Sample records for h7n9 virus infection

  1. Influenza H7N9 and H9N2 Viruses: Coexistence in Poultry Linked to Human H7N9 Infection and Genome Characteristics

    PubMed Central

    Yu, Xinfen; Jin, Tao; Cui, Yujun; Pu, Xiaoying; Li, Jun; Xu, Jin; Liu, Guang; Jia, Huijue; Liu, Dan; Song, Shili; Yu, Yang; Xie, Li; Huang, Renjie; Ding, Hua; Kou, Yu; Zhou, Yinyan; Wang, Yayu; Xu, Xun; Yin, Ye; Wang, Jian; Guo, Chenyi; Yang, Xianwei; Hu, Liangping; Wu, Xiaopeng; Wang, Hailong; Liu, Jun; Zhao, Guoqiu; Zhou, Jiyong; Gao, George F.; Yang, Ruifu; Wang, Jun

    2014-01-01

    ABSTRACT Avian influenza virus A of the novel H7N9 reassortant subtype was recently found to cause severe human respiratory infections in China. Live poultry markets were suspected locations of the human H7N9 infection sources, based on the cases' exposure histories and sequence similarities between viral isolates. To explore the role of live poultry markets in the origin of the novel H7N9 virus, we systematically examined poultry and environmental specimens from local markets and farms in Hangzhou, using real-time reverse transcription-PCR (RT-PCR) as well as high-throughput next-generation sequencing (NGS). RT-PCR identified specimens positive for the H7 and N9 genomic segments in all of the 12 poultry markets epidemiologically linked to 10 human H7N9 cases. Chickens, ducks, and environmental specimens from the markets contained heavily mixed subtypes, including H7, N9, H9, and N2 and sometimes H5 and N1. The idea of the coexistence of H7N9 and H9N2 subtypes in chickens was further supported by metagenomic sequencing. In contrast, human H7N9 infection cases (n = 31) were all negative for H9N2 virus according to real-time RT-PCR. The six internal segments were indistinguishable for the H7N9 and H9N2 viruses. The H9, N2, and internal-segment sequences were very close to the sequence of the H9N2 virus circulating in chickens in China recently. Our results provide direct evidence that H9N2 strains coexisted with the novel human-pathogenic H7N9 influenza virus in epidemiologically linked live poultry markets. Avian influenza A virus of the H9N2 subtype likely made a recent contribution to the evolution of the H7N9 virus and continues to do so. IMPORTANCE Our results suggest that avian influenza A virus of the H9N2 subtype likely made a recent contribution to the evolution of the H7N9 virus, a novel reassortant avian influenza virus A subtype, and continues to do so. The finding helps shed light on how the H7N9 virus emerged, spread, and transmitted to humans. It is of

  2. Influenza H7N9 and H9N2 viruses: coexistence in poultry linked to human H7N9 infection and genome characteristics.

    PubMed

    Yu, Xinfen; Jin, Tao; Cui, Yujun; Pu, Xiaoying; Li, Jun; Xu, Jin; Liu, Guang; Jia, Huijue; Liu, Dan; Song, Shili; Yu, Yang; Xie, Li; Huang, Renjie; Ding, Hua; Kou, Yu; Zhou, Yinyan; Wang, Yayu; Xu, Xun; Yin, Ye; Wang, Jian; Guo, Chenyi; Yang, Xianwei; Hu, Liangping; Wu, Xiaopeng; Wang, Hailong; Liu, Jun; Zhao, Guoqiu; Zhou, Jiyong; Pan, Jingcao; Gao, George F; Yang, Ruifu; Wang, Jun

    2014-03-01

    Avian influenza virus A of the novel H7N9 reassortant subtype was recently found to cause severe human respiratory infections in China. Live poultry markets were suspected locations of the human H7N9 infection sources, based on the cases' exposure histories and sequence similarities between viral isolates. To explore the role of live poultry markets in the origin of the novel H7N9 virus, we systematically examined poultry and environmental specimens from local markets and farms in Hangzhou, using real-time reverse transcription-PCR (RT-PCR) as well as high-throughput next-generation sequencing (NGS). RT-PCR identified specimens positive for the H7 and N9 genomic segments in all of the 12 poultry markets epidemiologically linked to 10 human H7N9 cases. Chickens, ducks, and environmental specimens from the markets contained heavily mixed subtypes, including H7, N9, H9, and N2 and sometimes H5 and N1. The idea of the coexistence of H7N9 and H9N2 subtypes in chickens was further supported by metagenomic sequencing. In contrast, human H7N9 infection cases (n = 31) were all negative for H9N2 virus according to real-time RT-PCR. The six internal segments were indistinguishable for the H7N9 and H9N2 viruses. The H9, N2, and internal-segment sequences were very close to the sequence of the H9N2 virus circulating in chickens in China recently. Our results provide direct evidence that H9N2 strains coexisted with the novel human-pathogenic H7N9 influenza virus in epidemiologically linked live poultry markets. Avian influenza A virus of the H9N2 subtype likely made a recent contribution to the evolution of the H7N9 virus and continues to do so. Our results suggest that avian influenza A virus of the H9N2 subtype likely made a recent contribution to the evolution of the H7N9 virus, a novel reassortant avian influenza virus A subtype, and continues to do so. The finding helps shed light on how the H7N9 virus emerged, spread, and transmitted to humans. It is of considerable

  3. Avian Influenza A (H7N9) Virus

    MedlinePlus

    ... Variant Pandemic Other Asian Lineage Avian Influenza A (H7N9) Virus Language: English (US) Español Recommend on Facebook ... Guidance Laboratorian Guidance H7N9 Images Additional Information Asian H7N9 Outbreak Characterization Asian H7N9 virus infections in poultry ...

  4. H7N9 Influenza Virus Is More Virulent in Ferrets than 2009 Pandemic H1N1 Influenza Virus.

    PubMed

    Yum, Jung; Ku, Keun Bon; Kim, Hyun Soo; Seo, Sang Heui

    2015-12-01

    The novel H7N9 influenza virus has been infecting humans in China since February 2013 and with a mortality rate of about 40%. This study compared the pathogenicity of the H7N9 and 2009 pandemic H1N1 influenza viruses in a ferret model, which shows similar symptoms to those of humans infected with influenza viruses. The H7N9 influenza virus caused a more severe disease than did the 2009 pandemic H1N1 influenza virus. All of the ferrets infected with the H7N9 influenza virus had died by 6 days after infection, while none of those infected with the 2009 pandemic H1N1 influenza virus died. Ferrets infected with the H7N9 influenza virus had higher viral titers in their lungs than did those infected with the 2009 pandemic H1N1 influenza virus. Histological findings indicated that hemorrhagic pneumonia was caused by infection with the H7N9 influenza virus, but not with the 2009 pandemic H1N1 influenza virus. In addition, the lung tissues of ferrets infected with the H7N9 influenza virus contained higher levels of chemokines than did those of ferrets infected with the 2009 pandemic H1N1 influenza virus. This study suggests that close monitoring is needed to prevent human infection by the lethal H7N9 influenza virus.

  5. Pandemic potential of H7N9 influenza viruses

    PubMed Central

    Watanabe, Tokiko; Watanabe, Shinji; Maher, Eileen A.; Neumann, Gabriele; Kawaoka, Yoshihiro

    2014-01-01

    Avian influenza viruses rarely infect humans, but the recently emerged avian H7N9 influenza viruses have caused sporadic infections in humans in China, resulting in 440 confirmed cases with 122 fatalities as of May 16, 2014. In addition, epidemiologic surveys suggest that there have been asymptomatic or mild human infections with H7N9 viruses. These viruses replicate efficiently in mammals, show limited transmissibility in ferrets and guinea pigs, and possess mammalian-adapting amino acid changes that likely contribute to their ability to infect mammals. Here, we summarize the characteristic features of the novel H7N9 viruses and assess their pandemic potential. PMID:25264312

  6. A new reassortment of influenza A (H7N9) virus causing human infection in Beijing, 2014.

    PubMed

    Bi, Yuhai; Liu, Jingyuan; Xiong, Haofeng; Zhang, Yue; Liu, Di; Liu, Yingxia; Gao, George F; Wang, Beibei

    2016-05-27

    A 73-year-old man was confirmed to have an influenza A (H7N9) virus infection, and the causative agent A/Beijing/02/2014(H7N9) virus was isolated. Genetic and phylogenetic analyses revealed that the virus belonged to a novel genotype, which probably emerged and further reassorted with other H9 or H7 viruses in poultry before transmitting to humans. This virus caused a severe infection with high levels of cytokines and neutralizing antibodies. Eventually, the patient was cured after serially combined treatments. Taken together, our findings indicated that this novel genotype of the human H7N9 virus did not evolve directly from the first Beijing isolate A/Beijing/01/2013(H7N9), suggesting that the H7N9 virus has not obtained the ability for human-to-human transmissibility and the virus only evolves in poultry and then infects human by direct contact. Hence, the major measures to prevent human H7N9 virus infection are still to control and standardize the live poultry trade. Early antiviral treatment with combination therapies, including mechanical ventilation, nutrition support and symptomatic treatment, are effective for H7N9 infection.

  7. The genesis and source of the H7N9 influenza viruses causing human infections in China.

    PubMed

    Lam, Tommy Tsan-Yuk; Wang, Jia; Shen, Yongyi; Zhou, Boping; Duan, Lian; Cheung, Chung-Lam; Ma, Chi; Lycett, Samantha J; Leung, Connie Yin-Hung; Chen, Xinchun; Li, Lifeng; Hong, Wenshan; Chai, Yujuan; Zhou, Linlin; Liang, Huyi; Ou, Zhihua; Liu, Yongmei; Farooqui, Amber; Kelvin, David J; Poon, Leo L M; Smith, David K; Pybus, Oliver G; Leung, Gabriel M; Shu, Yuelong; Webster, Robert G; Webby, Richard J; Peiris, Joseph S M; Rambaut, Andrew; Zhu, Huachen; Guan, Yi

    2013-10-10

    A novel H7N9 influenza A virus first detected in March 2013 has since caused more than 130 human infections in China, resulting in 40 deaths. Preliminary analyses suggest that the virus is a reassortant of H7, N9 and H9N2 avian influenza viruses, and carries some amino acids associated with mammalian receptor binding, raising concerns of a new pandemic. However, neither the source populations of the H7N9 outbreak lineage nor the conditions for its genesis are fully known. Using a combination of active surveillance, screening of virus archives, and evolutionary analyses, here we show that H7 viruses probably transferred from domestic duck to chicken populations in China on at least two independent occasions. We show that the H7 viruses subsequently reassorted with enzootic H9N2 viruses to generate the H7N9 outbreak lineage, and a related previously unrecognized H7N7 lineage. The H7N9 outbreak lineage has spread over a large geographic region and is prevalent in chickens at live poultry markets, which are thought to be the immediate source of human infections. Whether the H7N9 outbreak lineage has, or will, become enzootic in China and neighbouring regions requires further investigation. The discovery here of a related H7N7 influenza virus in chickens that has the ability to infect mammals experimentally, suggests that H7 viruses may pose threats beyond the current outbreak. The continuing prevalence of H7 viruses in poultry could lead to the generation of highly pathogenic variants and further sporadic human infections, with a continued risk of the virus acquiring human-to-human transmissibility.

  8. Transmissibility of novel H7N9 and H9N2 avian influenza viruses between chickens and ferrets.

    PubMed

    Ku, Keun Bon; Park, Eun Hye; Yum, Jung; Kim, Heui Man; Kang, Young Myong; Kim, Jeong Cheol; Kim, Ji An; Kim, Hyun Soo; Seo, Sang Heui

    2014-02-01

    Previous studies have shown that the H7N9 avian influenza virus cannot be transmitted efficiently between ferrets via respiratory droplets. Here, we studied the infectivity of the H7N9 avian influenza virus in chickens and its transmissibility from infected to naïve chickens and ferrets. The H7N9 virus (A/Anhui/1/2013) replicated poorly in chickens and could not be transmitted efficiently from infected chickens to naïve chickens and ferrets. H7N9 virus was shed from chicken tracheae for only 2 days after infection and from chicken cloacae for only 1 day after infection, while the H9N2 avian influenza virus, which is endemic in chickens in many Asian countries, was shed from tracheae and cloacae for 8 days after infection. Taken together, our results suggest that chickens may be a poor agent of transmission for the H7N9 virus to other chickens and to mammals, including humans. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Avian influenza A (H7N9) virus infection in humans: epidemiology, evolution, and pathogenesis.

    PubMed

    Husain, Matloob

    2014-12-01

    New human influenza A virus strains regularly emerge causing seasonal epidemics and occasional pandemics. Lately, several zoonotic avian influenza A strains have been reported to directly infect humans. In early 2013, a novel avian influenza A virus (H7N9) strain was discovered in China to cause severe respiratory disease in humans. Since then, over 450 human cases of H7N9 infection have been discovered and 165 of them have died. Multiple epidemiological, phylogenetic, in vivo, and in vitro studies have been done to determine the origin and pathogenesis of novel H7N9 strain. This article reviews the literature related to the epidemiology, evolution, and pathogenesis of the H7N9 strain since its discovery in February 2013 till August 2014. The data available so far indicate that H7N9 was originated by a two-step reassortment process in birds and transmitted to humans through direct contact with live-bird markets. H7N9 is a low-pathogenic avian virus and contains several molecular signatures for adaptation in mammals. The severity of the respiratory disease caused by novel H7N9 virus in humans can be partly attributed to the age, sex, and underlying medical conditions of the patients. A universal influenza vaccine is not available, though several strain-specific H7N9 candidate vaccine viruses have been developed. Further, novel H7N9 virus is resistant to antiviral drug amantadine and some H7N9 isolates have acquired the resistance to neuraminidase-inhibitors. Therefore, constant surveillance and prompt control measures combined with novel research approaches to develop alternative and effective anti-influenza strategies are needed to overcome influenza A virus. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Avian influenza virus H9N2 infections in farmed minks.

    PubMed

    Zhang, Chuanmei; Xuan, Yang; Shan, Hu; Yang, Haiyan; Wang, Jianlin; Wang, Ke; Li, Guimei; Qiao, Jian

    2015-11-02

    The prevalence of avian H9N2 viruses throughout Asia, along with their demonstrated ability to infect mammals, puts them high on the list of influenza viruses with pandemic potential for humans. In this study, we investigated whether H9N2 viruses could infect farmed minks. First, we conducted a serological survey for avian influenza virus antibodies on a random sample of the field-trial population of farmed minks. Then we inoculated farmed minks with A/Chicken/Hebei/4/2008 H9N2 viruses and observed the potential pathogenicity of H9N2 virus and virus shedding in infected minks. H9 influenza antibodies could be detected in most farmed minks with a higher seropositivity, which indicated that farmed minks had the high prevalence of exposure to H9 viruses. After infection, the minks displayed the slight clinical signs including lethargy and initial weight loss. The infected lungs showed the mild diffuse pneumonia with thickened alveolar walls and inflammatory cellular infiltration. Influenza virus detection showed that viruses were detected in the allantoic fluids inoculated supernatant of lung tissues at 3 and 7 days post-infection (dpi), and found in the nasal swabs of H9N2-infected minks at 3-11 dpi, suggesting that H9N2 viruses replicated in the respiratory organ, were then shed outwards. HI antibody test showed that antibody levels began to rise at 7 dpi. Our data provided the serological and experimental evidences that strongly suggested farmed minks under the natural state were susceptible to H9N2 viral infection and might be the H9N2 virus carriers. It is imperative to strengthen the H9N2 viral monitoring in farmed minks and pay urgent attention to prevent and control new influenza viruses pandemic prevalence.

  11. Pathogenicity of the Novel A/H7N9 Influenza Virus in Mice

    PubMed Central

    Mok, Chris Ka Pun; Lee, Horace Hok Yeung; Chan, Michael Chi Wai; Sia, Sin Fun; Lestra, Maxime; Nicholls, John Malcolm; Zhu, Huachen; Guan, Yi; Peiris, Joseph Malik Sriyal

    2013-01-01

    ABSTRACT A novel avian-origin influenza A/H7N9 virus infecting humans was first identified in March 2013 and, as of 30 May 2013, has caused 132 human infections leading to 33 deaths. Phylogenetic studies suggest that this virus is a reassortant, with the surface hemagglutinin (HA) and neuraminidase (NA) genes being derived from duck and wild-bird viruses, respectively, while the six “internal gene segments” were derived from poultry H9N2 viruses. Here we determine the pathogenicity of a human A/Shanghai/2/2013 (Sh2/H7N9) virus in healthy adult mice in comparison with that of A/chicken/Hong Kong/HH8/2010 (ck/H9N2) virus, highly pathogenic avian influenza (HPAI) A/Hong Kong/483/1997 (483/H5N1) virus, and a duck influenza A H7N9 virus of different genetic derivation, A/duck/Jiangxi/3286/2009 (dk/H7N9). Intranasal infection of mice with Sh2/H7N9 virus doses of 103, 104, and 105 PFU led to significant weight loss without fatality. This virus was more pathogenic than dk/H7N9 and ck/H9N2 virus, which has six internal gene segments that are genetically similar to Sh2/H7N9. Sh2/H7N9 replicated well in the nasal cavity and lung, but there was no evidence of virus dissemination beyond the respiratory tract. Mice infected with Sh2/H7N9 produced higher levels of proinflammatory cytokines in the lung and serum than did ck/H9N2 and dk/H7N9 but lower levels than 483/H5N1. Cytokine induction was positively correlated with virus load in the lung at early stages of infection. Our results suggest that Sh2/H7N9 virus is able to replicate and cause disease in mice without prior adaptation but is less pathogenic than 483/H5N1 virus. PMID:23820393

  12. Cross-reactivity between avian influenza A (H7N9) virus and divergent H7 subtypic- and heterosubtypic influenza A viruses.

    PubMed

    Guo, Li; Wang, Dayan; Zhou, Hongli; Wu, Chao; Gao, Xin; Xiao, Yan; Ren, Lili; Paranhos-Baccalà, Gláucia; Shu, Yuelong; Jin, Qi; Wang, Jianwei

    2016-02-24

    The number of human avian H7N9 influenza infections has been increasing in China. Understanding their antigenic and serologic relationships is crucial for developing diagnostic tools and vaccines. Here, we evaluated the cross-reactivities and neutralizing activities among H7 subtype influenza viruses and between H7N9 and heterosubtype influenza A viruses. We found strong cross-reactivities between H7N9 and divergent H7 subtypic viruses, including H7N2, H7N3, and H7N7. Antisera against H7N2, H7N3, and H7N7 could also effectively neutralize two distinct H7N9 strains. Two-way cross-reactivities exist within group 2, including H3 and H4, whereas one-way cross-reactivities were found across other groups, including H1, H10, H9, and H13. Our data indicate that the hemaglutinins from divergent H7 subtypes may facilitate the development of vaccines for distinct H7N9 infections. Moreover, serologic diagnoses for H7N9 infections need to consider possible interference from the cross-reactivity of H7N9 with other subtype influenza viruses.

  13. Poultry farms as a source of avian influenza A (H7N9) virus reassortment and human infection

    PubMed Central

    Wu, Donglin; Zou, Shumei; Bai, Tian; Li, Jing; Zhao, Xiang; Yang, Lei; Liu, Hongmin; Li, Xiaodan; Yang, Xianda; Xin, Li; Xu, Shuang; Zou, Xiaohui; Li, Xiyan; Wang, Ao; Guo, Junfeng; Sun, Bingxin; Huang, Weijuan; Zhang, Ye; Li, Xiang; Gao, Rongbao; Shen, Bo; Chen, Tao; Dong, Jie; Wei, Hejiang; Wang, Shiwen; Li, Qun; Li, Dexin; Wu, Guizhen; Feng, Zijian; Gao, George F.; Wang, Yu; Wang, Dayan; Fan, Ming; Shu, Yuelong

    2015-01-01

    Live poultry markets are a source of human infection with avian influenza A (H7N9) virus. On February 21, 2014, a poultry farmer infected with H7N9 virus was identified in Jilin, China, and H7N9 and H9N2 viruses were isolated from the patient's farm. Reassortment between these subtype viruses generated five genotypes, one of which caused the human infection. The date of H7N9 virus introduction to the farm is estimated to be between August 21, 2013 (95% confidence interval [CI] June 6, 2013-October 6, 2013) and September 25, 2013 (95% CI May 28, 2013-January 4, 2014), suggesting that the most likely source of virus introduction was the first batch of poultry purchased in August 2013. The reassortment event that led to the human virus may have occurred between January 2, 2014 (95% CI November 8, 2013-February 12, 2014) and February 12, 2014 (95% CI January 19, 2014-February 18, 2014). Our findings demonstrate that poultry farms could be a source of reassortment between H7N9 virus and H9N2 virus as well as human infection, which emphasizes the importance to public health of active avian influenza surveillance at poultry farms. PMID:25591105

  14. Cross-reactivity between avian influenza A (H7N9) virus and divergent H7 subtypic- and heterosubtypic influenza A viruses

    PubMed Central

    Guo, Li; Wang, Dayan; Zhou, Hongli; Wu, Chao; Gao, Xin; Xiao, Yan; Ren, Lili; Paranhos-Baccalà, Gláucia; Shu, Yuelong; Jin, Qi; Wang, Jianwei

    2016-01-01

    The number of human avian H7N9 influenza infections has been increasing in China. Understanding their antigenic and serologic relationships is crucial for developing diagnostic tools and vaccines. Here, we evaluated the cross-reactivities and neutralizing activities among H7 subtype influenza viruses and between H7N9 and heterosubtype influenza A viruses. We found strong cross-reactivities between H7N9 and divergent H7 subtypic viruses, including H7N2, H7N3, and H7N7. Antisera against H7N2, H7N3, and H7N7 could also effectively neutralize two distinct H7N9 strains. Two-way cross-reactivities exist within group 2, including H3 and H4, whereas one-way cross-reactivities were found across other groups, including H1, H10, H9, and H13. Our data indicate that the hemaglutinins from divergent H7 subtypes may facilitate the development of vaccines for distinct H7N9 infections. Moreover, serologic diagnoses for H7N9 infections need to consider possible interference from the cross-reactivity of H7N9 with other subtype influenza viruses. PMID:26907865

  15. Divergent H7 immunogens offer protection from H7N9 virus challenge.

    PubMed

    Krammer, Florian; Albrecht, Randy A; Tan, Gene S; Margine, Irina; Hai, Rong; Schmolke, Mirco; Runstadler, Jonathan; Andrews, Sarah F; Wilson, Patrick C; Cox, Rebecca J; Treanor, John J; García-Sastre, Adolfo; Palese, Peter

    2014-04-01

    The emergence of avian H7N9 viruses in humans in China has renewed concerns about influenza pandemics emerging from Asia. Vaccines are still the best countermeasure against emerging influenza virus infections, but the process from the identification of vaccine seed strains to the distribution of the final product can take several months. In the case of the 2009 H1N1 pandemic, a vaccine was not available before the first pandemic wave hit and therefore came too late to reduce influenza morbidity. H7 vaccines based on divergent isolates of the Eurasian and North American lineages have been tested in clinical trials, and seed strains and reagents are already available and can potentially be used initially to curtail influenza-induced disease until a more appropriately matched H7N9 vaccine is ready. In a challenge experiment in the mouse model, we assessed the efficacy of both inactivated virus and recombinant hemagglutinin vaccines made from seed strains that are divergent from H7N9 from each of the two major H7 lineages. Furthermore, we analyzed the cross-reactive responses of sera from human subjects vaccinated with heterologous North American and Eurasian lineage H7 vaccines to H7N9. Vaccinations with inactivated virus and recombinant hemagglutinin protein preparations from both lineages raised hemagglutination-inhibiting antibodies against H7N9 viruses and protected mice from stringent viral challenges. Similar cross-reactivity was observed in sera of human subjects from a clinical trial with a divergent H7 vaccine. Existing H7 vaccine candidates based on divergent strains could be used as a first line of defense against an H7N9 pandemic. In addition, this also suggests that H7N9 vaccines that are currently under development might be stockpiled and used for divergent avian H7 strains that emerge in the future. Sporadic human infections with H7N9 viruses started being reported in China in the early spring of 2013. Despite a significant drop in the number of

  16. Prolonged evolution of virus-specific memory T cell immunity post severe avian influenza A (H7N9) virus infection.

    PubMed

    Zhao, Min; Chen, Junbo; Tan, Shuguang; Dong, Tao; Jiang, Hui; Zheng, Jiandong; Quan, Chuansong; Liao, Qiaohong; Zhang, Hangjie; Wang, Xiling; Wang, Qianli; Bi, Yuhai; Liu, Fengfeng; Feng, Luzhao; Horby, Peter W; Klenerman, Paul; Gao, George F; Liu, William J; Yu, Hongjie

    2018-06-20

    Since 2013, influenza A/H7N9 has emerged as the commonest avian influenza subtype causing human infection, and is associated with a high fatality risk. However, the characteristics of immune memory in patients who have recovered from H7N9 infection are not well understood. We assembled a cohort of forty-five H7N9 survivors followed for up to 15 months after infection. Humoral and cellular immune responses were analyzed in sequential samples obtained at 1.5-4 months, 6-8 months and 12-15 months post-infection. H7N9-specific antibody concentrations declined over time, and protective antibodies persisted longer in severely ill patients admitted to ICU and patients presenting with ARDS than that in patients with mild disease. Frequencies of virus-specific IFN-γ secreting T cells were lower in critically ill patients requiring ventilation than those in patients without ventilation within four months after infection. The percentages of H7N9-specific IFN-γ secreting T cells tended to increase over time in patients ≥60 years or critically ill patients requiring ventilation. Elevated levels of antigen-specific CD8 + T cells expressing lung-homing marker CD49a were observed at 6-8 months after H7N9 infection compared to samples obtained at 1.5-4 months. Our findings indicate the prolonged reconstruction and evolution of virus-specific T cell immunity in older or critically ill patients, and provide implications for T-cell directed immunization strategies. IMPORTANCE Avian influenza A H7N9 remains a major threat to public health. However, no previous studies have determined the characteristics and dynamics of virus specific T cell immune memory in patients who have recovered from H7N9 infection. Our findings showed that establishment of H7N9-specific T cell memory after H7N9 infection was prolonged in older and severely affected patients. Severely ill patients mounted lower T cell responses in the first 4 months after infection, while T cell responses tended to increase

  17. [Advances on epidemiological research of human infections with novel avian influenza A (H7N9) virus].

    PubMed

    Wang, Q M; Liu, S L; Chen, E F

    2017-02-06

    Human infections with novel avian influenza A(H7N9)virus was an emerging infectious disease discovered in March, 2013. As of June30, 2016, 770 cases of H7N9 were reported in worldwide including 315 deaths with 40.9% of high case fatality rate. Yangtze River Delta and Pearl River Delta were the high-prevalence area. Formerly, the cases of H7N9 were concentrated on the municipalities. However, most of the case-patients were from smaller cities or rural areas nowadays. The H7N9 human infections mainly occurred in winter and spring every waves as similar as seasonal and H5N1 human infections. Middle aged and old (the median age was 61 years) male patients were occupied the large proportion among the cases of H7N9. In addition, the phenomenon of the limited and unsustained human-to-human transmission were existed. At present, the 4 major epidemic waves had happened and human infections with novel avian influenza A (H7N9) virus could be outbreak regularly in China. In this paper, the pathogenic characteristics and disease distribution of H7N9 influenza A viruses were elaborated, with both transmission factors and control measures, which were helpful to provide the scientific evidence for prevention and control in H7N9avian influenza epidemic.

  18. Influenza A(H7N9) Virus Transmission between Finches and Poultry

    PubMed Central

    Jones, Jeremy C.; Sonnberg, Stephanie; Webby, Richard J.

    2015-01-01

    Low pathogenicity avian influenza A(H7N9) virus has been detected in poultry since 2013, and the virus has caused >450 infections in humans. The mode of subtype H7N9 virus transmission between avian species remains largely unknown, but various wild birds have been implicated as a source of transmission. H7N9 virus was recently detected in a wild sparrow in Shanghai, China, and passerine birds, such as finches, which share space and resources with wild migratory birds, poultry, and humans, can be productively infected with the virus. We demonstrate that interspecies transmission of H7N9 virus occurs readily between society finches and bobwhite quail but only sporadically between finches and chickens. Inoculated finches are better able to infect naive poultry than the reverse. Transmission occurs through shared water but not through the airborne route. It is therefore conceivable that passerine birds may serve as vectors for dissemination of H7N9 virus to domestic poultry. PMID:25811839

  19. Human Infection with Highly Pathogenic Avian Influenza A(H7N9) Virus, China

    PubMed Central

    Ke, Changwen; Mok, Chris Ka Pun; Zhu, Wenfei; Zhou, Haibo; He, Jianfeng; Guan, Wenda; Wu, Jie; Song, Wenjun; Wang, Dayan; Liu, Jiexiong; Lin, Qinhan; Chu, Daniel Ka Wing; Yang, Lei; Zhong, Nanshan; Peiris, Joseph Sriyal Malik

    2017-01-01

    The recent increase in zoonotic avian influenza A(H7N9) disease in China is a cause of public health concern. Most of the A(H7N9) viruses previously reported have been of low pathogenicity. We report the fatal case of a patient in China who was infected with an A(H7N9) virus having a polybasic amino acid sequence at its hemagglutinin cleavage site (PEVPKRKRTAR/GL), a sequence suggestive of high pathogenicity in birds. Its neuraminidase also had R292K, an amino acid change known to be associated with neuraminidase inhibitor resistance. Both of these molecular features might have contributed to the patient’s adverse clinical outcome. The patient had a history of exposure to sick and dying poultry, and his close contacts had no evidence of A(H7N9) disease, suggesting human-to-human transmission did not occur. Enhanced surveillance is needed to determine whether this highly pathogenic avian influenza A(H7N9) virus will continue to spread. PMID:28580899

  20. Human Infection with Highly Pathogenic Avian Influenza A(H7N9) Virus, China.

    PubMed

    Ke, Changwen; Mok, Chris Ka Pun; Zhu, Wenfei; Zhou, Haibo; He, Jianfeng; Guan, Wenda; Wu, Jie; Song, Wenjun; Wang, Dayan; Liu, Jiexiong; Lin, Qinhan; Chu, Daniel Ka Wing; Yang, Lei; Zhong, Nanshan; Yang, Zifeng; Shu, Yuelong; Peiris, Joseph Sriyal Malik

    2017-07-01

    The recent increase in zoonotic avian influenza A(H7N9) disease in China is a cause of public health concern. Most of the A(H7N9) viruses previously reported have been of low pathogenicity. We report the fatal case of a patient in China who was infected with an A(H7N9) virus having a polybasic amino acid sequence at its hemagglutinin cleavage site (PEVPKRKRTAR/GL), a sequence suggestive of high pathogenicity in birds. Its neuraminidase also had R292K, an amino acid change known to be associated with neuraminidase inhibitor resistance. Both of these molecular features might have contributed to the patient's adverse clinical outcome. The patient had a history of exposure to sick and dying poultry, and his close contacts had no evidence of A(H7N9) disease, suggesting human-to-human transmission did not occur. Enhanced surveillance is needed to determine whether this highly pathogenic avian influenza A(H7N9) virus will continue to spread.

  1. China is closely monitoring an increase in infection with avian influenza A (H7N9) virus.

    PubMed

    Tang, Qi; Shao, Meiying; Xu, Lingzhong

    2017-03-22

    The fifth outbreak of human infection with avian influenza A (H7N9) virus has struck far and wide in China. The number of cases of infection with the avian influenza A (H7N9) suddenly increased in 2013-2014, but the number of cases reported this winter has exceeded the number reported in all previous seasons. Given this situation, the National Health and Family Planning Commission issued updated Chinese guidelines (2017 version) on diagnosis and treatment of infection with the avian influenza A (H7N9) virus on January 24, 2017. In addition, the Chinese Government closed many live poultry markets in urban and rural areas in a number of provinces and the Government has taken proactive measures to surveil, respond to, and prevent potential pandemics involving the avian influenza A (H7N9) virus.

  2. H7N9 influenza A virus in turkeys in Minnesota

    USGS Publications Warehouse

    Lebarbenchon, Camille; Pedersen, J.C.; Sreevatsan, Srinand; Ramey, Andy M.; Dugan, Vivien G.; Halpin, R.A.; Ferro, Paul A.; Lupiani, B.; Enomoto, Shinichiro; Poulson, Rebecca L.; Smeltzer, M.; Cardona, Carol J.; Tompkins, S.; Wentworth, D.E.; Stallknecht, D.E.; Brown, J.

    2015-01-01

    Introductions of H7 Influenza A virus (IAV) from wild birds into poultry have been documented worldwide, resulting in varying degrees of morbidity and mortality. H7 IAV infection in domestic poultry has served as a source of human infection and disease. We report the detection of H7N9 subtype IAV in Minnesota turkey farms during 2009 and 2011. The full-genome was sequenced from eight isolates as well as the hemagglutinin (HA) and neuraminidase (NA) gene segments of H7 and N9 virus subtypes for 108 isolates from North American wild birds between 1986 and 2012. Through maximum likelihood and coalescent phylogenetic analyses, we identified the recent H7 and N9 IAV ancestors of the turkey-origin H7N9 IAV, estimated the time and geographic origin of the ancestral viruses, and determined the relatedness between the 2009 and the 2011 turkey-origin H7N9 IAV. Analyses supported that the 2009 and the 2011 viruses were distantly related genetically, suggesting that the two outbreaks arose from independent introduction events from wild birds. Our findings further support that the 2011 MN turkey-origin H7N9 virus was closely related to H7N9 IAV isolated in poultry in Nebraska during the same year. Although the precise origin of the wild-bird donor of the turkey-origin H7N9 IAV could not be determined, our findings suggest that, for both the NA and HA gene segments, the MN turkey-origin H7N9 viruses were related to viruses circulating in wild birds between 2006 and 2011 in the Mississippi flyway.

  3. An H5N1-based matrix protein 2 ectodomain tetrameric peptide vaccine provides cross-protection against lethal infection with H7N9 influenza virus.

    PubMed

    Leung, Ho-Chuen; Chan, Chris Chung-Sing; Poon, Vincent Kwok-Man; Zhao, Han-Jun; Cheung, Chung-Yan; Ng, Fai; Huang, Jian-Dong; Zheng, Bo-Jian

    2015-04-01

    In March 2013, a patient infected with a novel avian influenza A H7N9 virus was reported in China. Since then, there have been 458 confirmed infection cases and 177 deaths. The virus contains several human-adapted markers, indicating that H7N9 has pandemic potential. The outbreak of this new influenza virus highlighted the need for the development of universal influenza vaccines. Previously, we demonstrated that a tetrameric peptide vaccine based on the matrix protein 2 ectodomain (M2e) of the H5N1 virus (H5N1-M2e) could protect mice from lethal infection with different clades of H5N1 and 2009 pandemic H1N1 influenza viruses. In this study, we investigated the cross-protection of H5N1-M2e against lethal infection with the new H7N9 virus. Although five amino acid differences existed at positions 13, 14, 18, 20, and 21 between M2e of H5N1 and H7N9, H5N1-M2e vaccination with either Freund's adjuvant or the Sigma adjuvant system (SAS) induced a high level of anti-M2e antibody, which cross-reacted with H7N9-M2e peptide. A mouse-adapted H7N9 strain, A/Anhui/01/2013m, was used for lethal challenge in animal experiments. H5N1-M2e vaccination provided potent cross-protection against lethal challenge of the H7N9 virus. Reduced viral replication and histopathological damage of mouse lungs were also observed in the vaccinated mice. Our results suggest that the tetrameric H5N1-M2e peptide vaccine could protect against different subtypes of influenza virus infections. Therefore, this vaccine may be an ideal candidate for developing a universal vaccine to prevent the reemergence of avian influenza A H7N9 virus and the emergence of potential novel reassortants of influenza virus.

  4. Human H7N9 virus induces a more pronounced pro-inflammatory cytokine but an attenuated interferon response in human bronchial epithelial cells when compared with an epidemiologically-linked chicken H7N9 virus.

    PubMed

    To, Kelvin K W; Lau, Candy C Y; Woo, Patrick C Y; Lau, Susanna K P; Chan, Jasper F W; Chan, Kwok-Hung; Zhang, Anna J X; Chen, Honglin; Yuen, Kwok-Yung

    2016-03-15

    Avian influenza virus H7N9 has jumped species barrier, causing sporadic human infections since 2013. We have previously isolated an H7N9 virus from a patient, and an H7N9 virus from a chicken in a live poultry market where the patient visited during the incubation period. These two viruses were genetically highly similar. This study sought to use a human bronchial epithelial cell line model to infer the virulence of these H7N9 viruses in humans. Human bronchial epithelial cell line Calu-3 was infected with two H7N9 viruses (human H7N9-HU and chicken H7N9-CK), a human H5N1 virus and a human 2009 pandemic H1N1 virus. The infected cell lysate was collected at different time points post-infection for the determination of the levels of pro-inflammatory cytokines (tumor necrosis factor α [TNF-α] and interleukin 6 [IL-6]), anti-inflammatory cytokines (interleukin 10 [IL-10] and transforming growth factor beta [TGF-β]), chemokines (interleukin 8 [IL-8] and monocyte chemoattractant protein 1 [MCP-1]), and interferons (interferon β [IFN-β] and interferon lambda 1 [IFNL1]). The viral load in the cell lysate was also measured. Comparison of the human and chicken H7N9 viruses showed that H7N9-HU induced significantly higher levels of TNF-α at 12 h post-infection, and significantly higher levels of IL-8 from 12 to 48 h post-infection than those of H7N9-CK. However, the level of IFNL1 was lower for H7N9-HU than that of H7N9-CK at 48 h post-infection (P < 0.001). H7N9-HU had significantly higher viral loads than H7N9-CK at 3 and 6 h post-infection. H5N1 induced significantly higher levels of TNF-α, IL-6, IL-8, IL-10 and MCP-1 than those of H7N9 viruses at 48 h post-infection. Conversely, H1N1 induced lower levels of TNF-α, IL-10, MCP-1, IFNL1 and IFN-β when compared with H7N9 viruses at the same time point. H7N9-HU induced higher levels of pro-inflammatory IL-6 and IL-8 and exhibited a more rapid viral replication than H7N9-CK. However, the level of antiviral IFNL1 was

  5. Dissemination, divergence and establishment of H7N9 influenza viruses in China.

    PubMed

    Lam, Tommy Tsan-Yuk; Zhou, Boping; Wang, Jia; Chai, Yujuan; Shen, Yongyi; Chen, Xinchun; Ma, Chi; Hong, Wenshan; Chen, Yin; Zhang, Yanjun; Duan, Lian; Chen, Peiwen; Jiang, Junfei; Zhang, Yu; Li, Lifeng; Poon, Leo Lit Man; Webby, Richard J; Smith, David K; Leung, Gabriel M; Peiris, Joseph S M; Holmes, Edward C; Guan, Yi; Zhu, Huachen

    2015-06-04

    Since 2013 the occurrence of human infections by a novel avian H7N9 influenza virus in China has demonstrated the continuing threat posed by zoonotic pathogens. Although the first outbreak wave that was centred on eastern China was seemingly averted, human infections recurred in October 2013 (refs 3-7). It is unclear how the H7N9 virus re-emerged and how it will develop further; potentially it may become a long-term threat to public health. Here we show that H7N9 viruses have spread from eastern to southern China and become persistent in chickens, which has led to the establishment of multiple regionally distinct lineages with different reassortant genotypes. Repeated introductions of viruses from Zhejiang to other provinces and the presence of H7N9 viruses at live poultry markets have fuelled the recurrence of human infections. This rapid expansion of the geographical distribution and genetic diversity of the H7N9 viruses poses a direct challenge to current disease control systems. Our results also suggest that H7N9 viruses have become enzootic in China and may spread beyond the region, following the pattern previously observed with H5N1 and H9N2 influenza viruses.

  6. Infectivity, transmission, and pathology of human-isolated H7N9 influenza virus in ferrets and pigs.

    PubMed

    Zhu, H; Wang, D; Kelvin, D J; Li, L; Zheng, Z; Yoon, S-W; Wong, S-S; Farooqui, A; Wang, J; Banner, D; Chen, R; Zheng, R; Zhou, J; Zhang, Y; Hong, W; Dong, W; Cai, Q; Roehrl, M H A; Huang, S S H; Kelvin, A A; Yao, T; Zhou, B; Chen, X; Leung, G M; Poon, L L M; Webster, R G; Webby, R J; Peiris, J S M; Guan, Y; Shu, Y

    2013-07-12

    The emergence of the H7N9 influenza virus in humans in Eastern China has raised concerns that a new influenza pandemic could occur. Here, we used a ferret model to evaluate the infectivity and transmissibility of A/Shanghai/2/2013 (SH2), a human H7N9 virus isolate. This virus replicated in the upper and lower respiratory tracts of the ferrets and was shed at high titers for 6 to 7 days, with ferrets showing relatively mild clinical signs. SH2 was efficiently transmitted between ferrets via direct contact, but less efficiently by airborne exposure. Pigs were productively infected by SH2 and shed virus for 6 days but were unable to transmit the virus to naïve pigs or ferrets. Under appropriate conditions, human-to-human transmission of the H7N9 virus may be possible.

  7. [Epidemiology of human infection with avian influenza A(H7N9) virus in China, 2013-2017].

    PubMed

    Han, D D; Han, C X; Li, L Y; Wang, M; Yang, J H; Li, M

    2018-01-10

    Objective: To understand the epidemiological characteristics of human infection with avian influenza A (H7N9) virus in China, and provide evidence for the prevention and control of human infection with H7N9 virus. Methods: The published incidence data of human infection with H7N9 virus in China from March 2013 to April 2017 were collected. Excel 2007 software was used to perform the analysis. The characteristics of distribution of the disease, exposure history, cluster of the disease were described. Results: By the end of April 2017, a total of 1 416 cases of human infection with H7N9 virus were confirmed in China, including 559 deaths, the case fatality rate was 39.5%. In 2016, the case number was lowest (127 cases), with the highest fatality rate (57.5%). The first three provinces with high case numbers were Zhejiang, Guangdong and Jiangsu. The median age of the cases was 55 years and the male to female ratio was 2.3∶1. Up to 66% of cases had clear live poultry exposure history before illness onset, 31% of cases had unknown exposure history and only 3% of the cases had no live poultry exposure history. There were 35 household clusters (5 in 2013, 9 in 2014, 6 in 2015, 5 in 2016, 10 in 2017), which involved 72 cases, accounting for 5% of the total cases. Conclusions: The epidemic of human infection with H7N9 virus in China during 2013-2017 had obvious seasonality and spatial distribution. There was limited family clustering. Infection cases were mostly related to poultry contact.

  8. Risk Distribution of Human Infections with Avian Influenza H7N9 and H5N1 virus in China

    PubMed Central

    Li, Xin-Lou; Yang, Yang; Sun, Ye; Chen, Wan-Jun; Sun, Ruo-Xi; Liu, Kun; Ma, Mai-Juan; Liang, Song; Yao, Hong-Wu; Gray, Gregory C.; Fang, Li-Qun; Cao, Wu-Chun

    2015-01-01

    It has been documented that the epidemiological characteristics of human infections with H7N9 differ significantly between H5N1. However, potential factors that may explain the different spatial distributions remain unexplored. We use boosted regression tree (BRT) models to explore the association of agro-ecological, environmental and meteorological variables with the occurrence of human cases of H7N9 and H5N1, and map the probabilities of occurrence of human cases. Live poultry markets, density of human, coverage of built-up land, relative humidity and precipitation were significant predictors for both. In addition, density of poultry, coverage of shrub and temperature played important roles for human H7N9 infection, whereas human H5N1 infection was associated with coverage of forest and water body. Based on the risks and distribution of ecological characteristics which may facilitate the circulation of the two viruses, we found Yangtze River Delta and Pearl River Delta, along with a few spots on the southeast coastline, to be the high risk areas for H7N9 and H5N1. Additional, H5N1 risk spots were identified in eastern Sichuan and southern Yunnan Provinces. Surveillance of the two viruses needs to be enhanced in these high risk areas to reduce the risk of future epidemics of avian influenza in China. PMID:26691585

  9. Evolution of the H9N2 influenza genotype that facilitated the genesis of the novel H7N9 virus.

    PubMed

    Pu, Juan; Wang, Shuoguo; Yin, Yanbo; Zhang, Guozhong; Carter, Robert A; Wang, Jinliang; Xu, Guanlong; Sun, Honglei; Wang, Min; Wen, Chu; Wei, Yandi; Wang, Dongdong; Zhu, Baoli; Lemmon, Gordon; Jiao, Yuannian; Duan, Susu; Wang, Qian; Du, Qian; Sun, Meng; Bao, Jinnan; Sun, Yipeng; Zhao, Jixun; Zhang, Hui; Wu, Gang; Liu, Jinhua; Webster, Robert G

    2015-01-13

    The emergence of human infection with a novel H7N9 influenza virus in China raises a pandemic concern. Chicken H9N2 viruses provided all six of the novel reassortant's internal genes. However, it is not fully understood how the prevalence and evolution of these H9N2 chicken viruses facilitated the genesis of the novel H7N9 viruses. Here we show that over more than 10 y of cocirculation of multiple H9N2 genotypes, a genotype (G57) emerged that had changed antigenicity and improved adaptability in chickens. It became predominant in vaccinated farm chickens in China, caused widespread outbreaks in 2010-2013 before the H7N9 viruses emerged in humans, and finally provided all of their internal genes to the novel H7N9 viruses. The prevalence and variation of H9N2 influenza virus in farmed poultry could provide an important early warning of the emergence of novel reassortants with pandemic potential.

  10. Development of rapid immunochromatographic test for hemagglutinin antigen of H7 subtype in patients infected with novel avian influenza A (H7N9) virus.

    PubMed

    Kang, Keren; Chen, Li; Zhao, Xiang; Qin, Chengfeng; Zhan, Zanwu; Wang, Jihua; Li, Wenmei; Dzakah, Emmanuel E; Huang, Weijuang; Shu, Yuelong; Jiang, Tao; Cao, Wuchun; Xie, Mingquan; Luo, Xiaochun; Tang, Shixing

    2014-01-01

    Since human infection with the novel H7N9 avian influenza virus was identified in China in March 2013, the relatively high mortality rate and possibility of human-to-human transmission have highlighted the urgent need for sensitive and specific assays for diagnosis of H7N9 infection. We developed a rapid diagnostic test for the novel avian influenza A (H7N9) virus using anti-hemagglutinin (HA) monoclonal antibodies specifically targeting H7 in an immunochromatographic assay system. The assay limit of detection was 103.5 pfu/ml or 103TCID50 of H7N9 virus. The assay specifically detected H7N9 viral isolates and recombinant HA proteins of H7 subtypes including H7N7 and H7N9, but did not react with non-H7 subtypes including H1N1, H3N2, H5N1, H5N9, and H9N2. The detection sensitivity was 59.4% (19/32) for H7N9 patients confirmed by RT-PCR. Moreover, the highest sensitivity of 61.5% (16/26) was obtained when testing H7N9 positive sputum samples while 35.7% (5/14) of nasopharyngeal swabs and 20% (2/10) of fecal samples tested positive. No false positive detection was found when testing 180 H7N9 negative samples. Our novel rapid assay can specifically detect H7 HA antigen, facilitating rapid diagnosis for prevention and control of the on-going H7N9 epidemic.

  11. Evolution of the H9N2 influenza genotype that facilitated the genesis of the novel H7N9 virus

    PubMed Central

    Pu, Juan; Wang, Shuoguo; Yin, Yanbo; Zhang, Guozhong; Carter, Robert A.; Wang, Jinliang; Xu, Guanlong; Sun, Honglei; Wang, Min; Wen, Chu; Wei, Yandi; Wang, Dongdong; Zhu, Baoli; Lemmon, Gordon; Jiao, Yuannian; Duan, Susu; Wang, Qian; Du, Qian; Sun, Meng; Bao, Jinnan; Sun, Yipeng; Zhao, Jixun; Zhang, Hui; Wu, Gang; Liu, Jinhua; Webster, Robert G.

    2015-01-01

    The emergence of human infection with a novel H7N9 influenza virus in China raises a pandemic concern. Chicken H9N2 viruses provided all six of the novel reassortant’s internal genes. However, it is not fully understood how the prevalence and evolution of these H9N2 chicken viruses facilitated the genesis of the novel H7N9 viruses. Here we show that over more than 10 y of cocirculation of multiple H9N2 genotypes, a genotype (G57) emerged that had changed antigenicity and improved adaptability in chickens. It became predominant in vaccinated farm chickens in China, caused widespread outbreaks in 2010–2013 before the H7N9 viruses emerged in humans, and finally provided all of their internal genes to the novel H7N9 viruses. The prevalence and variation of H9N2 influenza virus in farmed poultry could provide an important early warning of the emergence of novel reassortants with pandemic potential. PMID:25548189

  12. Development of Rapid Immunochromatographic Test for Hemagglutinin Antigen of H7 Subtype in Patients Infected with Novel Avian Influenza A (H7N9) Virus

    PubMed Central

    Kang, Keren; Chen, Li; Zhao, Xiang; Qin, Chengfeng; Zhan, Zanwu; Wang, Jihua; Li, Wenmei; Dzakah, Emmanuel E.; Huang, Weijuang; Shu, Yuelong; Jiang, Tao; Cao, Wuchun; Xie, Mingquan; Luo, Xiaochun; Tang, Shixing

    2014-01-01

    Background Since human infection with the novel H7N9 avian influenza virus was identified in China in March 2013, the relatively high mortality rate and possibility of human-to-human transmission have highlighted the urgent need for sensitive and specific assays for diagnosis of H7N9 infection. Methodology/Principal Findings We developed a rapid diagnostic test for the novel avian influenza A (H7N9) virus using anti-hemagglutinin (HA) monoclonal antibodies specifically targeting H7 in an immunochromatographic assay system. The assay limit of detection was 103.5 pfu/ml or 103TCID50 of H7N9 virus. The assay specifically detected H7N9 viral isolates and recombinant HA proteins of H7 subtypes including H7N7 and H7N9, but did not react with non-H7 subtypes including H1N1, H3N2, H5N1, H5N9, and H9N2. The detection sensitivity was 59.4% (19/32) for H7N9 patients confirmed by RT-PCR. Moreover, the highest sensitivity of 61.5% (16/26) was obtained when testing H7N9 positive sputum samples while 35.7% (5/14) of nasopharyngeal swabs and 20% (2/10) of fecal samples tested positive. No false positive detection was found when testing 180 H7N9 negative samples. Conclusions/Significance Our novel rapid assay can specifically detect H7 HA antigen, facilitating rapid diagnosis for prevention and control of the on-going H7N9 epidemic. PMID:24647358

  13. Transcriptomic characterization of the novel avian-origin influenza A (H7N9) virus: specific host response and responses intermediate between avian (H5N1 and H7N7) and human (H3N2) viruses and implications for treatment options.

    PubMed

    Josset, Laurence; Zeng, Hui; Kelly, Sara M; Tumpey, Terrence M; Katze, Michael G

    2014-02-04

    A novel avian-origin H7N9 influenza A virus (IAV) emerged in China in 2013, causing mild to lethal human respiratory infections. H7N9 originated with multiple reassortment events between avian viruses and carries genetic markers of human adaptation. Determining whether H7N9 induces a host response closer to that with human or avian IAV is important in order to better characterize this emerging virus. Here we compared the human lung epithelial cell response to infection with A/Anhui/01/13 (H7N9) or highly pathogenic avian-origin H5N1, H7N7, or human seasonal H3N2 IAV. The transcriptomic response to H7N9 was highly specific to this strain but was more similar to the response to human H3N2 than to that to other avian IAVs. H7N9 and H3N2 both elicited responses related to eicosanoid signaling and chromatin modification, whereas H7N9 specifically induced genes regulating the cell cycle and transcription. Among avian IAVs, the response to H7N9 was closest to that elicited by H5N1 virus. Host responses common to H7N9 and the other avian viruses included the lack of induction of the antigen presentation pathway and reduced proinflammatory cytokine induction compared to that with H3N2. Repression of these responses could have an important impact on the immunogenicity and virulence of H7N9 in humans. Finally, using a genome-based drug repurposing approach, we identified several drugs predicted to regulate the host response to H7N9 that may act as potential antivirals, including several kinase inhibitors, as well as FDA-approved drugs, such as troglitazone and minocycline. Importantly, we validated that minocycline inhibited H7N9 replication in vitro, suggesting that our computational approach holds promise for identifying novel antivirals. Whether H7N9 will be the next pandemic influenza virus or will persist and sporadically infect humans from its avian reservoir, similar to H5N1, is not known yet. High-throughput profiling of the host response to infection allows rapid

  14. Detection of avian H7N9 influenza A viruses at the Yangtze Delta Region of China during early H7N9 outbreaks

    PubMed Central

    Li, Yin; Huang, Xin-mei; Zhao, Dong-min; Liu, Yu-zhuo; He, Kong-wang; Liu, Yao-xing; Chen, Chang-hai; Long, Li-Ping; Xu, Yifei; Xie, Xing-xing; Han, Kai-kai; Liu, Xiao-yan; Yang, Jing; Zhang, You-Fa; Fan, Feng; Webby, Richard; Wan, Xiu-Feng

    2016-01-01

    SUMMARY Since the first H7N9 human case in Shanghai, February 19, 2013, the emerging avian-origin H7N9 influenza A virus has become an epizootic virus in China, posing a potential pandemic threat to public health. From April 2 to April 28, 2013, 422 oral-pharyngeal and cloacal swabs were collected from birds and environmental surfaces at five live poultry markets (LPMs) and 13 backyard poultry farms (BPFs) across three cities, Wuxi, Suzhou, and Nanjing, in the Yangtze Delta Region. A total of 22 isolates were recovered, and 6 were subtyped as H7N9, 9 as H9N2, 4 as H7N9/H9N2, and 3 un-subtyped influenza A viruses. Genomic sequences showed that the HA and NA genes of the H7N9 viruses were similar to those of the H7N9 human isolates as well as other avian origin H7N9 isolates in the region but the PB1, PA, NP, and MP genes of the sequenced viruses were, however, more diverse. Among the four H7N9/H9N2 mixed infections, three were from LPM whereas the other one from the ducks at one BPF, which were H7N9 negative in serological analyses. A survey of the bird trading records of the LPMs and BPFs indicates that trading was a likely route for virus transmission across these regions. Our results suggested that a better biosecurity and more effective vaccination should be implemented in backyard farms besides biosecurity management in LPMs. PMID:27309047

  15. Detection of Avian H7N9 Influenza A Viruses in the Yangtze Delta Region of China During Early H7N9 Outbreaks.

    PubMed

    Li, Yin; Huang, Xin-Mei; Zhao, Dong-Min; Liu, Yu-Zhuo; He, Kong-Wang; Liu, Yao-Xing; Chen, Chang-Hai; Long, Li-Ping; Xu, Yifei; Xie, Xing-Xing; Han, Kai-Kai; Liu, Xiao-Yan; Yang, Jing; Zhang, You-Fa; Fan, Feng; Webby, Richard; Wan, Xiu-Feng

    2016-05-01

    Since the first H7N9 human case in Shanghai, February 19, 2013, the emerging avian-origin H7N9 influenza A virus has become an epizootic virus in China, posing a potential pandemic threat to public health. From April 2 to April 28, 2013, some 422 oral-pharyngeal and cloacal swabs were collected from birds and environmental surfaces at five live poultry markets (LPMs) and 13 backyard poultry farms (BPFs) across three cities, Wuxi, Suzhou, and Nanjing, in the Yangtze Delta region. In total 22 isolates were recovered, and six were subtyped as H7N9, nine as H9N2, four as H7N9/H9N2, and three unsubtyped influenza A viruses. Genomic sequences showed that the HA and NA genes of the H7N9 viruses were similar to those of the H7N9 human isolates, as well as other avian-origin H7N9 isolates in the region, but the PB1, PA, NP, and MP genes of the sequenced viruses were more diverse. Among the four H7N9/H9N2 mixed infections, three were from LPM, whereas the other one was from the ducks at one BPF, which were H7N9 negative in serologic analyses. A survey of the bird trading records of the LPMs and BPFs indicates that trading was a likely route for virus transmission across these regions. Our results suggested that better biosecurity and more effective vaccination should be implemented in backyard farms, in addition to biosecurity management in LPMs.

  16. Occurrence and Reassortment of Avian Influenza A (H7N9) Viruses Derived from Coinfected Birds in China

    PubMed Central

    Liu, Wei; Fan, Hang; Raghwani, Jayna; Lam, Tommy Tsan-Yuk; Li, Jing; Pybus, Oliver G.; Yao, Hong-Wu; Wo, Ying; Liu, Kun; An, Xiao-Ping; Pei, Guang-Qian; Li, Hao; Wang, Hong-Yu; Zhao, Jian-Jun; Jiang, Tao; Ma, Mai-Juan; Xia, Xian; Dong, Yan-De; Zhao, Tong-Yan; Jiang, Jia-Fu; Yang, Yin-Hui; Guan, Yi

    2014-01-01

    ABSTRACT Over the course of two waves of infection, H7N9 avian influenza A virus has caused 436 human infections and claimed 170 lives in China as of July 2014. To investigate the prevalence and genetic diversity of H7N9, we surveyed avian influenza viruses in poultry in Jiangsu province within the outbreak epicenter. We found frequent occurrence of H7N9/H9N2 coinfection in chickens. Molecular clock phylogenetic analysis confirms coinfection by H7N9/H9N2 viruses and also reveals that the identity of the H7N9 outbreak lineage is confounded by ongoing reassortment between outbreak viruses and diverse H9N2 viruses in domestic birds. Experimental inoculation of a coinfected sample in cell culture yielded two reassortant H7N9 strains with polymerase segments from the original H9N2 strain. Ongoing reassortment between the H7N9 outbreak lineage and diverse H9N2 viruses may generate new strains with the potential to infect humans, highlighting the need for continued viral surveillance in poultry and humans. IMPORTANCE We found frequent occurrence of H7N9/H9N2 coinfection in chickens. The H7N9 outbreak lineage is confounded by ongoing reassortment between H7N9 and H9N2 viruses. The importance of H9N2 viruses as the source of novel avian influenza virus infections in humans requires continuous attention. PMID:25210174

  17. Occurrence and reassortment of avian influenza A (H7N9) viruses derived from coinfected birds in China.

    PubMed

    Liu, Wei; Fan, Hang; Raghwani, Jayna; Lam, Tommy Tsan-Yuk; Li, Jing; Pybus, Oliver G; Yao, Hong-Wu; Wo, Ying; Liu, Kun; An, Xiao-Ping; Pei, Guang-Qian; Li, Hao; Wang, Hong-Yu; Zhao, Jian-Jun; Jiang, Tao; Ma, Mai-Juan; Xia, Xian; Dong, Yan-De; Zhao, Tong-Yan; Jiang, Jia-Fu; Yang, Yin-Hui; Guan, Yi; Tong, Yigang; Cao, Wu-Chun

    2014-11-01

    Over the course of two waves of infection, H7N9 avian influenza A virus has caused 436 human infections and claimed 170 lives in China as of July 2014. To investigate the prevalence and genetic diversity of H7N9, we surveyed avian influenza viruses in poultry in Jiangsu province within the outbreak epicenter. We found frequent occurrence of H7N9/H9N2 coinfection in chickens. Molecular clock phylogenetic analysis confirms coinfection by H7N9/H9N2 viruses and also reveals that the identity of the H7N9 outbreak lineage is confounded by ongoing reassortment between outbreak viruses and diverse H9N2 viruses in domestic birds. Experimental inoculation of a coinfected sample in cell culture yielded two reassortant H7N9 strains with polymerase segments from the original H9N2 strain. Ongoing reassortment between the H7N9 outbreak lineage and diverse H9N2 viruses may generate new strains with the potential to infect humans, highlighting the need for continued viral surveillance in poultry and humans. We found frequent occurrence of H7N9/H9N2 coinfection in chickens. The H7N9 outbreak lineage is confounded by ongoing reassortment between H7N9 and H9N2 viruses. The importance of H9N2 viruses as the source of novel avian influenza virus infections in humans requires continuous attention. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  18. The replication of Bangladeshi H9N2 avian influenza viruses carrying genes from H7N3 in mammals

    PubMed Central

    Shanmuganatham, Karthik K; Jones, Jeremy C; Marathe, Bindumadhav M; Feeroz, Mohammed M; Jones-Engel, Lisa; Walker, David; Turner, Jasmine; Rabiul Alam, S M; Kamrul Hasan, M; Akhtar, Sharmin; Seiler, Patrick; McKenzie, Pamela; Krauss, Scott; Webby, Richard J; Webster, Robert G

    2016-01-01

    H9N2 avian influenza viruses are continuously monitored by the World Health Organization because they are endemic; they continually reassort with H5N1, H7N9 and H10N8 viruses; and they periodically cause human infections. We characterized H9N2 influenza viruses carrying internal genes from highly pathogenic H7N3 viruses, which were isolated from chickens or quail from live-bird markets in Bangladesh between 2010 and 2013. All of the H9N2 viruses used in this study carried mammalian host-specific mutations. We studied their replication kinetics in normal human bronchoepithelial cells and swine tracheal and lung explants, which exhibit many features of the mammalian airway epithelium and serve as a mammalian host model. All H9N2 viruses replicated to moderate-to-high titers in the normal human bronchoepithelial cells and swine lung explants, but replication was limited in the swine tracheal explants. In Balb/c mice, the H9N2 viruses were nonlethal, replicated to moderately high titers and the infection was confined to the lungs. In the ferret model of human influenza infection and transmission, H9N2 viruses possessing the Q226L substitution in hemagglutinin replicated well without clinical signs and spread via direct contact but not by aerosol. None of the H9N2 viruses tested were resistant to the neuraminidase inhibitors. Our study shows that the Bangladeshi H9N2 viruses have the potential to infect humans and highlights the importance of monitoring and characterizing this influenza subtype to better understand the potential risk these viruses pose to humans. PMID:27094903

  19. The replication of Bangladeshi H9N2 avian influenza viruses carrying genes from H7N3 in mammals.

    PubMed

    Shanmuganatham, Karthik K; Jones, Jeremy C; Marathe, Bindumadhav M; Feeroz, Mohammed M; Jones-Engel, Lisa; Walker, David; Turner, Jasmine; Rabiul Alam, S M; Kamrul Hasan, M; Akhtar, Sharmin; Seiler, Patrick; McKenzie, Pamela; Krauss, Scott; Webby, Richard J; Webster, Robert G

    2016-04-20

    H9N2 avian influenza viruses are continuously monitored by the World Health Organization because they are endemic; they continually reassort with H5N1, H7N9 and H10N8 viruses; and they periodically cause human infections. We characterized H9N2 influenza viruses carrying internal genes from highly pathogenic H7N3 viruses, which were isolated from chickens or quail from live-bird markets in Bangladesh between 2010 and 2013. All of the H9N2 viruses used in this study carried mammalian host-specific mutations. We studied their replication kinetics in normal human bronchoepithelial cells and swine tracheal and lung explants, which exhibit many features of the mammalian airway epithelium and serve as a mammalian host model. All H9N2 viruses replicated to moderate-to-high titers in the normal human bronchoepithelial cells and swine lung explants, but replication was limited in the swine tracheal explants. In Balb/c mice, the H9N2 viruses were nonlethal, replicated to moderately high titers and the infection was confined to the lungs. In the ferret model of human influenza infection and transmission, H9N2 viruses possessing the Q226L substitution in hemagglutinin replicated well without clinical signs and spread via direct contact but not by aerosol. None of the H9N2 viruses tested were resistant to the neuraminidase inhibitors. Our study shows that the Bangladeshi H9N2 viruses have the potential to infect humans and highlights the importance of monitoring and characterizing this influenza subtype to better understand the potential risk these viruses pose to humans.

  20. Emergence and development of H7N9 influenza viruses in China.

    PubMed

    Zhu, Huachen; Lam, Tommy Tsan-Yuk; Smith, David Keith; Guan, Yi

    2016-02-01

    The occurrence of human infections with avian H7N9 viruses since 2013 demonstrates the continuing pandemic threat posed by the current influenza ecosystem in China. Influenza surveillance and phylogenetic analyses showed that these viruses were generated by multiple interspecies transmissions and reassortments among the viruses resident in domestic ducks and the H9N2 viruses enzootic in chickens. A large population of domestic ducks hosting diverse influenza viruses provided the precondition for these events to occur, while acquiring internal genes from enzootic H9N2 influenza viruses in chickens promoted the spread of these viruses. Human infections effectively act as sentinels, reflecting the intensity of the activity of these viruses in poultry. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Global alert to avian influenza virus infection: From H5N1 to H7N9

    PubMed Central

    Poovorawan, Yong; Pyungporn, Sunchai; Prachayangprecha, Slinporn; Makkoch, Jarika

    2013-01-01

    Outbreak of a novel influenza virus is usually triggered by mutational change due to the process known as ‘antigenic shift’ or re-assortment process that allows animal-to-human or avian-to-human transmission. Birds are a natural reservoir for the influenza virus, and subtypes H5, H7, and H9 have all caused outbreaks of avian influenza in human populations. An especially notorious strain is the HPAI influenza virus H5N1, which has a mortality rate of approximately 60% and which has resulted in numerous hospitalizations, deaths, and significant economic loss. In March 2013, in Eastern China, there was an outbreak of the novel H7N9 influenza virus, which although less pathogenic in avian species, resulted in 131 confirmed cases and 36 deaths in humans over a two-month span. The rapid outbreak of this virus caused global concern but resulted in international cooperation to control the outbreak. Furthermore, cooperation led to valuable research-sharing including genome sequencing of the virus, the development of rapid and specific diagnosis, specimen sharing for future studies, and vaccine development. Although a H7N9 pandemic in the human population is possible due to its rapid transmissibility and extensive surveillance, the closure of the live-bird market will help mitigate the possibility of another H7N9 outbreak. In addition, further research into the source of the outbreak, pathogenicity of the virus, and the development of specific and sensitive detection assays will be essential for controlling and preparing for future H7N9 outbreaks. PMID:23916331

  2. Two Outbreak Sources of Influenza A (H7N9) Viruses Have Been Established in China.

    PubMed

    Wang, Dayan; Yang, Lei; Zhu, Wenfei; Zhang, Ye; Zou, Shumei; Bo, Hong; Gao, Rongbao; Dong, Jie; Huang, Weijuan; Guo, Junfeng; Li, Zi; Zhao, Xiang; Li, Xiaodan; Xin, Li; Zhou, Jianfang; Chen, Tao; Dong, Libo; Wei, Hejiang; Li, Xiyan; Liu, Liqi; Tang, Jing; Lan, Yu; Yang, Jing; Shu, Yuelong

    2016-06-15

    Due to enzootic infections in poultry and persistent human infections in China, influenza A (H7N9) virus has remained a public health threat. The Yangtze River Delta region, which is located in eastern China, is well recognized as the original source for H7N9 outbreaks. Based on the evolutionary analysis of H7N9 viruses from all three outbreak waves since 2013, we identified the Pearl River Delta region as an additional H7N9 outbreak source. H7N9 viruses are repeatedly introduced from these two sources to the other areas, and the persistent circulation of H7N9 viruses occurs in poultry, causing continuous outbreak waves. Poultry movements may contribute to the geographic expansion of the virus. In addition, the AnH1 genotype, which was predominant during wave 1, was replaced by JS537, JS18828, and AnH1887 genotypes during waves 2 and 3. The establishment of a new source and the continuous evolution of the virus hamper the elimination of H7N9 viruses, thus posing a long-term threat of H7N9 infection in humans. Therefore, both surveillance of H7N9 viruses in humans and poultry and supervision of poultry movements should be strengthened. Since its occurrence in humans in eastern China in spring 2013, the avian H7N9 viruses have been demonstrating the continuing pandemic threat posed by the current influenza ecosystem in China. As the viruses are silently circulated in poultry, with potentially severe outcomes in humans, H7N9 virus activity in humans in China is very important to understand. In this study, we identified a newly emerged H7N9 outbreak source in the Pearl River Delta region. Both sources in the Yangtze River Delta region and the Pearl River Delta region have been established and found to be responsible for the H7N9 outbreaks in mainland China. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  3. Two Outbreak Sources of Influenza A (H7N9) Viruses Have Been Established in China

    PubMed Central

    Wang, Dayan; Yang, Lei; Zhu, Wenfei; Zhang, Ye; Zou, Shumei; Bo, Hong; Gao, Rongbao; Dong, Jie; Huang, Weijuan; Guo, Junfeng; Li, Zi; Zhao, Xiang; Li, Xiaodan; Xin, Li; Zhou, Jianfang; Chen, Tao; Dong, Libo; Wei, Hejiang; Li, Xiyan; Liu, Liqi; Tang, Jing; Lan, Yu; Yang, Jing

    2016-01-01

    ABSTRACT Due to enzootic infections in poultry and persistent human infections in China, influenza A (H7N9) virus has remained a public health threat. The Yangtze River Delta region, which is located in eastern China, is well recognized as the original source for H7N9 outbreaks. Based on the evolutionary analysis of H7N9 viruses from all three outbreak waves since 2013, we identified the Pearl River Delta region as an additional H7N9 outbreak source. H7N9 viruses are repeatedly introduced from these two sources to the other areas, and the persistent circulation of H7N9 viruses occurs in poultry, causing continuous outbreak waves. Poultry movements may contribute to the geographic expansion of the virus. In addition, the AnH1 genotype, which was predominant during wave 1, was replaced by JS537, JS18828, and AnH1887 genotypes during waves 2 and 3. The establishment of a new source and the continuous evolution of the virus hamper the elimination of H7N9 viruses, thus posing a long-term threat of H7N9 infection in humans. Therefore, both surveillance of H7N9 viruses in humans and poultry and supervision of poultry movements should be strengthened. IMPORTANCE Since its occurrence in humans in eastern China in spring 2013, the avian H7N9 viruses have been demonstrating the continuing pandemic threat posed by the current influenza ecosystem in China. As the viruses are silently circulated in poultry, with potentially severe outcomes in humans, H7N9 virus activity in humans in China is very important to understand. In this study, we identified a newly emerged H7N9 outbreak source in the Pearl River Delta region. Both sources in the Yangtze River Delta region and the Pearl River Delta region have been established and found to be responsible for the H7N9 outbreaks in mainland China. PMID:27030268

  4. Pathogenesis and transmission of avian influenza A (H7N9) virus in ferrets and mice.

    PubMed

    Belser, Jessica A; Gustin, Kortney M; Pearce, Melissa B; Maines, Taronna R; Zeng, Hui; Pappas, Claudia; Sun, Xiangjie; Carney, Paul J; Villanueva, Julie M; Stevens, James; Katz, Jacqueline M; Tumpey, Terrence M

    2013-09-26

    On 29 March 2013, the Chinese Center for Disease Control and Prevention confirmed the first reported case of human infection with an avian influenza A(H7N9) virus. The recent human infections with H7N9 virus, totalling over 130 cases with 39 fatalities to date, have been characterized by severe pulmonary disease and acute respiratory distress syndrome (ARDS). This is concerning because H7 viruses have typically been associated with ocular disease in humans, rather than severe respiratory disease. This recent outbreak underscores the need to better understand the pathogenesis and transmission of these viruses in mammals. Here we assess the ability of A/Anhui/1/2013 and A/Shanghai/1/2013 (H7N9) viruses, isolated from fatal human cases, to cause disease in mice and ferrets and to transmit to naive animals. Both H7N9 viruses replicated to higher titre in human airway epithelial cells and in the respiratory tract of ferrets compared to a seasonal H3N2 virus. Moreover, the H7N9 viruses showed greater infectivity and lethality in mice compared to genetically related H7N9 and H9N2 viruses. The H7N9 viruses were readily transmitted to naive ferrets through direct contact but, unlike the seasonal H3N2 virus, did not transmit readily by respiratory droplets. The lack of efficient respiratory droplet transmission was corroborated by low receptor-binding specificity for human-like α2,6-linked sialosides. Our results indicate that H7N9 viruses have the capacity for efficient replication in mammals and human airway cells and highlight the need for continued public health surveillance of this emerging virus.

  5. Clinical Correlations of Transcriptional Profile in Patients Infected with Avian Influenza H7N9 Virus.

    PubMed

    Guan, Wenda; Wu, Nicholas C; Lee, Horace H Y; Li, Yimin; Jiang, Wenxin; Shen, Lihan; Wu, Douglas C; Chen, Rongchang; Zhong, Nanshan; Wilson, Ian A; Peiris, Malik; Yang, Zifeng; Mok, Chris K P

    2018-05-28

    Avian influenza A (H7N9) viruses emerged in China in 2013 and caused zoonotic disease associated with a case-fatality ratio of over 30%. Transcriptional profiles in peripheral blood reflect host responses and can help to elucidate disease pathogenesis. We correlated serial blood transcriptomic profiles of patients with avian influenza A (H7N9) virus infection and determined the biological significances from the analysis. We found that specific gene expression profiles in the blood were strongly correlated with the PaO2/FiO2 ratio and viral load in the lower respiratory tract (LRT). Cell cycle and leukocyte-related immunity were activated at the acute stage of the infection while T cell functions and various metabolic processes were associated with the recovery phase of the illness. A transition from systemic innate to adaptive immunity was found. We developed a novel approach for transcriptomic analysis to identify key host responses that were strongly correlated with specific clinical and virologic parameters in patients with H7N9 infection.

  6. Unexpected infection outcomes of China-origin H7N9 low pathogenicity avian influenza virus in turkeys.

    PubMed

    Slomka, Marek J; Seekings, Amanda H; Mahmood, Sahar; Thomas, Saumya; Puranik, Anita; Watson, Samantha; Byrne, Alexander M P; Hicks, Daniel; Nunez, Alejandro; Brown, Ian H; Brookes, Sharon M

    2018-05-09

    The China-origin H7N9 low pathogenicity avian influenza virus (LPAIV) emerged as a zoonotic threat in 2013 where it continues to circulate in live poultry markets. Absence of overt clinical signs in poultry is a typical LPAIV infection outcome, and has contributed to its insidious maintenance in China. This study is the first description of H7N9 LPAIV (A/Anhui/1/13) infection in turkeys, with efficient transmission to two additional rounds of introduced contact turkeys which all became infected during cohousing. Surprisingly, mortality was observed in six of eight (75%) second-round contact turkeys which is unusual for LPAIV infection, with unexpected systemic dissemination to many organs beyond the respiratory and enteric tracts, but interestingly no accompanying mutation to highly pathogenic AIV. The intravenous pathogenicity index score for a turkey-derived isolate (0.39) affirmed the LPAIV phenotype. However, the amino acid change L235Q in the haemagglutinin gene occurred in directly-infected turkeys and transmitted to the contacts, including those that died and the two which resolved infection to survive to the end of the study. This polymorphism was indicative of a reversion from mammalian to avian adaptation for the H7N9 virus. This study underlined a new risk to poultry in the event of H7N9 spread beyond China.

  7. Preliminary Epidemiology of Human Infections with Highly Pathogenic Avian Influenza A(H7N9) Virus, China, 2017.

    PubMed

    Zhou, Lei; Tan, Yi; Kang, Min; Liu, Fuqiang; Ren, Ruiqi; Wang, Yali; Chen, Tao; Yang, Yiping; Li, Chao; Wu, Jie; Zhang, Hengjiao; Li, Dan; Greene, Carolyn M; Zhou, Suizan; Iuliano, A Danielle; Havers, Fiona; Ni, Daxin; Wang, Dayan; Feng, Zijian; Uyeki, Timothy M; Li, Qun

    2017-08-01

    We compared the characteristics of cases of highly pathogenic avian influenza (HPAI) and low pathogenic avian influenza (LPAI) A(H7N9) virus infections in China. HPAI A(H7N9) case-patients were more likely to have had exposure to sick and dead poultry in rural areas and were hospitalized earlier than were LPAI A(H7N9) case-patients.

  8. Influenza A(H7N9) Virus Antibody Responses in Survivors 1 Year after Infection, China, 2017

    PubMed Central

    Ma, Mai-Juan; Liu, Cheng; Wu, Meng-Na; Zhao, Teng; Wang, Guo-Lin; Yang, Yang; Gu, Hong-Jing; Cui, Peng-Wei; Pang, Yuan-Yuan; Tan, Ya-Yun; Hang, Hui; Lin, Bao; Qin, Jiang-Chun; Cheng, Li-Ling

    2018-01-01

    Avian influenza A(H7N9) virus has caused 5 epidemic waves in China since its emergence in 2013. We investigated the dynamic changes of antibody response to this virus over 1 year postinfection in 25 patients in Suzhou City, Jiangsu Province, China, who had laboratory-confirmed infections during the fifth epidemic wave, October 1, 2016–February 14, 2017. Most survivors had relatively robust antibody responses that decreased but remained detectable at 1 year. Antibody response was variable; several survivors had low or undetectable antibody titers. Hemagglutination inhibition titer was >1:40 for <40% of the survivors. Measured in vitro in infected mice, hemagglutination inhibition titer predicted serum protective ability. Our findings provide a helpful serologic guideline for identifying subclinical infections and for developing effective vaccines and therapeutics to counter H7N9 virus infections. PMID:29432091

  9. Influenza A(H7N9) Virus Antibody Responses in Survivors 1 Year after Infection, China, 2017.

    PubMed

    Ma, Mai-Juan; Liu, Cheng; Wu, Meng-Na; Zhao, Teng; Wang, Guo-Lin; Yang, Yang; Gu, Hong-Jing; Cui, Peng-Wei; Pang, Yuan-Yuan; Tan, Ya-Yun; Hang, Hui; Lin, Bao; Qin, Jiang-Chun; Fang, Li-Qun; Cao, Wu-Chun; Cheng, Li-Ling

    2018-04-01

    Avian influenza A(H7N9) virus has caused 5 epidemic waves in China since its emergence in 2013. We investigated the dynamic changes of antibody response to this virus over 1 year postinfection in 25 patients in Suzhou City, Jiangsu Province, China, who had laboratory-confirmed infections during the fifth epidemic wave, October 1, 2016-February 14, 2017. Most survivors had relatively robust antibody responses that decreased but remained detectable at 1 year. Antibody response was variable; several survivors had low or undetectable antibody titers. Hemagglutination inhibition titer was >1:40 for <40% of the survivors. Measured in vitro in infected mice, hemagglutination inhibition titer predicted serum protective ability. Our findings provide a helpful serologic guideline for identifying subclinical infections and for developing effective vaccines and therapeutics to counter H7N9 virus infections.

  10. Global concern regarding the fifth epidemic of human infection with avian influenza A (H7N9) virus in China.

    PubMed

    Shen, Yinzhong; Lu, Hongzhou

    2017-03-22

    Since the first outbreak of human infection with avian influenza A (H7N9) virus was identified in 2013, five seasonal outbreaks have occurred in China. The fifth outbreak started earlier than usual. A sudden increase in cases of human infection with avian influenza A (H7N9) virus has been reported in China since September 2016, and the number of cases reported in this season is exceeding that reported in previous seasons. This increase in the number of new cases of H7N9 infection has caused domestic and international concern. This paper summarizes the current prevalence of H7N9 in China and it also discusses measures that China has taken to control this outbreak. This paper also describes steps China must take in the future. This paper can serve as a reference for prevention and control of H7N9 outbreaks around the world.

  11. Pathogenesis and transmissibility of highly (H7N1) and low (H7N9) pathogenic avian influenza virus infection in red-legged partridge (Alectoris rufa).

    PubMed

    Bertran, Kateri; Pérez-Ramírez, Elisa; Busquets, Núria; Dolz, Roser; Ramis, Antonio; Darji, Ayub; Abad, Francesc Xavier; Valle, Rosa; Chaves, Aida; Vergara-Alert, Júlia; Barral, Marta; Höfle, Ursula; Majó, Natàlia

    2011-02-07

    An experimental infection with highly pathogenic avian influenza virus (HPAIV) and low pathogenic avian influenza virus (LPAIV) was carried out in red-legged partridges (Alectoris rufa) in order to study clinical signs, gross and microscopic lesions, and viral distribution in tissues and viral shedding. Birds were infected with a HPAIV subtype H7N1 (A/Chicken/Italy/5093/1999) and a LPAIV subtype H7N9 (A/Anas crecca/Spain/1460/2008). Uninoculated birds were included as contacts in both groups. In HPAIV infected birds, the first clinical signs were observed at 3 dpi, and mortality started at 4 dpi, reaching 100% at 8 dpi. The presence of viral antigen in tissues and viral shedding were confirmed by immunohistochemistry and quantitative real time RT-PCR (qRRT-PCR), respectively, in all birds infected with HPAIV. However, neither clinical signs nor histopathological findings were observed in LPAIV infected partridges. In addition, only short-term viral shedding together with seroconversion was detected in some LPAIV inoculated animals. The present study demonstrates that the red-legged partridge is highly susceptible to the H7N1 HPAIV strain, causing severe disease, mortality and abundant viral shedding and thus contributing to the spread of a potential local outbreak of this virus. In contrast, our results concerning H7N9 LPAIV suggest that the red-legged partridge is not a reservoir species for this virus.

  12. Pathogenesis and transmissibility of highly (H7N1) and low (H7N9) pathogenic avian influenza virus infection in red-legged partridge (Alectoris rufa)

    PubMed Central

    2011-01-01

    An experimental infection with highly pathogenic avian influenza virus (HPAIV) and low pathogenic avian influenza virus (LPAIV) was carried out in red-legged partridges (Alectoris rufa) in order to study clinical signs, gross and microscopic lesions, and viral distribution in tissues and viral shedding. Birds were infected with a HPAIV subtype H7N1 (A/Chicken/Italy/5093/1999) and a LPAIV subtype H7N9 (A/Anas crecca/Spain/1460/2008). Uninoculated birds were included as contacts in both groups. In HPAIV infected birds, the first clinical signs were observed at 3 dpi, and mortality started at 4 dpi, reaching 100% at 8 dpi. The presence of viral antigen in tissues and viral shedding were confirmed by immunohistochemistry and quantitative real time RT-PCR (qRRT-PCR), respectively, in all birds infected with HPAIV. However, neither clinical signs nor histopathological findings were observed in LPAIV infected partridges. In addition, only short-term viral shedding together with seroconversion was detected in some LPAIV inoculated animals. The present study demonstrates that the red-legged partridge is highly susceptible to the H7N1 HPAIV strain, causing severe disease, mortality and abundant viral shedding and thus contributing to the spread of a potential local outbreak of this virus. In contrast, our results concerning H7N9 LPAIV suggest that the red-legged partridge is not a reservoir species for this virus. PMID:21314907

  13. Live attenuated H5N1 vaccine with H9N2 internal genes protects chickens from infections by both Highly Pathogenic H5N1 and H9N2 Influenza Viruses

    PubMed Central

    Nang, Nguyen Tai; Song, Byung Min; Kang, Young Myong; Kim, Heui Man; Kim, Hyun Soo; Seo, Sang Heui

    2012-01-01

    Please cite this paper as: Nang et al. (2013) Live attenuated H5N1 vaccine with H9N2 internal genes protects chickens from infections by both Highly Pathogenic H5N1 and H9N2 Influenza Viruses. Influenza and Other Respiratory Viruses 7(2) 120–131. Background  The highly pathogenic H5N1 and H9N2 influenza viruses are endemic in many countries around the world and have caused considerable economic loss to the poultry industry. Objectives  We aimed to study whether a live attenuated H5N1 vaccine comprising internal genes from a cold‐adapted H9N2 influenza virus could protect chickens from infection by both H5N1 and H9N2 viruses. Methods  We developed a cold‐adapted H9N2 vaccine virus expressing hemagglutinin and neuraminidase derived from the highly pathogenic H5N1 influenza virus using reverse genetics. Results and Conclusions  Chickens immunized with the vaccine were protected from lethal infections with homologous and heterologous H5N1 or H9N2 influenza viruses. Specific antibody against H5N1 virus was detected up to 11 weeks after vaccination (the endpoint of this study). In vaccinated chickens, IgA and IgG antibody subtypes were induced in lung and intestinal tissue, and CD4+ and CD8+ T lymphocytes expressing interferon‐gamma were induced in the splenocytes. These data suggest that a live attenuated H5N1 vaccine with cold‐adapted H9N2 internal genes can protect chickens from infection with H5N1 and H9N2 influenza viruses by eliciting humoral and cellular immunity. PMID:22487301

  14. Identification of climate factors related to human infection with avian influenza A H7N9 and H5N1 viruses in China.

    PubMed

    Li, Jing; Rao, Yuhan; Sun, Qinglan; Wu, Xiaoxu; Jin, Jiao; Bi, Yuhai; Chen, Jin; Lei, Fumin; Liu, Qiyong; Duan, Ziyuan; Ma, Juncai; Gao, George F; Liu, Di; Liu, Wenjun

    2015-12-11

    Human influenza infections display a strongly seasonal pattern. However, whether H7N9 and H5N1 infections correlate with climate factors has not been examined. Here, we analyzed 350 cases of H7N9 infection and 47 cases of H5N1 infection. The spatial characteristics of these cases revealed that H5N1 infections mainly occurred in the South, Middle, and Northwest of China, while the occurrence of H7N9 was concentrated in coastal areas of East and South of China. Aside from spatial-temporal characteristics, the most adaptive meteorological conditions for the occurrence of human infections by these two viral subtypes were different. We found that H7N9 infections correlate with climate factors, especially temperature (TEM) and relative humidity (RHU), while H5N1 infections correlate with TEM and atmospheric pressure (PRS). Hence, we propose a risky window (TEM 4-14 °C and RHU 65-95%) for H7N9 infection and (TEM 2-22 °C and PRS 980-1025 kPa) for H5N1 infection. Our results represent the first step in determining the effects of climate factors on two different virus infections in China and provide warning guidelines for the future when provinces fall into the risky windows. These findings revealed integrated predictive meteorological factors rooted in statistic data that enable the establishment of preventive actions and precautionary measures against future outbreaks.

  15. Comparative epidemiology of human infections with avian influenza A H7N9 and H5N1 viruses in China: a population-based study of laboratory-confirmed cases.

    PubMed

    Cowling, Benjamin J; Jin, Lianmei; Lau, Eric H Y; Liao, Qiaohong; Wu, Peng; Jiang, Hui; Tsang, Tim K; Zheng, Jiandong; Fang, Vicky J; Chang, Zhaorui; Ni, Michael Y; Zhang, Qian; Ip, Dennis K M; Yu, Jianxing; Li, Yu; Wang, Liping; Tu, Wenxiao; Meng, Ling; Wu, Joseph T; Luo, Huiming; Li, Qun; Shu, Yuelong; Li, Zhongjie; Feng, Zijian; Yang, Weizhong; Wang, Yu; Leung, Gabriel M; Yu, Hongjie

    2013-07-13

    The novel influenza A H7N9 virus emerged recently in mainland China, whereas the influenza A H5N1 virus has infected people in China since 2003. Both infections are thought to be mainly zoonotic. We aimed to compare the epidemiological characteristics of the complete series of laboratory-confirmed cases of both viruses in mainland China so far. An integrated database was constructed with information about demographic, epidemiological, and clinical variables of laboratory-confirmed cases of H7N9 (130 patients) and H5N1 (43 patients) that were reported to the Chinese Centre for Disease Control and Prevention until May 24, 2013. We described disease occurrence by age, sex, and geography, and estimated key epidemiological variables. We used survival analysis techniques to estimate the following distributions: infection to onset, onset to admission, onset to laboratory confirmation, admission to death, and admission to discharge. The median age of the 130 individuals with confirmed infection with H7N9 was 62 years and of the 43 with H5N1 was 26 years. In urban areas, 74% of cases of both viruses were in men, whereas in rural areas the proportions of the viruses in men were 62% for H7N9 and 33% for H5N1. 75% of patients infected with H7N9 and 71% of those with H5N1 reported recent exposure to poultry. The mean incubation period of H7N9 was 3·1 days and of H5N1 was 3·3 days. On average, 21 contacts were traced for each case of H7N9 in urban areas and 18 in rural areas, compared with 90 and 63 for H5N1. The fatality risk on admission to hospital was 36% (95% CI 26-45) for H7N9 and 70% (56-83%) for H5N1. The sex ratios in urban compared with rural cases are consistent with exposure to poultry driving the risk of infection--a higher risk in men was only recorded in urban areas but not in rural areas, and the increased risk for men was of a similar magnitude for H7N9 and H5N1. However, the difference in susceptibility to serious illness with the two different viruses

  16. Comparative Epidemiology of Human Fatal Infections with Novel, High (H5N6 and H5N1) and Low (H7N9 and H9N2) Pathogenicity Avian Influenza A Viruses

    PubMed Central

    Wu, Zu-Qun; Zhang, Yi; Zhao, Na; Yu, Zhao; Pan, Hao; Chan, Ta-Chien; Zhang, Zhi-Ruo; Liu, She-Lan

    2017-01-01

    This study aimed to assess the mortality risks for human infection with high (HPAI) and low (LPAI) pathogenicity avian influenza viruses. The HPAI case fatality rate (CFR) was far higher than the LPAI CFR [66.0% (293/444) vs. 68.75% (11/16) vs. 40.4% (265/656) vs. 0.0% (0/18) in the cases with H5N1, H5N6, H7N9, and H9N2 viruses, respectively; p < 0.001]. Similarly, the CFR of the index cases was greater than the secondary cases with H5N1 [100% (43/43) vs. 43.3% (42/97), p < 0.001]. Old age [22.5 vs. 17 years for H5N1, p = 0.018; 61 vs. 49 years for H7H9, p < 0.001], concurrent diseases [18.8% (15/80) vs. 8.33% (9/108) for H5N1, p = 0.046; 58.6% (156/266) vs. 34.8% (135/388) for H7H9, p < 0.001], delayed confirmation [13 vs. 6 days for H5N1, p < 0.001; 10 vs. 8 days for H7N9, p = 0.011] in the fatalities and survivors, were risk factors for deaths. With regard to the H5N1 clusters, exposure to poultry [67.4% (29/43) vs. 45.2% (19/42), p = 0.039] was the higher risk for the primary than the secondary deaths. In conclusion, old age, comorbidities, delayed confirmation, along with poultry exposure are the major risks contributing to fatal outcomes in human HPAI and LPAI infections. PMID:28273867

  17. Comparative Epidemiology of Human Fatal Infections with Novel, High (H5N6 and H5N1) and Low (H7N9 and H9N2) Pathogenicity Avian Influenza A Viruses.

    PubMed

    Wu, Zu-Qun; Zhang, Yi; Zhao, Na; Yu, Zhao; Pan, Hao; Chan, Ta-Chien; Zhang, Zhi-Ruo; Liu, She-Lan

    2017-03-04

    This study aimed to assess the mortality risks for human infection with high (HPAI) and low (LPAI) pathogenicity avian influenza viruses. The HPAI case fatality rate (CFR) was far higher than the LPAI CFR [66.0% (293/444) vs. 68.75% (11/16) vs. 40.4% (265/656) vs. 0.0% (0/18) in the cases with H5N1, H5N6, H7N9, and H9N2 viruses, respectively; p < 0.001]. Similarly, the CFR of the index cases was greater than the secondary cases with H5N1 [100% (43/43) vs. 43.3% (42/97), p < 0.001]. Old age [22.5 vs. 17 years for H5N1, p = 0.018; 61 vs. 49 years for H7H9, p < 0.001], concurrent diseases [18.8% (15/80) vs. 8.33% (9/108) for H5N1, p = 0.046; 58.6% (156/266) vs. 34.8% (135/388) for H7H9, p < 0.001], delayed confirmation [13 vs. 6 days for H5N1, p < 0.001; 10 vs. 8 days for H7N9, p = 0.011] in the fatalities and survivors, were risk factors for deaths. With regard to the H5N1 clusters, exposure to poultry [67.4% (29/43) vs. 45.2% (19/42), p = 0.039] was the higher risk for the primary than the secondary deaths. In conclusion, old age, comorbidities, delayed confirmation, along with poultry exposure are the major risks contributing to fatal outcomes in human HPAI and LPAI infections.

  18. Update: Increase in Human Infections with Novel Asian Lineage Avian Influenza A(H7N9) Viruses During the Fifth Epidemic - China, October 1, 2016-August 7, 2017.

