohm, Elisa; Eng, Christine L. P.; Hoffmann, Donata; Grund, Christian; Beer, Martin

    2017-01-01

    ABSTRACT The cocirculation of zoonotic highly pathogenic avian influenza virus (HPAIV) of subtype H5N1 and avian influenza virus (AIV) of subtype H9N2 among poultry in Egypt for at least 6 years should render that country a hypothetical hot spot for the emergence of reassortant, phenotypically altered viruses, yet no reassortants have been detected in Egypt. The present investigations proved that reassortants of the Egyptian H5N1 clade 2.2.1.2 virus and H9N2 virus of the G1-B lineage can be generated by coamplification in embryonated chicken eggs. Reassortants were restricted to the H5N1 subtype and acquired between two and all six of the internal segments of the H9N2 virus. Five selected plaque-purified reassortant clones expressed a broad phenotypic spectrum both in vitro and in vivo. Two groups of reassortants were characterized to have retarded growth characteristics in vitro compared to the H5N1 parent virus. One clone provoked reduced mortality in inoculated chickens, although the characteristics of a highly pathogenic phenotype were retained. Enhanced zoonotic properties were not predicted for any of these clones, and this prediction was confirmed by ferret inoculation experiments: neither the H5N1 parent virus nor two selected clones induced severe clinical symptoms or were transmitted to sentinel ferrets by contact. While the emergence of reassortants of Egyptian HPAIV of subtype H5N1 with internal gene segments of cocirculating H9N2 viruses is possible in principle, the spread of such viruses is expected to be governed by their fitness to outcompete the parental viruses in the field. The eventual spread of attenuated phenotypes, however, would negatively impact syndrome surveillance on poultry farms and might foster enzootic virus circulation. IMPORTANCE Despite almost 6 years of the continuous cocirculation of highly pathogenic avian influenza virus H5N1 and avian influenza virus H9N2 in poultry in Egypt, no reassortants of the two subtypes have been

  3. Airborne transmission of H5N1 high pathogenicity avian influenza viruses during simulated home slaughter

    USDA-ARS?s Scientific Manuscript database

    Most H5N1 human infections have occurred following exposure to H5N1 high pathogenicity avian influenza (HPAI) virus-infected poultry, especially when poultry are home slaughtered or slaughtered in live poultry markets. Previous studies have demonstrated that slaughter of clade 1 isolate A/Vietnam/1...

  4. Limited pathogenicity and transmissibility of Korean highly pathogenic avian influenza H5N6 clade 2.3.4.4 in ferrets.

    PubMed

    Noh, J-Y; Lee, D-H; Yuk, S-S; Kwon, J-H; Tseren-Ochir, E-O; Hong, W-T; Jeong, J-H; Jeong, S; Song, C-S

    2018-04-19

    The pathogenicity and transmissibility of a reassortant clade 2.3.4.4 avian influenza A (H5N6) virus were evaluated in ferrets. Virus excretion was detected in the upper respiratory tract, but the ferrets did not show any clinical signs of infection. Transmission did not occur between cohoused or respiratory droplet-contact ferrets. © 2018 Blackwell Verlag GmbH.

  5. [Trends in and challenges for highly pathogenic avian influenza A (H5N1)].

    PubMed

    Kudo, Koichiro; Manabe, Toshie; Izumi, Shinyu; Takasaki, Jin

    2010-09-01

    A new pandemic influenza A (H1N1) virus had emerged and rapidly spread throughout the world. The clinical pathological observations associated with severe cases of pandemic (H1N1) 2009 are similar to that of high pathogenic avian influenza (H5N1). In order to find the most effective treatment methods for this pandemic influenza (H1N1), we describe our experiences, investigations and collaboration studies of avian influenza (H5N1) in Vietnam in association of our cooperative study of pandemic (H1N1) 2009 in Mexico. Effective treatment methods for critical illness due to influenza will be discussed from medical, regional and global points of view, which may be applied for the treatment of any type of influenza virus.

  6. Longitudinal 2 years field study of conventional vaccination against highly pathogenic avian influenza H5N1 in layer hens.

    PubMed

    Rudolf, Miriam; Pöppel, Manfred; Fröhlich, Andreas; Breithaupt, Angele; Teifke, Jens; Blohm, Ulrike; Mettenleiter, Thomas; Beer, Martin; Harder, Timm

    2010-10-04

    A licensed, inactivated vaccine based on a low pathogenic avian influenza virus strain (H5N2) was evaluated in layer hens kept under field conditions during a 2-year period. Vaccine efficacy was investigated by specific antibodies and by challenge-contact experiments using highly pathogenic avian influenza viruses (HPAIV) H5N1. Basic immunization with two applications induced clinical protection. Virus excretion by vaccinated hens was significantly reduced compared to non-vaccinated controls; transmission to non-vaccinated and vaccinated contact birds was not fully interrupted. Vaccination efficacy is influenced by several factors including antigenic relatedness between vaccine and field strains, but also by species, age and type of commercial uses of the host. Limitations and risks of HPAIV vaccination as silent spread of HPAIV and emergence of escape mutants must be considered a priori and appropriate corrective measures have to be installed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Highly pathogenic avian influenza H5N1 virus delays apoptotic responses via activation of STAT3

    PubMed Central

    Hui, Kenrie P. Y.; Li, Hung Sing; Cheung, Man Chun; Chan, Renee W. Y.; Yuen, Kit M.; Mok, Chris K. P.; Nicholls, John M.; Peiris, J. S. Malik; Chan, Michael C. W.

    2016-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 virus continues to pose pandemic threat, but there is a lack of understanding of its pathogenesis. We compared the apoptotic responses triggered by HPAI H5N1 and low pathogenic H1N1 viruses using physiologically relevant respiratory epithelial cells. We demonstrated that H5N1 viruses delayed apoptosis in primary human bronchial and alveolar epithelial cells (AECs) compared to H1N1 virus. Both caspase-8 and -9 were activated by H5N1 and H1N1 viruses in AECs, while H5N1 differentially up-regulated TRAIL. H5N1-induced apoptosis was reduced by TRAIL receptor silencing. More importantly, STAT3 knock-down increased apoptosis by H5N1 infection suggesting that H5N1 virus delays apoptosis through activation of STAT3. Taken together, we demonstrate that STAT3 is involved in H5N1-delayed apoptosis compared to H1N1. Since delay in apoptosis prolongs the duration of virus replication and production of pro-inflammatory cytokines and TRAIL from H5N1-infected cells, which contribute to orchestrate cytokine storm and tissue damage, our results suggest that STAT3 may play a previously unsuspected role in H5N1 pathogenesis. PMID:27344974

  8. Evolution of highly pathogenic avian H5N1 influenza viruses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macken, Catherine A; Green, Margaret A

    2009-01-01

    Highly pathogenic avian H5N1 viruses have circulated in Southeast Asia for more than a decade, are now endemic in parts of this region, and have also spread to more than 60 countries on three continents. The evolution of these viruses is characterized by frequent reassortment events that have created a significant number of different genotypes, both transient and longer lasting. However, fundamental questions remain about the generation and perpetuation of this substantial genetic diversity. These gaps in understanding may, in part, be due to the difficulties of genotyping closely related viruses, and limitations in the size of the data setsmore » used in analysis. Using our recently published novel genotyping procedure ('two-time test'), which is amenable to high throughput analysis and provides an increased level of resolution relative to previous analyses, we propose a detailed model for the evolution and diversification of avian H5N1 viruses. Our analysis suggests that (i) all current H5N1 genotypes are derived from a single, clearly defined sequence of initial reassortment events; (ii) reassortment of the polymerase and NP genes may have played an important role in avian H5N1 virus evolution; (iii) the current genotype Z viruses have diverged into three distinguishable sub-genotypes in the absence of reassortment; (iv) some potentially significant molecular changes appear to be correlated with particular genotypes (for example, reassortment of the internal genes is often paralleled by a change in the HA clade); and (v) as noted in earlier studies of avian influenza A virus evolution, novel segments are typically derived from different donors (i.e., there is no obvious pattern of gene linkage in reassortment). The model of avian H5N1 viral evolution by reassortment and mutation that emerges from our study provides a context within which significant amino acid changes may be revealed; it also may help in predicting the 'success' of newly emerging avian H5N1

  9. Induction of neutralising antibodies by virus-like particles harbouring surface proteins from highly pathogenic H5N1 and H7N1 influenza viruses

    PubMed Central

    Szécsi, Judit; Boson, Bertrand; Johnsson, Per; Dupeyrot-Lacas, Pia; Matrosovich, Mikhail; Klenk, Hans-Dieter; Klatzmann, David; Volchkov, Viktor; Cosset, François-Loïc

    2006-01-01

    There is an urgent need to develop novel approaches to vaccination against the emerging, highly pathogenic avian influenza viruses. Here, we engineered influenza viral-like particles (Flu-VLPs) derived from retroviral core particles that mimic the properties of the viral surface of two highly pathogenic influenza viruses of either H7N1 or H5N1 antigenic subtype. We demonstrate that, upon recovery of viral RNAs from a field strain, one can easily generate expression vectors that encode the HA, NA and M2 surface proteins of either virus and prepare high-titre Flu-VLPs. We characterise these Flu-VLPs incorporating the HA, NA and M2 proteins and we show that they induce high-titre neutralising antibodies in mice. PMID:16948862

  10. Novel Eurasian highly pathogenic influenza A H5 viruses in wild birds, Washington, USA

    USGS Publications Warehouse

    Ip, Hon S.; Kim Torchetti, Mia; Crespo, Rocio; Kohrs, Paul; DeBruyn, Paul; Mansfield, Kristin G.; Baszler, Timothy; Badcoe, Lyndon; Bodenstein, Barbara L.; Shearn-Bochsler, Valerie I.; Killian, Mary Lea; Pederson, Janice C.; Hines, Nichole; Gidlewski, Thomas; DeLiberto, Thomas; Sleeman, Jonathan M.

    2015-01-01

    Novel Eurasian lineage avian influenza A(H5N8) virus has spread rapidly and globally since January 2014. In December 2014, H5N8 and reassortant H5N2 viruses were detected in wild birds in Washington, USA, and subsequently in backyard birds. When they infect commercial poultry, these highly pathogenic viruses pose substantial trade issues.

  11. Pathogenicity of Highly Pathogenic Avian Influenza Virus H5N1 in Naturally Infected Poultry in Egypt.

    PubMed

    Hagag, Ibrahim Thabet; Mansour, Shimaa M G; Zhang, Zerui; Ali, Ahmed A H; Ismaiel, El-Bakry M; Salama, Ali A; Cardona, Carol J; Collins, James; Xing, Zheng

    2015-01-01

    Highly pathogenic avian influenza virus (HPAIV) H5N1 has been endemic in Egypt since 2006, and there is increasing concern for its potential to become highly transmissible among humans. Infection by HPAIV H5N1 has been described in experimentally challenged birds. However, the pathogenicity of the H5N1 isolated in Egypt has never been reported in naturally infected chickens and ducks. Here we report a 2013 outbreak of HPAIV H5N1 in commercial poultry farms and backyards in Sharkia Province, Egypt. The main symptoms were ecchymosis on the shanks and feet, cyanosis of the comb and wattles, subcutaneous edema of the head and neck for chickens, and nervous signs (torticollis) for ducks. Within 48-72 hrs of the onset of illness, the average mortality rates were 22.8-30% and 28.5-40% in vaccinated chickens and non-vaccinated ducks, respectively. Tissue samples of chickens and ducks were collected for analyses with cross-section immunohistochemistry and real-time RT-PCR for specific viral RNA transcripts. While viral RNA was detected in nearly all tissues and sera collected, viral nucleoprotein was detected almost ubiquitously in all tissues, including testis. Interestingly, viral antigen was also observed in endothelial cells of most organs in chickens, and clearly detected in the trachea and brain in particular. Viral nucleoprotein was also detected in mononuclear cells of various organs, especially pulmonary tissue. We performed phylogenetic analyses and compared the genomic sequences of the hemagglutinin (HA) and nonstructural proteins (NS) among the isolated viruses, the HPAIV circulated in Egypt in the past and currently, and some available vaccine strains. Further analysis of deduced amino acids of both HA and NS1 revealed that our isolates carried molecular determinants of HPAIV, including the multibasic amino acids (PQGERRRK/KR*GLF) in the cleavage site in HA and glutamate at position 92 (D92E) in NS1. This is the first report of the pathogenicity of the HPAIVH5N

  12. Immunization of Domestic Ducks with Live Nonpathogenic H5N3 Influenza Virus Prevents Shedding and Transmission of Highly Pathogenic H5N1 Virus to Chickens

    PubMed Central

    Gambaryan, Alexandra; Boravleva, Elizaveta; Lomakina, Natalia; Kropotkina, Ekaterina; Klenk, Hans-Dieter

    2018-01-01

    Wild ducks are known to be able to carry avian influenza viruses over long distances and infect domestic ducks, which in their turn infect domestic chickens. Therefore, prevention of virus transmission between ducks and chickens is important to control the spread of avian influenza. Here we used a low pathogenic wild aquatic bird virus A/duck/Moscow/4182/2010 (H5N3) for prevention of highly pathogenic avian influenza virus (HPAIV) transmission between ducks and chickens. We first confirmed that the ducks orally infected with H5N1 HPAIV A/chicken/Kurgan/3/2005 excreted the virus in feces. All chickens that were in contact with the infected ducks became sick, excreted the virus, and died. However, the ducks orally inoculated with 104 50% tissue culture infective doses of A/duck/Moscow/4182/2010 and challenged 14 to 90 days later with H5N1 HPAIV did not excrete the challenge virus. All contact chickens survived and did not excrete the virus. Our results suggest that low pathogenic virus of wild aquatic birds can be used for prevention of transmission of H5N1 viruses between ducks and chickens. PMID:29614716

  13. Victims and vectors: highly pathogenic avian influenza H5N1 and the ecology of wild birds

    USGS Publications Warehouse

    Takekawa, John Y.; Prosser, Diann J.; Newman, Scott H.; Muzaffar, Sabir Bin; Hill, Nichola J.; Yan, Baoping; Xiao, Xiangming; Lei, Fumin; Li, Tianxian; Schwarzbach, Steven E.; Howell, Judd A.

    2010-01-01

    The emergence of highly pathogenic avian influenza (HPAI) viruses has raised concerns about the role of wild birds in the spread and persistence of the disease. In 2005, an outbreak of the highly pathogenic subtype H5N1 killed more than 6,000 wild waterbirds at Qinghai Lake, China. Outbreaks have continued to periodically occur in wild birds at Qinghai Lake and elsewhere in Central China and Mongolia. This region has few poultry but is a major migration and breeding area for waterbirds in the Central Asian Flyway, although relatively little is known about migratory movements of different species and connectivity of their wetland habitats. The scientific debate has focused on the role of waterbirds in the epidemiology, maintenance and spread of HPAI H5N1: to what extent are they victims affected by the disease, or vectors that have a role in disease transmission? In this review, we summarise the current knowledge of wild bird involvement in the ecology of HPAI H5N1. Specifically, we present details on: (1) origin of HPAI H5N1; (2) waterbirds as LPAI reservoirs and evolution into HPAI; (3) the role of waterbirds in virus spread and persistence; (4) key biogeographic regions of outbreak; and (5) applying an ecological research perspective to studying AIVs in wild waterbirds and their ecosystems.

  14. Emergence of Highly Pathogenic Avian Influenza A(H5N1) Virus PB1-F2 Variants and Their Virulence in BALB/c Mice

    PubMed Central

    Kamal, Ram P.; Kumar, Amrita; Davis, Charles T.; Tzeng, Wen-Pin; Nguyen, Tung; Donis, Ruben O.; Katz, Jacqueline M.

    2015-01-01

    ABSTRACT Influenza A viruses (IAVs) express the PB1-F2 protein from an alternate reading frame within the PB1 gene segment. The roles of PB1-F2 are not well understood but appear to involve modulation of host cell responses. As shown in previous studies, we find that PB1-F2 proteins of mammalian IAVs frequently have premature stop codons that are expected to cause truncations of the protein, whereas avian IAVs usually express a full-length 90-amino-acid PB1-F2. However, in contrast to other avian IAVs, recent isolates of highly pathogenic H5N1 influenza viruses had a high proportion of PB1-F2 truncations (15% since 2010; 61% of isolates in 2013) due to several independent mutations that have persisted and expanded in circulating viruses. One natural H5N1 IAV containing a mutated PB1-F2 start codon (i.e., lacking ATG) was 1,000-fold more virulent for BALB/c mice than a closely related H5N1 containing intact PB1-F2. In vitro, we detected expression of an in-frame protein (C-terminal PB1-F2) from downstream ATGs in PB1-F2 plasmids lacking the well-conserved ATG start codon. Transient expression of full-length PB1-F2, truncated (24-amino-acid) PB1-F2, and PB1-F2 lacking the initiating ATG in mammalian and avian cells had no effect on cell apoptosis or interferon expression in human lung epithelial cells. Full-length and C-terminal PB1-F2 mutants colocalized with mitochondria in A549 cells. Close monitoring of alterations of PB1-F2 and their frequency in contemporary avian H5N1 viruses should continue, as such changes may be markers for mammalian virulence. IMPORTANCE Although most avian influenza viruses are harmless for humans, some (such as highly pathogenic H5N1 avian influenza viruses) are capable of infecting humans and causing severe disease with a high mortality rate. A number of risk factors potentially associated with adaptation to mammalian infection have been noted. Here we demonstrate that the protein PB1-F2 is frequently truncated in recent isolates of

  15. A highly pathogenic avian influenza virus H5N1 with 2009 pandemic H1N1 internal genes demonstrated increased replication and transmission in pigs

    USDA-ARS?s Scientific Manuscript database

    This study investigated the pathogenicity and transmissibility of a reverse-genetics derived highly pathogenic avian influenza (HPAI) H5N1 influenza A virus (IAV), A/Iraq/775/06, and a reassortant virus comprised of the HA and NA from A/Iraq/775/06 and the internal genes of a 2009 pandemic H1N1, A/N...

  16. Highly Pathogenic Avian Influenza Virus (H5N1) Outbreak in Captive Wild Birds and Cats, Cambodia

    PubMed Central

    Marx, Nick; Ong, Sivuth; Gaidet, Nicolas; Hunt, Matt; Manuguerra, Jean-Claude; Sorn, San; Peiris, Malik; Van der Werf, Sylvie; Reynes, Jean-Marc

    2009-01-01

    From December 2003 through January 2004, the Phnom Tamao Wildlife Rescue Centre, Cambodia, was affected by the highly pathogenic influenza virus (H5N1). Birds from 26 species died. Influenza virus subtype H5N1 was detected in 6 of 7 species tested. Cats from 5 of 7 species were probably infected; none died. PMID:19239769

  17. Outbreaks of avian influenza A (H5N2), (H5N8), and (H5N1) among birds--United States, December 2014-January 2015.

    PubMed

    Jhung, Michael A; Nelson, Deborah I

    2015-02-06

    During December 15, 2014-January 16, 2015, the U.S. Department of Agriculture received 14 reports of birds infected with Asian-origin, highly pathogenic avian influenza A (HPAI) (H5N2), (H5N8), and (H5N1) viruses. These reports represent the first reported infections with these viruses in U.S. wild or domestic birds. Although these viruses are not known to have caused disease in humans, their appearance in North America might increase the likelihood of human infection in the United States. Human infection with other avian influenza viruses, such as HPAI (H5N1) and (H5N6) viruses and (H7N9) virus, has been associated with severe, sometimes fatal, disease, usually following contact with poultry.

  18. Epidemiologic Investigation of Highly Pathogenic H5N2 Avian Influenza Among Upper Midwest U.S. Turkey Farms, 2015.

    PubMed

    Wells, S J; Kromm, M M; VanBeusekom, E T; Sorley, E J; Sundaram, M E; VanderWaal, K; Bowers, J W J; Papinaho, P A; Osterholm, M T; Bender, J

    2017-06-01

    In 2015, an outbreak of H5N2 highly pathogenic avian influenza (HPAI) occurred in the United States, severely impacting the turkey industry in the upper midwestern United States. Industry, government, and academic partners worked together to conduct a case-control investigation of the outbreak on turkey farms in the Upper Midwest. Case farms were confirmed to have HPAI-infected flocks, and control farms were farms with noninfected turkey flocks at a similar stage of production. Both case and control farms were affiliated with a large integrated turkey company. A questionnaire administered to farm managers and supervisors assessed farm biosecurity, litter handling, dead bird disposal, farm visitor and worker practices, and presence of wild birds on operations during the 2 wk prior to HPAI confirmation on case premises and the corresponding time frame for control premises. Sixty-three farms, including 37 case farms and 26 control farms were included in the analysis. We identified several factors significantly associated with the odds of H5N2 case farm status and that may have contributed to H5N2 transmission to and from operations. Factors associated with increased risk included close proximity to other turkey operations, soil disruption (e.g., tilling) in a nearby field within 14 days prior to the outbreak, and rendering of dead birds. Observation of wild mammals near turkey barns was associated with reduced risk. When analyses focused on farms identified with H5N2 infection before April 22 (Period 1), associations with H5N2-positive farm status included soil disruption in a nearby field within 14 days prior to the outbreak and a high level of visitor biosecurity. High level of worker biosecurity had a protective effect. During the study period after April 22 (Period 2), factors associated with HPAI-positive farm status included nonasphalt roads leading to the farm and use of a vehicle wash station or spray area. Presence of wild birds near dead bird disposal areas

  19. Highly Pathogenic Avian Influenza A(H5N8) Virus in Wild Migratory Birds, Qinghai Lake, China.

    PubMed

    Li, Mingxin; Liu, Haizhou; Bi, Yuhai; Sun, Jianqing; Wong, Gary; Liu, Di; Li, Laixing; Liu, Juxiang; Chen, Quanjiao; Wang, Hanzhong; He, Yubang; Shi, Weifeng; Gao, George F; Chen, Jianjun

    2017-04-01

    In May 2016, a highly pathogenic avian influenza A(H5N8) virus strain caused deaths among 3 species of wild migratory birds in Qinghai Lake, China. Genetic analysis showed that the novel reassortant virus belongs to group B H5N8 viruses and that the reassortment events likely occurred in early 2016.

  20. Homologous and heterologous antigenic matched vaccines containing different H5 hemagglutinins provide variable protection of chickens from the 2014 U.S. H5N8 and H5N2 clade 2.3.4.4 highly pathogenic avian influenza viruses.

    PubMed

    Kapczynski, Darrell R; Pantin-Jackwood, Mary J; Spackman, Erica; Chrzastek, Klaudia; Suarez, David L; Swayne, David E

    2017-11-01

    From December 2014 to June 2015, a novel H5 Eurasian A/goose/Guangdong (Gs/GD) lineage clade 2.3.4.4 high pathogenicity avian influenza (HPAI) virus caused the largest animal health emergency in US history resulting in mortality or culling of greater than 48 million poultry. The outbreak renewed interest in developing intervention strategies, including vaccines, for these newly emergent HPAI viruses. In these studies, several existing H5 vaccines or vaccine seed strains with varying genetic relatedness (85-100%) to the 2.3.4.4 HPAI viruses were evaluated for protection in poultry. Chickens received a single dose of either an inactivated whole H5 AI vaccine, or a recombinant fowl poxvirus or turkey herpesvirus-vectored vaccines with H5 AI hemagglutinin gene inserts followed by challenge with either a U.S. wild bird H5N8 (A/gyrfalcon/Washington/40188-6/2014) or H5N2 (A/northern pintail/Washington/40964/2014) clade 2.3.4.4 isolate. Results indicate that most inactivated H5 vaccines provided 100% protection from lethal effects of H5N8 or H5N2 challenge. In contrast, the recombinant live vectored vaccines only provided partial protection which ranged from 40 to 70%. Inactivated vaccine groups, in general, had lower number of birds shedding virus and at lower virus titers then the recombinant vaccine groups. Interestingly, prechallenge antibody titers using the HPAI challenge viruses as antigen in heterologous vaccine groups were typically low (≤2 log 2 ), yet the majority of these birds survived challenge. Taken together, these studies suggest that existing vaccines when used in a single immunization strategy may not provide adequate protection in poultry against the 2.3.4.4 HPAI viruses. Updating the H5 hemagglutinin to be genetically closer to the outbreak virus and/or using a prime-boost strategy may be necessary for optimal protection. Published by Elsevier Ltd.

  1. Global mapping of highly pathogenic avian influenza H5N1 and H5Nx clade 2.3.4.4 viruses with spatial cross-validation

    PubMed Central

    Dhingra, Madhur S; Artois, Jean; Robinson, Timothy P; Linard, Catherine; Chaiban, Celia; Xenarios, Ioannis; Engler, Robin; Liechti, Robin; Kuznetsov, Dmitri; Xiao, Xiangming; Dobschuetz, Sophie Von; Claes, Filip; Newman, Scott H; Dauphin, Gwenaëlle; Gilbert, Marius

    2016-01-01

    Global disease suitability models are essential tools to inform surveillance systems and enable early detection. We present the first global suitability model of highly pathogenic avian influenza (HPAI) H5N1 and demonstrate that reliable predictions can be obtained at global scale. Best predictions are obtained using spatial predictor variables describing host distributions, rather than land use or eco-climatic spatial predictor variables, with a strong association with domestic duck and extensively raised chicken densities. Our results also support a more systematic use of spatial cross-validation in large-scale disease suitability modelling compared to standard random cross-validation that can lead to unreliable measure of extrapolation accuracy. A global suitability model of the H5 clade 2.3.4.4 viruses, a group of viruses that recently spread extensively in Asia and the US, shows in comparison a lower spatial extrapolation capacity than the HPAI H5N1 models, with a stronger association with intensively raised chicken densities and anthropogenic factors. DOI: http://dx.doi.org/10.7554/eLife.19571.001 PMID:27885988

  2. Multiple Reassorted Viruses as Cause of Highly Pathogenic Avian Influenza A(H5N8) Virus Epidemic, the Netherlands, 2016

    PubMed Central

    Heutink, Rene; Bergervoet, Saskia A.; Harders, Frank; Bossers, Alex; Koch, Guus

    2017-01-01

    In 2016, an epidemic of highly pathogenic avian influenza A virus subtype H5N8 in the Netherlands caused mass deaths among wild birds, and several commercial poultry farms and captive bird holdings were affected. We performed complete genome sequencing to study the relationship between the wild bird and poultry viruses. Phylogenetic analysis showed that the viruses are related to H5 clade 2.3.4.4 viruses detected in Russia in May 2016 but contained novel polymerase basic 2 and nucleoprotein gene segments and 2 different variants of the polymerase acidic segment. Molecular dating suggests that the reassortment events most likely occurred in wild birds in Russia or Mongolia. Furthermore, 2 genetically distinct H5N5 reassortant viruses were detected in wild birds in the Netherlands. Our study provides evidence for fast and continuing reassortment of H5 clade 2.3.4.4 viruses, which might lead to rapid changes in virus characteristics, such as pathogenicity, infectivity, transmission, and zoonotic potential. PMID:29148396

  3. Multiple Reassorted Viruses as Cause of Highly Pathogenic Avian Influenza A(H5N8) Virus Epidemic, the Netherlands, 2016.

    PubMed

    Beerens, Nancy; Heutink, Rene; Bergervoet, Saskia A; Harders, Frank; Bossers, Alex; Koch, Guus

    2017-12-01

    In 2016, an epidemic of highly pathogenic avian influenza A virus subtype H5N8 in the Netherlands caused mass deaths among wild birds, and several commercial poultry farms and captive bird holdings were affected. We performed complete genome sequencing to study the relationship between the wild bird and poultry viruses. Phylogenetic analysis showed that the viruses are related to H5 clade 2.3.4.4 viruses detected in Russia in May 2016 but contained novel polymerase basic 2 and nucleoprotein gene segments and 2 different variants of the polymerase acidic segment. Molecular dating suggests that the reassortment events most likely occurred in wild birds in Russia or Mongolia. Furthermore, 2 genetically distinct H5N5 reassortant viruses were detected in wild birds in the Netherlands. Our study provides evidence for fast and continuing reassortment of H5 clade 2.3.4.4 viruses, which might lead to rapid changes in virus characteristics, such as pathogenicity, infectivity, transmission, and zoonotic potential.

  4. Lemna (duckweed) expressed hemagglutinin from avian influenza H5N1 protects chickens against H5N1 high pathogenicity avian influenza virus challenge

    USDA-ARS?s Scientific Manuscript database

    In the last two decades, transgenic plants have been explored as safe and cost effective alternative expression platforms for producing recombinant proteins. In this study, a synthetic hemagglutinin (HA) gene from the high pathogenicity avian influenza (HPAI) virus A/chicken/Indonesia/7/2003 (H5N1)...

  5. Expression of H5 hemagglutinin vaccine antigen in common duckweed (Lemna minor) protects against H5N1 high pathogenicity avian influenza virus challenge in immunized chickens

    USDA-ARS?s Scientific Manuscript database

    A synthetic hemagglutinin (HA) gene from the highly pathogenic avian influenza (HPAI) virus A/chicken/Indonesia/7/2003 (H5N1) (Indo/03) was expressed in aquatic plant Lemna minor (rLemna-HA). In Experiment 1, efficacy of rLemna-HA was tested on specific pathogen free (SPF) birds immunized with 0.2 ...

  6. Genetic characterisation of novel, highly pathogenic avian influenza (HPAI) H5N6 viruses isolated in birds, South Korea, November 2016

    PubMed Central

    Si, Young-Jae; Lee, In Won; Kim, Eun-Ha; Kim, Young-Il; Kwon, Hyeok-Il; Park, Su-Jin; Nguyen, Hiep Dinh; Kim, Se Mi; Kwon, Jin-Jung; Choi, Won-Suk; Beak, Yun Hee; Song, Min-Suk; Kim, Chul-Joong; Webby, Richard J.; Choi, Young-Ki

    2017-01-01

    A novel genotype of H5N6 influenza viruses was isolated from migratory birds in South Korea during November 2016. Domestic outbreaks of this virus were associated with die-offs of wild birds near reported poultry cases in Chungbuk province, central South Korea. Genetic analysis and animal studies demonstrated that the Korean H5N6 viruses are highly pathogenic avian influenza (HPAI) viruses and that these viruses are novel reassortants of at least three different subtypes (H5N6, H4N2 and H1N1). PMID:28079520

  7. Limited susceptibility of pigeons experimentally inoculated with H5N1 highly pathogenic avian influenza viruses.

    PubMed

    Yamamoto, Yu; Nakamura, Kikuyasu; Yamada, Manabu; Mase, Masaji

    2012-02-01

    An experimental infection study was performed using pigeons reared for racing or meat production in Japan and clade 2.2 and 2.3.2 isolates of H5N1 highly pathogenic avian influenza virus to evaluate the possible role of pigeons in virus transmission to poultry. In experiment 1, when 20 pigeons were intranasally inoculated with high or low viral doses, no inoculated pigeon exhibited clinical signs for 14 days. Drinking water and almost all swab samples were negative for virus isolation. Virus isolation was positive in 3 oral swab samples from 2 pigeons from day 2 through 4 postinoculation, but viral titers of positive samples were extremely low. Immunohistochemical analysis for virus detection was negative in all tissue samples. Along with seroconversion in a limited number of pigeons postinoculation, these results suggest that pigeons have limited susceptibility to the virus used for experimental infection. In experiment 2, when uninoculated chickens were housed with virus-inoculated pigeons, all pigeons and contact chickens survived for 14 days without exhibiting any clinical signs. According to serological analysis, the chickens did not exhibit seroconversion after close contact with inoculated pigeons. Our data suggest that the risk posed by pigeons with respect to the transmission of the H5N1 highly pathogenic avian influenza virus to poultry would be less than that for other susceptible avian species.

  8. Differential Contribution of PB1-F2 to the Virulence of Highly Pathogenic H5N1 Influenza A Virus in Mammalian and Avian Species

    PubMed Central

    Schmolke, Mirco; Manicassamy, Balaji; Pena, Lindomar; Sutton, Troy; Hai, Rong; Varga, Zsuzsanna T.; Hale, Benjamin G.; Steel, John; Pérez, Daniel R.; García-Sastre, Adolfo

    2011-01-01

    Highly pathogenic avian influenza A viruses (HPAIV) of the H5N1 subtype occasionally transmit from birds to humans and can cause severe systemic infections in both hosts. PB1-F2 is an alternative translation product of the viral PB1 segment that was initially characterized as a pro-apoptotic mitochondrial viral pathogenicity factor. A full-length PB1-F2 has been present in all human influenza pandemic virus isolates of the 20th century, but appears to be lost evolutionarily over time as the new virus establishes itself and circulates in the human host. In contrast, the open reading frame (ORF) for PB1-F2 is exceptionally well-conserved in avian influenza virus isolates. Here we perform a comparative study to show for the first time that PB1-F2 is a pathogenicity determinant for HPAIV (A/Viet Nam/1203/2004, VN1203 (H5N1)) in both mammals and birds. In a mammalian host, the rare N66S polymorphism in PB1-F2 that was previously described to be associated with high lethality of the 1918 influenza A virus showed increased replication and virulence of a recombinant VN1203 H5N1 virus, while deletion of the entire PB1-F2 ORF had negligible effects. Interestingly, the N66S substituted virus efficiently invades the CNS and replicates in the brain of Mx+/+ mice. In ducks deletion of PB1-F2 clearly resulted in delayed onset of clinical symptoms and systemic spreading of virus, while variations at position 66 played only a minor role in pathogenesis. These data implicate PB1-F2 as an important pathogenicity factor in ducks independent of sequence variations at position 66. Our data could explain why PB1-F2 is conserved in avian influenza virus isolates and only impacts pathogenicity in mammals when containing certain amino acid motifs such as the rare N66S polymorphism. PMID:21852950

  9. Differential contribution of PB1-F2 to the virulence of highly pathogenic H5N1 influenza A virus in mammalian and avian species.

    PubMed

    Schmolke, Mirco; Manicassamy, Balaji; Pena, Lindomar; Sutton, Troy; Hai, Rong; Varga, Zsuzsanna T; Hale, Benjamin G; Steel, John; Pérez, Daniel R; García-Sastre, Adolfo

    2011-08-01

    Highly pathogenic avian influenza A viruses (HPAIV) of the H5N1 subtype occasionally transmit from birds to humans and can cause severe systemic infections in both hosts. PB1-F2 is an alternative translation product of the viral PB1 segment that was initially characterized as a pro-apoptotic mitochondrial viral pathogenicity factor. A full-length PB1-F2 has been present in all human influenza pandemic virus isolates of the 20(th) century, but appears to be lost evolutionarily over time as the new virus establishes itself and circulates in the human host. In contrast, the open reading frame (ORF) for PB1-F2 is exceptionally well-conserved in avian influenza virus isolates. Here we perform a comparative study to show for the first time that PB1-F2 is a pathogenicity determinant for HPAIV (A/Viet Nam/1203/2004, VN1203 (H5N1)) in both mammals and birds. In a mammalian host, the rare N66S polymorphism in PB1-F2 that was previously described to be associated with high lethality of the 1918 influenza A virus showed increased replication and virulence of a recombinant VN1203 H5N1 virus, while deletion of the entire PB1-F2 ORF had negligible effects. Interestingly, the N66S substituted virus efficiently invades the CNS and replicates in the brain of Mx+/+ mice. In ducks deletion of PB1-F2 clearly resulted in delayed onset of clinical symptoms and systemic spreading of virus, while variations at position 66 played only a minor role in pathogenesis. These data implicate PB1-F2 as an important pathogenicity factor in ducks independent of sequence variations at position 66. Our data could explain why PB1-F2 is conserved in avian influenza virus isolates and only impacts pathogenicity in mammals when containing certain amino acid motifs such as the rare N66S polymorphism.

  10. H5N2 highly pathogenic avian influenza viruses from the US 2014-2015 outbreak have an unusually long pre-clinical period in turkeys

    USDA-ARS?s Scientific Manuscript database

    From December 2014 through June 2015, the US experienced the most costly highly pathogenic avian influenza (HPAI) outbreak to date. Most cases in commercial poultry were caused by an H5N2 strain which was a reassortant with 5 Eurasian lineage genes, including a clade 2.3.4.4 goose/Guangdong/1996 lin...

  11. Genetic Characterization of Highly Pathogenic Avian Influenza (H5N8) Virus from Domestic Ducks, England, November 2014.

    PubMed

    Hanna, Amanda; Banks, Jill; Marston, Denise A; Ellis, Richard J; Brookes, Sharon M; Brown, Ian H

    2015-05-01

    Genetic sequences of a highly pathogenic avian influenza (H5N8) virus in England have high homology to those detected in mainland Europe and Asia during 2014. Genetic characterization suggests this virus is an avian-adapted virus without specific affinity for zoonoses. Spatio-temporal detections of H5N8 imply a role for wild birds in virus spread.

  12. Genetic Characterization of Highly Pathogenic Avian Influenza (H5N8) Virus from Domestic Ducks, England, November 2014

    PubMed Central

    Banks, Jill; Marston, Denise A.; Ellis, Richard J.; Brookes, Sharon M.; Brown, Ian H.

    2015-01-01

    Genetic sequences of a highly pathogenic avian influenza (H5N8) virus in England have high homology to those detected in mainland Europe and Asia during 2014. Genetic characterization suggests this virus is an avian-adapted virus without specific affinity for zoonoses. Spatio-temporal detections of H5N8 imply a role for wild birds in virus spread. PMID:25898126

  13. The spread of highly pathogenic avian influenza (subtype H5N1) clades in Bangladesh, 2010 and 2011.

    PubMed

    Osmani, Muzaffar G; Ward, Michael P; Giasuddin, Md; Islam, Md Rafiqul; Kalam, Abul

    2014-04-01

    Since the global spread of highly pathogenic avian influenza H5N1 during 2005-2006, control programs have been successfully implemented in most affected countries. HPAI H5N1 was first reported in Bangladesh in 2007, and since then 546 outbreaks have been reported to the OIE. The disease has apparently become endemic in Bangladesh. Spatio-temporal information on 177 outbreaks of HPAI H5N1 occurring between February 2010 and April 2011 in Bangladesh, and 37 of these outbreaks in which isolated H5N1 viruses were phylogenetically characterized to clade, were analyzed. Three clades were identified, 2.2 (21 cases), 2.3.4 (2 cases) and 2.3.2.1 (14 cases). Clade 2.2 was identified throughout the time period and was widely distributed in a southeast-northwest orientation. Clade 2.3.2.1 appeared later and was generally confined to central Bangladesh in a north-south orientation. Based on a direction test, clade 2.2 viruses spread in a southeast-to-northwest direction, whereas clade 2.3.2.1 spread west-to-east. The magnitude of spread of clade 2.3.2.1 was greater relative to clade 2.2 (angular concentration 0.2765 versus 0.1860). In both cases, the first outbreak(s) were identified as early outliers, but in addition, early outbreaks (one each) of clade 2.2 were also identified in central Bangladesh and in northwest Bangladesh, a considerable distance apart. The spread of highly pathogenic avian influenza H5N1 in Bangladesh is characterized by reported long-distance translocation events. This poses a challenge to disease control efforts. Increased enforcement of biosecurity and stronger control of movements between affected farms and susceptible farms, and better surveillance and reporting, is needed. Although the movement of poultry and equipment appears to be a more likely explanation for the patterns identified, the relative contribution of trade and the market chain versus wild birds in spreading the disease needs further investigation. Copyright © 2014 Elsevier B.V. All

  14. Characterization of duck H5N1 influenza viruses with differing pathogenicity in mallard (Anas platyrhynchos) ducks.

    PubMed

    Tang, Yinghua; Wu, Peipei; Peng, Daxin; Wang, Xiaobo; Wan, Hongquan; Zhang, Pinghu; Long, Jinxue; Zhang, Wenjun; Li, Yanfang; Wang, Wenbin; Zhang, Xiaorong; Liu, Xiufan

    2009-12-01

    A number of H5N1 influenza outbreaks have occurred in aquatic birds in Asia. As aquatic birds are the natural reservoir of influenza A viruses and do not usually show clinical disease upon infection, the repeated H5N1 outbreaks have highlighted the importance of continuous surveillance on H5N1 viruses in aquatic birds. In the present study we characterized the biological properties of four H5N1 avian influenza viruses, which had been isolated from ducks, in different animal models. In specific pathogen free (SPF) chickens, all four isolates were highly pathogenic. In SPF mice, the S and Y isolates were moderately pathogenic. However, in mallard ducks, two isolates had low pathogenicity, while the other two were highly pathogenic and caused lethal infection. A representative isolate with high pathogenicity in ducks caused systemic infection and replicated effectively in all 10 organs tested in challenged ducks, whereas a representative isolate with low pathogenicity in ducks was only detected in some organs in a few challenged ducks. Comparison of complete genomic sequences from the four isolates showed that the same amino acid residues that have been reported to be associated with virulence and host adaption/restriction of influenza viruses were present in the PB2, HA, NA, M and NS genes, while the amino acid residues at the HA cleavage site were diverse. From these results it appeared that the virulence of H5N1 avian influenza viruses was increased for ducks and that amino acid substitutions at the HA cleavage site might have contributed to the differing pathogenicity of these isolates in mallards. A procedure for the intravenous pathogenicity index test in a mallard model for assessing the virulence of H5/H7 subtype avian influenza viruses in waterfowl is described.

  15. Highly pathogenic avian influenza virus subtype H5N1 in Mute swans in the Czech Republic.

    PubMed

    Nagy, Alexander; Machova, Jirina; Hornickova, Jitka; Tomci, Miroslav; Nagl, Ivan; Horyna, Bedrich; Holko, Ivan

    2007-02-25

    In order to determine the actual prevalence of avian influenza viruses (AIV) in wild birds in the Czech Republic extensive surveillance was carried out between January and April 2006. A total of 2101 samples representing 61 bird species were examined for the presence of influenza A by using PCR, sequencing and cultivation on chicken embryos. AIV subtype H5N1 was detected in 12 Mute swans (Cygnus olor). The viruses were determined as HPAI (highly pathogenic avian influenza) and the hemagglutinin sequence was closely similar to A/mallard/Italy/835/06 and A/turkey/Turkey/1194/05. Following the first H5N1 case, about 300 wild birds representing 33 species were collected from the outbreak region and tested for the presence of AIV without any positive result. This is the first report of highly pathogenic avian influenza subtype H5N1 in the Czech Republic. The potential role of swan as an effective vector of avian influenza virus is also discussed.

  16. [Occupational exposure induced human transmissible highly pathogenic H5N1 avian influenza in one patient].

    PubMed

    Zhou, Hong-sheng; Liu, Jing-hu; Wang, Xiu-quan; Guo, Jiang-hua; Song, Xiao-lin

    2007-03-01

    To describe the clinical manifestations and lung imaging characteristics of the human transmissible highly pathogenic H5N1 avian influenza. The clinical manifestations and lung imaging characteristics of human transmissible highly pathogenic H5N1 avian influenza in one patient were reviewed and analyzed. The patient had the clear history of occupational exposure. The fever and symptoms of influenza were prominent at onset and associated with the symptoms of the digestive tract. The laboratory findings comprised the significant decrease of the white blood cell count and the lymphocyte number and the impairment of the liver function and the myocardial enzymes. The disease progressed rapidly and multiple organs including lung, heart, liver and kidneys were involved. It was ineffective to administer anti-fungal, anti-virus and anti-inflammation medicines. It was in vain to use mechanical ventilation and pneumothorax intubation and closed drainage as well as the support therapy. In the X-ray film, the lesions progressed quickly and changed diversely with absorption and development at the same time. The nasal and throat swabs and the gargle specimen were detected with RT-PCR and real time PCR by Chinese Center for Disease Control and Prevention. The results showed that both the specific HA and NA genes of the avian influenza virus H5N1 subtype were positive and in the same time a strain of avian influenza virus A/jiangxi/1/2005H5N1) was separated and obtained from the nasal and throat swabs. The autopsy showed that diffuse injury of alveolus in lungs, DIC and multiple organ injury. The human transmissible highly pathogenic H5N1 avian influenza is a lethal disease. The disease progresses rapidly with the absorption and development at the same time in the lungs and unfortunately there are no effective therapeutic measures. The prevention of the contagious disease for the occupationally exposed population should be emphasized.

  17. Genetic characterisation of novel, highly pathogenic avian influenza (HPAI) H5N6 viruses isolated in birds, South Korea, November 2016.

    PubMed

    Si, Young-Jae; Lee, In Won; Kim, Eun-Ha; Kim, Young-Il; Kwon, Hyeok-Il; Park, Su-Jin; Nguyen, Hiep Dinh; Kim, Se Mi; Kwon, Jin-Jung; Choi, Won-Suk; Beak, Yun Hee; Song, Min-Suk; Kim, Chul-Joong; Webby, Richard J; Choi, Young-Ki

    2017-01-05

    A novel genotype of H5N6 influenza viruses was isolated from migratory birds in South Korea during November 2016. Domestic outbreaks of this virus were associated with die-offs of wild birds near reported poultry cases in Chungbuk province, central South Korea. Genetic analysis and animal studies demonstrated that the Korean H5N6 viruses are highly pathogenic avian influenza (HPAI) viruses and that these viruses are novel reassortants of at least three different subtypes (H5N6, H4N2 and H1N1). This article is copyright of The Authors, 2017.

  18. Role of domestic ducks in the emergence of a new genotype of highly pathogenic H5N1 avian influenza A viruses in Bangladesh

    PubMed Central

    Barman, Subrata; Marinova-Petkova, Atanaska; Hasan, M Kamrul; Akhtar, Sharmin; El-Shesheny, Rabeh; Turner, Jasmine CM; Franks, John; Walker, David; Seiler, Jon; Friedman, Kimberly; Kercher, Lisa; Jeevan, Trushar; Darnell, Daniel; Kayali, Ghazi; Jones-Engel, Lisa; McKenzie, Pamela; Krauss, Scott; Webby, Richard J; Webster, Robert G; Feeroz, Mohammed M

    2017-01-01

    Highly pathogenic avian influenza H5N1 viruses were first isolated in Bangladesh in February 2007. Subsequently, clades 2.2.2, 2.3.4.2 and 2.3.2.1a were identified in Bangladesh, and our previous surveillance data revealed that by the end of 2014, the circulating viruses exclusively comprised clade 2.3.2.1a. We recently determined the status of circulating avian influenza viruses in Bangladesh by conducting surveillance of live poultry markets and waterfowl in wetland areas from February 2015 through February 2016. Until April 2015, clade 2.3.2.1a persisted without any change in genotype. However, in June 2015, we identified a new genotype of H5N1 viruses, clade 2.3.2.1a, which quickly became predominant. These newly emerged H5N1 viruses contained the hemagglutinin, neuraminidase and matrix genes of circulating 2.3.2.1a Bangladeshi H5N1 viruses and five other genes of low pathogenic Eurasian-lineage avian influenza A viruses. Some of these internal genes were closely related to those of low pathogenic viruses isolated from ducks in free-range farms and wild birds in a wetland region of northeastern Bangladesh, where commercially raised domestic ducks have frequent contact with migratory birds. These findings indicate that migratory birds of the Central Asian flyway and domestic ducks in the free-range farms in Tanguar haor-like wetlands played an important role in the emergence of this novel genotype of highly pathogenic H5N1 viruses. PMID:28790460

  19. Emergence of H5N1 high pathogenicity avian influenza strains in Indonesia that are resistant to vaccines

    USDA-ARS?s Scientific Manuscript database

    Vaccines have been used to protect poultry in Asia against H5N1 high pathogenicity avian influenza (HPAI) since 2002. Reports of vaccine “failures” began to emerge in 2006 in Indonesia, with identification of clinical disease consistent with HPAI or isolation of H5N1 HPAIV in vaccinated flocks or in...

  20. The non-structural (NS) gene segment of H9N2 influenza virus isolated from backyard poultry in Pakistan reveals strong genetic and functional similarities to the NS gene of highly pathogenic H5N1

    PubMed Central

    Munir, Muhammad; Zohari, Siamak; Iqbal, Munir; Abbas, Muhammad; Perez, Daniel Roberto; Berg, Mikael

    2013-01-01

    Apart from natural reassortment, co-circulation of different avian influenza virus strains in poultry populations can lead to generation of novel variants and reassortant viruses. In this report, we studied the genetics and functions of a reassorted non-structural gene (NS) of H9N2 influenza virus collected from back yard poultry (BYP) flock. Phylogenetic reconstruction based on hemagglutinin and neuraminidase genes indicates that an isolate from BYP belongs to H9N2. However, the NS gene-segment of this isolate cluster into genotype Z, clade 2.2 of the highly pathogenic H5N1. The NS gene plays essential roles in the host-adaptation, cell-tropism, and virulence of influenza viruses. However, such interpretations have not been investigated in naturally recombinant H9N2 viruses. Therefore, we compared the NS1 protein of H9N2 (H9N2/NS1) and highly pathogenic H5N1 (H5N1/NS1) in parallel for their abilities to regulate different signaling pathways, and investigated the molecular mechanisms of IFN-β production in human, avian, and mink lung cells. We found that H9N2/NS1 and H5N1/NS1 are comparably similar in inhibiting TNF-α induced nuclear factor κB and double stranded RNA induced activator protein 1 and interferon regulatory factor 3 transcription factors. Thus, the production of IFN-β was inhibited equally by both NS1s as demonstrated by IFN stimulatory response element and IFN-β promoter activation. Moreover, both NS1s predominantly localized in the nucleus when transfected to human A549 cells. This study therefore suggests the possible increased virulence of natural reassortant viruses for their efficient invasion of host immune responses, and proposes that these should not be overlooked for their epizootic and zoonotic potential. PMID:23959028

  1. Pathobiological Characterization of a Novel Reassortant Highly Pathogenic H5N1 Virus Isolated in British Columbia, Canada, 2015

    PubMed Central

    Berhane, Yohannes; Kobasa, Darwyn; Embury-Hyatt, Carissa; Pickering, Brad; Babiuk, Shawn; Joseph, Tomy; Bowes, Victoria; Suderman, Mathew; Leung, Anders; Cottam-Birt, Colleen; Hisanaga, Tamiko; Pasick, John

    2016-01-01

    In the current study, we describe the pathobiologic characteristics of a novel reassortant virus - A/chicken/BC/FAV-002/2015 (H5N1) belonging to clade 2.3.4.4 that was isolated from backyard chickens in British Columbia, Canada. Sequence analyses demonstrate PB1, PA, NA and NS gene segments were of North American lineage while PB2, HA, NP and M were derived from a Eurasian lineage H5N8 virus. This novel virus had a 19 amino acid deletion in the neuraminidase stalk. We evaluated the pathogenic potential of this isolate in various animal models. The virus was highly pathogenic to mice with a LD50 of 10 plaque forming units (PFU), but had limited tissue tropism. It caused only subclinical infection in pigs which did result in seroconversion. This virus was highly pathogenic to chickens, turkeys, juvenile Muscovy ducks (Cairnia moschata foma domestica) and adult Chinese geese (Anser cynoides domesticus) causing a systemic infection in all species. The virus was also efficiently transmitted and resulted in mortality in naïve contact ducks, geese and chickens. Our findings indicate that this novel H5N1 virus has a wide host range and enhanced surveillance of migratory waterfowl may be necessary in order to determine its potential to establish itself in the wild bird reservoir. PMID:26988892

  2. Genetic evolution of H5 highly pathogenic avian influenza virus in domestic poultry in Vietnam between 2011 and 2013.

    PubMed

    Lee, Eun-Kyoung; Kang, Hyun-Mi; Kim, Kwang-Il; Choi, Jun-Gu; To, Thanh Long; Nguyen, Tho Dang; Song, Byung-Min; Jeong, Jipseol; Choi, Kang-Seuk; Kim, Ji-Ye; Lee, Hee-Soo; Lee, Youn-Jeong; Kim, Jae-Hong

    2015-04-01

    In spite of highly pathogenic avian influenza H5N1 vaccination campaigns for domestic poultry, H5N1 viruses continue to circulate in Vietnam. To estimate the prevalence of avian influenza virus in Vietnam, surveillance was conducted between November 2011 and February 2013. Genetic analysis of 312 highly pathogenic avian influenza H5 viruses isolated from poultry in Vietnam was conducted and possible genetic relationships with strains from neighboring countries were investigated. As previously reported, phylogenetic analysis of the avian influenza virus revealed two H5N1 HPAI clades that were circulating in Vietnam. Clade 1.1, related to Cambodian strains, was predominant in the southern provinces, while clade 2.3.2.1 viruses were predominant in the northern and central provinces. Sequence analysis revealed evidence of active genetic evolution. In the gene constellation of clade 2.3.2.1, genotypes A, B, and B(II) existed during the 2011/2012 winter season. In June 2012, new genotype C emerged by reassortment between genotype A and genotype B(II), and this genotype was predominant in 2013 in the northern and central provinces. Interestingly, enzootic Vietnamese clade 2.3.2.1C H5 virus subsequently reassorted with N2, which originated from wild birds, to generate H5N2 highly pathogenic avian influenza, which was isolated from duck in the northeast region. This investigation indicated that H5N1 outbreaks persist in Vietnam and cause genetic reassortment with circulating viruses. It is necessary to strengthen active influenza surveillance to eradicate highly pathogenic avian influenza viruses and sever the link between highly pathogenic avian influenza and other circulating influenza viruses. © 2015 Poultry Science Association Inc.

  3. Novel Eurasian highly pathogenic avian influenza A H5 viruses in wild birds, Washington, USA, 2014.

    PubMed

    Ip, Hon S; Torchetti, Mia Kim; Crespo, Rocio; Kohrs, Paul; DeBruyn, Paul; Mansfield, Kristin G; Baszler, Timothy; Badcoe, Lyndon; Bodenstein, Barbara; Shearn-Bochsler, Valerie; Killian, Mary Lea; Pedersen, Janice C; Hines, Nichole; Gidlewski, Thomas; DeLiberto, Thomas; Sleeman, Jonathan M

    2015-05-01

    Novel Eurasian lineage avian influenza A(H5N8) virus has spread rapidly and globally since January 2014. In December 2014, H5N8 and reassortant H5N2 viruses were detected in wild birds in Washington, USA, and subsequently in backyard birds. When they infect commercial poultry, these highly pathogenic viruses pose substantial trade issues.

  4. Recombinant Parainfluenza Virus 5 Expressing Hemagglutinin of Influenza A Virus H5N1 Protected Mice against Lethal Highly Pathogenic Avian Influenza Virus H5N1 Challenge

    PubMed Central

    Li, Zhuo; Mooney, Alaina J.; Gabbard, Jon D.; Gao, Xiudan; Xu, Pei; Place, Ryan J.; Hogan, Robert J.; Tompkins, S. Mark

    2013-01-01

    A safe and effective vaccine is the best way to prevent large-scale highly pathogenic avian influenza virus (HPAI) H5N1 outbreaks in the human population. The current FDA-approved H5N1 vaccine has serious limitations. A more efficacious H5N1 vaccine is urgently needed. Parainfluenza virus 5 (PIV5), a paramyxovirus, is not known to cause any illness in humans. PIV5 is an attractive vaccine vector. In our studies, a single dose of a live recombinant PIV5 expressing a hemagglutinin (HA) gene of H5N1 (rPIV5-H5) from the H5N1 subtype provided sterilizing immunity against lethal doses of HPAI H5N1 infection in mice. Furthermore, we have examined the effect of insertion of H5N1 HA at different locations within the PIV5 genome on the efficacy of a PIV5-based vaccine. Interestingly, insertion of H5N1 HA between the leader sequence, the de facto promoter of PIV5, and the first viral gene, nucleoprotein (NP), did not lead to a viable virus. Insertion of H5N1 HA between NP and the next gene, V/phosphorprotein (V/P), led to a virus that was defective in growth. We have found that insertion of H5N1 HA at the junction between the small hydrophobic (SH) gene and the hemagglutinin-neuraminidase (HN) gene gave the best immunity against HPAI H5N1 challenge: a dose as low as 1,000 PFU was sufficient to protect against lethal HPAI H5N1 challenge in mice. The work suggests that recombinant PIV5 expressing H5N1 HA has great potential as an HPAI H5N1 vaccine. PMID:23077314

  5. Highly Pathogenic Avian Influenza Virus (H5N1) in Frozen Duck Carcasses, Germany, 2007

    PubMed Central

    Harder, Timm C.; Teuffert, Jürgen; Starick, Elke; Gethmann, Jörn; Grund, Christian; Fereidouni, Sasan; Durban, Markus; Bogner, Karl-Heinz; Neubauer-Juric, Antonie; Repper, Reinhard; Hlinak, Andreas; Engelhardt, Andreas; Nöckler, Axel; Smietanka, Krzysztof; Minta, Zenon; Kramer, Matthias; Globig, Anja; Mettenleiter, Thomas C.; Conraths, Franz J.

    2009-01-01

    We conducted phylogenetic and epidemiologic analyses to determine sources of outbreaks of highly pathogenic avian influenza virus (HPAIV), subtype H5N1, in poultry holdings in 2007 in Germany, and a suspected incursion of HPAIV into the food chain through contaminated deep-frozen duck carcasses. In summer 2007, HPAIV (H5N1) outbreaks in 3 poultry holdings in Germany were temporally, spatially, and phylogenetically linked to outbreaks in wild aquatic birds. Detection of HPAIV (H5N1) in frozen duck carcass samples of retained slaughter batches of 1 farm indicated that silent infection had occurred for some time before the incidental detection. Phylogenetic analysis established a direct epidemiologic link between HPAIV isolated from duck meat and strains isolated from 3 further outbreaks in December 2007 in backyard chickens that had access to uncooked offal from commercial deep-frozen duck carcasses. Measures that will prevent such undetected introduction of HPAIV (H5N1) into the food chain are urgently required. PMID:19193272

  6. Variability in pathobiology of South Korean H5N1 high-pathogenicity avian influenza virus infection for 5 species of migratory waterfowl

    USDA-ARS?s Scientific Manuscript database

    The biological outcome of H5N1 high pathogenicity avian influenza (HPAI) virus infection in wild waterfowl is poorly understood. This study examined infectivity and pathobiology of A/chicken/Korea/IS/06 (H5N1) HPAI virus infection in Mute swans (Cygnus olor), Greylag geese (Anser anser), Ruddy Sheld...

  7. Unusually High Mortality in Waterfowl Caused by Highly Pathogenic Avian Influenza A(H5N1) in Bangladesh

    PubMed Central

    Haider, N.; Sturm-Ramirez, K.; Khan, S. U.; Rahman, M. Z.; Sarkar, S.; Poh, M. K.; Shivaprasad, H. L.; Kalam, M. A.; Paul, S. K.; Karmakar, P. C.; Balish, A.; Chakraborty, A.; Mamun, A. A.; Mikolon, A. B.; Davis, C. T.; Rahman, M.; Donis, R. O.; Heffelfinger, J. D.; Luby, S. P.; Zeidner, N.

    2015-01-01

    Summary Mortality in ducks and geese caused by highly pathogenic avian influenza A (H5N1) infection had not been previously identified in Bangladesh. In June–July 2011, we investigated mortality in ducks, geese and chickens with suspected H5N1 infection in a north-eastern district of the country to identify the aetiologic agent and extent of the outbreak and identify possible associated human infections. We surveyed households and farms with affected poultry flocks in six villages in Netrokona district and collected cloacal and oropharyngeal swabs from sick birds and tissue samples from dead poultry. We conducted a survey in three of these villages to identify suspected human influenza-like illness cases and collected nasopharyngeal and throat swabs. We tested all swabs by real-time RT-PCR, sequenced cultured viruses, and examined tissue samples by histopathology and immunohistochemistry to detect and characterize influenza virus infection. In the six villages, among the 240 surveyed households and 11 small-scale farms, 61% (1789/2930) of chickens, 47% (4816/10 184) of ducks and 73% (358/493) of geese died within 14 days preceding the investigation. Of 70 sick poultry swabbed, 80% (56/70) had detectable RNA for influenza A/H5, including 89% (49/55) of ducks, 40% (2/5) of geese and 50% (5/10) of chickens. We isolated virus from six of 25 samples; sequence analysis of the hemagglutinin and neuraminidase gene of these six isolates indicated clade 2.3.2.1a of H5N1 virus. Histopathological changes and immunohistochemistry staining of avian influenza viral antigens were recognized in the brain, pancreas and intestines of ducks and chickens. We identified ten human cases showing signs compatible with influenza-like illness; four were positive for influenza A/H3; however, none were positive for influenza A/H5. The recently introduced H5N1 clade 2.3.2.1a virus caused unusually high mortality in ducks and geese. Heightened surveillance in poultry is warranted to guide

  8. Widespread detection of highly pathogenic H5 influenza viruses in wild birds from the Pacific Flyway of the United States

    USGS Publications Warehouse

    Bevins, S.N.; Dusek, Robert J.; White, C. LeAnn; Gidlewski, Thomas; Bodenstein, B.; Mansfield, Kristin G.; DeBruyn, Paul; Kraege, Donald K.; Rowan, E.L.; Gillin, Colin; Thomas, B.; Chandler, S.; Baroch, J.; Schmit, B.; Grady, M. J.; Miller, R. S.; Drew, M.L.; Stopak, S.; Zscheile, B.; Bennett, J.; Sengl, J.; Brady, Caroline; Ip, Hon S.; Spackman, Erica; Killian, M. L.; Kim Torchetti, Mia; Sleeman, Jonathan M.; DeLiberto, T.J.

    2016-01-01

    A novel highly pathogenic avian influenza virus belonging to the H5 clade 2.3.4.4 variant viruses was detected in North America in late 2014. Motivated by the identification of these viruses in domestic poultry in Canada, an intensive study was initiated to conduct highly pathogenic avian influenza surveillance in wild birds in the Pacific Flyway of the United States. A total of 4,729 hunter-harvested wild birds were sampled and highly pathogenic avian influenza virus was detected in 1.3% (n = 63). Three H5 clade 2.3.4.4 subtypes were isolated from wild birds, H5N2, H5N8, and H5N1, representing the wholly Eurasian lineage H5N8 and two novel reassortant viruses. Testing of 150 additional wild birds during avian morbidity and mortality investigations in Washington yielded 10 (6.7%) additional highly pathogenic avian influenza isolates (H5N8 = 3 and H5N2 = 7). The geographically widespread detection of these viruses in apparently healthy wild waterfowl suggest that the H5 clade 2.3.4.4 variant viruses may behave similarly in this taxonomic group whereby many waterfowl species are susceptible to infection but do not demonstrate obvious clinical disease. Despite these findings in wild waterfowl, mortality has been documented for some wild bird species and losses in US domestic poultry during the first half of 2015 were unprecedented.

  9. Widespread detection of highly pathogenic H5 influenza viruses in wild birds from the Pacific Flyway of the United States.

    PubMed

    Bevins, S N; Dusek, R J; White, C L; Gidlewski, T; Bodenstein, B; Mansfield, K G; DeBruyn, P; Kraege, D; Rowan, E; Gillin, C; Thomas, B; Chandler, S; Baroch, J; Schmit, B; Grady, M J; Miller, R S; Drew, M L; Stopak, S; Zscheile, B; Bennett, J; Sengl, J; Brady, Caroline; Ip, H S; Spackman, E; Killian, M L; Torchetti, M K; Sleeman, J M; Deliberto, T J

    2016-07-06

    A novel highly pathogenic avian influenza virus belonging to the H5 clade 2.3.4.4 variant viruses was detected in North America in late 2014. Motivated by the identification of these viruses in domestic poultry in Canada, an intensive study was initiated to conduct highly pathogenic avian influenza surveillance in wild birds in the Pacific Flyway of the United States. A total of 4,729 hunter-harvested wild birds were sampled and highly pathogenic avian influenza virus was detected in 1.3% (n = 63). Three H5 clade 2.3.4.4 subtypes were isolated from wild birds, H5N2, H5N8, and H5N1, representing the wholly Eurasian lineage H5N8 and two novel reassortant viruses. Testing of 150 additional wild birds during avian morbidity and mortality investigations in Washington yielded 10 (6.7%) additional highly pathogenic avian influenza isolates (H5N8 = 3 and H5N2 = 7). The geographically widespread detection of these viruses in apparently healthy wild waterfowl suggest that the H5 clade 2.3.4.4 variant viruses may behave similarly in this taxonomic group whereby many waterfowl species are susceptible to infection but do not demonstrate obvious clinical disease. Despite these findings in wild waterfowl, mortality has been documented for some wild bird species and losses in US domestic poultry during the first half of 2015 were unprecedented.

  10. Widespread detection of highly pathogenic H5 influenza viruses in wild birds from the Pacific Flyway of the United States

    PubMed Central

    Bevins, S. N.; Dusek, R. J.; White, C. L.; Gidlewski, T.; Bodenstein, B.; Mansfield, K. G.; DeBruyn, P.; Kraege, D.; Rowan, E.; Gillin, C.; Thomas, B.; Chandler, S.; Baroch, J.; Schmit, B.; Grady, M. J.; Miller, R. S.; Drew, M. L.; Stopak, S.; Zscheile, B.; Bennett, J.; Sengl, J.; Brady, Caroline; Ip, H. S.; Spackman, E.; Killian, M. L.; Torchetti, M. K.; Sleeman, J. M.; Deliberto, T. J.

    2016-01-01

    A novel highly pathogenic avian influenza virus belonging to the H5 clade 2.3.4.4 variant viruses was detected in North America in late 2014. Motivated by the identification of these viruses in domestic poultry in Canada, an intensive study was initiated to conduct highly pathogenic avian influenza surveillance in wild birds in the Pacific Flyway of the United States. A total of 4,729 hunter-harvested wild birds were sampled and highly pathogenic avian influenza virus was detected in 1.3% (n = 63). Three H5 clade 2.3.4.4 subtypes were isolated from wild birds, H5N2, H5N8, and H5N1, representing the wholly Eurasian lineage H5N8 and two novel reassortant viruses. Testing of 150 additional wild birds during avian morbidity and mortality investigations in Washington yielded 10 (6.7%) additional highly pathogenic avian influenza isolates (H5N8 = 3 and H5N2 = 7). The geographically widespread detection of these viruses in apparently healthy wild waterfowl suggest that the H5 clade 2.3.4.4 variant viruses may behave similarly in this taxonomic group whereby many waterfowl species are susceptible to infection but do not demonstrate obvious clinical disease. Despite these findings in wild waterfowl, mortality has been documented for some wild bird species and losses in US domestic poultry during the first half of 2015 were unprecedented. PMID:27381241

  11. Influenza A(H5N8) Virus Similar to Strain in Korea Causing Highly Pathogenic Avian Influenza in Germany.

    PubMed

    Harder, Timm; Maurer-Stroh, Sebastian; Pohlmann, Anne; Starick, Elke; Höreth-Böntgen, Detlef; Albrecht, Karin; Pannwitz, Gunter; Teifke, Jens; Gunalan, Vithiagaran; Lee, Raphael T C; Sauter-Louis, Carola; Homeier, Timo; Staubach, Christoph; Wolf, Carola; Strebelow, Günter; Höper, Dirk; Grund, Christian; Conraths, Franz J; Mettenleiter, Thomas C; Beer, Martin

    2015-05-01

    Highly pathogenic avian influenza (H5N8) virus, like the recently described H5N8 strain from Korea, was detected in November 2014 in farmed turkeys and in a healthy common teal (Anas crecca) in northeastern Germany. Infected wild birds possibly introduced this virus.

  12. Seroprevalence of Antibodies against Highly Pathogenic Avian Influenza A (H5N1) Virus among Poultry Workers in Bangladesh, 2009

    PubMed Central

    Nasreen, Sharifa; Uddin Khan, Salah; Azziz-Baumgartner, Eduardo; Hancock, Kathy; Veguilla, Vic; Wang, David; Rahman, Mahmudur; Alamgir, A. S. M.; Sturm-Ramirez, Katharine; Gurley, Emily S.; Luby, Stephen P.; Katz, Jacqueline M.; Uyeki, Timothy M.

    2013-01-01

    We conducted a cross-sectional study in 2009 to determine the seroprevalence and risk factors for highly pathogenic avian influenza A (H5N1) [HPAI H5N1] virus antibodies among poultry workers at farms and live bird markets with confirmed/suspected poultry outbreaks during 2009 in Bangladesh. We tested sera by microneutralization assay using A/Bangladesh/207095/2008 (H5N1; clade 2.2.2) virus with confirmation by horse red blood cell hemagglutination inhibition and H5-specific Western blot assays. We enrolled 212 workers from 87 farms and 210 workers from three live bird markets. One hundred and two farm workers (48%) culled poultry. One hundred and ninety-three farm workers (91%) and 178 market workers (85%) reported direct contact with poultry that died during a laboratory confirmed HPAI H5N1 poultry farm outbreak or market poultry die-offs from suspected HPAI H5N1. Despite exposure to sick poultry, no farm or market poultry workers were seropositive for HPAI H5N1 virus antibodies (95% confidence interval 0–1%). PMID:24039887

  13. Highly pathogenic avian influenza virus subtype H5N1 in mute swans (Cygnus olor) in Central Bosnia.

    PubMed

    Goletić, Teufik; Gagić, Abdulah; Residbegović, Emina; Kustura, Aida; Kavazović, Aida; Savić, Vladimir; Harder, Timm; Starick, Elke; Prasović, Senad

    2010-03-01

    In order to determine the actual prevalence of avian influenza viruses (AIVs) in wild birds in Bosnia and Herzegovina, extensive surveillance was carried out between October 2005 and April 2006. A total of 394 samples representing 41 bird species were examined for the presence of influenza A virus using virus isolation in embryonated chicken eggs, PCR, and nucleotide sequencing. AIV subtype H5N1 was detected in two mute swans (Cygnus olor). The isolates were determined to be highly pathogenic avian influenza (HPAI) virus and the hemagglutinin sequence was closely similar to A/Cygnus olor/Astrakhan/ Ast05-2-10/2005 (H5N1). This is the first report of HPAI subtype H5N1 in Bosnia and Herzegovina.

  14. In vitro and in vivo efficacy of fluorodeoxycytidine analogs against highly pathogenic avian influenza H5N1, seasonal, and pandemic H1N1 virus infections

    PubMed Central

    Kumaki, Yohichi; Day, Craig W.; Smee, Donald F.; Morrey, John D.; Barnard, Dale L.

    2011-01-01

    Various fluorodeoxyribonucleosides were evaluated for their antiviral activities against influenza virus infections in vitro and in vivo. Among the most potent inhibitors was 2'-deoxy-2'-fluorocytidine (2'-FdC). It inhibited various strains of low and highly pathogenic avian influenza H5N1 viruses, pandemic H1N1 viruses, an oseltamivir-resistant pandemic H1N1 virus, and seasonal influenza viruses (H3N2, H1N1, influenza B) in MDCK cells, with the 90% inhibitory concentrations ranging from 0.13 µM to 4.6 µM, as determined by a virus yield reduction assay. 2'-FdC was then tested for efficacy in BALB/c mice infected with a lethal dose of highly pathogenic influenza A/Vietnam/1203/2004 H5N1 virus. 2’FdC (60 mg/kg/d) administered intraperitoneally (i.p.) twice a day beginning 24 h after virus exposure significantly promoted survival (80% survival) of infected mice (p=0.0001). Equally efficacious were the treatment regimens in which mice were treated with 2'-FdC at 30 or 60 mg/kg/day (bid × 8) beginning 24 h before virus exposure. At these doses, 70–80% of the mice were protected from death due to virus infection (p=0.0005, p=0.0001; respectively). The lungs harvested from treated mice at day four of the infection displayed little surface pathology or histopathology, lung weights were lower, and the 60 mg/kg dose reduced lung virus titers, although not significantly compared to the placebo controls. All doses were well tolerated in uninfected mice. 2'-FdC could also be administered as late as 72 h post virus exposure and still significantly protect 60% mice from the lethal effects of the H5N1 virus infection (p=0.019). Other fluorodeoxyribonucleosides tested in the H5N1 mouse model, 2’-deoxy-5-fluorocytidine and 2'-deoxy-2', 2'-difluorocytidine, were very toxic at higher doses and not inhibitory at lower doses. Finally, 2'-FdC, which was active in the H5N1 mouse model, was also active in a pandemic H1N1 influenza A infection model in mice. When given at 30 mg

  15. Highly pathogenic avian influenza virus (H5N1) in experimentally infected adult mute swans.

    PubMed

    Kalthoff, Donata; Breithaupt, Angele; Teifke, Jens P; Globig, Anja; Harder, Timm; Mettenleiter, Thomas C; Beer, Martin

    2008-08-01

    Adult, healthy mute swans were experimentally infected with highly pathogenic avian influenza virus A/Cygnus cygnus/Germany/R65/2006 subtype H5N1. Immunologically naive birds died, whereas animals with preexisting, naturally acquired avian influenza virus-specific antibodies became infected asymptomatically and shed virus. Adult mute swans are highly susceptible, excrete virus, and can be clinically protected by preexposure immunity.

  16. The PB2, PA, HA, NP, and NS genes of a highly pathogenic avian influenza virus A/whooper swan/Mongolia/3/2005 (H5N1) are responsible for pathogenicity in ducks

    PubMed Central

    2013-01-01

    Background Wild ducks are the natural hosts of influenza A viruses. Duck influenza, therefore, has been believed inapparent infection with influenza A viruses, including highly pathogenic avian influenza viruses (HPAIVs) in chickens. In fact, ducks experimentally infected with an HPAIV strain, A/Hong Kong/483/1997 (H5N1) (HK483), did not show any clinical signs. Another HPAIV strain, A/whooper swan/Mongolia/3/2005 (H5N1) (MON3) isolated from a dead swan, however, caused neurological dysfunction and death in ducks. Method To understand the mechanism whereby MON3 shows high pathogenicity in ducks, HK483, MON3, and twenty-four reassortants generated between these two H5N1 viruses were compared for their pathogenicity in domestic ducks. Results None of the ducks infected with MON3-based single-gene reassortants bearing the PB2, NP, or NS gene segment of HK483 died, and HK483-based single-gene reassortants bearing PB2, NP, or NS genes of MON3 were not pathogenic in ducks, suggesting that multiple gene segments contribute to the pathogenicity of MON3 in ducks. All the ducks infected with the reassortant bearing PB2, PA, HA, NP, and NS gene segments of MON3 died within five days post-inoculation, as did those infected with MON3. Each of the viruses was assessed for replication in ducks three days post-inoculation. MON3 and multi-gene reassortants pathogenic in ducks were recovered from all of the tissues examined and replicated with high titers in the brains and lungs. Conclusion The present results indicate that multigenic factors are responsible for efficient replication of MON3 in ducks. In particular, virus growth in the brain might correlate with neurological dysfunction and the disease severity. PMID:23374292

  17. Presence of serum antibodies to influenza A subtypes H5 and N1 in swans and ibises in French wetlands, irrespective of highly pathogenic H5N1 natural infection.

    PubMed

    Niqueux, Eric; Guionie, Olivier; Schmitz, Audrey; Hars, Jean; Jestin, Véronique

    2010-03-01

    Highly pathogenic (HP) avian influenza A viruses (AIVs) subtype H5N1 (subclade 2.2) were detected in wild birds during outbreaks in France during winter 2006 and summer 2007 in la Dombes wetlands (eastern France) and in Moselle wetlands (northeastern France), respectively. Blood samples from apparently healthy wild birds were collected in 2006 and 2007 from the end of the outbreak to several weeks after the influenza A outbreak inside and outside the contaminated areas, and in 2008 outside the contaminated areas. The samples were tested for the presence and/or quantitation of serum antibodies to influenza A subtypes H5 and N1 using hemagglutination inhibition tests (HITs), a commercial N1-specific enzyme-linked immunosorbent assay kit, and virus neutralization assay. In the HIT, low pathogenicity (LP) and HP H5 AIVs (belonging to H5N1, H5N2, and H5N3 subtypes) were used as antigens. One hundred mute swans were bled in the la Dombes outbreak area in 2006. During 2007, 46 mallards, 69 common pochards, and 59 mute swans were sampled in the Moselle outbreak area. For comparison, blood samples were also collected in 2007 from 60 mute swans from the Marne department where no HP H5N1 influenza A cases have been reported, and in 2008 from 111 sacred ibises in western France where no HP H5N1 influenza A infections in wild birds have been reported either. Mute swans (irrespective of their origin and time of sampling) and sacred ibises (from an area with no known outbreaks) had the highest prevalence of positive sera in the H5 HIT (49-69% and 64%, respectively). The prevalence of anti-H5 antibodies in mallards and common pochards was lower (28% and 27%, respectively). Positive H5- and N1-antibody responses were also significantly associated in swans (irrespective of their origin and time of sampling) and in sacred ibises. However, in swans from the area without outbreaks, the HIT titer against an H5N1 LPAIV was significantly higher than against an H5N1 2.2.1 HPAIV, whereas no

  18. A computationally optimized broadly reactive H5 hemagglutinin vaccine provides protection against homologous and heterologous H5N1 highly pathogenic avian influenza virus infection in chickens

    USDA-ARS?s Scientific Manuscript database

    Since its emergence in 1996 in China, H5N1 highly pathogenic avian influenza (HPAI) virus has continuously evolved into different genetic clades that have created challenges to maintaining antigenically relevant H5N1 vaccine seeds. Therefore, a universal (multi-hemagglutinin [HA] subtype) or more c...

  19. Novel Eurasian Highly Pathogenic Avian Influenza A H5 Viruses in Wild Birds, Washington, USA, 2014

    PubMed Central

    Ip, Hon S.; Crespo, Rocio; Kohrs, Paul; DeBruyn, Paul; Mansfield, Kristin G.; Baszler, Timothy; Badcoe, Lyndon; Bodenstein, Barbara; Shearn-Bochsler, Valerie; Killian, Mary Lea; Pedersen, Janice C.; Hines, Nichole; Gidlewski, Thomas; DeLiberto, Thomas; Sleeman, Jonathan M.

    2015-01-01

    Novel Eurasian lineage avian influenza A(H5N8) virus has spread rapidly and globally since January 2014. In December 2014, H5N8 and reassortant H5N2 viruses were detected in wild birds in Washington, USA, and subsequently in backyard birds. When they infect commercial poultry, these highly pathogenic viruses pose substantial trade issues. PMID:25898265

  20. Detection of reassortant H5N6 clade 2.3.4.4 highly pathogenic avian influenza virus in a black-faced spoonbill (Platalea minor) found dead, Taiwan, 2017

    USDA-ARS?s Scientific Manuscript database

    H5N1 high pathogenicity avian influenza virus (HPAIV) emerged in 1996 in Guangdong China (A/goose/Guangdong/1/1996, Gs/GD) has caused outbreaks in over 80 countries throughout Eurasia, Africa, and North America. A H5N6 HPAIV clade 2.3.4.4, A/ black-faced spoonbill /Taiwan/DB645/2017 (SB/Tw/17), was ...

  1. Rapid acquisition of polymorphic virulence markers during adaptation of highly pathogenic avian influenza H5N8 virus in the mouse.

    PubMed

    Choi, Won-Suk; Baek, Yun Hee; Kwon, Jin Jung; Jeong, Ju Hwan; Park, Su-Jin; Kim, Young-Il; Yoon, Sun-Woo; Hwang, Jungwon; Kim, Myung Hee; Kim, Chul-Joong; Webby, Richard J; Choi, Young Ki; Song, Min-Suk

    2017-01-17

    Emergence of a highly pathogenic avian influenza (HPAI) H5N8 virus in Asia and its spread to Europe and North America has caused great concern for human health. Although the H5N8 virus has been only moderately pathogenic to mammalian hosts, virulence can still increase. We evaluated the pathogenic potential of several H5N8 strains via the mouse-adaptation method. Two H5N8 viruses were sequentially passaged in BALB/c mice and plaque-purified from lung samples. The viruses rapidly obtained high virulence (MLD 50 , up to 0.5 log10 PFU/mL) within 5 passages. Sequence analysis revealed the acquisition of several virulence markers, including the novel marker P708S in PB1 gene. Combinations of markers synergistically enhanced viral replication and polymerase activity in human cell lines and virulence and multiorgan dissemination in mice. These results suggest that H5N8 viruses can rapidly acquire virulence markers in mammalian hosts; thus, rapid spread as well as repeated viral introduction into the hosts may significantly increase the risk of human infection and elevate pandemic potential.

  2. Rapid acquisition of polymorphic virulence markers during adaptation of highly pathogenic avian influenza H5N8 virus in the mouse

    PubMed Central

    Choi, Won-Suk; Baek, Yun Hee; Kwon, Jin Jung; Jeong, Ju Hwan; Park, Su-Jin; Kim, Young-il; Yoon, Sun-Woo; Hwang, Jungwon; Kim, Myung Hee; Kim, Chul-Joong; Webby, Richard J.; Choi, Young Ki; Song, Min-Suk

    2017-01-01

    Emergence of a highly pathogenic avian influenza (HPAI) H5N8 virus in Asia and its spread to Europe and North America has caused great concern for human health. Although the H5N8 virus has been only moderately pathogenic to mammalian hosts, virulence can still increase. We evaluated the pathogenic potential of several H5N8 strains via the mouse-adaptation method. Two H5N8 viruses were sequentially passaged in BALB/c mice and plaque-purified from lung samples. The viruses rapidly obtained high virulence (MLD50, up to 0.5 log10 PFU/mL) within 5 passages. Sequence analysis revealed the acquisition of several virulence markers, including the novel marker P708S in PB1 gene. Combinations of markers synergistically enhanced viral replication and polymerase activity in human cell lines and virulence and multiorgan dissemination in mice. These results suggest that H5N8 viruses can rapidly acquire virulence markers in mammalian hosts; thus, rapid spread as well as repeated viral introduction into the hosts may significantly increase the risk of human infection and elevate pandemic potential. PMID:28094780

  3. Microevolution of Highly Pathogenic Avian Influenza A(H5N1) Viruses Isolated from Humans, Egypt, 2007–2011

    PubMed Central

    Younan, Mary; Poh, Mee Kian; Elassal, Emad; Davis, Todd; Rivailler, Pierre; Balish, Amanda L.; Simpson, Natosha; Jones, Joyce; Deyde, Varough; Loughlin, Rosette; Perry, Ije; Gubareva, Larisa; ElBadry, Maha A.; Truelove, Shaun; Gaynor, Anne M.; Mohareb, Emad; Amin, Magdy; Cornelius, Claire; Pimentel, Guillermo; Earhart, Kenneth; Naguib, Amel; Abdelghani, Ahmed S.; Refaey, Samir; Klimov, Alexander I.; Kandeel, Amr

    2013-01-01

    We analyzed highly pathogenic avian influenza A(H5N1) viruses isolated from humans infected in Egypt during 2007–2011. All analyzed viruses evolved from the lineage of subtype H5N1 viruses introduced into Egypt in 2006; we found minimal evidence of reassortment and no exotic introductions. The hemagglutinin genes of the viruses from 2011 formed a monophyletic group within clade 2.2.1 that also included human viruses from 2009 and 2010 and contemporary viruses from poultry; this finding is consistent with zoonotic transmission. Although molecular markers suggestive of decreased susceptibility to antiviral drugs were detected sporadically in the neuraminidase and matrix 2 proteins, functional neuraminidase inhibition assays did not identify resistant viruses. No other mutations suggesting a change in the threat to public health were detected in the viral proteomes. However, a comparison of representative subtype H5N1 viruses from 2011 with older subtype H5N1 viruses from Egypt revealed substantial antigenic drift. PMID:23260983

  4. Characterisation of a highly pathogenic H5N1 clade 2.3.2 influenza virus isolated from swans in Shanghai, China.

    PubMed

    Zhao, Guo; Zhong, Lei; Lu, Xinlun; Hu, Jiao; Gu, Xiaobing; Kai, Yan; Song, Qingqing; Sun, Qing; Liu, Jinbao; Peng, Daxin; Wang, Xiaoquan; Liu, Xiaowen; Liu, Xiufan

    2012-02-01

    In spring 2009, one strain of H5N1 clade 2.3.2 virus was isolated from wild swans in Shanghai, indicating the importance of the wild swan in the ecology of this highly pathogenic avian influenza virus (HPAIV) in Eastern China. Pathogenicity experiments conducted in this study indicated that the virus was highly pathogenic for chickens but lowly pathogenic for mammalian hosts, as evidenced by reduced infection of mice. The analysis of complete genome sequences and genetic evolution showed that A/Swan/Shanghai/10/09 (SW/SH/09) may be derived from the strain A/silky chicken/Shantou/475/2004 (CK/ST/04), which is homologous to the influenza viruses isolated from chicken, duck, pika, little egret, swan, mandarin duck and bar-headed goose in China Hunan, China Qinghai, Mongolia, Russia, Japan, Korea, Laos and Hong Kong during 2007-2011, indicating that the virus has retro-infected diverse wild birds from chicken, and significant spread of the virus is still ongoing through overlapping migratory flyways. On the basis of the molecular analysis, we also found that there was a deletion of the glycosylation site (NSS) in amino acid 156 of the hemagglutinin (HA) protein when compared with that of the other Clade 2.3.2 viruses isolated between 2007 and 2011. More importantly, the sequence analysis of SW/SH/09 virus displayed the drug-resistant mutations on the matrix protein (M2) and neuraminidase (NA) genes.

  5. Susceptibility of openbill storks (Anastomius oscitans) to highly pathogenic avian influenza virus subtype H5N1.

    PubMed

    Chaichoun, Kridsada; Wiriyarat, Withawat; Phonaknguen, Rassmeepen; Sariya, Ladawan; Taowan, Nam-aoy; Chakritbudsabong, Warunya; Chaisilp, Natnapat; Eiam-ampai, Krirat; Phuttavatana, Pilaipan; Ratanakorn, Parntep

    2013-09-01

    This investigation detailed the clinical disease, gross and histologic lesions in juvenile openbill storks (Anastomus oscitans) intranasally inoculated with an avian influenza virus, A/chicken/Thailand/vsmu-3 (H5N1), which is highly pathogenic for chickens. High morbidity and mortality were observed in openbill storks inoculated with HPAI H5N1 virus. Gross lesions from infected birds were congestion and brain hemorrhage (10/20), pericardial effusions, pericarditis and focal necrosis of the cardiac muscle (2/20), pulmonary edema and pulmonary necrosis, serosanguineous fluid in the bronchis (16/20), liver congestion (6/20), bursitis (5/20), subcutaneous hemorrhages (2/20) and pinpoint proventiculus hemorrhage (2/20). Real time RT-PCR demonstrated the presence of viral RNA in organs associated with the lesions: brain, trachea, lungs, liver, spleen and intestines. Similar to viral genome detection, virus was also isolated from these vital organs. Antibodies to influenza virus detected with a hemagglutination inhibition test, were found only in the openbill storks who died 8 days post-inoculation.

  6. Protection of White Leghorn chickens by U.S. emergency H5 vaccines against clade 2.3.4.4 H5N2 high pathogenicity avian influenza virus

    USDA-ARS?s Scientific Manuscript database

    During December 2014-June 2015, the U.S. experienced a high pathogenicity avian influenza (HPAI) outbreak caused by clade 2.3.4.4 H5Nx Goose/Guangdong lineage viruses which was the worst HPAI event for the poultry industry. Three vaccines, developed based on updating existing registered vaccines or ...

  7. Corneal Opacity in Domestic Ducks Experimentally Infected With H5N1 Highly Pathogenic Avian Influenza Virus.

    PubMed

    Yamamoto, Y; Nakamura, K; Yamada, M; Mase, M

    2016-01-01

    Domestic ducks can be a key factor in the regional spread of H5N1 highly pathogenic avian influenza (HPAI) virus in Asia. The authors performed experimental infections to examine the relationship between corneal opacity and H5N1 HPAI virus infection in domestic ducks (Anas platyrhyncha var domestica). A total of 99 domestic ducks, including 3 control birds, were used in the study. In experiment 1, when domestic ducks were inoculated intranasally with 2 H5N1 HPAI viruses, corneal opacity appeared more frequently than neurologic signs and mortality. Corneal ulceration and exophthalmos were rare findings. Histopathologic examinations of the eyes of domestic ducks in experiment 2 revealed that corneal opacity was due to the loss of corneal endothelial cells and subsequent keratitis with edema. Influenza viral antigen was detected in corneal endothelial cells and some other ocular cells by immunohistochemistry. Results suggest that corneal opacity is a characteristic and frequent finding in domestic ducks infected with the H5N1 HPAI virus. Confirming this ocular change may improve the detection rate of infected domestic ducks in the field. © The Author(s) 2015.

  8. A genetically engineered H5 protein expressed in insect cells confers protection against different clades of H5N1 highly pathogenic avian influenza viruses in chickens.

    PubMed

    Oliveira Cavalcanti, Marcia; Vaughn, Eric; Capua, Ilaria; Cattoli, Giovanni; Terregino, Calogero; Harder, Timm; Grund, Christian; Vega, Carlos; Robles, Francisco; Franco, Julio; Darji, Ayub; Arafa, Abdel-Satar; Mundt, Egbert

    2017-04-01

    The evolution of highly pathogenic H5N1 avian influenza viruses (HPAI-H5N1) has resulted in the appearance of a number of diverse groups of HPAI-H5N1 based on the presence of genetically similar clusters of their haemagglutinin sequences (clades). An H5 antigen encoded by a recombinant baculovirus and expressed in insect cells was used for oil-emulsion-based vaccine prototypes. In several experiments, vaccination was performed at 10 days of age, followed by challenge infection on day 21 post vaccination (PV) with HPAI-H5N1 clades 2.2, 2.2.1, and 2.3.2. A further challenge infection with HPAI-H5N1 clade 2.2.1 was performed at day 42 PV. High haemagglutination inhibition titres were observed for the recH5 vaccine antigen, and lower haemagglutination inhibition titres for the challenge virus antigens. Nevertheless, the rate of protection from mortality and clinical signs was 100% when challenged at 21 days PV and 42 days PV, indicating protection over the entire broiler chicken rearing period without a second vaccination. The unvaccinated control chickens mostly died between two and five days after challenge infection. A low level of viral RNA was detected by reverse transcription followed by a quantitative polymerase chain reaction in a limited number of birds for a short period after challenge infection, indicating a limited spread of HPAI-H5N1 at flock level. Furthermore, it was observed that the vaccine can be used in a differentiation infected from vaccinated animals (DIVA) approach, based on the detection of nucleoprotein antibodies in vaccinated/challenged chickens. The vaccine fulfilled all expectations of an inactivated vaccine after one vaccination against challenge with different clades of H5N1-HPAI and is suitable for a DIVA approach.

  9. Characaterization of H5N1 highly pathogenic avian influenza viruses isolated from poultry in Pakistan 2006-2008

    USDA-ARS?s Scientific Manuscript database

    Nine avian influenza viruses (AIV), H5N1 subtype, were isolated from dead poultry in the Karachi region of Pakistan from 2006-2008. The intravenous pathogenicity indices and HA protein cleavage sites of all nine viruses were consistent with highly pathogenic AIV. Based on phylogenetic analysis of ...

  10. Genetic characterization of highly pathogenic avian influenza A H5N8 viruses isolated from wild birds in Egypt

    PubMed Central

    Kandeil, Ahmed; Kayed, Ahmed; Moatasim, Yassmin; Webby, Richard J.; McKenzie, Pamela P.

    2017-01-01

    A newly emerged H5N8 influenza virus was isolated from green-winged teal in Egypt during December 2016. In this study, we provide a detailed characterization of full genomes of Egyptian H5N8 viruses and some virological features. Genetic analysis demonstrated that the Egyptian H5N8 viruses are highly pathogenic avian influenza viruses. Phylogenetic analysis revealed that the genome of the Egyptian H5N8 viruses was related to recently characterized reassortant H5N8 viruses of clade 2.3.4.4 isolated from different Eurasian countries. Multiple peculiar mutations were characterized in the Egyptian H5N8 viruses, which probably permits transmission and virulence of these viruses in mammals. The Egyptian H5N8 viruses preferentially bound to avian-like receptors rather than human-like receptors. Also, the Egyptian H5N8 viruses were fully sensitive to amantadine and neuraminidase inhibitors. Chicken sera raised against commercial inactivated avian influenza-H5 vaccines showed no or very low reactivity with the currently characterized H5N8 viruses in agreement with the genetic dissimilarity. Surveillance of avian influenza in waterfowl provides early warning of specific threats to poultry and human health and hence should be continued. PMID:28721841

  11. Genetic characterization of highly pathogenic avian influenza A H5N8 viruses isolated from wild birds in Egypt.

    PubMed

    Kandeil, Ahmed; Kayed, Ahmed; Moatasim, Yassmin; Webby, Richard J; McKenzie, Pamela P; Kayali, Ghazi; Ali, Mohamed A

    2017-07-01

    A newly emerged H5N8 influenza virus was isolated from green-winged teal in Egypt during December 2016. In this study, we provide a detailed characterization of full genomes of Egyptian H5N8 viruses and some virological features. Genetic analysis demonstrated that the Egyptian H5N8 viruses are highly pathogenic avian influenza viruses. Phylogenetic analysis revealed that the genome of the Egyptian H5N8 viruses was related to recently characterized reassortant H5N8 viruses of clade 2.3.4.4 isolated from different Eurasian countries. Multiple peculiar mutations were characterized in the Egyptian H5N8 viruses, which probably permits transmission and virulence of these viruses in mammals. The Egyptian H5N8 viruses preferentially bound to avian-like receptors rather than human-like receptors. Also, the Egyptian H5N8 viruses were fully sensitive to amantadine and neuraminidase inhibitors. Chicken sera raised against commercial inactivated avian influenza-H5 vaccines showed no or very low reactivity with the currently characterized H5N8 viruses in agreement with the genetic dissimilarity. Surveillance of avian influenza in waterfowl provides early warning of specific threats to poultry and human health and hence should be continued.

  12. Unusually High Mortality in Waterfowl Caused by Highly Pathogenic Avian Influenza A(H5N1) in Bangladesh.

    PubMed

    Haider, N; Sturm-Ramirez, K; Khan, S U; Rahman, M Z; Sarkar, S; Poh, M K; Shivaprasad, H L; Kalam, M A; Paul, S K; Karmakar, P C; Balish, A; Chakraborty, A; Mamun, A A; Mikolon, A B; Davis, C T; Rahman, M; Donis, R O; Heffelfinger, J D; Luby, S P; Zeidner, N

    2017-02-01

    Mortality in ducks and geese caused by highly pathogenic avian influenza A(H5N1) infection had not been previously identified in Bangladesh. In June-July 2011, we investigated mortality in ducks, geese and chickens with suspected H5N1 infection in a north-eastern district of the country to identify the aetiologic agent and extent of the outbreak and identify possible associated human infections. We surveyed households and farms with affected poultry flocks in six villages in Netrokona district and collected cloacal and oropharyngeal swabs from sick birds and tissue samples from dead poultry. We conducted a survey in three of these villages to identify suspected human influenza-like illness cases and collected nasopharyngeal and throat swabs. We tested all swabs by real-time RT-PCR, sequenced cultured viruses, and examined tissue samples by histopathology and immunohistochemistry to detect and characterize influenza virus infection. In the six villages, among the 240 surveyed households and 11 small-scale farms, 61% (1789/2930) of chickens, 47% (4816/10 184) of ducks and 73% (358/493) of geese died within 14 days preceding the investigation. Of 70 sick poultry swabbed, 80% (56/70) had detectable RNA for influenza A/H5, including 89% (49/55) of ducks, 40% (2/5) of geese and 50% (5/10) of chickens. We isolated virus from six of 25 samples; sequence analysis of the hemagglutinin and neuraminidase gene of these six isolates indicated clade 2.3.2.1a of H5N1 virus. Histopathological changes and immunohistochemistry staining of avian influenza viral antigens were recognized in the brain, pancreas and intestines of ducks and chickens. We identified ten human cases showing signs compatible with influenza-like illness; four were positive for influenza A/H3; however, none were positive for influenza A/H5. The recently introduced H5N1 clade 2.3.2.1a virus caused unusually high mortality in ducks and geese. Heightened surveillance in poultry is warranted to guide appropriate

  13. Highly Pathogenic Avian Influenza H5N8 Clade 2.3.4.4b in Germany in 2016/2017.

    PubMed

    Globig, Anja; Staubach, Christoph; Sauter-Louis, Carola; Dietze, Klaas; Homeier-Bachmann, Timo; Probst, Carolina; Gethmann, Jörn; Depner, Klaus R; Grund, Christian; Harder, Timm C; Starick, Elke; Pohlmann, Anne; Höper, Dirk; Beer, Martin; Mettenleiter, Thomas C; Conraths, Franz J

    2017-01-01

    Here, we report on the occurrence of highly pathogenic avian influenza (HPAI) H5Nx clade 2.3.4.4b in Germany. Between November 8, 2016, and September 30, 2017, more than 1,150 cases of HPAI H5Nx clade 2.3.4.4b in wild birds and 107 outbreaks in birds kept in captivity (92 poultry holdings and 15 zoos/animal parks) were reported in Germany. This HPAI epidemic is the most severe recorded in Germany so far. The viruses were apparently introduced by migratory birds, sparking an epidemic among wild birds across Germany with occasional incursions into poultry holdings, zoos and animal parks, which were usually rapidly detected and controlled by stamping out. HPAI viruses (mainly subtype H5N8, in a few cases also H5N5) were found in dead wild birds of at least 53 species. The affected wild birds were water birds (including gulls, storks, herons, and cormorants) and scavenging birds (birds of prey, owls, and crows). In a number of cases, substantial gaps in farm biosecurity may have eased virus entry into the holdings. In a second wave of the epidemic starting from February 2017, there was epidemiological and molecular evidence for virus transmission of the infections between commercial turkey holdings in an area of high poultry density, which caused approximately 25% of the total number of outbreaks in poultry. Biosecurity measures in poultry holdings should be adapted. This includes, inter alia , wearing of stable-specific protective clothing and footwear, cleaning, and disinfection of equipment that has been in contact with birds and prevention of contacts between poultry and wild water birds.

  14. Highly Pathogenic Avian Influenza H5N8 Clade 2.3.4.4b in Germany in 2016/2017

    PubMed Central

    Globig, Anja; Staubach, Christoph; Sauter-Louis, Carola; Dietze, Klaas; Homeier-Bachmann, Timo; Probst, Carolina; Gethmann, Jörn; Depner, Klaus R.; Grund, Christian; Harder, Timm C.; Starick, Elke; Pohlmann, Anne; Höper, Dirk; Beer, Martin; Mettenleiter, Thomas C.; Conraths, Franz J.

    2018-01-01

    Here, we report on the occurrence of highly pathogenic avian influenza (HPAI) H5Nx clade 2.3.4.4b in Germany. Between November 8, 2016, and September 30, 2017, more than 1,150 cases of HPAI H5Nx clade 2.3.4.4b in wild birds and 107 outbreaks in birds kept in captivity (92 poultry holdings and 15 zoos/animal parks) were reported in Germany. This HPAI epidemic is the most severe recorded in Germany so far. The viruses were apparently introduced by migratory birds, sparking an epidemic among wild birds across Germany with occasional incursions into poultry holdings, zoos and animal parks, which were usually rapidly detected and controlled by stamping out. HPAI viruses (mainly subtype H5N8, in a few cases also H5N5) were found in dead wild birds of at least 53 species. The affected wild birds were water birds (including gulls, storks, herons, and cormorants) and scavenging birds (birds of prey, owls, and crows). In a number of cases, substantial gaps in farm biosecurity may have eased virus entry into the holdings. In a second wave of the epidemic starting from February 2017, there was epidemiological and molecular evidence for virus transmission of the infections between commercial turkey holdings in an area of high poultry density, which caused approximately 25% of the total number of outbreaks in poultry. Biosecurity measures in poultry holdings should be adapted. This includes, inter alia, wearing of stable-specific protective clothing and footwear, cleaning, and disinfection of equipment that has been in contact with birds and prevention of contacts between poultry and wild water birds. PMID:29417053

  15. Susceptibility of wild passerines to subtype H5N1 highly pathogenic avian influenza viruses.

    PubMed

    Fujimoto, Yoshikazu; Usui, Tatsufumi; Ito, Hiroshi; Ono, Etsuro; Ito, Toshihiro

    2015-01-01

    Highly pathogenic avian influenza (HPAI) viruses of the H5N1 subtype have spread throughout many areas of Asia, Europe and Africa, and numerous cases of HPAI outbreaks in domestic and wild birds have been reported. Although recent studies suggest that the dissemination of H5N1 viruses is closely linked to the migration of wild birds, information on the potential for viral infection in species other than poultry and waterfowl is relatively limited. To investigate the susceptibility of terrestrial wild birds to infection with H5N1 HPAI viruses, common reed buntings (Emberiza schoeniclus), pale thrushes (Turdus pallidus) and brown-eared bulbuls (Hypsipetes amaurotis) were infected with A/mountain hawk-eagle/Kumamoto/1/07(H5N1) and A/whooper swan/Aomori/1/08(H5N1). The results showed that common reed buntings and brown-eared bulbuls were severely affected by both virus strains (100% mortality). While pale thrushes did not exhibit any clinical signs, seroconversion was confirmed. In common reed buntings, intraspecies-transmission of A/whooper swan/Aomori/1/08 to contact birds was also confirmed. The findings show that three passerine species; common reed buntings, brown-eared bulbuls and pale thrushes are susceptible to infection by H5N1 HPAI viruses, which emphasizes that continued surveillance of species other than waterfowl is crucial for effective monitoring of H5N1 HPAI virus outbreaks.

  16. Thermal inactivation of H5N2 high-pathogenicity avian influenza virus in dried egg white with 7.5% moisture.

    PubMed

    Thomas, Colleen; Swayne, David E

    2009-09-01

    High-pathogenicity avian influenza viruses (HPAIV) cause severe systemic disease with high mortality in chickens. Isolation of HPAIV from the internal contents of chicken eggs has been reported, and this is cause for concern because HPAIV can be spread by movement of poultry products during marketing and trade activity. This study presents thermal inactivation data for the HPAIV strain A/chicken/PA/1370/83 (H5N2) (PA/83) in dried egg white with a moisture content (7.5%) similar to that found in commercially available spray-dried egg white products. The 95% upper confidence limits for D-values calculated from linear regression of the survival curves at 54.4, 60.0, 65.5, and 71.1 degrees C were 475.4, 192.2, 141.0, and 50.1 min, respectively. The line equation y = [0.05494 x degrees C] + 5.5693 (root mean square error = 0.0711) was obtained by linear regression of experimental D-values versus temperature. Conservative predictions based on the thermal inactivation data suggest that standard industry pasteurization protocols would be very effective for HPAIV inactivation in dried egg white. For example, these calculations predict that a 7-log reduction would take only 2.6 days at 54.4 degrees C.

  17. Characterization of cross-clade monoclonal antibodies against H5N1 highly pathogenic avian influenza virus and their application to the antigenic analysis of diverse H5 subtype viruses.

    PubMed

    Gronsang, Dulyatad; Bui, Anh N; Trinh, Dai Q; Bui, Vuong N; Nguyen, Khong V; Can, Minh X; Omatsu, Tsutomu; Mizutani, Tetsuya; Nagai, Makoto; Katayama, Yukie; Thampaisarn, Rapeewan; Ogawa, Haruko; Imai, Kunitoshi

    2017-08-01

    H5N1 highly pathogenic avian influenza viruses (HPAIVs) are a threat to both animal and public health and require specific and rapid detection for prompt disease control. We produced three neutralizing anti-hemagglutinin (HA) monoclonal antibodies (mAbs) using two clades (2.2 and 2.5) of the H5N1 HPAIV isolated in Japan. Blocking immunofluorescence tests showed that each mAb recognized different epitopes; 3B5.1 and 3B5.2 mAbs against the clade 2.5 virus showed cross-clade reactivity to all 26 strains from clades 1, 2.2, 2.3.2.1, 2.3.2.1a, b, c and 2.3.4, suggesting that the epitope(s) recognized are conserved. Conversely, the 1G5 mAb against the clade 2.2 virus showed reactivity to only clades 1, 2.3.4 and 2.5 strains. An analysis of escape mutants, and some clades of the H5N1 viruses recognized by 3B5.1 and 3B5.2 mAbs, suggested that the mAbs bind to an epitope, including amino acid residues at position 162 in the HA1 protein (R162 and K162). Unexpectedly, however, when five Eurasian-origin H5 low-pathogenic AIV (LPAIV) strains with R162 were examined (EA-nonGsGD clade) as well as two American-origin strains (Am-nonGsGD clade), the mAb recognized only EA-nonGsGD clade strains. The R162 and K162 residues in the HA1 protein were highly conserved among 36 of the 43 H5N1 clades reported, including clades 2.3.2.1a and 2.3.2.1c that are currently circulating in Asia, Africa and Europe. The amino acid residues (158-PTIKRSYNNTNQE-170) in the HA1 protein are probably an epitope responsible for the cross-clade reactivity of the mAbs, considering the epitopes reported elsewhere. The 3B5.1 and 3B5.2 mAbs may be useful for the specific detection of H5N1 HPAIVs circulating in the field.

  18. Emergence and evolution of avian H5N2 influenza viruses in chickens in Taiwan.

    PubMed

    Lee, Chang-Chun David; Zhu, Huachen; Huang, Pei-Yu; Peng, Liuxia; Chang, Yun-Cheng; Yip, Chun-Hung; Li, Yao-Tsun; Cheung, Chung-Lam; Compans, Richard; Yang, Chinglai; Smith, David K; Lam, Tommy Tsan-Yuk; King, Chwan-Chuen; Guan, Yi

    2014-05-01

    Sporadic activity by H5N2 influenza viruses has been observed in chickens in Taiwan from 2003 to 2012. The available information suggests that these viruses were generated by reassortment between a Mexican-like H5N2 virus and a local enzootic H6N1 virus. Yet the origin, prevalence, and pathogenicity of these H5N2 viruses have not been fully defined. Following the 2012 highly pathogenic avian influenza (HPAI) outbreaks, surveillance was conducted from December 2012 to July 2013 at a live-poultry wholesale market in Taipei. Our findings showed that H5N2 and H6N1 viruses cocirculated at low levels in chickens in Taiwan. Phylogenetic analyses revealed that all H5N2 viruses had hemagglutinin (HA) and neuraminidase (NA) genes derived from a 1994 Mexican-like virus, while their internal gene complexes were incorporated from the enzootic H6N1 virus lineage by multiple reassortment events. Pathogenicity studies demonstrated heterogeneous results even though all tested viruses had motifs (R-X-K/R-R) supportive of high pathogenicity. Serological surveys for common subtypes of avian viruses confirmed the prevalence of the H5N2 and H6N1 viruses in chickens and revealed an extraordinarily high seroconversion rate to an H9N2 virus, a subtype that is not found in Taiwan but is prevalent in mainland China. These findings suggest that reassortant H5N2 viruses, together with H6N1 viruses, have become established and enzootic in chickens throughout Taiwan and that a large-scale vaccination program might have been conducted locally that likely led to the introduction of the 1994 Mexican-like virus to Taiwan in 2003. H5N2 avian influenza viruses first appeared in chickens in Taiwan in 2003 and caused a series of outbreaks afterwards. Phylogenetic analyses show that the chicken H5N2 viruses have H5 and N2 genes that are closely related to those of a vaccine strain originating from Mexico in 1994, while the contemporary duck H5N2 viruses in Taiwan belong to the Eurasian gene pool. The

  19. Emergence and Evolution of Avian H5N2 Influenza Viruses in Chickens in Taiwan

    PubMed Central

    Lee, Chang-Chun David; Zhu, Huachen; Huang, Pei-Yu; Peng, Liuxia; Chang, Yun-Cheng; Yip, Chun-Hung; Li, Yao-Tsun; Cheung, Chung-Lam; Compans, Richard; Yang, Chinglai; Smith, David K.; Lam, Tommy Tsan-Yuk

    2014-01-01

    ABSTRACT Sporadic activity by H5N2 influenza viruses has been observed in chickens in Taiwan from 2003 to 2012. The available information suggests that these viruses were generated by reassortment between a Mexican-like H5N2 virus and a local enzootic H6N1 virus. Yet the origin, prevalence, and pathogenicity of these H5N2 viruses have not been fully defined. Following the 2012 highly pathogenic avian influenza (HPAI) outbreaks, surveillance was conducted from December 2012 to July 2013 at a live-poultry wholesale market in Taipei. Our findings showed that H5N2 and H6N1 viruses cocirculated at low levels in chickens in Taiwan. Phylogenetic analyses revealed that all H5N2 viruses had hemagglutinin (HA) and neuraminidase (NA) genes derived from a 1994 Mexican-like virus, while their internal gene complexes were incorporated from the enzootic H6N1 virus lineage by multiple reassortment events. Pathogenicity studies demonstrated heterogeneous results even though all tested viruses had motifs (R-X-K/R-R) supportive of high pathogenicity. Serological surveys for common subtypes of avian viruses confirmed the prevalence of the H5N2 and H6N1 viruses in chickens and revealed an extraordinarily high seroconversion rate to an H9N2 virus, a subtype that is not found in Taiwan but is prevalent in mainland China. These findings suggest that reassortant H5N2 viruses, together with H6N1 viruses, have become established and enzootic in chickens throughout Taiwan and that a large-scale vaccination program might have been conducted locally that likely led to the introduction of the 1994 Mexican-like virus to Taiwan in 2003. IMPORTANCE H5N2 avian influenza viruses first appeared in chickens in Taiwan in 2003 and caused a series of outbreaks afterwards. Phylogenetic analyses show that the chicken H5N2 viruses have H5 and N2 genes that are closely related to those of a vaccine strain originating from Mexico in 1994, while the contemporary duck H5N2 viruses in Taiwan belong to the

  20. Spatiotemporal structure of molecular evolution of H5N1 highly pathogenic avian influenza viruses in Vietnam.

    PubMed

    Carrel, Margaret A; Emch, Michael; Jobe, R Todd; Moody, Aaron; Wan, Xiu-Feng

    2010-01-08

    Vietnam is one of the countries most affected by outbreaks of H5N1 highly pathogenic avian influenza viruses. First identified in Vietnam in poultry in 2001 and in humans in 2004, the virus has since caused 111 cases and 56 deaths in humans. In 2003/2004 H5N1 outbreaks, nearly the entire poultry population of Vietnam was culled. Our earlier study (Wan et al., 2008, PLoS ONE, 3(10): e3462) demonstrated that there have been at least six independent H5N1 introductions into Vietnam and there were nine newly emerged reassortants from 2001 to 2007 in Vietnam. H5N1 viruses in Vietnam cluster distinctly around Hanoi and Ho Chi Minh City. However, the nature of the relationship between genetic divergence and geographic patterns is still unclear. In this study, we hypothesized that genetic distances between H5N1 viruses in Vietnam are correlated with geographic distances, as the result of distinct population and environment patterns along Vietnam's long north to south longitudinal extent. Based on this hypothesis, we combined spatial statistical methods with genetic analytic techniques and explicitly used geographic space to explore genetic evolution of H5N1 highly pathogenic avian influenza viruses at the sub-national scale in Vietnam. Our dataset consisted of 125 influenza viruses (with whole genome sets) isolated in Vietnam from 2003 to 2007. Our results document the significant effect of space and time on genetic evolution and the rise of two regional centers of genetic mixing by 2007. These findings give insight into processes underlying viral evolution and suggest that genetic differentiation is associated with the distance between concentrations of human and poultry populations around Hanoi and Ho Chi Minh City. The results show that genetic evolution of H5N1 viruses in Vietnamese domestic poultry is highly correlated with the location and spread of those viruses in geographic space. This correlation varies by scale, time, and gene, though a classic isolation by

  1. Ecological Determinants of Highly Pathogenic Avian Influenza (H5N1) Outbreaks in Bangladesh

    PubMed Central

    Ahmed, Syed S. U.; Ersbøll, Annette K.; Biswas, Paritosh K.; Christensen, Jens P.; Hannan, Abu S. M. A.; Toft, Nils

    2012-01-01

    Background The agro-ecology and poultry husbandry of the south Asian and south-east Asian countries share common features, however, with noticeable differences. Hence, the ecological determinants associated with risk of highly pathogenic avian influenza (HPAI-H5N1) outbreaks are expected to differ between Bangladesh and e.g., Thailand and Vietnam. The primary aim of the current study was to establish ecological determinants associated with the risk of HPAI-H5N1 outbreaks at subdistrict level in Bangladesh. The secondary aim was to explore the performance of two different statistical modeling approaches for unmeasured spatially correlated variation. Methodology/Principal Findings An ecological study at subdistrict level in Bangladesh was performed with 138 subdistricts with HPAI-H5N1 outbreaks during 2007–2008, and 326 subdistricts with no outbreaks. The association between ecological determinants and HPAI-H5N1 outbreaks was examined using a generalized linear mixed model. Spatial clustering of the ecological data was modeled using 1) an intrinsic conditional autoregressive (ICAR) model at subdistrict level considering their first order neighbors, and 2) a multilevel (ML) model with subdistricts nested within districts. Ecological determinants significantly associated with risk of HPAI-H5N1 outbreaks at subdistrict level were migratory birds' staging areas, river network, household density, literacy rate, poultry density, live bird markets, and highway network. Predictive risk maps were derived based on the resulting models. The resulting models indicate that the ML model absorbed some of the covariate effect of the ICAR model because of the neighbor structure implied in the two different models. Conclusions/Significance The study identified a new set of ecological determinants related to river networks, migratory birds' staging areas and literacy rate in addition to already known risk factors, and clarified that the generalized concept of free grazing duck and

  2. Isolation of Highly Pathogenic Avian Influenza H5N1 Virus from Saker Falcons (Falco cherrug) in the Middle East

    PubMed Central

    Marjuki, Henju; Wernery, Ulrich; Yen, Hui-Ling; Franks, John; Seiler, Patrick; Walker, David; Krauss, Scott; Webster, Robert G.

    2009-01-01

    There is accumulating evidence that birds of prey are susceptible to fatal infection with highly pathogenic avian influenza (HPAI) virus. We studied the antigenic, molecular, phylogenetic, and pathogenic properties of 2 HPAI H5N1 viruses isolated from dead falcons in Saudi Arabia and Kuwait in 2005 and 2007, respectively. Phylogenetic and antigenic analyses grouped both isolates in clade 2.2 (Qinghai-like viruses). However, the viruses appeared to have spread westward via different flyways. It remains unknown how these viruses spread so rapidly from Qinghai after the 2005 outbreak and how they were introduced into falcons in these two countries. The H5N1 outbreaks in the Middle East are believed by some to be mediated by wild migratory birds. However, sporting falcons may be at additional risk from the illegal import of live quail to feed them. PMID:20148178

  3. Evolution of highly pathogenic avian influenza H5N1 viruses in Egypt indicating progressive adaptation

    USDA-ARS?s Scientific Manuscript database

    Highly pathogenic avian influenza (HPAI) virus of the H5N1 subtype was first diagnosed in poultry in Egypt in 2006, and since then the disease became enzootic in poultry throughout the country affecting the poultry industry and village poultry as well as infecting humans. Vaccination has been used ...

  4. Reassortant H5N1 avian influenza viruses containing PA or NP gene from an H9N2 virus significantly increase the pathogenicity in mice.

    PubMed

    Hao, Xiaoli; Hu, Jiao; Wang, Jiongjiong; Xu, Jing; Cheng, Hao; Xu, Yunpeng; Li, Qunhui; He, Dongchang; Liu, Xiaowen; Wang, Xiaoquan; Gu, Min; Hu, Shunlin; Xu, Xiulong; Liu, Huimou; Chen, Sujuan; Peng, Daxin; Liu, Xiufan

    2016-08-30

    Reassortment between different influenza viruses is a crucial way to generate novel influenza viruses with unpredictable virulence and transmissibility, which may threaten the public health. As currently in China, avian influenza viruses (AIVs) of H9N2 and H5N1 subtypes are endemic in poultry in many areas, while they are prone to reassort with each other naturally. In order to evaluate the risk of the reassortment to public health, A/Goose/Jiangsu/k0403/2010 [GS/10(H5N1)] virus was used as a backbone to generate a series of reassortants, each contained a single internal gene derived from the predominant S genotype of the A/Chicken/Jiangsu/WJ57/2012 [WJ/57(H9N2)]. We next assessed the biological characteristics of these assortments, including pathogenicity, replication efficiency and polymerase activity. We found that the parental WJ/57(H9N2) and GS/10(H5N1) viruses displayed high genetic compatibility. Notably, the H5N1 reassortants containing the PA or NP gene from WJ/57(H9N2) virus significantly increased virulence and replication ability in mice, as well as markedly enhanced polymerase activity. Our results indicate that the endemicity of H9N2 and H5N1 in domestic poultry greatly increases the possibility of generating new viruses by reassortment that may pose a great threat to poultry industry and public health. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Lack of chicken adaptation of newly emergent Eurasian H5N8 and reassortant H5N2 high pathogenicity avian influenza viruses in the U.S. is consistent with restricted poultry outbreaks in the Pacific flyway during 2014-2015.

    PubMed

    Bertran, Kateri; Swayne, David E; Pantin-Jackwood, Mary J; Kapczynski, Darrell R; Spackman, Erica; Suarez, David L

    2016-07-01

    In 2014-2015, the U.S. experienced an unprecedented outbreak of Eurasian clade 2.3.4.4 H5 highly pathogenic avian influenza (HPAI) virus, initially affecting mainly wild birds and few backyard and commercial poultry premises. To better model the outbreak, the pathogenesis and transmission dynamics of representative Eurasian H5N8 and reassortant H5N2 clade 2.3.4.4 HPAI viruses detected early in the North American outbreak were investigated in chickens. High mean chicken infectious doses and lack of seroconversion in survivors indicated the viruses were poorly chicken adapted. Pathobiological features were consistent with HPAI virus infection, although the delayed appearance of lesions, longer mean death times, and reduced replication in endothelial cells differed from features of most other Eurasian H5N1 HPAI viruses. Although these initial U.S. H5 HPAI viruses had reduced adaptation and transmissibility in chickens, multi-generational passage in poultry could generate poultry adapted viruses with higher infectivity and transmissibility. Copyright © 2016. Published by Elsevier Inc.

  6. Reassortant Avian Influenza A(H5N1) Viruses with H9N2-PB1 Gene in Poultry, Bangladesh

    PubMed Central

    Yamage, Mat; Dauphin, Gwenaëlle; Claes, Filip; Ahmed, Garba; Giasuddin, Mohammed; Salviato, Annalisa; Ormelli, Silvia; Bonfante, Francesco; Schivo, Alessia; Cattoli, Giovanni

    2013-01-01

    Bangladesh has reported a high number of outbreaks of highly pathogenic avian influenza (HPAI) (H5N1) in poultry. We identified a natural reassortant HPAI (H5N1) virus containing a H9N2-PB1 gene in poultry in Bangladesh. Our findings highlight the risks for prolonged co-circulation of avian influenza viruses and the need to monitor their evolution. PMID:24047513

  7. Comparative Epidemiology of Highly Pathogenic Avian Influenza Virus H5N1 and H5N6 in Vietnamese Live Bird Markets: Spatiotemporal Patterns of Distribution and Risk Factors

    PubMed Central

    Mellor, Kate C.; Meyer, Anne; Elkholly, Doaa A.; Fournié, Guillaume; Long, Pham T.; Inui, Ken; Padungtod, Pawin; Gilbert, Marius; Newman, Scott H.; Vergne, Timothée; Pfeiffer, Dirk U.; Stevens, Kim B.

    2018-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 virus has been circulating in Vietnam since 2003, whilst outbreaks of HPAI H5N6 virus are more recent, having only been reported since 2014. Although the spatial distribution of H5N1 outbreaks and risk factors for virus occurrence has been extensively studied, there have been no comparative studies for H5N6. Data collected through active surveillance of Vietnamese live bird markets (LBMs) between 2011 and 2015 were used to explore and compare the spatiotemporal distributions of H5N1- and H5N6-positive LBMs. Conditional autoregressive models were developed to quantify spatiotemporal associations between agroecological factors and the two HPAI strains using the same set of predictor variables. Unlike H5N1, which exhibited a strong north–south divide, with repeated occurrence in the extreme south of a cluster of high-risk provinces, H5N6 was homogeneously distributed throughout Vietnam. Similarly, different agroecological factors were associated with each strain. Sample collection in the months of January and February and higher average maximum temperature were associated with higher likelihood of H5N1-positive market-day status. The likelihood of market days being positive for H5N6 increased with decreased river density, and with successive Rounds of data collection. This study highlights marked differences in spatial patterns and risk factors for H5N1 and H5N6 in Vietnam, suggesting the need for tailored surveillance and control approaches. PMID:29675418

  8. Comparative Epidemiology of Highly Pathogenic Avian Influenza Virus H5N1 and H5N6 in Vietnamese Live Bird Markets: Spatiotemporal Patterns of Distribution and Risk Factors.

    PubMed

    Mellor, Kate C; Meyer, Anne; Elkholly, Doaa A; Fournié, Guillaume; Long, Pham T; Inui, Ken; Padungtod, Pawin; Gilbert, Marius; Newman, Scott H; Vergne, Timothée; Pfeiffer, Dirk U; Stevens, Kim B

    2018-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 virus has been circulating in Vietnam since 2003, whilst outbreaks of HPAI H5N6 virus are more recent, having only been reported since 2014. Although the spatial distribution of H5N1 outbreaks and risk factors for virus occurrence has been extensively studied, there have been no comparative studies for H5N6. Data collected through active surveillance of Vietnamese live bird markets (LBMs) between 2011 and 2015 were used to explore and compare the spatiotemporal distributions of H5N1- and H5N6-positive LBMs. Conditional autoregressive models were developed to quantify spatiotemporal associations between agroecological factors and the two HPAI strains using the same set of predictor variables. Unlike H5N1, which exhibited a strong north-south divide, with repeated occurrence in the extreme south of a cluster of high-risk provinces, H5N6 was homogeneously distributed throughout Vietnam. Similarly, different agroecological factors were associated with each strain. Sample collection in the months of January and February and higher average maximum temperature were associated with higher likelihood of H5N1-positive market-day status. The likelihood of market days being positive for H5N6 increased with decreased river density, and with successive Rounds of data collection. This study highlights marked differences in spatial patterns and risk factors for H5N1 and H5N6 in Vietnam, suggesting the need for tailored surveillance and control approaches.

  9. Efficacy of a Recombinant Turkey Herpesvirus H5 Vaccine Against Challenge With H5N1 Clades 1.1.2 and 2.3.2.1 Highly Pathogenic Avian Influenza Viruses in Domestic Ducks (Anas platyrhynchos domesticus).

    PubMed

    Pantin-Jackwood, Mary J; Kapczynski, Darrell R; DeJesus, Eric; Costa-Hurtado, Mar; Dauphin, Gwenaelle; Tripodi, Astrid; Dunn, John R; Swayne, David E

    2016-03-01

    Domestic ducks are the second most abundant poultry species in many Asian countries and have played a critical role in the epizootiology of H5N1 highly pathogenic avian influenza (HPAI).In this study, the protective efficacy of a live recombinant vector vaccine based on a turkey herpesvirus (HVT) expressing the H5 gene from a clade 2.2 H5N1 HPAI strain (A/Swan/Hungary/4999/ 2006) (rHVT-H5/2.2), given at 3 days of age, was examined in Pekin ducks (Anas platyrhynchos domesticus). The vaccine was given alone or in combination with an inactivated H5N1 clade 2.3.2.1 reverse genetic (rgGD/2.3.2.1) vaccine given at 16 days of age, either as a single vaccination or in a prime-boost regime. At 30 days of age, ducks were challenged with one of two H5N1 HPAI viruses: A/duck/Vietnam/NCVD-2721/2013 (clade 1.1.2) or A/duck/Vietnam/NCVD-1584/2012 (clade 2.3.2.1.C). These viruses produced 100% mortality in less than 5 days in nonvaccinated control ducks. Ducks vaccinated with the rgGD/2.3.2.1 vaccine, with or without the rHVT-H5/2.2 vaccine, were 90%-100% protected against mortality after challenge with either of the two H5N1 HPAI viruses. The rHVT-H5/2.2 vaccine alone, however, conferred only 30% protection against mortality after challenge with either H5N1 HPAI virus; the surviving ducks from these groups shed higher amount of virus and for longer than the single-vaccinated rgGD/2.3.2.1 group. Despite low protection, ducks vaccinated with the rHVT-H5/2.2 vaccine and challenged with the clade 1.1.2 Vietnam virus had a longer mean death time than nonvaccinated controls (P = 0.02). A booster effect was found on reduction of virus shedding when using both vaccines, with lower oropharyngeal viral titers at 4 days after challenge with either HPAI virus (P < 0.05). Neither rHVT-H5/2.2 nor standard HVT vaccine could be detected in samples collected from multiple tissues at different time points, indicting minimal levels of viral replication. In conclusion, although a minor effect on

  10. Differences in pathogenicity of A/Duck/Vietnam/201/05 H5N1 highly pathogenic avian influenza virus reassortants in ducks

    USDA-ARS?s Scientific Manuscript database

    In order to understand which viral genes contribute to the high virulence of A/Dk/Vietnam/201/05 H5N1 highly pathogenic avian influenza (HPAI) virus in ducks, we used reverse genetics to generate single-gene reassortant viruses with genes from A/Ck/Indonesia/7/03, a virus that produces mild disease ...

  11. Human infection with a highly pathogenic avian influenza A (H5N6) virus in Yunnan province, China.

    PubMed

    Xu, Wen; Li, Hong; Jiang, Li

    2016-01-01

    Highly pathogenic avian influenza A H5N6 virus has caused four human infections in China. This study reports the preliminary findings of the first known human case of H5N6 in Yunnan province. The patient initially developed symptoms of sore throat and coughing on 27 January 2015. The disease rapidly progressed to severe pneumonia, multiple organ dysfunctions and acute respiratory distress syndrome and the patient died on 6 February. Virological analysis determined that the virus belonged to H5 clade 2.3.4.4 and it has obtained partial ability for mammalian adaptation and amantadine resistance. Environmental investigation found H5 in 63% of the samples including poultry faeces, tissues, cage surface swabs and sewage from local live poultry markets by real-time RT-PCR. These findings suggest that the expanding and enhancing of surveillance in both avian and humans are necessary to monitor the evolution of H5 influenza virus and to facilitate early detection of suspected cases.

  12. Highly pathogenic avian H5N8 influenza viruses: should we be concerned?

    PubMed

    Tate, M D

    2018-01-01

    Avian influenza A viruses pose a constant threat to global human health as sporadic infections continue to occur with associated high mortality rates. To date, a number of avian influenza virus subtypes have infected humans, including H5N1, H7N9, H9N2 and H7N7. The majority of 'bird flu' cases are thought to have arisen from direct contact with infected poultry, particularly in live markets in Asia. 1 While human cases of the H5N8 subtype have not been documented as yet, there is the potential that H5N8 viruses could acquire mutations which favour infection of human cells. There is also the possibility that novel viruses with a tropism for human cells could be generated if H5N8 should reassasort with other circulating avian viruses, such as those of the H5N1 subtype. The emergence of a novel H5N8 virus with the capability of infecting humans could have drastic consequences to global health.

  13. Pathogenicity and Transmissibility of Novel Reassortant H3N2 Influenza Viruses with 2009 Pandemic H1N1 Genes in Pigs

    PubMed Central

    Ma, Jingjiao; Shen, Huigang; Liu, Qinfang; Bawa, Bhupinder; Qi, Wenbao; Duff, Michael; Lang, Yuekun; Lee, Jinhwa; Yu, Hai; Bai, Jianfa; Tong, Guangzhi; Hesse, Richard A.; Richt, Jürgen A.

    2014-01-01

    ABSTRACT At least 10 different genotypes of novel reassortant H3N2 influenza viruses with 2009 pandemic H1N1 [A(H1N1)pdm09] gene(s) have been identified in U.S. pigs, including the H3N2 variant with a single A(H1N1)pdm09 M gene, which has infected more than 300 people. To date, only three genotypes of these viruses have been evaluated in animal models, and the pathogenicity and transmissibility of the other seven genotype viruses remain unknown. Here, we show that three H3N2 reassortant viruses that contain 3 (NP, M, and NS) or 5 (PA, PB2, NP, M, and NS) genes from A(H1N1)pdm09 were pathogenic in pigs, similar to the endemic H3N2 swine virus. However, the reassortant H3N2 virus with 3 A(H1N1)pdm09 genes and a recent human influenza virus N2 gene was transmitted most efficiently among pigs, whereas the reassortant H3N2 virus with 5 A(H1N1)pdm09 genes was transmitted less efficiently than the endemic H3N2 virus. Interestingly, the polymerase complex of reassortant H3N2 virus with 5 A(H1N1)pdm09 genes showed significantly higher polymerase activity than those of endemic and reassortant H3N2 viruses with 3 A(H1N1)pdm09 genes. Further studies showed that an avian-like glycine at position 228 at the hemagglutinin (HA) receptor binding site is responsible for inefficient transmission of the reassortant H3N2 virus with 5 A(H1N1)pdm09 genes. Taken together, our results provide insights into the pathogenicity and transmissibility of novel reassortant H3N2 viruses in pigs and suggest that a mammalian-like serine at position 228 in the HA is critical for the transmissibility of these reassortant H3N2 viruses. IMPORTANCE Swine influenza is a highly contagious zoonotic disease that threatens animal and public health. Introduction of 2009 pandemic H1N1 virus [A(H1N1)pdm09] into swine herds has resulted in novel reassortant influenza viruses in swine, including H3N2 and H1N2 variants that have caused human infections in the United States. We showed that reassortant H3N2 influenza

  14. Patient-derived avian influenza A (H5N6) virus is highly pathogenic in mice but can be effectively treated by anti-influenza polyclonal antibodies.

    PubMed

    Pan, Weiqi; Xie, Haojun; Li, Xiaobo; Guan, Wenda; Chen, Peihai; Zhang, Beiwu; Zhang, Mincong; Dong, Ji; Wang, Qian; Li, Zhixia; Li, Shufen; Yang, Zifeng; Li, Chufang; Zhong, Nanshan; Huang, Jicheng; Chen, Ling

    2018-06-13

    Highly pathogenic avian influenza A (H5N6) virus has been circulating in poultry since 2013 and causes sporadic infections and fatalities in humans. Due to the re-occurrence and continuous evolution of this virus subtype, there is an urgent need to better understand the pathogenicity of the H5N6 virus and to identify effective preventative and therapeutic strategies. We established a mouse model to evaluate the virulence of H5N6 A/Guangzhou/39715/2014 (H5N6/GZ14), which was isolated from an infected patient. BALB/c mice were inoculated intranasally with H5N6/GZ14 and monitored for morbidity, mortality, cytokine production, lung injury, viral replication, and viral dissemination to other organs. H5N6/GZ14 is highly pathogenic and can kill 50% of mice at a very low infectious dose of 5 plaque-forming units (pfu). Infection with H5N6/GZ14 showed rapid disease progression, viral replication to high titers in the lung, a strongly induced pro-inflammatory cytokine response, and severe lung injury. Moreover, infectious H5N6/GZ14 could be detected in the heart and brain of the infected mice. We also demonstrated that anti-influenza polyclonal antibodies generated by immunizing rhesus macaques could protect mice from lethal infection. Our results provide insights into the pathogenicity of the H5N6 human isolate.

  15. A novel pathogenic mechanism of highly pathogenic avian influenza H5N1 viruses involves hemagglutinin mediated resistance to serum innate inhibitors.

    PubMed

    Panaampon, Jutatip; Ngaosuwankul, Nathamon; Suptawiwat, Ornpreya; Noisumdaeng, Pirom; Sangsiriwut, Kantima; Siridechadilok, Bunpote; Lerdsamran, Hatairat; Auewarakul, Prasert; Pooruk, Phisanu; Puthavathana, Pilaipan

    2012-01-01

    In this study, the effect of innate serum inhibitors on influenza virus infection was addressed. Seasonal influenza A(H1N1) and A(H3N2), 2009 pandemic A(H1N1) (H1N1pdm) and highly pathogenic avian influenza (HPAI) A(H5N1) viruses were tested with guinea pig sera negative for antibodies against all of these viruses as evaluated by hemagglutination-inhibition and microneutralization assays. In the presence of serum inhibitors, the infection by each virus was inhibited differently as measured by the amount of viral nucleoprotein produced in Madin-Darby canine kidney cells. The serum inhibitors inhibited seasonal influenza A(H3N2) virus the most, while the effect was less in seasonal influenza A(H1N1) and H1N1pdm viruses. The suppression by serum inhibitors could be reduced by heat inactivation or treatment with receptor destroying enzyme. In contrast, all H5N1 strains tested were resistant to serum inhibitors. To determine which structure (hemagglutinin (HA) and/or neuraminidase (NA)) on the virus particles that provided the resistance, reverse genetics (rg) was applied to construct chimeric recombinant viruses from A/Puerto Rico/8/1934(H1N1) (PR8) plasmid vectors. rgPR8-H5 HA and rgPR8-H5 HANA were resistant to serum inhibitors while rgPR8-H5 NA and PR8 A(H1N1) parental viruses were sensitive, suggesting that HA of HPAI H5N1 viruses bestowed viral resistance to serum inhibition. These results suggested that the ability to resist serum inhibition might enable the viremic H5N1 viruses to disseminate to distal end organs. The present study also analyzed for correlation between susceptibility to serum inhibitors and number of glycosylation sites present on the globular heads of HA and NA. H3N2 viruses, the subtype with highest susceptibility to serum inhibitors, harbored the highest number of glycosylation sites on the HA globular head. However, this positive correlation cannot be drawn for the other influenza subtypes.

  16. Impact of vaccination on infection with Vietnam H5N1 high pathogenicity avian influenza virus in hens and the eggs they lay.

    PubMed

    Bertran, Kateri; Moresco, Kira; Swayne, David E

    2015-03-10

    High pathogenicity avian influenza virus (HPAIV) infections in chickens negatively impact egg production and cause egg contamination. Previously, vaccination maintained egg production and reduced egg contamination when challenged with a North American H5N2 HPAIV. However, Asian H5N1 HPAIV infection has some characteristics of increased pathogenicity compared to other H5 HPAIV such as more rapid drop and complete cessation in egg production. Sham (vaccinated at 25 and 28 weeks of age), inactivated H5N1 Once (1X-H5-Vax; vaccinated at 28 weeks of age only) and inactivated H5N1 Twice (2X-H5-Vax; vaccinated at 25 and 28 weeks of age) vaccinated adult White Leghorn hens were challenged intranasally at 31 weeks of age with 6.1 log10 mean embryo infectious doses (EID50) of clade 2.3.2.1a H5N1 HPAIV (A/chicken/Vietnam/NCVD-675/2011) which was homologous to the inactivated vaccine. Sham-vaccinated layers experienced 100% mortality within 3 days post-challenge; laid soft and thin-shelled eggs; had recovery of virus from oral swabs and in 53% of the eggs from eggshell surface (35%), yolk (24%), and albumin (41%); and had very high titers of virus (average 7.91 log10 EID50/g) in all segments of the oviduct and ovary. By comparison, 1X- and 2X-H5-Vax challenged hens survived infection, laid similar number of eggs pre- and post-challenge, all eggs had normal egg shell quality, and had significantly fewer contaminated eggs with reduced virus quantity. The 2X-H5-Vax hens had significantly higher HI titers by the day of challenge (304 GMT) and at termination (512 GMT) than 1X-H5-Vax hens (45 GMT and 128 GMT). The current study demonstrated that AIV infections caused by clade 2.3.2.1a H5N1 variants can be effectively controlled by either double or single homologous vaccination. Published by Elsevier Ltd.

  17. Biological characterization of highly pathogenic avian influenza H5N1 viruses that infected humans in Egypt in 2014-2015.

    PubMed

    El-Shesheny, Rabeh; Mostafa, Ahmed; Kandeil, Ahmed; Mahmoud, Sara H; Bagato, Ola; Naguib, Amel; Refaey, Samir El; Webby, Richard J; Ali, Mohamed A; Kayali, Ghazi

    2017-03-01

    Highly pathogenic avian influenza (HPAI) H5N1 influenza viruses emerged as a human pathogen in 1997 with expected potential to undergo sustained human-to-human transmission and pandemic viral spread. HPAI H5N1 is endemic in Egyptian poultry and has caused sporadic human infection. The first outbreak in early 2006 was caused by clade 2.2 viruses that rapidly evolved genetically and antigenically. A sharp increase in the number of human cases was reported in Egypt in the 2014/2015 season. In this study, we analyzed and characterized three isolates of HPAI H5N1 viruses isolated from infected humans in Egypt in 2014/2015. Phylogenetic analysis demonstrated that the nucleotide sequences of eight segments of the three isolates were clustered with those of members of clade 2.2.1.2. We also found that the human isolates from 2014/2015 had a slight, non-significant difference in their affinity for human-like sialic acid receptors. In contrast, they showed significant differences in their replication kinetics in MDCK, MDCK-SIAT, and A549 cells as well as in embryonated chicken eggs. An antiviral bioassay study revealed that all of the isolates were susceptible to amantadine. Therefore, further investigation and monitoring is required to correlate the genetic and/or antigenic changes of the emerging HPAI H5N1 viruses with possible alteration in their characteristics and their potential to become a further threat to public health.

  18. Generation of a reassortant avian influenza virus H5N2 vaccine strain capable of protecting chickens against infection with Egyptian H5N1 and H9N2 viruses.

    PubMed

    Kandeil, Ahmed; Moatasim, Yassmin; Gomaa, Mokhtar R; Shehata, Mahmoud M; El-Shesheny, Rabeh; Barakat, Ahmed; Webby, Richard J; Ali, Mohamed A; Kayali, Ghazi

    2016-01-04

    Avian influenza H5N1 viruses have been enzootic in Egyptian poultry since 2006. Avian influenza H9N2 viruses which have been circulating in Egyptian poultry since 2011 showed high replication rates in embryonated chicken eggs and mammalian cells. To investigate which gene segment was responsible for increasing replication, we constructed reassortant influenza viruses using the low pathogenic H1N1 PR8 virus as backbone and included individual genes from A/chicken/Egypt/S4456B/2011(H9N2) virus. Then, we invested this finding to improve a PR8-derived H5N1 influenza vaccine strain by incorporation of the NA segment of H9N2 virus instead of the NA of H5N1. The growth properties of this virus and several other forms of reassortant H5 viruses were compared. Finally, we tested the efficacy of this reassortant vaccine strain in chickens. We observed an increase in replication for a reassortant virus expressing the neuraminidase gene (N2) of H9N2 virus relative to that of either parental viruses or reassortant PR8 viruses expressing other genes. Then, we generated an H5N2 vaccine strain based on the H5 from an Egyptian H5N1 virus and the N2 from an Egyptian H9N2 virus on a PR8 backbone. This strain had better replication rates than an H5N2 reassortant strain on an H9N2 backbone and an H5N1 reassortant on a PR8 backbone. This virus was then used to develop a killed, oil-emulsion vaccine and tested for efficacy against H5N1 and H9N2 viruses in chickens. Results showed that this vaccine was immunogenic and reduced mortality and shedding. Our findings suggest that an inactivated PR8-derived H5N2 influenza vaccine is efficacious in poultry against H5N1 and H9N2 viruses and the vaccine seed replicates at a high rate thus improving vaccine production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Ostrich ( Struthio camelus ) Infected with H5N8 Highly Pathogenic Avian Influenza Virus in South Korea in 2014.

    PubMed

    Kim, Hye-Ryoung; Kwon, Yong-Kuk; Lee, Youn-Jeong; Kang, Hyun-Mi; Lee, Eun-Kyoung; Song, Byung-Min; Jung, Suk-Chan; Lee, Kyung-Hyun; Lee, Hyun-Kyoung; Baek, Kang-Hyun; Bae, You-Chan

    2016-06-01

    Highly pathogenic avian influenza (HPAI) virus of the H5N8 subtype was isolated from a young ostrich in South Korea in March 2014. Clinical signs characterized by anorexia, depression, and signs of nervousness were observed. The isolated A/ostrich/Korea/H829/2014 (H5N8) virus had a cleavage site motif containing multiple basic amino acids, typical of HPAI virus. The phylogenetic tree of the hemagglutinin gene of the H5 HPAI virus showed that this ostrich H5N8 virus belongs to clade 2.3.4.4 viruses together with H5N8 strains isolated from ducks and wild birds in South Korea in 2014. Pathologically, redness of pancreas, enlargement and hemorrhage of spleen, friability of brain, and hydropericardium were prominently found. Histologic legions were observed in pancreas, spleen, liver, lung, heart, and brain, and influenza A nucleoproteins were detected in the same organs by immunohistochemistry. Other ostriches farmed together in open camps were not infected with HPAI virus based on the serologic and virologic tests. The findings indicate that ostriches are susceptible to H5N8 HPAI virus, but this virus does not spread efficiently among ratites.

  20. Effect of species, breed and route of virus inoculation on the pathogenicity of H5N1 highly pathogenic influenza (HPAI) viruses in domestic ducks

    PubMed Central

    2013-01-01

    H5N1 highly pathogenic avian influenza (HPAI) viruses continue to be a threat to poultry in many regions of the world. Domestic ducks have been recognized as one of the primary factors in the spread of H5N1 HPAI. In this study we examined the pathogenicity of H5N1 HPAI viruses in different species and breeds of domestic ducks and the effect of route of virus inoculation on the outcome of infection. We determined that the pathogenicity of H5N1 HPAI viruses varies between the two common farmed duck species, with Muscovy ducks (Cairina moschata) presenting more severe disease than various breeds of Anas platyrhynchos var. domestica ducks including Pekin, Mallard-type, Black Runners, Rouen, and Khaki Campbell ducks. We also found that Pekin and Muscovy ducks inoculated with two H5N1 HPAI viruses of different virulence, given by any one of three routes (intranasal, intracloacal, or intraocular), became infected with the viruses. Regardless of the route of inoculation, the outcome of infection was similar for each species but depended on the virulence of the virus used. Muscovy ducks showed more severe clinical signs and higher mortality than the Pekin ducks. In conclusion, domestic ducks are susceptible to H5N1 HPAI virus infection by different routes of exposure, but the presentation of the disease varied by virus strain and duck species. This information helps support the planning and implementation of H5N1 HPAI surveillance and control measures in countries with large domestic duck populations. PMID:23876184

  1. Effect of species, breed and route of virus inoculation on the pathogenicity of H5N1 highly pathogenic influenza (HPAI) viruses in domestic ducks.

    PubMed

    Pantin-Jackwood, Mary; Swayne, David E; Smith, Diane; Shepherd, Eric

    2013-07-22

    H5N1 highly pathogenic avian influenza (HPAI) viruses continue to be a threat to poultry in many regions of the world. Domestic ducks have been recognized as one of the primary factors in the spread of H5N1 HPAI. In this study we examined the pathogenicity of H5N1 HPAI viruses in different species and breeds of domestic ducks and the effect of route of virus inoculation on the outcome of infection. We determined that the pathogenicity of H5N1 HPAI viruses varies between the two common farmed duck species, with Muscovy ducks (Cairina moschata) presenting more severe disease than various breeds of Anas platyrhynchos var. domestica ducks including Pekin, Mallard-type, Black Runners, Rouen, and Khaki Campbell ducks. We also found that Pekin and Muscovy ducks inoculated with two H5N1 HPAI viruses of different virulence, given by any one of three routes (intranasal, intracloacal, or intraocular), became infected with the viruses. Regardless of the route of inoculation, the outcome of infection was similar for each species but depended on the virulence of the virus used. Muscovy ducks showed more severe clinical signs and higher mortality than the Pekin ducks. In conclusion, domestic ducks are susceptible to H5N1 HPAI virus infection by different routes of exposure, but the presentation of the disease varied by virus strain and duck species. This information helps support the planning and implementation of H5N1 HPAI surveillance and control measures in countries with large domestic duck populations.

  2. Are Ducks Contributing to the Endemicity of Highly Pathogenic H5N1 Influenza Virus in Asia?†

    PubMed Central

    Sturm-Ramirez, K. M.; Hulse-Post, D. J.; Govorkova, E. A.; Humberd, J.; Seiler, P.; Puthavathana, P.; Buranathai, C.; Nguyen, T. D.; Chaisingh, A.; Long, H. T.; Naipospos, T. S. P.; Chen, H.; Ellis, T. M.; Guan, Y.; Peiris, J. S. M.; Webster, R. G.

    2005-01-01

    Wild waterfowl are the natural reservoir of all influenza A viruses, and these viruses are usually nonpathogenic in these birds. However, since late 2002, H5N1 outbreaks in Asia have resulted in mortality among waterfowl in recreational parks, domestic flocks, and wild migratory birds. The evolutionary stasis between influenza virus and its natural host may have been disrupted, prompting us to ask whether waterfowl are resistant to H5N1 influenza virus disease and whether they can still act as a reservoir for these viruses. To better understand the biology of H5N1 viruses in ducks and attempt to answer this question, we inoculated juvenile mallards with 23 different H5N1 influenza viruses isolated in Asia between 2003 and 2004. All virus isolates replicated efficiently in inoculated ducks, and 22 were transmitted to susceptible contacts. Viruses replicated to higher levels in the trachea than in the cloaca of both inoculated and contact birds, suggesting that the digestive tract is not the main site of H5N1 influenza virus replication in ducks and that the fecal-oral route may no longer be the main transmission path. The virus isolates' pathogenicities varied from completely nonpathogenic to highly lethal and were positively correlated with tracheal virus titers. Nevertheless, the eight virus isolates that were nonpathogenic in ducks replicated and transmitted efficiently to naïve contacts, suggesting that highly pathogenic H5N1 viruses causing minimal signs of disease in ducks can propagate silently and efficiently among domestic and wild ducks in Asia and that they represent a serious threat to human and veterinary public health. PMID:16103179

  3. Experimental Infection of Swans and Geese with Highly Pathogenic Avian Influenza Virus (H5N1) of Asian Lineage

    PubMed Central

    Stallknecht, David E.; Swayne, David E.

    2008-01-01

    The role of wild birds in the epidemiology of the Asian lineage highly pathogenic avian influenza (HPAI) virus subtype H5N1 epizootic and their contribution to the spread of the responsible viruses in Eurasia and Africa are unclear. To better understand the potential role of swans and geese in the epidemiology of this virus, we infected 4 species of swans and 2 species of geese with an HPAI virus of Asian lineage recovered from a whooper swan in Mongolia in 2005, A/whooper swan/Mongolia/244/2005 (H5N1). The highest mortality rates were observed in swans, and species-related differences in clinical illness and viral shedding were evident. These results suggest that the potential for HPAI (H5N1) viral shedding and the movement of infected birds may be species-dependent and can help explain observed deaths associated with HPAI (H5N1) infection in anseriforms in Eurasia. PMID:18258093

  4. Experimental infection of swans and geese with highly pathogenic avian influenza virus (H5N1) of Asian lineage.

    PubMed

    Brown, Justin D; Stallknecht, David E; Swayne, David E

    2008-01-01

    The role of wild birds in the epidemiology of the Asian lineage highly pathogenic avian influenza (HPAI) virus subtype H5N1 epizootic and their contribution to the spread of the responsible viruses in Eurasia and Africa are unclear. To better understand the potential role of swans and geese in the epidemiology of this virus, we infected 4 species of swans and 2 species of geese with an HPAI virus of Asian lineage recovered from a whooper swan in Mongolia in 2005, A/whooper swan/Mongolia/244/2005 (H5N1). The highest mortality rates were observed in swans, and species-related differences in clinical illness and viral shedding were evident. These results suggest that the potential for HPAI (H5N1) viral shedding and the movement of infected birds may be species-dependent and can help explain observed deaths associated with HPAI (H5N1) infection in anseriforms in Eurasia.

  5. Evolution of highly pathogenic H5N1 avian influenza viruses in Vietnam between 2001 and 2007.

    PubMed

    Wan, Xiu-Feng; Nguyen, Tung; Davis, C Todd; Smith, Catherine B; Zhao, Zi-Ming; Carrel, Margaret; Inui, Kenjiro; Do, Hoa T; Mai, Duong T; Jadhao, Samadhan; Balish, Amanda; Shu, Bo; Luo, Feng; Emch, Michael; Matsuoka, Yumiko; Lindstrom, Stephen E; Cox, Nancy J; Nguyen, Cam V; Klimov, Alexander; Donis, Ruben O

    2008-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 viruses have caused dramatic economic losses to the poultry industry of Vietnam and continue to pose a serious threat to public health. As of June 2008, Vietnam had reported nearly one third of worldwide laboratory confirmed human H5N1 infections. To better understand the emergence, spread and evolution of H5N1 in Vietnam we studied over 300 H5N1 avian influenza viruses isolated from Vietnam since their first detection in 2001. Our phylogenetic analyses indicated that six genetically distinct H5N1 viruses were introduced into Vietnam during the past seven years. The H5N1 lineage that evolved following the introduction in 2003 of the A/duck/Hong Kong/821/2002-like viruses, with clade 1 hemagglutinin (HA), continued to predominate in southern Vietnam as of May 2007. A virus with a clade 2.3.4 HA newly introduced into northern Vietnam in 2007, reassorted with pre-existing clade 1 viruses, resulting in the emergence of novel genotypes with neuraminidase (NA) and/or internal gene segments from clade 1 viruses. A total of nine distinct genotypes have been present in Vietnam since 2001, including five that were circulating in 2007. At least four of these genotypes appear to have originated in Vietnam and represent novel H5N1 viruses not reported elsewhere. Geographic and temporal analyses of H5N1 infection dynamics in poultry suggest that the majority of viruses containing new genes were first detected in northern Vietnam and subsequently spread to southern Vietnam after reassorting with pre-existing local viruses in northern Vietnam. Although the routes of entry and spread of H5N1 in Vietnam remain speculative, enhanced poultry import controls and virologic surveillance efforts may help curb the entry and spread of new HPAI viral genes.

  6. Experimental infection of Muscovy ducks with highly pathogenic avian influenza virus (H5N1) belonging to clade 2.2.

    PubMed

    Guionie, Olivier; Guillou-Cloarec, Cécile; Courtois, David; Bougeard, B Stéphanie; Amelot, Michel; Jestin, Véronique

    2010-03-01

    Highly pathogenic (HP) H5N1 avian influenza (AI) is enzootic in several countries of Asia and Africa and constitutes a major threat, at the world level, for both animal and public health. Ducks play an important role in the epidemiology of AI, including HP H5N1 AI. Although vaccination can be a useful tool to control AI, duck vaccination has not proved very efficient in the field, indicating a need to develop new vaccines and a challenge model to evaluate the protection for duck species. Although Muscovy duck is the duck species most often reared in France, the primary duck-producing country in Europe, and is also produced in Asia, it is rarely studied. Our team recently demonstrated a good cross-reactivity with hemagglutinin from clade 2.2 and inferred that this could be a good vaccine candidate for ducks. Two challenges using two French H5N1 HP strains, 1) A/mute swan/France/06299/06 (Swan/06299), clade 2.2.1, and 2) A/mute swan/France/070203/07 (Swan/070203), clade 2.2 (but different from subclade 2.2.1), were performed (each) on 20 Muscovy ducks (including five contacts) inoculated by oculo-nasal route (6 log10 median egg infectious doses per duck). Clinical signs were recorded daily, and cloacal and oropharyngeal swabs were collected throughout the assay. Autopsies were done on all dead ducks, and organs were taken for analyses. Virus was measured by quantitative reverse transcriptase-PCR based on the M gene AI virus. Ducks presented severe nervous signs in both challenges. Swan/070203 strain led to 80% morbidity (12/15 sick ducks) and 73% mortality (11/15 ducks) at 13.5 days postinfection (dpi), whereas Swan/06299 strain produced 100% mortality at 6.5 dpi. Viral RNA load was significantly lower via the cloacal route than via the oropharyngeal route in both trials, presenting a peak in the first challenge at 3.5 dpi and being more stable in the second challenge. The brain was the organ containing the highest viral RNA load in both challenges. Viral RNA load in

  7. Highly pathogenic avian influenza H5N1 Clade 2.3.2.1c virus in migratory birds, 2014-2015.

    PubMed

    Bi, Yuhai; Chen, Jianjun; Zhang, Zhenjie; Li, Mingxin; Cai, Tianlong; Sharshov, Kirill; Susloparov, Ivan; Shestopalov, Alexander; Wong, Gary; He, Yubang; Xing, Zhi; Sun, Jianqing; Liu, Di; Liu, Yingxia; Liu, Lei; Liu, Wenjun; Lei, Fumin; Shi, Weifeng; Gao, George F

    2016-08-01

    A novel Clade 2.3.2.1c H5N1 reassortant virus caused several outbreaks in wild birds in some regions of China from late 2014 to 2015. Based on the genetic and phylogenetic analyses, the viruses possess a stable gene constellation with a Clade 2.3.2.1c HA, a H9N2-derived PB2 gene and the other six genes of Asian H5N1-origin. The Clade 2.3.2.1c H5N1 reassortants displayed a high genetic relationship to a human H5N1 strain (A/Alberta/01/2014). Further analysis showed that similar viruses have been circulating in wild birds in China, Russia, Dubai (Western Asia), Bulgaria and Romania (Europe), as well as domestic poultry in some regions of Africa. The affected areas include the Central Asian, East Asian-Australasian, West Asian-East African, and Black Sea/Mediterranean flyways. These results show that the novel Clade 2.3.2.1c reassortant viruses are circulating worldwide and may have gained a selective advantage in migratory birds, thus posing a serious threat to wild birds and potentially humans.