    PubMed

    Kile, James C; Ren, Ruiqi; Liu, Liqi; Greene, Carolyn M; Roguski, Katherine; Iuliano, A Danielle; Jang, Yunho; Jones, Joyce; Thor, Sharmi; Song, Ying; Zhou, Suizan; Trock, Susan C; Dugan, Vivien; Wentworth, David E; Levine, Min Z; Uyeki, Timothy M; Katz, Jacqueline M; Jernigan, Daniel B; Olsen, Sonja J; Fry, Alicia M; Azziz-Baumgartner, Eduardo; Davis, C Todd

    2017-09-08

    Among all influenza viruses assessed using CDC's Influenza Risk Assessment Tool (IRAT), the Asian lineage avian influenza A(H7N9) virus (Asian H7N9), first reported in China in March 2013,* is ranked as the influenza virus with the highest potential pandemic risk (1). During October 1, 2016-August 7, 2017, the National Health and Family Planning Commission of China; CDC, Taiwan; the Hong Kong Centre for Health Protection; and the Macao CDC reported 759 human infections with Asian H7N9 viruses, including 281 deaths, to the World Health Organization (WHO), making this the largest of the five epidemics of Asian H7N9 infections that have occurred since 2013 (Figure 1). This report summarizes new viral and epidemiologic features identified during the fifth epidemic of Asian H7N9 in China and summarizes ongoing measures to enhance pandemic preparedness. Infections in humans and poultry were reported from most areas of China, including provinces bordering other countries, indicating extensive, ongoing geographic spread. The risk to the general public is very low and most human infections were, and continue to be, associated with poultry exposure, especially at live bird markets in mainland China. Throughout the first four epidemics of Asian H7N9 infections, only low pathogenic avian influenza (LPAI) viruses were detected among human, poultry, and environmental specimens and samples. During the fifth epidemic, mutations were detected among some Asian H7N9 viruses, identifying the emergence of high pathogenic avian influenza (HPAI) viruses as well as viruses with reduced susceptibility to influenza antiviral medications recommended for treatment. Furthermore, the fifth-epidemic viruses diverged genetically into two separate lineages (Pearl River Delta lineage and Yangtze River Delta lineage), with Yangtze River Delta lineage viruses emerging as antigenically different compared with those from earlier epidemics. Because of its pandemic potential, candidate vaccine viruses

  19. PB2-588 V promotes the mammalian adaptation of H10N8, H7N9 and H9N2 avian influenza viruses

    PubMed Central

    Xiao, Chencheng; Ma, Wenjun; Sun, Na; Huang, Lihong; Li, Yaling; Zeng, Zhaoyong; Wen, Yijun; Zhang, Zaoyue; Li, Huanan; Li, Qian; Yu, Yuandi; Zheng, Yi; Liu, Shukai; Hu, Pingsheng; Zhang, Xu; Ning, Zhangyong; Qi, Wenbao; Liao, Ming

    2016-01-01

    Human infections with avian influenza H7N9 or H10N8 viruses have been reported in China, raising concerns that they might cause human epidemics and pandemics. However, how these viruses adapt to mammalian hosts is unclear. Here we show that besides the commonly recognized viral polymerase subunit PB2 residue 627 K, other residues including 87E, 292 V, 340 K, 588 V, 648 V, and 676 M in PB2 also play critical roles in mammalian adaptation of the H10N8 virus. The avian-origin H10N8, H7N9, and H9N2 viruses harboring PB2-588 V exhibited higher polymerase activity, more efficient replication in mammalian and avian cells, and higher virulence in mice when compared to viruses with PB2-588 A. Analyses of available PB2 sequences showed that the proportion of avian H9N2 or human H7N9 influenza isolates bearing PB2-588 V has increased significantly since 2013. Taken together, our results suggest that the substitution PB2-A588V may be a new strategy for an avian influenza virus to adapt mammalian hosts. PMID:26782141

  20. Assessment of the Internal Genes of Influenza A (H7N9) Virus Contributing to High Pathogenicity in Mice

    PubMed Central

    Bi, Yuhai; Xie, Qing; Zhang, Shuang; Li, Yun; Xiao, Haixia; Jin, Tao; Zheng, Weinan; Li, Jing; Jia, Xiaojuan; Sun, Lei; Liu, Jinhua; Qin, Chuan

    2014-01-01

    ABSTRACT The recently identified H7N9 influenza A virus has caused severe economic losses and worldwide public concern. Genetic analysis indicates that its six internal genes all originated from H9N2 viruses. However, the H7N9 virus is more highly pathogenic in humans than H9N2, which suggests that the internal genes of H7N9 have mutated. To analyze which H7N9 virus internal genes contribute to its high pathogenicity, a series of reassortants was generated by reverse genetics, with each virus containing a single internal gene of the typical A/Anhui/1/2013 (H7N9) (AH-H7N9) virus in the genetic background of the A/chicken/Shandong/lx1023/2007 (H9N2) virus. The replication ability, polymerase activity, and pathogenicity of these viruses were then evaluated in vitro and in vivo. These recombinants displayed high genetic compatibility, and the H7N9-derived PB2, M, and NP genes were identified as the virulence genes for the reassortants in mice. Further investigation confirmed that the PB2 K627 residue is critical for the high pathogenicity of the H7N9 virus and the reassortant containing the H7N9-derived PB2 segment (H9N2-AH/PB2). Notably, the H7N9-derived PB2 gene displayed greater compatibility with the H9N2 genome than that of H7N9, endowing the H9N2-AH/PB2 reassortant with greater viability and virulence than the parental H7N9 virus. In addition, the H7N9 virus, with the exception of the H9N2 reassortants, could effectively replicate in human A549 cells. Our results indicate that PB2, M, and NP are the key virulence genes, together with the surface hemagglutinin (HA) and neuraminidase (NA) proteins, contributing to the high infectivity of the H7N9 virus in humans. IMPORTANCE To date, the novel H7N9 influenza A virus has caused 437 human infections, with approximately 30% mortality. Previous work has primarily focused on the two viral surface proteins, HA and NA, but the contribution of the six internal genes to the high pathogenicity of H7N9 has not been

  1. Identification of Amino Acid Changes That May Have Been Critical for the Genesis of A(H7N9) Influenza Viruses

    PubMed Central

    Neumann, Gabriele; Macken, Catherine A.

    2014-01-01

    ABSTRACT Novel influenza A viruses of the H7N9 subtype [A(H7N9)] emerged in the spring of 2013 in China and had infected 163 people as of 10 January 2014; 50 of them died of the severe respiratory infection caused by these viruses. Phylogenetic studies have indicated that the novel A(H7N9) viruses emerged from reassortment of H7, N9, and H9N2 viruses. Inspections of protein sequences from A(H7N9) viruses and their immediate predecessors revealed several amino acid changes in A(H7N9) viruses that may have facilitated transmission and replication in the novel host. Since mutations that occurred more ancestrally may also have contributed to the genesis of A(H7N9) viruses, we inferred historical evolutionary events leading to the novel viruses. We identified a number of amino acid changes on the evolutionary path to A(H7N9) viruses, including substitutions that may be associated with host range, replicative ability, and/or host responses to infection. The biological significance of these amino acid changes can be tested in future studies. IMPORTANCE The novel influenza A viruses of the H7N9 subtype [A(H7N9)], which first emerged in the spring of 2013, cause severe respiratory infections in humans. Here, we performed a comprehensive evolutionary analysis of the progenitors of A(H7N9) viruses to identify amino acid changes that may have been critical for the emergence of A(H7N9) viruses and their ability to infect humans. We provide a list of potentially important amino acid changes that can be tested for their significance for the influenza virus host range, replicative ability, and/or host responses to infection. PMID:24522919

  2. Mammalian Pathogenesis and Transmission of H7N9 Influenza Viruses from Three Waves, 2013-2015

    PubMed Central

    Belser, Jessica A.; Creager, Hannah M.; Sun, Xiangjie; Gustin, Kortney M.; Jones, Tara; Shieh, Wun-Ju; Maines, Taronna R.

    2016-01-01

    ABSTRACT Three waves of human infection with H7N9 influenza viruses have concluded to date, but only viruses within the first wave (isolated between March and September 2013) have been extensively studied in mammalian models. While second- and third-wave viruses remain closely linked phylogenetically and antigenically, even subtle molecular changes can impart critical shifts in mammalian virulence. To determine if H7N9 viruses isolated from humans during 2013 to 2015 have maintained the phenotype first identified among 2013 isolates, we assessed the ability of first-, second-, and third-wave H7N9 viruses isolated from humans to cause disease in mice and ferrets and to transmit among ferrets. Similar to first-wave viruses, H7N9 viruses from 2013 to 2015 were highly infectious in mice, with lethality comparable to that of the well-studied A/Anhui/1/2013 virus. Second- and third-wave viruses caused moderate disease in ferrets, transmitted efficiently to cohoused, naive contact animals, and demonstrated limited transmissibility by respiratory droplets. All H7N9 viruses replicated efficiently in human bronchial epithelial cells, with subtle changes in pH fusion threshold identified between H7N9 viruses examined. Our results indicate that despite increased genetic diversity and geographical distribution since their initial detection in 2013, H7N9 viruses have maintained a pathogenic phenotype in mammals and continue to represent an immediate threat to public health. IMPORTANCE H7N9 influenza viruses, first isolated in 2013, continue to cause human infection and represent an ongoing public health threat. Now entering the fourth wave of human infection, H7N9 viruses continue to exhibit genetic diversity in avian hosts, necessitating continuous efforts to monitor their pandemic potential. However, viruses isolated post-2013 have not been extensively studied, limiting our understanding of potential changes in virus-host adaptation. In order to ensure that current research

  3. Fatty Acid Metabolism is Associated With Disease Severity After H7N9 Infection.

    PubMed

    Sun, Xin; Song, Lijia; Feng, Shuang; Li, Li; Yu, Hongzhi; Wang, Qiaoxing; Wang, Xing; Hou, Zhili; Li, Xue; Li, Yu; Zhang, Qiuyang; Li, Kuan; Cui, Chao; Wu, Junping; Qin, Zhonghua; Wu, Qi; Chen, Huaiyong

    2018-06-22

    Human infections with the H7N9 virus could lead to lung damage and even multiple organ failure, which is closely associated with a high mortality rate. However, the metabolic basis of such systemic alterations remains unknown. This study included hospitalized patients (n = 4) with laboratory-confirmed H7N9 infection, healthy controls (n = 9), and two disease control groups comprising patients with pneumonia (n = 9) and patients with pneumonia who received steroid treatment (n = 10). One H7N9-infected patient underwent lung biopsy for histopathological analysis and expression analysis of genes associated with lung homeostasis. H7N9-induced systemic alterations were investigated using metabolomic analysis of sera collected from the four patients by using ultra-performance liquid chromatography-mass spectrometry. Chest digital radiography and laboratory tests were also conducted. Two of the four patients did not survive the clinical treatments with antiviral medication, steroids, and oxygen therapy. Biopsy revealed disrupted expression of genes associated with lung epithelial integrity. Histopathological analysis demonstrated severe lung inflammation after H7N9 infection. Metabolomic analysis indicated that fatty acid metabolism may be inhibited during H7N9 infection. Serum levels of palmitic acid, erucic acid, and phytal may negatively correlate with the extent of lung inflammation after H7N9 infection. The changes in fatty acid levels may not be due to steroid treatment or pneumonia. Altered structural and secretory properties of the lung epithelium may be associated with the severity of H7N9-infection-induced lung disease. Moreover, fatty acid metabolism level may predict a fatal outcome after H7N9 virus infection. Copyright © 2018. Published by Elsevier B.V.

  4. Increase in Human Infections with Avian Influenza A(H7N9) Virus During the Fifth Epidemic - China, October 2016-February 2017.

    PubMed

    Iuliano, A Danielle; Jang, Yunho; Jones, Joyce; Davis, C Todd; Wentworth, David E; Uyeki, Timothy M; Roguski, Katherine; Thompson, Mark G; Gubareva, Larisa; Fry, Alicia M; Burns, Erin; Trock, Susan; Zhou, Suizan; Katz, Jacqueline M; Jernigan, Daniel B

    2017-03-10

    During March 2013-February 24, 2017, annual epidemics of avian influenza A(H7N9) in China resulted in 1,258 avian influenza A(H7N9) virus infections in humans being reported to the World Health Organization (WHO) by the National Health and Family Planning Commission of China and other regional sources (1). During the first four epidemics, 88% of patients developed pneumonia, 68% were admitted to an intensive care unit, and 41% died (2). Candidate vaccine viruses (CVVs) were developed, and vaccine was manufactured based on representative viruses detected after the emergence of A(H7N9) virus in humans in 2013. During the ongoing fifth epidemic (beginning October 1, 2016),* 460 human infections with A(H7N9) virus have been reported, including 453 in mainland China, six associated with travel to mainland China from Hong Kong (four cases), Macao (one) and Taiwan (one), and one in an asymptomatic poultry worker in Macao (1). Although the clinical characteristics and risk factors for human infections do not appear to have changed (2,3), the reported human infections during the fifth epidemic represent a significant increase compared with the first four epidemics, which resulted in 135 (first epidemic), 320 (second), 226 (third), and 119 (fourth epidemic) human infections (2). Most human infections continue to result in severe respiratory illness and have been associated with poultry exposure. Although some limited human-to-human spread continues to be identified, no sustained human-to-human A(H7N9) transmission has been observed (2,3).

  5. Sudden increase in human infection with avian influenza A(H7N9) virus in China, September–December 2016

    PubMed Central

    Zhou, Lei; Ren, Ruiqi; Yang, Lei; Bao, Changjun; Wu, Jiabing; Wang, Dayan; Li, Chao; Xiang, Nijuan; Wang, Yali; Li, Dan; Sui, Haitian; Shu, Yuelong; Feng, Zijian; Li, Qun

    2017-01-01

    Since the first outbreak of avian influenza A(H7N9) virus in humans was identified in 2013, there have been five seasonal epidemics observed in China. An earlier start and a steep increase in the number of humans infected with H7N9 virus was observed between September and December 2016, raising great public concern in domestic and international societies. The epidemiological characteristics of the recently reported confirmed H7N9 cases were analysed. The results suggested that although more cases were reported recently, most cases in the fifth epidemic were still highly sporadically distributed without any epidemiology links; the main characteristics remained unchanged and the genetic characteristics of virus strains that were isolated in this epidemic remained similar to earlier epidemics. Interventions included live poultry market closures in several cities that reported more H7N9 cases recently. PMID:28409054

  6. Infectivity and Transmissibility of Avian H9N2 Influenza Viruses in Pigs

    PubMed Central

    Wang, Jia; Wu, Maocai; Hong, Wenshan; Fan, Xiaohui; Chen, Rirong; Zheng, Zuoyi; Zeng, Yu; Huang, Ren; Zhang, Yu; Lam, Tommy Tsan-Yuk; Smith, David K.

    2016-01-01

    ABSTRACT The H9N2 influenza viruses that are enzootic in terrestrial poultry in China pose a persistent pandemic threat to humans. To investigate whether the continuous circulation and adaptation of these viruses in terrestrial poultry increased their infectivity to pigs, we conducted a serological survey in pig herds with H9N2 viruses selected from the aquatic avian gene pool (Y439 lineage) and the enzootic terrestrial poultry viruses (G1 and Y280 lineages). We also compared the infectivity and transmissibility of these viruses in pigs. It was found that more than 15% of the pigs sampled from 2010 to 2012 in southern China were seropositive to either G1 or Y280 lineage viruses, but none of the sera were positive to the H9 viruses from the Y439 lineage. Viruses of the G1 and Y280 lineages were able to infect experimental pigs, with detectable nasal shedding of the viruses and seroconversion, whereas viruses of the Y439 lineage did not cause a productive infection in pigs. Thus, adaptation and prevalence in terrestrial poultry could lead to interspecies transmission of H9N2 viruses from birds to pigs. Although H9N2 viruses do not appear to be continuously transmissible among pigs, repeated introductions of H9 viruses to pigs naturally increase the risk of generating mammalian-adapted or reassorted variants that are potentially infectious to humans. This study highlights the importance of monitoring the activity of H9N2 viruses in terrestrial poultry and pigs. IMPORTANCE H9N2 subtype of influenza viruses has repeatedly been introduced into mammalian hosts, including humans and pigs, so awareness of their activity and evolution is important for influenza pandemic preparedness. However, since H9N2 viruses usually cause mild or even asymptomatic infections in mammalian hosts, they may be overlooked in influenza surveillance. Here, we found that the H9N2 viruses established in terrestrial poultry had higher infectivity in pigs than those from aquatic birds, which

  7. Infectivity and Transmissibility of Avian H9N2 Influenza Viruses in Pigs.

    PubMed

    Wang, Jia; Wu, Maocai; Hong, Wenshan; Fan, Xiaohui; Chen, Rirong; Zheng, Zuoyi; Zeng, Yu; Huang, Ren; Zhang, Yu; Lam, Tommy Tsan-Yuk; Smith, David K; Zhu, Huachen; Guan, Yi

    2016-01-13

    The H9N2 influenza viruses that are enzootic in terrestrial poultry in China pose a persistent pandemic threat to humans. To investigate whether the continuous circulation and adaptation of these viruses in terrestrial poultry increased their infectivity to pigs, we conducted a serological survey in pig herds with H9N2 viruses selected from the aquatic avian gene pool (Y439 lineage) and the enzootic terrestrial poultry viruses (G1 and Y280 lineages). We also compared the infectivity and transmissibility of these viruses in pigs. It was found that more than 15% of the pigs sampled from 2010 to 2012 in southern China were seropositive to either G1 or Y280 lineage viruses, but none of the sera were positive to the H9 viruses from the Y439 lineage. Viruses of the G1 and Y280 lineages were able to infect experimental pigs, with detectable nasal shedding of the viruses and seroconversion, whereas viruses of the Y439 lineage did not cause a productive infection in pigs. Thus, adaptation and prevalence in terrestrial poultry could lead to interspecies transmission of H9N2 viruses from birds to pigs. Although H9N2 viruses do not appear to be continuously transmissible among pigs, repeated introductions of H9 viruses to pigs naturally increase the risk of generating mammalian-adapted or reassorted variants that are potentially infectious to humans. This study highlights the importance of monitoring the activity of H9N2 viruses in terrestrial poultry and pigs. H9N2 subtype of influenza viruses has repeatedly been introduced into mammalian hosts, including humans and pigs, so awareness of their activity and evolution is important for influenza pandemic preparedness. However, since H9N2 viruses usually cause mild or even asymptomatic infections in mammalian hosts, they may be overlooked in influenza surveillance. Here, we found that the H9N2 viruses established in terrestrial poultry had higher infectivity in pigs than those from aquatic birds, which suggests that adaptation of

  8. Partial heterologous protection by low pathogenic H9N2 virus against natural H9N2-PB1 gene reassortant highly pathogenic H5N1 virus in chickens.

    PubMed

    Dash, Sandeep Kumar; Kumar, Manoj; Kataria, Jag Mohan; Nagarajan, Shanmugasundaram; Tosh, Chakradhar; Murugkar, Harshad V; Kulkarni, Diwakar D

    2016-06-01

    Low pathogenic avian influenza H9N2 and highly pathogenic avian influenza H5N1 viruses continue to co-circulate in chickens. Prior infection with low pathogenic avian influenza can modulate the outcome of H5N1 infection. In India, low pathogenic H9N2 and highly pathogenic H5N1 avian influenza viruses are co-circulating in poultry. Herein, by using chickens with prior infection of A/chicken/India/04TI05/2012 (H9N2) virus we explored the outcome of infection with H5N1 virus A/turkey/India/10CA03/2012 natural PB1 gene reassortant from H9N2. Four groups (E1-E4) of SPF chickens (n = 6) prior inoculated with 10(6) EID50 of H9N2 virus were challenged with 10(6) EID50 of H5N1 natural reassortant (PB1-H9N2) virus at days 1 (group E1); 3 (group E2); 7 (group E3) and 14 (group E4) post H9N2 inoculation. The survival percentage in groups E1-E4 was 0, 100, 66.6 and 50%, respectively. Virus shedding periods for groups E1-E4 were 3, 4, 7 and 9 days, respectively post H5N1 challenge. Birds of group E1 and E2 were shedding both H9N2 and H5N1 viruses and mean viral RNA copy number was higher in oropharyngeal swabs than cloacal swabs. In group, E3 and E4 birds excreted only H5N1 virus and mean viral RNA copy number was higher in most cloacal swabs than oral swabs. These results indicate that prior infection with H9N2 virus could protect from lethal challenge of reassortant H5N1 virus as early as with three days prior H9N2 inoculation and protection decreased in groups E3 and E4 as time elapsed. However, prior infection with H9N2 did not prevent infection with H5N1 virus and birds continue to excrete virus in oropharyngeal and cloacal swabs. Amino acid substitution K368E was found in HA gene of excreted H5N1 virus of group E3. Hence, concurrent infection can also cause emergence of viruses with mutations leading to virus evolution. The results of this study are important for the surveillance and epidemiological data analysis where both H9N2 and H5N1 viruses are co

  9. Convergent Evolution of Human-Isolated H7N9 Avian Influenza A Viruses.

    PubMed

    Xiang, Dan; Shen, Xuejuan; Pu, Zhiqing; Irwin, David M; Liao, Ming; Shen, Yongyi

    2018-05-05

    Avian influenza A virus H7N9 has caused 5 epidemic waves of human infections in China since 2013. Avian influenza A viruses may face strong selection to adapt to novel conditions when establishing themselves in humans. In this study, we sought to determine whether adaptive evolution had occurred in human-isolated H7N9 viruses. We evaluated all available genomes of H7N9 avian influenza A virus. Maximum likelihood trees were separately reconstructed for all 8 genes. Signals of positive selection and convergent evolution were then detected on branches that lead to changes in host tropism (from avian to human). We found that 3 genes had significant signals of positive selection (all of them P < .05). In addition, we detected 34 sites having significant signals for parallel evolution in 8 genes (all of them P < .05), including 7 well-known sites (Q591K, E627K, and D701N in PB2 gene; R156K, V202A, and L244Q in HA; and R289K in NA) that play roles in crossing species barriers for avian influenza A viruses. Our study suggests that, during infection in humans, H7N9 viruses have undergone adaptive evolution to adapt to their new host environment and that the sites where parallel evolution occurred might play roles in crossing species barriers and respond to the new selection pressures arising from their new host environments.

  10. Early Antibody Response Contributes to the Virus Eradication and Clinical Recovery of H7N9 Influenza Infection.

    PubMed

    Liu, Xi; Yang, Zheng; Yuan, Jing; Liao, Jian; Duan, Lian; Wang, Wenfei; Zhang, Fuping; Chen, Xinchun; Zhou, Boping

    2017-09-01

    A new type of highly pathogenic avian influenza virus, H7N9, has been a great threat to public health since its 2013 outbreak. The humoral immune response plays a critical role in protection from the influenza virus, but its role and kinetics in H7N9-infected patients remain to be determined. In this study, we performed a retrospective investigation of the antibody response in plasma samples from 37 cases of hospitalized patients and analysed the relationship between the antibody response and the clinical outcomes. Our results showed that the HA7-binding antibody was generated earlier than the neutralizing antibody. Higher titer of HA7-binding antibody during the first 14 days after disease onset were associated with a shorter virus-positive continuation period, which is an important risk predictor ( P <0.05). Additionally, the titers of HA7-binding antibody were consistently and significantly lower in patients who died than those who recovered from the severe disease. Unexpectedly, no correlation between the titer of neutralizing antibody and the resulting clinical outcomes was found, suggesting that a neutralizing antibody-independent mechanism also contributed to virus control. In summary, our data suggests that an early antibody response against H7N9 influenza virus contributes to the eradication of the virus. A higher, early HA7-binding antibody response is associated with better clinical outcomes in H7N9 patients. © 2017 by the Association of Clinical Scientists, Inc.

  11. Epidemiology of human influenza A(H7N9) infection in Hong Kong.

    PubMed

    Leung, Yiu-Hong; To, May-Kei; Lam, Tsz-Sum; Yau, Shui-Wah; Leung, Oi-Shan; Chuang, Shuk-Kwan

    2017-04-01

    We conducted a case series study to review the epidemiology of human influenza A(H7N9) infection reported in Hong Kong. We reviewed case records of confirmed human cases of influenza A(H7N9) infection reported in Hong Kong in the 2013-2014 winter season. We compared the median viral shedding duration and interval from illness onset to initiation of oseltamivir treatment between severe and mild cases. We estimated the incubation period of influenza A(H7N9) virus from cases with a single known date of poultry exposure. A total of 10 cases were reported and all were imported infection from Mainland China. Four patients died and the cause of death was related to influenza A(H7N9) infection in two patients. The median interval from illness onset to initiation of oseltamivir treatment for the severe cases (4.5 days) was significantly longer than the mild cases (2 days; p = 0.025). Severe cases had a significantly longer viral shedding duration than mild cases (p = 0.028). The median incubation period for cases with a single known exposure date was 4 days. Nasopharyngeal aspirate taken from the 88 close contacts of the 10 patients all tested negative for influenza A virus using reverse transcription polymerase chain reaction. Delayed administration of antiviral treatment may be associated with a more severe illness for influenza A(H7N9) infection. Despite our aggressive contact tracing policy with laboratory testing of all close contacts, no secondary case was identified which implied that the potential of human-to-human transmission of the circulating influenza A(H7N9) virus remains low. Copyright © 2015. Published by Elsevier B.V.

  12. Identification, sequence analysis, and infectivity of H9N2 avian influenza viruses isolated from geese.

    PubMed

    Zhu, Rui; Yang, Xueqin; Zhang, Jianjun; Xu, Danwen; Fan, Jiawen; Shi, Huoying; Wang, Shifeng; Liu, Xiufan

    2018-05-31

    The subtype H9N2 avian influenza virus greatly threatens the Chinese poultry industry, even with annual vaccination. Waterfowl can be asymptomatically infected with the H9N2 virus. In this study, three H9N2 virus strains, designated A/Goose/Jiangsu/YZ527/2011 (H9N2, Gs/JS/YZ527/11), A/Goose/Jiangsu/SQ119/2012 (H9N2, Gs/JS/SQ119/12), and A/Goose/Jiangsu/JD564/2012 (H9N2, Gs/JS/JD564/12), were isolated from domestic geese. Molecular characterization of the three isolates showed that the Gs/JS/YZ527/11 virus is a double-reassortant virus, combining genes of A/Quail/Hong Kong/G1/97 (H9N2, G1/97)-like and A/Chicken/Shanghai/F/98 (H9N2, F/98)-like; the Gs/JS/SQ119/12 virus is a triple-reassortant virus combining genes of G1/97-like, F/98-like, and A/Duck/Shantou/163/2004 (H9N2, ST/163/04)-like. The sequences of Gs/JS/JD564/12 share high homology with those of the F/98 virus, except for the neuraminidase gene, whereas the internal genes of Gs/JS/YZ527/11 and Gs/JS/SQ119/12 are closely related to those of the H7N9 viruses. An infectivity analysis of the three isolates showed that Gs/JS/SQ119/12 and Gs/JS/YZ527/11 replicated well, with seroconversion, in geese and chickens, the Gs/JS/JD564/12 did not infect well in geese or chickens, and the F/98 virus only infected chickens, with seroconversion. Emergence of these new reassortant H9N2 avian influenza viruses indicates that these viruses can infect both chicken and goose and can produce different types of lesions in each species.

  13. Identification, sequence analysis, and infectivity of H9N2 avian influenza viruses isolated from geese

    PubMed Central

    Zhu, Rui; Yang, Xueqin; Zhang, Jianjun; Xu, Danwen; Fan, Jiawen; Wang, Shifeng; Liu, Xiufan

    2018-01-01

    The subtype H9N2 avian influenza virus greatly threatens the Chinese poultry industry, even with annual vaccination. Waterfowl can be asymptomatically infected with the H9N2 virus. In this study, three H9N2 virus strains, designated A/Goose/Jiangsu/YZ527/2011 (H9N2, Gs/JS/YZ527/11), A/Goose/Jiangsu/SQ119/2012 (H9N2, Gs/JS/SQ119/12), and A/Goose/Jiangsu/JD564/2012 (H9N2, Gs/JS/JD564/12), were isolated from domestic geese. Molecular characterization of the three isolates showed that the Gs/JS/YZ527/11 virus is a double-reassortant virus, combining genes of A/Quail/Hong Kong/G1/97 (H9N2, G1/97)-like and A/Chicken/Shanghai/F/98 (H9N2, F/98)-like; the Gs/JS/SQ119/12 virus is a triple-reassortant virus combining genes of G1/97-like, F/98-like, and A/Duck/Shantou/163/2004 (H9N2, ST/163/04)-like. The sequences of Gs/JS/JD564/12 share high homology with those of the F/98 virus, except for the neuraminidase gene, whereas the internal genes of Gs/JS/YZ527/11 and Gs/JS/SQ119/12 are closely related to those of the H7N9 viruses. An infectivity analysis of the three isolates showed that Gs/JS/SQ119/12 and Gs/JS/YZ527/11 replicated well, with seroconversion, in geese and chickens, the Gs/JS/JD564/12 did not infect well in geese or chickens, and the F/98 virus only infected chickens, with seroconversion. Emergence of these new reassortant H9N2 avian influenza viruses indicates that these viruses can infect both chicken and goose and can produce different types of lesions in each species. PMID:29366299

  14. Cardiac complications associated with the influenza viruses A subtype H7N9 or pandemic H1N1 in critically ill patients under intensive care.

    PubMed

    Wang, Jiajia; Xu, Hua; Yang, Xinjing; Zhao, Daguo; Liu, Shenglan; Sun, Xue; Huang, Jian-An; Guo, Qiang

    The clinical presentations and disease courses of patients hospitalized with either influenza A virus subtype H7N9 (H7N9) or 2009 pandemic H1N1 influenza virus were compared in a recent report, but associated cardiac complications remain unclear. The present retrospective study investigated whether cardiac complications in critically ill patients with H7N9 infections differed from those infected with the pandemic H1N1 influenza virus strain. Suspect cases were confirmed by reverse transcription polymerase chain reaction assays with specific confirmation of the pandemic H1N1 strain at the Centers for Disease Control and Prevention. Comparisons were conducted at the individual-level data of critically ill patients hospitalized with H7N9 (n=24) or pandemic H1N1 influenza virus (n=22) infections in Suzhou, China. Changes in cardiac biochemical markers, echocardiography, and electrocardiography during hospitalization in the intensive care unit were considered signs of cardiac complications. The following findings were more common among the H7N9 group relative to the pandemic H1N1 influenza virus group: greater tricuspid regurgitation pressure gradient, sinus tachycardia (heartbeat≥130bpm), ST segment depression, right ventricular dysfunction, and elevated cardiac biochemical markers. Pericardial effusion was more often found among pandemic H1N1 influenza virus patients than in the H7N9 group. In both groups, most of the cardiac complications were detected from day 6 to 14 after the onset of influenza symptoms. Those who developed cardiac complications were especially vulnerable during the first four days after initiation of mechanical ventilation. Cardiac complications were reversible in the vast majority of discharged H7N9 patients. Critically ill hospitalized H7N9 patients experienced a higher rate of cardiac complications than did patients with 2009 pandemic H1N1 influenza virus infections, with the exception of pericardial effusion. This study may help in the

  15. The pandemic potential of avian influenza A(H7N9) virus: a review.

    PubMed

    Tanner, W D; Toth, D J A; Gundlapalli, A V

    2015-12-01

    In March 2013 the first cases of human avian influenza A(H7N9) were reported to the World Health Organization. Since that time, over 650 cases have been reported. Infections are associated with considerable morbidity and mortality, particularly within certain demographic groups. This rapid increase in cases over a brief time period is alarming and has raised concerns about the pandemic potential of the H7N9 virus. Three major factors influence the pandemic potential of an influenza virus: (1) its ability to cause human disease, (2) the immunity of the population to the virus, and (3) the transmission potential of the virus. This paper reviews what is currently known about each of these factors with respect to avian influenza A(H7N9). Currently, sustained human-to-human transmission of H7N9 has not been reported; however, population immunity to the virus is considered very low, and the virus has significant ability to cause human disease. Several statistical and geographical modelling studies have estimated and predicted the spread of the H7N9 virus in humans and avian species, and some have identified potential risk factors associated with disease transmission. Additionally, assessment tools have been developed to evaluate the pandemic potential of H7N9 and other influenza viruses. These tools could also hypothetically be used to monitor changes in the pandemic potential of a particular virus over time.

  16. Mammalian adaptation of influenza A(H7N9) virus is limited by a narrow genetic bottleneck

    PubMed Central

    Zaraket, Hassan; Baranovich, Tatiana; Kaplan, Bryan S.; Carter, Robert; Song, Min-Suk; Paulson, James C.; Rehg, Jerold E.; Bahl, Justin; Crumpton, Jeri C.; Seiler, Jon; Edmonson, Michael; Wu, Gang; Karlsson, Erik; Fabrizio, Thomas; Zhu, Huachen; Guan, Yi; Husain, Matloob; Schultz-Cherry, Stacey; Krauss, Scott; McBride, Ryan; Webster, Robert G.; Govorkova, Elena A.; Zhang, Jinghui; Russell, Charles J.; Webby, Richard J.

    2015-01-01

    Human infection with avian influenza A(H7N9) virus is associated mainly with the exposure to infected poultry. The factors that allow interspecies transmission but limit human-to-human transmission are unknown. Here we show that A/Anhui/1/2013(H7N9) influenza virus infection of chickens (natural hosts) is asymptomatic and that it generates a high genetic diversity. In contrast, diversity is tightly restricted in infected ferrets, limiting further adaptation to a fully transmissible form. Airborne transmission in ferrets is accompanied by the mutations in PB1, NP and NA genes that reduce viral polymerase and neuraminidase activity. Therefore, while A(H7N9) virus can infect mammals, further adaptation appears to incur a fitness cost. Our results reveal that a tight genetic bottleneck during avian-to-mammalian transmission is a limiting factor in A(H7N9) influenza virus adaptation to mammals. This previously unrecognized biological mechanism limiting species jumps provides a measure of adaptive potential and may serve as a risk assessment tool for pandemic preparedness. PMID:25850788

  17. Avian Influenza H7N9/13 and H7N7/13: a Comparative Virulence Study in Chickens, Pigeons, and Ferrets

    PubMed Central

    Kalthoff, Donata; Bogs, Jessica; Grund, Christian; Tauscher, Kerstin; Teifke, Jens P.; Starick, Elke; Harder, Timm

    2014-01-01

    ABSTRACT Human influenza cases caused by a novel avian H7N9 virus in China emphasize the zoonotic potential of that subtype. We compared the infectivity and pathogenicity of the novel H7N9 virus with those of a recent European avian H7N7 strain in chickens, pigeons, and ferrets. Neither virus induced signs of disease despite substantial replication in inoculated chickens and rapid transmission to contact chickens. Evidence of the replication of both viruses in pigeons, albeit at lower levels of RNA excretion, was also detected. No clear-cut differences between the two H7 isolates emerged regarding replication and antibody development in avian hosts. In ferrets, in contrast, greater replication of the avian H7N9 virus than of the H7N7 strain was observed with significant differences in viral presence, e.g., in nasal wash, lung, and cerebellum samples. Importantly, both viruses showed the potential to spread to the mammal brain. We conclude that efficient asymptomatic viral replication and shedding, as shown in chickens, facilitate the spread of H7 viruses that may harbor zoonotic potential. Biosafety measures are required for the handling of poultry infected with avian influenza viruses of the H7 subtype, independently of their pathogenicity for gallinaceous poultry. IMPORTANCE This study is important to the field since it provides data about the behavior of the novel H7N9 avian influenza virus in chickens, pigeons, and ferrets in comparison with that of a recent low-pathogenicity H7N7 strain isolated from poultry. We clearly show that chickens, but not pigeons, are highly permissive hosts of both H7 viruses, allowing high-titer replication and virus shedding without any relevant clinical signs. In the ferret model, the potential of both viruses to infect mammals could be demonstrated, including infection of the brain. However, the replication efficiency of the H7N9 virus in ferrets was higher than that of the H7N7 strain. In conclusion, valuable data for the risk

  18. Emergence and Adaptation of a Novel Highly Pathogenic H7N9 Influenza Virus in Birds and Humans from a 2013 Human-Infecting Low-Pathogenic Ancestor.

    PubMed

    Qi, Wenbao; Jia, Weixin; Liu, Di; Li, Jing; Bi, Yuhai; Xie, Shumin; Li, Bo; Hu, Tao; Du, Yingying; Xing, Li; Zhang, Jiahao; Zhang, Fuchun; Wei, Xiaoman; Eden, John-Sebastian; Li, Huanan; Tian, Huaiyu; Li, Wei; Su, Guanming; Lao, Guangjie; Xu, Chenggang; Xu, Bing; Liu, Wenjun; Zhang, Guihong; Ren, Tao; Holmes, Edward C; Cui, Jie; Shi, Weifeng; Gao, George F; Liao, Ming

    2018-01-15

    Since its emergence in 2013, the H7N9 low-pathogenic avian influenza virus (LPAIV) has been circulating in domestic poultry in China, causing five waves of human infections. A novel H7N9 highly pathogenic avian influenza virus (HPAIV) variant possessing multiple basic amino acids at the cleavage site of the hemagglutinin (HA) protein was first reported in two cases of human infection in January 2017. More seriously, those novel H7N9 HPAIV variants have been transmitted and caused outbreaks on poultry farms in eight provinces in China. Herein, we demonstrate the presence of three different amino acid motifs at the cleavage sites of these HPAIV variants which were isolated from chickens and humans and likely evolved from the preexisting LPAIVs. Animal experiments showed that these novel H7N9 HPAIV variants are both highly pathogenic in chickens and lethal to mice. Notably, human-origin viruses were more pathogenic in mice than avian viruses, and the mutations in the PB2 gene associated with adaptation to mammals (E627K, A588V, and D701N) were identified by next-generation sequencing (NGS) and Sanger sequencing of the isolates from infected mice. No polymorphisms in the key amino acid substitutions of PB2 and HA in isolates from infected chicken lungs were detected by NGS. In sum, these results highlight the high degree of pathogenicity and the valid transmissibility of this new H7N9 variant in chickens and the quick adaptation of this new H7N9 variant to mammals, so the risk should be evaluated and more attention should be paid to this variant. IMPORTANCE Due to the recent increased numbers of zoonotic infections in poultry and persistent human infections in China, influenza A(H7N9) virus has remained a public health threat. Most of the influenza A(H7N9) viruses reported previously have been of low pathogenicity. Now, these novel H7N9 HPAIV variants have caused human infections in three provinces and outbreaks on poultry farms in eight provinces in China. We analyzed

  19. Nosocomial Co-Transmission of Avian Influenza A(H7N9) and A(H1N1)pdm09 Viruses between 2 Patients with Hematologic Disorders

    PubMed Central

    Chen, Huazhong; Liu, Shelan; Liu, Jun; Chai, Chengliang; Mao, Haiyan; Yu, Zhao; Tang, Yuming; Zhu, Geqin; Chen, Haixiao X.; Zhu, Chengchu; Shao, Hui; Tan, Shuguang; Wang, Qianli; Bi, Yuhai; Zou, Zhen; Liu, Guang; Jin, Tao; Jiang, Chengyu; Gao, George F.; Peiris, Malik

    2016-01-01

    A nosocomial cluster induced by co-infections with avian influenza A(H7N9) and A(H1N1)pdm09 (pH1N1) viruses occurred in 2 patients at a hospital in Zhejiang Province, China, in January 2014. The index case-patient was a 57-year-old man with chronic lymphocytic leukemia who had been occupationally exposed to poultry. He had co-infection with H7N9 and pH1N1 viruses. A 71-year-old man with polycythemia vera who was in the same ward as the index case-patient for 6 days acquired infection with H7N9 and pH1N1 viruses. The incubation period for the second case-patient was estimated to be <4 days. Both case-patients died of multiple organ failure. Virus genetic sequences from the 2 case-patients were identical. Of 103 close contacts, none had acute respiratory symptoms; all were negative for H7N9 virus. Serum samples from both case-patients demonstrated strong proinflammatory cytokine secretion but incompetent protective immune responses. These findings strongly suggest limited nosocomial co-transmission of H7N9 and pH1N1 viruses from 1 immunocompromised patient to another. PMID:26982379

  20. Effect of Live Poultry Market Interventions on Influenza A(H7N9) Virus, Guangdong, China

    PubMed Central

    Wu, Jie; Lu, Jing; Faria, Nuno R.; Zeng, Xianqiao; Song, Yingchao; Zou, Lirong; Yi, Lina; Liang, Lijun; Ni, Hanzhong; Kang, Min; Zhang, Xin; Huang, Guofeng; Zhong, Haojie; Bowden, Thomas A.; Raghwani, Jayna; He, Jianfeng; He, Xiang; Lin, Jinyan; Koopmans, Marion; Pybus, Oliver G.

    2016-01-01

    Since March 2013, three waves of human infection with avian influenza A(H7N9) virus have been detected in China. To investigate virus transmission within and across epidemic waves, we used surveillance data and whole-genome analysis of viruses sampled in Guangdong during 2013–2015. We observed a geographic shift of human A(H7N9) infections from the second to the third waves. Live poultry market interventions were undertaken in epicenter cities; however, spatial phylogenetic analysis indicated that the third-wave outbreaks in central Guangdong most likely resulted from local virus persistence rather than introduction from elsewhere. Although the number of clinical cases in humans declined by 35% from the second to the third waves, the genetic diversity of third-wave viruses in Guangdong increased. Our results highlight the epidemic risk to a region reporting comparatively few A(H7N9) cases. Moreover, our results suggest that live-poultry market interventions cannot completely halt A(H7N9) virus persistence and dissemination. PMID:27869613

  1. Dynamic Variation and Reversion in the Signature Amino Acids of H7N9 Virus During Human Infection.

    PubMed

    Zou, Xiaohui; Guo, Qiang; Zhang, Wei; Chen, Hui; Bai, Wei; Lu, Binghuai; Zhang, Wang; Fan, Yanyan; Liu, Chao; Wang, Yeming; Zhou, Fei; Cao, Bin

    2018-04-24

    Signature amino acids of H7N9 influenza virus play critical roles in human adaption and pathogenesis, but their dynamic variation is unknown during disease development. We sequentially collected respiratory samples from H7N9 patients at different timepoints and applied next-generation sequencing (NGS) to the whole genome of the H7N9 virus to investigate the variation at signature sites. A total of 11 patients were involved and from whom 29 samples were successfully sequenced, including samples from multiple timepoints in 9 patients. NA R292K, PB2 E627K, and D701N were the three most dynamic mutations. The oseltamivir resistance-related NA R292K mutation was present in 9 samples from 5 patients, including one sample obtained before antiviral therapy. In all patients with the NA 292K mutation, the oseltamivir-sensitive 292R genotype persisted and was not eliminated by antiviral treatment. The PB2 E627K substitution was present in 18 samples from 8 patients, among which 12 samples demonstrated a mixture of E/K and the 627K frequency exhibited dynamic variation. Dual D701N and E627K mutations emerged but failed to achieve predominance in any of the samples. Signature amino acids in PB2 and NA demonstrated high polymorphism and dynamic variation within individual patients during H7N9 virus infection.

  2. Genesis and Spread of Newly Emerged Highly Pathogenic H7N9 Avian Viruses in Mainland China

    PubMed Central

    Yang, Lei; Zhu, Wenfei; Li, Xiyan; Chen, Minmei; Wu, Jie; Yu, Pengbo; Qi, Shunxiang; Huang, Yiwei; Shi, Weixian; Dong, Jie; Zhao, Xiang; Huang, Weijuan; Li, Zi; Zeng, Xiaoxu; Bo, Hong; Chen, Tao; Chen, Wenbing; Liu, Jia; Zhang, Ye; Liang, Zhenli; Shi, Wei

    2017-01-01

    ABSTRACT The novel low-pathogenic avian influenza A H7N9 viruses (LPAI H7N9 viruses) have been a threat to public health since their emergence in 2013 because of the high rates of mortality and morbidity that they cause. Recently, highly pathogenic variants of these avian influenza A H7N9 viruses (HPAI H7N9 viruses) have emerged and caused human infections and outbreaks among poultry in mainland China. However, it is still unclear how the HPAI H7N9 virus was generated and how it evolved and spread in China. Here, we show that the ancestor virus of the HPAI H7N9 viruses originated in the Yangtze River Delta region and spread southward to the Pearl River Delta region, possibly through live poultry trade. After introduction into the Pearl River Delta region, the origin LPAI H7N9 virus acquired four amino acid insertions in the hemagglutinin (HA) protein cleavage site and mutated into the HPAI H7N9 virus in late May 2016. Afterward, the HPAI H7N9 viruses further reassorted with LPAI H7N9 or H9N2 viruses locally and generated multiple different genotypes. As of 14 July 2017, the HPAI H7N9 viruses had spread from Guangdong Province to at least 12 other provinces. The rapid geographical expansion and genetic evolution of the HPAI H7N9 viruses pose a great challenge not only to public health but also to poultry production. Effective control measures, including enhanced surveillance, are therefore urgently needed. IMPORTANCE The LPAI H7N9 virus has caused five outbreak waves in humans and was recently reported to have mutated into highly pathogenic variants. It is unknown how the HPAI H7N9 virus originated, evolved, and disseminated in China. In this study, we comprehensively analyzed the sequences of HPAI H7N9 viruses from 28 human and 21 environmental samples covering eight provinces in China that were taken from November 2016 to June 2017. The results show that the ancestor virus of the HPAI H7N9 viruses originated in the Yangtze River Delta region. However, the

  3. Signal Immune Reactions of Macrophages Differentiated from THP-1 Monocytes to Infection with Pandemic H1N1PDM09 Virus and H5N2 and H9N2 Avian Influenza A Virus.

    PubMed

    Sokolova, T M; Poloskov, V V; Shuvalov, A N; Rudneva, I A; Timofeeva, T A

    2018-03-01

    In culture of THP-1 cells differentiated into macrophages with PMA (THP-PMA macrophages) infected with influenza viruses of subtypes H1, H5 and H9, we measured the expression of TLR7 and RIG1 receptor genes, sensors of viral RNA and ribonucleoprotein, and the levels of production of inflammatory cytokines IL-1β, TNFα, IL-10, and IFNα. The sensitivity and inflammatory response of THP-PMA macrophages to pandemic influenza A virus H1N1pdm09 and avian influenza H5N2 and H9N2 viruses correlate with the intracellular level of their viral RNA and activation of the RIG1 gene. Abortive infection is accompanied by intensive macrophage secretion of TNFα, IL-1β, and toxic factors inducing cell death. Activity of endosomal TLR7 receptor gene changed insignificantly in 24 h after infection and significantly decreased in 48 and 72 h under the action of H5N2 and H9N2, which correlated with manifestation of the cytopathogenic effect of these viruses. H5N2 and H9N2 avian viruses in THP-PMA macrophages are strong activators of the expression of the gene of the cytoplasmic RIG1 receptor 24 and 48 h after infection, and the pandemic virus H1N1pdm09 is a weak stimulator of RIG1 gene. Avian influenza H5N2 and H9N2 viruses are released by rapid induction of the inflammatory response in macrophages. At the late stages of infection, we observed a minor increase in IL-10 secretion in macrophages and, probably, the polarization of a part of the population in type M2. The studied influenza A viruses are weak inductors of IFN in THP-PMA macrophages. In the culture medium of THP-PMA macrophages infected with H9N2 and H5N2 viruses, MTT test revealed high levels of toxic factors causing the death of Caco-2 cells. In contrast to avian viruses, pandemic virus H1N1pdm09 did not induce production of toxic factors.

  4. Recombinant H7 hemagglutinin forms subviral particles that protect mice and ferrets from challenge with H7N9 influenza virus

    PubMed Central

    Pushko, Peter; Pujanauski, Lindsey M.; Sun, Xiangjie; Pearce, Melissa; Hidajat, Rachmat; Kort, Thomas; Schwartzman, Louis M.; Tretyakova, Irina; Chunqing, Liu; Taubenberger, Jeffery K.; Tumpey, Terrence M.

    2015-01-01

    A novel avian-origin influenza A H7N9 virus emerged in China in 2013 and continues to cause sporadic human infections with mortality rates approaching 35%. Currently there are no approved human vaccines for H7N9 virus. Recombinant approaches including hemagglutinin (HA) and virus-like particles (VLPs) have resulted in experimental vaccines with advantageous safety and manufacturing characteristics. While high immunogenicity of VLP vaccines has been attributed to the native conformation of HA arranged in the regular repeated patterns within virus-like structures, there is limited data regarding molecular organization of HA within recombinant HA vaccine preparations. In this study, the full-length recombinant H7 protein (rH7) of A/Anhui/1/2013 (H7N9) virus was expressed in Sf9 cells. We showed that purified full-length rH7 retained functional ability to agglutinate red blood cells and formed oligomeric pleomorphic subviral particles (SVPs) of ~20 nm in diameter composed of approximately 10 HA0 molecules. No significant quantities of free monomeric HA0 were observed in rH7 preparation by size exclusion chromatography. Immunogenicity and protective efficacy of rH7 SVPs was confirmed in the mouse and ferret challenge models suggesting that SVPs can be used for vaccination against H7N9 virus. PMID:26207590

  5. Mild Illness in Avian Influenza A(H7N9) Virus–Infected Poultry Worker, Huzhou, China, April 2013

    PubMed Central

    Lv, Huakun; Han, Jiankang; Zhang, Peng; Lu, Ye; Wen, Dong; Cai, Jian; Liu, Shelan; Sun, Jimin; Yu, Zhao; Zhang, Heng; Gong, Zhenyu; Chen, Enfu

    2013-01-01

    During April 2013 in China, mild respiratory symptoms developed in 1/61 workers who had culled influenza A(H7N9) virus–infected poultry. Laboratory testing confirmed A(H7N9) infection in the worker and showed that the virus persisted longer in sputum than pharyngeal swab samples. Pharyngeal swab samples from the other workers were negative for A(H7N9) virus. PMID:24209963

  6. Serologic screenings for H7N9 from three sources among high-risk groups in the early stage of H7N9 circulation in Guangdong Province, China.

    PubMed

    Wu, Jie; Zou, Lirong; Ni, Hanzhong; Pei, Lei; Zeng, Xianqiao; Liang, Lijun; Zhong, Haojie; He, Jianfeng; Song, Yingchao; Kang, Min; Zhang, Xin; Lin, Jinyan; Ke, Changwen

    2014-10-23

    The aim of this study was to assess the prevalence of the novel avian influenza A virus (H7N9) in three high risk groups. The groups were divided into those exposed through infected individuals, those exposed through poultry and those individuals exposed through the external environment, in the early stage of the epidemic in Guangdong Province, which is located in the southern region of China. Serologic studies were conducted among samples collected from individuals who had close contact with the first H7N9 infected patient reported in Guangdong Province, those who were most likely exposed to the first group of H7N9 infected poultry, and those who might have been exposed to H7N9 in the environmental settings, namely hemagglutinin inhibition (HI) and microneutralizaiton(MN) assays using three viruses as antigens. The alignment results of the viral sequences indicated the similarity of the HA gene sequence among viruses from exposure to infected poultry, infected humans and contaminated environments were highly conserved. Seven samples of individuals exposed to contaminated environments were positive in the HI assay and one sample among them was positive in the MN assay using poultry H7N9 virus as the antigen. One sample was positive against human H7N9 virus and 3 samples were positive against environmental H7N9 among those that were in contact with infected patients in HI assay. None of these were positive in MN assay. All HI titers of the 240 samples from those individuals in contact with infected poultry were less than 40 aganist the antigens from three viruses. The results suggest that when the H7N9 virus was in the early stages of circulation in Guangdong Province, the antigenic sites of the HA proteins of the H7N9 strain isolated from different hosts were highly conserved. The risk of new infection is low in individuals who have contact with the infected patients, poultry or a contaminated environment in the early stages of the circulation of the H7N9 virus.

  7. Rapid Diagnostic Tests for Identifying Avian Influenza A(H7N9) Virus in Clinical Samples

    PubMed Central

    Chen, Yu; Wang, Dayan; Zheng, Shufa; Shu, Yuelong; Chen, Wenxiang; Cui, Dawei; Li, Jinming; Yu, Hongjie; Wang, Yu; Li, Lanjuan

    2015-01-01

    To determine sensitivity of rapid diagnostic tests for detecting influenza A(H7N9) virus, we compared rapid tests with PCR results and tested different types of clinical samples. Usefulness of seasonal influenza rapid tests for A(H7N9) virus infections is limited because of their low sensitivity for detecting virus in upper respiratory tract specimens. PMID:25529064

  8. Avian influenza H7N9/13 and H7N7/13: a comparative virulence study in chickens, pigeons, and ferrets.

    PubMed

    Kalthoff, Donata; Bogs, Jessica; Grund, Christian; Tauscher, Kerstin; Teifke, Jens P; Starick, Elke; Harder, Timm; Beer, Martin

    2014-08-01

    Human influenza cases caused by a novel avian H7N9 virus in China emphasize the zoonotic potential of that subtype. We compared the infectivity and pathogenicity of the novel H7N9 virus with those of a recent European avian H7N7 strain in chickens, pigeons, and ferrets. Neither virus induced signs of disease despite substantial replication in inoculated chickens and rapid transmission to contact chickens. Evidence of the replication of both viruses in pigeons, albeit at lower levels of RNA excretion, was also detected. No clear-cut differences between the two H7 isolates emerged regarding replication and antibody development in avian hosts. In ferrets, in contrast, greater replication of the avian H7N9 virus than of the H7N7 strain was observed with significant differences in viral presence, e.g., in nasal wash, lung, and cerebellum samples. Importantly, both viruses showed the potential to spread to the mammal brain. We conclude that efficient asymptomatic viral replication and shedding, as shown in chickens, facilitate the spread of H7 viruses that may harbor zoonotic potential. Biosafety measures are required for the handling of poultry infected with avian influenza viruses of the H7 subtype, independently of their pathogenicity for gallinaceous poultry. This study is important to the field since it provides data about the behavior of the novel H7N9 avian influenza virus in chickens, pigeons, and ferrets in comparison with that of a recent low-pathogenicity H7N7 strain isolated from poultry. We clearly show that chickens, but not pigeons, are highly permissive hosts of both H7 viruses, allowing high-titer replication and virus shedding without any relevant clinical signs. In the ferret model, the potential of both viruses to infect mammals could be demonstrated, including infection of the brain. However, the replication efficiency of the H7N9 virus in ferrets was higher than that of the H7N7 strain. In conclusion, valuable data for the risk analysis of low

  9. Serological evidence for avian H9N2 influenza virus infections among Romanian agriculture workers.

    PubMed

    Coman, Alexandru; Maftei, Daniel N; Krueger, Whitney S; Heil, Gary L; Friary, John A; Chereches, Razvan M; Sirlincan, Emanuela; Bria, Paul; Dragnea, Claudiu; Kasler, Iosif; Gray, Gregory C

    2013-12-01

    In recent years, wild birds have introduced multiple highly pathogenic avian influenza (HPAI) H5N1 virus infections in Romanian poultry. In 2005 HPAI infections were widespread among domestic poultry and anecdotal reports suggested domestic pigs may also have been exposed. We sought to examine evidence for zoonotic influenza infections among Romanian agriculture workers. Between 2009 and 2010, 363 adult participants were enrolled in a cross-sectional, seroepidemiological study. Confined animal feeding operation (CAFO) swine workers in Tulcea and small, traditional backyard farmers in Cluj-Napoca were enrolled, as well as a non-animal exposed control group from Cluj-Napoca. Enrollment sera were examined for serological evidence of previous infection with 9 avian and 3 human influenza virus strains. Serologic assays showed no evidence of previous infection with 7 low pathogenic avian influenza viruses or with HPAI H5N1. However, 33 participants (9.1%) had elevated microneutralization antibody titers against avian-like A/Hong Kong/1073/1999(H9N2), 5 with titers ≥ 1:80 whom all reported exposure to poultry. Moderate poultry exposure was significantly associated with elevated titers after controlling for the subjects' age (adjusted OR = 3.6; 95% CI, 1.1-12.1). There was no evidence that previous infection with human H3N2 or H2N2 viruses were confounding the H9N2 seroreactivity. These data suggest that H9N2 virus may have circulated in Romanian poultry and occasionally infected man. Copyright © 2013 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.

  10. Human infection and environmental contamination with Avian Influenza A (H7N9) Virus in Zhejiang Province, China: risk trend across the three waves of infection.

    PubMed

    He, Fan; Chen, En-Fu; Li, Fu-Dong; Wang, Xin-Yi; Wang, Xiao-Xiao; Lin, Jun-Fen

    2015-09-21

    The third wave of H7N9 cases in China emerged in the second half of 2014. This study was conducted to identify the risk trends of H7N9 virus in human infections and environment contamination. A surveillance program for H7N9 virus has been conducted in all 90 counties in Zhejiang since March 2013. All H7N9 cases were reported by hospitals through the China Information System for Disease Control and Prevention. Sampling sites for environment specimens were randomly selected by a multi-stage sampling strategy. Poultry-related workers for serological surveillance were randomly selected from the sampling sites for environmental specimens in the first quarter of each year. rRT-PCR and viral isolation were performed to identify H7N9 virus. A hemagglutination inhibition assay was conducted to detect possible H7N9 infection among poultry-related workers. A total of 170 H7N9 cases were identified in Zhejiang from 20 March 2013 to 28 February 2015. The proportion of rural cases increased from 42.2% (19/45) to 67.7% (21/31) with progression of the three epidemics (P < 0.05). In 32% (161/503) of towns and 16.0% (238/1488) of surveyed premises, H7N9 virus was detected in the environment. The positive rate of environmental specimens was 6.1% (868/14207). In addition, 912 poultry-related workers were recruited and 3.7% (34) of them tested positive for H7N9 antibodies. Positive detection of H7N9 virus during environmental surveillance increased from the first to third wave (P < 0.05). Almost all positive rates of environmental surveillance were higher in urban than rural in the second wave (P < 0.05), however they were higher in rural area in the third wave (P < 0.05). Our study highlights that the severity of poultry-related environmental contamination by H7N9 virus is intensifying. We strongly recommend that the local government stop illegal trading immediately and close live poultry markets in the territory. Poultry operations in slaughtering plants must be

  11. H7N9 Avian Influenza Virus Is Efficiently Transmissible and Induces an Antibody Response in Chickens.

    PubMed

    Jiao, Peirong; Song, Yafen; Huang, Jianni; Xiang, Chengwei; Cui, Jin; Wu, Siyu; Qu, Nannan; Wang, Nianchen; Ouyang, Guowen; Liao, Ming

    2018-01-01

    H7N9 viruses pose a threat to human health and they are no less harmful to the poultry industry than the H5N1 avian influenza viruses. However, the pathogenesis, transmissibility, and the host immune response of the H7N9 virus in chickens and mice remain unclear. In this study, we found that H7N9 viruses replicated in multiple organs of the chicken and viral shedding persisted up to 30 days postinoculation (DPI). The viruses were efficiently transmitted between chickens through direct contact. Notably, chickens infected with H7N9 had high antibody levels throughout the entire observation period and their antibody response lasted for 30 DPI. The expression levels of the pattern-recognition receptors and pro-inflammatory cytokines were found to be significantly upregulated in the brain using quantitative real-time PCR. The expression of TLR3, TLR7, MDA5, Mx, IL-1β, IL-6, IFN-α, and IFN-γ were also significantly different in the lungs of infected chickens. We found that the viruses isolated from these birds had low pathogenicity in mice, produced little weight loss and could only replicate in the lungs. Our findings suggested that the H7N9 viruses could replicate in chickens and mice and be efficiently transmitted between chickens, which presented a significant threat to human and poultry health.

  12. H7N9 Avian Influenza Virus Is Efficiently Transmissible and Induces an Antibody Response in Chickens

    PubMed Central

    Jiao, Peirong; Song, Yafen; Huang, Jianni; Xiang, Chengwei; Cui, Jin; Wu, Siyu; Qu, Nannan; Wang, Nianchen; Ouyang, Guowen; Liao, Ming

    2018-01-01

    H7N9 viruses pose a threat to human health and they are no less harmful to the poultry industry than the H5N1 avian influenza viruses. However, the pathogenesis, transmissibility, and the host immune response of the H7N9 virus in chickens and mice remain unclear. In this study, we found that H7N9 viruses replicated in multiple organs of the chicken and viral shedding persisted up to 30 days postinoculation (DPI). The viruses were efficiently transmitted between chickens through direct contact. Notably, chickens infected with H7N9 had high antibody levels throughout the entire observation period and their antibody response lasted for 30 DPI. The expression levels of the pattern-recognition receptors and pro-inflammatory cytokines were found to be significantly upregulated in the brain using quantitative real-time PCR. The expression of TLR3, TLR7, MDA5, Mx, IL-1β, IL-6, IFN-α, and IFN-γ were also significantly different in the lungs of infected chickens. We found that the viruses isolated from these birds had low pathogenicity in mice, produced little weight loss and could only replicate in the lungs. Our findings suggested that the H7N9 viruses could replicate in chickens and mice and be efficiently transmitted between chickens, which presented a significant threat to human and poultry health. PMID:29706970

  13. Experimental challenge of a peridomestic avian species, European Starlings (Sturnus vulgaris), with novel Influenza A H7N9 virus from China

    USGS Publications Warehouse

    Hall, Jeffrey S.; Ip, Hon S.; Teslaa, Joshua L.; Nashold, Sean W.; Dusek, Robert

    2016-01-01

    In 2013 a novel avian influenza H7N9 virus was isolated from several critically ill patients in China, and infection with this virus has since caused more than 200 human deaths. Live poultry markets are the likely locations of virus exposure to humans. Peridomestic avian species also may play important roles in the transmission and maintenance of H7N9 at live poultry markets. We experimentally challenged wild European Starlings (Sturnus vulgaris) with the novel H7N9 virus and measured virus excretion, clinical signs, and infectious dose. We found that European Starlings can be infected with this virus when inoculated with relatively high doses, and we predict that infected birds excrete sufficient amounts of virus to transmit to other birds, including domestic chickens. Infected European Starlings showed no clinical signs or mortality after infection with H7N9. This abundant peridomestic bird may be a source of the novel H7N9 virus in live poultry markets and may have roles in virus transmission to poultry and humans.

  14. Characterization of Influenza A (H7N9) Viruses Isolated from Human Cases Imported into Taiwan

    PubMed Central

    Yang, Ji-Rong; Kuo, Chuan-Yi; Huang, Hsiang-Yi; Wu, Fu-Ting; Huang, Yi-Lung; Cheng, Chieh-Yu; Su, Yu-Ting; Wu, Ho-Sheng; Liu, Ming-Tsan

    2015-01-01

    A novel avian influenza A (H7N9) virus causes severe human infections and was first identified in March 2013 in China. The H7N9 virus has exhibited two epidemiological peaks of infection, occurring in week 15 of 2013 and week 5 of 2014. Taiwan, which is geographically adjacent to China, faces a large risk of being affected by this virus. Through extensive surveillance, launched in April 2013, four laboratory-confirmed H7N9 cases imported from China have been identified in Taiwan. The H7N9 virus isolated from imported case 1 in May 2013 (during the first wave) was found to be closest genetically to a virus from wild birds and differed from the prototype virus, A/Anhui/1/2013, in the MP gene. The other three imported cases were detected in December 2013 and April 2014 (during the second wave). The viruses isolated from cases 2 and 4 were similar in the compositions of their 6 internal genes and distinct from A/Anhui/1/2013 in the PB2 and MP genes, whereas the virus isolated from case 3 exhibited a novel reassortment that has not been identified previously and was different from A/Anhui/1/2013 in the PB2, PA and MP genes. The four imported H7N9 viruses share similar antigenicity with A/Anhui/1/2013, and their HA and NA genes grouped together in their respective phylogenies. In contrast with the HA and NA genes, which exhibited a smaller degree of diversity, the internal genes were heterogeneous and provided potential distinctions between transmission sources in terms of both geography and hosts. It is important to strengthen surveillance of influenza and to share viral genetic data in real-time for reducing the threat of rapid and continuing evolution of H7N9 viruses. PMID:25748033

  15. Isolation of H5N6, H7N9 and H9N2 avian influenza A viruses from air sampled at live poultry markets in China, 2014 and 2015

    PubMed Central

    Zhou, Jie; Wu, Jie; Zeng, Xianqiao; Huang, Guofeng; Zou, Lirong; Song, Yingchao; Gopinath, Divya; Zhang, Xin; Kang, Min; Lin, Jinyan; Cowling, Benjamin J; Lindsley, William G.; Ke, Changwen; Peiris, Joseph Sriyal Malik; Yen, Hui-Ling

    2016-01-01

    Zoonotic infections by avian influenza viruses occur at the human–poultry interface, but the modes of transmission have not been fully investigated. We assessed the potential for airborne and fomite transmission at live poultry markets in Guangzhou city and in Hong Kong Special Administrative Region (SAR), China, during 2014 and 2015. Viral genome and infectious avian influenza A viruses of H5N6, H7N9, and H9N2 subtypes were detected predominantly from particles larger or equal to 1 μm in diameter in the air sampled with cyclone-based bioaerosol samplers at the live poultry markets in Guangzhou. Influenza A(H9N2) viruses were ubiquitously isolated every month during the study period from air and environmental swabs, and different lineages of H9N2 virus were isolated from markets where chickens and minor land-based poultry were sold. The use of de-feathering devices increased the quantity of virus-laden airborne particles while market closure reduced the amount of such particles. The results highlight the possibility of airborne transmission of avian influenza viruses among poultry or from poultry to humans within such settings. This may explain epidemiological observations in which some patients with H7N9 infection reported being in markets but no direct contact with live poultry or poultry stalls. PMID:27608369

  16. Isolation of H5N6, H7N9 and H9N2 avian influenza A viruses from air sampled at live poultry markets in China, 2014 and 2015.

    PubMed

    Zhou, Jie; Wu, Jie; Zeng, Xianqiao; Huang, Guofeng; Zou, Lirong; Song, Yingchao; Gopinath, Divya; Zhang, Xin; Kang, Min; Lin, Jinyan; Cowling, Benjamin J; Lindsley, William G; Ke, Changwen; Peiris, Joseph Sriyal Malik; Yen, Hui-Ling

    2016-09-01

    Zoonotic infections by avian influenza viruses occur at the human-poultry interface, but the modes of transmission have not been fully investigated. We assessed the potential for airborne and fomite transmission at live poultry markets in Guangzhou city and in Hong Kong Special Administrative Region (SAR), China, during 2014 and 2015. Viral genome and infectious avian influenza A viruses of H5N6, H7N9, and H9N2 subtypes were detected predominantly from particles larger or equal to 1 μm in diameter in the air sampled with cyclone-based bioaerosol samplers at the live poultry markets in Guangzhou. Influenza A(H9N2) viruses were ubiquitously isolated every month during the study period from air and environmental swabs, and different lineages of H9N2 virus were isolated from markets where chickens and minor land-based poultry were sold. The use of de-feathering devices increased the quantity of virus-laden airborne particles while market closure reduced the amount of such particles. The results highlight the possibility of airborne transmission of avian influenza viruses among poultry or from poultry to humans within such settings. This may explain epidemiological observations in which some patients with H7N9 infection reported being in markets but no direct contact with live poultry or poultry stalls. This article is copyright of The Authors, 2016.

  17. The Fifth Influenza A(H7N9) Epidemic: A Family Cluster of Infection in Suzhou City of China, 2016.

    PubMed

    Wang, Jiajia; Su, Nan; Dong, Zefeng; Liu, Cheng; Cui, Pengwei; Huang, Jian-An; Chen, Cheng; Zhu, Yehan; Chen, Liling

    2018-05-05

    Influenza A(H7N9) virus is known for its high pathogenicity in human. A family cluster of influenza A(H7N9) virus infection was identified in Suzhou, China. This study aimed to investigate the possibility of human-to-human transmission of the virus and examine the virologic features of this family cluster. The clinical and epidemiologic data of two patients in the family cluster of influenza A(H7N9) virus infection were collected. Viral RNA in samples derived from the two patients, their close contacts, and the environments with likely influenza A(H7N9) virus transmission were tested by real-time reverse transcriptase polymerase chain reaction (rRT-PCR) assay. Hemagglutination inhibition (HI) assay was used to detect virus-specific antibodies. Genetic sequencing and phylogenetic analysis were also performed. The index patient (Case 1), a 66-year old man, was virologically diagnosed of influenza A(H7N9) virus infection 12days after experiencing influenza-like symptoms, then died of multi-organ failure. His 39-year old daughter (Case 2), denying any other exposure to influenza A(H7N9) virus, became infected with influenza A(H7N9) virus following taking care of her father during his illness. Sequencing viral genomes isolated from the two patients showed nearly identical nucleotide sequence, and genetically resembled the viral genome isolated from a chicken in the wet market where the index patient once visited. All three influenza A(H7N9) viruses shared S138A, G186V, Q226L mutations in HA (H3) protein and a single basic amino acid (PEIPKGR↓G) at the cleavage site. Human-to-human transmission of influenza A(H7N9) virus most likely occurred in this household. The three-amino-acid mutations in HA protein were discovered in this study, which might have increased the binding affinity of influenza A(H7N9) virus to the receptor on trachea epithelial cells to facilitate viral transmission among humans. Copyright © 2018. Published by Elsevier Ltd.

  18. Screening host proteins required for bacterial adherence after H9N2 virus infection.

    PubMed

    Ma, Li-Li; Sun, Zhen-Hong; Xu, Yu-Lin; Wang, Shu-Juan; Wang, Hui-Ning; Zhang, Hao; Hu, Li-Ping; Sun, Xiao-Mei; Zhu, Lin; Shang, Hong-Qi; Zhu, Rui-Liang; Wei, Kai

    2018-01-01

    H9N2 subtype low pathogenic avian influenza virus (LPAIV) is distributed worldwide and causes great economic losses in the poultry industry, especially when complicated with other bacterial infections. Tissue damages caused by virus infection provide an opportunity for bacteria invasion, but this mechanism is not sufficient for low pathogenic strains. Moreover, although H9N2 virus infection was demonstrated to promote bacterial infection in several studies, its mechanism remained unclear. In this study, infection experiments in vivo and in vitro demonstrated that the adhesion of Escherichia coli (E. coli) to host cells significantly increased after H9N2 virus infection, and this increase was not caused by pathological damages. Subsequently, we constructed a late chicken embryo infection model and used proteomics techniques to analyze the expression of proteins associated with bacterial adhesion after H9N2 virus infection. A total of 279 significantly differential expressed proteins were detected through isobaric tags for relative and absolute quantitation (iTRAQ) coupled with nano-liquid chromatography-tandem mass spectrometry (nano-LC-MS/MS) analysis. The results of Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis showed that differentially expressed proteins were enriched in host innate immunity; cell proliferation, differentiation, and apoptosis; and pathogenicity-related signaling pathways. Finally, we screened out several proteins, such as TGF-β1, integrins, cortactin, E-cadherin, vinculin, and fibromodulin, which were probably associated with bacterial adhesion. The study analyzed the mechanism of secondary bacterial infection induced by H9N2 virus infection from a novel perspective, which provided theoretical and data support for investigating the synergistic infection mechanism between the H9N2 virus and bacteria. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Experimental Infection of Chickens with Intercontinental Reassortant H9N2 Influenza Viruses from Wild Birds.

    PubMed

    Lee, Dong-Hun; Kwon, Jung-Hoon; Park, Jae-Keun; Yuk, Seong-Su; Tseren-Ochir, Erdene-Ochir; Noh, Jin-Yong; Lee, Joong-Bok; Park, Seung-Yong; Choi, In-Soo; Song, Chang-Seon

    2016-06-01

    The H9N2 subtype of low pathogenic avian influenza (LPAI) virus is the most prevalent LPAI in domestic poultry. We previously reported the natural reassortant H9N2 viruses between North American and Eurasian lineages isolated from wild birds in Korea. These viruses were identified in China and Alaska, providing evidence of intercontinental dispersal. In this study, we evaluated the infectivity, transmissibility, and pathogenic potential of these H9N2 viruses and Eurasian H9N2 virus identified from wild birds using specific-pathogen-free chickens. Three-week-old chickens were infected intranasally. All of these reassortant H9N2 viruses could not be replicated and transmitted in chickens. On the other hand, three out of eight chickens inoculated with the Eurasian H9N2 virus shed detectable levels of virus and showed seroconversion but did not show contact transmission of the virus. Although all reassortant H9N2 viruses could not be replicated and transmitted in chickens, and although there are no reports on reassortant H9N2 virus infection in poultry farms until now, monitoring of reassortant H9N2 viruses should be continued to prepare for the advent and evolution of these viruses.

  20. Epidemiology, Evolution, and Pathogenesis of H7N9 Influenza Viruses in Five Epidemic Waves since 2013 in China.

    PubMed

    Su, Shuo; Gu, Min; Liu, Di; Cui, Jie; Gao, George F; Zhou, Jiyong; Liu, Xiufan

    2017-09-01

    H7N9 influenza viruses were first isolated in 2013 and continue to cause human infections. H7N9 infections represent an ongoing public health threat that has resulted in 1344 cases with 511 deaths as of April 9, 2017. This highlights the continued threat posed by the current poultry trade and live poultry market system in China. Until now, there have been five H7N9 influenza epidemic waves in China; however, the steep increase in the number of humans infected with H7N9 viruses observed in the fifth wave, beginning in October 2016, the spread into western provinces, and the emergence of highly pathogenic (HP) H7N9 influenza outbreaks in chickens and infection in humans have caused domestic and international concern. In this review, we summarize and compare the different waves of H7N9 regarding their epidemiology, pathogenesis, evolution, and characteristic features, and speculate on factors behind the recent increase in the number of human cases and sudden outbreaks in chickens. The continuous evolution of the virus poses a long-term threat to public health and the poultry industry, and thus it is imperative to strengthen prevention and control strategies. Copyright © 2017. Published by Elsevier Ltd.

  1. Influenza virus A/Anhui/1/2013 (H7N9) replicates efficiently in the upper and lower respiratory tracts of cynomolgus macaques.

    PubMed

    de Wit, Emmie; Rasmussen, Angela L; Feldmann, Friederike; Bushmaker, Trenton; Martellaro, Cynthia; Haddock, Elaine; Okumura, Atsushi; Proll, Sean C; Chang, Jean; Gardner, Don; Katze, Michael G; Munster, Vincent J; Feldmann, Heinz

    2014-08-12

    In March 2013, three fatal human cases of infection with influenza A virus (H7N9) were reported in China. Since then, human cases have been accumulating. Given the public health importance of this virus, we performed a pathogenicity study of the H7N9 virus in the cynomolgus macaque model, focusing on clinical aspects of disease, radiographic, histological, and gene expression profile changes in the upper and lower respiratory tracts, and changes in systemic cytokine and chemokine profiles during infection. Cynomolgus macaques developed transient, mild to severe disease with radiographic evidence of pulmonary infiltration. Virus replicated in the upper as well as lower respiratory tract, with sustained replication in the upper respiratory tract until the end of the experiment at 6 days after inoculation. Virus shedding occurred mainly via the throat. Histopathological changes in the lungs were similar to those observed in humans, albeit less severe, with diffuse alveolar damage, infiltration of polymorphonuclear cells, formation of hyaline membranes, pneumocyte hyperplasia, and fibroproliferative changes. Analysis of gene expression profiles in lung lesions identified pathways involved in tissue damage during H7N9 infection as well as leads for development of therapeutics targeting host responses rather than virus replication. Overall, H7N9 infection was not as severe in cynomolgus macaques as in humans, supporting the possible role of underlying medical complications in disease severity as discussed for human H7N9 infection (H. N. Gao et al., N. Engl. J. Med. 368:2277-2285, 2013, doi:10.1056/NEJMoa1305584). Influenza A virus H7N9 emerged early in 2013, and human cases have continued to emerge since then. Although H7N9 virus-induced disease in humans is often very severe and even lethal, the majority of reported H7N9 cases occurred in older people and people with underlying medical conditions. To better understand the pathogenicity of this virus, healthy cynomolgus

  2. Determination of Original Infection Source of H7N9 Avian Influenza by Dynamical Model

    NASA Astrophysics Data System (ADS)

    Zhang, Juan; Jin, Zhen; Sun, Gui-Quan; Sun, Xiang-Dong; Wang, You-Ming; Huang, Baoxu

    2014-05-01

    H7N9, a newly emerging virus in China, travels among poultry and human. Although H7N9 has not aroused massive outbreaks, recurrence in the second half of 2013 makes it essential to control the spread. It is believed that the most effective control measure is to locate the original infection source and cut off the source of infection from human. However, the original infection source and the internal transmission mechanism of the new virus are not totally clear. In order to determine the original infection source of H7N9, we establish a dynamical model with migratory bird, resident bird, domestic poultry and human population, and view migratory bird, resident bird, domestic poultry as original infection source respectively to fit the true dynamics during the 2013 pandemic. By comparing the date fitting results and corresponding Akaike Information Criterion (AIC) values, we conclude that migrant birds are most likely the original infection source. In addition, we obtain the basic reproduction number in poultry and carry out sensitivity analysis of some parameters.

  3. Structural and Molecular Characterization of the Hemagglutinin from the Fifth Epidemic Wave A(H7N9) Influenza Viruses.

    PubMed

    Yang, Hua; Carney, Paul J; Chang, Jessie C; Guo, Zhu; Stevens, James

    2018-05-30

    The avian influenza A(H7N9) virus continues to cause human infections in China and is a major ongoing public health concern. Five epidemic waves of A(H7N9) infection have occurred since 2013, and the recent fifth epidemic wave saw the emergence of two distinct lineages with elevated numbers of human infection cases and broader geographic distribution of viral diseases compared to the first four epidemic waves. Moreover, highly pathogenic avian influenza (HPAI) A(H7N9) viruses were also isolated during the fifth epidemic wave. Here, we present a detailed structural and biochemical analysis of the surface hemagglutinin (HA) antigen from viruses isolated during this recent epidemic wave. Results highlight that when compared to the 2013 virus HAs, the fifth wave virus HAs remained a weak binder to human glycan receptor analogs. We also studied three mutations, V177K-K184T-G219S, that were recently reported to switch a 2013 A(H7N9)HA to human-type receptor specificity. Our results indicate that these mutations could also switch the H7 HA receptor preference to a predominantly human binding specificity for both fifth wave H7 HAs analyzed in this study. IMPORTANCE The A(H7N9) viruses circulating in China are of great public health concern. Herein, we report a molecular and structural study of the major surface proteins from several recent A(H7N9) influenza viruses. Our results improve the understanding of these evolving viruses and provide important information on their receptor preference that is central to ongoing pandemic risk assessment. This is a work of the U.S. Government and is not subject to copyright protection in the United States. Foreign copyrights may apply.

  4. Association between the Severity of Influenza A(H7N9) Virus Infections and Length of the Incubation Period

    PubMed Central

    Fang, Vicky J.; Feng, Luzhao; Tsang, Tim K.; Jiang, Hui; Wu, Peng; Zheng, Jiandong; Lau, Eric H. Y.; Qin, Ying; Peng, Zhibin; Peiris, J. S. Malik; Yu, Hongjie; Cowling, Benjamin J.

    2016-01-01

    Background In early 2013, a novel avian-origin influenza A(H7N9) virus emerged in China, and has caused sporadic human infections. The incubation period is the delay from infection until onset of symptoms, and varies from person to person. Few previous studies have examined whether the duration of the incubation period correlates with subsequent disease severity. Methods and Findings We analyzed data of period of exposure on 395 human cases of laboratory-confirmed influenza A(H7N9) virus infection in China in a Bayesian framework using a Weibull distribution. We found a longer incubation period for the 173 fatal cases with a mean of 3.7 days (95% credibility interval, CrI: 3.4–4.1), compared to a mean of 3.3 days (95% CrI: 2.9–3.6) for the 222 non-fatal cases, and the difference in means was marginally significant at 0.47 days (95% CrI: -0.04, 0.99). There was a statistically significant correlation between a longer incubation period and an increased risk of death after adjustment for age, sex, geographical location and underlying medical conditions (adjusted odds ratio 1.70 per day increase in incubation period; 95% credibility interval 1.47–1.97). Conclusions We found a significant association between a longer incubation period and a greater risk of death among human H7N9 cases. The underlying biological mechanisms leading to this association deserve further exploration. PMID:26885816

  5. Association between the Severity of Influenza A(H7N9) Virus Infections and Length of the Incubation Period.

    PubMed

    Virlogeux, Victor; Yang, Juan; Fang, Vicky J; Feng, Luzhao; Tsang, Tim K; Jiang, Hui; Wu, Peng; Zheng, Jiandong; Lau, Eric H Y; Qin, Ying; Peng, Zhibin; Peiris, J S Malik; Yu, Hongjie; Cowling, Benjamin J

    2016-01-01

    In early 2013, a novel avian-origin influenza A(H7N9) virus emerged in China, and has caused sporadic human infections. The incubation period is the delay from infection until onset of symptoms, and varies from person to person. Few previous studies have examined whether the duration of the incubation period correlates with subsequent disease severity. We analyzed data of period of exposure on 395 human cases of laboratory-confirmed influenza A(H7N9) virus infection in China in a Bayesian framework using a Weibull distribution. We found a longer incubation period for the 173 fatal cases with a mean of 3.7 days (95% credibility interval, CrI: 3.4-4.1), compared to a mean of 3.3 days (95% CrI: 2.9-3.6) for the 222 non-fatal cases, and the difference in means was marginally significant at 0.47 days (95% CrI: -0.04, 0.99). There was a statistically significant correlation between a longer incubation period and an increased risk of death after adjustment for age, sex, geographical location and underlying medical conditions (adjusted odds ratio 1.70 per day increase in incubation period; 95% credibility interval 1.47-1.97). We found a significant association between a longer incubation period and a greater risk of death among human H7N9 cases. The underlying biological mechanisms leading to this association deserve further exploration.

  6. Inactivation of the novel avian influenza A (H7N9) virus under physical conditions or chemical agents treatment.

    PubMed

    Zou, Shumei; Guo, Junfeng; Gao, Rongbao; Dong, Libo; Zhou, Jianfang; Zhang, Ye; Dong, Jie; Bo, Hong; Qin, Kun; Shu, Yuelong

    2013-09-15

    In the spring of 2013, a novel avian-origin influenza A (H7N9) virus in Eastern China emerged causing human infections. Concerns that a new influenza pandemic could occur were raised. The potential effect of chemical agents and physical conditions on inactivation of the novel avian influenza H7N9 virus had not been assessed. To determine the inactivation effectiveness of the novel avian influenza A (H7N9) virus under various physical conditions and chemical treatments, two H7N9 viruses A/Anhui/1/2013 and A/Shanghai/1/2013 were treated by varied temperatures, ultraviolet light, varied pHs and different disinfectants. The viruses with 107.7 EID50 were exposed to physical conditions (temperature, ultraviolet light and pH) or treated with commercial chemical agents (Sodium Hypochlorite, Virkon®-S, and Ethanol) respectively. After these treatments, the viruses were inoculated in SPF embryonated chicken eggs, the allantoic fluid was collected after 72-96 hours culture at 35°C and tested by haemagglutination assay. Both of the tested viruses could tolerate conditions under 56°C for 15 minutes or 60°C for 5 minutes, but their infectivity was completely lost under 56°C for 30 minutes, 65°C for 10 minutes, 70°C, 75°C and 100°C for 1 minute. It was also observed that the H7N9 viruses lost their infectivity totally after exposure of ultraviolet light irradiation for 30 minutes or longer time. Additionally, the viruses were completely inactivated at pH less than 2 for 0.5 hour or pH 3 for 24 hours, however, viruses remained infectious under pH treatment of 4-12 for 24 hours. The viruses were totally disinfected when treated with Sodium Hypochlorite, Virkon®-S and Ethanol at recommended concentrations after only 5 minutes. The novel avian influenza A (H7N9) virus can be inactivated under some physical conditions or with chemical treatments, but they present high tolerance to moderately acidic or higher alkali conditions. The results provided the essential information

  7. Factors Associated With Prolonged Viral Shedding in Patients With Avian Influenza A(H7N9) Virus Infection.

    PubMed

    Wang, Yeming; Guo, Qiang; Yan, Zheng; Zhou, Daming; Zhang, Wei; Zhou, Shujun; Li, Yu-Ping; Yuan, Jing; Uyeki, Timothy M; Shen, Xinghua; Wu, Wenjuan; Zhao, Hui; Wu, Yun-Fu; Shang, Jia; He, Zhengguang; Yang, Yi; Zhao, Hongsheng; Hong, Yongqing; Zhang, Zehua; Wu, Min; Wei, Tiemin; Deng, Xilong; Deng, Yijun; Cai, Li-Hua; Lu, Weihua; Shu, Hongmei; Zhang, Lin; Luo, Hong; Ing Zhou, Y; Weng, Heng; Song, Keyi; Yao, Li; Jiang, Mingguang; Zhao, Boliang; Chi, Ruibin; Guo, Boqi; Fu, Lin; Yu, Long; Min, Haiyan; Chen, Pu; Chen, Shuifang; Hong, Liang; Mao, Wei; Huang, Xiaoping; Gu, Lijun; Li, Hui; Wang, Chen; Cao, Bin

    2018-05-05

    Data are limited on the impact of neuraminidase inhibitor (NAI) treatment on avian influenza A(H7N9) virus RNA shedding. In this multicenter, retrospective study, data were collected from adults hospitalized with A(H7N9) infection during 2013-2017 in China. We compared clinical features and A(H7N9) shedding among patients with different NAI doses and combination therapies and evaluated factors associated with A(H7N9) shedding, using Cox proportional hazards regression. Among 478 patients, the median age was 56 years, 71% were male, and 37% died. The median time from illness onset to NAI treatment initiation was 8 days (interquartile range [IQR], 6-10 days), and the median duration of A(H7N9) RNA detection from onset was 15.5 days (IQR, 12-20 days). A(H7N9) RNA shedding was shorter in survivors than in patients who died (P < .001). Corticosteroid administration (hazard ratio [HR], 0.62 [95% confidence interval {CI}, .50-.77]) and delayed NAI treatment (HR, 0.90 [95% CI, .91-.96]) were independent risk factors for prolonged A(H7N9) shedding. There was no significant difference in A(H7N9) shedding duration between NAI combination treatment and monotherapy (P = .65) or between standard-dose and double-dose oseltamivir treatment (P = .70). Corticosteroid therapy and delayed NAI treatment were associated with prolonged A(H7N9) RNA shedding. NAI combination therapy and double-dose oseltamivir treatment were not associated with a reduced A(H7N9) shedding duration as compared to standard-dose oseltamivir.

  8. Detection of Avian Influenza A(H7N9) Virus from Live Poultry Markets in Guangzhou, China: A Surveillance Report

    PubMed Central

    Yuan, Jun; Liu, Hui; Lu, Jianyun; Di, Biao; Xiao, Xincai

    2014-01-01

    Purpose A virologic surveillance program for A(H7N9) virus was conducted from April 15, 2013 to February 14, 2014 in Guangzhou, aiming to clarify the geographical distribution of A(H7N9) viruses among live poultry markets (LPMs) and poultry farms in Guangzhou. Virological and serological surveys of poultry workers were also conducted to evaluate the risk of poultry-to-human transmission of the A(H7N9) virus. Methods 36 retail LPMs, 6 wholesale LPMs and 8 poultry farms were involved in our surveillance program. About 20 live poultry and environmental samples were obtained from each surveillance site at every sampling time. Different environmental samples were collected to represent different poultry-related work activities. RT-PCR and virus culture were performed to identify the A(H7N9) virus. Hemagglutinin inhibition assay and RT-PCR were conducted to detect possible A(H7N9) infection among poultry workers. Results A total of 8900 live poultry and environmental samples were collected, of which 131(1.5%) were tested positive for A(H7N9) virus. 44.4% (16/36) of retail LPMs and 50.0% (3/6) of wholesale LPMs were confirmed to be contaminated. No positive samples was detected from poultry farms. A significant higher positive sample rate was found in environmental samples related to poultry selling (2.6%) and slaughtering (2.4%), compared to poultry holding (0.9%). Correspondingly, A(H7N9) viruses were isolated most frequently from slaughter zone. In addition, 316 poultry workers associated with the 19 contaminated-LPMs were recruited and a low seroprevalence (1.6%) of antibody against A(H7N9) virus was detected. An asymptomatic A(H7N9) infection was also identified by RT-PCR. Conclusions Our study highlights the importance of conducting effective surveillance for A(H7N9) virus and provides evidence to support the assumption that slaughtering is the key process for the propagation of A(H7N9) virus in retail LPMs. Moreover, the ability of A(H7N9) virus to cross species

  9. An influenza A virus (H7N9) anti-neuraminidase monoclonal antibody with prophylactic and therapeutic activity in vivo

    PubMed Central

    Wilson, Jason R.; Guo, Zhu; Reber, Adrian; Kamal, Ram P.; Music, Nedzad; Gansebom, Shane; Bai, Yaohui; Levine, Min; Carney, Paul; Tzeng, Wen-Pin; Stevens, James; York, Ian A.

    2017-01-01

    Zoonotic A(H7N9) avian influenza viruses emerged in China in 2013 and continue to be a threat to human public health, having infected over 800 individuals with a mortality rate approaching 40%. Treatment options for people infected with A(H7N9) include the use of neuraminidase (NA) inhibitors. However, like other influenza viruses, A(H7N9) can become resistant to these drugs. The use of monoclonal antibodies is a rapidly developing strategy for controlling influenza virus infection. Here we generated a murine monoclonal antibody (3c10-3) directed against the NA of A(H7N9) and show that prophylactic systemic administration of 3c10-3 fully protected mice from lethal challenge with wild-type A/Anhui/1/2013 (H7N9). Further, post-infection treatment with a single systemic dose of 3c10-3 at either 24, 48 or 72 h post A(H7N9) challenge resulted in both dose- and time-dependent protection of up to 100% of mice, demonstrating therapeutic potential for 3c10-3. Epitope mapping revealed that 3c10-3 binds near the enzyme active site of NA, and functional characterization showed that 3c10-3 inhibits the enzyme activity of NA and restricts the cell-to-cell spread of the virus in cultured cells. Affinity analysis also revealed that 3c10-3 binds equally well to recombinant NA of wild-type A/Anhui/1/2013 and to a variant NA carrying a R289K mutation known to infer NAI resistance. These results suggest that 3c10-3 has the potential to be used as a therapeutic to treat A(H7N9) infections either as an alternative to, or in combination with, current NA antiviral inhibitors. PMID:27713074

  10. An overview of the characteristics of the novel avian influenza A H7N9 virus in humans

    PubMed Central

    Tan, Kei-Xian; Jacob, Sabrina A.; Chan, Kok-Gan; Lee, Learn-Han

    2015-01-01

    The novel avian influenza A H7N9 virus which caused the first human infection in Shanghai, China; was reported on the 31st of March 2013 before spreading rapidly to other Chinese provinces and municipal cities. This is the first time the low pathogenic avian influenza A virus has caused human infections and deaths; with cases of severe respiratory disease with pneumonia being reported. There were 440 confirmed cases with 122 fatalities by 16 May 2014; with a fatality risk of ∼28%. The median age of patients was 61 years with a male-to-female ratio of 2.4:1. The main source of infection was identified as exposure to poultry and there is so far no definitive evidence of sustained person-to-person transmission. The neuraminidase inhibitors, namely oseltamivir, zanamivir, and peramivir; have shown good efficacy in the management of the novel H7N9 virus. Treatment is recommended for all hospitalized patients, and for confirmed and probable outpatient cases; and should ideally be initiated within 48 h of the onset of illness for the best outcome. Phylogenetic analysis found that the novel H7N9 virus is avian in origin and evolved from multiple reassortments of at least four origins. Indeed the novel H7N9 virus acquired human adaptation via mutations in its eight RNA gene segments. Enhanced surveillance and effective global control are essential to prevent pandemic outbreaks of the novel H7N9 virus. PMID:25798131

  11. Gut microbiota modulates type I interferon and antibody-mediated immune responses in chickens infected with influenza virus subtype H9N2.

    PubMed

    Yitbarek, A; Alkie, T; Taha-Abdelaziz, K; Astill, J; Rodriguez-Lecompte, J C; Parkinson, J; Nagy, É; Sharif, S

    2018-04-25

    Commensal gut microbes play a critical role in shaping host defences against pathogens, including influenza viruses. The current study was conducted to assess the role and mechanisms of action of commensal gut microbiota on the innate and antibody-mediated responses of layer chickens against influenza virus subtype H9N2. A total of 104 one-day-old specific pathogen free chickens were assigned to either of the four treatments, which included two levels of antibiotics treatment (ABX- and ABX+) and two levels of H9N2 virus infection (H9N2- and H9N2+). At day 17 of age, chickens in the H9N2+ group were infected via the oral-nasal route with 400 μl of 107 TCID 50 /ml (200 μl/each route). Oropharyngeal and cloacal swabs at days 1, 3, 5, 7 and 9 post-infection (p.i.) for virus shedding, tissue samples at 12 h, 24 h and 36 h p.i. for mRNA measurement, and serum samples at days 7 and 14 p.i. for hemagglutination inhibition (HI) assay and IgG antibodies were collected. Virus shedding analysis showed that antibiotic treated (depleted)-H9N2 virus infected chickens showed a significantly higher oropharyngeal virus shedding at all time points, and cloacal shedding at days 3 and 5 p.i. compared to control treated (undepleted)-H9N2 infected chickens. Analysis of mRNA expression showed that infection of depleted chickens with H9N2 virus resulted in significantly down-regulated type I interferon responses both in the respiratory and gastrointestinal tracts compared to undepleted-H9N2 infected chickens. However, antibody-mediated immune response analysis showed a significantly higher HI antibody titre and IgG levels in the serum of chickens depleted with antibiotics and infected with H9N2 virus compared to undepleted-H9N2 infected chickens. In conclusion, findings from the current study suggest that the gut microbiota of chickens plays an important role in the initiation of innate responses against influenza virus infection, while the antibody-mediated immune response remains

  12. Virulence-Affecting Amino Acid Changes in the PA Protein of H7N9 Influenza A Viruses

    PubMed Central

    Yamayoshi, Seiya; Yamada, Shinya; Fukuyama, Satoshi; Murakami, Shin; Zhao, Dongming; Uraki, Ryuta; Watanabe, Tokiko; Tomita, Yuriko; Macken, Catherine; Neumann, Gabriele

    2014-01-01

    ABSTRACT Novel avian-origin influenza A(H7N9) viruses were first reported to infect humans in March 2013. To date, 143 human cases, including 45 deaths, have been recorded. By using sequence comparisons and phylogenetic and ancestral inference analyses, we identified several distinct amino acids in the A(H7N9) polymerase PA protein, some of which may be mammalian adapting. Mutant viruses possessing some of these amino acid changes, singly or in combination, were assessed for their polymerase activities and growth kinetics in mammalian and avian cells and for their virulence in mice. We identified several mutants that were slightly more virulent in mice than the wild-type A(H7N9) virus, A/Anhui/1/2013. These mutants also exhibited increased polymerase activity in human cells but not in avian cells. Our findings indicate that the PA protein of A(H7N9) viruses has several amino acid substitutions that are attenuating in mammals. IMPORTANCE Novel avian-origin influenza A(H7N9) viruses emerged in the spring of 2013. By using computational analyses of A(H7N9) viral sequences, we identified several amino acid changes in the polymerase PA protein, which we then assessed for their effects on viral replication in cultured cells and mice. We found that the PA proteins of A(H7N9) viruses possess several amino acid substitutions that cause attenuation in mammals. PMID:24371069

  13. The novel human influenza A(H7N9) virus is naturally adapted to efficient growth in human lung tissue.

    PubMed

    Knepper, Jessica; Schierhorn, Kristina L; Becher, Anne; Budt, Matthias; Tönnies, Mario; Bauer, Torsten T; Schneider, Paul; Neudecker, Jens; Rückert, Jens C; Gruber, Achim D; Suttorp, Norbert; Schweiger, Brunhilde; Hippenstiel, Stefan; Hocke, Andreas C; Wolff, Thorsten

    2013-10-08

    A novel influenza A virus (IAV) of the H7N9 subtype has been isolated from severely diseased patients with pneumonia and acute respiratory distress syndrome and, apparently, from healthy poultry in March 2013 in Eastern China. We evaluated replication, tropism, and cytokine induction of the A/Anhui/1/2013 (H7N9) virus isolated from a fatal human infection and two low-pathogenic avian H7 subtype viruses in a human lung organ culture system mimicking infection of the lower respiratory tract. The A(H7N9) patient isolate replicated similarly well as a seasonal IAV in explanted human lung tissue, whereas avian H7 subtype viruses propagated poorly. Interestingly, the avian H7 strains provoked a strong antiviral type I interferon (IFN-I) response, whereas the A(H7N9) virus induced only low IFN levels. Nevertheless, all viruses analyzed were detected predominantly in type II pneumocytes, indicating that the A(H7N9) virus does not differ in its cellular tropism from other avian or human influenza viruses. Tissue culture-based studies suggested that the low induction of the IFN-β promoter correlated with an efficient suppression by the viral NS1 protein. These findings demonstrate that the zoonotic A(H7N9) virus is unusually well adapted to efficient propagation in human alveolar tissue, which most likely contributes to the severity of lower respiratory tract disease seen in many patients. Humans are usually not infected by avian influenza A viruses (IAV), but this large group of viruses contributes to the emergence of human pandemic strains. Transmission of virulent avian IAV to humans is therefore an alarming event that requires assessment of the biology as well as pathogenic and pandemic potentials of the viruses in clinically relevant models. Here, we demonstrate that an early virus isolate from the recent A(H7N9) outbreak in Eastern China replicated as efficiently as human-adapted IAV in explanted human lung tissue, whereas avian H7 subtype viruses were unable to

  14. Estimating the Distribution of the Incubation Periods of Human Avian Influenza A(H7N9) Virus Infections.

    PubMed

    Virlogeux, Victor; Li, Ming; Tsang, Tim K; Feng, Luzhao; Fang, Vicky J; Jiang, Hui; Wu, Peng; Zheng, Jiandong; Lau, Eric H Y; Cao, Yu; Qin, Ying; Liao, Qiaohong; Yu, Hongjie; Cowling, Benjamin J

    2015-10-15

    A novel avian influenza virus, influenza A(H7N9), emerged in China in early 2013 and caused severe disease in humans, with infections occurring most frequently after recent exposure to live poultry. The distribution of A(H7N9) incubation periods is of interest to epidemiologists and public health officials, but estimation of the distribution is complicated by interval censoring of exposures. Imputation of the midpoint of intervals was used in some early studies, resulting in estimated mean incubation times of approximately 5 days. In this study, we estimated the incubation period distribution of human influenza A(H7N9) infections using exposure data available for 229 patients with laboratory-confirmed A(H7N9) infection from mainland China. A nonparametric model (Turnbull) and several parametric models accounting for the interval censoring in some exposures were fitted to the data. For the best-fitting parametric model (Weibull), the mean incubation period was 3.4 days (95% confidence interval: 3.0, 3.7) and the variance was 2.9 days; results were very similar for the nonparametric Turnbull estimate. Under the Weibull model, the 95th percentile of the incubation period distribution was 6.5 days (95% confidence interval: 5.9, 7.1). The midpoint approximation for interval-censored exposures led to overestimation of the mean incubation period. Public health observation of potentially exposed persons for 7 days after exposure would be appropriate. © The Author 2015. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. [Genomic characteristics of 2 strains of influenza A(H9N2)virus isolated from human infection cases in Anhui province].