  8. Spatiotemporal Structure of Molecular Evolution of H5N1 Highly Pathogenic Avian Influenza Viruses in Vietnam

    PubMed Central

    Emch, Michael; Jobe, R. Todd; Moody, Aaron

    2010-01-01

    Background Vietnam is one of the countries most affected by outbreaks of H5N1 highly pathogenic avian influenza viruses. First identified in Vietnam in poultry in 2001 and in humans in 2004, the virus has since caused 111 cases and 56 deaths in humans. In 2003/2004 H5N1 outbreaks, nearly the entire poultry population of Vietnam was culled. Our earlier study (Wan et al., 2008, PLoS ONE, 3(10): e3462) demonstrated that there have been at least six independent H5N1 introductions into Vietnam and there were nine newly emerged reassortants from 2001 to 2007 in Vietnam. H5N1 viruses in Vietnam cluster distinctly around Hanoi and Ho Chi Minh City. However, the nature of the relationship between genetic divergence and geographic patterns is still unclear. Methodology/Principal Findings In this study, we hypothesized that genetic distances between H5N1 viruses in Vietnam are correlated with geographic distances, as the result of distinct population and environment patterns along Vietnam's long north to south longitudinal extent. Based on this hypothesis, we combined spatial statistical methods with genetic analytic techniques and explicitly used geographic space to explore genetic evolution of H5N1 highly pathogenic avian influenza viruses at the sub-national scale in Vietnam. Our dataset consisted of 125 influenza viruses (with whole genome sets) isolated in Vietnam from 2003 to 2007. Our results document the significant effect of space and time on genetic evolution and the rise of two regional centers of genetic mixing by 2007. These findings give insight into processes underlying viral evolution and suggest that genetic differentiation is associated with the distance between concentrations of human and poultry populations around Hanoi and Ho Chi Minh City. Conclusions/Significance The results show that genetic evolution of H5N1 viruses in Vietnamese domestic poultry is highly correlated with the location and spread of those viruses in geographic space. This correlation

  9. The pathogenicity and host immune response associated with H5N1 highly pathogenic avian influenza virus in quail.

    PubMed

    Uno, Yukiko; Usui, Tatsufumi; Soda, Kosuke; Fujimoto, Yoshikazu; Takeuchi, Takashi; Ito, Hiroshi; Ito, Toshihiro; Yamaguchi, Tsuyoshi

    2013-05-02

    Quail, like chickens, are susceptible to H5N1 subtype highly pathogenic avian influenza virus (HPAIV). Both birds experience high mortality, but quail usually survive a few more days than chicken. To understand why, we monitored quail and chickens after inoculation with 10(6) fifty-percent egg infectious doses of HPAIV A/whooper swan/Aomori/1/2008 (H5N1). The clinical course initiated as depression at 48 hr post inoculation (h.p.i.) in quail and at 36 h.p.i. in chicken, and all infected birds died. Mean death time of quail (91 hr) was significantly longer than that of chicken (66 hr). The virus titers of most tissue samples collected before death were not significantly different. At 24 h.p.i., interferon gamma (IFN-γ) mRNA expression in peripheral blood mononuclear cells (PBMC) was up-regulated in the quail but down-regulated in the chicken, although TLR-7 and seven other cytokines showed no significant differences between quail and chicken. The viral load in quail PBMC was significantly lower than that in chickens. These results suggest that the induction of IFN-γ after HPAIV infection in quail is related to lower titer of HPAIV. In conclusion, the different clinical courses observed between quail and chicken infected with H5N1 HPAIV might be caused by different IFN-γ responses against the HPAIV infection.

  10. Re-emergence of amantadine-resistant variants among highly pathogenic avian influenza H5N1 viruses in Egypt.

    PubMed

    El-Shesheny, Rabeh; Bagato, Ola; Kandeil, Ahmed; Mostafa, Ahmed; Mahmoud, Sara H; Hassanneen, Hamdi M; Webby, Richard J; Ali, Mohamed A; Kayali, Ghazi

    2016-12-01

    Highly pathogenic avian influenza (HPAI) H5N1 virus continues to undergo substantial evolution. Emergence of antiviral resistance among H5N1 avian influenza viruses is a major challenge in the control of pandemic influenza. Numerous studies have focused on the genetic and evolutionary dynamics of the hemagglutinin and neuraminidase genes; however, studies on the susceptibility of HPAI H5N1 viruses to amantadine and genetic diversity of the matrix (M) gene are limited. Accordingly, we studied the amantadine susceptibility of the HPAI H5N1 viruses isolated in Egypt during 2006-2015 based on genotypic and phenotypic characteristics. We analyzed data on 253 virus sequences and constructed a phylogenetic tree to calculate selective pressures on sites in the M2 gene associated with amantadine-resistance among different clades. Selection pressure was identified in the transmembrane domain of M2 gene at positions 27 and 31. Amantadine-resistant variants emerged in 2007 but were not circulating between 2012 and 2014. By 2015, amantadine-resistant HPAI H5N1 viruses re-emerged. This may be associated with the uncontrolled prescription of amantadine for prophylaxis and control of avian influenza infections in the poultry farm sector in Egypt. More epidemiological research is required to verify this observation. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Multiple introductions of reassorted highly pathogenic avian influenza viruses (H5N8) clade 2.3.4.4b causing outbreaks in wild birds and poultry in Egypt.

    PubMed

    Yehia, Nahed; Naguib, Mahmoud M; Li, Ruiyun; Hagag, Naglaa; El-Husseiny, Mohamed; Mosaad, Zainab; Nour, Ahmed; Rabea, Neveen; Hasan, Wafaa M; Hassan, Mohamed K; Harder, Timm; Arafa, Abdel-Satar A

    2018-03-01

    Recently, an increased incidence of outbreaks of highly pathogenic avian influenza (HPAI) H5N8 in poultry linked to infected migratory birds has been reported from different European, Asian and African countries. In Egypt, incursion of HPAI H5N8 virus of clade 2.3.4.4b has been recently registered. Full genomic characterization of 3 virus isolates from wild birds and poultry (backyard and commercial farm sectors) showed high nucleotide similarity among the HA, NA, M, and NS gene segments of the three Egyptian HPAI H5N8 viruses, indicating that they are descendants of a common ancestral virus. However, the analyzed Egyptian H5N8 viruses revealed distinct genotypes involving different origins of the PB2, PB1, PA and/or NP segments. In genotype-1 represented by strain A/common-coot/Egypt/CA285/2016 the PB2 and NP segments showed closest relationship to H5N6 and H6N2 viruses, recently detected in Italy. The second is replacement of PB1 and NP genes A novel reassortant, represented by strain A/duck/Egypt/SS19/2017, showed an exchange of PB1 and NP genes which might have originated from H6N8 or H1N1 and H6N2 viruses. Finally, replacement of PA and NP genes characterized strain A/duck/Egypt/F446/2017. Bayesian phylogeographic analyses revealed that Egyptian H5N8 viruses are highly likely derived from Russian 2016 HPAI H5N8 virus (A/great_crested_grebe/Uvs-Nuur_Lake/341/2016 (H5N8)) and the reassortment likely occurred before incursion to Egypt. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Highly pathogenic Eurasian H5N8 avian influenza outbreaks in two commercial poultry flocks in California

    USDA-ARS?s Scientific Manuscript database

    In January 2015, a highly pathogenic Eurasian lineage H5N8 avian influenza (AI) virus was detected in a commercial meat turkey flock in Stanislaus County, California. Approximately 3 weeks later, a similar case was diagnosed in commercial chickens from a different company located in Kings County, C...

  13. X-ray structure of NS1 from a highly pathogenic H5N1 influenza virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bornholdt, Zachary A.; Prasad, B.V. Venkataram

    2009-04-08

    The recent emergence of highly pathogenic avian (H5N1) influenza viruses, their epizootic and panzootic nature, and their association with lethal human infections have raised significant global health concerns. Several studies have underlined the importance of non-structural protein NS1 in the increased pathogenicity and virulence of these strains. NS1, which consists of two domains - a double-stranded RNA (dsRNA) binding domain and the effector domain, separated through a linker - is an antagonist of antiviral type-I interferon response in the host. Here we report the X-ray structure of the full-length NS1 from an H5N1 strain (A/Vietnam/1203/2004) that was associated with 60%more » of human deaths in an outbreak in Vietnam. Compared to the individually determined structures of the RNA binding domain and the effector domain from non-H5N1 strains, the RNA binding domain within H5N1 NS1 exhibits modest structural changes, while the H5N1 effector domain shows significant alteration, particularly in the dimeric interface. Although both domains in the full-length NS1 individually participate in dimeric interactions, an unexpected finding is that these interactions result in the formation of a chain of NS1 molecules instead of distinct dimeric units. Three such chains in the crystal interact with one another extensively to form a tubular organization of similar dimensions to that observed in the cryo-electron microscopy images of NS1 in the presence of dsRNA. The tubular oligomeric organization of NS1, in which residues implicated in dsRNA binding face a 20-{angstrom}-wide central tunnel, provides a plausible mechanism for how NS1 sequesters varying lengths of dsRNA, to counter cellular antiviral dsRNA response pathways, while simultaneously interacting with other cellular ligands during an infection.« less

  14. PB2-Q591K Mutation Determines the Pathogenicity of Avian H9N2 Influenza Viruses for Mammalian Species

    PubMed Central

    Wang, Congrong; Lee, Horace Hok Yeung; Yang, Zi Feng; Mok, Chris Ka Pun; Zhang, Zhi

    2016-01-01

    Background Influenza A subtype H9N2 is widespread and prevalent in poultry. It has repeatedly transmitted zoonotically to cause mild influenza-like illness in humans and is regarded as a potential pandemic candidate. In additon, the six internal genes of H7N9 and H10N8 viruses which caused infection in human in China as well as some of the highly pathogenic H5N1 strains are origined from H9N2. Previous studies have shown that the mammalian adaptation PB2-Q591K contributes to the pathogenicity of H5N1 and H7N9 viruses. However, the role of the PB2-Q591K mutation in H9N2 subtype is still not well understood. Methods To define and compare the individual role of PB2-Q591K substitution in the PB2 gene segment of H9N2 in relation to polymerase activity, replication competence and the pathogenicity using in vitro and in vivo models. Results The PB2-Q591K mutation in H9N2 virus enhanced the polymerase activity and virus replication in human NHBE cells when compared to the wild type strain. Mice infected with the PB2 mutant showed significant weight loss, higher virus replication and immune responses in the lungs. Conclusions Our evidences suggest that the PB2-Q591K, in addition to the -E627K mutation in H9N2 enhanced the pathogenicity in mammalian host. PMID:27684944

  15. Influence of Novel Highly Pathogenic Avian Influenza A (H5N1) Virus Infection on Migrating Whooper Swans Fecal Microbiota.

    PubMed

    Zhao, Na; Wang, Supen; Li, Hongyi; Liu, Shelan; Li, Meng; Luo, Jing; Su, Wen; He, Hongxuan

    2018-01-01

    The migration of wild birds plays an important role in the transmission and spread of H5 highly pathogenic avian influenza (HPAI) virus, posing a severe risk to animal and human health. Substantial evidence suggests that altered gut microbial community is implicated in the infection of respiratory influenza virus. However, the influence of H5N1 infection in gut microbiota of migratory birds remains unknown. In January 2015, a novel recombinant H5N1 virus emerged and killed about 100 migratory birds, mainly including whooper swans in Sanmenxia Reservoir Area of China. Here, we describe the first fecal microbiome diversity study of H5N1-infected migratory birds. By investigating the influence of H5N1 infection on fecal bacterial communities in infected and uninfected individuals, we found that H5N1 infection shaped the gut microbiota composition by a difference in the dominance of some genera, such as Aeromonas and Lactobacillus . We also found a decreased α diversity and increased β diversity in infectious individuals. Our results highlight that increases in changes in pathogen-containing gut communities occur when individuals become infected with H5N1. Our study may provide the first evidence that there are statistical association among H5N1 presence and fecal microbiota compositional shifts, and properties of the fecal microbiota may serve as the risk of gut-linked disease in migrates with H5N1 and further aggravate the disease transmission.

  16. Viral replication rate regulates clinical outcome and CD8 T cell responses during highly pathogenic H5N1 influenza virus infection in mice.

    PubMed

    Hatta, Yasuko; Hershberger, Karen; Shinya, Kyoko; Proll, Sean C; Dubielzig, Richard R; Hatta, Masato; Katze, Michael G; Kawaoka, Yoshihiro; Suresh, M

    2010-10-07

    Since the first recorded infection of humans with H5N1 viruses of avian origin in 1997, sporadic human infections continue to occur with a staggering mortality rate of >60%. Although sustained human-to-human transmission has not occurred yet, there is a growing concern that these H5N1 viruses might acquire this trait and raise the specter of a pandemic. Despite progress in deciphering viral determinants of pathogenicity, we still lack crucial information on virus/immune system interactions pertaining to severe disease and high mortality associated with human H5N1 influenza virus infections. Using two human isolates of H5N1 viruses that differ in their pathogenicity in mice, we have defined mechanistic links among the rate of viral replication, mortality, CD8 T cell responses, and immunopathology. The extreme pathogenicity of H5N1 viruses was directly linked to the ability of the virus to replicate rapidly, and swiftly attain high steady-state titers in the lungs within 48 hours after infection. The remarkably high replication rate of the highly pathogenic H5N1 virus did not prevent the induction of IFN-β or activation of CD8 T cells, but the CD8 T cell response was ineffective in controlling viral replication in the lungs and CD8 T cell deficiency did not affect viral titers or mortality. Additionally, BIM deficiency ameliorated lung pathology and inhibited T cell apoptosis without affecting survival of mice. Therefore, rapidly replicating, highly lethal H5N1 viruses could simply outpace and overwhelm the adaptive immune responses, and kill the host by direct cytopathic effects. However, therapeutic suppression of early viral replication and the associated enhancement of CD8 T cell responses improved the survival of mice following a lethal H5N1 infection. These findings suggest that suppression of early H5N1 virus replication is key to the programming of an effective host response, which has implications in treatment of this infection in humans.

  17. Characterization of clade 2.3.4.4 H5N8 highly pathogenic avian influenza viruses from wild birds possessing atypical hemagglutinin polybasic cleavage sites.

    PubMed

    Usui, Tatsufumi; Soda, Kosuke; Tomioka, Yukiko; Ito, Hiroshi; Yabuta, Toshiyo; Takakuwa, Hiroki; Otsuki, Koichi; Ito, Toshihiro; Yamaguchi, Tsuyoshi

    2017-02-01

    Since 2014, clade 2.3.4.4 H5 subtype highly pathogenic avian influenza viruses (HPAIVs) have been distributed worldwide. These viruses, which were reported to be highly virulent in chickens by intravenous inoculation, have a consensus HPAI motif PLRERRRKR at the HA cleavage site. However, two-clade 2.3.4.4 H5N8 viruses which we isolated from wild migratory birds in late 2014 in Japan possessed atypical HA cleavage sequences. A swan isolate, Tottori/C6, had a novel polybasic cleavage sequence, PLGERRRKR, and another isolate from a dead mandarin duck, Gifu/01, had a heterogeneous mixture of consensus PLRERRRKR and variant PLRERRRRKR sequences. The polybasic HA cleavage site is the prime virulence determinant of AIVs. Therefore, in the present study, we examined the pathogenicity of these H5N8 isolates in chickens by intravenous inoculation. When 10 6 EID 50 of these viruses were intravenously inoculated into chickens, the mean death time associated with Tottori/C6 was substantially longer (>6.1 days) than that associated with Gifu/01 (2.5 days). These viruses had comparable abilities to replicate in tissue culture cells in the presence and absence of exogenous trypsin, but the growth of Tottori/C6 was hampered. These results indicate that the novel cleavage motif of Tottori/C6 did not directly affect the infectivity of the virus, but Tottori/C6 caused attenuated pathogenicity in chickens because of hampered replication efficiency. It is important to test for the emergence of diversified HPAIVs, because introduction of HPAIVs with a lower virulence like Tottori/C6 might hinder early detection of affected birds in poultry farms.

  18. Potential Biological and Climatic Factors That Influence the Incidence and Persistence of Highly Pathogenic H5N1 Avian Influenza Virus in Egypt

    PubMed Central

    Salaheldin, Ahmed H.; Kasbohm, Elisa; El-Naggar, Heba; Ulrich, Reiner; Scheibner, David; Gischke, Marcel; Hassan, Mohamed K.; Arafa, Abdel-Satar A.; Hassan, Wafaa M.; Abd El-Hamid, Hatem S.; Hafez, Hafez M.; Veits, Jutta; Mettenleiter, Thomas C.; Abdelwhab, Elsayed M.

    2018-01-01

    Highly pathogenic H5N1 avian influenza virus (A/H5N1) of clade 2.2.1 is endemic in poultry in Egypt where the highest number of human infections worldwide was reported. During the last 12 years the Egyptian A/H5N1 evolved into several genotypes. In 2007-2014 vaccinated poultry suffered from antigenic drift variants of clade 2.2.1.1 and in 2014/2015 an unprecedented upsurge of A/H5N1 clade 2.2.1.2 occurred in poultry and humans. Factors contributing to the endemicity or re-emergence of A/H5N1 in poultry in Egypt remain unclear. Here, three potential factors were studied: climatic factors (temperature, relative humidity, and wind speed), biological fitness in vitro, and pathogenicity in domestic Pekin and Muscovy ducks. Statistical analyses using negative binomial regression models indicated that ambient temperature in winter months influenced the spread of A/H5N1 in different geographic areas analyzed in this study. In vitro, at 4 and 56°C 2.2.1.1 and recent 2.2.1.2 viruses were more stable than other viruses used in this study. Further, Pekin ducks were more resistant than Muscovy ducks and the viruses were excreted for up to 2 weeks post-infection assuming a strong role as a reservoir. Taken together, ambient temperature in winter months potentially contributes to increasing outbreaks in some regions in Egypt. Heat stability of clade 2.2.1.1 and recent 2.2.1.2 viruses probably favors their persistence at elevated temperatures. Importantly, asymptomatically infected Pekin ducks may play an important role in the spread of avian and human-like A/H5N1 in Egypt. Therefore, control measures including targeted surveillance and culling of silently infected Pekin ducks should be considered. PMID:29636730

  19. The enigma of the apparent disappearance of Eurasian highly pathogenic H5 clade 2.3.4.4 influenza A viruses in North American waterfowl

    PubMed Central

    Krauss, Scott; Stallknecht, David E.; Slemons, Richard D.; Bowman, Andrew S.; Poulson, Rebecca L.; Nolting, Jacqueline M.; Knowles, James P.; Webster, Robert G.

    2016-01-01

    One of the major unresolved questions in influenza A virus (IAV) ecology is exemplified by the apparent disappearance of highly pathogenic (HP) H5N1, H5N2, and H5N8 (H5Nx) viruses containing the Eurasian hemagglutinin 2.3.4.4 clade from wild bird populations in North America. The introduction of Eurasian lineage HP H5 clade 2.3.4.4 H5N8 IAV and subsequent reassortment with low-pathogenic H?N2 and H?N1 North American wild bird-origin IAVs in late 2014 resulted in widespread HP H5Nx IAV infections and outbreaks in poultry and wild birds across two-thirds of North America starting in November 2014 and continuing through June 2015. Although the stamping out strategies adopted by the poultry industry and animal health authorities in Canada and the United States—which included culling, quarantining, increased biosecurity, and abstention from vaccine use—were successful in eradicating the HP H5Nx viruses from poultry, these activities do not explain the apparent disappearance of these viruses from migratory waterfowl. Here we examine current and historical aquatic bird IAV surveillance and outbreaks of HP H5Nx in poultry in the United States and Canada, providing additional evidence of unresolved mechanisms that restrict the emergence and perpetuation of HP avian influenza viruses in these natural reservoirs. PMID:27457948

  20. Internal Gene Cassette from a Genotype S H9N2 Avian Influenza Virus Attenuates the Pathogenicity of H5 Viruses in Chickens and Mice.

    PubMed

    Hao, Xiaoli; Wang, Jiongjiong; Hu, Jiao; Lu, Xiaolong; Gao, Zhao; Liu, Dong; Li, Juan; Wang, Xiaoquan; Gu, Min; Hu, Zenglei; Liu, Xiaowen; Hu, Shunlin; Xu, Xiulong; Peng, Daxin; Jiao, Xinan; Liu, Xiufan

    2017-01-01

    H9N2 avian influenza virus (AIV) of genotype S frequently donate internal genes to facilitate the generation of novel reassortants such as H7N9, H10N8, H5N2 and H5N6 AIVs, posing an enormous threat to both human health and poultry industry. However, the pathogenicity and transmission of reassortant H5 viruses with internal gene cassette of genotype S H9N2-origin in chickens and mice remain unknown. In this study, four H5 reassortants carrying the HA and NA genes from different clades of H5 viruses and the remaining internal genes from an H9N2 virus of the predominant genotype S were generated by reverse genetics. We found that all four H5 reassortant viruses showed attenuated virulence in both chickens and mice, thus leading to increased the mean death times compared to the corresponding parental viruses. Consistently, the polymerase activity and replication ability in mammalian and avian cells, and the cytokine responses in the lungs of chickens and mice were also decreased when compared to their respective parental viruses. Moreover, these reassortants transmitted from birds to birds by direct contact but not by an airborne route. Our data indicate that the internal genes as a whole cassette from genotype S H9N2 viruses play important roles in reducing the pathogenicity of the H5 recombinants in chickens and mice, and might contribute to the circulation in avian or mammalian hosts.

  1. Internal Gene Cassette from a Genotype S H9N2 Avian Influenza Virus Attenuates the Pathogenicity of H5 Viruses in Chickens and Mice

    PubMed Central

    Hao, Xiaoli; Wang, Jiongjiong; Hu, Jiao; Lu, Xiaolong; Gao, Zhao; Liu, Dong; Li, Juan; Wang, Xiaoquan; Gu, Min; Hu, Zenglei; Liu, Xiaowen; Hu, Shunlin; Xu, Xiulong; Peng, Daxin; Jiao, Xinan; Liu, Xiufan

    2017-01-01

    H9N2 avian influenza virus (AIV) of genotype S frequently donate internal genes to facilitate the generation of novel reassortants such as H7N9, H10N8, H5N2 and H5N6 AIVs, posing an enormous threat to both human health and poultry industry. However, the pathogenicity and transmission of reassortant H5 viruses with internal gene cassette of genotype S H9N2-origin in chickens and mice remain unknown. In this study, four H5 reassortants carrying the HA and NA genes from different clades of H5 viruses and the remaining internal genes from an H9N2 virus of the predominant genotype S were generated by reverse genetics. We found that all four H5 reassortant viruses showed attenuated virulence in both chickens and mice, thus leading to increased the mean death times compared to the corresponding parental viruses. Consistently, the polymerase activity and replication ability in mammalian and avian cells, and the cytokine responses in the lungs of chickens and mice were also decreased when compared to their respective parental viruses. Moreover, these reassortants transmitted from birds to birds by direct contact but not by an airborne route. Our data indicate that the internal genes as a whole cassette from genotype S H9N2 viruses play important roles in reducing the pathogenicity of the H5 recombinants in chickens and mice, and might contribute to the circulation in avian or mammalian hosts. PMID:29075244

  2. Pathogenicity of H5N8 highly pathogenic avian influenza viruses isolated from a wild bird fecal specimen and a chicken in Japan in 2014.

    PubMed

    Tanikawa, Taichiro; Kanehira, Katsushi; Tsunekuni, Ryota; Uchida, Yuko; Takemae, Nobuhiro; Saito, Takehiko

    2016-04-01

    Poultry outbreaks caused by H5N8 highly pathogenic avian influenza viruses (HPAIVs) occurred in Japan between December 2014 and January 2015. During the same period; H5N8 HPAIVs were isolated from wild birds and the environment in Japan. The hemagglutinin (HA) genes of these isolates were found to belong to clade 2.3.4.4 and three sub-groups were distinguishable within this clade. All of the Japanese isolates from poultry outbreaks belonged to the same sub-group; whereas wild bird isolates belonged to the other sub-groups. To examine whether the difference in pathogenicity to chickens between isolates of different HA sub-groups of clade 2.3.4.4 could explain why the Japanese poultry outbreaks were only caused by a particular sub-group; pathogenicities of A/chicken/Miyazaki/7/2014 (Miyazaki2014; sub-group C) and A/duck/Chiba/26-372-48/2014 (Chiba2014; sub-group A) to chickens were compared and it was found that the lethality of Miyazaki2014 in chickens was lower than that of Chiba2014; according to the 50% chicken lethal dose. This indicated that differences in pathogenicity may not explain why the Japanese poultry outbreaks only involved group C isolates. © 2016 The Societies and John Wiley & Sons Australia, Ltd.

  3. Characterization of pseudoparticles paired with hemagglutinin and neuraminidase from highly pathogenic H5N1 influenza and avian influenza A (H7N9) viruses.

    PubMed

    Zhang, Fengwei; Wang, Shanshan; Wang, Yanan; Shang, Xuechai; Zhou, Hongjuan; Cai, Long

    2018-05-31

    The reassortment of two highly pathogenic avian influenza (HPAI) H5N1 and H7N9 viruses presents a potential challenge to human health. The hemagglutinins (HAs) and neuraminidases (NAs) of these simultaneously circulating avian influenza viruses were evaluated using the pseudoparticle (pp) system. Native and mismatched virus pps were generated to investigate their biological characteristics. The HAs and NAs of the two viruses reassorted successfully to generate infectious viral particles. H7 was demonstrated to have the ability to reassort with NA from the H5N1 viruses, resulting in the generation of virions that were highly infectious to bronchial epithelial cells. Although the Anhui H5+Anhui N9 combination showed an moderate infectivity to the four cell lines, it was most sensitive to oseltamivir. The H7 in the pps was found to be predominantly HA0. Further, H5 in the pps primarily presented as HA1, owing to the particular mechanisms underlying its maturation. All NAs predominantly existed in monomer form. In our study, HAs/NAs, in all combinations, were functional and able to perform their corresponding function in the viral life cycle. Our data suggest that HAs/NAs from the (HPAI) H5N1 and H7N9 viruses are capable of assembly into infectious virions, posing a threat topublic health. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Avian flu school: a training approach to prepare for H5N1 highly pathogenic avian influenza.

    PubMed

    Beltran-Alcrudo, Daniel; Bunn, David A; Sandrock, Christian E; Cardona, Carol J

    2008-01-01

    Since the reemergence of highly pathogenic avian influenza (H5N1 HPAI) in 2003, a panzootic that is historically unprecedented in the number of infected flocks, geographic spread, and economic consequences for agriculture has developed. The epidemic has affected a wide range of birds and mammals, including humans. The ineffective management of outbreaks, mainly due to a lack of knowledge among those involved in detection, prevention, and response, points to the need for training on H5N1 HPAI. The main challenges are the multidisciplinary approach required, the lack of experts, the need to train at all levels, and the diversity of outbreak scenarios. Avian Flu School addresses these challenges through a three-level train-the-trainer program intended to minimize the health and economic impacts of H5N1 HPAI by improving a community's ability to prevent and respond, while protecting themselves and others. The course teaches need-to-know facts using highly flexible, interactive, and relevant materials.

  5. Experimentally infected domestic ducks show efficient transmission of Indonesian H5N1 highly pathogenic avian influenza virus, but lack persistent viral shedding.

    PubMed

    Wibawa, Hendra; Bingham, John; Nuradji, Harimurti; Lowther, Sue; Payne, Jean; Harper, Jenni; Junaidi, Akhmad; Middleton, Deborah; Meers, Joanne

    2014-01-01

    Ducks are important maintenance hosts for avian influenza, including H5N1 highly pathogenic avian influenza viruses. A previous study indicated that persistence of H5N1 viruses in ducks after the development of humoral immunity may drive viral evolution following immune selection. As H5N1 HPAI is endemic in Indonesia, this mechanism may be important in understanding H5N1 evolution in that region. To determine the capability of domestic ducks to maintain prolonged shedding of Indonesian clade 2.1 H5N1 virus, two groups of Pekin ducks were inoculated through the eyes, nostrils and oropharynx and viral shedding and transmission investigated. Inoculated ducks (n = 15), which were mostly asymptomatic, shed infectious virus from the oral route from 1 to 8 days post inoculation, and from the cloacal route from 2-8 dpi. Viral ribonucleic acid was detected from 1-15 days post inoculation from the oral route and 1-24 days post inoculation from the cloacal route (cycle threshold <40). Most ducks seroconverted in a range of serological tests by 15 days post inoculation. Virus was efficiently transmitted during acute infection (5 inoculation-infected to all 5 contact ducks). However, no evidence for transmission, as determined by seroconversion and viral shedding, was found between an inoculation-infected group (n = 10) and contact ducks (n = 9) when the two groups only had contact after 10 days post inoculation. Clinical disease was more frequent and more severe in contact-infected (2 of 5) than inoculation-infected ducks (1 of 15). We conclude that Indonesian clade 2.1 H5N1 highly pathogenic avian influenza virus does not persist in individual ducks after acute infection.

  6. Experimentally Infected Domestic Ducks Show Efficient Transmission of Indonesian H5N1 Highly Pathogenic Avian Influenza Virus, but Lack Persistent Viral Shedding

    PubMed Central

    Wibawa, Hendra; Bingham, John; Nuradji, Harimurti; Lowther, Sue; Payne, Jean; Harper, Jenni; Junaidi, Akhmad; Middleton, Deborah; Meers, Joanne

    2014-01-01

    Ducks are important maintenance hosts for avian influenza, including H5N1 highly pathogenic avian influenza viruses. A previous study indicated that persistence of H5N1 viruses in ducks after the development of humoral immunity may drive viral evolution following immune selection. As H5N1 HPAI is endemic in Indonesia, this mechanism may be important in understanding H5N1 evolution in that region. To determine the capability of domestic ducks to maintain prolonged shedding of Indonesian clade 2.1 H5N1 virus, two groups of Pekin ducks were inoculated through the eyes, nostrils and oropharynx and viral shedding and transmission investigated. Inoculated ducks (n = 15), which were mostly asymptomatic, shed infectious virus from the oral route from 1 to 8 days post inoculation, and from the cloacal route from 2–8 dpi. Viral ribonucleic acid was detected from 1–15 days post inoculation from the oral route and 1–24 days post inoculation from the cloacal route (cycle threshold <40). Most ducks seroconverted in a range of serological tests by 15 days post inoculation. Virus was efficiently transmitted during acute infection (5 inoculation-infected to all 5 contact ducks). However, no evidence for transmission, as determined by seroconversion and viral shedding, was found between an inoculation-infected group (n = 10) and contact ducks (n = 9) when the two groups only had contact after 10 days post inoculation. Clinical disease was more frequent and more severe in contact-infected (2 of 5) than inoculation-infected ducks (1 of 15). We conclude that Indonesian clade 2.1 H5N1 highly pathogenic avian influenza virus does not persist in individual ducks after acute infection. PMID:24392085

  7. Reoccurrence of H5Nx clade 2.3.4.4 highly pathogenic avian influenza viruses in wild birds during 2016

    USDA-ARS?s Scientific Manuscript database

    The Asian-origin H5N1 A/goose/Guangdong/1/1996 (Gs/GD) lineage of high pathogenicity avian influenza viruses (HPAIV) has become widespread across four continents, affecting poultry, wild birds and humans. H5N1 HPAIV has evolved into multiple hemagglutinin (HA) genetic clades and reassorting with dif...

  8. Evolution of Highly Pathogenic H5N1 Avian Influenza Viruses in Vietnam between 2001 and 2007

    PubMed Central

    Smith, Catherine B.; Zhao, Zi-Ming; Carrel, Margaret; Inui, Kenjiro; Do, Hoa T.; Mai, Duong T.; Jadhao, Samadhan; Balish, Amanda; Shu, Bo; Luo, Feng; Emch, Michael; Matsuoka, Yumiko; Lindstrom, Stephen E.; Cox, Nancy J.; Nguyen, Cam V.; Klimov, Alexander; Donis, Ruben O.

    2008-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 viruses have caused dramatic economic losses to the poultry industry of Vietnam and continue to pose a serious threat to public health. As of June 2008, Vietnam had reported nearly one third of worldwide laboratory confirmed human H5N1 infections. To better understand the emergence, spread and evolution of H5N1 in Vietnam we studied over 300 H5N1 avian influenza viruses isolated from Vietnam since their first detection in 2001. Our phylogenetic analyses indicated that six genetically distinct H5N1 viruses were introduced into Vietnam during the past seven years. The H5N1 lineage that evolved following the introduction in 2003 of the A/duck/Hong Kong/821/2002-like viruses, with clade 1 hemagglutinin (HA), continued to predominate in southern Vietnam as of May 2007. A virus with a clade 2.3.4 HA newly introduced into northern Vietnam in 2007, reassorted with pre-existing clade 1 viruses, resulting in the emergence of novel genotypes with neuraminidase (NA) and/or internal gene segments from clade 1 viruses. A total of nine distinct genotypes have been present in Vietnam since 2001, including five that were circulating in 2007. At least four of these genotypes appear to have originated in Vietnam and represent novel H5N1 viruses not reported elsewhere. Geographic and temporal analyses of H5N1 infection dynamics in poultry suggest that the majority of viruses containing new genes were first detected in northern Vietnam and subsequently spread to southern Vietnam after reassorting with pre-existing local viruses in northern Vietnam. Although the routes of entry and spread of H5N1 in Vietnam remain speculative, enhanced poultry import controls and virologic surveillance efforts may help curb the entry and spread of new HPAI viral genes. PMID:18941631

  9. Phylogenetic study-based hemagglutinin (HA) gene of highly pathogenic avian influenza virus (H5N1) detected from backyard chickens in Iran, 2015.

    PubMed

    Ghafouri, Syed Ali; Langeroudi, Arash Ghalyanchi; Maghsoudloo, Hossein; Tehrani, Farshad; Khaltabadifarahani, Reza; Abdollahi, Hamed; Fallah, Mohammad Hossein

    2017-02-01

    Highly pathogenic avian influenza (HPAI) viruses of the H5N1 subtype have been diversified into multiple phylogenetic clades over the past decade and are highly genetically variable. In June 2015, one outbreak of HPAI H5N1 in backyard chickens was reported in the Nogardan village of the Mazandaran Province. Tracheal tissues were taken from the dead domestic chickens (n = 10) and processed for RT-PCR. The positive samples (n = 10) were characterized as HPAI H5N1 by sequencing analysis for the hemagglutinin and neuraminidase genes. Phylogenetic analysis of the samples revealed that the viruses belonged to clade 2.3.2.1c, and cluster with the HPAI H5N1 viruses isolated from different avian species in Bulgaria, Romania, and Nigeria in 2015. They were not closely related to other H5N1 isolates detected in previous years in Iran. Our study provides new insights into the evolution and genesis of H5N1 influenza in Iran and has important implications for targeting surveillance efforts to rapidly identify the spread of the virus into and within Iran.

  10. Homologous and heterologous antigenic matched vaccines containing different H5 hemagglutinins provides variable protection of chickens from the 2014 U.S. H5N8 and H5N2 clade 2.3.4.4 highly pathogenic avian influenza viruses

    USDA-ARS?s Scientific Manuscript database

    From December 2014 to June 2015, a novel H5 Eurasian A/goose/Guangdong (Gs/GD) lineage clade 2.3.4.4 high pathogenicity avian influenza (HPAI) virus caused the largest animal health emergency in US history resulting in mortality or culling of greater than 48 million poultry. The outbreak renewed int...

  11. Spatial distribution and risk factors of highly pathogenic avian influenza (HPAI) H5N1 in China

    USGS Publications Warehouse

    Martin, Vincent; Pfeiffer, Dirk U.; Zhou, Xiaoyan; Xiao, Xiangming; Prosser, Diann J.; Guo, Fusheng; Gilbert, Marius

    2011-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 was first encountered in 1996 in Guangdong province (China) and started spreading throughout Asia and the western Palearctic in 2004–2006. Compared to several other countries where the HPAI H5N1 distribution has been studied in some detail, little is known about the environmental correlates of the HPAI H5N1 distribution in China. HPAI H5N1 clinical disease outbreaks, and HPAI virus (HPAIV) H5N1 isolated from active risk-based surveillance sampling of domestic poultry (referred to as HPAIV H5N1 surveillance positives in this manuscript) were modeled separately using seven risk variables: chicken, domestic waterfowl population density, proportion of land covered by rice or surface water, cropping intensity, elevation, and human population density. We used bootstrapped logistic regression and boosted regression trees (BRT) with cross-validation to identify the weight of each variable, to assess the predictive power of the models, and to map the distribution of HPAI H5N1 risk. HPAI H5N1 clinical disease outbreak occurrence in domestic poultry was mainly associated with chicken density, human population density, and elevation. In contrast, HPAIV H5N1 infection identified by risk-based surveillance was associated with domestic waterfowl density, human population density, and the proportion of land covered by surface water. Both models had a high explanatory power (mean AUC ranging from 0.864 to 0.967). The map of HPAIV H5N1 risk distribution based on active surveillance data emphasized areas south of the Yangtze River, while the distribution of reported outbreak risk extended further North, where the density of poultry and humans is higher. We quantified the statistical association between HPAI H5N1 outbreak, HPAIV distribution and post-vaccination levels of seropositivity (percentage of effective post-vaccination seroconversion in vaccinated birds) and found that provinces with either outbreaks or HPAIV H5N1 surveillance

  12. Spatial distribution and risk factors of highly pathogenic avian influenza (HPAI) H5N1 in China.

    PubMed

    Martin, Vincent; Pfeiffer, Dirk U; Zhou, Xiaoyan; Xiao, Xiangming; Prosser, Diann J; Guo, Fusheng; Gilbert, Marius

    2011-03-01

    Highly pathogenic avian influenza (HPAI) H5N1 was first encountered in 1996 in Guangdong province (China) and started spreading throughout Asia and the western Palearctic in 2004-2006. Compared to several other countries where the HPAI H5N1 distribution has been studied in some detail, little is known about the environmental correlates of the HPAI H5N1 distribution in China. HPAI H5N1 clinical disease outbreaks, and HPAI virus (HPAIV) H5N1 isolated from active risk-based surveillance sampling of domestic poultry (referred to as HPAIV H5N1 surveillance positives in this manuscript) were modeled separately using seven risk variables: chicken, domestic waterfowl population density, proportion of land covered by rice or surface water, cropping intensity, elevation, and human population density. We used bootstrapped logistic regression and boosted regression trees (BRT) with cross-validation to identify the weight of each variable, to assess the predictive power of the models, and to map the distribution of HPAI H5N1 risk. HPAI H5N1 clinical disease outbreak occurrence in domestic poultry was mainly associated with chicken density, human population density, and elevation. In contrast, HPAIV H5N1 infection identified by risk-based surveillance was associated with domestic waterfowl density, human population density, and the proportion of land covered by surface water. Both models had a high explanatory power (mean AUC ranging from 0.864 to 0.967). The map of HPAIV H5N1 risk distribution based on active surveillance data emphasized areas south of the Yangtze River, while the distribution of reported outbreak risk extended further North, where the density of poultry and humans is higher. We quantified the statistical association between HPAI H5N1 outbreak, HPAIV distribution and post-vaccination levels of seropositivity (percentage of effective post-vaccination seroconversion in vaccinated birds) and found that provinces with either outbreaks or HPAIV H5N1 surveillance

  13. Spatial Distribution and Risk Factors of Highly Pathogenic Avian Influenza (HPAI) H5N1 in China

    PubMed Central

    Martin, Vincent; Pfeiffer, Dirk U.; Zhou, Xiaoyan; Xiao, Xiangming; Prosser, Diann J.; Guo, Fusheng; Gilbert, Marius

    2011-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 was first encountered in 1996 in Guangdong province (China) and started spreading throughout Asia and the western Palearctic in 2004–2006. Compared to several other countries where the HPAI H5N1 distribution has been studied in some detail, little is known about the environmental correlates of the HPAI H5N1 distribution in China. HPAI H5N1 clinical disease outbreaks, and HPAI virus (HPAIV) H5N1 isolated from active risk-based surveillance sampling of domestic poultry (referred to as HPAIV H5N1 surveillance positives in this manuscript) were modeled separately using seven risk variables: chicken, domestic waterfowl population density, proportion of land covered by rice or surface water, cropping intensity, elevation, and human population density. We used bootstrapped logistic regression and boosted regression trees (BRT) with cross-validation to identify the weight of each variable, to assess the predictive power of the models, and to map the distribution of HPAI H5N1 risk. HPAI H5N1 clinical disease outbreak occurrence in domestic poultry was mainly associated with chicken density, human population density, and elevation. In contrast, HPAIV H5N1 infection identified by risk-based surveillance was associated with domestic waterfowl density, human population density, and the proportion of land covered by surface water. Both models had a high explanatory power (mean AUC ranging from 0.864 to 0.967). The map of HPAIV H5N1 risk distribution based on active surveillance data emphasized areas south of the Yangtze River, while the distribution of reported outbreak risk extended further North, where the density of poultry and humans is higher. We quantified the statistical association between HPAI H5N1 outbreak, HPAIV distribution and post-vaccination levels of seropositivity (percentage of effective post-vaccination seroconversion in vaccinated birds) and found that provinces with either outbreaks or HPAIV H5N1 surveillance

  14. Low Virulence and Lack of Airborne Transmission of the Dutch Highly Pathogenic Avian Influenza Virus H5N8 in Ferrets

    PubMed Central

    van den Brand, Judith M. A.; Lexmond, Pascal; Bestebroer, Theo M.; Rimmelzwaan, Guus F.; Koopmans, Marion; Kuiken, Thijs; Fouchier, Ron A. M.

    2015-01-01

    Highly pathogenic avian influenza (HPAI) H5N8 viruses that emerged in poultry in East Asia spread to Europe and North America by late 2014. Here we show that the European HPAI H5N8 viruses differ from the Korean and Japanese HPAI H5N8 viruses by several amino acids and that a Dutch HPAI H5N8 virus had low virulence and was not transmitted via the airborne route in ferrets. The virus did not cross-react with sera raised against pre-pandemic H5 vaccine strains. This data is useful for public health risk assessments. PMID:26090682

  15. Suboptimal protection against H5N1 highly pathogenic avian influenza viruses from Vietnam in ducks vaccinated with commercial poultry vaccines

    USDA-ARS?s Scientific Manuscript database

    Highly pathogenic (HP) H5N1 avian influenza (AI) viruses continue to circulate in Asia and other regions of the world. Vaccination is used as part of H5N1 HPAI control programs in many countries; however, eradication of the disease has not been possible due to the emergence and spread of new viruses...

  16. Characterizing wild bird contact and seropositivity to highly pathogenic avian influenza A (H5N1) virus in Alaskan residents

    PubMed Central

    Reed, Carrie; Bruden, Dana; Byrd, Kathy K; Veguilla, Vic; Bruce, Michael; Hurlburt, Debby; Wang, David; Holiday, Crystal; Hancock, Kathy; Ortiz, Justin R; Klejka, Joe; Katz, Jacqueline M; Uyeki, Timothy M

    2014-01-01

    Background Highly pathogenic avian influenza A (HPAI) H5N1 viruses have infected poultry and wild birds on three continents with more than 600 reported human cases (59% mortality) since 2003. Wild aquatic birds are the natural reservoir for avian influenza A viruses, and migratory birds have been documented with HPAI H5N1 virus infection. Since 2005, clade 2.2 HPAI H5N1 viruses have spread from Asia to many countries. Objectives We conducted a cross-sectional seroepidemiological survey in Anchorage and western Alaska to identify possible behaviors associated with migratory bird exposure and measure seropositivity to HPAI H5N1. Methods We enrolled rural subsistence bird hunters and their families, urban sport hunters, wildlife biologists, and a comparison group without bird contact. We interviewed participants regarding their exposures to wild birds and collected blood to perform serologic testing for antibodies against a clade 2.2 HPAI H5N1 virus strain. Results Hunters and wildlife biologists reported exposures to wild migratory birds that may confer risk of infection with avian influenza A viruses, although none of the 916 participants had evidence of seropositivity to HPAI H5N1. Conclusions We characterized wild bird contact among Alaskans and behaviors that may influence risk of infection with avian influenza A viruses. Such knowledge can inform surveillance and risk communication surrounding HPAI H5N1 and other influenza viruses in a population with exposure to wild birds at a crossroads of intercontinental migratory flyways. PMID:24828535

  17. Characterizing wild bird contact and seropositivity to highly pathogenic avian influenza A (H5N1) virus in Alaskan residents.

    PubMed

    Reed, Carrie; Bruden, Dana; Byrd, Kathy K; Veguilla, Vic; Bruce, Michael; Hurlburt, Debby; Wang, David; Holiday, Crystal; Hancock, Kathy; Ortiz, Justin R; Klejka, Joe; Katz, Jacqueline M; Uyeki, Timothy M

    2014-09-01

    Highly pathogenic avian influenza A (HPAI) H5N1 viruses have infected poultry and wild birds on three continents with more than 600 reported human cases (59% mortality) since 2003. Wild aquatic birds are the natural reservoir for avian influenza A viruses, and migratory birds have been documented with HPAI H5N1 virus infection. Since 2005, clade 2.2 HPAI H5N1 viruses have spread from Asia to many countries. We conducted a cross-sectional seroepidemiological survey in Anchorage and western Alaska to identify possible behaviors associated with migratory bird exposure and measure seropositivity to HPAI H5N1. We enrolled rural subsistence bird hunters and their families, urban sport hunters, wildlife biologists, and a comparison group without bird contact. We interviewed participants regarding their exposures to wild birds and collected blood to perform serologic testing for antibodies against a clade 2.2 HPAI H5N1 virus strain. Hunters and wildlife biologists reported exposures to wild migratory birds that may confer risk of infection with avian influenza A viruses, although none of the 916 participants had evidence of seropositivity to HPAI H5N1. We characterized wild bird contact among Alaskans and behaviors that may influence risk of infection with avian influenza A viruses. Such knowledge can inform surveillance and risk communication surrounding HPAI H5N1 and other influenza viruses in a population with exposure to wild birds at a crossroads of intercontinental migratory flyways. © 2014 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  18. Highly pathogenic influenza A(H5N1) virus survival in complex artificial aquatic biotopes.

    PubMed

    Horm, Viseth Srey; Gutiérrez, Ramona A; Nicholls, John M; Buchy, Philippe

    2012-01-01

    Very little is known regarding the persistence of Highly Pathogenic Avian Influenza (HPAI) H5N1 viruses in aquatic environments in tropical countries, although environmental materials have been suggested to play a role as reservoirs and sources of transmission for H5N1 viruses. The survival of HPAI H5N1 viruses in experimental aquatic biotopes (water, mud, aquatic flora and fauna) relevant to field conditions in Cambodia was investigated. Artificial aquatic biotopes, including simple ones containing only mud and water, and complex biotopes involving the presence of aquatic flora and fauna, were set up. They were experimentally contaminated with H5N1 virus. The persistence of HPAI H5N1 virus (local avian and human isolates) was determined by virus isolation in embryonated chicken eggs and by real-time reverse-polymerase chain reaction. Persistence of infectious virus did not exceed 4 days, and was only identified in rain water. No infectious virus particles were detected in pond and lake water or mud even when high inoculum doses were used. However, viral RNA persisted up to 20 days in rain water and 7 days in pond or lake water. Viral RNA was also detected in mud samples, up to 14 days post-contamination in several cases. Infectious virus and viral RNA was detected in few cases in the aquatic fauna and flora, especially in bivalves and labyrinth fish, although these organisms seemed to be mostly passive carriers of the virus rather than host allowing virus replication. Although several factors for the survival and persistence of HPAI viruses in the environment are still to be elucidated, and are particularly hard to control in laboratory conditions, our results, along with previous data, support the idea that environmental surveillance is of major relevance for avian influenza control programs.

  19. Highly Pathogenic Influenza A(H5N1) Virus Survival in Complex Artificial Aquatic Biotopes

    PubMed Central

    Horm, Viseth Srey; Gutiérrez, Ramona A.; Nicholls, John M.; Buchy, Philippe

    2012-01-01

    Background Very little is known regarding the persistence of Highly Pathogenic Avian Influenza (HPAI) H5N1 viruses in aquatic environments in tropical countries, although environmental materials have been suggested to play a role as reservoirs and sources of transmission for H5N1 viruses. Methodology/Principal Findings The survival of HPAI H5N1 viruses in experimental aquatic biotopes (water, mud, aquatic flora and fauna) relevant to field conditions in Cambodia was investigated. Artificial aquatic biotopes, including simple ones containing only mud and water, and complex biotopes involving the presence of aquatic flora and fauna, were set up. They were experimentally contaminated with H5N1 virus. The persistence of HPAI H5N1 virus (local avian and human isolates) was determined by virus isolation in embryonated chicken eggs and by real-time reverse-polymerase chain reaction. Persistence of infectious virus did not exceed 4 days, and was only identified in rain water. No infectious virus particles were detected in pond and lake water or mud even when high inoculum doses were used. However, viral RNA persisted up to 20 days in rain water and 7 days in pond or lake water. Viral RNA was also detected in mud samples, up to 14 days post-contamination in several cases. Infectious virus and viral RNA was detected in few cases in the aquatic fauna and flora, especially in bivalves and labyrinth fish, although these organisms seemed to be mostly passive carriers of the virus rather than host allowing virus replication. Conclusions/Significance Although several factors for the survival and persistence of HPAI viruses in the environment are still to be elucidated, and are particularly hard to control in laboratory conditions, our results, along with previous data, support the idea that environmental surveillance is of major relevance for avian influenza control programs. PMID:22514622

  20. The Continuing Evolution of H5N1 and H9N2 Influenza Viruses in Bangladesh

    PubMed Central

    Marinova-Petkova, Atanaska; Shanmuganatham, Karthik; Feeroz, Mohammed M.; Jones-Engel, Lisa; Hassan, M. Kamrul; Akhtar, Sharmin; Turner, Jasmine; Walker, David; Seiler, Patrick; Franks, John; McKenzie, Pamela; Krauss, Scott; Webby, Richard J.; Webster, Robert G.

    2017-01-01

    Summary In 2011, avian influenza surveillance at the Bangladesh live bird markets (LBMs) showed complete replacement of the highly pathogenic avian influenza (HPAI) H5N1 virus of clade 2.2.2 (Qinghai-like H5N1 lineage) by the HPAI H5N1 clade 2.3.2.1. This clade, which continues to circulate in Bangladesh and neighboring countries, is an intra- and inter-clade reassortant; its HA, PB1, PA and NS genes come from subclade 2.3.2.1a; PB2 from subclade 2.3.2.1c; and NA, NP, and M from clade 2.3.4.2. The H9N2 influenza viruses co-circulating in the Bangladesh LBMs are also reassortants, possessing five genes (NS, M, NP, PA, and PB1) from a HPAI H7N3 virus previously isolated in Pakistan. Despite frequent co-infection of chickens and ducks, reassortment between these H5N1 and H9N2 viruses has been rare. However, all such reassortants detected in 2011 through 2013 have carried 7 genes from HPAI H5N1 clade 2.3.2.1a and the PB1 gene from the Bangladeshi H9N2 clade G1 Mideast, itself derived from HPAI H7N3 virus. Although, the live birds which we sampled in Bangladesh showed no clinical signs of morbidity, the emergence of this reassortant HPAI H5N1 lineage further complicates endemic circulation of H5N1 viruses in Bangladesh, posing a threat to both poultry and humans. PMID:27309046

  1. Epidemiological consequences of an incursion of highly pathogenic H5N1 avian influenza into the British poultry flock

    PubMed Central

    Sharkey, Kieran J; Bowers, Roger G; Morgan, Kenton L; Robinson, Susan E; Christley, Robert M

    2007-01-01

    Highly pathogenic avian influenza and in particular the H5N1 strain has resulted in the culling of millions of birds and continues to pose a threat to poultry industries worldwide. The recent outbreak of H5N1 in the UK highlights the need for detailed assessment of the consequences of an incursion and of the efficacy of control strategies. Here, we present results from a model of H5N1 propagation within the British poultry industry. We find that although the majority of randomly seeded incursions do not spread beyond the initial infected premises, there is significant potential for widespread infection. The efficacy of the European Union strategy for disease control is evaluated and our simulations emphasize the pivotal role of duck farms in spreading H5N1. PMID:17956849

  2. Modeling and roles of meteorological factors in outbreaks of highly pathogenic avian influenza H5N1.

    PubMed

    Biswas, Paritosh K; Islam, Md Zohorul; Debnath, Nitish C; Yamage, Mat

    2014-01-01

    The highly pathogenic avian influenza A virus subtype H5N1 (HPAI H5N1) is a deadly zoonotic pathogen. Its persistence in poultry in several countries is a potential threat: a mutant or genetically reassorted progenitor might cause a human pandemic. Its world-wide eradication from poultry is important to protect public health. The global trend of outbreaks of influenza attributable to HPAI H5N1 shows a clear seasonality. Meteorological factors might be associated with such trend but have not been studied. For the first time, we analyze the role of meteorological factors in the occurrences of HPAI outbreaks in Bangladesh. We employed autoregressive integrated moving average (ARIMA) and multiplicative seasonal autoregressive integrated moving average (SARIMA) to assess the roles of different meteorological factors in outbreaks of HPAI. Outbreaks were modeled best when multiplicative seasonality was incorporated. Incorporation of any meteorological variable(s) as inputs did not improve the performance of any multivariable models, but relative humidity (RH) was a significant covariate in several ARIMA and SARIMA models with different autoregressive and moving average orders. The variable cloud cover was also a significant covariate in two SARIMA models, but air temperature along with RH might be a predictor when moving average (MA) order at lag 1 month is considered.

  3. Challenges for accurate and prompt molecular diagnosis of clades of highly pathogenic avian influenza H5N1 viruses emerging in Vietnam.

    PubMed

    Slomka, Marek J; To, Thanh L; Tong, Hien H; Coward, Vivien J; Hanna, Amanda; Shell, Wendy; Pavlidis, Theo; Densham, Anstice L E; Kargiolakis, Georgios; Arnold, Mark E; Banks, Jill; Brown, Ian H

    2012-01-01

    Forty-six chickens and 48 ducks were sampled from four Vietnamese poultry premises in 2009 infected with H5N1 highly pathogenic avian influenza (HPAI) clade 2.3.2 and 2.3.4 viruses, which also differed by cleavage site (CS) sequences in their haemagglutinin (HA) genes. All clinical specimens (n=282), namely tracheal and cloacal swabs plus feathers, were tested by five Eurasian reverse-transcriptase AI RealTime polymerase chain reaction (RRT-PCR) methods. Bayesian modelling showed similar high sensitivity for the validated H5 HA2 RRT-PCR and a new modified M-gene RRT-PCR that utilizes lyophilized reagents. Both were more sensitive than the validated "wet" M-gene RRT-PCR. Another RRT-PCR, which targeted the H5-gene CS region, was effective for clade 2.3.4 detection, but severely compromised for clade 2.3.2 viruses. Reduced sensitivity of the H5 CS and "wet" M-gene RRT-PCRs correlated with mismatches between the target and the primer and/or probe sequences. However, the H5 HA2 RRT-PCR sensitively detected both clade 2.3.2 and 2.3.4 viruses, and agreed with N1 RRT-PCR results. Feather testing from diseased chicken and duck flocks by AI RRT-PCRs resulted in the most sensitive identification of H5N1 HPAI-infected birds. Evolution of new H5N1 HPAI clades remains a concern for currently affected Asian countries, but also for more distant regions where it is important to be prepared for new incursions of H5N1 HPAI viruses. Genetic evidence for adamantane resistance and sensitivity was also observed in isolates from both clades.

  4. Genetic and phylogenetic characterizations of a novel genotype of highly pathogenic avian influenza (HPAI) H5N8 viruses in 2016/2017 in South Korea.

    PubMed

    Kim, Young-Il; Park, Su-Jin; Kwon, Hyeok-Il; Kim, Eun-Ha; Si, Young-Jae; Jeong, Ju-Hwan; Lee, In-Won; Nguyen, Hiep Dinh; Kwon, Jin-Jung; Choi, Won Suk; Song, Min-Suk; Kim, Chul-Joong; Choi, Young-Ki

    2017-09-01

    During the outbreaks of highly pathogenic avian influenza (HPAI) H5N6 viruses in 2016 in South Korea, novel H5N8 viruses were also isolated from migratory birds. Phylogenetic analysis revealed that the HA gene of these H5N8 viruses belonged to clade 2.3.4.4, similarly to recent H5Nx viruses, and originated from A/Brk/Korea/Gochang1/14(H5N8), a minor lineage of H5N8 that appeared in 2014 and then disappeared. At least four reassortment events occurred with different subtypes (H5N8, H7N7, H3N8 and H10N7) and a chicken challenge study revealed that they were classified as HPAI viruses according to OIE criteria. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Immunity to current H5 highly pathogenic avian influenza viruses: From vaccines to adaptive immunity in wild birds

    USDA-ARS?s Scientific Manuscript database

    Following the 2014-2015 outbreaks of H5N2 and H5N8 highly pathogenic avian influenza (HPAI) in the U.S., studies were performed to assess the immunity required for protection against future outbreaks should they occur. We assessed the ability of vaccines to induce protection of chickens and turkeys...

  6. Persistence of highly pathogenic avian influenza H5N1 virus defined by agro-ecological niche

    USGS Publications Warehouse

    Hogerwerf, Lenny; Wallace, Rob G.; Ottaviani, Daniela; Slingenbergh, Jan; Prosser, Diann; Bergmann, Luc; Gilbert, Marius

    2010-01-01

    The highly pathogenic avian influenza (HPAI) H5N1 virus has spread across Eurasia and into Africa. Its persistence in a number of countries continues to disrupt poultry production, impairs smallholder livelihoods, and raises the risk a genotype adapted to human-to-human transmission may emerge. While previous studies identified domestic duck reservoirs as a primary risk factor associated with HPAI H5N1 persistence in poultry in Southeast Asia, little is known of such factors in countries with different agro-ecological conditions, and no study has investigated the impact of such conditions on HPAI H5N1 epidemiology at the global scale. This study explores the patterns of HPAI H5N1 persistence worldwide, and for China, Indonesia, and India includes individual provinces that have reported HPAI H5N1 presence during the 2004–2008 period. Multivariate analysis of a set of 14 agricultural, environmental, climatic, and socio-economic factors demonstrates in quantitative terms that a combination of six variables discriminates the areas with human cases and persistence: agricultural population density, duck density, duck by chicken density, chicken density, the product of agricultural population density and chicken output/input ratio, and purchasing power per capita. The analysis identifies five agro-ecological clusters, or niches, representing varying degrees of disease persistence. The agro-ecological distances of all study areas to the medoid of the niche with the greatest number of human cases are used to map HPAI H5N1 risk globally. The results indicate that few countries remain where HPAI H5N1 would likely persist should it be introduced.

  7. [A retrospective study of one case of human infection by the highly pathogenic avian influenza A (H5N1)].

    PubMed

    Zhou, Chao; Fang, Ping; Liu, You-ning; Hu, Bin; Ding, Hong-mei; Xu, Xiao-ling; Wu, Hao; Wang, Jin; Lin, Lin; Pan, Hua; Wu, Tong-sheng; Song, You-liang

    2006-01-01

    To describe the clinical features of the infection caused by the highly pathogenic avian influenza A (H(5)N(1)). A previously healthy 24 year old woman presented to our hospital on November 7, 2005. She was confirmed to be an H(5)N(1) infected case after death. The clinical, radiological and epidemiological data were analyzed. The patient had a history of direct contact with diseased and dead poultry (chicken and duck). The disease course was 10 days from onset of illness to death, and fever preceded dyspnea by 5 days. On admission, the striking characteristics were acute community-acquired pneumonia (CAP) and acute respiratory distress syndrome (ARDS), and the major radiographic abnormalities included extensive infiltration bilaterally, focal consolidation and air bronchograms. The radiographic and clinical deterioration was rapid, and the patient died in less than 3 days after hospitalization. The diagnosis of influenza A (H(5)N(1)) was confirmed by means of reverse transcriptase-polymerase chain reaction (RT-PCR) and real-time PCR on specimens of the lower respiratory tract, performed by Chinese Center for Disease Control. The postmortem examination showed bronchial hyperemia, extensive consolidation, serous cavity effusions, disseminated intravascular coagulation (DIC) and multiple organ failure (MOF). Human infection by the highly pathogenic avian influenza A (H(5)N(1)) is a fatal communicable disease. Information of avian influenza A (H(5)N(1)) virus, more attention to the epidemiologic data, and early intervention are critical in reducing the mortality.

  8. Pathobiology of highly pathogenic avian influenza virus (H5N1) infection in mute swans (Cygnus olor).

    PubMed

    Pálmai, Nimród; Erdélyi, Károly; Bálint, Adám; Márton, Lázár; Dán, Adám; Deim, Zoltán; Ursu, Krisztina; Löndt, Brandon Z; Brown, Ian H; Glávits, Róbert

    2007-06-01

    The results of pathological, virological and polymerase chain reaction examinations carried out on 35 mute swans (Cygnus olor) that succumbed to a highly pathogenic avian influenza virus (H5N1) infection during an outbreak in Southern Hungary are reported. The most frequently observed macroscopic lesions included: haemorrhages under the epicardium, in the proventricular and duodenal mucosa and pancreas; focal necrosis in the pancreas; myocardial degeneration; acute mucous enteritis; congestion of the spleen and lung, and the accumulation of sero-mucinous exudate in the body cavity. Histopathological lesions comprised: lymphocytic meningo-encephalomyelitis accompanied by gliosis and occasional perivascular haemorrhages; multi-focal myocardial necrosis with lympho-histiocytic infiltration; pancreatitis with focal necrosis; acute desquamative mucous enteritis; lung congestion and oedema; oedema of the tracheal mucosa and, in young birds, the atrophy of the bursa of Fabricius as a result of lymphocyte depletion and apoptosis. The observed lesions and the moderate to good body conditions were compatible with findings in acute highly pathogenic avian influenza infections of other bird species reported in the literature. Skin lesions and lesions typical for infections caused by strains of lower pathogenicity (low pathogenic avian influenza virus) such as emaciation or fibrinous changes in the reproductive and respiratory organs, sinuses and airsacs were not observed. The H5N1 subtype avian influenza virus was isolated in embryonated fowl eggs from all cases and it was identified by classical and molecular virological methods.

  9. Mapping H5N1 highly pathogenic avian influenza risk in Southeast Asia

    PubMed Central

    Gilbert, Marius; Xiao, Xiangming; Pfeiffer, Dirk U.; Epprecht, M.; Boles, Stephen; Czarnecki, Christina; Chaitaweesub, Prasit; Kalpravidh, Wantanee; Minh, Phan Q.; Otte, M. J.; Martin, Vincent; Slingenbergh, Jan

    2008-01-01

    The highly pathogenic avian influenza (HPAI) H5N1 virus that emerged in southern China in the mid-1990s has in recent years evolved into the first HPAI panzootic. In many countries where the virus was detected, the virus was successfully controlled, whereas other countries face periodic reoccurrence despite significant control efforts. A central question is to understand the factors favoring the continuing reoccurrence of the virus. The abundance of domestic ducks, in particular free-grazing ducks feeding in intensive rice cropping areas, has been identified as one such risk factor based on separate studies carried out in Thailand and Vietnam. In addition, recent extensive progress was made in the spatial prediction of rice cropping intensity obtained through satellite imagery processing. This article analyses the statistical association between the recorded HPAI H5N1 virus presence and a set of five key environmental variables comprising elevation, human population, chicken numbers, duck numbers, and rice cropping intensity for three synchronous epidemic waves in Thailand and Vietnam. A consistent pattern emerges suggesting risk to be associated with duck abundance, human population, and rice cropping intensity in contrast to a relatively low association with chicken numbers. A statistical risk model based on the second epidemic wave data in Thailand is found to maintain its predictive power when extrapolated to Vietnam, which supports its application to other countries with similar agro-ecological conditions such as Laos or Cambodia. The model's potential application to mapping HPAI H5N1 disease risk in Indonesia is discussed. PMID:18362346

  10. Duck MDA5 functions in innate immunity against H5N1 highly pathogenic avian influenza virus infections

    PubMed Central

    2014-01-01

    Melanoma differentiation-associated gene 5 (MDA5) is an important intracellular receptor that recognizes long molecules of viral double-stranded RNA in innate immunity. To understand the mechanism of duck MDA5-mediated innate immunity, we cloned the MDA5 cDNA from the Muscovy duck (Cairina moschata). Quantitative real-time PCR analysis indicates that duck MDA5 mRNA was constitutively expressed in all sampled tissues. A significant increase of MDA5 mRNA was detected in the brain, spleen and lungs of ducks after infection with an H5N1 highly pathogenic avian influenza virus (HPAIV). We investigated the role of the predicted functional domains of MDA5. The results indicate the caspase activation and recruitment domain (CARD) of duck MDA5 had a signal transmission function through IRF-7-dependent signaling pathway. Overexpression of the CARD strongly activated the chicken IFN-β promoter and upregulated the mRNA expression of antiviral molecules (such as OAS, PKR and Mx), proinflammatory cytokines (such as IL-2, IL-6, IFN-α and IFN-γ, but not IL-1β and IL-8) and retinoic acid-inducible gene I (RIG-I)-like receptors (RLR) (RIG-I and LGP2) without exogenous stimulation. We also demonstrate the NS1 of the H5N1 HPAIV inhibited the duck MDA5-mediated signaling pathway in vitro. These results suggest that duck MDA5 is an important receptor for inducing antiviral activity in the host immune response of ducks. PMID:24939427

  11. Genetic characterization of highly pathogenic avian influenza H5N1 viruses isolated from naturally infected pigeons in Egypt.

    PubMed

    Elgendy, Emad Mohamed; Watanabe, Yohei; Daidoji, Tomo; Arai, Yasuha; Ikuta, Kazuyoshi; Ibrahim, Madiha Salah; Nakaya, Takaaki

    2016-12-01

    Avian influenza viruses impose serious public health burdens with significant mortality and morbidity not only in poultry but also in humans. While poultry susceptibility to avian influenza virus infection is well characterized, pigeons have been thought to have low susceptibility to these viruses. However, recent studies reported natural pigeon infections with highly pathogenic avian influenza H5N1 viruses. In Egypt, which is one of the H5N1 endemic areas for birds, pigeons are raised in towers built on farms in backyards and on house roofs, providing a potential risk for virus transmission from pigeons to humans. In this study, we performed genetic analysis of two H5N1 virus strains that were isolated from naturally infected pigeons in Egypt. Genetic and phylogenetic analyses showed that these viruses originated from Egyptian H5N1 viruses that were circulating in chickens or ducks. Several unique mutations, not reported before in any Egyptian isolates, were detected in the internal genes (i.e., polymerase residues PB1-V3D, PB1-K363R, PA-A369V, and PA-V602I; nucleoprotein residue NP-R38K; and nonstructural protein residues NS1-D120N and NS2-F55C). Our findings suggested that pigeons are naturally infected with H5N1 virus and can be a potential reservoir for transmission to humans, and showed the importance of genetic analysis of H5N1 internal genes.

  12. Protection of commercial turkeys following inactivated or recombinant H5 vaccine application against the 2015 U.S. H5N2 clade 2.3.4.4 highly pathogenic avian influenza virus

    USDA-ARS?s Scientific Manuscript database

    Between December 2014 and June 2015, North America experienced the largest recorded foreign animal disease outbreak with over 47 million poultry dead or euthanized from viral exposure to a clade 2.3.4.4 H5 highly pathogenic avian influenza (HPAI) epizootic. Soon after the epizootic began, the U.S. D...

  13. Highly pathogenic avian influenza A(H7N9) virus, Tennessee, USA, March 2017

    USDA-ARS?s Scientific Manuscript database

    In March 2017, highly pathogenic avian influenza A(H7N9) was detected at 2 poultry farms in Tennessee, USA. Surveillance data and genetic analyses indicated multiple introductions of low pathogenicity avian influenza virus before mutation to high pathogenicity and interfarm transmission. Poultry sur...

  14. Emergence and spread of highly pathogenic avian influenza A(H5N8) in Europe in 2016-2017.

    PubMed

    Napp, S; Majó, N; Sánchez-Gónzalez, R; Vergara-Alert, J

    2018-03-14

    Circulation of highly pathogenic avian influenza (HPAI) viruses poses a continuous threat to animal and public health. After the 2005-2006 H5N1 and the 2014-2015 H5N8 epidemics, another H5N8 is currently affecting Europe. Up to August 2017, 1,112 outbreaks in domestic and 955 in wild birds in 30 European countries have been reported, the largest epidemic by a HPAI virus in the continent. Here, the main epidemiological findings are described. While some similarities with previous HPAI virus epidemics were observed, for example in the pattern of emergence, significant differences were also patent, in particular the size and extent of the epidemic. Even though no human infections have been reported to date, the fact that A/H5N8 has affected so far 1,112 domestic holdings, increases the risk of exposure of humans and therefore represents a concern. Understanding the epidemiology of HPAI viruses is essential for the planning future surveillance and control activities. © 2018 The Authors. Transboundary and Emerging Diseases Published by Blackwell Verlag GmbH.

  15. Deaths among Wild Birds during Highly Pathogenic Avian Influenza A(H5N8) Virus Outbreak, the Netherlands.

    PubMed

    Kleyheeg, Erik; Slaterus, Roy; Bodewes, Rogier; Rijks, Jolianne M; Spierenburg, Marcel A H; Beerens, Nancy; Kelder, Leon; Poen, Marjolein J; Stegeman, Jan A; Fouchier, Ron A M; Kuiken, Thijs; van der Jeugd, Henk P

    2017-12-01

    During autumn-winter 2016-2017, highly pathogenic avian influenza A(H5N8) viruses caused mass die-offs among wild birds in the Netherlands. Among the ≈13,600 birds reported dead, most were tufted ducks (Aythya fuligula) and Eurasian wigeons (Anas penelope). Recurrence of avian influenza outbreaks might alter wild bird population dynamics.

  16. Multiple introductions of a reassortant H5N1 avian influenza virus of clade 2.3.2.1c with PB2 gene of H9N2 subtype into Indian poultry.

    PubMed

    Tosh, Chakradhar; Nagarajan, Shanmugasundaram; Kumar, Manoj; Murugkar, Harshad V; Venkatesh, Govindarajulu; Shukla, Shweta; Mishra, Amit; Mishra, Pranav; Agarwal, Sonam; Singh, Bharati; Dubey, Prashant; Tripathi, Sushil; Kulkarni, Diwakar D

    2016-09-01

    Highly pathogenic avian influenza (HPAI) H5N1 viruses are a threat to poultry in Asia, Europe, Africa and North America. Here, we report isolation and characterization of H5N1 viruses isolated from ducks and turkeys in Kerala, Chandigarh and Uttar Pradesh, India between November 2014 and March 2015. Genetic and phylogenetic analyses of haemagglutinin gene identified that the virus belonged to a new clade 2.3.2.1c which has not been detected earlier in Indian poultry. The virus possessed molecular signature for high pathogenicity to chickens, which was corroborated by intravenous pathogenicity index of 2.96. The virus was a reassortant which derives its PB2 gene from H9N2 virus isolated in China during 2007-2013. However, the neuraminidase and internal genes are of H5N1 subtype. Phylogenetic and network analysis revealed that after detection in China in 2013/2014, the virus moved to Europe, West Africa and other Asian countries including India. The analyses further indicated multiple introductions of H5N1 virus in Indian poultry and internal spread in Kerala. One of the outbreaks in ducks in Kerala is linked to the H5N1 virus isolated from wild birds in Dubai suggesting movement of virus probably through migration of wild birds. However, the outbreaks in ducks in Chandigarh and Uttar Pradesh were from an unknown source in Asia which also contributed gene pools to the outbreaks in Europe and West Africa. The widespread incidence of the novel H5N1 HPAI is similar to the spread of clade 2.2 ("Qinghai-like") virus in 2005, and should be monitored to avoid threat to animal and public health. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Experimental infection with highly pathogenic H5N8 avian influenza viruses in the Mandarin duck (Aix galericulata) and domestic pigeon (Columba livia domestica).

    PubMed

    Kwon, Jung-Hoon; Noh, Yun Kyung; Lee, Dong-Hun; Yuk, Seong-Su; Erdene-Ochir, Tseren-Ochir; Noh, Jin-Yong; Hong, Woo-Tack; Jeong, Jei-Hyun; Jeong, Sol; Gwon, Gyeong-Bin; Song, Chang-Seon; Nahm, Sang-Soep

    2017-05-01

    Wild birds play a major role in the evolution, maintenance, and dissemination of highly pathogenic avian influenza viruses (HPAIV). Sub-clinical infection with HPAI in resident wild birds could be a source of dissemination of HPAIV and continuous outbreaks. In this study, the pathogenicity and infectivity of two strains of H5N8 clade 2.3.4.4 virus were evaluated in the Mandarin duck (Aix galericulata) and domestic pigeon (Columba livia domestica). None of the birds experimentally infected with H5N8 viruses showed clinical signs or mortality. The H5N8 viruses efficiently replicated in the virus-inoculated Mandarin ducks and transmitted to co-housed Mandarin ducks. Although relatively high levels of viral shedding were noted in pigeons, viral shedding was not detected in some of the pigeons and the shedding period was relatively short. Furthermore, the infection was not transmitted to co-housed pigeons. Immunohistochemical examination revealed the presence of HPAIV in multiple organs of the infected birds. Histopathological evaluation showed the presence of inflammatory responses primarily in HPAIV-positive organs. Our results indicate that Mandarin ducks and pigeons can be infected with H5N8 HPAIV without exhibiting clinical signs; thus, they may be potential healthy reservoirs of the H5N8 HPAIV. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Highly Pathogenic Avian Influenza A(H5N8) Viruses Reintroduced into South Korea by Migratory Waterfowl, 2014-2015.

    PubMed

    Kwon, Jung-Hoon; Lee, Dong-Hun; Swayne, David E; Noh, Jin-Yong; Yuk, Seong-Su; Erdene-Ochir, Tseren-Ochir; Hong, Woo-Tack; Jeong, Jei-Hyun; Jeong, Sol; Gwon, Gyeong-Bin; Song, Chang-Seon

    2016-03-01

    Highly pathogenic avian influenza A(H5N8) viruses were isolated from migratory waterfowl in South Korea during fall 2014-winter 2015, a recurrence after initial introduction in winter 2014. These reappeared viruses were phylogenetically distinct from isolates circulating in poultry farms in South Korea.

  19. Molecular pathogenesis of H5 highly pathogenic avian influenza: the role of the haemagglutinin cleavage site motif

    PubMed Central

    Luczo, Jasmina M.; Stambas, John; Durr, Peter A.; Michalski, Wojtek P.

    2015-01-01

    Summary The emergence of H5N1 highly pathogenic avian influenza has caused a heavy socio‐economic burden through culling of poultry to minimise human and livestock infection. Although human infections with H5N1 have to date been limited, concerns for the pandemic potential of this zoonotic virus have been greatly intensified following experimental evidence of aerosol transmission of H5N1 viruses in a mammalian infection model. In this review, we discuss the dominance of the haemagglutinin cleavage site motif as a pathogenicity determinant, the host‐pathogen molecular interactions driving cleavage activation, reverse genetics manipulations and identification of residues key to haemagglutinin cleavage site functionality and the mechanisms of cell and tissue damage during H5N1 infection. We specifically focus on the disease in chickens, as it is in this species that high pathogenicity frequently evolves and from which transmission to the human population occurs. With >75% of emerging infectious diseases being of zoonotic origin, it is necessary to understand pathogenesis in the primary host to explain spillover events into the human population. © 2015 The Authors. Reviews in Medical Virology published by John Wiley & Sons Ltd. PMID:26467906

  20. A novel hemagglutinin protein produced in bacteria protects chickens against H5N1 highly pathogenic avian influenza viruses by inducing H5 subtype-specific neutralizing antibodies

    PubMed Central

    Sączyńska, Violetta; Romanik, Agnieszka; Florys, Katarzyna; Cecuda-Adamczewska, Violetta; Kęsik-Brodacka, Małgorzata; Śmietanka, Krzysztof; Olszewska, Monika; Domańska-Blicharz, Katarzyna; Minta, Zenon; Szewczyk, Bogusław; Płucienniczak, Grażyna; Płucienniczak, Andrzej

    2017-01-01

    The highly pathogenic (HP) H5N1 avian influenza viruses (AIVs) cause a mortality rate of up to 100% in infected chickens and pose a permanent pandemic threat. Attempts to obtain effective vaccines against H5N1 HPAIVs have focused on hemagglutinin (HA), an immunodominant viral antigen capable of eliciting neutralizing antibodies. The vast majority of vaccine projects have been performed using eukaryotic expression systems. In contrast, we used a bacterial expression system to produce vaccine HA protein (bacterial HA) according to our own design. The HA protein with the sequence of the H5N1 HPAIV strain was efficiently expressed in Escherichia coli, recovered in the form of inclusion bodies and refolded by dilution between two chromatographic purification steps. Antigenicity studies showed that the resulting antigen, referred to as rH5-E. coli, preserves conformational epitopes targeted by antibodies specific for H5-subtype HAs, inhibiting hemagglutination and/or neutralizing influenza viruses in vitro. The proper conformation of this protein and its ability to form functional oligomers were confirmed by a hemagglutination test. Consistent with the biochemical characteristics, prime-boost immunizations with adjuvanted rH5-E. coli protected 100% and 70% of specific pathogen-free, layer-type chickens against challenge with homologous and heterologous H5N1 HPAIVs, respectively. The observed protection was related to the positivity in the FluAC H5 test (IDVet) but not to hemagglutination-inhibiting antibody titers. Due to full protection, the effective contact transmission of the homologous challenge virus did not occur. Survivors from both challenges did not or only transiently shed the viruses, as established by viral RNA detection in oropharyngeal and cloacal swabs. Our results demonstrate that vaccination with rH5-E. coli could confer control of H5N1 HPAIV infection and transmission rates in chicken flocks, accompanied by reduced virus shedding. Moreover, the role of

  1. Deaths among Wild Birds during Highly Pathogenic Avian Influenza A(H5N8) Virus Outbreak, the Netherlands

    PubMed Central

    Slaterus, Roy; Bodewes, Rogier; Rijks, Jolianne M.; Spierenburg, Marcel A.H.; Beerens, Nancy; Kelder, Leon; Poen, Marjolein J.; Stegeman, Jan A.; Fouchier, Ron A.M.; Kuiken, Thijs; van der Jeugd, Henk P.

    2017-01-01

    During autumn–winter 2016–2017, highly pathogenic avian influenza A(H5N8) viruses caused mass die-offs among wild birds in the Netherlands. Among the ≈13,600 birds reported dead, most were tufted ducks (Aythya fuligula) and Eurasian wigeons (Anas penelope). Recurrence of avian influenza outbreaks might alter wild bird population dynamics. PMID:29148372

  2. Influenza Viral Vectors Expressing Two Kinds of HA Proteins as Bivalent Vaccine Against Highly Pathogenic Avian Influenza Viruses of Clade 2.3.4.4 H5 and H7N9

    PubMed Central

    Li, Jinping; Hou, Guangyu; Wang, Yan; Wang, Suchun; Peng, Cheng; Yu, Xiaohui; Jiang, Wenming

    2018-01-01

    The H5 and H7N9 subtypes of highly pathogenic avian influenza viruses (HPAIVs) in China pose a serious challenge to public health and the poultry industry. In this study, a replication competent recombinant influenza A virus of the Í5N1 subtype expressing the H7 HA1 protein from a tri-cistronic NS segment was constructed. A heterologous dimerization domain was used to combine with the truncated NS1 protein of 73 amino acids to increase protein stability. H7 HA1, nuclear export protein coding region, and the truncated NS1 were fused in-frame into a single open reading frame via 2A self-cleaving peptides. The resulting PR8-H5-NS1(73)H7 stably expressed the H5 HA and H7 HA1 proteins, and exhibited similar growth kinetics as the parental PR8-H5 virus in vitro. PR8-H5-NS1(73)H7 induced specific hemagglutination inhibition (HI) antibody against H5, which was comparable to that of the combination vaccine of PR8-H5 and PR8-H7. The HI antibody titers against H7 virus were significantly lower than that by the combination vaccine. PR8-H5-NS1(73)H7 completely protected chickens from challenge with both H5 and H7 HPAIVs. These results suggest that PR8-H5-NS1(73)H7 is highly immunogenic and efficacious against both H5 and H7N9 HPAIVs in chickens. Highlights: - PR8-H5-NS1(73)H7 simultaneously expressed two HA proteins of different avian influenza virus subtypes. - PR8-H5-NS1(73)H7 was highly immunogenic in chickens. - PR8-H5-NS1(73)H7 provided complete protection against challenge with both H5 and H7N9 HPAIVs. PMID:29670587

  3. Highly Pathogenic H5N1 Influenza A Virus Strains Provoke Heterogeneous IFN-α/β Responses That Distinctively Affect Viral Propagation in Human Cells

    PubMed Central

    Matthaei, Markus; Budt, Matthias; Wolff, Thorsten

    2013-01-01

    The fatal transmissions of highly pathogenic avian influenza A viruses (IAV) of the H5N1 subtype to humans and high titer replication in the respiratory tract indicate that these pathogens can overcome the bird-to-human species barrier. While type I interferons (IFN-α/β) are well described to contribute to the species barrier of many zoonotic viruses, current data to the role of these antiviral cytokines during human H5N1 IAV infections is limited and contradictory. We hypothesized an important role for the IFN system in limiting productive infection of avian H5N1 strains in human cells. Hence, we examined IFN-α/β gene activation by different avian and human H5N1 isolates, if the IFN-α/β response restricts H5N1 growth and whether the different strains were equally capable to regulate the IFN-α/β system via their IFN-antagonistic NS1 proteins. Two human H5N1 isolates and a seasonal H3N2 strain propagated efficiently in human respiratory cells and induced little IFN-β, whereas three purely avian H5N1 strains were attenuated for replication and provoked higher IFN secretion. Replication of avian viruses was significantly enhanced on interferon-deficient cells, and exogenous IFN potently limited the growth of all strains in human cells. Moreover, IFN-α/β activation by all strains depended on retinoic acid-inducible gene I excluding principal differences in receptor activation between the different viruses. Interestingly, all H5N1 NS1 proteins suppressed IFN-α/β induction comparably well to the NS1 of seasonal IAV. Thus, our study shows that H5N1 strains are heterogeneous in their capacity to activate human cells in an NS1-independent manner. Our findings also suggest that H5N1 viruses need to acquire adaptive changes to circumvent strong IFN-α/β activation in human host cells. Since no single amino acid polymorphism could be associated with a respective high- or low induction phenotype we propose that the necessary adaptations to overcome the human IFN

  4. Spatio-Temporal Data Comparisons for Global Highly Pathogenic Avian Influenza (HPAI) H5N1 Outbreaks

    PubMed Central

    Chen, Dongmei; Chen, Yue; Wang, Lei; Zhao, Fei; Yao, Baodong

    2010-01-01

    Highly pathogenic avian influenza subtype H5N1 is a zoonotic disease and control of the disease is one of the highest priority in global health. Disease surveillance systems are valuable data sources for various researches and management projects, but the data quality has not been paid much attention in previous studies. Based on data from two commonly used databases (Office International des Epizooties (OIE) and Food and Agriculture Organization of the United Nations (FAO)) of global HPAI H5N1 outbreaks during the period of 2003–2009, we examined and compared their patterns of temporal, spatial and spatio-temporal distributions for the first time. OIE and FAO data showed similar trends in temporal and spatial distributions if they were considered separately. However, more advanced approaches detected a significant difference in joint spatio-temporal distribution. Because of incompleteness for both OIE and FAO data, an integrated dataset would provide a more complete picture of global HPAI H5N1 outbreaks. We also displayed a mismatching profile of global HPAI H5N1 outbreaks and found that the degree of mismatching was related to the epidemic severity. The ideas and approaches used here to assess spatio-temporal data on the same disease from different sources are useful for other similar studies. PMID:21187964

  5. Influence of maternal immunity on vaccine efficacy and susceptibility of one day old chicks against Egyptian highly pathogenic avian influenza H5N1.

    PubMed

    Abdelwhab, E M; Grund, Christian; Aly, Mona M; Beer, Martin; Harder, Timm C; Hafez, Hafez M

    2012-02-24

    In Egypt, continuous circulation of highly pathogenic avian influenza (HPAI) H5N1 viruses of clade 2.2.1 in vaccinated commercial poultry challenges strenuous control efforts. Here, vaccine-derived maternal AIV H5 specific immunity in one-day old chicks was investigated as a factor of vaccine failure in long-term blanket vaccination campaigns in broiler chickens. H5 seropositive one-day old chicks were derived from breeders repeatedly immunized with a commercial inactivated vaccine based on the Potsdam/H5N2 strain. When challenged using the antigenically related HPAIV strain Italy/98 (H5N2) clinical protection was achieved until at least 10 days post-hatch although virus replication was not fully suppressed. No protection at all was observed against the Egyptian HPAIV strain EGYvar/H5N1 representing a vaccine escape lineage. Other groups of chicks with maternal immunity were vaccinated once at 3 or 14 days of age using either the Potsdam/H5N2 vaccine or a vaccine based on EGYvar/H5N1. At day 35 of age these chicks were challenged with the Egyptian HPAIV strain EGYcls/H5N1 which co-circulates with EGYvar/H5N1 but does not represent an antigenic drift variant. The Potsdam/H5N2 vaccinated groups were not protected against EGYcls/H5N1 infection while, in contrast, the EGYvar/H5N1 vaccinated chicks withstand challenge with EGYvar/H5N1 infection. In addition, the results showed that maternal antibodies could interfere with the immune response when a homologous vaccine strain was used. Copyright © 2011. Published by Elsevier B.V.

  6. PB1-F2 attenuates virulence of highly pathogenic avian H5N1 influenza virus in chickens.

    PubMed

    Leymarie, Olivier; Embury-Hyatt, Carissa; Chevalier, Christophe; Jouneau, Luc; Moroldo, Marco; Da Costa, Bruno; Berhane, Yohannes; Delmas, Bernard; Weingartl, Hana M; Le Goffic, Ronan

    2014-01-01

    Highly pathogenic avian influenza virus (HPAIV) is a permanent threat due to its capacity to cross species barriers and generate severe infections and high mortality in humans. Recent findings have highlighted the potential role of PB1-F2, a small accessory influenza protein, in the pathogenesis process mediated by HPAIV in mammals. In this study, using a recombinant H5N1 HPAIV (wt) and its PB1-F2-deleted mutant (ΔF2), we studied the effects of PB1-F2 in a chicken model. Unexpectedly, when using low inoculation dose we observed that the wt-infected chickens had a higher survival rate than the ΔF2-infected chickens, a feature that contrasts with what is usually observed in mammals. High inoculation dose had similar mortality rate for both viruses, and comparison of the bio-distribution of the two viruses indicated that the expression of PB1-F2 allows a better spreading of the virus within chicken embryos. Transcriptomic profiles of lungs and blood cells were characterized at two days post-infection in chickens inoculated with the wild type (wt) or the ΔF2 mutant viruses. In lungs, the expression of PB1-F2 during the infection induced pathways related to calcium signaling and repressed a large panel of immunological functions. In blood cells, PB1-F2 was associated with a gene signature specific for mitochondrial dysfunction and down-modulated leucocytes activation. Finally we compared the effect of PB1-F2 in lungs of chickens and mice. We identified that gene signature associated to tissue damages is a PB1-F2 feature shared by the two species; by contrast, the early inhibition of immune response mediated by PB1-F2 observed in chickens is not seen in mice. In summary, our data suggest that PB1-F2 expression deeply affect the immune response in chickens in a way that may attenuate pathogenicity at low infection dose, a feature differing from what was previously observed in mammal species.

  7. PB1-F2 Attenuates Virulence of Highly Pathogenic Avian H5N1 Influenza Virus in Chickens

    PubMed Central

    Leymarie, Olivier; Embury-Hyatt, Carissa; Chevalier, Christophe; Jouneau, Luc; Moroldo, Marco; Da Costa, Bruno; Berhane, Yohannes; Delmas, Bernard

    2014-01-01

    Highly pathogenic avian influenza virus (HPAIV) is a permanent threat due to its capacity to cross species barriers and generate severe infections and high mortality in humans. Recent findings have highlighted the potential role of PB1-F2, a small accessory influenza protein, in the pathogenesis process mediated by HPAIV in mammals. In this study, using a recombinant H5N1 HPAIV (wt) and its PB1-F2-deleted mutant (ΔF2), we studied the effects of PB1-F2 in a chicken model. Unexpectedly, when using low inoculation dose we observed that the wt-infected chickens had a higher survival rate than the ΔF2-infected chickens, a feature that contrasts with what is usually observed in mammals. High inoculation dose had similar mortality rate for both viruses, and comparison of the bio-distribution of the two viruses indicated that the expression of PB1-F2 allows a better spreading of the virus within chicken embryos. Transcriptomic profiles of lungs and blood cells were characterized at two days post-infection in chickens inoculated with the wild type (wt) or the ΔF2 mutant viruses. In lungs, the expression of PB1-F2 during the infection induced pathways related to calcium signaling and repressed a large panel of immunological functions. In blood cells, PB1-F2 was associated with a gene signature specific for mitochondrial dysfunction and down-modulated leucocytes activation. Finally we compared the effect of PB1-F2 in lungs of chickens and mice. We identified that gene signature associated to tissue damages is a PB1-F2 feature shared by the two species; by contrast, the early inhibition of immune response mediated by PB1-F2 observed in chickens is not seen in mice. In summary, our data suggest that PB1-F2 expression deeply affect the immune response in chickens in a way that may attenuate pathogenicity at low infection dose, a feature differing from what was previously observed in mammal species. PMID:24959667

  8. Insight into Alternative Approaches for Control of Avian Influenza in Poultry, with Emphasis on Highly Pathogenic H5N1

    PubMed Central

    Abdelwhab, E. M.; Hafez, Hafez M.

    2012-01-01

    Highly pathogenic avian influenza virus (HPAIV) of subtype H5N1 causes a devastating disease in poultry but when it accidentally infects humans it can cause death. Therefore, decrease the incidence of H5N1 in humans needs to focus on prevention and control of poultry infections. Conventional control strategies in poultry based on surveillance, stamping out, movement restriction and enforcement of biosecurity measures did not prevent the virus spreading, particularly in developing countries. Several challenges limit efficiency of the vaccines to prevent outbreaks of HPAIV H5N1 in endemic countries. Alternative and complementary approaches to reduce the current burden of H5N1 epidemics in poultry should be encouraged. The use of antiviral chemotherapy and natural compounds, avian-cytokines, RNA interference, genetic breeding and/or development of transgenic poultry warrant further evaluation as integrated intervention strategies for control of HPAIV H5N1 in poultry. PMID:23202521

  9. Emerging highly pathogenic H5 avian influenza viruses in France during winter 2015/16: phylogenetic analyses and markers for zoonotic potential

    PubMed Central

    Briand, François-Xavier; Schmitz, Audrey; Ogor, Katell; Le Prioux, Aurélie; Guillou-Cloarec, Cécile; Guillemoto, Carole; Allée, Chantal; Le Bras, Marie-Odile; Hirchaud, Edouard; Quenault, Hélène; Touzain, Fabrice; Cherbonnel-Pansart, Martine; Lemaitre, Evelyne; Courtillon, Céline; Gares, Hélène; Daniel, Patrick; Fediaevsky, Alexandre; Massin, Pascale; Blanchard, Yannick; Eterradossi, Nicolas; van der Werf, Sylvie; Jestin, Véronique; Niqueux, Eric

    2017-01-01

    Several new highly pathogenic (HP) H5 avian influenza virus (AIV) have been detected in poultry farms from south-western France since November 2015, among which an HP H5N1. The zoonotic potential and origin of these AIVs immediately became matters of concern. One virus of each subtype H5N1 (150169a), H5N2 (150233) and H5N9 (150236) was characterised. All proved highly pathogenic for poultry as demonstrated molecularly by the presence of a polybasic cleavage site in their HA protein – with a sequence (HQRRKR/GLF) previously unknown among avian H5 HPAI viruses – or experimentally by the in vivo demonstration of an intravenous pathogenicity index of 2.9 for the H5N1 HP isolate. Phylogenetic analyses based on the full genomes obtained by NGS confirmed that the eight viral segments of the three isolates were all part of avian Eurasian phylogenetic lineage but differed from the Gs/Gd/1/96-like lineage. The study of the genetic characteristics at specific amino acid positions relevant for modulating the adaptation to and the virulence for mammals showed that presently, these viruses possess most molecular features characteristic of AIV and lack some major characteristics required for efficient respiratory transmission to or between humans. The three isolates are therefore predicted to have no significant pandemic potential. PMID:28277218

  10. A novel highly pathogenic H5N8 avian influenza virus isolated from a wild duck in China.

    PubMed

    Fan, Shengtao; Zhou, Lichen; Wu, Di; Gao, Xiaolong; Pei, Enle; Wang, Tianhou; Gao, Yuwei; Xia, Xianzhu

    2014-11-01

    Migrating wild birds are considered natural reservoirs of influenza viruses and serve as a potential source of novel influenza strains in humans and livestock. During routine avian influenza surveillance conducted in eastern China, a novel H5N8 (SH-9) reassortant influenza virus was isolated from a mallard duck in China. blast analysis revealed that the HA, NA, PB1, PA, NP, and M segments of SH-9 were most closely related to the corresponding segments of A/duck/Jiangsu/k1203/2010 (H5N8). The SH-9 virus preferentially recognized avian-like influenza virus receptors and was highly pathogenic in mice. Our results suggest that wild birds could acquire the H5N8 virus from breeding ducks and spread the virus via migratory bird flyways. © 2014 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  11. Highly pathogenic avian influenza H5N1 clade 2.3.2.1 and clade 2.3.4 viruses do not induce a clade-specific phenotype in mallard ducks

    PubMed Central

    Crumpton, Jeri Carol; Rubrum, Adam; Phommachanh, Phouvong; Douangngeun, Bounlom; Peiris, Malik; Guan, Yi; Webster, Robert; Webby, Richard

    2017-01-01

    Among the diverse clades of highly pathogenic avian influenza (HPAI) H5N1 viruses of the goose/Guangdong lineage, only a few have been able to spread across continents: clade 2.2 viruses spread from China to Europe and into Africa in 2005–2006, clade 2.3.2.1 viruses spread from China to Eastern Europe in 2009–2010 and clade 2.3.4.4 viruses of the H5Nx subtype spread from China to Europe and North America in 2014/2015. While the poultry trade and wild-bird migration have been implicated in the spread of HPAI H5N1 viruses, it has been proposed that robust virus-shedding by wild ducks in the absence of overt clinical signs may have contributed to the wider dissemination of the clade 2.2, 2.3.2.1 and 2.3.4.4 viruses. Here we determined the phenotype of two divergent viruses from clade 2.3.2.1, a clade that spread widely, and two divergent viruses from clade 2.3.4, a clade that was constrained to Southeast Asia, in young (ducklings) and adult (juvenile) mallard ducks. We found that the virus-shedding magnitude and duration, transmission pattern and pathogenicity of the viruses in young and adult mallard ducks were largely independent of the virus clade. A clade-specific pattern could only be detected in terms of cumulative virus shedding, which was higher with clade 2.3.2.1 than with clade 2.3.4 viruses in juvenile mallards, but not in ducklings. The ability of clade 2.3.2.1c A/common buzzard/Bulgaria/38 WB/2010-like viruses to spread cross-continentally may, therefore, have been strain-specific or independent of phenotype in wild ducks. PMID:28631606

  12. Highly pathogenic avian influenza A(H5N8) outbreaks: protection and management of exposed people in Europe, 2014/15 and 2016.

    PubMed

    Adlhoch, Cornelia; Brown, Ian H; Angelova, Svetla G; Bálint, Ádám; Bouwstra, Ruth; Buda, Silke; Castrucci, Maria R; Dabrera, Gavin; Dán, Ádám; Grund, Christian; Harder, Timm; van der Hoek, Wim; Krisztalovics, Katalin; Parry-Ford, Frances; Popescu, Rodica; Wallensten, Anders; Zdravkova, Anna; Zohari, Siamak; Tsolova, Svetla; Penttinen, Pasi

    2016-12-08

    Introduction of highly pathogenic avian influenza (HPAI) virus A(H5N8) into Europe prompted animal and human health experts to implement protective measures to prevent transmission to humans. We describe the situation in 2016 and list public health measures and recommendations in place. We summarise critical interfaces identified during the A(H5N1) and A(H5N8) outbreaks in 2014/15. Rapid exchange of information between the animal and human health sectors is critical for a timely, effective and efficient response. This article is copyright of ECDC, 2016.

  13. Highly pathogenic avian influenza A(H5N8) outbreaks: protection and management of exposed people in Europe, 2014/15 and 2016

    PubMed Central

    Adlhoch, Cornelia; Brown, Ian H.; Angelova, Svetla G.; Bálint, Ádám; Bouwstra, Ruth; Buda, Silke; Castrucci, Maria R.; Dabrera, Gavin; Dán, Ádám; Grund, Christian; Harder, Timm; van der Hoek, Wim; Krisztalovics, Katalin; Parry-Ford, Frances; Popescu, Rodica; Wallensten, Anders; Zdravkova, Anna; Zohari, Siamak; Tsolova, Svetla; Penttinen, Pasi

    2016-01-01

    Introduction of highly pathogenic avian influenza (HPAI) virus A(H5N8) into Europe prompted animal and human health experts to implement protective measures to prevent transmission to humans. We describe the situation in 2016 and list public health measures and recommendations in place. We summarise critical interfaces identified during the A(H5N1) and A(H5N8) outbreaks in 2014/15. Rapid exchange of information between the animal and human health sectors is critical for a timely, effective and efficient response. PMID:27983512

  14. Genetic characteristics of highly pathogenic H5N8 avian influenza viruses isolated from migratory wild birds in South Korea during 2014-2015.

    PubMed

    Si, Young-Jae; Choi, Won Suk; Kim, Young-Il; Lee, In-Won; Kwon, Hyeok-Il; Park, Su-Jin; Kim, Eun-Ha; Kim, Se Mi; Kwon, Jin-Jung; Song, Min-Suk; Kim, Chul-Joong; Choi, Young-Ki

    2016-10-01

    The continuous worldwide spread of highly pathogenic avian influenza (HPAI) H5N8 viruses among wild birds and poultry is a potential threat to public health. In the present study, we investigated the genetic characteristics of recent H5N8 viruses continuously isolated from migratory birds over two winters (2013-2014 and 2014-2015) in South Korea. Genetic and phylogenetic analysis demonstrated that the 2014-2015 HPAI H5N8 viruses are closely related to the 2013-2014 viruses, including virulence markers; however, all eight gene segments of 2014-2015 H5N8 viruses clustered in different phylogenetic branches from 2013-2014 H5N8 viruses, except the A/Em/Korea/W492/2015 virus. The H5N8 viruses of Europe and North America belong to sublineages of the 2013-2014 Korean H5N8 viruses but differ from the 2014-2015 Korean H5N8 viruses. Further hemagglutination inhibition (HI) assay results showed that there were 2-to-4 fold differences in HI titer between 2013-2014 and 2014-2015 H5N8 viruses. Taken together, our results suggested that the 2014-2015 Korean H5N8 viruses were genetically and serologically different from those of 2013-2014 winter season H5N8 viruses, including those from Europe and North America.

  15. Protective Efficacy of an H5N1 Inactivated Vaccine Against Challenge with Lethal H5N1, H5N2, H5N6, and H5N8 Influenza Viruses in Chickens.

    PubMed

    Zeng, Xianying; Chen, Pucheng; Liu, Liling; Deng, Guohua; Li, Yanbing; Shi, Jianzhong; Kong, Huihui; Feng, Huapeng; Bai, Jie; Li, Xin; Shi, Wenjun; Tian, Guobin; Chen, Hualan

    2016-05-01

    The Goose/Guangdong-lineage H5 viruses have evolved into diverse clades and subclades based on their hemagglutinin (HA) gene during their circulation in wild birds and poultry. Since late 2013, the clade 2.3.4.4 viruses have become widespread in poultry and wild bird populations around the world. Different subtypes of the clade 2.3.4.4 H5 viruses, including H5N1, H5N2, H5N6, and H5N8, have caused vast disease outbreaks in poultry in Asia, Europe, and North America. In this study, we developed a new H5N1 inactivated vaccine by using a seed virus (designated as Re-8) that contains the HA and NA genes from a clade 2.3.4.4 virus, A/chicken/Guizhou/4/13(H5N1) (CK/GZ/4/13), and its six internal genes from the high-growth A/Puerto Rico/8/1934 (H1N1) virus. We evaluated the protective efficacy of this vaccine in chickens challenged with one H5N1 clade 2.3.2.1b virus and six different subtypes of clade 2.3.4.4 viruses, including H5N1, H5N2, H5N6, and H5N8 strains. In the clade 2.3.2.1b virus DK/GX/S1017/13-challenged groups, half of the vaccinated chickens shed virus through the oropharynx and two birds (20%) died during the observation period. All of the control chickens shed viruses and died within 6 days of infection with challenge virus. All of the vaccinated chickens remained healthy following challenge with the six clade 2.3.4.4 viruses, and virus shedding was not detected from any of these birds; however, all of the control birds shed viruses and died within 4 days of challenge with the clade 2.3.4.4 viruses. Our results indicate that the Re-8 vaccine provides protection against different subtypes of clade 2.3.4.4 H5 viruses.

  16. Silent spread of highly pathogenic Avian Influenza H5N1 virus amongst vaccinated commercial layers.

    PubMed

    Poetri, Okti Nadia; Van Boven, Michiel; Claassen, Ivo; Koch, Guus; Wibawan, I Wayan; Stegeman, Arjan; Van den Broek, Jan; Bouma, Annemarie

    2014-12-01

    The aim of this study was to determine whether a single vaccination of commercial layer type chickens with an inactivated vaccine containing highly pathogenic avian influenza virus strain H5N1 A/chicken/Legok/2003, carried out on the farm, was sufficient to protect against infection with the homologous virus strain. A transmission experiment was carried out with pairs of chicken of which one was inoculated with H5N1 virus and the other contact-exposed. Results showed that the majority of the vaccinated birds developed haemagglutination inhibition (HI) titres below 4log2. No clinical signs were observed in the vaccinated birds and virus shedding was limited. However, nearly all vaccinated birds showed a four-fold or higher increase of HI titres after challenge or contact-exposure, which is an indication of infection. This implies that virus transmission most likely has occurred. This study showed that a single vaccination applied under field conditions induced clinical protection, but was insufficient to induce protection against virus transmission, suggesting that silent spread of virus in vaccinated commercial flocks may occur. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. The Protective Effects of the A/ZJU01/ PR8/2013 Split H7N9 Avian Influenza Vaccine Against Highly Pathogenic H7N9 in BALB/c Mice.

    PubMed

    Wu, Xiao-Xin; Deng, Xi-Long; Yu, Dong-Shan; Yao, Wei; Ou, Hui-Lin; Weng, Tian-Hao; Hu, Chen-Yu; Hu, Feng-Yu; Wu, Nan-Ping; Yao, Hangping; Zhang, Fu-Chun; Li, Lan-Juan

    2018-01-01

    Since the first case of novel H7N9 infection was reported, China has experienced five epidemics of H7N9. During the fifth wave, a highly pathogenic H7N9 strain emerged. In order to assess whether the H7N9 vaccine based on A/Zhejiang/DTID-ZJU01/2013(H7N9) was effective in protecting against highly pathogenic H7N9, we conducted this study. Groups of mice were immunized twice by intraperitoneal injection with 500 µl of either split vaccine alone or MF59-adjuvanted vaccine. Serum was collected 2 weeks after the second vaccine booster. The hemagglutinin inhibition test was conducted on vaccine seed and highly pathogenic H7N9 to evaluate the neutralization of highly pathogenic H7N9. We also immunized mice and challenged them with highly pathogenic H7N9. Mice were observed for illness, weight loss, and death at 1 week and 2 weeks post-infection. Then, the mice were sacrificed and lungs were removed. Antibody responses were assessed and pathological changes in the lung tissue were evaluated. The ability of serum to neutralize highly pathogenic H7N9 was reduced. In mice, highly pathogenic H7N9 was more virulent than A/Zhejiang/DTID-ZJU01/2013(H7N9). After challenge with highly pathogenic H7N9, all mice died while mice challenged with A/Zhejiang/DTID-ZJU01/2013(H7N9) all recovered. The A/ZJU01/PR8/2013 split H7N9 avian influenza vaccine was able to protect against infection with highly pathogenic H7N9 in mice, with or without MF59. Moreover, H7N9 vaccine adjuvanted with MF59 produced high antibody levels, which lead to better protection. The A/ZJU01/PR8/2013 split H7N9 avian influenza vaccine based on A/Zhejiang/DTID-ZJU01/2013(H7N9) is effective in protecting against highly pathogenic H7N9. H7N9 vaccine adjuvanted with MF59 offers better protection against infection with highly pathogenic H7N9. In order to make the H7N9 vaccine applicable to humans, further clinical trials are required to evaluate MF59 adjuvanted vaccine. Meanwhile, the vaccine strain should be updated

  18. Pathology of a H5N1, highly pathogenic avian influenza virus, in two Indian native chicken breeds and a synthetic broiler line.

    PubMed

    Suba, S; Nagarajan, S; Saxena, V K; Kumar, M; Vanamayya, P R; Rajukumar, K; Gowthaman, V; Jain, V; Singh, D P; Dubey, S C

    2015-04-01

    In this study, susceptibility to H5N1 virus infection was studied in two Indian native chicken breeds viz. Kadaknath and Aseel (Peela) and an Indian synthetic broiler strain (Synthetic dam line (SDL-IC). Fifty birds from each genetic group were infected intra-nasally with 1000 EID50 of a highly pathogenic avian influenza virus (HPAIV) strain A/chicken/Navapur/India/7972/ 06 (H5N1) and observed for a period of 10 days. Significant differences in severity of clinical signs, gross lesions and time for onset of symptoms were observed. The overall severity of clinical signs and gross lesions was less in SDL-IC broilers as compared to the other two genetic groups. The mortality percentages were 100, 98 and 92% with Mean Death Time (MDT) of 3.12, 5.92 and 6.96 days, respectively for the two native breeds Kadaknath and Aseel (Peela), the and SDL-IC broiler strain. Comparison of histological lesions revealed differences in disease progression among the genetic groups. Vascular lesions such as disseminated intravascular coagulopathy (DIC) were predominant on 3 days post infection (dpi) in Kadaknath, and on 5 and 6 dpi in Aseel (Peela) and SDL-IC broiler. The mean log2 HA titres of the re-isolated virus from various organs of H5N1 AIV infected birds of the three genetic groups ranged from 2.32 (lung, trachea and bursa) to 5.04 (spleen) in Kadaknath; 2.32 (lung) to 6.68 (brain) in Aseel (Peela); and 2.06 (liver) to 7.01 (lungs and kidney) in SDL-IC broiler. These results suggest that the susceptibility to H5N1 highly pathogenic avian influenza virus infection differed among the three breeds; Kadaknath being highest followed by Aseel (Peela) and synthetic SDL-IC broiler. This is possibly the first report on the differences in the susceptibility of the India native breeds to H5N1 virus infection and its severity.

  19. Long lasting immunity in chickens induced by a single shot of influenza vaccine prepared from inactivated non-pathogenic H5N1 virus particles against challenge with a highly pathogenic avian influenza virus.

    PubMed

    Sasaki, Takashi; Kokumai, Norihide; Ohgitani, Toshiaki; Sakamoto, Ryuichi; Takikawa, Noriyasu; Lin, Zhifeng; Okamatsu, Masatoshi; Sakoda, Yoshihiro; Kida, Hiroshi

    2009-08-20

    An influenza vaccine was prepared from inactivated whole particles of the non-pathogenic strain A/duck/Hokkaido/Vac-1/04 (H5N1) virus using an oil adjuvant containing anhydromannitol-octadecenoate-ether (AMOE). The vaccine was injected intramuscularly into five 4-week-old chickens, and 138 weeks after vaccination, they were challenged intranasally with 100 times 50% chicken lethal dose of the highly pathogenic avian influenza (HPAI) virus A/chicken/Yamaguchi/7/04 (H5N1). All 5 chickens survived without exhibiting clinical signs of influenza, although 2 days post-challenge, 3 vaccinated chickens shed limited titres of viruses in laryngopharyngeal swabs.

  20. Genetic diversity of highly pathogenic H5N8 avian influenza viruses at a single overwintering site of migratory birds in Japan, 2014/15.

    PubMed

    Ozawa, M; Matsuu, A; Tokorozaki, K; Horie, M; Masatani, T; Nakagawa, H; Okuya, K; Kawabata, T; Toda, S

    2015-05-21

    We isolated eight highly pathogenic H5N8 avian influenza viruses (H5N8 HPAIVs) in the 2014/15 winter season at an overwintering site of migratory birds in Japan. Genetic analyses revealed that these isolates were divided into three groups, indicating the co-circulation of three genetic groups of H5N8 HPAIV among these migratory birds. These results also imply the possibility of global redistribution of the H5N8 HPAIVs via the migration of these birds next winter.

  1. Experimental infection of a North American raptor, American kestrel (Falco sparverius), with highly pathogenic avian influenza virus (H5N1)

    USGS Publications Warehouse

    Hall, Jeffrey S.; Ip, Hon S.; Franson, J.C.; Meteyer, C.; Nashold, Sean W.; Teslaa, Joshua L.; French, J.; Redig, P.; Brand, C.

    2009-01-01

    Several species of wild raptors have been found in Eurasia infected with highly pathogenic avian influenza virus (HPAIV) subtype H5N1. Should HPAIV (H5N1) reach North America in migratory birds, species of raptors are at risk not only from environmental exposure, but also from consuming infected birds and carcasses. In this study we used American kestrels as a representative species of a North American raptor to examine the effects of HPAIV (H5N1) infection in terms of dose response, viral shedding, pathology, and survival. Our data showed that kestrels are highly susceptible to HPAIV (H5N1). All birds typically died or were euthanized due to severe neurologic disease within 4-5 days of inoculation and shed significant amounts of virus both orally and cloacally, regardless of dose administered. The most consistent microscopic lesions were necrosis in the brain and pancreas. This is the first experimental study of HPAIV infection in a North American raptor and highlights the potential risks to birds of prey if HPAIV (H5N1) is introduced into North America.

  2. Isolation and Characterization of Avian Influenza Viruses, Including Highly Pathogenic H5N1, from Poultry in Live Bird Markets in Hanoi, Vietnam, in 2001

    PubMed Central

    Nguyen, Doan C.; Uyeki, Timothy M.; Jadhao, Samadhan; Maines, Taronna; Shaw, Michael; Matsuoka, Yumiko; Smith, Catherine; Rowe, Thomas; Lu, Xiuhua; Hall, Henrietta; Xu, Xiyan; Balish, Amanda; Klimov, Alexander; Tumpey, Terrence M.; Swayne, David E.; Huynh, Lien P. T.; Nghiem, Ha K.; Nguyen, Hanh H. T.; Hoang, Long T.; Cox, Nancy J.; Katz, Jacqueline M.

    2005-01-01

    Since 1997, outbreaks of highly pathogenic (HP) H5N1 and circulation of H9N2 viruses among domestic poultry in Asia have posed a threat to public health. To better understand the extent of transmission of avian influenza viruses (AIV) to humans in Asia, we conducted a cross-sectional virologic study in live bird markets (LBM) in Hanoi, Vietnam, in October 2001. Specimens from 189 birds and 18 environmental samples were collected at 10 LBM. Four influenza A viruses of the H4N6 (n = 1), H5N2 (n = 1), and H9N3 (n = 2) subtypes were isolated from healthy ducks for an isolation frequency of over 30% from this species. Two H5N1 viruses were isolated from healthy geese. The hemagglutinin (HA) genes of these H5N1 viruses possessed multiple basic amino acid motifs at the cleavage site, were HP for experimentally infected chickens, and were thus characterized as HP AIV. These HA genes shared high amino acid identities with genes of other H5N1 viruses isolated in Asia during this period, but they were genetically distinct from those of H5N1 viruses isolated from poultry and humans in Vietnam during the early 2004 outbreaks. These viruses were not highly virulent for experimentally infected ducks, mice, or ferrets. These results establish that HP H5N1 viruses with properties similar to viruses isolated in Hong Kong and mainland China circulated in Vietnam as early as 2001, suggest a common source for H5N1 viruses circulating in these Asian countries, and provide a framework to better understand the recent widespread emergence of HP H5N1 viruses in Asia. PMID:15767421

  3. Genetic Compatibility and Virulence of Reassortants Derived from Contemporary Avian H5N1 and Human H3N2 Influenza A Viruses

    PubMed Central

    Zhou, Hong; Cox, Nancy J.; Donis, Ruben O.

    2008-01-01

    The segmented structure of the influenza virus genome plays a pivotal role in its adaptation to new hosts and the emergence of pandemics. Despite concerns about the pandemic threat posed by highly pathogenic avian influenza H5N1 viruses, little is known about the biological properties of H5N1 viruses that may emerge following reassortment with contemporary human influenza viruses. In this study, we used reverse genetics to generate the 63 possible virus reassortants derived from H5N1 and H3N2 viruses, containing the H5N1 surface protein genes, and analyzed their viability, replication efficiency, and mouse virulence. Specific constellations of avian–human viral genes proved deleterious for viral replication in cell culture, possibly due to disruption of molecular interaction networks. In particular, striking phenotypes were noted with heterologous polymerase subunits, as well as NP and M, or NS. However, nearly one-half of the reassortants replicated with high efficiency in vitro, revealing a high degree of compatibility between avian and human virus genes. Thirteen reassortants displayed virulent phenotypes in mice and may pose the greatest threat for mammalian hosts. Interestingly, one of the most pathogenic reassortants contained avian PB1, resembling the 1957 and 1968 pandemic viruses. Our results reveal the broad spectrum of phenotypes associated with H5N1/H3N2 reassortment and a possible role for the avian PB1 in the emergence of pandemic influenza. These observations have important implications for risk assessment of H5N1 reassortant viruses detected in surveillance programs. PMID:18497857

  4. Comparative analysis of MicroRNA expression in dog lungs infected with the H3N2 and H5N1 canine influenza viruses.

    PubMed

    Zheng, Yun; Fu, Xinliang; Wang, Lifang; Zhang, Wenyan; Zhou, Pei; Zhang, Xin; Zeng, Weijie; Chen, Jidang; Cao, Zongxi; Jia, Kun; Li, Shoujun

    2018-05-14

    MicroRNAs, a class of noncoding RNAs 18 to 23 nucleotides (nt) in length, play critical roles in a wide variety of biological processes. The objective of this study was to examine differences in microRNA expression profiles derived from the lungs of beagle dogs infected with the avian-origin H3N2 canine influenza virus (CIV) or the highly pathogenic avian influenza (HPAI) H5N1 virus (canine-origin isolation strain). After dogs were infected with H3N2 or H5N1, microRNA expression in the lungs was assessed using a deep-sequencing approach. To identify the roles of microRNAs in viral pathogenicity and the host immune response, microRNA target genes were predicted, and their functions were analyzed using bioinformatics software. A total of 229 microRNAs were upregulated in the H5N1 infection group compared with those in the H3N2 infection group, and 166 microRNAs were downregulated. MicroRNA target genes in the H5N1 group were more significantly involved in metabolic pathways, such as glycerolipid metabolism and glycerophospholipid metabolism, than those in the H3N2 group. The inhibition of metabolic pathways may lead to appetite loss, weight loss and weakened immunity. Moreover, miR-485, miR-144, miR-133b, miR-4859-5p, miR-6902-3p, miR-7638, miR-1307-3p and miR-1346 were significantly altered microRNAs that potentially led to the inhibition of innate immune pathways and the heightened pathogenicity of H5N1 compared with that of H3N2 in dogs. This study deepens our understanding of the complex relationships among microRNAs, the influenza virus-mediated immune response and immune injury in dogs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Immunization of Chickens with Newcastle Disease Virus Expressing H5 Hemagglutinin Protects against Highly Pathogenic H5N1 Avian Influenza Viruses

    PubMed Central

    Nayak, Baibaswata; Rout, Subrat N.; Kumar, Sachin; Khalil, Mohammed S.; Fouda, Moustafa M.; Ahmed, Luay E.; Earhart, Kenneth C.; Perez, Daniel R.; Collins, Peter L.; Samal, Siba K.

    2009-01-01

    Background Highly-pathogenic avian influenza virus (HPAIV) and Newcastle disease virus (NDV) are the two most important poultry viruses in the world. Natural low-virulence NDV strains have been used as vaccines over the past 70 years with proven track records. We have previously developed a reverse genetics system to produce low-virulent NDV vaccine strain LaSota from cloned cDNA. This system allows us to use NDV as a vaccine vector for other avian pathogens. Methodology/Principal Finding Here, we constructed two recombinant NDVs (rNDVs) each of which expresses the hemagglutinin (HA) gene of HPAIV H5N1strain A/Vietnam/1203/2004 from an added gene. In one, rNDV (rNDV-HA), the open reading frame (ORF) of HA gene was expressed without modification. In the second, rNDV (rNDV-HAF), the ORF was modified so that the transmembrane and cytoplasmic domains of the encoded HA gene were replaced with those of the NDV F protein. The insertion of either version of the HA ORF did not increase the virulence of the rNDV vector. The HA protein was found to be incorporated into the envelopes of both rNDV-HA and rNDV-HAF. However, there was an enhanced incorporation of the HA protein in rNDV-HAF. Chickens immunized with a single dose of either rNDV-HA or rNDV-HAF induced a high titer of HPAIV H5-specific antibodies and were completely protected against challenge with NDV as well as lethal challenges of both homologous and heterologous HPAIV H5N1. Conclusion and Significance Our results suggest that these chimeric viruses have potential as safe and effective bivalent vaccines against NDV and. HPAIV. These vaccines will be convenient and affordable, which will be highly beneficial to the poultry industry. Furthermore, immunization with these vaccines will permit serological differentiation of vaccinated and avian influenza field virus infected animals. PMID:19654873

  6. Quantifying Transmission of Highly Pathogenic and Low Pathogenicity H7N1 Avian Influenza in Turkeys

    PubMed Central

    Saenz, Roberto A.; Essen, Steve C.; Brookes, Sharon M.; Iqbal, Munir; Wood, James L. N.; Grenfell, Bryan T.; McCauley, John W.; Brown, Ian H.; Gog, Julia R.

    2012-01-01

    Outbreaks of avian influenza in poultry can be devastating, yet many of the basic epidemiological parameters have not been accurately characterised. In 1999–2000 in Northern Italy, outbreaks of H7N1 low pathogenicity avian influenza virus (LPAI) were followed by the emergence of H7N1 highly pathogenic avian influenza virus (HPAI). This study investigates the transmission dynamics in turkeys of representative HPAI and LPAI H7N1 virus strains from this outbreak in an experimental setting, allowing direct comparison of the two strains. The fitted transmission rates for the two strains are similar: 2.04 (1.52.7) per day for HPAI, 2.01 (1.6–2.5) per day for LPAI. However, the mean infectious period is far shorter for HPAI (1.47 (1.3–1.7) days) than for LPAI (7.65 (7.0–8.3) days), due to the rapid death of infected turkeys. Hence the basic reproductive ratio, is significantly lower for HPAI (3.01 (2.2–4.0)) than for LPAI (15.3 (11.8–19.7)). The comparison of transmission rates and are critically important in relation to understanding how HPAI might emerge from LPAI. Two competing hypotheses for how transmission rates vary with population size are tested by fitting competing models to experiments with differing numbers of turkeys. A model with frequency-dependent transmission gives a significantly better fit to experimental data than density-dependent transmission. This has important implications for extrapolating experimental results from relatively small numbers of birds to the commercial poultry flock size, and for how control, including vaccination, might scale with flock size. PMID:23028760

  7. Suboptimal protection against H5N1 highly pathogenic avian influenza viruses from Vietnam in ducks vaccinated with commercial poultry vaccines.

    PubMed

    Cha, Ra Mi; Smith, Diane; Shepherd, Eric; Davis, C Todd; Donis, Ruben; Nguyen, Tung; Nguyen, Hoang Dang; Do, Hoa Thi; Inui, Ken; Suarez, David L; Swayne, David E; Pantin-Jackwood, Mary

    2013-10-09

    Domestic ducks are the second most abundant poultry species in many Asian countries including Vietnam, and play a critical role in the epizootiology of H5N1 highly pathogenic avian influenza (HPAI) [FAO]. In this study, we examined the protective efficacy in ducks of two commercial H5N1 vaccines widely used in Vietnam; Re-1 containing A/goose/Guangdong/1/1996 hemagglutinin (HA) clade 0 antigens, and Re-5 containing A/duck/Anhui/1/2006 HA clade 2.3.4 antigens. Ducks received two doses of either vaccine at 7 and at 14 or 21 days of age followed by challenge at 30 days of age with viruses belonging to the HA clades 1.1, 2.3.4.3, 2.3.2.1.A and 2.3.2.1.B isolated between 2008 and 2011 in Vietnam. Ducks vaccinated with the Re-1 vaccine were protected after infection with the two H5N1 HPAI viruses isolated in 2008 (HA clades 1.1 and 2.3.4.3) showing no mortality and limited virus shedding. The Re-1 and Re-5 vaccines conferred 90-100% protection against mortality after challenge with the 2010 H5N1 HPAI viruses (HA clade 2.3.2.1.A); but vaccinated ducks shed virus for more than 7 days after challenge. Similarly, the Re-1 and Re-5 vaccines only showed partial protection against the 2011 H5N1 HPAI viruses (HA clade 2.3.2.1.A and 2.3.2.1.B), with a high proportion of vaccinated ducks shedding virus for more than 10 days. Furthermore, 50% mortality was observed in ducks vaccinated with Re-1 and challenged with the 2.3.2.1.B virus. The HA proteins of the 2011 challenge viruses had the greatest number of amino acid differences from the two vaccines as compared to the viruses from 2008 and 2009, which correlates with the lesser protection observed with these viruses. These studies demonstrate the suboptimal protection conferred by the Re-1 and Re-5 commercial vaccines in ducks against H5N1 HPAI clade 2.3.2.1 viruses, and underscore the importance of monitoring vaccine efficacy in the control of H5N1 HPAI in ducks. Published by Elsevier Ltd.

  8. Virulence of an H5N8 highly pathogenic avian influenza is enhanced by the amino acid substitutions PB2 E627K and HA A149V.

    PubMed

    Wu, Haibo; Peng, Xiuming; Lu, Rufeng; Xu, Lihua; Liu, Fumin; Cheng, Linfang; Lu, Xiangyun; Yao, Hangping; Wu, Nanping

    2017-10-01

    A novel reassortant H5N8 highly pathogenic avian influenza (HPAI) virus was recently identified in Asia, Europe, and North America. The H5N8 HPAI virus has raised serious concerns regarding the potential risk for human infection. However, the molecular changes responsible for allowing mammalian infection in H5N8 HPAI viruses are not clear. The objective of this study was to identify amino acid substitutions that are potentially associated with the adaptation of H5N8 HPAI viruses to mammals. In this study, an avian-origin H5N8 virus was adapted to mice through serial lung-to-lung passage. The virulence of mouse-adapted virus was increased and adaptive mutations, HA (A149V) and PB2 (E627K), were detected after the ninth passage in each series of mice. Reverse genetics were used to generate reassortants of the wild type and mouse-adapted viruses. Substitutions in the HA (A149V) and PB2 (E627K) proteins led to enhanced viral virulence in mice, the viruses displayed expanded tissue tropism, and increased replication kinetics in mammalian cells. Continued surveillance in poultry for amino acid changes that might indicate H5N8 HPAI viruses pose a threat to human health is required. Copyright © 2017. Published by Elsevier B.V.

  9. Highly pathogenic avian influenza A(H5N8) viruses reintroduced into South Korea by migratory waterfowl, 2014–2015

    USDA-ARS?s Scientific Manuscript database

    Highly pathogenic avian influenza A(H5N8) viruses were isolated from migratory waterfowl in South Korea during all 2014–winter 2015, a recurrence after initial introduction in winter 2014. These reappeared viruses were phylogenetically distinct from isolates circulating in poultry farms in South Kor...

  10. Emerging highly pathogenic H5 avian influenza viruses in France during winter 2015/16: phylogenetic analyses and markers for zoonotic potential.

    PubMed

    Briand, François-Xavier; Schmitz, Audrey; Ogor, Katell; Le Prioux, Aurélie; Guillou-Cloarec, Cécile; Guillemoto, Carole; Allée, Chantal; Le Bras, Marie-Odile; Hirchaud, Edouard; Quenault, Hélène; Touzain, Fabrice; Cherbonnel-Pansart, Martine; Lemaitre, Evelyne; Courtillon, Céline; Gares, Hélène; Daniel, Patrick; Fediaevsky, Alexandre; Massin, Pascale; Blanchard, Yannick; Eterradossi, Nicolas; van der Werf, Sylvie; Jestin, Véronique; Niqueux, Eric

    2017-03-02

    Several new highly pathogenic (HP) H5 avian influenza virus (AIV) have been detected in poultry farms from south-western France since November 2015, among which an HP H5N1. The zoonotic potential and origin of these AIVs immediately became matters of concern. One virus of each subtype H5N1 (150169a), H5N2 (150233) and H5N9 (150236) was characterised. All proved highly pathogenic for poultry as demonstrated molecularly by the presence of a polybasic cleavage site in their HA protein - with a sequence (HQRRKR/GLF) previously unknown among avian H5 HPAI viruses - or experimentally by the in vivo demonstration of an intravenous pathogenicity index of 2.9 for the H5N1 HP isolate. Phylogenetic analyses based on the full genomes obtained by NGS confirmed that the eight viral segments of the three isolates were all part of avian Eurasian phylogenetic lineage but differed from the Gs/Gd/1/96-like lineage. The study of the genetic characteristics at specific amino acid positions relevant for modulating the adaptation to and the virulence for mammals showed that presently, these viruses possess most molecular features characteristic of AIV and lack some major characteristics required for efficient respiratory transmission to or between humans. The three isolates are therefore predicted to have no significant pandemic potential. This article is copyright of The Authors, 2017.

  11. Pathogenicity of the Novel A/H7N9 Influenza Virus in Mice

    PubMed Central

    Mok, Chris Ka Pun; Lee, Horace Hok Yeung; Chan, Michael Chi Wai; Sia, Sin Fun; Lestra, Maxime; Nicholls, John Malcolm; Zhu, Huachen; Guan, Yi; Peiris, Joseph Malik Sriyal

    2013-01-01

    ABSTRACT A novel avian-origin influenza A/H7N9 virus infecting humans was first identified in March 2013 and, as of 30 May 2013, has caused 132 human infections leading to 33 deaths. Phylogenetic studies suggest that this virus is a reassortant, with the surface hemagglutinin (HA) and neuraminidase (NA) genes being derived from duck and wild-bird viruses, respectively, while the six “internal gene segments” were derived from poultry H9N2 viruses. Here we determine the pathogenicity of a human A/Shanghai/2/2013 (Sh2/H7N9) virus in healthy adult mice in comparison with that of A/chicken/Hong Kong/HH8/2010 (ck/H9N2) virus, highly pathogenic avian influenza (HPAI) A/Hong Kong/483/1997 (483/H5N1) virus, and a duck influenza A H7N9 virus of different genetic derivation, A/duck/Jiangxi/3286/2009 (dk/H7N9). Intranasal infection of mice with Sh2/H7N9 virus doses of 103, 104, and 105 PFU led to significant weight loss without fatality. This virus was more pathogenic than dk/H7N9 and ck/H9N2 virus, which has six internal gene segments that are genetically similar to Sh2/H7N9. Sh2/H7N9 replicated well in the nasal cavity and lung, but there was no evidence of virus dissemination beyond the respiratory tract. Mice infected with Sh2/H7N9 produced higher levels of proinflammatory cytokines in the lung and serum than did ck/H9N2 and dk/H7N9 but lower levels than 483/H5N1. Cytokine induction was positively correlated with virus load in the lung at early stages of infection. Our results suggest that Sh2/H7N9 virus is able to replicate and cause disease in mice without prior adaptation but is less pathogenic than 483/H5N1 virus. PMID:23820393

  12. Structure-activity relationships of 3-O-β-chacotriosyl oleanic acid derivatives as entry inhibitors for highly pathogenic H5N1 influenza virus.

    PubMed

    Li, Sumei; Jia, Xiuhua; Shen, Xintian; Wei, Zhuwen; Jiang, Zhiyan; Liao, Yixian; Guo, Yiming; Zheng, Xiaojun; Zhong, Guohua; Song, Gaopeng

    2017-08-15

    Highly pathogenic H5N1 virus (H5N1) entry is a key target for the development of novel anti-influenza agents with new mechanisms of action. In our continuing efforts to identify novel potential anti-H5N1 entry inhibitors, a series of 3-O-β-chacotriosyl oleanolic acid analogs have been designed, synthesized and evaluated as H5N1 entry inhibitors based on two small molecule inhibitors 1 and 2 previously discovered by us. The anti-H5N1 entry activities were determined based on HA/HIV and VSVG/HIV entry assays. Compound 15 displayed the most promising anti-H5N1 entry activities with average IC 50 values of 4.05μM and good selective index (22.9). Detailed structure-activity relationships (SARs) studies suggested that either the introduction of an additional oxo group to position 11 at OA or alteration of the C-3 configuration of OA from 3β- to 3α-forms can significantly enhance the selective index while maintaining their antiviral activities in vitro. Molecular simulation analysis confirmed that the compounds exert their inhibitory activity through binding tightly to hemagglutinin (HA2) protein near the fusion peptide and prevent virus entry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Imbalance between innate antiviral and pro-inflammatory immune responses may contribute to different outcomes involving low- and highly pathogenic avian influenza H5N3 infections in chickens.

    PubMed

    Pasick, John; Diederich, Sandra; Berhane, Yohannes; Embury-Hyatt, Carissa; Xu, Wanhong

    2017-06-01

    In order to gain further insight into the early virus-host interactions associated with highly pathogenic avian influenza virus infections in chickens, genome-wide expression profiling of chicken lung and brain was carried out at 24 and 72 h post-inoculation (h p.i.). For this purpose two recombinant H5N3 viruses were utilized, each possessing a polybasic HA0 cleavage site but differing in pathogenicity. The original rH5N3 P0 virus, which has a low-pathogenic phenotype, was passaged six times through chickens to give rise to the derivative rH5N3 P6 virus, which is highly pathogenic (Diederich S, Berhane Y, Embury-Hyatt C, Hisanaga T, Handel K et al.J Virol 2015;89:10724-10734). The gene-expression profiles in lung were similar for both viruses, although they varied in magnitude. While both viruses produced systemic infections, differences in clinical disease progression and viral tissue loads, particularly in brain, where loads of rH5N3 P6 were three orders of magnitude higher than rH5N3 P0 at 72 .p.i., were observed. Although genes associated with gene ontology (GO) categories INFα and INFβ biosynthesis, regulation of innate immune response, response to exogenous dsRNA, defence response to virus, positive regulation of NF-κB import into the nucleus and positive regulation of immune response were up-regulated in rH5N3 P0 and rH5N3 P6 brains, fold changes were higher for rH5N3 P6. The additional up-regulation of genes associated with cytokine production, inflammasome and leukocyte activation, and cell-cell adhesion detected in rH5N3 P6 versus rH5N3 P0 brains, suggested that the balance between antiviral and pro-inflammatory innate immune responses leading to acute CNS inflammation might explain the observed differences in pathogenicity.

  14. Migration of whooper swans and outbreaks of highly pathogenic avian influenza H5N1 virus in Eastern Asia

    USGS Publications Warehouse

    Newman, Scott H.; Iverson, Samuel A.; Takekawa, John Y.; Gilbert, Martin; Prosser, Diann J.; Batbayar, Nyambyar; Natsagdorj, Tseveenmyadag; Douglas, David C.

    2009-01-01

    Evaluating the potential involvement of wild avifauna in the emergence of highly pathogenic avian influenza H5N1 (hereafter H5N1) requires detailed analyses of temporal and spatial relationships between wild bird movements and disease emergence. The death of wild swans (Cygnus spp.) has been the first indicator of the presence of H5N1 in various Asian and European countries; however their role in the geographic spread of the disease remains poorly understood. We marked 10 whooper swans (Cygnus cygnus) with GPS transmitters in northeastern Mongolia during autumn 2006 and tracked their migratory movements in relation to H5N1 outbreaks. The prevalence of H5N1 outbreaks among poultry in eastern Asia during 2003-2007 peaked during winter, concurrent with whooper swan movements into regions of high poultry density. However outbreaks involving poultry were detected year round, indicating disease perpetuation independent of migratory waterbird presence. In contrast, H5N1 outbreaks involving whooper swans, as well as other migratory waterbirds that succumbed to the disease in eastern Asia, tended to occur during seasons (late spring and summer) and in habitats (areas of natural vegetation) where their potential for contact with poultry is very low to nonexistent. Given what is known about the susceptibility of swans to H5N1, and on the basis of the chronology and rates of whooper swan migration movements, we conclude that although there is broad spatial overlap between whooper swan distributions and H5N1 outbreak locations in eastern Asia, the likelihood of direct transmission between these groups is extremely low. Thus, our data support the hypothesis that swans are best viewed as sentinel species, and moreover, that in eastern Asia, it is most likely that their infections occurred through contact with asymptomatic migratory hosts (e.g., wild ducks) at or near their breeding grounds.

  15. Migration of whooper swans and outbreaks of highly pathogenic avian influenza H5N1 virus in eastern Asia.

    PubMed

    Newman, Scott H; Iverson, Samuel A; Takekawa, John Y; Gilbert, Martin; Prosser, Diann J; Batbayar, Nyambyar; Natsagdorj, Tseveenmyadag; Douglas, David C

    2009-05-28

    Evaluating the potential involvement of wild avifauna in the emergence of highly pathogenic avian influenza H5N1 (hereafter H5N1) requires detailed analyses of temporal and spatial relationships between wild bird movements and disease emergence. The death of wild swans (Cygnus spp.) has been the first indicator of the presence of H5N1 in various Asian and European countries; however their role in the geographic spread of the disease remains poorly understood. We marked 10 whooper swans (Cygnus cygnus) with GPS transmitters in northeastern Mongolia during autumn 2006 and tracked their migratory movements in relation to H5N1 outbreaks. The prevalence of H5N1 outbreaks among poultry in eastern Asia during 2003-2007 peaked during winter, concurrent with whooper swan movements into regions of high poultry density. However outbreaks involving poultry were detected year round, indicating disease perpetuation independent of migratory waterbird presence. In contrast, H5N1 outbreaks involving whooper swans, as well as other migratory waterbirds that succumbed to the disease in eastern Asia, tended to occur during seasons (late spring and summer) and in habitats (areas of natural vegetation) where their potential for contact with poultry is very low to nonexistent. Given what is known about the susceptibility of swans to H5N1, and on the basis of the chronology and rates of whooper swan migration movements, we conclude that although there is broad spatial overlap between whooper swan distributions and H5N1 outbreak locations in eastern Asia, the likelihood of direct transmission between these groups is extremely low. Thus, our data support the hypothesis that swans are best viewed as sentinel species, and moreover, that in eastern Asia, it is most likely that their infections occurred through contact with asymptomatic migratory hosts (e.g., wild ducks) at or near their breeding grounds.

  16. Purification and immunogenicity of hemagglutinin from highly pathogenic avian influenza virus H5N1 expressed in Nicotiana benthamiana

    PubMed Central

    Pua, Teen-Lee; Chan, Xiao Ying; Loh, Hwei-San; Omar, Abdul Rahman; Yusibov, Vidadi; Musiychuk, Konstantin; Hall, Alexandra C.; Coffin, Megan V.; Shoji, Yoko; Chichester, Jessica A.; Bi, Hong; Streatfield, Stephen J.

    2017-01-01

    ABSTRACT Highly pathogenic avian influenza (HPAI) H5N1 is an ongoing global health concern due to its severe sporadic outbreaks in Asia, Africa and Europe, which poses a potential pandemic threat. The development of safe and cost-effective vaccine candidates for HPAI is considered the best strategy for managing the disease and addressing the pandemic preparedness. The most potential vaccine candidate is the antigenic determinant of influenza A virus, hemagglutinin (HA). The present research was aimed at developing optimized expression in Nicotiana benthamiana and protein purification process for HA from the Malaysian isolate of H5N1 as a vaccine antigen for HPAI H5N1. Expression of HA from the Malaysian isolate of HPAI in N. benthamiana was confirmed, and more soluble protein was expressed as truncated HA, the HA1 domain over the entire ectodomain of HA. Two different purification processes were evaluated for efficiency in terms of purity and yield. Due to the reduced yield, protein degradation and length of the 3-column purification process, the 2-column method was chosen for target purification. Purified HA1 was found immunogenic in mice inducing H5 HA-specific IgG and a hemagglutination inhibition antibody. This paper offers an alternative production system of a vaccine candidate against a locally circulating HPAI, which has a regional significance. PMID:27929750

  17. Southward autumn migration of waterfowl facilitates cross-continental transmission of the highly pathogenic avian influenza H5N1 virus

    NASA Astrophysics Data System (ADS)

    Xu, Yanjie; Gong, Peng; Wielstra, Ben; Si, Yali

    2016-08-01

    The highly pathogenic avian influenza subtype H5N1 (HPAI H5N1) is a worldwide zoonotic infectious disease, threatening humans, poultry and wild birds. The role of wild birds in the spread of HPAI H5N1 has previously been investigated by comparing disease spread patterns with bird migration routes. However, the different roles that the southward autumn and northward spring migration might play in virus transmission have hardly been explored. Using direction analysis, we analyze HPAI H5N1 transmission directions and angular concentration of currently circulating viral clades, and compare these with waterfowl seasonal migration directions along major waterfowl flyways. Out of 22 HPAI H5N1 transmission directions, 18 had both a southward direction and a relatively high concentration. Differences between disease transmission and waterfowl migration directions were significantly smaller for autumn than for spring migration. The four northward transmission directions were found along Asian flyways, where the initial epicenter of the virus was located. We suggest waterfowl first picked up the virus from East Asia, then brought it to the north via spring migration, and then spread it to other parts of world mainly by autumn migration. We emphasize waterfowl autumn migration plays a relatively important role in HPAI H5N1 transmission compared to spring migration.

  18. Broadly-reactive human monoclonal antibodies elicited following pandemic H1N1 influenza virus exposure protect mice from highly pathogenic H5N1 challenge.

    PubMed

    Nachbagauer, Raffael; Shore, David; Yang, Hua; Johnson, Scott K; Gabbard, Jon D; Tompkins, S Mark; Wrammert, Jens; Wilson, Patrick C; Stevens, James; Ahmed, Rafi; Krammer, Florian; Ellebedy, Ali H

    2018-06-13

    Broadly cross-reactive antibodies that recognize conserved epitopes within the influenza virus hemagglutinin (HA) stalk domain are of particular interest for their potential use as therapeutic and prophylactic agents against multiple influenza virus subtypes including zoonotic virus strains. Here, we characterized four human HA stalk-reactive monoclonal antibodies (mAbs) for their binding breadth and affinity, in vitro neutralization capacity, and in vivo protective potential against an highly pathogenic avian influenza virus. The monoclonal antibodies were isolated from individuals shortly following infection with (70-1F02 and 1009-3B05) or vaccination against (05-2G02 and 09-3A01) A(H1N1)pdm09. Three of the mAbs bound HAs from multiple strains of group 1 viruses, and one mAb, 05-2G02, bound to both group 1 and group 2 influenza A HAs. All four antibodies prophylactically protected mice against a lethal challenge with the highly pathogenic A/Vietnam/1203/04 (H5N1) strain. Two mAbs, 70-1F02 and 09-3A01, were further tested for their therapeutic efficacy against the same strain and showed good efficacy in this setting as well. One mAb, 70-1F02, was co-crystallized with H5 HA and showed similar heavy chain only interactions as a the previously described anti-stalk antibody CR6261. Finally, we showed that antibodies that compete with these mAbs are prevalent in serum from an individual recently infected with A(H1N1)pdm09 virus. The antibodies described here can be developed into broad-spectrum antiviral therapeutics that could be used to combat infections with zoonotic or emerging pandemic influenza viruses. IMPORTANCE The rise in zoonotic infections of humans with emerging influenza viruses is a worldwide public health concern. The majority of recent zoonotic human influenza cases were caused by H7N9 and H5Nx viruses and were associated with high morbidity and mortality. In addition, seasonal influenza viruses are estimated to cause up to 650,000 deaths annually

  19. Prime-boost vaccination with recombinant H5-fowlpox and Newcastle disease virus vectors affords lasting protection in SPF Muscovy ducks against highly pathogenic H5N1 influenza virus.

    PubMed

    Niqueux, Eric; Guionie, Olivier; Amelot, Michel; Jestin, Véronique

    2013-08-28

    Vaccination protocols were evaluated in one-day old Muscovy ducklings, using an experimental Newcastle disease recombinant vaccine (vNDV-H5) encoding an optimized synthetic haemagglutinin gene from a clade 2.2.1 H5N1 highly pathogenic (HP) avian influenza virus (AIV), either as a single administration or as a boost following a prime inoculation with a fowlpox vectored vaccine (vFP89) encoding a different H5 HP haemagglutinin from an Irish H5N8 strain. These vaccination schemes did not induce detectable levels of serum antibodies in HI test using a clade 2.2.1 H5N1 antigen, and only induced H5 ELISA positive response in less than 10% of vaccinated ducks. However, following challenge against a clade 2.2.1 HPAIV, both protocols afforded full clinical protection at six weeks of age, and full protection against mortality at nine weeks. Only the prime-boost vaccination (vFP89+vNDV-H5) was still fully protecting Muscovy ducks against disease and mortality at 12 weeks of age. Reduction of oropharyngeal shedding levels was also constantly observed from the onset of the follow-up at 2.5 or three days post-infection in vaccinated ducks compared to unvaccinated controls, and was significantly more important for vFP89+vNDV-H5 vaccination than for vNDV-H5 alone. Although the latter vaccine is shown immunogenic in one-day old Muscovy ducks, the present work is original in demonstrating the high efficacy of the successive administration of two different vector vaccines encoding two different H5 in inducing lasting protection (at least similar to the one induced by an inactivated reassortant vaccine, Re-5). In addition, such a prime-boost schedule allows implementation of a DIVA strategy (to differentiate vaccinated from infected ducks) contrary to Re-5, involves easy practice on the field (with injection at the hatchery and mass vaccination later on), and should avoid eventual interference with NDV maternally derived antibodies. Last, the HA insert could be updated according to

  20. Prolonged excretion of a low-pathogenicity H5N2 avian influenza virus strain in the Pekin duck

    PubMed Central

    Carranza-Flores, José Manuel; Padilla-Noriega, Luis; Loza-Rubio, Elizabeth

    2013-01-01

    H5N2 strains of low-pathogenicity avian influenza virus (LPAIV) have been circulating for at least 17 years in some Mexican chicken farms. We measured the rate and duration of viral excretion from Pekin ducks that were experimentally inoculated with an H5N2 LPAIV that causes death in embryonated chicken eggs (A/chicken/Mexico/2007). Leghorn chickens were used as susceptible host controls. The degree of viral excretion was evaluated with real-time reverse transcriptase-polymerase chain reaction (RRT-PCR) using samples from oropharyngeal and cloacal swabs. We observed prolonged excretion from both species of birds lasting for at least 21 days. Prolonged excretion of LPAIV A/chicken/Mexico/2007 is atypical. PMID:23820212

  1. A Single Immunization with Soluble Recombinant Trimeric Hemagglutinin Protects Chickens against Highly Pathogenic Avian Influenza Virus H5N1

    PubMed Central

    Cornelissen, Lisette A. H. M.; de Vries, Robert P.; de Boer-Luijtze, Els A.; Rigter, Alan; Rottier, Peter J. M.; de Haan, Cornelis A. M.

    2010-01-01

    Background The highly pathogenic avian influenza (HPAI) virus H5N1 causes multi-organ disease and death in poultry, resulting in significant economic losses in the poultry industry. In addition, it poses a major public health threat as it can be transmitted directly from infected poultry to humans with very high (60%) mortality rate. Effective vaccination against HPAI H5N1 would protect commercial poultry and would thus provide an important control measure by reducing the likelihood of bird-to-bird and bird-to-human transmission. Methodology/Principal Findings In the present study we evaluated the vaccine potential of recombinant soluble trimeric subtype 5 hemagglutinin (sH53) produced in mammalian cells. The secreted, purified sH53 was biologically active as demonstrated by its binding to ligands in a sialic acid-dependent manner. It was shown to protect chickens, in a dose-dependent manner, against a lethal challenge with H5N1 after a single vaccination. Protected animals did not shed challenge virus as determined by a quantitative RT-PCR on RNA isolated from trachea and cloaca swabs. Also in mice, vaccination with sH53 provided complete protection against challenge with HPAI H5N1. Conclusions/Significance Our results demonstrate that sH53 constitutes an attractive vaccine antigen for protection of chickens and mammals against HPAI H5N1. As these recombinant soluble hemagglutinin preparations can be produced with high yields and with relatively short lead time, they enable a rapid response to circulating and potentially pandemic influenza viruses. PMID:20498717

  2. Differences in pathogenicity, response to vaccination, and innate immune responses in different types of ducks infected with a virulent H5N1 highly pathogenic avian influenza virus from Vietnam.

    PubMed

    Cagle, Caran; Wasilenko, Jamie; Adams, Sean C; Cardona, Carol J; To, Thanh Long; Nguyen, Tung; Spackman, Erica; Suarez, David L; Smith, Diane; Shepherd, Eric; Roth, Jason; Pantin-Jackwood, Mary J

    2012-09-01

    In a previous study, we found clear differences in pathogenicity and response to vaccination against H5N1 highly pathogenic avian influenza (HPAI; HA dade 2.3.4) between Pekin (Anas platyrhynchos var. domestica) and Muscovy (Cairina moschata) ducks vaccinated using a commercial inactivated vaccine (Re-1). The objective of the present study was to further investigate the pathogenicity of H5N1 HPAI viruses in different species of ducks by examining clinical signs and innate immune responses to infection with a different strain of H5N1 HPAI virus (HA clade 1) in two domestic ducks, Pekin and Muscovy, and one wild-type duck, mallard (Anas platyrhynchos). Protection conferred by vaccination using the Re-1 vaccine against infection with this virus was also compared between Pekin and Muscovy ducks. Differences in pathogenicity were observed among the virus-infected ducks, as the Muscovy ducks died 2 days earlier than did the Pekin and mallard ducks, and they presented more-severe neurologic signs. Conversely, the Pekin and mallard ducks had significantly higher body temperatures at 2 days postinfection (dpi) than did the Muscovy ducks, indicating possible differences in innate immune responses. However, similar expression of innate immune-related genes was found in the spleens of virus-infected ducks at this time point. In all three duck species, there was up-regulation of IFN-alpha, IFN-gamma, IL-6, CCL19, RIG-I, and MHC class I and down-regulation of MHC class II, but variable expression of IL-18 and TLR7. As in our previous study, vaccinated Muscovy ducks showed less protection against virus infection than did Pekin ducks, as evidenced by the higher mortality and higher number of Muscovy ducks shedding virus when compared to Pekin ducks. In conclusion, infection with an H5N1 HPAI virus produced a systemic infection with high mortality in all three duck species; however, the disease was more severe in Muscovy ducks, which also had a poor response to vaccination. The

  3. Pathologic Changes in Wild Birds Infected with Highly Pathogenic Avian Influenza A(H5N8) Viruses, South Korea, 2014.

    PubMed

    Kim, Hye-Ryoung; Kwon, Yong-Kuk; Jang, Il; Lee, Youn-Jeong; Kang, Hyun-Mi; Lee, Eun-Kyoung; Song, Byung-Min; Lee, Hee-Soo; Joo, Yi-Seok; Lee, Kyung-Hyun; Lee, Hyun-Kyoung; Baek, Kang-Hyun; Bae, You-Chan

    2015-05-01

    In January 2014, an outbreak of infection with highly pathogenic avian influenza (HPAI) A(H5N8) virus began on a duck farm in South Korea and spread to other poultry farms nearby. During this outbreak, many sick or dead wild birds were found around habitats frequented by migratory birds. To determine the causes of death, we examined 771 wild bird carcasses and identified HPAI A(H5N8) virus in 167. Gross and histologic lesions were observed in pancreas, lung, brain, and kidney of Baikal teals, bean geese, and whooper swans but not mallard ducks. Such lesions are consistent with lethal HPAI A(H5N8) virus infection. However, some HPAI-positive birds had died of gunshot wounds, peritonitis, or agrochemical poisoning rather than virus infection. These findings suggest that susceptibility to HPAI A(H5N8) virus varies among species of migratory birds and that asymptomatic migratory birds could be carriers of this virus.