    PubMed

    He, J; Liu, L P; Hou, S; Gong, L; Wu, J B; Hu, W F; Wang, J J

    2016-05-01

    To understand genomic characteristics of 2 strains of influenza A(H9N2)virus isolated from human infection cases in Anhui province in 2015. Two human infection with H9N2 virus were confirmed by national influenza surveillance laboratory network in Anhui through viral isolation in April and September, 2015, respectively. The full genomic sequences of the two viral isolates were analyzed in this study by using molecular bioinformatics software Mega 6.0. Human infection with H9N2 virus was first reported in Anhui province. The analysis of genomic sequence showed that the HA and NA genes of the two H9N2 isolates belonged to A/Chicken/Shanghai/F/98(H9N2)-like lineage, and shared high identity with H9N2 virus circulating in poultry in 2013. The PB2 and MP genes belonged to the A/quail/Hong Kong/G1/97-like lineage, and shared high homology with H7N9, H10N8 or H6N2 viruses. The amino acid sequence alignment results showed that several mutations for human infection tropism presented in the two virus strains, including Q226L, H183N and E190T in HA; S31N in M2; 63-65 deletion in NA. In addition, the H9N2 influenza virus strains possessed the PSRSSR\\GL motif in HA. Meanwhile several human-like signatures, including PA-100A, PA-356R and PA-409N were also found in the two virus strains. The H9N2 viruses isolated from human infection cases in Anhui province belonged to a reassortant virus originated from different lineage H9N2 avian influenza virus. The virus has possessed several human susceptibility locus.

  16. Evolutionary dynamics of avian influenza A H7N9 virus across five waves in mainland China, 2013-2017.

    PubMed

    Xiang, Dan; Pu, Zhiqing; Luo, Tingting; Guo, Fucheng; Li, Xiaobing; Shen, Xuejuan; Irwin, David M; Murphy, Robert W; Liao, Ming; Shen, Yongyi

    2018-05-25

    Since its emergence in March 2013, novel avian influenza A H7N9 virus has triggered five epidemics of human infections in China. This raises concerns about the pandemic threat of this quickly evolving H7N9 subtype for humans. In this study, we evaluated all available genomes for H7N9 and H9N2 influenza A viruses. Our assessment discovered that H7N9 of the 1st wave had the lowest nucleotide diversity, which then experienced substantial and rapid population expansion from a small founder population. From the 2nd wave, their nucleotide diversity increased quickly, indicating that H7N9 viruses had acquired larger populations and mutations after their initial emergence in 2013. After the phylogeographic divergence in the 2nd wave, although the HA and NA genes from different regions differed, compared to previous epidemics, the evolving H7N9 viruses in the 5th wave lost most of their previous clades. The highly pathogenic avian influenza (HPAI) H7N9 viruses in the 5th wave clustered together, and clustered close to the low pathogenic avian influenza (LPAI) virus isolated from the Pearl River Delta in the 3rd and 4th waves. This result supports the origin of HPAI H7N9 viruses was in the Pearl River Delta. In the 5th wave, although both HPAI and LPAI H7N9 viruses were isolated from the Pearl River Delta, their HA and NA genes were phylogenetically distinct. Copyright © 2018. Published by Elsevier Ltd.

  17. A Gene Constellation in Avian Influenza A (H7N9) Viruses May Have Facilitated the Fifth Wave Outbreak in China.

    PubMed

    Zhu, Wenfei; Dong, Jie; Zhang, Ye; Yang, Lei; Li, Xiyan; Chen, Tao; Zhao, Xiang; Wei, Hejiang; Bo, Hong; Zeng, Xiaoxu; Huang, Weijuan; Li, Zi; Tang, Jing; Zhou, Jianfang; Gao, Rongbao; Xin, Li; Yang, Jing; Zou, Shumei; Chen, Wenbing; Liu, Jia; Shu, Yuelong; Wang, Dayan

    2018-04-17

    The 2016-2017 epidemic of influenza A (H7N9) virus in China prompted concern that a genetic change may underlie increased virulence. Based on an evolutionary analysis of H7N9 viruses from all five outbreak waves, we find that additional subclades of the H7 and N9 genes have emerged. Our analysis indicates that H7N9 viruses inherited NP genes from co-circulating H7N9 instead of H9N2 viruses. Genotypic diversity among H7N9 viruses increased following wave I, peaked during wave III, and rapidly deceased thereafter with minimal diversity in wave V, suggesting that the viruses entered a relatively stable evolutionary stage. The ZJ11 genotype caused the majority of human infections in wave V. We suggest that the largest outbreak of wave V may be due to a constellation of genes rather than a single mutation. Therefore, continuous surveillance is necessary to minimize the threat of H7N9 viruses. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  18. Intramuscular and intranasal immunization with an H7N9 influenza virus-like particle vaccine protects mice against lethal influenza virus challenge.

    PubMed

    Ren, Zhiguang; Zhao, Yongkun; Liu, Jing; Ji, Xianliang; Meng, Lingnan; Wang, Tiecheng; Sun, Weiyang; Zhang, Kun; Sang, Xiaoyu; Yu, Zhijun; Li, Yuanguo; Feng, Na; Wang, Hualei; Yang, Songtao; Yang, Zhengyan; Ma, Yuanfang; Gao, Yuwei; Xia, Xianzhu

    2018-05-01

    The H7N9 influenza virus epidemic has been associated with a high mortality rate in China. Therefore, to prevent the H7N9 virus from causing further damage, developing a safe and effective vaccine is necessary. In this study, a vaccine candidate consisting of virus-like particles (VLPs) based on H7N9 A/Shanghai/2/2013 and containing hemagglutinin (HA), neuraminidase (NA), and matrix protein (M1) was successfully produced using a baculovirus (BV) expression system. Immunization experiments showed that strong humoral and cellular immune responses could be induced by the developed VLPs when administered via either the intramuscular (IM) or intranasal (IN) immunization routes. Notably, VLPs administered via both immunization routes provided 100% protection against lethal infection caused by the H7N9 virus. The IN immunization with 40μg of H7N9 VLPs induced strong lung IgA and lung tissue resident memory (TRM) cell-mediated local immune responses. These results provide evidence for the development of an effective preventive vaccine against the H7N9 virus based on VLPs administered through both the IM and IN immunization routes. Copyright © 2017. Published by Elsevier B.V.

  19. Plant-derived H7 VLP vaccine elicits protective immune response against H7N9 influenza virus in mice and ferrets.

    PubMed

    Pillet, S; Racine, T; Nfon, C; Di Lenardo, T Z; Babiuk, S; Ward, B J; Kobinger, G P; Landry, N

    2015-11-17

    In March 2013, the Chinese Centre for Disease Control and Prevention confirmed the first reported case of human infection with an avian influenza A H7N9 virus. Infection with this virus often caused severe pneumonia and acute respiratory distress syndrome resulting in a case fatality rate >35%. The risk of pandemic highlighted, once again, the need for a more rapid and scalable vaccine response capability. Here, we describe the rapid (19 days) development of a plant-derived VLP vaccine based on the hemagglutinin sequence of influenza H7N9 A/Hangzhou/1/2013. The immunogenicity of the H7 VLP vaccine was assessed in mice and ferrets after one or two intramuscular dose(s) with and without adjuvant (alum or GLA-SE™). In ferrets, we also measured H7-specific cell-mediated immunity. The mice and ferrets were then challenged with H7N9 A/Anhui/1/2013 influenza virus. A single immunization with the adjuvanted vaccine elicited a strong humoral response and protected mice against an otherwise lethal challenge. Two doses of unadjuvanted vaccine significantly increased humoral response and resulted in 100% protection with significant reduction of clinical signs leading to nearly asymptomatic infections. In ferrets, a single immunization with the alum-adjuvanted H7 VLP vaccine induced strong humoral and CMI responses with antigen-specific activation of CD3(+) T cells. Compared to animals injected with placebo, ferrets vaccinated with alum-adjuvanted vaccine displayed no weight loss during the challenge. Moreover, the vaccination significantly reduced the viral load in lungs and nasal washes 3 days after the infection. This candidate plant-made H7 vaccine therefore induced protective responses after either one adjuvanted or two unadjuvanted doses. Studies are currently ongoing to better characterize the immune response elicited by the plant-derived VLP vaccines. Regardless, these data are very promising for the rapid production of an immunogenic and protective vaccine against

  20. Infectivity and transmissibility of H9N2 avian influenza virus in chickens and wild terrestrial birds.

    PubMed

    Iqbal, Munir; Yaqub, Tahir; Mukhtar, Nadia; Shabbir, Muhammad Z; McCauley, John W

    2013-10-17

    Genetic changes in avian influenza viruses influence their infectivity, virulence and transmission. Recently we identified a novel genotype of H9N2 viruses in widespread circulation in poultry in Pakistan that contained polymerases (PB2, PB1 and PA) and non-structural (NS) gene segments identical to highly pathogenic H7N3 viruses. Here, we investigated the potential of these viruses to cause disease and assessed the transmission capability of the virus within and between poultry and wild terrestrial avian species. Groups of broilers, layers, jungle fowl, quail, sparrows or crows were infected with a representative strain (A/chicken/UDL-01/08) of this H9N2 virus and then mixed with naïve birds of the same breed or species, or different species to examine transmission. With the exception of crows, all directly inoculated and contact birds showed clinical signs, varying in severity with quail showing the most pronounced clinical signs. Virus shedding was detected in all infected birds, with quail showing the greatest levels of virus secretion, but only very low levels of virus were found in directly infected crow samples. Efficient virus intra-species transmission was observed within each group with the exception of crows in which no evidence of transmission was seen. Interspecies transmission was examined between chickens and sparrows and vice versa and efficient transmission was seen in either direction. These results highlight the ease of spread of this group of H9N2 viruses between domesticated poultry and sparrows and show that sparrows need to be considered as a high risk species for transmitting H9N2 viruses between premises.

  1. Infectivity and transmissibility of H9N2 avian influenza virus in chickens and wild terrestrial birds

    PubMed Central

    2013-01-01

    Genetic changes in avian influenza viruses influence their infectivity, virulence and transmission. Recently we identified a novel genotype of H9N2 viruses in widespread circulation in poultry in Pakistan that contained polymerases (PB2, PB1 and PA) and non-structural (NS) gene segments identical to highly pathogenic H7N3 viruses. Here, we investigated the potential of these viruses to cause disease and assessed the transmission capability of the virus within and between poultry and wild terrestrial avian species. Groups of broilers, layers, jungle fowl, quail, sparrows or crows were infected with a representative strain (A/chicken/UDL-01/08) of this H9N2 virus and then mixed with naïve birds of the same breed or species, or different species to examine transmission. With the exception of crows, all directly inoculated and contact birds showed clinical signs, varying in severity with quail showing the most pronounced clinical signs. Virus shedding was detected in all infected birds, with quail showing the greatest levels of virus secretion, but only very low levels of virus were found in directly infected crow samples. Efficient virus intra-species transmission was observed within each group with the exception of crows in which no evidence of transmission was seen. Interspecies transmission was examined between chickens and sparrows and vice versa and efficient transmission was seen in either direction. These results highlight the ease of spread of this group of H9N2 viruses between domesticated poultry and sparrows and show that sparrows need to be considered as a high risk species for transmitting H9N2 viruses between premises. PMID:24134616

  2. Westward Spread of Highly Pathogenic Avian Influenza A(H7N9) Virus among Humans, China.

    PubMed

    Yang, Qiqi; Shi, Wei; Zhang, Lei; Xu, Yi; Xu, Jing; Li, Shen; Zhang, Junjun; Hu, Kan; Ma, Chaofeng; Zhao, Xiang; Li, Xiyan; Liu, Feng; Tong, Xin; Zhang, Guogang; Yu, Pengbo; Pybus, Oliver G; Tian, Huaiyu

    2018-06-01

    We report infection of humans with highly pathogenic avian influenza A(H7N9) virus in Shaanxi, China, in May 2017. We obtained complete genomes for samples from 5 patients and from live poultry markets or farms in 4 cities. Results indicate that H7N9 is spreading westward from southern and eastern China.

  3. Pathogenesis and transmission of H7N9 influenza virus in poultry

    USDA-ARS?s Scientific Manuscript database

    Background: The recent and ongoing outbreak of H7N9 influenza in China has resulted in many human cases with a high fatality rate. Poultry have been suspected as the source of infection based on sequence analysis and virus isolations from live bird markets; however it’s not clear which species of ...

  4. A Meta-Analysis of the Prevalence of Influenza A H5N1 and H7N9 Infection in Birds.

    PubMed

    Bui, C; Rahman, B; Heywood, A E; MacIntyre, C R

    2017-06-01

    Despite a much higher rate of human influenza A (H7N9) infection compared to influenza A (H5N1), and the assumption that birds are the source of human infection, detection rates of H7N9 in birds are lower than those of H5N1. This raises a question about the role of birds in the spread and transmission of H7N9 to humans. We conducted a meta-analysis of overall prevalence of H5N1 and H7N9 in different bird populations (domestic poultry, wild birds) and different environments (live bird markets, commercial poultry farms, wild habitats). The electronic database, Scopus, was searched for published papers, and Google was searched for country surveillance reports. A random effect meta-analysis model was used to produce pooled estimates of the prevalence of H5N1 and H7N9 for various subcategories. A random effects logistic regression model was used to compare prevalence rates between H5N1 and H7N9. Both viruses have low prevalence across all bird populations. Significant differences in prevalence rates were observed in domestic birds, farm settings, for pathogen and antibody testing, and during routine surveillance. Random effects logistic regression analyses show that among domestic birds, the prevalence of H5N1 is 47.48 (95% CI: 17.15-133.13, P < 0.001) times higher than H7N9. In routine surveillance (where surveillance was not conducted in response to human infections or bird outbreaks), the prevalence of H5N1 is still higher than H7N9 with an OR of 43.02 (95% CI: 16.60-111.53, P < 0.001). H7N9 in humans has occurred at a rate approximately four times higher than H5N1, and for both infections, birds are postulated to be the source. Much lower rates of H7N9 in birds compared to H5N1 raise doubts about birds as the sole source of high rates of human H7N9 infection. Other sources of transmission of H7N9 need to be considered and explored. © 2016 The Authors. Transboundary and Emerging Diseases Published by Blackwell Verlag GmbH.

  5. Pathogenesis and transmission of H7N9 influenza virus in poultry

    USDA-ARS?s Scientific Manuscript database

    The recent outbreaks of H7N9 influenza in China has resulted in many human cases with a high fatality rate. Poultry have been suspected as the source of infection based on sequence analysis and virus isolations from live bird markets, but it’s not clear which species of birds are most likely to be ...

  6. IDENTIFYING AREAS WITH A HIGH RISK OF HUMAN INFECTION WITH THE AVIAN INFLUENZA A (H7N9) VIRUS IN EAST ASIA

    PubMed Central

    Fuller, Trevon; Havers, Fiona; Xu, Cuiling; Fang, Li-Qun; Cao, Wu-Chun; Shu, Yuelong; Widdowson, Marc-Alain; Smith, Thomas B.

    2014-01-01

    Summary Objectives The rapid emergence, spread, and disease severity of avian influenza A(H7N9) in China has prompted concerns about a possible pandemic and regional spread in the coming months. The objective of this study was to predict the risk of future human infections with H7N9 in China and neighboring countries by assessing the association between H7N9 cases at sentinel hospitals and putative agricultural, climatic, and demographic risk factors. Methods This cross-sectional study used the locations of H7N9 cases and negative cases from China’s influenza-like illness surveillance network. After identifying H7N9 risk factors with logistic regression, we used Geographic Information Systems (GIS) to construct predictive maps of H7N9 risk across Asia. Results Live bird market density was associated with human H7N9 infections reported in China from March-May 2013. Based on these cases, our model accurately predicted the virus’ spread into Guangxi autonomous region in February 2014. Outside China, we find there is a high risk that the virus will spread to northern Vietnam, due to the import of poultry from China. Conclusions Our risk map can focus efforts to improve surveillance in poultry and humans, which may facilitate early identification and treatment of human cases. PMID:24642206

  7. Intraspecies and interspecies transmission of mink H9N2 influenza virus.

    PubMed

    Yong-Feng, Zhao; Fei-Fei, Diao; Jia-Yu, Yu; Feng-Xia, Zhang; Chang-Qing, Jiang; Jian-Li, Wang; Shou-Yu, Guo; Kai, Cui; Chuan-Yi, Liu; Xue-Hua, Wei; Jiang, Shi-Jin; Zhi-Jing, Xie

    2017-08-07

    H9N2 influenza A virus (IAV) causes low pathogenic respiratory disease and infects a wide range of hosts. In this study, six IAVs were isolated from mink and identified as H9N2 IAV. Sequence analysis revealed that the six isolates continued to evolve, and their PB2 genes shared high nucleotide sequence identity with H7N9 IAV. The six isolates contained an amino acid motif PSRSSR↓GL at the hemagglutinin cleavage site, which is a characteristic of low pathogenic influenza viruses. A serosurvey demonstrated that H9N2 IAV had spread widely in mink and was prevalent in foxes and raccoon dogs. Transmission experiments showed that close contact between H9N2-infected mink and naive mink, foxes and raccoon dogs resulted in spread of the virus to the contact animals. Furthermore, H9N2 challenge experiments in foxes and raccoon dogs showed that H9N2 IAV could infect these hosts. Virological and epidemiological surveillance of H9N2 IAV should be strengthened for the fur animal industry.

  8. Influenza Virus A/Anhui/1/2013 (H7N9) Replicates Efficiently in the Upper and Lower Respiratory Tracts of Cynomolgus Macaques

    PubMed Central

    de Wit, Emmie; Rasmussen, Angela L.; Feldmann, Friederike; Bushmaker, Trenton; Martellaro, Cynthia; Haddock, Elaine; Okumura, Atsushi; Proll, Sean C.; Chang, Jean; Gardner, Don; Katze, Michael G.

    2014-01-01

    ABSTRACT In March 2013, three fatal human cases of infection with influenza A virus (H7N9) were reported in China. Since then, human cases have been accumulating. Given the public health importance of this virus, we performed a pathogenicity study of the H7N9 virus in the cynomolgus macaque model, focusing on clinical aspects of disease, radiographic, histological, and gene expression profile changes in the upper and lower respiratory tracts, and changes in systemic cytokine and chemokine profiles during infection. Cynomolgus macaques developed transient, mild to severe disease with radiographic evidence of pulmonary infiltration. Virus replicated in the upper as well as lower respiratory tract, with sustained replication in the upper respiratory tract until the end of the experiment at 6 days after inoculation. Virus shedding occurred mainly via the throat. Histopathological changes in the lungs were similar to those observed in humans, albeit less severe, with diffuse alveolar damage, infiltration of polymorphonuclear cells, formation of hyaline membranes, pneumocyte hyperplasia, and fibroproliferative changes. Analysis of gene expression profiles in lung lesions identified pathways involved in tissue damage during H7N9 infection as well as leads for development of therapeutics targeting host responses rather than virus replication. Overall, H7N9 infection was not as severe in cynomolgus macaques as in humans, supporting the possible role of underlying medical complications in disease severity as discussed for human H7N9 infection (H. N. Gao et al., N. Engl. J. Med. 368:2277–2285, 2013, doi:10.1056/NEJMoa1305584). PMID:25118237

  9. H7N9 and Other Pathogenic Avian Influenza Viruses Elicit a Three-Pronged Transcriptomic Signature That Is Reminiscent of 1918 Influenza Virus and Is Associated with Lethal Outcome in Mice

    PubMed Central

    Morrison, Juliet; Josset, Laurence; Tchitchek, Nicolas; Chang, Jean; Belser, Jessica A.; Swayne, David E.; Pantin-Jackwood, Mary J.; Tumpey, Terrence M.

    2014-01-01

    ABSTRACT Modulating the host response is a promising approach to treating influenza, caused by a virus whose pathogenesis is determined in part by the reaction it elicits within the host. Though the pathogenicity of emerging H7N9 influenza virus in several animal models has been reported, these studies have not included a detailed characterization of the host response following infection. Therefore, we characterized the transcriptomic response of BALB/c mice infected with H7N9 (A/Anhui/01/2013) virus and compared it to the responses induced by H5N1 (A/Vietnam/1203/2004), H7N7 (A/Netherlands/219/2003), and pandemic 2009 H1N1 (A/Mexico/4482/2009) influenza viruses. We found that responses to the H7 subtype viruses were intermediate to those elicited by H5N1 and pdm09H1N1 early in infection but that they evolved to resemble the H5N1 response as infection progressed. H5N1, H7N7, and H7N9 viruses were pathogenic in mice, and this pathogenicity correlated with increased transcription of cytokine response genes and decreased transcription of lipid metabolism and coagulation signaling genes. This three-pronged transcriptomic signature was observed in mice infected with pathogenic H1N1 strains such as the 1918 virus, indicating that it may be predictive of pathogenicity across multiple influenza virus strains. Finally, we used host transcriptomic profiling to computationally predict drugs that reverse the host response to H7N9 infection, and we identified six FDA-approved drugs that could potentially be repurposed to treat H7N9 and other pathogenic influenza viruses. IMPORTANCE Emerging avian influenza viruses are of global concern because the human population is immunologically naive to them. Current influenza drugs target viral molecules, but the high mutation rate of influenza viruses eventually leads to the development of antiviral resistance. As the host evolves far more slowly than the virus, and influenza pathogenesis is determined in part by the host response

  10. H7N9 and other pathogenic avian influenza viruses elicit a three-pronged transcriptomic signature that is reminiscent of 1918 influenza virus and is associated with lethal outcome in mice.

    PubMed

    Morrison, Juliet; Josset, Laurence; Tchitchek, Nicolas; Chang, Jean; Belser, Jessica A; Swayne, David E; Pantin-Jackwood, Mary J; Tumpey, Terrence M; Katze, Michael G

    2014-09-01

    Modulating the host response is a promising approach to treating influenza, caused by a virus whose pathogenesis is determined in part by the reaction it elicits within the host. Though the pathogenicity of emerging H7N9 influenza virus in several animal models has been reported, these studies have not included a detailed characterization of the host response following infection. Therefore, we characterized the transcriptomic response of BALB/c mice infected with H7N9 (A/Anhui/01/2013) virus and compared it to the responses induced by H5N1 (A/Vietnam/1203/2004), H7N7 (A/Netherlands/219/2003), and pandemic 2009 H1N1 (A/Mexico/4482/2009) influenza viruses. We found that responses to the H7 subtype viruses were intermediate to those elicited by H5N1 and pdm09H1N1 early in infection but that they evolved to resemble the H5N1 response as infection progressed. H5N1, H7N7, and H7N9 viruses were pathogenic in mice, and this pathogenicity correlated with increased transcription of cytokine response genes and decreased transcription of lipid metabolism and coagulation signaling genes. This three-pronged transcriptomic signature was observed in mice infected with pathogenic H1N1 strains such as the 1918 virus, indicating that it may be predictive of pathogenicity across multiple influenza virus strains. Finally, we used host transcriptomic profiling to computationally predict drugs that reverse the host response to H7N9 infection, and we identified six FDA-approved drugs that could potentially be repurposed to treat H7N9 and other pathogenic influenza viruses. Emerging avian influenza viruses are of global concern because the human population is immunologically naive to them. Current influenza drugs target viral molecules, but the high mutation rate of influenza viruses eventually leads to the development of antiviral resistance. As the host evolves far more slowly than the virus, and influenza pathogenesis is determined in part by the host response, targeting the host

  11. Vaccination against H9N2 avian influenza virus reduces bronchus-associated lymphoid tissue formation in cynomolgus macaques after intranasal virus challenge infection.

    PubMed

    Nakayama, Misako; Ozaki, Hiroichi; Itoh, Yasushi; Soda, Kosuke; Ishigaki, Hirohito; Okamatsu, Masatoshi; Sakoda, Yoshihiro; Park, Chun-Ho; Tsuchiya, Hideaki; Kida, Hiroshi; Ogasawara, Kazumasa

    2016-12-01

    H9N2 avian influenza virus causes sporadic human infection. Since humans do not possess acquired immunity specific to this virus, we examined the pathogenicity of an H9N2 virus isolated from a human and then analyzed protective effects of a vaccine in cynomolgus macaques. After intranasal challenge with A/Hong Kong/1073/1999 (H9N2) (HK1073) isolated from a human patient, viruses were isolated from nasal and tracheal swabs in unvaccinated macaques with mild fever and body weight loss. A formalin-inactivated H9N2 whole particle vaccine derived from our virus library was subcutaneously inoculated to macaques. Vaccination induced viral antigen-specific IgG and neutralization activity in sera. After intranasal challenge with H9N2, the virus was detected only the day after inoculation in the vaccinated macaques. Without vaccination, many bronchus-associated lymphoid tissues (BALTs) were formed in the lungs after infection, whereas the numbers of BALTs were smaller and the cytokine responses were weaker in the vaccinated macaques than those in the unvaccinated macaques. These findings indicate that the H9N2 avian influenza virus HK1073 is pathogenic in primates but seems to cause milder symptoms than does H7N9 influenza virus as found in our previous studies and that a formalin-inactivated H9N2 whole particle vaccine induces protective immunity against H9N2 virus. © 2016 Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.

  12. An influenza A virus (H7N9) anti-neuraminidase monoclonal antibody with prophylactic and therapeutic activity in vivo.

    PubMed

    Wilson, Jason R; Guo, Zhu; Reber, Adrian; Kamal, Ram P; Music, Nedzad; Gansebom, Shane; Bai, Yaohui; Levine, Min; Carney, Paul; Tzeng, Wen-Pin; Stevens, James; York, Ian A

    2016-11-01

    Zoonotic A(H7N9) avian influenza viruses emerged in China in 2013 and continue to be a threat to human public health, having infected over 800 individuals with a mortality rate approaching 40%. Treatment options for people infected with A(H7N9) include the use of neuraminidase (NA) inhibitors. However, like other influenza viruses, A(H7N9) can become resistant to these drugs. The use of monoclonal antibodies is a rapidly developing strategy for controlling influenza virus infection. Here we generated a murine monoclonal antibody (3c10-3) directed against the NA of A(H7N9) and show that prophylactic systemic administration of 3c10-3 fully protected mice from lethal challenge with wild-type A/Anhui/1/2013 (H7N9). Further, post-infection treatment with a single systemic dose of 3c10-3 at either 24, 48 or 72 h post A(H7N9) challenge resulted in both dose- and time-dependent protection of up to 100% of mice, demonstrating therapeutic potential for 3c10-3. Epitope mapping revealed that 3c10-3 binds near the enzyme active site of NA, and functional characterization showed that 3c10-3 inhibits the enzyme activity of NA and restricts the cell-to-cell spread of the virus in cultured cells. Affinity analysis also revealed that 3c10-3 binds equally well to recombinant NA of wild-type A/Anhui/1/2013 and to a variant NA carrying a R289K mutation known to infer NAI resistance. These results suggest that 3c10-3 has the potential to be used as a therapeutic to treat A(H7N9) infections either as an alternative to, or in combination with, current NA antiviral inhibitors. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. An overview of the recent outbreaks of the avian-origin influenza A (H7N9) virus in the human.

    PubMed

    Tang, Ren-Bin; Chen, Hui-Lan

    2013-05-01

    Since the first human infection with influenza A (H7N9) viruses have been identified in Shanghai on March 31, 2013, the latest variant of the avian flu virus has spread across four Chinese provinces recently. Human infections with avian influenza are rare and this is the first time that human infection with a low pathogenic avian influenza A virus has been associated with fatal outcome. To date (May 5(th), 2013), China had reported 128 confirmed H7N9 infections in human, among 27 died. Most reported cases have severe respiratory illness resulting in severe pneumonia and in some cases have died. No evidence of sustained human-to -humans at this time, however, there is one family cluster with two confirmed cases for which human-to-human transmission cannot be ruled out. Recent evidence showed that the gene sequences of this novel H7N9 virus is primarily zoonotic and may be better adapted than other avian influenza viruses to infect human. Effective global infection control is urgently needed, and further surveillance and analyses should be undertaken to identify the source and mode of transmission of these viruses. Copyright © 2013. Published by Elsevier B.V.

  14. Virus-like particles displaying H5, H7, H9 hemagglutinins and N1 neuraminidase elicit protective immunity to heterologous avian influenza viruses in chickens

    PubMed Central

    Pushko, Peter; Tretyakova, Irina; Hidajat, Rachmat; Zsak, Aniko; Chrzastek, Klaudia; Tumpey, Terrence M.; Kapczynski, Darrell R.

    2016-01-01

    Avian influenza (AI) viruses circulating in wild birds pose a serious threat to public health. Human and veterinary vaccines against AI subtypes are needed. Here we prepared triple-subtype VLPs that co-localized H5, H7 and H9 antigens derived from H5N1, H7N3 and H9N2 viruses. VLPs also contained influenza N1 neuraminidase and retroviral gag protein. The H5/H7/H9/N1/gag VLPs were prepared using baculovirus expression. Biochemical, functional and antigenic characteristics were determined including hemagglutination and neuraminidase enzyme activities. VLPs were further evaluated in a chicken AI challenge model for safety, immunogenicity and protective efficacy against heterologous AI viruses including H5N2, H7N3 and H9N2 subtypes. All vaccinated birds survived challenges with H5N2 and H7N3 highly pathogenic AI (HPAI) viruses, while all controls died. Immune response was also detectable after challenge with low pathogenicity AI (LPAI) H9N2 virus suggesting that H5/H7/H9/N1/gag VLPs represent a promising approach for the development of broadly protective AI vaccine. PMID:27936463

  15. M Gene Reassortment in H9N2 Influenza Virus Promotes Early Infection and Replication: Contribution to Rising Virus Prevalence in Chickens in China.

    PubMed

    Pu, Juan; Sun, Honglei; Qu, Yi; Wang, Chenxi; Gao, Weihua; Zhu, Junda; Sun, Yipeng; Bi, Yuhai; Huang, Yinhua; Chang, Kin-Chow; Cui, Jie; Liu, Jinhua

    2017-04-15

    Segment reassortment and base mutagenesis of influenza A viruses are the primary routes to the rapid evolution of high-fitness virus genotypes. We recently described a predominant G57 genotype of avian H9N2 viruses that caused countrywide outbreaks in chickens in China during 2010 to 2013, which led to the zoonotic emergence of H7N9 viruses. One of the key features of the G57 genotype is the replacement of the earlier A/chicken/Beijing/1/1994 (BJ/94)-like M gene with the A/quail/Hong Kong/G1/1997 (G1)-like M gene of quail origin. We report here the functional significance of the G1-like M gene in H9N2 viruses in conferring increased infection severity and infectivity in primary chicken embryonic fibroblasts and chickens. H9N2 virus housing the G1-like M gene, in place of the BJ/94-like M gene, showed an early surge in viral mRNA and viral RNA (vRNA) transcription that was associated with enhanced viral protein production and with an early elevated release of progeny virus comprising largely spherical rather than filamentous virions. Importantly, H9N2 virus with the G1-like M gene conferred extrapulmonary virus spread in chickens. Five highly represented signature amino acid residues (37A, 95K, 224N, and 242N in the M1 protein and 21G in the M2 protein) encoded by the prevalent G1-like M gene were demonstrated to be prime contributors to enhanced infectivity. Therefore, the genetic evolution of the M gene in H9N2 virus increases reproductive virus fitness, indicating its contribution to the rising virus prevalence in chickens in China. IMPORTANCE We recently described the circulation of a dominant genotype (genotype G57) of H9N2 viruses in countrywide outbreaks in chickens in China, which was responsible, through reassortment, for the emergence of H7N9 viruses that cause severe human infections. A key feature of the genotype G57 H9N2 virus is the presence of the quail-origin G1-like M gene, which had replaced the earlier BJ/94-like M gene. We found that H9N2 virus

  16. M Gene Reassortment in H9N2 Influenza Virus Promotes Early Infection and Replication: Contribution to Rising Virus Prevalence in Chickens in China

    PubMed Central

    Pu, Juan; Sun, Honglei; Qu, Yi; Wang, Chenxi; Gao, Weihua; Zhu, Junda; Sun, Yipeng; Bi, Yuhai; Huang, Yinhua; Chang, Kin-Chow

    2017-01-01

    ABSTRACT Segment reassortment and base mutagenesis of influenza A viruses are the primary routes to the rapid evolution of high-fitness virus genotypes. We recently described a predominant G57 genotype of avian H9N2 viruses that caused countrywide outbreaks in chickens in China during 2010 to 2013, which led to the zoonotic emergence of H7N9 viruses. One of the key features of the G57 genotype is the replacement of the earlier A/chicken/Beijing/1/1994 (BJ/94)-like M gene with the A/quail/Hong Kong/G1/1997 (G1)-like M gene of quail origin. We report here the functional significance of the G1-like M gene in H9N2 viruses in conferring increased infection severity and infectivity in primary chicken embryonic fibroblasts and chickens. H9N2 virus housing the G1-like M gene, in place of the BJ/94-like M gene, showed an early surge in viral mRNA and viral RNA (vRNA) transcription that was associated with enhanced viral protein production and with an early elevated release of progeny virus comprising largely spherical rather than filamentous virions. Importantly, H9N2 virus with the G1-like M gene conferred extrapulmonary virus spread in chickens. Five highly represented signature amino acid residues (37A, 95K, 224N, and 242N in the M1 protein and 21G in the M2 protein) encoded by the prevalent G1-like M gene were demonstrated to be prime contributors to enhanced infectivity. Therefore, the genetic evolution of the M gene in H9N2 virus increases reproductive virus fitness, indicating its contribution to the rising virus prevalence in chickens in China. IMPORTANCE We recently described the circulation of a dominant genotype (genotype G57) of H9N2 viruses in countrywide outbreaks in chickens in China, which was responsible, through reassortment, for the emergence of H7N9 viruses that cause severe human infections. A key feature of the genotype G57 H9N2 virus is the presence of the quail-origin G1-like M gene, which had replaced the earlier BJ/94-like M gene. We found that H9N

  17. Computational analysis of the receptor binding specificity of novel influenza A/H7N9 viruses.

    PubMed

    Zhou, Xinrui; Zheng, Jie; Ivan, Fransiskus Xaverius; Yin, Rui; Ranganathan, Shoba; Chow, Vincent T K; Kwoh, Chee-Keong

    2018-05-09

    Influenza viruses are undergoing continuous and rapid evolution. The fatal influenza A/H7N9 has drawn attention since the first wave of infections in March 2013, and raised more grave concerns with its increased potential to spread among humans. Experimental studies have revealed several host and virulence markers, indicating differential host binding preferences which can help estimate the potential of causing a pandemic. Here we systematically investigate the sequence pattern and structural characteristics of novel influenza A/H7N9 using computational approaches. The sequence analysis highlighted mutations in protein functional domains of influenza viruses. Molecular docking and molecular dynamics simulation revealed that the hemagglutinin (HA) of A/Taiwan/1/2017(H7N9) strain enhanced the binding with both avian and human receptor analogs, compared with the previous A/Shanghai/02/2013(H7N9) strain. The Molecular Mechanics - Poisson Boltzmann Surface Area (MM-PBSA) calculation revealed the change of residue-ligand interaction energy and detected the residues with conspicuous binding preference. The results are novel and specific to the emerging influenza A/Taiwan/1/2017(H7N9) strain compared with A/Shanghai/02/2013(H7N9). Its enhanced ability to bind human receptor analogs, which are abundant in the human upper respiratory tract, may be responsible for the recent outbreak. Residues showing binding preference were detected, which could facilitate monitoring the circulating influenza viruses.

  18. Comparative analysis of selected innate immune-related genes following infection of immortal DF-1 cells with highly pathogenic (H5N1) and low pathogenic (H9N2) avian influenza viruses.

    PubMed

    Liu, Ai-Ling; Li, Yu-Feng; Qi, Wenbao; Ma, Xiu-Li; Yu, Ke-Xiang; Huang, Bing; Liao, Ming; Li, Feng; Pan, Jie; Song, Min-Xun

    2015-04-01

    H5N1 and H9N2 viruses are important causes of avian influenza in China. H5N1 is typically associated with severe to fatal disease in poultry, while H9N2 is usually associated with mild disease. Differences in viral virulence prompted us to investigate whether innate immune responses would be differentially regulated following infection by H5N1 and H9N2 viruses. To address this hypothesis, expression of a panel of innate immune-related genes including IFN-α, IFN-β, Mx1, OASL, ISG12, IFIT5, IRF7, USP18, SST, and KHSRP in immortal DF-1 cells following H5N1 and H9N2 infection was analyzed and compared by real-time quantitative RT-PCR. Cells infected by either virus overall exhibited a similar expression profile for four ISGs (Mx1, OASL, ISG12, and IFIT5), IFN-α, IFN-β, and SST gene. However, two immune-regulatory genes (IRF7 and KHSRP) were not responsive to highly pathogenic H5N1 infection but were strongly up-regulated in DF-1 cells infected with low pathogenic H9N2 infection. The subtype-dependent host response observed in this study offers new insights into the potential roles of IRF7 and KHSRP in control and modulation of the replication and virulence of different subtypes or strains of avian influenza A virus.

  19. Preexisting CD8+ T-cell immunity to the H7N9 influenza A virus varies across ethnicities

    PubMed Central

    Quiñones-Parra, Sergio; Grant, Emma; Loh, Liyen; Nguyen, Thi H. O.; Campbell, Kristy-Anne; Tong, Steven Y. C.; Miller, Adrian; Doherty, Peter C.; Vijaykrishna, Dhanasekaran; Rossjohn, Jamie; Gras, Stephanie; Kedzierska, Katherine

    2014-01-01

    The absence of preexisting neutralizing antibodies specific for the novel A (H7N9) influenza virus indicates a lack of prior human exposure. As influenza A virus–specific CD8+ T lymphocytes (CTLs) can be broadly cross-reactive, we tested whether immunogenic peptides derived from H7N9 might be recognized by memory CTLs established following infection with other influenza strains. Probing across multiple ethnicities, we identified 32 conserved epitopes derived from the nucleoprotein (NP) and matrix-1 (M1) proteins. These NP and M1 peptides are presented by HLAs prevalent in 16–57% of individuals. Remarkably, some HLA alleles (A*0201, A*0301, B*5701, B*1801, and B*0801) elicit robust CTL responses against any human influenza A virus, including H7N9, whereas ethnicities where HLA-A*0101, A*6801, B*1501, and A*2402 are prominent, show limited CTL response profiles. By this criterion, some groups, especially the Alaskan and Australian Indigenous peoples, would be particularly vulnerable to H7N9 infection. This dissection of CTL-mediated immunity to H7N9 thus suggests strategies for both vaccine delivery and development. PMID:24395804

  20. Significantly elevated number of human infections with H7N9 virus in Jiangsu in eastern China, October 2016 to January 2017.

    PubMed

    Huo, Xiang; Chen, Liling; Qi, Xian; Huang, Haodi; Dai, Qigang; Yu, Huiyan; Xia, Yu; Liu, Wendong; Xu, Ke; Ma, Wang; Zhang, Jun; Bao, Changjun

    2017-03-30

    Since first identified in 2013, the H7N9 virus has caused several waves of human infections in China, with a current wave including a number of patients with very severe disease. Jiangsu is one of the most impacted provinces, whereby as of 31 January 2017, the number of human infections (n = 109) in the ongoing fifth H7N9 wave has exceeded the sum of those in the four preceding ones. Ten of 13 cities in Jiangsu have been affected, and clustered infections as well as one co-infection with seasonal influenza have been observed. With a median age of 58 years and 74.3% (81/109) of patients being male, the characteristics of cases are similar to those in previous waves, however patients with H7N9 seem to have an accelerated disease progression. Preliminary case fatality remains above 30%. No significant viral mutations have been found in key functional loci. Environmental H7N9 detection rate and number of days with high risk ambient temperatures were both significantly elevated during the month of December 2016 when most human infections were reported. A number of municipal governments in Jiangsu have implemented live poultry market closures to impede viral transmission to humans. A detectable decline in human infections has been observed in these municipalities and the entire province since January 2017. This article is copyright of The Authors, 2017.

  1. Role of Poultry in the Spread of Novel H7N9 Influenza Virus in China

    PubMed Central

    Pantin-Jackwood, Mary J.; Miller, Patti J.; Spackman, Erica; Swayne, David E.; Susta, Leonardo; Costa-Hurtado, Mar

    2014-01-01

    ABSTRACT The recent outbreak of H7N9 influenza in China has resulted in many human cases with a high fatality rate. Poultry are the likely source of infection for humans on the basis of sequence analysis and virus isolations from live bird markets, but it is not clear which species of birds are most likely to be infected and shedding levels of virus sufficient to infect humans. Intranasal inoculation of chickens, Japanese quail, pigeons, Pekin ducks, Mallard ducks, Muscovy ducks, and Embden geese with 106 50% egg infective doses of the A/Anhui/1/2013 virus resulted in infection but no clinical disease signs. Virus shedding was much higher and prolonged in quail and chickens than in the other species. Quail effectively transmitted the virus to direct contacts, but pigeons and Pekin ducks did not. In all species, virus was detected at much higher titers from oropharyngeal swabs than cloacal swabs. The hemagglutinin gene from samples collected from selected experimentally infected birds was sequenced, and three amino acid differences were commonly observed when the sequence was compared to the sequence of A/Anhui/1/2013: N123D, N149D, and L217Q. Leucine at position 217 is highly conserved for human isolates and is associated with α2,6-sialic acid binding. Different amino acid combinations were observed, suggesting that the inoculum had viral subpopulations that were selected after passage in birds. These experimental studies corroborate the finding that certain poultry species are reservoirs of the H7N9 influenza virus and that the virus is highly tropic for the upper respiratory tract, so testing of bird species should preferentially be conducted with oropharyngeal swabs for the best sensitivity. IMPORTANCE The recent outbreak of H7N9 influenza in China has resulted in a number of human infections with a high case fatality rate. The source of the viral outbreak is suspected to be poultry, but definitive data on the source of the infection are not available. This

  2. Virus-like particles displaying H5, H7, H9 hemagglutinins and N1 neuraminidase elicit protective immunity to heterologous avian influenza viruses in chickens.

    PubMed

    Pushko, Peter; Tretyakova, Irina; Hidajat, Rachmat; Zsak, Aniko; Chrzastek, Klaudia; Tumpey, Terrence M; Kapczynski, Darrell R

    2017-01-15

    Avian influenza (AI) viruses circulating in wild birds pose a serious threat to public health. Human and veterinary vaccines against AI subtypes are needed. Here we prepared triple-subtype VLPs that co-localized H5, H7 and H9 antigens derived from H5N1, H7N3 and H9N2 viruses. VLPs also contained influenza N1 neuraminidase and retroviral gag protein. The H5/H7/H9/N1/gag VLPs were prepared using baculovirus expression. Biochemical, functional and antigenic characteristics were determined including hemagglutination and neuraminidase enzyme activities. VLPs were further evaluated in a chicken AI challenge model for safety, immunogenicity and protective efficacy against heterologous AI viruses including H5N2, H7N3 and H9N2 subtypes. All vaccinated birds survived challenges with H5N2 and H7N3 highly pathogenic AI (HPAI) viruses, while all controls died. Immune response was also detectable after challenge with low pathogenicity AI (LPAI) H9N2 virus suggesting that H5/H7/H9/N1/gag VLPs represent a promising approach for the development of broadly protective AI vaccine. Copyright © 2016. Published by Elsevier Inc.

  3. Virus-like particles displaying H5, H7, H9 hemagglutinins and N1 neuraminidase elicit protective immunity to heterologous avian influenza viruses in chickens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pushko, Peter, E-mail: ppushko@medigen-usa.com

    Avian influenza (AI) viruses circulating in wild birds pose a serious threat to public health. Human and veterinary vaccines against AI subtypes are needed. Here we prepared triple-subtype VLPs that co-localized H5, H7 and H9 antigens derived from H5N1, H7N3 and H9N2 viruses. VLPs also contained influenza N1 neuraminidase and retroviral gag protein. The H5/H7/H9/N1/gag VLPs were prepared using baculovirus expression. Biochemical, functional and antigenic characteristics were determined including hemagglutination and neuraminidase enzyme activities. VLPs were further evaluated in a chicken AI challenge model for safety, immunogenicity and protective efficacy against heterologous AI viruses including H5N2, H7N3 and H9N2 subtypes.more » All vaccinated birds survived challenges with H5N2 and H7N3 highly pathogenic AI (HPAI) viruses, while all controls died. Immune response was also detectable after challenge with low pathogenicity AI (LPAI) H9N2 virus suggesting that H5/H7/H9/N1/gag VLPs represent a promising approach for the development of broadly protective AI vaccine. - Highlights: •VLPs were prepared that co-localized H5, H7 and H9 subtypes in a VLP envelope. •VLPs were characterized including electron microscopy, HA assay and NA enzyme activity. •Experimental VLP vaccine was evaluated in an avian influenza challenge model. •VLPs induced immune responses against heterologous H5, H7 and H9 virus challenges.« less

  4. Effects of HA and NA glycosylation pattern changes on the transmission of avian influenza A(H7N9) virus in guinea pigs.

    PubMed

    Park, Sehee; Lee, Ilseob; Kim, Jin Il; Bae, Joon-Yong; Yoo, Kirim; Kim, Juwon; Nam, Misun; Park, Miso; Yun, Soo-Hyeon; Cho, Woo In; Kim, Yeong-Su; Ko, Yun Young; Park, Man-Seong

    2016-10-14

    Avian influenza H7N9 virus has posed a concern of potential human-to-human transmission by resulting in seasonal virus-like human infection cases. To address the issue of sustained human infection with the H7N9 virus, here we investigated the effects of hemagglutinin (HA) and neuraminidase (NA) N-linked glycosylation (NLG) patterns on influenza virus transmission in a guinea pig model. Based on the NLG signatures identified in the HA and NA genetic sequences of H7N9 viruses, we generated NLG mutant viruses using either HA or NA gene of a H7N9 virus, A/Anhui/01/2013, by reverse genetics on the 2009 pandemic H1N1 virus backbone. For the H7 HA NLG mutant viruses, NLG pattern changes appeared to reduce viral transmissibility in guinea pigs. Intriguingly, however, the NLG changes in the N9 NA protein, such as a removal from residue 42 or 66 or an addition at residue 266, increased transmissibility of the mutant viruses by more than 33%, 50%, and 16%, respectively, compared with a parental N9 virus. Given the effects of HA-NA NLG changes with regard to viral transmission, we then generated the HA-NA NLG mutant viruses harboring the H7 HA of double NLG addition and the N9 NA of various NLG patterns. As seen in the HA NLG mutants above, the double NLG-added H7 HA decreased viral transmissibility. However, when the NA NLG changes occurred by a removal of residue 66 and an addition at 266 were additionally accompanied, the HA-NA NLG mutant virus recovered the transmissibility of its parental virus. These demonstrate the effects of specific HA-NA NLG changes on the H7N9 virus transmission by highlighting the importance of a HA-NA functional balance. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Preferential recognition of avian-like receptors in human influenza A H7N9 viruses.

    PubMed

    Xu, Rui; de Vries, Robert P; Zhu, Xueyong; Nycholat, Corwin M; McBride, Ryan; Yu, Wenli; Paulson, James C; Wilson, Ian A

    2013-12-06

    The 2013 outbreak of avian-origin H7N9 influenza in eastern China has raised concerns about its ability to transmit in the human population. The hemagglutinin glycoprotein of most human H7N9 viruses carries Leu(226), a residue linked to adaptation of H2N2 and H3N2 pandemic viruses to human receptors. However, glycan array analysis of the H7 hemagglutinin reveals negligible binding to humanlike α2-6-linked receptors and strong preference for a subset of avian-like α2-3-linked glycans recognized by all avian H7 viruses. Crystal structures of H7N9 hemagglutinin and six hemagglutinin-glycan complexes have elucidated the structural basis for preferential recognition of avian-like receptors. These findings suggest that the current human H7N9 viruses are poorly adapted for efficient human-to-human transmission.

  6. [A case of human infection with highly pathogenic avian influenza A (H7N9) virus through poultry processing without protection measure].

    PubMed

    Ma, Y; Zhang, Z B; Cao, L; Lu, J Y; Li, K B; Su, W Z; Li, T G; Yang, Z C; Wang, M

    2018-06-10

    Objective: To investigate the infection pattern and etiological characteristics of a case of human infection with highly pathogenic avian influenza A (H7N9) virus and provide evidence for the prevention and control of human infection with highly pathogenic avian influenza virus. Methods: Epidemiological investigation was conducted to explore the case's exposure history, infection route and disease progression. Samples collected from the patient, environments and poultry were tested by using real time reverse transcriptase-polymerase chain reaction (RT-PCR). Virus isolation, genome sequencing and phylogenetic analysis were conducted for positive samples. Results: The case had no live poultry contact history, but had a history of pulled chicken processing without taking protection measure in an unventilated kitchen before the onset. Samples collected from the patient's lower respiratory tract, the remaining frozen chicken meat and the live poultry market were all influenza A (H7N9) virus positive. The isolated viruses from these positive samples were highly homogenous. An insertion which lead to the addition of multiple basic amino acid residues (PEVPKRKRTAR/GL) was found at the HA cleavage site, suggesting that this virus might be highly pathogenic. Conclusions: Live poultry processing without protection measure is an important infection mode of "poultry to human" transmission of avian influenza viruses. Due to the limitation of protection measures in live poultry markets in Guangzhou, it is necessary to promote the standardized large scale poultry farming, the complete restriction of live poultry sales and centralized poultry slaughtering as well as ice fresh sale.

  7. Characterization of pseudoparticles paired with hemagglutinin and neuraminidase from highly pathogenic H5N1 influenza and avian influenza A (H7N9) viruses.

    PubMed

    Zhang, Fengwei; Wang, Shanshan; Wang, Yanan; Shang, Xuechai; Zhou, Hongjuan; Cai, Long

    2018-05-31

    The reassortment of two highly pathogenic avian influenza (HPAI) H5N1 and H7N9 viruses presents a potential challenge to human health. The hemagglutinins (HAs) and neuraminidases (NAs) of these simultaneously circulating avian influenza viruses were evaluated using the pseudoparticle (pp) system. Native and mismatched virus pps were generated to investigate their biological characteristics. The HAs and NAs of the two viruses reassorted successfully to generate infectious viral particles. H7 was demonstrated to have the ability to reassort with NA from the H5N1 viruses, resulting in the generation of virions that were highly infectious to bronchial epithelial cells. Although the Anhui H5+Anhui N9 combination showed an moderate infectivity to the four cell lines, it was most sensitive to oseltamivir. The H7 in the pps was found to be predominantly HA0. Further, H5 in the pps primarily presented as HA1, owing to the particular mechanisms underlying its maturation. All NAs predominantly existed in monomer form. In our study, HAs/NAs, in all combinations, were functional and able to perform their corresponding function in the viral life cycle. Our data suggest that HAs/NAs from the (HPAI) H5N1 and H7N9 viruses are capable of assembly into infectious virions, posing a threat topublic health. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Serological comparison of antibodies to avian influenza viruses, subtypes H5N2, H6N1, H7N3 and H7N9 between poultry workers and non-poultry workers in Taiwan in 2012.

    PubMed

    Huang, S Y; Yang, J R; Lin, Y J; Yang, C H; Cheng, M C; Liu, M T; Wu, H S; Chang, F Y

    2015-10-01

    In Taiwan, avian influenza virus (AIV) subtypes H5N2, H6N1 and H7N3 have been identified in domestic poultry, and several strains of these subtypes have become endemic in poultry. To evaluate the potential of avian-to-human transmission due to occupational exposure, an exploratory analysis of AIV antibody status in poultry workers was conducted. We enrolled 670 poultry workers, including 335 live poultry vendors (LPVs), 335 poultry farmers (PFs), and 577 non-poultry workers (NPWs). Serum antibody titres against various subtypes of viruses were analysed and compared. The overall seropositivity rates in LPVs and PFs were 2·99% (10/335) and 1·79% (6/335), respectively, against H5N2; and 0·6% (2/335) and 1·19% (4/335), respectively, for H7N3 virus. Of NPWs, 0·35% (2/577) and 0·17% (1/577) were seropositive for H5N2 and H7N3, respectively. Geographical analysis revealed that poultry workers whose workplaces were near locations where H5N2 outbreaks in poultry have been reported face greater risks of being exposed to viruses that result in elevated H5N2 antibody titres. H6N1 antibodies were detected in only one PF, and no H7N9 antibodies were found in the study subjects. Subclinical infections caused by H5N2, H6N1 and H7N3 viruses were thus identified in poultry workers in Taiwan. Occupational exposure is associated with a high risk of AIV infection, and the seroprevalence of particular avian influenza strains in humans reflects the endemic strains in poultry in this region.

  9. Infection and transmission of LPAIV H9N2 viruses in SPF chickens

    USDA-ARS?s Scientific Manuscript database

    Low pathogenic avian influenza viruses (LPAIV), subtype H9N2 are responsible for economic losses in the poultry industry worldwide. Using multiple strains of H9N2 LPAIV isolates from different years and countries, we inoculated 3-week old SPF laying hens intranasally to evaluate infectivity and tran...

  10. Two genetically diverse H7N7 avian influenza viruses isolated from migratory birds in central China.

    PubMed

    Liu, Haizhou; Xiong, Chaochao; Chen, Jing; Chen, Guang; Zhang, Jun; Li, Yong; Xiong, Yanping; Wang, Runkun; Cao, Ying; Chen, Quanjiao; Liu, Di; Wang, Hanzhong; Chen, Jianjun

    2018-04-11

    After the emergence of H7N9 avian influenza viruses (AIV) in early 2013 in China, active surveillance of AIVs in migratory birds was undertaken, and two H7N7 strains were subsequently recovered from the fresh droppings of migratory birds; the strains were from different hosts and sampling sites. Phylogenetic and sequence similarity network analyses indicated that several genes of the two H7N7 viruses were closely related to those in AIVs circulating in domestic poultry, although different gene segments were implicated in the two isolates. This strongly suggested that genes from viruses infecting migratory birds have been introduced into poultry-infecting strains. A Bayesian phylogenetic reconstruction of all eight segments implied that multiple reassortments have occurred in the evolution of these viruses, particularly during late 2011 and early 2014. Antigenic analysis using a hemagglutination inhibition test showed that the two H7N7 viruses were moderately cross-reactive with H7N9-specific anti-serum. The ability of the two H7N7 viruses to remain infectious under various pH and temperature conditions was evaluated, and the viruses persisted the longest at near-neutral pH and in cold temperatures. Animal infection experiments showed that the viruses were avirulent to mice and could not be recovered from any organs. Our results indicate that low pathogenic, divergent H7N7 viruses circulate within the East Asian-Australasian flyway. Virus dispersal between migratory birds and domestic poultry may increase the risk of the emergence of novel unprecedented strains.

  11. Silent geographical spread of the H7N9 virus by online knowledge analysis of the live bird trade with a distributed focused crawler

    PubMed Central

    Chen, Chen; Lu, Shan; Du, Pengcheng; Wang, Haiyin; Yu, Weiwen; Song, Huawen; Xu, Jianguo

    2013-01-01

    Unlike those infected by H5N1, birds infected by the newly discovered H7N9 virus have no observable clinical symptoms. Public health workers in China do not know where the public health threat lies. In this study, we used a distributed focused crawler to analyze online knowledge of the live bird trade in first-wave provinces, namely, Jiangsu, Zhejiang, Anhui, and Shanghai, to track the new H7N9 virus and predict its spread. Of the 18 provinces proposed to be at high risk of infection, 10 reported human infections and one had poultry specimens that tested positive. Five provinces (Xinjiang, Yunnan, Guizhou, Shaanxi, and Tibet) as well as Hong Kong, Macao, and Taiwan were proposed to have no risk of H7N9 virus infection from the live bird trade. These data can help health authorities and the public to respond rapidly to reduce damage related to the spread of the virus. PMID:26038450

  12. H9N2 influenza virus isolated from minks has enhanced virulence in mice.

    PubMed

    Xue, R; Tian, Y; Hou, T; Bao, D; Chen, H; Teng, Q; Yang, J; Li, X; Wang, G; Li, Z; Liu, Q

    2018-06-01

    H9N2 is one of the major subtypes of influenza virus circulating in poultry in China, which has a wide host range from bird to mammals. Two H9N2 viruses were isolated from one mink farm in 2014. Phylogenetic analysis showed that internal genes of the H9N2 viruses have close relationship with those of H7N9 viruses. Interestingly, two H9N2 were separated in phylogenetic trees, indicating that they are introduced to this mink farm in two independent events. And further mice studies showed that one H9N2 caused obvious weight loss and 20% mortality in infected mice, while another virus did not cause any clinical sign in mice infected at the same dose. Genetic analysis indicated that the virulent H9N2 contain a natural mutation at 701N in PB2 protein, which was reported to contribute to mammalian adaptation. However, such substitution is absent in the H9N2 avirulent to mice. Circulation of H9N2 in mink may drive the virus to adapt mammals; continual surveillance of influenza virus in mink was warranted. © 2018 Blackwell Verlag GmbH.

  13. Evidence for avian H9N2 influenza virus infections among rural villagers in Cambodia.

    PubMed

    Blair, Patrick J; Putnam, Shannon D; Krueger, Whitney S; Chum, Channimol; Wierzba, Thomas F; Heil, Gary L; Yasuda, Chadwick Y; Williams, Maya; Kasper, Matthew R; Friary, John A; Capuano, Ana W; Saphonn, Vonthanak; Peiris, Malik; Shao, Hongxia; Perez, Daniel R; Gray, Gregory C

    2013-04-01

    Southeast Asia remains a critical region for the emergence of novel and/or zoonotic influenza, underscoring the importance of extensive sampling in rural areas where early transmission is most likely to occur. In 2008, 800 adult participants from eight sites were enrolled in a prospective population-based study of avian influenza (AI) virus transmission where highly pathogenic avian influenza (HPAI) H5N1 virus had been reported in humans and poultry from 2006 to 2008. From their enrollment sera and questionnaires, we report risk factor findings for serologic evidence of previous infection with 18 AI virus strains. Serologic assays revealed no evidence of previous infection with 13 different low-pathogenic AI viruses or with HPAI avian-like A/Cambodia/R0404050/2007(H5N1). However, 21 participants had elevated antibodies against avian-like A/Hong Kong/1073/1999(H9N2), validated with a monoclonal antibody blocking ELISA assay specific for avian H9. Although cross-reaction from antibodies against human influenza viruses cannot be completely excluded, the study data suggest that a number of participants were previously infected with the avian-like A/Hong Kong/1073/1999(H9N2) virus, likely due to as yet unidentified environmental exposures. Prospective data from this cohort will help us better understand the serology of zoonotic influenza infection in a rural cohort in SE Asia. Copyright © 2013 King Saud Bin Abdulaziz University for Health Sciences. All rights reserved.

  14. Phylogenetic Analysis and Pathogenicity Assessment of Two Strains of Avian Influenza Virus Subtype H9N2 Isolated from Migratory Birds: High Homology of Internal Genes with Human H10N8 Virus.

    PubMed

    Ye, Ge; Liang, Chai Hong; Hua, Deng Guo; Song, Lei Yong; Xiang, Yang Guo; Guang, Chen; Lan, Chen Hua; Ping, Hua Yu

    2016-01-01

    Two human-infecting avian influenza viruses (AIVs), H7N9 and H10N8, have emerged in China, which further indicate that the H9N2 subtype of AIVs, as an internal gene donor, may have an important role in the generation of new viruses with cross-species transmissibility and pathogenicity. H9N2 viruses that contain such internal genes widely exist in poultry but are rarely reported in migratory birds. In this study, two strains of the H9N2 virus were isolated from fecal samples of migratory birds in 2014: one strain from Caizi Lake in Anhui Province and one from Chen Lake in Hubei Province of China. Nucleotide sequence analysis revealed high homology of all six internal genes of these two strains with the internal genes of the human H10N8 virus in Jiangxi Province, as well as with the human H7N9 virus. Phylogenetic analysis indicated a possible origin of these two strains from poultry in South China. Both of the two viruses tested could replicated in respiratory organs of infective mice without adaption, by both strains of the H9N2 AIVs from wild birds, suggesting their potential capacity for directly infecting mammals. Our findings indicate the existence of H9N2 viruses that contain internal genes highly homologous with human H10N8 or H7N9 viruses. Wild birds can contribute to the spread of the H9N2 virus that contains the "harmful" internal gene complex, leading to gene rearrangement with other influenza viruses and to the generation of new pathogenic viruses. Therefore, strengthening AIV surveillance in wild birds can promote an understanding of the presence and prevalence of viruses and provide scientific evidence for the prevention and control of AIVs and human-infecting AIVs.

  15. Predicting the risk of avian influenza A H7N9 infection in live-poultry markets across Asia.

    PubMed

    Gilbert, Marius; Golding, Nick; Zhou, Hang; Wint, G R William; Robinson, Timothy P; Tatem, Andrew J; Lai, Shengjie; Zhou, Sheng; Jiang, Hui; Guo, Danhuai; Huang, Zhi; Messina, Jane P; Xiao, Xiangming; Linard, Catherine; Van Boeckel, Thomas P; Martin, Vincent; Bhatt, Samir; Gething, Peter W; Farrar, Jeremy J; Hay, Simon I; Yu, Hongjie

    2014-06-17

    Two epidemic waves of an avian influenza A (H7N9) virus have so far affected China. Most human cases have been attributable to poultry exposure at live-poultry markets, where most positive isolates were sampled. The potential geographic extent of potential re-emerging epidemics is unknown, as are the factors associated with it. Using newly assembled data sets of the locations of 8,943 live-poultry markets in China and maps of environmental correlates, we develop a statistical model that accurately predicts the risk of H7N9 market infection across Asia. Local density of live-poultry markets is the most important predictor of H7N9 infection risk in markets, underscoring their key role in the spatial epidemiology of H7N9, alongside other poultry, land cover and anthropogenic predictor variables. Identification of areas in Asia with high suitability for H7N9 infection enhances our capacity to target biosurveillance and control, helping to restrict the spread of this important disease.

  16. Predicting the risk of avian influenza A H7N9 infection in live-poultry markets across Asia

    PubMed Central

    Gilbert, Marius; Golding, Nick; Zhou, Hang; Wint, G. R. William; Robinson, Timothy P.; Tatem, Andrew J.; Lai, Shengjie; Zhou, Sheng; Jiang, Hui; Guo, Danhuai; Huang, Zhi; Messina, Jane P.; Xiao, Xiangming; Linard, Catherine; Van Boeckel, Thomas P.; Martin, Vincent; Bhatt, Samir; Gething, Peter W.; Farrar, Jeremy J.; Hay, Simon I.; Yu, Hongjie

    2014-01-01

    Two epidemic waves of an avian influenza A (H7N9) virus have so far affected China. Most human cases have been attributable to poultry exposure at live-poultry markets, where most positive isolates were sampled. The potential geographic extent of potential re-emerging epidemics is unknown, as are the factors associated with it. Using newly assembled data sets of the locations of 8,943 live-poultry markets in China and maps of environmental correlates, we develop a statistical model that accurately predicts the risk of H7N9 market infection across Asia. Local density of live-poultry markets is the most important predictor of H7N9 infection risk in markets, underscoring their key role in the spatial epidemiology of H7N9, alongside other poultry, land cover and anthropogenic predictor variables. Identification of areas in Asia with high suitability for H7N9 infection enhances our capacity to target biosurveillance and control, helping to restrict the spread of this important disease. PMID:24937647

  17. External Quality Assessment for Avian Influenza A (H7N9) Virus Detection Using Armored RNA

    PubMed Central

    Sun, Yu; Jia, Tingting; Sun, Yanli; Han, Yanxi; Wang, Lunan; Zhang, Rui; Zhang, Kuo; Lin, Guigao; Xie, Jiehong

    2013-01-01

    An external quality assessment (EQA) program for the molecular detection of avian influenza A (H7N9) virus was implemented by the National Center for Clinical Laboratories (NCCL) of China in June 2013. Virus-like particles (VLPs) that contained full-length RNA sequences of the hemagglutinin (HA), neuraminidase (NA), matrix protein (MP), and nucleoprotein (NP) genes from the H7N9 virus (armored RNAs) were constructed. The EQA panel, comprising 6 samples with different concentrations of armored RNAs positive for H7N9 viruses and four H7N9-negative samples (including one sample positive for only the MP gene of the H7N9 virus), was distributed to 79 laboratories in China that carry out the molecular detection of H7N9 viruses. The overall performances of the data sets were classified according to the results for the H7 and N9 genes. Consequently, we received 80 data sets (one participating group provided two sets of results) which were generated using commercial (n = 60) or in-house (n = 17) reverse transcription-quantitative PCR (qRT-PCR) kits and a commercial assay that employed isothermal amplification method (n = 3). The results revealed that the majority (82.5%) of the data sets correctly identified the H7N9 virus, while 17.5% of the data sets needed improvements in their diagnostic capabilities. These “improvable” data sets were derived mostly from false-negative results for the N9 gene at relatively low concentrations. The false-negative rate was 5.6%, and the false-positive rate was 0.6%. In addition, we observed varied diagnostic capabilities between the different commercially available kits and the in-house-developed assays, with the assay manufactured by BioPerfectus Technologies (Jiangsu, China) performing better than the others. Overall, the majority of laboratories have reliable diagnostic capacities for the detection of H7N9 virus. PMID:24088846

  18. External quality assessment for Avian Influenza A (H7N9) Virus detection using armored RNA.

    PubMed

    Sun, Yu; Jia, Tingting; Sun, Yanli; Han, Yanxi; Wang, Lunan; Zhang, Rui; Zhang, Kuo; Lin, Guigao; Xie, Jiehong; Li, Jinming

    2013-12-01

    An external quality assessment (EQA) program for the molecular detection of avian influenza A (H7N9) virus was implemented by the National Center for Clinical Laboratories (NCCL) of China in June 2013. Virus-like particles (VLPs) that contained full-length RNA sequences of the hemagglutinin (HA), neuraminidase (NA), matrix protein (MP), and nucleoprotein (NP) genes from the H7N9 virus (armored RNAs) were constructed. The EQA panel, comprising 6 samples with different concentrations of armored RNAs positive for H7N9 viruses and four H7N9-negative samples (including one sample positive for only the MP gene of the H7N9 virus), was distributed to 79 laboratories in China that carry out the molecular detection of H7N9 viruses. The overall performances of the data sets were classified according to the results for the H7 and N9 genes. Consequently, we received 80 data sets (one participating group provided two sets of results) which were generated using commercial (n = 60) or in-house (n = 17) reverse transcription-quantitative PCR (qRT-PCR) kits and a commercial assay that employed isothermal amplification method (n = 3). The results revealed that the majority (82.5%) of the data sets correctly identified the H7N9 virus, while 17.5% of the data sets needed improvements in their diagnostic capabilities. These "improvable" data sets were derived mostly from false-negative results for the N9 gene at relatively low concentrations. The false-negative rate was 5.6%, and the false-positive rate was 0.6%. In addition, we observed varied diagnostic capabilities between the different commercially available kits and the in-house-developed assays, with the assay manufactured by BioPerfectus Technologies (Jiangsu, China) performing better than the others. Overall, the majority of laboratories have reliable diagnostic capacities for the detection of H7N9 virus.

  19. Interactome Analysis of NS1 Protein Encoded by Influenza A H7N9 Virus Reveals an Inhibitory Role of NS1 in Host mRNA Maturation.

    PubMed

    Kuo, Rei-Lin; Chen, Chi-Jene; Tam, Ee-Hong; Huang, Chung-Guei; Li, Li-Hsin; Li, Zong-Hua; Su, Pei-Chia; Liu, Hao-Ping; Wu, Chih-Ching

    2018-04-06

    Influenza A virus infections can result in severe respiratory diseases. The H7N9 subtype of avian influenza A virus has been transmitted to humans and caused severe disease and death. Nonstructural protein 1 (NS1) of influenza A virus is a virulence determinant during viral infection. To elucidate the functions of the NS1 encoded by influenza A H7N9 virus (H7N9 NS1), interaction partners of H7N9 NS1 in human cells were identified with immunoprecipitation followed by SDS-PAGE coupled with liquid chromatography-tandem mass spectrometry (GeLC-MS/MS). We identified 36 cellular proteins as the interacting partners of the H7N9 NS1, and they are involved in RNA processing, mRNA splicing via spliceosome, and the mRNA surveillance pathway. Two of the interacting partners, cleavage and polyadenylation specificity factor subunit 2 (CPSF2) and CPSF7, were confirmed to interact with H7N9 NS1 using coimmunoprecipitation and immunoblotting based on the previous finding that the two proteins are involved in pre-mRNA polyadenylation machinery. Furthermore, we illustrate that overexpression of H7N9 NS1, as well as infection by the influenza A H7N9 virus, interfered with pre-mRNA polyadenylation in host cells. This study comprehensively profiled the interactome of H7N9 NS1 in host cells, and the results demonstrate a novel endotype for H7N9 NS1 in inhibiting host mRNA maturation.

  20. The comparison of pathology in ferrets infected by H9N2 avian influenza viruses with different genomic features.

    PubMed

    Gao, Rongbao; Bai, Tian; Li, Xiaodan; Xiong, Ying; Huang, Yiwei; Pan, Ming; Zhang, Ye; Bo, Hong; Zou, Shumei; Shu, Yuelong

    2016-01-15

    H9N2 avian influenza virus circulates widely in poultry and has been responsible for sporadic human infections in several regions. Few studies have been conducted on the pathogenicity of H9N2 AIV isolates that have different genomic features. We compared the pathology induced by a novel reassortant H9N2 virus and two currently circulating H9N2 viruses that have different genomic features in ferrets. The results showed that the three viruses can induce infections with various amounts of viral shedding in ferrets. The novel H9N2 induced respiratory infection, but no pathological lesions were observed in lung tissues. The other two viruses induced mild to intermediate pathological lesions in lung tissues, although the clinical signs presented mildly in ferrets. The pathological lesions presented a diversity consistent with viral replication in ferrets. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. A single dose of whole inactivated H7N9 influenza vaccine confers protection from severe disease but not infection in ferrets.

    PubMed

    Wong, Sook-San; Jeevan, Trushar; Kercher, Lisa; Yoon, Sun-Woo; Petkova, Atanaska-Marinova; Crumpton, Jeri-Carol; Franks, John; Debeauchamp, Jennifer; Rubrum, Adam; Seiler, Patrick; Krauss, Scott; Webster, Robert; Webby, Richard J

    2014-07-31

    The H7N9 influenza virus caused significant mortality and morbidity in infected humans during an outbreak in China in 2013 stimulating vaccine development efforts. As previous H7-based vaccines have been poorly immunogenic in humans we sought to determine the immunogenic and protective properties of an inactivated whole virus vaccine derived from a 2013 H7N9 virus in ferrets. As whole virus vaccine preparations have been shown to be more immunogenic in humans, but less likely to be used, than split or surface antigen formulations, we vaccinated ferrets with a single dose of 15, 30, or 50 μg of the vaccine and subsequently challenged with wild-type A/Anhui/1/2013 (H7N9) either by direct instillation or by contact with infected animals. Although ferrets vaccinated with higher doses of vaccine had higher serum hemagglutinin inhibition (HI) titers, the titers were still low. During subsequent instillation challenge, however, ferrets vaccinated with 50 μg of vaccine showed no illness and shed significantly less virus than mock vaccinated controls. All vaccinated ferrets had lower virus loads in their lungs as compared to controls. In a separate study where unvaccinated-infected ferrets were placed in the same cage with vaccinated-uninfected ferrets, vaccination did not prevent infection in the contact ferrets, although they showed a trend of lower viral load. Overall, we conclude that inactivated whole-virus H7N9 vaccine was able to reduce the severity of infection and viral load, despite the lack of hemagglutinin-inhibiting antibodies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Hypothesis on the source, transmission and characteristics of infection of avian influenza A (H7N9) virus--based on analysis of field epidemiological investigation and gene sequence analysis.

    PubMed

    Ling, F; Chen, E; Liu, Q; Miao, Z; Gong, Z

    2015-02-01

    On 31 March 2013, the National Health and Family Planning Commission announced that human infections with influenza A (H7N9) virus had occurred in Shanghai and Anhui provinces, China. H7N9 cases were later detected in Jiangsu and Zhejiang provinces. It was estimated that the virus first spread northward along the route taken by migratory birds and then spread to neighbouring provinces with the sale of poultry. Epidemiological studies were carried out on samples from the external environment of infected cases, transmission routes, farmers markets and live poultry markets. Phylogenetic study of viral sequences from human and avian infections in Zhejiang showed that those from Shanghai and Jiangsu provinces along Taihu Lake were highly homologous with those from the external environment. This suggests that avian viruses carried by waterfowl combined with the virus carried by migratory birds, giving rise to avian influenza virus H7N9, which is highly pathogenic to humans. It is possible that the virus was transmitted by local wildfowl to domestic poultry and then to humans, or spread further by means of trading in wholesale poultry markets. As the weather has turned warm, and with measures adopted to terminate poultry trade and facilitate health communication, the epidemic in the first half of the year has been kept under control. However, the infection source in the triangular area around Taihu Lake still remains. The H7N9 epidemic will probably hit the area later in the year and next spring when the migratory birds return and may even spread to other areas. Great importance should therefore be attached to the wildfowl in Taihu Lake as the repository and disseminator of the virus: investigation and study of this population is essential. © 2014 Blackwell Verlag GmbH.

  3. Laboratory preparedness in EU/EEA countries for detection of novel avian influenza A(H7N9) virus, May 2013

    PubMed Central

    Broberg, E; Pereyaslov, D; Struelens, M; Palm, D; Meijer, A; Ellis, J; Zambon, M; McCauley, J; Daniels, R

    2015-01-01

    Following human infections with novel avian influenza A(H7N9) viruses in China, the European Centre for Disease Prevention and Control, the World Health Organization (WHO) Regional Office for Europe and the European Reference Laboratory Network for Human Influenza (ERLI-Net) rapidly posted relevant information, including real-time RT-PCR protocols. An influenza RNA sequence-based computational assessment of detection capabilities for this virus was conducted in 32 national influenza reference laboratories in 29 countries, mostly WHO National Influenza Centres participating in the WHO Global Influenza Surveillance and Response System (GISRS). Twenty-seven countries considered their generic influenza A virus detection assay to be appropriate for the novel A(H7N9) viruses. Twenty-two countries reported having containment facilities suitable for its isolation and propagation. Laboratories in 27 countries had applied specific H7 real-time RT-PCR assays and 20 countries had N9 assays in place. Positive control virus RNA was provided by the WHO Collaborating Centre in London to 34 laboratories in 22 countries to allow evaluation of their assays. Performance of the generic influenza A virus detection and H7 and N9 subtyping assays was good in 24 laboratories in 19 countries. The survey showed that ERLI-Net laboratories had rapidly developed and verified good capability to detect the novel A(H7N9) influenza viruses. PMID:24507469

  4. Role of poultry in the spread of novel H7N9 influenza virus in China

    USDA-ARS?s Scientific Manuscript database

    The outbreak of H7N9 influenza in China has resulted in many human cases with fatalities. The source of infection has not been clearly defined although poultry have been suspected based on virus isolations from live bird markets. Intranasal inoculation of chickens, quail and pigeons with a human H...

  5. A single immunization with modified vaccinia virus Ankara-based influenza virus H7 vaccine affords protection in the influenza A(H7N9) pneumonia ferret model.

    PubMed

    Kreijtz, Joost H C M; Wiersma, Lidewij C M; De Gruyter, Heidi L M; Vogelzang-van Trierum, Stella E; van Amerongen, Geert; Stittelaar, Koert J; Fouchier, Ron A M; Osterhaus, Albert D M E; Sutter, Gerd; Rimmelzwaan, Guus F

    2015-03-01

    Since the first reports in early 2013, >440 human cases of infection with avian influenza A(H7N9) have been reported including 122 fatalities. After the isolation of the first A(H7N9) viruses, the nucleotide sequences became publically available. Based on the coding sequence of the influenza virus A/Shanghai/2/2013 hemagglutinin gene, a codon-optimized gene was synthesized and cloned into a recombinant modified vaccinia virus Ankara (MVA). This MVA-H7-Sh2 viral vector was used to immunize ferrets and proved to be immunogenic, even after a single immunization. Subsequently, ferrets were challenged with influenza virus A/Anhui/1/2013 via the intratracheal route. Unprotected animals that were mock vaccinated or received empty vector developed interstitial pneumonia characterized by a marked alveolitis, accompanied by loss of appetite, weight loss, and heavy breathing. In contrast, animals vaccinated with MVA-H7-Sh2 were protected from severe disease. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Enhanced infection of avian influenza virus H9N2 with infectious laryngeotracheitis vaccination in chickens.

    PubMed

    Arafat, Nagah; Eladl, Abdelfattah H; Marghani, Basma H; Saif, Mohamed A; El-Shafei, Reham A

    2018-06-01

    Avian influenza and infectious laryngeotracheitis viruses are common causes of respiratory diseases in chickens with economical importance worldwide. In this study, we investigated the effect of experimental co-infection of avian influenza virus-H9N2 (AIV-H9N2) with infectious laryngeotracheitis virus (ILTV) live-attenuated vaccine (LAR-VAC ® ) on chickens. Four experimental groups were included in this study: negative control group, AIV-H9N2 group, AIV-H9N2+LAR-VAC ® group, and LAR-VAC ® group. AIV-H9N2 was inoculated intranasally to challenged groups at 35 days of age. On the same day, LAR-VAC ® was ocularly administered to vaccinated groups. Chickens were observed for clinical signs, changes in body weight and mortality rates. Tissue samples, sera, tracheal and cloacal swabs, and blood were also collected at 3, 6, 9 and 12 days post-infection (PI). A significant increase in clinical signs and mortality rates were observed in the AIV-H9N2 + LAR-VAC ® group. Moreover, chickens coinfected with AIV-H9N2 and LAR-VAC ® showed a significant decrease in body weight and lymphoid organs indices. The tracheal gross and histopathological lesions and the shedding titer and period of AIV-H9N2 were significantly higher in AIV-H9N2 + LAR-VAC ® group when compared to other groups. Furthermore, AIV-H9N2 infection leads to humoral and cellular immunosuppression as shown by a significant decrease in the CD4 + /CD8 + ratio and antibody responses to ILTV and a significant increase in H/L ratio. In conclusion, this is the first report of co-infection of AIV-H9N2 and ILTV vaccine in chickens, which leads to increased pathogenicity, pathological lesions, and AIV-H9N2 shedding titer and period, which can lead to severe economic losses due to poor weight gain and mortality. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Low immunogenicity predicted for emerging avian-origin H7N9

    PubMed Central

    De Groot, Anne S.; Ardito, Matthew; Terry, Frances; Levitz, Lauren; Ross, Ted; Moise, Leonard; Martin, William

    2013-01-01

    A new avian-origin influenza virus emerged near Shanghai in February 2013, and by the beginning of May it had caused over 130 human infections and 36 deaths. Human-to-human transmission of avian-origin H7N9 influenza A has been limited to a few family clusters, but the high mortality rate (27%) associated with human infection has raised concern about the potential for this virus to become a significant human pathogen. European, American, and Asian vaccine companies have already initiated the process of cloning H7 antigens such as hemagglutinin (HA) into standardized vaccine production vehicles. Unfortunately, previous H7 HA-containing vaccines have been poorly immunogenic. We used well-established immunoinformatics tools to analyze the H7N9 protein sequences and compare their T cell epitope content to other circulating influenza A strains as a means of estimating the immunogenic potential of the new influenza antigen. We found that the HA proteins derived from closely related human-derived H7N9 strains contain fewer T cell epitopes than other recently circulating strains of influenza, and that conservation of T cell epitopes with other strains of influenza was very limited. Here, we provide a detailed accounting of the type and location of T cell epitopes contained in H7N9 and their conservation in other H7 and circulating (A/California/07/2009, A/Victoria/361/2011, and A/Texas/50/2012) influenza A strains. Based on this analysis, avian-origin H7N9 2013 appears to be a “stealth” virus, capable of evading human cellular and humoral immune response. Should H7N9 develop pandemic potential, this analysis predicts that novel strategies for improving vaccine immunogenicity for this unique low-immunogenicity strain of avian-origin influenza will be urgently needed. PMID:23807079

  8. Prevailing PA Mutation K356R in Avian Influenza H9N2 Virus Increases Mammalian Replication and Pathogenicity.

    PubMed

    Xu, Guanlong; Zhang, Xuxiao; Gao, Weihua; Wang, Chenxi; Wang, Jinliang; Sun, Honglei; Sun, Yipeng; Guo, Lu; Zhang, Rui; Chang, Kin-Chow; Liu, Jinhua; Pu, Juan

    2016-09-15

    Adaptation of the viral polymerase complex comprising PB1, PB2, and PA is necessary for efficient influenza A virus replication in new host species. We found that PA mutation K356R (PA-K356R) has become predominant since 2014 in avian H9N2 viruses in China as with seasonal human H1N1 viruses. The same mutation is also found in most human isolates of emergent avian H7N9 and H10N8 viruses whose six internal gene segments are derived from the H9N2 virus. We further demonstrated the mammalian adaptive functionality of the PA-K356R mutation. Avian H9N2 virus with the PA-K356R mutation in human A549 cells showed increased nuclear accumulation of PA and increased viral polymerase activity that resulted in elevated levels of viral transcription and virus output. The same mutant virus in mice also enhanced virus replication and caused lethal infection. In addition, combined mutation of PA-K356R and PB2-E627K, a well-known mammalian adaptive marker, in the H9N2 virus showed further cooperative increases in virus production and severity of infection in vitro and in vivo In summary, PA-K356R behaves as a novel mammalian tropism mutation, which, along with other mutations such as PB2-E627K, might render avian H9N2 viruses adapted for human infection. Mutations of the polymerase complex (PB1, PB2, and PA) of influenza A virus are necessary for viral adaptation to new hosts. This study reports a novel and predominant mammalian adaptive mutation, PA-K356R, in avian H9N2 viruses and human isolates of emergent H7N9 and H10N8 viruses. We found that PA-356R in H9N2 viruses causes significant increases in virus replication and severity of infection in human cells and mice and that PA-K356R cooperates with the PB2-E627K mutation, a well-characterized human adaptive marker, to exacerbate mammalian infection in vitro and in vivo Therefore, the PA-K356R mutation is a significant adaptation in H9N2 viruses and related H7N9 and H10N8 reassortants toward human infectivity. Copyright © 2016

  9. Prevailing PA Mutation K356R in Avian Influenza H9N2 Virus Increases Mammalian Replication and Pathogenicity

    PubMed Central

    Xu, Guanlong; Zhang, Xuxiao; Gao, Weihua; Wang, Chenxi; Wang, Jinliang; Sun, Honglei; Sun, Yipeng; Guo, Lu; Zhang, Rui; Chang, Kin-Chow; Liu, Jinhua

    2016-01-01

    ABSTRACT Adaptation of the viral polymerase complex comprising PB1, PB2, and PA is necessary for efficient influenza A virus replication in new host species. We found that PA mutation K356R (PA-K356R) has become predominant since 2014 in avian H9N2 viruses in China as with seasonal human H1N1 viruses. The same mutation is also found in most human isolates of emergent avian H7N9 and H10N8 viruses whose six internal gene segments are derived from the H9N2 virus. We further demonstrated the mammalian adaptive functionality of the PA-K356R mutation. Avian H9N2 virus with the PA-K356R mutation in human A549 cells showed increased nuclear accumulation of PA and increased viral polymerase activity that resulted in elevated levels of viral transcription and virus output. The same mutant virus in mice also enhanced virus replication and caused lethal infection. In addition, combined mutation of PA-K356R and PB2-E627K, a well-known mammalian adaptive marker, in the H9N2 virus showed further cooperative increases in virus production and severity of infection in vitro and in vivo. In summary, PA-K356R behaves as a novel mammalian tropism mutation, which, along with other mutations such as PB2-E627K, might render avian H9N2 viruses adapted for human infection. IMPORTANCE Mutations of the polymerase complex (PB1, PB2, and PA) of influenza A virus are necessary for viral adaptation to new hosts. This study reports a novel and predominant mammalian adaptive mutation, PA-K356R, in avian H9N2 viruses and human isolates of emergent H7N9 and H10N8 viruses. We found that PA-356R in H9N2 viruses causes significant increases in virus replication and severity of infection in human cells and mice and that PA-K356R cooperates with the PB2-E627K mutation, a well-characterized human adaptive marker, to exacerbate mammalian infection in vitro and in vivo. Therefore, the PA-K356R mutation is a significant adaptation in H9N2 viruses and related H7N9 and H10N8 reassortants toward human

  10. Different outcomes of infection of chickens and ducks with a duck-origin H9N2 influenza A virus.

    PubMed

    Wang, J; Li, C C; Diao, Y X; Sun, X Y; Hao, D M; Liu, X; Ge, P P

    2014-01-01

    As the major aquatic and terrestrial hosts for avian influenza viruses (AIVs), ducks and chickens play a critical role in the evolution and spread of the H9N2 virus. However, the outcomes of infection of ducks and chickens with the H9N2 virus are not sufficiently documented. In this study, we compared the outcomes of infection of chickens and Peking ducks with a duck-origin H9N2 virus. The results showed that this virus caused more pronounced clinical signs and histological lesions in chickens. As for the virus shedding, chickens shed more virus in the trachea and less virus in the cloaca in levels of interferon (IFN) γ were found in the trachea of ducks compared with chickens, while comparison with ducks. As for cytokines, namely IFNs and interleukins (IL), higher higher levels of IFN-β, IFN-γ, IL-1β, and IL-6 were observed in the ileum of chickens compared with ducks. Eventually, serum hemagglutination-inhibition (HI) antibody titers were higher in chickens than in ducks. Taken together, ducks and chickens use different strategies in response to the H9N2 virus infection in tissues representing main replication sites of low-pathogenic AIVs. Given the different outcomes of the H9N2 virus infection in ducks and chickens, different measures should be taken in vaccination and treatment.

  11. Cross-reactive mouse monoclonal antibodies raised against the hemagglutinin of A/Shanghai/1/2013 (H7N9) protect against novel H7 virus isolates in the mouse model.

    PubMed

    Stadlbauer, Daniel; Amanat, Fatima; Strohmeier, Shirin; Nachbagauer, Raffael; Krammer, Florian

    2018-06-20

    Influenza viruses remain a major global public health risk. In addition to seasonal influenza viruses, epizootic influenza A H7 subtype viruses of both the Asian and North American lineage are of concern due to their pandemic potential. In China, the simultaneous occurrence of H7N9 zoonotic episodes and seasonal influenza virus epidemics could potentially lead to novel reassortant viruses with the ability to efficiently spread among humans. Recently, the H7N9 virus has evolved into two new lineages, the Pearl River Delta and the Yangtze River Delta clade. This development has also resulted in viruses with a polybasic cleavage site in the hemagglutinin that are highly pathogenic in avian species and have caused human infections. In addition, an outbreak of a highly pathogenic H7N8 strain was reported in the US state of Indiana in 2016. Furthermore, an H7N2 feline virus strain caused an outbreak in cats in an animal shelter in New York City in 2016, resulting in one human zoonotic event. In this study, mouse monoclonal antibodies previously raised against the hemagglutinin of the A/Shanghai/1/2013 (H7N9) virus were tested for their (cross-) reactivity to these novel H7 viruses. Moreover, the functionality of these antibodies was assessed in vitro in hemagglutination inhibition and microneutralization assays. The therapeutic and prophylactic efficacy of the broadly reactive antibodies against novel H7 viruses was determined in vivo in mouse passive transfer-viral challenge experiments. Our results provide data about the conservation of critical H7 epitopes and could inform the selection of pre-pandemic H7 vaccine strains.

  12. Highly (H5N1) and Low (H7N2) Pathogenic Avian Influenza Virus Infection in Falcons Via Nasochoanal Route and Ingestion of Experimentally Infected Prey

    PubMed Central

    Bertran, Kateri; Busquets, Núria; Abad, Francesc Xavier; García de la Fuente, Jorge; Solanes, David; Cordón, Iván; Costa, Taiana; Dolz, Roser; Majó, Natàlia

    2012-01-01

    An experimental infection with highly pathogenic avian influenza (HPAI) and low pathogenic avian influenza (LPAI) viruses was carried out on falcons in order to examine the effects of these viruses in terms of pathogenesis, viral distribution in tissues and viral shedding. The distribution pattern of influenza virus receptors was also assessed. Captive-reared gyr-saker (Falco rusticolus x Falco cherrug) hybrid falcons were challenged with a HPAI H5N1 virus (A/Great crested grebe/Basque Country/06.03249/2006) or a LPAI H7N2 virus (A/Anas plathyrhynchos/Spain/1877/2009), both via the nasochoanal route and by ingestion of previously infected specific pathogen free chicks. Infected falcons exhibited similar infection dynamics despite the different routes of exposure, demonstrating the effectiveness of in vivo feeding route. H5N1 infected falcons died, or were euthanized, between 5–7 days post-infection (dpi) after showing acute severe neurological signs. Presence of viral antigen in several tissues was confirmed by immunohistochemistry and real time RT-PCR (RRT-PCR), which were generally associated with significant microscopical lesions, mostly in the brain. Neither clinical signs, nor histopathological findings were observed in any of the H7N2 LPAI infected falcons, although all of them had seroconverted by 11 dpi. Avian receptors were strongly present in the upper respiratory tract of the falcons, in accordance with the consistent oral viral shedding detected by RRT-PCR in both H5N1 HPAI and H7N2 LPAI infected falcons. The present study demonstrates that gyr-saker hybrid falcons are highly susceptible to H5N1 HPAI virus infection, as previously observed, and that they may play a major role in the spreading of both HPAI and LPAI viruses. For the first time in raptors, natural infection by feeding on infected prey was successfully reproduced. The use of avian prey species in falconry husbandry and wildlife rehabilitation facilities could put valuable birds of prey

  13. Highly (H5N1) and low (H7N2) pathogenic avian influenza virus infection in falcons via nasochoanal route and ingestion of experimentally infected prey.

    PubMed

    Bertran, Kateri; Busquets, Núria; Abad, Francesc Xavier; García de la Fuente, Jorge; Solanes, David; Cordón, Iván; Costa, Taiana; Dolz, Roser; Majó, Natàlia

    2012-01-01

    An experimental infection with highly pathogenic avian influenza (HPAI) and low pathogenic avian influenza (LPAI) viruses was carried out on falcons in order to examine the effects of these viruses in terms of pathogenesis, viral distribution in tissues and viral shedding. The distribution pattern of influenza virus receptors was also assessed. Captive-reared gyr-saker (Falco rusticolus x Falco cherrug) hybrid falcons were challenged with a HPAI H5N1 virus (A/Great crested grebe/Basque Country/06.03249/2006) or a LPAI H7N2 virus (A/Anas plathyrhynchos/Spain/1877/2009), both via the nasochoanal route and by ingestion of previously infected specific pathogen free chicks. Infected falcons exhibited similar infection dynamics despite the different routes of exposure, demonstrating the effectiveness of in vivo feeding route. H5N1 infected falcons died, or were euthanized, between 5-7 days post-infection (dpi) after showing acute severe neurological signs. Presence of viral antigen in several tissues was confirmed by immunohistochemistry and real time RT-PCR (RRT-PCR), which were generally associated with significant microscopical lesions, mostly in the brain. Neither clinical signs, nor histopathological findings were observed in any of the H7N2 LPAI infected falcons, although all of them had seroconverted by 11 dpi. Avian receptors were strongly present in the upper respiratory tract of the falcons, in accordance with the consistent oral viral shedding detected by RRT-PCR in both H5N1 HPAI and H7N2 LPAI infected falcons. The present study demonstrates that gyr-saker hybrid falcons are highly susceptible to H5N1 HPAI virus infection, as previously observed, and that they may play a major role in the spreading of both HPAI and LPAI viruses. For the first time in raptors, natural infection by feeding on infected prey was successfully reproduced. The use of avian prey species in falconry husbandry and wildlife rehabilitation facilities could put valuable birds of prey and

  14. PB1-F2 Peptide Derived from Avian Influenza A Virus H7N9 Induces Inflammation via Activation of the NLRP3 Inflammasome*

    PubMed Central

    Pinar, Anita; Dowling, Jennifer K.; Bitto, Natalie J.; Robertson, Avril A. B.; Latz, Eicke; Stewart, Cameron R.; Drummond, Grant R.; Cooper, Matthew A.; McAuley, Julie L.; Tate, Michelle D.; Mansell, Ashley

    2017-01-01

    The emergence of avian H7N9 influenza A virus in humans with associated high mortality has highlighted the threat of a potential pandemic. Fatal H7N9 infections are characterized by hyperinflammation and increased cellular infiltrates in the lung. Currently there are limited therapies to address the pathologies associated with H7N9 infection and the virulence factors that contribute to these pathologies. We have found that PB1-F2 derived from H7N9 activates the NLRP3 inflammasome and induces lung inflammation and cellular recruitment that is NLRP3-dependent. We have also shown that H7N9 and A/Puerto Rico/H1N1 (PR8)PB1-F2 peptide treatment induces significant mitochondrial reactive oxygen production, which contributes to NLRP3 activation. Importantly, treatment of cells or mice with the specific NLRP3 inhibitor MCC950 significantly reduces IL-1β maturation, lung cellular recruitment, and cytokine production. Together, these results suggest that PB1-F2 from H7N9 avian influenza A virus may be a major contributory factor to disease pathophysiology and excessive inflammation characteristic of clinical infections and that targeting the NLRP3 inflammasome may be an effective means to reduce the inflammatory burden associated with H7N9 infections. PMID:27913620

  15. PB1-F2 Peptide Derived from Avian Influenza A Virus H7N9 Induces Inflammation via Activation of the NLRP3 Inflammasome.

    PubMed

    Pinar, Anita; Dowling, Jennifer K; Bitto, Natalie J; Robertson, Avril A B; Latz, Eicke; Stewart, Cameron R; Drummond, Grant R; Cooper, Matthew A; McAuley, Julie L; Tate, Michelle D; Mansell, Ashley

    2017-01-20

    The emergence of avian H7N9 influenza A virus in humans with associated high mortality has highlighted the threat of a potential pandemic. Fatal H7N9 infections are characterized by hyperinflammation and increased cellular infiltrates in the lung. Currently there are limited therapies to address the pathologies associated with H7N9 infection and the virulence factors that contribute to these pathologies. We have found that PB1-F2 derived from H7N9 activates the NLRP3 inflammasome and induces lung inflammation and cellular recruitment that is NLRP3-dependent. We have also shown that H7N9 and A/Puerto Rico/H1N1 (PR8)PB1-F2 peptide treatment induces significant mitochondrial reactive oxygen production, which contributes to NLRP3 activation. Importantly, treatment of cells or mice with the specific NLRP3 inhibitor MCC950 significantly reduces IL-1β maturation, lung cellular recruitment, and cytokine production. Together, these results suggest that PB1-F2 from H7N9 avian influenza A virus may be a major contributory factor to disease pathophysiology and excessive inflammation characteristic of clinical infections and that targeting the NLRP3 inflammasome may be an effective means to reduce the inflammatory burden associated with H7N9 infections. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Antigenic and Molecular Characterization of Avian Influenza A(H9N2) Viruses, Bangladesh

    PubMed Central

    Shanmuganatham, Karthik; Feeroz, Mohammed M.; Jones-Engel, Lisa; Smith, Gavin J.D.; Fourment, Mathieu; Walker, David; McClenaghan, Laura; Alam, S.M. Rabiul; Hasan, M. Kamrul; Seiler, Patrick; Franks, John; Danner, Angie; Barman, Subrata; McKenzie, Pamela; Krauss, Scott; Webby, Richard J.

    2013-01-01

    Human infection with avian influenza A(H9N2) virus was identified in Bangladesh in 2011. Surveillance for influenza viruses in apparently healthy poultry in live-bird markets in Bangladesh during 2008–2011 showed that subtype H9N2 viruses are isolated year-round, whereas highly pathogenic subtype H5N1 viruses are co-isolated with subtype H9N2 primarily during the winter months. Phylogenetic analysis of the subtype H9N2 viruses showed that they are reassortants possessing 3 gene segments related to subtype H7N3; the remaining gene segments were from the subtype H9N2 G1 clade. We detected no reassortment with subtype H5N1 viruses. Serologic analyses of subtype H9N2 viruses from chickens revealed antigenic conservation, whereas analyses of viruses from quail showed antigenic drift. Molecular analysis showed that multiple mammalian-specific mutations have become fixed in the subtype H9N2 viruses, including changes in the hemagglutinin, matrix, and polymerase proteins. Our results indicate that these viruses could mutate to be transmissible from birds to mammals, including humans. PMID:23968540

  17. The Continuing Evolution of H5N1 and H9N2 Influenza Viruses in Bangladesh

    PubMed Central

    Marinova-Petkova, Atanaska; Shanmuganatham, Karthik; Feeroz, Mohammed M.; Jones-Engel, Lisa; Hassan, M. Kamrul; Akhtar, Sharmin; Turner, Jasmine; Walker, David; Seiler, Patrick; Franks, John; McKenzie, Pamela; Krauss, Scott; Webby, Richard J.; Webster, Robert G.

    2017-01-01

    Summary In 2011, avian influenza surveillance at the Bangladesh live bird markets (LBMs) showed complete replacement of the highly pathogenic avian influenza (HPAI) H5N1 virus of clade 2.2.2 (Qinghai-like H5N1 lineage) by the HPAI H5N1 clade 2.3.2.1. This clade, which continues to circulate in Bangladesh and neighboring countries, is an intra- and inter-clade reassortant; its HA, PB1, PA and NS genes come from subclade 2.3.2.1a; PB2 from subclade 2.3.2.1c; and NA, NP, and M from clade 2.3.4.2. The H9N2 influenza viruses co-circulating in the Bangladesh LBMs are also reassortants, possessing five genes (NS, M, NP, PA, and PB1) from a HPAI H7N3 virus previously isolated in Pakistan. Despite frequent co-infection of chickens and ducks, reassortment between these H5N1 and H9N2 viruses has been rare. However, all such reassortants detected in 2011 through 2013 have carried 7 genes from HPAI H5N1 clade 2.3.2.1a and the PB1 gene from the Bangladeshi H9N2 clade G1 Mideast, itself derived from HPAI H7N3 virus. Although, the live birds which we sampled in Bangladesh showed no clinical signs of morbidity, the emergence of this reassortant HPAI H5N1 lineage further complicates endemic circulation of H5N1 viruses in Bangladesh, posing a threat to both poultry and humans. PMID:27309046

  18. Efficacy of a Parainfluenza Virus 5 (PIV5)-Based H7N9 Vaccine in Mice and Guinea Pigs: Antibody Titer towards HA Was Not a Good Indicator for Protection

    PubMed Central

    Johnson, Scott; Dlugolenski, Daniel; Phan, Shannon; Tompkins, S. Mark; He, Biao

    2015-01-01

    H7N9 has caused fatal infections in humans. A safe and effective vaccine is the best way to prevent large-scale outbreaks in the human population. Parainfluenza virus 5 (PIV5), an avirulent paramyxovirus, is a promising vaccine vector. In this work, we generated a recombinant PIV5 expressing the HA gene of H7N9 (PIV5-H7) and tested its efficacy against infection with influenza virus A/Anhui/1/2013 (H7N9) in mice and guinea pigs. PIV5-H7 protected the mice against lethal H7N9 challenge. Interestingly, the protection did not require antibody since PIV5-H7 protected JhD mice that do not produce antibody against lethal H7N9 challenge. Furthermore, transfer of anti-H7 serum did not protect mice against H7N9 challenge. PIV5-H7 generated high HAI titers in guinea pigs, however it did not protect against H7N9 infection or transmission. Intriguingly, immunization of guinea pigs with PIV5-H7 and PIV5 expressing NP of influenza A virus H5N1 (PIV5-NP) conferred protection against H7N9 infection and transmission. Thus, we have obtained a H7N9 vaccine that protected both mice and guinea pigs against lethal H7N9 challenge and infection respectively. PMID:25803697

  19. Memory T Cells Generated by Prior Exposure to Influenza Cross React with the Novel H7N9 Influenza Virus and Confer Protective Heterosubtypic Immunity

    PubMed Central

    McMaster, Sean R.; Gabbard, Jon D.; Koutsonanos, Dimitris G.; Compans, Richard W.; Tripp, Ralph A.; Tompkins, S. Mark; Kohlmeier, Jacob E.

    2015-01-01

    Influenza virus is a source of significant health and economic burden from yearly epidemics and sporadic pandemics. Given the potential for the emerging H7N9 influenza virus to cause severe respiratory infections and the lack of exposure to H7 and N9 influenza viruses in the human population, we aimed to quantify the H7N9 cross-reactive memory T cell reservoir in humans and mice previously exposed to common circulating influenza viruses. We identified significant cross-reactive T cell populations in humans and mice; we also found that cross-reactive memory T cells afforded heterosubtypic protection by reducing morbidity and mortality upon lethal H7N9 challenge. In context with our observation that PR8-primed mice have limited humoral cross-reactivity with H7N9, our data suggest protection from H7N9 challenge is indeed mediated by cross-reactive T cell populations established upon previous priming with another influenza virus. Thus, pre-existing cross-reactive memory T cells may limit disease severity in the event of an H7N9 influenza virus pandemic. PMID:25671696

  20. Heterologous post-infection immunity against Egyptian avian influenza virus (AIV) H9N2 modulates the course of subsequent infection by highly pathogenic AIV H5N1, but vaccination immunity does not.

    PubMed

    Naguib, Mahmoud M; Grund, Christian; Arafa, Abdel-Satar; Abdelwhab, E M; Beer, Martin; Harder, Timm C

    2017-06-01

    In Egypt, zoonotic A/goose/Guangdong/1/96 (gs/GD-like) highly pathogenic avian influenza virus (HPAIV) H5N1 of clade 2.2.1.2 is entrenched in poultry populations and has co-circulated with low-pathogenic avian influenza virus H9N2 of the G1 lineage since 2010. Here, the impact of H9N2 infection or vaccination on the course of consecutive infection with a lethal Egyptian HPAIV H5N1 is studied. Three-week-old chickens were infected with H9N2 or vaccinated with inactivated H9N2 or H5N1 antigens and challenged three weeks later by an HPAIV H5N1. Interestingly, pre-infection of chickens with H9N2 decreased the oral excretion of H5N1 to levels that were comparable to those of H5N1-immunized chickens, but vaccination with inactivated H9N2 did not. H9N2 pre-infection modulated but did not conceal clinical disease by HPAIV H5N1. By contrast, homologous H5 vaccination abolished clinical syndromic surveillance, although vaccinated clinical healthy birds were capable of spreading the virus.

  1. Development of in vitro and in vivo neutralization assays based on the pseudotyped H7N9 virus.

    PubMed

    Tian, Yabin; Zhao, Hui; Liu, Qiang; Zhang, Chuntao; Nie, Jianhui; Huang, Weijing; Li, Changgui; Li, Xuguang; Wang, Youchun

    2018-05-31

    H7N9 viral infections pose a great threat to both animal and human health. This avian virus cannot be handled in level 2 biocontainment laboratories, substantially hindering evaluation of prophylactic vaccines and therapeutic agents. Here, we report a high-titer pseudoviral system with a bioluminescent reporter gene, enabling us to visually and quantitatively conduct analyses of virus replications in both tissue cultures and animals. For evaluation of immunogenicity of H7N9 vaccines, we developed an in vitro assay for neutralizing antibody measurement based on the pseudoviral system; results generated by the in vitro assay were found to be strongly correlated with those by either hemagglutination inhibition (HI) or micro-neutralization (MN) assay. Furthermore, we injected the viruses into Balb/c mice and observed dynamic distributions of the viruses in the animals, which provides an ideal imaging model for quantitative analyses of prophylactic and therapeutic monoclonal antibodies. Taken together, the pseudoviral systems reported here could be of great value for both in vitro and in vivo evaluations of vaccines and antiviral agents without the need of wild type H7N9 virus.

  2. Surveillance of Avian H7N9 Virus in Various Environments of Zhejiang Province, China before and after Live Poultry Markets Were Closed in 2013–2014

    PubMed Central

    Wang, Xiaoxiao; Liu, Shelan; Mao, Haiyan; Yu, Zhao; Chen, Enfu; Chai, Chengliang

    2015-01-01

    Background To date, there have been a total of 637 laboratory-confirmed cases of human infection with avian influenza A (H7N9) virus across mainland China, with 28% (179/637) of these reported in Zhejiang Province. Surveillance of avian H7N9 virus was conducted to investigate environmental contamination during H7N9 outbreaks. We sought to evaluate the prevalence of H7N9 in the environment, and the effects of poultry market closures on the incidence of human H7N9 cases. Methods We collected 6740 environmental samples from 751 sampling sites across 11 cities of Zhejiang Province (China) between January 2013 and March 2014. The presence of H7N9 was determined by reverse transcription polymerase chain reaction, with prevalence compared between sites and over time. The relationship between environmental contamination and human cases of H7N9 infection were analyzed using Spearman’s ranked correlation coefficient. Results Of the 6740 samples, 10.09% (680/6740) were H7N9-positive. The virus was found to circulate seasonally, and peaked during the spring and winter of 2013–2014. The prevalence of the virus decreased from the north to the southeast of the province, coinciding with the geographical distribution of human H7N9 cases. Compared with other sampling sites, live poultry markets (LPMs) had the highest prevalence of H7N9 virus at 13.94% (667/4784). Of the various sample types analyzed, virus prevalence was highest for chopping board swabs at 15.49% (110/710). The prevalence of the virus in the environment positively correlated with the incidence of human H7N9 cases (r2 = 0.498; P < 0.01). Cities with a higher incidence of human H7N9 cases also had a higher prevalence of H7N9 among samples and at sampling sites. Following the closure of LPMs at the end of January 2014, the prevalence of H7N9 decreased from 19.18% (487/2539) to 6.92% (79/1141). This corresponded with a decrease in the number of human H7N9 cases reported. Conclusions The prevalence of H7N9 virus in

  3. Mannose-binding lectin contributes to deleterious inflammatory response in pandemic H1N1 and avian H9N2 infection.

    PubMed

    Ling, Man To; Tu, Wenwei; Han, Yan; Mao, Huawei; Chong, Wai Po; Guan, Jing; Liu, Ming; Lam, Kwok Tai; Law, Helen K W; Peiris, J S Malik; Takahashi, K; Lau, Yu Lung

    2012-01-01

    Mannose-binding lectin (MBL) is a pattern-recognition molecule, which functions as a first line of host defense. Pandemic H1N1 (pdmH1N1) influenza A virus caused massive infection in 2009 and currently circulates worldwide. Avian influenza A H9N2 (H9N2/G1) virus has infected humans and has the potential to be the next pandemic virus. Antiviral function and immunomodulatory role of MBL in pdmH1N1 and H9N2/G1 virus infection have not been investigated. In this study, MBL wild-type (WT) and MBL knockout (KO) murine models were used to examine the role of MBL in pdmH1N1 and H9N2/G1 virus infection. Our study demonstrated that in vitro, MBL binds to pdmH1N1 and H9N2/G1 viruses, likely via the carbohydrate recognition domain of MBL. Wild-type mice developed more severe disease, as evidenced by a greater weight loss than MBL KO mice during influenza virus infection. Furthermore, MBL WT mice had enhanced production of proinflammatory cytokines and chemokines compared with MBL KO mice, suggesting that MBL could upregulate inflammatory responses that may potentially worsen pdmH1N1 and H9N2/G1 virus infections. Our study provided the first in vivo evidence that MBL may be a risk factor during pdmH1N1 and H9N2/G1 infection by upregulating proinflammatory response.

  4. Chlamydia psittaci infection increases mortality of avian influenza virus H9N2 by suppressing host immune response.

    PubMed

    Chu, Jun; Zhang, Qiang; Zhang, Tianyuan; Han, Er; Zhao, Peng; Khan, Ahrar; He, Cheng; Wu, Yongzheng

    2016-07-11

    Avian influenza virus subtype H9N2 (H9N2) and Chlamydia psittaci (C. psittaci) are frequently isolated in chickens with respiratory disease. However, their roles in co-infection remain unclear. We tested the hypothesis that C. psittaci enhances H9N2 infection through suppression of host immunity. Thus, 10-day-old SPF chickens were inoculated intra-tracheally with a high or low virulence C. psittaci strain, and were simultaneously vaccinated against Newcastle disease virus (NDV). Significant decreases in body weight, NDV antibodies and immune organ indices occurred in birds with the virulent C. psittaci infection, while the ratio of CD4+/CD8+ T cells increased significantly compared to that of the lower virulence strain. A second group of birds were inoculated with C. psittaci and H9N2 simultaneously (C. psittaci+H9N2), C. psittaci 3 days prior to H9N2 (C. psittaci/H9N2), or 3 days after H9N2 (H9N2/C. psittaci), C. psittaci or H9N2 alone. Survival rates were 65%, 80% and 90% in the C. psittaci/H9N2, C. psittaci+H9N2 and H9N2/C. psittaci groups, respectively and respiratory clinical signs, lower expression of pro-inflammatory cytokines and higher pathogen loads were found in both C. psittaci/H9N2 and C. psittaci+H9N2 groups. Hence, virulent C. psittaci infection suppresses immune response by inhibiting humoral responses and altering Th1/Th2 balance, increasing mortality in H9N2 infected birds.

  5. Chlamydia psittaci infection increases mortality of avian influenza virus H9N2 by suppressing host immune response

    PubMed Central

    Chu, Jun; Zhang, Qiang; Zhang, Tianyuan; Han, Er; Zhao, Peng; Khan, Ahrar; He, Cheng; Wu, Yongzheng

    2016-01-01

    Avian influenza virus subtype H9N2 (H9N2) and Chlamydia psittaci (C. psittaci) are frequently isolated in chickens with respiratory disease. However, their roles in co-infection remain unclear. We tested the hypothesis that C. psittaci enhances H9N2 infection through suppression of host immunity. Thus, 10-day-old SPF chickens were inoculated intra-tracheally with a high or low virulence C. psittaci strain, and were simultaneously vaccinated against Newcastle disease virus (NDV). Significant decreases in body weight, NDV antibodies and immune organ indices occurred in birds with the virulent C. psittaci infection, while the ratio of CD4+/CD8+ T cells increased significantly compared to that of the lower virulence strain. A second group of birds were inoculated with C. psittaci and H9N2 simultaneously (C. psittaci+H9N2), C. psittaci 3 days prior to H9N2 (C. psittaci/H9N2), or 3 days after H9N2 (H9N2/C. psittaci), C. psittaci or H9N2 alone. Survival rates were 65%, 80% and 90% in the C. psittaci/H9N2, C. psittaci+H9N2 and H9N2/C. psittaci groups, respectively and respiratory clinical signs, lower expression of pro-inflammatory cytokines and higher pathogen loads were found in both C. psittaci/H9N2 and C. psittaci+H9N2 groups. Hence, virulent C. psittaci infection suppresses immune response by inhibiting humoral responses and altering Th1/Th2 balance, increasing mortality in H9N2 infected birds. PMID:27405059

  6. Diverse Heterologous Primary Infections Radically Alter Immunodominance Hierarchies and Clinical Outcomes Following H7N9 Influenza Challenge in Mice

    PubMed Central

    Duan, Susu; Meliopoulos, Victoria A.; McClaren, Jennifer L.; Guo, Xi-Zhi J.; Sanders, Catherine J.; Smallwood, Heather S.; Webby, Richard J.; Schultz-Cherry, Stacey L.; Doherty, Peter C.; Thomas, Paul G.

    2015-01-01

    The recent emergence of a novel H7N9 influenza A virus (IAV) causing severe human infections in China raises concerns about a possible pandemic. The lack of pre-existing neutralizing antibodies in the broader population highlights the potential protective role of IAV-specific CD8+ cytotoxic T lymphocyte (CTL) memory specific for epitopes conserved between H7N9 and previously encountered IAVs. In the present study, the heterosubtypic immunity generated by prior H9N2 or H1N1 infections significantly, but variably, reduced morbidity and mortality, pulmonary virus load and time to clearance in mice challenged with the H7N9 virus. In all cases, the recall of established CTL memory was characterized by earlier, greater airway infiltration of effectors targeting the conserved or cross-reactive H7N9 IAV peptides; though, depending on the priming IAV, each case was accompanied by distinct CTL epitope immunodominance hierarchies for the prominent KbPB1703, DbPA224, and DbNP366 epitopes. While the presence of conserved, variable, or cross-reactive epitopes between the priming H9N2 and H1N1 and the challenge H7N9 IAVs clearly influenced any change in the immunodominance hierarchy, the changing patterns were not tied solely to epitope conservation. Furthermore, the total size of the IAV-specific memory CTL pool after priming was a better predictor of favorable outcomes than the extent of epitope conservation or secondary CTL expansion. Modifying the size of the memory CTL pool significantly altered its subsequent protective efficacy on disease severity or virus clearance, confirming the important role of heterologous priming. These findings establish that both the protective efficacy of heterosubtypic immunity and CTL immunodominance hierarchies are reflective of the immunological history of the host, a finding that has implications for understanding human CTL responses and the rational design of CTL-mediated vaccines. PMID:25668410

  7. Ecological Niche Modeling of Risk Factors for H7N9 Human Infection in China

    PubMed Central

    Xu, Min; Cao, Chunxiang; Li, Qun; Jia, Peng; Zhao, Jian

    2016-01-01

    China was attacked by a serious influenza A (H7N9) virus in 2013. The first human infection case was confirmed in Shanghai City and soon spread across most of eastern China. Using the methods of Geographic Information Systems (GIS) and ecological niche modeling (ENM), this research quantitatively analyzed the relationships between the H7N9 occurrence and the main environmental factors, including meteorological variables, human population density, bird migratory routes, wetland distribution, and live poultry farms, markets, and processing factories. Based on these relationships the probability of the presence of H7N9 was predicted. Results indicated that the distribution of live poultry processing factories, farms, and human population density were the top three most important determinants of the H7N9 human infection. The relative contributions to the model of live poultry processing factories, farms and human population density were 39.9%, 17.7% and 17.7%, respectively, while the maximum temperature of the warmest month and mean relative humidity had nearly no contribution to the model. The paper has developed an ecological niche model (ENM) that predicts the spatial distribution of H7N9 cases in China using environmental variables. The area under the curve (AUC) values of the model were greater than 0.9 (0.992 for the training samples and 0.961 for the test data). The findings indicated that most of the high risk areas were distributed in the Yangtze River Delta. These findings have important significance for the Chinese government to enhance the environmental surveillance at multiple human poultry interfaces in the high risk area. PMID:27322296

  8. Ecological Niche Modeling of Risk Factors for H7N9 Human Infection in China.

    PubMed

    Xu, Min; Cao, Chunxiang; Li, Qun; Jia, Peng; Zhao, Jian

    2016-06-16

    China was attacked by a serious influenza A (H7N9) virus in 2013. The first human infection case was confirmed in Shanghai City and soon spread across most of eastern China. Using the methods of Geographic Information Systems (GIS) and ecological niche modeling (ENM), this research quantitatively analyzed the relationships between the H7N9 occurrence and the main environmental factors, including meteorological variables, human population density, bird migratory routes, wetland distribution, and live poultry farms, markets, and processing factories. Based on these relationships the probability of the presence of H7N9 was predicted. Results indicated that the distribution of live poultry processing factories, farms, and human population density were the top three most important determinants of the H7N9 human infection. The relative contributions to the model of live poultry processing factories, farms and human population density were 39.9%, 17.7% and 17.7%, respectively, while the maximum temperature of the warmest month and mean relative humidity had nearly no contribution to the model. The paper has developed an ecological niche model (ENM) that predicts the spatial distribution of H7N9 cases in China using environmental variables. The area under the curve (AUC) values of the model were greater than 0.9 (0.992 for the training samples and 0.961 for the test data). The findings indicated that most of the high risk areas were distributed in the Yangtze River Delta. These findings have important significance for the Chinese government to enhance the environmental surveillance at multiple human poultry interfaces in the high risk area.

  9. Mannose-Binding Lectin Contributes to Deleterious Inflammatory Response in Pandemic H1N1 and Avian H9N2 Infection

    PubMed Central

    Ling, Man To; Tu, Wenwei; Han, Yan; Mao, Huawei; Chong, Wai Po; Guan, Jing; Liu, Ming; Lam, Kwok Tai; Law, Helen K. W.; Peiris, J. S. Malik; Takahashi, K.

    2012-01-01

    Background. Mannose-binding lectin (MBL) is a pattern-recognition molecule, which functions as a first line of host defense. Pandemic H1N1 (pdmH1N1) influenza A virus caused massive infection in 2009 and currently circulates worldwide. Avian influenza A H9N2 (H9N2/G1) virus has infected humans and has the potential to be the next pandemic virus. Antiviral function and immunomodulatory role of MBL in pdmH1N1 and H9N2/G1 virus infection have not been investigated. Methods. In this study, MBL wild-type (WT) and MBL knockout (KO) murine models were used to examine the role of MBL in pdmH1N1 and H9N2/G1 virus infection. Results. Our study demonstrated that in vitro, MBL binds to pdmH1N1 and H9N2/G1 viruses, likely via the carbohydrate recognition domain of MBL. Wild-type mice developed more severe disease, as evidenced by a greater weight loss than MBL KO mice during influenza virus infection. Furthermore, MBL WT mice had enhanced production of proinflammatory cytokines and chemokines compared with MBL KO mice, suggesting that MBL could upregulate inflammatory responses that may potentially worsen pdmH1N1 and H9N2/G1 virus infections. Conclusions. Our study provided the first in vivo evidence that MBL may be a risk factor during pdmH1N1 and H9N2/G1 infection by upregulating proinflammatory response. PMID:22080095

  10. Influenza A virus subtype H9N2 infection disrupts the composition of intestinal microbiota of chickens.

    PubMed

    Yitbarek, Alexander; Weese, J Scott; Alkie, Tamiru Negash; Parkinson, John; Sharif, Shayan

    2018-01-01

    The impact of low pathogenic influenza viruses such as subtype H9N2, which infect the respiratory and the gastrointestinal tracts of chickens, on microbial composition are not known. Twenty-day-old specific pathogen-free chickens were assigned to two treatment groups, control (uninfected) and H9N2-infected (challenged via the oral-nasal route). Fecal genomic DNA was extracted, and the V3-V4 regions of the 16S rRNA gene were sequenced using the Illumina Miseq® platform. Sequences were curated using Mothur as described in the MiSeq SOP. Infection of chickens with H9N2 resulted in an increase in phylum Proteobacteria, and differential enrichment with the genera Vampirovibrio, Pseudoflavonifractor, Ruminococcus, Clostridium cluster XIVb and Isobaculum while control chickens were differentially enriched with genera Novosphingobium, Sphingomonas, Bradyrhizobium and Bifidobacterium. Analysis of pre- and post-H9N2 infection of the same chickens showed that, before infection, the fecal microbiota was characterized by Lachnospiracea and Ruminococcaceae family and the genera Clostridium sensu stricto, Roseburia and Lachnospiraceae incertae sedis. However, post-H9N2 infection, class Deltaproteobacteria, orders Clostridiales and Bacteroidiales and the genus Alistipes were differentially enriched. Findings from the current study show that influenza virus infection in chickens results in the shift of the gut microbiota, and the disruption of the host-microbial homeostasis in the gut might be one of the mechanisms by which influenza virus infection is established in chickens. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Heterologous Humoral Response against H5N1, H7N3, and H9N2 Avian Influenza Viruses after Seasonal Vaccination in a European Elderly Population

    PubMed Central

    Sanz, Ivan; Rojo, Silvia; Tamames, Sonia; Eiros, José María; Ortiz de Lejarazu, Raúl

    2017-01-01

    Avian influenza viruses are currently one of the main threats to human health in the world. Although there are some screening reports of antibodies against these viruses in humans from Western countries, most of these types of studies are conducted in poultry and market workers of Asian populations. The presence of antibodies against avian influenza viruses was evaluated in an elderly European population. An experimental study was conducted, including pre- and post-vaccine serum samples obtained from 174 elderly people vaccinated with seasonal influenza vaccines of 2006–2007, 2008–2009, 2009–2010, and 2010–2011 Northern Hemisphere vaccine campaigns. The presence of antibodies against A/H5N1, A/H7N3, and A/H9N2 avian influenza viruses were tested by using haemaglutination inhibition assays. Globally, heterotypic antibodies were found before vaccination in 2.9% of individuals against A/H5N1, 1.2% against A/H7N3, and 25.9% against A/H9N2. These pre-vaccination antibodies were present at titers ≥1/40 in 1.1% of individuals against A/H5N1, in 1.1% against H7N3, and in 0.6% against the A/H9N2 subtype. One 76 year-old male showed pre-vaccine antibodies (Abs) against those three avian influenza viruses, and another three individuals presented Abs against two different viruses. Seasonal influenza vaccination induced a significant number of heterotypic seroconversions against A/H5N1 (14.4%) and A/H9N2 (10.9%) viruses, but only one seroconversion was observed against the A/H7N3 subtype. After vaccination, four individuals showed Abs titers ≥1/40 against those three avian viruses, and 55 individuals against both A/H5N1 and A/H9N2. Seasonal vaccination is able to induce some weak heterotypic responses to viruses of avian origin in elderly individuals with no previous exposure to them. However, this response did not accomplish the European Medicament Agency criteria for influenza vaccine efficacy. The results of this study show that seasonal vaccines induce a broad

  12. Avian influenza (H7N9) virus infection in Chinese tourist in Malaysia, 2014.

    PubMed

    William, Timothy; Thevarajah, Bharathan; Lee, Shiu Fee; Suleiman, Maria; Jeffree, Mohamad Saffree; Menon, Jayaram; Saat, Zainah; Thayan, Ravindran; Tambyah, Paul Anantharajah; Yeo, Tsin Wen

    2015-01-01

    Of the ≈400 cases of avian influenza (H7N9) diagnosed in China since 2003, the only travel-related cases have been in Hong Kong and Taiwan. Detection of a case in a Chinese tourist in Sabah, Malaysia, highlights the ease with which emerging viral respiratory infections can travel globally.

  13. Avian influenza viruses that cause highly virulent infections in humans exhibit distinct replicative properties in contrast to human H1N1 viruses

    NASA Astrophysics Data System (ADS)

    Simon, Philippe F.; de La Vega, Marc-Antoine; Paradis, Éric; Mendoza, Emelissa; Coombs, Kevin M.; Kobasa, Darwyn; Beauchemin, Catherine A. A.

    2016-04-01

    Avian influenza viruses present an emerging epidemiological concern as some strains of H5N1 avian influenza can cause severe infections in humans with lethality rates of up to 60%. These have been in circulation since 1997 and recently a novel H7N9-subtyped virus has been causing epizootics in China with lethality rates around 20%. To better understand the replication kinetics of these viruses, we combined several extensive viral kinetics experiments with mathematical modelling of in vitro infections in human A549 cells. We extracted fundamental replication parameters revealing that, while both the H5N1 and H7N9 viruses replicate faster and to higher titers than two low-pathogenicity H1N1 strains, they accomplish this via different mechanisms. While the H7N9 virions exhibit a faster rate of infection, the H5N1 virions are produced at a higher rate. Of the two H1N1 strains studied, the 2009 pandemic H1N1 strain exhibits the longest eclipse phase, possibly indicative of a less effective neuraminidase activity, but causes infection more rapidly than the seasonal strain. This explains, in part, the pandemic strain’s generally slower growth kinetics and permissiveness to accept mutations causing neuraminidase inhibitor resistance without significant loss in fitness. Our results highlight differential growth properties of H1N1, H5N1 and H7N9 influenza viruses.

  14. Immune-Related Gene Expression Patterns in GPV- or H9N2-Infected Goose Spleens.

    PubMed

    Chen, Shun; Wang, Anqi; Sun, Lipei; Liu, Fei; Wang, Mingshu; Jia, Renyong; Zhu, Dekang; Liu, Mafeng; Yang, Qiao; Wu, Ying; Sun, Kunfeng; Chen, Xiaoyue; Cheng, Anchun

    2016-12-01

    Goose parvovirus (GPV) and avian influenza virus subtype H9N2 are single-stranded DNA (ssDNA) and single-stranded RNA (ssRNA) viruses, respectively, both of which can spread in goslings and cause a significant economic loss. To explore the comprehensive transcriptome of GPV- or H9N2-infected goose spleens and to understand the immune responses induced by a DNA virus (GPV) or a RNA virus (H9N2), RNA-seq was performed on the spleens of goslings at the fifth day post infection. In the present study, 2604 and 2409 differentially expressed unigenes were identified in the GPV- and H9N2-infected groups, respectively. Through KEGG pathway enrichment analyses, the up-regulated transcripts in the two virus-infected groups were mainly involved in immune-related pathways. In addition, the two virus-infected groups displayed similar expression patterns in the immune response pathways, including pattern-recognition receptor signaling pathways, the antigen processing and presentation pathway, the NF-κB signaling pathway and the JAK-STAT signaling pathway, as well as cytokines. Furthermore, most of the immune-related genes, particularly TLR7, TRAF3, Mx, TRIM25, CD4, and CD8α, increased in response to GPV and H9N2 infection. However, the depression of NF-κB signaling may be a mechanism by which the viruses evade the host immune system or a strategy to achieve immune homeostasis.

  15. Impact of route of exposure and challenge dose on the pathogenesis of H7N9 low pathogenicity avian influenza virus in chickens.

    PubMed

    Spackman, Erica; Pantin-Jackwood, Mary; Swayne, David E; Suarez, David L; Kapczynski, Darrell R

    2015-03-01

    H7N9 influenza A first caused human infections in early 2013 in China. Virus genetics, histories of patient exposures to poultry, and previous experimental studies suggest the source of the virus is a domestic avian species, such as chickens. In order to better understand the ecology of this H7N9 in chickens, we evaluated the infectious dose and pathogenesis of A/Anhui/1/2013 H7N9 in two common breeds of chickens, White Leghorns (table-egg layers) and White Plymouth Rocks (meat chickens). No morbidity or mortality were observed with doses of 10(6) or 10(8)EID50/bird when administered by the upper-respiratory route, and the mean infectious dose (10(6) EID50) was higher than expected, suggesting that the virus is poorly adapted to chickens. Virus was shed at higher titers and spread to the kidneys in chickens inoculated by the intravenous route. Challenge experiments with three other human-origin H7N9 viruses showed a similar pattern of virus replication. Published by Elsevier Inc.

  16. Avian Influenza (H7N9) Virus Infection in Chinese Tourist in Malaysia, 2014

    PubMed Central

    William, Timothy; Thevarajah, Bharathan; Lee, Shiu Fee; Suleiman, Maria; Jeffree, Mohamad Saffree; Menon, Jayaram; Saat, Zainah; Thayan, Ravindran; Tambyah, Paul Anantharajah

    2015-01-01

    Of the ≈400 cases of avian influenza (H7N9) diagnosed in China since 2003, the only travel-related cases have been in Hong Kong and Taiwan. Detection of a case in a Chinese tourist in Sabah, Malaysia, highlights the ease with which emerging viral respiratory infections can travel globally. PMID:25531078

  17. The nucleoprotein of newly emerged H7N9 influenza A virus harbors a unique motif conferring resistance to antiviral human MxA.

    PubMed

    Riegger, David; Hai, Rong; Dornfeld, Dominik; Mänz, Benjamin; Leyva-Grado, Victor; Sánchez-Aparicio, Maria T; Albrecht, Randy A; Palese, Peter; Haller, Otto; Schwemmle, Martin; García-Sastre, Adolfo; Kochs, Georg; Schmolke, Mirco

    2015-02-01

    Interferon-induced Mx proteins show strong antiviral activity against influenza A viruses (IAVs). We recently demonstrated that the viral nucleoprotein (NP) determines resistance of seasonal and pandemic human influenza viruses to Mx, while avian isolates retain Mx sensitivity. We identified a surface-exposed cluster of amino acids in NP of pandemic A/BM/1/1918 (H1N1), comprising isoleucine-100, proline-283, and tyrosine-313, that is essential for reduced Mx sensitivity in cell culture and in vivo. This cluster has been maintained in all descendant seasonal strains, including A/PR/8/34 (PR/8). Accordingly, two substitutions in the NP of PR/8 [PR/8(mut)] to the Mx-sensitive amino acids (P283L and Y313F) led to attenuation in Mx1-positive mice. Serial lung passages of PR/8(mut) in Mx1 mice resulted in a single exchange of tyrosine to asparagine at position 52 in NP (in close proximity to the amino acid cluster at positions 100, 283, and 313), which partially compensates loss of Mx resistance in PR/8(mut). Intriguingly, the NP of the newly emerged avian-origin H7N9 virus also contains an asparagine at position 52 and shows reduced Mx sensitivity. N52Y substitution in NP results in increased sensitivity of the H7N9 virus to human Mx, indicating that this residue is a determinant of Mx resistance in mammals. Our data strengthen the hypothesis that the human Mx protein represents a potent barrier against zoonotic transmission of avian influenza viruses. However, the H7N9 viruses overcome this restriction by harboring an NP that is less sensitive to Mx-mediated host defense. This might contribute to zoonotic transmission of H7N9 and to the severe to fatal outcome of H7N9 infections in humans. The natural host of influenza A viruses (IAVs) are aquatic birds. Occasionally, these viruses cross the species barrier, as in early 2013 when an avian H7N9 virus infected humans in China. Since then, multiple transmissions of H7N9 viruses to humans have occurred, leaving experts

  18. Probable longer incubation period for human infection with avian influenza A(H7N9) virus in Jiangsu Province, China, 2013.

    PubMed

    Huang, Y; Xu, K; Ren, D F; Ai, J; Ji, H; Ge, A H; Bao, C J; Shi, G Q; Shen, T; Tang, F Y; Zhu, Y F; Zhou, M H; Wang, H

    2014-12-01

    Human infection with the emerging avian influenza A(H7N9) virus in China in 2013 has raised global concerns. We conducted a retrospective descriptive study of 27 confirmed human influenza A(H7N9) cases in Jiangsu Province, to elaborate poultry-related exposures and to provide a more precise estimate of the incubation periods of the illness. The median incubation period was 6 days (range 2-10 days) in cases with single known exposure and was 7·5 days (range 6·5-12·5 days) in cases with exposures on multiple days, difference between the two groups was not significant (Z = -1·895, P = 0·058). The overall median incubation period for all patients was estimated to be 7·5 days (range 2-12·5 days). Our findings further highlight the necessity for public health authorities to extend the period of medical surveillance from 7 days to 10 days.

  19. Three mutations switch H7N9 influenza to human-type receptor specificity.

    PubMed

    de Vries, Robert P; Peng, Wenjie; Grant, Oliver C; Thompson, Andrew J; Zhu, Xueyong; Bouwman, Kim M; de la Pena, Alba T Torrents; van Breemen, Marielle J; Ambepitiya Wickramasinghe, Iresha N; de Haan, Cornelis A M; Yu, Wenli; McBride, Ryan; Sanders, Rogier W; Woods, Robert J; Verheije, Monique H; Wilson, Ian A; Paulson, James C

    2017-06-01

    The avian H7N9 influenza outbreak in 2013 resulted from an unprecedented incidence of influenza transmission to humans from infected poultry. The majority of human H7N9 isolates contained a hemagglutinin (HA) mutation (Q226L) that has previously been associated with a switch in receptor specificity from avian-type (NeuAcα2-3Gal) to human-type (NeuAcα2-6Gal), as documented for the avian progenitors of the 1957 (H2N2) and 1968 (H3N2) human influenza pandemic viruses. While this raised concern that the H7N9 virus was adapting to humans, the mutation was not sufficient to switch the receptor specificity of H7N9, and has not resulted in sustained transmission in humans. To determine if the H7 HA was capable of acquiring human-type receptor specificity, we conducted mutation analyses. Remarkably, three amino acid mutations conferred a switch in specificity for human-type receptors that resembled the specificity of the 2009 human H1 pandemic virus, and promoted binding to human trachea epithelial cells.

  20. Three mutations switch H7N9 influenza to human-type receptor specificity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Vries, Robert P.; Peng, Wenjie; Grant, Oliver C.

    The avian H7N9 influenza outbreak in 2013 resulted from an unprecedented incidence of influenza transmission to humans from infected poultry. The majority of human H7N9 isolates contained a hemagglutinin (HA) mutation (Q226L) that has previously been associated with a switch in receptor specificity from avian-type (NeuAcα2-3Gal) to human-type (NeuAcα2-6Gal), as documented for the avian progenitors of the 1957 (H2N2) and 1968 (H3N2) human influenza pandemic viruses. While this raised concern that the H7N9 virus was adapting to humans, the mutation was not sufficient to switch the receptor specificity of H7N9, and has not resulted in sustained transmission in humans. Tomore » determine if the H7 HA was capable of acquiring human-type receptor specificity, we conducted mutation analyses. Remarkably, three amino acid mutations conferred a switch in specificity for human-type receptors that resembled the specificity of the 2009 human H1 pandemic virus, and promoted binding to human trachea epithelial cells.« less

  1. Immunogenicity and Protection Against Influenza H7N3 in Mice by Modified Vaccinia Virus Ankara Vectors Expressing Influenza Virus Hemagglutinin or Neuraminidase.

    PubMed

    Meseda, Clement A; Atukorale, Vajini; Soto, Jackeline; Eichelberger, Maryna C; Gao, Jin; Wang, Wei; Weiss, Carol D; Weir, Jerry P

    2018-03-29

    Influenza subtypes such as H7 have pandemic potential since they are able to infect humans with severe consequences, as evidenced by the ongoing H7N9 infections in China that began in 2013. The diversity of H7 viruses calls for a broadly cross-protective vaccine for protection. We describe the construction of recombinant modified vaccinia virus Ankara (MVA) vectors expressing the hemagglutinin (HA) or neuraminidase (NA) from three H7 viruses representing both Eurasian and North American H7 lineages - A/mallard/Netherlands/12/2000 (H7N3), A/Canada/rv444/2004 (H7N3), and A/Shanghai/02/2013 (H7N9). These vectors were evaluated for immunogenicity and protective efficacy against H7N3 virus in a murine model of intranasal challenge. High levels of H7-, N3-, and N9-specific antibodies, including neutralizing antibodies, were induced by the MVA-HA and MVA-NA vectors. Mice vaccinated with MVA vectors expressing any of the H7 antigens were protected, suggesting cross-protection among H7 viruses. In addition, MVA vectors expressing N3 but not N9 elicited protection against H7N3 virus challenge. Similar outcomes were obtained when immune sera from MVA vector-immunized mice were passively transferred to naïve mice prior to challenge with the H7N3 virus. The results support the further development of an MVA vector platform as a candidate vaccine for influenza strains with pandemic potential.

  2. Amino Acid Substitutions in Polymerase Basic Protein 2 Gene Contribute to the Pathogenicity of the Novel A/H7N9 Influenza Virus in Mammalian Hosts

    PubMed Central

    Mok, Chris Ka Pun; Lee, Horace Hok Yeung; Lestra, Maxime; Nicholls, John Malcolm; Chan, Michael Chi Wai; Sia, Sin Fun; Zhu, Huachen; Poon, Leo Lit Man; Guan, Yi

    2014-01-01

    ABSTRACT A novel avian-origin influenza A/H7N9 virus emerged in 2013 to cause more than 130 cases of zoonotic human disease, with an overall case fatality rate of around 30% in cases detected. It has been shown that an E-to-K amino acid change at residue 627 of polymerase basic protein 2 (PB2) occurred frequently in the H7N9 isolates obtained from humans but not in viruses isolated from poultry. Although this mutation has been reported to confer increased mammalian pathogenicity in other avian influenza subtypes, it has not been experimentally investigated in the H7N9 virus. In this study, we determined the contribution of PB2-E627K in H7N9 virus to its pathogenicity in mammalian hosts. In addition, the compensatory role of the PB2 mutations T271A, Q591K, and D701N in H7N9 virus was investigated. We characterized the activity of polymerase complexes with these PB2 mutations and found that they enhance the polymerase activity in human 293T cells. The rescued mutants enhanced growth in mammalian cells in vitro. Mice infected with the H7N9 mutant containing the avian signature protein PB2-627E showed a marked decrease in disease severity (weight loss) and pathology compared to mice infected with the wild-type strain (PB2-627K) or other PB2 mutants. Also, mutants with PB2-627E showed lower virus replication and proinflammatory cytokine responses in the lungs of the virus-infected mice, which may contribute to pathogenicity. Our results suggest that these amino acid substitutions contribute to mouse pathogenicity and mammalian adaptation. IMPORTANCE A novel avian H7N9 influenza A virus emerged in east China in 2013 to cause zoonotic human disease associated with significant mortality. It is important to understand the viral genetic markers of mammalian adaptation and disease severity in this H7N9 virus. Since many human (but not avian) H7N9 virus isolates have an amino acid substitution at position E627K in the polymerase basic protein 2 (PB2) gene, we investigated the

  3. Possible role of songbirds and parakeets in transmission of influenza A(H7N9) virus to humans.

    PubMed

    Jones, Jeremy C; Sonnberg, Stephanie; Koçer, Zeynep A; Shanmuganatham, Karthik; Seiler, Patrick; Shu, Yuelong; Zhu, Huachen; Guan, Yi; Peiris, Malik; Webby, Richard J; Webster, Robert G

    2014-03-01

    Avian-origin influenza A(H7N9) recently emerged in China, causing severe human disease. Several subtype H7N9 isolates contain influenza genes previously identified in viruses from finch-like birds. Because wild and domestic songbirds interact with humans and poultry, we investigated the susceptibility and transmissibility of subtype H7N9 in these species. Finches, sparrows, and parakeets supported replication of a human subtype H7N9 isolate, shed high titers through the oropharyngeal route, and showed few disease signs. Virus was shed into water troughs, and several contact animals seroconverted, although they shed little virus. Our study demonstrates that a human isolate can replicate in and be shed by such songbirds and parakeets into their environment. This finding has implications for these birds' potential as intermediate hosts with the ability to facilitate transmission and dissemination of A(H7N9) virus.

  4. Possible Role of Songbirds and Parakeets in Transmission of Influenza A(H7N9) Virus to Humans

    PubMed Central

    Jones, Jeremy C.; Sonnberg, Stephanie; Koçer, Zeynep A.; Shanmuganatham, Karthik; Seiler, Patrick; Shu, Yuelong; Zhu, Huachen; Guan, Yi; Peiris, Malik; Webby, Richard J.

    2014-01-01

    Avian-origin influenza A(H7N9) recently emerged in China, causing severe human disease. Several subtype H7N9 isolates contain influenza genes previously identified in viruses from finch-like birds. Because wild and domestic songbirds interact with humans and poultry, we investigated the susceptibility and transmissibility of subtype H7N9 in these species. Finches, sparrows, and parakeets supported replication of a human subtype H7N9 isolate, shed high titers through the oropharyngeal route, and showed few disease signs. Virus was shed into water troughs, and several contact animals seroconverted, although they shed little virus. Our study demonstrates that a human isolate can replicate in and be shed by such songbirds and parakeets into their environment. This finding has implications for these birds’ potential as intermediate hosts with the ability to facilitate transmission and dissemination of A(H7N9) virus. PMID:24572739

  5. Fc functional antibodies in humans with severe H7N9 and seasonal influenza

    PubMed Central

    Vanderven, Hillary A.; Liu, Lu; Ana-Sosa-Batiz, Fernanda; Nguyen, Thi H.O.; Wan, Yanmin; Hogarth, P. Mark; Tilmanis, Danielle; Parsons, Matthew S.; Hurt, Aeron C.; Davenport, Miles P.; Kotsimbos, Tom; Cheng, Allen C.; Kedzierska, Katherine; Zhang, Xiaoyan; Xu, Jianqing; Kent, Stephen J.

    2017-01-01

    BACKGROUND. Both seasonal and novel avian influenza viruses can result in severe infections requiring hospitalization. Anti-influenza antibodies (Abs) with Fc-mediated effector functions, such as Ab-dependent cellular cytotoxicity (ADCC), are of growing interest in control of influenza but have not previously been studied during severe human infections. As such, the objective of this study was to examine Fc-mediated Ab functions in humans hospitalized with influenza infection. METHODS. Serum Ab response was studied in subjects hospitalized with either pandemic H7N9 avian influenza virus in China (n = 18) or circulating seasonal influenza viruses in Melbourne, Australia (n = 16). Recombinant soluble Fc receptor dimer ELISAs, natural killer (NK) cell activation assays, and Ab-dependent killing assays with influenza-infected target cells were used to assess the Fc functionality of anti-influenza hemagglutinin (HA) Abs during severe human influenza infection. RESULTS. We found that the peak generation of Fc functional HA Abs preceded that of neutralizing Abs for both severe H7N9 and seasonal influenza infections. Subjects who succumbed to complications of H7N9 infection demonstrated reduced HA-specific Fc receptor–binding Abs (in magnitude and breadth) immediately prior to death compared with those who survived. Subjects who recovered from H7N9 and severe seasonal influenza infections demonstrated increased Fc receptor–binding Abs not only against the homologous infecting strain but against HAs from different influenza A subtypes. CONCLUSION. Collectively, survivors of severe influenza infection rapidly generate a functional Ab response capable of mediating ADCC against divergent influenza viruses. Broadly binding HA Abs with Fc-mediated functions may be a useful component of protective immunity to severe influenza infection. FUNDING. The National Health and Medical Research Council ([NHMRC] grants 1023294, 1041832, and 1071916), the Australian Department of Health

  6. Evaluation of the timing of the Escherichia coli co-infection on pathogenecity of H9N2 avian influenza virus in broiler chickens.

    PubMed

    Mosleh, N; Dadras, H; Asasi, K; Taebipour, M J; Tohidifar, S S; Farjanikish, Gh

    2017-01-01

    Bacterial co-infections can probably influence the pathogenicity of H9N2 low pathogenic avian influenza virus (AIV). This study aimed to evaluate the effect of exposure time to Escherichia coli (O:2) on the pathogenicity of H9N2 AIV in broiler chickens. Three hundred and sixty broiler chickens were randomly allocated to six equal groups. At the age of 26 days, all chicks except groups 5 and 6 were inoculated intra-nasally with H9N2 virus. At the same time, the birds in groups 1 and 5 were infected with E. coli via spray route. Birds in groups 3 and 2 were infected with E. coli three days prior to and three days post AI challenge, respectively. Mortality rates, clinical signs, gross and microscopic lesions, excretion and duration of virus shedding in faecal and tracheal samples and seroconversion to H9N2 virus were assessed in the challenged groups. The highest mortality rate was observed in chickens inoculated with H9N2 followed by E. coli . The most severe clinical signs, gross lesions, mortality rate and virus detection were observed at day 6 post challenge (PC) in birds of group 2, while the duration of virus shedding was longer in group 3 ( E. coli followed by H9N2) than other groups. In conclusion, E. coli infection prior to, after or concurrently with H9N2 virus infection could exacerbate the adverse effects of the virus. Our results indicate that E. coli and H9N2 together can mutually exacerbate the condition of either disease in broiler chicks as compared to single infected birds.

  7. Efficient replication and strong induction of innate immune responses by H9N2 avian influenza virus in human dendritic cells.

    PubMed

    Westenius, Veera; Mäkelä, Sanna M; Ziegler, Thedi; Julkunen, Ilkka; Österlund, Pamela

    2014-12-01

    Avian influenza A (H9N2) viruses have occasionally been identified in humans with upper respiratory tract infections. The novel H7N9/2013 virus identified in China shows that a low pathogenic avian influenza (LPAI) virus can be highly pathogenic in humans. Therefore, it is important to understand virus-host cell interactions and immune responses triggered by LPAI viruses in humans. We found that LPAI A/Hong Kong/1073/99 (H9N2) virus replicated efficiently in human dendritic cells (DCs). The H9N2 virus induced strong IFN gene expression although with different kinetics than seasonal influenza A/Beijing/353/89 (H3N2) virus. IFN inducible antiviral proteins were produced in H9N2 virus-infected cells at the same level as in H3N2 infection. The H9N2 virus was extremely sensitive to the antiviral actions of type I IFNs. These results indicate that the avian influenza H9N2 virus is inducing a strong antiviral IFN response in human DCs. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Effect of closure of live poultry markets on poultry-to-person transmission of avian influenza A H7N9 virus: an ecological study.

    PubMed

    Yu, Hongjie; Wu, Joseph T; Cowling, Benjamin J; Liao, Qiaohong; Fang, Vicky J; Zhou, Sheng; Wu, Peng; Zhou, Hang; Lau, Eric H Y; Guo, Danhuai; Ni, Michael Y; Peng, Zhibin; Feng, Luzhao; Jiang, Hui; Luo, Huiming; Li, Qun; Feng, Zijian; Wang, Yu; Yang, Weizhong; Leung, Gabriel M

    2014-02-08

    Transmission of the novel avian influenza A H7N9 virus seems to be predominantly between poultry and people. In the major Chinese cities of Shanghai, Hangzhou, Huzhou, and Nanjing--where most human cases of infection have occurred--live poultry markets (LPMs) were closed in April, 2013, soon after the initial outbreak, as a precautionary public health measure. Our objective was to quantify the effect of LPM closure in these cities on poultry-to-person transmission of avian influenza A H7N9 virus. We obtained information about every laboratory-confirmed human case of avian influenza A H7N9 virus infection reported in the four cities by June 7, 2013, from a database built by the Chinese Center for Disease Control and Prevention. We used data for age, sex, location, residence type (rural or urban area), and dates of illness onset. We obtained information about LPMs from official sources. We constructed a statistical model to explain the patterns in incidence of cases reported in each city on the basis of the assumption of a constant force of infection before LPM closure, and a different constant force of infection after closure. We fitted the model with Markov chain Monte Carlo methods. 85 human cases of avian influenza A H7N9 virus infection were reported in Shanghai, Hangzhou, Huzhou, and Nanjing by June 7, 2013, of which 60 were included in our main analysis. Closure of LPMs reduced the mean daily number of infections by 99% (95% credibility interval 93-100%) in Shanghai, by 99% (92-100%) in Hangzhou, by 97% (68-100%) in Huzhou, and by 97% (81-100%) in Nanjing. Because LPMs were the predominant source of exposure to avian influenza A H7N9 virus for confirmed cases in these cities, we estimated that the mean incubation period was 3·3 days (1·4-5·7). LPM closures were effective in the control of human risk of avian influenza A H7N9 virus infection in the spring of 2013. In the short term, LPM closure should be rapidly implemented in areas where the virus is

  9. Rapid and Sensitive Detection of H7N9 Avian Influenza Virus by Use of Reverse Transcription–Loop-Mediated Isothermal Amplification

    PubMed Central

    Zhang, Jinhai; Feng, Youjun; Hu, Dan; Lv, Heng; Zhu, Jing; Cao, Min; Zheng, Feng; Zhu, Jin; Gong, Xiufang; Hao, Lina; Srinivas, Swaminath; Ren, Hao; Qi, Zhongtian

    2013-01-01

    An epidemic of human H7N9 influenza virus infection recently emerged in China whose clinical features include high mortality and which has also resulted in serious economic loss. The novel reassortant avian-origin influenza A (H7N9) virus which was the causative agent of this epidemic raised the possibility of triggering a large-scale influenza pandemic worldwide. It seemed likely that fast molecular detection assays specific for this virus would be in great demand. Here, we report a one-step reverse transcription–loop-mediated isothermal amplification (RT-LAMP) method for rapid detection of the hemagglutinin (HA) and neuraminidase (NA) genes of H7N9 virus, the minimum detection limit of which was evaluated using in vitro RNA transcription templates. In total, 135 samples from clinical specimens (from either patients or poultry) were tested using this method in comparison with the real-time PCR recommended by the World Health Organization (WHO). Our results showed that (i) RT-LAMP-based trials can be completed in approximately 12 to 23 min and (ii) the detection limit for the H7 gene is around 10 copies per reaction, similar to that of the real-time PCR, whereas the detection limit for its counterpart the N9 gene is 5 copies per reaction, a 100-fold-higher sensitivity than the WHO-recommended method. Indeed, this excellent performance of our method was also validated by the results for a series of clinical specimens. Therefore, we believe that the simple, fast, and sensitive method of RT-LAMP might be widely applied for detection of H7N9 infections and may play a role in prevention of an influenza pandemic. PMID:24006004

  10. Epidemiology of human infections with highly pathogenic avian influenza A(H7N9) virus in Guangdong, 2016 to 2017.

    PubMed

    Kang, Min; Lau, Eric H Y; Guan, Wenda; Yang, Yuwei; Song, Tie; Cowling, Benjamin J; Wu, Jie; Peiris, Malik; He, Jianfeng; Mok, Chris Ka Pun

    2017-07-06

    We describe the epidemiology of highly pathogenic avian influenza (HPAI) A(H7N9) based on poultry market environmental surveillance and laboratory-confirmed human cases (n = 9) in Guangdong, China. We also compare the epidemiology between human cases of high- and low-pathogenic avian influenza A(H7N9) (n = 51) in Guangdong. Case fatality and severity were similar. Touching sick or dead poultry was the most important risk factor for HPAI A(H7N9) infections and should be highlighted for the control of future influenza A(H7N9) epidemics. This article is copyright of The Authors, 2017.

  11. New Threats from H7N9 Influenza Virus: Spread and Evolution of High- and Low-Pathogenicity Variants with High Genomic Diversity in Wave Five.

    PubMed

    Quan, Chuansong; Shi, Weifeng; Yang, Yang; Yang, Yongchun; Liu, Xiaoqing; Xu, Wen; Li, Hong; Li, Juan; Wang, Qianli; Tong, Zhou; Wong, Gary; Zhang, Cheng; Ma, Sufang; Ma, Zhenghai; Fu, Guanghua; Zhang, Zewu; Huang, Yu; Song, Houhui; Yang, Liuqing; Liu, William J; Liu, Yingxia; Liu, Wenjun; Gao, George F; Bi, Yuhai

    2018-06-01

    H7N9 virus has caused five infection waves since it emerged in 2013. The highest number of human cases was seen in wave 5; however, the underlying reasons have not been thoroughly elucidated. In this study, the geographical distribution, phylogeny, and genetic evolution of 240 H7N9 viruses in wave 5, including 35 new isolates from patients and poultry in nine provinces, were comprehensively analyzed together with strains from first four waves. Geographical distribution analysis indicated that the newly emerging highly pathogenic (HP) and low-pathogenicity (LP) H7N9 viruses were cocirculating, causing human and poultry infections across China. Genetic analysis indicated that dynamic reassortment of the internal genes among LP-H7N9/H9N2/H6Ny and HP-H7N9, as well as of the surface genes, between the Yangtze and Pearl River Delta lineages resulted in at least 36 genotypes, with three major genotypes (G1 [A/chicken/Jiangsu/SC537/2013-like], G3 [A/Chicken/Zhongshan/ZS/2017-like], and G11 [A/Anhui/40094/2015-like]). The HP-H7N9 genotype likely evolved from G1 LP-H7N9 by the insertion of a KRTA motif at the cleavage site (CS) and then evolved into 15 genotypes with four different CS motifs, including PKG KRTA R/G, PKG KRIA R/G, PKR KRAA R/G, and PKR KRTA R/G. Approximately 46% (28/61) of HP strains belonged to G3. Importantly, neuraminidase (NA) inhibitor (NAI) resistance (R292K in NA) and mammalian adaptation (e.g., E627K and A588V in PB2) mutations were found in a few non-human-derived HP-H7N9 strains. In summary, the enhanced prevalence and diverse genetic characteristics that occurred with mammalian-adapted and NAI-resistant mutations may have contributed to increased numbers of human infections in wave 5. IMPORTANCE The highest numbers of human H7N9 infections were observed during wave 5 from October 2016 to September 2017. Our results showed that HP-H7N9 and LP-H7N9 had spread virtually throughout China and underwent dynamic reassortment with different subtypes (H7N9

  12. A Novel Activation Mechanism of Avian Influenza Virus H9N2 by Furin

    PubMed Central

    Tse, Longping V.; Hamilton, Alice M.; Friling, Tamar

    2014-01-01

    Avian influenza virus H9N2 is prevalent in waterfowl and has become endemic in poultry in Asia and the Middle East. H9N2 influenza viruses have served as a reservoir of internal genes for other avian influenza viruses that infect humans, and several cases of human infection by H9N2 influenza viruses have indicated its pandemic potential. Fortunately, an extensive surveillance program enables close monitoring of H9N2 influenza viruses worldwide and has generated a large repository of virus sequences and phylogenetic information. Despite the large quantity of sequences in different databases, very little is known about specific virus isolates and their pathogenesis. Here, we characterize a low-pathogenicity avian influenza virus, A/chicken/Israel/810/2001 (H9N2) (Israel810), which is representative of influenza virus strains that have caused severe morbidity and mortality in poultry farms. We show that under certain circumstances the Israel810 hemagglutinin (HA) can be activated by furin, a hallmark of highly pathogenic avian influenza virus. We demonstrate that Israel810 HA can be cleaved in cells with high levels of furin expression and that a mutation that eliminates a glycosylation site in HA1 allows the Israel810 HA to gain universal cleavage in cell culture. Pseudoparticles generated from Israel810 HA, or the glycosylation mutant, transduce cells efficiently. In contrast, introduction of a polybasic cleavage site into Israel810 HA leads to pseudoviruses that are compromised for transduction. Our data indicate a mechanism for an H9N2 evolutionary pathway that may allow it to gain virulence in a distinct manner from H5 and H7 influenza viruses. PMID:24257604

  13. Experimental co-infection of infectious bronchitis and low pathogenic avian influenza H9N2 viruses in commercial broiler chickens.

    PubMed

    Hassan, Kareem E; Ali, Ahmed; Shany, Salama A S; El-Kady, Magdy F

    2017-12-01

    In this study, commercial broilers were experimentally infected with single (classical IBV, variant IBV or AIV-H9N2) or mixed AIV-H9N2 with classical, variant or vaccine strains of IBV. Birds were monitored for clinical and pathological outcomes and virus shedding for 10days post infection (DPI). Clinical signs were limited to the respiratory tract in all challenged groups and varied from mild to moderate mouth breathing to severe respiratory signs with snorting sound and extended head. Mortalities were only recorded in mixed AIV-H9N2/variant IBV challenge group. AIV-H9N2 challenge caused tracheal petechial hemorrhage that progressed to tracheal congestion and caseation. In mixed AIV-H9N2/IBV vaccine challenge, severe tracheitis with bronchial cast formation was observed. In mixed AIV-H9N2/variant IBV challenge severe congestion of the tracheal mucosa and excessive exudates with a tendency to form tubular casts were observed. Kidney ureate deposition was only observed in variant IBV challenge group. Histopathologically, tracheal congestion, severe degeneration, and deciliation were noticed in all groups of mixed infection. Interestingly, hemorrhage and atrophy were observed in thymus gland of birds challenged with single AIV-H9N2 or mixed AIV-H9N2/IBV. There was no difference in the tracheal shedding level of variant IBV between single and mixed infected groups while classical IBV shedding increased in mixed infection group. Interestingly, the AIV-H9N2 showed constantly high shedding titers till 7DPI with variant or vaccine IBV co-infection. In conclusion, co-infection of IBV and AIV-H9N2 induced severe clinical outcome and high mortality. Also, IBV co-infection increased the shedding of AIV-H9N2 in experimentally infected birds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Limited transmission of emergent H7N9 influenza A virus in a simulated live animal market: Do chickens pose the principal transmission threat?

    PubMed

    Bosco-Lauth, Angela M; Bowen, Richard A; Root, J Jeffrey

    2016-08-01

    Emergent H7N9 influenza A virus has caused multiple public health and financial hardships. While some epidemiological studies have recognized infected chickens as an important bridge for human infections, the generality of this observation, the minimum infectious dose, and the shedding potential of chickens have received conflicting results. We experimentally tested the ability of domestic chickens (Gallus gallus domesticus) to transmit H7N9 to co-housed chickens and to several other animal species in an experimental live animal market. Results indicated that an infected chicken failed to initiate viral shedding of H7N9 to naïve co-housed chickens. The infected chicken did, however, successfully transmit the virus to quail (Coturnix sp.) located directly below the infected chicken cage. Oral shedding by indirectly infected quail was, on average, greater than ten-fold that of directly inoculated chickens. Best management practices in live animal market systems should consider the position of quail in stacked-cage settings. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Development of a Reverse Transcription Loop-Mediated Isothermal Amplification Method for the Rapid Detection of Subtype H7N9 Avian Influenza Virus

    PubMed Central

    Bao, Hongmei; Zhao, Yuhui; Wang, Yunhe; Xu, Xiaolong; Shi, Jianzhong; Zeng, Xianying; Wang, Xiurong; Chen, Hualan

    2014-01-01

    A novel influenza A (H7N9) virus has emerged in China. To rapidly detect this virus from clinical samples, we developed a reverse transcription loop-mediated isothermal amplification (RT-LAMP) method for the detection of the H7N9 virus. The minimum detection limit of the RT-LAMP assay was 0.01 PFU H7N9 virus, making this method 100-fold more sensitive to the detection of the H7N9 virus than conventional RT-PCR. The H7N9 virus RT-LAMP assays can efficiently detect different sources of H7N9 influenza virus RNA (from chickens, pigeons, the environment, and humans). No cross-reactive amplification with the RNA of other subtype influenza viruses or of other avian respiratory viruses was observed. The assays can effectively detect H7N9 influenza virus RNA in drinking water, soil, cloacal swab, and tracheal swab samples that were collected from live poultry markets, as well as human H7N9 virus, in less than 30 min. These results suggest that the H7N9 virus RT-LAMP assays were efficient, practical, and rapid diagnostic methods for the epidemiological surveillance and diagnosis of influenza A (H7N9) virus from different resource samples. PMID:24689044

  16. An influenza A virus (H7N9) anti-neuraminidase monoclonal antibody protects mice from morbidity without interfering with the development of protective immunity to subsequent homologous challenge.

    PubMed

    Wilson, Jason R; Belser, Jessica A; DaSilva, Juliana; Guo, Zhu; Sun, Xiangjie; Gansebom, Shane; Bai, Yaohui; Stark, Thomas J; Chang, Jessie; Carney, Paul; Levine, Min Z; Barnes, John; Stevens, James; Maines, Taronna R; Tumpey, Terrence M; York, Ian A

    2017-11-01

    The emergence of A(H7N9) virus strains with resistance to neuraminidase (NA) inhibitors highlights a critical need to discover new countermeasures for treatment of A(H7N9) virus-infected patients. We previously described an anti-NA mAb (3c10-3) that has prophylactic and therapeutic efficacy in mice lethally challenged with A(H7N9) virus when delivered intraperitoneally (i.p.). Here we show that intrananasal (i.n.) administration of 3c10-3 protects 100% of mice from mortality when treated 24h post-challenge and further characterize the protective efficacy of 3c10-3 using a nonlethal A(H7N9) challenge model. Administration of 3c10-3 i.p. 24h prior to challenge resulted in a significant decrease in viral lung titers and deep sequencing analysis indicated that treatment did not consistently select for viral variants in NA. Furthermore, prophylactic administration of 3c10-3 did not inhibit the development of protective immunity to subsequent homologous virus re-challenge. Taken together, 3c10-3 highlights the potential use of anti-NA mAb to mitigate influenza virus infection. Published by Elsevier Inc.

  17. Genotype Diversity of H9N2 Viruses Isolated from Wild Birds and Chickens in Hunan Province, China

    PubMed Central

    Wang, Ba; Liu, Zhihua; Chen, Quanjiao; Gao, Zhimin; Fang, Fang; Chang, Haiyan; Chen, Jianjun; Xu, Bing; Chen, Ze

    2014-01-01

    Three H9N2 avian influenza viruses were isolated from the Dongting Lake wetland, among which one was from fresh egret feces, the other two were from chicken cloacal swabs in poultry markets. Phylogenetic analyses suggested that eight genes of the egret-derived H9N2 virus might come from Korean-like or American-like lineages. The two poultry-derived H9N2 viruses were reassortants between the CK/BJ/94-like and G1-like viruses. Except the PB1 genes (90.6%), the nucleotide sequence of other internal genes of the two viruses exhibited high homology (>95%). In addition, they also exhibited high homology (96–98.3%) with some genes of the H7N9 virus that caused an epidemic in China in 2013. Nucleotide sequence of the poultry-derived and egret-derived H9N2 viruses shared low homology. Infection studies showed that the egret-derived H9N2 virus was non-pathogenic to both mice and chickens, and the virus was unable to infect chickens even through 8 passages continuously in the lung. On the other hand, the chickens infected by poultry-derived viruses showed obvious clinical symptoms and even died; the infected mice showed no noticeable clinical symptoms and weight loss, but viruses could be detected in their lungs. In conclusion, for the egret-derived H9N2 virus, it would take a long adaptation process to achieve cross-species transmission in poultry and mammals. H9N2 viruses isolated at different times from the same host species in the same geographical region presented different evolutionary status, and virus isolated from different hosts in the same geographical region exhibited genetic diversity. Therefore, it is important to continue the H9N2 virus surveillance for understanding their evolutionary trends so as to provide guidance for disease control and prevention. PMID:24979703

  18. The host protease TMPRSS2 plays a major role in in vivo replication of emerging H7N9 and seasonal influenza viruses.

    PubMed

    Sakai, Kouji; Ami, Yasushi; Tahara, Maino; Kubota, Toru; Anraku, Masaki; Abe, Masako; Nakajima, Noriko; Sekizuka, Tsuyoshi; Shirato, Kazuya; Suzaki, Yuriko; Ainai, Akira; Nakatsu, Yuichiro; Kanou, Kazuhiko; Nakamura, Kazuya; Suzuki, Tadaki; Komase, Katsuhiro; Nobusawa, Eri; Maenaka, Katsumi; Kuroda, Makoto; Hasegawa, Hideki; Kawaoka, Yoshihiro; Tashiro, Masato; Takeda, Makoto

    2014-05-01

    Proteolytic cleavage of the hemagglutinin (HA) protein is essential for influenza A virus (IAV) to acquire infectivity. This process is mediated by a host cell protease(s) in vivo. The type II transmembrane serine protease TMPRSS2 is expressed in the respiratory tract and is capable of activating a variety of respiratory viruses, including low-pathogenic (LP) IAVs possessing a single arginine residue at the cleavage site. Here we show that TMPRSS2 plays an essential role in the proteolytic activation of LP IAVs, including a recently emerged H7N9 subtype, in vivo. We generated TMPRSS2 knockout (KO) mice. The TMPRSS2 KO mice showed normal reproduction, development, and growth phenotypes. In TMPRSS2 KO mice infected with LP IAVs, cleavage of HA was severely impaired, and consequently, the majority of LP IAV progeny particles failed to gain infectivity, while the viruses were fully activated proteolytically in TMPRSS2+/+ wild-type (WT) mice. Accordingly, in contrast to WT mice, TMPRSS2 KO mice were highly tolerant of challenge infection by LP IAVs (H1N1, H3N2, and H7N9) with ≥1,000 50% lethal doses (LD50) for WT mice. On the other hand, a high-pathogenic H5N1 subtype IAV possessing a multibasic cleavage site was successfully activated in the lungs of TMPRSS2 KO mice and killed these mice, as observed for WT mice. Our results demonstrate that recently emerged H7N9 as well as seasonal IAVs mainly use the specific protease TMPRSS2 for HA cleavage in vivo and, thus, that TMPRSS2 expression is essential for IAV replication in vivo. Influenza A virus (IAV) is a leading pathogen that infects and kills many humans every year. We clarified that the infectivity and pathogenicity of IAVs, including a recently emerged H7N9 subtype, are determined primarily by a host protease, TMPRSS2. Our data showed that TMPRSS2 is the key host protease that activates IAVs in vivo through proteolytic cleavage of their HA proteins. Hence, TMPRSS2 is a good target for the development of anti

  19. Preliminary Success in the Characterization and Management of a Sudden Breakout of a Novel H7N9 Influenza A Virus

    PubMed Central

    Wu, Yan-Ling; Shen, Li-Wen; Ding, Yan-Ping; Tanaka, Yoshimasa; Zhang, Wen

    2014-01-01

    Influenza has always been one of the major threats to human health. The Spanish influenza in 1918, the pandemic influenza A/H1N1 in 2009, and the avian influenza A/H5N1 have brought about great disasters or losses to mankind. More recently, a novel avian influenza A/H7N9 broke out in China and until December 2, 2013, it had caused 139 cases of infection, including 45 deaths. Its risk and pandemic potential attract worldwide attention. In this article, we summarize epidemiology, virology characteristics, clinical symptoms, diagnosis methods, clinical treatment and preventive measures about the avian influenza A/H7N9 virus infection to provide a reference for a possible next wave of flu outbreak. PMID:24520209

  20. Molecular Mechanism of the Airborne Transmissibility of H9N2 Avian Influenza A Viruses in Chickens

    PubMed Central

    Zhong, Lei; Wang, Xiaoquan; Li, Qunhui; Liu, Dong; Chen, Hongzhi; Zhao, Mingjun; Gu, Xiaobing; He, Liang; Liu, Xiaowen; Gu, Min; Peng, Daxin

    2014-01-01

    ABSTRACT H9N2 avian influenza virus has been prevalent in poultry in many parts of the world since the 1990s and occasionally crosses the host barrier, transmitting to mammals, including humans. In recent years, these viruses have contributed genes to H5N1 and H7N9 influenza viruses, threatening public health. To explore the molecular mechanism for the airborne transmission of H9N2 virus, we compared two genetically close strains isolated from chickens in 2001, A/chicken/Shanghai/7/2001(SH7) and A/chicken/Shanghai/14/2001 (SH14). SH7 is airborne transmissible between chickens, whereas SH14 is not. We used reverse genetics and gene swapping to derive recombinant SH7 (rSH7), rSH14, and a panel of reassortant viruses. Among the reassortant viruses, we identified segments HA and PA as governing the airborne transmission among chickens. In addition, the NP and NS genes also contributed to a lesser extent. Furthermore, the mutational analyses showed the transmissibility phenotype predominantly mapped to the HA and PA genes, with HA-K363 and PA-L672 being important for airborne transmissibility among chickens. In addition, the viral infectivity and acid stability are related to the airborne transmissibility. Importantly, airborne transmission studies of 18 arbitrarily chosen H9N2 viruses from our collections confirmed the importance of both 363K in HA and 672L in PA in determining their levels of transmissibility. Our finding elucidates the genetic contributions to H9N2 transmissibility in chickens and highlights the importance of their prevalence in poultry. IMPORTANCE Our study investigates the airborne transmissibility of H9N2 viruses in chickens and the subsequent epidemic. H9N2 virus is the donor for several prevalent reassortant influenza viruses, such as H7N9/2013 and the H5N1 viruses. Poultry as the reservoir hosts of influenza virus is closely associated with human society. Airborne transmission is an efficient pathway for influenza virus transmission among

  1. Influenza A H5N1 and H7N9 in China: A spatial risk analysis

    PubMed Central

    Gardner, Lauren; MacIntyre, Raina; Sarkar, Sahotra

    2017-01-01

    Background Zoonotic avian influenza poses a major risk to China, and other parts of the world. H5N1 has remained endemic in China and globally for nearly two decades, and in 2013, a novel zoonotic influenza A subtype H7N9 emerged in China. This study aimed to improve upon our current understanding of the spreading mechanisms of H7N9 and H5N1 by generating spatial risk profiles for each of the two virus subtypes across mainland China. Methods and findings In this study, we (i) developed a refined data set of H5N1 and H7N9 locations with consideration of animal/animal environment case data, as well as spatial accuracy and precision; (ii) used this data set along with environmental variables to build species distribution models (SDMs) for each virus subtype in high resolution spatial units of 1km2 cells using Maxent; (iii) developed a risk modelling framework which integrated the results from the SDMs with human and chicken population variables, which was done to quantify the risk of zoonotic transmission; and (iv) identified areas at high risk of H5N1 and H7N9 transmission. We produced high performing SDMs (6 of 8 models with AUC > 0.9) for both H5N1 and H7N9. In all our SDMs, H7N9 consistently showed higher AUC results compared to H5N1, suggesting H7N9 suitability could be better explained by environmental variables. For both subtypes, high risk areas were primarily located in south-eastern China, with H5N1 distributions found to be more diffuse and extending more inland compared to H7N9. Conclusions We provide projections of our risk models to public health policy makers so that specific high risk areas can be targeted for control measures. We recommend comparing H5N1 and H7N9 prevalence rates and survivability in the natural environment to better understand the role of animal and environmental transmission in human infections. PMID:28376125

  2. Human infection of novel avian influenza A(H7N4) virus.

    PubMed

    Tong, Xue-Cheng; Weng, Shan-Shan; Xue, Feng; Wu, Xing; Xu, Tian-Min; Zhang, Wen-Hong

    2018-06-10

    Multiple reassortant strains of novel, highly pathogenic avian influenza A have recently emerged and spread over the world. Here we report on a 68-year-old woman in Jiangsu, China, with influenza A(H7N4) infection and associated illness, which strongly demonstrating the ability of the virus to spread from animals to humans and thus emphasizing the importance of continuous surveillance of the emerging viruses. Copyright © 2018. Published by Elsevier Ltd.

  3. Immunogenicity of avian influenza H7N9 virus in birds: Identification of viral epitopes recognized by the immune system following vaccination and challenge

    USDA-ARS?s Scientific Manuscript database

    In March of 2013, the first cases of H7N9 influenza were reported in humans in China and shortly thereafter the virus was isolated from poultry in live bird markets. In 2014, a second wave of human infections occurred with similar mortality rates. The genetic composition of these H7N9 influenza vi...

  4. Serological Evidence of Human Infection with Avian Influenza A H7virus in Egyptian Poultry Growers.

    PubMed

    Gomaa, Mokhtar R; Kandeil, Ahmed; Kayed, Ahmed S; Elabd, Mona A; Zaki, Shaimaa A; Abu Zeid, Dina; El Rifay, Amira S; Mousa, Adel A; Farag, Mohamed M; McKenzie, Pamela P; Webby, Richard J; Ali, Mohamed A; Kayali, Ghazi

    2016-01-01

    Avian influenza viruses circulate widely in birds, with occasional human infections. Poultry-exposed individuals are considered to be at high risk of infection with avian influenza viruses due to frequent exposure to poultry. Some avian H7 viruses have occasionally been found to infect humans. Seroprevalence of neutralizing antibodies against influenza A/H7N7 virus among poultry-exposed and unexposed individuals in Egypt were assessed during a three-years prospective cohort study. The seroprevalence of antibodies (titer, ≥80) among exposed individuals was 0%, 1.9%, and 2.1% annually while the seroprevalence among the control group remained 0% as measured by virus microneutralization assay. We then confirmed our results using western blot and immunofluorescence assays. Although human infection with H7 in Egypt has not been reported yet, our results suggested that Egyptian poultry growers are exposed to avian H7 viruses. These findings highlight the need for surveillance in the people exposed to poultry to monitor the risk of zoonotic transmission of avian influenza viruses.

  5. Generation of a reassortant avian influenza virus H5N2 vaccine strain capable of protecting chickens against infection with Egyptian H5N1 and H9N2 viruses.

    PubMed

    Kandeil, Ahmed; Moatasim, Yassmin; Gomaa, Mokhtar R; Shehata, Mahmoud M; El-Shesheny, Rabeh; Barakat, Ahmed; Webby, Richard J; Ali, Mohamed A; Kayali, Ghazi

    2016-01-04

    Avian influenza H5N1 viruses have been enzootic in Egyptian poultry since 2006. Avian influenza H9N2 viruses which have been circulating in Egyptian poultry since 2011 showed high replication rates in embryonated chicken eggs and mammalian cells. To investigate which gene segment was responsible for increasing replication, we constructed reassortant influenza viruses using the low pathogenic H1N1 PR8 virus as backbone and included individual genes from A/chicken/Egypt/S4456B/2011(H9N2) virus. Then, we invested this finding to improve a PR8-derived H5N1 influenza vaccine strain by incorporation of the NA segment of H9N2 virus instead of the NA of H5N1. The growth properties of this virus and several other forms of reassortant H5 viruses were compared. Finally, we tested the efficacy of this reassortant vaccine strain in chickens. We observed an increase in replication for a reassortant virus expressing the neuraminidase gene (N2) of H9N2 virus relative to that of either parental viruses or reassortant PR8 viruses expressing other genes. Then, we generated an H5N2 vaccine strain based on the H5 from an Egyptian H5N1 virus and the N2 from an Egyptian H9N2 virus on a PR8 backbone. This strain had better replication rates than an H5N2 reassortant strain on an H9N2 backbone and an H5N1 reassortant on a PR8 backbone. This virus was then used to develop a killed, oil-emulsion vaccine and tested for efficacy against H5N1 and H9N2 viruses in chickens. Results showed that this vaccine was immunogenic and reduced mortality and shedding. Our findings suggest that an inactivated PR8-derived H5N2 influenza vaccine is efficacious in poultry against H5N1 and H9N2 viruses and the vaccine seed replicates at a high rate thus improving vaccine production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Identification of viral epitopes recognized on the hemagglutinin protein of the H7N9 avian influenza virus involved with virus neutralization

    USDA-ARS?s Scientific Manuscript database

    In March of 2013, the first cases of H7N9 influenza were reported in humans in China, and shortly thereafter the virus was confirmed from poultry in live bird markets. Since that time the virus has persisted in both human and avian populations. The genetic composition of these H7N9 influenza virus...

  7. Virus-like particles comprising H5, H7 and H9 hemagglutinins elicit protective immunity to heterologous avian influenza viruses in chickens

    USDA-ARS?s Scientific Manuscript database

    Avian influenza (AI) viruses circulating in wild birds pose a serious threat to public health. Human and veterinary vaccines against AI subtypes are needed. Here we prepared triple-subtype VLPs that co-localized H5, H7 and H9 antigens derived from H5N1, H7N3 and H9N2 viruses. VLPs also contained inf...

  8. Natural co-infection of influenza A/H3N2 and A/H1N1pdm09 viruses resulting in a reassortant A/H3N2 virus.

    PubMed

    Rith, Sareth; Chin, Savuth; Sar, Borann; Y, Phalla; Horm, Srey Viseth; Ly, Sovann; Buchy, Philippe; Dussart, Philippe; Horwood, Paul F

    2015-12-01

    Despite annual co-circulation of different subtypes of seasonal influenza, co-infections between different viruses are rarely detected. These co-infections can result in the emergence of reassortant progeny. We document the detection of an influenza co-infection, between influenza A/H3N2 with A/H1N1pdm09 viruses, which occurred in a 3 year old male in Cambodia during April 2014. Both viruses were detected in the patient at relatively high viral loads (as determined by real-time RT-PCR CT values), which is unusual for influenza co-infections. As reassortment can occur between co-infected influenza A strains we isolated plaque purified clonal viral populations from the clinical material of the patient infected with A/H3N2 and A/H1N1pdm09. Complete genome sequences were completed for 7 clonal viruses to determine if any reassorted viruses were generated during the influenza virus co-infection. Although most of the viral sequences were consistent with wild-type A/H3N2 or A/H1N1pdm09, one reassortant A/H3N2 virus was isolated which contained an A/H1N1pdm09 NS1 gene fragment. The reassortant virus was viable and able to infect cells, as judged by successful passage in MDCK cells, achieving a TCID50 of 10(4)/ml at passage number two. There is no evidence that the reassortant virus was transmitted further. The co-infection occurred during a period when co-circulation of A/H3N2 and A/H1N1pdm09 was detected in Cambodia. It is unclear how often influenza co-infections occur, but laboratories should consider influenza co-infections during routine surveillance activities. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Molecular mechanism of the airborne transmissibility of H9N2 avian influenza A viruses in chickens.

    PubMed

    Zhong, Lei; Wang, Xiaoquan; Li, Qunhui; Liu, Dong; Chen, Hongzhi; Zhao, Mingjun; Gu, Xiaobing; He, Liang; Liu, Xiaowen; Gu, Min; Peng, Daxin; Liu, Xiufan

    2014-09-01

    H9N2 avian influenza virus has been prevalent in poultry in many parts of the world since the 1990s and occasionally crosses the host barrier, transmitting to mammals, including humans. In recent years, these viruses have contributed genes to H5N1 and H7N9 influenza viruses, threatening public health. To explore the molecular mechanism for the airborne transmission of H9N2 virus, we compared two genetically close strains isolated from chickens in 2001, A/chicken/Shanghai/7/2001(SH7) and A/chicken/Shanghai/14/2001 (SH14). SH7 is airborne transmissible between chickens, whereas SH14 is not. We used reverse genetics and gene swapping to derive recombinant SH7 (rSH7), rSH14, and a panel of reassortant viruses. Among the reassortant viruses, we identified segments HA and PA as governing the airborne transmission among chickens. In addition, the NP and NS genes also contributed to a lesser extent. Furthermore, the mutational analyses showed the transmissibility phenotype predominantly mapped to the HA and PA genes, with HA-K363 and PA-L672 being important for airborne transmissibility among chickens. In addition, the viral infectivity and acid stability are related to the airborne transmissibility. Importantly, airborne transmission studies of 18 arbitrarily chosen H9N2 viruses from our collections confirmed the importance of both 363K in HA and 672L in PA in determining their levels of transmissibility. Our finding elucidates the genetic contributions to H9N2 transmissibility in chickens and highlights the importance of their prevalence in poultry. Our study investigates the airborne transmissibility of H9N2 viruses in chickens and the subsequent epidemic. H9N2 virus is the donor for several prevalent reassortant influenza viruses, such as H7N9/2013 and the H5N1 viruses. Poultry as the reservoir hosts of influenza virus is closely associated with human society. Airborne transmission is an efficient pathway for influenza virus transmission among flocks and individuals

  10. Environmental Sampling for Avian Influenza A(H7N9) in Live-Poultry Markets in Guangdong, China

    PubMed Central

    Kang, Min; He, Jianfeng; Song, Tie; Rutherford, Shannon; Wu, Jie; Lin, Jinyan; Huang, Guofeng; Tan, Xiaohua; Zhong, Haojie

    2015-01-01

    Background To provide an increased understanding of avian influenza A(H7N9) activity in live-poultry market in space and time and hence improve H7N9 epidemic control, an ongoing environmental sampling program in multiple live-poultry markets across Guangdong, China was conducted during March 2013–June 2014. Methods A total of 625 live-poultry markets throughout 21 prefecture areas took part in the study. A total of 10 environmental sites in markets for sampling were identified to represent 4 different poultry-related activity areas. At least 10 environmental samples were collected from each market every month. The real time RT-PCR was performed to detect the avian influenza A(H7N9) virus. Field survey was conducted to investigate the sanitation status of live-poultry markets. Results There were 109 human infections with H7N9 avian influenza in Guangdong, of which 37 (34%) died. A total of 18741 environmental swabs were collected and subjected to real-time RT-PCR test, of which 905(4.83%) were found positive for H7N9 virus. There were 201 (32.16%) markets affected by H7N9 in 16 prefecture areas. The detection of H7N9 virus in markets spiked in winter months. 63.33% markets (38/60) had no physical segregation for poultry holding, slaughter or sale zones. Closing live-poultry market significantly decreased the H7N9 detection rate from 14.83% (112/755) to 1.67% (5/300). Conclusions This study indicates the importance of live-poultry market surveillance based on environmental sampling for H7N9 Avian Influenza control. Improving live-poultry market management and sanitation and changing consumer practices are critical to reduce the risk of H7N9 infection. PMID:25933138

  11. Environmental Sampling for Avian Influenza A(H7N9) in Live-Poultry Markets in Guangdong, China.

    PubMed

    Kang, Min; He, Jianfeng; Song, Tie; Rutherford, Shannon; Wu, Jie; Lin, Jinyan; Huang, Guofeng; Tan, Xiaohua; Zhong, Haojie

    2015-01-01

    To provide an increased understanding of avian influenza A(H7N9) activity in live-poultry market in space and time and hence improve H7N9 epidemic control, an ongoing environmental sampling program in multiple live-poultry markets across Guangdong, China was conducted during March 2013-June 2014. A total of 625 live-poultry markets throughout 21 prefecture areas took part in the study. A total of 10 environmental sites in markets for sampling were identified to represent 4 different poultry-related activity areas. At least 10 environmental samples were collected from each market every month. The real time RT-PCR was performed to detect the avian influenza A(H7N9) virus. Field survey was conducted to investigate the sanitation status of live-poultry markets. There were 109 human infections with H7N9 avian influenza in Guangdong, of which 37 (34%) died. A total of 18741 environmental swabs were collected and subjected to real-time RT-PCR test, of which 905(4.83%) were found positive for H7N9 virus. There were 201 (32.16%) markets affected by H7N9 in 16 prefecture areas. The detection of H7N9 virus in markets spiked in winter months. 63.33% markets (38/60) had no physical segregation for poultry holding, slaughter or sale zones. Closing live-poultry market significantly decreased the H7N9 detection rate from 14.83% (112/755) to 1.67% (5/300). This study indicates the importance of live-poultry market surveillance based on environmental sampling for H7N9 Avian Influenza control. Improving live-poultry market management and sanitation and changing consumer practices are critical to reduce the risk of H7N9 infection.

  12. Analysis of recombinant H7N9 wild-type and mutant viruses in pigs shows that the Q226L mutation in HA is important for transmission.

    PubMed

    Liu, Qinfang; Zhou, Bin; Ma, Wenjun; Bawa, Bhupinder; Ma, Jingjiao; Wang, Wei; Lang, Yuekun; Lyoo, Young; Halpin, Rebecca A; Lin, Xudong; Stockwell, Timothy B; Webby, Richard; Wentworth, David E; Richt, Juergen A

    2014-07-01

    The fact that there have been more than 300 human infections with a novel avian H7N9 virus in China indicates that this emerging strain has pandemic potential. Furthermore, many of the H7N9 viruses circulating in animal reservoirs contain putative mammalian signatures in the HA and PB2 genes that are believed to be important in the adaptation of other avian strains to humans. To date, the definitive roles of these mammalian-signature substitutions in transmission and pathogenesis of H7N9 viruses remain unclear. To address this we analyzed the biological characteristics, pathogenicity, and transmissibility of A/Anhui/1/2013 (H7N9) virus and variants in vitro and in vivo using a synthetically created wild-type virus (rAnhui-WT) and two mutants (rAnhui-HA-226Q and rAnhui-PB2-627E). All three viruses replicated in lungs of intratracheally inoculated pigs, yet nasal shedding was limited. The rAnhui-WT and rAnhui-PB2-627E viruses were transmitted to contact animals. In contrast, the rAnhui-HA-226Q virus was not transmitted to sentinel pigs. Deep sequencing of viruses from the lungs of infected pigs identified substitutions arising in the viral population (e.g., PB2-T271A, PB2-D701N, HA-V195I, and PB2-E627K reversion) that may enhance viral replication in pigs. Collectively, the results demonstrate that critical mutations (i.e., HA-Q226L) enable the H7N9 viruses to be transmitted in a mammalian host and suggest that the myriad H7N9 genotypes circulating in avian species in China and closely related strains (e.g., H7N7) have the potential for further adaptation to human or other mammalian hosts (e.g., pigs), leading to strains capable of sustained human-to-human transmission. Importance: The genomes of the zoonotic avian H7N9 viruses emerging in China have mutations in critical genes (PB2-E627K and HA-Q226L) that may be important in their pandemic potential. This study shows that (i) HA-226L of zoonotic H7N9 strains is critical for binding the α-2,6-linked receptor and

  13. The poor transmission of the Chinese A/Anhui/1/2013 H7N9 virus in chickens is directly related to the hemagglutinin gene

    USDA-ARS?s Scientific Manuscript database

    The H7N9 Chinese low pathogenic avian influenza viruses are a zoonotic threat and have infected hundreds of people over the last two years. The virus has been found in poultry, particularly in live bird markets, and poultry exposure in the markets is suspected of being the main source of infection ...

  14. Past, Present, and Possible Future Human Infection with Influenza Virus A Subtype H7

    PubMed Central

    Belser, Jessica A.; Bridges, Carolyn B.; Katz, Jacqueline M.

    2009-01-01

    Influenza A subtype H7 viruses have resulted in >100 cases of human infection since 2002 in the Netherlands, Italy, Canada, the United States, and the United Kingdom. Clinical illness from subtype H7 infection ranges from conjunctivitis to mild upper respiratory illness to pneumonia. Although subtype H7 infections have resulted in a smaller proportion of hospitalizations and deaths in humans than those caused by subtype H5N1, some subtype H7 strains appear more adapted for human infection on the basis of their virus-binding properties and illness rates among exposed persons. Moreover, increased isolation of subtype H7 influenza viruses from poultry and the ability of this subtype to cause severe human disease underscore the need for continued surveillance and characterization of these viruses. We review the history of human infection caused by subtype H7. In addition, we discuss recently identified molecular correlates of subtype H7 virus pathogenesis and assess current measures to prevent future subtype H7 virus infection. PMID:19523282

  15. The emergence of influenza A H7N9 in human beings 16 years after influenza A H5N1: a tale of two cities.

    PubMed

    To, Kelvin K W; Chan, Jasper F W; Chen, Honglin; Li, Lanjuan; Yuen, Kwok-Yung

    2013-09-01

    Infection with either influenza A H5N1 virus in 1997 or avian influenza A H7N9 virus in 2013 caused severe pneumonia that did not respond to typical or atypical antimicrobial treatment, and resulted in high mortality. Both viruses are reassortants with internal genes derived from avian influenza A H9N2 viruses that circulate in Asian poultry. Both viruses have genetic markers of mammalian adaptation in their haemagglutinin and polymerase PB2 subunits, which enhanced binding to human-type receptors and improved replication in mammals, respectively. Hong Kong (affected by H5N1 in 1997) and Shanghai (affected by H7N9 in 2013) are two rapidly flourishing cosmopolitan megacities that were increasing in human population and poultry consumption before the outbreaks. Both cities are located along the avian migratory route at the Pearl River delta and Yangtze River delta. Whether the widespread use of the H5N1 vaccine in east Asia-with suboptimum biosecurity measures in live poultry markets and farms-predisposed to the emergence of H7N9 or other virus subtypes needs further investigation. Why H7N9 seems to be more readily transmitted from poultry to people than H5N1 is still unclear. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Effect of Live Poultry Market Closure on Avian Influenza A(H7N9) Virus Activity in Guangzhou, China, 2014

    PubMed Central

    Yuan, Jun; Lau, Eric H.Y.; Li, Kuibiao; Leung, Y.H. Connie; Yang, Zhicong; Xie, Caojun; Liu, Yufei; Liu, Yanhui; Ma, Xiaowei; Liu, Jianping; Li, Xiaoquan; Chen, Kuncai; Luo, Lei; Di, Biao; Cowling, Benjamin J.; Leung, Gabriel M.; Peiris, Malik

    2015-01-01

    We assessed the effect of closing live poultry markets in China on influenza A(H7N9) virus detection and viability. Intensive sampling was carried out before, during, and after a 2-week citywide market closure; the markets were cleaned and disinfected at the beginning of the closure period. Swab samples were collected at different sites within the markets and tested for H7N9 by real-time reverse transcription PCR and culture. During the closure, H7N9 viral RNA detection and isolation rates in retail markets decreased by 79% (95% CI 64%–88%) and 92% (95% CI 58%–98%), respectively. However, viable H7N9 virus could be cultured from wastewater samples collected up to 2 days after the market closure began. Our findings indicates that poultry workers and the general population are constantly exposed to H7N9 virus at these markets and that market closure and disinfection rapidly reduces the amount of viable virus. PMID:26402310

  17. Pathogenesis, Transmissibility, and Ocular Tropism of a Highly Pathogenic Avian Influenza A (H7N3) Virus Associated with Human Conjunctivitis

    PubMed Central

    Belser, Jessica A.; Davis, C. Todd; Balish, Amanda; Edwards, Lindsay E.; Zeng, Hui; Maines, Taronna R.; Gustin, Kortney M.; Martínez, Irma López; Fasce, Rodrigo; Cox, Nancy J.; Katz, Jacqueline M.