  4. Vaccination with virus-like particles containing H5 antigens from three H5N1 clades protects chickens from H5N1 and H5N8 influenza viruses

    PubMed Central

    Kapczynski, Darrell R.; Tumpey, Terrence M.; Hidajat, Rachmat; Zsak, Aniko; Chrzastek, Klaudia; Tretyakova, Irina; Pushko, Peter

    2016-01-01

    Highly pathogenic avian influenza (HPAI) viruses, especially H5N1 strains, represent a public health threat and cause widespread morbidity and mortality in domestic poultry. Recombinant virus-like particles (VLPs) represent a promising novel vaccine approach to control avian influenza including HPAI strains. Influenza VLPs contain viral hemagglutinin (HA), which can be expressed in cell culture within highly immunogenic VLPs that morphologically and antigenically resemble influenza virions, except VLPs are non-infectious. Here we describe a recombinant VLP containing HA proteins derived from three distinct clades of H5N1 viruses as an experimental, broadly protective H5 avian influenza vaccine. A baculovirus vector was configured to co-express the H5 genes from recent H5N1 HPAI isolates A/chicken/Germany/2014 (clade 2.3.4.4), A/chicken/West Java/Subang/29/2007 (clade 2.1.3) and A/chicken/Egypt/121/2012 (clade 2.2.1). Co-expression of these genes in Sf9 cells along with influenza neuraminidase (NA) and retrovirus gag genes resulted in production of triple-clade H555 VLPs that exhibited hemagglutination activity and morphologically resembled influenza virions. Vaccination of chickens with these VLPs resulted in induction of serum antibody responses and efficient protection against experimental challenges with three different viruses including the recent U.S. H5N8 HPAI isolate. We conclude that these novel triple-clade VLPs represent a feasible strategy for simultaneously evoking protective antibodies against multiple variants of H5 influenza virus. PMID:26868083

  5. Characterization of H5N6 highly pathogenic avian influenza viruses isolated from wild and captive birds in the winter season of 2016-2017 in Northern Japan.

    PubMed

    Hiono, Takahiro; Okamatsu, Masatoshi; Matsuno, Keita; Haga, Atsushi; Iwata, Ritsuko; Nguyen, Lam Thanh; Suzuki, Mizuho; Kikutani, Yuto; Kida, Hiroshi; Onuma, Manabu; Sakoda, Yoshihiro

    2017-09-01

    On 15 November 2016, a black swan that had died in a zoo in Akita prefecture, northern Japan, was strongly suspected to have highly pathogenic avian influenza (HPAI); an HPAI virus (HPAIV) belonging to the H5N6 subtype was isolated from specimens taken from the bird. After the initial report, 230 cases of HPAI caused by H5N6 viruses from wild birds, captive birds, and domestic poultry farms were reported throughout the country during the winter season. In the present study, 66 H5N6 HPAIVs isolated from northern Japan were further characterized. Phylogenetic analysis of the hemagglutinin gene showed that the H5N6 viruses isolated in northern Japan clustered into Group C of Clade 2.3.4.4 together with other isolates collected in Japan, Korea and Taiwan during the winter season of 2016-2017. The antigenicity of the Japanese H5N6 isolate differed slightly from that of HPAIVs isolated previously in Japan and China. The virus exhibited high pathogenicity and a high replication capacity in chickens, whereas virus growth was slightly lower in ducks compared with that of an H5N8 HPAIV isolate collected in Japan in 2014. Comprehensive analyses of Japanese isolates, including those from central, western, and southern Japan, as well as rapid publication of this information are essential for facilitating greater control of HPAIVs. © 2017 The Societies and John Wiley & Sons Australia, Ltd.

  6. Protective Efficacy of Recombinant Turkey Herpes Virus (rHVT-H5) and Inactivated H5N1 Vaccines in Commercial Mulard Ducks against the Highly Pathogenic Avian Influenza (HPAI) H5N1 Clade 2.2.1 Virus

    PubMed Central

    Kilany, Walid H.; Safwat, Marwa; Mohammed, Samy M.; Salim, Abdullah; Fasina, Folorunso Oludayo; Fasanmi, Olubunmi G.; Shalaby, Azhar G.; Dauphin, Gwenaelle; Hassan, Mohammed K.; Lubroth, Juan; Jobre, Yilma M.

    2016-01-01

    In Egypt, ducks kept for commercial purposes constitute the second highest poultry population, at 150 million ducks/year. Hence, ducks play an important role in the introduction and transmission of avian influenza (AI) in the Egyptian poultry population. Attempts to control outbreaks include the use of vaccines, which have varying levels of efficacy and failure. To date, the effects of vaccine efficacy has rarely been determined in ducks. In this study, we evaluated the protective efficacy of a live recombinant vector vaccine based on a turkey Herpes Virus (HVT) expressing the H5 gene from a clade 2.2 H5N1 HPAIV strain (A/Swan/Hungary/499/2006) (rHVT-H5) and a bivalent inactivated H5N1 vaccine prepared from clade 2.2.1 and 2.2.1.1 H5N1 seeds in Mulard ducks. A 0.3ml/dose subcutaneous injection of rHVT-H5 vaccine was administered to one-day-old ducklings (D1) and another 0.5ml/dose subcutaneous injection of the inactivated MEFLUVAC was administered at 7 days (D7). Four separate challenge experiments were conducted at Days 21, 28, 35 and 42, in which all the vaccinated ducks were challenged with 106EID50/duck of H5N1 HPAI virus (A/chicken/Egypt/128s/2012(H5N1) (clade 2.2.1) via intranasal inoculation. Maternal-derived antibody regression and post-vaccination antibody immune responses were monitored weekly. Ducks vaccinated at 21, 28, 35 and 42 days with the rHVT-H5 and MEFLUVAC vaccines were protected against mortality (80%, 80%, 90% and 90%) and (50%, 70%, 80% and 90%) respectively, against challenges with the H5N1 HPAI virus. The amount of viral shedding and shedding rates were lower in the rHVT-H5 vaccine groups than in the MEFLUVAC groups only in the first two challenge experiments. However, the non-vaccinated groups shed significantly more of the virus than the vaccinated groups. Both rHVT-H5 and MEFLUVAC provide early protection, and rHVT-H5 vaccine in particular provides protection against HPAI challenge. PMID:27304069

  7. Protective Efficacy of Recombinant Turkey Herpes Virus (rHVT-H5) and Inactivated H5N1 Vaccines in Commercial Mulard Ducks against the Highly Pathogenic Avian Influenza (HPAI) H5N1 Clade 2.2.1 Virus.

    PubMed

    Kilany, Walid H; Safwat, Marwa; Mohammed, Samy M; Salim, Abdullah; Fasina, Folorunso Oludayo; Fasanmi, Olubunmi G; Shalaby, Azhar G; Dauphin, Gwenaelle; Hassan, Mohammed K; Lubroth, Juan; Jobre, Yilma M

    2016-01-01

    In Egypt, ducks kept for commercial purposes constitute the second highest poultry population, at 150 million ducks/year. Hence, ducks play an important role in the introduction and transmission of avian influenza (AI) in the Egyptian poultry population. Attempts to control outbreaks include the use of vaccines, which have varying levels of efficacy and failure. To date, the effects of vaccine efficacy has rarely been determined in ducks. In this study, we evaluated the protective efficacy of a live recombinant vector vaccine based on a turkey Herpes Virus (HVT) expressing the H5 gene from a clade 2.2 H5N1 HPAIV strain (A/Swan/Hungary/499/2006) (rHVT-H5) and a bivalent inactivated H5N1 vaccine prepared from clade 2.2.1 and 2.2.1.1 H5N1 seeds in Mulard ducks. A 0.3ml/dose subcutaneous injection of rHVT-H5 vaccine was administered to one-day-old ducklings (D1) and another 0.5ml/dose subcutaneous injection of the inactivated MEFLUVAC was administered at 7 days (D7). Four separate challenge experiments were conducted at Days 21, 28, 35 and 42, in which all the vaccinated ducks were challenged with 106EID50/duck of H5N1 HPAI virus (A/chicken/Egypt/128s/2012(H5N1) (clade 2.2.1) via intranasal inoculation. Maternal-derived antibody regression and post-vaccination antibody immune responses were monitored weekly. Ducks vaccinated at 21, 28, 35 and 42 days with the rHVT-H5 and MEFLUVAC vaccines were protected against mortality (80%, 80%, 90% and 90%) and (50%, 70%, 80% and 90%) respectively, against challenges with the H5N1 HPAI virus. The amount of viral shedding and shedding rates were lower in the rHVT-H5 vaccine groups than in the MEFLUVAC groups only in the first two challenge experiments. However, the non-vaccinated groups shed significantly more of the virus than the vaccinated groups. Both rHVT-H5 and MEFLUVAC provide early protection, and rHVT-H5 vaccine in particular provides protection against HPAI challenge.

  8. Isolation of an H5N8 Highly Pathogenic Avian Influenza Virus Strain from Wild Birds in Seoul, a Highly Urbanized Area in South Korea.

    PubMed

    Kwon, Jung-Hoon; Lee, Dong-Hun; Jeong, Jei-Hyun; Yuk, Seong-Su; Erdene-Ochir, Tseren-Ochir; Noh, Jin-Yong; Hong, Woo-Tack; Jeong, Sol; Gwon, Gyeong-Bin; Lee, Sang-Won; Choi, In-Soo; Song, Chang-Seon

    2017-07-01

    Asian-lineage H5 highly pathogenic avian influenza viruses (HPAIV) have caused recurrent outbreaks in poultry and wild birds. In January 2014, H5N8 HPAIV caused outbreaks in South Korea and subsequently spread to East Asia, Europe, and North America. We report the isolation of an H5N8 HPAIV strain from wild birds in Seoul, the most-developed city in South Korea. We analyzed the complete genome sequence of this isolate and estimated its origin using a phylogenetic analysis. The Seoul H5N8 isolate clustered phylogenetically with strains isolated from migratory wild birds but was distinct from Korean poultry isolates. This H5N8 virus was likely introduced into the urbanized city by migratory wild birds. Therefore, wild bird habitats in urbanized areas should be carefully monitored for HPAIV.

  9. Identification and characterization of a highly pathogenic H5N1 avian influenza A virus during an outbreak in vaccinated chickens in Egypt.

    PubMed

    Amen, O; Vemula, S V; Zhao, J; Ibrahim, R; Hussein, A; Hewlett, I K; Moussa, S; Mittal, S K

    2015-12-02

    Highly pathogenic avian influenza A (HPAI) H5N1 viruses continue to be a major veterinary and public health problem in Egypt. Continued surveillance of these viruses is necessary to devise strategies to control the spread of the virus and to monitor its evolutionary patterns. This is a report of the identification of a variant strain of HPAI H5N1 virus during an outbreak in 2010 in vaccinated chicken flocks in a poultry farm in Assiut, Egypt. Vaccination of chickens with an oil-emulsified inactivated A/chicken/Mexico/232/94 (H5N2) vaccine induced high levels of hemagglutination inhibition (HI) antibody titers reaching up to 9 log2. However, all flocks irrespective of the number of vaccine doses and the resultant HI titer levels came down with severe influenza infections. The qRT-PCR and rapid antigen test confirmed the influenza virus to be from H5N1 subtype. Sequencing of the hemagglutinin (HA) gene fragment from ten independent samples demonstrated that a single H5N1 strain was involved. This strain belonged to clade 2.2.1 and had several mutations in the receptor-binding site of the HA protein, thereby producing a variant strain of HPAI H5N1 virus which was antigenically different from the parent clade 2.2.1 virus circulating in Egypt at that time. In order to define the variability in HPAI H5N1 viruses over time in Egypt, we sequenced another H5N1 virus that was causing infections in chickens in 2014. Phylogenetic analysis revealed that both viruses had further distanced from the parent virus circulating during 2010. This study highlights that the antigenic mutations in HPAI H5N1 viruses represent a definitive challenge for the development of an effective vaccine for poultry. Overall, the results emphasize the need for continued surveillance of H5N1 outbreaks and extensive characterization of virus isolates from vaccinated and non-vaccinated poultry populations to better understand genetic changes and their implications. Copyright © 2015 Elsevier B.V. All

  10. Genetic and biological characterization of three poultry-origin H5N6 avian influenza viruses with all internal genes from genotype S H9N2 viruses.

    PubMed

    Liu, Kaituo; Gu, Min; Hu, Shunlin; Gao, Ruyi; Li, Juan; Shi, Liwei; Sun, Wenqi; Liu, Dong; Gao, Zhao; Xu, Xiulong; Hu, Jiao; Wang, Xiaoquan; Liu, Xiaowen; Chen, Sujuan; Peng, Daxin; Jiao, Xinan; Liu, Xiufan

    2018-04-01

    During surveillance for avian influenza viruses, three H5N6 viruses were isolated in chickens obtained from live bird markets in eastern China, between January 2015 and April 2016. Sequence analysis revealed a high genomic homology between these poultry isolates and recent human H5N6 variants whose internal genes were derived from genotype S H9N2 avian influenza viruses. Glycan binding assays revealed that all avian H5N6 viruses were capable of binding to both human-type SAα-2,6Gal receptors and avian-type SAα-2,3Gal receptors. Their biological characteristics were further studied in BALB/c mice, specific-pathogen-free chickens, and mallard ducks. All three isolates had low pathogenicity in mice but were highly pathogenic to chickens, as evidenced by 100% mortality 36-120 hours post infection at a low dose of 10 3.0 EID 50 and through effective contact transmission. Moreover, all three poultry H5N6 isolates caused asymptomatic infections in ducks, which may serve as a reservoir host for their maintenance and dissemination; these migrating waterfowl could cause a potential global pandemic. Our study suggests that continuous epidemiological surveillance in poultry should be implemented for the early prevention of future influenza outbreaks.

  11. Assessment of the Internal Genes of Influenza A (H7N9) Virus Contributing to High Pathogenicity in Mice

    PubMed Central

    Bi, Yuhai; Xie, Qing; Zhang, Shuang; Li, Yun; Xiao, Haixia; Jin, Tao; Zheng, Weinan; Li, Jing; Jia, Xiaojuan; Sun, Lei; Liu, Jinhua; Qin, Chuan

    2014-01-01

    ABSTRACT The recently identified H7N9 influenza A virus has caused severe economic losses and worldwide public concern. Genetic analysis indicates that its six internal genes all originated from H9N2 viruses. However, the H7N9 virus is more highly pathogenic in humans than H9N2, which suggests that the internal genes of H7N9 have mutated. To analyze which H7N9 virus internal genes contribute to its high pathogenicity, a series of reassortants was generated by reverse genetics, with each virus containing a single internal gene of the typical A/Anhui/1/2013 (H7N9) (AH-H7N9) virus in the genetic background of the A/chicken/Shandong/lx1023/2007 (H9N2) virus. The replication ability, polymerase activity, and pathogenicity of these viruses were then evaluated in vitro and in vivo. These recombinants displayed high genetic compatibility, and the H7N9-derived PB2, M, and NP genes were identified as the virulence genes for the reassortants in mice. Further investigation confirmed that the PB2 K627 residue is critical for the high pathogenicity of the H7N9 virus and the reassortant containing the H7N9-derived PB2 segment (H9N2-AH/PB2). Notably, the H7N9-derived PB2 gene displayed greater compatibility with the H9N2 genome than that of H7N9, endowing the H9N2-AH/PB2 reassortant with greater viability and virulence than the parental H7N9 virus. In addition, the H7N9 virus, with the exception of the H9N2 reassortants, could effectively replicate in human A549 cells. Our results indicate that PB2, M, and NP are the key virulence genes, together with the surface hemagglutinin (HA) and neuraminidase (NA) proteins, contributing to the high infectivity of the H7N9 virus in humans. IMPORTANCE To date, the novel H7N9 influenza A virus has caused 437 human infections, with approximately 30% mortality. Previous work has primarily focused on the two viral surface proteins, HA and NA, but the contribution of the six internal genes to the high pathogenicity of H7N9 has not been

  12. Parasite-mediated upregulation of NK cell-derived gamma interferon protects against severe highly pathogenic H5N1 influenza virus infection.

    PubMed

    O'Brien, Kevin B; Schultz-Cherry, Stacey; Knoll, Laura J

    2011-09-01

    Outbreaks of influenza A viruses are associated with significant human morbidity worldwide. Given the increasing resistance to the available influenza drugs, new therapies for the treatment of influenza virus infection are needed. An alternative approach is to identify products that enhance a protective immune response. In these studies, we demonstrate that infecting mice with the Th1-inducing parasite Toxoplasma gondii prior to highly pathogenic avian H5N1 influenza virus infection led to decreased lung viral titers and enhanced survival. A noninfectious fraction of T. gondii soluble antigens (STAg) elicited an immune response similar to that elicited by live parasites, and administration of STAg 2 days after H5N1 influenza virus infection enhanced survival, lowered viral titers, and reduced clinical disease. STAg administration protected H5N1 virus-infected mice lacking lymphocytes, suggesting that while the adaptive immune response was not required for enhanced survival, it was necessary for STAg-mediated viral clearance. Mechanistically, we found that administration of STAg led to increased production of gamma interferon (IFN-γ) from natural killer (NK) cells, which were both necessary and sufficient for survival. Further, administration of exogenous IFN-γ alone enhanced survival from H5N1 influenza virus infection, although not to the same level as STAg treatment. These studies demonstrate that a noninfectious T. gondii extract enhances the protective immune response against severe H5N1 influenza virus infections even when a single dose is administered 2 days postinfection.

  13. Highly Pathogenic Avian Influenza (H5N1): Pathways of Exposure at the Animal‐Human Interface, a Systematic Review

    PubMed Central

    Van Kerkhove, Maria D.; Mumford, Elizabeth; Mounts, Anthony W.; Bresee, Joseph; Ly, Sowath; Bridges, Carolyn B.; Otte, Joachim

    2011-01-01

    Background The threat posed by highly pathogenic avian influenza A H5N1 viruses to humans remains significant, given the continued occurrence of sporadic human cases (499 human cases in 15 countries) with a high case fatality rate (approximately 60%), the endemicity in poultry populations in several countries, and the potential for reassortment with the newly emerging 2009 H1N1 pandemic strain. Therefore, we review risk factors for H5N1 infection in humans. Methods and Findings Several epidemiologic studies have evaluated the risk factors associated with increased risk of H5N1 infection among humans who were exposed to H5N1 viruses. Our review shows that most H5N1 cases are attributed to exposure to sick poultry. Most cases are sporadic, while occasional limited human-to-human transmission occurs. The most commonly identified factors associated with H5N1 virus infection included exposure through contact with infected blood or bodily fluids of infected poultry via food preparation practices; touching and caring for infected poultry; consuming uncooked poultry products; exposure to H5N1 via swimming or bathing in potentially virus laden ponds; and exposure to H5N1 at live bird markets. Conclusions Research has demonstrated that despite frequent and widespread contact with poultry, transmission of the H5N1 virus from poultry to humans is rare. Available research has identified several risk factors that may be associated with infection including close direct contact with poultry and transmission via the environment. However, several important data gaps remain that limit our understanding of the epidemiology of H5N1 in humans. Although infection in humans with H5N1 remains rare, human cases continue to be reported and H5N1 is now considered endemic among poultry in parts of Asia and in Egypt, providing opportunities for additional human infections and for the acquisition of virus mutations that may lead to more efficient spread among humans and other mammalian species

  14. Wild Bird Migration across the Qinghai-Tibetan Plateau: A Transmission Route for Highly Pathogenic H5N1

    PubMed Central

    Prosser, Diann J.; Cui, Peng; Takekawa, John Y.; Tang, Mingjie; Hou, Yuansheng; Collins, Bridget M.; Yan, Baoping; Hill, Nichola J.; Li, Tianxian; Li, Yongdong; Lei, Fumin; Guo, Shan; Xing, Zhi; He, Yubang; Zhou, Yuanchun; Douglas, David C.; Perry, William M.; Newman, Scott H.

    2011-01-01

    Background Qinghai Lake in central China has been at the center of debate on whether wild birds play a role in circulation of highly pathogenic avian influenza virus H5N1. In 2005, an unprecedented epizootic at Qinghai Lake killed more than 6000 migratory birds including over 3000 bar-headed geese (Anser indicus). H5N1 subsequently spread to Europe and Africa, and in following years has re-emerged in wild birds along the Central Asia flyway several times. Methodology/Principal Findings To better understand the potential involvement of wild birds in the spread of H5N1, we studied the movements of bar-headed geese marked with GPS satellite transmitters at Qinghai Lake in relation to virus outbreaks and disease risk factors. We discovered a previously undocumented migratory pathway between Qinghai Lake and the Lhasa Valley of Tibet where 93% of the 29 marked geese overwintered. From 2003–2009, sixteen outbreaks in poultry or wild birds were confirmed on the Qinghai-Tibet Plateau, and the majority were located within the migratory pathway of the geese. Spatial and temporal concordance between goose movements and three potential H5N1 virus sources (poultry farms, a captive bar-headed goose facility, and H5N1 outbreak locations) indicated ample opportunities existed for virus spillover and infection of migratory geese on the wintering grounds. Their potential as a vector of H5N1 was supported by rapid migration movements of some geese and genetic relatedness of H5N1 virus isolated from geese in Tibet and Qinghai Lake. Conclusions/Significance This is the first study to compare phylogenetics of the virus with spatial ecology of its host, and the combined results suggest that wild birds play a role in the spread of H5N1 in this region. However, the strength of the evidence would be improved with additional sequences from both poultry and wild birds on the Qinghai-Tibet Plateau where H5N1 has a clear stronghold. PMID:21408010

  15. Wild bird migration across the Qinghai-Tibetan plateau: a transmission route for highly pathogenic H5N1.

    PubMed

    Prosser, Diann J; Cui, Peng; Takekawa, John Y; Tang, Mingjie; Hou, Yuansheng; Collins, Bridget M; Yan, Baoping; Hill, Nichola J; Li, Tianxian; Li, Yongdong; Lei, Fumin; Guo, Shan; Xing, Zhi; He, Yubang; Zhou, Yuanchun; Douglas, David C; Perry, William M; Newman, Scott H

    2011-03-09

    Qinghai Lake in central China has been at the center of debate on whether wild birds play a role in circulation of highly pathogenic avian influenza virus H5N1. In 2005, an unprecedented epizootic at Qinghai Lake killed more than 6000 migratory birds including over 3000 bar-headed geese (Anser indicus). H5N1 subsequently spread to Europe and Africa, and in following years has re-emerged in wild birds along the Central Asia flyway several times. To better understand the potential involvement of wild birds in the spread of H5N1, we studied the movements of bar-headed geese marked with GPS satellite transmitters at Qinghai Lake in relation to virus outbreaks and disease risk factors. We discovered a previously undocumented migratory pathway between Qinghai Lake and the Lhasa Valley of Tibet where 93% of the 29 marked geese overwintered. From 2003-2009, sixteen outbreaks in poultry or wild birds were confirmed on the Qinghai-Tibet Plateau, and the majority were located within the migratory pathway of the geese. Spatial and temporal concordance between goose movements and three potential H5N1 virus sources (poultry farms, a captive bar-headed goose facility, and H5N1 outbreak locations) indicated ample opportunities existed for virus spillover and infection of migratory geese on the wintering grounds. Their potential as a vector of H5N1 was supported by rapid migration movements of some geese and genetic relatedness of H5N1 virus isolated from geese in Tibet and Qinghai Lake. This is the first study to compare phylogenetics of the virus with spatial ecology of its host, and the combined results suggest that wild birds play a role in the spread of H5N1 in this region. However, the strength of the evidence would be improved with additional sequences from both poultry and wild birds on the Qinghai-Tibet Plateau where H5N1 has a clear stronghold.

  16. Short- and long-term protective efficacy against clade 2.3.4.4 H5N2 highly pathogenic avian influenza virus following prime-boost vaccination in turkeys

    USDA-ARS?s Scientific Manuscript database

    Highly pathogenic avian influenza virus (HPAIV) infections are frequently associated with systemic disease and high mortality in domestic poultry, particularly in chickens and turkeys. Clade 2.3.4.4 represents a genetic cluster within the Asian HPAIV H5 Goose/Guangdong lineage that has spread throu...

  17. Cross-reactivity to highly pathogenic avian influenza H5N1 viruses after vaccination with nonadjuvanted and MF59-adjuvanted influenza A/Duck/Singapore/97 (H5N3) vaccine: a potential priming strategy.

    PubMed

    Stephenson, Iain; Bugarini, Roberto; Nicholson, Karl G; Podda, Audino; Wood, John M; Zambon, Maria C; Katz, Jacqueline M

    2005-04-15

    Antigenically well-matched vaccines against highly pathogenic avian influenza H5N1 viruses are urgently required. Human serum samples after immunization with MF59 or nonadjuvanted A/duck/Singapore/97 (H5N3) vaccine were tested for antibody to 1997-2004 human H5N1 viruses. Antibody responses to 3 doses of nonadjuvanted vaccine were poor and were higher after MF59-adjuvanted vaccine, with seroconversion rates to A/HongKong/156/97, A/HongKong/213/03, A/Thailand/16/04, and A/Vietnam/1203/04 of 100% (P < .0001), 100% (P < .0001), 71% (P = .0004), and 43% (P = .0128) in 14 subjects, respectively, compared with 27%, 27%, 0%, and 0% in 11 who received nonadjuvanted vaccine. These findings have implications for the rational design of pandemic vaccines against influenza H5.

  18. Transmission of an H5N8-Subtype Highly Pathogenic Avian Influenza Virus from Infected Hens to Laid Eggs.

    PubMed

    Uchida, Yuko; Takemae, Nobuhiro; Tanikawa, Taichiro; Kanehira, Katsushi; Saito, Takehiko

    2016-06-01

    We showed here that an H5N8-subtype highly pathogenic avian influenza virus (HPAIV) was transmitted to both the internal contents and shells of eggs laid by white leghorn hens experimentally infected with the virus. Seven of eight HPAIV-infected hens laid eggs until 4 days postinoculation (dpi). The mean number of eggs laid per head daily decreased significantly from 0.58 before inoculation to 0.18 after viral inoculation. The virus was detected in the eggs laid by three of the seven hens. Viral transmission was detectable beginning on 3 dpi, and virus titers in tracheal and cloacal swabs from the hens that laid the contaminated eggs exceeded 2.9 log10 EID50. The level of viral replication and its timing when virus replicates enough to be detected in oviduct after virus inoculation appear to be key factors in the transmission of H5N8 HPAIV from infected hens to laid eggs.

  19. Characterization of Clade 2.3.2.1 H5N1 Highly Pathogenic Avian Influenza Viruses Isolated from Wild Birds (Mandarin Duck and Eurasian Eagle Owl) in 2010 in Korea

    PubMed Central

    Choi, Jun-Gu; Kang, Hyun-Mi; Jeon, Woo-Jin; Choi, Kang-Seuk; Kim, Kwang-Il; Song, Byung Min; Lee, Hee-Soo; Kim, Jae-Hong; Lee, Youn-Jeong

    2013-01-01

    Starting in late November 2010, the H5N1 highly pathogenic avian influenza (HPAI) virus was isolated from many types of wild ducks and raptors and was subsequently isolated from poultry in Korea. We assessed the genetic and pathogenic properties of the HPAI viruses isolated from a fecal sample from a mandarin duck and a dead Eurasian eagle owl, the most affected wild bird species during the 2010/2011 HPAI outbreak in Korea. These viruses have similar genetic backgrounds and exhibited the highest genetic similarity with recent Eurasian clade 2.3.2.1 HPAI viruses. In animal inoculation experiments, regardless of their originating hosts, the two Korean isolates produced highly pathogenic characteristics in chickens, ducks and mice without pre-adaptation. These results raise concerns about veterinary and public health. Surveillance of wild birds could provide a good early warning signal for possible HPAI infection in poultry as well as in humans. PMID:23611846

  20. Introduction and enzootic of A/H5N1 in Egypt: Virus evolution, pathogenicity and vaccine efficacy ten years on.

    PubMed

    Abdelwhab, E M; Hassan, M K; Abdel-Moneim, A S; Naguib, M M; Mostafa, A; Hussein, I T M; Arafa, A; Erfan, A M; Kilany, W H; Agour, M G; El-Kanawati, Z; Hussein, H A; Selim, A A; Kholousy, S; El-Naggar, H; El-Zoghby, E F; Samy, A; Iqbal, M; Eid, A; Ibraheem, E M; Pleschka, S; Veits, J; Nasef, S A; Beer, M; Mettenleiter, T C; Grund, C; Ali, M M; Harder, T C; Hafez, H M

    2016-06-01

    It is almost a decade since the highly pathogenic H5N1 avian influenza virus (A/H5N1) of clade 2.2.1 was introduced to Egypt in 2005, most likely, via wild birds; marking the longest endemic status of influenza viruses in poultry outside Asia. The endemic A/H5N1 in Egypt still compromises the poultry industry, poses serious hazards to public health and threatens to become potentially pandemic. The control strategies adopted for A/H5N1 in Egyptian poultry using diverse vaccines in commercialized poultry neither eliminated the virus nor did they decrease its evolutionary rate. Several virus clades have evolved, a few of them disappeared and others prevailed. Disparate evolutionary traits in both birds and humans were manifested by accumulation of clade-specific mutations across viral genomes driven by a variety of selection pressures. Viruses in vaccinated poultry populations displayed higher mutation rates at the immunogenic epitopes, promoting viral escape and reducing vaccine efficiency. On the other hand, viruses isolated from humans displayed changes in the receptor binding domain, which increased the viral affinity to bind to human-type glycan receptors. Moreover, viral pathogenicity exhibited several patterns in different hosts. This review aims to provide an overview of the viral evolution, pathogenicity and vaccine efficacy of A/H5N1 in Egypt during the last ten years. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Distribution and dynamics of risk factors associated with highly pathogenic avian influenza H5N1.

    PubMed

    Zhang, L; Guo, Z W; Bridge, E S; Li, Y M; Xiao, X M

    2013-11-01

    Within China's Poyang Lake region, close interactions between wild migratory birds and domestic poultry are common and provide an opportunity for the transmission and subsequent outbreaks of highly pathogenic avian influenza (HPAI) virus. We overlaid a series of ecological factors associated with HPAI to map the risk of HPAI in relation to natural and anthropogenic variables, and we identified two hotspots for potential HPAI outbreaks in the Poyang Lake region as well as three corridors connecting the two hotspot areas. In hotspot I, there is potential for migratory birds to bring new avian influenza (AI) strains that can reassort with existing strains to form new AI viruses. Hotspot II features high-density poultry production where outbreaks of endemic AI viruses are likely. The three communication corridors that link the two hotspots further promote HPAI H5N1 transmission and outbreaks and lead to the persistence of AI viruses in the Poyang Lake region. We speculate that the region's unevenly distributed poultry supply-and-demand system might be a key factor inducing HPAI H5N1 transmission and outbreaks in the Poyang Lake region.

  2. Local amplification of highly pathogenic avian influenza H5N8 viruses in wild birds in the Netherlands, 2016 to 2017

    PubMed Central

    Poen, Marjolein J.; Bestebroer, Theo M.; Vuong, Oanh; Scheuer, Rachel D.; van der Jeugd, Henk P.; Kleyheeg, Erik; Eggink, Dirk; Lexmond, Pascal; van den Brand, Judith M.A.; Begeman, Lineke; van der Vliet, Stefan; Müskens, Gerhard J.D.M.; Majoor, Frank A.; Koopmans, Marion P.G.; Kuiken, Thijs; Fouchier, Ron A.M.

    2018-01-01

    Introduction Highly pathogenic avian influenza (HPAI) viruses of subtype H5N8 were re-introduced into the Netherlands by late 2016, after detections in south-east Asia and Russia. This second H5N8 wave resulted in a large number of outbreaks in poultry farms and the deaths of large numbers of wild birds in multiple European countries. Methods: Here we report on the detection of HPAI H5N8 virus in 57 wild birds of 12 species sampled during active (32/5,167) and passive (25/36) surveillance activities, i.e. in healthy and dead animals respectively, in the Netherlands between 8 November 2016 and 31 March 2017. Moreover, we further investigate the experimental approach of wild bird serology as a contributing tool in HPAI outbreak investigations. Results: In contrast to the first H5N8 wave, local virus amplification with associated wild bird mortality has occurred in the Netherlands in 2016/17, with evidence for occasional gene exchange with low pathogenic avian influenza (LPAI) viruses. Discussion: These apparent differences between outbreaks and the continuing detections of HPAI viruses in Europe are a cause of concern. With the current circulation of zoonotic HPAI and LPAI virus strains in Asia, increased understanding of the drivers responsible for the global spread of Asian poultry viruses via wild birds is needed. PMID:29382414

  3. Local amplification of highly pathogenic avian influenza H5N8 viruses in wild birds in the Netherlands, 2016 to 2017.

    PubMed

    Poen, Marjolein J; Bestebroer, Theo M; Vuong, Oanh; Scheuer, Rachel D; van der Jeugd, Henk P; Kleyheeg, Erik; Eggink, Dirk; Lexmond, Pascal; van den Brand, Judith M A; Begeman, Lineke; van der Vliet, Stefan; Müskens, Gerhard J D M; Majoor, Frank A; Koopmans, Marion P G; Kuiken, Thijs; Fouchier, Ron A M

    2018-01-01

    IntroductionHighly pathogenic avian influenza (HPAI) viruses of subtype H5N8 were re-introduced into the Netherlands by late 2016, after detections in south-east Asia and Russia. This second H5N8 wave resulted in a large number of outbreaks in poultry farms and the deaths of large numbers of wild birds in multiple European countries. Methods : Here we report on the detection of HPAI H5N8 virus in 57 wild birds of 12 species sampled during active (32/5,167) and passive (25/36) surveillance activities, i.e. in healthy and dead animals respectively, in the Netherlands between 8 November 2016 and 31 March 2017. Moreover, we further investigate the experimental approach of wild bird serology as a contributing tool in HPAI outbreak investigations. Results : In contrast to the first H5N8 wave, local virus amplification with associated wild bird mortality has occurred in the Netherlands in 2016/17, with evidence for occasional gene exchange with low pathogenic avian influenza (LPAI) viruses. Discussion : These apparent differences between outbreaks and the continuing detections of HPAI viruses in Europe are a cause of concern. With the current circulation of zoonotic HPAI and LPAI virus strains in Asia, increased understanding of the drivers responsible for the global spread of Asian poultry viruses via wild birds is needed.

  4. Mild Respiratory Illness Among Young Children Caused by Highly Pathogenic Avian Influenza A (H5N1) Virus Infection in Dhaka, Bangladesh, 2011.

    PubMed

    Chakraborty, Apurba; Rahman, Mahmudur; Hossain, M Jahangir; Khan, Salah Uddin; Haider, M Sabbir; Sultana, Rebeca; Ali Rimi, Nadia; Islam, M Saiful; Haider, Najmul; Islam, Ausraful; Sultana Shanta, Ireen; Sultana, Tahmina; Al Mamun, Abdullah; Homaira, Nusrat; Goswami, Doli; Nahar, Kamrun; Alamgir, A S M; Rahman, Mustafizur; Mahbuba Jamil, Khondokar; Azziz-Baumgartner, Eduardo; Simpson, Natosha; Shu, Bo; Lindstrom, Stephen; Gerloff, Nancy; Davis, C Todd; Katz, Jaqueline M; Mikolon, Andrea; Uyeki, Timothy M; Luby, Stephen P; Sturm-Ramirez, Katharine

    2017-09-15

    In March 2011, a multidisciplinary team investigated 2 human cases of highly pathogenic avian influenza A(H5N1) virus infection, detected through population-based active surveillance for influenza in Bangladesh, to assess transmission and contain further spread. We collected clinical and exposure history of the case patients and monitored persons coming within 1 m of a case patient during their infectious period. Nasopharyngeal wash specimens from case patients and contacts were tested with real-time reverse-transcription polymerase chain reaction, and virus culture and isolates were characterized. Serum samples were tested with microneutralization and hemagglutination inhibition assays. We tested poultry, wild bird, and environmental samples from case patient households and surrounding areas for influenza viruses. Two previously healthy case patients, aged 13 and 31 months, had influenzalike illness and fully recovered. They had contact with poultry 7 and 10 days before illness onset, respectively. None of their 57 contacts were subsequently ill. Clade 2.2.2.1 highly pathogenic avian influenza H5N1 viruses were isolated from the case patients and from chicken fecal samples collected at the live bird markets near the patients' dwellings. Identification of H5N1 cases through population-based surveillance suggests possible additional undetected cases throughout Bangladesh and highlights the importance of surveillance for mild respiratory illness among populations frequently exposed to infected poultry. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  5. Four different sublineages of highly pathogenic avian influenza H5N1 introduced in Hungary in 2006-2007.

    PubMed

    Szeleczky, Zsófia; Dán, Adám; Ursu, Krisztina; Ivanics, Eva; Kiss, István; Erdélyi, Károly; Belák, Sándor; Muller, Claude P; Brown, Ian H; Bálint, Adám

    2009-10-20

    Highly pathogenic avian influenza (HPAI) H5N1 viruses were introduced to Hungary during 2006-2007 in three separate waves. This study aimed at determining the full-length genomic coding regions of the index strains from these epizootics in order to: (i) understand the phylogenetic relationship to other European H5N1 isolates, (ii) elucidate the possible connection between the different outbreaks and (iii) determine the putative origin and way of introduction of the different virus variants. Molecular analysis of the HA gene of Hungarian HPAI isolates obtained from wild birds during the first introduction revealed two groups designated Hungarian1 (HUN1) and Hungarian2 (HUN2) within sublineage 2.2B and clade 2.2.1, respectively. Sequencing the whole coding region of the two index viruses A/mute swan/Hungary/3472/2006 and A/mute swan/4571/Hungary/2006 suggests the role of wild birds in the introduction of HUN1 and HUN2 viruses: the most similar isolates to HUN1 and HUN2 group were found in wild avian species in Croatia and Slovakia, respectively. The second introduction of HPAI H5N1 led to the largest epizootic in domestic waterfowl in Europe. The index strain of the epizootic A/goose/Hungary/14756/2006 clustered to sublineage 2.2.A1 forming the Hungarian3 (HUN3) group. A common ancestry of HUN3 isolates with Bavarian strains is suggested as the most likely scenario of origin. Hungarian4 (HUN4) viruses isolated from the third introduction clustered with isolate A/turkey/United Kingdom/750/2007 forming a sublineage 2.2.A2. The origin and way of introduction of HUN4 viruses is still obscure, thus further genetic, phylogenetic, ecological and epidemiological data are required in order to elucidate it.

  6. The Continuing Evolution of H5N1 and H9N2 Influenza Viruses in Bangladesh Between 2013 and 2014.

    PubMed

    Marinova-Petkova, Atanaska; Shanmuganatham, Karthik; Feeroz, Mohammed M; Jones-Engel, Lisa; Hasan, M Kamrul; Akhtar, Sharmin; Turner, Jasmine; Walker, David; Seiler, Patrick; Franks, John; McKenzie, Pamela; Krauss, Scott; Webby, Richard J; Webster, Robert G

    2016-05-01

    In 2011, avian influenza surveillance at the Bangladesh live bird markets (LBMs) showed complete replacement of the highly pathogenic avian influenza (HPAI) H5N1 virus of clade 2.2.2 (Qinghai-like H5N1 lineage) by the HPAI H5N1 clade 2.3.2.1. This clade, which continues to circulate in Bangladesh and neighboring countries, is an intra-and interclade reassortant; its HA, polymerase basic 1 (PB1), polymerase (PA), and nonstructural (NS) genes come from subclade 2.3.2.1a; the polymerase basic 2 (PB2) comes from subclade 2.3.2.1c; and the NA, nucleocapsid protein (NP), and matrix (M) gene from clade 2.3.4.2. The H9N2 influenza viruses cocirculating in the Bangladesh LBMs are also reassortants, possessing five genes (NS, M, NP, PA, and PB1) from an HPAI H7N3 virus previously isolated in Pakistan. Despite frequent coinfection of chickens and ducks, reassortment between these H5N1 and H9N2 viruses has been rare. However, all such reassortants detected in 2011 through 2013 have carried seven genes from the local HPAI H5N1 lineage and the PB1 gene from the Bangladeshi H9N2 clade G1 Mideast, itself derived from HPAI H7N3 virus. Although the live birds we sampled in Bangladesh showed no clinical signs of morbidity, the emergence of this reassortant HPAI H5N1 lineage further complicates endemic circulation of H5N1 viruses in Bangladesh, posing a threat to both poultry and humans.

  7. Efficacy of an AS03A-adjuvanted split H5N1 influenza vaccine against an antigenically distinct low pathogenic H5N1 virus in pigs.

    PubMed

    De Vleeschauwer, Annebel R; Baras, Benoît; Kyriakis, Constantinos S; Jacob, Valérie; Planty, Camille; Giannini, Sandra L; Mossman, Sally; Van Reeth, Kristien

    2012-08-10

    We used the pig model of influenza to examine the efficacy of an AS03(A)-adjuvanted split H5N1 (A/Indonesia/05/2005) vaccine against challenge with a low pathogenic (LP) H5N1 avian influenza (AI) virus (duck/Minnesota/1525/1981) with only 85% amino acid homology in its HA1. Influenza seronegative pigs were vaccinated twice intramuscularly with adjuvanted vaccine at 3 antigen doses, unadjuvanted vaccine or placebo. All pigs were challenged 4 weeks after the second vaccination and euthanized 2 days later. After 2 vaccinations, all pigs in the adjuvanted vaccine groups had high hemagglutination inhibiting (HI) antibody titers to the vaccine strain (160-640), and lower antibody titers to the A/Vietnam/1194/04 H5N1 strain and to 2 LP H5 viruses with 90-91% amino acid homology to the vaccine strain (20-160). Eight out of 12 pigs had HI titers (10-20) to the challenge virus immediately before challenge. Neuraminidase inhibiting antibodies to the challenge virus were detected in most pigs (7/12) and virus neutralizing antibodies in all pigs. There was no antigen-dose dependent effect on the antibody response among the pigs immunized with adjuvanted H5N1 vaccines. After challenge, these pigs showed a complete clinical protection, reduced lung lesions and a significant protection against virus replication in the respiratory tract. Though the challenge virus showed only moderate replication efficiency in pigs, our study suggests that AS03(A)-adjuvanted H5N1 vaccine may confer a broader protection than generally assumed. The pros and cons of the pig as an H5N1 challenge model are also discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. H5N8 Highly Pathogenic Avian Influenza in the Republic of Korea: Epidemiology During the First Wave, from January Through July 2014.

    PubMed

    Yoon, Hachung; Moon, Oun-Kyong; Jeong, Wooseog; Choi, Jida; Kang, Young-Myong; Ahn, Hyo-Young; Kim, Jee-Hye; Yoo, Dae-Sung; Kwon, Young-Jin; Chang, Woo-Seok; Kim, Myeong-Soo; Kim, Do-Soon; Kim, Yong-Sang; Joo, Yi-Seok

    2015-04-01

    This study describes the outbreaks of H5N8 highly pathogenic avian influenza (HPAI) in Korea during the first wave, from January 16, 2014 through July 25, 2014. Its purpose is to provide a better understanding of the epidemiology of H5N8 HPAI. Information on the outbreak farms and HPAI positive wild birds was provided by the Animal and Plant Quarantine Agency. The epidemiological investigation sheets for the outbreak farms were examined. During the 7-month outbreak period (January-July 2014), H5N8 HPAI was confirmed in 212 poultry farms, 38 specimens from wild birds (stools, birds found dead or captured). Ducks were the most frequently infected poultry species (159 outbreak farms, 75.0%), and poultry in 67 (31.6%) outbreak farms was asymptomatic. As in the previous four H5N1 epidemics of HPAI that occurred in Korea, this epidemic of H5N8 proved to be associated with migratory birds. Poultry farms in Korea can hardly be free from the risk of HPAI introduced via migratory birds. The best way to overcome this geographical factor is to reinforce biosecurity to prevent exposure of farms, related people, and poultry to the pathogen.

  9. Experimental challenge and pathology of highly pathogenic avian influenza virus H5N1 in dunlin (Calidris alpina), an intercontinental migrant shorebird species.

    PubMed

    Hall, Jeffrey S; Franson, J Christian; Gill, Robert E; Meteyer, Carol U; TeSlaa, Joshua L; Nashold, Sean; Dusek, Robert J; Ip, Hon S

    2011-09-01

    Shorebirds (Charadriiformes) are considered one of the primary reservoirs of avian influenza. Because these species are highly migratory, there is concern that infected shorebirds may be a mechanism by which highly pathogenic avian influenza virus (HPAIV) H5N1 could be introduced into North America from Asia. Large numbers of dunlin (Calidris alpina) migrate from wintering areas in central and eastern Asia, where HPAIV H5N1 is endemic, across the Bering Sea to breeding areas in Alaska. Low pathogenic avian influenza virus has been previously detected in dunlin, and thus, dunlin represent a potential risk to transport HPAIV to North America. To date no experimental challenge studies have been performed in shorebirds. Wild dunlin were inoculated intranasally and intrachoanally various doses of HPAIV H5N1. The birds were monitored daily for virus excretion, disease signs, morbidity, and mortality. The infectious dose of HPAIV H5N1 in dunlin was determined to be 10(1.7) EID(50)/100 μl and that the lethal dose was 10(1.83) EID(50)/100 μl. Clinical signs were consistent with neurotropic disease, and histochemical analyses revealed that infection was systemic with viral antigen and RNA most consistently found in brain tissues. Infected birds excreted relatively large amounts of virus orally (10(4) EID(50)) and smaller amounts cloacally. Dunlin are highly susceptible to infection with HPAIV H5N1. They become infected after exposure to relatively small doses of the virus and if they become infected, they are most likely to suffer mortality within 3-5 days. These results have important implications regarding the risks of transport and transmission of HPAIV H5N1 to North America by this species and raises questions for further investigation. Published 2011. This article is a US Government work and is in the public domain in the USA.

  10. Migration of Whooper Swans and Outbreaks of Highly Pathogenic Avian Influenza H5N1 Virus in Eastern Asia

    PubMed Central

    Newman, Scott H.; Iverson, Samuel A.; Takekawa, John Y.; Gilbert, Martin; Prosser, Diann J.; Batbayar, Nyambyar; Natsagdorj, Tseveenmyadag; Douglas, David C.

    2009-01-01

    Evaluating the potential involvement of wild avifauna in the emergence of highly pathogenic avian influenza H5N1 (hereafter H5N1) requires detailed analyses of temporal and spatial relationships between wild bird movements and disease emergence. The death of wild swans (Cygnus spp.) has been the first indicator of the presence of H5N1 in various Asian and European countries; however their role in the geographic spread of the disease remains poorly understood. We marked 10 whooper swans (Cygnus cygnus) with GPS transmitters in northeastern Mongolia during autumn 2006 and tracked their migratory movements in relation to H5N1 outbreaks. The prevalence of H5N1 outbreaks among poultry in eastern Asia during 2003–2007 peaked during winter, concurrent with whooper swan movements into regions of high poultry density. However outbreaks involving poultry were detected year round, indicating disease perpetuation independent of migratory waterbird presence. In contrast, H5N1 outbreaks involving whooper swans, as well as other migratory waterbirds that succumbed to the disease in eastern Asia, tended to occur during seasons (late spring and summer) and in habitats (areas of natural vegetation) where their potential for contact with poultry is very low to nonexistent. Given what is known about the susceptibility of swans to H5N1, and on the basis of the chronology and rates of whooper swan migration movements, we conclude that although there is broad spatial overlap between whooper swan distributions and H5N1 outbreak locations in eastern Asia, the likelihood of direct transmission between these groups is extremely low. Thus, our data support the hypothesis that swans are best viewed as sentinel species, and moreover, that in eastern Asia, it is most likely that their infections occurred through contact with asymptomatic migratory hosts (e.g., wild ducks) at or near their breeding grounds. PMID:19479053

  11. Differential immune response of mallard duck peripheral blood mononuclear cells to two highly pathogenic avian influenza H5N1 viruses with distinct pathogenicity in mallard ducks.

    PubMed

    Cui, Zhu; Hu, Jiao; He, Liang; Li, Qunhui; Gu, Min; Wang, Xiaoquan; Hu, Shunlin; Liu, Huimou; Liu, Wenbo; Liu, Xiaowen; Liu, Xiufan

    2014-02-01

    CK10 and GS10 are two H5N1 highly pathogenic influenza viruses of similar genetic background but differ in their pathogenicity in mallard ducks. CK10 is highly pathogenic whereas GS10 is low pathogenic. In this study, strong inflammatory response in terms of the expression level of several cytokines was observed in mallard duck peripheral blood mononuclear cells (PBMC) infected with CK10 while mild response was triggered in those by GS10 infection. Two remarkable and intense peaks of immune response were induced by CK10 infection within 24 hours (at 8 and 24 hours post infection, respectively) without reducing the virus replication. Our observations indicated that sustained and intense innate immune responses may be central to the high pathogenicity caused by CK10 in ducks.

  12. Emergence of novel clade 2.3.4 influenza A (H5N1) virus subgroups in Yunnan Province, China.

    PubMed

    Hu, Tingsong; Song, Jianling; Zhang, Wendong; Zhao, Huanyun; Duan, Bofang; Liu, Qingliang; Zeng, Wei; Qiu, Wei; Chen, Gang; Zhang, Yingguo; Fan, Quanshui; Zhang, Fuqiang

    2015-07-01

    From December 2013 to March 2014, a major wave of highly pathogenic avian influenza outbreak occurred in poultry in Yunnan Province, China. We isolated and characterized eight highly pathogenic avian influenza A (H5N1) viruses from poultry. Full genome influenza sequences and analyses have been performed. Sequence analyses revealed that they belonged to clade 2.3.4 but did not fit within the three defined subclades. The isolated viruses were provisional subclade 2.3.4.4e. The provisional subclade 2.3.4.4e viruses with six internal genes from avian influenza A (H5N2) viruses in 2013 were the novel reassortant influenza A (H5N1) viruses which were associated with the outbreak of H5N1 occurred in egg chicken farms in Yunnan Province. The HA genes were similar to subtype H5 viruses isolated from January to March of 2014 in Asia including H5N6 and H5N8. The NA genes were most closely related to A/chicken/Vietnam/NCVD-KA423/2013 (H5N1) from the subclade 2.3.2. The HI assay demonstrated a lack of antigenic relatedness between clades 2.3.4.4e and 2.3.4.1 (RE-5 vaccine strain) or 2.3.2.2 (RE-6 vaccine strain). Copyright © 2015 Elsevier B.V. All rights reserved.

  13. High genetic compatibility and increased pathogenicity of reassortants derived from avian H9N2 and pandemic H1N1/2009 influenza viruses

    PubMed Central

    Sun, Yipeng; Qin, Kun; Wang, Jingjing; Pu, Juan; Tang, Qingdong; Hu, Yanxin; Bi, Yuhai; Zhao, Xueli; Yang, Hanchun; Shu, Yuelong; Liu, Jinhua

    2011-01-01

    H9N2 influenza viruses have been circulating worldwide in multiple avian species and repeatedly infecting mammals, including pigs and humans, posing a significant threat to public health. The coexistence of H9N2 and pandemic influenza H1N1/2009 viruses in pigs and humans provides an opportunity for these viruses to reassort. To evaluate the potential public risk of the reassortant viruses derived from these viruses, we used reverse genetics to generate 127 H9 reassortants derived from an avian H9N2 and a pandemic H1N1 virus, and evaluated their compatibility, replication ability, and virulence in mice. These hybrid viruses showed high genetic compatibility and more than half replicated to a high titer in vitro. In vivo studies of 73 of 127 reassortants revealed that all viruses were able to infect mice without prior adaptation and 8 reassortants exhibited higher pathogenicity than both parental viruses. All reassortants with higher virulence than parental viruses contained the PA gene from the 2009 pandemic virus, revealing the important role of the PA gene from the H1N1/2009 virus in generating a reassortant virus with high public health risk. Analyses of the polymerase activity of the 16 ribonucleoprotein combinations in vitro suggested that the PA of H1N1/2009 origin also enhanced polymerase activity. Our results indicate that some avian H9-pandemic reassortants could emerge with a potentially higher threat for humans and also highlight the importance of monitoring the H9-pandemic reassortant viruses that may arise, especially those that possess the PA gene of H1N1/2009 origin. PMID:21368167

  14. Assessing the risk of highly pathogenic avian influenza H5N1 transmission through poultry movements in Bali, Indonesia.

    PubMed

    Roche, Sharon E; Cogger, Naomi; Garner, M Graeme; Putra, Anak Agung Gde; Toribio, Jenny-Ann L M L

    2014-03-01

    Indonesia continues to report the highest number of human and poultry cases of highly pathogenic avian influenza H5N1. The disease is considered to be endemic on the island of Bali. Live bird markets are integral in the poultry supply chain on Bali and are important, nutritionally and culturally, for the rural and urban human populations. Due to the lack of biosecurity practiced along the supply chain from producer to live bird markets, there is a need to understand the risks associated with the spread of H5N1 through live bird movements for effective control. Resources to control H5N1 in Indonesia are very limited and cost effective strategies are needed. We assessed the probability a live bird market is infected through live poultry movements and assessed the effects of implementing two simple and low cost control measures on this risk. Results suggest there is a high risk a live bird market is infected (0.78), and risk mitigation strategies such as detecting and removing infected poultry from markets reduce this risk somewhat (range 0.67-0.76). The study demonstrates the key role live poultry movements play in transmitting H5N1 and the need to implement a variety of control measures to reduce disease spread. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. No evidence of transmission of H5N1 highly pathogenic avian influenza to humans after unprotected contact with infected wild swans.

    PubMed

    Wallensten, A; Salter, M; Bennett, S; Brown, I; Hoschler, K; Oliver, I

    2010-02-01

    Highly pathogenic avian influenza (HPAI) subtype H5N1 remains a public health threat as long as it circulates in wild and domestic birds. Information on the transmissibility of H5N1 HPAI from wild birds is needed for evidence-based public health advice. We investigated if transmission of H5N1 HPAI had taken place in people that had unprotected contact with infected wild mute swans during an incident at the Abbotsbury Swannery in Dorset, England. Thirteen people who had been exposed to infected swans were contacted and actively followed up for symptoms. Serology was taken after 30 days. We did not find evidence of transmission of H5N1 HPAI to humans during the incident. The incident provided a rare opportunity to study the transmissibility of the virus from wild birds to humans.

  16. Evaluation of Three Vaccine Technologies to Protect White leghorn Chickens from H5N2 clade 2.3.4.4 Gs/GD High Pathogenicity Avian Influenza

    USDA-ARS?s Scientific Manuscript database

    During December 2014-June 2015, the USA experienced a high pathogenicity avian influenza (HPAI) outbreak caused by clade 2.3.4.4 H5Nx Goose/Guangdong lineage viruses which was the worst HPAI event for the USA’s poultry industries. Three emergency vaccines, based on updating existing registered vacc...

  17. Risk factors for infection with highly pathogenic influenza A virus (H5N1) in commercial chickens in Bangladesh.

    PubMed

    Biswas, P K; Christensen, J P; Ahmed, S S U; Barua, H; Das, A; Rahman, M H; Giasuddin, M; Hannan, A S M A; Habib, A M; Debnath, N C

    2009-06-13

    A matched case-control study was carried out to identify risk factors for highly pathogenic avian influenza A virus (subtype H5N1) infection in commercial chickens in Bangladesh. A total of 33 commercial farms diagnosed with H5N1 before September 9, 2007, were enrolled as cases, and 99 geographically matched unaffected farms were enrolled as control farms. Farm data were collected using a pretested questionnaire, and analysed by matched-pair analysis and multivariate conditional logistic regression. Two factors independently and positively associated with H5N1 infection remained in the final model. They were 'farm accessible to feral and wild animals' (odds ratio [OR] 5.71, 95 per cent confidence interval [CI] 1.81 to 18.0, P=0.003) and 'footbath at entry to farm/shed' (OR 4.93, 95 per cent CI 1.61 to 15.1, P=0.005). The use of a designated vehicle for sending eggs to a vendor or market appeared to be a protective factor (OR 0.14, 95 per cent CI 0.02 to 0.88, P=0.036).

  18. Therapeutic Effect of Duck Interferon-Alpha Against H5N1 Highly Pathogenic Avian Influenza Virus Infection in Peking Ducks.

    PubMed

    Gao, Pei; Xiang, Bin; Li, Yulian; Li, Yaling; Sun, Minhua; Kang, Yinfeng; Xie, Peng; Chen, Libin; Lin, Qiuyan; Liao, Ming; Ren, Tao

    2018-04-01

    The antiviral cytokine interferon-alpha (IFN-α) plays a critical role in the innate immune system. Previous studies have shown that recombinant chicken IFN-α inhibits avian influenza virus (AIV) replication in vivo; however, the antiviral effect of recombinant duck IFN-α (rDuIFN-α) on highly pathogenic AIV remains unknown. In this study, the duck IFN-α gene was cloned, expressed, and purified. The antiviral effects of the resulting rDuIFN-α were further evaluated in vitro and in vivo. Our results showed that rDuIFN-α inhibited the replication of vesicular stomatitis virus (VSV) and AIV in duck embryo fibroblasts in vitro, with antiviral activities against VSV and AIV of 2.1 × 10 5 and 4.1 × 10 5 U/mg, respectively. We next investigated the anti-H5N1 AIV effect of intramuscular injection of rDuIFN-α in vivo. rDuIFN-α reduced viral titers in the brains, lungs, and spleens of 2-day-old (2D) ducks compared with that in the virus-challenged control group, and pretreatment with rDuIFN-α reduced mortality from 60% to 10% in 2D ducks. Moreover, rDuIFN-α increased the expression of IFN-stimulated genes in the brains and spleens of 2D ducks. Our results demonstrate that rDuIFN-α blocks VSV and H5N1 influenza virus infection in vitro and exhibits antiviral effects against H5N1 influenza virus infection in 2D ducks.

  19. Intranasal H5N1 vaccines, adjuvanted with chitosan derivatives, protect ferrets against highly pathogenic influenza intranasal and intratracheal challenge.

    PubMed

    Mann, Alex J; Noulin, Nicolas; Catchpole, Andrew; Stittelaar, Koert J; de Waal, Leon; Veldhuis Kroeze, Edwin J B; Hinchcliffe, Michael; Smith, Alan; Montomoli, Emanuele; Piccirella, Simona; Osterhaus, Albert D M E; Knight, Alastair; Oxford, John S; Lapini, Giulia; Cox, Rebecca; Lambkin-Williams, Rob

    2014-01-01

    We investigated the protective efficacy of two intranasal chitosan (CSN and TM-CSN) adjuvanted H5N1 Influenza vaccines against highly pathogenic avian Influenza (HPAI) intratracheal and intranasal challenge in a ferret model. Six groups of 6 ferrets were intranasally vaccinated twice, 21 days apart, with either placebo, antigen alone, CSN adjuvanted antigen, or TM-CSN adjuvanted antigen. Homologous and intra-subtypic antibody cross-reacting responses were assessed. Ferrets were inoculated intratracheally (all treatments) or intranasally (CSN adjuvanted and placebo treatments only) with clade 1 HPAI A/Vietnam/1194/2004 (H5N1) virus 28 days after the second vaccination and subsequently monitored for morbidity and mortality outcomes. Clinical signs were assessed and nasal as well as throat swabs were taken daily for virology. Samples of lung tissue, nasal turbinates, brain, and olfactory bulb were analysed for the presence of virus and examined for histolopathological findings. In contrast to animals vaccinated with antigen alone, the CSN and TM-CSN adjuvanted vaccines induced high levels of antibodies, protected ferrets from death, reduced viral replication and abrogated disease after intratracheal challenge, and in the case of CSN after intranasal challenge. In particular, the TM-CSN adjuvanted vaccine was highly effective at eliciting protective immunity from intratracheal challenge; serologically, protective titres were demonstrable after one vaccination. The 2-dose schedule with TM-CSN vaccine also induced cross-reactive antibodies to clade 2.1 and 2.2 H5N1 viruses. Furthermore ferrets immunised with TM-CSN had no detectable virus in the respiratory tract or brain, whereas there were signs of virus in the throat and lungs, albeit at significantly reduced levels, in CSN vaccinated animals. This study demonstrated for the first time that CSN and in particular TM-CSN adjuvanted intranasal vaccines have the potential to protect against significant mortality and

  20. Clinical characteristics of 26 human cases of highly pathogenic avian influenza A (H5N1) virus infection in China.

    PubMed

    Yu, Hongjie; Gao, Zhancheng; Feng, Zijian; Shu, Yuelong; Xiang, Nijuan; Zhou, Lei; Huai, Yang; Feng, Luzhao; Peng, Zhibin; Li, Zhongjie; Xu, Cuiling; Li, Junhua; Hu, Chengping; Li, Qun; Xu, Xiaoling; Liu, Xuecheng; Liu, Zigui; Xu, Longshan; Chen, Yusheng; Luo, Huiming; Wei, Liping; Zhang, Xianfeng; Xin, Jianbao; Guo, Junqiao; Wang, Qiuyue; Yuan, Zhengan; Zhou, Longnv; Zhang, Kunzhao; Zhang, Wei; Yang, Jinye; Zhong, Xiaoning; Xia, Shichang; Li, Lanjuan; Cheng, Jinquan; Ma, Erdang; He, Pingping; Lee, Shui Shan; Wang, Yu; Uyeki, Timothy M; Yang, Weizhong

    2008-08-21

    While human cases of highly pathogenic avian influenza A (H5N1) virus infection continue to increase globally, available clinical data on H5N1 cases are limited. We conducted a retrospective study of 26 confirmed human H5N1 cases identified through surveillance in China from October 2005 through April 2008. Data were collected from hospital medical records of H5N1 cases and analyzed. The median age was 29 years (range 6-62) and 58% were female. Many H5N1 cases reported fever (92%) and cough (58%) at illness onset, and had lower respiratory findings of tachypnea and dyspnea at admission. All cases progressed rapidly to bilateral pneumonia. Clinical complications included acute respiratory distress syndrome (ARDS, 81%), cardiac failure (50%), elevated aminotransaminases (43%), and renal dysfunction (17%). Fatal cases had a lower median nadir platelet count (64.5 x 10(9) cells/L vs 93.0 x 10(9) cells/L, p = 0.02), higher median peak lactic dehydrogenase (LDH) level (1982.5 U/L vs 1230.0 U/L, p = 0.001), higher percentage of ARDS (94% [n = 16] vs 56% [n = 5], p = 0.034) and more frequent cardiac failure (71% [n = 12] vs 11% [n = 1], p = 0.011) than nonfatal cases. A higher proportion of patients who received antiviral drugs survived compared to untreated (67% [8/12] vs 7% [1/14], p = 0.003). The clinical course of Chinese H5N1 cases is characterized by fever and cough initially, with rapid progression to lower respiratory disease. Decreased platelet count, elevated LDH level, ARDS and cardiac failure were associated with fatal outcomes. Clinical management of H5N1 cases should be standardized in China to include early antiviral treatment for suspected H5N1 cases.

  1. Evolutionary genetics of highly pathogenic H5N1 avian influenza viruses isolated from whooper swans in northern Japan in 2008.

    PubMed

    Usui, Tatsufumi; Yamaguchi, Tsuyoshi; Ito, Hiroshi; Ozaki, Hiroichi; Murase, Toshiyuki; Ito, Toshihiro

    2009-12-01

    In April and May 2008, highly pathogenic avian influenza viruses subtype H5N1 were isolated from dead or moribund whooper swans in Aomori, Akita and Hokkaido prefectures in northern Japan. To trace the genetic lineage of the isolates, the nucleotide sequences of all eight genes were determined and phylogenetically analyzed. The Japanese strains were nearly identical to chicken viruses isolated in Russia in April 2008 and closely related to viruses isolated from dead wild birds in Hong Kong in 2007-2008. Their HA genes clustered in clade 2.3.2. On the other hand, NA and the other internal genes were closely related to those of clade 2.3.4 viruses (genotype V) whose NP genes originated from an HA clade 2.3.2 virus. In conclusion, the H5N1 viruses isolated in Japan, Russia and Hong Kong were derived from a common ancestor virus belonging to genotype V that was generated from genetic reassortment events between viruses of HA clades 2.3.2 and 2.3.4.

  2. Protective Efficacy of Newcastle Disease Virus Expressing Soluble Trimeric Hemagglutinin against Highly Pathogenic H5N1 Influenza in Chickens and Mice

    PubMed Central

    Cornelissen, Lisette A. H. M.; de Leeuw, Olav S.; Tacken, Mirriam G.; Klos, Heleen C.; de Vries, Robert P.; de Boer-Luijtze, Els A.; van Zoelen-Bos, Diana J.; Rigter, Alan; Rottier, Peter J. M.; Moormann, Rob J. M.; de Haan, Cornelis A. M.

    2012-01-01

    Background Highly pathogenic avian influenza virus (HPAIV) causes a highly contagious often fatal disease in poultry, resulting in significant economic losses in the poultry industry. HPAIV H5N1 also poses a major public health threat as it can be transmitted directly from infected poultry to humans. One effective way to combat avian influenza with pandemic potential is through the vaccination of poultry. Several live vaccines based on attenuated Newcastle disease virus (NDV) that express influenza hemagglutinin (HA) have been developed to protect chickens or mammalian species against HPAIV. However, the zoonotic potential of NDV raises safety concerns regarding the use of live NDV recombinants, as the incorporation of a heterologous attachment protein may result in the generation of NDV with altered tropism and/or pathogenicity. Methodology/Principal Findings In the present study we generated recombinant NDVs expressing either full length, membrane-anchored HA of the H5 subtype (NDV-H5) or a soluble trimeric form thereof (NDV-sH53). A single intramuscular immunization with NDV-sH53 or NDV-H5 fully protected chickens against disease after a lethal challenge with H5N1 and reduced levels of virus shedding in tracheal and cloacal swabs. NDV-sH53 was less protective than NDV-H5 (50% vs 80% protection) when administered via the respiratory tract. The NDV-sH53 was ineffective in mice, regardless of whether administered oculonasally or intramuscularly. In this species, NDV-H5 induced protective immunity against HPAIV H5N1, but only after oculonasal administration, despite the poor H5-specific serum antibody response it elicited. Conclusions/Significance Although NDV expressing membrane anchored H5 in general provided better protection than its counterpart expressing soluble H5, chickens could be fully protected against a lethal challenge with H5N1 by using the latter NDV vector. This study thus provides proof of concept for the use of recombinant vector vaccines

  3. Risk factors and clusters of Highly Pathogenic Avian Influenza H5N1 outbreaks in Bangladesh

    PubMed Central

    Loth, Leo; Gilbert, Marius; Osmani, Mozaffar G.; Kalam, Abul M.; Xiao, Xiangming

    2016-01-01

    Between March 2007 and July 2009, 325 Highly Pathogenic Avian Influenza (HPAI, subtype H5N1) outbreaks in poultry were reported in 154 out of a total of 486 sub-districts in Bangladesh. This study analyzed the temporal and spatial patterns of HPAI H5N1 outbreaks and quantified the relationship between several spatial risk factors and HPAI outbreaks in sub-districts in Bangladesh. We assessed spatial autocorrelation and spatial dependence, and identified clustering sub-districts with disease statistically similar to or dissimilar from their neighbors. Three significant risk factors associated to HPAI H5N1 virus outbreaks were identified; the quadratic log-transformation of human population density [humans per square kilometer, P = 0.01, OR 1.15 (95% CI: 1.03–1.28)], the log-transformation of the total commercial poultry population [number of commercial poultry per sub-district, P < 0.002, OR 1.40 (95% CI: 1.12–1.74)], and the number of roads per sub-district [P = 0.02, OR 1.07 (95% CI: 1.01–1.14)]. The distinct clusters of HPAI outbreaks and risk factors identified could assist the Government of Bangladesh to target surveillance and to concentrate response efforts in areas where disease is likely to occur. Concentrating response efforts may help to combat HPAI more effectively, reducing the environmental viral load and so reducing the number of disease incidents. PMID:20554337

  4. Challenge for One Health: Co-Circulation of Zoonotic H5N1 and H9N2 Avian Influenza Viruses in Egypt.

    PubMed

    Kim, Shin-Hee

    2018-03-09

    Highly pathogenic avian influenza (HPAI) H5N1 viruses are currently endemic in poultry in Egypt. Eradication of the viruses has been unsuccessful due to improper application of vaccine-based control strategies among other preventive measures. The viruses have evolved rapidly with increased bird-to-human transmission efficacy, thus affecting both animal and public health. Subsequent spread of potentially zoonotic low pathogenic avian influenza (LPAI) H9N2 in poultry has also hindered efficient control of avian influenza. The H5N1 viruses acquired enhanced bird-to-human transmissibility by (1) altering amino acids in hemagglutinin (HA) that enable binding affinity to human-type receptors, (2) loss of the glycosylation site and 130 loop in the HA protein and (3) mutation of E627K in the PB2 protein to enhance viral replication in mammalian hosts. The receptor binding site of HA of Egyptian H9N2 viruses has been shown to contain the Q234L substitution along with a H191 mutation, which can increase human-like receptor specificity. Therefore, co-circulation of H5N1 and H9N2 viruses in poultry farming and live bird markets has increased the risk of human exposure, resulting in complication of the epidemiological situation and raising a concern for potential emergence of a new influenza A virus pandemic. For efficient control of infection and transmission, the efficacy of vaccine and vaccination needs to be improved with a comprehensive control strategy, including enhanced biosecurity, education, surveillance, rapid diagnosis and culling of infected poultry.

  5. Challenge for One Health: Co-Circulation of Zoonotic H5N1 and H9N2 Avian Influenza Viruses in Egypt

    PubMed Central

    2018-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 viruses are currently endemic in poultry in Egypt. Eradication of the viruses has been unsuccessful due to improper application of vaccine-based control strategies among other preventive measures. The viruses have evolved rapidly with increased bird-to-human transmission efficacy, thus affecting both animal and public health. Subsequent spread of potentially zoonotic low pathogenic avian influenza (LPAI) H9N2 in poultry has also hindered efficient control of avian influenza. The H5N1 viruses acquired enhanced bird-to-human transmissibility by (1) altering amino acids in hemagglutinin (HA) that enable binding affinity to human-type receptors, (2) loss of the glycosylation site and 130 loop in the HA protein and (3) mutation of E627K in the PB2 protein to enhance viral replication in mammalian hosts. The receptor binding site of HA of Egyptian H9N2 viruses has been shown to contain the Q234L substitution along with a H191 mutation, which can increase human-like receptor specificity. Therefore, co-circulation of H5N1 and H9N2 viruses in poultry farming and live bird markets has increased the risk of human exposure, resulting in complication of the epidemiological situation and raising a concern for potential emergence of a new influenza A virus pandemic. For efficient control of infection and transmission, the efficacy of vaccine and vaccination needs to be improved with a comprehensive control strategy, including enhanced biosecurity, education, surveillance, rapid diagnosis and culling of infected poultry. PMID:29522492

  6. Highly pathogenic avian influenza virus H5N1 infection in a long-distance migrant shorebird under migratory and non-migratory states.

    PubMed

    Reperant, Leslie A; van de Bildt, Marco W G; van Amerongen, Geert; Buehler, Debbie M; Osterhaus, Albert D M E; Jenni-Eiermann, Susi; Piersma, Theunis; Kuiken, Thijs

    2011-01-01

    Corticosterone regulates physiological changes preparing wild birds for migration. It also modulates the immune system and may lead to increased susceptibility to infection, with implications for the spread of pathogens, including highly pathogenic avian influenza virus (HPAIV) H5N1. The red knot (Calidris canutus islandica) displays migratory changes in captivity and was used as a model to assess the effect of high plasma concentration of corticosterone on HPAIV H5N1 infection. We inoculated knots during pre-migration (N = 6), fueling (N = 5), migration (N = 9) and post-migration periods (N = 6). Knots from all groups shed similar viral titers for up to 5 days post-inoculation (dpi), peaking at 1 to 3 dpi. Lesions of acute encephalitis, associated with virus replication in neurons, were seen in 1 to 2 knots per group, leading to neurological disease and death at 5 to 11 dpi. Therefore, the risk of HPAIV H5N1 infection in wild birds and of potential transmission between wild birds and poultry may be similar at different times of the year, irrespective of wild birds' migratory status. However, in knots inoculated during the migration period, viral shedding levels positively correlated with pre-inoculation plasma concentration of corticosterone. Of these, knots that did not become productively infected had lower plasma concentration of corticosterone. Conversely, elevated plasma concentration of corticosterone did not result in an increased probability to develop clinical disease. These results suggest that birds with elevated plasma concentration of corticosterone at the time of migration (ready to migrate) may be more susceptible to acquisition of infection and shed higher viral titers--before the onset of clinical disease--than birds with low concentration of corticosterone (not ready for take-off). Yet, they may not be more prone to the development of clinical disease. Therefore, assuming no effect of sub-clinical infection on the likelihood of

  7. Experimental and Field Results Regarding Immunity Induced by a Recombinant Turkey Herpesvirus H5 Vector Vaccine Against H5N1 and Other H5 Highly Pathogenic Avian Influenza Virus Challenges.

    PubMed

    Gardin, Yannick; Palya, Vilmos; Dorsey, Kristi Moore; El-Attrache, John; Bonfante, Francesco; Wit, Sjaak de; Kapczynski, Darrell; Kilany, Walid Hamdy; Rauw, Fabienne; Steensels, Mieke; Soejoedono, Retno D

    2016-05-01

    Vaccination against H5N1 highly pathogenic avian influenza (AI) virus (HPAIV) is one of the possible complementary means available for affected countries to control AI when the disease has become, or with a high risk of becoming, endemic. Efficacy of the vaccination against AI relies essentially, but not exclusively, on the capacity of the vaccine to induce immunity against the targeted virus (which is prone to undergo antigenic variations), as well as its capacity to overcome interference with maternal immunity transmitted by immunized breeding hens to their progeny. This property of the vaccine is a prerequisite for its administration at the hatchery, which assures higher and more reliable vaccine coverage of the populations than vaccination at the farm. A recombinant vector vaccine (Vectormune® AI), based on turkey herpesvirus expressing the hemagglutinin gene of an H5N1 HPAIV as an insert, has been used in several experiments conducted in different research laboratories, as well as in controlled field trials. The results have demonstrated a high degree of homologous and cross protection against different genetic clades of the H5N1 HPAIV. Furthermore, vaccine-induced immunity was not impaired by the presence of passive immunity, but on the contrary, cumulated with it for improved early protection. The demonstrated levels of protection against the different challenge viruses exhibited variations in terms of postchallenge mortality, as well as challenge virus shedding. The data presented here highlight the advantages of this vaccine as a useful and reliable tool to complement biosecurity and sanitary policies for better controlling the disease due to HPAIV of H5 subtypes, when the vaccination is applied as a control measure.

  8. Highly Pathogenic Avian Influenza H5N8 Clade 2.3.4.4 Virus: Equivocal Pathogenicity and Implications for Surveillance Following Natural Infection in Breeder Ducks in the United Kingdom.

    PubMed

    Núñez, A; Brookes, S M; Reid, S M; Garcia-Rueda, C; Hicks, D J; Seekings, J M; Spencer, Y I; Brown, I H

    2016-02-01

    Since early 2014, several outbreaks involving novel reassortant highly pathogenic avian influenza (HPAI) A(H5N8) viruses have been detected in poultry and wild bird species in Asia, Europe and North America. These viruses have been detected in apparently healthy and dead wild migratory birds, as well as in domestic chickens, turkeys, geese and ducks. In this study, we describe the pathology of an outbreak of H5N8 HPAIV in breeder ducks in the UK. A holding with approximately 6000 breeder ducks, aged approximately 60 weeks, showed a gradual reduction in egg production and increased mortality over a 7-day period. Post-mortem examination revealed frequent fibrinous peritonitis, with severely haemorrhagic ovarian follicles and occasional splenic and pancreatic necrosis and high incidence of mycotic granulomas in the air sacs and lung. Low-to-moderate levels of HPAI H5N8 virus were detected mainly in respiratory and digestive tract, with minor involvement of other organs. Although histopathological examination confirmed the gross pathology findings, intralesional viral antigen detection by immunohistochemistry was not observed. Immunolabelled cells were rarely only present in inflamed air sacs and serosa, usually superficial to granulomatous inflammation. Abundant bacterial microcolonies were observed in haemorrhagic ovaries and oviduct. The limited viral tissue distribution and presence of inter-current fungal and bacterial infections suggest a minor role for HPAIV H5N8 in clinical disease in layer ducks. © 2015 Crown copyright.

  9. High antiviral effects of hibiscus tea extract on the H5 subtypes of low and highly pathogenic avian influenza viruses

    PubMed Central

    BAATARTSOGT, Tugsbaatar; BUI, Vuong N.; TRINH, Dai Q.; YAMAGUCHI, Emi; GRONSANG, Dulyatad; THAMPAISARN, Rapeewan; OGAWA, Haruko; IMAI, Kunitoshi

    2016-01-01

    Viral neuraminidase inhibitors are widely used as synthetic anti-influenza drugs for the prevention and treatment of influenza. However, drug-resistant influenza A virus variants, including H5N1 highly pathogenic avian influenza viruses (HPAIVs), have been reported. Therefore, the discovery of novel and effective antiviral agents is warranted. We screened the antiviral effects of 11 herbal tea extracts (hibiscus, black tea, tencha, rosehip tea, burdock tea, green tea, jasmine tea, ginger tea, lavender tea, rose tea and oak tea) against the H5N1 HPAIV in vitro. Among the tested extracts, only the hibiscus extract and its fractionated extract (frHibis) highly and rapidly reduced the titers of all H5 HPAIVs and low pathogenic AIVs (LPAIVs) used in the pre-treatment tests of Madin–Darby canine kidney (MDCK) cells that were inoculated with a mixture of the virus and the extract. Immunogold electron microscopy showed that anti-H5 monoclonal antibodies could not bind to the deformed H5 virus particles pretreated with frHibis. In post-treatment tests of MDCK cells cultured in the presence of frHibis after infection with H5N1 HPAIV, the frHibis inhibited viral replication and the expression of viral antigens and genes. Among the plants tested, hibiscus showed the most prominent antiviral effects against both H5 HPAIV and LPAIV. PMID:27193820

  10. High antiviral effects of hibiscus tea extract on the H5 subtypes of low and highly pathogenic avian influenza viruses.

    PubMed

    Baatartsogt, Tugsbaatar; Bui, Vuong N; Trinh, Dai Q; Yamaguchi, Emi; Gronsang, Dulyatad; Thampaisarn, Rapeewan; Ogawa, Haruko; Imai, Kunitoshi

    2016-10-01

    Viral neuraminidase inhibitors are widely used as synthetic anti-influenza drugs for the prevention and treatment of influenza. However, drug-resistant influenza A virus variants, including H5N1 highly pathogenic avian influenza viruses (HPAIVs), have been reported. Therefore, the discovery of novel and effective antiviral agents is warranted. We screened the antiviral effects of 11 herbal tea extracts (hibiscus, black tea, tencha, rosehip tea, burdock tea, green tea, jasmine tea, ginger tea, lavender tea, rose tea and oak tea) against the H5N1 HPAIV in vitro. Among the tested extracts, only the hibiscus extract and its fractionated extract (frHibis) highly and rapidly reduced the titers of all H5 HPAIVs and low pathogenic AIVs (LPAIVs) used in the pre-treatment tests of Madin-Darby canine kidney (MDCK) cells that were inoculated with a mixture of the virus and the extract. Immunogold electron microscopy showed that anti-H5 monoclonal antibodies could not bind to the deformed H5 virus particles pretreated with frHibis. In post-treatment tests of MDCK cells cultured in the presence of frHibis after infection with H5N1 HPAIV, the frHibis inhibited viral replication and the expression of viral antigens and genes. Among the plants tested, hibiscus showed the most prominent antiviral effects against both H5 HPAIV and LPAIV.

  11. Genesis of Influenza A(H5N8) Viruses

    PubMed Central

    El-Shesheny, Rabeh; Barman, Subrata; Feeroz, Mohammed M.; Hasan, M. Kamrul; Jones-Engel, Lisa; Franks, John; Turner, Jasmine; Seiler, Patrick; Walker, David; Friedman, Kimberly; Kercher, Lisa; Begum, Sajeda; Akhtar, Sharmin; Datta, Ashis Kumar; Krauss, Scott; Kayali, Ghazi; McKenzie, Pamela; Webby, Richard J.

    2017-01-01

    Highly pathogenic avian influenza A(H5N8) clade 2.3.4.4 virus emerged in 2016 and spread to Russia, Europe, and Africa. Our analysis of viruses from domestic ducks at Tanguar haor, Bangladesh, showed genetic similarities with other viruses from wild birds in central Asia, suggesting their potential role in the genesis of A(H5N8). PMID:28609260

  12. Genesis of Influenza A(H5N8) Viruses.

    PubMed

    El-Shesheny, Rabeh; Barman, Subrata; Feeroz, Mohammed M; Hasan, M Kamrul; Jones-Engel, Lisa; Franks, John; Turner, Jasmine; Seiler, Patrick; Walker, David; Friedman, Kimberly; Kercher, Lisa; Begum, Sajeda; Akhtar, Sharmin; Datta, Ashis Kumar; Krauss, Scott; Kayali, Ghazi; McKenzie, Pamela; Webby, Richard J; Webster, Robert G

    2017-08-01

    Highly pathogenic avian influenza A(H5N8) clade 2.3.4.4 virus emerged in 2016 and spread to Russia, Europe, and Africa. Our analysis of viruses from domestic ducks at Tanguar haor, Bangladesh, showed genetic similarities with other viruses from wild birds in central Asia, suggesting their potential role in the genesis of A(H5N8).

  13. Spatial transmission of H5N6 highly pathogenic avian influenza viruses among wild birds in Ibaraki Prefecture, Japan, 2016-2017.

    PubMed

    Tsunekuni, Ryota; Yaguchi, Yuji; Kashima, Yuki; Yamashita, Kaoru; Takemae, Nobuhiro; Mine, Junki; Tanikawa, Taichiro; Uchida, Yuko; Saito, Takehiko

    2018-05-01

    From 29 November 2016 to 24 January 2017, sixty-three cases of H5N6 highly pathogenic avian influenza virus (HPAIV) infections were detected in wild birds in Ibaraki Prefecture, Japan. Here, we analyzed the genetic, temporal, and geographic correlations of these 63 HPAIVs to elucidate their dissemination throughout the prefecture. Full-genome sequence analysis of the Ibaraki isolates showed that 7 segments (PB2, PB1, PA, HA, NP, NA, NS) were derived from G1.1.9 strains while the M segment was from G1.1 strains; both groups of strains circulated in south China. Pathological studies revealed severe systemic infection in dead swans (the majority of dead birds and the only species necropsied), thus indicating high susceptibility to H5N6 HPAIVs. Coalescent phylogenetic analysis using the 7 G1.1.9-derived segments enabled detailed analysis of the short-term evolution of these highly homologous HPAIVs. This analysis revealed that the H5N6 HPAIVs isolated from wild birds in Ibaraki Prefecture were divided into 7 groups. Spatial analysis demonstrated that most of the cases concentrated around Senba Lake originated from a single source, and progeny viruses were transmitted to other locations after the infection expanded in mute swans. In contrast, within just a 5-km radius of the area in which cases were concentrated, three different intrusions of H5N6 HPAIVs were evident. Multi-segment analysis of short-term evolution showed that not only was the invading virus spread throughout Ibaraki Prefecture but also that, despite the small size of this region, multiple invasions had occurred during winter 2016-2017.

  14. Quantitative assessment of a spatial multicriteria model for highly pathogenic avian influenza H5N1 in Thailand, and application in Cambodia

    PubMed Central

    Paul, Mathilde C.; Goutard, Flavie L.; Roulleau, Floriane; Holl, Davun; Thanapongtharm, Weerapong; Roger, François L.; Tran, Annelise

    2016-01-01

    The Highly Pathogenic Avian Influenza H5N1 (HPAI) virus is now considered endemic in several Asian countries. In Cambodia, the virus has been circulating in the poultry population since 2004, with a dramatic effect on farmers’ livelihoods and public health. In Thailand, surveillance and control are still important to prevent any new H5N1 incursion. Risk mapping can contribute effectively to disease surveillance and control systems, but is a very challenging task in the absence of reliable disease data. In this work, we used spatial multicriteria decision analysis (MCDA) to produce risk maps for HPAI H5N1 in poultry. We aimed to i) evaluate the performance of the MCDA approach to predict areas suitable for H5N1 based on a dataset from Thailand, comparing the predictive capacities of two sources of a priori knowledge (literature and experts), and ii) apply the best method to produce a risk map for H5N1 in poultry in Cambodia. Our results showed that the expert-based model had a very high predictive capacity in Thailand (AUC = 0.97). Applied in Cambodia, MCDA mapping made it possible to identify hotspots suitable for HPAI H5N1 in the Tonlé Sap watershed, around the cities of Battambang and Kampong Cham, and along the Vietnamese border. PMID:27489997

  15. Modified Newcastle disease virus vectors expressing the H5 hemagglutinin induce enhanced protection against highly pathogenic H5N1 avian influenza virus in chickens

    PubMed Central

    Kim, Shin-Hee; Paldurai, Anandan; Xiao, Sa; Collins, Peter L.; Samal, Siba K.

    2016-01-01

    Naturally-occurring attenuated strains of Newcastle disease virus (NDV) are being developed as vaccine vectors for use in poultry and humans. However, some NDV strains, such as Beaudette C (BC), may retain too much virulence in poultry for safe use, and more highly attenuated strains may be suboptimally immunogenic. We therefore modified the BC strain by changing the multibasic cleavage site sequence of the F protein to the dibasic sequence of avirulent strain LaSota. Additionally, the BC, F, and HN proteins were modified in several ways to enhance virus replication. These modified BC-derived vectors and the LaSota strain were engineered to express the hemagglutin (HA) protein of H5N1 highly pathogenic influenza virus (HPAIV). In general, the modified BC-based vectors expressing HA replicated better than LaSota/HA, and expressed higher levels of HA protein. Pathogenicity tests indicated that all the modified viruses were highly attenuated in chickens. Based on in vitro characterization, two of the modified BC vectors were chosen for evaluation in chickens as vaccine vectors against H5N1 HPAIV A/Vietnam/1203/04. Immunization of chickens with rNDV vector vaccines followed by challenge with HPAIV demonstrated high levels of protection against clinical disease and mortality. However, only those chickens immunized with modified BC/HA in which residues 271–330 from the F protein had been replaced with the corresponding sequence from the NDV AKO strain conferred complete protection against challenge virus shedding. Our findings suggest that this modified rNDV can be used safely as a vaccine vector with enhanced replication, expression, and protective efficacy in avian species, and potentially in humans. PMID:24968158

  16. Pathogenicity and transmission of H5 and H7 highly pathogenic avian influenza viruses in mallards

    USDA-ARS?s Scientific Manuscript database

    Wild aquatic birds have been associated with the intercontinental spread of H5 subtype highly pathogenic avian influenza (HPAI) viruses of the A/goose/Guangdong/1/96 (Gs/GD) lineage during 2005, 2010 and 2014, but dispersion by wild waterfowl has not been implicated with spread of other HPAI viruses...

  17. Westward Spread of Highly Pathogenic Avian Influenza A(H7N9) Virus among Humans, China.

    PubMed

    Yang, Qiqi; Shi, Wei; Zhang, Lei; Xu, Yi; Xu, Jing; Li, Shen; Zhang, Junjun; Hu, Kan; Ma, Chaofeng; Zhao, Xiang; Li, Xiyan; Liu, Feng; Tong, Xin; Zhang, Guogang; Yu, Pengbo; Pybus, Oliver G; Tian, Huaiyu

    2018-06-01

    We report infection of humans with highly pathogenic avian influenza A(H7N9) virus in Shaanxi, China, in May 2017. We obtained complete genomes for samples from 5 patients and from live poultry markets or farms in 4 cities. Results indicate that H7N9 is spreading westward from southern and eastern China.

  18. Avian influenza virus (H5N1): a threat to human health.

    PubMed

    Peiris, J S Malik; de Jong, Menno D; Guan, Yi

    2007-04-01

    Pandemic influenza virus has its origins in avian influenza viruses. The highly pathogenic avian influenza virus subtype H5N1 is already panzootic in poultry, with attendant economic consequences. It continues to cross species barriers to infect humans and other mammals, often with fatal outcomes. Therefore, H5N1 virus has rightly received attention as a potential pandemic threat. However, it is noted that the pandemics of 1957 and 1968 did not arise from highly pathogenic influenza viruses, and the next pandemic may well arise from a low-pathogenicity virus. The rationale for particular concern about an H5N1 pandemic is not its inevitability but its potential severity. An H5N1 pandemic is an event of low probability but one of high human health impact and poses a predicament for public health. Here, we review the ecology and evolution of highly pathogenic avian influenza H5N1 viruses, assess the pandemic risk, and address aspects of human H5N1 disease in relation to its epidemiology, clinical presentation, pathogenesis, diagnosis, and management.

  19. Two reassortant types of highly pathogenic H5N8 avian influenza virus from wild birds in Central China in 2016.

    PubMed

    Ma, Liping; Jin, Tao; Wang, Hanzhong; Liu, Haizhou; Wang, Runkun; Li, Yong; Yang, Guoxiang; Xiong, Yanping; Chen, Jing; Zhang, Jun; Chen, Guang; Li, Wei; Liu, Di; Lin, Peng; Huang, Yueying; Gao, George F; Chen, Quanjiao

    2018-02-07

    Since 2016, the highly pathogenic avian influenza H5N8 virus has emerged in the Central Asian flyway and Europe, causing massive deaths in poultry and wild birds. In this study, we isolated and identified three H5N8 viruses from swan goose and black swans in Hubei province during the 2016/2017 winter season. Whole-genome sequencing and phylogenetic analysis revealed that the three viruses clustered into a group of H5N8 viruses from Qinghai Lake and Europe. A novel reassortment virus from swan goose was distinguished from that of black swans, in that its PA and NP genes were distinct from those of Qinghai Lake viruses. Molecular dating revealed that the ancestral strain of these H5N8 viruses emerged around July 2015. From sequence comparison, we discovered eight amino acid substitutions in HA and NA during the adaption process from poultry to wild birds. The three viruses were isolated from wild birds in the East Asian-Australasian flyway; however, the viral genomes were similar to H5N8 viruses circulating along the Central Asian flyway. From these data, we conclude that wetlands and lakes in Central China may play a key role in disseminating H5N8 viruses between the East Asian-Australasian and Central Asian flyways.

  20. Risk assessment to estimate the probability of a chicken flock infected with H5N1 highly pathogenic avian influenza virus reaching slaughter undetected.

    PubMed

    Golden, Neal J; Schlosser, Wayne D; Ebel, Eric D

    2009-09-01

    Highly pathogenic avian influenza (HPAI) H5N1 is an infectious disease of fowl that can cause rapid and pervasive mortality resulting in complete flock loss. It has also been shown to cause death in humans. Although H5N1 HPAI virus (HPAIV) has not been identified in the United States, there are concerns about whether an infected flock could remain undetected long enough to pose a risk to consumers. This paper considers exposure from an Asian lineage H5N1 HPAIV-infected chicken flock given that no other flocks have been identified as H5N1 HPAIV positive (the index flock). A state-transition model is used to evaluate the probability of an infected flock remaining undetected until slaughter. This model describes three possible states within the flock: susceptible, infected, and dead, and the transition probabilities that predict movements between the possible states. Assuming a 20,000-bird house with 1 bird initially infected, the probability that an H5N1 HPAIV-infected flock would be detected before slaughter is approximately 94%. This is because H5N1 HPAIV spreads rapidly through a flock, and bird mortality quickly reaches high levels. It is assumed that approximately 2% or greater bird mortality due to H5N1 HPAIV would result in on-farm identification of the flock as infected. The only infected flock likely to reach slaughter undetected is one that was infected within approximately 3.5 days of shipment. In this situation, there is not enough time for high mortality to present. These results suggest that the probability of an infected undetected flock going to slaughter is low, yet such an event could occur if a flock is infected at the most opportune time.

  1. High rates of detection of Clade 2.3.4.4 Highly Pathogenic Avian Influenza H5 viruses in wild birds in the Pacific Northwest during the winter of 2014-2015

    USGS Publications Warehouse

    Ip, Hon S.; Dusek, Robert J.; Bodenstein, Barbara L.; Kim Torchetti, Mia; DeBruyn, Paul; Mansfield, Kristin G.; DeLiberto, Thomas; Sleeman, Jonathan M.

    2016-01-01

    In 2014, Clade 2.3.4.4 H5N8 highly pathogenic avian influenza (HPAI) viruses spread across the Republic of Korea and ultimately were reported in China, Japan, Russia and Europe. Mortality associated with a reassortant HPAI H5N2 virus was detected in poultry farms in Western Canada at the end of November. The same strain (with identical genetic structure) was then detected in free-living wild birds that had died prior to December 8 of unrelated causes in Whatcom County, Washington, USA in an area contiguous with the index Canadian location. A gyrfalcon (Falco rusticolus) that had hunted and fed on an American wigeon (Anas americana) on December 6 in the same area and died two days later, tested positive for the Eurasian origin HPAI H5N8. Subsequently, an Active Surveillance Program using hunter-harvest waterfowl in Washington and Oregon detected ten HPAI H5 viruses, of three different subtypes (four H5N2, three H5N8 and three H5N1) with 4 segments in common (HA, PB2, NP and MA). In addition, a mortality-based Passive Surveillance Program detected 18 HPAI (14 H5N2 and four H5N8) cases from Idaho, Kansas, Oregon, Minnesota, Montana, Washington and Wisconsin. Comparatively, mortality-based passive surveillance appears to be detecting these HPAI infections at a higher rate than active surveillance during the period following initial introduction into the US.

  2. Vaccination with virus-like particles containing H5 antigens from three H5N1 clades protects chickens from H5N1 and H5N8 influenza viruses

    USDA-ARS?s Scientific Manuscript database

    Highly pathogenic avian influenza (HPAI) viruses, especially H5N1 strains, represent a public health threat and cause widespread morbidity and mortality in domestic poultry. Recombinant virus-like particles (VLPs) represent a promising novel vaccine approach to control avian influenza including HPAI...

  3. Human Infection with Highly Pathogenic Avian Influenza A(H7N9) Virus, China

    PubMed Central

    Ke, Changwen; Mok, Chris Ka Pun; Zhu, Wenfei; Zhou, Haibo; He, Jianfeng; Guan, Wenda; Wu, Jie; Song, Wenjun; Wang, Dayan; Liu, Jiexiong; Lin, Qinhan; Chu, Daniel Ka Wing; Yang, Lei; Zhong, Nanshan; Peiris, Joseph Sriyal Malik

    2017-01-01

    The recent increase in zoonotic avian influenza A(H7N9) disease in China is a cause of public health concern. Most of the A(H7N9) viruses previously reported have been of low pathogenicity. We report the fatal case of a patient in China who was infected with an A(H7N9) virus having a polybasic amino acid sequence at its hemagglutinin cleavage site (PEVPKRKRTAR/GL), a sequence suggestive of high pathogenicity in birds. Its neuraminidase also had R292K, an amino acid change known to be associated with neuraminidase inhibitor resistance. Both of these molecular features might have contributed to the patient’s adverse clinical outcome. The patient had a history of exposure to sick and dying poultry, and his close contacts had no evidence of A(H7N9) disease, suggesting human-to-human transmission did not occur. Enhanced surveillance is needed to determine whether this highly pathogenic avian influenza A(H7N9) virus will continue to spread. PMID:28580899

  4. Human Infection with Highly Pathogenic Avian Influenza A(H7N9) Virus, China.

    PubMed

    Ke, Changwen; Mok, Chris Ka Pun; Zhu, Wenfei; Zhou, Haibo; He, Jianfeng; Guan, Wenda; Wu, Jie; Song, Wenjun; Wang, Dayan; Liu, Jiexiong; Lin, Qinhan; Chu, Daniel Ka Wing; Yang, Lei; Zhong, Nanshan; Yang, Zifeng; Shu, Yuelong; Peiris, Joseph Sriyal Malik

    2017-07-01

    The recent increase in zoonotic avian influenza A(H7N9) disease in China is a cause of public health concern. Most of the A(H7N9) viruses previously reported have been of low pathogenicity. We report the fatal case of a patient in China who was infected with an A(H7N9) virus having a polybasic amino acid sequence at its hemagglutinin cleavage site (PEVPKRKRTAR/GL), a sequence suggestive of high pathogenicity in birds. Its neuraminidase also had R292K, an amino acid change known to be associated with neuraminidase inhibitor resistance. Both of these molecular features might have contributed to the patient's adverse clinical outcome. The patient had a history of exposure to sick and dying poultry, and his close contacts had no evidence of A(H7N9) disease, suggesting human-to-human transmission did not occur. Enhanced surveillance is needed to determine whether this highly pathogenic avian influenza A(H7N9) virus will continue to spread.

  5. Reintroduction of H5N1 highly pathogenic avian influenza virus by migratory water birds, causing poultry outbreaks in the 2010-2011 winter season in Japan.

    PubMed

    Sakoda, Yoshihiro; Ito, Hiroshi; Uchida, Yuko; Okamatsu, Masatoshi; Yamamoto, Naoki; Soda, Kosuke; Nomura, Naoki; Kuribayashi, Saya; Shichinohe, Shintaro; Sunden, Yuji; Umemura, Takashi; Usui, Tatsufumi; Ozaki, Hiroichi; Yamaguchi, Tsuyoshi; Murase, Toshiyuki; Ito, Toshihiro; Saito, Takehiko; Takada, Ayato; Kida, Hiroshi

    2012-03-01

    H5N1 highly pathogenic avian influenza virus (HPAIV) was reintroduced and caused outbreaks in chickens in the 2010-2011 winter season in Japan, which had been free from highly pathogenic avian influenza (HPAI) since 2007 when HPAI outbreaks occurred and were controlled. On 14 October 2010 at Lake Ohnuma, Wakkanai, the northernmost part of Hokkaido, Japan, H5N1 HPAIVs were isolated from faecal samples of ducks flying from their nesting lakes in Siberia. Since then, in Japan, H5N1 HPAIVs have been isolated from 63 wild birds in 17 prefectures and caused HPAI outbreaks in 24 chicken farms in nine prefectures by the end of March in 2011. Each of these isolates was genetically closely related to the HPAIV isolates at Lake Ohnuma, and those in China, Mongolia, Russia and Korea, belonging to genetic clade 2.3.2.1. In addition, these isolates were genetically classified into three groups, suggesting that the viruses were transmitted by migratory water birds through at least three different routes from their northern territory to Japan. These isolates were antigenic variants, which is consistent with selection in poultry under the immunological pressure induced by vaccination. To prevent the perpetuation of viruses in the lakes where water birds nest in summer in Siberia, prompt eradication of HPAIVs in poultry is urgently needed in Asian countries where HPAI has not been controlled.

  6. Highly Pathogenic Avian Influenza A(H5N1) Viruses at the Animal-Human Interface in Vietnam, 2003-2010.

    PubMed

    Creanga, Adrian; Hang, Nguyen Le Khanh; Cuong, Vuong Duc; Nguyen, Ha T; Phuong, Hoang Vu Mai; Thanh, Le Thi; Thach, Nguyen Co; Hien, Pham Thi; Tung, Nguyen; Jang, Yunho; Balish, Amanda; Dang, Nguyen Hoang; Duong, Mai Thuy; Huong, Ngo Thu; Hoa, Do Ngoc; Tho, Nguyen Dang; Klimov, Alexander; Kapella, Bryan K; Gubareva, Larisa; Kile, James C; Hien, Nguyen Tran; Mai, Le Quynh; Davis, C Todd

    2017-09-15

    Mutation and reassortment of highly pathogenic avian influenza A(H5N1) viruses at the animal-human interface remain a major concern for emergence of viruses with pandemic potential. To understand the relationship of H5N1 viruses circulating in poultry and those isolated from humans, comprehensive phylogenetic and molecular analyses of viruses collected from both hosts in Vietnam between 2003 and 2010 were performed. We examined the temporal and spatial distribution of human cases relative to H5N1 poultry outbreaks and characterized the genetic lineages and amino acid substitutions in each gene segment identified in humans relative to closely related viruses from avian hosts. Six hemagglutinin clades and 8 genotypes were identified in humans, all of which were initially identified in poultry. Several amino acid mutations throughout the genomes of viruses isolated from humans were identified, indicating the potential for poultry viruses infecting humans to rapidly acquire molecular markers associated with mammalian adaptation and antiviral resistance. Published by Oxford University Press for the Infectious Diseases Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  7. Environmental contamination and risk factors for transmission of highly pathogenic avian influenza A(H5N1) to humans, Cambodia, 2006-2010.

    PubMed

    Ly, Sowath; Vong, Sirenda; Cavailler, Philippe; Mumford, Elizabeth; Mey, Channa; Rith, Sareth; Van Kerkhove, Maria D; Sorn, San; Sok, Touch; Tarantola, Arnaud; Buchy, Philippe

    2016-11-04

    Highly pathogenic avian influenza A (H5N1) virus has been of public health concern since 2003. Probable risk factors for A(H5N1) transmission to human have been demonstrated in several studies or epidemiological reports. However, transmission patterns may differ according to demographic characteristics of the population and local practices. This article aggregates these data from three studies with data collected in the previous surveys in 2006 and 2007 to further examine the risks factors associated with presence of anti-A(H5) antibodies among villagers residing within outbreak areas. We aggregated 5-year data (2006-2010) from serology survey and matched case-control studies in Cambodia to further examine the risks factors associated with A(H5N1) infection among villagers in the outbreak areas. Serotesting among villagers detected 35 (1.5 % [0-2.6]) positive cases suggesting recent exposure to A(H5N1) virus. Practices associated with A(H5N1) infection among all ages were: having poultry cage or nesting area under or adjacent to the house (OR: 6.7 [1.6-28.3]; p = 0.010) and transporting poultry to market (OR: 17.6 [1.6-193.7]; p = 0.019). Practices found as risk factors for the infection among age under 20 years were swimming/bathing in ponds also accessed by domestic poultry (OR: 4.6 [1.1-19.1]; p = 0.038). Association with consuming wild birds reached borderline significance (p = 0.066). Our results suggest that swimming/bathing in contaminated pond water and close contact with poultry may present a risk of A(H5N1) transmission to human.

  8. Characterization of encephalitis in wild birds naturally infected by highly pathogenic avian influenza H5N1.

    PubMed

    Bröjer, Caroline; Agren, Erik O; Uhlhorn, Henrik; Bernodt, Karin; Jansson, Désirée S; Gavier-Widén, Dolores

    2012-03-01

    During the outbreak of highly pathogenic avian influenza (HPAI) H5N1 in Sweden in 2006, disease and mortality were observed in a number of wild bird species. Encephalitis was one of the most consistent and severe findings in birds submitted for postmortem examination. However, the distribution and severity of the inflammation varied among individuals. This study characterized the encephalitis and the phenotype of the cellular infiltrate in brains of 40 birds of various species naturally infected with HPAI H5N1. Brain sections stained with hematoxylin and eosin and immunostained for influenza A viral antigen were evaluated in parallel to brain sections immunostained with antibodies against T lymphocytes (CD3+), B lymphocytes (CD79a+), macrophages (Lectin RCA-1+), and astrocytes expressing glial fibrillary acidic protein. The virus showed marked neurotropism, and the neuropathology included multifocal to diffuse areas of gliosis and inflammation in the gray matter, neuronal degeneration, neuronophagia, vacuolation of the neuropil, focal necrosis, perivascular cuffing, and meningitis. Broad ranges in severity, neuroanatomical distribution, and type of cellular infiltrate were observed among the different bird species. Since neurotropism is a key feature of HPAI H5N1 infection in birds and other species and because the clinical presentation can vary, the characterization of the inflammation in the brain is important in understanding the pathogenesis of the disease and also has important diagnostic implications for sample selection.

  9. High Rates of Detection of Clade 2.3.4.4 Highly Pathogenic Avian Influenza H5 Viruses in Wild Birds in the Pacific Northwest During the Winter of 2014-15.

    PubMed

    Ip, Hon S; Dusek, Robert J; Bodenstein, Barbara; Torchetti, Mia Kim; DeBruyn, Paul; Mansfield, Kristin G; DeLiberto, Thomas; Sleeman, Jonathan M

    2016-05-01

    In 2014, clade 2.3.4.4 H5N8 highly pathogenic avian influenza (HPAI) viruses spread across the Republic of Korea and ultimately were reported in China, Japan, Russia, and Europe. Mortality associated with a reassortant HPAI H5N2 virus was detected in poultry farms in western Canada at the end of November. The same strain (with identical genetic structure) was then detected in free-living wild birds that had died prior to December 8, 2014, of unrelated causes in Whatcom County, Washington, U. S. A., in an area contiguous with the index Canadian location. A gyrfalcon (Falco rusticolus) that had hunted and fed on an American wigeon (Anas americana) on December 6, 2014, in the same area, and died 2 days later, tested positive for the Eurasian-origin HPAI H5N8. Subsequently, an active surveillance program using hunter-harvested waterfowl in Washington and Oregon detected 10 HPAI H5 viruses, of three different subtypes (four H5N2, three H5N8, and three H5N1) with four segments in common (HA, PB2, NP, and MA). In addition, a mortality-based passive surveillance program detected 18 HPAI (14 H5N2 and four H5N8) cases from Idaho, Kansas, Oregon, Minnesota, Montana, Washington, and Wisconsin. Comparatively, mortality-based passive surveillance appears to have detected these HPAI infections at a higher rate than active surveillance during the period following initial introduction into the United States.

  10. Antigenic diversity of H5 highly pathogenic avian influenza viruses of clade 2.3.4.4 isolated in Asia.

    PubMed

    Ohkawara, Ayako; Okamatsu, Masatoshi; Ozawa, Makoto; Chu, Duc-Huy; Nguyen, Lam Thanh; Hiono, Takahiro; Matsuno, Keita; Kida, Hiroshi; Sakoda, Yoshihiro

    2017-05-01

    H5 highly pathogenic avian influenza viruses (HPAIV) have spread in both poultry and wild birds since late 2003. Continued circulation of HPAIV in poultry in several regions of the world has led to antigenic drift. In the present study, we analyzed the antigenic properties of H5 HPAIV isolated in Asia using four neutralizing mAbs recognizing hemagglutinin, which were established using A/chicken/Kumamoto/1-7/2014 (H5N8), belonging to clade 2.3.4.4 and also using polyclonal antibodies. Viruses of clades 1.1, 2.3.2.1, 2.3.4, and 2.3.4.4 had different reactivity patterns to the panel of mAbs, thereby indicating that the antigenicity of the viruses of clade 2.3.4.4 were similar but differed from the other clades. In particular, the antigenicity of the viruses of clade 2.3.4.4 differed from those of the viruses of clades 2.3.4 and 2.3.2.1, which suggests that the recent H5 HPAIV have further evolved antigenically divergent. In addition, reactivity of antiserum suggests that the antigenicity of viruses of clade 2.3.4.4 differed slightly among groups A, B, and C. Vaccines are still used in poultry in endemic countries, so the antigenicity of H5 HPAIV should be monitored continually to facilitate control of avian influenza. The panel of mAbs established in the present study will be useful for detecting antigenic drift in the H5 viruses that emerge from the current strains. © 2017 The Societies and John Wiley & Sons Australia, Ltd.

  11. Wild ducks excrete highly pathogenic avian influenza virus H5N8 (2014-2015) without clinical or pathological evidence of disease.

    PubMed

    van den Brand, Judith M A; Verhagen, Josanne H; Veldhuis Kroeze, Edwin J B; van de Bildt, Marco W G; Bodewes, Rogier; Herfst, Sander; Richard, Mathilde; Lexmond, Pascal; Bestebroer, Theo M; Fouchier, Ron A M; Kuiken, Thijs

    2018-04-18

    Highly pathogenic avian influenza (HPAI) is essentially a poultry disease. Wild birds have traditionally not been involved in its spread, but the epidemiology of HPAI has changed in recent years. After its emergence in southeastern Asia in 1996, H5 HPAI virus of the Goose/Guangdong lineage has evolved into several sub-lineages, some of which have spread over thousands of kilometers via long-distance migration of wild waterbirds. In order to determine whether the virus is adapting to wild waterbirds, we experimentally inoculated the HPAI H5N8 virus clade 2.3.4.4 group A from 2014 into four key waterbird species-Eurasian wigeon (Anas penelope), common teal (Anas crecca), mallard (Anas platyrhynchos), and common pochard (Aythya ferina)-and compared virus excretion and disease severity with historical data of the HPAI H5N1 virus infection from 2005 in the same four species. Our results showed that excretion was highest in Eurasian wigeons for the 2014 virus, whereas excretion was highest in common pochards and mallards for the 2005 virus. The 2014 virus infection was subclinical in all four waterbird species, while the 2005 virus caused clinical disease and pathological changes in over 50% of the common pochards. In chickens, the 2014 virus infection caused systemic disease and high mortality, similar to the 2005 virus. In conclusion, the evidence was strongest for Eurasian wigeons as long-distance vectors for HPAI H5N8 virus from 2014. The implications of the switch in species-specific virus excretion and decreased disease severity may be that the HPAI H5 virus more easily spreads in the wild-waterbird population.

  12. Duck migration and past influenza A (H5N1) outbreak areas

    USGS Publications Warehouse

    Gaidet, Nicolas; Newman, Scott H.; Hagemeijer, Ward; Dodman, Tim; Cappelle, Julien; Hammoumi, Saliha; De Simone, Lorenzo; Takekawa, John Y.

    2008-01-01

    In 2005 and 2006, the highly pathogenic avian influenza (HPAI) virus subtype H5N1 rapidly spread from Asia through Europe, the Middle East, and Africa. Waterbirds are considered the natural reservoir of low pathogenic avian influenza viruses (1), but their potential role in the spread of HPAI (H5N1), along with legal and illegal poultry and wildlife trade (2), is yet to be clarified.

  13. Low-pathogenic influenza A viruses in North American diving ducks contribute to the emergence of a novel highly pathogenic influenza A(H7N8) virus

    USGS Publications Warehouse

    Xu, Yifei; Ramey, Andrew M.; Bowman, Andrew S; DeLiberto, Thomas J.; Killian, Mary Lea; Krauss, Scott; Nolting, Jacqueline M.; Torchetti, Mia Kim; Reeves, Andrew B.; Webby, Richard J.; Stallknecht, David E.; Wan, Xiu-Feng

    2017-01-01

    Introductions of low-pathogenic avian influenza (LPAI) viruses of subtypes H5 and H7 into poultry from wild birds have the potential to mutate to highly pathogenic avian influenza (HPAI) viruses, but such viruses' origins are often unclear. In January 2016, a novel H7N8 HPAI virus caused an outbreak in turkeys in Indiana, USA. To determine the virus's origin, we sequenced the genomes of 441 wild-bird origin influenza A viruses (IAVs) from North America and subjected them to evolutionary analyses. The results showed that the H7N8 LPAI virus most likely circulated among diving ducks in the Mississippi flyway during autumn 2015 and was subsequently introduced to Indiana turkeys, in which it evolved high pathogenicity. Preceding the outbreak, an isolate with six gene segments (PB2, PB1, PA, HA, NA, and NS) sharing >99% sequence identity with those of H7N8 turkey isolates was recovered from a diving duck sampled in Kentucky, USA. H4N8 IAVs from other diving ducks possessed five H7N8-like gene segments (PB2, PB1, NA, MP, and NS; >98% sequence identity). Our findings suggest that viral gene constellations circulating among diving ducks can contribute to the emergence of IAVs that affect poultry. Therefore, diving ducks may serve an important and understudied role in the maintenance, diversification, and transmission of IAVs in the wild-bird reservoir.

  14. Antigenic, genetic, and pathogenic characterization of H5N1 highly pathogenic avian influenza viruses isolated from dead whooper swans (Cygnus cygnus) found in northern Japan in 2008.

    PubMed

    Okamatsu, Masatoshi; Tanaka, Tomohisa; Yamamoto, Naoki; Sakoda, Yoshihiro; Sasaki, Takashi; Tsuda, Yoshimi; Isoda, Norikazu; Kokumai, Norihide; Takada, Ayato; Umemura, Takashi; Kida, Hiroshi

    2010-12-01

    In April and May 2008, whooper swans (Cygnus cygnus) were found dead in Hokkaido in Japan. In this study, an adult whooper swan found dead beside Lake Saroma was pathologically examined and the identified H5N1 influenza virus isolates were genetically and antigenically analyzed. Pathological findings indicate that the swan died of severe congestive edema in the lungs. Phylogenetic analysis of the HA genes of the isolates revealed that they are the progeny viruses of isolates from poultry and wild birds in China, Russia, Korea, and Hong Kong. Antigenic analyses indicated that the viruses are distinguished from the H5N1 viruses isolated from wild birds and poultry before 2007. The chickens vaccinated with A/duck/Hokkaido/Vac-1/2004 (H5N1) survived for 14 days after challenge with A/whooper swan/Hokkaido/1/2008 (H5N1), although a small amount of the challenge virus was recovered from the tissues of the birds. These findings indicate that H5N1 highly pathogenic avian influenza viruses are circulating in wild birds in addition to domestic poultry in Asia and exhibit antigenic variation that may be due to vaccination.

  15. Impact of vaccination on infection with Vietnam H5N1 high pathogenicity avian influenza virus in hens and the eggs they lay

    USDA-ARS?s Scientific Manuscript database

    High pathogenicity avian influenza virus (HPAIV) infections in chickens decrease egg production and eggs that are laid contain HPAIV. Vaccination once or twice was examined as a way to protect chickens from Vietnamese H5N1 HPAIV. Eighty-three percent of hens without vaccination died within 3 days ...

  16. Adaption of wild-bird origin H5Nx highly pathogenic avian influenza virus Clade 2.3.4.4 in vaccinated poultry

    USDA-ARS?s Scientific Manuscript database

    The 2014-2015 incursion of H5Nx clade 2.3.4.4 high pathogenicity avian influenza (HPAI) virus caused the largest animal health emergency in U.S. history and renewed interest in developing vaccines against these newly emergent viruses. Our previous research demonstrated several H5 vaccines with varyi...

  17. Antibody titer has positive predictive value for vaccine protection against challenge with natural antigenic-drift variants of H5N1 high-pathogenicity avian influenza viruses from Indonesia

    USDA-ARS?s Scientific Manuscript database

    Beginning with Hong Kong in 2002, vaccines have been used as part of an integrated control strategy in 14 countries/regions to protect poultry against H5N1 high pathogenicity avian influenza (HPAI). H5N1 HPAI was first reported in Indonesia in 2003 and vaccination was initiated the following year. ...

  18. Potential spread of highly pathogenic avian influenza H5N1 by wildfowl: dispersal ranges and rates determined from large-scale satellite telemetry

    USGS Publications Warehouse

    Gaidet, Nicolas; Cappelle, Julien; Takekawa, John Y.; Prosser, Diann J.; Iverson, Samuel A.; Douglas, David C.; Perry, William M.; Mundkur, Taej; Newman, Scott H.

    2010-01-01

    1. Migratory birds are major candidates for long-distance dispersal of zoonotic pathogens. In recent years, wildfowl have been suspected of contributing to the rapid geographic spread of the highly pathogenic avian influenza (HPAI) H5N1 virus. Experimental infection studies reveal that some wild ducks, geese and swans shed this virus asymptomatically and hence have the potential to spread it as they move. 2. We evaluate the dispersive potential of HPAI H5N1 viruses by wildfowl through an analysis of the movement range and movement rate of birds monitored by satellite telemetry in relation to the apparent asymptomatic infection duration (AID) measured in experimental studies. We analysed the first large-scale data set of wildfowl movements, including 228 birds from 19 species monitored by satellite telemetry in 2006–2009, over HPAI H5N1 affected regions of Asia, Europe and Africa. 3. Our results indicate that individual migratory wildfowl have the potential to disperse HPAI H5N1 over extensive distances, being able to perform movements of up to 2900 km within timeframes compatible with the duration of asymptomatic infection. 4. However, the likelihood of such virus dispersal over long distances by individual wildfowl is low: we estimate that for an individual migratory bird there are, on average, only 5–15 days per year when infection could result in the dispersal of HPAI H5N1 virus over 500 km. 5. Staging at stopover sites during migration is typically longer than the period of infection and viral shedding, preventing birds from dispersing a virus over several consecutive but interrupted long-distance movements. Intercontinental virus dispersion would therefore probably require relay transmission between a series of successively infected migratory birds. 6. Synthesis and applications. Our results provide a detailed quantitative assessment of the dispersive potential of HPAI H5N1 virus by selected migratory birds. Such dispersive potential rests on the

  19. Highly pathogenic avian influenza A(H7N3) virus in poultry workers, Mexico, 2012.

    PubMed

    Lopez-Martinez, Irma; Balish, Amanda; Barrera-Badillo, Gisela; Jones, Joyce; Nuñez-García, Tatiana E; Jang, Yunho; Aparicio-Antonio, Rodrigo; Azziz-Baumgartner, Eduardo; Belser, Jessica A; Ramirez-Gonzalez, José E; Pedersen, Janice C; Ortiz-Alcantara, Joanna; Gonzalez-Duran, Elizabeth; Shu, Bo; Emery, Shannon L; Poh, Mee K; Reyes-Teran, Gustavo; Vazquez-Perez, Joel A; Avila-Rios, Santiago; Uyeki, Timothy; Lindstrom, Stephen; Villanueva, Julie; Tokars, Jerome; Ruiz-Matus, Cuitláhuac; Gonzalez-Roldan, Jesus F; Schmitt, Beverly; Klimov, Alexander; Cox, Nancy; Kuri-Morales, Pablo; Davis, C Todd; Diaz-Quiñonez, José Alberto

    2013-01-01

    We identified 2 poultry workers with conjunctivitis caused by highly pathogenic avian influenza A(H7N3) viruses in Jalisco, Mexico. Genomic and antigenic analyses of 1 isolate indicated relatedness to poultry and wild bird subtype H7N3 viruses from North America. This isolate had a multibasic cleavage site that might have been derived from recombination with host rRNA.

  20. Development of a dual-protective live attenuated vaccine against H5N1 and H9N2 avian influenza viruses by modifying the NS1 gene.

    PubMed

    Choi, Eun-hye; Song, Min-Suk; Park, Su-Jin; Pascua, Philippe Noriel Q; Baek, Yun Hee; Kwon, Hyeok-il; Kim, Eun-Ha; Kim, Semi; Jang, Hyung-Kwan; Poo, Haryoung; Kim, Chul-Joong; Choi, Young Ki

    2015-07-01

    An increasing number of outbreaks of avian influenza H5N1 and H9N2 viruses in poultry have caused serious economic losses and raised concerns for human health due to the risk of zoonotic transmission. However, licensed H5N1 and H9N2 vaccines for animals and humans have not been developed. Thus, to develop a dual H5N1 and H9N2 live-attenuated influenza vaccine (LAIV), the HA and NA genes from a virulent mouse-adapted avian H5N2 (A/WB/Korea/ma81/06) virus and a recently isolated chicken H9N2 (A/CK/Korea/116/06) virus, respectively, were introduced into the A/Puerto Rico/8/34 backbone expressing truncated NS1 proteins (NS1-73, NS1-86, NS1-101, NS1-122) but still possessing a full-length NS gene. Two H5N2/NS1-LAIV viruses (H5N2/NS1-86 and H5N2/NS1-101) were highly attenuated compared with the full-length and remaining H5N2/NS-LAIV viruses in a mouse model. Furthermore, viruses containing NS1 modifications were found to induce more IFN-β activation than viruses with full-length NS1 proteins and were correspondingly attenuated in mice. Intranasal vaccination with a single dose (10(4.0) PFU/ml) of these viruses completely protected mice from a lethal challenge with the homologous A/WB/Korea/ma81/06 (H5N2), heterologous highly pathogenic A/EM/Korea/W149/06 (H5N1), and heterosubtypic highly virulent mouse-adapted H9N2 viruses. This study clearly demonstrates that the modified H5N2/NS1-LAIV viruses attenuated through the introduction of mutations in the NS1 coding region display characteristics that are desirable for live attenuated vaccines and hold potential as vaccine candidates for mammalian hosts.

  1. The Appropriate Combination of Hemagglutinin and Neuraminidase Prompts the Predominant H5N6 Highly Pathogenic Avian Influenza Virus in Birds.

    PubMed

    Wang, Xiuhui; Zeng, Zhaoyong; Zhang, Zaoyue; Zheng, Yi; Li, Bo; Su, Guanming; Li, Huanan; Huang, Lihong; Qi, Wenbao; Liao, Ming

    2018-01-01

    Haemagglutinin (HA) and neuraminidase (NA) are two vital surface glycoproteins of influenza virus. The HA of H5N6 highly pathogenic avian influenza virus is divided into Major/H5 and Minor/H5, and its NA consists of short stalk NA and full-length stalk NA. The strain combined with Major/H5 and short stalk NA account for 76.8% of all strains, and the proportion was 23.0% matched by Minor/H5 and full-length stalk NA. Our objective was to investigate the influence of HA-NA matching on the biological characteristics and the effects of the epidemic trend of H5N6 on mice and chickens. Four different strains combined with two HAs and two NAs of the represented H5N6 viruses with the fixed six internal segments were rescued and analyzed. Plaque formation, NA activity of infectious particles, and virus growth curve assays, as well as a saliva acid receptor experiment, with mice and chickens were performed. We found that all the strains can replicate well on Madin-Darby canine kidney (MDCK) cells and chicken embryo fibroblasts (CEF) cells, simultaneously, mice and infection group chickens were complete lethal. However, the strain combined with Major/H5 and short stalk N6 formed smaller plaque on MDCK, showed a moderate replication ability in both MDCK and CEF, and exhibited a higher survival rate among the contact group of chickens. Conversely, strains with opposite biological characters which combined with Minor/H5 and short stalk N6 seldom exist in nature. Hence, we drew the conclusion that the appropriate combination of Major/H5 and short stalk N6 occur widely in nature with appropriate biological characteristics for the proliferation and transmission, whereas other combinations of HA and NA had a low proportion and even have not yet been detected.

  2. Different cross protection scopes of two avian influenza H5N1 vaccines against infection of layer chickens with a heterologous highly pathogenic virus.

    PubMed

    Poetri, Okti Nadia; Van Boven, Michiel; Koch, Guus; Stegeman, Arjan; Claassen, Ivo; Wayan Wisaksana, I; Bouma, Annemarie

    2017-10-01

    Avian influenza (AI) virus strains vary in antigenicity, and antigenic differences between circulating field virus and vaccine virus will affect the effectiveness of vaccination of poultry. Antigenic relatedness can be assessed by measuring serological cross-reactivity using haemagglutination inhibition (HI) tests. Our study aims to determine the relation between antigenic relatedness expressed by the Archetti-Horsfall ratio, and reduction of virus transmission of highly pathogenic H5N1 AI strains among vaccinated layers. Two vaccines were examined, derived from H5N1 AI virus strains A/Ck/WJava/Sukabumi/006/2008 and A/Ck/CJava/Karanganyar/051/2009. Transmission experiments were carried out in four vaccine and two control groups, with six sets of 16 specified pathogen free (SPF) layer chickens. Birds were vaccinated at 4weeks of age with one strain and challenge-infected with the homologous or heterologous strain at 8weeks of age. No transmission or virus shedding occurred in groups challenged with the homologous strain. In the group vaccinated with the Karanganyar strain, high cross-HI responses were observed, and no transmission of the Sukabumi strain occurred. However, in the group vaccinated with the Sukabumi strain, cross-HI titres were low, virus shedding was not reduced, and multiple transmissions to contact birds were observed. This study showed large differences in cross-protection of two vaccines based on two different highly pathogenic H5N1 virus strains. This implies that extrapolation of in vitro data to clinical protection and reduction of virus transmission might not be straightforward. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Genomic signature analysis of the recently emerged highly pathogenic A(H5N8) avian influenza virus: implying an evolutionary trend for bird-to-human transmission.

    PubMed

    Xu, Wei; Dai, Yanyan; Hua, Chen; Wang, Qian; Zou, Peng; Deng, Qiwen; Jiang, Shibo; Lu, Lu

    2017-12-01

    In early 2014, a novel subclade (2.3.4.4) of the highly pathogenic avian influenza (HPAI) A(H5N8) virus caused the first outbreak in domestic ducks and migratory birds in South Korea. Since then, it has spread to 44 countries and regions. To date, no human infections with A(H5N8) virus have been reported, but the possibility cannot be excluded. By analyzing the genomic signatures of A(H5N8) strains, we found that among the 47 species-associated signature positions, three positions exhibited human-like signatures (HLS), including PA-404S, PB2-613I and PB2-702R and that mutation trend of host signatures of avian A(H5N8) is different before and after 2014. About 82% of A(H5N8) isolates collected after January of 2014 carried the 3 HLS (PA-404S/PB2-613I/PB2-702R) in combination, while none of isolates collected before 2014 had this combination. Furthermore, the HA protein had S137A and S227R substitutions in the receptor-binding site and A160T in the glycosylation site, potentially increasing viral ability to bind human-type receptors. Based on these findings, the newly emerged HPAI A(H5N8) isolates show an evolutionary trend toward gaining more HLS and, along with it, the potential for bird-to-human transmissibility. Therefore, more extensive surveillance of this rapidly spreading HPAI A(H5N8) and preparedness against its potential pandemic are urgently needed. Copyright © 2017. Published by Elsevier Masson SAS.

  4. Airborne Detection of H5N8 Highly Pathogenic Avian Influenza Virus Genome in Poultry Farms, France.

    PubMed

    Scoizec, Axelle; Niqueux, Eric; Thomas, Rodolphe; Daniel, Patrick; Schmitz, Audrey; Le Bouquin, Sophie

    2018-01-01

    In southwestern France, during the winter of 2016-2017, the rapid spread of highly pathogenic avian influenza H5N8 outbreaks despite the implementation of routine control measures, raised the question about the potential role of airborne transmission in viral spread. As a first step to investigate the plausibility of that transmission, air samples were collected inside, outside and downwind from infected duck and chicken facilities. H5 avian influenza virus RNA was detected in all samples collected inside poultry houses, at external exhaust fans and at 5 m distance from poultry houses. For three of the five flocks studied, in the sample collected at 50-110 m distance, viral genomic RNA was detected. The measured viral air concentrations ranged between 4.3 and 6.4 log 10 RNA copies per m 3 , and their geometric mean decreased from external exhaust fans to the downwind measurement point. These findings are in accordance with the possibility of airborne transmission and question the procedures for outbreak depopulation.

  5. Airborne Detection of H5N8 Highly Pathogenic Avian Influenza Virus Genome in Poultry Farms, France

    PubMed Central

    Scoizec, Axelle; Niqueux, Eric; Thomas, Rodolphe; Daniel, Patrick; Schmitz, Audrey; Le Bouquin, Sophie

    2018-01-01

    In southwestern France, during the winter of 2016–2017, the rapid spread of highly pathogenic avian influenza H5N8 outbreaks despite the implementation of routine control measures, raised the question about the potential role of airborne transmission in viral spread. As a first step to investigate the plausibility of that transmission, air samples were collected inside, outside and downwind from infected duck and chicken facilities. H5 avian influenza virus RNA was detected in all samples collected inside poultry houses, at external exhaust fans and at 5 m distance from poultry houses. For three of the five flocks studied, in the sample collected at 50–110 m distance, viral genomic RNA was detected. The measured viral air concentrations ranged between 4.3 and 6.4 log10 RNA copies per m3, and their geometric mean decreased from external exhaust fans to the downwind measurement point. These findings are in accordance with the possibility of airborne transmission and question the procedures for outbreak depopulation. PMID:29487857

  6. The Landscape Epidemiology of Seasonal Clustering of Highly Pathogenic Avian Influenza (H5N1) in Domestic Poultry in Africa, Europe and Asia.

    PubMed

    Walsh, M G; Amstislavski, P; Greene, A; Haseeb, M A

    2017-10-01

    Highly pathogenic avian influenza subtype H5N1 (H5N1) has contributed to substantial economic loss for backyard and large-scale poultry farmers each year since 1997. While the distribution of domestic H5N1 outbreaks across Africa, Europe and Asia is extensive, those features of the landscape conferring greatest risk remain uncertain. Furthermore, the extent to which influential landscape features may vary by season has been inadequately described. The current investigation used World Organization for Animal Health surveillance data to (i) delineate areas at greatest risk of H5N1 epizootics among domestic poultry, (ii) identify those abiotic and biotic features of the landscape associated with outbreak risk and (iii) examine patterns of epizootic clustering by season. Inhomogeneous point process models were used to predict the intensity of H5N1 outbreaks and describe the spatial dependencies between them. During October through March, decreasing precipitation, increasing isothermality and the presence of H5N1 in wild birds were significantly associated with the increased risk of domestic H5N1 epizootics. Conversely, increasing precipitation and decreasing isothermality were associated with the increased risk during April through September. Increasing temperature during the coldest quarter, domestic poultry density and proximity to surface water were associated with the increased risk of domestic outbreaks throughout the year. Spatial dependencies between outbreaks appeared to vary seasonally, with substantial clustering at small and large scales identified during October through March even after accounting for inhomogeneity due to landscape factors. In contrast, during April to September, H5N1 outbreaks exhibited no clustering at small scale once accounting for landscape factors. This investigation has identified seasonal differences in risk and clustering patterns of H5N1 outbreaks in domestic poultry and may suggest strategies in high-risk areas with features

  7. Evidence for the Convergence Model: The Emergence of Highly Pathogenic Avian Influenza (H5N1) in Viet Nam

    PubMed Central

    Saksena, Sumeet; Fox, Jefferson; Epprecht, Michael; Tran, Chinh C.; Nong, Duong H.; Spencer, James H.; Nguyen, Lam; Finucane, Melissa L.; Tran, Vien D.; Wilcox, Bruce A.

    2015-01-01

    Building on a series of ground breaking reviews that first defined and drew attention to emerging infectious diseases (EID), the ‘convergence model’ was proposed to explain the multifactorial causality of disease emergence. The model broadly hypothesizes disease emergence is driven by the co-incidence of genetic, physical environmental, ecological, and social factors. We developed and tested a model of the emergence of highly pathogenic avian influenza (HPAI) H5N1 based on suspected convergence factors that are mainly associated with land-use change. Building on previous geospatial statistical studies that identified natural and human risk factors associated with urbanization, we added new factors to test whether causal mechanisms and pathogenic landscapes could be more specifically identified. Our findings suggest that urbanization spatially combines risk factors to produce particular types of peri-urban landscapes with significantly higher HPAI H5N1 emergence risk. The work highlights that peri-urban areas of Viet Nam have higher levels of chicken densities, duck and geese flock size diversities, and fraction of land under rice or aquaculture than rural and urban areas. We also found that land-use diversity, a surrogate measure for potential mixing of host populations and other factors that likely influence viral transmission, significantly improves the model’s predictability. Similarly, landscapes where intensive and extensive forms of poultry production overlap were found at greater risk. These results support the convergence hypothesis in general and demonstrate the potential to improve EID prevention and control by combing geospatial monitoring of these factors along with pathogen surveillance programs. PMID:26398118

  8. Emergence and Adaptation of a Novel Highly Pathogenic H7N9 Influenza Virus in Birds and Humans from a 2013 Human-Infecting Low-Pathogenic Ancestor.

    PubMed

    Qi, Wenbao; Jia, Weixin; Liu, Di; Li, Jing; Bi, Yuhai; Xie, Shumin; Li, Bo; Hu, Tao; Du, Yingying; Xing, Li; Zhang, Jiahao; Zhang, Fuchun; Wei, Xiaoman; Eden, John-Sebastian; Li, Huanan; Tian, Huaiyu; Li, Wei; Su, Guanming; Lao, Guangjie; Xu, Chenggang; Xu, Bing; Liu, Wenjun; Zhang, Guihong; Ren, Tao; Holmes, Edward C; Cui, Jie; Shi, Weifeng; Gao, George F; Liao, Ming

    2018-01-15

    Since its emergence in 2013, the H7N9 low-pathogenic avian influenza virus (LPAIV) has been circulating in domestic poultry in China, causing five waves of human infections. A novel H7N9 highly pathogenic avian influenza virus (HPAIV) variant possessing multiple basic amino acids at the cleavage site of the hemagglutinin (HA) protein was first reported in two cases of human infection in January 2017. More seriously, those novel H7N9 HPAIV variants have been transmitted and caused outbreaks on poultry farms in eight provinces in China. Herein, we demonstrate the presence of three different amino acid motifs at the cleavage sites of these HPAIV variants which were isolated from chickens and humans and likely evolved from the preexisting LPAIVs. Animal experiments showed that these novel H7N9 HPAIV variants are both highly pathogenic in chickens and lethal to mice. Notably, human-origin viruses were more pathogenic in mice than avian viruses, and the mutations in the PB2 gene associated with adaptation to mammals (E627K, A588V, and D701N) were identified by next-generation sequencing (NGS) and Sanger sequencing of the isolates from infected mice. No polymorphisms in the key amino acid substitutions of PB2 and HA in isolates from infected chicken lungs were detected by NGS. In sum, these results highlight the high degree of pathogenicity and the valid transmissibility of this new H7N9 variant in chickens and the quick adaptation of this new H7N9 variant to mammals, so the risk should be evaluated and more attention should be paid to this variant. IMPORTANCE Due to the recent increased numbers of zoonotic infections in poultry and persistent human infections in China, influenza A(H7N9) virus has remained a public health threat. Most of the influenza A(H7N9) viruses reported previously have been of low pathogenicity. Now, these novel H7N9 HPAIV variants have caused human infections in three provinces and outbreaks on poultry farms in eight provinces in China. We analyzed

  9. Vaccine Efficacy of Inactivated, Chimeric Hemagglutinin H9/H5N2 Avian Influenza Virus and Its Suitability for the Marker Vaccine Strategy

    PubMed Central

    Kim, Se Mi; Kim, Young-Il; Park, Su-Jin; Kim, Eun-Ha; Kwon, Hyeok-il; Si, Young-Jae; Lee, In-Won; Song, Min-Suk

    2017-01-01

    ABSTRACT In order to produce a dually effective vaccine against H9 and H5 avian influenza viruses that aligns with the DIVA (differentiating infected from vaccinated animals) strategy, we generated a chimeric H9/H5N2 recombinant vaccine that expressed the whole HA1 region of A/CK/Korea/04163/04 (H9N2) and the HA2 region of recent highly pathogenic avian influenza (HPAI) A/MD/Korea/W452/14 (H5N8) viruses. The chimeric H9/H5N2 virus showed in vitro and in vivo growth properties and virulence that were similar to those of the low-pathogenic avian influenza (LPAI) H9 virus. An inactivated vaccine based on this chimeric virus induced serum neutralizing (SN) antibodies against both H9 and H5 viruses but induced cross-reactive hemagglutination inhibition (HI) antibody only against H9 viruses. Thus, this suggests its compatibility for use in the DIVA strategy against H5 strains. Furthermore, the chimeric H9/H5N2 recombinant vaccine protected immunized chickens against lethal challenge by HPAI H5N8 viruses and significantly attenuated virus shedding after infection by both H9N2 and HPAI H5N8 viruses. In mice, serological analyses confirmed that HA1- and HA2 stalk-specific antibody responses were induced by vaccination and that the DIVA principle could be employed through the use of an HI assay against H5 viruses. Furthermore, each HA1- and HA2 stalk-specific antibody response was sufficient to inhibit viral replication and protect the chimeric virus-immunized mice from lethal challenge with both mouse-adapted H9N2 and wild-type HPAI H5N1 viruses, although differences in vaccine efficacy against a homologous H9 virus (HA1 head domain immune-mediated protection) and a heterosubtypic H5 virus (HA2 stalk domain immune-mediated protection) were observed. Taken together, these results demonstrate that the novel chimeric H9/H5N2 recombinant virus is a low-pathogenic virus, and this chimeric vaccine is suitable for a DIVA vaccine with broad-spectrum neutralizing antibody against H5

  10. Ferrets develop fatal influenza after inhaling small particle aerosols of highly pathogenic avian influenza virus A/Vietnam/1203/2004 (H5N1)

    PubMed Central

    2010-01-01

    Background There is limited knowledge about the potential routes for H5N1 influenza virus transmission to and between humans, and it is not clear whether humans can be infected through inhalation of aerosolized H5N1 virus particles. Ferrets are often used as a animal model for humans in influenza pathogenicity and transmissibility studies. In this manuscript, a nose-only bioaerosol inhalation exposure system that was recently developed and validated was used in an inhalation exposure study of aerosolized A/Vietnam/1203/2004 (H5N1) virus in ferrets. The clinical spectrum of influenza resulting from exposure to A/Vietnam/1203/2004 (H5N1) through intranasal verses inhalation routes was analyzed. Results Ferrets were successfully infected through intranasal instillation or through inhalation of small particle aerosols with four different doses of Influenza virus A/Vietnam/1203/2004 (H5N1). The animals developed severe influenza encephalomyelitis following intranasal or inhalation exposure to 101, 102, 103, or 104 infectious virus particles per ferret. Conclusions Aerosolized Influenza virus A/Vietnam/1203/2004 (H5N1) is highly infectious and lethal in ferrets. Clinical signs appeared earlier in animals infected through inhalation of aerosolized virus compared to those infected through intranasal instillation. PMID:20843329

  11. H9N2 low pathogenic avian influenza in Pakistan (2012-2015)

    USDA-ARS?s Scientific Manuscript database

    Significant economic losses from deaths and decreased egg production have resulted from H9N2 low pathogenic avian influenza virus (LPAIV) infections in poultry across North Africa, the Middle East and Asia. The H9N2 LPAIVs have been endemic in Pakistani poultry since 1996, but no new viruses have be...

  12. Testing of human specimens for the presence of highly pathogenic zoonotic avian influenza virus A(H5N1) in Poland in 2006-2008 - justified or unnecessary steps?

    PubMed

    Romanowska, Magdalena; Nowak, Iwona; Brydak, Lidia; Wojtyla, Andrzej

    2009-01-01

    Since 1997, human infections with highly pathogenic zoonotic avian influenza viruses have shown that the risk of influenza pandemic is significant. In Europe, infections caused by the highly pathogenic avian influenza A(H7N7) virus were confirmed in the human population in 2003 in the Netherlands. Moreover, outbreaks of A(H5N1) infections were observed in wild and farm birds in different European regions, including Poland in 2006-2008. This study presents 16 patients in Poland from whom clinical specimens were collected and tested for A(H5N1) highly pathogenic avian influenza. This article shows the results of laboratory tests and discusses the legitimacy of the collection and testing of the specimens. All patients were negative for A(H5N1) infection. Nevertheless, only two patients met clinical and epidemiological criteria from the avian influenza case definition. The conclusion is that there is still a strong necessity for increasing the awareness of medical and laboratory staff, as well as the awareness of some occupational groups about human infections with avian influenza viruses, including the importance of seasonal influenza vaccination. It should also be emphasized that in the case of patients suspected of being infected with avian influenza, the information about clinical symptoms is insufficient and must be accompanied by a wide epidemiological investigation.

  13. Spatio-Temporal Magnitude and Direction of Highly Pathogenic Avian Influenza (H5N1) Outbreaks in Bangladesh

    PubMed Central

    Ahmed, Syed S. U.; Ersbøll, Annette K.; Biswas, Paritosh K.; Christensen, Jens P.; Toft, Nils

    2011-01-01

    Background The number of outbreaks of HPAI-H5N1 reported by Bangladesh from 2007 through 2011 placed the country among the highest reported numbers worldwide. However, so far, the understanding of the epidemic progression, direction, intensity, persistence and risk variation of HPAI-H5N1 outbreaks over space and time in Bangladesh remains limited. Methodology/Principal Findings To determine the magnitude and spatial pattern of the highly pathogenic avian influenza A subtype H5N1 virus outbreaks over space and time in poultry from 2007 to 2009 in Bangladesh, we applied descriptive and analytical spatial statistics. Temporal distribution of the outbreaks revealed three independent waves of outbreaks that were clustered during winter and spring. The descriptive analyses revealed that the magnitude of the second wave was the highest as compared to the first and third waves. Exploratory mapping of the infected flocks revealed that the highest intensity and magnitude of the outbreaks was systematic and persistent in an oblique line that connects south-east to north-west through the central part of the country. The line follows the Brahmaputra-Meghna river system, the junction between Central Asian and East Asian flyways, and the major poultry trading route in Bangladesh. Moreover, several important migratory bird areas were identified along the line. Geostatistical analysis revealed significant latitudinal directions of outbreak progressions that have similarity to the detected line of intensity and magnitude. Conclusion/Significance The line of magnitude and direction indicate the necessity of mobilizing maximum resources on this line to strengthen the existing surveillance. PMID:21931683

  14. Infectious and lethal doses of H5N1 highly pathogenic avian influenza virus for house sparrows (Passer domesticus) and rock pigeons (Columbia livia)

    USDA-ARS?s Scientific Manuscript database

    Terrestrial wild birds commonly associated with poultry farms have the potential to contribute to the spread of H5N1 highly pathogenic avian influenza virus within or between poultry facilities or between domesticated and wild bird populations. This potential, however, varies between species and is...

  15. Avian influenza A (H5N1).

    PubMed

    de Jong, Menno D; Hien, Tran Tinh

    2006-01-01

    Since their reemergence in 2003, highly pathogenic avian influenza A (H5N1) viruses have reached endemic levels among poultry in several southeast Asian countries and have caused a still increasing number of more than 100 reported human infections with high mortality. These developments have ignited global fears of an imminent influenza pandemic. The current knowledge of the virology, clinical spectrum, diagnosis and treatment of human influenza H5N1 virus infections is reviewed herein.

  16. Low pathogenic avian influenza (H9N2) in chicken: Evaluation of an ancestral H9-MVA vaccine.

    PubMed

    Ducatez, Mariette F; Becker, Jens; Freudenstein, Astrid; Delverdier, Maxence; Delpont, Mattias; Sutter, Gerd; Guérin, Jean-Luc; Volz, Asisa

    2016-06-30

    Modified Vaccinia Ankara (MVA) has proven its efficacy as a recombinant vector vaccine for numerous pathogens including influenza virus. The present study aimed at evaluating a recombinant MVA candidate vaccine against low pathogenic avian influenza virus subtype H9N2 in the chicken model. As the high genetic and antigenic diversity of H9N2 viruses increases vaccine design complexity, one strategy to widen the range of vaccine coverage is to use an ancestor sequence. We therefore generated a recombinant MVA encoding for the gene sequence of an ancestral hemagglutinin H9 protein (a computationally derived amino acid sequence of the node of the H9N2 G1 lineage strains was obtained using the ANCESCON program). We analyzed the genetics and the growth properties of the MVA vector virus confirming suitability for use under biosafety level 1 and tested its efficacy when applied either as an intra-muscular (IM) or an oral vaccine in specific pathogen free chickens challenged with A/chicken/Tunisia/12/2010(H9N2). Two control groups were studied in parallel (unvaccinated and inoculated birds; unvaccinated and non-inoculated birds). IM vaccinated birds seroconverted as early as four days post vaccination and neutralizing antibodies were detected against A/chicken/Tunisia/12/2010(H9N2) in all the birds before challenge. The role of local mucosal immunity is unclear here as no antibodies were detected in eye drop or aerosol vaccinated birds. Clinical signs were not detected in any of the infected birds even in absence of vaccination. Virus replication was observed in both vaccinated and unvaccinated chickens, suggesting the MVA-ancestral H9 vaccine may not stop virus spread in the field. However vaccinated birds showed less histological damage, fewer influenza-positive cells and shorter virus shedding than their unvaccinated counterparts. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. H5N1-SeroDetect EIA and rapid test: a novel differential diagnostic assay for serodiagnosis of H5N1 infections and surveillance.

    PubMed

    Khurana, Surender; Sasono, Pretty; Fox, Annette; Nguyen, Van Kinh; Le, Quynh Mai; Pham, Quang Thai; Nguyen, Tran Hien; Nguyen, Thanh Liem; Horby, Peter; Golding, Hana

    2011-12-01

    Continuing evolution of highly pathogenic (HP) H5N1 influenza viruses in wild birds with transmission to domestic poultry and humans poses a pandemic threat. There is an urgent need for a simple and rapid serological diagnostic assay which can differentiate between antibodies to seasonal and H5N1 strains and that could provide surveillance tools not dependent on virus isolation and nucleic acid technologies. Here we describe the establishment of H5N1 SeroDetect enzyme-linked immunosorbent assay (ELISA) and rapid test assays based on three peptides in HA2 (488-516), PB1-F2 (2-75), and M2e (2-24) that are highly conserved within H5N1 strains. These peptides were identified by antibody repertoire analyses of H5N1 influenza survivors in Vietnam using whole-genome-fragment phage display libraries (GFPDLs). To date, both platforms have demonstrated high levels of sensitivity and specificity in detecting H5N1 infections (clade 1 and clade 2.3.4) in Vietnamese patients as early as 7 days and up to several years postinfection. H5N1 virus-uninfected individuals in Vietnam and the United States, including subjects vaccinated with seasonal influenza vaccines or with confirmed seasonal virus infections, did not react in the H5N1-SeroDetect assays. Moreover, sera from individuals vaccinated with H5N1 subunit vaccine with moderate anti-H5N1 neutralizing antibody titers did not react positively in the H5N1-SeroDetect ELISA or rapid test assays. The simple H5N1-SeroDetect ELISA and rapid tests could provide an important tool for large-scale surveillance for potential exposure to HP H5N1 strains in both humans and birds.

  18. Lack of chicken adaptation of newly emergent Eurasian H5N8 and reassortant H5N2 high pathogenicity avian influenza viruses in the U.S. is consistent with restricted poultry outbreaks in the Pacific flyway during 2014-2015

    USDA-ARS?s Scientific Manuscript database

    In 2014-2015, the U.S. experienced an unprecedented outbreak of Eurasian clade 2.3.4.4 H5 highly pathogenic avian influenza (HPAI) virus, initially affecting mainly wild birds and few backyard and commercial poultry premises. To better model the outbreak, the pathogenesis and transmission dynamics o...

  19. Virus-like particles displaying H5, H7, H9 hemagglutinins and N1 neuraminidase elicit protective immunity to heterologous avian influenza viruses in chickens

    PubMed Central

    Pushko, Peter; Tretyakova, Irina; Hidajat, Rachmat; Zsak, Aniko; Chrzastek, Klaudia; Tumpey, Terrence M.; Kapczynski, Darrell R.

    2016-01-01

    Avian influenza (AI) viruses circulating in wild birds pose a serious threat to public health. Human and veterinary vaccines against AI subtypes are needed. Here we prepared triple-subtype VLPs that co-localized H5, H7 and H9 antigens derived from H5N1, H7N3 and H9N2 viruses. VLPs also contained influenza N1 neuraminidase and retroviral gag protein. The H5/H7/H9/N1/gag VLPs were prepared using baculovirus expression. Biochemical, functional and antigenic characteristics were determined including hemagglutination and neuraminidase enzyme activities. VLPs were further evaluated in a chicken AI challenge model for safety, immunogenicity and protective efficacy against heterologous AI viruses including H5N2, H7N3 and H9N2 subtypes. All vaccinated birds survived challenges with H5N2 and H7N3 highly pathogenic AI (HPAI) viruses, while all controls died. Immune response was also detectable after challenge with low pathogenicity AI (LPAI) H9N2 virus suggesting that H5/H7/H9/N1/gag VLPs represent a promising approach for the development of broadly protective AI vaccine. PMID:27936463

  20. Novel H5 clade 2.3.4.4 reassortant (H5N1) virus from a green-winged teal in Washington, USA.

    USGS Publications Warehouse

    Kim Torchetti, Mia; Killian, Mary-Lea; Dusek, Robert J.; Pedersen, Janice C.; Hines, Nichole; Bodenstein, Barbara L.; White, C. LeAnn; Ip, Hon S.

    2015-01-01

    Eurasian (EA)-origin H5N8 clade 2.3.4.4 avian influenza viruses were first detected in North America during December 2014. Subsequent reassortment with North American (AM) low-pathogenic wild-bird-origin avian influenza has generated at least two reassortants, including an EA/AM H5N1 from an apparently healthy wild green-winged teal, suggesting continued ongoing reassortment.

  1. Ferrets develop fatal influenza after inhaling small particle aerosols of highly pathogenic avian influenza virus A/Vietnam/1203/2004 (H5N1)

    USDA-ARS?s Scientific Manuscript database

    There is limited knowledge about the potential routes for H5N1 influenza virus transmission to and between humans, and it is not clear whether humans can be infected through inhalation of aerosolized H5N1 virus particles. Ferrets are often used as a surrogate for humans in influenza pathogenicity a...

  2. Phylogenetic Analysis and Pathogenicity Assessment of Two Strains of Avian Influenza Virus Subtype H9N2 Isolated from Migratory Birds: High Homology of Internal Genes with Human H10N8 Virus.

    PubMed

    Ye, Ge; Liang, Chai Hong; Hua, Deng Guo; Song, Lei Yong; Xiang, Yang Guo; Guang, Chen; Lan, Chen Hua; Ping, Hua Yu

    2016-01-01

    Two human-infecting avian influenza viruses (AIVs), H7N9 and H10N8, have emerged in China, which further indicate that the H9N2 subtype of AIVs, as an internal gene donor, may have an important role in the generation of new viruses with cross-species transmissibility and pathogenicity. H9N2 viruses that contain such internal genes widely exist in poultry but are rarely reported in migratory birds. In this study, two strains of the H9N2 virus were isolated from fecal samples of migratory birds in 2014: one strain from Caizi Lake in Anhui Province and one from Chen Lake in Hubei Province of China. Nucleotide sequence analysis revealed high homology of all six internal genes of these two strains with the internal genes of the human H10N8 virus in Jiangxi Province, as well as with the human H7N9 virus. Phylogenetic analysis indicated a possible origin of these two strains from poultry in South China. Both of the two viruses tested could replicated in respiratory organs of infective mice without adaption, by both strains of the H9N2 AIVs from wild birds, suggesting their potential capacity for directly infecting mammals. Our findings indicate the existence of H9N2 viruses that contain internal genes highly homologous with human H10N8 or H7N9 viruses. Wild birds can contribute to the spread of the H9N2 virus that contains the "harmful" internal gene complex, leading to gene rearrangement with other influenza viruses and to the generation of new pathogenic viruses. Therefore, strengthening AIV surveillance in wild birds can promote an understanding of the presence and prevalence of viruses and provide scientific evidence for the prevention and control of AIVs and human-infecting AIVs.

  3. Movements of wild ruddy shelducks in the Central Asian Flyway and their spatial relationship to outbreaks of highly pathogenic avian influenza H5N1

    USGS Publications Warehouse

    Takekawa, John Y.; Prosser, Diann J.; Collins, Bridget M.; Douglas, David C.; Perry, William M.; Baoping, Yan; Luo, Ze; Hou, Yuansheng; Lei, Fumin; Li, Tianxian; Li, Yongdong; Newman, Scott H.

    2013-01-01

    Highly pathogenic avian influenza H5N1 remains a serious concern for both poultry and human health. Wild waterfowl are considered to be the reservoir for low pathogenic avian influenza viruses; however, relatively little is known about their movement ecology in regions where HPAI H5N1 outbreaks regularly occur. We studied movements of the ruddy shelduck (Tadorna ferruginea), a wild migratory waterfowl species that was infected in the 2005 Qinghai Lake outbreak. We defined their migration with Brownian Bridge utilization distribution models and their breeding and wintering grounds with fixed kernel home ranges. We correlated their movements with HPAI H5N1 outbreaks, poultry density, land cover, and latitude in the Central Asian Flyway. Our Akaike Information Criterion analysis indicated that outbreaks were correlated with land cover, latitude, and poultry density. Although shelduck movements were included in the top two models, they were not a top parameter selected in AICc stepwise regression results. However, timing of outbreaks suggested that outbreaks in the flyway began during the winter in poultry with spillover to wild birds during the spring migration. Thus, studies of the movement ecology of wild birds in areas with persistent HPAI H5N1 outbreaks may contribute to understanding their role in transmission of this disease.