    2013-01-01

    H7 subtype influenza A viruses, responsible for numerous outbreaks in land-based poultry in Europe and the Americas, have caused over 100 cases of confirmed or presumed human infection over the last decade. The emergence of a highly pathogenic avian influenza H7N3 virus in poultry throughout the state of Jalisco, Mexico, resulting in two cases of human infection, prompted us to examine the virulence of this virus (A/Mexico/InDRE7218/2012 [MX/7218]) and related avian H7 subtype viruses in mouse and ferret models. Several high- and low-pathogenicity H7N3 and H7N9 viruses replicated efficiently in the respiratory tract of mice without prior adaptation following intranasal inoculation, but only MX/7218 virus caused lethal disease in this species. H7N3 and H7N9 viruses were also detected in the mouse eye following ocular inoculation. Virus from both H7N3 and H7N9 subtypes replicated efficiently in the upper and lower respiratory tracts of ferrets; however, only MX/7218 virus infection caused clinical signs and symptoms and was capable of transmission to naive ferrets in a direct-contact model. Similar to other highly pathogenic H7 viruses, MX/7218 replicated to high titers in human bronchial epithelial cells, yet it downregulated numerous genes related to NF-κB-mediated signaling transduction. These findings indicate that the recently isolated North American lineage H7 subtype virus associated with human conjunctivitis is capable of causing severe disease in mice and spreading to naive-contact ferrets, while concurrently retaining the ability to replicate within ocular tissue and allowing the eye to serve as a portal of entry. PMID:23487452

  18. Highly pathogenic avian H5N8 influenza viruses: should we be concerned?

    PubMed

    Tate, M D

    2018-01-01

    Avian influenza A viruses pose a constant threat to global human health as sporadic infections continue to occur with associated high mortality rates. To date, a number of avian influenza virus subtypes have infected humans, including H5N1, H7N9, H9N2 and H7N7. The majority of 'bird flu' cases are thought to have arisen from direct contact with infected poultry, particularly in live markets in Asia. 1 While human cases of the H5N8 subtype have not been documented as yet, there is the potential that H5N8 viruses could acquire mutations which favour infection of human cells. There is also the possibility that novel viruses with a tropism for human cells could be generated if H5N8 should reassasort with other circulating avian viruses, such as those of the H5N1 subtype. The emergence of a novel H5N8 virus with the capability of infecting humans could have drastic consequences to global health.

  19. Coexistence of Avian Influenza Virus H10 and H9 Subtypes among Chickens in Live Poultry Markets during an Outbreak of Infection with a Novel H10N8 Virus in Humans in Nanchang, China.

    PubMed

    Hu, Maohong; Li, Xiaodan; Ni, Xiansheng; Wu, Jingwen; Gao, Rongbao; Xia, Wen; Wang, Dayan; He, Fenglan; Chen, Shengen; Liu, Yangqing; Guo, Shuangli; Li, Hui; Shu, Yuelong; Bethel, Jeffrey W; Liu, Mingbin; Moore, Justin B; Chen, Haiying

    2015-01-01

    Infection with the novel H10N8 virus in humans has raised concerns about its pandemic potential worldwide. We report the results of a cross-sectional study of avian influenza viruses (AIVs) in live poultry markets (LPMs) in Nanchang, China, after the first human case of H10N8 virus infection was reported in the city. A total of 201 specimens tested positive for AIVs among 618 samples collected from 24 LPMs in Nanchang from December 2013 to January 2014. We found that the LPMs were heavily contaminated by AIVs, with H9, H10, and H5 being the predominant subtypes and more than half of the LPMs providing samples that were positive for the H10 subtype. Moreover, the coexistence of different subtypes was common in LPMs. Of the 201 positive samples, 20.9% (42/201) had mixed infections with AIVs of different HA subtypes. Of the 42 mixed infections, 50% (21/42) showed the coexistence of the H9 and H10 subtypes, with or without H5, and were from chicken samples. This indicated that the H10N8 virus probably originated from segment reassortment of the H9 and H10 subtypes.

  20. Single gene reassortment of highly pathogenic avian influenza A H5N1 in the low pathogenic H9N2 backbone and its impact on pathogenicity and infectivity of novel reassortant viruses.

    PubMed

    Moatasim, Yassmin; Kandeil, Ahmed; Mostafa, Ahmed; Elghaffar, Sary Khaleel Abd; El Shesheny, Rabeh; Elwahy, Ahmed Helmy M; Ali, Mohamed Ahmed

    2017-10-01

    Avian influenza A H5N1 and H9N2 viruses have been extensively circulating in various avian species and frequently infect mammals, including humans. The synchronous circulation of both viruses in Egypt provides an opportunity for possible genetic assortment, posing a probable threat to global public health. To assess the potential risk of the IAV reassortants derived from co-circulation of these two AI subtypes, reverse genetics technology was used to generate a set of IAV reassortants carrying single genetic segments of clade 2.2.1.2 virus A/duck/Egypt/Q4596D/2012 (H5N1), a representative of the most prevalent H5N1 clade in Egypt, in the genetic backbone of A/chicken/Egypt/S4456B/2011 (H9N2), a representative of G1-like H9N2 lineage which is widely circulating in Egypt. Furthermore, the genetic compatibility, growth kinetics and virulence were evaluated in vitro in mammalian systems using the MDCK cell line and avian system using SPF embryonated chicken eggs. Pathogenicity and virus shedding were further tested using SPF chickens. Out of the eight desired H9-reassortants, we could rescue only 5 reassortant viruses, either due to difficulty in cloning (PB1 of H5N1 virus) or genetic incompatibility (NP-H5/H9 and NA-H5/H9). Results revealed higher replication rates for the H9N2 virus having the NS segment of H5N1 virus. The lowest survival rate in both SPF eggs and SPF chickens was associated with the H5N1 parent virus infection, followed by the HA-H5/H9 virus. Our findings also suggest that all other reassortant viruses were of lower pathogenicity than the wild type H5N1 virus.

  1. Avian Influenza A H7N9 Virus Induces Severe Pneumonia in Mice without Prior Adaptation and Responds to a Combination of Zanamivir and COX-2 Inhibitor

    PubMed Central

    Zhang, Anna J. X.; To, Kelvin K. W.; Lee, Andrew C. Y.; Zhu, Houshun; Wu, Hazel W. L.; Chan, Jasper F. W.; Chen, Honglin; Hung, Ivan F. N.; Li, Lanjuan; Yuen, Kwok-Yung

    2014-01-01

    Background Human infection caused by the avian influenza A H7N9 virus has a case-fatality rate of over 30%. Systematic study of the pathogenesis of avian H7N9 isolate and effective therapeutic strategies are needed. Methods BALB/c mice were inoculated intranasally with an H7N9 virus isolated from a chicken in a wet market epidemiologically linked to a fatal human case, (A/chicken/Zhejiang/DTID-ZJU01/2013 [CK1]), and with an H7N9 virus isolated from a human (A/Anhui/01/2013 [AH1]). The pulmonary viral loads, cytokine/chemokine profiles and histopathological changes of the infected mice were compared. The therapeutic efficacy of a non-steroidal anti-inflammatory drug (NSAID), celecoxib, was assessed. Results Without prior adaptation, intranasal inoculation of 106 plaque forming units (PFUs) of CK1 caused a mortality rate of 82% (14/17) in mice. Viral nucleoprotein and RNA expression were limited to the respiratory system and no viral RNA could be detected from brain, liver and kidney tissues. CK1 caused heavy alveolar inflammatory exudation and pulmonary hemorrhage, associated with high pulmonary levels of proinflammatory cytokines. In the mouse lung cell line LA-4, CK1 also induced high levels of interleukin-6 (IL-6) and cyclooxygenase-2 (COX-2) mRNA. Administration of the antiviral zanamivir did not significantly improve survival in mice infected with CK1, but co-administration of the non-steroidal anti-inflammatory drug (NSAID) celecoxib in combination with zanamivir improved survival and lung pathology. Conclusions Our findings suggested that H7N9 viruses isolated from chicken without preceding trans-species adaptation can cause lethal mammalian pulmonary infection. The severe proinflammatory responses might be a factor contributing to the mortality. Treatment with combination of antiviral and NSAID could ameliorate pulmonary inflammation and may improve survival. PMID:25232731

  2. Role of poultry in the H7N9 influenza outbreaks in China

    USDA-ARS?s Scientific Manuscript database

    The outbreaks of H7N9 influenza in China in spring 2013 resulted in many human cases with a high fatality rate. Poultry were suspected as the source of infection based on sequence analysis and virus isolations from live poultry markets (LPM). The original source of the virus from poultry farms is ...

  3. Evolutionary trajectories and diagnostic challenges of potentially zoonotic avian influenza viruses H5N1 and H9N2 co-circulating in Egypt.

    PubMed

    Naguib, Mahmoud M; Arafa, Abdel-Satar A; El-Kady, Magdy F; Selim, Abdullah A; Gunalan, Vithiagaran; Maurer-Stroh, Sebastian; Goller, Katja V; Hassan, Mohamed K; Beer, Martin; Abdelwhab, E M; Harder, Timm C

    2015-08-01

    In Egypt, since 2006, descendants of the highly pathogenic avian influenza virus (HP AIV) H5N1 of clade 2.2 continue to cause sharp losses in poultry production and seriously threaten public health. Potentially zoonotic H9N2 viruses established an endemic status in poultry in Egypt as well and co-circulate with HP AIV H5N1 rising concerns of reassortments between H9N2 and H5N1 viruses along with an increase of mixed infections of poultry. Nucleotide sequences of whole genomes of 15 different isolates (H5N1: 7; H9N2: 8), and of the hemagglutinin (HA) and neuraminidase (NA) encoding segments of nine further clinical samples (H5N1: 2; H9N2: 7) from 2013 and 2014 were generated and analysed. The HA of H5N1 viruses clustered with clade 2.2.1 while the H9 HA formed three distinguishable subgroups within cluster B viruses. BEAST analysis revealed that H9N2 viruses are likely present in Egypt since 2009. Several previously undescribed substituting mutations putatively associated with host tropism and virulence modulation were detected in different proteins of the analysed H9N2 and H5N1 viruses. Reassortment between HP AIV H5N1 and H9N2 is anticipated in Egypt, and timely detection of such events is of public health concern. As a rapid tool for detection of such reassortants discriminative SYBR-Green reverse transcription real-time PCR assays (SG-RT-qPCR), targeting the internal genes of the Egyptian H5N1 and H9N2 viruses were developed for the rapid screening of viral RNAs from both virus isolates and clinical samples. However, in accordance to Sanger sequencing, no reassortants were found by SG-RT-qPCR. Nevertheless, the complex epidemiology of avian influenza in poultry in Egypt will require sustained close observation. Further development and continuing adaptation of rapid and cost-effective screening assays such as the SG-RT-qPCR protocol developed here are at the basis of efforts for improvement the currently critical situation. Copyright © 2015 Elsevier B.V. All

  4. GoTLR7 but not GoTLR21 mediated antiviral immune responses against low pathogenic H9N2 AIV and Newcastle disease virus infection.

    PubMed

    Yan, Bing; Zhang, Jinyue; Zhang, Wei; Wang, Mingshu; Jia, Renyong; Zhu, Dekang; Liu, Mafeng; Yang, Qiao; Wu, Ying; Sun, Kunfeng; Chen, Xiaoyue; Cheng, Anchun; Chen, Shun

    2017-01-01

    Aquatic birds are considered the biological and genetic reservoirs of avian influenza virus and play a critical role in the transmission and dissemination of Newcastle Disease Virus (NDV). Both TLR7 and TLR21 are important for the host antiviral immune response. In an in vivo study, goTLR7, not goTLR21, was significantly up-regulated in the lungs of geese at 3 to 7 d after challenge with H9N2. And goOASL expression was induced in the bursa of fabricius, harderian glands and lungs. An increase in goRIG-I was detected in the lung and small intestine, whereas goPKR was increased in the lung but decreased in the thymus. In the in vitro study, goTLR7 and goRIG-I but not goTLR21 were highly induced by H9N2. Moreover, goOASL and goPKR were significantly induced in H9N2-treated PBMCs, whereas goMx was suppressed. The over-expression of goTLR7, not goTLR21, controlled NDV replication in DF-1 cells, resulting in a decrease in viral copies and the viral titres. Furthermore, we explored the cellular localization of goTLR7 and goTLR21 in heterologous (DF-1 and BHK21) and homologous cells (GEF) through ectopic expression of goTLRs. The antiviral functions of goTLR7 and goTLR21 during H9N2 and NDV infection and their cellular locations were reported here for the first time. These results will contribute to better understand the TLR-dependent antiviral immune responses of waterfowl. Copyright © 2016 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  5. Characterization of Avian H9N2 Influenza Viruses from United Arab Emirates 2000 to 2003

    PubMed Central

    Aamir, U. B.; Wernery, Ulrich; Ilyushina, N.; Webster, R. G.

    2009-01-01

    Our aim was to establish the phylogenetic relation of H9N2 avian viruses in the Middle East to other Asian H9N2 lineages by characterization of 7 viruses isolated from United Arab Emirates (2000-2003). All these viruses had an additional basic amino acid at the hemagglutinin-connecting peptide; 6 contained a mutation associated with increased affinity toward human-like sialic acid substrates. The viruses' surface glycoproteins and most internal genes were >90% similar to those of A/Quail/Hong Kong/G1/97 (H9N2) lineage. The hemadsorbing site of neuraminidase had up to 4 amino acid substitutions, as do human pandemic viruses. M2 sequence analysis revealed amino acid changes at 2 positions, with increasing resistance to amantadine in cell culture. They replicated efficiently in inoculated chickens and were successfully transmitted to contacts. They continue to maintain H5N1-like genes and may augment the spread of H5N1 viruses through regional co-circulation and inapparent infection. These viruses may present as potential pandemic candidates themselves. PMID:17157891

  6. Impact of route of exposure and challenge dose on the pathogenesis of H7N9 low pathogenicity avian influenza virus in chickens

    USDA-ARS?s Scientific Manuscript database

    H7N9 influenza A first caused human infections, often with severe disease, in early 2013 in China. Virus genetics, histories of patient exposures to poultry, and previous experimental studies all point to the source of the virus being a domestic avian species, such as chickens. In order to better ...

  7. Genetics, Receptor Binding Property, and Transmissibility in Mammals of Naturally Isolated H9N2 Avian Influenza Viruses

    PubMed Central

    Deng, Guohua; Zhang, Qianyi; Wang, Jinliang; He, Xijun; Wang, Kaicheng; Chen, Jiming; Li, Yuanyuan; Fan, Jun; Kong, Huiui; Gu, Chunyang; Guan, Yuantao; Suzuki, Yasuo; Kawaoka, Yoshihiro; Liu, Liling; Jiang, Yongping; Tian, Guobin; Li, Yanbing; Bu, Zhigao; Chen, Hualan

    2014-01-01

    H9N2 subtype influenza viruses have been detected in different species of wild birds and domestic poultry in many countries for several decades. Because these viruses are of low pathogenicity in poultry, their eradication is not a priority for animal disease control in many countries, which has allowed them to continue to evolve and spread. Here, we characterized the genetic variation, receptor-binding specificity, replication capability, and transmission in mammals of a series of H9N2 influenza viruses that were detected in live poultry markets in southern China between 2009 and 2013. Thirty-five viruses represented 17 genotypes on the basis of genomic diversity, and one specific “internal-gene-combination” predominated among the H9N2 viruses. This gene combination was also present in the H7N9 and H10N8 viruses that have infected humans in China. All of the 35 viruses preferentially bound to the human-like receptor, although two also retained the ability to bind to the avian-like receptor. Six of nine viruses tested were transmissible in ferrets by respiratory droplet; two were highly transmissible. Some H9N2 viruses readily acquired the 627K or 701N mutation in their PB2 gene upon infection of ferrets, further enhancing their virulence and transmission in mammals. Our study indicates that the widespread dissemination of H9N2 viruses poses a threat to human health not only because of the potential of these viruses to cause an influenza pandemic, but also because they can function as “vehicles” to deliver different subtypes of influenza viruses from avian species to humans. PMID:25411973

  8. A reassortant H9N2 influenza virus containing 2009 pandemic H1N1 internal-protein genes acquired enhanced pig-to-pig transmission after serial passages in swine.

    PubMed

    Mancera Gracia, José Carlos; Van den Hoecke, Silvie; Richt, Juergen A; Ma, Wenjun; Saelens, Xavier; Van Reeth, Kristien

    2017-05-02

    Avian H9N2 and 2009 pandemic H1N1 (pH1N1) influenza viruses can infect pigs and humans, raising the concern that H9N2:pH1N1 reassortant viruses could emerge. Such reassortants demonstrated increased replication and transmissibility in pig, but were still inefficient when compared to pH1N1. Here, we evaluated if a reassortant virus containing the hemagglutinin and neuraminidase of A/quail/Hong Kong/G1/1997 (H9N2) in the A/California/04/2009 (pH1N1) backbone could become better adapted to pigs by serial passaging. The tropism of the original H9N2:pH1N1 (P0) virus was restricted to the nasal mucosa, with no virus detected in the trachea or lungs. Nevertheless, after seven passages the H9N2:pH1N1 (P7) virus replicated in the entire respiratory tract. We also compared the transmissibility of H9N2:pH1N1 (P0), H9N2:pH1N1 (P7) and pH1N1. While only 2/6 direct-contact pigs showed nasal virus excretion of H9N2:pH1N1 (P0) ≥five days, 4/6 direct-contact animals shed the H9N2:pH1N1 (P7). Interestingly, those four animals shed virus with titers similar to those of the pH1N1, which readily transmitted to all six contact animals. The broader tissue tropism and the increased post-transmission replication after seven passages were associated with the HA-D225G substitution. Our data demonstrate that the pH1N1 internal-protein genes together with the serial passages favour H9N2 virus adaptation to pigs.

  9. PB2-Q591K Mutation Determines the Pathogenicity of Avian H9N2 Influenza Viruses for Mammalian Species

    PubMed Central

    Wang, Congrong; Lee, Horace Hok Yeung; Yang, Zi Feng; Mok, Chris Ka Pun; Zhang, Zhi

    2016-01-01

    Background Influenza A subtype H9N2 is widespread and prevalent in poultry. It has repeatedly transmitted zoonotically to cause mild influenza-like illness in humans and is regarded as a potential pandemic candidate. In additon, the six internal genes of H7N9 and H10N8 viruses which caused infection in human in China as well as some of the highly pathogenic H5N1 strains are origined from H9N2. Previous studies have shown that the mammalian adaptation PB2-Q591K contributes to the pathogenicity of H5N1 and H7N9 viruses. However, the role of the PB2-Q591K mutation in H9N2 subtype is still not well understood. Methods To define and compare the individual role of PB2-Q591K substitution in the PB2 gene segment of H9N2 in relation to polymerase activity, replication competence and the pathogenicity using in vitro and in vivo models. Results The PB2-Q591K mutation in H9N2 virus enhanced the polymerase activity and virus replication in human NHBE cells when compared to the wild type strain. Mice infected with the PB2 mutant showed significant weight loss, higher virus replication and immune responses in the lungs. Conclusions Our evidences suggest that the PB2-Q591K, in addition to the -E627K mutation in H9N2 enhanced the pathogenicity in mammalian host. PMID:27684944

  10. Molecular characterization of H9N2 influenza virus isolated from mink and its pathogenesis in mink.

    PubMed

    Peng, Li; Chen, Chen; Kai-yi, Han; Feng-xia, Zhang; Yan-li, Zhu; Zong-shuai, Ling; Xing-xiao, Zhang; Shi-jin, Jiang; Zhi-jing, Xie

    2015-03-23

    In mid-August 2013, two H9N2 influenza viruses, named A/mink/Shandong/F6/2013 (Mk/SD/F6/13) and A/mink/Shandong/F10/2013 (Mk/SD/F10/13), were isolated from lung samples of 2 of 45 farmed mink exhibiting respiratory signs in mideastern Shandong province, China. The seroprevalence of antibodies to H9N2 in mink was 20% (53/265). Based on sequence analysis, the eight nucleotide sequences showed 99.7-100% identity between Mk/SD/F6/13 and Mk/SD/F10/13. The HA, NP and NS genes of Mk/SD/F6/13 and Mk/SD/F10/13 were close to A/chicken/Zhejiang/329/2011 (H9N2), the NA and PB1 genes to A/duck/Hunan/S4111/2011 (H9N2), the PA and M genes to A/chicken/Shanghai/C1/2012 (H9N2). However, the PB2 genes had a close relationship with A/Turkey/California/189/66 (H9N2). Based on Sialic acid (SA) receptor detection, a range tissues of the mink demonstrated staining for MAA and/or SNA, and mink could serve as an intermediate host for influenza viruses with pandemic potential for the other animals. Experimental infection of mink demonstrated that mink could be infected by H9N2 influenza viruses and presented mild clinical signs, virus shedding and seroconversion, but no animals died of the disease. It implied that mammalian host-adapted avian H9N2 strains infected mink. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Prevalence and control of H7 avian influenza viruses in birds and humans.

    PubMed

    Abdelwhab, E M; Veits, J; Mettenleiter, T C

    2014-05-01

    The H7 subtype HA gene has been found in combination with all nine NA subtype genes. Most exhibit low pathogenicity and only rarely high pathogenicity in poultry (and humans). During the past few years infections of poultry and humans with H7 subtypes have increased markedly. This review summarizes the emergence of avian influenza virus H7 subtypes in birds and humans, and the possibilities of its control in poultry. All H7Nx combinations were reported from wild birds, the natural reservoir of the virus. Geographically, the most prevalent subtype is H7N7, which is endemic in wild birds in Europe and was frequently reported in domestic poultry, whereas subtype H7N3 is mostly isolated from the Americas. In humans, mild to fatal infections were caused by subtypes H7N2, H7N3, H7N7 and H7N9. While infections of humans have been associated mostly with exposure to domestic poultry, infections of poultry have been linked to wild birds or live-bird markets. Generally, depopulation of infected poultry was the main control tool; however, inactivated vaccines were also used. In contrast to recent cases caused by subtype H7N9, human infections were usually self-limiting and rarely required antiviral medication. Close genetic and antigenic relatedness of H7 viruses of different origins may be helpful in development of universal vaccines and diagnostics for both animals and humans. Due to the wide spread of H7 viruses and their zoonotic importance more research is required to better understand the epidemiology, pathobiology and virulence determinants of these viruses and to develop improved control tools.

  12. Live Bird Markets of Bangladesh: H9N2 Viruses and the Near Absence of Highly Pathogenic H5N1 Influenza

    PubMed Central

    Negovetich, Nicholas J.; Feeroz, Mohammed M.; Jones-Engel, Lisa; Walker, David; Alam, S. M. Rabiul; Hasan, Kamrul; Seiler, Patrick; Ferguson, Angie; Friedman, Kim; Barman, Subrata; Franks, John; Turner, Jasmine; Krauss, Scott; Webby, Richard J.; Webster, Robert G.

    2011-01-01

    Avian influenza surveillance in Bangladesh has been passive, relying on poultry farmers to report suspected outbreaks of highly pathogenic H5N1 influenza. Here, the results of an active surveillance effort focusing on the live-bird markets are presented. Prevalence of influenza infection in the birds of the live bird markets is 23.0%, which is similar to that in poultry markets in other countries. Nearly all of the isolates (94%) were of the non-pathogenic H9N2 subtype, but viruses of the H1N2, H1N3, H3N6, H4N2, H5N1, and H10N7 subtypes were also observed. The highly pathogenic H5N1-subtype virus was observed at extremely low prevalence in the surveillance samples (0.08%), and we suggest that the current risk of infection for humans in the retail poultry markets in Bangladesh is negligible. However, the high prevalence of the H9 subtype and its potential for interaction with the highly pathogenic H5N1-subtype, i.e., reassortment and attenuation of host morbidity, highlight the importance of active surveillance of the poultry markets. PMID:21541296

  13. Replication and pathogenic potential of influenza A virus subtypes H3, H7, and H15 from free-range ducks in Bangladesh in mammals.

    PubMed

    El-Shesheny, Rabeh; Feeroz, Mohammed M; Krauss, Scott; Vogel, Peter; McKenzie, Pamela; Webby, Richard J; Webster, Robert G

    2018-04-25

    Surveillance of wild aquatic birds and free-range domestic ducks in the Tanguar Haor wetlands in Bangladesh has identified influenza virus subtypes H3N6, H7N1, H7N5, H7N9, and H15N9. Molecular characterization of these viruses indicates their contribution to the genesis of new genotypes of H5N1 influenza viruses from clade 2.3.2.1a that are dominant in poultry markets in Bangladesh as well as to the genesis of the highly pathogenic H5N8 virus currently causing disease outbreaks in domestic poultry in Europe and the Middle East. Therefore, we studied the antigenicity, replication, and pathogenicity of influenza viruses isolated from Tanguar Haor in the DBA/2J mouse model. All viruses replicated in the lung without prior mammalian adaptation, and H7N1 and H7N9 viruses caused 100% and 60% mortality, respectively. H7N5 viruses replicated only in the lungs, whereas H7N1 and H7N9 viruses also replicated in the heart, liver, and brain. Replication and transmission studies in mallard ducks showed that H7N1 and H7N9 viruses replicated in ducks without clinical signs of disease and shed at high titers from the cloaca of infected and contact ducks, which could facilitate virus transmission and spread. Our results indicate that H7 avian influenza viruses from free-range ducks can replicate in mammals, cause severe disease, and be efficiently transmitted to contact ducks. Our study highlights the role of free-range ducks in the spread of influenza viruses to other species in live poultry markets and the potential for these viruses to infect and cause disease in mammals.

  14. H7N9 and H5N1 avian influenza suitability models for China: accounting for new poultry and live-poultry markets distribution data.

    PubMed

    Artois, Jean; Lai, Shengjie; Feng, Luzhao; Jiang, Hui; Zhou, Hang; Li, Xiangping; Dhingra, Madhur S; Linard, Catherine; Nicolas, Gaëlle; Xiao, Xiangming; Robinson, Timothy P; Yu, Hongjie; Gilbert, Marius

    2017-01-01

    In the last two decades, two important avian influenza viruses infecting humans emerged in China, the highly pathogenic avian influenza (HPAI) H5N1 virus in the late nineties, and the low pathogenic avian influenza (LPAI) H7N9 virus in 2013. China is home to the largest population of chickens (4.83 billion) and ducks (0.694 billion), representing, respectively 23.1 and 58.6% of the 2013 world stock, with a significant part of poultry sold through live-poultry markets potentially contributing to the spread of avian influenza viruses. Previous models have looked at factors associated with HPAI H5N1 in poultry and LPAI H7N9 in markets. However, these have not been studied and compared with a consistent set of predictor variables. Significant progress was recently made in the collection of poultry census and live-poultry market data, which are key potential factors in the distribution of both diseases. Here we compiled and reprocessed a new set of poultry census data and used these to analyse HPAI H5N1 and LPAI H7N9 distributions with boosted regression trees models. We found a limited impact of the improved poultry layers compared to models based on previous poultry census data, and a positive and previously unreported association between HPAI H5N1 outbreaks and the density of live-poultry markets. In addition, the models fitted for the HPAI H5N1 and LPAI H7N9 viruses predict a high risk of disease presence for the area around Shanghai and Hong Kong. The main difference in prediction between the two viruses concerned the suitability of HPAI H5N1 in north-China around the Yellow sea (outlined with Tianjin, Beijing, and Shenyang city) where LPAI H7N9 has not spread intensely.

  15. Beagle dogs have low susceptibility to BJ94-like H9N2 avian influenza virus.

    PubMed

    Zhou, Pei; Wang, Lifang; Huang, San; Fu, Cheng; He, Huamei; Hong, Malin; Su, Shuo; Li, Shoujun

    2015-04-01

    In China, dogs are considered significant intermediate hosts of influenza viruses and have been reported to be infected with H9N2; additionally, a reassortant H9N2 virus has been isolated in dogs. Currently, there are three different lineages of H9N2, including BJ94-like, G1-like, and Y439-like lineages; BJ94-like H9N2 has been circulating in various types of poultry in southern China. Additionally, a number of studies have reported that H9N2 evolves rapidly and is frequently reassorted with H5N1, H7N9, or H10N8 to generate novel reassortants, which is significant for poultry and humans. In this study, two groups of beagles were inoculated either intranasally or intratracheally with the BJ94-like H9N2 virus. However, only four of the seven beagles in the intranasal group and five of the seven beagles in the intratracheal group displayed a mild fever; similarly, only two of the five beagles in the intranasal group and three of the five beagles in the intratracheal group underwent seroconversion. However, no viruses were detected from nasal swabs or rectal swabs or in the lungs of any of the inoculated beagles. Our results demonstrated that beagles have low susceptibility to the BJ94-like H9N2 avian influenza virus, which is the main virus circulating in southern China, indicating that the BJ94-like H9N2 virus does not currently threaten the health of dogs. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Comparative pathology of pigs infected with Korean H1N1, H1N2, or H3N2 swine influenza A viruses.

    PubMed

    Lyoo, Kwang-Soo; Kim, Jeong-Ki; Jung, Kwonil; Kang, Bo-Kyu; Song, Daesub

    2014-09-24

    The predominant subtypes of swine influenza A virus (SIV) in Korea swine population are H1N1, H1N2, and H3N2. The viruses are genetically close to the classical U.S. H1N1 and triple-reassortant H1N2 and H3N2 viruses, respectively. Comparative pathogenesis caused by Korean H1N1, H1N2, and H3N2 SIV was evaluated in this study. The H3N2 infected pigs had severe scores of gross and histopathological lesions at post-inoculation days (PID) 2, and this then progressively decreased. Both the H1N1 and H1N2 infected pigs lacked gross lesions at PID 2, but they showed moderate to severe pneumonia on PID 4, 7 and 14. The pigs infected with H1N1 had significant scores of gross and histopathological lesions when compared with the other pigs infected with H1N2, H3N2, and mock at PID 14. Mean SIV antigen-positive scores were rarely detected for pigs infected with H1N2 and H3N2 from PID 7, whereas a significantly increased amount of viral antigens were found in the bronchioles and alveolar epithelium of the H1N1infected pigs at PID 14. We demonstrated that Korean SIV subtypes had different pulmonary pathologic patterns. The Korean H3N2 rapidly induced acute lung lesions such as broncho-interstitial pneumonia, while the Korean H1N1 showed longer course of infection as compared to other strains.

  17. Prevalence and characteristics of hypoxic hepatitis in the largest single-centre cohort of avian influenza A(H7N9) virus-infected patients with severe liver impairment in the intensive care unit.

    PubMed

    Zhang, YiMin; Liu, JiMin; Yu, Liang; Zhou, Ning; Ding, Wei; Zheng, ShuFa; Shi, Ding; Li, LanJuan

    2016-01-06

    Avian influenza A(H7N9) virus (A(H7N9)) emerged in February 2013. Liver impairment of unknown cause is present in 29% of patients with A(H7N9) infection, some of whom experience severe liver injury. Hypoxic hepatitis (HH) is a type of acute severe liver injury characterized by an abrupt, massive increase in serum aminotransferases resulting from anoxic centrilobular necrosis of liver cells. In the intensive care unit (ICU), the prevalence of HH is ∼1%-2%. Here, we report a 1.8% (2/112) incidence of HH in the largest single-centre cohort of ICU patients with A(H7N9) infection. Both HH patients presented with multiple organ failure (MOF) involving respiratory, cardiac, circulatory and renal failure and had a history of chronic heart disease. On admission, severe liver impairment was found. Peak alanine aminotransferase (ALT) and aspartate aminotransferase (AST) values were 937 and 1281 U/L, and 3117 and 3029 U/L, respectively, in the two patients. Unfortunately, both patients died due to deterioration of MOF. A post-mortem biopsy in case 1 confirmed the presence of centrilobular necrosis of the liver, and real-time reverse transcription polymerase chain reaction of A(H7N9)-specific genes was negative, which excluded A(H7N9)-related hepatitis. The incidence of HH in A(H7N9) patients is similar to that in ICU patients with other aetiologies. It seems that patients with A(H7N9) infection and a history of chronic heart disease with a low left ventricular ejection fraction on admission are susceptible to HH, which presents as a marked elevation in ALT at the time of admission.

  18. Role of poultry in the H7N9 influenza outbreaks in China

    USDA-ARS?s Scientific Manuscript database

    The outbreaks of avian influenza A (H7N9) occurring in China in 2013 and 2014 have resulted in more than 370 human cases with a 30% fatality rate. Most of these infections are believed to result from exposure to infected poultry or contaminated environments as the viruses have been detected in avia...

  19. Infection of mice with a human influenza A/H3N2 virus induces protective immunity against lethal infection with influenza A/H5N1 virus.

    PubMed

    Kreijtz, J H C M; Bodewes, R; van den Brand, J M A; de Mutsert, G; Baas, C; van Amerongen, G; Fouchier, R A M; Osterhaus, A D M E; Rimmelzwaan, G F

    2009-08-06

    The transmission of highly pathogenic avian influenza (HPAI) A viruses of the H5N1 subtype from poultry to man and the high case fatality rate fuels the fear for a pandemic outbreak caused by these viruses. However, prior infections with seasonal influenza A/H1N1 and A/H3N2 viruses induce heterosubtypic immunity that could afford a certain degree of protection against infection with the HPAI A/H5N1 viruses, which are distantly related to the human influenza A viruses. To assess the protective efficacy of such heterosubtypic immunity mice were infected with human influenza virus A/Hong Kong/2/68 (H3N2) 4 weeks prior to a lethal infection with HPAI virus A/Indonesia/5/05 (H5N1). Prior infection with influenza virus A/Hong Kong/2/68 reduced clinical signs, body weight loss, mortality and virus replication in the lungs as compared to naive mice infected with HPAI virus A/Indonesia/5/05. Priming by infection with respiratory syncytial virus, a non-related virus did not have a beneficial effect on the outcome of A/H5N1 infections, indicating that adaptive immune responses were responsible for the protective effect. In mice primed by infection with influenza A/H3N2 virus cytotoxic T lymphocytes (CTL) specific for NP(366-374) epitope ASNENMDAM and PA(224-232) SCLENFRAYV were observed. A small proportion of these CTL was cross-reactive with the peptide variant derived from the influenza A/H5N1 virus (ASNENMEVM and SSLENFRAYV respectively) and upon challenge infection with the influenza A/H5N1 virus cross-reactive CTL were selectively expanded. These CTL, in addition to those directed to conserved epitopes, shared by the influenza A/H3N2 and A/H5N1 viruses, most likely contributed to accelerated clearance of the influenza A/H5N1 virus infection. Although also other arms of the adaptive immune response may contribute to heterosubtypic immunity, the induction of virus-specific CTL may be an attractive target for development of broad protective vaccines. Furthermore the

  20. Sequential Seasonal H1N1 Influenza Virus Infections Protect Ferrets against Novel 2009 H1N1 Influenza Virus

    PubMed Central

    Carter, Donald M.; Bloom, Chalise E.; Nascimento, Eduardo J. M.; Marques, Ernesto T. A.; Craigo, Jodi K.; Cherry, Joshua L.; Lipman, David J.

    2013-01-01

    Individuals <60 years of age had the lowest incidence of infection, with ∼25% of these people having preexisting, cross-reactive antibodies to novel 2009 H1N1 influenza. Many people >60 years old also had preexisting antibodies to novel H1N1. These observations are puzzling because the seasonal H1N1 viruses circulating during the last 60 years were not antigenically similar to novel H1N1. We therefore hypothesized that a sequence of exposures to antigenically different seasonal H1N1 viruses can elicit an antibody response that protects against novel 2009 H1N1. Ferrets were preinfected with seasonal H1N1 viruses and assessed for cross-reactive antibodies to novel H1N1. Serum from infected ferrets was assayed for cross-reactivity to both seasonal and novel 2009 H1N1 strains. These results were compared to those of ferrets that were sequentially infected with H1N1 viruses isolated prior to 1957 or more-recently isolated viruses. Following seroconversion, ferrets were challenged with novel H1N1 influenza virus and assessed for viral titers in the nasal wash, morbidity, and mortality. There was no hemagglutination inhibition (HAI) cross-reactivity in ferrets infected with any single seasonal H1N1 influenza viruses, with limited protection to challenge. However, sequential H1N1 influenza infections reduced the incidence of disease and elicited cross-reactive antibodies to novel H1N1 isolates. The amount and duration of virus shedding and the frequency of transmission following novel H1N1 challenge were reduced. Exposure to multiple seasonal H1N1 influenza viruses, and not to any single H1N1 influenza virus, elicits a breadth of antibodies that neutralize novel H1N1 even though the host was never exposed to the novel H1N1 influenza viruses. PMID:23115287

  1. Recombinant Newcastle Disease Virus Expressing H9 HA Protects Chickens against Heterologous Avian Influenza H9N2 Virus Challenge

    PubMed Central

    Nagy, Abdou; Lee, Jinhwa; Mena, Ignacio; Henningson, Jamie; Li, Yuhao; Ma, Jingjiao; Duff, Michael; Li, Yonghai; Lang, Yuekun; Yang, Jianmei; Abdallah, Fatma; Richt, Juergen; Ali, Ahmed; García-Sastre, Adolfo; Ma, Wenjun

    2017-01-01

    In order to produce an efficient poultry H9 avian influenza vaccine that provides cross-protection against multiple H9 lineages, two Newcastle Disease Virus (NDV) LaSota vaccine strain recombinant viruses were generated using reverse genetics. The recombinant NDV-H9Con virus expresses a consensus-H9 hemagglutinin (HA) that is designed based on available H9N2 sequences from Chinese and Middle Eastern isolates. The recombinant NDV-H9Chi virus expresses a chimeric-H9 HA in which the H9 ectodomain of A/Guinea Fowl/Hong Kong/WF10/99 was fused with the cytoplasmic and transmembrane domain of the fusion protein (F) of NDV. Both recombinant viruses expressed the inserted HA stably and grew to high titers. An efficacy study in chickens showed that both recombinant viruses were able to provide protection against challenge with a heterologous H9N2 virus. In contrast to the NDV-H9Chi virus, the NDV-H9Con virus induced a higher hemagglutination inhibition titer against both NDV and H9 viruses in immunized birds, and efficiently inhibited virus shedding through the respiratory route. Moreover, sera collected from birds immunized with either NDV-H9Con or NDV-H9Chi were able to cross-neutralize two different lineages of H9N2 viruses, indicating that NDV-H9Con and NDV-H9Chi are promising vaccine candidates that could provide cross-protection among different H9N2 lineage viruses. PMID:27102817

  2. Quantification of bird-to-bird and bird-to-human infections during 2013 novel H7N9 avian influenza outbreak in China.

    PubMed

    Hsieh, Ying-Hen; Wu, Jianhong; Fang, Jian; Yang, Yong; Lou, Jie

    2014-01-01

    From February to May, 2013, 132 human avian influenza H7N9 cases were identified in China resulting in 37 deaths. We developed a novel, simple and effective compartmental modeling framework for transmissions among (wild and domestic) birds as well as from birds to human, to infer important epidemiological quantifiers, such as basic reproduction number for bird epidemic, bird-to-human infection rate and turning points of the epidemics, for the epidemic via human H7N9 case onset data and to acquire useful information regarding the bird-to-human transmission dynamics. Estimated basic reproduction number for infections among birds is 4.10 and the mean daily number of human infections per infected bird is 3.16*10-5 [3.08*10-5, 3.23*10-5]. The turning point of 2013 H7N9 epidemic is pinpointed at April 16 for bird infections and at April 9 for bird-to-human transmissions. Our result reveals very low level of bird-to-human infections, thus indicating minimal risk of widespread bird-to-human infections of H7N9 virus during the outbreak. Moreover, the turning point of the human epidemic, pinpointed at shortly after the implementation of full-scale control and intervention measures initiated in early April, further highlights the impact of timely actions on ending the outbreak. This is the first study where both the bird and human components of an avian influenza epidemic can be quantified using only the human case data.

  3. Susceptibility of chickens, quail, and pigeons to an H7N9 human influenza virus and subsequent egg-passaged strains.

    PubMed

    Uchida, Yuko; Kanehira, Katsushi; Takemae, Nobuhiro; Hikono, Hirokazu; Saito, Takehiko

    2017-01-01

    H7N9 human influenza virus A/Anhui/1/2013 (Anhui2013) showed low pathogenicity in chickens, quail, and pigeons, with quail being the most susceptible among the species tested. IVPIE1-1, which was recovered from a dead chicken after intravenous inoculation of Anhui 2013, had broader tissue tropism in chickens than did the original inoculum, as well as amino acid substitutions in the polymerase acidic gene and neuraminidase gene segments, but its pathogenicity was not enhanced. Viruses obtained after passage of Anhui 2013 in 10- and 14-day-old embryonated eggs showed rapid accumulation of amino acid substitutions at the receptor-binding site of the hemagglutinin protein. Two strains obtained through egg passage, 10E4/14E17 and 10E4/10E13, replicated better in intranasally infected chickens than did the original Anhui 2013 strain, yet the new isolates showed low pathogenicity in chickens despite their amino acid substitutions. The increased virus replication in chickens of 10E4/14E17 and 10E4/10E13 was not correlated with temperature-sensitive replication, given that virus replication was suppressed at increased temperatures. The existence of highly susceptible hosts, such as quail, which permit asymptomatic infection, facilitates increased mutation of the virus through amino acid substitution at the receptor-binding site, and this might be one of the mechanisms underlying the prolonged circulation of H7N9 influenza virus.

  4. Novel H7N9 influenza virus shows low infectious dose, high growth rate, and efficient contact transmission in the guinea pig model.

    PubMed

    Gabbard, Jon D; Dlugolenski, Daniel; Van Riel, Debby; Marshall, Nicolle; Galloway, Summer E; Howerth, Elizabeth W; Campbell, Patricia J; Jones, Cheryl; Johnson, Scott; Byrd-Leotis, Lauren; Steinhauer, David A; Kuiken, Thijs; Tompkins, S Mark; Tripp, Ralph; Lowen, Anice C; Steel, John

    2014-02-01

    The zoonotic outbreak of H7N9 subtype avian influenza virus that occurred in eastern China in the spring of 2013 resulted in 135 confirmed human cases, 44 of which were lethal. Sequencing of the viral genome revealed a number of molecular signatures associated with virulence or transmission in mammals. We report here that, in the guinea pig model, a human isolate of novel H7N9 influenza virus, A/Anhui/1/2013 (An/13), is highly dissimilar to an H7N1 avian isolate and instead behaves similarly to a human seasonal strain in several respects. An/13 was found to have a low 50% infectious dose, grow to high titers in the upper respiratory tract, and transmit efficiently among cocaged guinea pigs. The pH of fusion of the hemagglutinin (HA) and the binding of virus to fixed guinea pig tissues were also examined. The An/13 HA displayed a relatively elevated pH of fusion characteristic of many avian strains, and An/13 resembled avian viruses in terms of attachment to tissues. One important difference was seen between An/13 and both the H3N2 human and the H7N1 avian viruses: when inoculated intranasally at a high dose, only the An/13 virus led to productive infection of the lower respiratory tract of guinea pigs. In sum, An/13 was found to retain fusion and attachment properties of an avian influenza virus but displayed robust growth and contact transmission in the guinea pig model atypical of avian strains and indicative of mammalian adaptation.

  5. Novel H7N9 Influenza Virus Shows Low Infectious Dose, High Growth Rate, and Efficient Contact Transmission in the Guinea Pig Model

    PubMed Central

    Gabbard, Jon D.; Dlugolenski, Daniel; Van Riel, Debby; Marshall, Nicolle; Galloway, Summer E.; Howerth, Elizabeth W.; Campbell, Patricia J.; Jones, Cheryl; Johnson, Scott; Byrd-Leotis, Lauren; Steinhauer, David A.; Kuiken, Thijs; Tompkins, S. Mark; Tripp, Ralph; Lowen, Anice C.

    2014-01-01

    The zoonotic outbreak of H7N9 subtype avian influenza virus that occurred in eastern China in the spring of 2013 resulted in 135 confirmed human cases, 44 of which were lethal. Sequencing of the viral genome revealed a number of molecular signatures associated with virulence or transmission in mammals. We report here that, in the guinea pig model, a human isolate of novel H7N9 influenza virus, A/Anhui/1/2013 (An/13), is highly dissimilar to an H7N1 avian isolate and instead behaves similarly to a human seasonal strain in several respects. An/13 was found to have a low 50% infectious dose, grow to high titers in the upper respiratory tract, and transmit efficiently among cocaged guinea pigs. The pH of fusion of the hemagglutinin (HA) and the binding of virus to fixed guinea pig tissues were also examined. The An/13 HA displayed a relatively elevated pH of fusion characteristic of many avian strains, and An/13 resembled avian viruses in terms of attachment to tissues. One important difference was seen between An/13 and both the H3N2 human and the H7N1 avian viruses: when inoculated intranasally at a high dose, only the An/13 virus led to productive infection of the lower respiratory tract of guinea pigs. In sum, An/13 was found to retain fusion and attachment properties of an avian influenza virus but displayed robust growth and contact transmission in the guinea pig model atypical of avian strains and indicative of mammalian adaptation. PMID:24227867

  6. Novel H7N2 and H5N6 Avian Influenza A Viruses in Sentinel Chickens: A Sentinel Chicken Surveillance Study.

    PubMed

    Zhao, Teng; Qian, Yan-Hua; Chen, Shan-Hui; Wang, Guo-Lin; Wu, Meng-Na; Huang, Yong; Ma, Guang-Yuan; Fang, Li-Qun; Gray, Gregory C; Lu, Bing; Tong, Yi-Gang; Ma, Mai-Juan; Cao, Wu-Chun

    2016-01-01

    In 2014, a sentinel chicken surveillance for avian influenza viruses was conducted in aquatic bird habitat near Wuxi City, Jiangsu Province, China. Two H7N2, one H5N6, and two H9N2 viruses were isolated. Sequence analysis revealed that the H7N2 virus is a novel reassortant of H7N9 and H9N2 viruses and H5N6 virus is a reassortant of H5N1 clade 2.3.4 and H6N6 viruses. Substitutions V186 and L226 (H3 numbering) in the hemagglutinin (HA) gene protein was found in two H7N2 viruses but not in the H5N6 virus. Two A138 and A160 mutations were identified in the HA gene protein of all three viruses but a P128 mutation was only observed in the H5N6 virus. A deletion of 3 and 11 amino acids in the neuraminidase stalk region was found in two H7N2 and H5N6 viruses, respectively. Moreover, a mutation of N31 in M2 protein was observed in both two H7N2 viruses. High similarity of these isolated viruses to viruses previously identified among poultry and humans, suggests that peridomestic aquatic birds may play a role in sustaining novel virus transmission. Therefore, continued surveillance is needed to monitor these avian influenza viruses in wild bird and domestic poultry that may pose a threat to poultry and human health.

  7. High genetic compatibility and increased pathogenicity of reassortants derived from avian H9N2 and pandemic H1N1/2009 influenza viruses

    PubMed Central

    Sun, Yipeng; Qin, Kun; Wang, Jingjing; Pu, Juan; Tang, Qingdong; Hu, Yanxin; Bi, Yuhai; Zhao, Xueli; Yang, Hanchun; Shu, Yuelong; Liu, Jinhua

    2011-01-01

    H9N2 influenza viruses have been circulating worldwide in multiple avian species and repeatedly infecting mammals, including pigs and humans, posing a significant threat to public health. The coexistence of H9N2 and pandemic influenza H1N1/2009 viruses in pigs and humans provides an opportunity for these viruses to reassort. To evaluate the potential public risk of the reassortant viruses derived from these viruses, we used reverse genetics to generate 127 H9 reassortants derived from an avian H9N2 and a pandemic H1N1 virus, and evaluated their compatibility, replication ability, and virulence in mice. These hybrid viruses showed high genetic compatibility and more than half replicated to a high titer in vitro. In vivo studies of 73 of 127 reassortants revealed that all viruses were able to infect mice without prior adaptation and 8 reassortants exhibited higher pathogenicity than both parental viruses. All reassortants with higher virulence than parental viruses contained the PA gene from the 2009 pandemic virus, revealing the important role of the PA gene from the H1N1/2009 virus in generating a reassortant virus with high public health risk. Analyses of the polymerase activity of the 16 ribonucleoprotein combinations in vitro suggested that the PA of H1N1/2009 origin also enhanced polymerase activity. Our results indicate that some avian H9-pandemic reassortants could emerge with a potentially higher threat for humans and also highlight the importance of monitoring the H9-pandemic reassortant viruses that may arise, especially those that possess the PA gene of H1N1/2009 origin. PMID:21368167

  8. Carnosine markedly ameliorates H9N2 swine influenza virus-induced acute lung injury

    PubMed Central

    Wang, Cunlian; Zhang, Ruihua; Xu, Mingju; Liu, Baojian; Wei, Dong; Wang, Guohua; Tian, Shufei

    2015-01-01

    Oxidative stress injury is an important pathogenesis of influenza virus in critically ill patients. The present study investigated the efficacy of carnosine, an antioxidant and free radical scavenger, on a model of acute lung injury (ALI) induced by H9N2 swine influenza virus. Female specific-pathogen-free BALB/c mice were randomized into four groups and treated as follows: (1) H9N2 group, (2) mock control group, (3) H9N2+carnosine group and (4) carnosine control group. The H9N2 group mice were inoculated intranasally with A/Swine/Hebei/012/2008/ (H9N2) virus (100 μl) in allantoic fluid (AF), whilst mock-infected animals were intranasally inoculated with non-infectious AF. Carnosine [10 mg (kg body mass)− 1] was administered orally (100 μl) for 7 days consecutively. The survival rate, lung water content, TNF-α and IL-1β levels, lung histopathology, myeloperoxidase (MPO) activity, and Toll-like receptor (TLR)-4 levels were determined at 2, 4, 6, 8 and 14 days after inoculation. Carnosine treatment effectively decreased the mortality (43 versus 75 %, P < 0.05), significantly ameliorated pathological lesions in lungs and decreased the lung wet/dry mass ratio (P < 0.05). It also inhibited MPO activity, suppressed TNF-α and IL-1β release, decreased the H9N2 viral titre, and markedly inhibited levels of TLR-4 mRNA and protein in the lungs of infected mice (P < 0.05), which supported the use of carnosine for managing severe influenza cases. PMID:26233716

  9. Variability in H9N2 haemagglutinin receptor-binding preference and the pH of fusion.

    PubMed

    Peacock, Thomas P; Benton, Donald J; Sadeyen, Jean-Remy; Chang, Pengxiang; Sealy, Joshua E; Bryant, Juliet E; Martin, Stephen R; Shelton, Holly; McCauley, John W; Barclay, Wendy S; Iqbal, Munir

    2017-03-22

    H9N2 avian influenza viruses are primarily a disease of poultry; however, they occasionally infect humans and are considered a potential pandemic threat. Little work has been performed to assess the intrinsic biochemical properties related to zoonotic potential of H9N2 viruses. The objective of this study, therefore, was to investigate H9N2 haemagglutinins (HAs) using two well-known correlates for human adaption: receptor-binding avidity and pH of fusion. Receptor binding was characterized using bio-layer interferometry to measure virus binding to human and avian-like receptor analogues and the pH of fusion was assayed by syncytium formation in virus-infected cells at different pHs. We characterized contemporary H9N2 viruses of the zoonotic G1 lineage, as well as representative viruses of the zoonotic BJ94 lineage. We found that most contemporary H9N2 viruses show a preference for sulphated avian-like receptor analogues. However, the 'Eastern' G1 H9N2 viruses displayed a consistent preference in binding to a human-like receptor analogue. We demonstrate that the presence of leucine at position 226 of the HA receptor-binding site correlated poorly with the ability to bind a human-like sialic acid receptor. H9N2 HAs also display variability in their pH of fusion, ranging between pH 5.4 and 5.85 which is similar to that of the first wave of human H1N1pdm09 viruses but lower than the pH of fusion seen in zoonotic H5N1 and H7N9 viruses. Our results suggest possible molecular mechanisms that may underlie the relatively high prevalence of human zoonotic infection by particular H9N2 virus lineages.

  10. Variability in H9N2 haemagglutinin receptor-binding preference and the pH of fusion

    PubMed Central

    Peacock, Thomas P; Benton, Donald J; Sadeyen, Jean-Remy; Chang, Pengxiang; Sealy, Joshua E; Bryant, Juliet E; Martin, Stephen R; Shelton, Holly; McCauley, John W; Barclay, Wendy S; Iqbal, Munir

    2017-01-01

    H9N2 avian influenza viruses are primarily a disease of poultry; however, they occasionally infect humans and are considered a potential pandemic threat. Little work has been performed to assess the intrinsic biochemical properties related to zoonotic potential of H9N2 viruses. The objective of this study, therefore, was to investigate H9N2 haemagglutinins (HAs) using two well-known correlates for human adaption: receptor-binding avidity and pH of fusion. Receptor binding was characterized using bio-layer interferometry to measure virus binding to human and avian-like receptor analogues and the pH of fusion was assayed by syncytium formation in virus-infected cells at different pHs. We characterized contemporary H9N2 viruses of the zoonotic G1 lineage, as well as representative viruses of the zoonotic BJ94 lineage. We found that most contemporary H9N2 viruses show a preference for sulphated avian-like receptor analogues. However, the ‘Eastern' G1 H9N2 viruses displayed a consistent preference in binding to a human-like receptor analogue. We demonstrate that the presence of leucine at position 226 of the HA receptor-binding site correlated poorly with the ability to bind a human-like sialic acid receptor. H9N2 HAs also display variability in their pH of fusion, ranging between pH 5.4 and 5.85 which is similar to that of the first wave of human H1N1pdm09 viruses but lower than the pH of fusion seen in zoonotic H5N1 and H7N9 viruses. Our results suggest possible molecular mechanisms that may underlie the relatively high prevalence of human zoonotic infection by particular H9N2 virus lineages. PMID:28325922

  11. Efficacy of Live-Attenuated H9N2 Influenza Vaccine Candidates Containing NS1 Truncations against H9N2 Avian Influenza Viruses.

    PubMed

    Chen, Sujuan; Zhu, Yinbiao; Yang, Da; Yang, Yang; Shi, Shaohua; Qin, Tao; Peng, Daxin; Liu, Xiufan

    2017-01-01

    H9N2 avian influenza virus is a zoonotic agent with a broad host range that can contribute genetic information to H5 or H7N9 subtype viruses, which are significant threats to both humans and birds. Thus, there is a great need for a vaccine to control H9N2 avian influenza. Three mutant viruses of an H9N2 virus A/chicken/Taixing/10/2010 (rTX-NS1-73, rTX-NS1-100, and rTX-NS1-128) were constructed with different NS1 gene truncations and confirmed by western blot analysis. The genetic stability, pathogenicity, transmissibility, and host immune responses toward these mutants were evaluated. The mutant virus rTX-NS1-128 exhibited the most attenuated phenotype and lost transmissibility. The expression levels of interleukin 12 in the nasal and tracheal tissues from chickens immunized with rTX-NS1-128 were significantly upregulated on day 3 post-immunization and the IgA and IgG antibody levels were significantly increased on days 7, 14, and 21 post-immunization when compared to chickens that received an inactivated vaccine. rTX-NS1-128 also protected chickens from challenge by homologous and heterologous H9N2 avian influenza viruses. The results indicate that rTX-NS1-128 can be used as a potential live-attenuated vaccine against H9N2 avian influenza.

  12. Global dynamic analysis of a H7N9 avian-human influenza model in an outbreak region.

    PubMed

    Chen, Yongxue; Wen, Yongxian

    2015-02-21

    In 2013 in China a new type of avian influenza virus, H7N9, began to infect humans and had aroused severe fatality in the infected humans. We know that the spread is from poultry to humans, and the H7N9 avian influenza is low pathogenic in the poultry world but highly pathogenic in the human world, but the transmission mechanism is unclear. Since it has no signs of human-to-human transmission and outbreaks are isolated in some cities in China, in order to investigate the transmission mechanism of human infection with H7N9 avian influenza, an eco-epidemiological model in an outbreak region is proposed and analyzed dynamically. Researches and reports show that gene mutation makes the new virus be capable of infecting humans, therefore the mutation factor is taken into account in the model. The global dynamic analysis is conducted, different thresholds are identified, persistence and global qualitative behaviors are obtained. The impact of H7N9 avian influenza on the people population is concerned. Finally, the numerical simulations are carried out to support the theoretical analysis and to investigate the disease control measures. It seems that we may take people׳s hygiene and prevention awareness factor as a significant policy to achieve the aim of both the disease control and the economic returns. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. A live attenuated cold adapted influenza A H7N3 virus vaccine provides protection against homologous and heterologous H7 viruses in mice and ferrets

    PubMed Central

    Joseph, Tomy; McAuliffe, Josephine; Lu, Bin; Vogel, Leatrice; Swayne, David; Jin, Hong; Kemble, George; Subbarao, Kanta

    2008-01-01

    The appearance of human infections caused by avian influenza A H7 subtype viruses underscore their pandemic potential and the need to develop vaccines to protect humans from viruses of this subtype. A live attenuated H7N3 virus vaccine was generated by reverse genetics using the HA and NA genes of a low pathogenicity A/chicken/BC/CN-6/04 (H7N3) virus and the six internal protein genes of the cold-adapted A/Ann Arbor/6/60 ca (H2N2) virus. The reassortant H7N3 BC 04 ca vaccine virus was temperature sensitive and showed attenuation in mice and ferrets. Intranasal immunization with one dose of the vaccine protected mice and ferrets when challenged with homologous and heterologous H7 viruses. The reassortant H7N3 BC 04 ca vaccine virus showed comparable levels of attenuation, immunogenicity and efficacy in mice and ferret models. The safety, immunogenicity, and efficacy of this vaccine in mice and ferrets support the evaluation of this vaccine in clinical trials. PMID:18585748

  14. A live attenuated cold-adapted influenza A H7N3 virus vaccine provides protection against homologous and heterologous H7 viruses in mice and ferrets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joseph, Tomy; MedImmune Inc., Mountain View, CA 94043; McAuliffe, Josephine

    2008-08-15

    The appearance of human infections caused by avian influenza A H7 subtype viruses underscores their pandemic potential and the need to develop vaccines to protect humans from viruses of this subtype. A live attenuated H7N3 virus vaccine was generated by reverse genetics using the HA and NA genes of a low pathogenicity A/chicken/BC/CN-6/04 (H7N3) virus and the six internal protein genes of the cold-adapted A/Ann Arbor/6/60 ca (H2N2) virus. The reassortant H7N3 BC 04 ca vaccine virus was temperature sensitive and showed attenuation in mice and ferrets. Intranasal immunization with one dose of the vaccine protected mice and ferrets whenmore » challenged with homologous and heterologous H7 viruses. The reassortant H7N3 BC 04 ca vaccine virus showed comparable levels of attenuation, immunogenicity and efficacy in mice and ferret models. The safety, immunogenicity, and efficacy of this vaccine in mice and ferrets support the evaluation of this vaccine in clinical trials.« less

  15. Influenza A (H10N7) Virus Causes Respiratory Tract Disease in Harbor Seals and Ferrets.

    PubMed

    van den Brand, Judith M A; Wohlsein, Peter; Herfst, Sander; Bodewes, Rogier; Pfankuche, Vanessa M; van de Bildt, Marco W G; Seehusen, Frauke; Puff, Christina; Richard, Mathilde; Siebert, Ursula; Lehnert, Kristina; Bestebroer, Theo; Lexmond, Pascal; Fouchier, Ron A M; Prenger-Berninghoff, Ellen; Herbst, Werner; Koopmans, Marion; Osterhaus, Albert D M E; Kuiken, Thijs; Baumgärtner, Wolfgang

    2016-01-01

    Avian influenza viruses sporadically cross the species barrier to mammals, including humans, in which they may cause epidemic disease. Recently such an epidemic occurred due to the emergence of avian influenza virus of the subtype H10N7 (Seal/H10N7) in harbor seals (Phoca vitulina). This epidemic caused high mortality in seals along the north-west coast of Europe and represented a potential risk for human health. To characterize the spectrum of lesions and to identify the target cells and viral distribution, findings in 16 harbor seals spontaneously infected with Seal/H10N7 are described. The seals had respiratory tract inflammation extending from the nasal cavity to bronchi associated with intralesional virus antigen in respiratory epithelial cells. Virus infection was restricted to the respiratory tract. The fatal outcome of the viral infection in seals was most likely caused by secondary bacterial infections. To investigate the pathogenic potential of H10N7 infection for humans, we inoculated the seal virus intratracheally into six ferrets and performed pathological and virological analyses at 3 and 7 days post inoculation. These experimentally inoculated ferrets displayed mild clinical signs, virus excretion from the pharynx and respiratory tract inflammation extending from bronchi to alveoli that was associated with virus antigen expression exclusively in the respiratory epithelium. Virus was isolated only from the respiratory tract. In conclusion, Seal/H10N7 infection in naturally infected harbor seals and experimentally infected ferrets shows that respiratory epithelial cells are the permissive cells for viral replication. Fatal outcome in seals was caused by secondary bacterial pneumonia similar to that in fatal human cases during influenza pandemics. Productive infection of ferrets indicates that seal/H10N7 may possess a zoonotic potential. This outbreak of LPAI from wild birds to seals demonstrates the risk of such occasions for mammals and thus humans.

  16. Highly pathogenic avian influenza A(H7N9) virus, Tennessee, USA, March 2017

    USDA-ARS?s Scientific Manuscript database

    In March 2017, highly pathogenic avian influenza A(H7N9) was detected at 2 poultry farms in Tennessee, USA. Surveillance data and genetic analyses indicated multiple introductions of low pathogenicity avian influenza virus before mutation to high pathogenicity and interfarm transmission. Poultry sur...

  17. Transmission and immunopathology of the avian influenza virus A/Anhui/1/2013 (H7N9) human isolate in three commonly commercialized avian species.

    PubMed

    Vidaña, B; Dolz, R; Busquets, N; Ramis, A; Sánchez, R; Rivas, R; Valle, R; Cordón, I; Solanes, D; Martínez, J; Majó, N

    2018-05-01

    H7N9 virus infection is a global concern, given that it can cause severe infection and mortality in humans. However, the understanding of H7N9 epidemiology, animal reservoir species and zoonotic risk remains limited. This work evaluates the pathogenicity, transmissibility and local innate immune response of three avian species harbouring different respiratory distribution of α2,6 and α2,3 SA receptors. Muscovy ducks, European quails and SPF chickens were intranasally inoculated with 10 5 embryo infectious dose (EID) 50 of the human H7N9 (A/Anhui/1/2013) influenza isolate. None of the avian species showed clinical signs or macroscopic lesions, and only mild microscopic lesions were observed in the upper respiratory tract of quail and chickens. Quail presented more severe histopathologic lesions and avian influenza virus (AIV) positivity by immunohistochemistry (IHC), which correlated with higher IL-6 responses. In contrast, Muscovy ducks were resistant to disease and presented higher IFNα and TLR7 response. In all species, viral shedding was higher in the respiratory than in the digestive tract. Higher viral shedding was observed in quail, followed by chicken and ducks, which presented similar viral titres. Efficient transmission was observed in all contact quail and half of the Muscovy ducks, while no transmission was observed between chicken. All avian species showed viral shedding in drinking water throughout infection. © 2017 Blackwell Verlag GmbH.

  18. [Investigation of geographic relationship between farmer's market with live birds and human infections with avian influenza A(H7N9)virus based on internet data analysis].

    PubMed

    Yu, Weiwen; Du, Pengcheng; Chen, Chen; Lu, Shan; Kan, Biao; Du, Xiaoping; Xu, Jianguo

    2014-03-01

    Farmer's markets with live birds (FMLB) are key sites where human infections by influenza A virus subtype H7N9 happened. Approximately 80% cases have exposed to FMLB. This study is to investigate the geographic relationship between FMLB and human cases based on analysis of internet data of their geographic locations. Using big data from internet, we searched all FMLB in the cities where the human cases have been reported, then analyzed geographic relations, and evaluated the possibility of visits of the patients to the FMLB around them. The densities of FMLB, population and live poultries were also analyzed. Forty-two cities and 10 615 markets were included in the study. It is indicated that the number of human cases has positive correlations with the population density, the number and density of markets. Except three markets in Foshan, human cases have been reported within 5 km of 10 of 13 markets, which shows that the live bird trading is highly relevant with the distribution of cases. We identified 13 hot spots in the cities including Hangzhou, Shenzhen, et al, where clustered cases have emerged. The numbers of human cases are significantly high in cities where FMLB are detected positive for H7N9 virus. These virus positive markets usually affect the people's residence within 5km area. The number and location of FMLB in cities should be re-evaluated and re-planed for healthy city where the risk of residents infecting avian influenza virus is greatly reduced or eliminated.

  19. The R292K Mutation That Confers Resistance to Neuraminidase Inhibitors Leads to Competitive Fitness Loss of A/Shanghai/1/2013 (H7N9) Influenza Virus in Ferrets

    PubMed Central

    Yen, Hui-Ling; Zhou, Jie; Choy, Ka-Tim; Sia, Sin Fun; Teng, Ooiean; Ng, Iris H.; Fang, Vicky J.; Hu, Yunwen; Wang, Wei; Cowling, Benjamin J.; Nicholls, John M.; Guan, Yi; Peiris, Joseph Sriyal Malik

    2014-01-01

    Background Neuraminidase (NA) inhibitors are the only licensed therapeutic option for human zoonotic H7N9 infections. An NA-R292K mutation that confers broad-spectrum resistance to NA inhibitors has been documented in H7N9 patients after treatment. Methods We evaluated the transmission potential of a human influenza A H7N9 isolate with a NA-R292K mutation in the ferret model followed by genotyping assay to monitor its competitive fitness in vivo. Results Plaque-purified A/Shanghai/1/2013 wild-type and NA-R292K viruses transmitted at comparable efficiency to direct or respiratory droplet contact ferrets. In ferrets inoculated with the plaque-purified A/Shanghai/1/2013 NA-R292K virus with dominant K292 (94%), the resistant K292 genotype was outgrown by the wild-type R292 genotype during the course of infection. Transmission of the resistant K292 genotype was detected in 3/4 direct contact and 3/4 respiratory droplet contact ferrets at early time points but was gradually replaced by the wild-type genotype. In the respiratory tissues of inoculated or infected ferrets, the wild-type R292 genotype dominated in the nasal turbinate, whereas the resistant K292 genotype was more frequently detected in the lungs. Conclusions The NA inhibitor-resistant H7N9 virus with the NA-R292K mutation may transmit among ferrets but showed compromised fitness in vivo while in competition with the wild-type virus. PMID:24951824

  20. Spatio-temporal pattern analysis for evaluation of the spread of human infections with avian influenza A(H7N9) virus in China, 2013-2014.

    PubMed

    Dong, Wen; Yang, Kun; Xu, Quanli; Liu, Lin; Chen, Juan

    2017-10-24

    A large number (n = 460) of A(H7N9) human infections have been reported in China from March 2013 through December 2014, and H7N9 outbreaks in humans became an emerging issue for China health, which have caused numerous disease outbreaks in domestic poultry and wild bird populations, and threatened human health severely. The aims of this study were to investigate the directional trend of the epidemic and to identify the significant presence of spatial-temporal clustering of influenza A(H7N9) human cases between March 2013 and December 2014. Three distinct epidemic phases of A(H7N9) human infections were identified in this study. In each phase, standard deviational ellipse analysis was conducted to examine the directional trend of disease spreading, and retrospective space-time permutation scan statistic was then used to identify the spatio-temporal cluster patterns of H7N9 outbreaks in humans. The ever-changing location and the increasing size of the three identified standard deviational ellipses showed that the epidemic moved from east to southeast coast, and hence to some central regions, with a future epidemiological trend of continue dispersing to more central regions of China, and a few new human cases might also appear in parts of the western China. Furthermore, A(H7N9) human infections were clustering in space and time in the first two phases with five significant spatio-temporal clusters (p < 0.05), but there was no significant cluster identified in phase III. There was a new epidemiologic pattern that the decrease in significant spatio-temporal cluster of A(H7N9) human infections was accompanied with an obvious spatial expansion of the outbreaks during the study period, and identification of the spatio-temporal patterns of the epidemic can provide valuable insights for better understanding the spreading dynamics of the disease in China.

  1. Influenza A(H9N2) Virus, Myanmar, 2014-2015.

    PubMed

    Lin, Thant Nyi; Nonthabenjawan, Nutthawan; Chaiyawong, Supassama; Bunpapong, Napawan; Boonyapisitsopa, Supanat; Janetanakit, Taveesak; Mon, Pont Pont; Mon, Hla Hla; Oo, Kyaw Naing; Oo, Sandi Myint; Mar Win, Mar; Amonsin, Alongkorn

    2017-06-01

    Routine surveillance of influenza A virus was conducted in Myanmar during 2014-2015. Influenza A(H9N2) virus was isolated in Shan State, upper Myanmar. Whole-genome sequencing showed that H9N2 virus from Myanmar was closely related to H9N2 virus of clade 4.2.5 from China.

  2. Experimental infection with H1N1 European swine influenza virus protects pigs from an infection with the 2009 pandemic H1N1 human influenza virus.

    PubMed

    Busquets, Núria; Segalés, Joaquim; Córdoba, Lorena; Mussá, Tufaria; Crisci, Elisa; Martín-Valls, Gerard E; Simon-Grifé, Meritxell; Pérez-Simó, Marta; Pérez-Maíllo, Monica; Núñez, Jose I; Abad, Francesc X; Fraile, Lorenzo; Pina, Sonia; Majó, Natalia; Bensaid, Albert; Domingo, Mariano; Montoya, María

    2010-01-01

    The recent pandemic caused by human influenza virus A(H1N1) 2009 contains ancestral gene segments from North American and Eurasian swine lineages as well as from avian and human influenza lineages. The emergence of this A(H1N1) 2009 poses a potential global threat for human health and the fact that it can infect other species, like pigs, favours a possible encounter with other influenza viruses circulating in swine herds. In Europe, H1N1, H1N2 and H3N2 subtypes of swine influenza virus currently have a high prevalence in commercial farms. To better assess the risk posed by the A(H1N1) 2009 in the actual situation of swine farms, we sought to analyze whether a previous infection with a circulating European avian-like swine A/Swine/Spain/53207/2004 (H1N1) influenza virus (hereafter referred to as SwH1N1) generated or not cross-protective immunity against a subsequent infection with the new human pandemic A/Catalonia/63/2009 (H1N1) influenza virus (hereafter referred to as pH1N1) 21 days apart. Pigs infected only with pH1N1 had mild to moderate pathological findings, consisting on broncho-interstitial pneumonia. However, pigs inoculated with SwH1N1 virus and subsequently infected with pH1N1 had very mild lung lesions, apparently attributed to the remaining lesions caused by SwH1N1 infection. These later pigs also exhibited boosted levels of specific antibodies. Finally, animals firstly infected with SwH1N1 virus and latter infected with pH1N1 exhibited undetectable viral RNA load in nasal swabs and lungs after challenge with pH1N1, indicating a cross-protective effect between both strains. © INRA, EDP Sciences, 2010.

  3. Protective efficacy of an inactivated vaccine against H9N2 avian influenza virus in ducks.

    PubMed

    Teng, Qiaoyang; Shen, Weixia; Liu, Qinfang; Rong, Guangyu; Chen, Lin; Li, Xuesong; Chen, Hongjun; Yang, Jianmei; Li, Zejun

    2015-09-17

    Wild ducks play an important role in the evolution of avian influenza viruses (AIVs). Domestic ducks in China are known to carry and spread H9N2 AIVs that are thought to have contributed internal genes for the recent outbreak of zoonotic H7N9 virus. In order to protect animal and public health, an effective vaccine is urgently needed to block and prevent the spread of H9N2 virus in ducks. We developed an inactivated H9N2 vaccine (with adjuvant Montanide ISA 70VG) based on an endemic H9N2 AIV and evaluated this vaccine in ducks. The results showed that the inactivated H9N2 vaccine was able to induce a strong and fast humoral immune response in vaccinated ducks. The hemagglutination inhibition titer in the sera increased fast, and reached its peak of 12.3 log2 at 5 weeks post-vaccination in immunized birds and remained at a high level for at least 37 weeks post-vaccination. Moreover, viral shedding was completely blocked in vaccinated ducks after challenge with a homologous H9N2 AIV at both 3 and 37 weeks post-vaccination. The results of this study indicate that the inactivated H9N2 vaccine induces high and prolonged immune response in vaccinated ducks and are efficacious in protecting ducks from H9N2 infection.

  4. Novel reassortant H9N2 viruses in pigeons and evidence for antigenic diversity of H9N2 viruses isolated from quails in Egypt.

    PubMed

    Kandeil, Ahmed; El-Shesheny, Rabeh; Maatouq, Asmaa; Moatasim, Yassmin; Cai, Zhipeng; McKenzie, Pamela; Webby, Richard; Kayali, Ghazi; Ali, Mohamed A

    2017-04-01

    The endemicity of avian influenza viruses (AIVs) among Egyptian poultry represents a public health risk. Co-circulation of low pathogenic AIV H9N2 subtype with highly pathogenic AIV H5N1 subtype in Egyptian farms provides a possibility to generate novel reassortant viruses. Here, the genetic characteristics of surface glycoproteins of 59 Egyptian H9N2 viruses, isolated between 2013 and 2015, were analysed. To elucidate the potential of genetic reassortment, 10 H9N2 isolates were selected based on different avian hosts (chickens, ducks, pigeons and quails) and phylogenetic analyses of their full genome sequences were conducted. Additionally, we performed antigenic analysis to further investigate the antigenic evolution of H9N2 viruses isolated during 2011-2015. Different viral characteristics including receptor-binding affinity and drug resistance of representative Egyptian H9N2 viruses were further investigated. The surface glycoproteins of current Egyptian H9N2 viruses were closely related to viruses of the G1-like lineage isolated from Egypt. Several genetic markers that enhance virulence in poultry and transmission to humans were detected. Analysis of the full genome of 10 H9N2 isolates indicated that two pigeon isolates inherited five internal genes from Eurasian AIVs circulating in wild birds. Antigenic conservation of different Egyptian H9N2 isolates from chickens, pigeons and ducks was observed, whereas quail isolates showed antigenic drift. The Egyptian H9N2 viruses preferentially bound to the human-like receptor rather than to the avian-like receptor. Our results suggest that the endemic H9N2 viruses in Egypt contain elements that may favour avian-to-human transmission and thus represent a public health risk.

  5. Novel reassortant H9N2 viruses in pigeons and evidence for antigenic diversity of H9N2 viruses isolated from quails in Egypt

    PubMed Central

    Kandeil, Ahmed; El-Shesheny, Rabeh; Maatouq, Asmaa; Moatasim, Yassmin; Cai, Zhipeng; McKenzie, Pamela; Webby, Richard

    2017-01-01

    The endemicity of avian influenza viruses (AIVs) among Egyptian poultry represents a public health risk. Co-circulation of low pathogenic AIV H9N2 subtype with highly pathogenic AIV H5N1 subtype in Egyptian farms provides a possibility to generate novel reassortant viruses. Here, the genetic characteristics of surface glycoproteins of 59 Egyptian H9N2 viruses, isolated between 2013 and 2015, were analysed. To elucidate the potential of genetic reassortment, 10 H9N2 isolates were selected based on different avian hosts (chickens, ducks, pigeons and quails) and phylogenetic analyses of their full genome sequences were conducted. Additionally, we performed antigenic analysis to further investigate the antigenic evolution of H9N2 viruses isolated during 2011–2015. Different viral characteristics including receptor-binding affinity and drug resistance of representative Egyptian H9N2 viruses were further investigated. The surface glycoproteins of current Egyptian H9N2 viruses were closely related to viruses of the G1-like lineage isolated from Egypt. Several genetic markers that enhance virulence in poultry and transmission to humans were detected. Analysis of the full genome of 10 H9N2 isolates indicated that two pigeon isolates inherited five internal genes from Eurasian AIVs circulating in wild birds. Antigenic conservation of different Egyptian H9N2 isolates from chickens, pigeons and ducks was observed, whereas quail isolates showed antigenic drift. The Egyptian H9N2 viruses preferentially bound to the human-like receptor rather than to the avian-like receptor. Our results suggest that the endemic H9N2 viruses in Egypt contain elements that may favour avian-to-human transmission and thus represent a public health risk. PMID:27902350

  6. The Protective Effects of the A/ZJU01/ PR8/2013 Split H7N9 Avian Influenza Vaccine Against Highly Pathogenic H7N9 in BALB/c Mice.

    PubMed

    Wu, Xiao-Xin; Deng, Xi-Long; Yu, Dong-Shan; Yao, Wei; Ou, Hui-Lin; Weng, Tian-Hao; Hu, Chen-Yu; Hu, Feng-Yu; Wu, Nan-Ping; Yao, Hangping; Zhang, Fu-Chun; Li, Lan-Juan

    2018-01-01

    Since the first case of novel H7N9 infection was reported, China has experienced five epidemics of H7N9. During the fifth wave, a highly pathogenic H7N9 strain emerged. In order to assess whether the H7N9 vaccine based on A/Zhejiang/DTID-ZJU01/2013(H7N9) was effective in protecting against highly pathogenic H7N9, we conducted this study. Groups of mice were immunized twice by intraperitoneal injection with 500 µl of either split vaccine alone or MF59-adjuvanted vaccine. Serum was collected 2 weeks after the second vaccine booster. The hemagglutinin inhibition test was conducted on vaccine seed and highly pathogenic H7N9 to evaluate the neutralization of highly pathogenic H7N9. We also immunized mice and challenged them with highly pathogenic H7N9. Mice were observed for illness, weight loss, and death at 1 week and 2 weeks post-infection. Then, the mice were sacrificed and lungs were removed. Antibody responses were assessed and pathological changes in the lung tissue were evaluated. The ability of serum to neutralize highly pathogenic H7N9 was reduced. In mice, highly pathogenic H7N9 was more virulent than A/Zhejiang/DTID-ZJU01/2013(H7N9). After challenge with highly pathogenic H7N9, all mice died while mice challenged with A/Zhejiang/DTID-ZJU01/2013(H7N9) all recovered. The A/ZJU01/PR8/2013 split H7N9 avian influenza vaccine was able to protect against infection with highly pathogenic H7N9 in mice, with or without MF59. Moreover, H7N9 vaccine adjuvanted with MF59 produced high antibody levels, which lead to better protection. The A/ZJU01/PR8/2013 split H7N9 avian influenza vaccine based on A/Zhejiang/DTID-ZJU01/2013(H7N9) is effective in protecting against highly pathogenic H7N9. H7N9 vaccine adjuvanted with MF59 offers better protection against infection with highly pathogenic H7N9. In order to make the H7N9 vaccine applicable to humans, further clinical trials are required to evaluate MF59 adjuvanted vaccine. Meanwhile, the vaccine strain should be updated

  7. The mouse and ferret models for studying the novel avian-origin human influenza A (H7N9) virus.

    PubMed

    Xu, Lili; Bao, Linlin; Deng, Wei; Zhu, Hua; Chen, Ting; Lv, Qi; Li, Fengdi; Yuan, Jing; Xiang, Zhiguang; Gao, Kai; Xu, Yanfeng; Huang, Lan; Li, Yanhong; Liu, Jiangning; Yao, Yanfeng; Yu, Pin; Yong, Weidong; Wei, Qiang; Zhang, Lianfeng; Qin, Chuan

    2013-08-08

    The current study was conducted to establish animal models (including mouse and ferret) for the novel avian-origin H7N9 influenza virus. A/Anhui/1/2013 (H7N9) virus was administered by intranasal instillation to groups of mice and ferrets, and animals developed typical clinical signs including body weight loss (mice and ferrets), ruffled fur (mice), sneezing (ferrets), and death (mice). Peak virus shedding from respiratory tract was observed on 2 days post inoculation (d.p.i.) for mice and 3-5 d.p.i. for ferrets. Virus could also be detected in brain, liver, spleen, kidney, and intestine from inoculated mice, and in heart, liver, and olfactory bulb from inoculated ferrets. The inoculation of H7N9 could elicit seroconversion titers up to 1280 in ferrets and 160 in mice. Leukopenia, significantly reduced lymphocytes but increased neutrophils were also observed in mouse and ferret models. The mouse and ferret model enables detailed studies of the pathogenesis of this illness and lay the foundation for drug or vaccine evaluation.

  8. Serological surveillance reveals widespread influenza A H7 and H9 subtypes among chicken flocks in Egypt.

    PubMed

    Afifi, Manal A A; El-Kady, Magdy F; Zoelfakar, Sahar A; Abdel-Moneim, Ahmed Sayed; Abddel-Moneim, Ahmed Sayed

    2013-02-01

    Multiple avian influenza viruses' subtypes are circulating worldwide possessing serious threat to human populations and considered key contributors to the emergence of human influenza pandemics. This study aimed to identify the potential existence of H7 and H9 avian influenza infections circulating among chicken flocks in Egypt. Serum samples were collected from chicken flocks that experienced respiratory distresses and/or variable mortality rates. H7 and H9 virus infections were screened by haemagglutination inhibition assay using chicken erythrocytes. Serum samples were collected from 9 broiler, 12 breeder and 18 layer flocks. Out of 1,225 examined sera, 417 (34 %) from 14 flocks and 605 (49.4 %) from 21 flocks were found positive for H7 and H9, respectively. Prevalence of both H7 and H9 antibodies were higher in layer followed by breeder then broiler flocks. Special consideration should be paid to control influenza viruses in Egypt, as pandemic influenza strains may develop unnoticed given the presence of subclinical infections, and the possibility of re-assortment with the prevailing endemic H5N1 virus strains in Egypt do exist.

  9. Apoptosis induction and release of inflammatory cytokines in the oviduct of egg-laying hens experimentally infected with H9N2 avian influenza virus.

    PubMed

    Wang, Jingyu; Tang, Chao; Wang, Qiuzhen; Li, Ruiqiao; Chen, Zhanli; Han, Xueying; Wang, Jing; Xu, Xingang

    2015-06-12

    The H9N2 subtype avian influenza virus (AIV) can cause serious damage to the reproductive tract of egg-laying hens, leading to severe egg-drop and poor egg shell quality. However, previous studies in relation to the oviductal-dysfunction resulted from this agent have not clearly been elucidated. In this study, apoptosis and pathologic changes in the oviducts of egg-laying hens caused by H9N2 AIV were evaluated. To understand the immune response in the pathogenic processes, 30-week old specific pathogen free (SPF) egg-laying hens inoculated with H9N2 subtype of AIV through combined intra-ocular and intra-nasal routes. H9N2 AIV infection resulted in oviductal lesions, triggered apoptosis and expression of immune related genes accompanied with infiltration of CD3(+)CD4(+) and CD3(+)CD8α(+) cells. Significant tissue damage and apoptosis were observed in the five oviductal parts (infundibulum, magnum, isthmus, uterus and vagina) at 5 days post-inoculation (dpi). Furthermore, immune-related genes, including chicken TLR3 (7, 21), MDA5, IL-2, IFN-β, CXCLi1, CXCLi2, XCL1, XCR1 and CCR5 showed variation in the egg-laying hens infected with H9N2 AIV. Notably, mRNA expression of IFN-α was suppressed during the infection. These results show distinct expression patterns of inflammatory cytokines and chemokines amongst segments of the oviduct. Differential gene expression of inflammatory cytokines and lymphocytes aggregation occurring in oviducts may initiate the infected tissue in response to virus replication which may eventually lead to excessive cellular apoptosis and tissue damage. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Up-Regulation of Pro-Inflammatory Cytokines and Chemokine Production in Avian Influenza H9N2 Virus-Infected Human Lung Epithelial Cell Line (A549).

    PubMed

    Farzin, Hamidreza; Toroghi, Reza; Haghparast, Alireza

    2016-01-01

    Influenza H9N2 virus mostly infects avian species but poses a potential health risk to humans. Little is known about the mammalian host immune responses to H9N2 virus. To obtain insight into the innate immune responses of human lung epithelial cells to the avian H9N2 virus, the expressions of pro-inflammatory cytokines and chemokine in the human airway epithelial cells infected with avian H9N2 virus were examined by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). H9N2 virus was able to cultivate in the human lung epithelial cell line (A549) and stimulate production of pro-inflammatory cytokines (IL-1β, IL-6) and chemokine (IL-8). Expressions of cytokine genes were up-regulated to a significantly higher level for IL-1β (p < 0.01), IL-6 (p < 0.01 after 12 hours and p < 0.05 after 24 hours) and IL-8 (p < 0.01 after 12 hours and p < 0.001 after 24 hours) in virus-cultured A549 cells as compared with non-virus-cultured cells. The amount of IL-6 and IL-1β proteins secreted into the culture medium was also increased after virus culture infection of A549 cell line compared to non-virus-cultured A549 cells and were significant in both IL-1β (p < 0.05 in 18 hours and p < 0.001 in 24-48 hours harvested supernatant) and IL-6 (p < 0.001). Silencing the p65 component of NF-κB in A549 cells suppressed the stimulatory effects of influenza virus on secretion of pro-inflammatory cytokines and chemokine. The findings in this study will broaden our understanding of host innate immune mechanisms and the pathogenesis of H9N2 influenza viruses in human respiratory epithelium.

  11. Serological evidence of H9N2 avian influenza virus exposure among poultry workers from Fars province of Iran.

    PubMed

    Heidari, A; Mancin, M; Nili, H; Pourghanbari, G H; Lankarani, K B; Leardini, S; Cattoli, G; Monne, I; Piccirillo, A

    2016-01-27

    Since the 1990s, influenza A viruses of the H9N2 subtype have been causing infections in the poultry population around the globe. This influenza subtype is widely circulating in poultry and human cases of AI H9N2 have been sporadically reported in countries where this virus is endemic in domestic birds. The wide circulation of H9N2 viruses throughout Europe and Asia along with their ability to cause direct infection in mammals and humans, raises public health concerns. H9N2 AI was reported for the first time in Iran in 1998 and at present it is endemic in poultry. This study was carried out to evaluate the exposure to H9N2 AI viruses among poultry workers from the Fars province. 100 poultry workers and 100 healthy individuals with no professional exposure to poultry took part in this study. Serum samples were tested for antibodies against two distinct H9N2 avian influenza viruses, which showed different phylogenetic clustering and important molecular differences, such as at the amino acid (aa) position 226 (Q/L) (H3 numbering), using haemagglutination inhibition (HI) and microneutralization (MN) assays. Results showed that 17 % of the poultry workers were positive for the A/chicken/Iran/10VIR/854-5/2008 virus in MN test and 12 % in HI test using the titer ≥40 as positive cut-off value. Only 2 % of the poultry workers were positive for the A/chicken/Iran/12VIR/9630/1998 virus. Seroprevalence of non exposed individuals for both H9N2 strains was below 3 % by both tests. Statistical analyses models showed that exposure to poultry significantly increases the risk of infection with H9N2 virus. The results have demonstrated that exposure to avian H9N2 viruses had occurred among poultry workers in the Fars province of Iran. Continuous surveillance programmes should be implemented to monitor the presence of avian influenza infections in humans and to evaluate their potential threat to poultry workers and public health.

  12. Unique Determinants of Neuraminidase Inhibitor Resistance among N3, N7, and N9 Avian Influenza Viruses.

    PubMed

    Song, Min-Suk; Marathe, Bindumadhav M; Kumar, Gyanendra; Wong, Sook-San; Rubrum, Adam; Zanin, Mark; Choi, Young-Ki; Webster, Robert G; Govorkova, Elena A; Webby, Richard J

    2015-11-01

    Human infections with avian influenza viruses are a serious public health concern. The neuraminidase (NA) inhibitors (NAIs) are the frontline anti-influenza drugs and are the major option for treatment of newly emerging influenza. Therefore, it is essential to identify the molecular markers of NAI resistance among specific NA subtypes of avian influenza viruses to help guide clinical management. NAI-resistant substitutions in NA subtypes other than N1 and N2 have been poorly studied. Here, we identified NA amino acid substitutions associated with NAI resistance among influenza viruses of N3, N7, and N9 subtypes which have been associated with zoonotic transmission. We applied random mutagenesis and generated recombinant influenza viruses carrying single or double NA substitution(s) with seven internal genes from A/Puerto Rico/8/1934 (H1N1) virus. In a fluorescence-based NA inhibition assay, we identified three categories of NA substitutions associated with reduced inhibition by NAIs (oseltamivir, zanamivir, and peramivir): (i) novel subtype-specific substitutions in or near the enzyme catalytic site (R152W, A246T, and D293N, N2 numbering), (ii) subtype-independent substitutions (E119G/V and/or D and R292K), and (iii) substitutions previously reported in other subtypes (Q136K, I222M, and E276D). Our data show that although some markers of resistance are present across NA subtypes, other subtype-specific markers can only be determined empirically. The number of humans infected with avian influenza viruses is increasing, raising concerns of the emergence of avian influenza viruses resistant to neuraminidase (NA) inhibitors (NAIs). Since most studies have focused on NAI-resistance in human influenza viruses, we investigated the molecular changes in NA that could confer NAI resistance in avian viruses grown in immortalized monolayer cells, especially those of the N3, N7, and N9 subtypes, which have caused human infections. We identified not only numerous NAI

  13. The R292K mutation that confers resistance to neuraminidase inhibitors leads to competitive fitness loss of A/Shanghai/1/2013 (H7N9) influenza virus in ferrets.

    PubMed

    Yen, Hui-Ling; Zhou, Jie; Choy, Ka-Tim; Sia, Sin Fun; Teng, Ooiean; Ng, Iris H; Fang, Vicky J; Hu, Yunwen; Wang, Wei; Cowling, Benjamin J; Nicholls, John M; Guan, Yi; Peiris, Joseph Sriyal Malik

    2014-12-15

    Neuraminidase (NA) inhibitors are the only licensed therapeutic option for human zoonotic H7N9 infections. An NA-R292K mutation that confers broad-spectrum resistance to NA inhibitors has been documented in H7N9 patients after treatment. We evaluated the transmission potential of a human influenza A H7N9 isolate with a NA-R292K mutation in the ferret model followed by genotyping assay to monitor its competitive fitness in vivo. Plaque-purified A/Shanghai/1/2013 wild-type and NA-R292K viruses transmitted at comparable efficiency to direct or respiratory droplet contact ferrets. In ferrets inoculated with the plaque-purified A/Shanghai/1/2013 NA-R292K virus with dominant K292 (94%), the resistant K292 genotype was outgrown by the wild-type R292 genotype during the course of infection. Transmission of the resistant K292 genotype was detected in 3/4 direct contact and 3/4 respiratory droplet contact ferrets at early time points but was gradually replaced by the wild-type genotype. In the respiratory tissues of inoculated or infected ferrets, the wild-type R292 genotype dominated in the nasal turbinate, whereas the resistant K292 genotype was more frequently detected in the lungs. The NA inhibitor-resistant H7N9 virus with the NA-R292K mutation may transmit among ferrets but showed compromised fitness in vivo while in competition with the wild-type virus. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Poultry vaccination directed evolution of H9N2 low pathogenicity avian influenza viruses in Korea

    USDA-ARS?s Scientific Manuscript database

    Significant economic losses in the poultry industries have resulted from H9N2 low pathogenic avian influenza virus infections across North Africa, the Middle East and Asia. The present study investigated the evolutionary dynamics of H9N2 viruses circulating in Korea from 1996 to 2012. Our analysis o...

  15. Challenge for One Health: Co-Circulation of Zoonotic H5N1 and H9N2 Avian Influenza Viruses in Egypt.

    PubMed

    Kim, Shin-Hee

    2018-03-09

    Highly pathogenic avian influenza (HPAI) H5N1 viruses are currently endemic in poultry in Egypt. Eradication of the viruses has been unsuccessful due to improper application of vaccine-based control strategies among other preventive measures. The viruses have evolved rapidly with increased bird-to-human transmission efficacy, thus affecting both animal and public health. Subsequent spread of potentially zoonotic low pathogenic avian influenza (LPAI) H9N2 in poultry has also hindered efficient control of avian influenza. The H5N1 viruses acquired enhanced bird-to-human transmissibility by (1) altering amino acids in hemagglutinin (HA) that enable binding affinity to human-type receptors, (2) loss of the glycosylation site and 130 loop in the HA protein and (3) mutation of E627K in the PB2 protein to enhance viral replication in mammalian hosts. The receptor binding site of HA of Egyptian H9N2 viruses has been shown to contain the Q234L substitution along with a H191 mutation, which can increase human-like receptor specificity. Therefore, co-circulation of H5N1 and H9N2 viruses in poultry farming and live bird markets has increased the risk of human exposure, resulting in complication of the epidemiological situation and raising a concern for potential emergence of a new influenza A virus pandemic. For efficient control of infection and transmission, the efficacy of vaccine and vaccination needs to be improved with a comprehensive control strategy, including enhanced biosecurity, education, surveillance, rapid diagnosis and culling of infected poultry.

  16. Challenge for One Health: Co-Circulation of Zoonotic H5N1 and H9N2 Avian Influenza Viruses in Egypt

    PubMed Central

    2018-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 viruses are currently endemic in poultry in Egypt. Eradication of the viruses has been unsuccessful due to improper application of vaccine-based control strategies among other preventive measures. The viruses have evolved rapidly with increased bird-to-human transmission efficacy, thus affecting both animal and public health. Subsequent spread of potentially zoonotic low pathogenic avian influenza (LPAI) H9N2 in poultry has also hindered efficient control of avian influenza. The H5N1 viruses acquired enhanced bird-to-human transmissibility by (1) altering amino acids in hemagglutinin (HA) that enable binding affinity to human-type receptors, (2) loss of the glycosylation site and 130 loop in the HA protein and (3) mutation of E627K in the PB2 protein to enhance viral replication in mammalian hosts. The receptor binding site of HA of Egyptian H9N2 viruses has been shown to contain the Q234L substitution along with a H191 mutation, which can increase human-like receptor specificity. Therefore, co-circulation of H5N1 and H9N2 viruses in poultry farming and live bird markets has increased the risk of human exposure, resulting in complication of the epidemiological situation and raising a concern for potential emergence of a new influenza A virus pandemic. For efficient control of infection and transmission, the efficacy of vaccine and vaccination needs to be improved with a comprehensive control strategy, including enhanced biosecurity, education, surveillance, rapid diagnosis and culling of infected poultry. PMID:29522492

  17. Cytokine expression in three chicken host systems infected with H9N2 influenza viruses with different pathogenicities.