  4. Movements of Wild Ruddy Shelducks in the Central Asian Flyway and Their Spatial Relationship to Outbreaks of Highly Pathogenic Avian Influenza H5N1

    PubMed Central

    Takekawa, John Y.; Prosser, Diann J.; Collins, Bridget M.; Douglas, David C.; Perry, William M.; Yan, Baoping; Ze, Luo; Hou, Yuansheng; Lei, Fumin; Li, Tianxian; Li, Yongdong; Newman, Scott H.

    2013-01-01

    Highly pathogenic avian influenza H5N1 remains a serious concern for both poultry and human health. Wild waterfowl are considered to be the reservoir for low pathogenic avian influenza viruses; however, relatively little is known about their movement ecology in regions where HPAI H5N1 outbreaks regularly occur. We studied movements of the ruddy shelduck (Tadorna ferruginea), a wild migratory waterfowl species that was infected in the 2005 Qinghai Lake outbreak. We defined their migration with Brownian Bridge utilization distribution models and their breeding and wintering grounds with fixed kernel home ranges. We correlated their movements with HPAI H5N1 outbreaks, poultry density, land cover, and latitude in the Central Asian Flyway. Our Akaike Information Criterion analysis indicated that outbreaks were correlated with land cover, latitude, and poultry density. Although shelduck movements were included in the top two models, they were not a top parameter selected in AICc stepwise regression results. However, timing of outbreaks suggested that outbreaks in the flyway began during the winter in poultry with spillover to wild birds during the spring migration. Thus, studies of the movement ecology of wild birds in areas with persistent HPAI H5N1 outbreaks may contribute to understanding their role in transmission of this disease. PMID:24022072

  5. Host-specific exposure and fatal neurologic disease in wild raptors from highly pathogenic avian influenza virus H5N1 during the 2006 outbreak in Germany.

    PubMed

    van den Brand, Judith Ma; Krone, Oliver; Wolf, Peter U; van de Bildt, Marco W G; van Amerongen, Geert; Osterhaus, Albert D M E; Kuiken, Thijs

    2015-03-05

    Raptors may contract highly pathogenic avian influenza virus H5N1 by hunting or scavenging infected prey. However, natural H5N1 infection in raptors is rarely reported. Therefore, we tested raptors found dead during an H5N1 outbreak in wild waterbirds in Mecklenburg-Western Pomerania, Germany, in 2006 for H5N1-associated disease. We tested 624 raptors of nine species-common buzzard (385), Eurasian sparrowhawk (111), common kestrel (38), undetermined species of buzzard (36), white-tailed sea eagle (19), undetermined species of raptor (12), northern goshawk (10), peregrine falcon (6), red kite (3), rough-legged buzzard (3), and western marsh-harrier (1)-for H5N1 infection in tracheal or combined tracheal/cloacal swabs of all birds, and on major tissues of all white-tailed sea eagles. H5N1 infection was detected in two species: common buzzard (12 positive, 3.1%) and peregrine falcon (2 positive, 33.3%). In all necropsied birds (both peregrine falcons and the six freshest common buzzards), H5N1 was found most consistently and at the highest concentration in the brain, and the main H5N1-associated lesion was marked non-suppurative encephalitis. Other H5N1-associated lesions occurred in air sac, lung, oviduct, heart, pancreas, coelomic ganglion, and adrenal gland. Our results show that the main cause of death in H5N1-positive raptors was encephalitis. Our results imply that H5N1 outbreaks in wild waterbirds are more likely to lead to exposure to and mortality from H5N1 in raptors that hunt or scavenge medium-sized birds, such as common buzzards and peregrine falcons, than in raptors that hunt small birds and do not scavenge, such as Eurasian sparrowhawks and common kestrels.

  6. THE PATHOGENESIS OF CLADE 2.3.4.4 H5 HIGHLY PATHOGENIC AVIAN INFLUENZA VIRUSES IN RUDDY DUCK (OXYURA JAMAICENSIS) AND LESSER SCAUP (AYTHYA AFFINIS).

    PubMed

    Spackman, Erica; Prosser, Diann J; Pantin-Jackwood, Mary J; Berlin, Alicia M; Stephens, Christopher B

    2017-10-01

    Waterfowl are the natural hosts of avian influenza virus (AIV) and disseminate the virus worldwide through migration. Historically, surveillance and research efforts for AIV in waterfowl have focused on dabbling ducks. The role of diving ducks in AIV ecology has not been well characterized. In this study, we examined the relative susceptibility and pathogenicity of clade 2.3.4.4 H5 highly pathogenic AIV (HPAIV) in two species of diving ducks. Juvenile and adult Ruddy Duck (Oxyura jamaicensis) and juvenile Lesser Scaup (Aythya affinis) were intranasally inoculated with A/Northern Pintail/WA/40964/2014 H5N2 HPAIV. Additional groups of juvenile Lesser Scaups were inoculated with A/Gyrfalcon/WA/41088/2014 H5N8 HPAIV. The approximate 50% bird infectious doses (BID 50 ) of the H5N2 isolate for adult Ruddy Ducks was <10 2 50% egg infectious doses (EID 50 ) and for the juvenile Lesser Scaups it was <10 4 EID 50 . There were insufficient juvenile Ruddy Ducks to calculate the BID 50 . The BID 50 for the juvenile Lesser Scaups inoculated with the H5N8 isolate was 10 3 EID 50 . Clinical disease was not observed in any group; however, mortality occurred in the juvenile Ruddy Ducks inoculated with the H5N2 virus (three of five ducks), and staining for AIV antigen was observed in numerous tissues from these ducks. One adult Ruddy Duck also died and although it was infected with AIV (the duck was positive for virus shedding and AIV antigen was detected in tissues), it was also infected with coccidiosis. The proportion of ducks shedding virus was related to the dose administered, but the titers were similar among dose groups. The group with the fewest ducks shedding virus was the adult Ruddy Ducks. There was a trend for the Lesser Scaups to shed higher titers of virus than the Ruddy Ducks. No virus shedding was detected after 7 d postinoculation in any group. Similar to dabbling ducks, Lesser Scaups and Ruddy Ducks are susceptible to infection with this H5 HPAIV lineage, although

  7. Genetic features of highly pathogenic avian influenza viruses A(H5N8), isolated from the European part of the Russian Federation.

    PubMed

    Voronina, O L; Ryzhova, N N; Aksenova, E I; Kunda, M S; Sharapova, N E; Fedyakina, I T; Chvala, I A; Borisevich, S V; Logunov, D Yu; Gintsburg, A L

    2018-05-28

    Highly pathogenic avian influenza viruses (HPAIV) A(H5N8) of group B (Gochang1-like) have emerged in the Tyva Republic of eastern Russia in May 2016. Since November 2016, HPAIV A(H5N8) has spread throughout the European part of Russia. Thirty-one outbreaks were reported in domestic, wild and zoo birds in 2017. The present study aimed to perform a comparative analysis of new HPAIV A(H5N8) strains. Phylogenetic analysis revealed four genetically distinct subgroups in HPAIV A(H5N8) from the 2016-2017 season. Russian strains consisted of three subgroups with differences between isolates from Tyva, Siberia (Chany Lake), and the European part of Russia. Strains from the European part of Russia showed the beginnings of divergent evolution. Slight differences of the Voronezh strains were suggested by sensitivity to antiviral compounds. Testing for host-specific mutations in sequenced strains revealed the absence of mutations associated with possible increased tropism/virulence in mammalian species, including humans. Only one residue of polymerase basic-1, 13P, is discussed, because the L13P mutation increased complementary RNA synthesis in mammalian cells. We concluded that the evolution of HPAIV A(H5N8) is continuous. Surveillance in Russia revealed new cases of HPAIV A(H5N8) and led to the elaboration of prevention strategies, which should be implemented. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Anthropogenic factors and the risk of highly pathogenic avian influenza H5N1: prospects from a spatial-based model.

    PubMed

    Paul, Mathilde; Tavornpanich, Saraya; Abrial, David; Gasqui, Patrick; Charras-Garrido, Myriam; Thanapongtharm, Weerapong; Xiao, Xiangming; Gilbert, Marius; Roger, Francois; Ducrot, Christian

    2010-01-01

    Beginning in 2003, highly pathogenic avian influenza (HPAI) H5N1 virus spread across Southeast Asia, causing unprecedented epidemics. Thailand was massively infected in 2004 and 2005 and continues today to experience sporadic outbreaks. While research findings suggest that the spread of HPAI H5N1 is influenced primarily by trade patterns, identifying the anthropogenic risk factors involved remains a challenge. In this study, we investigated which anthropogenic factors played a role in the risk of HPAI in Thailand using outbreak data from the "second wave" of the epidemic (3 July 2004 to 5 May 2005) in the country. We first performed a spatial analysis of the relative risk of HPAI H5N1 at the subdistrict level based on a hierarchical Bayesian model. We observed a strong spatial heterogeneity of the relative risk. We then tested a set of potential risk factors in a multivariable linear model. The results confirmed the role of free-grazing ducks and rice-cropping intensity but showed a weak association with fighting cock density. The results also revealed a set of anthropogenic factors significantly linked with the risk of HPAI. High risk was associated strongly with densely populated areas, short distances to a highway junction, and short distances to large cities. These findings highlight a new explanatory pattern for the risk of HPAI and indicate that, in addition to agro-environmental factors, anthropogenic factors play an important role in the spread of H5N1. To limit the spread of future outbreaks, efforts to control the movement of poultry products must be sustained. INRA, EDP Sciences, 2010.

  9. Fatal influenza A (H5N1) virus Infection in zoo-housed Tigers in Yunnan Province, China

    PubMed Central

    Hu, Tingsong; Zhao, Huanyun; Zhang, Yan; Zhang, Wendong; Kong, Qiang; Zhang, Zhixiao; Cui, Qinghua; Qiu, Wei; Deng, Bo; Fan, Quanshui; Zhang, Fuqiang

    2016-01-01

    From 2014 to 2015, three cases of highly pathogenic avian influenza infection occurred in zoo-housed north-east China tigers (Panthera tigris ssp.altaica) and four tigers died of respiratory distress in succession in Yunnan Province, China. We isolated and characterized three highly pathogenic avian influenza A(H5N1) viruses from these tigers. Phylogenetic analysis indicated that A/tiger /Yunnan /tig1404 /2014(H5N1) belongs to the provisional subclade 2.3.4.4e which were novel reassortant influenza A (H5N1) viruses with six internal genes from avian influenza A (H5N2) viruses. The HA gene of the isolated A/tiger /Yunnan /tig1412 /2014(H5N1) virus belongs to the subclade 2.3.2.1b. The isolated A/tiger /Yunnan /tig1508/2015 (H5N1) virus was a novel reassortant influenza A (H5N1) virus with three internal genes (PB2, PB1 and M) from H9N2 virus and belongs to the subclade 2.3.2.1c. PMID:27162026

  10. Fatal influenza A (H5N1) virus Infection in zoo-housed Tigers in Yunnan Province, China.

    PubMed

    Hu, Tingsong; Zhao, Huanyun; Zhang, Yan; Zhang, Wendong; Kong, Qiang; Zhang, Zhixiao; Cui, Qinghua; Qiu, Wei; Deng, Bo; Fan, Quanshui; Zhang, Fuqiang

    2016-05-10

    From 2014 to 2015, three cases of highly pathogenic avian influenza infection occurred in zoo-housed north-east China tigers (Panthera tigris ssp.altaica) and four tigers died of respiratory distress in succession in Yunnan Province, China. We isolated and characterized three highly pathogenic avian influenza A(H5N1) viruses from these tigers. Phylogenetic analysis indicated that A/tiger /Yunnan /tig1404 /2014(H5N1) belongs to the provisional subclade 2.3.4.4e which were novel reassortant influenza A (H5N1) viruses with six internal genes from avian influenza A (H5N2) viruses. The HA gene of the isolated A/tiger /Yunnan /tig1412 /2014(H5N1) virus belongs to the subclade 2.3.2.1b. The isolated A/tiger /Yunnan /tig1508/2015 (H5N1) virus was a novel reassortant influenza A (H5N1) virus with three internal genes (PB2, PB1 and M) from H9N2 virus and belongs to the subclade 2.3.2.1c.

  11. Demographic and clinical predictors of mortality from highly pathogenic avian influenza A (H5N1) virus infection: CART analysis of international cases.

    PubMed

    Patel, Rita B; Mathur, Maya B; Gould, Michael; Uyeki, Timothy M; Bhattacharya, Jay; Xiao, Yang; Khazeni, Nayer

    2014-01-01

    Human infections with highly pathogenic avian influenza (HPAI) A (H5N1) viruses have occurred in 15 countries, with high mortality to date. Determining risk factors for morbidity and mortality from HPAI H5N1 can inform preventive and therapeutic interventions. We included all cases of human HPAI H5N1 reported in World Health Organization Global Alert and Response updates and those identified through a systematic search of multiple databases (PubMed, Scopus, and Google Scholar), including articles in all languages. We abstracted predefined clinical and demographic predictors and mortality and used bivariate logistic regression analyses to examine the relationship of each candidate predictor with mortality. We developed and pruned a decision tree using nonparametric Classification and Regression Tree methods to create risk strata for mortality. We identified 617 human cases of HPAI H5N1 occurring between December 1997 and April 2013. The median age of subjects was 18 years (interquartile range 6-29 years) and 54% were female. HPAI H5N1 case-fatality proportion was 59%. The final decision tree for mortality included age, country, per capita government health expenditure, and delay from symptom onset to hospitalization, with an area under the receiver operator characteristic (ROC) curve of 0.81 (95% CI: 0.76-0.86). A model defined by four clinical and demographic predictors successfully estimated the probability of mortality from HPAI H5N1 illness. These parameters highlight the importance of early diagnosis and treatment and may enable early, targeted pharmaceutical therapy and supportive care for symptomatic patients with HPAI H5N1 virus infection.

  12. Sensitization with vaccinia virus encoding H5N1 hemagglutinin restores immune potential against H5N1 influenza virus.

    PubMed

    Yasui, Fumihiko; Itoh, Yasushi; Ikejiri, Ai; Kitabatake, Masahiro; Sakaguchi, Nobuo; Munekata, Keisuke; Shichinohe, Shintaro; Hayashi, Yukiko; Ishigaki, Hirohito; Nakayama, Misako; Sakoda, Yoshihiro; Kida, Hiroshi; Ogasawara, Kazumasa; Kohara, Michinori

    2016-11-28

    H5N1 highly pathogenic avian influenza (H5N1 HPAI) virus causes elevated mortality compared with seasonal influenza viruses like H1N1 pandemic influenza (H1N1 pdm) virus. We identified a mechanism associated with the severe symptoms seen with H5N1 HPAI virus infection. H5N1 HPAI virus infection induced a decrease of dendritic cell number in the splenic extrafollicular T-cell zone and impaired formation of the outer layers of B-cell follicles, resulting in insufficient levels of antibody production after infection. However, in animals vaccinated with a live recombinant vaccinia virus expressing the H5 hemagglutinin, infection with H5N1 HPAI virus induced parafollicular dendritic cell accumulation and efficient antibody production. These results indicate that a recombinant vaccinia encoding H5 hemagglutinin gene does not impair dendritic cell recruitment and can be a useful vaccine candidate.

  13. Stockpiled pre-pandemic H5N1 influenza virus vaccines with AS03 adjuvant provide cross-protection from H5N2 clade 2.3.4.4 virus challenge in ferrets

    PubMed Central

    Sun, Xiangjie; Belser, Jessica A.; Pulit-Penaloza, Joanna A.; Creager, Hannah M.; Guo, Zhu; Jefferson, Stacie N.; Liu, Feng; York, Ian A.; Stevens, James; Maines, Taronna R.; Jernigan, Daniel B.; Katz, Jacqueline M.; Levine, Min Z.; Tumpey, Terrence M.

    2018-01-01

    Avian influenza viruses, notably H5 subtype viruses, pose a continuous threat to public health due to their pandemic potential. In recent years, influenza virus H5 subtype split vaccines with novel oil-in-water emulsion based adjuvants (e.g. AS03, MF59) have been shown to be safe, immunogenic, and able to induce broad immune responses in clinical trials, providing strong scientific support for vaccine stockpiling. However, whether such vaccines can provide protection from infection with emerging, antigenically distinct clades of H5 viruses has not been adequately addressed. Here, we selected two AS03-adjuvanted H5N1 vaccines from the US national prepandemic influenza vaccine stockpile and assessed whether the 2004–05 vaccines could provide protection against a 2014 highly pathogenic avian influenza (HPAI) H5N2 virus (A/northern pintail/Washington/40964/2014), a clade 2.3.4.4 virus responsible for mass culling of poultry in North America. Ferrets received two doses of adjuvanted vaccine containing 7.5 μg of hemagglutinin (HA) from A/Vietnam/1203/2004 (clade 1) or A/Anhui/1/2005 (clade 2.3.4) virus either in a homologous or heterologous prime-boost vaccination regime. We found that both vaccination regimens elicited robust antibody responses against the 2004–05 vaccine viruses and could reduce virus-induced morbidity and viral replication in the lower respiratory tract upon heterologous challenge despite the low level of cross-reactive antibody titers to the challenge H5N2 virus. This study supports the value of existing stockpiled 2004–05 influenza H5N1 vaccines, combined with AS03-adjuvant for early use in the event of an emerging pandemic with H5N2-like clade 2.3.4.4 viruses. PMID:28554058

  14. H7N9 Highly Pathogenic Avian Influenza in the United States in 2017

    USDA-ARS?s Scientific Manuscript database

    In early March of 2017 an outbreak of highly pathogenic avian influenza H7N9 was reported from a broiler-breeder flock Tennessee. A second HPAI case was detected 2 weeks later. Subsequent active and passive surveillance identified several LPAI cases in Alabama, Georgia, Kentucky, and TN that was g...

  15. Genetic characterization of low pathogenic H5N1 and co-circulating avian influenza viruses in wild mallards (Anas platyrhynchos) in Belgium, 2008.

    PubMed

    Van Borm, S; Vangeluwe, D; Steensels, M; Poncin, O; van den Berg, T; Lambrecht, B

    2011-12-01

    As part of a long-term wild bird monitoring programme, five different low pathogenic (LP) avian influenza viruses (AIVs) were isolated from wild mallards (subtypes H1N1, H4N6, H5N1, H5N3, and H10N7). A LP H5N1 and two co-circulating (same location, same time period) viruses were selected for full genome sequencing. An H1N1 (A/Anas platyrhynchos/Belgium/09-762/2008) and an H5N1 virus (A/Anas platyrhynchos/Belgium/09-762-P1/2008) were isolated on the same day in November 2008, then an H5N3 virus (A/Anas platyrhynchos/09-884/2008) 5 days later in December 2008. All genes of these co-circulating viruses shared common ancestors with recent (2001 to 2007) European wild waterfowl influenza viruses. The H5N1 virus shares genome segments with both the H1N1 (PB1, NA, M) and the H5N3 (PB2, HA) viruses, and all three viruses share the same NS sequence. A double infection with two different PA segments from H5N1 and from H5N3 could be observed for the H1N1 sample. The observed gene constellations resulted from multiple reassortment events between viruses circulating in wild birds in Eurasia. Several internal gene segments from these 2008 viruses and the N3 sequence from the H5N3 show homology with sequences from 2003 H7 outbreaks in Italy (LP) and the Netherlands (highly pathogenic). These data contribute to the growing sequence evidence of the dynamic nature of the avian influenza natural reservoir in Eurasia, and underline the importance of monitoring AIV in wild birds. Genetic information of potential hazard to commercial poultry continues to circulate in this reservoir, including H5 and H7 subtype viruses and genes related to previous AIV outbreaks.

  16. Evolutionary trajectories and diagnostic challenges of potentially zoonotic avian influenza viruses H5N1 and H9N2 co-circulating in Egypt.

    PubMed

    Naguib, Mahmoud M; Arafa, Abdel-Satar A; El-Kady, Magdy F; Selim, Abdullah A; Gunalan, Vithiagaran; Maurer-Stroh, Sebastian; Goller, Katja V; Hassan, Mohamed K; Beer, Martin; Abdelwhab, E M; Harder, Timm C

    2015-08-01

    In Egypt, since 2006, descendants of the highly pathogenic avian influenza virus (HP AIV) H5N1 of clade 2.2 continue to cause sharp losses in poultry production and seriously threaten public health. Potentially zoonotic H9N2 viruses established an endemic status in poultry in Egypt as well and co-circulate with HP AIV H5N1 rising concerns of reassortments between H9N2 and H5N1 viruses along with an increase of mixed infections of poultry. Nucleotide sequences of whole genomes of 15 different isolates (H5N1: 7; H9N2: 8), and of the hemagglutinin (HA) and neuraminidase (NA) encoding segments of nine further clinical samples (H5N1: 2; H9N2: 7) from 2013 and 2014 were generated and analysed. The HA of H5N1 viruses clustered with clade 2.2.1 while the H9 HA formed three distinguishable subgroups within cluster B viruses. BEAST analysis revealed that H9N2 viruses are likely present in Egypt since 2009. Several previously undescribed substituting mutations putatively associated with host tropism and virulence modulation were detected in different proteins of the analysed H9N2 and H5N1 viruses. Reassortment between HP AIV H5N1 and H9N2 is anticipated in Egypt, and timely detection of such events is of public health concern. As a rapid tool for detection of such reassortants discriminative SYBR-Green reverse transcription real-time PCR assays (SG-RT-qPCR), targeting the internal genes of the Egyptian H5N1 and H9N2 viruses were developed for the rapid screening of viral RNAs from both virus isolates and clinical samples. However, in accordance to Sanger sequencing, no reassortants were found by SG-RT-qPCR. Nevertheless, the complex epidemiology of avian influenza in poultry in Egypt will require sustained close observation. Further development and continuing adaptation of rapid and cost-effective screening assays such as the SG-RT-qPCR protocol developed here are at the basis of efforts for improvement the currently critical situation. Copyright © 2015 Elsevier B.V. All

  17. Differences in pathogenicity, response to vaccination, and innate immune responses in different types of ducks infected with a virulent H5N1 highly pathogenic avian influenza virus from Vietnam

    USDA-ARS?s Scientific Manuscript database

    Wild ducks are reservoirs of avian influenza viruses in nature, and usually don’t show signs of disease. However, some Asian lineage H5N1 highly pathogenic avian influenza (HPAI) viruses can cause disease and death in both wild and domestic ducks. The objective of this study was to compare the cli...

  18. The pathogenesis of clade 2.3.4.4 H5 highly pathogenic avian influenza viruses in Ruddy Duck (Oxyura jamaicensis) and Lesser Scaup (Aythya affinis)

    USGS Publications Warehouse

    Spackman, Erica; Prosser, Diann J.; Pantin-Jackwood, Mary J.; Berlin, Alicia; Stephens, Christopher B.

    2017-01-01

    Waterfowl are the natural hosts of avian influenza virus (AIV) and disseminate the virus worldwide through migration. Historically, surveillance and research efforts for AIV in waterfowl have focused on dabbling ducks. The role of diving ducks in AIV ecology has not been well characterized. In this study, we examined the relative susceptibility and pathogenicity of clade 2.3.4.4 H5 highly pathogenic AIV (HPAIV) in two species of diving ducks. Juvenile and adult Ruddy Duck (Oxyura jamaicensis) and juvenile Lesser Scaup (Aythya affinis) were intranasally inoculated with A/Northern Pintail/WA/40964/2014 H5N2 HPAIV. Additional groups of juvenile Lesser Scaups were inoculated with A/Gyrfalcon/WA/41088/2014 H5N8 HPAIV. The approximate 50% bird infectious doses (BID50) of the H5N2 isolate for adult Ruddy Ducks was <102 50% egg infectious doses (EID50) and for the juvenile Lesser Scaups it was <104 EID50. There were insufficient juvenile Ruddy Ducks to calculate the BID50. The BID50 for the juvenile Lesser Scaups inoculated with the H5N8 isolate was 103 EID50. Clinical disease was not observed in any group; however, mortality occurred in the juvenile Ruddy Ducks inoculated with the H5N2 virus (three of five ducks), and staining for AIV antigen was observed in numerous tissues from these ducks. One adult Ruddy Duck also died and although it was infected with AIV (the duck was positive for virus shedding and AIV antigen was detected in tissues), it was also infected with coccidiosis. The proportion of ducks shedding virus was related to the dose administered, but the titers were similar among dose groups. The group with the fewest ducks shedding virus was the adult Ruddy Ducks. There was a trend for the Lesser Scaups to shed higher titers of virus than the Ruddy Ducks. No virus shedding was detected after 7 d postinoculation in any group. Similar to dabbling ducks, Lesser Scaups and Ruddy Ducks are susceptible to infection with this H5 HPAIV lineage, although they

  19. Molecular characterization of highly pathogenic avian influenza H5N8 viruses isolated from Baikal teals found dead during a 2014 outbreak in Korea.

    PubMed

    Kim, Seol-Hee; Hur, Moonsuk; Suh, Jae-Hwa; Woo, Chanjin; Wang, Seung-Jun; Park, Eung-Roh; Hwang, Jongkyung; An, In-Jung; Jo, Seong-Deok; Shin, Jeong-Hwa; Yu, Seung Do; Choi, Kyunghee; Lee, Dong-Hun; Song, Chang-Seon

    2016-09-30

    Nineteen highly pathogenic avian influenza (HPAI) H5N8 viruses were isolated from wild birds in the Donglim reservoir in Gochang, Jeonbuk province, Korea, which was first reported to be an outbreak site on January 17, 2014. Most genes from the nineteen viruses shared high nucleotide sequence identities (i.e., 99.7% to 100%). Phylogenetic analysis showed that these viruses were reassortants of the HPAI H5 subtype and the H4N2 strain and that their hemagglutinin clade was 2.3.4.4, which originated from Eastern China. The hemagglutinin protein contained Q222 and G224 at the receptor-binding site. Although the neuraminidase protein contained I314V and the matrix 2 protein contained an S31N substitution, other mutations resulting in oseltamivir and amantadine resistance were not detected. No substitutions associated with increased virulence and enhanced transmission in mammals were detected in the polymerase basic protein 2 (627E and 701D). Non-structural-1 was 237 amino acids long and had an ESEV motif with additional RGNKMAD amino acids in the C terminal region. These viruses caused deaths in the Baikal teal, which was unusual, and outbreaks occurred at the same time in both poultry and wild birds. These data are helpful for epidemiological understanding of HPAI and the design of prevention strategies.

  20. A molecular and antigenic survey of H5N1 highly pathogenic avian influenza virus isolates from smallholder duck farms in Central Java, Indonesia during 2007-2008.

    PubMed

    Wibawa, Hendra; Henning, Joerg; Wong, Frank; Selleck, Paul; Junaidi, Akhmad; Bingham, John; Daniels, Peter; Meers, Joanne

    2011-09-07

    Indonesia is one of the countries most severely affected by H5N1 highly pathogenic avian influenza (HPAI) virus in terms of poultry and human health. However, there is little information on the diversity of H5N1 viruses circulating in backyard farms, where chickens and ducks often intermingle. In this study, H5N1 virus infection occurring in 96 smallholder duck farms in central Java, Indonesia from 2007-2008 was investigated and the molecular and antigenic characteristics of H5N1 viruses isolated from these farms were analysed. All 84 characterised viruses belonged to H5N1 clade 2.1 with three virus sublineages being identified: clade 2.1.1 (1), clade 2.1.3 (80), and IDN/6/05-like viruses (3) that did not belong to any of the present clades. All three clades were found in ducks, while only clade 2.1.3 was isolated from chickens. There were no significant amino acid mutations of the hemagglutinin (HA) and neuraminidase (NA) sites of the viruses, including the receptor binding, glycosylation, antigenic and catalytic sites and NA inhibitor targets. All the viruses had polybasic amino acids at the HA cleavage site. No evidence of major antigenic variants was detected. Based on the HA gene, identical virus variants could be found on different farms across the study sites and multiple genetic variants could be isolated from HPAI outbreaks simultaneously or at different time points from single farms. HPAI virus was isolated from both ducks and chickens; however, the proportion of surviving duck cases was considerably higher than in chickens. The 2.1.3 clade was the most common lineage found in this study. All the viruses had sequence characteristic of HPAI, but negligible variations in other recognized amino acids at the HA and NA proteins which determine virus phenotypes. Multiple genetic variants appeared to be circulating simultaneously within poultry communities. The high proportion of live duck cases compared to chickens over the study period suggests that ducks are

  1. A molecular and antigenic survey of H5N1 highly pathogenic avian influenza virus isolates from smallholder duck farms in Central Java, Indonesia during 2007-2008

    PubMed Central

    2011-01-01

    Background Indonesia is one of the countries most severely affected by H5N1 highly pathogenic avian influenza (HPAI) virus in terms of poultry and human health. However, there is little information on the diversity of H5N1 viruses circulating in backyard farms, where chickens and ducks often intermingle. In this study, H5N1 virus infection occurring in 96 smallholder duck farms in central Java, Indonesia from 2007-2008 was investigated and the molecular and antigenic characteristics of H5N1 viruses isolated from these farms were analysed. Results All 84 characterised viruses belonged to H5N1 clade 2.1 with three virus sublineages being identified: clade 2.1.1 (1), clade 2.1.3 (80), and IDN/6/05-like viruses (3) that did not belong to any of the present clades. All three clades were found in ducks, while only clade 2.1.3 was isolated from chickens. There were no significant amino acid mutations of the hemagglutinin (HA) and neuraminidase (NA) sites of the viruses, including the receptor binding, glycosylation, antigenic and catalytic sites and NA inhibitor targets. All the viruses had polybasic amino acids at the HA cleavage site. No evidence of major antigenic variants was detected. Based on the HA gene, identical virus variants could be found on different farms across the study sites and multiple genetic variants could be isolated from HPAI outbreaks simultaneously or at different time points from single farms. HPAI virus was isolated from both ducks and chickens; however, the proportion of surviving duck cases was considerably higher than in chickens. Conclusions The 2.1.3 clade was the most common lineage found in this study. All the viruses had sequence characteristic of HPAI, but negligible variations in other recognized amino acids at the HA and NA proteins which determine virus phenotypes. Multiple genetic variants appeared to be circulating simultaneously within poultry communities. The high proportion of live duck cases compared to chickens over the study

  2. Pathology of natural infections by H5N1 highly pathogenic avian influenza virus in mute (Cygnus olor) and whooper (Cygnus cygnus) swans.

    PubMed

    Teifke, J P; Klopfleisch, R; Globig, A; Starick, E; Hoffmann, B; Wolf, P U; Beer, M; Mettenleiter, T C; Harder, T C

    2007-03-01

    Mortality in wild aquatic birds due to infection with highly pathogenic avian influenza viruses (HPAIV) is a rare event. During the recent outbreak of highly pathogenic avian influenza in Germany, mortality due to H5N1 HPAIV was observed among mute and whooper swans as part of a rapid spread of this virus. In contrast to earlier reports, swans appeared to be highly susceptible and represented the mainly affected species. We report gross and histopathology and distribution of influenza virus antigen in mute and whooper swans that died after natural infection with H5N1 HPAIV. At necropsy, the most reliable lesions were multifocal hemorrhagic necrosis in the pancreas, pulmonary congestion and edema, and subepicardial hemorrhages. Major histologic lesions were acute pancreatic necrosis, multifocal necrotizing hepatitis, and lymphoplasmacytic encephalitis with neuronal necrosis. Adrenals displayed consistently scattered cortical and medullary necrosis. In spleen and Peyer's patches, mild lymphocyte necrosis was present. Immunohistochemical demonstration of HPAIV nucleoprotein in pancreas, adrenals, liver, and brain was strongly consistent with histologic lesions. In the brain, a large number of neurons and glial cells, especially Purkinje cells, showed immunostaining. Occasionally, ependymal cells of the spinal cord were also positive. In the lungs, influenza virus antigen was identified in a few endothelial cells but not within pneumocytes. The infection of the central nervous system supports the view that the neurotropism of H5N1 HPAIV leads to nervous disturbances with loss of orientation. More investigations are necessary to clarify the mechanisms of the final circulatory failure, lung edema, and rapid death of the swans.

  3. Genome-wide gene expression pattern underlying differential host response to high or low pathogenic H5N1 avian influenza virus in ducks.

    PubMed

    Kumar, A; Vijayakumar, P; Gandhale, P N; Ranaware, P B; Kumar, H; Kulkarni, D D; Raut, A A; Mishra, A

    The differences in the influenza viral pathogenesis observed between different pathogenic strains are associated with distinct properties of virus strains and the host immune responses. In order to determine the differences in the duck immune response against two different pathogenic strains, we studied genome-wide host immune gene response of ducks infected with A/duck/India/02CA10/2011 and A/duck/Tripura/103597/2008 H5N1 viruses using custom-designed microarray. A/duck/India/02CA10/2011 is highly pathogenic virus (HP) to ducks, whereas A/duck/Tripura/103597/2008 is a low pathogenic (LP) virus strain. Comparative lung tissue transcriptome analysis of differentially expressed genes revealed that 686 genes were commonly expressed, 880 and 1556 genes are expressed uniquely to infection with HP and LP virus, respectively. The up-regulation of chemokines (CCL4 and CXCR4) and IFN-stimulated genes (IFITM2, STAT3, TGFB1 and TGFB3) was observed in the lung tissues of ducks infected with HP virus. The up-regulation of other immune genes (IL17, OAS, SOCS3, MHC I and MHC II) was observed in both infection conditions. The expression of important antiviral immune genes MX, IFIT5, IFITM5, ISG12, β-defensins, RSAD2, EIF2AK2, TRIM23 and SLC16A3 was observed in LP virus infection, but not in HP virus infection. Several immune-related gene ontology terms and pathways activated by both the viruses were qualitatively similar but quantitatively different. Based on these findings, the differences in the host immune response might explain a part of the difference observed in the viral pathogenesis of high and low pathogenic influenza strains in ducks.

  4. Expansion of antimonato polyoxovanadates with transition metal complexes: (Co(N3C5H15)2)2[{Co(N3C5H15)2}V15Sb6O42(H2O)]·5H2O and (Ni(N3C5H15)2)2[{Ni(N3C5H15)2}V15Sb6O42(H2O)]·8H2O.

    PubMed

    Antonova, Elena; Näther, Christian; Kögerler, Paul; Bensch, Wolfgang

    2012-02-20

    Two new polyoxovanadates (Co(N(3)C(5)H(15))(2))(2)[{Co(N(3)C(5)H(15))(2)}V(15)Sb(6)O(42)(H(2)O)]·5H(2)O (1) and (Ni(N(3)C(5)H(15))(2))(2)[{Ni(N(3)C(5)H(15))(2)}V(15)Sb(6)O(42)(H(2)O)]·8H(2)O (2) (N(3)C(5)H(15) = N-(2-aminoethyl)-1,3-propanediamine) were synthesized under solvothermal conditions and structurally characterized. In both structures the [V(15)Sb(6)O(42)(H(2)O)](6-) shell displays the main structural motif, which is strongly related to the {V(18)O(42)} archetype cluster. Both compounds crystallize in the triclinic space group P1 with a = 14.3438(4), b = 16.6471(6), c = 18.9186(6) Å, α = 87.291(3)°, β = 83.340(3)°, γ = 78.890(3)°, and V = 4401.4(2) Å(3) (1) and a = 14.5697(13), b = 15.8523(16), c = 20.2411(18) Å, α = 86.702(11)°, β = 84.957(11)°, γ = 76.941(11)°, and V = 4533.0(7) Å(3) (2). In the structure of 1 the [V(15)Sb(6)O(42)(H(2)O)](6-) cluster anion is bound to a [Co(N(3)C(5)H(15))(2)](2+) complex via a terminal oxygen atom. In the Co(2+)-centered complex, one of the amine ligands coordinates in tridentate mode and the second one in bidentate mode to form a strongly distorted CoN(5)O octahedron. Similarly, in compound 2 an analogous NiN(5)O complex is joined to the [V(15)Sb(6)O(42)(H(2)O)](6-) anion via the same attachment mode. A remarkable difference between the two compounds is the orientation of the noncoordinated propylamine group leading to intermolecular Sb···O contacts in 1 and to Sb···N interactions in 2. In the solid-state lattices of 1 and 2, two additional [M(N(3)C(5)H(15))(2)](2+) complexes act as countercations and are located between the [{M(N(3)C(5)H(15))(2)}V(15)Sb(6)O(42)(H(2)O)](4-) anions. Between the anions and cations strong N-H···O hydrogen bonds are observed. In both compounds the clusters are stacked along the b axis in an ABAB fashion with cations and water molecules occupying the space between the clusters. Magnetic characterization demonstrates that the Ni(2+) and Co(2+) cations do not

  5. Virus-like particles displaying H5, H7, H9 hemagglutinins and N1 neuraminidase elicit protective immunity to heterologous avian influenza viruses in chickens.

    PubMed

    Pushko, Peter; Tretyakova, Irina; Hidajat, Rachmat; Zsak, Aniko; Chrzastek, Klaudia; Tumpey, Terrence M; Kapczynski, Darrell R

    2017-01-15

    Avian influenza (AI) viruses circulating in wild birds pose a serious threat to public health. Human and veterinary vaccines against AI subtypes are needed. Here we prepared triple-subtype VLPs that co-localized H5, H7 and H9 antigens derived from H5N1, H7N3 and H9N2 viruses. VLPs also contained influenza N1 neuraminidase and retroviral gag protein. The H5/H7/H9/N1/gag VLPs were prepared using baculovirus expression. Biochemical, functional and antigenic characteristics were determined including hemagglutination and neuraminidase enzyme activities. VLPs were further evaluated in a chicken AI challenge model for safety, immunogenicity and protective efficacy against heterologous AI viruses including H5N2, H7N3 and H9N2 subtypes. All vaccinated birds survived challenges with H5N2 and H7N3 highly pathogenic AI (HPAI) viruses, while all controls died. Immune response was also detectable after challenge with low pathogenicity AI (LPAI) H9N2 virus suggesting that H5/H7/H9/N1/gag VLPs represent a promising approach for the development of broadly protective AI vaccine. Copyright © 2016. Published by Elsevier Inc.

  6. Expression of H5 hemagglutinin vaccine antigen in common duckweed (Lemna minor) protects against H5N1 high pathogenicity avian influenza virus challenge in immunized chickens.

    PubMed

    Bertran, Kateri; Thomas, Colleen; Guo, Xuan; Bublot, Michel; Pritchard, Nikki; Regan, Jeffrey T; Cox, Kevin M; Gasdaska, John R; Dickey, Lynn F; Kapczynski, Darrell R; Swayne, David E

    2015-07-09

    A synthetic hemagglutinin (HA) gene from the highly pathogenic avian influenza (HPAI) virus A/chicken/Indonesia/7/2003 (H5N1) (Indo/03) was expressed in aquatic plant Lemna minor (rLemna-HA). In Experiment 1, efficacy of rLemna-HA was tested on birds immunized with 0.2μg or 2.3 μg HA and challenged with 10(6) mean chicken embryo infectious doses (EID50) of homologous virus strain. Both dosages of rLemna-HA conferred clinical protection and dramatically reduced viral shedding. Almost all the birds immunized with either dosage of rLemna-HA elicited HA antibody titers against Indo/03 antigen, suggesting an association between levels of anti-Indo/03 antibodies and protection. In Experiment 2, efficacy of rLemna-HA was tested on birds immunized with 0.9 μg or 2.2 μg HA and challenged with 10(6) EID50 of heterologous H5N1 virus strains A/chicken/Vietnam/NCVD-421/2010 (VN/10) or A/chicken/West Java/PWT-WIJ/2006 (PWT/06). Birds challenged with VN/10 exhibited 100% survival regardless of immunization dosage, while birds challenged with PWT/06 had 50% and 30% mortality at 0.9 μg HA and 2.2 μg HA, respectively. For each challenge virus, viral shedding titers from 2.2 μg HA vaccinated birds were significantly lower than those from 0.9μg HA vaccinated birds, and titers from both immunized groups were in turn significantly lower than those from sham vaccinated birds. Even if immunized birds elicited HA titers against the vaccine antigen Indo/03, only the groups challenged with VN/10 developed humoral immunity against the challenge antigen. None (rLemna-HA 0.9 μg HA) and 40% (rLemna-HA 2.2 μg HA) of the immunized birds challenged with PWT/06 elicited pre-challenge antibody titers, respectively. In conclusion, Lemna-expressed HA demonstrated complete protective immunity against homologous challenge and suboptimal protection against heterologous challenge, the latter being similar to results from inactivated whole virus vaccines. Transgenic duckweed-derived HA could be a

  7. Synergistic effect of PB2 283M and 526R contributes to enhanced virulence of H5N8 influenza viruses in mice.

    PubMed

    Wang, Xiao; Chen, Sujuan; Wang, Dandan; Zha, Xixin; Zheng, Siwen; Qin, Tao; Ma, Wenjun; Peng, Daxin; Liu, Xiufan

    2017-10-25

    Highly pathogenic avian influenza (HPAI) H5N8 virus has caused considerable economic losses to poultry industry and poses a great threat to public health. Our previous study revealed two genetically similar HPAI H5N8 viruses displaying completely different virulence in mice. However, the molecular basis for viral pathogenicity to mammals remains unknown. Herein, we generated a series of reassortants between the two viruses and evaluated their virulence in mice. We demonstrated that 283M in PB2 is a new mammalian virulence marker for H5 viruses and that synergistic effect of amino acid residues 283M and 526R in PB2 is responsible for high virulence of the HPAI H5N8 virus. Analysis of available PB2 sequences showed that PB2 283M is highly conserved among influenza A viruses, while PB2 526R presents in most of human H3N2 and H5N1 isolates. Further study confirmed that the residues 283M and 526R had similar impacts on an HPAI H5N1 virus, suggesting that influenza viruses with both residues may replicate well in mammalian hosts. Together, these results present new insights for synergistic effect of 283M and 526R in PB2 of H5 HPAI virus on virulence to mammalian host, furthering our understanding of the pathogenesis of influenza A virus.

  8. Wild waterfowl migration and domestic duck density shape the epidemiology of highly pathogenic H5N8 influenza in the Republic of Korea

    PubMed Central

    Hill, Sarah C.; Lee, Youn-Jeong; Song, Byung-Min; Kang, Hyun-Mi; Lee, Eun-Kyoung; Hanna, Amanda; Gilbert, Marius; Brown, Ian H.; Pybus, Oliver G.

    2015-01-01

    Highly pathogenic avian influenza (HPAI) viruses threaten human and animal health yet their emergence is poorly understood, partly because sampling of the HPAI Asian-origin H5N1 lineage immediately after its identification in 1996 was comparatively sparse. The discovery of a novel H5N8 virus in 2013 provides a new opportunity to investigate HPAI emergence in greater detail. Here we investigate the origin and transmission of H5N8 in the Republic of Korea, the second country to report the new strain. We reconstruct viral spread using phylogeographic methods and interpret the results in the context of ecological data on poultry density, overwintering wild bird numbers, and bird migration patterns. Our results indicate that wild waterfowl migration and domestic duck density were important to H5N8 epidemiology. Specifically, we infer that H5N8 entered the Republic of Korea via Jeonbuk province, then spread rapidly among western provinces where densities of overwintering waterfowl and domestic ducks are higher, yet rarely persisted in eastern regions. The common ancestor of H5N8 in the Republic of Korea was estimated to have arrived during the peak of inward migration of overwintering birds. Recent virus isolations likely represent re-introductions via bird migration from an as-yet unsampled reservoir. Based on the limited data from outside the Republic of Korea, our data suggest that H5N8 may have entered Europe at least twice, and Asia at least three times from this reservoir, most likely carried by wild migrating birds. PMID:26079277

  9. Reassortment of influenza A viruses in wild birds in Alaska before H5 Clade 2.3.4.4 Outbreaks

    USGS Publications Warehouse

    Hill, Nichola J.; Hussein, Islam T. M.; Davis, Kimberly R.; Ma, Eric J.; Spivey, Timothy; Ramey, Andy M.; Puryear, Wendy Blay; Das, Suman R.; Halpin, Rebecca A.; Lin, Xudong; Federova, Nadia B.; Suarez, David L.; Boyce, Walter M.; Runstadler, Jonathan A.

    2017-01-01

    Sampling of mallards in Alaska during September 2014–April 2015 identified low pathogenic avian influenza A virus (subtypes H5N2 and H1N1) that shared ancestry with highly pathogenic reassortant H5N2 and H5N1 viruses. Molecular dating indicated reassortment soon after interhemispheric movement of H5N8 clade 2.3.4.4, suggesting genetic exchange in Alaska or surrounds before outbreaks.

  10. Pathological Evaluation of Natural Cases of a Highly Pathogenic Avian Influenza Virus, Subtype H5N8, in Broiler Breeders and Commercial Layers in South Korea.

    PubMed

    Bae, Yeon-Ji; Lee, Seung-Baek; Min, Keong-Cheol; Mo, Jong-Suk; Jeon, Eun-Ok; Koo, Bon-Sang; Kwon, Hyeok-Il; Choi, Young Ki; Kim, Jeom-Joo; Kim, Jong-Nyeo; Mo, In-Pil

    2015-03-01

    Outbreaks of highly pathogenic avian influenza (HPAI) virus, subtype H5N8, were observed in two different flocks of local broiler breeder farms and a commercial layer farm in South Korea. Clinically, the cases were characterized by a gradual increase in mortality, slow transmission, and unrecognizable clinical signs of HPAI. Gross observations in both cases included hemorrhagic or necrotic lesions in internal organs, such as serosal and mucosal membranes, spleen, and pancreas. Both cases exhibited similar histopathologic lesions, including multifocal malacia in the brain and multifocal or diffuse necrosis in the spleen and pancreas. Immunohistochemical results indicated that neurons and glial cells in the brain, myocytes in the heart, acinar cells in the pancreas, and mononuclear phagocytic cells in several visceral organs were immunopositive for avian influenza viral antigen. To experimentally reproduce the low pathogenicity and the mortality observed in these two cases, 18 specific-pathogen-free chickens and 18 commercial layers were divided into an H5N8 virus-inoculated group and a contact-exposed group. The mortality of the chickens in the inoculation group was 50%-100%, whereas the mean time to death was delayed or death did not occur in the contact-exposed group. The distributions of the viral antigens and histopathologic lesions in the experimental study were similar to those observed in the field cases. These findings suggest that the H5N8 virus induces a different pattern of pathobiology, including slow transmission and low mortality, compared with that of other HPAI viruses. This is the first pathologic description of natural cases of H5N8 in South Korea, and it may be helpful in understanding the pathobiology of novel H5N8 HPAI viruses.

  11. The evolutionary dynamics of highly pathogenic avian influenza H5N1 in south-central Vietnam reveals multiple clades evolving from Chinese and Cambodian viruses.

    PubMed

    Nguyen, Tinh Huu; Than, Van Thai; Thanh, Hien Dang; Nguyen, Van Quang; Nguyen, Kim Hue; Nguyen, Duc Tan; Park, Jong-Hwa; Chung, In Sik; Jeong, Dae Gwin; Chang, Kyu-Tae; Oh, Tae Kwang; Kim, Wonyong

    2015-10-01

    In Vietnam, highly pathogenic avian influenza (HPAI), such as that caused by H5N1 viruses, is the most highly contagious infectious disease that has been affecting domestic poultry in recent years. Vietnam might be an evolutionary hotspot and a potential source of globally pandemic strains. However, few studies have reported viruses circulating in the south-central region of Vietnam. In the present study, 47 H5N1-positive samples were collected from both vaccinated and unvaccinated poultry farms in the South Central Coast region of Vietnam during 2013-2014, and their genetic diversity was analyzed. A common sequence motif for HPAI virus was identified at HA-cleavage sites in all samples: either RERRRKR/G (clades 2.3.2.1c and 2.3.2.1a) or REGRRKKR/G (clade 1.1.2). Phylogenetic analysis of HA genes identified three clades of HPAI H5N1: 1.1.2 (n=1), 2.3.2.1a (n=1), and 2.3.2.1c (n=45). The phylogenetic analysis indicated that these Vietnamese clades may have evolved from Chinese and Cambodian virus clades isolated in 2012-2013 but are less closely related to the clades detected from the Tyva Republic, Bulgaria, Mongolia, Japan, and Korea in 2009-2011. Detection of the coexistence of virus clades 2.3.2.1 and the very virulent 1.1.2 in the south-central regions suggests their local importance and highlights concerns regarding their spread, both northwards and southwards, as well as the potential for reassortment. The obtained data highlight the importance of regular identification of viral evolution and the development and use of region-specific vaccines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Spatial modeling of wild bird risk factors to investigate highly pathogenic A(H5N1) avian influenza virus transmission

    USGS Publications Warehouse

    Prosser, Diann J.; Hungerford, Laura L.; Erwin, R. Michael; Ottinger, Mary Ann; Takekawa, John Y.; Newman, Scott H.; Xiao, Xianming; Ellis, Erie C.

    2016-01-01

    One of the longest-persisting avian influenza viruses in history, highly pathogenic avian influenza virus (HPAIV) A(H5N1), continues to evolve after 18 years, advancing the threat of a global pandemic. Wild waterfowl (family Anatidae), are reported as secondary transmitters of HPAIV, and primary reservoirs for low-pathogenic avian influenza viruses, yet spatial inputs for disease risk modeling for this group have been lacking. Using GIS and Monte Carlo simulations, we developed geospatial indices of waterfowl abundance at 1 and 30 km resolutions and for the breeding and wintering seasons for China, the epicenter of H5N1. Two spatial layers were developed: cumulative waterfowl abundance (WAB), a measure of predicted abundance across species, and cumulative abundance weighted by H5N1 prevalence (WPR), whereby abundance for each species was adjusted based on prevalence values then totaled across species. Spatial patterns of the model output differed between seasons, with higher WAB and WPR in the northern and western regions of China for the breeding season and in the southeast for the wintering season. Uncertainty measures indicated highest error in southeastern China for both WAB and WPR. We also explored the effect of resampling waterfowl layers from 1 km to 30 km resolution for multi-scale risk modeling. Results indicated low average difference (less than 0.16 and 0.01 standard deviations for WAB and WPR, respectively), with greatest differences in the north for the breeding season and southeast for the wintering season. This work provides the first geospatial models of waterfowl abundance available for China. The indices provide important inputs for modeling disease transmission risk at the interface of poultry and wild birds. These models are easily adaptable, have broad utility to both disease and conservation needs, and will be available to the scientific community for advanced modeling applications.

  13. Protective efficacy of passive immunization with monoclonal antibodies in animal models of H5N1 highly pathogenic avian influenza virus infection.

    PubMed

    Itoh, Yasushi; Yoshida, Reiko; Shichinohe, Shintaro; Higuchi, Megumi; Ishigaki, Hirohito; Nakayama, Misako; Pham, Van Loi; Ishida, Hideaki; Kitano, Mitsutaka; Arikata, Masahiko; Kitagawa, Naoko; Mitsuishi, Yachiyo; Ogasawara, Kazumasa; Tsuchiya, Hideaki; Hiono, Takahiro; Okamatsu, Masatoshi; Sakoda, Yoshihiro; Kida, Hiroshi; Ito, Mutsumi; Quynh Mai, Le; Kawaoka, Yoshihiro; Miyamoto, Hiroko; Ishijima, Mari; Igarashi, Manabu; Suzuki, Yasuhiko; Takada, Ayato

    2014-06-01

    Highly pathogenic avian influenza (HPAI) viruses of the H5N1 subtype often cause severe pneumonia and multiple organ failure in humans, with reported case fatality rates of more than 60%. To develop a clinical antibody therapy, we generated a human-mouse chimeric monoclonal antibody (MAb) ch61 that showed strong neutralizing activity against H5N1 HPAI viruses isolated from humans and evaluated its protective potential in mouse and nonhuman primate models of H5N1 HPAI virus infections. Passive immunization with MAb ch61 one day before or after challenge with a lethal dose of the virus completely protected mice, and partial protection was achieved when mice were treated 3 days after the challenge. In a cynomolgus macaque model, reduced viral loads and partial protection against lethal infection were observed in macaques treated with MAb ch61 intravenously one and three days after challenge. Protective effects were also noted in macaques under immunosuppression. Though mutant viruses escaping from neutralization by MAb ch61 were recovered from macaques treated with this MAb alone, combined treatment with MAb ch61 and peramivir reduced the emergence of escape mutants. Our results indicate that antibody therapy might be beneficial in reducing viral loads and delaying disease progression during H5N1 HPAI virus infection in clinical cases and combined treatment with other antiviral compounds should improve the protective effects of antibody therapy against H5N1 HPAI virus infection.

  14. Detection of H5N1 high-pathogenicity avian influenza virus in meat and tracheal samples from experimentally infected chickens.

    PubMed

    Das, Amaresh; Spackman, Erica; Thomas, Colleen; Swayne, David E; Suarez, David L

    2008-03-01

    The Asian H5N1 highly pathogenic avian influenza (HPAI) virus causes a systemic disease with high mortality of poultry and is potentially zoonotic. In both chickens and ducks, the virus has been demonstrated to replicate in both cardiac and skeletal muscle cells. Experimentally, H5N1 HPAI virus has been transmitted to chickens through the consumption of raw infected meat. In this study, we investigated virus replication in cardiac and skeletal muscle and in the trachea of chickens after experimental intranasal inoculation with the H5N1 HPAI virus. The virus was detected in tissues by real-time reverse transcription-polymerase chain reaction (RRT-PCR) and virus isolation, and in the trachea by RRT-PCR and a commercial avian influenza (AI) viral antigen detection test. A modified RNA extraction protocol was developed for rapid detection of the virus in tissues by RRT-PCR. The H5N1 HPAI virus was sporadically detected in meat and the tracheas of infected birds without any clinical sign of disease as early as 6 hr postinfection (PI), and was detected in all samples tested at 24 hr PI and later. No differences in sensitivity were seen between virus isolation and RRT-PCR in meat samples. The AI viral antigen detection test on tracheal swabs was a useful method for identifying infected chickens when they were sick or dead, but was less sensitive in detecting infected birds when they were preclinical. This study provides data indicating that preslaughter tracheal swab testing can identify birds infected with HPAI among the daily mortality and prevent infected flocks from being sent to processing plants. In addition, the modified RNA extraction and RRT-PCR test on meat samples provide a rapid and sensitive method of identifying HPAI virus in illegal contraband or domestic meat samples.

  15. Isolation and genetic characterization of H5N2 influenza viruses from pigs in Korea.

    PubMed

    Lee, Jun Han; Pascua, Philippe Noriel Q; Song, Min-Suk; Baek, Yun Hee; Kim, Chul-Joong; Choi, Hwan-Woon; Sung, Moon-Hee; Webby, Richard J; Webster, Robert G; Poo, Haryoung; Choi, Young Ki

    2009-05-01

    Due to dual susceptibility to both human and avian influenza A viruses, pigs are believed to be effective intermediate hosts for the spread and production of new viruses with pandemic potential. In early 2008, two swine H5N2 viruses were isolated from our routine swine surveillance in Korea. The sequencing and phylogenetic analysis of surface proteins revealed that the Sw/Korea/C12/08 and Sw/Korea/C13/08 viruses were derived from avian influenza viruses of the Eurasian lineage. However, although the Sw/Korea/C12/08 isolate is an entirely avian-like virus, the Sw/Korea/C13/08 isolate is an avian-swine-like reassortant with the PB2, PA, NP, and M genes coming from a 2006 Korean swine H3N1-like virus. The molecular characterization of the two viruses indicated an absence of significant mutations that could be associated with virulence or binding affinity. However, animal experiments showed that the reassortant Sw/Korea/C13/08 virus was more adapted and was more readily transmitted than the purely avian-like virus in a swine experimental model but not in ferrets. Furthermore, seroprevalence in swine sera from 2006 to 2008 suggested that avian H5 viruses have been infecting swine since 2006. Although there are no known potential clinical implications of the avian-swine reassortant virus for pathogenicity in pigs or other species, including humans, at present, the efficient transmissibility of the swine-adapted H5N2 virus could facilitate virus spread and could be a potential model for pandemic, highly pathogenic avian influenza (e.g., H5N1 and H7N7) virus outbreaks or a pandemic strain itself.

  16. Low-Pathogenic Influenza A Viruses in North American Diving Ducks Contribute to the Emergence of a Novel Highly Pathogenic Influenza A(H7N8) Virus.

    PubMed

    Xu, Yifei; Ramey, Andrew M; Bowman, Andrew S; DeLiberto, Thomas J; Killian, Mary L; Krauss, Scott; Nolting, Jacqueline M; Torchetti, Mia Kim; Reeves, Andrew B; Webby, Richard J; Stallknecht, David E; Wan, Xiu-Feng

    2017-05-01

    Introductions of low-pathogenic avian influenza (LPAI) viruses of subtypes H5 and H7 into poultry from wild birds have the potential to mutate to highly pathogenic avian influenza (HPAI) viruses, but such viruses' origins are often unclear. In January 2016, a novel H7N8 HPAI virus caused an outbreak in turkeys in Indiana, USA. To determine the virus's origin, we sequenced the genomes of 441 wild-bird origin influenza A viruses (IAVs) from North America and subjected them to evolutionary analyses. The results showed that the H7N8 LPAI virus most likely circulated among diving ducks in the Mississippi flyway during autumn 2015 and was subsequently introduced to Indiana turkeys, in which it evolved high pathogenicity. Preceding the outbreak, an isolate with six gene segments (PB2, PB1, PA, HA, NA, and NS) sharing >99% sequence identity with those of H7N8 turkey isolates was recovered from a diving duck sampled in Kentucky, USA. H4N8 IAVs from other diving ducks possessed five H7N8-like gene segments (PB2, PB1, NA, MP, and NS; >98% sequence identity). Our findings suggest that viral gene constellations circulating among diving ducks can contribute to the emergence of IAVs that affect poultry. Therefore, diving ducks may serve an important and understudied role in the maintenance, diversification, and transmission of IAVs in the wild-bird reservoir. IMPORTANCE In January 2016, a novel H7N8 HPAI virus caused a disease outbreak in turkeys in Indiana, USA. To determine the origin of this virus, we sequenced and analyzed 441 wild-bird origin influenza virus strains isolated from wild birds inhabiting North America. We found that the H7N8 LPAI virus most likely circulated among diving ducks in the Mississippi flyway during autumn 2015 and was subsequently introduced to Indiana turkeys, in which it evolved high pathogenicity. Our results suggest that viral gene constellations circulating among diving ducks can contribute to the emergence of IAVs that affect poultry. Therefore

  17. Low-Pathogenic Influenza A Viruses in North American Diving Ducks Contribute to the Emergence of a Novel Highly Pathogenic Influenza A(H7N8) Virus

    PubMed Central

    Xu, Yifei; Bowman, Andrew S.; DeLiberto, Thomas J.; Killian, Mary L.; Krauss, Scott; Nolting, Jacqueline M.; Torchetti, Mia Kim; Reeves, Andrew B.; Webby, Richard J.; Stallknecht, David E.

    2017-01-01

    ABSTRACT Introductions of low-pathogenic avian influenza (LPAI) viruses of subtypes H5 and H7 into poultry from wild birds have the potential to mutate to highly pathogenic avian influenza (HPAI) viruses, but such viruses' origins are often unclear. In January 2016, a novel H7N8 HPAI virus caused an outbreak in turkeys in Indiana, USA. To determine the virus's origin, we sequenced the genomes of 441 wild-bird origin influenza A viruses (IAVs) from North America and subjected them to evolutionary analyses. The results showed that the H7N8 LPAI virus most likely circulated among diving ducks in the Mississippi flyway during autumn 2015 and was subsequently introduced to Indiana turkeys, in which it evolved high pathogenicity. Preceding the outbreak, an isolate with six gene segments (PB2, PB1, PA, HA, NA, and NS) sharing >99% sequence identity with those of H7N8 turkey isolates was recovered from a diving duck sampled in Kentucky, USA. H4N8 IAVs from other diving ducks possessed five H7N8-like gene segments (PB2, PB1, NA, MP, and NS; >98% sequence identity). Our findings suggest that viral gene constellations circulating among diving ducks can contribute to the emergence of IAVs that affect poultry. Therefore, diving ducks may serve an important and understudied role in the maintenance, diversification, and transmission of IAVs in the wild-bird reservoir. IMPORTANCE In January 2016, a novel H7N8 HPAI virus caused a disease outbreak in turkeys in Indiana, USA. To determine the origin of this virus, we sequenced and analyzed 441 wild-bird origin influenza virus strains isolated from wild birds inhabiting North America. We found that the H7N8 LPAI virus most likely circulated among diving ducks in the Mississippi flyway during autumn 2015 and was subsequently introduced to Indiana turkeys, in which it evolved high pathogenicity. Our results suggest that viral gene constellations circulating among diving ducks can contribute to the emergence of IAVs that affect poultry

  18. Rivers and flooded areas identified by medium-resolution remote sensing improve risk prediction of the highly pathogenic avian influenza H5N1 in Thailand.

    PubMed

    Thanapongtharm, Weerapong; Van Boeckel, Thomas P; Biradar, Chandrashekhar; Xiao, Xiang-Ming; Gilbert, Marius

    2013-11-01

    Thailand experienced several epidemic waves of the highly pathogenic avian influenza (HPAI) H5N1 between 2004 and 2005. This study investigated the role of water in the landscape, which has not been previously assessed because of a lack of high-resolution information on the distribution of flooded land at the time of the epidemic. Nine Landsat 7 - Enhanced Thematic Mapper Plus scenes covering 174,610 km(2) were processed using k-means unsupervised classification to map the distribution of flooded areas as well as permanent lakes and reservoirs at the time of the main epidemic HPAI H5N1 wave of October 2004. These variables, together with other factors previously identified as significantly associated with risk, were entered into an autologistic regression model in order to quantify the gain in risk explanation over previously published models. We found that, in addition to other factors previously identified as associated with risk, the proportion of land covered by flooding along with expansion of rivers and streams, derived from an existing, sub-district level (administrative level no. 3) geographical information system database, was a highly significant risk factor in this 2004 HPAI epidemic. These results suggest that water-borne transmission could have partly contributed to the spread of HPAI H5N1 during the epidemic. Future work stemming from these results should involve studies where the actual distribution of small canals, rivers, ponds, rice paddy fields and farms are mapped and tested against farm-level data with respect to HPAI H5N1.

  19. Rivers and flooded areas identified by medium-resolution remote sensing improve risk prediction of the highly pathogenic avian influenza H5N1 in Thailand

    PubMed Central

    Thanapongtharm, Weerapong; Van Boeckel, Thomas P.; Biradar, Chandrashekhar; Xiao, Xiangming; Gilbert, Marius

    2016-01-01

    Thailand experienced several epidemic waves of the highly pathogenic avian influenza (HPAI) H5N1 between 2004 and 2005. This study investigated the role of water in the landscape, which has not been previously assessed because of a lack of high-resolution information on the distribution of flooded land at the time of the epidemic. Nine Landsat 7-Enhanced Thematic Mapper Plus scenes covering 174,610 km2 were processed using k-means unsupervised classification to map the distribution of flooded areas as well as permanent lakes and reservoirs at the time of the main epidemic HPAI H5N1 wave of October 2004. These variables, together with other factors previously identified as significantly associated with risk, were entered into an autologistic regression model in order to quantify the gain in risk explanation over previously published models. We found that, in addition to other factors previously identified as associated with risk, the proportion of land covered by flooding along with expansion of rivers and streams, derived from an existing, sub-district level (administrative level no. 3) geographical information system database, was a highly significant risk factor in this 2004 HPAI epidemic. These results suggest that water-borne transmission could have partly contributed to the spread of HPAI H5N1 during the epidemic. Future work stemming from these results should involve studies where the actual distribution of small canals, rivers, ponds, rice paddy fields and farms are mapped and tested against farm-level data with respect to HPAI H5N1. PMID:24258895

  20. Wild waterfowl migration and domestic duck density shape the epidemiology of highly pathogenic H5N8 influenza in the Republic of Korea.

    PubMed

    Hill, Sarah C; Lee, Youn-Jeong; Song, Byung-Min; Kang, Hyun-Mi; Lee, Eun-Kyoung; Hanna, Amanda; Gilbert, Marius; Brown, Ian H; Pybus, Oliver G

    2015-08-01

    Highly pathogenic avian influenza (HPAI) viruses threaten human and animal health yet their emergence is poorly understood, partly because sampling of the HPAI Asian-origin H5N1 lineage immediately after its identification in 1996 was comparatively sparse. The discovery of a novel H5N8 virus in 2013 provides a new opportunity to investigate HPAI emergence in greater detail. Here we investigate the origin and transmission of H5N8 in the Republic of Korea, the second country to report the new strain. We reconstruct viral spread using phylogeographic methods and interpret the results in the context of ecological data on poultry density, overwintering wild bird numbers, and bird migration patterns. Our results indicate that wild waterfowl migration and domestic duck density were important to H5N8 epidemiology. Specifically, we infer that H5N8 entered the Republic of Korea via Jeonbuk province, then spread rapidly among western provinces where densities of overwintering waterfowl and domestic ducks are higher, yet rarely persisted in eastern regions. The common ancestor of H5N8 in the Republic of Korea was estimated to have arrived during the peak of inward migration of overwintering birds. Recent virus isolations likely represent re-introductions via bird migration from an as-yet unsampled reservoir. Based on the limited data from outside the Republic of Korea, our data suggest that H5N8 may have entered Europe at least twice, and Asia at least three times from this reservoir, most likely carried by wild migrating birds. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Phylodynamics of avian influenza clade 2.2.1 H5N1 viruses in Egypt.

    PubMed

    Arafa, Abdelsatar; El-Masry, Ihab; Kholosy, Shereen; Hassan, Mohammed K; Dauphin, Gwenaelle; Lubroth, Juan; Makonnen, Yilma J

    2016-03-22

    Highly pathogenic avian influenza (HPAI) viruses of the H5N1 subtype are widely distributed within poultry populations in Egypt and have caused multiple human infections. Linking the epidemiological and sequence data is important to understand the transmission, persistence and evolution of the virus. This work describes the phylogenetic dynamics of H5N1 based on molecular characterization of the hemagglutinin (HA) gene of isolates collected from February 2006 to May 2014. Full-length HA sequences of 368 H5N1 viruses were generated and were genetically analysed to study their genetic evolution. They were collected from different poultry species, production sectors, and geographic locations in Egypt. The Bayesian Markov Chain Monte Carlo (BMCMC) method was applied to estimate the evolutionary rates among different virus clusters; additionally, an analysis of selection pressures in the HA gene was performed using the Single Likelihood Ancestor Counting (SLAC) method. The phylogenetic analysis of the H5 gene from 2006-14 indicated the presence of one virus introduction of the classic clade (2.2.1) from which two main subgroups were originated, the variant subgroup which was further subdivided into 2 sub-divisions (2.2.1.1 and 2.2.1.1a) and the endemic subgroup (2.2.1.2). The clade 2.2.1.2 showed a high evolution rate over a period of 6 years (6.9 × 10(-3) sub/site/year) in comparison to the 2.2.1.1a variant cluster (7.2 × 10(-3) over a period of 4 years). Those two clusters are under positive selection as they possess 5 distinct positively selected sites in the HA gene. The mutations at 120, 154, and 162 HA antigenic sites and the other two mutations (129∆, I151T) that occurred from 2009-14 were found to be stable in the 2.2.1.2 clade. Additionally, 13 groups of H5N1 HPAI viruses were identified based on their amino acid sequences at the cleavage site and "EKRRKKR" became the dominant pattern beginning in 2013. Continuous evolution of H5N1 HPAI viruses in Egypt has

  2. Substitution of D701N in the PB2 protein could enhance the viral replication and pathogenicity of Eurasian avian-like H1N1 swine influenza viruses.

    PubMed

    Liu, Suli; Zhu, Wenfei; Feng, Zhaomin; Gao, Rongbao; Guo, Junfeng; Li, Xiyan; Liu, Jia; Wang, Dayan; Shu, Yuelong

    2018-05-02

    Eurasian avian-like H1N1 (EA H1N1) swine influenza viruses (SIVs) have become predominant in pig populations in China and have recently been reported to have the most potential to raise the next pandemic in humans. The mutation D701N in the PB2 protein, which accounts for 31% of H1N1 SIVs, has previously been shown to contribute to the adaptation of the highly pathogenic H5N1 or H7N7 avian influenza viruses in mammals. However, little is known of the effects of this substitution on the EA H1N1 viruses. Herein, we investigated the contributions of 701N in the PB2 protein to an EA H1N1 SIV (A/Hunan/42443/2015(H1N1), HuN EA-H1N1), which had 701D in the PB2 protein. Our results found that viral polymerase activity, viral replication, and pathogenicity in mice were indeed enhanced due to the introduction of 701N into the PB2 protein, and the increased viral growth was partly mediated by the host factor importin-α7. Thus, substantial attention should be paid to the D701N mutation in pig populations.

  3. Genesis and Spread of Newly Emerged Highly Pathogenic H7N9 Avian Viruses in Mainland China

    PubMed Central

    Yang, Lei; Zhu, Wenfei; Li, Xiyan; Chen, Minmei; Wu, Jie; Yu, Pengbo; Qi, Shunxiang; Huang, Yiwei; Shi, Weixian; Dong, Jie; Zhao, Xiang; Huang, Weijuan; Li, Zi; Zeng, Xiaoxu; Bo, Hong; Chen, Tao; Chen, Wenbing; Liu, Jia; Zhang, Ye; Liang, Zhenli; Shi, Wei

    2017-01-01

    ABSTRACT The novel low-pathogenic avian influenza A H7N9 viruses (LPAI H7N9 viruses) have been a threat to public health since their emergence in 2013 because of the high rates of mortality and morbidity that they cause. Recently, highly pathogenic variants of these avian influenza A H7N9 viruses (HPAI H7N9 viruses) have emerged and caused human infections and outbreaks among poultry in mainland China. However, it is still unclear how the HPAI H7N9 virus was generated and how it evolved and spread in China. Here, we show that the ancestor virus of the HPAI H7N9 viruses originated in the Yangtze River Delta region and spread southward to the Pearl River Delta region, possibly through live poultry trade. After introduction into the Pearl River Delta region, the origin LPAI H7N9 virus acquired four amino acid insertions in the hemagglutinin (HA) protein cleavage site and mutated into the HPAI H7N9 virus in late May 2016. Afterward, the HPAI H7N9 viruses further reassorted with LPAI H7N9 or H9N2 viruses locally and generated multiple different genotypes. As of 14 July 2017, the HPAI H7N9 viruses had spread from Guangdong Province to at least 12 other provinces. The rapid geographical expansion and genetic evolution of the HPAI H7N9 viruses pose a great challenge not only to public health but also to poultry production. Effective control measures, including enhanced surveillance, are therefore urgently needed. IMPORTANCE The LPAI H7N9 virus has caused five outbreak waves in humans and was recently reported to have mutated into highly pathogenic variants. It is unknown how the HPAI H7N9 virus originated, evolved, and disseminated in China. In this study, we comprehensively analyzed the sequences of HPAI H7N9 viruses from 28 human and 21 environmental samples covering eight provinces in China that were taken from November 2016 to June 2017. The results show that the ancestor virus of the HPAI H7N9 viruses originated in the Yangtze River Delta region. However, the

  4. Preliminary Epidemiology of Human Infections with Highly Pathogenic Avian Influenza A(H7N9) Virus, China, 2017.

    PubMed

    Zhou, Lei; Tan, Yi; Kang, Min; Liu, Fuqiang; Ren, Ruiqi; Wang, Yali; Chen, Tao; Yang, Yiping; Li, Chao; Wu, Jie; Zhang, Hengjiao; Li, Dan; Greene, Carolyn M; Zhou, Suizan; Iuliano, A Danielle; Havers, Fiona; Ni, Daxin; Wang, Dayan; Feng, Zijian; Uyeki, Timothy M; Li, Qun

    2017-08-01

    We compared the characteristics of cases of highly pathogenic avian influenza (HPAI) and low pathogenic avian influenza (LPAI) A(H7N9) virus infections in China. HPAI A(H7N9) case-patients were more likely to have had exposure to sick and dead poultry in rural areas and were hospitalized earlier than were LPAI A(H7N9) case-patients.

  5. Spatiotemporal evolutionary epidemiology of H5N1 highly pathogenic avian influenza in West Africa and Nigeria, 2006-2015.

    PubMed

    Ekong, P S; Fountain-Jones, N M; Alkhamis, M A

    2018-02-01

    H5N1 highly pathogenic avian influenza virus (HPAIV) was first observed in Nigeria in early 2006 and has now spread to more than 17 African countries having severe economic and public health implications. Here, we explore the spatiotemporal patterns of viral dispersal both among West African countries and within Nigeria using sequence data from hemagglutinin (HA) gene region of the virus. Analyses were performed within a statistical Bayesian framework using phylodynamic models on data sets comprising of all publically available HA sequence data collected from seven West African countries and Egypt between 2006 and 2015. Our regional-level analyses indicated that H5N1 in West Africa originated in Nigeria in three geopolitical regions, specifically north central and north-east, where backyard poultry and wild birds are in frequent contact, as well as south-west, a major commercial poultry area, then dispersed to West African countries. We inferred significant virus dispersal routes between Niger and Nigeria on one side and Burkina Faso, Ivory Coast, Ghana and Egypt on the other. Furthermore, south-west Nigeria identified as a primary source for virus dispersal within Nigeria as well as to Niger in 2006 and 2008. Niger was an important epicentre for the virus spread into other West African countries in 2015. Egyptian introductions from West Africa were sporadic and resulted most likely from poultry trade with Nigeria rather than contact with infected wild birds. Our inferred viral dispersal routes reflected the large-scale unrestricted movements of infected poultry in the region. Our study illustrates the ability of phylodynamic models to trace important HPAIV dispersal routes at a regional and national level. Our results have clear implications for the control and prevention of this pathogen across scales and will help improve molecular surveillance of transboundary HPAIVs. © 2017 Blackwell Verlag GmbH.

  6. Wild bird surveillance around outbreaks of highly pathogenic avian influenza A(H5N8) virus in the Netherlands, 2014, within the context of global flyways.

    PubMed

    Verhagen, J H; van der Jeugd, H P; Nolet, B A; Slaterus, R; Kharitonov, S P; de Vries, P P; Vuong, O; Majoor, F; Kuiken, T; Fouchier, R A

    2015-03-26

    Highly pathogenic avian influenza (HPAI) A(H5N8) viruses that emerged in poultry in east Asia since 2010 spread to Europe and North America by late 2014. Despite detections in migrating birds, the role of free-living wild birds in the global dispersal of H5N8 virus is unclear. Here, wild bird sampling activities in response to the H5N8 virus outbreaks in poultry in the Netherlands are summarised along with a review on ring recoveries. HPAI H5N8 virus was detected exclusively in two samples from ducks of the Eurasian wigeon species, among 4,018 birds sampled within a three months period from mid-November 2014. The H5N8 viruses isolated from wild birds in the Netherlands were genetically closely related to and had the same gene constellation as H5N8 viruses detected elsewhere in Europe, in Asia and in North America, suggesting a common origin. Ring recoveries of migratory duck species from which H5N8 viruses have been isolated overall provide evidence for indirect migratory connections between East Asia and Western Europe and between East Asia and North America. This study is useful for better understanding the role of wild birds in the global epidemiology of H5N8 viruses. The need for sampling large numbers of wild birds for the detection of H5N8 virus and H5N8-virus-specific antibodies in a variety of species globally is highlighted, with specific emphasis in north-eastern Europe, Russia and northern China.