    PubMed

    Wang, Jianlin; Cao, Zhiwei; Guo, Xuejin; Zhang, Yi; Wang, Dongdong; Xu, Shouzheng; Yin, Yanbo

    2016-12-01

    SD/818 and SD/196 are H9N2 influenza virus strains isolated from chickens from the same farm at different times that exhibited similar genetic evolution. However, strain SD/818 exhibited higher pathogenicity in chickens than strain SD/196 and other H9N2 influenza virus epidemic strains from China. The expression of cytokines is an important host defence mechanism following viral infection and their intensity is a major determinant of viral pathogenicity. To elucidate the mechanism underlying the increased pathogenicity of strain SD/818 from the host's perspective, viral replication and cytokine expression were dynamically studied using real-time quantitative reverse transcription PCR in chickens infected with strain SD/818 compared with chickens infected with strain SD/196 in this study. The results showed that the replication of strain SD/818 and the expressions of IL-1β, IL-6, TNF-α, IFN-α and IFN-β induced by strain SD/818 were higher than those induced by strain SD/196 in the chicken host system. Expression of these cytokines in chickens coincided with or followed virus replication. These results suggested that high-level viral replication and pro-inflammatory cytokine expression (but not decreased type I IFN expression) were associated with the higher pathogenicity of strain SD/818 in chickens.

  18. Use of fractional factorial design to study the compatibility of viral ribonucleoprotein gene segments of human H7N9 virus and circulating human influenza subtypes.

    PubMed

    Chin, Alex W H; Mok, Chris K P; Zhu, Huachen; Guan, Yi; Peiris, Joseph S M; Poon, Leo L M

    2014-09-01

    Avian H7N9 influenza viruses may pose a further threat to humans by reassortment with human viruses, which could lead to generation of novel reassortants with enhanced polymerase activity. We previously established a novel statistical approach to study the polymerase activity of reassorted vRNPs (Influenza Other Respir Viruses. 2013;7:969-78). Here, we report the use of this method to study recombinant vRNPs with subunits derived from human H1N1, H3N2, and H7N9 viruses. Our results demonstrate that some reassortant vRNPs with subunits derived from the H7N9 and other human viruses can have much higher polymerase activities than the wild-type levels. © 2014 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  19. Vertical Transmission of H9N2 Avian Influenza Virus in Goose.

    PubMed

    Yu, Guanliu; Wang, Aihua; Tang, Yi; Diao, Youxiang

    2017-01-01

    During a study on high mortality cases of goose embryo in Shandong Province, China (2014-2015), we isolated an H9N2 avian influenza virus (AIV) strain (A/goose/Shandong/DP01/2014, DP01), which was supposedly the causative agent for goose embryo death. Sequence analysis revealed that DP01 shared 99.9% homology in the HA gene with a classic immune suppression strain SD06. To study the potential vertical transmission ability of the DP01 strain in breeder goose, a total of 105 Taizhou breeder geese, which were 360 days old, were equally divided into five groups (A, B, C, D, and E) for experimental infection. H9N2 AIV (DP01) was used for inoculating through intravenous (group A), intranasal instillation (group B), and throat inoculation (group C) routes, respectively. The geese in group D were inoculated with phosphate buffer solution (PBS) and those in group E were the non-treated group. At 24 h post inoculation, H9N2 viral RNA could be detected at vitelline membrane, embryos, and allantoic fluid of goose embryos from H9N2 inoculated groups. Furthermore, the HA gene of H9N2 virus from vitelline membrane, embryo, allantoic fluid, and gosling shared almost 100% homology with an H9N2 virus isolated from the ovary of breeder goose, which laid these eggs, indicating that H9N2 AIV can be vertically transmitted in goose. The present research study provides evidence that vertical transmission of H9N2 AIV from breeding goose to goslings is possible.

  20. A Systematic Review of the Comparative Epidemiology of Avian and Human Influenza A H5N1 and H7N9 - Lessons and Unanswered Questions.

    PubMed

    Bui, C; Bethmont, A; Chughtai, A A; Gardner, L; Sarkar, S; Hassan, S; Seale, H; MacIntyre, C R

    2016-12-01

    The aim of this work was to explore the comparative epidemiology of influenza viruses, H5N1 and H7N9, in both bird and human populations. Specifically, the article examines similarities and differences between the two viruses in their genetic characteristics, distribution patterns in human and bird populations and postulated mechanisms of global spread. In summary, H5N1 is pathogenic in birds, while H7N9 is not. Yet both have caused sporadic human cases, without evidence of sustained, human-to-human spread. The number of H7N9 human cases in the first year following its emergence far exceeded that of H5N1 over the same time frame. Despite the higher incidence of H7N9, the spatial distribution of H5N1 within a comparable time frame is considerably greater than that of H7N9, both within China and globally. The pattern of spread of H5N1 in humans and birds around the world is consistent with spread through wild bird migration and poultry trade activities. In contrast, human cases of H7N9 and isolations of H7N9 in birds and the environment have largely occurred in a number of contiguous provinces in south-eastern China. Although rates of contact with birds appear to be similar in H5N1 and H7N9 cases, there is a predominance of incidental contact reported for H7N9 as opposed to close, high-risk contact for H5N1. Despite the high number of human cases of H7N9 and the assumed transmission being from birds, the corresponding level of H7N9 virus in birds in surveillance studies has been low, particularly in poultry farms. H7N9 viruses are also diversifying at a much greater rate than H5N1 viruses. Analyses of certain H7N9 strains demonstrate similarities with engineered transmissible H5N1 viruses which make it more adaptable to the human respiratory tract. These differences in the human and bird epidemiology of H5N1 and H7N9 raise unanswered questions as to how H7N9 has spread, which should be investigated further. © 2015 The Authors. Transboundary and Emerging Diseases

  1. Antibody Immunity Induced by H7N9 Avian Influenza Vaccines: Evaluation Criteria, Affecting Factors, and Implications for Rational Vaccine Design

    PubMed Central

    Hu, Zenglei; Jiao, Xinan; Liu, Xiufan

    2017-01-01

    Severe H7N9 avian influenza virus (AIV) infections in humans have public health authorities around the world on high alert for the potential development of a human influenza pandemic. Currently, the newly-emerged highly pathogenic avian influenza A (H7N9) virus poses a dual challenge for public health and poultry industry. Numerous H7N9 vaccine candidates have been generated using various platforms. Immunization trials in animals and humans showed that H7N9 vaccines are apparently poorly immunogenic because they induced low hemagglutination inhibition and virus neutralizing antibody titers. However, H7N9 vaccines elicit comparable levels of total hemagglutinin (HA)-reactive IgG antibody as the seasonal influenza vaccines, suggesting H7N9 vaccines are as immunogenic as their seasonal counterparts. A large fraction of overall IgG antibody is non-neutralizing antibody and they target unrecognized epitopes outside of the traditional antigenic sites in HA. Further, the Treg epitope identified in H7 HA may at least partially contribute to regulation of antibody immunity. Here, we review the latest advances for the development of H7N9 vaccines and discuss the influence of serological criteria on evaluation of immunogenicity of H7N9 vaccines. Next, we discuss factors affecting antibody immunity induced by H7N9 vaccines, including the change in antigenic epitopes in HA and the presence of the Treg epitope. Last, we present our perspectives for the unique features of antibody immunity of H7N9 vaccines and propose some future directions to improve or modify antibody response induced by H7N9 vaccines. This perspective would provide critical implications for rational design of H7N9 vaccines for human and veterinary use. PMID:29018438

  2. Transmission of H7N9 Influenza Viruses with a Polymorphism at PB2 Residue 627 in Chickens and Ferrets.

    PubMed

    Luk, Geraldine S M; Leung, Connie Y H; Sia, Sin Fun; Choy, Ka-Tim; Zhou, Jie; Ho, Candy C K; Cheung, Peter P H; Lee, Elaine F; Wai, Chris K L; Li, Pamela C H; Ip, Sin-Ming; Poon, Leo L M; Lindsley, William G; Peiris, Malik; Yen, Hui-Ling

    2015-10-01

    Poultry exposure is a major risk factor for human H7N9 zoonotic infections, for which the mode of transmission remains unclear. We studied the transmission of genetically related poultry and human H7N9 influenza viruses differing by four amino acids, including the host determinant PB2 residue 627. A/Silkie chicken/HK/1772/2014 (SCk1772) and A/HK/3263/14 (HK3263) replicated to comparable titers in chickens, with superior oropharyngeal over cloacal shedding; both viruses transmitted efficiently among chickens via direct contact but inefficiently via the airborne route. Interspecies transmission via the airborne route was observed for ferrets exposed to the SCk1772- or HK3263-infected chickens, while low numbers of copies of influenza viral genome were detected in the air, predominantly at particle sizes larger than 4 μm. In ferrets, the human isolate HK3263 replicated to higher titers and transmitted more efficiently via direct contact than SCk1772. We monitored "intrahost" and "interhost" adaptive changes at PB2 residue 627 during infection and transmission of the Sck1772 that carried E627 and HK3263 that carried V/K/E polymorphism at 60%, 20%, and 20%, respectively. For SCk1772, positive selection for K627 over E627 was observed in ferrets during the chicken-to-ferret or ferret-to-ferret transmission. For HK3263 that contained V/K/E polymorphism, mixed V627 and E627 genotypes were transmitted among chickens while either V627 or K627 was transmitted to ferrets with a narrow transmission bottleneck. Overall, our results suggest direct contact as the main mode for H7N9 transmission and identify the PB2-V627 genotype with uncompromised fitness and transmissibility in both avian and mammalian species. We studied the modes of H7N9 transmission, as this information is crucial for developing effective control measures for prevention. Using chicken (SCk1772) and human (HK3263) H7N9 isolates that differed by four amino acids, including the host determinant PB2 residue 627

  3. Transmission of H7N9 Influenza Viruses with a Polymorphism at PB2 Residue 627 in Chickens and Ferrets

    PubMed Central

    Luk, Geraldine S. M.; Leung, Connie Y. H.; Sia, Sin Fun; Choy, Ka-Tim; Zhou, Jie; Ho, Candy C. K.; Cheung, Peter P. H.; Lee, Elaine F.; Wai, Chris K. L.; Li, Pamela C. H.; Ip, Sin-Ming; Poon, Leo L. M.; Lindsley, William G.

    2015-01-01

    ABSTRACT Poultry exposure is a major risk factor for human H7N9 zoonotic infections, for which the mode of transmission remains unclear. We studied the transmission of genetically related poultry and human H7N9 influenza viruses differing by four amino acids, including the host determinant PB2 residue 627. A/Silkie chicken/HK/1772/2014 (SCk1772) and A/HK/3263/14 (HK3263) replicated to comparable titers in chickens, with superior oropharyngeal over cloacal shedding; both viruses transmitted efficiently among chickens via direct contact but inefficiently via the airborne route. Interspecies transmission via the airborne route was observed for ferrets exposed to the SCk1772- or HK3263-infected chickens, while low numbers of copies of influenza viral genome were detected in the air, predominantly at particle sizes larger than 4 μm. In ferrets, the human isolate HK3263 replicated to higher titers and transmitted more efficiently via direct contact than SCk1772. We monitored “intrahost” and “interhost” adaptive changes at PB2 residue 627 during infection and transmission of the Sck1772 that carried E627 and HK3263 that carried V/K/E polymorphism at 60%, 20%, and 20%, respectively. For SCk1772, positive selection for K627 over E627 was observed in ferrets during the chicken-to-ferret or ferret-to-ferret transmission. For HK3263 that contained V/K/E polymorphism, mixed V627 and E627 genotypes were transmitted among chickens while either V627 or K627 was transmitted to ferrets with a narrow transmission bottleneck. Overall, our results suggest direct contact as the main mode for H7N9 transmission and identify the PB2-V627 genotype with uncompromised fitness and transmissibility in both avian and mammalian species. IMPORTANCE We studied the modes of H7N9 transmission, as this information is crucial for developing effective control measures for prevention. Using chicken (SCk1772) and human (HK3263) H7N9 isolates that differed by four amino acids, including the host

  4. Effect of serial pig passages on the adaptation of an avian H9N2 influenza virus to swine.

    PubMed

    Mancera Gracia, Jose Carlos; Van den Hoecke, Silvie; Saelens, Xavier; Van Reeth, Kristien

    2017-01-01

    H9N2 avian influenza viruses are endemic in poultry in Asia and the Middle East. These viruses sporadically cause dead-end infections in pigs and humans raising concerns about their potential to adapt to mammals or reassort with human or swine influenza viruses. We performed ten serial passages with an avian H9N2 virus (A/quail/Hong Kong/G1/1997) in influenza naïve pigs to assess the potential of this virus to adapt to swine. Virus replication in the entire respiratory tract and nasal virus excretion were examined after each passage and we deep sequenced viral genomic RNA of the parental and passage four H9N2 virus isolated from the nasal mucosa and lung. The parental H9N2 virus caused a productive infection in pigs with a predominant tropism for the nasal mucosa, whereas only 50% lung samples were virus-positive. In contrast, inoculation of pigs with passage four virus resulted in viral replication in the entire respiratory tract. Subsequent passages were associated with reduced virus replication in the lungs and infectious virus was no longer detectable in the upper and lower respiratory tract of inoculated pigs at passage ten. The broader tissue tropism after four passages was associated with an amino acid residue substitution at position 225, within the receptor-binding site of the hemagglutinin. We also compared the parental H9N2, passage four H9N2 and the 2009 pandemic H1N1 (pH1N1) virus in a direct contact transmission experiment. Whereas only one out of six contact pigs showed nasal virus excretion of the wild-type H9N2 for more than four days, all six contact animals shed the passage four H9N2 virus. Nevertheless, the amount of excreted virus was significantly lower when compared to that of the pH1N1, which readily transmitted and replicated in all six contact animals. Our data demonstrate that serial passaging of H9N2 virus in pigs enhances its replication and transmissibility. However, full adaptation of an avian H9N2 virus to pigs likely requires an

  5. Effect of serial pig passages on the adaptation of an avian H9N2 influenza virus to swine

    PubMed Central

    Van den Hoecke, Silvie; Saelens, Xavier; Van Reeth, Kristien

    2017-01-01

    H9N2 avian influenza viruses are endemic in poultry in Asia and the Middle East. These viruses sporadically cause dead-end infections in pigs and humans raising concerns about their potential to adapt to mammals or reassort with human or swine influenza viruses. We performed ten serial passages with an avian H9N2 virus (A/quail/Hong Kong/G1/1997) in influenza naïve pigs to assess the potential of this virus to adapt to swine. Virus replication in the entire respiratory tract and nasal virus excretion were examined after each passage and we deep sequenced viral genomic RNA of the parental and passage four H9N2 virus isolated from the nasal mucosa and lung. The parental H9N2 virus caused a productive infection in pigs with a predominant tropism for the nasal mucosa, whereas only 50% lung samples were virus-positive. In contrast, inoculation of pigs with passage four virus resulted in viral replication in the entire respiratory tract. Subsequent passages were associated with reduced virus replication in the lungs and infectious virus was no longer detectable in the upper and lower respiratory tract of inoculated pigs at passage ten. The broader tissue tropism after four passages was associated with an amino acid residue substitution at position 225, within the receptor-binding site of the hemagglutinin. We also compared the parental H9N2, passage four H9N2 and the 2009 pandemic H1N1 (pH1N1) virus in a direct contact transmission experiment. Whereas only one out of six contact pigs showed nasal virus excretion of the wild-type H9N2 for more than four days, all six contact animals shed the passage four H9N2 virus. Nevertheless, the amount of excreted virus was significantly lower when compared to that of the pH1N1, which readily transmitted and replicated in all six contact animals. Our data demonstrate that serial passaging of H9N2 virus in pigs enhances its replication and transmissibility. However, full adaptation of an avian H9N2 virus to pigs likely requires an

  6. Replication and transmission of mammalian-adapted H9 subtype influenza virus in pigs and quail

    PubMed Central

    Obadan, Adebimpe O.; Kimble, Brian J.; Rajao, Daniela; Lager, Kelly; Santos, Jefferson J. S.; Vincent, Amy

    2015-01-01

    Influenza A virus is a major pathogen of birds, swine and humans. Strains can jump between species in a process often requiring mutations and reassortment, resulting in outbreaks and, potentially, pandemics. H9N2 avian influenza is predominant in poultry across Asia and occasionally infects humans and swine. Pandemic H1N1 (H1N1pdm) is endemic in humans and swine and has a history of reassortment in pigs. Previous studies have shown the compatibility of H9N2 and H1N1pdm for reassortment in ferrets, a model for human infection and transmission. Here, the effects of ferret adaptation of H9 surface gene segments on the infectivity and transmission in at-risk natural hosts, specifically swine and quail, were analysed. Reassortant H9N1 and H9N2 viruses, carrying seven or six gene segments from H1N1pdm, showed infectivity and transmissibility in swine, unlike the wholly avian H9N2 virus with ferret-adapted surface genes. In quail, only the reassortant H9N2 with the six internal gene segments from the H1N1pdm strain was able to infect and transmit, although less efficiently than the wholly avian H9N2 virus with ferret-adapted surface genes. These results highlight that ferret-adapted mutations on the haemagglutinin of H9 subtype virus do not restrict the ability of the virus to infect swine and quail, and that the ability to transmit in these species depends on the context of the whole virus. As such, this study emphasizes the threat that H9N2 reassortant viruses pose to humans and agricultural species and the importance of the genetic constellation of the virus to its ability to replicate and transmit in natural hosts of influenza. PMID:25986634

  7. Vaccine Efficacy of Inactivated, Chimeric Hemagglutinin H9/H5N2 Avian Influenza Virus and Its Suitability for the Marker Vaccine Strategy

    PubMed Central

    Kim, Se Mi; Kim, Young-Il; Park, Su-Jin; Kim, Eun-Ha; Kwon, Hyeok-il; Si, Young-Jae; Lee, In-Won; Song, Min-Suk

    2017-01-01

    ABSTRACT In order to produce a dually effective vaccine against H9 and H5 avian influenza viruses that aligns with the DIVA (differentiating infected from vaccinated animals) strategy, we generated a chimeric H9/H5N2 recombinant vaccine that expressed the whole HA1 region of A/CK/Korea/04163/04 (H9N2) and the HA2 region of recent highly pathogenic avian influenza (HPAI) A/MD/Korea/W452/14 (H5N8) viruses. The chimeric H9/H5N2 virus showed in vitro and in vivo growth properties and virulence that were similar to those of the low-pathogenic avian influenza (LPAI) H9 virus. An inactivated vaccine based on this chimeric virus induced serum neutralizing (SN) antibodies against both H9 and H5 viruses but induced cross-reactive hemagglutination inhibition (HI) antibody only against H9 viruses. Thus, this suggests its compatibility for use in the DIVA strategy against H5 strains. Furthermore, the chimeric H9/H5N2 recombinant vaccine protected immunized chickens against lethal challenge by HPAI H5N8 viruses and significantly attenuated virus shedding after infection by both H9N2 and HPAI H5N8 viruses. In mice, serological analyses confirmed that HA1- and HA2 stalk-specific antibody responses were induced by vaccination and that the DIVA principle could be employed through the use of an HI assay against H5 viruses. Furthermore, each HA1- and HA2 stalk-specific antibody response was sufficient to inhibit viral replication and protect the chimeric virus-immunized mice from lethal challenge with both mouse-adapted H9N2 and wild-type HPAI H5N1 viruses, although differences in vaccine efficacy against a homologous H9 virus (HA1 head domain immune-mediated protection) and a heterosubtypic H5 virus (HA2 stalk domain immune-mediated protection) were observed. Taken together, these results demonstrate that the novel chimeric H9/H5N2 recombinant virus is a low-pathogenic virus, and this chimeric vaccine is suitable for a DIVA vaccine with broad-spectrum neutralizing antibody against H5

  8. Understanding the 2013 H7N9 avian influenza outbreak in poultry: field epidemiology and experimental pathogenesis studies

    USDA-ARS?s Scientific Manuscript database

    The influenza A (H7N9) virus is of avian origin and is responsible for infections in human in large urban areas of China in spring 2013. The original source of the virus from poultry farms is unknown but the live poultry market (LPM) system has served as an amplifier of the virus, especially in whol...

  9. Identification of viral epitopes recognized by the immune system following vaccination and challenge with the H7N9 avian influenza virus from China

    USDA-ARS?s Scientific Manuscript database

    In March of 2013, the first cases of H7N9 influenza were reported in humans in China, and shortly thereafter the virus was confirmed from poultry in live bird markets. Since that time the virus has persisted in both human and avian populations. The genetic composition of these H7N9 influenza virus...

  10. Evaluation of homologous inactivated influenza vaccine for protection of chickens against the H7N9 virus isolated in Anhui, China during 2013

    USDA-ARS?s Scientific Manuscript database

    The recent outbreak of avian influenza (AI) H7N9 in humans in China in 2013 has resulted in approximately 30 % mortality. The genetic composition of these H7N9 viruses appears to be solely of avian origin. Although few isolations of these viruses have been demonstrated on poultry farms, the correlat...

  11. Transmission potential of influenza A/H7N9, February to May 2013, China

    PubMed Central

    2013-01-01

    Background On 31 March 2013, the first human infections with the novel influenza A/H7N9 virus were reported in Eastern China. The outbreak expanded rapidly in geographic scope and size, with a total of 132 laboratory-confirmed cases reported by 3 June 2013, in 10 Chinese provinces and Taiwan. The incidence of A/H7N9 cases has stalled in recent weeks, presumably as a consequence of live bird market closures in the most heavily affected areas. Here we compare the transmission potential of influenza A/H7N9 with that of other emerging pathogens and evaluate the impact of intervention measures in an effort to guide pandemic preparedness. Methods We used a Bayesian approach combined with a SEIR (Susceptible-Exposed-Infectious-Removed) transmission model fitted to daily case data to assess the reproduction number (R) of A/H7N9 by province and to evaluate the impact of live bird market closures in April and May 2013. Simulation studies helped quantify the performance of our approach in the context of an emerging pathogen, where human-to-human transmission is limited and most cases arise from spillover events. We also used alternative approaches to estimate R based on individual-level information on prior exposure and compared the transmission potential of influenza A/H7N9 with that of other recent zoonoses. Results Estimates of R for the A/H7N9 outbreak were below the epidemic threshold required for sustained human-to-human transmission and remained near 0.1 throughout the study period, with broad 95% credible intervals by the Bayesian method (0.01 to 0.49). The Bayesian estimation approach was dominated by the prior distribution, however, due to relatively little information contained in the case data. We observe a statistically significant deceleration in growth rate after 6 April 2013, which is consistent with a reduction in A/H7N9 transmission associated with the preemptive closure of live bird markets. Although confidence intervals are broad, the estimated

  12. Emergence of the virulence-associated PB2 E627K substitution in a fatal human case of highly pathogenic avian influenza virus A(H7N7) infection as determined by Illumina ultra-deep sequencing.

    PubMed

    Jonges, Marcel; Welkers, Matthijs R A; Jeeninga, Rienk E; Meijer, Adam; Schneeberger, Peter; Fouchier, Ron A M; de Jong, Menno D; Koopmans, Marion

    2014-02-01

    Avian influenza viruses are capable of crossing the species barrier and infecting humans. Although evidence of human-to-human transmission of avian influenza viruses to date is limited, evolution of variants toward more-efficient human-to-human transmission could result in a new influenza virus pandemic. In both the avian influenza A(H5N1) and the recently emerging avian influenza A(H7N9) viruses, the polymerase basic 2 protein (PB2) E627K mutation appears to be of key importance for human adaptation. During a large influenza A(H7N7) virus outbreak in the Netherlands in 2003, the A(H7N7) virus isolated from a fatal human case contained the PB2 E627K mutation as well as a hemagglutinin (HA) K416R mutation. In this study, we aimed to investigate whether these mutations occurred in the avian or the human host by Illumina Ultra-Deep sequencing of three previously uninvestigated clinical samples obtained from the fatal case. In addition, we investigated three chicken samples, two of which were obtained from the source farm. Results showed that the PB2 E627K mutation was not present in any of the chicken samples tested. Surprisingly, the avian samples were characterized by the presence of influenza virus defective RNA segments, suggestive for the synthesis of defective interfering viruses during infection in poultry. In the human samples, the PB2 E627K mutation was identified with increasing frequency during infection. Our results strongly suggest that human adaptation marker PB2 E627K has emerged during virus infection of a single human host, emphasizing the importance of reducing human exposure to avian influenza viruses to reduce the likelihood of viral adaptation to humans.

  13. Differentiated human airway organoids to assess infectivity of emerging influenza virus.

    PubMed

    Zhou, Jie; Li, Cun; Sachs, Norman; Chiu, Man Chun; Wong, Bosco Ho-Yin; Chu, Hin; Poon, Vincent Kwok-Man; Wang, Dong; Zhao, Xiaoyu; Wen, Lei; Song, Wenjun; Yuan, Shuofeng; Wong, Kenneth Kak-Yuen; Chan, Jasper Fuk-Woo; To, Kelvin Kai-Wang; Chen, Honglin; Clevers, Hans; Yuen, Kwok-Yung

    2018-06-26

    Novel reassortant avian influenza H7N9 virus and pandemic 2009 H1N1 (H1N1pdm) virus cause human infections, while avian H7N2 and swine H1N1 virus mainly infect birds and pigs, respectively. There is no robust in vitro model for assessing the infectivity of emerging viruses in humans. Based on a recently established method, we generated long-term expanding 3D human airway organoids which accommodate four types of airway epithelial cells: ciliated, goblet, club, and basal cells. We report differentiation conditions which increase ciliated cell numbers to a nearly physiological level with synchronously beating cilia readily discernible in every organoid. In addition, the differentiation conditions induce elevated levels of serine proteases, which are essential for productive infection of human influenza viruses and low-pathogenic avian influenza viruses. We also established improved 2D monolayer culture conditions for the differentiated airway organoids. To demonstrate the ability of differentiated airway organoids to identify human-infective virus, 3D and 2D differentiated airway organoids are applied to evaluate two pairs of viruses with known distinct infectivity in humans, H7N9/Ah versus H7N2 and H1N1pdm versus an H1N1 strain isolated from swine (H1N1sw). The human-infective H7N9/Ah virus replicated more robustly than the poorly human-infective H7N2 virus; the highly human-infective H1N1pdm virus replicated to a higher titer than the counterpart H1N1sw. Collectively, we developed differentiated human airway organoids which can morphologically and functionally simulate human airway epithelium. These differentiated airway organoids can be applied for rapid assessment of the infectivity of emerging respiratory viruses to human. Copyright © 2018 the Author(s). Published by PNAS.

  14. Detecting Spread of Avian Influenza A(H7N9) Virus Beyond China

    PubMed Central

    Havers, Fiona; Iuliano, A. Danielle; Davis, C. Todd; Sar, Borann; Sovann, Ly; Chin, Savuth; Corwin, Andrew L.; Vongphrachanh, Phengta; Douangngeun, Bounlom; Lindblade, Kim A.; Chittaganpitch, Malinee; Kaewthong, Viriya; Kile, James C.; Nguyen, Hien T.; Pham, Dong V.; Donis, Ruben O.; Widdowson, Marc-Alain

    2015-01-01

    During February 2013–March 2015, a total of 602 human cases of low pathogenic avian influenza A(H7N9) were reported; no autochthonous cases were reported outside mainland China. In contrast, since highly pathogenic avian influenza A(H5N1) reemerged during 2003 in China, 784 human cases in 16 countries and poultry outbreaks in 53 countries have been reported. Whether the absence of reported A(H7N9) outside mainland China represents lack of spread or lack of detection remains unclear. We compared epidemiologic and virologic features of A(H5N1) and A(H7N9) and used human and animal influenza surveillance data collected during April 2013–May 2014 from 4 Southeast Asia countries to assess the likelihood that A(H7N9) would have gone undetected during 2014. Surveillance in Vietnam and Cambodia detected human A(H5N1) cases; no A(H7N9) cases were detected in humans or poultry in Southeast Asia. Although we cannot rule out the possible spread of A(H7N9), substantial spread causing severe disease in humans is unlikely. PMID:25897654

  15. Effects of calcitriol (1, 25-dihydroxy-vitamin D3) on the inflammatory response induced by H9N2 influenza virus infection in human lung A549 epithelial cells and in mice.

    PubMed

    Gui, Boxiang; Chen, Qin; Hu, Chuanxia; Zhu, Caihui; He, Guimei

    2017-01-23

    H9N2 influenza viruses circulate globally and are considered to have pandemic potential. The hyper-inflammatory response elicited by these viruses is thought to contribute to disease severity. Calcitriol plays an important role in modulating the immune response to viral infections. However, its unknown whether calcitriol can attenuate the inflammatory response elicited by H9N2 influenza virus infection. Human lung A549 epithelial cells were treated with calcitriol (100 nM) and then infected with an H9N2 influenza virus, or infected and then treated with calcitriol (30 nM). Culture supernatants were collected every 24 h post infection and the viral growth kinetics and inflammatory response were evaluated. Calcitriol (5 mg/kg) was administered daily by intraperitoneal injection to BABL/c mice for 15 days following H9N2 influenza virus infection. Mice were monitored for clinical signs of disease, lung pathology and inflammatory responses. Calcitriol treatment prior to and post infection with H9N2 influenza significantly decreased expression of the influenza M gene, IL-6, and IFN-β in A549 cells, but did not affect virus replication. In vivo, we found that calcitriol treatment significantly downregulated pulmonary inflammation in mice 2 days post-infection, but increased the inflammatory response 4 to 6 days post-infection. In contrast, the antiviral cytokine IFN-β was significantly higher in calcitriol-treated mice than in the untreated infected mice at 2 days post-infection, but lower than in untreated infected mice on days 4 and 8 post-infection. The elevated levels of pro-inflammatory cytokines and the decreased levels of antiviral cytokine are consistent with the period of maximum body weight loss and the lung damage in calcitriol-treated mice. These results suggest that calcitriol treatment might have a negative impact on the innate immune response elicited by H9N2 infection in mice, especially at the later stage of influenza virus infection. This study

  16. Poultry vaccination directed evolution of H9N2 low pathogenicity avian influenza viruses in Korea.

    PubMed

    Lee, Dong-Hun; Fusaro, Alice; Song, Chang-Seon; Suarez, David L; Swayne, David E

    2016-01-15

    Significant economic losses in the poultry industries have resulted from H9N2 low pathogenic avian influenza virus infections across North Africa, the Middle East and Asia. The present study investigated the evolutionary dynamics of H9N2 viruses circulating in Korea from 1996 to 2012. Our analysis of viral population dynamics revealed an increase in genetic diversity between the years 2003 and 2007, corresponding to the spread and diversification of H9N2 viruses into multiple genetic groups (named A and B), followed by a sudden decrease in 2007, which was associated with implementation of vaccination using a Clade A virus. Implementation of the H9N2 vaccination program in Korea has dramatically reduced the diversity of H9N2 virus, and only one sub-lineage of clade B has survived, expanded, and currently circulates in Korea. In addition, the antigenic drift of this new genetic group away from the current vaccine strain suggests the need to update the vaccine seed strain. Published by Elsevier Inc.

  17. Collaborative studies on the development of national reference standards for potency determination of H7N9 influenza vaccine

    PubMed Central

    Li, Changgui; Xu, Kangwei; Hashem, Anwar; Shao, Ming; Liu, Shuzhen; Zou, Yong; Gao, Qiang; Zhang, Yongchao; Yuan, Liyong; Xu, Miao; Li, Xuguang; Wang, Junzhi

    2015-01-01

    The outbreak of human infections of a novel avian influenza virus A (H7N9) prompted the development of the vaccines against this virus. Like all types of influenza vaccines, H7N9 vaccine must be tested for its potency prior to being used in humans. However, the unavailability of international reference reagents for the potency determination of H7N9 vaccines substantially hinders the progress in vaccine development. To facilitate clinical development, we enlisted 5 participants in a collaborative study to develop critical reagents used in Single Radial Immunodiffusion (SRID), the currently acceptable assay for potency determination of influenza vaccine. Specifically, the hemagglutinin (HA) content of one vaccine bulk for influenza A (H7N9), herein designated as Primary Liquid Standard (PLS), was determined by SDS-PAGE. In addition, the freeze-dried antigen references derived from PLS were prepared to enhance the stability for long term storage. The final HA content of lyophilized antigen references were calibrated against PLS by SRID assay in a collaborative study. Importantly, application of these national reference standards to potency analyses greatly facilitated the development of H7N9 vaccines in China. PMID:25970793

  18. Modulation of the innate immune-related genes expression in H9N2 avian influenza virus-infected chicken macrophage-like cells (HD11) in response to Escherichia coli LPS stimulation.

    PubMed

    Qi, Xuefeng; Liu, Caihong; Li, Ruiqiao; Zhang, Huizhu; Xu, Xingang; Wang, Jingyu

    2017-04-01

    Macrophages play important roles in mediating virus-induced innate immune responses and are thought to be involved in the pathogenesis of bacterial superinfections. The innate immune response initiated by both low pathogenicity AIV and bacterial superinfection in their avian host is not fully understood. We therefore determine the transcripts of innate immune-related genes following avian H9N2 AIV virus infection and E. coli LPS co-stimulation of avian macrophage-like cell line HD11 cells. More pronounced expression of pro-inflammatory cytokines (IL-6 and IL-1β) as well as the inflammatory chemokines (CXCLi1 and CXCLi2) was observed in virus infected plus LPS treated HD11 cells compared to H9N2 virus solely infected control. For two superinfection groups, the levels of genes examined in a prior H9N2 virus infection before secondary LPS treatment group were significantly higher as compared with simultaneous virus infection plus LPS stimulation group. Interestingly, similar high levels of IL-6 gene were observed between LPS sole stimulation group and two superinfection groups. Moreover, IL-10 and TGF-β3 mRNA levels in both superinfection groups were moderately upregulated compared to sole LPS stimulation group or virus alone infection group. Although TLR4 and MDA5 levels in virus alone infection group were significantly lower compared to that in both superinfection groups, TLR4 upregulation respond more rapid to virus sole infection compared to LPS plus virus superinfection. Collectively, innate immune-related genes respond more pronounced in LPS stimulation plus H9N2 virus infection HD11 cells compared to sole virus infection or LPS alone stimulation control cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Antigenic Fingerprinting of Antibody Response in Humans following Exposure to Highly Pathogenic H7N7 Avian Influenza Virus: Evidence for Anti-PA-X Antibodies.

    PubMed

    Khurana, Surender; Chung, Ka Yan; Coyle, Elizabeth M; Meijer, Adam; Golding, Hana

    2016-10-15

    Infections with H7 highly pathogenic avian influenza (HPAI) viruses remain a major public health concern. Adaptation of low-pathogenic H7N7 to highly pathogenic H7N7 in Europe in 2015 raised further alarm for a potential pandemic. An in-depth understanding of antibody responses to HPAI H7 virus following infection in humans could provide important insight into virus gene expression as well as define key protective and serodiagnostic targets. Here we used whole-genome gene fragment phage display libraries (GFPDLs) expressing peptides of 15 to 350 amino acids across the complete genome of the HPAI H7N7 A/Netherlands/33/03 virus. The hemagglutinin (HA) antibody epitope repertoires of 15 H7N7-exposed humans identified clear differences between individuals with no hemagglutination inhibition (HI) titers (<1:10) and those with HI titers of >1:40. Several potentially protective H7N7 epitopes close to the HA receptor binding domain (RBD) and neuraminidase (NA) catalytic site were identified. Surface plasmon resonance (SPR) analysis identified a strong correlation between HA1 (but not HA2) binding antibodies and H7N7 HI titers. A proportion of HA1 binding in plasma was contributed by IgA antibodies. Antibodies against the N7 neuraminidase were less frequent but targeted sites close to the sialic acid binding site. Importantly, we identified strong antibody reactivity against PA-X, a putative virulence factor, in most H7N7-exposed individuals, providing the first evidence for in vivo expression of PA-X and its recognition by the immune system during human influenza A virus infection. This knowledge can help inform the development and selection of the most effective countermeasures for prophylactic as well as therapeutic treatments of HPAI H7N7 avian influenza virus. An outbreak of pathogenic H7N7 virus occurred in poultry farms in The Netherlands in 2003. Severe outcome included conjunctivitis, influenza-like illness, and one lethal infection. In this study, we investigated

  20. The Continuing Evolution of H5N1 and H9N2 Influenza Viruses in Bangladesh Between 2013 and 2014.

    PubMed

    Marinova-Petkova, Atanaska; Shanmuganatham, Karthik; Feeroz, Mohammed M; Jones-Engel, Lisa; Hasan, M Kamrul; Akhtar, Sharmin; Turner, Jasmine; Walker, David; Seiler, Patrick; Franks, John; McKenzie, Pamela; Krauss, Scott; Webby, Richard J; Webster, Robert G

    2016-05-01

    In 2011, avian influenza surveillance at the Bangladesh live bird markets (LBMs) showed complete replacement of the highly pathogenic avian influenza (HPAI) H5N1 virus of clade 2.2.2 (Qinghai-like H5N1 lineage) by the HPAI H5N1 clade 2.3.2.1. This clade, which continues to circulate in Bangladesh and neighboring countries, is an intra-and interclade reassortant; its HA, polymerase basic 1 (PB1), polymerase (PA), and nonstructural (NS) genes come from subclade 2.3.2.1a; the polymerase basic 2 (PB2) comes from subclade 2.3.2.1c; and the NA, nucleocapsid protein (NP), and matrix (M) gene from clade 2.3.4.2. The H9N2 influenza viruses cocirculating in the Bangladesh LBMs are also reassortants, possessing five genes (NS, M, NP, PA, and PB1) from an HPAI H7N3 virus previously isolated in Pakistan. Despite frequent coinfection of chickens and ducks, reassortment between these H5N1 and H9N2 viruses has been rare. However, all such reassortants detected in 2011 through 2013 have carried seven genes from the local HPAI H5N1 lineage and the PB1 gene from the Bangladeshi H9N2 clade G1 Mideast, itself derived from HPAI H7N3 virus. Although the live birds we sampled in Bangladesh showed no clinical signs of morbidity, the emergence of this reassortant HPAI H5N1 lineage further complicates endemic circulation of H5N1 viruses in Bangladesh, posing a threat to both poultry and humans.

  1. Comparison of a new gold immunochromatographic assay for the rapid diagnosis of the novel influenza A (H7N9) virus with cell culture and a real-time reverse-transcription PCR assay.

    PubMed

    Jin, Changzhong; Wu, Nanping; Peng, Xiaorong; Yao, Hangping; Lu, Xiangyun; Chen, Yu; Wu, Haibo; Xie, Tiansheng; Cheng, Linfang; Liu, Fumin; Kang, Keren; Tang, Shixing; Li, Lanjuan

    2014-01-01

    We assessed a colloidal gold immunochromatographic assay (GICA) for rapid detection of influenza A (H7N9) and compared it with reverse-transcription-polymerase chain reaction (RT-PCR) and viral culture. Samples from 35 H7N9 infected patients were collected, including 45 throat swab samples, 56 sputum samples, and 39 feces samples. All samples were tested by GICA, viral culture, and RT-PCR. GICA specifically reacted with recombinant HA proteins, virus lysates, and clinical samples from H7 subtype viruses. Compared with RT-PCR, GICA demonstrated low sensitivity (33.33%) but high specificity (97.56%). The positive rate of GICA tests for samples collected in the period from 8 to 21 days after contact with poultry was much higher than those for samples collected before or after this period. Compared with viral culture, GICA showed sensitivity of 91.67% and specificity of 82.03%. Sputum specimens were more likely to test positive for H7N9 virus than samples from throat swabs and feces. The GICA-based H7 test is a reliable, rapid, and convenient method for the screening and diagnosis of influenza A (H7N9) disease, especially for the sputum specimens with high viral load. It may be helpful in managing H7N9 epidemics and preliminary diagnosis in early stages in resource-limited settings.

  2. Comparison of a New Gold Immunochromatographic Assay for the Rapid Diagnosis of the Novel Influenza A (H7N9) Virus with Cell Culture and a Real-Time Reverse-Transcription PCR Assay

    PubMed Central

    Wu, Nanping; Peng, Xiaorong; Yao, Hangping; Lu, Xiangyun; Chen, Yu; Wu, Haibo; Xie, Tiansheng; Cheng, Linfang; Liu, Fumin; Kang, Keren; Tang, Shixing; Li, Lanjuan

    2014-01-01

    We assessed a colloidal gold immunochromatographic assay (GICA) for rapid detection of influenza A (H7N9) and compared it with reverse-transcription-polymerase chain reaction (RT-PCR) and viral culture. Samples from 35 H7N9 infected patients were collected, including 45 throat swab samples, 56 sputum samples, and 39 feces samples. All samples were tested by GICA, viral culture, and RT-PCR. GICA specifically reacted with recombinant HA proteins, virus lysates, and clinical samples from H7 subtype viruses. Compared with RT-PCR, GICA demonstrated low sensitivity (33.33%) but high specificity (97.56%). The positive rate of GICA tests for samples collected in the period from 8 to 21 days after contact with poultry was much higher than those for samples collected before or after this period. Compared with viral culture, GICA showed sensitivity of 91.67% and specificity of 82.03%. Sputum specimens were more likely to test positive for H7N9 virus than samples from throat swabs and feces. The GICA-based H7 test is a reliable, rapid, and convenient method for the screening and diagnosis of influenza A (H7N9) disease, especially for the sputum specimens with high viral load. It may be helpful in managing H7N9 epidemics and preliminary diagnosis in early stages in resource-limited settings. PMID:24822207

  3. Humans and Ferrets with Prior H1N1 Influenza Virus Infections Do Not Exhibit Evidence of Original Antigenic Sin after Infection or Vaccination with the 2009 Pandemic H1N1 Influenza Virus

    PubMed Central

    O'Donnell, Christopher D.; Wright, Amber; Vogel, Leatrice; Boonnak, Kobporn; Treanor, John J.

    2014-01-01

    The hypothesis of original antigenic sin (OAS) states that the imprint established by an individual's first influenza virus infection governs the antibody response thereafter. Subsequent influenza virus infection results in an antibody response against the original infecting virus and an impaired immune response against the newer influenza virus. The purpose of our study was to seek evidence of OAS after infection or vaccination with the 2009 pandemic H1N1 (2009 pH1N1) virus in ferrets and humans previously infected with H1N1 viruses with various antigenic distances from the 2009 pH1N1 virus, including viruses from 1935 through 1999. In ferrets, seasonal H1N1 priming did not diminish the antibody response to infection or vaccination with the 2009 pH1N1 virus, nor did it diminish the T-cell response, indicating the absence of OAS in seasonal H1N1 virus-primed ferrets. Analysis of paired samples of human serum taken before and after vaccination with a monovalent inactivated 2009 pH1N1 vaccine showed a significantly greater-fold rise in the titer of antibody against the 2009 pH1N1 virus than against H1N1 viruses that circulated during the childhood of each subject. Thus, prior experience with H1N1 viruses did not result in an impairment of the antibody response against the 2009 pH1N1 vaccine. Our data from ferrets and humans suggest that prior exposure to H1N1 viruses did not impair the immune response against the 2009 pH1N1 virus. PMID:24648486

  4. Humans and ferrets with prior H1N1 influenza virus infections do not exhibit evidence of original antigenic sin after infection or vaccination with the 2009 pandemic H1N1 influenza virus.

    PubMed

    O'Donnell, Christopher D; Wright, Amber; Vogel, Leatrice; Boonnak, Kobporn; Treanor, John J; Subbarao, Kanta

    2014-05-01

    The hypothesis of original antigenic sin (OAS) states that the imprint established by an individual's first influenza virus infection governs the antibody response thereafter. Subsequent influenza virus infection results in an antibody response against the original infecting virus and an impaired immune response against the newer influenza virus. The purpose of our study was to seek evidence of OAS after infection or vaccination with the 2009 pandemic H1N1 (2009 pH1N1) virus in ferrets and humans previously infected with H1N1 viruses with various antigenic distances from the 2009 pH1N1 virus, including viruses from 1935 through 1999. In ferrets, seasonal H1N1 priming did not diminish the antibody response to infection or vaccination with the 2009 pH1N1 virus, nor did it diminish the T-cell response, indicating the absence of OAS in seasonal H1N1 virus-primed ferrets. Analysis of paired samples of human serum taken before and after vaccination with a monovalent inactivated 2009 pH1N1 vaccine showed a significantly greater-fold rise in the titer of antibody against the 2009 pH1N1 virus than against H1N1 viruses that circulated during the childhood of each subject. Thus, prior experience with H1N1 viruses did not result in an impairment of the antibody response against the 2009 pH1N1 vaccine. Our data from ferrets and humans suggest that prior exposure to H1N1 viruses did not impair the immune response against the 2009 pH1N1 virus.

  5. Genesis of the novel human-infecting influenza A(H10N8) virus and potential genetic diversity of the virus in poultry, China.

    PubMed

    Qi, W; Zhou, X; Shi, W; Huang, L; Xia, W; Liu, D; Li, H; Chen, S; Lei, F; Cao, L; Wu, J; He, F; Song, W; Li, Q; Li, H; Liao, M; Liu, M

    2014-06-26

    Human infection with a novel influenza A(H10N8) virus was first described in China in December 2013. However, the origin and genetic diversity of this virus is still poorly understood. We performed a phylogenetic analysis and coalescent analysis of two viruses from the first case of influenza A(H10N8) (A/Jiangxi-Donghu/346-1/2013 and A/Jiangxi-Donghu/346-2/2013 and a novel A(H10N8) virus (A/chicken/Jiangxi/102/2013) isolated from a live poultry market that the patient had visited. The haemagglutinin (HA), neuraminidase (NA), PA subunit of the virus polymerase complex, nucleoprotein (NP), M and nonstructural protein (NS) genes of the three virus strains shared the same genetic origins. The origins of their HA and NA genes were similar: originally from wild birds to ducks, and then to chickens. The PA, NP, M, and NS genes were similar to those of chicken influenza A(H9N2) viruses. Coalescent analyses showed that the reassortment of these genes from A(H9N2) to A(H10N8) might have occurred at least twice. However, the PB1 and PB2 genes of the chicken A(H10N8) virus most likely originated from H7-like viruses of ducks, while those of the viruses from the case most likely stemmed from A(H9N2) viruses circulating in chickens. The oseltamivir-resistance mutation, R292K (R291K in A(H10N8) numbering) in the NA protein, occurred after four days of oseltamivir treatment. It seems that A(H10N8) viruses might have become established among poultry and their genetic diversity might be much higher than what we have observed.

  6. Phylogenetic analysis of H9N2 avian influenza viruses in Afghanistan (2016-2017).

    PubMed

    Hosseini, Hossein; Ghalyanchilangeroudi, Arash; Fallah Mehrabadi, Mohammad Hossein; Sediqian, Mohammad Saeed; Shayeganmehr, Arzhang; Ghafouri, Seyed Ali; Maghsoudloo, Hossein; Abdollahi, Hamed; Farahani, Reza Kh

    2017-10-01

    Avian influenza A virus (AIV) subtype H9N2 is the most prevalent subtype found in terrestrial poultry throughout Eurasia and has been isolated from poultry outbreaks worldwide. Tracheal tissue specimens from 100 commercial broiler flocks in Afghanistan were collected between 2016 and 2017. After real-time RT-PCR, AI-positive samples were further characterized. A part of the HA gene was amplified using RT-PCR and sequenced. The results of real-time RT-PCR showed that 40 percent of the flocks were AI positive. Phylogenetic studies showed that these H9N2 AIVs grouped within the Eurasian-lineage G1 AIVs and had a correlation with H9N2 AIV circulating in the poultry population of the neighboring countries over the past decade. Analysis of the amino acid sequence of HA revealed that the detected H9N2 viruses possessed molecular profiles suggestive of low pathogenicity and specificity for the avian-like SAα2,3 receptor, demonstrating their specificity for and adaptation to domestic poultry. The results of the current study provide great insights into H9N2 viruses circulating in Afghanistan's poultry industry and demonstrate the necessity of planning an applied policy aimed at controlling and managing H9N2 infection in Afghan poultry.

  7. Oral immunization with a novel attenuated Salmonella Typhimurium encoding influenza HA, M2e and NA antigens protects chickens against H7N9 infection.

    PubMed

    Kim, Je Hyoung; Hajam, Irshad Ahmed; Lee, John Hwa

    2018-02-01

    Attenuated Salmonella strains constitute a promising technology for the development of efficient protein-based influenza vaccines. H7N9, a low pathogenic avian influenza (LPAI) virus, is a major public health concern and currently there are no effective vaccines against this subtype. Herein, we constructed a novel attenuated Salmonella Typhimurium strain for the delivery and expression of H7N9 hemagglutinin (HA), neuraminidase (NA) or the conserved extracellular domain of the matrix protein 2 (M2e). We demonstrated that the constructed Salmonella strains exhibited efficient HA, NA and M2e expressions, respectively, and the constructs were safe and immunogenic in chickens. Our results showed that chickens immunized once orally with Salmonella (Sal) mutants encoding HA (Sal-HA), M2e (Sal-M2e) or NA (Sal-NA), administered either alone or in combination, induced both antigen-specific humoral and cell mediated immune (CMI) responses, and protected chickens against the lethal H7N9 challenge. However, chickens immunized with Sal-HA+Sal-M2e+Sal-NA vaccine constructs exhibited efficient mucosal and CMI responses compared to the chickens that received only Sal-HA, Sal-M2e or Sal-M2e+Sal-NA vaccine. Further, chickens immunized with Sal-HA+Sal-M2e+Sal-NA constructs cleared H7N9 infection at a faster rate compared to the chickens that were vaccinated with Sal-HA, Sal-M2e or Sal-M2e+Sal-NA, as indicated by the reduced viral shedding in cloacal swabs of the immunized chickens. We conclude that this vaccination strategy, based on HA, M2e and NA, stimulated efficient induction of immune protection against the lethal H7N9 LPAI virus and, therefore, further studies are warranted to develop this approach as a potential prophylaxis against LPAI viruses affecting poultry birds.

  8. Highly Pathogenic Avian Influenza A(H5N1) Virus Infection among Workers at Live Bird Markets, Bangladesh, 2009–2010

    PubMed Central

    Khan, Salah Uddin; Luby, Stephen P.; Gurley, Emily S.; Abedin, Jaynal; Zaman, Rashid Uz; Sohel, Badrul Munir; Rahman, Mustafizur; Hancock, Kathy; Levine, Min Z.; Veguilla, Vic; Wang, David; Holiday, Crystal; Gillis, Eric; Sturm-Ramirez, Katharine; Bresee, Joseph S.; Rahman, Mahmudur; Uyeki, Timothy M.; Katz, Jacqueline M.; Azziz-Baumgartner, Eduardo

    2015-01-01

    The risk for influenza A(H5N1) virus infection is unclear among poultry workers in countries where the virus is endemic. To assess H5N1 seroprevalence and seroconversion among workers at live bird markets (LBMs) in Bangladesh, we followed a cohort of workers from 12 LBMs with existing avian influenza surveillance. Serum samples from workers were tested for H5N1 antibodies at the end of the study or when LBM samples first had H5N1 virus–positive test results. Of 404 workers, 9 (2%) were seropositive at baseline. Of 284 workers who completed the study and were seronegative at baseline, 6 (2%) seroconverted (7 cases/100 poultry worker–years). Workers who frequently fed poultry, cleaned feces from pens, cleaned food/water containers, and did not wash hands after touching sick poultry had a 7.6 times higher risk for infection compared with workers who infrequently performed these behaviors. Despite frequent exposure to H5N1 virus, LBM workers showed evidence of only sporadic infection. PMID:25811942

  9. Lymphopenia associated with highly virulent H5N1 virus infection due to plasmacytoid dendritic cell mediated apoptosis of T cells

    PubMed Central

    Boonnak, Kobporn; Vogel, Leatrice; Feldmann, Friederike; Feldmann, Heinz; Legge, Kevin L.; Subbarao, Kanta

    2014-01-01

    Although lymphopenia is a hallmark of severe infection with highly pathogenic H5N1 and the newly emerged H7N9 influenza viruses in humans, the mechanism(s) by which lethal H5N1 viruses cause lymphopenia in mammalian hosts remains poorly understood. Because influenza-specific T cell responses are initiated in the lung draining lymph nodes, and lymphocytes subsequently traffic to the lungs or peripheral circulation, we compared the immune responses in the lung draining lymph nodes following infection with a lethal A/HK/483/97 or non-lethal A/HK/486/97 (H5N1) virus in a mouse model. We found that lethal H5N1, but not non-lethal H5N1 virus infection in mice enhances Fas ligand (FasL) expression on plasmacytoid dendritic cells (pDCs), resulting in apoptosis of influenza-specific CD8+ T cells via a Fas-FasL mediated pathway. We also found that pDCs, but not other DC subsets, preferentially accumulate in the lung draining lymph nodes of lethal H5N1 virus-infected mice and that the induction of FasL expression on pDCs correlates with high levels of IL-12p40 monomer/homodimer in the lung draining lymph nodes. Our data suggest that one of the mechanisms of lymphopenia associated with lethal H5N1 virus infection involves a deleterious role for pDCs. PMID:24829418

  10. Cross-Species Infectivity of H3N8 Influenza Virus in an Experimental Infection in Swine

    PubMed Central

    Solórzano, Alicia; Foni, Emanuela; Córdoba, Lorena; Baratelli, Massimiliano; Razzuoli, Elisabetta; Bilato, Dania; Martín del Burgo, María Ángeles; Perlin, David S.; Martínez, Jorge; Martínez-Orellana, Pamela; Fraile, Lorenzo; Chiapponi, Chiara; Amadori, Massimo; del Real, Gustavo

    2015-01-01

    ABSTRACT Avian influenza A viruses have gained increasing attention due to their ability to cross the species barrier and cause severe disease in humans and other mammal species as pigs. H3 and particularly H3N8 viruses, are highly adaptive since they are found in multiple avian and mammal hosts. H3N8 viruses have not been isolated yet from humans; however, a recent report showed that equine influenza A viruses (IAVs) can be isolated from pigs, although an established infection has not been observed thus far in this host. To gain insight into the possibility of H3N8 avian IAVs to cross the species barrier into pigs, in vitro experiments and an experimental infection in pigs with four H3N8 viruses from different origins (equine, canine, avian, and seal) were performed. As a positive control, an H3N2 swine influenza virus A was used. Although equine and canine viruses hardly replicated in the respiratory systems of pigs, avian and seal viruses replicated substantially and caused detectable lesions in inoculated pigs without previous adaptation. Interestingly, antibodies against hemagglutinin could not be detected after infection by hemagglutination inhibition (HAI) test with avian and seal viruses. This phenomenon was observed not only in pigs but also in mice immunized with the same virus strains. Our data indicated that H3N8 IAVs from wild aquatic birds have the potential to cross the species barrier and establish successful infections in pigs that might spread unnoticed using the HAI test as diagnostic tool. IMPORTANCE Although natural infection of humans with an avian H3N8 influenza A virus has not yet been reported, this influenza A virus subtype has already crossed the species barrier. Therefore, we have examined the potential of H3N8 from canine, equine, avian, and seal origin to productively infect pigs. Our results demonstrated that avian and seal viruses replicated substantially and caused detectable lesions in inoculated pigs without previous adaptation

  11. Cross-Species Infectivity of H3N8 Influenza Virus in an Experimental Infection in Swine.

    PubMed

    Solórzano, Alicia; Foni, Emanuela; Córdoba, Lorena; Baratelli, Massimiliano; Razzuoli, Elisabetta; Bilato, Dania; Martín del Burgo, María Ángeles; Perlin, David S; Martínez, Jorge; Martínez-Orellana, Pamela; Fraile, Lorenzo; Chiapponi, Chiara; Amadori, Massimo; del Real, Gustavo; Montoya, María

    2015-11-01

    Avian influenza A viruses have gained increasing attention due to their ability to cross the species barrier and cause severe disease in humans and other mammal species as pigs. H3 and particularly H3N8 viruses, are highly adaptive since they are found in multiple avian and mammal hosts. H3N8 viruses have not been isolated yet from humans; however, a recent report showed that equine influenza A viruses (IAVs) can be isolated from pigs, although an established infection has not been observed thus far in this host. To gain insight into the possibility of H3N8 avian IAVs to cross the species barrier into pigs, in vitro experiments and an experimental infection in pigs with four H3N8 viruses from different origins (equine, canine, avian, and seal) were performed. As a positive control, an H3N2 swine influenza virus A was used. Although equine and canine viruses hardly replicated in the respiratory systems of pigs, avian and seal viruses replicated substantially and caused detectable lesions in inoculated pigs without previous adaptation. Interestingly, antibodies against hemagglutinin could not be detected after infection by hemagglutination inhibition (HAI) test with avian and seal viruses. This phenomenon was observed not only in pigs but also in mice immunized with the same virus strains. Our data indicated that H3N8 IAVs from wild aquatic birds have the potential to cross the species barrier and establish successful infections in pigs that might spread unnoticed using the HAI test as diagnostic tool. Although natural infection of humans with an avian H3N8 influenza A virus has not yet been reported, this influenza A virus subtype has already crossed the species barrier. Therefore, we have examined the potential of H3N8 from canine, equine, avian, and seal origin to productively infect pigs. Our results demonstrated that avian and seal viruses replicated substantially and caused detectable lesions in inoculated pigs without previous adaptation. Surprisingly, we

  12. Surveillance of low pathogenic novel H7N9 avian influenza in commercial poultry barns: detection of outbreaks and estimation of virus introduction time.

    PubMed

    Pinsent, Amy; Blake, Isobel M; White, Michael T; Riley, Steven

    2014-08-01

    Both high and low pathogenic subtype A avian influenza remain ongoing threats to the commercial poultry industry globally. The emergence of a novel low pathogenic H7N9 lineage in China presents itself as a new concern to both human and animal health and may necessitate additional surveillance in commercial poultry operations in affected regions. Sampling data was simulated using a mechanistic model of H7N9 influenza transmission within commercial poultry barns together with a stochastic observation process. Parameters were estimated using maximum likelihood. We assessed the probability of detecting an outbreak at time of slaughter using both real-time polymerase chain reaction (rt-PCR) and a hemagglutinin inhibition assay (HI assay) before considering more intense sampling prior to slaughter. The day of virus introduction and R0 were estimated jointly from weekly flock sampling data. For scenarios where R0 was known, we estimated the day of virus introduction into a barn under different sampling frequencies. If birds were tested at time of slaughter, there was a higher probability of detecting evidence of an outbreak using an HI assay compared to rt-PCR, except when the virus was introduced <2 weeks before time of slaughter. Prior to the initial detection of infection N sample = 50 (1%) of birds were sampled on a weekly basis once, but after infection was detected, N sample = 2000 birds (40%) were sampled to estimate both parameters. We accurately estimated the day of virus introduction in isolation with weekly and 2-weekly sampling. A strong sampling effort would be required to infer both the day of virus introduction and R0. Such a sampling effort would not be required to estimate the day of virus introduction alone once R0 was known, and sampling N sample = 50 of birds in the flock on a weekly or 2 weekly basis would be sufficient.

  13. Neuropathogenesis of a highly pathogenic avian influenza virus (H7N1) in experimentally infected chickens.

    PubMed

    Chaves, Aida J; Busquets, Núria; Valle, Rosa; Rivas, Raquel; Vergara-Alert, Júlia; Dolz, Roser; Ramis, Antonio; Darji, Ayub; Majó, Natàlia

    2011-10-07

    In order to understand the mechanism of neuroinvasion of a highly pathogenic avian influenza virus (HPAIV) into the central nervous system (CNS) of chickens, specific pathogen free chickens were inoculated with a H7N1 HPAIV. Blood, cerebrospinal fluid (CSF), nasal cavity and brain tissue samples were obtained from 1 to 4 days post-inoculation (dpi) of infected and control chickens. Viral antigen topographical distribution, presence of influenza A virus receptors in the brain, as well as, the role of the olfactory route in virus CNS invasion were studied using different immunohistochemistry techniques. Besides, viral RNA load in CSF and blood was quantified by means of a quantitative real-time reverse transcription-polymerase chain reaction. Viral antigen was observed widely distributed in the CNS, showing bilateral and symmetrical distribution in the nuclei of the diencephalon, mesencephalon and rhombencephalon. Viral RNA was detected in blood and CSF at one dpi, indicating that the virus crosses the blood-CSF-barrier early during infection. This early dissemination is possibly favoured by the presence of Siaα2,3 Gal and Siaα2,6 Gal receptors in brain vascular endothelial cells, and Siaα2,3 Gal receptors in ependymal and choroid plexus cells. No viral antigen was observed in olfactory sensory neurons, while the olfactory bulb showed only weak staining, suggesting that the virus did not use this pathway to enter into the brain. The sequence of virus appearance and the topographical distribution of this H7N1 HPAIV indicate that the viral entry occurs via the haematogenous route, with early and generalized spreading through the CSF.

  14. Neuropathogenesis of a highly pathogenic avian influenza virus (H7N1) in experimentally infected chickens

    PubMed Central

    2011-01-01

    In order to understand the mechanism of neuroinvasion of a highly pathogenic avian influenza virus (HPAIV) into the central nervous system (CNS) of chickens, specific pathogen free chickens were inoculated with a H7N1 HPAIV. Blood, cerebrospinal fluid (CSF), nasal cavity and brain tissue samples were obtained from 1 to 4 days post-inoculation (dpi) of infected and control chickens. Viral antigen topographical distribution, presence of influenza A virus receptors in the brain, as well as, the role of the olfactory route in virus CNS invasion were studied using different immunohistochemistry techniques. Besides, viral RNA load in CSF and blood was quantified by means of a quantitative real-time reverse transcription-polymerase chain reaction. Viral antigen was observed widely distributed in the CNS, showing bilateral and symmetrical distribution in the nuclei of the diencephalon, mesencephalon and rhombencephalon. Viral RNA was detected in blood and CSF at one dpi, indicating that the virus crosses the blood-CSF-barrier early during infection. This early dissemination is possibly favoured by the presence of Siaα2,3 Gal and Siaα2,6 Gal receptors in brain vascular endothelial cells, and Siaα2,3 Gal receptors in ependymal and choroid plexus cells. No viral antigen was observed in olfactory sensory neurons, while the olfactory bulb showed only weak staining, suggesting that the virus did not use this pathway to enter into the brain. The sequence of virus appearance and the topographical distribution of this H7N1 HPAIV indicate that the viral entry occurs via the haematogenous route, with early and generalized spreading through the CSF. PMID:21982125

  15. Experimental infection of mandarin duck with highly pathogenic avian influenza A (H5N8 and H5N1) viruses.

    PubMed

    Kang, Hyun-Mi; Lee, Eun-Kyoung; Song, Byung-Min; Heo, Gyeong-Beom; Jung, Joojin; Jang, Il; Bae, You-Chan; Jung, Suk Chan; Lee, Youn-Jeong

    2017-01-01

    A highly pathogenic avian influenza (HPAI) H5N8 virus was first detected in poultry and wild birds in South Korea in January 2014. Here, we determined the pathogenicity and transmissibility of three different clades of H5 viruses in mandarin ducks to examine the potential for wild bird infection. H5N8 (clade 2.3.4.4) replicated more efficiently in the upper and lower respiratory tract of mandarin ducks than two previously identified H5N1 virus clades (clades 2.2 and 2.3.2.1). However, none of the mandarin ducks infected with H5N8 and H5N1 viruses showed severe clinical signs or mortality, and gross lesions were only observed in a few tissues. Viral replication and shedding were greater in H5N8-infected ducks than in H5N1-infected ducks. Recovery of all viruses from control duck in contact with infected ducks indicated that the highly pathogenic H5 viruses spread horizontally through contact. Taken together, these results suggest that H5N8 viruses spread efficiently in mandarin ducks. Further studies of pathogenicity in wild birds are required to examine possible long-distance dissemination via migration routes. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Epidemiological and virological differences in human clustered and sporadic infections with avian influenza A H7N9.

    PubMed

    Wu, Zuqun; Sha, Jianping; Yu, Zhao; Zhao, Na; Cheng, Wei; Chan, Ta-Chien; Amer, Said; Zhang, Zhiruo; Liu, Shelan

    2016-08-01

    Previous research has suggested that avian influenza A H7N9 has a greater potential pandemic risk than influenza A H5N1. This research investigated the difference in human clustered and sporadic cases of H7N9 virus and estimated the relative risk of clustered infections. Comparative epidemiology and virology studies were performed among 72 sporadic confirmed cases, 17 family clusters (FCs) caused by human-to-human transmission, and eight live bird market clusters (LCs) caused by co-exposure to the poultry environment. The case fatality of FCs, LCs and sporadic cases (36%, 26%, and 29%, respectively) did not differ among the three groups (p>0.05). The average age (36 years, 60 years, and 58 years), co-morbidities (31%, 60%, and 54%), exposure to birds (72%, 100%, and 83%), and H7N9-positive rate (20%, 64%, and 35%) in FCs, LCs, and sporadic cases, respectively, differed significantly (p<0.05). These higher risks were associated with increased mortality. There was no difference between primary and secondary cases in LCs (p>0.05). However, exposure to a person with confirmed avian influenza A H7N9 (primary 12% vs. secondary 95%), history of visiting a live bird market (100% vs. 59%), multiple exposures (live bird exposure and human-to-human transmission history) (12% vs. 55%), and median days from onset to antiviral treatment (6 days vs. 3 days) differed significantly between primary and secondary cases in FCs (p<0.05). Mild cases were found in 6% of primary cases vs. 32% of secondary cases in FCs (p<0.05). Twenty-five isolates from the three groups showed 99.1-99.9% homology and increased human adaptation. There was no statistical difference in the case fatality rate and limited transmission between FCs and LCs. However, the severity of the primary cases in FCs was much higher than that of the secondary cases due to the older age and greater underlying disease of the latter patients. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Phylogenetic Diversity and Genotypical Complexity of H9N2 Influenza A Viruses Revealed by Genomic Sequence Analysis

    PubMed Central

    Dong, Guoying; Luo, Jing; Zhang, Hong; Wang, Chengmin; Duan, Mingxing; Deliberto, Thomas Jude; Nolte, Dale Louis; Ji, Guangju; He, Hongxuan

    2011-01-01

    H9N2 influenza A viruses have become established worldwide in terrestrial poultry and wild birds, and are occasionally transmitted to mammals including humans and pigs. To comprehensively elucidate the genetic and evolutionary characteristics of H9N2 influenza viruses, we performed a large-scale sequence analysis of 571 viral genomes from the NCBI Influenza Virus Resource Database, representing the spectrum of H9N2 influenza viruses isolated from 1966 to 2009. Our study provides a panoramic framework for better understanding the genesis and evolution of H9N2 influenza viruses, and for describing the history of H9N2 viruses circulating in diverse hosts. Panorama phylogenetic analysis of the eight viral gene segments revealed the complexity and diversity of H9N2 influenza viruses. The 571 H9N2 viral genomes were classified into 74 separate lineages, which had marked host and geographical differences in phylogeny. Panorama genotypical analysis also revealed that H9N2 viruses include at least 98 genotypes, which were further divided according to their HA lineages into seven series (A–G). Phylogenetic analysis of the internal genes showed that H9N2 viruses are closely related to H3, H4, H5, H7, H10, and H14 subtype influenza viruses. Our results indicate that H9N2 viruses have undergone extensive reassortments to generate multiple reassortants and genotypes, suggesting that the continued circulation of multiple genotypical H9N2 viruses throughout the world in diverse hosts has the potential to cause future influenza outbreaks in poultry and epidemics in humans. We propose a nomenclature system for identifying and unifying all lineages and genotypes of H9N2 influenza viruses in order to facilitate international communication on the evolution, ecology and epidemiology of H9N2 influenza viruses. PMID:21386964

  18. Efficacy of inactivated influenza vaccines for protection of poultry against the H7N9 low pathogenic avian influenza virus isolated in China during 2013

    USDA-ARS?s Scientific Manuscript database

    The recent outbreak in China of avian influenza (AI) H7N9 in birds and humans underscores the interspecies movement of these viruses. Interestingly, the genetic composition of these H7N9 viruses appears to be solely of avian origin and of low pathogenicity in birds. Although few isolations of these ...

  19. Swine-origin influenza A (H3N2) virus infection in two children--Indiana and Pennsylvania, July-August 2011.

    PubMed

    2011-09-09

    Influenza A viruses are endemic in many animal species, including humans, swine, and wild birds, and sporadic cases of transmission of influenza A viruses between humans and animals do occur, including human infections with avian-origin influenza A viruses (i.e., H5N1 and H7N7) and swine-origin influenza A viruses (i.e., H1N1, H1N2, and H3N2). Genetic analysis can distinguish animal origin influenza viruses from the seasonal human influenza viruses that circulate widely and cause annual epidemics. This report describes two cases of febrile respiratory illness caused by swine-origin influenza A (H3N2) viruses identified on August 19 and August 26, 2011, and the current investigations. No epidemiologic link between the two cases has been identified, and although investigations are ongoing, no additional confirmed human infections with this virus have been detected. These viruses are similar to eight other swine-origin influenza A (H3N2) viruses identified from previous human infections over the past 2 years, but are unique in that one of the eight gene segments (matrix [M] gene) is from the 2009 influenza A (H1N1) virus. The acquisition of the M gene in these two swine-origin influenza A (H3N2) viruses indicates that they are "reassortants" because they contain genes of the swine-origin influenza A (H3N2) virus circulating in North American pigs since 1998 and the 2009 influenza A (H1N1) virus that might have been transmitted to pigs from humans during the 2009 H1N1 pandemic. However, reassortments of the 2009 influenza A (H1N1) virus with other swine influenza A viruses have been reported previously in swine. Clinicians who suspect influenza virus infection in humans with recent exposure to swine should obtain a nasopharyngeal swab from the patient for timely diagnosis at a state public health laboratory and consider empiric neuraminidase inhibitor antiviral treatment to quickly limit potential human transmission.

  20. Bacillus Calmette-Guérin-Induced Trained Immunity Is Not Protective for Experimental Influenza A/Anhui/1/2013 (H7N9) Infection in Mice.

    PubMed

    de Bree, Charlotte L C J; Marijnissen, Renoud J; Kel, Junda M; Rosendahl Huber, Sietske K; Aaby, Peter; Benn, Christine Stabell; Wijnands, Marcel V W; Diavatopoulos, Dimitri A; van Crevel, Reinout; Joosten, Leo A B; Netea, Mihai G; Dulos, John

    2018-01-01

    Avian influenza A of the subtype H7N9 has been responsible for almost 1,600 confirmed human infections and more than 600 deaths since its first outbreak in 2013. Although sustained human-to-human transmission has not been reported yet, further adaptations to humans in the viral genome could potentially lead to an influenza pandemic, which may have severe consequences due to the absence of pre-existent immunity to this strain at population level. Currently there is no influenza A (H7N9) vaccine available. Therefore, in case of a pandemic outbreak, alternative preventive approaches are needed, ideally even independent of the type of influenza virus outbreak. Bacillus Calmette-Guérin (BCG) is known to induce strong heterologous immunological effects, and it has been shown that BCG protects against non-related infection challenges in several mouse models. BCG immunization of mice as well as human induces trained innate immune responses, resulting in increased cytokine responses upon subsequent ex vivo peripheral blood mononuclear cell restimulation. We investigated whether BCG (Statens Serum Institut-Denmark)-induced trained immunity may protect against a lethal avian influenza A/Anhui/1/2013 (H7N9) challenge. Here, we show that isolated splenocytes as well as peritoneal macrophages of BCG-immunized BALB/c mice displayed a trained immunity phenotype resulting in increased innate cytokine responses upon ex vivo restimulation. However, after H7N9 infection, no significant differences were found between the BCG immunized and the vehicle control group at the level of survival, weight loss, pulmonary influenza A nucleoprotein staining, or histopathology. In conclusion, BCG-induced trained immunity did not result in protection in an oseltamivir-sensitive influenza A/Anhui/1/2013 (H7N9) challenge mouse model.

  1. Enzootic genotype S of H9N2 avian influenza viruses donates internal genes to emerging zoonotic influenza viruses in China.

    PubMed

    Gu, Min; Chen, Hongzhi; Li, Qunhui; Huang, Junqing; Zhao, Mingjun; Gu, Xiaobing; Jiang, Kaijun; Wang, Xiaoquan; Peng, Daxin; Liu, Xiufan

    2014-12-05

    Avian influenza viruses of subtype H9N2 are widely prevalent in poultry in many Asian countries, and the segmented nature of the viral genome results in multiple distinct genotypes via reassortment. In this study, genetic evolution of H9N2 viruses circulating in eastern China during 2007-2013 was analyzed. The results showed that the diversity of the gene constellations generated six distinct genotypes, in which a novel genotype (S) bearing the backbone of A/chicken/Shanghai/F/98-like viruses by acquiring A/quail/Hong Kong/G1/97-like polymerase basic subunit 2 and matrix genes has gradually established its ecological niche and been consistently prevalent in chicken flocks in eastern China since its first detection in 2007. Furthermore, genotype S possessed the peculiarity to donate most of its gene segments to other emerging influenza A viruses in China, including the novel reassortant highly pathogenic avian influenza H5N2, the 2013 novel H7N7, H7N9 and the latest reassortant H10N8 viruses, with potential threat to poultry industry and human health. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Early response to the emergence of influenza A(H7N9) virus in humans in China: the central role of prompt information sharing and public communication.

    PubMed

    Vong, Sirenda; O'Leary, Michael; Feng, Zijian

    2014-04-01

    In 2003, China's handling of the early stages of the epidemic of severe acute respiratory syndrome (SARS) was heavily criticized and generally considered to be suboptimal. Following the SARS outbreak, China made huge investments to improve surveillance, emergency preparedness and response capacity and strengthen public health institutions. In 2013, the return on these investments was evaluated by investigating China's early response to the emergence of avian influenza A(H7N9) virus in humans. Clusters of human infection with a novel influenza virus were detected in China - by national surveillance of pneumonia of unknown etiology - on 26 February 2013. On 31 March 2013, China notified the World Health Organization (WHO) of the first recorded human infections with A(H7N9) virus. Poultry markets - which were rapidly identified as a major source of transmission of A(H7N9) to humans - were closed down in the affected areas. Surveillance in humans and poultry was heightened and technical guidelines were quickly updated and disseminated. The health authorities collaborated with WHO in risk assessments and risk communication. New cases were reported promptly and publicly. The relevant infrastructures, surveillance systems and response capacity need to be strengthened in preparation for future emergencies caused by emerging or existing disease threats. Results of risk assessments and other data should be released promptly and publicly and such release should not jeopardize future publication of the data in scientific journals. Coordination between public health and veterinary services would be stronger during an emergency if these services had already undertaken joint preparedness planning.

  3. Complete genome sequence of a novel H9N2 subtype influenza virus FJG9 strain in China reveals a natural reassortant event.

    PubMed

    Xie, Qingmei; Yan, Zhuanqiang; Ji, Jun; Zhang, Huanmin; Liu, Jun; Sun, Yue; Li, Guangwei; Chen, Feng; Xue, Chunyi; Ma, Jingyun; Bee, Yingzuo

    2012-09-01

    A/chicken/FJ/G9/09 (FJ/G9) is an H9N2 subtype avian influenza virus (H9N2 AIV) strain causing high morbidity that was isolated from broilers in Fujian Province of China in 2009. FJ/G9 has been used as the vaccine strain against H9N2 AIV infection in Fujian Province of China. Here, we report the complete genome sequence of FJ/G9 with natural six-way reassortment, which is the most complex genotype strain in China and even in the world so far. The present findings will aid in understanding the complexity and diversity of H9N2 subtype avian influenza virus.

  4. Internal Gene Cassette from a Genotype S H9N2 Avian Influenza Virus Attenuates the Pathogenicity of H5 Viruses in Chickens and Mice.

    PubMed

    Hao, Xiaoli; Wang, Jiongjiong; Hu, Jiao; Lu, Xiaolong; Gao, Zhao; Liu, Dong; Li, Juan; Wang, Xiaoquan; Gu, Min; Hu, Zenglei; Liu, Xiaowen; Hu, Shunlin; Xu, Xiulong; Peng, Daxin; Jiao, Xinan; Liu, Xiufan

    2017-01-01

    H9N2 avian influenza virus (AIV) of genotype S frequently donate internal genes to facilitate the generation of novel reassortants such as H7N9, H10N8, H5N2 and H5N6 AIVs, posing an enormous threat to both human health and poultry industry. However, the pathogenicity and transmission of reassortant H5 viruses with internal gene cassette of genotype S H9N2-origin in chickens and mice remain unknown. In this study, four H5 reassortants carrying the HA and NA genes from different clades of H5 viruses and the remaining internal genes from an H9N2 virus of the predominant genotype S were generated by reverse genetics. We found that all four H5 reassortant viruses showed attenuated virulence in both chickens and mice, thus leading to increased the mean death times compared to the corresponding parental viruses. Consistently, the polymerase activity and replication ability in mammalian and avian cells, and the cytokine responses in the lungs of chickens and mice were also decreased when compared to their respective parental viruses. Moreover, these reassortants transmitted from birds to birds by direct contact but not by an airborne route. Our data indicate that the internal genes as a whole cassette from genotype S H9N2 viruses play important roles in reducing the pathogenicity of the H5 recombinants in chickens and mice, and might contribute to the circulation in avian or mammalian hosts.

  5. Internal Gene Cassette from a Genotype S H9N2 Avian Influenza Virus Attenuates the Pathogenicity of H5 Viruses in Chickens and Mice

    PubMed Central

    Hao, Xiaoli; Wang, Jiongjiong; Hu, Jiao; Lu, Xiaolong; Gao, Zhao; Liu, Dong; Li, Juan; Wang, Xiaoquan; Gu, Min; Hu, Zenglei; Liu, Xiaowen; Hu, Shunlin; Xu, Xiulong; Peng, Daxin; Jiao, Xinan; Liu, Xiufan

    2017-01-01

    H9N2 avian influenza virus (AIV) of genotype S frequently donate internal genes to facilitate the generation of novel reassortants such as H7N9, H10N8, H5N2 and H5N6 AIVs, posing an enormous threat to both human health and poultry industry. However, the pathogenicity and transmission of reassortant H5 viruses with internal gene cassette of genotype S H9N2-origin in chickens and mice remain unknown. In this study, four H5 reassortants carrying the HA and NA genes from different clades of H5 viruses and the remaining internal genes from an H9N2 virus of the predominant genotype S were generated by reverse genetics. We found that all four H5 reassortant viruses showed attenuated virulence in both chickens and mice, thus leading to increased the mean death times compared to the corresponding parental viruses. Consistently, the polymerase activity and replication ability in mammalian and avian cells, and the cytokine responses in the lungs of chickens and mice were also decreased when compared to their respective parental viruses. Moreover, these reassortants transmitted from birds to birds by direct contact but not by an airborne route. Our data indicate that the internal genes as a whole cassette from genotype S H9N2 viruses play important roles in reducing the pathogenicity of the H5 recombinants in chickens and mice, and might contribute to the circulation in avian or mammalian hosts. PMID:29075244

  6. Preexisting CD4+ T-Cell Immunity in Human Population to Avian Influenza H7N9 Virus: Whole Proteome-Wide Immunoinformatics Analyses

    PubMed Central

    Duvvuri, Venkata R.; Duvvuri, Bhargavi; Alice, Christilda; Wu, Gillian E.; Gubbay, Jonathan B.; Wu, Jianhong

    2014-01-01

    In 2013, a novel avian influenza H7N9 virus was identified in human in China. The antigenically distinct H7N9 surface glycoproteins raised concerns about lack of cross-protective neutralizing antibodies. Epitope-specific preexisting T-cell immunity was one of the protective mechanisms in pandemic 2009 H1N1 even in the absence of cross-protective antibodies. Hence, the assessment of preexisting CD4+ T-cell immunity to conserved epitopes shared between H7N9 and human influenza A viruses (IAV) is critical. A comparative whole proteome-wide immunoinformatics analysis was performed to predict the CD4+ T-cell epitopes that are commonly conserved within the proteome of H7N9 in reference to IAV subtypes (H1N1, H2N2, and H3N2). The CD4+ T-cell epitopes that are commonly conserved (∼556) were further screened against the Immune Epitope Database (IEDB) to validate their immunogenic potential. This analysis revealed that 45.5% (253 of 556) epitopes are experimentally proven to induce CD4+ T-cell memory responses. In addition, we also found that 23.3% of CD4+ T-cell epitopes have ≥90% of sequence homology with experimentally defined CD8+ T-cell epitopes. We also conducted the population coverage analysis across different ethnicities using commonly conserved CD4+ T-cell epitopes and corresponding HLA-DRB1 alleles. Interestingly, the indigenous populations from Canada, United States, Mexico and Australia exhibited low coverage (28.65% to 45.62%) when compared with other ethnicities (57.77% to 94.84%). In summary, the present analysis demonstrate an evidence on the likely presence of preexisting T-cell immunity in human population and also shed light to understand the potential risk of H7N9 virus among indigenous populations, given their high susceptibility during previous pandemic influenza events. This information is crucial for public health policy, in targeting priority groups for immunization programs. PMID:24609014

  7. Computational approach for predicting the conserved B-cell epitopes of hemagglutinin H7 subtype influenza virus.

    PubMed

    Wang, Xiangyu; Sun, Qi; Ye, Zhonghua; Hua, Ying; Shao, Na; Du, Yanli; Zhang, Qiwei; Wan, Chengsong

    2016-10-01

    An avian-origin influenza H7N9 virus epidemic occurred in China in 2013-2014, in which >422 infected people suffered from pneumonia, respiratory distress syndrome and septic shock. H7N9 viruses belong to the H7 subtype of avian-origin influenza viruses (AIV-H7). Hemagglutinin (HA) is a vital membrane protein of AIV that has an important role in host recognition and infection. The epitopes of HA are significant determinants of the regularity of epidemic and viral mutation and recombination mechanisms. The present study aimed to predict the conserved B-cell epitopes of AIV-H7 HA using a bioinformatics approach, including the three most effective epitope prediction softwares available online: Artificial Neural Network based B-cell Epitope Prediction (ABCpred), B-cell Epitope Prediction (BepiPred) and Linear B-cell Epitope Prediction (LBtope). A total of 24 strains of Euro-Asiatic AIV-H7 that had been associated with a serious poultry pandemic or had infected humans in the past 30 years were selected to identify the conserved regions of HA. Sequences were obtained from the National Center for Biotechnology Information and Global Initiative on Sharing Avian Influenza Data databases. Using a combination of software prediction and sequence comparisons, the conserved epitopes of AIV-H7 were predicted and clarified. A total of five conserved epitopes [amino acids (aa) 37-52, 131-142, 215-234, 465-484 and 487-505] with a suitable length, high antigenicity and minimal variation were predicted and confirmed. Each obtained a score of >0.80 in ABCpred, 60% in LBtope and a level of 0.35 in Bepipred. In addition, a representative amino acid change (glutamine 235 -to-leucine 235 ) in the HA protein of the 2013 AIV-H7N9 was discovered. The strategy adopted in the present study may have profound implications on the rapid diagnosis and control of infectious disease caused by H7N9 viruses, as well as by other virulent viruses, such as the Ebola virus.

  8. Insights into genetic diversity and biological propensities of potentially zoonotic avian influenza H9N2 viruses circulating in Egypt.

    PubMed

    Naguib, Mahmoud M; Arafa, Abdel-Satar; Parvin, Rokshana; Beer, Martin; Vahlenkamp, Thomas; Harder, Timm C

    2017-11-01

    Low pathogenic avian influenza (LPAI) H9N2 viruses have established endemic status in Egyptian poultry populations since 2012. Recently, four cases of human H9N2 virus infections in Egypt demonstrated the zoonotic potential of these viruses. Egyptian H9N2 viruses obtained from 2011 to 2014 phylogenetically grouped into three clusters (1-3) within subclade B of the G1 lineage. Antigenically, a close clustering of the Egyptian H9N2 viruses with other recent G1-B like H9N2 strains and a significant antigenic distance from viruses outside the G1-B lineage was evident. Recent Egyptian LPAIV H9N2 showed a tendency to increased binding with erythrocytes expressing α 2,6-linked sialic acid which correlated with the Q226L amino acid substitution at the receptor binding unit of the hemagglutinin (Q234L, H9 numbering). Sequence analyses of the N2 neuraminidase (NA) revealed substitutions in the NA hemadsorption site similar to the N2 of prepandemic H3N2/1968, but no distinct antigenic or functional characteristics of the H9N2 NA associated with increased zoonotic potential could be identified. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Complete genome sequence of a novel H9N2 subtype influenza virus FJG9 strain in china reveals a natural reassortant event

    USDA-ARS?s Scientific Manuscript database

    A Chicken/FJ/G9/09 (FJ/G9) is an H9N2 subtype strain of avian influenza virus (H9N2 AIV) strain causing high morbidity, that was isolated from broilers in Fujian province, China, in 2009. The FJ/G9 has been used as the vaccine strain against H9N2 AIV infection in Fujian Province of China. Here, we r...

  10. Genetic and biological characterization of three poultry-origin H5N6 avian influenza viruses with all internal genes from genotype S H9N2 viruses.

    PubMed

    Liu, Kaituo; Gu, Min; Hu, Shunlin; Gao, Ruyi; Li, Juan; Shi, Liwei; Sun, Wenqi; Liu, Dong; Gao, Zhao; Xu, Xiulong; Hu, Jiao; Wang, Xiaoquan; Liu, Xiaowen; Chen, Sujuan; Peng, Daxin; Jiao, Xinan; Liu, Xiufan

    2018-04-01

    During surveillance for avian influenza viruses, three H5N6 viruses were isolated in chickens obtained from live bird markets in eastern China, between January 2015 and April 2016. Sequence analysis revealed a high genomic homology between these poultry isolates and recent human H5N6 variants whose internal genes were derived from genotype S H9N2 avian influenza viruses. Glycan binding assays revealed that all avian H5N6 viruses were capable of binding to both human-type SAα-2,6Gal receptors and avian-type SAα-2,3Gal receptors. Their biological characteristics were further studied in BALB/c mice, specific-pathogen-free chickens, and mallard ducks. All three isolates had low pathogenicity in mice but were highly pathogenic to chickens, as evidenced by 100% mortality 36-120 hours post infection at a low dose of 10 3.0 EID 50 and through effective contact transmission. Moreover, all three poultry H5N6 isolates caused asymptomatic infections in ducks, which may serve as a reservoir host for their maintenance and dissemination; these migrating waterfowl could cause a potential global pandemic. Our study suggests that continuous epidemiological surveillance in poultry should be implemented for the early prevention of future influenza outbreaks.

  11. Novel reassortant H10N7 avian influenza viruses isolated from chickens in Eastern China.

    PubMed

    Wu, Haibo; Lu, Rufeng; Wu, Xiaoxin; Peng, Xiaorong; Xu, Lihua; Cheng, Linfang; Lu, Xiangyun; Jin, Changzhong; Xie, Tiansheng; Yao, Hangping; Wu, Nanping

    2015-04-01

    Since 2004, the H10N7 subtype avian influenza virus (AIV) has caused sporadic human infections with variable clinical symptoms world-wide. However, there is limited information pertaining to the molecular characteristics of H10N7 AIVs in China. To more fully characterize the genetic relationships between three novel H10N7 strains isolated from chickens in Eastern China and the strains isolated from birds throughout Asia, and to determine the pathogenicity of the H10N7 isolates in vivo. All eight gene segments from the Chinese H10N7 strains were sequenced and compared with AIV strains available in GenBank. The virulence of the three isolates was determined in chickens and mice. Three H10N7 subtype avian influenza viruses were isolated from chickens in live poultry markets in Eastern China in 2014: (1) A/chicken/Zhejiang/2C66/2014(H10N7) (ZJ-2C66), (2) A/chicken/Zhejiang/2CP2/2014(H10N7) (ZJ-2CP2), and (3) A/chicken/Zhejiang/2CP8/2014(H10N7) (ZJ-2CP8). Phylogenetic analysis indicated that the viruses contained genetic material from H10, H2, H7, and H3 AIV strains that were circulating at the same time. The reassortant H10N7 viruses were found to be minimally pathogenic in chickens and moderately pathogenic in mice. The viruses were able to replicate in mice without prior adaptation. These results suggest that H10N7 surveillance in poultry should be used as an early warning system for avian influenza outbreaks. The novel strains identified here may post a threat to human health in the future if they continue to circulate. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. H7N2 feline influenza virus evaluated in a poultry model

    USDA-ARS?s Scientific Manuscript database

    In November and December of 2016 a novel influenza virus was isolated from cats from an animal shelter from New York City(NYC). The virus caused respiratory disease and was found in cats in several shelters in NYC, and one human also became infected. The H7N2 subtype isolate was sequenced and it w...

  13. Evaluation of the Immune Responses to and Cross-Protective Efficacy of Eurasian H7 Avian Influenza Viruses

    PubMed Central

    Kwon, Hyeok-Il; Kim, Young-Il; Park, Su-Jin; Song, Min-Suk; Kim, Eun-Ha; Kim, Se Mi; Si, Young-Jae; Lee, In-Won; Song, Byung-Min; Lee, Youn-Jeong; Yun, Seok Joong; Kim, Wun-Jae

    2017-01-01

    ABSTRACT Due to increasing concerns about human infection by various H7 influenza viruses, including recent H7N9 viruses, we evaluated the genetic relationships and cross-protective efficacies of three different Eurasian H7 avian influenza viruses. Phylogenic and molecular analyses revealed that recent Eurasian H7 viruses can be separated into two different lineages, with relatively high amino acid identities within groups (94.8 to 98.8%) and low amino acid identities between groups (90.3 to 92.6%). In vivo immunization with representatives of each group revealed that while group-specific cross-reactivity was induced, cross-reactive hemagglutination inhibition (HI) titers were approximately 4-fold lower against heterologous group viruses than against homologous group viruses. Moreover, the group I (RgW109/06) vaccine protected 100% of immunized mice from various group I viruses, while only 20 to 40% of immunized mice survived lethal challenge with heterologous group II viruses and exhibited high viral titers in the lung. Moreover, while the group II (RgW478/14) vaccine also protected mice from lethal challenge with group II viruses, it failed to elicit cross-protection against group I viruses. However, it is noteworthy that vaccination with RgAnhui1/13, a virus of a sublineage of group I, cross-protected immunized mice against lethal challenge with both group I and II viruses and significantly attenuated lung viral titers. Interestingly, immune sera from RgAnhui1/13-vaccinated mice showed a broad neutralizing spectrum rather than the group-specific pattern observed with the other viruses. These results suggest that the recent human-infective H7N9 strain may be a candidate broad cross-protective vaccine for Eurasian H7 viruses. IMPORTANCE Genetic and phylogenic analyses have demonstrated that the Eurasian H7 viruses can be separated into at least two different lineages, both of which contain human-infective fatal H7 viruses, including the recent novel H7N9 viruses

  14. Evaluation of the Immune Responses to and Cross-Protective Efficacy of Eurasian H7 Avian Influenza Viruses.

    PubMed

    Kwon, Hyeok-Il; Kim, Young-Il; Park, Su-Jin; Song, Min-Suk; Kim, Eun-Ha; Kim, Se Mi; Si, Young-Jae; Lee, In-Won; Song, Byung-Min; Lee, Youn-Jeong; Yun, Seok Joong; Kim, Wun-Jae; Choi, Young Ki

    2017-06-01

    Due to increasing concerns about human infection by various H7 influenza viruses, including recent H7N9 viruses, we evaluated the genetic relationships and cross-protective efficacies of three different Eurasian H7 avian influenza viruses. Phylogenic and molecular analyses revealed that recent Eurasian H7 viruses can be separated into two different lineages, with relatively high amino acid identities within groups (94.8 to 98.8%) and low amino acid identities between groups (90.3 to 92.6%). In vivo immunization with representatives of each group revealed that while group-specific cross-reactivity was induced, cross-reactive hemagglutination inhibition (HI) titers were approximately 4-fold lower against heterologous group viruses than against homologous group viruses. Moreover, the group I (RgW109/06) vaccine protected 100% of immunized mice from various group I viruses, while only 20 to 40% of immunized mice survived lethal challenge with heterologous group II viruses and exhibited high viral titers in the lung. Moreover, while the group II (RgW478/14) vaccine also protected mice from lethal challenge with group II viruses, it failed to elicit cross-protection against group I viruses. However, it is noteworthy that vaccination with RgAnhui1/13, a virus of a sublineage of group I, cross-protected immunized mice against lethal challenge with both group I and II viruses and significantly attenuated lung viral titers. Interestingly, immune sera from RgAnhui1/13-vaccinated mice showed a broad neutralizing spectrum rather than the group-specific pattern observed with the other viruses. These results suggest that the recent human-infective H7N9 strain may be a candidate broad cross-protective vaccine for Eurasian H7 viruses. IMPORTANCE Genetic and phylogenic analyses have demonstrated that the Eurasian H7 viruses can be separated into at least two different lineages, both of which contain human-infective fatal H7 viruses, including the recent novel H7N9 viruses isolated

  15. Natural Reassortants of Potentially Zoonotic Avian Influenza Viruses H5N1 and H9N2 from Egypt Display Distinct Pathogenic Phenotypes in Experimentally Infected Chickens and Ferrets.

    PubMed

    Naguib, Mahmoud M; Ulrich, Reiner; Kasbohm, Elisa; Eng, Christine L P; Hoffmann, Donata; Grund, Christian; Beer, Martin; Harder, Timm C

    2017-12-01

    The cocirculation of zoonotic highly pathogenic avian influenza virus (HPAIV) of subtype H5N1 and avian influenza virus (AIV) of subtype H9N2 among poultry in Egypt for at least 6 years should render that country a hypothetical hot spot for the emergence of reassortant, phenotypically altered viruses, yet no reassortants have been detected in Egypt. The present investigations proved that reassortants of the Egyptian H5N1 clade 2.2.1.2 virus and H9N2 virus of the G1-B lineage can be generated by coamplification in embryonated chicken eggs. Reassortants were restricted to the H5N1 subtype and acquired between two and all six of the internal segments of the H9N2 virus. Five selected plaque-purified reassortant clones expressed a broad phenotypic spectrum both in vitro and in vivo Two groups of reassortants were characterized to have retarded growth characteristics in vitro compared to the H5N1 parent virus. One clone provoked reduced mortality in inoculated chickens, although the characteristics of a highly pathogenic phenotype were retained. Enhanced zoonotic properties were not predicted for any of these clones, and this prediction was confirmed by ferret inoculation experiments: neither the H5N1 parent virus nor two selected clones induced severe clinical symptoms or were transmitted to sentinel ferrets by contact. While the emergence of reassortants of Egyptian HPAIV of subtype H5N1 with internal gene segments of cocirculating H9N2 viruses is possible in principle, the spread of such viruses is expected to be governed by their fitness to outcompete the parental viruses in the field. The eventual spread of attenuated phenotypes, however, would negatively impact syndrome surveillance on poultry farms and might foster enzootic virus circulation. IMPORTANCE Despite almost 6 years of the continuous cocirculation of highly pathogenic avian influenza virus H5N1 and avian influenza virus H9N2 in poultry in Egypt, no reassortants of the two subtypes have been reported

  16. Natural Reassortants of Potentially Zoonotic Avian Influenza Viruses H5N1 and H9N2 from Egypt Display Distinct Pathogenic Phenotypes in Experimentally Infected Chickens and Ferrets

    PubMed Central

    Naguib, Mahmoud M.; Ulrich, Reiner; Kasbohm, Elisa; Eng, Christine L. P.; Hoffmann, Donata; Grund, Christian; Beer, Martin

    2017-01-01

    ABSTRACT The cocirculation of zoonotic highly pathogenic avian influenza virus (HPAIV) of subtype H5N1 and avian influenza virus (AIV) of subtype H9N2 among poultry in Egypt for at least 6 years should render that country a hypothetical hot spot for the emergence of reassortant, phenotypically altered viruses, yet no reassortants have been detected in Egypt. The present investigations proved that reassortants of the Egyptian H5N1 clade 2.2.1.2 virus and H9N2 virus of the G1-B lineage can be generated by coamplification in embryonated chicken eggs. Reassortants were restricted to the H5N1 subtype and acquired between two and all six of the internal segments of the H9N2 virus. Five selected plaque-purified reassortant clones expressed a broad phenotypic spectrum both in vitro and in vivo. Two groups of reassortants were characterized to have retarded growth characteristics in vitro compared to the H5N1 parent virus. One clone provoked reduced mortality in inoculated chickens, although the characteristics of a highly pathogenic phenotype were retained. Enhanced zoonotic properties were not predicted for any of these clones, and this prediction was confirmed by ferret inoculation experiments: neither the H5N1 parent virus nor two selected clones induced severe clinical symptoms or were transmitted to sentinel ferrets by contact. While the emergence of reassortants of Egyptian HPAIV of subtype H5N1 with internal gene segments of cocirculating H9N2 viruses is possible in principle, the spread of such viruses is expected to be governed by their fitness to outcompete the parental viruses in the field. The eventual spread of attenuated phenotypes, however, would negatively impact syndrome surveillance on poultry farms and might foster enzootic virus circulation. IMPORTANCE Despite almost 6 years of the continuous cocirculation of highly pathogenic avian influenza virus H5N1 and avian influenza virus H9N2 in poultry in Egypt, no reassortants of the two subtypes have been

  17. Dynamic changes in host gene expression associated with H5N8 avian influenza virus infection in mice.

    PubMed

    Park, Su-Jin; Kumar, Mukesh; Kwon, Hyeok-il; Seong, Rak-Kyun; Han, Kyudong; Song, Jae-min; Kim, Chul-Joong; Choi, Young-Ki; Shin, Ok Sarah

    2015-11-18

    Emerging outbreaks of newly found, highly pathogenic avian influenza (HPAI) A(H5N8) viruses have been reported globally. Previous studies have indicated that H5N8 pathogenicity in mice is relatively moderate compared with H5N1 pathogenicity. However, detailed mechanisms underlying avian influenza pathogenicity are still undetermined. We used a high-throughput RNA-seq method to analyse host and pathogen transcriptomes in the lungs of mice infected with A/MD/Korea/W452/2014 (H5N8) and A/EM/Korea/W149/2006 (H5N1) viruses. Sequenced numbers of viral transcripts and expression levels of host immune-related genes at 1 day post infection (dpi) were higher in H5N8-infected than H5N1-infected mice. Dual sequencing of viral transcripts revealed that in contrast to the observations at 1 dpi, higher number of H5N1 genes than H5N8 genes was sequenced at 3 and 7 dpi, which is consistent with higher viral titres and virulence observed in infected lungs in vivo. Ingenuity pathway analysis revealed a more significant upregulation of death receptor signalling, driven by H5N1 than with H5N8 infection at 3 and 7 dpi. Early induction of immune response-related genes may elicit protection in H5N8-infected mice, which correlates with moderate pathogenicity in vivo. Collectively, our data provide new insight into the underlying mechanisms of the differential pathogenicity of avian influenza viruses.

  18. Dynamic changes in host gene expression associated with H5N8 avian influenza virus infection in mice

    PubMed Central

    Park, Su-Jin; Kumar, Mukesh; Kwon, Hyeok-il; Seong, Rak-Kyun; Han, Kyudong; Song, Jae-min; Kim, Chul-Joong; Choi, Young-Ki; Shin, Ok Sarah

    2015-01-01

    Emerging outbreaks of newly found, highly pathogenic avian influenza (HPAI) A(H5N8) viruses have been reported globally. Previous studies have indicated that H5N8 pathogenicity in mice is relatively moderate compared with H5N1 pathogenicity. However, detailed mechanisms underlying avian influenza pathogenicity are still undetermined. We used a high-throughput RNA-seq method to analyse host and pathogen transcriptomes in the lungs of mice infected with A/MD/Korea/W452/2014 (H5N8) and A/EM/Korea/W149/2006 (H5N1) viruses. Sequenced numbers of viral transcripts and expression levels of host immune-related genes at 1 day post infection (dpi) were higher in H5N8-infected than H5N1-infected mice. Dual sequencing of viral transcripts revealed that in contrast to the observations at 1 dpi, higher number of H5N1 genes than H5N8 genes was sequenced at 3 and 7 dpi, which is consistent with higher viral titres and virulence observed in infected lungs in vivo. Ingenuity pathway analysis revealed a more significant upregulation of death receptor signalling, driven by H5N1 than with H5N8 infection at 3 and 7 dpi. Early induction of immune response-related genes may elicit protection in H5N8-infected mice, which correlates with moderate pathogenicity in vivo. Collectively, our data provide new insight into the underlying mechanisms of the differential pathogenicity of avian influenza viruses. PMID:26576844

  19. Emerging infectious diseases: Focus on infection control issues for novel coronaviruses (Severe Acute Respiratory Syndrome-CoV and Middle East Respiratory Syndrome-CoV), hemorrhagic fever viruses (Lassa and Ebola), and highly pathogenic avian influenza viruses, A(H5N1) and A(H7N9).

    PubMed

    Weber, David J; Rutala, William A; Fischer, William A; Kanamori, Hajime; Sickbert-Bennett, Emily E

    2016-05-02

    Over the past several decades, we have witnessed the emergence of many new infectious agents, some of which are major public threats. New and emerging infectious diseases which are both transmissible from patient-to-patient and virulent with a high mortality include novel coronaviruses (SARS-CoV, MERS-CV), hemorrhagic fever viruses (Lassa, Ebola), and highly pathogenic avian influenza A viruses, A(H5N1) and A(H7N9). All healthcare facilities need to have policies and plans in place for early identification of patients with a highly communicable diseases which are highly virulent, ability to immediately isolate such patients, and provide proper management (e.g., training and availability of personal protective equipment) to prevent transmission to healthcare personnel, other patients and visitors to the healthcare facility. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  20. Human infection with highly pathogenic H5N1 influenza virus.

    PubMed

    Gambotto, Andrea; Barratt-Boyes, Simon M; de Jong, Menno D; Neumann, Gabriele; Kawaoka, Yoshihiro

    2008-04-26

    Highly pathogenic H5N1 influenza A viruses have spread relentlessly across the globe since 2003, and they are associated with widespread death in poultry, substantial economic loss to farmers, and reported infections of more than 300 people with a mortality rate of 60%. The high pathogenicity of H5N1 influenza viruses and their capacity for transmission from birds to human beings has raised worldwide concern about an impending human influenza pandemic similar to the notorious H1N1 Spanish influenza of 1918. Since many aspects of H5N1 influenza research are rapidly evolving, we aim in this Seminar to provide an up-to-date discussion on select topics of interest to influenza clinicians and researchers. We summarise the clinical features and diagnosis of infection and present therapeutic options for H5N1 infection of people. We also discuss ideas relating to virus transmission, host restriction, and pathogenesis. Finally, we discuss vaccine development in view of the probable importance of vaccination in pandemic control.

  1. Molecular epidemiology of H9N2 influenza viruses in Northern Europe.

    PubMed

    Lindh, Erika; Ek-Kommonen, Christine; Väänänen, Veli-Matti; Vaheri, Antti; Vapalahti, Olli; Huovilainen, Anita

    2014-08-27

    Low pathogenic avian influenza viruses are maintained in wild bird populations throughout the world. Avian influenza viruses are characterized by their efficient ability to reassort and adapt, which enables them to cross the species barrier and enhances their zoonotic potential. Influenza viruses of the H9N2 subtype appear endemic among poultry in Eurasia. They usually exist as low-pathogenic strains and circulate between wild bird populations, poultry and birds sold at live bird markets. Direct transmission of H9N2 viruses, with receptor specificities similar to human influenza strains, to pigs and humans has been reported on several occasions. H9N2 virus was first encountered in Finland in 2009, during routine screening of hunted wild waterfowl. The next year, H9N2 influenza viruses were isolated from wild birds on four occasions, including once from a farmed mallard. We have investigated the relationship between the reared and wild bird isolates by sequencing the hemagglutinin and the neuraminidase genes of the Finnish H9N2 viruses. Nucleotide sequence comparison and phylogenetic analyses indicate that H9N2 was transmitted from wild birds to reared birds in 2010, and that highly identical strains have been circulating in Europe during the last few years. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Influenza A (H1N1) virus pneumonia in intensive care unit.

    PubMed

    Adıgüzel, Nalan; Karakurt, Zuhal; Kalamanoğlu Balcı, Merih; Acartürk, Eylem; Güngör, Gökay; Yazıcıoğlu Moçin, Ozlem; Batı Kutlu, Semra; Yılmaz, Adnan

    2010-01-01

    Patients with influenza A (H1N1) virus infection have been admitted to intensive care units (ICU) due to development of severe respiratory failure. We described the clinical and epidemiologic characteristics of the 19 patients admitted to ICU due to influenza A (H1N1) virus infection. Study design is a descriptive case series in a third level-20 bed respiratory ICU at training hospital in Istanbul/Turkey. Influenza A (H1N1) virus infection was laboratory confirmed in specimens using real-time reverse transcriptase-polymerase-chain-reaction (RT-PCR). We collected data concerning demographic, epidemiologic and clinical characteristics of the patients, treatment mortality and outcome. From November 10 to December 31 2009, a total of 19 patients; 7 laboratory confirmed, 12 with high clinical suspicion were treated at ICU. Among 12 patients with high clinical suspicion; 3 patients had negative RT-PCR testing for influenza A (H1N1) virus, 9 patients had no tests. Mean age was 41.6 ± 11.9 (range 21 to 61). Median number of lung zone involvement was 4 (IQR= 3-4). Median PaO2/FiO2 was 105 (IQR= 85-165). Mean severity (APACHE II) and organ failure score (SOFA) were 13 ± 4 and 4.0 ± 1.3 respectively. Non-invasive mechanical ventilation (68.4%, n= 13), invasive mechanical ventilation (21.1%, n= 4) and nasal cannula oxygen (31.5%, n= 6) were implicated. The median length of ICU stay was 6 (IQR= 4-8). Oseltamivir therapy was given as 75 mg bid to 12 patients and 150 mg bid to 7 obese patients. ICU mortality rate was 21.1%. Presenting patients with pneumonia and acute respiratory failure due to influenza A (H1N1) virus infection were treated predominantly and successfully with non invasive mechanical ventilation. Clinicians should be aware of pulmonary complications of influenza A (H1N1) virus infection and that patients can be treated with non invasive mechanical ventilation paying attention to protective measures for health care providers.

  3. A brief summary of the epidemiology and genetic relatedness of avian influenza H9N2 virus in birds and mammals in the Middle East and North Africa.

    PubMed

    Nagy, A; Mettenleiter, T C; Abdelwhab, E M

    2017-12-01

    H9N2 is the most widespread avian influenza virus subtype in poultry worldwide. It infects a broad spectrum of host species including birds and mammals. Infections in poultry and humans vary from silent to fatal. Importantly, all AIV, which are fatal in humans (e.g. H5N1, H7N9) acquired their 'internal' gene segments from H9N2 viruses. Although H9N2 is endemic in the Middle East (ME) and North Africa since the late 1990s, little is known about its epidemiology and genetics on a regional level. In this review, we summarised the epidemiological situation of H9N2 in poultry and mammals in Iran, Iraq, Kuwait, Qatar, United Arab Emirates, Oman, Bahrain, Yemen, Saudi Arabia, Jordan, Palestine, Israel, Syria, Lebanon, Turkey, Egypt, Sudan, Libya, Tunisia, Algeria and Morocco. The virus has been isolated from humans in Egypt and serosurveys indicated widespread infection particularly among poultry workers and pigs in some countries. Some isolates replicated well in experimentally inoculated dogs, mice, hamsters and ferrets. Insufficient protection of immunised poultry was frequently reported most likely due to concurrent viral or bacterial infections and antigenic drift of the field viruses from outdated vaccine strains. Genetic analysis indicated several distinct phylogroups including a panzootic genotype in the Asian and African parts of the ME, which may be useful for the development of vaccines. The extensive circulation of H9N2 for about 20 years in this region where the H5N1 virus is also endemic in some countries, poses a serious public health threat. Regional surveillance and control strategy are highly recommended.

  4. A broadly neutralizing human monoclonal antibody is effective against H7N9.

    PubMed

    Tharakaraman, Kannan; Subramanian, Vidya; Viswanathan, Karthik; Sloan, Susan; Yen, Hui-Ling; Barnard, Dale L; Leung, Y H Connie; Szretter, Kristy J; Koch, Tyree J; Delaney, James C; Babcock, Gregory J; Wogan, Gerald N; Sasisekharan, Ram; Shriver, Zachary

    2015-09-01

    Emerging strains of influenza represent a significant public health threat with potential pandemic consequences. Of particular concern are the recently emerged H7N9 strains which cause pneumonia with acute respiratory distress syndrome. Estimates are that nearly 80% of hospitalized patients with H7N9 have received intensive care unit support. VIS410, a human antibody, targets a unique conserved epitope on influenza A. We evaluated the efficacy of VIS410 for neutralization of group 2 influenza strains, including H3N2 and H7N9 strains in vitro and in vivo. VIS410, administered at 50 mg/kg, protected DBA mice infected with A/Anhui/2013 (H7N9), resulting in significant survival benefit upon single-dose (-24 h) or double-dose (-12 h, +48 h) administration (P < 0.001). A single dose of VIS410 at 50 mg/kg (-12 h) combined with oseltamivir at 50 mg/kg (-12 h, twice daily for 7 d) in C57BL/6 mice infected with A/Shanghai 2/2013 (H7N9) resulted in significant decreased lung viral load (P = 0.002) and decreased lung cytokine responses for nine of the 11 cytokines measured. Based on these results, we find that VIS410 may be effective either as monotherapy or combined with antivirals in treating H7N9 disease, as well as disease from other influenza strains.

  5. A broadly neutralizing human monoclonal antibody is effective against H7N9

    PubMed Central

    Tharakaraman, Kannan; Subramanian, Vidya; Viswanathan, Karthik; Sloan, Susan; Yen, Hui-Ling; Barnard, Dale L.; Leung, Y. H. Connie; Szretter, Kristy J.; Koch, Tyree J.; Delaney, James C.; Babcock, Gregory J.; Wogan, Gerald N.; Sasisekharan, Ram; Shriver, Zachary

    2015-01-01

    Emerging strains of influenza represent a significant public health threat with potential pandemic consequences. Of particular concern are the recently emerged H7N9 strains which cause pneumonia with acute respiratory distress syndrome. Estimates are that nearly 80% of hospitalized patients with H7N9 have received intensive care unit support. VIS410, a human antibody, targets a unique conserved epitope on influenza A. We evaluated the efficacy of VIS410 for neutralization of group 2 influenza strains, including H3N2 and H7N9 strains in vitro and in vivo. VIS410, administered at 50 mg/kg, protected DBA mice infected with A/Anhui/2013 (H7N9), resulting in significant survival benefit upon single-dose (−24 h) or double-dose (−12 h, +48 h) administration (P < 0.001). A single dose of VIS410 at 50 mg/kg (−12 h) combined with oseltamivir at 50 mg/kg (−12 h, twice daily for 7 d) in C57BL/6 mice infected with A/Shanghai 2/2013 (H7N9) resulted in significant decreased lung viral load (P = 0.002) and decreased lung cytokine responses for nine of the 11 cytokines measured. Based on these results, we find that VIS410 may be effective either as monotherapy or combined with antivirals in treating H7N9 disease, as well as disease from other influenza strains. PMID:26283346

  6. Mammalian Models for the Study of H7 Virus Pathogenesis and Transmission

    PubMed Central

    Belser, Jessica A.; Tumpey, Terrence M.

    2018-01-01

    Mammalian models, most notably the mouse and ferret, have been instrumental in the assessment of avian influenza virus pathogenicity and transmissibility, and have been used widely to characterize the molecular determinants that confer H5N1 virulence in mammals. However, while H7 influenza viruses have typically been associated with conjunctivitis and/or mild respiratory disease in humans, severe disease and death is also possible, as underscored by the recent emergence of H7N9 viruses in China. Despite the public health need to understand the pandemic potential of this virus subtype, H7 virus pathogenesis and transmission has not been as extensively studied. In this review, we discuss the heterogeneity of H7 subtype viruses isolated from humans, and the characterization of mammalian models to study the virulence of H7 subtype viruses associated with human infection, including viruses of both high and low pathogenicity and following multiple inoculation routes. The use of the ferret transmission model to assess the influence of receptor binding preference among contemporary H7 influenza viruses is described. These models have enabled the study of preventative and therapeutic agents, including vaccines and antivirals, to reduce disease burden, and have permitted a greater appreciation that not all highly pathogenic influenza viruses are created equal. PMID:24996862

  7. IFIT1 Expression Patterns Induced by H9N2 Virus and Inactivated Viral Particle in Human Umbilical Vein Endothelial Cells and Bronchus Epithelial Cells.

    PubMed

    Feng, Bo; Zhang, Qian; Wang, Jianfang; Dong, Hong; Mu, Xiang; Hu, Ge; Zhang, Tao

    2018-04-30

    IFIT1 (also known as ISG56) is a member of the interferon-inducible protein with tetratricopeptide repeats (IFITs) family. IFITs are strongly induced by type I interferon (IFN), double-stranded RNA and virus infection. Here, we investigated IFIT1 expression in human umbilical vein endothelial cells (HUVECs) and in human bronchus epithelial cells (BEAS-2Bs) induced by the H9N2 virus and inactivated viral particle at different time points. We also investigated the effect of H9N2 virus and viral particle infection on IFN-α/β production, and assessed whether hemagglutinin or neuraminidase protein induced IFIT1 expression. Results showed that both H9N2 virus infection and viral particle inoculation induced the expression of IFIT1 at mRNA and protein levels in the two cell lines. Hemagglutinin or neuraminidase protein binding alone is not sufficient to induce IFIT1 expression. Surprisingly, the expression patterns of IFIT1 in response to H9N2 virus and viral particles in the two cell lines were opposite, and production kinetics of IFN-α/β also differed. An additional finding was that induction of IFIT1 in response to H9N2 virus infection or viral particle inoculation was more sensitive in HUVECs than in BEAS-2Bs. Our data offers new insight into the innate immune response of endothelial cells to H9N2 virus infection.

  8. IFIT1 Expression Patterns Induced by H9N2 Virus and Inactivated Viral Particle in Human Umbilical Vein Endothelial Cells and Bronchus Epithelial Cells

    PubMed Central

    Feng, Bo; Zhang, Qian; Wang, Jianfang; Dong, Hong; Mu, Xiang; Hu, Ge; Zhang, Tao

    2018-01-01

    IFIT1 (also known as ISG56) is a member of the interferon-inducible protein with tetratricopeptide repeats (IFITs) family. IFITs are strongly induced by type I interferon (IFN), double-stranded RNA and virus infection. Here, we investigated IFIT1 expression in human umbilical vein endothelial cells (HUVECs) and in human bronchus epithelial cells (BEAS-2Bs) induced by the H9N2 virus and inactivated viral particle at different time points. We also investigated the effect of H9N2 virus and viral particle infection on IFN-α/β production, and assessed whether hemagglutinin or neuraminidase protein induced IFIT1 expression. Results showed that both H9N2 virus infection and viral particle inoculation induced the expression of IFIT1 at mRNA and protein levels in the two cell lines. Hemagglutinin or neuraminidase protein binding alone is not sufficient to induce IFIT1 expression. Surprisingly, the expression patterns of IFIT1 in response to H9N2 virus and viral particles in the two cell lines were opposite, and production kinetics of IFN-α/β also differed. An additional finding was that induction of IFIT1 in response to H9N2 virus infection or viral particle inoculation was more sensitive in HUVECs than in BEAS-2Bs. Our data offers new insight into the innate immune response of endothelial cells to H9N2 virus infection. PMID:29629559

  9. Isolation and characterization of an H9N2 influenza virus isolated in Argentina

    PubMed Central

    Xu, Kemin; Ferreri, Lucas; Rimondi, Agustina; Olivera, Valeria; Romano, Marcelo; Ferreyra, Hebe; Rago, Virgina; Uhart, Marcela; Chen, Hongjun; Sutton, Troy; Pereda, Ariel; Perez, Daniel R.

    2016-01-01

    As part of our ongoing efforts on animal influenza surveillance in Argentina, an H9N2 virus was isolated from a wild aquatic bird (Netta peposaca), A/rosy-billed pochard/Argentina/CIP051-559/2007 (H9N2) – herein referred to as 559/H9N2. Due to the important role that H9N2 viruses play in the ecology of influenza in nature, the 559/H9N2 isolate was characterized molecularly and biologically. Phylogenetic analysis of the HA gene revealed that the 559/H9N2 virus maintained an independent evolutionary pathway and shared a sister-group relationship with North American viruses, suggesting a common ancestor. The rest of the genome segments clustered with viruses from South America. Experimental inoculation of the 559/H9N2 in chickens and quail revealed efficient replication and transmission only in quail. Our results add to the notion of the unique evolutionary trend of avian influenza viruses in South America. Our study increases our understanding of H9N2 viruses in nature and emphasizes the importance of expanding animal influenza surveillance efforts to better define the ecology of influenza viruses at a global scale. PMID:22709552

  10. Current situation of H9N2 subtype avian influenza in China.

    PubMed

    Gu, Min; Xu, Lijun; Wang, Xiaoquan; Liu, Xiufan

    2017-09-15

    In China, H9N2 subtype avian influenza outbreak is firstly reported in Guangdong province in 1992. Subsequently, the disease spreads into vast majority regions nationwide and has currently become endemic there. Over vicennial genetic evolution, the viral pathogenicity and transmissibility have showed an increasing trend as year goes by, posing serious threat to poultry industry. In addition, H9N2 has demonstrated significance to public health as it could not only directly infect mankind, but also donate partial or even whole cassette of internal genes to generate novel human-lethal reassortants like H5N1, H7N9, H10N8 and H5N6 viruses. In this review, we mainly focused on the epidemiological dynamics, biological characteristics, molecular phylogeny and vaccine strategy of H9N2 subtype avian influenza virus in China to present an overview of the situation of H9N2 in China.

  11. Protection against avian influenza H9N2 virus challenge by immunization with hemagglutinin- or neuraminidase-expressing DNA in BALB/c mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu Meizhen; Fang Fang; Chen Yan

    2006-05-19

    Avian influenza viruses of H9N2 subtype are widely spread in avian species. The viruses have recently been transmitted to mammalian species, including humans, accelerating the efforts to devise protective strategies against them. In this study, an avian influenza H9N2 virus strain (A/Chicken/Jiangsu/7/2002), isolated in Jiangsu Province, China, was used to infect BALB/c mice for adaptation. After five lung-to-lung passages, the virus was stably proliferated in a large quantity in the murine lung and caused the deaths of mice. In addition, we explored the protection induced by H9N2 virus hemagglutinin (HA)- and neuraminidase (NA)-expressing DNAs in BALB/c mice. Female BALB/c micemore » aged 6-8 weeks were immunized once or twice at a 3-week interval with HA-DNA and NA-DNA by electroporation, respectively, each at a dose of 3, 10 or 30 {mu}g. The mice were challenged with a lethal dose (40x LD{sub 5}) of influenza H9N2 virus four weeks after immunization once or one week after immunization twice. The protections of DNA vaccines were evaluated by the serum antibody titers, residual lung virus titers, and survival rates of the mice. The result showed that immunization once with not less than 10 {mu}g or twice with 3 {mu}g HA-DNA or NA-DNA provided effective protection against homologous avian influenza H9N2 virus.« less

  12. Genesis of avian influenza H9N2 in Bangladesh.

    PubMed

    Shanmuganatham, Karthik; Feeroz, Mohammed M; Jones-Engel, Lisa; Walker, David; Alam, SMRabiul; Hasan, MKamrul; McKenzie, Pamela; Krauss, Scott; Webby, Richard J; Webster, Robert G

    2014-12-01

    Avian influenza subtype H9N2 is endemic in many bird species in Asia and the Middle East and has contributed to the genesis of H5N1, H7N9 and H10N8, which are potential pandemic threats. H9N2 viruses that have spread to Bangladesh have acquired multiple gene segments from highly pathogenic (HP) H7N3 viruses that are presumably in Pakistan and currently cocirculate with HP H5N1. However, the source and geographic origin of these H9N2 viruses are not clear. We characterized the complete genetic sequences of 37 Bangladeshi H9N2 viruses isolated in 2011-2013 and investigated their inter- and intrasubtypic genetic diversities by tracing their genesis in relationship to other H9N2 viruses isolated from neighboring countries. H9N2 viruses in Bangladesh are homogenous with several mammalian host-specific markers and are a new H9N2 sublineage wherein the hemagglutinin (HA) gene is derived from an Iranian H9N2 lineage (Mideast_B Iran), the neuraminidase (NA) and polymerase basic 2 (PB2) genes are from Dubai H9N2 (Mideast_C Dubai), and the non-structural protein (NS), nucleoprotein (NP), matrix protein (MP), polymerase acidic (PA) and polymerase basic 1 (PB1) genes are from HP H7N3 originating from Pakistan. Different H9N2 genotypes that were replaced in 2006 and 2009 by other reassortants have been detected in Bangladesh. Phylogenetic and molecular analyses suggest that the current genotype descended from the prototypical H9N2 lineage (G1), which circulated in poultry in China during the late 1990s and came to Bangladesh via the poultry trade within the Middle East, and that this genotype subsequently reassorted with H7N3 and H9N2 lineages from Pakistan and spread throughout India. Thus, continual surveillance of Bangladeshi HP H5N1, H7N3 and H9N2 is warranted to identify further evolution and adaptation to humans.

  13. Genesis of avian influenza H9N2 in Bangladesh

    PubMed Central

    Shanmuganatham, Karthik; Feeroz, Mohammed M; Jones-Engel, Lisa; Walker, David; Alam, SMRabiul; Hasan, MKamrul; McKenzie, Pamela; Krauss, Scott; Webby, Richard J; Webster, Robert G

    2014-01-01

    Avian influenza subtype H9N2 is endemic in many bird species in Asia and the Middle East and has contributed to the genesis of H5N1, H7N9 and H10N8, which are potential pandemic threats. H9N2 viruses that have spread to Bangladesh have acquired multiple gene segments from highly pathogenic (HP) H7N3 viruses that are presumably in Pakistan and currently cocirculate with HP H5N1. However, the source and geographic origin of these H9N2 viruses are not clear. We characterized the complete genetic sequences of 37 Bangladeshi H9N2 viruses isolated in 2011–2013 and investigated their inter- and intrasubtypic genetic diversities by tracing their genesis in relationship to other H9N2 viruses isolated from neighboring countries. H9N2 viruses in Bangladesh are homogenous with several mammalian host-specific markers and are a new H9N2 sublineage wherein the hemagglutinin (HA) gene is derived from an Iranian H9N2 lineage (Mideast_B Iran), the neuraminidase (NA) and polymerase basic 2 (PB2) genes are from Dubai H9N2 (Mideast_C Dubai), and the non-structural protein (NS), nucleoprotein (NP), matrix protein (MP), polymerase acidic (PA) and polymerase basic 1 (PB1) genes are from HP H7N3 originating from Pakistan. Different H9N2 genotypes that were replaced in 2006 and 2009 by other reassortants have been detected in Bangladesh. Phylogenetic and molecular analyses suggest that the current genotype descended from the prototypical H9N2 lineage (G1), which circulated in poultry in China during the late 1990s and came to Bangladesh via the poultry trade within the Middle East, and that this genotype subsequently reassorted with H7N3 and H9N2 lineages from Pakistan and spread throughout India. Thus, continual surveillance of Bangladeshi HP H5N1, H7N3 and H9N2 is warranted to identify further evolution and adaptation to humans. PMID:26038507

  14. Porcine mast cells infected with H1N1 influenza virus release histamine and inflammatory cytokines and chemokines.

    PubMed

    Lee, In Hong; Kim, Hyun Soo; Seo, Sang Heui

    2017-04-01

    Mast cells reside in many tissues, including the lungs, and might play a role in enhancing influenza virus infections in animals. In this study, we cultured porcine mast cells from porcine bone marrow cells with IL-3 and stem cell factor to study the infectivity and activation of the 2009 pandemic H1N1 influenza virus of swine origin. Porcine mast cells were infected with H1N1 influenza virus, without the subsequent production of infectious viruses but were activated, as indicated by the release of histamines. Inflammatory cytokine- and chemokine-encoding genes, including IL-1α, IL-6, CXCL9, CXCL10, and CXCL11, were upregulated in the infected porcine mast cells. Our results suggest that mast cells could be involved in enhancing influenza-virus-mediated disease in infected animals.

  15. Influenza Viral Vectors Expressing Two Kinds of HA Proteins as Bivalent Vaccine Against Highly Pathogenic Avian Influenza Viruses of Clade 2.3.4.4 H5 and H7N9

    PubMed Central

    Li, Jinping; Hou, Guangyu; Wang, Yan; Wang, Suchun; Peng, Cheng; Yu, Xiaohui; Jiang, Wenming

    2018-01-01

    The H5 and H7N9 subtypes of highly pathogenic avian influenza viruses (HPAIVs) in China pose a serious challenge to public health and the poultry industry. In this study, a replication competent recombinant influenza A virus of the Í5N1 subtype expressing the H7 HA1 protein from a tri-cistronic NS segment was constructed. A heterologous dimerization domain was used to combine with the truncated NS1 protein of 73 amino acids to increase protein stability. H7 HA1, nuclear export protein coding region, and the truncated NS1 were fused in-frame into a single open reading frame via 2A self-cleaving peptides. The resulting PR8-H5-NS1(73)H7 stably expressed the H5 HA and H7 HA1 proteins, and exhibited similar growth kinetics as the parental PR8-H5 virus in vitro. PR8-H5-NS1(73)H7 induced specific hemagglutination inhibition (HI) antibody against H5, which was comparable to that of the combination vaccine of PR8-H5 and PR8-H7. The HI antibody titers against H7 virus were significantly lower than that by the combination vaccine. PR8-H5-NS1(73)H7 completely protected chickens from challenge with both H5 and H7 HPAIVs. These results suggest that PR8-H5-NS1(73)H7 is highly immunogenic and efficacious against both H5 and H7N9 HPAIVs in chickens. Highlights: - PR8-H5-NS1(73)H7 simultaneously expressed two HA proteins of different avian influenza virus subtypes. - PR8-H5-NS1(73)H7 was highly immunogenic in chickens. - PR8-H5-NS1(73)H7 provided complete protection against challenge with both H5 and H7N9 HPAIVs. PMID:29670587

  16. Comparative pathology in ferrets infected with H1N1 influenza A viruses isolated from different hosts.

    PubMed

    Smith, Jennifer Humberd; Nagy, Tamas; Driskell, Elizabeth; Brooks, Paula; Tompkins, S Mark; Tripp, Ralph A

    2011-08-01

    Virus replication and pulmonary disease pathogenesis in ferrets following intranasal infection with a pandemic influenza virus strain (A/California/4/09 [CA09]), a human seasonal influenza H1N1 virus isolate (A/New Caledonia/20/99 [Ncal99]), a classical swine influenza H1N1 virus isolate (A/Swine/Iowa/15/30 [Sw30]), or an avian H1N1 virus isolate (A/Mallard/MN/A108-2355/08 [Mal08]) were compared. Nasal wash virus titers were similar for Ncal99 and Sw30, with peak virus titers of 10(5.1) 50% tissue culture infectious doses (TCID(50))/ml and 10(5.5) TCID(50)/ml occurring at day 3 postinfection (p.i.), respectively. The mean peak titer for CA09 also occurred at day 3 p.i. but was higher (10(7) TCID(50)/ml). In contrast, the peak virus titers (10(3.6) to 10(4.3) TCID(50)/ml) for Mal08 were delayed, occurring between days 5 and 7 p.i. Disease pathogenesis was characterized by microscopic lesions in the nasal turbinates and lungs of all ferrets; however, Sw30 infection was associated with severe bronchointerstitial pneumonia. The results demonstrate that although CA09 is highly transmissible in the human population and replicates well in the ferret model, it causes modest disease compared to other H1N1 viruses, particularly Sw30 infection.

  17. Broad-spectrum neutralization of avian influenza viruses by sialylated human milk oligosaccharides: in vivo assessment of 3'-sialyllactose against H9N2 in chickens.

    PubMed

    Pandey, Ramesh Prasad; Kim, Dae Hee; Woo, Jinsuk; Song, Jaeyoung; Jang, Sang Ho; Kim, Joon Bae; Cheong, Kwang Myun; Oh, Jin Sik; Sohng, Jae Kyung

    2018-02-07

    Two sialylated human milk oligosaccharides (SHMOs) 3'-sialyllactose (3'-SL) and 6'-sialyllactose (6'-SL) were accessed for their possible antiviral activity against six different subtypes of thirteen avian influenza (AI) viruses in vitro. 3'-SL exhibited promising antiviral activity against almost all subtypes of tested AI viruses in hemagglutination inhibition assay, whereas 6'-SL showed activity against few selected H1N1, H1N2, and H3N2 subtype strains. 3'-SL has minimum inhibitory concentration values of 15.62 mM or less in more than half of the viruses examined. 3'-SL also showed effective inactivation of H9N2 Korea isolate (A/Chicken/Korea/MS96/1996) at 12.5 mM concentration in Madin Darby Canine Kidney (MDCK) cell line. Thus, 3'-SL was further studied for in vivo study against H9N2 virus in pathogen free chicken experiment models. In vivo study exhibited improved clinical symptoms on H9N2 infected chickens when treated with 3'-SL. Moreover, treating chickens with 3'-SL resulted in complete elimination of H9N2 viruses within 24 h of virus infection (0.8 HAU of H9N2). Indirect ELISA assay confirmed complete wash-out of H9N2 viruses from the colon after neutralization by 3'-SL without entering the blood stream. These in vivo results open up possible applications of 3'-SL for the prevention of AI virus infections in birds by a simple cleansing mechanism.

  18. Pathogenesis and Transmission Assessments of Two H7N8 Influenza A Viruses Recently Isolated from Turkey Farms in Indiana Using Mouse and Ferret Models

    PubMed Central

    Sun, Xiangjie; Belser, Jessica A.; Pulit-Penaloza, Joanna A.; Zeng, Hui; Lewis, Amanda; Shieh, Wun-Ju; Tumpey, Terrence M.

    2016-01-01

    ABSTRACT Avian influenza A H7 viruses have caused multiple outbreaks in domestic poultry throughout North America, resulting in occasional infections of humans in close contact with affected birds. In early 2016, the presence of H7N8 highly pathogenic avian influenza (HPAI) viruses and closely related H7N8 low-pathogenic avian influenza (LPAI) viruses was confirmed in commercial turkey farms in Indiana. These H7N8 viruses represent the first isolation of this subtype in domestic poultry in North America, and their virulence in mammalian hosts and the potential risk for human infection are largely unknown. In this study, we assessed the ability of H7N8 HPAI and LPAI viruses to replicate in vitro in human airway cells and in vivo in mouse and ferret models. Both H7N8 viruses replicated efficiently in vitro and in vivo, but they exhibited substantial differences in disease severity in mammals. In mice, while the H7N8 LPAI virus largely remained avirulent, the H7N8 HPAI virus exhibited greater infectivity, virulence, and lethality. Both H7N8 viruses replicated similarly in ferrets, but only the H7N8 HPAI virus caused moderate weight loss, lethargy, and mortality. The H7N8 LPAI virus displayed limited transmissibility in ferrets placed in direct contact with an inoculated animal, while no transmission of H7N8 HPAI virus was detected. Our results indicate that the H7N8 avian influenza viruses from Indiana are able to replicate in mammals and cause severe disease but with limited transmission. The recent appearance of H7N8 viruses in domestic poultry highlights the need for continued influenza surveillance in wild birds and close monitoring of the potential risk to human health. IMPORTANCE H7 influenza viruses circulate in wild birds in the United States, but when the virus emerges in domestic poultry populations, the frequency of human exposure and the potential for human infections increases. An H7N8 highly pathogenic avian influenza (HPAI) virus and an H7N8 low

  19. Evidence of infection with H4 and H11 avian influenza viruses among Lebanese chicken growers.

    PubMed

    Kayali, Ghazi; Barbour, Elie; Dbaibo, Ghassan; Tabet, Carelle; Saade, Maya; Shaib, Houssam A; Debeauchamp, Jennifer; Webby, Richard J

    2011-01-01

    Human infections with H5, H7, and H9 avian influenza viruses are well documented. Exposure to poultry is the most important risk factor for humans becoming infected with these viruses. Data on human infection with other low pathogenicity avian influenza viruses is sparse but suggests that such infections may occur. Lebanon is a Mediterranean country lying under two major migratory birds flyways and is home to many wild and domestic bird species. Previous reports from this country demonstrated that low pathogenicity avian influenza viruses are in circulation but highly pathogenic H5N1 viruses were not reported. In order to study the extent of human infection with avian influenza viruses in Lebanon, we carried out a seroprevalence cross-sectional study into which 200 poultry-exposed individuals and 50 non-exposed controls were enrolled. We obtained their sera and tested it for the presence of antibodies against avian influenza viruses types H4 through H16 and used a questionnaire to collect exposure data. Our microneutralization assay results suggested that backyard poultry growers may have been previously infected with H4 and H11 avian influenza viruses. We confirmed these results by using a horse red blood cells hemagglutination inhibition assay. Our data also showed that farmers with antibodies against each virus type clustered in a small geographic area suggesting that unrecognized outbreaks among birds may have led to these human infections. In conclusion, this study suggests that occupational exposure to chicken is a risk factor for infection with avian influenza especially among backyard growers and that H4 and H11 influenza viruses may possess the ability to cross the species barrier to infect humans.

  20. Outbreaks of avian influenza A (H5N2), (H5N8), and (H5N1) among birds--United States, December 2014-January 2015.

    PubMed

    Jhung, Michael A; Nelson, Deborah I

    2015-02-06

    During December 15, 2014-January 16, 2015, the U.S. Department of Agriculture received 14 reports of birds infected with Asian-origin, highly pathogenic avian influenza A (HPAI) (H5N2), (H5N8), and (H5N1) viruses. These reports represent the first reported infections with these viruses in U.S. wild or domestic birds. Although these viruses are not known to have caused disease in humans, their appearance in North America might increase the likelihood of human infection in the United States. Human infection with other avian influenza viruses, such as HPAI (H5N1) and (H5N6) viruses and (H7N9) virus, has been associated with severe, sometimes fatal, disease, usually following contact with poultry.

  1. Replication of H9 influenza viruses in the human ex vivo respiratory tract, and the influence of neuraminidase on virus release.

    PubMed

    Chan, Renee W Y; Chan, Louisa L Y; Mok, Chris K P; Lai, Jimmy; Tao, Kin P; Obadan, Adebimpe; Chan, Michael C W; Perez, Daniel R; Peiris, J S Malik; Nicholls, John M

    2017-07-24

    H9N2 viruses are the most widespread influenza viruses in poultry in Asia. We evaluated the infection and tropism of human and avian H9 influenza virus in the human respiratory tract using ex vivo respiratory organ culture. H9 viruses infected the upper and lower respiratory tract and the majority of H9 viruses had a decreased ability to release virus from the bronchus rather than the lung. This may be attributed to a weak neuraminidase (NA) cleavage of carbon-6-linked sialic acid (Sia) rather than carbon-3-linked Sia. The modified cleavage of N-acetlylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc) by NA in H9 virus replication was observed by reverse genetics, and recombinant H9N2 viruses with amino acids (38KQ) deleted in the NA stalk, and changing the amino acid at position 431 from Proline-to-Lysine. Using recombinant H9 viruses previously evaluated in the ferret, we found that viruses which replicated well in the ferret did not replicate to the same extent in the human ex vivo cultures. The existing risk assessment models for H9N2 viruses in ferrets may not always have a strong correlation with the replication in the human upper respiratory tract. The inclusion of the human ex vivo cultures would further strengthen the future risk-assessment strategies.

  2. Comparative Effectiveness of Two Oil Adjuvant-Inactivated Avian Influenza H9N2 Vaccines.

    PubMed

    Kilany, Walid H; Bazid, Abdel-Hamid I; Ali, Ahmed; El-Deeb, Ayman H; El-Abideen, Mohamed A Zain; Sayed, Magdy El; El-Kady, Magdy F

    2016-05-01

    Low pathogenic avian influenza H9N2 virus infection has been an important risk to the Egyptian poultry industry since 2011. Economic losses have occurred from early infection and co-infection with other pathogens. Therefore, H9N2 vaccination of broiler chicks as young as 7 days old was recommended. The current inactivated H9N2 vaccines (0.5 ml/bird) administered at a reduced dose (0.25 ml/bird) do not guarantee the delivery of an effective dose for broilers. In this study, the efficacy of the reduced-dose volume (0.3 ml/bird), compared with the regular vaccine dose (0.5 ml/bird) of inactivated H9N2 vaccines using two different commercially available adjuvants, was investigated. The vaccines were prepared from the local H9N2 virus (Ck/EG/114940v/NLQP/11) using the same antigen content: 300 hemagglutinating units. Postvaccination (PV) immune response was monitored using the hemagglutination inhibition test. At 4 wk PV, both vaccinated groups were challenged using the homologous H9N2 strain at a 50% egg infective dose (EID50) of 10(6) EID50/bird via the intranasal route. Clinical signs, mortality, and virus shedding in oropharyngeal swabs were monitored at 2, 4, 6, and 10 days postchallenge (DPC). The reduced-dose volume of vaccine induced a significantly faster and higher immune response than the regular volume of vaccine at 2 and 3 wk PV. No significant difference in virus shedding between the two vaccine formulas was found (P ≥ 0.05), and both vaccines were able to stop virus shedding by 6 DPC. The reduced-dose volume of vaccine using a suitable oil adjuvant and proper antigen content can be used effectively for early immunization of broiler chicks.

  3. Influenza virus A (H10N7) in chickens and poultry abattoir workers, Australia.

    PubMed

    Arzey, George G; Kirkland, Peter D; Arzey, K Edla; Frost, Melinda; Maywood, Patrick; Conaty, Stephen; Hurt, Aeron C; Deng, Yi-Mo; Iannello, Pina; Barr, Ian; Dwyer, Dominic E; Ratnamohan, Mala; McPhie, Kenneth; Selleck, Paul

    2012-05-01

    In March 2010, an outbreak of low pathogenicity avian influenza A (H10N7) occurred on a chicken farm in Australia. After processing clinically normal birds from the farm, 7 abattoir workers reported conjunctivitis and minor upper respiratory tract symptoms. Influenza virus A subtype H10 infection was detected in 2 workers.

  4. The microRNA-let-7b-mediated attenuated strain of influenza A (H1N1) virus in a mouse model.

    PubMed

    Tan, Mingming; Sun, Wenkui; Feng, Chunlai; Xia, Di; Shen, Xiaoyue; Ding, Yuan; Liu, Zhicheng; Xing, Zheng; Su, Xin; Shi, Yi

    2016-09-30

    Evaluating the attenuation of influenza viruses in animal studies is important in developing safe and effective vaccines. This study aimed to demonstrate that the microRNA (miRNA)-let-7b-mediated attenuated influenza viruses (miRT-H1N1) are sufficiently attenuated and safe in mice. The pathogenicity of the miRT-H1N1virus was investigated in a mouse model, evaluated with median lethal dose (LD50). The replicative dynamics of the miRT-H1N1, wild type (wt)-H1N1, and scramble (scbl)-H1N1 viruses in the lungs of infected mice were compared. The degrees of lesions and the expression levels of IL-6, TNF-α, and IFN-β in the lungs of mice infected with different viruses were also analyzed. In miRT-H1N1 virus-infected mice, 100% of mice survived, and a lower pathogenicity was characterized with non-significant weight loss when compared to mice infected with the control wt virus. The miRT-H1N1 virus was not fatal for mice, even at the highest dose administered. The viral load in the lungs of miRT-H1N1-infected mice was significantly lower than that of the wild-type virus-infected mice. Fewer pulmonary lesions and lower levels of selected pro-inflammatory cytokines in the lungs of the mice infected with the miRT-H1N1 virus were also observed. The virulence of the miRT-H1N1 virus reduced significantly, suggesting that the miRT-H1N1 virus was safe for mice. Our study demonstrated that the miRNA-mediated gene silencing is an alternative approach to attenuating the pathogenicity of wt influenza viruses that have potential in the development of influenza vaccines.

  5. Experimental infection of H5N1 and H5N8 highly pathogenic avian influenza viruses in Northern Pintail (Anas acuta).

    PubMed

    Kwon, J-H; Lee, D-H; Swayne, D E; Noh, J-Y; Yuk, S-S; Jeong, S; Lee, S-H; Woo, C; Shin, J-H; Song, C-S

    2018-05-04

    The wide geographic spread of Eurasian Goose/Guangdong lineage highly pathogenic avian influenza (HPAI) clade 2.3.4.4 viruses by wild birds is of great concern. In December 2014, an H5N8 HPAI clade 2.3.4.4 Group A (2.3.4.4A) virus was introduced to North America. Long-distance migratory wild aquatic birds between East Asia and North America, such as Northern Pintail (Anas acuta), were strongly suspected of being a source of intercontinental transmission. In this study, we evaluated the pathogenicity, infectivity and transmissibility of an H5N8 HPAI clade 2.3.4.4A virus in Northern Pintails and compared the results to that of an H5N1 HPAI clade 2.3.2.1 virus. All of Northern Pintails infected with either H5N1 or H5N8 virus lacked clinical signs and mortality, but the H5N8 clade 2.3.4.4 virus was more efficient at replicating within and transmitting between Northern Pintails than the H5N1 clade 2.3.2.1 virus. The H5N8-infected birds shed high titre of viruses from oropharynx and cloaca, which in the field supported virus transmission and spread. This study highlights the role of wild waterfowl in the intercontinental spread of some HPAI viruses. Migratory aquatic birds should be carefully monitored for the early detection of H5 clade 2.3.4.4 and other HPAI viruses. © 2018 Blackwell Verlag GmbH.

  6. Pathogenicity and Transmission of H5 and H7 Highly Pathogenic Avian Influenza Viruses in Mallards

    PubMed Central

    Costa-Hurtado, Mar; Shepherd, Eric; DeJesus, Eric; Smith, Diane; Spackman, Erica; Kapczynski, Darrell R.; Suarez, David L.; Stallknecht, David E.; Swayne, David E.

    2016-01-01

    ABSTRACT Wild aquatic birds have been associated with the intercontinental spread of H5 subtype highly pathogenic avian influenza (HPAI) viruses of the A/goose/Guangdong/1/96 (Gs/GD) lineage during 2005, 2010, and 2014, but dispersion by wild waterfowl has not been implicated with spread of other HPAI viruses. To better understand why Gs/GD H5 HPAI viruses infect and transmit more efficiently in waterfowl than other HPAI viruses, groups of mallard ducks were challenged with one of 14 different H5 and H7 HPAI viruses, including a Gs/GD lineage H5N1 (clade 2.2) virus from Mongolia, part of the 2005 dispersion, and the H5N8 and H5N2 index HPAI viruses (clade 2.3.4.4) from the United States, part of the 2014 dispersion. All virus-inoculated ducks and contact exposed ducks became infected and shed moderate to high titers of the viruses, with the exception that mallards were resistant to Ck/Pennsylvania/83 and Ck/Queretaro/95 H5N2 HPAI virus infection. Clinical signs were only observed in ducks challenged with the H5N1 2005 virus, which all died, and with the H5N8 and H5N2 2014 viruses, which had decreased weight gain and fever. These three viruses were also shed in higher titers by the ducks, which could facilitate virus transmission and spread. This study highlights the possible role of wild waterfowl in the spread of HPAI viruses. IMPORTANCE The spread of H5 subtype highly pathogenic avian influenza (HPAI) viruses of the Gs/GD lineage by migratory waterfowl is a serious concern for animal and public health. H5 and H7 HPAI viruses are considered to be adapted to gallinaceous species (chickens, turkeys, quail, etc.) and less likely to infect and transmit in wild ducks. In order to understand why this is different with certain Gs/GD lineage H5 HPAI viruses, we compared the pathogenicity and transmission of several H5 and H7 HPAI viruses from previous poultry outbreaks to Gs/GD lineage H5 viruses, including H5N1 (clade 2.2), H5N8 and H5N2 (clade 2.3.4.4) viruses, in

  7. Age-specific and sex-specific morbidity and mortality from avian influenza A(H7N9).

    PubMed

    Dudley, Joseph P; Mackay, Ian M

    2013-11-01

    We used data on age and sex for 136 laboratory confirmed human A(H7N9) cases reported as of 11 August 2013 to compare age-specific and sex-specific patterns of morbidity and mortality from the avian influenza A(H7N9) virus with those of the avian influenza A(H5N1) virus. Human A(H7N9) cases exhibit high degrees of age and sex bias: mortality is heavily biased toward males >50 years, no deaths have been reported among individuals <25 years old, and relatively few cases documented among children or adolescents. The proportion of fatal cases (PFC) for human A(H7N9) cases as of 11 August 2013 was 32%, compared to a cumulative PFC for A(H5N1) of 83% in Indonesia and 36% in Egypt. Approximately 75% of cases of all A(H7N9) cases occurred among individuals >45 years old. Morbidity and mortality from A(H7N9) are lowest among individuals between 10 and 29 years, the age group which exhibits the highest cumulative morbidity and case fatality rates from A(H5N1). Although individuals <20 years old comprise nearly 50% of all human A(H5N1) cases, only 7% of all reported A(H7N9) cases and no deaths have been reported among individuals in this age group. Only 4% of A(H7N9) cases occurred among children<5 years old, and only one case from the 10 to 20 year age group. Age- and sex-related differences in morbidity and mortality from emerging zoonotic diseases can provide insights into ecological, economic, and cultural factors that may contribute to the emergence and proliferation of novel zoonotic diseases in human populations. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Hemagglutinin Stalk- and Neuraminidase-Specific Monoclonal Antibodies Protect against Lethal H10N8 Influenza Virus Infection in Mice.

    PubMed

    Wohlbold, Teddy John; Chromikova, Veronika; Tan, Gene S; Meade, Philip; Amanat, Fatima; Comella, Phillip; Hirsh, Ariana; Krammer, Florian

    2016-01-15

    Between November 2013 and February 2014, China reported three human cases of H10N8 influenza virus infection in the Jiangxi province, two of which were fatal. Using hybridoma technology, we isolated a panel of H10- and N8-directed monoclonal antibodies (MAbs) and further characterized the binding reactivity of these antibodies (via enzyme-linked immunosorbent assay) to a range of purified virus and recombinant protein substrates. The H10-directed MAbs displayed functional hemagglutination inhibition (HI) and neutralization activity, and the N8-directed antibodies displayed functional neuraminidase inhibition (NI) activity against H10N8. Surprisingly, the HI-reactive H10 antibodies, as well as a previously generated, group 2 hemagglutinin (HA) stalk-reactive antibody, demonstrated NI activity against H10N8 and an H10N7 strain; this phenomenon was absent when virus was treated with detergent, suggesting the anti-HA antibodies inhibited neuraminidase enzymatic activity through steric hindrance. We tested the prophylactic efficacy of one representative H10-reactive, N8-reactive, and group 2 HA stalk-reactive antibody in vivo using a BALB/c challenge model. All three antibodies were protective at a high dose (5 mg/kg). At a low dose (0.5 mg/kg), only the anti-N8 antibody prevented weight loss. Together, these data suggest that antibody targets other than the globular head domain of the HA may be efficacious in preventing influenza virus-induced morbidity and mortality. Avian H10N8 and H10N7 viruses have recently crossed the species barrier, causing morbidity and mortality in humans and other mammals. Although these reports are likely isolated incidents, it is possible that more cases may emerge in future winter seasons, similar to H7N9. Furthermore, regular transmission of avian influenza viruses to humans increases the risk of adaptive mutations and reassortment events, which may result in a novel virus with pandemic potential. Currently, no specific therapeutics or

  9. Fatal influenza A (H5N1) virus Infection in zoo-housed Tigers in Yunnan Province, China

    PubMed Central

    Hu, Tingsong; Zhao, Huanyun; Zhang, Yan; Zhang, Wendong; Kong, Qiang; Zhang, Zhixiao; Cui, Qinghua; Qiu, Wei; Deng, Bo; Fan, Quanshui; Zhang, Fuqiang

    2016-01-01

    From 2014 to 2015, three cases of highly pathogenic avian influenza infection occurred in zoo-housed north-east China tigers (Panthera tigris ssp.altaica) and four tigers died of respiratory distress in succession in Yunnan Province, China. We isolated and characterized three highly pathogenic avian influenza A(H5N1) viruses from these tigers. Phylogenetic analysis indicated that A/tiger /Yunnan /tig1404 /2014(H5N1) belongs to the provisional subclade 2.3.4.4e which were novel reassortant influenza A (H5N1) viruses with six internal genes from avian influenza A (H5N2) viruses. The HA gene of the isolated A/tiger /Yunnan /tig1412 /2014(H5N1) virus belongs to the subclade 2.3.2.1b. The isolated A/tiger /Yunnan /tig1508/2015 (H5N1) virus was a novel reassortant influenza A (H5N1) virus with three internal genes (PB2, PB1 and M) from H9N2 virus and belongs to the subclade 2.3.2.1c. PMID:27162026

  10. Fatal influenza A (H5N1) virus Infection in zoo-housed Tigers in Yunnan Province, China.

    PubMed

    Hu, Tingsong; Zhao, Huanyun; Zhang, Yan; Zhang, Wendong; Kong, Qiang; Zhang, Zhixiao; Cui, Qinghua; Qiu, Wei; Deng, Bo; Fan, Quanshui; Zhang, Fuqiang

    2016-05-10

    From 2014 to 2015, three cases of highly pathogenic avian influenza infection occurred in zoo-housed north-east China tigers (Panthera tigris ssp.altaica) and four tigers died of respiratory distress in succession in Yunnan Province, China. We isolated and characterized three highly pathogenic avian influenza A(H5N1) viruses from these tigers. Phylogenetic analysis indicated that A/tiger /Yunnan /tig1404 /2014(H5N1) belongs to the provisional subclade 2.3.4.4e which were novel reassortant influenza A (H5N1) viruses with six internal genes from avian influenza A (H5N2) viruses. The HA gene of the isolated A/tiger /Yunnan /tig1412 /2014(H5N1) virus belongs to the subclade 2.3.2.1b. The isolated A/tiger /Yunnan /tig1508/2015 (H5N1) virus was a novel reassortant influenza A (H5N1) virus with three internal genes (PB2, PB1 and M) from H9N2 virus and belongs to the subclade 2.3.2.1c.

  11. Sensitization with vaccinia virus encoding H5N1 hemagglutinin restores immune potential against H5N1 influenza virus.

    PubMed

    Yasui, Fumihiko; Itoh, Yasushi; Ikejiri, Ai; Kitabatake, Masahiro; Sakaguchi, Nobuo; Munekata, Keisuke; Shichinohe, Shintaro; Hayashi, Yukiko; Ishigaki, Hirohito; Nakayama, Misako; Sakoda, Yoshihiro; Kida, Hiroshi; Ogasawara, Kazumasa; Kohara, Michinori

    2016-11-28

    H5N1 highly pathogenic avian influenza (H5N1 HPAI) virus causes elevated mortality compared with seasonal influenza viruses like H1N1 pandemic influenza (H1N1 pdm) virus. We identified a mechanism associated with the severe symptoms seen with H5N1 HPAI virus infection. H5N1 HPAI virus infection induced a decrease of dendritic cell number in the splenic extrafollicular T-cell zone and impaired formation of the outer layers of B-cell follicles, resulting in insufficient levels of antibody production after infection. However, in animals vaccinated with a live recombinant vaccinia virus expressing the H5 hemagglutinin, infection with H5N1 HPAI virus induced parafollicular dendritic cell accumulation and efficient antibody production. These results indicate that a recombinant vaccinia encoding H5 hemagglutinin gene does not impair dendritic cell recruitment and can be a useful vaccine candidate.

  12. Risk Factors for Influenza A(H7N9) Disease in China, a Matched Case Control Study, October 2014 to April 2015

    PubMed Central

    Zhou, Lei; Ren, Ruiqi; Ou, Jianming; Kang, Min; Wang, Xiaoxiao; Havers, Fiona; Huo, Xiang; Liu, Xiaoqing; Sun, Qianlai; He, Yongchao; Liu, Bo; Wu, Shenggen; Wang, Yali; Sui, Haitian; Zhang, Yongjie; Tang, Shaopei; Chang, Caiyun; Xiang, Lunhui; Wang, Dong; Zhao, Shiguang; Zhou, Suizan; Chen, Tao; Xiang, Nijuan; Greene, Carolyn M.; Zhang, Yanping; Shu, Yuelong; Feng, Zijian; Li, Qun

    2016-01-01

    Background. Human infections with avian influenza A(H7N9) virus have been associated with exposure to poultry and live poultry markets (LPMs). We conducted a case-control study to identify additional and more specific risk factors. Methods. Cases were laboratory-confirmed A(H7N9) infections in persons in China reported from October 1, 2014 to April 30, 2015. Poultry workers, those with insufficient data, and those refusing participation were excluded. We matched up to 4 controls per case by sex, age, and residential community. Using conditional logistic regression, we examined associations between A(H7N9) infection and potential risk factors. Results. Eighty-five cases and 334 controls were enrolled with similar demographic characteristics. Increased risk of A(H7N9) infection was associated with the following: visiting LPMs (adjusted odds ratio [aOR], 6.3; 95% confidence interval [CI], 2.6–15.3), direct contact with live poultry in LPMs (aOR, 4.1; 95% CI, 1.1–15.6), stopping at a live poultry stall when visiting LPMs (aOR, 2.7; 95% CI, 1.1–6.9), raising backyard poultry at home (aOR, 7.7; 95% CI, 2.0–30.5), direct contact with backyard poultry (aOR, 4.9; 95% CI, 1.1–22.1), and having ≥1 chronic disease (aOR, 3.1; 95% CI, 1.5–6.5). Conclusions. Our study identified raising backyard poultry at home as a risk factor for illness with A(H7N9), suggesting the need for enhanced avian influenza surveillance in rural areas. PMID:27704029

  13. Pathogenesis and Transmission Assessments of Two H7N8 Influenza A Viruses Recently Isolated from Turkey Farms in Indiana Using Mouse and Ferret Models.

    PubMed

    Sun, Xiangjie; Belser, Jessica A; Pulit-Penaloza, Joanna A; Zeng, Hui; Lewis, Amanda; Shieh, Wun-Ju; Tumpey, Terrence M; Maines, Taronna R

    2016-12-01

    Avian influenza A H7 viruses have caused multiple outbreaks in domestic poultry throughout North America, resulting in occasional infections of humans in close contact with affected birds. In early 2016, the presence of H7N8 highly pathogenic avian influenza (HPAI) viruses and closely related H7N8 low-pathogenic avian influenza (LPAI) viruses was confirmed in commercial turkey farms in Indiana. These H7N8 viruses represent the first isolation of this subtype in domestic poultry in North America, and their virulence in mammalian hosts and the potential risk for human infection are largely unknown. In this study, we assessed the ability of H7N8 HPAI and LPAI viruses to replicate in vitro in human airway cells and in vivo in mouse and ferret models. Both H7N8 viruses replicated efficiently in vitro and in vivo, but they exhibited substantial differences in disease severity in mammals. In mice, while the H7N8 LPAI virus largely remained avirulent, the H7N8 HPAI virus exhibited greater infectivity, virulence, and lethality. Both H7N8 viruses replicated similarly in ferrets, but only the H7N8 HPAI virus caused moderate weight loss, lethargy, and mortality. The H7N8 LPAI virus displayed limited transmissibility in ferrets placed in direct contact with an inoculated animal, while no transmission of H7N8 HPAI virus was detected. Our results indicate that the H7N8 avian influenza viruses from Indiana are able to replicate in mammals and cause severe disease but with limited transmission. The recent appearance of H7N8 viruses in domestic poultry highlights the need for continued influenza surveillance in wild birds and close monitoring of the potential risk to human health. H7 influenza viruses circulate in wild birds in the United States, but when the virus emerges in domestic poultry populations, the frequency of human exposure and the potential for human infections increases. An H7N8 highly pathogenic avian influenza (HPAI) virus and an H7N8 low-pathogenic avian influenza

  14. Serosurveillance for pandemic influenza A (H1N1) 2009 virus infection in domestic elephants, Thailand

    PubMed Central

    Paungpin, Weena; Wiriyarat, Witthawat; Chaichoun, Kridsada; Tiyanun, Ekasit; Sangkachai, Nareerat; Changsom, Don; Poltep, Kanaporn; Ratanakorn, Parntep

    2017-01-01

    The present study conducted serosurveillance for the presence of antibody to pandemic influenza A (H1N1) 2009 virus (H1N1pdm virus) in archival serum samples collected between 2009 and 2013 from 317 domestic elephants living in 19 provinces situated in various parts of Thailand. To obtain the most accurate data, hemagglutination-inhibition (HI) assay was employed as the screening test; and sera with HI antibody titers ≥20 were further confirmed by other methods, including cytopathic effect/hemagglutination based-microneutralization (microNT) and Western blot (WB) assays using H1N1pdm matrix 1 (M1) or hemagglutinin (HA) recombinant protein as the test antigen. Conclusively, the appropriate assays using HI in conjunction with WB assays for HA antibody revealed an overall seropositive rate of 8.5% (27 of 317). The prevalence of antibody to H1N1pdm virus was 2% (4/172) in 2009, 32% (17/53) in 2010, 9% (2/22) in 2011, 12% (1/8) in 2012, and 5% (3/62) in 2013. Notably, these positive serum samples were collected from elephants living in 7 tourist provinces of Thailand. The highest seropositive rate was obtained from elephants in Phuket, a popular tourist beach city. Young elephants had higher seropositive rate than older elephants. The source of H1N1pdm viral infection in these elephants was not explored, but most likely came from close contact with the infected mahouts or from the infected tourists who engaged in activities such as elephant riding and feeding. Nevertheless, it could not be excluded that elephant-to-elephant transmission did occur. PMID:29073255

  15. Serosurveillance for pandemic influenza A (H1N1) 2009 virus infection in domestic elephants, Thailand.

    PubMed

    Paungpin, Weena; Wiriyarat, Witthawat; Chaichoun, Kridsada; Tiyanun, Ekasit; Sangkachai, Nareerat; Changsom, Don; Poltep, Kanaporn; Ratanakorn, Parntep; Puthavathana, Pilaipan

    2017-01-01

    The present study conducted serosurveillance for the presence of antibody to pandemic influenza A (H1N1) 2009 virus (H1N1pdm virus) in archival serum samples collected between 2009 and 2013 from 317 domestic elephants living in 19 provinces situated in various parts of Thailand. To obtain the most accurate data, hemagglutination-inhibition (HI) assay was employed as the screening test; and sera with HI antibody titers ≥20 were further confirmed by other methods, including cytopathic effect/hemagglutination based-microneutralization (microNT) and Western blot (WB) assays using H1N1pdm matrix 1 (M1) or hemagglutinin (HA) recombinant protein as the test antigen. Conclusively, the appropriate assays using HI in conjunction with WB assays for HA antibody revealed an overall seropositive rate of 8.5% (27 of 317). The prevalence of antibody to H1N1pdm virus was 2% (4/172) in 2009, 32% (17/53) in 2010, 9% (2/22) in 2011, 12% (1/8) in 2012, and 5% (3/62) in 2013. Notably, these positive serum samples were collected from elephants living in 7 tourist provinces of Thailand. The highest seropositive rate was obtained from elephants in Phuket, a popular tourist beach city. Young elephants had higher seropositive rate than older elephants. The source of H1N1pdm viral infection in these elephants was not explored, but most likely came from close contact with the infected mahouts or from the infected tourists who engaged in activities such as elephant riding and feeding. Nevertheless, it could not be excluded that elephant-to-elephant transmission did occur.

  16. Bacteria meets influenza A virus: A bioluminescence mouse model of Escherichia coli O157:H7 following influenza A virus/Puerto Rico/8/34 (H1N1) strain infection.

    PubMed

    Wang, Zhongyi; Chi, Hang; Wang, Xiwen; Li, Wenliang; Li, Zhiping; Li, Jiaming; Fu, Yingying; Lu, Bing; Xia, Zhiping; Qian, Jun; Liu, Linna

    2018-01-01

    Objective To develop a bioluminescence-labelled bacterial infection model to monitor the colonization and clearance process of Escherichia coli O157:H7 in the lungs of mice following influenza A virus/Puerto Rico/8/34 (H1N1) strain (IAV/PR8) infection. Methods BALB/c mice were administered IAV/PR8 or 0.01 M phosphate-buffered saline (PBS; pH 7.4) intranasally 4 days prior to intranasal administration of 1 × 10 7 colony-forming units (CFU) of E. coli O157:H7-lux. Whole-body bioluminescent signals were monitored at 10 min, 4 h, 8 h, 12 h, 16 h and 24 h post-bacterial infection. Lung bioluminescent signals and bacterial load (CFU/g) were monitored at 4 h, 8 h, 12 h, 16 h and 24 h post-bacterial infection. Results Prior IAV/PR8 infection of mice resulted in a higher level of bacterial colonization and a lower rate of bacterial clearance from the lungs compared with mice treated with PBS. There were also consistent findings between the bioluminescence imaging and the CFU measurements in terms of identifying bacterial colonization and monitoring the clearance dynamics of E. coli O157:H7-lux in mouse lungs. Conclusion This novel bioluminescence-labelled bacterial infection model rapidly detected bacterial colonization of the lungs and monitored the clearance dynamics of E. coli O157:H7-lux following IAV/PR8 infection.

  17. Prior infection of pigs with a recent human H3N2 influenza virus confers minimal cross-protection against a European swine H3N2 virus.

    PubMed

    Qiu, Yu; van der Meulen, Karen; Van Reeth, Kristien

    2013-11-01

    H3N2 influenza viruses circulating in humans and European pigs originate from the pandemic A/Hong Kong/68 virus. Because of slower antigenic drift in swine, the antigenic divergence between swine and human viruses has been increasing. It remains unknown to what extent this results in a reduced cross-protection between recent human and swine H3N2 influenza viruses. We examined whether prior infection of pigs with an old [A/Victoria/3/75 (A/Vic/75)] or a more recent [A/Wisconsin/67/05 (A/Wis/05)] human H3N2 virus protected against a European swine H3N2 virus [sw/Gent/172/08 (sw/Gent/08)]. Genetic and antigenic relationships between sw/Gent/08 and a selection of human H3N2 viruses were also assessed. After challenge with sw/Gent/08, all challenge controls had high virus titers in the entire respiratory tract at 3 days post-challenge and nasal virus excretion for 5-6 days. Prior infection with sw/Gent/08 or A/Vic/75 offered complete virological protection against challenge. Pigs previously inoculated with A/Wis/05 showed similar virus titers in the respiratory tract as challenge controls, but the mean duration of nasal shedding was 1·3 days shorter. Unlike sw/Gent/08- and A/Vic/75-inoculated pigs, A/Wis/05-inoculated pigs lacked cross-reactive neutralizing antibodies against sw/Gent/08 before challenge, but they showed a more rapid antibody response to sw/Gent/08 than challenge controls after challenge. Cross-protection and serological responses correlated with genetic and antigenic differences. Infection immunity to a recent human H3N2 virus confers minimal cross-protection against a European swine H3N2 virus. We discuss our findings with regard to the recent zoonotic infections of humans in the United States with a swine-origin H3N2 variant virus. © 2013 John Wiley & Sons Ltd.

  18. Outbreak of variant influenza A(H3N2) virus in the United States.

    PubMed

    Jhung, Michael A; Epperson, Scott; Biggerstaff, Matthew; Allen, Donna; Balish, Amanda; Barnes, Nathelia; Beaudoin, Amanda; Berman, Lashondra; Bidol, Sally; Blanton, Lenee; Blythe, David; Brammer, Lynnette; D'Mello, Tiffany; Danila, Richard; Davis, William; de Fijter, Sietske; Diorio, Mary; Durand, Lizette O; Emery, Shannon; Fowler, Brian; Garten, Rebecca; Grant, Yoran; Greenbaum, Adena; Gubareva, Larisa; Havers, Fiona; Haupt, Thomas; House, Jennifer; Ibrahim, Sherif; Jiang, Victoria; Jain, Seema; Jernigan, Daniel; Kazmierczak, James; Klimov, Alexander; Lindstrom, Stephen; Longenberger, Allison; Lucas, Paul; Lynfield, Ruth; McMorrow, Meredith; Moll, Maria; Morin, Craig; Ostroff, Stephen; Page, Shannon L; Park, Sarah Y; Peters, Susan; Quinn, Celia; Reed, Carrie; Richards, Shawn; Scheftel, Joni; Simwale, Owen; Shu, Bo; Soyemi, Kenneth; Stauffer, Jill; Steffens, Craig; Su, Su; Torso, Lauren; Uyeki, Timothy M; Vetter, Sara; Villanueva, Julie; Wong, Karen K; Shaw, Michael; Bresee, Joseph S; Cox, Nancy; Finelli, Lyn

    2013-12-01

    Variant influenza virus infections are rare but may have pandemic potential if person-to-person transmission is efficient. We describe the epidemiology of a multistate outbreak of an influenza A(H3N2) variant virus (H3N2v) first identified in 2011. We identified laboratory-confirmed cases of H3N2v and used a standard case report form to characterize illness and exposures. We considered illness to result from person-to-person H3N2v transmission if swine contact was not identified within 4 days prior to illness onset. From 9 July to 7 September 2012, we identified 306 cases of H3N2v in 10 states. The median age of all patients was 7 years. Commonly reported signs and symptoms included fever (98%), cough (85%), and fatigue (83%). Sixteen patients (5.2%) were hospitalized, and 1 fatal case was identified. The majority of those infected reported agricultural fair attendance (93%) and/or contact with swine (95%) prior to illness. We identified 15 cases of possible person-to-person transmission of H3N2v. Viruses recovered from patients were 93%-100% identical and similar to viruses recovered from previous cases of H3N2v. All H3N2v viruses examined were susceptible to oseltamivir and zanamivir and resistant to adamantane antiviral medications. In a large outbreak of variant influenza, the majority of infected persons reported exposures, suggesting that swine contact at an agricultural fair was a risk for H3N2v infection. We identified limited person-to-person H3N2v virus transmission, but found no evidence of efficient or sustained person-to-person transmission. Fair managers and attendees should be aware of the risk of swine-to-human transmission of influenza viruses in these settings.

  19. [Digestive system manifestations in children infected with novel influenza A (H1N1) virus].

    PubMed

    Wei, Ju-Rong; Lu, Zhi-Wei; Tang, Zheng-Zhen; Wang, He-Ping; Zheng, Yue-Jie

    2010-10-01

    To study the digestive system manifestations in children infected with novel influenza A (H1N1) virus. A prospective study of 153 children infected with novel influenza A (H1N1) virus in Shenzhen Children's Hospital from November 2009 to January 2010 was conducted. The clinical features and outcomes of 69 children with digestive system manifestations were analyzed. The children presenting with digestive system manifestations accounted for 45% (69 cases) in the 153 hospitalized children with novel influenza A (H1N1) infection. Gastrointestinal manifestations were observed in 50 cases (33%) and liver function abnormality in 19 cases (12%). The incidence rate of coma, neurological complications, increase in creative kinase level, ICU admission, and death in the patients with digestive system manifestations were significantly higher than those without digestive system manifestations (P<0.05). In the 69 patients with digestive system manifestations, 5 died from severe complications and 64 recovered fully. Gastrointestinal manifestations disappeared through 1 to 3 days and abnormal liver function recovered through 4 to 7 days. Digestive system manifestations are common in children infected with novel influenza A (H1N1) virus. Neurological system involvements are more common in the patients with digestive system manifestations than those without.

  20. Reassortant H5N1 avian influenza viruses containing PA or NP gene from an H9N2 virus significantly increase the pathogenicity in mice.

    PubMed

    Hao, Xiaoli; Hu, Jiao; Wang, Jiongjiong; Xu, Jing; Cheng, Hao; Xu, Yunpeng; Li, Qunhui; He, Dongchang; Liu, Xiaowen; Wang, Xiaoquan; Gu, Min; Hu, Shunlin; Xu, Xiulong; Liu, Huimou; Chen, Sujuan; Peng, Daxin; Liu, Xiufan

    2016-08-30

    Reassortment between different influenza viruses is a crucial way to generate novel influenza viruses with unpredictable virulence and transmissibility, which may threaten the public health. As currently in China, avian influenza viruses (AIVs) of H9N2 and H5N1 subtypes are endemic in poultry in many areas, while they are prone to reassort with each other naturally. In order to evaluate the risk of the reassortment to public health, A/Goose/Jiangsu/k0403/2010 [GS/10(H5N1)] virus was used as a backbone to generate a series of reassortants, each contained a single internal gene derived from the predominant S genotype of the A/Chicken/Jiangsu/WJ57/2012 [WJ/57(H9N2)]. We next assessed the biological characteristics of these assortments, including pathogenicity, replication efficiency and polymerase activity. We found that the parental WJ/57(H9N2) and GS/10(H5N1) viruses displayed high genetic compatibility. Notably, the H5N1 reassortants containing the PA or NP gene from WJ/57(H9N2) virus significantly increased virulence and replication ability in mice, as well as markedly enhanced polymerase activity. Our results indicate that the endemicity of H9N2 and H5N1 in domestic poultry greatly increases the possibility of generating new viruses by reassortment that may pose a great threat to poultry industry and public health. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Inactivated H9N2 avian influenza virus vaccine with gel-primed and mineral oil-boosted regimen could produce improved immune response in broiler breeders.

    PubMed

    Lee, D-H; Kwon, J-S; Lee, H-J; Lee, Y-N; Hur, W; Hong, Y-H; Lee, J-B; Park, S-Y; Choi, I-S; Song, C-S

    2011-05-01

    The frequent economic losses incurred with H9N2 low pathogenic avian influenza viruses (LPAI) infection have raised serious concerns for the poultry industry. A 1-dose regimen with inactivated H9N2 LPAI vaccine could not prevent vaccinated poultry from becoming infected and from shedding wild viruses. A study was conducted to determine whether a 2-dose regimen of inactivated H9N2 LPAI vaccine could enhance the immunologic response in chickens. Such gel-primed and mineral oil-boosted regimen has produced encouraging results associated with improved immune responses to an H9N2 LPAI. This strategy could be cost effective and helpful for preventing avian influenza virus in the poultry industry.

  2. Experimental co-infection of SPF chickens with low pathogenicity avian influenza virus (LPAIV) subtypes H9N2, H5N2 and H7N9, and infectious bronchitis virus (IBV)

    USDA-ARS?s Scientific Manuscript database

    Avian influenza virus (AIV) and infectious bronchitis virus (IBV) are two of the most important respiratory viruses affecting poultry worldwide, but little is known about the effect of co-infection of these two viruses in poultry. Low pathogenicity (LP) AIV can produce from mild to moderate upper r...

  3. Household transmissibility of avian influenza A (H7N9) virus, China, February to May 2013 and October 2013 to March 2014

    PubMed Central

    Yang, Y; Zhang, Y; Fang, L; Halloran, M E; Ma, M; Liang, S; Kenah, E; Britton, T; Chen, E; Hu, J; Tang, F; Cao, W; Feng, Z; Longini, I M

    2015-01-01

    To study human-to-human transmissibility of the avian influenza A (H7N9) virus in China, household contact information was collected for 125 index cases during the spring wave (February to May 2013), and for 187 index cases during the winter wave (October 2013 to March 2014). Using a statistical model, we found evidence for human-to-human transmission, but such transmission is not sustainable. Under plausible assumptions about the natural history of disease and the relative transmission frequencies in settings other than household, we estimate the household secondary attack rate (SAR) among humans to be 1.4% (95% CI: 0.8 to 2.3), and the basic reproductive number R0 to be 0.08 (95% CI: 0.05 to 0.13). The estimates range from 1.3% to 2.2% for SAR and from 0.07 to 0.12 for R0 with reasonable changes in the assumptions. There was no significant change in the human-to-human transmissibility of the virus between the two waves, although a minor increase was observed in the winter wave. No sex or age difference in the risk of infection from a human source was found. Human-to-human transmissibility of H7N9 continues to be limited, but it needs to be closely monitored for potential increase via genetic reassortment or mutation. PMID:25788253

  4. Mesenchymal stromal cell treatment prevents H9N2 avian influenza virus-induced acute lung injury in mice.

    PubMed

    Li, Yan; Xu, Jun; Shi, Weiqing; Chen, Cheng; Shao, Yan; Zhu, Limei; Lu, Wei; Han, XiaoDong

    2016-10-28

    The avian influenza virus (AIV) can cross species barriers and expand its host range from birds to mammals, even humans. Avian influenza is characterized by pronounced activation of the proinflammatory cytokine cascade, which perpetuates the inflammatory response, leading to persistent systemic inflammatory response syndrome and pulmonary infection in animals and humans. There are currently no specific treatment strategies for avian influenza. We hypothesized that mesenchymal stromal cells (MSCs) would have beneficial effects in the treatment of H9N2 AIV-induced acute lung injury in mice. Six- to 8-week-old C57BL/6 mice were infected intranasally with 1 × 10 4 MID 50 of A/HONG KONG/2108/2003 [H9N2 (HK)] H9N2 virus to induce acute lung injury. After 30 min, syngeneic MSCs were delivered through the caudal vein. Three days after infection, we measured the survival rate, lung weight, arterial blood gas, and cytokines in both bronchoalveolar lavage fluid (BALF) and serum, and assessed pathological changes to the lungs. MSC administration significantly palliated H9N2 AIV-induced pulmonary inflammation by reducing chemokines and proinflammatory cytokines levels, as well as reducing inflammatory cell recruit into the lungs. Thus, H9N2 AIV-induced lung injury was markedly alleviated in mice treated with MSCs. Lung histopathology and arterial blood gas analysis were improved in mice with H9N2 AIV-induced lung injury following MSC treatment. MSC treatment significantly reduces H9N2 AIV-induced acute lung injury in mice and is associated with reduced pulmonary inflammation. These results indicate a potential role for MSC therapy in the treatment of clinical avian influenza.

  5. Inhibition of H9N2 Virus Invasion into Dendritic Cells by the S-Layer Protein from L. acidophilus ATCC 4356

    PubMed Central

    Gao, Xue; Huang, Lulu; Zhu, Liqi; Mou, Chunxiao; Hou, Qihang; Yu, Qinghua

    2016-01-01

    Probiotics are essential for the prevention of virus invasion and the maintenance of the immune balance. However, the mechanism of competition between probiotics and virus are unknown. The objectives of this study were to isolate the surface layer (S-layer) protein from L. acidophilus ATCC 4356 as a new antiviral material, to evaluate the stimulatory effects of the S-layer protein on mouse dendritic cells (DCs) and to verify its ability to inhibit the invasion of H9N2 avian influenza virus (AIV) in DCs. We found that the S-layer protein induced DCs activation and up-regulated the IL-10 secretion. The invasion and replication of the H9N2 virus in mouse DCs was successfully demonstrated. However, the invasion of H9N2 virus into DCs could be inhibited by treatment with the S-layer protein prior to infection, which was verified by the reduced hemagglutinin (HA) and neuraminidase (NA) mRNA expression, and nucleoprotein (NP) protein expression in the DCs. Furthermore, treatment with the S-layer protein increases the Mx1, Isg15, and Ddx58 mRNA expressions, and remits the inflammatory process to inhibit H9N2 AIV infection. In conclusion, the S-layer protein stimulates the activation of mouse DCs, inhibits H9N2 virus invasion of DCs, and stimulates the IFN-I signaling pathway. Thus, the S-layer protein from Lactobacillus is a promising biological antiviral material for AIV prevention. PMID:27826541

  6. Genetics and biological property analysis of Korea lineage of influenza A H9N2 viruses.

    PubMed

    Kang, Min; Jang, Hyung-Kwan

    2017-05-01

    H9N2 influenza viruses have been detected from wild and domestic avian species including chickens and ducks worldwide. Few studies have compared the biological properties of different H9N2 lineages or determined whether certain lineages might pose a higher risk to mammals, especially H9N2 viruses of Korean lineage. The objective of this study was to characterize the genetic and biological properties of 22 Korean H9N2 viruses and assess their potential risks to mammals. Their complete genomes were analyzed. Some Korean H9N2 viruses were found to carry mammalian host-specific mutations. Based on genomic diversities, these H9N2 viruses were divided into 12 genotypes. All 22 showed preferential binding to human-like receptor. Two of eight H9N2 viruses were highly lethal to mice, causing 90-100% mortality without prior adaptation and severe respiratory syndromes associated with diffuse lung injury, severe pneumonia, and alveolar damage. These findings suggest that recent Korean H9N2 viruses might have established a stable sublineage with enhanced pathogenicity to mice. Various H9N2 strains pathogenic to mice were endemic in wild bird, poultry farm, and live bird markets, suggesting that Korean H9N2 viruses could evolve to become a threat to humans. The findings emphasize the necessity of careful, continuous, and thorough surveillance paired with risk-assessment for circulating H9N2 influenza viruses. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Avian influenza viruses (AIVs) H9N2 are in the course of reassorting into novel AIVs.

    PubMed

    Chang, Hui-Ping; Peng, Li; Chen, Liang; Jiang, Lu-Fang; Zhang, Zhi-Jie; Xiong, Cheng-Long; Zhao, Gen-Ming; Chen, Yue; Jiang, Qing-Wu

    2018-05-01

    In 2013, two episodes of influenza emerged in China and caused worldwide concern. A new H7N9 avian influenza virus (AIV) first appeared in China on February 19, 2013. By August 31, 2013, the virus had spread to ten provinces and two metropolitan cities. Of 134 patients with H7N9 influenza, 45 died. From then on, epidemics emerged sporadically in China and resulted in several victims. On November 30, 2013, a 73-year-old woman presented with an influenza-like illness. She developed multiple organ failure and died 9 d after the onset of disease. A novel reassortant AIV, H10N8, was isolated from a tracheal aspirate specimen that was obtained from the patient 7 d after onset. This case was the first human case of influenza A subtype H10N8. On 4 February, 2014, another death due to H10N8 avian influenza was reported in Jiangxi Province, China.

  8. Persistence of highly pathogenic avian influenza virus (H7N1) in infected chickens: feather as a suitable sample for diagnosis.

    PubMed

    Busquets, Núria; Abad, F Xavier; Alba, Anna; Dolz, Roser; Allepuz, Alberto; Rivas, Raquel; Ramis, Antonio; Darji, Ayub; Majó, Natàlia

    2010-09-01

    Selection of an ideal sample is a vital element in early detection of influenza infection. Rapid identification of infectious individuals or animals is crucial not only for avian influenza virus (AIV) surveillance programmes, but also for treatment and containment strategies. This study used a combination of quantitative real-time RT-PCR with an internal positive control and a cell-titration system to examine the presence of virus in different samples during active experimental AIV infection and its persistence in the infected carcasses. Oropharyngeal/cloacal swabs as well as feather pulp and blood samples were collected from 15-day-old chicks infected with H7N1 highly pathogenic AIV (HPAIV) and the kinetics of virus shedding during active infection were evaluated. Additionally, several samples (muscle, skin, brain, feather pulp and oropharyngeal and cloacal swabs) were examined to assess the persistence of virus in the HPAIV-infected carcasses. Based on the results, feather pulp was found to be the best sample to detect and isolate HPAIV from infected chicks from 24 h after inoculation onwards. Kinetic studies on the persistence of virus in infected carcasses revealed that tissues such as muscle could potentially transmit infectious virus for 3 days post-mortem (p.m.), whilst other tissues such as skin, feather pulp and brain retained their infectivity for as long as 5-6 days p.m. at environmental temperature (22-23 degrees C). These results strongly favour feather as a useful sample for HPAIV diagnosis in infected chickens as well as in carcasses.

  9. Down-regulation of cellular protein heme oxygenase-1 inhibits proliferation of avian influenza virus H9N2 in chicken oviduct epithelial cells.

    PubMed

    Qi, Xuefeng; Zhang, Huizhu; Xue, Tianxia; Yang, Bo; Deng, Meiyu; Wang, Jingyu

    2018-01-01

    The pathogenesis of H9N2 subtype avian influenza virus (AIV) infection in hens is often related to oviduct tissue damage. Our previous study suggested that H9N2 AIV induces cellular apoptosis by activating reactive oxygen species (ROS) accumulation and mitochondria-mediated apoptotic signalling in chicken oviduct epithelial cells (COECs). Heme oxygenase-1 (HO-1) is an inducible enzyme that exerts protective effects against oxidative stress and activated HO-1 was recently shown to have antiviral activity. To study the potential involvement of HO-1 in H9N2 AIV proliferation, the role of its expression in H9N2-infected COECs was further investigated. Our results revealed that H9N2 AIV infection significantly up-regulated the expression of HO-1 and that HO-1 down-regulation by ZnPP, a classical inhibitor of HO-1, could inhibit H9N2 AIV replication in COECs. Similarly, the small interfering RNA (siRNA)-mediated knockdown of HO-1 also markedly decreased the virus production in H9N2-infected COECs. In contrast, adenoviral-mediated over-expression of HO-1 concomitantly promoted H9N2 AIV replication. Taken together, our study demonstrated the involvement of HO-1 in AIV H9N2 proliferation, and these findings suggested that HO-1 is a potential target for inhibition of AIV H9N2 replication.

  10. Modification of the Hemagglutinin Cleavage Site Allows Indirect Activation of Avian Influenza Virus H9N2 by Bacterial Staphylokinase

    PubMed Central

    Tse, Longping V.; Whittaker, Gary R.

    2015-01-01

    Influenza H9N2 is considered to be a low pathogenicity avian influenza (LPAI) virus that commonly infects avian species and can also infect humans. In 1996, the influenza virus, A/chicken/Korea/MS96-CE6/1996/H9N2 (MS96) was isolated from an outbreak in multiple farms in South Korea that resulted in upwards of 30% mortality in infected chickens, with the virus infecting a number of extrapulmonary tissues, indicating internal spread. However, in experimental infections, complete recovery of specific pathogen free (SPF) chickens occurred. Such a discrepancy indicated an alternative pathway for MS96 virus to gain virulence in farmed chickens. A key determinant of influenza pathogenesis is the susceptibility of the viral hemagglutinin (HA) to proteolytic cleavage/activation. Here, we identified that an amino acid substitution, Ser to Tyr found at the P2 position of the MS96 HA cleavage site optimizes cleavage by the protease plasmin (Pm). Importantly, we identified that certain Staphylococcus sp. are able to cleave and activate MS96 HA by activating plasminogen (Plg) to plasmin by use of a virulence factor, staphylokinase. Overall, these studies provide an in-vitro mechanism for bacterially mediated enhancement of influenza activation, and allow insight into the microbiological mechanisms underlying the avian influenza H9N2 outbreak in Korea in1996. PMID:25841078

  11. Low-pathogenic avian influenza virus A/turkey/Ontario/6213/1966 (H5N1) is the progenitor of highly pathogenic A/turkey/Ontario/7732/1966 (H5N9)

    PubMed Central

    Ping, Jihui; Selman, Mohammed; Tyler, Shaun; Forbes, Nicole; Keleta, Liya

    2012-01-01

    The first confirmed outbreak of highly pathogenic avian influenza (HPAI) virus infections in North America was caused by A/turkey/Ontario/7732/1966 (H5N9); however, the phylogeny of this virus is largely unknown. This study performed genomic sequence analysis of 11 avian influenza isolates from 1956 to 1979 for comparison with A/turkey/Ontario/7732/1966 (H5N9). Phylogenetic and genetic analyses included these viruses in combination with all known full-genome sequences of avian viruses isolated before 1981. It was shown that a low-pathogenic avian influenza virus, A/turkey/Ontario/6213/1966 (H5N1), that had been isolated 3 months previously, was the closest known genetic relative with six genome segments of common lineage encoding the polymerase subunits PB2, PB1 and PA, nucleoprotein (NP), haemagglutinin (HA) and non-structural (NS) proteins. The lineages of these genome segments included reassortment with other North American turkey viruses that were all rooted in North American wild waterfowl with the HA gene originating from the H5N2 serotype. The phylogenies demonstrated adaptation from North American wild birds to turkeys with the possible involvement of domestic waterfowl. The turkey isolate, A/turkey/Wisconsin/1968 (H5N9), was the second most closely related poultry isolate to A/turkey/Ontario/7732/1966 (H5N9), possessing five common lineage genome segments (PB2, PB1, PA, HA and neuraminidase). The A/turkey/Ontario/6213/1966 (H5N1) virus was more virulent than A/turkey/Wisconsin/68 (H5N9) for chicken embryos and mice, indicating a greater biological similarity to A/turkey/Ontario/7732/1966 (H5N9). Thus, A/turkey/Ontario/6213/1966 (H5N1) was identified as the closest known ancestral relative of HPAI A/turkey/Ontario/7732/1966 (H5N9), which will serve as a useful reference virus for characterizing the early genetic and biological properties associated with the emergence of pathogenic avian influenza strains. PMID:22592261

  12. Resistance to neuraminidase inhibitors conferred by an R292K mutation in a human influenza virus H7N9 isolate can be masked by a mixed R/K viral population.

    PubMed

    Yen, H-L; McKimm-Breschkin, J L; Choy, K-T; Wong, D D Y; Cheung, P P H; Zhou, J; Ng, I H; Zhu, H; Webby, R J; Guan, Y; Webster, R G; Peiris, J S M

    2013-07-16

    possess an S31N mutation that confers resistance to the M2 ion channel blockers. It is therefore important to evaluate the sensitivity of the clinical isolates to NA inhibitors and to monitor for the emergence of resistant variants. We characterized the A/Shanghai/1/2013 (H7N9) isolate which contained a mixed population of R/K at NA residue 292. While the clinical isolate exhibited a phenotype of sensitivity to NA inhibitors using the enzyme-based NA inhibition assay, the plaque-purified A/Shanghai/1/2013 virus with dominant K292 was resistant to zanamivir, peramivir, and oseltamivir. Resistance to NA inhibitors conferred by the R292K mutation in a human influenza virus H7N9 isolate can be masked by a mixed R/K viral population, and this should be taken into consideration while monitoring antiviral resistance in patients with H7N9 infection.

  13. H9N2 low pathogenic avian influenza in Pakistan (2012-2015).

    PubMed

    Lee, Dong-Hun; Swayne, David E; Sharma, Poonam; Rehmani, Shafqat Fatima; Wajid, Abdul; Suarez, David L; Afonso, Claudio

    2016-01-01

    Significant economic losses from deaths and decreased egg production have resulted from H9N2 low pathogenic avian influenza virus (LPAIV) infections in poultry across North Africa, the Middle East and Asia. The H9N2 LPAIVs have been endemic in Pakistani poultry since 1996, but no new viruses have been reported since 2010. Because novel genotypes of Pakistani H9N2 contain mammalian host-specific markers, recent surveillance is essential to better understand any continuing public health risk. Here the authors report on four new H9N2 LPAIVs, three from 2015 and one from 2012. All of the viruses tested in this study belonged to Middle East B genetic group of G1 lineage and had PAKSSR/G motif at the haemagglutinin cleavage site. The mammalian host-specific markers at position 226 in the haemagglutinin receptor-binding site and internal genes suggest that Pakistan H9N2 viruses are still potentially infectious for mammals. Continued active surveillance in poultry and mammals is needed to monitor the spread and understand the potential for zoonotic infection by these H9N2 LPAIVs.