  7. H5N1 influenza viruses: outbreaks and biological properties

    PubMed Central

    Neumann, Gabriele; Chen, Hualan; Gao, George F; Shu, Yuelong; Kawaoka, Yoshihiro

    2010-01-01

    All known subtypes of influenza A viruses are maintained in wild waterfowl, the natural reservoir of these viruses. Influenza A viruses are isolated from a variety of animal species with varying morbidity and mortality rates. More importantly, influenza A viruses cause respiratory disease in humans with potentially fatal outcome. Local or global outbreaks in humans are typically characterized by excess hospitalizations and deaths. In 1997, highly pathogenic avian influenza viruses of the H5N1 subtype emerged in Hong Kong that transmitted to humans, resulting in the first documented cases of human death by avian influenza virus infection. A new outbreak started in July 2003 in poultry in Vietnam, Indonesia, and Thailand, and highly pathogenic avian H5N1 influenza viruses have since spread throughout Asia and into Europe and Africa. These viruses continue to infect humans with a high mortality rate and cause worldwide concern of a looming pandemic. Moreover, H5N1 virus outbreaks have had devastating effects on the poultry industries throughout Asia. Since H5N1 virus outbreaks appear to originate from Southern China, we here examine H5N1 influenza viruses in China, with an emphasis on their biological properties. PMID:19884910

  8. Flying over an infected landscape: Distribution of highly pathogenic avian influenza H5N1 risk in South Asia and satellite tracking of wild waterfowl

    USGS Publications Warehouse

    Gilbert, Marius; Newman, Scott H.; Takekawa, John Y.; Loth, Leo; Biradar, Chandrashekhar; Prosser, Diann J.; Balachandran, Sivananinthaperumal; Rao, Mandava Venkata Subba; Mundkur, Taej; Yan, Baoping; Xing, Zhi; Hou, Yuansheng; Batbayar, Nyambayar; Tseveenmayadag, Natsagdorj; Hogerwerf, Lenny; Slingenbergh, Jan; Xiao, Xiangming

    2010-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 virus persists in Asia, posing a threat to poultry, wild birds, and humans. Previous work in Southeast Asia demonstrated that HPAI H5N1 risk is related to domestic ducks and people. Other studies discussed the role of migratory birds in the long distance spread of HPAI H5N1. However, the interplay between local persistence and long-distance dispersal has never been studied. We expand previous geospatial risk analysis to include South and Southeast Asia, and integrate the analysis with migration data of satellite-tracked wild waterfowl along the Central Asia flyway. We find that the population of domestic duck is the main factor delineating areas at risk of HPAI H5N1 spread in domestic poultry in South Asia, and that other risk factors, such as human population and chicken density, are associated with HPAI H5N1 risk within those areas. We also find that satellite tracked birds (Ruddy Shelduck and two Bar-headed Geese) reveal a direct spatio-temporal link between the HPAI H5N1 hot-spots identified in India and Bangladesh through our risk model, and the wild bird outbreaks in May,June,July 2009 in China(Qinghai Lake), Mongolia, and Russia. This suggests that the continental-scale dynamics of HPAI H5N1 are structured as a number of persistence areas delineated by domestic ducks, connected by rare transmission through migratory waterfowl.

  9. Pathogenicity of an H5N1 avian influenza virus isolated in Vietnam in 2012 and reliability of conjunctival samples for diagnosis of infection

    PubMed Central

    Bui, Vuong N.; Dao, Tung D.; Nguyen, Tham T. H.; Nguyen, Lien T.; Bui, Anh N.; Trinh, Dai Q.; Pham, Nga T.; Inui, Kenjiro; Runstadler, Jonathan; Ogawa, Haruko; Nguyen, Khong V.; Imai, Kunitoshi

    2013-01-01

    The continued spread of highly pathogenic avian influenza virus (HPAIV) subtype H5N1 among poultry in Vietnam poses a potential threat to animals and public health. To evaluate the pathogenicity of a 2012 H5N1 HPAIV isolate and to assess the utility of conjunctival swabs for viral detection and isolation in surveillance, an experimental infection with HPAIV subtype H5N1 was carried out in domestic ducks. Ducks were infected with 107.2 TCID50 of A/duck/Vietnam/QB1207/2012 (H5N1), which was isolated from a moribund domestic duck. In the infected ducks, clinical signs of disease, including neurological disorder, were observed. Ducks started to die at 3 days-post-infection (dpi), and the study mortality reached 67%. Viruses were recovered from oropharyngeal and conjunctival swabs until 7 dpi and from cloacal swabs until 4 dpi. In the ducks that died or were sacrificed on 3, 5, or 6 dpi, viruses were recovered from lung, brain, heart, pancreas and intestine, among which the highest virus titers were in the lung, brain or heart. Results of virus titration were confirmed by real-time RT-PCR. Genetic and phylogenetic analysis of the HA gene revealed that the isolate belongs to clade 2.3.2.1 similarly to the H5N1 viruses isolated in Vietnam in 2012. The present study demonstrated that this recent HPAI H5N1 virus of clade 2.3.2.1 could replicate efficiently in the systemic organs, including the brain, and cause severe disease with neurological symptoms in domestic ducks. Therefore, this HPAI H5N1 virus seems to retain the neurotrophic feature and has further developed properties of shedding virus from the oropharynx and conjunctiva in addition to the cloaca, potentially posing a higher risk of virus spread through cross-contact and/or environmental transmission. Continued surveillance and diagnostic programs using conjuntcival swabs in the field would further verify the apparent reliability of conjunctival samples for the detection of AIV. PMID:24211664

  10. H9N2 low pathogenic avian influenza in Pakistan (2012-2015).

    PubMed

    Lee, Dong-Hun; Swayne, David E; Sharma, Poonam; Rehmani, Shafqat Fatima; Wajid, Abdul; Suarez, David L; Afonso, Claudio

    2016-01-01

    Significant economic losses from deaths and decreased egg production have resulted from H9N2 low pathogenic avian influenza virus (LPAIV) infections in poultry across North Africa, the Middle East and Asia. The H9N2 LPAIVs have been endemic in Pakistani poultry since 1996, but no new viruses have been reported since 2010. Because novel genotypes of Pakistani H9N2 contain mammalian host-specific markers, recent surveillance is essential to better understand any continuing public health risk. Here the authors report on four new H9N2 LPAIVs, three from 2015 and one from 2012. All of the viruses tested in this study belonged to Middle East B genetic group of G1 lineage and had PAKSSR/G motif at the haemagglutinin cleavage site. The mammalian host-specific markers at position 226 in the haemagglutinin receptor-binding site and internal genes suggest that Pakistan H9N2 viruses are still potentially infectious for mammals. Continued active surveillance in poultry and mammals is needed to monitor the spread and understand the potential for zoonotic infection by these H9N2 LPAIVs.

  11. Factors Associated with the Emergence of Highly Pathogenic Avian Influenza A (H5N1) Poultry Outbreaks in China: Evidence from an Epidemiological Investigation in Ningxia, 2012.

    PubMed

    Liu, H; Zhou, X; Zhao, Y; Zheng, D; Wang, J; Wang, X; Castellan, D; Huang, B; Wang, Z; Soares Magalhães, R J

    2017-06-01

    In April 2012, highly pathogenic avian influenza virus of the H5N1 subtype (HPAIV H5N1) emerged in poultry layers in Ningxia. A retrospective case-control study was conducted to identify possible risk factors associated with the emergence of H5N1 infection and describe and quantify the spatial variation in H5N1 infection. A multivariable logistic regression model was used to identify risk factors significantly associated with the presence of infection; residual spatial variation in H5N1 risk unaccounted by the factors included in the multivariable model was investigated using a semivariogram. Our results indicate that HPAIV H5N1-infected farms were three times more likely to improperly dispose farm waste [adjusted OR = 0.37; 95% CI: 0.12-0.82] and five times more likely to have had visitors in their farm within the past month [adjusted OR = 5.47; 95% CI: 1.97-15.64] compared to H5N1-non-infected farms. The variables included in the final multivariable model accounted only 20% for the spatial clustering of H5N1 infection. The average size of a H5N1 cluster was 660 m. Bio-exclusion practices should be strengthened on poultry farms to prevent further emergence of H5N1 infection. For future poultry depopulation, operations should consider H5N1 disease clusters to be as large as 700 m. © 2015 Blackwell Verlag GmbH.

  12. Surveillance plan for the early detection of H5N1 highly pathogenic avian influenza virus in migratory birds in the United States: surveillance year 2009

    USGS Publications Warehouse

    Brand, Christopher J.

    2009-01-01

    Executive Summary: This Surveillance Plan (Plan) describes plans for conducting surveillance of wild birds in the United States and its Territories and Freely-Associated States to provide for early detection of the introduction of the H5N1 Highly Pathogenic Avian Influenza (HPAI) subtype of the influenza A virus by migratory birds during the 2009 surveillance year, spanning the period of April 1, 2009 - March 31, 2010. The Plan represents a continuation of surveillance efforts begun in 2006 under the Interagency Strategic Plan for the Early Detection of H5N1 Highly Pathogenic Avian Influenza in Wild Migratory Birds (U.S. Department of Agriculture and U.S. Department of the Interior, 2006). The Plan sets forth sampling plans by: region, target species or species groups to be sampled, locations of sampling, sample sizes, and sampling approaches and methods. This Plan will be reviewed annually and modified as appropriate for subsequent surveillance years based on evaluation of information from previous years of surveillance, changing patterns and threats of H5N1 HPAI, and changes in funding availability for avian influenza surveillance. Specific sampling strategies will be developed accordingly within each of six regions, defined here as Alaska, Hawaiian/Pacific Islands, Lower Pacific Flyway (Washington, Oregon, California, Idaho, Nevada, Arizona), Central Flyway, Mississippi Flyway, and Atlantic Flyway.

  13. Highly pathogenic avian influenza virus (H5N8) in domestic poultry and its relationship with migratory birds in South Korea during 2014.

    PubMed

    Jeong, Jipseol; Kang, Hyun-Mi; Lee, Eun-Kyoung; Song, Byung-Min; Kwon, Yong-Kuk; Kim, Hye-Ryoung; Choi, Kang-Seuk; Kim, Ji-Ye; Lee, Hyun-Jeong; Moon, Oun-Kyong; Jeong, Wooseog; Choi, Jida; Baek, Jong-Ho; Joo, Yi-Seok; Park, Yong Ho; Lee, Hee-Soo; Lee, Youn-Jeong

    2014-10-10

    Highly pathogenic H5N8 avian influenza viruses (HPAIVs) were introduced into South Korea during 2014, thereby caused outbreaks in wild birds and poultry farms. During the 2014 outbreak, H5N8 HPAIVs were isolated from 38 wild birds and 200 poultry farms (up to May 8, 2014). To better understand the introduction of these viruses and their relationships with wild birds and poultry farm, we analyzed the genetic sequences and available epidemiological data related to the viruses. Genetic analysis of 37 viruses isolated from wild birds and poultry farms showed that all of the isolates belonged to clade 2.3.4.6 of the hemagglutinin (HA) gene, but comprised two distinct groups. During the initial stage of the outbreak, identical isolates from each group were found in wild birds and poultry farms near Donglim Reservoir, which is a resting site for migratory birds, thereby indicating that two types of H5N8 HPAIVs were introduced into the lake at the same time. Interestingly, the one group of H5N8 HPAIV predominated around Donglim Reservoir, and the predominant virus was dispersed by wild birds among the migratory bird habitats in the western region of South Korea as time passed, and it was also detected in nearby poultry farms. Furthermore, compared with the results of the annual AIV surveillance of captured wild birds, which has been performed since 2008, more HPAIVs were isolated and H5 sero-prevalence was also detected during the 2014 outbreak. Overall, our results strongly suggest that migratory birds played a key role in the introduction and spread of viruses during the initial stage of the 2014 outbreak. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Infection of mice with a human influenza A/H3N2 virus induces protective immunity against lethal infection with influenza A/H5N1 virus.

    PubMed

    Kreijtz, J H C M; Bodewes, R; van den Brand, J M A; de Mutsert, G; Baas, C; van Amerongen, G; Fouchier, R A M; Osterhaus, A D M E; Rimmelzwaan, G F

    2009-08-06

    The transmission of highly pathogenic avian influenza (HPAI) A viruses of the H5N1 subtype from poultry to man and the high case fatality rate fuels the fear for a pandemic outbreak caused by these viruses. However, prior infections with seasonal influenza A/H1N1 and A/H3N2 viruses induce heterosubtypic immunity that could afford a certain degree of protection against infection with the HPAI A/H5N1 viruses, which are distantly related to the human influenza A viruses. To assess the protective efficacy of such heterosubtypic immunity mice were infected with human influenza virus A/Hong Kong/2/68 (H3N2) 4 weeks prior to a lethal infection with HPAI virus A/Indonesia/5/05 (H5N1). Prior infection with influenza virus A/Hong Kong/2/68 reduced clinical signs, body weight loss, mortality and virus replication in the lungs as compared to naive mice infected with HPAI virus A/Indonesia/5/05. Priming by infection with respiratory syncytial virus, a non-related virus did not have a beneficial effect on the outcome of A/H5N1 infections, indicating that adaptive immune responses were responsible for the protective effect. In mice primed by infection with influenza A/H3N2 virus cytotoxic T lymphocytes (CTL) specific for NP(366-374) epitope ASNENMDAM and PA(224-232) SCLENFRAYV were observed. A small proportion of these CTL was cross-reactive with the peptide variant derived from the influenza A/H5N1 virus (ASNENMEVM and SSLENFRAYV respectively) and upon challenge infection with the influenza A/H5N1 virus cross-reactive CTL were selectively expanded. These CTL, in addition to those directed to conserved epitopes, shared by the influenza A/H3N2 and A/H5N1 viruses, most likely contributed to accelerated clearance of the influenza A/H5N1 virus infection. Although also other arms of the adaptive immune response may contribute to heterosubtypic immunity, the induction of virus-specific CTL may be an attractive target for development of broad protective vaccines. Furthermore the

  15. Vaccination of domestic ducks against H5N1 HPAI

    USDA-ARS?s Scientific Manuscript database

    Domestic ducks play an important role in the epidemiology of H5N1 and H5N8 highly pathogenic avian influenza (HPAI) viruses, and therefore, successful control of HPAI in ducks is vital for the eradication of the disease in poultry. Vaccination can be used as a tool for supporting eradication by inc...

  16. Epidemiological and Molecular Analysis of an Outbreak of Highly Pathogenic Avian Influenza H5N8 clade 2.3.4.4 in a German Zoo: Effective Disease Control with Minimal Culling.

    PubMed

    Globig, A; Starick, E; Homeier, T; Pohlmann, A; Grund, C; Wolf, P; Zimmermann, A; Wolf, C; Heim, D; Schlößer, H; Zander, S; Beer, M; Conraths, F J; Harder, T C

    2017-12-01

    Outbreaks of highly pathogenic avian influenza A virus (HPAIV) subtype H5N8, clade 2.3.4.4, were first reported in January 2014 from South Korea. These viruses spread rapidly to Europe and the North American continent during autumn 2014 and caused, in Germany, five outbreaks in poultry holdings until February 2015. In addition, birds kept in a zoo in north-eastern Germany were affected. Only a few individual white storks (Ciconia ciconia) showed clinical symptoms and eventually died in the course of the infection, although subsequent in-depth diagnostic investigations showed that other birds kept in the same compound of the white storks were acutely positive for or had undergone asymptomatic infection with HPAIV H5N8. An exception from culling all of the 500 remaining zoo birds was granted by the competent authority. Restriction measures included grouping the zoo birds into eight epidemiological units in which 60 birds of each unit tested repeatedly negative for H5N8. Epidemiological and phylogenetical investigations revealed that the most likely source of introduction was direct or indirect contact with infected wild birds as the white storks had access to a small pond frequented by wild mallards and other aquatic wild birds during a period of 10 days in December 2014. Median network analysis showed that the zoo bird viruses segregated into a distinct cluster of clade 2.3.4.4 with closest ties to H5N8 isolates obtained from mute swans (Cygnus olor) in Sweden in April 2015. This case demonstrates that alternatives to culling exist to rescue valuable avifaunistic collections after incursions of HPAIV. © 2016 Blackwell Verlag GmbH.

  17. Prime-boost immunization using a DNA vaccine delivered by attenuated Salmonella enterica serovar typhimurium and a killed vaccine completely protects chickens from H5N1 highly pathogenic avian influenza virus.

    PubMed

    Pan, Zhiming; Zhang, Xiaoming; Geng, Shizhong; Fang, Qiang; You, Meng; Zhang, Lei; Jiao, Xinan; Liu, Xiufan

    2010-04-01

    H5N1 highly pathogenic avian influenza virus (HPAIV) has posed a great threat not only for the poultry industry but also for human health. However, an effective vaccine to provide a full spectrum of protection is lacking in the poultry field. In the current study, a novel prime-boost vaccination strategy against H5N1 HPAIV was developed: chickens were first orally immunized with a hemagglutinin (HA) DNA vaccine delivered by attenuated Salmonella enterica serovar Typhimurium, and boosting with a killed vaccine followed. Chickens in the combined vaccination group but not in single vaccination and control groups were completely protected against disease following H5N1 HPAIV intranasal challenge, with no clinical signs and virus shedding. Chickens in the prime-boost group also generated significantly higher serum hemagglutination inhibition (HI) titers and intestinal mucosal IgA titers against avian influenza virus (AIV) and higher host immune cellular responses than those from other groups before challenge. These results demonstrated that the prime-boost vaccination strategy provides an effective way to prevent and control H5N1 highly pathogenic avian influenza virus.

  18. Reoccurrence of avian influenza A(H5N2) virus clade 2.3.4.4 in wild birds, Alaska, USA, 2016

    USDA-ARS?s Scientific Manuscript database

    We report reoccurrence of highly pathogenic avian influenza A(H5N2) virus clade 2.3.4.4 in a wild mallard in Alaska, USA, in August 2016. Identification of this virus in a migratory species confirms low-frequency persistence in North America and the potential for re-dissemination of the virus during...

  19. Dynamic changes in host gene expression associated with H5N8 avian influenza virus infection in mice.

    PubMed

    Park, Su-Jin; Kumar, Mukesh; Kwon, Hyeok-il; Seong, Rak-Kyun; Han, Kyudong; Song, Jae-min; Kim, Chul-Joong; Choi, Young-Ki; Shin, Ok Sarah

    2015-11-18

    Emerging outbreaks of newly found, highly pathogenic avian influenza (HPAI) A(H5N8) viruses have been reported globally. Previous studies have indicated that H5N8 pathogenicity in mice is relatively moderate compared with H5N1 pathogenicity. However, detailed mechanisms underlying avian influenza pathogenicity are still undetermined. We used a high-throughput RNA-seq method to analyse host and pathogen transcriptomes in the lungs of mice infected with A/MD/Korea/W452/2014 (H5N8) and A/EM/Korea/W149/2006 (H5N1) viruses. Sequenced numbers of viral transcripts and expression levels of host immune-related genes at 1 day post infection (dpi) were higher in H5N8-infected than H5N1-infected mice. Dual sequencing of viral transcripts revealed that in contrast to the observations at 1 dpi, higher number of H5N1 genes than H5N8 genes was sequenced at 3 and 7 dpi, which is consistent with higher viral titres and virulence observed in infected lungs in vivo. Ingenuity pathway analysis revealed a more significant upregulation of death receptor signalling, driven by H5N1 than with H5N8 infection at 3 and 7 dpi. Early induction of immune response-related genes may elicit protection in H5N8-infected mice, which correlates with moderate pathogenicity in vivo. Collectively, our data provide new insight into the underlying mechanisms of the differential pathogenicity of avian influenza viruses.

  20. Dynamic changes in host gene expression associated with H5N8 avian influenza virus infection in mice

    PubMed Central

    Park, Su-Jin; Kumar, Mukesh; Kwon, Hyeok-il; Seong, Rak-Kyun; Han, Kyudong; Song, Jae-min; Kim, Chul-Joong; Choi, Young-Ki; Shin, Ok Sarah

    2015-01-01

    Emerging outbreaks of newly found, highly pathogenic avian influenza (HPAI) A(H5N8) viruses have been reported globally. Previous studies have indicated that H5N8 pathogenicity in mice is relatively moderate compared with H5N1 pathogenicity. However, detailed mechanisms underlying avian influenza pathogenicity are still undetermined. We used a high-throughput RNA-seq method to analyse host and pathogen transcriptomes in the lungs of mice infected with A/MD/Korea/W452/2014 (H5N8) and A/EM/Korea/W149/2006 (H5N1) viruses. Sequenced numbers of viral transcripts and expression levels of host immune-related genes at 1 day post infection (dpi) were higher in H5N8-infected than H5N1-infected mice. Dual sequencing of viral transcripts revealed that in contrast to the observations at 1 dpi, higher number of H5N1 genes than H5N8 genes was sequenced at 3 and 7 dpi, which is consistent with higher viral titres and virulence observed in infected lungs in vivo. Ingenuity pathway analysis revealed a more significant upregulation of death receptor signalling, driven by H5N1 than with H5N8 infection at 3 and 7 dpi. Early induction of immune response-related genes may elicit protection in H5N8-infected mice, which correlates with moderate pathogenicity in vivo. Collectively, our data provide new insight into the underlying mechanisms of the differential pathogenicity of avian influenza viruses. PMID:26576844

  1. PB2 mutations D701N and S714R promote adaptation of an influenza H5N1 virus to a mammalian host.

    PubMed

    Czudai-Matwich, Volker; Otte, Anna; Matrosovich, Mikhail; Gabriel, Gülsah; Klenk, Hans-Dieter

    2014-08-01

    Mutation D701N in the PB2 protein is known to play a prominent role in the adaptation of avian influenza A viruses to mammalian hosts. In contrast, little is known about the nearby mutations S714I and S714R, which have been observed in some avian influenza viruses highly pathogenic for mammals. We have generated recombinant H5N1 viruses with PB2 displaying the avian signature 701D or the mammalian signature 701N and serine, isoleucine, and arginine at position 714 and compared them for polymerase activity and virus growth in avian and mammalian cells, as well as for pathogenicity in mice. Mutation D701N led to an increase in polymerase activity and replication efficiency in mammalian cells and in mouse pathogenicity, and this increase was significantly enhanced when mutation D701N was combined with mutation S714R. Stimulation by mutation S714I was less distinct. These observations indicate that PB2 mutation S714R, in combination with the mammalian signature at position 701, has the potential to promote the adaptation of an H5N1 virus to a mammalian host. Influenza A/H5N1 viruses are avian pathogens that have pandemic potential, since they are spread over large parts of Asia, Africa, and Europe and are occasionally transmitted to humans. It is therefore of high scientific interest to understand the mechanisms that determine the host specificity and pathogenicity of these viruses. It is well known that the PB2 subunit of the viral polymerase is an important host range determinant and that PB2 mutation D701N plays an important role in virus adaptation to mammalian cells. In the present study, we show that mutation S714R is also involved in adaptation and that it cooperates with D701N in exposing a nuclear localization signal that mediates importin-α binding and entry of PB2 into the nucleus, where virus replication and transcription take place. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  2. Epidemic outbreaks, diagnostics, and control measures of the H5N1 highly pathogenic avian influenza in the Kingdom of Saudi Arabia, 2007-08.

    PubMed

    Lu, Huaguang; Ismail, Mahmoud Moussa; Khan, Owais Ahmed; Al Hammad, Yousef; Abdel Rhman, Salah Shaban; Al-Blowi, Mohamed Hamad

    2010-03-01

    The first outbreak of H5N1 highly pathogenic avian influenza (HPAI) in the Kingdom of Saudi Arabia (KSA) occurred in two "backyard" flocks of Houbara bustards and falcons in February 2007. Subsequent outbreaks were seen through the end of 2007 in "backyard" birds including native chickens, ostriches, turkeys, ducks, and peacocks. From November 2007 through January 2008, H5N1 HPAI outbreaks occurred in 19 commercial poultry premises, including two broiler breeder farms, one layer breeder farm, one ostrich farm, and 15 commercial layer farms, with approximately 4.75 million birds affected. Laboratory diagnosis of all H5N1-positive cases was conducted at the Central Veterinary Diagnostic Laboratory (CVDL) in Riyadh, Saudi Arabia. A combination of diagnostic tests was used to confirm the laboratory diagnosis. A rapid antigen-capture test and real-time reverse transcriptase-PCR (rtRT-PCR) assay on clinical and field specimens were conducted initially. Meanwhile, virus isolation in specific-pathogen-free embryonating chicken eggs was performed and was followed by hemagglutinin (HA) and hemagglutination inhibition tests, then rapid antigen-capture and rtRT-PCR tests on HA-positive allantoic fluid samples. In most HPAI cases, a complete laboratory diagnosis was made within 24-48 hr at the CVDL. Saudi Arabian government officials made immediate decisions to depopulate all H5N1-affected and nonaffected flocks within a 5-km radius area and applied quarantine zones to prevent the virus from spreading to other areas. Other control measures, such as closure of live bird markets and intensive surveillance tests on all poultry species within quarantine zones, were in place during the outbreaks. As a result, the HPAI outbreaks were quickly controlled, and no positive cases were detected after January 29, 2008. The KSA was declared free of HPAI on April 30, 2008, by the World Animal Health Organization.

  3. Virus-like particles displaying H5, H7, H9 hemagglutinins and N1 neuraminidase elicit protective immunity to heterologous avian influenza viruses in chickens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pushko, Peter, E-mail: ppushko@medigen-usa.com

    Avian influenza (AI) viruses circulating in wild birds pose a serious threat to public health. Human and veterinary vaccines against AI subtypes are needed. Here we prepared triple-subtype VLPs that co-localized H5, H7 and H9 antigens derived from H5N1, H7N3 and H9N2 viruses. VLPs also contained influenza N1 neuraminidase and retroviral gag protein. The H5/H7/H9/N1/gag VLPs were prepared using baculovirus expression. Biochemical, functional and antigenic characteristics were determined including hemagglutination and neuraminidase enzyme activities. VLPs were further evaluated in a chicken AI challenge model for safety, immunogenicity and protective efficacy against heterologous AI viruses including H5N2, H7N3 and H9N2 subtypes.more » All vaccinated birds survived challenges with H5N2 and H7N3 highly pathogenic AI (HPAI) viruses, while all controls died. Immune response was also detectable after challenge with low pathogenicity AI (LPAI) H9N2 virus suggesting that H5/H7/H9/N1/gag VLPs represent a promising approach for the development of broadly protective AI vaccine. - Highlights: •VLPs were prepared that co-localized H5, H7 and H9 subtypes in a VLP envelope. •VLPs were characterized including electron microscopy, HA assay and NA enzyme activity. •Experimental VLP vaccine was evaluated in an avian influenza challenge model. •VLPs induced immune responses against heterologous H5, H7 and H9 virus challenges.« less

  4. Role of vaccination-induced immunity and antigenic distance in the transmission dynamics of highly pathogenic avian influenza H5N1

    PubMed Central

    Rousou, Xanthoula; Kalthoff, Donata; Beer, Martin

    2016-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 epidemics in poultry cause huge economic losses as well as sporadic human morbidity and mortality. Vaccination in poultry has often been reported as being ineffective in preventing transmission and as a potential driving force in the selection of immune escape mutants. We conducted transmission experiments to evaluate the transmission dynamics of HPAI H5N1 strains in chickens vaccinated with high and low doses of immune escape mutants we have previously selected, and analysed the data using mathematical models. Remarkably, we demonstrate that the effect of antigenic distances between the vaccine and challenge strains used in this study is too small to influence the transmission dynamics of the strains used. This is because the effect of a sufficient vaccine dose on antibody levels against the challenge viruses is large enough to compensate for any decrease in antibody titres due to antigenic differences between vaccine and challenge strains. Our results show that at least under experimental conditions, vaccination will remain effective even after antigenic changes as may be caused by the initial selection in vaccinated birds. PMID:26763336

  5. In Silico Identification of Highly Conserved Epitopes of Influenza A H1N1, H2N2, H3N2, and H5N1 with Diagnostic and Vaccination Potential

    PubMed Central

    Muñoz-Medina, José Esteban; Sánchez-Vallejo, Carlos Javier; Méndez-Tenorio, Alfonso; Monroy-Muñoz, Irma Eloísa; Angeles-Martínez, Javier; Santos Coy-Arechavaleta, Andrea; Santacruz-Tinoco, Clara Esperanza; González-Ibarra, Joaquín; Anguiano-Hernández, Yu-Mei; González-Bonilla, César Raúl; Ramón-Gallegos, Eva; Díaz-Quiñonez, José Alberto

    2015-01-01

    The unpredictable, evolutionary nature of the influenza A virus (IAV) is the primary problem when generating a vaccine and when designing diagnostic strategies; thus, it is necessary to determine the constant regions in viral proteins. In this study, we completed an in silico analysis of the reported epitopes of the 4 IAV proteins that are antigenically most significant (HA, NA, NP, and M2) in the 3 strains with the greatest world circulation in the last century (H1N1, H2N2, and H3N2) and in one of the main aviary subtypes responsible for zoonosis (H5N1). For this purpose, the HMMER program was used to align 3,016 epitopes reported in the Immune Epitope Database and Analysis Resource (IEDB) and distributed in 34,294 stored sequences in the Pfam database. Eighteen epitopes were identified: 8 in HA, 5 in NA, 3 in NP, and 2 in M2. These epitopes have remained constant since they were first identified (~91 years) and are present in strains that have circulated on 5 continents. These sites could be targets for vaccination design strategies based on epitopes and/or as markers in the implementation of diagnostic techniques. PMID:26346523

  6. Pathobiology of clade 2.3.4.4 Intercontinental Group A H5Nx highly pathogenic avian influenza virus in minor gallinaceous poultry

    USDA-ARS?s Scientific Manuscript database

    In 2014 and 2015, the United States experienced an unprecedented outbreak of Eurasian clade 2.3.4.4 H5 highly pathogenic avian influenza (HPAI) virus. Initial cases affected mainly wild birds and mixed backyard poultry species, while later outbreaks affected mostly commercial chickens and turkeys. T...

  7. Reoccurrence of Avian Influenza A(H5N2) Virus Clade 2.3.4.4 in Wild Birds, Alaska, USA, 2016.

    PubMed

    Lee, Dong-Hun; Torchetti, Mia K; Killian, Mary Lea; DeLiberto, Thomas J; Swayne, David E

    2017-02-01

    We report reoccurrence of highly pathogenic avian influenza A(H5N2) virus clade 2.3.4.4 in a wild mallard in Alaska, USA, in August 2016. Identification of this virus in a migratory species confirms low-frequency persistence in North America and the potential for re-dissemination of the virus during the 2016 fall migration.

  8. Characterization and efficacy determination of commercially available Central American H5N2 avian influenza vaccines for poultry

    USDA-ARS?s Scientific Manuscript database

    H5N2 low pathogenicity avian influenza (LPAI) was first identified in Mexican poultry during May 1994. A vaccination program was implemented, but after 14 years and 2 billion doses, H5N2 LPAI is still present in parts of Mexico and has spread to El Salvador, Guatemala, Dominican Republic, and Haiti...

  9. [Highly pathogenic influenza A/H5N1 virus-caused epizooty among mute swans (Cygnus olor) in the lower estuary of the Volga River (November 2005)].

    PubMed

    L'vov, D K; Shchelkanov, M Iu; Deriabin, P G; Burtseva, E I; Galkina, I V; Grebennikova, T V; Prilipov, A G; Usachev, E V; Liapina, O V; Shliapnikova, O V; Poglazov, A B; Slavskiĭ, A A; Morozova, T N; Vasil'ev, A V; Zaberezhnyĭ, A D; Dzharkenov, A F; Gabbasov, F B; Evdokimova, M I; Aliper, T I; Litvin, K E; Gromashevskiĭ, V L; Vlasov, N A; Iashkulov, K B; Kovtunov, A I; Onishchenko, G G; Nepoklonov, E A; Suarez, D L

    2006-01-01

    Molecular virological studies of the field material collected in the epicenter of epizooty with high mortality among mute swans (Cygnus olor) in the area of the lower estuary of the Volga River (November 2005) could establish the etiological role of highly pathogenic influenza A (HPAI) virus of the subtype H5N1. Ten HPAI/H5N1 strains deposited at the State Collection of Viruses of the Russian Federation with the priority dated December 1, 2005 were isolated from the cloacal/tracheal swabs and viscera of sick and freshly died mute swans. Complete nucleotide sequences of all fragments of the genome of 6 strains have been deposited in the Gene Bank. The paper discusses the molecular genetic characteristics of isolated strains.

  10. Pathogenicity of Genetically Similar, H5N1 Highly Pathogenic Avian Influenza Virus Strains in Chicken and the Differences in Sensitivity among Different Chicken Breeds

    PubMed Central

    Matsuu, Aya; Kobayashi, Tomoko; Patchimasiri, Tuangthong; Shiina, Takashi; Suzuki, Shingo; Chaichoune, Kridsada; Ratanakorn, Parntep; Hiromoto, Yasuaki; Abe, Haruka; Parchariyanon, Sujira; Saito, Takehiko

    2016-01-01

    Differences in the pathogenicity of genetically closely related H5N1 highly pathogenic avian influenza viruses (HPAIVs) were evaluated in White Leghorn chickens. These viruses varied in the clinical symptoms they induced, including lethality, virus shedding, and replication in host tissues. A comparison of the host responses in the lung, brain, and spleen suggested that the differences in viral replication efficiency were related to the host cytokine response at the early phase of infection, especially variations in the proinflammatory cytokine IL-6. Based on these findings, we inoculated the virus that showed the mildest pathogenicity among the five tested, A/pigeon/Thailand/VSMU-7-NPT/2004, into four breeds of Thai indigenous chicken, Phadu-Hung-Dang (PHD), Chee, Dang, and Luang-Hung-Khao (LHK), to explore effects of genetic background on host response. Among these breeds, Chee, Dang, and LHK showed significantly longer survival times than White Leghorns. Virus shedding from dead Thai indigenous chickens was significantly lower than that from White Leghorns. Although polymorphisms were observed in the Mx and MHC class I genes, there was no significant association between the polymorphisms in these loci and resistance to HPAIV. PMID:27078641

  11. Evaluation of lateral flow devices for identification of infected poultry by testing swab and feather specimens during H5N1 highly pathogenic avian influenza outbreaks in Vietnam

    PubMed Central

    Slomka, Marek J.; To, Thanh L.; Tong, Hien H.; Coward, Vivien J.; Mawhinney, Ian C.; Banks, Jill; Brown, Ian H.

    2011-01-01

    Please cite this paper as: Slomka et al. (2012) Evaluation of lateral flow devices for identification of infected poultry by testing swab and feather specimens during H5N1 highly pathogenic avian influenza outbreaks in Vietnam. Influenza and Other Respiratory Viruses 6(5), 318–327. Background  Evaluation of two commercial lateral flow devices (LFDs) for avian influenza (AI) detection in H5N1 highly pathogenic AI infected poultry in Vietnam. Objectives  Determine sensitivity and specificity of the LFDs relative to a validated highly sensitive H5 RRT PCR. Methods  Swabs (cloacal and tracheal) and feathers were collected from 46 chickens and 48 ducks (282 clinical specimens) and tested by both LFDs and H5 RRT PCR. A subset of 59 chicken and 34 duck specimens was also tested by virus isolation (VI), the ‘gold standard’. Results  Twenty‐six chickens and 15 ducks were shown to be infected by at least one RRT PCR positive clinical specimen per bird. Bird‐level sensitivity for the Anigen LFD was 84·6% for chickens and 53·3% for ducks, and for the Quickvue LFD 65·4% for chickens and 33·3% for ducks. Comparison of the three clinical specimens revealed that chicken feathers were the most sensitive with 84% and 56% sensitivities for Anigen and Quickvue respectively. All 21 RRT PCR positive swabs from ducks were negative by both LFDs. However, duck feather testing gave sensitivities of 53·3% and 33·3% for Anigen and Quickvue respectively. Specificity was 100% for both LFDs in all investigations. Conclusions  Although LFDs were less sensitive than AI RRT PCR and VI, high titre viral shedding in H5N1 highly pathogenic avian influenza (HPAI) infected and diseased chickens is sufficient for a proportion of birds to be identified as AI infected by LFDs. Feathers were the optimal specimen for LFD testing in such diseased HPAI scenarios, particularly for ducks where swab testing by LFDs failed to identify any infected birds. However, specimens should be

  12. Widespread detection of highly pathogenic H5 influenza viruses in wild birds from the Pacific Flyway of the United States

    USDA-ARS?s Scientific Manuscript database

    A novel highly pathogenic avian influenza virus belonging to the H5 clade 2.3.4.4 variant viruses was detected in North America in late 2014. Motivated by the identification of these viruses in domestic poultry in Canada, an intensive study was initiated to conduct highly pathogenic avian influenza ...

  13. Pathogenicity of an H5N1 avian influenza virus isolated in Vietnam in 2012 and reliability of conjunctival samples for diagnosis of infection.

    PubMed

    Bui, Vuong N; Dao, Tung D; Nguyen, Tham T H; Nguyen, Lien T; Bui, Anh N; Trinh, Dai Q; Pham, Nga T; Inui, Kenjiro; Runstadler, Jonathan; Ogawa, Haruko; Nguyen, Khong V; Imai, Kunitoshi

    2014-01-22

    The continued spread of highly pathogenic avian influenza virus (HPAIV) subtype H5N1 among poultry in Vietnam poses a potential threat to animals and public health. To evaluate the pathogenicity of a 2012 H5N1 HPAIV isolate and to assess the utility of conjunctival swabs for viral detection and isolation in surveillance, an experimental infection with HPAIV subtype H5N1 was carried out in domestic ducks. Ducks were infected with 10(7.2) TCID50 of A/duck/Vietnam/QB1207/2012 (H5N1), which was isolated from a moribund domestic duck. In the infected ducks, clinical signs of disease, including neurological disorder, were observed. Ducks started to die at 3 days-post-infection (dpi), and the study mortality reached 67%. Viruses were recovered from oropharyngeal and conjunctival swabs until 7 dpi and from cloacal swabs until 4 dpi. In the ducks that died or were sacrificed on 3, 5, or 6 dpi, viruses were recovered from lung, brain, heart, pancreas and intestine, among which the highest virus titers were in the lung, brain or heart. Results of virus titration were confirmed by real-time RT-PCR. Genetic and phylogenetic analysis of the HA gene revealed that the isolate belongs to clade 2.3.2.1 similarly to the H5N1 viruses isolated in Vietnam in 2012. The present study demonstrated that this recent HPAI H5N1 virus of clade 2.3.2.1 could replicate efficiently in the systemic organs, including the brain, and cause severe disease with neurological symptoms in domestic ducks. Therefore, this HPAI H5N1 virus seems to retain the neurotrophic feature and has further developed properties of shedding virus from the oropharynx and conjunctiva in addition to the cloaca, potentially posing a higher risk of virus spread through cross-contact and/or environmental transmission. Continued surveillance and diagnostic programs using conjunctival swabs in the field would further verify the apparent reliability of conjunctival samples for the detection of AIV. Copyright © 2013 Elsevier B

  14. Accumulation of CD11b+Gr-1+ cells in the lung, blood and bone marrow of mice infected with highly pathogenic H5N1 and H1N1 influenza viruses

    PubMed Central

    Kotur, Mark S.; Stark, Gregory V.; Warren, Richard L.; Kasoji, Manjula; Craft, Jeremy L.; Albrecht, Randy A.; García-Sastre, Adolfo; Katze, Michael G.; Waters, Katrina M.; Vasconcelos, Daphne; Sabourin, Patrick J.; Bresler, Herbert S.; Sabourin, Carol L.

    2017-01-01

    Infection with pathogenic influenza viruses isassociated with intense inflammatory disease. Here, we investigated the innate immune response in mice infectedwith H5N1 A/Vietnam/1203/04 and with reassortanthuman H1N1 A/Texas/36/91 viruse s containing the virulence genes hemagglutinin (HA), neuraminidase (NA) and NS1 of the 1918 pandemic virus. Inclusion of the 1918 HAand NA glycoproteins rendered a seasonal H1N1 virus capable of inducing an exacerbated host innate immuneresponse similar to that observed for highly pathogenicA/Vietnam/1203/04 virus. Infection with 1918 HA/NA:Tx/91 and A/Vietnam/1203/04 were associated with severelung pathology, increased cytokine and chemokine production, and significant immune cell changes, including the presence of CD11b+Gr-1+cells in the blood, lung and bone marrow. Significant differential gene expression in the lung included pathways for cell death, apoptosis, production and response to reactive oxygen radicals, as well asarginine and proline meta bolism and chemokines associated with monocyte and neutrophil/granulocyte accumulation and/or activation. Arginase was produced in the lungof animals infected with A/Vietnam/1204. These results demonstrate that the innate immune cell response resultsin t he accumulation of CD11b+Gr-1+cells and products that have previously been shown to contribute to T cellsuppression. PMID:23397329

  15. Risk for highly pathogenic avian influenza H5N1 virus infection in chickens in small-scale commercial farms, in a high-risk area, Bangladesh, 2008.

    PubMed

    Biswas, P K; Rahman, M H; Das, A; Ahmed, S S U; Giasuddin, M; Christensen, J P

    2011-12-01

    Small-scale commercial chicken farms (FAO-defined system 3) with poor biosecurity predominate in developing countries including Bangladesh. By enroling fifteen highly pathogenic avian influenza (HPAI) cases occurring in such farms - (February - April 2008) and 45 control farms (March-May 2008) with similar set up, we conducted a case-control study to evaluate the risk factors associated with HPAI H5N1 virus infections in chickens reared in small-scale commercial farms in a spatially high-risk area in Bangladesh. Data collected by a questionnaire from the selected farms were analysed by univariable analysis and multivariable conditional logistic regression. The risk factors independently associated were 'dead crow seen at or near farm' [odds ratio (OR) 47.4, 95% confidence interval (CI) 4.7-480.3, P = 0.001], 'exchanging eggtrays with market vendors' (OR 20.4, 95% CI 1.9-225.5, P = 0.014) and 'mortality seen in backyard chicken reared nearby' (OR 19.4, 95% CI 2.8-131.9, P = 0.002). These observations suggest that improved biosecurity might reduce the occurrence of HPAI outbreaks in small-scale commercial farms in Bangladesh. © 2011 Blackwell Verlag GmbH.

  16. Yeast Surface-Displayed H5N1 Avian Influenza Vaccines

    PubMed Central

    Lei, Han; Jin, Sha; Karlsson, Erik; Schultz-Cherry, Stacey

    2016-01-01

    Highly pathogenic H5N1 avian influenza viruses pose a pandemic threat to human health. A rapid vaccine production against fast outbreak is desired. We report, herein, a paradigm-shift influenza vaccine technology by presenting H5N1 hemagglutinin (HA) to the surface of yeast. We demonstrated, for the first time, that the HA surface-presented yeast can be used as influenza vaccines to elicit both humoral and cell-mediated immunity in mice. The HI titer of antisera reached up to 128 in vaccinated mice. A high level of H5N1 HA-specific IgG1 and IgG2a antibody production was detected after boost immunization. Furthermore, we demonstrated that the yeast surface-displayed HA preserves its antigenic sites. It preferentially binds to both avian- and human-type receptors. In addition, the vaccine exhibited high cross-reactivity to both homologous and heterologous H5N1 viruses. A high level production of anti-HA antibodies was detected in the mice five months after vaccination. Finally, our animal experimental results indicated that the yeast vaccine offered complete protection of mice from lethal H5N1 virus challenge. No severe side effect of yeast vaccines was noted in animal studies. This new technology allows for rapid and large-scale production of influenza vaccines for prepandemic preparation. PMID:28078309

  17. Experimental infection of H5N1 HPAI in BALB/c mice.

    PubMed

    Evseenko, Vasily A; Bukin, Eugeny K; Zaykovskaya, Anna V; Sharshov, Kirill A; Ternovoi, Vladimir A; Ignatyev, George M; Shestopalov, Alexander M

    2007-07-27

    In 2005 huge epizooty of H5N1 HPAI occurred in Russia. It had been clear that territory of Russia becoming endemic for H5N1 HPAI. In 2006 several outbreaks have occurred. To develop new vaccines and antiviral therapies, animal models had to be investigated. We choose highly pathogenic strain for these studies. A/duck/Tuva/01/06 belongs to Quinghai-like group viruses. Molecular markers-cleavage site, K627 in PB2 characterize this virus as highly pathogenic. This data was confirmed by direct pathogenic tests: IVPI = 3.0, MLD50 = 1,4Log10EID50. Also molecular analysis showed sensitivity of the virus to adamantanes and neuraminidase inhibitors. Serological analysis showed wide cross-reactivity of this virus with sera produced to H5N1 HPAI viruses isolated earlier in South-East Asia. Mean time to death of infected animals was 8,19+/-0,18 days. First time acute delayed hemorrhagic syndrome was observed in mice lethal model. Hypercytokinemia was determined by elevated sera levels of IFN-gamma, IL-6, IL-10. Assuming all obtained data we can conclude that basic model parameters were characterized and virus A/duck/Tuva/01/06 can be used to evaluate anti-influenza vaccines and therapeutics.

  18. New Threats from H7N9 Influenza Virus: Spread and Evolution of High- and Low-Pathogenicity Variants with High Genomic Diversity in Wave Five.

    PubMed

    Quan, Chuansong; Shi, Weifeng; Yang, Yang; Yang, Yongchun; Liu, Xiaoqing; Xu, Wen; Li, Hong; Li, Juan; Wang, Qianli; Tong, Zhou; Wong, Gary; Zhang, Cheng; Ma, Sufang; Ma, Zhenghai; Fu, Guanghua; Zhang, Zewu; Huang, Yu; Song, Houhui; Yang, Liuqing; Liu, William J; Liu, Yingxia; Liu, Wenjun; Gao, George F; Bi, Yuhai

    2018-06-01

    H7N9 virus has caused five infection waves since it emerged in 2013. The highest number of human cases was seen in wave 5; however, the underlying reasons have not been thoroughly elucidated. In this study, the geographical distribution, phylogeny, and genetic evolution of 240 H7N9 viruses in wave 5, including 35 new isolates from patients and poultry in nine provinces, were comprehensively analyzed together with strains from first four waves. Geographical distribution analysis indicated that the newly emerging highly pathogenic (HP) and low-pathogenicity (LP) H7N9 viruses were cocirculating, causing human and poultry infections across China. Genetic analysis indicated that dynamic reassortment of the internal genes among LP-H7N9/H9N2/H6Ny and HP-H7N9, as well as of the surface genes, between the Yangtze and Pearl River Delta lineages resulted in at least 36 genotypes, with three major genotypes (G1 [A/chicken/Jiangsu/SC537/2013-like], G3 [A/Chicken/Zhongshan/ZS/2017-like], and G11 [A/Anhui/40094/2015-like]). The HP-H7N9 genotype likely evolved from G1 LP-H7N9 by the insertion of a KRTA motif at the cleavage site (CS) and then evolved into 15 genotypes with four different CS motifs, including PKG KRTA R/G, PKG KRIA R/G, PKR KRAA R/G, and PKR KRTA R/G. Approximately 46% (28/61) of HP strains belonged to G3. Importantly, neuraminidase (NA) inhibitor (NAI) resistance (R292K in NA) and mammalian adaptation (e.g., E627K and A588V in PB2) mutations were found in a few non-human-derived HP-H7N9 strains. In summary, the enhanced prevalence and diverse genetic characteristics that occurred with mammalian-adapted and NAI-resistant mutations may have contributed to increased numbers of human infections in wave 5. IMPORTANCE The highest numbers of human H7N9 infections were observed during wave 5 from October 2016 to September 2017. Our results showed that HP-H7N9 and LP-H7N9 had spread virtually throughout China and underwent dynamic reassortment with different subtypes (H7N9

  19. A single vaccination of commercial broilers does not reduce transmission of H5N1 highly pathogenic avian influenza

    PubMed Central

    2011-01-01

    Vaccination of chickens has become routine practice in Asian countries in which H5N1 highly pathogenic avian influenza (HPAI) is endemically present. This mainly applies to layer and breeder flocks, but broilers are usually left unvaccinated. Here we investigate whether vaccination is able to reduce HPAI H5N1 virus transmission among broiler chickens. Four sets of experiments were carried out, each consisting of 22 replicate trials containing a pair of birds. Experiments 1-3 were carried out with four-week-old birds that were unvaccinated, and vaccinated at day 1 or at day 10 of age. Experiment 4 was carried out with unvaccinated day-old broiler chicks. One chicken in each trial was inoculated with H5N1 HPAI virus. One chicken in each trial was inoculated with virus. The course of the infection chain was monitored by serological analysis, and by virus isolation performed on tracheal and cloacal swabs. The analyses were based on a stochastic SEIR model using a Bayesian inferential framework. When inoculation was carried out at the 28th day of life, transmission was efficient in unvaccinated birds, and in birds vaccinated at first or tenth day of life. In these experiments estimates of the latent period (~1.0 day), infectious period (~3.3 days), and transmission rate parameter (~1.4 per day) were similar, as were estimates of the reproduction number (~4) and generation interval (~1.4 day). Transmission was significantly less efficient in unvaccinated chickens when inoculation was carried out on the first day of life. These results show that vaccination of broiler chickens does not reduce transmission, and suggest that this may be due to the interference of maternal immunity. PMID:21635732

  20. Physician's knowledge, attitudes, and practices regarding seasonal influenza, pandemic influenza, and highly pathogenic avian influenza A (H5N1) virus infections of humans in Indonesia.

    PubMed

    Mangiri, Amalya; Iuliano, A Danielle; Wahyuningrum, Yunita; Praptiningsih, Catharina Y; Lafond, Kathryn E; Storms, Aaron D; Samaan, Gina; Ariawan, Iwan; Soeharno, Nugroho; Kreslake, Jennifer M; Storey, J Douglas; Uyeki, Timothy M

    2017-01-01

    Indonesia has reported highest number of fatal human cases of highly pathogenic avian influenza (HPAI) A (H5N1) virus infection worldwide since 2005. There are limited data available on seasonal and pandemic influenza in Indonesia. During 2012, we conducted a survey of clinicians in two districts in western Java, Indonesia, to assess knowledge, attitudes, and practices (KAP) of clinical diagnosis, testing, and treatment of patients with seasonal influenza, pandemic influenza, or HPAI H5N1 virus infections. Overall, a very low percentage of physician participants reported ever diagnosing hospitalized patients with seasonal, pandemic, or HPAI H5N1 influenza. Use of influenza testing was low in outpatients and hospitalized patients, and use of antiviral treatment was very low for clinically diagnosed influenza patients. Further research is needed to explore health system barriers for influenza diagnostic testing and availability of antivirals for treatment of influenza in Indonesia. © 2016 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  1. Methyl transfer from Fe (and Mo) to Sn: formation of (eta(5)-C(5)H(5))M(CO)(n)Sn(t)Bu(2)Me (M = Fe, n = 2; M = Mo, n = 3) complexes from photochemical irradiation of (eta(5)-C(5)H(5))M(CO)(n)Me and (t)Bu(2)SnH(2).

    PubMed

    Sharma, Hemant K; Arias-Ugarte, Renzo; Metta-Magana, Alejandro; Pannell, Keith H

    2010-07-07

    Formation of an Sn-CH(3) bond, concomitantly with an Sn-M (M = Fe, Mo), is readily achieved from the photochemical reactions of (t)Bu(2)SnH(2) with (eta(5)-C(5)H(5))M(CO)(n)Me (M = Fe, n = 2; M = Mo, n = 3) via the intermediacy of (eta(5)-C(5)H(5))M(CO)(n)Sn(t)Bu(2)H.

  2. Vaccine protection of chickens against antigenically diverse H5 highly pathogenic avian influenza isolates with a live HVT vector vaccine expressing the influenza hemagglutinin gene derived from a clade 2.2 avian influenza virus.

    PubMed

    Kapczynski, Darrell R; Esaki, Motoyuki; Dorsey, Kristi M; Jiang, Haijun; Jackwood, Mark; Moraes, Mauro; Gardin, Yannick

    2015-02-25

    Vaccination is an important tool in the protection of poultry against avian influenza (AI). For field use, the overwhelming majority of AI vaccines produced are inactivated whole virus formulated into an oil emulsion. However, recombinant vectored vaccines are gaining use for their ability to induce protection against heterologous isolates and ability to overcome maternal antibody interference. In these studies, we compared protection of chickens provided by a turkey herpesvirus (HVT) vector vaccine expressing the hemagglutinin (HA) gene from a clade 2.2 H5N1 strain (A/swan/Hungary/4999/2006) against homologous H5N1 as well as heterologous H5N1 and H5N2 highly pathogenic (HP) AI challenge. The results demonstrated all vaccinated birds were protected from clinical signs of disease and mortality following homologous challenge. In addition, oral and cloacal swabs taken from challenged birds demonstrated that vaccinated birds had lower incidence and titers of viral shedding compared to sham-vaccinated birds. Following heterologous H5N1 or H5N2 HPAI challenge, 80-95% of birds receiving the HVT vector AI vaccine at day of age survived challenge with fewer birds shedding virus after challenge than sham vaccinated birds. In vitro cytotoxicity analysis demonstrated that splenic T lymphocytes from HVT-vector-AI vaccinated chickens recognized MHC-matched target cells infected with H5, as well as H6, H7, or H9 AI virus. Taken together, these studies provide support for the use of HVT vector vaccines expressing HA to protect poultry against multiple lineages of HPAI, and that both humoral and cellular immunity induced by live vaccines likely contributes to protection. Published by Elsevier Ltd.

  3. Emergence and dissemination of clade 2.3.4.4 H5Nx influenza viruses-how is the Asian HPAI H5 lineage maintained.

    PubMed

    Claes, Filip; Morzaria, Subhash P; Donis, Ruben O

    2016-02-01

    Highly pathogenic avian influenza (HPAI) A(H5N1) viruses containing the A/goose/Guangdong/96-like (GD/96) HA genes circulated in birds from four continents in the course of 2015 (Jan to Sept). A new HA clade, termed 2.3.4.4, emerged around 2010-2011 in China and revealed a novel propensity to reassort with NA subtypes other than N1, unlike dozens of earlier clades. Two subtypes, H5N6 and H5N8, have spread to countries in Asia (H5N6), Europe and North America (H5N8). Infections by clade 2.3.4.4 viruses are characterized by low virulence in poultry and some wild birds, contributing to wide geographical dissemination of the viruses via poultry trade and wild bird migration. Copyright © 2016. Published by Elsevier B.V.

  4. H9N2 low pathogenic avian influenza: Should we be afraid?

    USDA-ARS?s Scientific Manuscript database

    The H9N2 low pathogenic avian influenza (LPAI) is probably the most widespread avian influenza subtype in poultry around the world being endemic in a large part of Asia, the Middle East, Northern Africa, and in Germany. Currently, there is no standardized clade system to describe the antigenic vari...

  5. Impact of the implementation of rest days in live bird markets on the dynamics of H5N1 highly pathogenic avian influenza.

    PubMed

    Fournié, G; Guitian, F J; Mangtani, P; Ghani, A C

    2011-08-07

    Live bird markets (LBMs) act as a network 'hub' and potential reservoir of infection for domestic poultry. They may therefore be responsible for sustaining H5N1 highly pathogenic avian influenza (HPAI) virus circulation within the poultry sector, and thus a suitable target for implementing control strategies. We developed a stochastic transmission model to understand how market functioning impacts on the transmission dynamics. We then investigated the potential for rest days-periods during which markets are emptied and disinfected-to modulate the dynamics of H5N1 HPAI within the poultry sector using a stochastic meta-population model. Our results suggest that under plausible parameter scenarios, HPAI H5N1 could be sustained silently within LBMs with the time spent by poultry in markets and the frequency of introduction of new susceptible birds' dominant factors determining sustained silent spread. Compared with interventions applied in farms (i.e. stamping out, vaccination), our model shows that frequent rest days are an effective means to reduce HPAI transmission. Furthermore, our model predicts that full market closure would be only slightly more effective than rest days to reduce transmission. Strategies applied within markets could thus help to control transmission of the disease.

  6. Impact of the implementation of rest days in live bird markets on the dynamics of H5N1 highly pathogenic avian influenza

    PubMed Central

    Fournié, G.; Guitian, F. J.; Mangtani, P.; Ghani, A. C.

    2011-01-01

    Live bird markets (LBMs) act as a network ‘hub’ and potential reservoir of infection for domestic poultry. They may therefore be responsible for sustaining H5N1 highly pathogenic avian influenza (HPAI) virus circulation within the poultry sector, and thus a suitable target for implementing control strategies. We developed a stochastic transmission model to understand how market functioning impacts on the transmission dynamics. We then investigated the potential for rest days—periods during which markets are emptied and disinfected—to modulate the dynamics of H5N1 HPAI within the poultry sector using a stochastic meta-population model. Our results suggest that under plausible parameter scenarios, HPAI H5N1 could be sustained silently within LBMs with the time spent by poultry in markets and the frequency of introduction of new susceptible birds' dominant factors determining sustained silent spread. Compared with interventions applied in farms (i.e. stamping out, vaccination), our model shows that frequent rest days are an effective means to reduce HPAI transmission. Furthermore, our model predicts that full market closure would be only slightly more effective than rest days to reduce transmission. Strategies applied within markets could thus help to control transmission of the disease. PMID:21131332

  7. Clinical preparedness for severe pneumonia with highly pathogenic avian influenza A (H5N1): experiences with cases in Vietnam.

    PubMed

    Kudo, Koichiro; Binh, Nguyen Gia; Manabe, Toshie; Co, Dao Xuan; Tuan, Nguyen Dang; Izumi, Shinyu; Takasaki, Jin; Minh, Dang Hung; Thuy, Pham Thi Phuong; Van, Vu Thi Tuong; Hanh, Tran Thuy; Chau, Ngo Quy

    2012-12-01

    Avian influenza A (H5N1) in human presents a global pandemic threat, and preparedness is urgently required in high-risk countries. A retrospective chart review was conducted on 8 patients with H5N1 infection (aged 2-30 years; 3 fatal) who were hospitalized in Bach Mai Hospital (BMH), Vietnam, or in affiliated hospitals with consultation by physicians in BMH between 2007 and 2010. Demographic background, chest radiographs, and clinical and laboratory data were evaluated to determine the critical issues in relation to clinical outcomes. Treatment of 4 patients with acute respiratory distress syndrome (ARDS) (2 fatal) was assessed for renal replacement therapy using continuous hemodiafiltration (CHDF), polymyxin B-immobilized (PMX) hemoperfusion, or their combination. Patients had direct contact with dead/sick poultry infected with H5N1 virus or lived in areas where H5N1 poultry outbreaks had been reported at the same time as their illness. Time to initiation of oseltamivir from symptom onset was 2-6 days for survivors and 7-9 days for non-survivors. All patients except one had infiltrative shadows on chest radiographs on admission. Patients with delayed treatment developed ARDS. Renal replacement therapy contributed to patient survival, with improvement of oxygenation and a dramatic decrease in serum cytokine levels if initiated earlier. Understanding local H5N1 poultry outbreaks and chest radiography assist early diagnosis and initiation of antiviral treatment. Developing a network among local and tertiary care hospitals can reduce the time to initiation of treatment. CHDF and PMX hemoperfusion are possible candidates for effective treatment of ARDS with H5N1 if applied earlier. Copyright © 2012 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.

  8. Transcriptomic characterization of the novel avian-origin influenza A (H7N9) virus: specific host response and responses intermediate between avian (H5N1 and H7N7) and human (H3N2) viruses and implications for treatment options.

    PubMed

    Josset, Laurence; Zeng, Hui; Kelly, Sara M; Tumpey, Terrence M; Katze, Michael G

    2014-02-04

    A novel avian-origin H7N9 influenza A virus (IAV) emerged in China in 2013, causing mild to lethal human respiratory infections. H7N9 originated with multiple reassortment events between avian viruses and carries genetic markers of human adaptation. Determining whether H7N9 induces a host response closer to that with human or avian IAV is important in order to better characterize this emerging virus. Here we compared the human lung epithelial cell response to infection with A/Anhui/01/13 (H7N9) or highly pathogenic avian-origin H5N1, H7N7, or human seasonal H3N2 IAV. The transcriptomic response to H7N9 was highly specific to this strain but was more similar to the response to human H3N2 than to that to other avian IAVs. H7N9 and H3N2 both elicited responses related to eicosanoid signaling and chromatin modification, whereas H7N9 specifically induced genes regulating the cell cycle and transcription. Among avian IAVs, the response to H7N9 was closest to that elicited by H5N1 virus. Host responses common to H7N9 and the other avian viruses included the lack of induction of the antigen presentation pathway and reduced proinflammatory cytokine induction compared to that with H3N2. Repression of these responses could have an important impact on the immunogenicity and virulence of H7N9 in humans. Finally, using a genome-based drug repurposing approach, we identified several drugs predicted to regulate the host response to H7N9 that may act as potential antivirals, including several kinase inhibitors, as well as FDA-approved drugs, such as troglitazone and minocycline. Importantly, we validated that minocycline inhibited H7N9 replication in vitro, suggesting that our computational approach holds promise for identifying novel antivirals. Whether H7N9 will be the next pandemic influenza virus or will persist and sporadically infect humans from its avian reservoir, similar to H5N1, is not known yet. High-throughput profiling of the host response to infection allows rapid

  9. Epidemiology of human infections with highly pathogenic avian influenza A(H7N9) virus in Guangdong, 2016 to 2017.

    PubMed

    Kang, Min; Lau, Eric H Y; Guan, Wenda; Yang, Yuwei; Song, Tie; Cowling, Benjamin J; Wu, Jie; Peiris, Malik; He, Jianfeng; Mok, Chris Ka Pun

    2017-07-06

    We describe the epidemiology of highly pathogenic avian influenza (HPAI) A(H7N9) based on poultry market environmental surveillance and laboratory-confirmed human cases (n = 9) in Guangdong, China. We also compare the epidemiology between human cases of high- and low-pathogenic avian influenza A(H7N9) (n = 51) in Guangdong. Case fatality and severity were similar. Touching sick or dead poultry was the most important risk factor for HPAI A(H7N9) infections and should be highlighted for the control of future influenza A(H7N9) epidemics. This article is copyright of The Authors, 2017.

  10. Working safely with H5N1 viruses.

    PubMed

    García-Sastre, Adolfo

    2012-01-01

    Research on H5N1 influenza viruses has received much attention recently due to the possible dangers associated with newly developed avian H5N1 viruses that were derived from highly pathogenic avian viruses and are now transmissible among ferrets via respiratory droplets. An appropriate discussion, based on scientific facts about the risks that such viruses pose and on the biocontainment facilities and practices necessary for working safely with these viruses, is needed. Selecting the right level of biocontainment is critical for minimizing the risks associated with H5N1 research while simultaneously allowing an appropriately fast pace of discovery. Rational countermeasures for preventing the spread of influenza can be developed only by gaining a thorough knowledge of the molecular mechanisms at work in host specificity and transmission.

  11. Hydrazinium lanthanide oxalates: synthesis, structure and thermal reactivity of N2H5[Ln2(C2O4)4(N2H5)]·4H2O, Ln = Ce, Nd.

    PubMed

    De Almeida, Lucie; Grandjean, Stéphane; Rivenet, Murielle; Patisson, Fabrice; Abraham, Francis

    2014-03-28

    New hydrazinium lanthanide oxalates N2H5[Ln2(C2O4)4(N2H5)]·4H2O, Ln = Ce (Ce-HyOx) and Nd (Nd-HyOx), were synthesized by hydrothermal reaction at 150 °C between lanthanide nitrate, oxalic acid and hydrazine solutions. The structure of the Nd compound was determined from single-crystal X-ray diffraction data, space group P2₁/c with a = 16.315(4), b = 12.127(3), c = 11.430(2) Å, β = 116.638(4)°, V = 2021.4(7) Å(3), Z = 4, and R1 = 0.0313 for 4231 independent reflections. Two distinct neodymium polyhedra are formed, NdO9 and NdO8N, an oxygen of one monodentate oxalate in the former being replaced by a nitrogen atom of a coordinated hydrazinium ion in the latter. The infrared absorption band at 1005 cm(-1) confirms the coordination of N2H5(+) to the metal. These polyhedra are connected through μ2 and μ3 oxalate ions to form an anionic three-dimensional neodymium-oxalate arrangement. A non-coordinated charge-compensating hydrazinium ion occupies, with water molecules, the resulting tunnels. The N-N stretching frequencies of the infrared spectra demonstrate the existence of the two types of hydrazine ions. Thermal reactivity of these hydrazinium oxalates and of the mixed isotypic Ce/Nd (CeNd-HyOx) oxalate were studied by using thermogravimetric and differential thermal analyses coupled with gas analyzers, and high temperature X-ray diffraction. Under air, fine particles of CeO2 and Ce(0.5)Nd(0.5)O(1.75) are formed at low temperature from Ce-HyOx and CeNd-HyOx, respectively, thanks to a decomposition/oxidation process. Under argon flow, dioxymonocyanamides Ln2O2CN2 are formed.

  12. Poultry vaccination directed evolution of H9N2 low pathogenicity avian influenza viruses in Korea

    USDA-ARS?s Scientific Manuscript database

    Significant economic losses in the poultry industries have resulted from H9N2 low pathogenic avian influenza virus infections across North Africa, the Middle East and Asia. The present study investigated the evolutionary dynamics of H9N2 viruses circulating in Korea from 1996 to 2012. Our analysis o...

  13. Surveillance for highly pathogenic H5 avian influenza virus in synanthropic wildlife associated with poultry farms during an acute outbreak

    USDA-ARS?s Scientific Manuscript database

    In November 2014, a Eurasian strain H5N8 highly pathogenic avian influenza virus was detected in poultry in Canada. Introduced viruses were soon detected in the United States and within six months had spread to 21 states with more than 48 million poultry affected. In an effort to study potential mec...

  14. Risk factors associated with highly pathogenic avian influenza subtype H5N8 outbreaks on broiler duck farms in South Korea.

    PubMed

    Kim, W-H; An, J-U; Kim, J; Moon, O-K; Bae, S H; Bender, J B; Cho, S

    2018-04-19

    Highly Pathogenic Avian Influenza (HPAI) subtype H5N8 outbreaks occurred in poultry farms in South Korea in 2014 resulting in significant damage to the poultry industry. Between 2014 and 2016, the pandemic disease caused significant economic loss and social disruption. To evaluate the risk factors for HPAI infection in broiler duck farms, we conducted a retrospective case-control study on broiler duck farms. Forty-three farms with confirmed laboratories on premises were selected as the case group, and 43 HPAI-negative farms were designated as the control group. Control farms were matched based on farm location and were within a 3-km radius from the case premises. Spatial and environmental factors were characterized by site visit and plotted through a geographic information system (GIS). Univariable and multivariable logistic regression models were developed to assess possible risk factors associated with HPAI broiler duck farm infection. Four final variables were identified as risk factors in a final multivariable logistic model: "Farms with ≥7 flocks" (odds ratio [OR] = 6.99, 95% confidence interval [CI] 1.34-37.04), "Farm owner with ≥15 years of raising poultry career" (OR = 7.91, 95% CI 1.69-37.14), "Presence of any poultry farms located within 500 m of the farm" (OR = 6.30, 95% CI 1.08-36.93) and "Not using a faecal removal service" (OR = 27.78, 95% CI 3.89-198.80). This highlights that the HPAI H5N8 outbreaks in South Korea were associated with farm owner education, number of flocks and facilities and farm biosecurity. Awareness of these factors may help to reduce the spread of HPAI H5N8 across broiler duck farms in Korea during epidemics. Greater understanding of the risk factors for H5N8 may improve farm vulnerability to HPAI and other subtypes and help to establish policies to prevent re-occurrence. These findings are relevant to global prevention recommendations and intervention protocols. © 2018 Blackwell Verlag GmbH.

  15. Lack of virological and serological evidence for continued circulation of highly pathogenic avian influenza H5N8 virus in wild birds in the Netherlands, 14 November 2014 to 31 January 2016

    PubMed Central

    Poen, Marjolein J; Verhagen, Josanne H; Manvell, Ruth J; Brown, Ian; Bestebroer, Theo M; van der Vliet, Stefan; Vuong, Oanh; Scheuer, Rachel D; van der Jeugd, Henk P; Nolet, Bart A; Kleyheeg, Erik; Müskens, Gerhard J D M; Majoor, Frank A; Grund, Christian; Fouchier, Ron A M

    2016-01-01

    In 2014, H5N8 clade 2.3.4.4 highly pathogenic avian influenza (HPAI) viruses of the A/Goose/Guangdong/1/1996 lineage emerged in poultry and wild birds in Asia, Europe and North America. Here, wild birds were extensively investigated in the Netherlands for HPAI H5N8 virus (real-time polymerase chain reaction targeting the matrix and H5 gene) and antibody detection (haemagglutination inhibition and virus neutralisation assays) before, during and after the first virus detection in Europe in late 2014. Between 21 February 2015 and 31 January 2016, 7,337 bird samples were tested for the virus. One HPAI H5N8 virus-infected Eurasian wigeon (Anas penelope) sampled on 25 February 2015 was detected. Serological assays were performed on 1,443 samples, including 149 collected between 2007 and 2013, 945 between 14 November 2014 and 13 May 2015, and 349 between 1 September and 31 December 2015. Antibodies specific for HPAI H5 clade 2.3.4.4 were absent in wild bird sera obtained before 2014 and present in sera collected during and after the HPAI H5N8 emergence in Europe, with antibody incidence declining after the 2014/15 winter. Our results indicate that the HPAI H5N8 virus has not continued to circulate extensively in wild bird populations since the 2014/15 winter and that independent maintenance of the virus in these populations appears unlikely. PMID:27684783

  16. Highly Pathogenic Eurasian H5N8 Avian Influenza Outbreaks in Two Commercial Poultry Flocks in California.

    PubMed

    Stoute, Simone; Chin, Richard; Crossley, Beate; Gabriel Sentíes-Cué, C; Bickford, Arthur; Pantin-Jackwood, Mary; Breitmeyer, Richard; Jones, Annette; Carnaccini, Silvia; Shivaprasad, H L

    2016-09-01

    In January 2015, a highly pathogenic Eurasian lineage H5N8 avian influenza (AI) virus (AIV) was detected in a commercial meat turkey flock in Stanislaus County, CA. Approximately 3 wk later, a similar case was diagnosed in commercial brown layers from a different company located in Kings County, CA. Five 14-wk-old turkey hens were submitted to the California Animal Health and Food Safety Laboratory System (CAHFS), Turlock, and eleven 12-wk-old chickens were submitted to CAHFS, Tulare laboratory due to an acute increase in flock mortality. Gross lesions included enlarged and mottled pale spleens and pancreas in turkeys and chickens. Histologically, the major lesions observed in turkeys and chickens were splenitis, pancreatitis, encephalitis, and pneumonia. In both cases, diagnosis was based on real-time reverse transcriptase PCR (RRT-PCR), sequencing, and virus isolation from oropharyngeal and cloacal swabs. Confirmatory diagnosis and AIV characterization was done at the National Veterinary Services Laboratory, Ames, IA. The sequence of the AIV from both cases was 99% identical to an H5N8 AI virus (A/gyrfalcon/Washington/41088-6/2014) isolated from a captive gyrfalcon (Falco rusticolus) from Washington State in December 2014. Immunohistochemistry (IHC) performed on various tissues from both cases indicated a widespread AIV tissue distribution. Except for minor variations, the tissue distribution of the AI antigen was similar in the chickens and turkeys. There was positive IHC staining in the brain, spleen, pancreas, larynx, trachea, and lungs in both chickens and turkeys. Hearts, ovaries, and air sacs from the turkeys were also positive for the AI antigen. The liver sections from the chickens had occasional AI-positive staining in mononuclear cells, but the IHC on liver sections from the turkeys were negative. The bursa of Fabricius, small intestine, kidney, and skeletal muscle sections were negative for the AI antigen in both chickens and turkeys.

  17. Genetic analysis and biological characteristics of different internal gene origin H5N6 reassortment avian influenza virus in China in 2016.

    PubMed

    Sun, Wenqiang; Li, Jiaxin; Hu, Jiao; Jiang, Daxiu; Xing, Chaonan; Zhan, Tiansong; Liu, Xiufan

    2018-06-01

    Clade 2.3.4.4 of H5N6 subtype Avian Influenza Viruses (AIVs) has become dominant clade in South-East Asia. So far, a total of 16 cases of human infection, including 6 deaths, have been confirmed since 2014. In this study, we systematically investigated the genetic evolution and biological characteristics of these viruses. We first carried out phylogenetic and statistical analysis of all H5N6 viruses that were downloaded from Influenza Research Database, GISAID and isolates from our lab. We found that H5N6 AIVs continued to reassort with other AIVs subtypes since 2014. Among these H5N6 reassortments, four main gene types were identified: A (internal genes of H5N1-origin), B (PB2 of H6-origin, and others of H5N1-origin), C (internal genes of H9-origin) and D (PB2 of H6-origin and PB1of H3-origin, and others of H5N1). In addition, after several years of evolution, gene type D is currently the dominant gene type. To systematically compare the genetic and evolutionary characteristics and pathogenicity of these viruses, four H5N6 AIVs of different gene types were selected for further analysis. S4, XZ6, GD1602 and YZ587 virus represented gene type A, B, C and D, respectively. Their NA genes were all originated from H6 and their whole genome showed a high similarity with human isolates. All these isolates could both bind with SA-α2,3 Gal and SA-α2,6 Gal receptors. Pathogenicity test showed that these viruses were highly pathogenic in chickens, while YZ587 showed the lowest virulence. Moreover, XZ6 and S4 viruses were highly pathogenic in ducks and moderately pathogenic in mice, while GD1602 and YZ587 viruses were no-pathogenic in these animals. Interestingly, GD1602 and YZ587-like viruses were responsible for 4 and 2 human infection cases in 2016, respectively. Therefore, our study showed that the YZ587 virus which has mixed internal genes, showed lower virulence in avian species and mammals compared to other genotype viruses. Overall, our findings suggest that the H

  18. A(H5N1) Virus Evolution in South East Asia

    PubMed Central

    Gutiérrez, Ramona Alikiiteaga; Naughtin, Monica Jane; Horm, Srey Viseth; San, Sorn; Buchy, Philippe

    2009-01-01

    Highly Pathogenic Avian Influenza (HPAI) H5N1 virus is an ongoing public health and socio-economic challenge, particularly in South East Asia. H5N1 is now endemic in poultry in many countries, and represents a major pandemic threat. Here, we describe the evolution of H5N1 virus in South East Asia, the reassortment events leading to high genetic diversity in the region, and factors responsible for virus spread. The virus has evolved with genetic variations affecting virulence, drug-resistance, and adaptation to new host species. The constant surveillance of these changes is of primary importance in the global efforts of the scientific community. PMID:21994553

  19. Highly pathogenic avian influenza viruses and generation of novel reassortants,United States, 2014–2015

    USGS Publications Warehouse

    Dong-Hun Lee,; Justin Bahl,; Mia Kim Torchetti,; Mary Lea Killian,; Ip, Hon S.; David E Swayne,

    2016-01-01

    Asian highly pathogenic avian influenza A(H5N8) viruses spread into North America in 2014 during autumn bird migration. Complete genome sequencing and phylogenetic analysis of 32 H5 viruses identified novel H5N1, H5N2, and H5N8 viruses that emerged in late 2014 through reassortment with North American low-pathogenicity avian influenza viruses.

  20. Molecular characterization of avian influenza H5N1 virus in Egypt and the emergence of a novel endemic subclade

    PubMed Central

    El-Shesheny, Rabeh; Kandeil, Ahmed; Bagato, Ola; Maatouq, Asmaa M.; Moatasim, Yassmin; Rubrum, Adam; Song, Min-Suk; Webby, Richard J.

    2014-01-01

    Clade 2.2 highly pathogenic H5N1 viruses have been in continuous circulation in Egyptian poultry since 2006. Their persistence caused significant genetic drift that led to the reclassification of these viruses into subclades 2.2.1 and 2.2.1.1. Here, we conducted full-genome sequence and phylogenetic analyses of 45 H5N1 isolated during 2006–2013 through systematic surveillance in Egypt, and 53 viruses that were sequenced previously and available in the public domain. Results indicated that H5N1 viruses in Egypt continue to evolve and a new distinct cluster has emerged. Mutations affecting viral virulence, pathogenicity, transmission, receptor-binding preference and drug resistance were studied. In light of our findings that H5N1 in Egypt continues to evolve, surveillance and molecular studies need to be sustained. PMID:24722680