  14. Global genetic variation and transmission dynamics of H9N2 avian influenza virus.

    PubMed

    Wei, K; Li, Y

    2018-04-01

    The H9N2 influenza viruses are extensively circulating in the poultry population, and variable genotypes can be generated through mutation, recombination and reassortment, which may be better adapted to infect a new host, resist drug treatment or escape immune pressure. The LPAI H9N2 viruses have the potential to evolve towards high levels of virulence in human. Some studies about the regional dispersal were reported, but global dissemination and the drivers of the virus are poorly understood, particularly at the genome scale. Here, we have analysed all eight gene segments of 168 H9N2 genomes sampled randomly aiming to provide a panoramic framework for better understanding the genesis and genetic variation of the viruses, and utilized phylogeography and spatial epidemiology approaches to uncover the effects of the genetic variation, predictors and spread of H9N2 viruses. We found that more frequent reassortment events involve segments PA, NP and NS, and 21 isolates have possible mosaic structure resulting from recombination events. Estimates of gene-specific global dN/dS ratios showed that all genes were subject to purifying selection. However, a total of 13 sites were detected under positive selection by at least two of three methods, which located within segments HA, NA, M2, NS1 and PA. Additionally, we inferred that NA segment has the highest rate of nucleotide substitution, and its tMRCA estimate is the youngest than the remaining segments' inference. About the spatial history, air transportation of human was identified as the predominant driver of global viral migration using GLM analysis, and economic factors and geographical distance were the modest predictors. Higher migration rates were estimated between five pairs of regions (>0.01) indicating the frequent migration of the viruses between discrete geographical locations. Further, our Markov jumps analysis showed that viral migration is more frequent between Southern China and Northern China, and high rate

  15. Estimating disease burden of a potential A(H7N9) pandemic influenza outbreak in the United States.

    PubMed

    Silva, Walter; Das, Tapas K; Izurieta, Ricardo

    2017-11-25

    Since spring 2013, periodic emergence of avian influenza A(H7N9) virus in China has heightened the concern for a possible pandemic outbreak among humans, though it is believed that the virus is not yet human-to-human transmittable. Till June 2017, A(H7N9) has resulted in 1533 laboratory-confirmed cases of human infections causing 592 deaths. The aim of this paper is to present disease burden estimates (measured by infection attack rates (IAR) and number of deaths) in the event of a possible pandemic outbreak caused by human-to-human transmission capability acquired by A(H7N9) virus. Even though such a pandemic will likely spread worldwide, our focus in this paper is to estimate the impact on the United States alone. The method first uses a data clustering technique to divide 50 states in the U.S. into a small number of clusters. Thereafter, for a few selected states in each cluster, the method employs an agent-based (AB) model to simulate human A(H7N9) influenza pandemic outbreaks. The model uses demographic and epidemiological data. A few selected non-pharmaceutical intervention (NPI) measures are applied to mitigate the outbreaks. Disease burden for the U.S. is estimated by combining results from the clusters applying a method used in stratified sampling. Two possible pandemic scenarios with R 0  = 1.5 and 1.8 are examined. Infection attack rates with 95% C.I. (Confidence Interval) for R 0  = 1.5 and 1.8 are estimated to be 18.78% (17.3-20.27) and 25.05% (23.11-26.99), respectively. The corresponding number of deaths (95% C.I.), per 100,000, are 7252.3 (6598.45-7907.33) and 9670.99 (8953.66-10,389.95). The results reflect a possible worst-case scenario where the outbreak extends over all states of the U.S. and antivirals and vaccines are not administered. Our disease burden estimations are also likely to be somewhat high due to the fact that only dense urban regions covering approximately 3% of the geographic area and 81% of the population are used for

  16. Comparative Pathology in Ferrets Infected with H1N1 Influenza A Viruses Isolated from Different Hosts ▿

    PubMed Central

    Smith, Jennifer Humberd; Nagy, Tamas; Driskell, Elizabeth; Brooks, Paula; Tompkins, S. Mark; Tripp, Ralph A.

    2011-01-01

    Virus replication and pulmonary disease pathogenesis in ferrets following intranasal infection with a pandemic influenza virus strain (A/California/4/09 [CA09]), a human seasonal influenza H1N1 virus isolate (A/New Caledonia/20/99 [Ncal99]), a classical swine influenza H1N1 virus isolate (A/Swine/Iowa/15/30 [Sw30]), or an avian H1N1 virus isolate (A/Mallard/MN/A108-2355/08 [Mal08]) were compared. Nasal wash virus titers were similar for Ncal99 and Sw30, with peak virus titers of 105.1 50% tissue culture infectious doses (TCID50)/ml and 105.5 TCID50/ml occurring at day 3 postinfection (p.i.), respectively. The mean peak titer for CA09 also occurred at day 3 p.i. but was higher (107 TCID50/ml). In contrast, the peak virus titers (103.6 to 104.3 TCID50/ml) for Mal08 were delayed, occurring between days 5 and 7 p.i. Disease pathogenesis was characterized by microscopic lesions in the nasal turbinates and lungs of all ferrets; however, Sw30 infection was associated with severe bronchointerstitial pneumonia. The results demonstrate that although CA09 is highly transmissible in the human population and replicates well in the ferret model, it causes modest disease compared to other H1N1 viruses, particularly Sw30 infection. PMID:21593156

  17. Experimental infection of highly pathogenic avian influenza viruses, Clade 2.3.4.4 H5N6 and H5N8, in Mandarin ducks from South Korea.

    PubMed

    Son, K; Kim, Y-K; Oem, J-K; Jheong, W-H; Sleeman, J M; Jeong, J

    2018-06-01

    Outbreaks of highly pathogenic avian influenza (HPAI) have been reported worldwide. Wild waterfowl play a major role in the maintenance and transmission of HPAI. Highly pathogenic avian influenza subtype H5N6 and H5N8 viruses simultaneously emerged in South Korea. In this study, the comparative pathogenicity and infectivity of Clade 2.3.4.4 Group B H5N8 and Group C H5N6 viruses were evaluated in Mandarin duck (Aix galericulata). None of the ducks infected with H5N6 or H5N8 viruses showed clinical signs or mortality. Serological assays revealed that the HA antigenicity of H5N8 and H5N6 viruses was similar to each other. Moreover, both the viruses did not replicate after cross-challenging with H5N8 and H5N6 viruses, respectively, as the second infection. Although both the viruses replicated in most of the internal organs of the ducks, viral replication and shedding through cloaca were higher in H5N8-infected ducks than in H5N6-infected ducks. The findings of this study provide preliminary information to help estimate the risks involved in further evolution and dissemination of Clade 2.3.4.4 HPAI viruses among wild birds. © 2017 The Authors. Transboundary and Emerging Diseases Published by Blackwell Verlag GmbH.

  18. Outbreak of Variant Influenza A(H3N2) Virus in the United States

    PubMed Central

    Jhung, Michael A.; Epperson, Scott; Biggerstaff, Matthew; Allen, Donna; Balish, Amanda; Barnes, Nathelia; Beaudoin, Amanda; Berman, LaShondra; Bidol, Sally; Blanton, Lenee; Blythe, David; Brammer, Lynnette; D’Mello, Tiffany; Danila, Richard; Davis, William; de Fijter, Sietske; DiOrio, Mary; Durand, Lizette O.; Emery, Shannon; Fowler, Brian; Garten, Rebecca; Grant, Yoran; Greenbaum, Adena; Gubareva, Larisa; Havers, Fiona; Haupt, Thomas; House, Jennifer; Ibrahim, Sherif; Jiang, Victoria; Jain, Seema; Jernigan, Daniel; Kazmierczak, James; Klimov, Alexander; Lindstrom, Stephen; Longenberger, Allison; Lucas, Paul; Lynfield, Ruth; McMorrow, Meredith; Moll, Maria; Morin, Craig; Ostroff, Stephen; Page, Shannon L.; Park, Sarah Y.; Peters, Susan; Quinn, Celia; Reed, Carrie; Richards, Shawn; Scheftel, Joni; Simwale, Owen; Shu, Bo; Soyemi, Kenneth; Stauffer, Jill; Steffens, Craig; Su, Su; Torso, Lauren; Uyeki, Timothy M.; Vetter, Sara; Villanueva, Julie; Wong, Karen K.; Shaw, Michael; Bresee, Joseph S.; Cox, Nancy; Finelli, Lyn

    2017-01-01

    Background Variant influenza virus infections are rare but may have pandemic potential if person-to-person transmission is efficient. We describe the epidemiology of a multistate outbreak of an influenza A(H3N2) variant virus (H3N2v) first identified in 2011. Methods We identified laboratory-confirmed cases of H3N2v and used a standard case report form to characterize illness and exposures. We considered illness to result from person-to-person H3N2v transmission if swine contact was not identified within 4 days prior to illness onset. Results From 9 July to 7 September 2012, we identified 306 cases of H3N2v in 10 states. The median age of all patients was 7 years. Commonly reported signs and symptoms included fever (98%), cough (85%), and fatigue (83%). Sixteen patients (5.2%) were hospitalized, and 1 fatal case was identified. The majority of those infected reported agricultural fair attendance (93%) and/or contact with swine (95%) prior to illness. We identified 15 cases of possible person-to-person transmission of H3N2v. Viruses recovered from patients were 93%–100% identical and similar to viruses recovered from previous cases of H3N2v. All H3N2v viruses examined were susceptible to oseltamivir and zanamivir and resistant to adamantane antiviral medications. Conclusions In a large outbreak of variant influenza, the majority of infected persons reported exposures, suggesting that swine contact at an agricultural fair was a risk for H3N2v infection. We identified limited person-to-person H3N2v virus transmission, but found no evidence of efficient or sustained person-to-person transmission. Fair managers and attendees should be aware of the risk of swine-to-human transmission of influenza viruses in these settings. PMID:24065322

  19. In vitro and in vivo efficacy of fluorodeoxycytidine analogs against highly pathogenic avian influenza H5N1, seasonal, and pandemic H1N1 virus infections

    PubMed Central

    Kumaki, Yohichi; Day, Craig W.; Smee, Donald F.; Morrey, John D.; Barnard, Dale L.

    2011-01-01

    Various fluorodeoxyribonucleosides were evaluated for their antiviral activities against influenza virus infections in vitro and in vivo. Among the most potent inhibitors was 2'-deoxy-2'-fluorocytidine (2'-FdC). It inhibited various strains of low and highly pathogenic avian influenza H5N1 viruses, pandemic H1N1 viruses, an oseltamivir-resistant pandemic H1N1 virus, and seasonal influenza viruses (H3N2, H1N1, influenza B) in MDCK cells, with the 90% inhibitory concentrations ranging from 0.13 µM to 4.6 µM, as determined by a virus yield reduction assay. 2'-FdC was then tested for efficacy in BALB/c mice infected with a lethal dose of highly pathogenic influenza A/Vietnam/1203/2004 H5N1 virus. 2’FdC (60 mg/kg/d) administered intraperitoneally (i.p.) twice a day beginning 24 h after virus exposure significantly promoted survival (80% survival) of infected mice (p=0.0001). Equally efficacious were the treatment regimens in which mice were treated with 2'-FdC at 30 or 60 mg/kg/day (bid × 8) beginning 24 h before virus exposure. At these doses, 70–80% of the mice were protected from death due to virus infection (p=0.0005, p=0.0001; respectively). The lungs harvested from treated mice at day four of the infection displayed little surface pathology or histopathology, lung weights were lower, and the 60 mg/kg dose reduced lung virus titers, although not significantly compared to the placebo controls. All doses were well tolerated in uninfected mice. 2'-FdC could also be administered as late as 72 h post virus exposure and still significantly protect 60% mice from the lethal effects of the H5N1 virus infection (p=0.019). Other fluorodeoxyribonucleosides tested in the H5N1 mouse model, 2’-deoxy-5-fluorocytidine and 2'-deoxy-2', 2'-difluorocytidine, were very toxic at higher doses and not inhibitory at lower doses. Finally, 2'-FdC, which was active in the H5N1 mouse model, was also active in a pandemic H1N1 influenza A infection model in mice. When given at 30 mg

  20. Genetic evolution of influenza H9N2 viruses isolated from various hosts in China from 1994 to 2013

    PubMed Central

    Li, Chong; Wang, Shuoguo; Bing, Guoxia; Carter, Robert A; Wang, Zejiang; Wang, Jinliang; Wang, Chenxi; Wang, Lan; Wu, Gang; Webster, Robert G; Wang, Yongqiang; Sun, Honglei; Sun, Yipeng; Liu, Jinhua; Pu, Juan

    2017-01-01

    Influenza H9N2 subtype viruses and their reassortants (such as H7N9) are posing increasing threats to birds and humans in China. During 2009–2013, multiple novel subtype viruses with H9N2 original genes emerged in China. Yet, the genetic evolution of H9N2 viruses in various host organisms in China has not been systematically investigated since 2009. In the present study, we performed large-scale sequence analysis of H9N2 viral genomes from public databases, representing the spectrum of viruses isolated from birds, mammals and humans in China from 1994 to 2013, and updated the clade classification for each segment. We identified 117 distinct genotypes in 730 H9N2 viruses. We analyzed the sequences of all eight segments in each virus and found three important time points: the years 2000, 2006 and 2010. In the periods divided by these years, genotypic diversity, geographic distribution and host range changed considerably. Genotypic diversity fluctuated greatly in 2000 and 2006. Since 2010, a single genotype became predominant in poultry throughout China, and the eastern coastal region became the newly identified epidemic center. Throughout their 20-year prevalence in China, H9N2 influenza viruses have emerged and adapted from aquatic birds to chickens. The minor avian species and wild birds exacerbated H9N2 genotypes by providing diversified genes, and chickens were the most prevalent vector in which the viruses evolved and expanded their prevalence. It is the necessity for surveillance and disease control on live-bird markets, poultry farms and wild-bird habitats in China. PMID:29184157

  1. Genetic evolution of influenza H9N2 viruses isolated from various hosts in China from 1994 to 2013.

    PubMed

    Li, Chong; Wang, Shuoguo; Bing, Guoxia; Carter, Robert A; Wang, Zejiang; Wang, Jinliang; Wang, Chenxi; Wang, Lan; Wu, Gang; Webster, Robert G; Wang, Yongqiang; Sun, Honglei; Sun, Yipeng; Liu, Jinhua; Pu, Juan

    2017-11-29

    Influenza H9N2 subtype viruses and their reassortants (such as H7N9) are posing increasing threats to birds and humans in China. During 2009-2013, multiple novel subtype viruses with H9N2 original genes emerged in China. Yet, the genetic evolution of H9N2 viruses in various host organisms in China has not been systematically investigated since 2009. In the present study, we performed large-scale sequence analysis of H9N2 viral genomes from public databases, representing the spectrum of viruses isolated from birds, mammals and humans in China from 1994 to 2013, and updated the clade classification for each segment. We identified 117 distinct genotypes in 730 H9N2 viruses. We analyzed the sequences of all eight segments in each virus and found three important time points: the years 2000, 2006 and 2010. In the periods divided by these years, genotypic diversity, geographic distribution and host range changed considerably. Genotypic diversity fluctuated greatly in 2000 and 2006. Since 2010, a single genotype became predominant in poultry throughout China, and the eastern coastal region became the newly identified epidemic center. Throughout their 20-year prevalence in China, H9N2 influenza viruses have emerged and adapted from aquatic birds to chickens. The minor avian species and wild birds exacerbated H9N2 genotypes by providing diversified genes, and chickens were the most prevalent vector in which the viruses evolved and expanded their prevalence. It is the necessity for surveillance and disease control on live-bird markets, poultry farms and wild-bird habitats in China.

  2. Pre-infection of pigs with Mycoplasma hyopneumoniae modifies outcomes of infection with European swine influenza virus of H1N1, but not H1N2, subtype.

    PubMed

    Deblanc, C; Gorin, S; Quéguiner, S; Gautier-Bouchardon, A V; Ferré, S; Amenna, N; Cariolet, R; Simon, G

    2012-05-25

    Swine influenza virus (SIV) and Mycoplasma hyopneumoniae (Mhp) are widespread in farms and are major pathogens involved in the porcine respiratory disease complex (PRDC). The aim of this experiment was to compare the pathogenicity of European avian-like swine H1N1 and European human-like reassortant swine H1N2 viruses in naïve pigs and in pigs previously infected with Mhp. Six groups of SPF pigs were inoculated intra-tracheally with either Mhp, or H1N1, or H1N2 or Mhp+H1N1 or Mhp+H1N2, both pathogens being inoculated at 21 days intervals in these two last groups. A mock-infected group was included. Although both SIV strains induced clinical signs when singly inoculated, results indicated that the H1N2 SIV was more pathogenic than the H1N1 virus, with an earlier shedding and a greater spread in lungs. Initial infection with Mhp before SIV inoculation increased flu clinical signs and pathogenesis (hyperthermia, loss of appetite, pneumonia lesions) due to the H1N1 virus but did not modify significantly outcomes of H1N2 infection. Thus, Mhp and SIV H1N1 appeared to act synergistically, whereas Mhp and SIV H1N2 would compete, as H1N2 infection led to the elimination of Mhp in lung diaphragmatic lobes. In conclusion, SIV would be a risk factor for the severity of respiratory disorders when associated with Mhp, depending on the viral subtype involved. This experimental model of coinfection with Mhp and avian-like swine H1N1 is a relevant tool for studying the pathogenesis of SIV-associated PRDC and testing intervention strategies for the control of the disease. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Genotypic evolution and antigenicity of H9N2 influenza viruses in Shanghai, China.

    PubMed

    Ge, Feifei; Li, Xin; Ju, Houbin; Yang, Dequan; Liu, Jian; Qi, Xinyong; Wang, Jian; Yang, Xianchao; Qiu, Yafeng; Liu, Peihong; Zhou, Jinping

    2016-06-01

    H9N2 influenza viruses have been circulating in China since 1994, but a systematic investigation of H9N2 in Shanghai has not previously been undertaken. Here, using 14 viruses we isolated from poultry and pigs in Shanghai during 2002 and 2006-2014, together with the commercial vaccine A/chicken/Shanghai/F/1998 (Ck/SH/F/98), we analyzed the evolution of H9N2 influenza viruses in Shanghai and showed that all 14 isolates originated from Ck/SH/F/98 antigenically. We evaluated the immune protection efficiency of the vaccine. Our findings demonstrate that H9N2 viruses in Shanghai have undergone extensive reassortment. Various genotypes emerged in 2002, 2006 and 2007, while during 2009-2014 only one genotype was found. Four antigenic groups, A-D, could be identified among the 14 isolates and a variety of antigenically distinct H9N2-virus-derived avian influenza viruses (AIVs) circulated simultaneously in Shanghai during this period. Challenge experiments using vaccinated chickens indicated that the vaccine prevented shedding of antigenic group A and B viruses, but not those of the more recent groups C and D. Genetic analysis showed that compared to the vaccine strain, representative viruses of antigenic groups C and D possess greater numbers of amino acid substitutions in the hemagglutinin (HA) protein than viruses in antigenic groups A and B. Many of these substitutions are located in antigenic sites. Our results indicate that the persistence of H9N2 AIV in China might be due to incomplete vaccine protection and that the avian influenza vaccine should be regularly evaluated and updated to maintain optimal protection.

  4. An increasing trend of rural infections of human influenza A (H7N9) from 2013 to 2017: A retrospective analysis of patient exposure histories in Zhejiang province, China.

    PubMed

    Chen, Enfu; Wang, Maggie H; He, Fan; Sun, Riyang; Cheng, Wei; Zee, Benny C Y; Lau, Steven Y F; Wang, Xiaoxiao; Chong, Ka Chun

    2018-01-01

    Although investigations have shown that closing live poultry markets (LPMs) is highly effective in controlling human influenza A (H7N9) infections, many of the urban LPMs were shut down, but rural LPMs remained open. This study aimed to compare the proportional changes between urban and rural infections in the Zhejiang province from 2013 to 2017 by analyzing the exposure histories of human cases. All laboratory-confirmed cases of H7N9 from 2013 (the first wave) to 2017 (the fifth wave) in the Zhejiang province of China were analyzed. Urban and rural infections were defined based on the locations of poultry exposure (direct and indirect) in urban areas (central towns) and rural areas (towns and villages on the outskirts of cities). A Chi-square trend test was used to compare the proportional trend between urban and rural infections over time and logistic regression was used to obtain the odds ratio by years. From 2013 to 2017, a statistically significant trend in rural infections was observed (p <0.01). The incremental odds ratio by years of rural infections was 1.59 with 95% confidence intervals of 1.34 to 1.86. Each year, significant increases in the proportion of live poultry transactions in LPMS and poultry processing plants were detected in conjunction with an increased proportion of urban and rural infections. The empirical evidence indicated a need for heightened infection control measures in rural areas, such as serving rural farms and backyards as active surveillance points for the H7N9 virus. Other potential interventions such as the vaccination of poultry and extending the closure of LPMs to the provincial level require further careful investigations.

  5. Structure and receptor binding preferences of recombinant hemagglutinins from avian and human H6 and H10 influenza A virus subtypes.

    PubMed

    Yang, Hua; Carney, Paul J; Chang, Jessie C; Villanueva, Julie M; Stevens, James

    2015-04-01

    During 2013, three new avian influenza A virus subtypes, A(H7N9), A(H6N1), and A(H10N8), resulted in human infections. While the A(H7N9) virus resulted in a significant epidemic in China across 19 provinces and municipalities, both A(H6N1) and A(H10N8) viruses resulted in only a few human infections. This study focuses on the major surface glycoprotein hemagglutinins from both of these novel human viruses. The detailed structural and glycan microarray analyses presented here highlight the idea that both A(H6N1) and A(H10N8) virus hemagglutinins retain a strong avian receptor binding preference and thus currently pose a low risk for sustained human infections. Human infections with zoonotic influenza virus subtypes continue to be a great public health concern. We report detailed structural analysis and glycan microarray data for recombinant hemagglutinins from A(H6N1) and A(H10N8) viruses, isolated from human infections in 2013, and compare them with hemagglutinins of avian origin. This is the first structural report of an H6 hemagglutinin, and our results should further the understanding of these viruses and provide useful information to aid in the continuous surveillance of these zoonotic influenza viruses. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. High probability of avian influenza virus (H7N7) transmission from poultry to humans active in disease control on infected farms.

    PubMed

    Bos, Marian E H; Te Beest, Dennis E; van Boven, Michiel; van Beest Holle, Mirna Robert-Du Ry; Meijer, Adam; Bosman, Arnold; Mulder, Yonne M; Koopmans, Marion P G; Stegeman, Arjan

    2010-05-01

    An epizootic of avian influenza (H7N7) caused a large number of human infections in The Netherlands in 2003. We used data from this epizootic to estimate infection probabilities for persons involved in disease control on infected farms. Analyses were based on databases containing information on the infected farms, person-visits to these farms, and exposure variables (number of birds present, housing type, poultry type, depopulation method, period during epizootic). Case definition was based on self-reported conjunctivitis and positive response to hemagglutination inhibition assay. A high infection probability was associated with clinical inspection of poultry in the area surrounding infected flocks (7.6%; 95% confidence interval [CI], 1.4%-18.9%) and active culling during depopulation (6.2%; 95% CI, 3.7%-9.6%). Low probabilities were estimated for management of biosecurity (0.0%; 95% CI, 0.0%-1.0%) and cleaning assistance during depopulation (0.0%; 95% CI, 0.0%-9.2%). No significant association was observed between the probability of infection and the exposure variables.

  7. H9N2 low pathogenic avian influenza in Pakistan (2012-2015)

    USDA-ARS?s Scientific Manuscript database

    Significant economic losses from deaths and decreased egg production have resulted from H9N2 low pathogenic avian influenza virus (LPAIV) infections in poultry across North Africa, the Middle East and Asia. The H9N2 LPAIVs have been endemic in Pakistani poultry since 1996, but no new viruses have be...

  8. Avian Influenza A Viruses: Evolution and Zoonotic Infection.

    PubMed

    Kim, Se Mi; Kim, Young-Il; Pascua, Philippe Noriel Q; Choi, Young Ki

    2016-08-01

    Although efficient human-to-human transmission of avian influenza virus has yet to be seen, in the past two decades avian-to-human transmission of influenza A viruses has been reported. Influenza A/H5N1, in particular, has repeatedly caused human infections associated with high mortality, and since 1998 the virus has evolved into many clades of variants with significant antigenic diversity. In 2013, three (A/H7N9, A/H6N1, and A/H10N8) novel avian influenza viruses (AIVs) breached the animal-human host species barrier in Asia. In humans, roughly 35% of A/H7N9-infected patients succumbed to the zoonotic infection, and two of three A/H10N8 human infections were also lethal; however, neither of these viruses cause influenza-like symptoms in poultry. While most of these cases were associated with direct contact with infected poultry, some involved sustained human-to-human transmission. Thus, these events elicited concern regarding potential AIV pandemics. This article reviews the human incursions associated with AIV variants and the potential role of pigs as an intermediate host that may hasten AIV evolution. In addition, we discuss the known influenza A virus virulence and transmission factors and their evaluation in animal models. With the growing number of human AIV infections, constant vigilance for the emergence of novel viruses is of utmost importance. In addition, careful characterization and pathobiological assessment of these novel variants will help to identify strains of particular concern for future pandemics. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  9. Generation and protective efficacy of a cold-adapted attenuated avian H9N2 influenza vaccine.

    PubMed

    Wei, Yandi; Qi, Lu; Gao, Huijie; Sun, Honglei; Pu, Juan; Sun, Yipeng; Liu, Jinhua

    2016-07-26

    To prevent H9N2 avian influenza virus infection in chickens, a long-term vaccination program using inactivated vaccines has been implemented in China. However, the protective efficacy of inactivated vaccines against antigenic drift variants is limited, and H9N2 influenza virus continues to circulate in vaccinated chicken flocks in China. Therefore, developing a cross-reactive vaccine to control the impact of H9N2 influenza in the poultry industry remains a high priority. In the present study, we developed a live cold-adapted H9N2 influenza vaccine candidate (SD/01/10-ca) by serial passages in embryonated eggs at successively lower temperatures. A total of 13 amino acid mutations occurred during the cold-adaptation of this H9N2 virus. The candidate was safe in chickens and induced robust hemagglutination-inhibition antibody responses and influenza virus-specific CD4(+) and CD8(+) T cell immune responses in chickens immunized intranasally. Importantly, the candidate could confer protection of chickens from homologous and heterogenous H9N2 viruses. These results demonstrated that the cold-adapted attenuated H9N2 virus would be selected as a vaccine to control the infection of prevalent H9N2 influenza viruses in chickens.

  10. Biological Characteristics of H9N2 Avian Influenza Viruses from Healthy Chickens in Shanghai, China.

    PubMed

    Shi, Qingfeng; Wang, Qianli; Ju, Liwen; Xiong, Haiyan; Chen, Yue; Jiang, Lufang; Jiang, Qingwu

    2016-12-10

    BACKGROUND H9N2 avian influenza viruses that circulate in domestic poultry in eastern China pose challenges to human health. However, few studies have compared the biological characteristics of H9N2 viruses isolated from healthy chickens in Shanghai. MATERIAL AND METHODS Three H9N2 viruses - CK/SH/Y1/07, CK/SH/Y1/02, and CK/SH/23/13 - isolated from healthy chickens in Shanghai between 2002 and 2013, were selected and their biological characteristics were determined. RESULTS All 3 H9N2 viruses showed a preference for both the avian- and human-like receptors, and they replicated well in MDCK and A549 cells. All H9N2 viruses were non-pathogenic to mini-pigs and were detected in the trachea and lung tissues. The CK/SH/Y1/07 and CK/SH/Y1/02 viruses were transmitted to mini-pigs through direct-contact or respiratory droplet exposure, but CK/SH/23/13 virus was not. CONCLUSIONS These results suggest that H9N2 viruses isolated from healthy chickens in Shanghai efficiently replicate and transmit among pigs and other mammals.

  11. Comparison of patients with avian influenza A (H7N9) and influenza A (H1N1) complicated by acute respiratory distress syndrome.

    PubMed

    Li, Hongyan; Weng, Heng; Lan, Changqing; Zhang, Hongying; Wang, Xinhang; Pan, Jianguang; Chen, Lulu; Huang, Jinbao

    2018-03-01

    The aim of this study was to compare the clinical features of patients with avian influenza A (H7N9) and influenza A (H1N1) complicated by acute respiratory distress syndrome (ARDS).The clinical data of 18 cases of H7N9 and 26 cases of H1N1 with ARDS were collected and compared in the respiratory intensive care unit (RICU) of Fuzhou Pulmonary Hospital of Fujian from March 2014 to December 2016.Patients with H7N9 had a higher acute physiology and chronic health evaluation-II score (P < .05) and lung injury score (P < .05). The rates of coexisting diabetes mellitus, hyperpyrexia, and bloody sputum production were significantly higher in the H7N9 group than in the H1N1 group (P < .05). The H7N9 group had a longer duration of viral shedding from the onset of illness (P < .05) and from the initiation of antiviral therapy (P < .05) to a negative viral test result than the H1N1 group. Patients with H7N9 had higher rates of invasive mechanical ventilation; serious complications, including alimentary tract hemorrhage, pneumothorax or septum emphysema, hospital-acquired pneumonia (HAP) and multiple organ dysfunction syndrome (MODS); and hospital mortality (P < .05). At the 6th month of follow-up, the rates of bronchiectasia, reticular opacities, fibrous stripes, and patchy opacities on chest computed tomography (CT) were significantly higher in the H7N9 group than in the H1N1 group (P < .05). Based on multiple logistic regression analysis, H7N9 influenza viral infection was associated with a higher risk of the presence of severe ARDS than H1N1 influenza viral infection (odds ratio 8.29, 95% confidence interval [CI] 1.53-44.94; P < .05).Compared to patients with H1N1, patients with H7N9 complicated by ARDS had much more severe disease. During long-term follow-up, more changes in pulmonary fibrosis were observed in patients with H7N9 than in patients with H1N1 during the convalescent stage.

  12. IL-1β and IL-6 Upregulation in Children with H1N1 Influenza Virus Infection

    PubMed Central

    Chiaretti, Antonio; Pulitanò, Silvia; Barone, Giovanni; Ferrara, Pietro; Capozzi, Domenico; Riccardi, Riccardo

    2013-01-01

    The role of cytokines in relation to clinical manifestations, disease severity, and outcome of children with H1N1 virus infection remains thus far unclear. The aim of this study was to evaluate interleukin IL-1β and IL-6 plasma expressions and their association with clinical findings, disease severity, and outcome of children with H1N1 infection. We prospectively evaluated 15 children with H1N1 virus infection and 15 controls with lower respiratory tract infections (LRTI). Interleukin plasma levels were measured using immunoenzymatic assays. Significantly higher levels of IL-1β and IL-6 were detected in all patients with H1N1 virus infection compared to controls. It is noteworthy to mention that in H1N1 patients with more severe clinical manifestations of disease IL-1β and IL-6 expressions were significantly upregulated compared to H1N1 patients with mild clinical manifestations. In particular, IL-6 was significantly correlated with specific clinical findings, such as severity of respiratory compromise and fever. No correlation was found between interleukin expression and final outcome. In conclusion, H1N1 virus infection induces an early and significant upregulation of both interleukins IL1β and IL-6 plasma expressions. The upregulation of these cytokines is likely to play a proinflammatory role in H1N1 virus infection and may contribute to airway inflammation and bronchial hyperreactivity in these patients. PMID:23737648

  13. Development of an Influenza A Master Virus for Generating High-Growth Reassortants for A/Anhui/1/2013(H7N9) Vaccine Production in Qualified MDCK Cells

    PubMed Central

    Suzuki, Yasushi; Odagiri, Takato; Tashiro, Masato; Nobusawa, Eri

    2016-01-01

    In 2013, the first case of human infection with an avian influenza A virus (H7N9) was reported in China, and the human infection with this virus has continued as of 2016. At the request of the WHO, we have successfully developed candidate reassortant vaccine virus using A/Anhui/1/2013 and the high egg-growth master virus A/PR/8/1934. Recent plans regarding influenza vaccine production include using cell-cultured systems in Japan and several other countries. However, egg-based vaccine viruses are not always suitable for cell-cultured vaccine production due to potential issues with growth, protein yield and antigenic stability. Therefore, in this study, we have developed a high-growth master virus (hg-PR8) adapted to qualified NIID-MDCK cells that are competent for vaccine production. The virus hg-PR8 was obtained after 20 serial passages of A/Puerto Rico/8/1934 (PR8) in NIID-MDCK cells. The viral titer of hg-PR8 was 108.6 plaque-forming units per milliliter (PFU/mL). Seven amino acid substitutions were identified in the amino acid sequences of PB2, PB1, PA, NA, M and NS of hg-PR8 compared to the sequence of the original PR8 (org-PR8) strain. The growth capacities of the reassortant viruses, which possess heterologous internal genes from hg-PR8 or org-PR8, indicated that the amino acid changes in PB2 and NS2 similarly affected growth capacity in NIID-MDCK cells. To assess the suitability of hg-PR8 as a master virus, we generated 6:2 reassortant viruses possessing the HA and NA segments from A/Anhui/1/2013 (H7N9) and the remaining segments from hg-PR8. The virus titers of the reassortant strains were 107−108 PFU/mL. The antigenicity of the viruses was stable during ten passages of the viruses in NIID-MDCK cells. In comparison with the egg-based reassortant vaccine viruses with identical HA and NA segments, the hg-PR8-based viruses showed 1.5- to 2-fold higher protein yields in NIID-MDCK cells. PMID:27454606

  14. Contemporary Avian Influenza A Virus Subtype H1, H6, H7, H10, and H15 Hemagglutinin Genes Encode a Mammalian Virulence Factor Similar to the 1918 Pandemic Virus H1 Hemagglutinin

    PubMed Central

    Qi, Li; Pujanauski, Lindsey M.; Davis, A. Sally; Schwartzman, Louis M.; Chertow, Daniel S.; Baxter, David; Scherler, Kelsey; Hartshorn, Kevan L.; Slemons, Richard D.; Walters, Kathie-Anne; Kash, John C.

    2014-01-01

    ABSTRACT Zoonotic avian influenza virus infections may lead to epidemics or pandemics. The 1918 pandemic influenza virus has an avian influenza virus-like genome, and its H1 hemagglutinin was identified as a key mammalian virulence factor. A chimeric 1918 virus expressing a contemporary avian H1 hemagglutinin, however, displayed murine pathogenicity indistinguishable from that of the 1918 virus. Here, isogenic chimeric avian influenza viruses were constructed on an avian influenza virus backbone, differing only by hemagglutinin subtype expressed. Viruses expressing the avian H1, H6, H7, H10, and H15 subtypes were pathogenic in mice and cytopathic in normal human bronchial epithelial cells, in contrast to H2-, H3-, H5-, H9-, H11-, H13-, H14-, and H16-expressing viruses. Mouse pathogenicity was associated with pulmonary macrophage and neutrophil recruitment. These data suggest that avian influenza virus hemagglutinins H1, H6, H7, H10, and H15 contain inherent mammalian virulence factors and likely share a key virulence property of the 1918 virus. Consequently, zoonotic infections with avian influenza viruses bearing one of these hemagglutinins may cause enhanced disease in mammals. PMID:25406382

  15. Genesis, Evolution and Prevalence of H5N6 Avian Influenza Viruses in China.

    PubMed

    Bi, Yuhai; Chen, Quanjiao; Wang, Qianli; Chen, Jianjun; Jin, Tao; Wong, Gary; Quan, Chuansong; Liu, Jun; Wu, Jun; Yin, Renfu; Zhao, Lihua; Li, Mingxin; Ding, Zhuang; Zou, Rongrong; Xu, Wen; Li, Hong; Wang, Huijun; Tian, Kegong; Fu, Guanghua; Huang, Yu; Shestopalov, Alexander; Li, Shoujun; Xu, Bing; Yu, Hongjie; Luo, Tingrong; Lu, Lin; Xu, Xun; Luo, Yang; Liu, Yingxia; Shi, Weifeng; Liu, Di; Gao, George Fu

    2016-12-14

    Constant surveillance of live poultry markets (LPMs) is currently the best way to predict and identify emerging avian influenza viruses (AIVs) that pose a potential threat to public health. Through surveillance of LPMs from 16 provinces and municipalities in China during 2014-2016, we identified 3,174 AIV-positive samples and isolated and sequenced 1,135 AIVs covering 31 subtypes. Our analysis shows that H5N6 has replaced H5N1 as one of the dominant AIV subtypes in southern China, especially in ducks. Phylogenetic analysis reveals that H5N6 arose from reassortments of H5 and H6N6 viruses, with the hemagglutinin and neuraminidase combinations being strongly lineage specific. H5N6 viruses constitute at least 34 distinct genotypes derived from various evolutionary pathways. Notably, genotype G1.2 virus, with internal genes from the chicken H9N2/H7N9 gene pool, was responsible for at least five human H5N6 infections. Our findings highlight H5N6 AIVs as potential threats to public health and agriculture. Copyright © 2016. Published by Elsevier Inc.

  16. Continuing evolution of H9N2 avian influenza virus in South Korea

    USDA-ARS?s Scientific Manuscript database

    The H9N2 low pathogenic avian influenza (LPAI) has caused great economic losses in Korean poultry industry since the first outbreak in 1996. Although the hemagglutinin gene of early H9N2 viruses were closely related to Chinese Y439-like lineage virus, it evolved into a unique Korean lineage after ...

  17. The molecular characteristics of avian influenza viruses (H9N2) derived from air samples in live poultry markets.

    PubMed

    Wu, Yanheng; Lin, Jinsi; Yang, Shuhuan; Xie, Ying; Wang, Man; Chen, Xueqin; Zhu, Yayang; Luo, Le; Shi, Wuyang

    2018-06-01

    To study the molecular characteristics of H9N2-subtype avian influenza viruses (AIVs) isolated from air samples collected in live poultry markets (LPMs) and explore their sequence identities with AIVs that caused human infection. Weekly surveillance of H9N2-subtype AIVs in the air of LPMs was conducted from 2015 to 2016. H9-positive samples were isolated from chicken embryos. Whole genome sequences of the isolated AIVs were obtained through high-throughput sequencing. Phylogenetic analysis and key loci variations of the sequences were further analyzed. A total of 327 aerosol samples were collected from LPMs. Nine samples were positive for H9-subtype AIVs based on quantitative real-time reverse transcription polymerase chain reaction (qRRT-PCR). According to the whole genome sequence analysis and phylogenetic analysis, except for the A/Environment/Zhongshan/ZS201505/2015 (ZS201505) strain, 8 gene segments of 8 aerosol H9N2 isolates and 2 H9N2 human isolates in 2015 were located in the same clade. Among key loci variations, except for the ZS201505 strain, H9N2-subtype AIVs had no mutations in eight receptor binding sites of hemagglutinin (HA), and stalks of neuraminidase (NA) proteins exhibited a deletion site of three bases. The PA gene of ZS201503 and ZS201602 exhibited an L336M mutation. The N30D and T215A mutations in the M1 gene and amino acid residues L89V in PB2, P42S in NS1 and S31N in M2 were retained in these 9 strains of H9N2 isolates, which could enhance the virus's virulence. Live H9N2 AIVs survived in the aerosol of LPMs in Zhongshan City. The aerosol viruses had a close evolutionary relationship with human epidemic strains, indicating that there might be a risk of AIV transmission from polluted aerosols in LPMs to humans. Mutations in H9N2-subtype AIVs isolated from air samples collected from LPMs suggested their pathogenicity was enhanced to infect humans. Copyright © 2018. Published by Elsevier B.V.

  18. Inactivated H7 Influenza Virus Vaccines Protect Mice despite Inducing Only Low Levels of Neutralizing Antibodies.

    PubMed

    Kamal, Ram P; Blanchfield, Kristy; Belser, Jessica A; Music, Nedzad; Tzeng, Wen-Pin; Holiday, Crystal; Burroughs, Ashley; Sun, Xiangjie; Maines, Taronna R; Levine, Min Z; York, Ian A

    2017-10-15

    Avian influenza viruses of the H7 hemagglutinin (HA) subtype present a significant public health threat, as evidenced by the ongoing outbreak of human A(H7N9) infections in China. When evaluated by hemagglutination inhibition (HI) and microneutralization (MN) assays, H7 viruses and vaccines are found to induce lower level of neutralizing antibodies (nAb) than do their seasonal counterparts, making it difficult to develop and evaluate prepandemic vaccines. We have previously shown that purified recombinant H7 HA appear to be poorly immunogenic in that they induce low levels of HI and MN antibodies. In this study, we immunized mice with whole inactivated reverse genetics reassortant (RG) viruses expressing HA and neuraminidase (NA) from 3 different H7 viruses [A/Shanghai/2/2013(H7N9), A/Netherlands/219/2003(H7N7), and A/New York/107/2003(H7N2)] or with human A(H1N1)pdm09 (A/California/07/2009-like) or A(H3N2) (A/Perth16/2009) viruses. Mice produced equivalent titers of antibodies to all viruses as measured by enzyme-linked immunosorbent assay (ELISA). However, the antibody titers induced by H7 viruses were significantly lower when measured by HI and MN assays. Despite inducing very low levels of nAb, H7 vaccines conferred complete protection against homologous virus challenge in mice, and the serum antibodies directed against the HA head region were capable of mediating protection. The apparently low immunogenicity associated with H7 viruses and vaccines may be at least partly related to measuring antibody titers with the traditional HI and MN assays, which may not provide a true measure of protective immunity associated with H7 immunization. This study underscores the need for development of additional correlates of protection for prepandemic vaccines. IMPORTANCE H7 avian influenza viruses present a serious risk to human health. Preparedness efforts include development of prepandemic vaccines. For seasonal influenza viruses, protection is correlated with antibody

  19. Inactivated H7 Influenza Virus Vaccines Protect Mice despite Inducing Only Low Levels of Neutralizing Antibodies

    PubMed Central

    Blanchfield, Kristy; Belser, Jessica A.; Music, Nedzad; Tzeng, Wen-Pin; Holiday, Crystal; Burroughs, Ashley; Sun, Xiangjie; Maines, Taronna R.; Levine, Min Z.; York, Ian A.

    2017-01-01

    ABSTRACT Avian influenza viruses of the H7 hemagglutinin (HA) subtype present a significant public health threat, as evidenced by the ongoing outbreak of human A(H7N9) infections in China. When evaluated by hemagglutination inhibition (HI) and microneutralization (MN) assays, H7 viruses and vaccines are found to induce lower level of neutralizing antibodies (nAb) than do their seasonal counterparts, making it difficult to develop and evaluate prepandemic vaccines. We have previously shown that purified recombinant H7 HA appear to be poorly immunogenic in that they induce low levels of HI and MN antibodies. In this study, we immunized mice with whole inactivated reverse genetics reassortant (RG) viruses expressing HA and neuraminidase (NA) from 3 different H7 viruses [A/Shanghai/2/2013(H7N9), A/Netherlands/219/2003(H7N7), and A/New York/107/2003(H7N2)] or with human A(H1N1)pdm09 (A/California/07/2009-like) or A(H3N2) (A/Perth16/2009) viruses. Mice produced equivalent titers of antibodies to all viruses as measured by enzyme-linked immunosorbent assay (ELISA). However, the antibody titers induced by H7 viruses were significantly lower when measured by HI and MN assays. Despite inducing very low levels of nAb, H7 vaccines conferred complete protection against homologous virus challenge in mice, and the serum antibodies directed against the HA head region were capable of mediating protection. The apparently low immunogenicity associated with H7 viruses and vaccines may be at least partly related to measuring antibody titers with the traditional HI and MN assays, which may not provide a true measure of protective immunity associated with H7 immunization. This study underscores the need for development of additional correlates of protection for prepandemic vaccines. IMPORTANCE H7 avian influenza viruses present a serious risk to human health. Preparedness efforts include development of prepandemic vaccines. For seasonal influenza viruses, protection is correlated with

  20. Contemporary avian influenza A virus subtype H1, H6, H7, H10, and H15 hemagglutinin genes encode a mammalian virulence factor similar to the 1918 pandemic virus H1 hemagglutinin.

    PubMed

    Qi, Li; Pujanauski, Lindsey M; Davis, A Sally; Schwartzman, Louis M; Chertow, Daniel S; Baxter, David; Scherler, Kelsey; Hartshorn, Kevan L; Slemons, Richard D; Walters, Kathie-Anne; Kash, John C; Taubenberger, Jeffery K

    2014-11-18

    Zoonotic avian influenza virus infections may lead to epidemics or pandemics. The 1918 pandemic influenza virus has an avian influenza virus-like genome, and its H1 hemagglutinin was identified as a key mammalian virulence factor. A chimeric 1918 virus expressing a contemporary avian H1 hemagglutinin, however, displayed murine pathogenicity indistinguishable from that of the 1918 virus. Here, isogenic chimeric avian influenza viruses were constructed on an avian influenza virus backbone, differing only by hemagglutinin subtype expressed. Viruses expressing the avian H1, H6, H7, H10, and H15 subtypes were pathogenic in mice and cytopathic in normal human bronchial epithelial cells, in contrast to H2-, H3-, H5-, H9-, H11-, H13-, H14-, and H16-expressing viruses. Mouse pathogenicity was associated with pulmonary macrophage and neutrophil recruitment. These data suggest that avian influenza virus hemagglutinins H1, H6, H7, H10, and H15 contain inherent mammalian virulence factors and likely share a key virulence property of the 1918 virus. Consequently, zoonotic infections with avian influenza viruses bearing one of these hemagglutinins may cause enhanced disease in mammals. Influenza viruses from birds can cause outbreaks in humans and may contribute to the development of pandemics. The 1918 pandemic influenza virus has an avian influenza virus-like genome, and its main surface protein, an H1 subtype hemagglutinin, was identified as a key mammalian virulence factor. In a previous study, a 1918 virus expressing an avian H1 gene was as virulent in mice as the reconstructed 1918 virus. Here, a set of avian influenza viruses was constructed, differing only by hemagglutinin subtype. Viruses with the avian H1, H6, H7, H10, and H15 subtypes caused severe disease in mice and damaged human lung cells. Consequently, infections with avian influenza viruses bearing one of these hemagglutinins may cause enhanced disease in mammals, and therefore surveillance for human infections

  1. Experimental infection of dogs with highly pathogenic avian influenza virus (H5N8).

    PubMed

    Yuk, Seong-Su; Lee, Dong-Hun; Park, Jae-Keun; Tseren-Ochir, Erdene-Ochir; Kwon, Jung-Hoon; Noh, Jin-Yong; Song, Chang-Seon

    2017-08-31

    During the highly pathogenic avian influenza (HPAI) H5N8 virus outbreak in Korea, a dog in layer farm contaminated by H5N8 was reported seropositive for HPAI H5N8. To investigate the possibility of adaptation and transmission of HPAI H5N8 to dogs, we experimentally inoculated dogs with H5N8. Viral genes were weakly detected in nasal swabs and seroconversions in inoculated and contact dogs. Although the H5N8 virus did not induced severe clinical signs to dogs, the results suggest that surveillance of farm dogs should continue as a species in which the avian influenza virus may acquire infectivity to mammals through frequent contact with the virus.

  2. Synergistic effects of thymoquinone and curcumin on immune response and anti-viral activity against avian influenza virus (H9N2) in turkeys.

    PubMed

    Umar, S; Shah, M A A; Munir, M T; Yaqoob, M; Fiaz, M; Anjum, S; Kaboudi, K; Bouzouaia, M; Younus, M; Nisa, Q; Iqbal, M; Umar, W

    2016-07-01

    The main objective of this study was to determine the possible effects of thymoquinone (TQ) and curcumin (Cur) on immune-response and pathogenesis of H9N2 avian influenza virus (AIV) in turkeys. The experiment was performed on 75 non-vaccinated mixed-sex turkey poults, divided into 5 experimental groups (A, B, C, D, and E) of 15 birds each. Group A was kept as non-infected and a non-treated negative control (ctrl group) while group B was kept as infected and non-treated positive control (H9N2 group). Turkeys in groups A and B received normal commercial feed while turkeys in groups C and D received TQ, and Cur respectively, and group E concurrently received TQ and Cur from d one through the entire experiment period. All groups were challenged intra-nasally with H9N2 AIV (A/chicken/Pakistan/10RS3039-284-48/2010) at the fourth wk of age except group A. Infected turkeys showed clinical signs of different severity, showing the most prominent disease signs in turkeys in group B. All infected turkeys showed positive results for virus shedding; however, the pattern of virus shedding was different, and with turkeys in group B showing more pronounced virus secretion than the turkeys in the other groups receiving different levels of TQ and Cur. Moreover, significantly higher antibody titer against H9N2 AIV in turkeys shows the immunomodulatory nature of TQ and Cur. Similarly, increased cytokine gene expression suggests antiviral behavior of TQ and Cur especially in combination, leading to suppressed pathogenesis of H9N2 viruses. However, reduced virus shedding and enhanced immune responses were more pronounced in those turkeys receiving TQ and Cur concurrently. This study showed that supplements of TQ and Cur in combination would significantly enhance immune responsiveness and suppress pathogenicity of influenza viruses in turkeys. © 2016 Poultry Science Association Inc.

  3. Sequential Infection in Ferrets with Antigenically Distinct Seasonal H1N1 Influenza Viruses Boosts Hemagglutinin Stalk-Specific Antibodies

    PubMed Central

    Kirchenbaum, Greg A.; Carter, Donald M.

    2015-01-01

    ABSTRACT Broadly reactive antibodies targeting the conserved hemagglutinin (HA) stalk region are elicited following sequential infection or vaccination with influenza viruses belonging to divergent subtypes and/or expressing antigenically distinct HA globular head domains. Here, we demonstrate, through the use of novel chimeric HA proteins and competitive binding assays, that sequential infection of ferrets with antigenically distinct seasonal H1N1 (sH1N1) influenza virus isolates induced an HA stalk-specific antibody response. Additionally, stalk-specific antibody titers were boosted following sequential infection with antigenically distinct sH1N1 isolates in spite of preexisting, cross-reactive, HA-specific antibody titers. Despite a decline in stalk-specific serum antibody titers, sequential sH1N1 influenza virus-infected ferrets were protected from challenge with a novel H1N1 influenza virus (A/California/07/2009), and these ferrets poorly transmitted the virus to naive contacts. Collectively, these findings indicate that HA stalk-specific antibodies are commonly elicited in ferrets following sequential infection with antigenically distinct sH1N1 influenza virus isolates lacking HA receptor-binding site cross-reactivity and can protect ferrets against a pathogenic novel H1N1 virus. IMPORTANCE The influenza virus hemagglutinin (HA) is a major target of the humoral immune response following infection and/or seasonal vaccination. While antibodies targeting the receptor-binding pocket of HA possess strong neutralization capacities, these antibodies are largely strain specific and do not confer protection against antigenic drift variant or novel HA subtype-expressing viruses. In contrast, antibodies targeting the conserved stalk region of HA exhibit broader reactivity among viruses within and among influenza virus subtypes. Here, we show that sequential infection of ferrets with antigenically distinct seasonal H1N1 influenza viruses boosts the antibody responses

  4. Generation and protective efficacy of a cold-adapted attenuated avian H9N2 influenza vaccine

    PubMed Central

    Wei, Yandi; Qi, Lu; Gao, Huijie; Sun, Honglei; Pu, Juan; Sun, Yipeng; Liu, Jinhua

    2016-01-01

    To prevent H9N2 avian influenza virus infection in chickens, a long-term vaccination program using inactivated vaccines has been implemented in China. However, the protective efficacy of inactivated vaccines against antigenic drift variants is limited, and H9N2 influenza virus continues to circulate in vaccinated chicken flocks in China. Therefore, developing a cross-reactive vaccine to control the impact of H9N2 influenza in the poultry industry remains a high priority. In the present study, we developed a live cold-adapted H9N2 influenza vaccine candidate (SD/01/10-ca) by serial passages in embryonated eggs at successively lower temperatures. A total of 13 amino acid mutations occurred during the cold-adaptation of this H9N2 virus. The candidate was safe in chickens and induced robust hemagglutination-inhibition antibody responses and influenza virus–specific CD4+ and CD8+ T cell immune responses in chickens immunized intranasally. Importantly, the candidate could confer protection of chickens from homologous and heterogenous H9N2 viruses. These results demonstrated that the cold-adapted attenuated H9N2 virus would be selected as a vaccine to control the infection of prevalent H9N2 influenza viruses in chickens. PMID:27457755

  5. Seroprevalence of Antibodies against Seal Influenza A(H10N7) Virus in Harbor Seals and Gray Seals from the Netherlands.

    PubMed

    Bodewes, Rogier; Rubio García, Ana; Brasseur, Sophie M; Sanchez Conteras, Guillermo J; van de Bildt, Marco W G; Koopmans, Marion P G; Osterhaus, Albert D M E; Kuiken, Thijs

    2015-01-01

    In the spring and summer 2014, an outbreak of seal influenza A(H10N7) virus infection occurred among harbor seals (Phoca vitulina) off the coasts of Sweden and Denmark. This virus subsequently spread to harbor seals off the coasts of Germany and the Netherlands. While thousands of seals were reported dead in Sweden, Denmark and Germany, only a limited number of seals were found dead in the Netherlands. To determine the extent of exposure of seals in the Netherlands to influenza A/H10N7 virus, we measured specific antibody titers in serum samples from live-captured seals and seals admitted for rehabilitation in the Netherlands by use of a hemagglutination inhibition assay and an ELISA. In harbor seals in 2015, antibodies against seal influenza A(H10N7) virus were detected in 41% (32 out of 78) pups, 10% (5 out of 52) weaners, and 58% (7 out of 12) subadults or adults. In gray seals (Halichoerus grypus) in 2015, specific antibodies were not found in the pups (n = 26), but in 26% (5 out of 19) of the older animals. These findings indicate that, despite apparent low mortality, infection with seal influenza A(H10N7) virus was geographically widespread and also occurred in grey seals.

  6. Transmission of an H5N8-Subtype Highly Pathogenic Avian Influenza Virus from Infected Hens to Laid Eggs.

    PubMed

    Uchida, Yuko; Takemae, Nobuhiro; Tanikawa, Taichiro; Kanehira, Katsushi; Saito, Takehiko

    2016-06-01

    We showed here that an H5N8-subtype highly pathogenic avian influenza virus (HPAIV) was transmitted to both the internal contents and shells of eggs laid by white leghorn hens experimentally infected with the virus. Seven of eight HPAIV-infected hens laid eggs until 4 days postinoculation (dpi). The mean number of eggs laid per head daily decreased significantly from 0.58 before inoculation to 0.18 after viral inoculation. The virus was detected in the eggs laid by three of the seven hens. Viral transmission was detectable beginning on 3 dpi, and virus titers in tracheal and cloacal swabs from the hens that laid the contaminated eggs exceeded 2.9 log10 EID50. The level of viral replication and its timing when virus replicates enough to be detected in oviduct after virus inoculation appear to be key factors in the transmission of H5N8 HPAIV from infected hens to laid eggs.

  7. Protection of chickens against H9N2 avian influenza virus challenge with recombinant Lactobacillus plantarum expressing conserved antigens.

    PubMed

    Yang, Wen-Tao; Yang, Gui-Lian; Shi, Shao-Hua; Liu, Yu-Ying; Huang, Hai-Bin; Jiang, Yan-Long; Wang, Jian-Zhong; Shi, Chun-Wei; Jing, Yu-Bei; Wang, Chun-Feng

    2017-06-01

    Avian influenza virus (AIV) is spreading worldwide and is a serious threat to the health of poultry and humans. In many countries, low pathogenic AIVs, such as H9N2, have become an enormous economic burden on the commercial poultry industry because they cause mild respiratory disease and decrease egg production. A recombinant Lactobacillus plantarum NC8 strain expressing NP-M1-DCpep from H9N2 AIV has been studied in a mouse model. However, it remains unknown whether this L. plantarum strain can induce an immune response and provide protection against H9N2 AIV in chickens. In this study, chickens that were orally vaccinated with NC8-pSIP409-NP-M1-DCpep exhibited significantly increased T cell-mediated immune responses and mucosal sIgA and IgG levels, which provided protection against H9N2 AIV challenge. More importantly, compared with oral administration of NC8-pSIP409-NP-M1-DCpep, intranasal administration induced stronger immune responses and provided effective protection against challenge with the H9N2 virus by reducing body weight loss, lung virus titers, and throat pathology. Taken together, these findings suggest that L. plantarum expressing NP-M1-DCpep has potential as a vaccine to combat H9N2 AIV infection.

  8. Analysis of antigen conservation and inactivation of gamma-irradiated avian influenza virus subtype H9N2.

    PubMed

    Salehi, Bahareh; Motamedi-Sedeh, Farahnaz; Madadgar, Omid; Khalili, Iraj; Ghalyan Chi Langroudi, Arash; Unger, Hermann; Wijewardana, Viskam

    2018-06-01

    Avian influenza (AI) A subtype H9N2 virus belongs to Orthomyxoviridae family and causes low-pathogenic disease AI. The use of gamma-irradiated viral antigens has been developed in the production of effective vaccines. In this research, LPAIV H9N2 strain, A/Chicken/IRN/Ghazvin/2001, was multiplied on SPF eggs and irradiated by a Nordian gamma cell instrument. Irradiated and non-irradiated AI virus (AIV) samples were titrated by EID50 method and hemagglutinin (HA) antigen was analyzed by HA test as the WHO pattern method. Infectivity of irradiated virus was determined by egg inoculation method during four blind cultures. The results showed that after increasing the dose of gamma radiation, virus titer gradually decreased. D 10 value and optimum dose for complete virus inactivation were calculated by dose/response curve, 3.36 and 29.52 kGy, respectively. In addition, HA antigenicity of gamma-irradiated virus samples from 0 to 30 kGy was not changed. The results of safety test for gamma-irradiated AIV samples showed complete inactivation with gamma ray doses 30 and 35 kGy, without any multiplication on eggs after four blind cultures. According to the results of HA antigen assay and safety test, the gamma-irradiated and complete inactivated AIV subtype H9N2 is a good candidate as an inactivated immunogenic agent for poultry vaccination.

  9. Characterization of an H9N2 avian influenza virus from a Fringilla montifringilla brambling in northern China.

    PubMed

    Yuan, Jing; Xu, Lili; Bao, Linlin; Yao, Yanfeng; Deng, Wei; Li, Fengdi; Lv, Qi; Gu, Songzhi; Wei, Qiang; Qin, Chuan

    2015-02-01

    Avian H9N2 influenza viruses circulating in domestic poultry populations are occasionally transmitted to humans. We report the genomic characterization of an H9N2 avian influenza virus (A/Brambling/Beijing/16/2012) first isolated from a healthy Fringilla montifringilla brambling in northern China in 2012. Phylogenetic analyses revealed that this H9N2 virus belongs to the BJ/94-like sublineage. This virus had a low pathogenicity for chickens and was able to replicate at a low level in mouse lung tissue. Transmission studies in ferrets showed that this H9N2 strain shed high levels of the virus in nasal and throat swabs. In vitro receptor binding assays, the virus bound only to α-2,6 linkage receptors and not to the avian-type α-2,3 linkage receptors, suggesting that H9N2 influenza viruses present potential public health risks. Therefore, attention should be paid to H9N2 influenza viruses and the close surveillance of H9N2 viruses in poultry. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Low pathogenic avian influenza (H9N2) in chicken: Evaluation of an ancestral H9-MVA vaccine.

    PubMed

    Ducatez, Mariette F; Becker, Jens; Freudenstein, Astrid; Delverdier, Maxence; Delpont, Mattias; Sutter, Gerd; Guérin, Jean-Luc; Volz, Asisa

    2016-06-30

    Modified Vaccinia Ankara (MVA) has proven its efficacy as a recombinant vector vaccine for numerous pathogens including influenza virus. The present study aimed at evaluating a recombinant MVA candidate vaccine against low pathogenic avian influenza virus subtype H9N2 in the chicken model. As the high genetic and antigenic diversity of H9N2 viruses increases vaccine design complexity, one strategy to widen the range of vaccine coverage is to use an ancestor sequence. We therefore generated a recombinant MVA encoding for the gene sequence of an ancestral hemagglutinin H9 protein (a computationally derived amino acid sequence of the node of the H9N2 G1 lineage strains was obtained using the ANCESCON program). We analyzed the genetics and the growth properties of the MVA vector virus confirming suitability for use under biosafety level 1 and tested its efficacy when applied either as an intra-muscular (IM) or an oral vaccine in specific pathogen free chickens challenged with A/chicken/Tunisia/12/2010(H9N2). Two control groups were studied in parallel (unvaccinated and inoculated birds; unvaccinated and non-inoculated birds). IM vaccinated birds seroconverted as early as four days post vaccination and neutralizing antibodies were detected against A/chicken/Tunisia/12/2010(H9N2) in all the birds before challenge. The role of local mucosal immunity is unclear here as no antibodies were detected in eye drop or aerosol vaccinated birds. Clinical signs were not detected in any of the infected birds even in absence of vaccination. Virus replication was observed in both vaccinated and unvaccinated chickens, suggesting the MVA-ancestral H9 vaccine may not stop virus spread in the field. However vaccinated birds showed less histological damage, fewer influenza-positive cells and shorter virus shedding than their unvaccinated counterparts. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Inference and forecast of H7N9 influenza in China, 2013 to 2015.

    PubMed

    Li, Ruiyun; Bai, Yuqi; Heaney, Alex; Kandula, Sasikiran; Cai, Jun; Zhao, Xuyi; Xu, Bing; Shaman, Jeffrey

    2017-02-16

    The recent emergence of A(H7N9) avian influenza poses a significant challenge to public health in China and around the world; however, understanding of the transmission dynamics and progression of influenza A(H7N9) infection in domestic poultry, as well as spillover transmission to humans, remains limited. Here, we develop a mathematical model-Bayesian inference system which combines a simple epidemic model and data assimilation method, and use it in conjunction with data on observed human influenza A(H7N9) cases from 19 February 2013 to 19 September 2015 to estimate key epidemiological parameters and to forecast infection in both poultry and humans. Our findings indicate a high outbreak attack rate of 33% among poultry but a low rate of chicken-to-human spillover transmission. In addition, we generated accurate forecasts of the peak timing and magnitude of human influenza A(H7N9) cases. This work demonstrates that transmission dynamics within an avian reservoir can be estimated and that real-time forecast of spillover avian influenza in humans is possible. This article is copyright of The Authors, 2017.

  12. Detection of an Avian Lineage Influenza A(H7N2) Virus in Air and Surface Samples at a New York City Feline Quarantine Facility.

    PubMed

    Blachere, Francoise M; Lindsley, William G; Weber, Angela M; Beezhold, Donald H; Thewlis, Robert E; Mead, Kenneth R; Noti, John D

    2018-05-16

    In December 2016, an outbreak of low pathogenicity avian influenza (LPAI) A(H7N2) occurred in cats at a New York City animal shelter and quickly spread to other shelters in New York and Pennsylvania. The A(H7N2) virus also spread to an attending veterinarian. In response, 500 cats were transferred from these shelters to a temporary quarantine facility for continued monitoring and treatment. The objectives of this study was to assess the occupational risk of A(H7N2) exposure among emergency response workers at the feline quarantine facility. Aerosol and surface samples were collected from inside and outside the isolation zones of the quarantine facility. Samples were screened for A(H7N2) by quantitative RT-PCR and analyzed in embryonated chicken eggs for infectious virus. H7N2 virus was detected by RT-PCR in 28 of 29 aerosol samples collected in the high-risk isolation (hot) zone with 70.9% on particles with aerodynamic diameters >4 μm, 27.7% in 1-4 μm, and 1.4% in <1 μm. Seventeen of 22 surface samples from the high-risk isolation zone were also H7N2-positive with an average M1 copy number of 1.3 x 10 3 . Passage of aerosol and surface samples in eggs confirmed that infectious virus was present throughout the high-risk zones in the quarantine facility. By measuring particle size, distribution, and infectivity, our study suggests that the A(H7N2) virus had the potential to spread by airborne transmission and/or direct contact with viral-laden fomites. These results warranted continued A(H7N2) surveillance and transmission-based precautions during the treatment and care of infected cats. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. Construction of a recombinant duck enteritis virus vaccine expressing hemagglutinin of H9N2 avian influenza virus and evaluation of its efficacy in ducks.

    PubMed

    Sun, Ying; Yang, Chenghuai; Li, Junping; Li, Ling; Cao, Minghui; Li, Qihong; Li, Huijiao

    2017-01-01

    H9 subtype avian influenza viruses (AIVs) remain a significant burden in the poultry industry and are considered to be one of the most likely causes of any new influenza pandemic in humans. As ducks play an important role in the maintenance of H9 viruses in nature, successful control of the spread of H9 AIVs in ducks will have significant beneficial effects on public health. Duck enteritis virus (DEV) may be a promising candidate viral vector for aquatic poultry vaccination. In this study, we constructed a recombinant DEV, rDEV-∆UL2-HA, inserting the hemagglutinin (HA) gene from duck-origin H9N2 AIV into the UL2 gene by homologous recombination. One-step growth analyses showed that the HA gene insertion had no effect on viral replication and suggested that the UL2 gene was nonessential for virus growth in vitro. In vivo tests further showed that the insertion of the HA gene in place of the UL2 gene did not affect the immunogenicity of the virus. Moreover, a single dose of 10 3 TCID 50 of rDEV-∆UL2-HA induced solid protection against lethal DEV challenge and completely prevented H9N2 AIV viral shedding. To our knowledge, this is the first report of a DEV-vectored vaccine providing robust protection against both DEV and H9N2 AIV virus infections in ducks.

  14. Infectivity, transmission and pathogenicity of H5 highly pathogenic avian influenza clade 2.3.4.4 (H5N8 and H5N2) United States index viruses in Pekin ducks and Chinese geese.

    PubMed

    Pantin-Jackwood, Mary J; Costa-Hurtado, Mar; Bertran, Kateri; DeJesus, Eric; Smith, Diane; Swayne, David E

    2017-06-07

    In late 2014, a H5N8 highly pathogenic avian influenza (HPAI) virus, clade 2.3.4.4, spread by migratory waterfowl into North America reassorting with low pathogenicity AI viruses to produce a H5N2 HPAI virus. Since domestic waterfowl are common backyard poultry frequently in contact with wild waterfowl, the infectivity, transmissibility, and pathogenicity of the United States H5 HPAI index viruses (H5N8 and H5N2) was investigated in domestic ducks and geese. Ducks infected with the viruses had an increase in body temperature but no or mild clinical signs. Infected geese did not show increase in body temperature and most only had mild clinical signs; however, some geese presented severe neurological signs. Ducks became infected and transmitted the viruses to contacts when inoculated with high virus doses [(10 4 and 10 6 50% embryo infective dose (EID 50 )], but not with a lower dose (10 2 EID 50 ). Geese inoculated with the H5N8 virus became infected regardless of the virus dose given, and transmitted the virus to direct contacts. Only geese inoculated with the higher doses of the H5N2 and their contacts became infected, indicating differences in infectivity between the two viruses and the two waterfowl species. Geese shed higher titers of virus and for a longer period of time than ducks. In conclusion, the H5 HPAI viruses can infect domestic waterfowl and easily transmit to contact birds, with geese being more susceptible to infection and disease than ducks. The disease is mostly asymptomatic, but infected birds shed virus for several days representing a risk to other poultry species.

  15. Characteristics of atopic children with pandemic H1N1 influenza viral infection: pandemic H1N1 influenza reveals 'occult' asthma of childhood.

    PubMed

    Hasegawa, Shunji; Hirano, Reiji; Hashimoto, Kunio; Haneda, Yasuhiro; Shirabe, Komei; Ichiyama, Takashi

    2011-02-01

    The number of human cases of pandemic H1N1 influenza viral infection has increased in Japan since April 2009, as it has worldwide. This virus is widespread in the Yamaguchi prefecture in western Japan, where most infected children exhibited respiratory symptoms. Bronchial asthma is thought to be one of the risk factors that exacerbate respiratory symptoms of pandemic H1N1-infected patients, but the pathogenesis remains unclear. We retrospectively investigated the records of 33 children with pandemic H1N1 influenza viral infection who were admitted to our hospital between October and December 2009 and analyzed their clinical features. The percentage of children with asthma attack, with or without abnormal findings on chest radiographs (pneumonia, atelectasis, etc.), caused by pandemic H1N1 influenza infection was significantly higher than that of children with asthma attack and 2008-2009 seasonal influenza infection. Of the 33 children in our study, 22 (66.7%) experienced an asthma attack. Among these children, 20 (90.9%) did not receive long-term management for bronchial asthma, whereas 7 (31.8%) were not diagnosed with bronchial asthma and had experienced their first asthma attack. However, the severity of the attack did not correlate with the severity of the pulmonary complications of pandemic H1N1 influenza viral infection. The pandemic H1N1 influenza virus greatly increases the risk of lower respiratory tract complications such as asthma attack, pneumonia, and atelectasis, when compared to the seasonal influenza virus. Furthermore, our results suggest that pandemic H1N1 influenza viral infection can easily induce a severe asthma attack, pneumonia, and atelectasis in atopic children without any history of either an asthma attack or asthma treatment. © 2011 John Wiley & Sons A/S.

  16. Reassortment process after co-infection of pigs with avian H1N1 and swine H3N2 influenza viruses.

    PubMed

    Urbaniak, Kinga; Markowska-Daniel, Iwona; Kowalczyk, Andrzej; Kwit, Krzysztof; Pomorska-Mól, Małgorzata; Frącek, Barbara; Pejsak, Zygmunt

    2017-07-08

    The influenza A virus is highly variable, which, to some degree, is caused by the reassortment of viral genetic material. This process plays a major role in the generation of novel influenza virus strains that can emerge in a new host population. Due to the susceptibility of pigs to infections with avian, swine and human influenza viruses, they are considered intermediate hosts for the adaptation of the avian influenza virus to humans. In order to test the reassortment process in pigs, they were co-infected with H3N2 A/swine/Gent/172/2008 (Gent/08) and H1N1 A/duck/Italy/1447/2005 (Italy/05) and co-housed with a group of naïve piglets. The Gent/08 strains dominated over Italy/05, but reassortment occurred. The reassortant strains of the H1N1 subtype (12.5%) with one gene (NP or M) of swine-origin were identified in the nasal discharge of the contact-exposed piglets. These results demonstrate that despite their low efficiency, genotypically and phenotypically different influenza A viruses can undergo genetic exchange during co-infection of pigs.

  17. The role of live poultry movement and live bird market biosecurity in the epidemiology of influenza A (H7N9): A cross-sectional observational study in four eastern China provinces.

    PubMed

    Zhou, Xiaoyan; Li, Yin; Wang, Youming; Edwards, John; Guo, Fusheng; Clements, Archie C A; Huang, Baoxu; Magalhaes, Ricardo J Soares

    2015-10-01

    A new reassortant influenza A (H7N9) virus emerged early 2013 in eastern China. Exposure to H7N9 infected poultry at live bird markets (LBM) was implicated as the main risk factor for human infection. We aimed to identify the role of LBM biosecurity indicators and poultry movement in the affected areas. A cross-sectional survey was carried out in 24 LBMs at the beginning of H7N9 outbreak in all affected provinces. We used univariable analysis to identify the biosecurity factors associated with the H7N9 presence in LBMs and social network and spatial analysis to quantify the connectivity and geographic variation in the connectivity of poultry movements. Chickens were the predominant poultry species traded by affected LBMs. The presence of H7N9 in LBMs was significantly associated with the type of LBM and with LBMs that sold chicken to other markets. The chicken movements were significantly spatially clustered and was highest in counties from Jiangsu and Anhui provinces. LBM biosecurity and chicken movement played an important role in the emergence of H7N9. This study identified highly connected areas in eastern China which continue to report human infections highlighting candidate areas for more detailed epidemiological investigations. Copyright © 2015 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  18. Genetic evolution of low pathogenecity H9N2 Avian influenza viruses in Tunisia: acquisition of new mutations

    PubMed Central

    2011-01-01

    Background Since the end of 2009, H9N2 has emerged in Tunisia causing several epidemics in poultry industry resulting in major economic losses. To monitor variations of Influenza viruses during the outbreaks, Tunisian H9N2 virus isolates were identified and genetically characterized. Methods The genomic RNA segments of Tunisian H9N2 strains were subjected to RT-PCR amplifications followed by sequencing analysis. Results Phylogenetic analysis demonstrated that A/Ck/TUN/12/10 and A/Migratory Bird/TUN/51/10 viruses represent multiple reassortant lineages, with genes coming from Middle East strains, and share the common ancestor Qa/HK/G1/97 isolate which has contributed internal genes of H5N1 virus circulating in Asia. Some of the internal genes seemed to have undergone broad reassortments with other influenza subtypes. Deduced amino acid sequences of the hemagglutinin (HA) gene showed the presence of additional glycosylation site and Leu at position 234 indicating to binding preference to α (2, 6) sialic acid receptors, indicating their potential to directly infect humans. The Hemagglutinin cleavage site motif sequence is 333 PARSSR*GLF341 which indicates the low pathogenicity nature of the Tunisian H9N2 strains and the potential to acquire the basic amino acids required for the highly pathogenic strains. Their neuraminidase protein (NA) carried substitutions in the hemadsorption (HB) site, similar to those of other avian H9N2 viruses from Asia, Middle Eastern and human pandemic H2N2 and H3N2 that bind to α -2, 6 -linked receptors. Two avian virus-like aa at positions 661 (A) and 702 (K), similar to H5N1 strains, were identified in the polymerase (PB2) protein. Likewise, matrix (M) protein carried some substitutions which are linked with increasing replication in mammals. In addition, H9N2 strain recently circulating carried new polymorphism, "GSEV" PDZ ligand (PL) C-terminal motif in its non structural (NS) protein. Two new aa substitutions (I) and (V), that haven

  19. Avian influenza virus (H5N1); effects of physico-chemical factors on its survival

    PubMed Central

    Shahid, Muhammad Akbar; Abubakar, Muhammad; Hameed, Sajid; Hassan, Shamsul

    2009-01-01

    Present study was performed to determine the effects of physical and chemical agents on infective potential of highly pathogenic avian influenza (HPAI) H5N1 (local strain) virus recently isolated in Pakistan during 2006 outbreak. H5N1 virus having titer 108.3 ELD50/ml was mixed with sterilized peptone water to get final dilution of 4HA units and then exposed to physical (temperature, pH and ultraviolet light) and chemical (formalin, phenol crystals, iodine crystals, CID 20, virkon®-S, zeptin 10%, KEPCIDE 300, KEPCIDE 400, lifebuoy, surf excel and caustic soda) agents. Harvested amnio-allantoic fluid (AAF) from embryonated chicken eggs inoculated with H5N1 treated virus (0.2 ml/egg) was subjected to haemagglutination (HA) and haemagglutination inhibition (HI) tests. H5N1 virus lost infectivity after 30 min at 56°C, after 1 day at 28°C but remained viable for more than 100 days at 4°C. Acidic pH (1, 3) and basic pH (11, 13) were virucidal after 6 h contact time; however virus retained infectivity at pH 5 (18 h), 7 and 9 (more than 24 h). UV light was proved ineffectual in inactivating virus completely even after 60 min. Soap (lifebuoy®), detergent (surf excel®) and alkali (caustic soda) destroyed infectivity after 5 min at 0.1, 0.2 and 0.3% dilution. All commercially available disinfectants inactivated virus at recommended concentrations. Results of present study would be helpful in implementing bio-security measures at farms/hatcheries levels in the wake of avian influenza virus (AIV) outbreak. PMID:19327163

  20. Use of embryonated chicken egg as a model to study the susceptibility of avian influenza H9N2 viruses to oseltamivir carboxylate.

    PubMed

    Tare, Deeksha S; Pawar, Shailesh D

    2015-11-01

    Avian influenza (AI) H9N2 viruses are endemic in many bird species, and human infections of H9N2 viruses have been reported. Oseltamivir phosphate (Tamiflu(®)) is the available antiviral drug for the treatment and prophylaxis of influenza. There are no reports of use of embryonated chicken egg as a model to study susceptibility of AI viruses to oseltamivir carboxylate (OC), the active metabolite. The present study was undertaken to explore the use of embryonated chicken eggs as a model for testing OC against the AI H9N2 viruses. A total of three AI H9N2 viruses, isolated in poultry in India, were used. Various virus dilutions were tested against 14μg/ml of OC. Three methods, namely (1) the in vitro virus-drug treatment, (2) drug delivery and virus challenge by allantoic route, and (3) drug delivery by albumen route and virus challenge by allantoic route were explored. The viruses were also tested using the fluorescence-based neuraminidase inhibitor (NAI) assay. There was significant inhibition (p<0.05) of the H9N2 viruses in presence of OC. The infectious virus titers as well as hemagglutination titers were significantly lower in presence of OC as compared to controls. The in vitro treatment of virus and drug; and drug and virus delivery at the same time by allantoic route showed significantly higher inhibition (p<0.05) of virus growth than that by the albumen route. In the NAI assay, the half maximal inhibitory concentration (IC50) values of the H9N2 viruses were within the standard range for known susceptible reference virus. In conclusion, the H9N2 viruses used in the study were susceptible to OC. Embryonated chicken egg could be used as a model to study susceptibility of AI viruses to antiviral drugs. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Avian Influenza A(H5N1) Virus in Egypt.

    PubMed

    Kayali, Ghazi; Kandeil, Ahmed; El-Shesheny, Rabeh; Kayed, Ahmed S; Maatouq, Asmaa M; Cai, Zhipeng; McKenzie, Pamela P; Webby, Richard J; El Refaey, Samir; Kandeel, Amr; Ali, Mohamed A

    2016-03-01

    In Egypt, avian influenza A subtype H5N1 and H9N2 viruses are enzootic in poultry. The control plan devised by veterinary authorities in Egypt to prevent infections in poultry focused mainly on vaccination and ultimately failed. Recently, widespread H5N1 infections in poultry and a substantial increase in the number of human cases of H5N1 infection were observed. We summarize surveillance data from 2009 through 2014 and show that avian influenza viruses are established in poultry in Egypt and are continuously evolving genetically and antigenically. We also discuss the epidemiology of human infection with avian influenza in Egypt and describe how the true burden of disease is underestimated. We discuss the failures of relying on vaccinating poultry as the sole intervention tool. We conclude by highlighting the key components that need to be included in a new strategy to control avian influenza infections in poultry and humans in Egypt.

  2. Avian Influenza A(H5N1) Virus in Egypt

    PubMed Central

    Kandeil, Ahmed; El-Shesheny, Rabeh; Kayed, Ahmed S.; Maatouq, Asmaa M.; Cai, Zhipeng; McKenzie, Pamela P.; Webby, Richard J.; El Refaey, Samir; Kandeel, Amr; Ali, Mohamed A.

    2016-01-01

    In Egypt, avian influenza A subtype H5N1 and H9N2 viruses are enzootic in poultry. The control plan devised by veterinary authorities in Egypt to prevent infections in poultry focused mainly on vaccination and ultimately failed. Recently, widespread H5N1 infections in poultry and a substantial increase in the number of human cases of H5N1 infection were observed. We summarize surveillance data from 2009 through 2014 and show that avian influenza viruses are established in poultry in Egypt and are continuously evolving genetically and antigenically. We also discuss the epidemiology of human infection with avian influenza in Egypt and describe how the true burden of disease is underestimated. We discuss the failures of relying on vaccinating poultry as the sole intervention tool. We conclude by highlighting the key components that need to be included in a new strategy to control avian influenza infections in poultry and humans in Egypt. PMID:26886164

  3. In vivo prophylactic activity of QR-435 against H3N2 influenza virus infection.

    PubMed

    Oxford, John S; Lambkin, Robert; Guralnik, Mario; Rosenbloom, Richard A; Petteruti, Michael P; Digian, Kelly; LeFante, Carolyn

    2007-01-01

    Prophylaxis against influenza infection can take several forms, none of which is totally effective at preventing the spread of the disease. QR-435, an all-natural compound of green-tea extract and other agents, has been developed to protect against a range of viral infections, including the influenza subtype H3N2. Several different QR-435 formulations were tested against the two influenza A H3N2 viruses (A/Sydney/5/97 and A/Panama/2007/99) in the ferret model. Most experiments included negative (phosphate-buffered saline) and positive (oseltamivir 5 mg/kg, twice daily) controls. QR-435 and the control were administered 5 minutes after intranasal delivery of the virus as prophylaxis against infection resulting from exposure to infected but untreated ferrets and for prevention of transmission from infected and treated ferrets to untreated animals. Effects of QR-435 on seroconversion, virus shedding, and systemic sequelae of infection (weight loss, fever, reduced activity) were evaluated. QR-435 prevented transmission and provided prophylaxis against influenza virus H3N2. Prophylaxis with QR-435 was significantly more than with oseltamivir in these experiments. Optimal in vivo efficacy of QR-435 requires a horseradish concentration of at least 50% of that in the original formulation, and the benefits of this preparation appear to be dose dependent. QR-435 is effective for both prevention of H3N2 viral transmission and prophylaxis. These preclinical results warrant further evaluation of its prophylactic properties against avian influenza virus infection in humans.

  4. Genome-wide profiling of microRNAs reveals novel insights into the interactions between H9N2 avian influenza virus and avian dendritic cells.

    PubMed

    Lin, Jian; Xia, Jing; Zhang, Tian; Zhang, Keyun; Yang, Qian

    2018-05-10

    The antigen-presenting ability of dendritic cells (DCs) plays an important and irreplaceable role in recognising and clearing viruses. Antiviral responses must rapidly defend against infection while minimising inflammatory damage, but the mechanisms that regulate the magnitude of response within an infected cell are not well understood. MicroRNAs (microRNAs), small non-coding RNAs, can regulate mouse or avian DCs to inhibit the infection and replication of avian influenza virus (AIV). Here, we performed a global analysis to understand how avian DCs respond to H9N2 AIV and provide a potential mechanism to explain how avian microRNAs can defend against H9N2 AIV replication. First, we found that both active and inactive H9N2 AIV enhanced the ability of DCs to present antigens and activate T lymphocytes. Next, total microarray analyses suggested that H9N2 AIV stimulation involved protein localisation, nucleotide binding, leucocyte transendothelial migration and MAPK signalling. Moreover, we constructed 551 transcription factor (TF)-miRNA-mRNA loops based on the above analyses. Furthermore, we found that the haemagglutinin (HA) fragment, neither H5N1-HA or H9N2-HA, could not activate DCs, while truncated HA greatly increased the immune function of DCs by activating ERK and STAT3 signalling pathways. Lastly, our results not only suggested that gga-miR1644 targets muscleblind-like protein 2 (MBNL2) to enhance the ability of avian DCs to inhibit virus replication, but also suggested that gga-miR6675 targets the nuclear localisation sequence of polymerase basic protein 1 (PB1) to trigger the silencing of PB1 genes, resulting in the inhibition of H9N2 AIV replication. Altogether, our innovative study will shed new light on the role of avian microRNAs in evoking avian DCs and inhibiting virus replication.

  5. Intense circulation of A/H5N1 and other avian influenza viruses in Cambodian live-bird markets with serological evidence of sub-clinical human infections.

    PubMed

    Horm, Srey Viseth; Tarantola, Arnaud; Rith, Sareth; Ly, Sowath; Gambaretti, Juliette; Duong, Veasna; Y, Phalla; Sorn, San; Holl, Davun; Allal, Lotfi; Kalpravidh, Wantanee; Dussart, Philippe; Horwood, Paul F; Buchy, Philippe

    2016-07-20

    Surveillance for avian influenza viruses (AIVs) in poultry and environmental samples was conducted in four live-bird markets in Cambodia from January through November 2013. Through real-time RT-PCR testing, AIVs were detected in 45% of 1048 samples collected throughout the year. Detection rates ranged from 32% and 18% in duck and chicken swabs, respectively, to 75% in carcass wash water samples. Influenza A/H5N1 virus was detected in 79% of samples positive for influenza A virus and 35% of all samples collected. Sequence analysis of full-length haemagglutinin (HA) and neuraminidase (NA) genes from A/H5N1 viruses, and full-genome analysis of six representative isolates, revealed that the clade 1.1.2 reassortant virus associated with Cambodian human cases during 2013 was the only A/H5N1 virus detected during the year. However, multiplex reverse transcriptase-polymerase chain reaction (RT-PCR) analysis of HA and NA genes revealed co-circulation of at least nine low pathogenic AIVs from HA1, HA2, HA3, HA4, HA6, HA7, HA9, HA10 and HA11 subtypes. Four repeated serological surveys were conducted throughout the year in a cohort of 125 poultry workers. Serological testing found an overall prevalence of 4.5% and 1.8% for antibodies to A/H5N1 and A/H9N2, respectively. Seroconversion rates of 3.7 and 0.9 cases per 1000 person-months participation were detected for A/H5N1 and A/H9N2, respectively. Peak AIV circulation was associated with the Lunar New Year festival. Knowledge of periods of increased circulation of avian influenza in markets should inform intervention measures such as market cleaning and closures to reduce risk of human infections and emergence of novel AIVs.

  6. Acute kidney injury in critical ill patients affected by influenza A (H1N1) virus infection.

    PubMed

    Martin-Loeches, Ignacio; Papiol, Elisabeth; Rodríguez, Alejandro; Diaz, Emili; Zaragoza, Rafael; Granada, Rosa María; Socias, Lorenzo; Bonastre, Juan; Valverdú, Montserrat; Pozo, Juan Carlos; Luque, Pilar; Juliá-Narvaéz, Jose Antonio; Cordero, Lourdes; Albaya, Antonio; Serón, Daniel; Rello, Jordi

    2011-02-22

    Little information exists about the impact of acute kidney injury (AKI) in critically ill patients with the pandemic 2009 influenza A (H1N1) virus infection. We conducted a prospective, observational, multicenter study in 148 Spanish intensive care units (ICUs). Patients with chronic renal failure were excluded. AKI was defined according to Acute Kidney Injury Network (AKIN) criteria. A total of 661 patients were analyzed. One hundred eighteen (17.7%) patients developed AKI; of these, 37 (31.4%) of the patients with AKI were classified as AKI I, 15 (12.7%) were classified as AKI II and 66 (55.9%) were classified as AKI III, among the latter of whom 50 (75.7%) required continuous renal replacement therapy. Patients with AKI had a higher Acute Physiology and Chronic Health Evaluation II score (19.2 ± 8.3 versus 12.6 ± 5.9; P < 0.001), a higher Sequential Organ Failure Assessment score (8.7 ± 4.2 versus 4.8 ± 2.9; P < 0.001), more need for mechanical ventilation (MV) (87.3% versus 56.2%; P < 0.01, odds ratio (OR) 5.3, 95% confidence interval (CI) 3.0 to 9.4), a greater incidence of shock (75.4% versus 38.3%; P < 0.01, OR 4.9, 95% CI, 3.1 to 7.7), a greater incidence of multiorgan dysfunction syndrome (92.4% versus 54.7%; P < 0.01, OR 10.0, 95% CI, 4.9 to 20.21) and a greater incidence of coinfection (23.7% versus 14.4%; P < 0.01, OR 1.8, 95% CI, 1.1 to 3.0). In survivors, patients with AKI remained on MV longer and ICU and hospital length of stay were longer than in patients without AKI. The overall mortality was 18.8% and was significantly higher for AKI patients (44.1% versus 13.3%; P < 0.01, OR 5.1, 95% CI, 3.3 to 7.9). Logistic regression analysis was performed with AKIN criteria, and it demonstrated that among patients with AKI, only AKI III was independently associated with higher ICU mortality (P < 0.001, OR 4.81, 95% CI 2.17 to 10.62). In our cohort of patients with H1N1 virus infection, only those cases in the AKI III category were independently

  7. Investigation of antiviral state mediated by interferon-inducible transmembrane protein 1 induced by H9N2 virus and inactivated viral particle in human endothelial cells.

    PubMed

    Feng, Bo; Zhao, Lihong; Wang, Wei; Wang, Jianfang; Wang, Hongyan; Duan, Huiqin; Zhang, Jianjun; Qiao, Jian

    2017-11-03

    Endothelial cells are believed to play an important role in response to virus infection. Our previous microarray analysis showed that H9N2 virus infection and inactivated viral particle inoculation increased the expression of interferon-inducible transmembrane protein 1 (IFITM1) in human umbilical vein endothelial cells (HUVECs). In present study, we deeply investigated the expression patterns of IFITM1 and IFITM1-mediated antiviral response induced by H9N2 virus infection and inactivated viral particle inoculation in HUVECs. Epithelial cells that are considered target cells of the influenza virus were selected as a reference control. First, we quantified the expression levels of IFITM1 in HUVECs induced by H9N2 virus infection or viral particle inoculation using quantitative real-time PCR and western blot. Second, we observed whether hemagglutinin or neuraminidase affected IFITM1 expression in HUVECs. Finally, we investigated the effect of induced-IFITM1 on the antiviral state in HUVECs by siRNA and activation plasmid transfection. Both H9N2 virus infection and viral particle inoculation increased the expression of IFITM1 without elevating the levels of interferon-ɑ/β in HUVECs. HA or NA protein binding alone is not sufficient to increase the levels of IFITM1 and interferon-ɑ/β in HUVECs. IFITM1 induced by viral particle inoculation significantly decreased the virus titers in culture supernatants of HUVECs. Our results showed that inactivated viral particle inoculation increased the expression of IFITM1 at mRNA and protein levels. Moreover, the induction of IFITM1 expression mediated the antiviral state in HUVECs.

  8. N-glycan profiles in H9N2 avian influenza viruses from chicken eggs and human embryonic lung fibroblast cells.

    PubMed

    Chen, Wentian; Zhong, Yaogang; Su, Rui; Qi, Huicai; Deng, Weina; Sun, Yu; Ma, Tianran; Wang, Xilong; Yu, Hanjie; Wang, Xiurong; Li, Zheng

    2017-11-01

    N-glycosylation can affect the host specificity, virulence and infectivity of influenza A viruses (IAVs). In this study, the distribution and evolution of N-glycosylation sites in the hemagglutinin (HA) and neuraminidase (NA) of H9N2 virus were explored using phylogenetic analysis. Then, one strain of the H9N2 subtypes was proliferated in the embryonated chicken eggs (ECE) and human embryonic lung fibroblast cells (MRC-5) system. The proliferated viral N-glycan profiles were analyzed by a glycomic method that combined the lectin microarray and MALDI-TOF/TOF-MS. As a result, HA and NA of H9N2 viruses prossess six and five highly conserved N-glycosylation sites, respectively. Sixteen lectins (e.g., MAL-II, SNA and UEA-I) had increased expression levels of the glycan structures in the MRC-5 compared with the ECE system; however, 6 lectins (e.g., PHA-E, PSA and DSA) had contrasting results. Eleven glycans from the ECE system and 13 glycans from the MRC-5 system were identified. Our results showed that the Fucα-1,6GlcNAc(core fucose) structure was increased, and pentaantennary N-glycans were only observed in the ECE system. The SAα2-3/6Gal structures were highly expressed and Fucα1-2Galβ1-4GlcNAc structures were only observed in the MRC-5 system. We conclude that the existing SAα2-3/6Gal sialoglycans make the offspring of the H9N2 virus prefer entially attach to each other, which decreases the virulence. Alterations in the glycosylation sites for the evolution and role of IAVs have been widely described; however, little is known about the exact glycan structures for the same influenza strain from different hosts. Our findings may provide a novel way for further discussing the molecular mechanism of the viral transmission and virulence associated with viral glycosylation in avian and human hosts as well as vital information for designing a vaccine against influenza and other human viruses. Copyright © 2017. Published by Elsevier B.V.

  9. A novel method for detection of H9N2 influenza viruses by an aptamer-real time-PCR.

    PubMed

    Hmila, Issam; Wongphatcharachai, Manoosak; Laamiri, Nacira; Aouini, Rim; Marnissi, Boutheina; Arbi, Marwa; Sreevatsan, Srinand; Ghram, Abdeljelil

    2017-05-01

    H9N2 Influenza subtype has emerged in Tunisia causing epidemics in poultry and resulting in major economic losses. New mutations in their hemagglutinin and neuraminidase proteins were acquired, suggesting their potential to directly infect humans. Effective surveillance tools should be implemented to help prevent potential spillover of the virus across species. We have developed a highly sensitive real time immuno-polymerase chain reaction (RT-I-PCR) method for detecting H9N2 virus. The assay applies aptamers as ligands to capture and detect the virus. First, a panel of specific ssDNA aptamers was selected via a one step high stringency protocol. Next, the panel of selected aptamers was characterized for their affinities and their specificity to H9N2 virus. The aptamer showing the highest binding affinity to the virus was used as ligand to develop a highly sensitive sandwich Aptamer I-PCR. A 3-log increase in analytical sensitivity was achieved as compared to a routinely used ELISA antigen test, highlighting the potential of this approach to detect very low levels of virus particles. The test was validated using clinical samples and constitutes a rapid and a label-free platform, opening a new venue for the development of aptamer -based viability sensing for a variety of microorganisms of economic importance in Tunisia and surrounding regions. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Reassortant Avian Influenza A(H5N1) Viruses with H9N2-PB1 Gene in Poultry, Bangladesh

    PubMed Central

    Yamage, Mat; Dauphin, Gwenaëlle; Claes, Filip; Ahmed, Garba; Giasuddin, Mohammed; Salviato, Annalisa; Ormelli, Silvia; Bonfante, Francesco; Schivo, Alessia; Cattoli, Giovanni

    2013-01-01

    Bangladesh has reported a high number of outbreaks of highly pathogenic avian influenza (HPAI) (H5N1) in poultry. We identified a natural reassortant HPAI (H5N1) virus containing a H9N2-PB1 gene in poultry in Bangladesh. Our findings highlight the risks for prolonged co-circulation of avian influenza viruses and the need to monitor their evolution. PMID:24047513

  11. Characterization of Clade 7.2 H5 Avian Influenza Viruses That Continue To Circulate in Chickens in China

    PubMed Central

    Liu, Liling; Zeng, Xianying; Chen, Pucheng; Deng, Guohua; Li, Yanbing; Shi, Jianzhong; Gu, Chunyang; Kong, Huihui; Suzuki, Yasuo; Jiang, Yongping; Tian, Guobin

    2016-01-01

    ABSTRACT The H5N1 avian influenza viruses emerged in Southeast Asia in the late 20th century and have evolved into multiple phylogenetic clades based on their hemagglutinin (HA)-encoding genes. The clade 7.2 viruses were first detected in chickens in northern China in 2006, and vaccines specifically targeted to the clade were developed and have been used in poultry in China since 2006. During routine surveillance and disease diagnosis, we isolated seven H5 viruses between 2011 and 2014 that bear the clade 7.2 HA genes. Here, we performed extensive studies to understand how the clade 7.2 H5 viruses have evolved in chickens in China. Full genome sequence analysis revealed that the seven viruses formed two subtypes (four H5N1 viruses and three H5N2 viruses) and four genotypes by deriving genes from other influenza viruses. All of the viruses had antigenically drifted from the clade 7.2 viruses that were isolated in 2006. Pathogenicity studies of four viruses, one from each genotype, revealed that all of the viruses are highly pathogenic in chickens, but none of them could replicate in ducks. The four viruses exclusively bound to avian-type receptors and replicated only in the turbinates and/or lungs of mice; none of them were lethal to mice at a dosage of 106 50% egg infective doses (EID50). Our study indicates that although the clade 7.2 viruses have not been eradicated from poultry through vaccination, they have not become more dangerous to other animals (e.g., ducks and mice) and humans. IMPORTANCE Animal influenza viruses can acquire the ability to infect and kill humans. The H5N1 viruses have been a concern in recent decades because of their clear pandemic potential. We sorted H5N1 influenza viruses into different phylogenetic clades based on their HA genes. The clade 7.2 viruses were detected in chickens in several provinces of northern China in 2006. Vaccines for these viruses were subsequently developed and have been used ever since to control infection of

  12. Characterization of Clade 7.2 H5 Avian Influenza Viruses That Continue To Circulate in Chickens in China.

    PubMed

    Liu, Liling; Zeng, Xianying; Chen, Pucheng; Deng, Guohua; Li, Yanbing; Shi, Jianzhong; Gu, Chunyang; Kong, Huihui; Suzuki, Yasuo; Jiang, Yongping; Tian, Guobin; Chen, Hualan

    2016-11-01

    The H5N1 avian influenza viruses emerged in Southeast Asia in the late 20th century and have evolved into multiple phylogenetic clades based on their hemagglutinin (HA)-encoding genes. The clade 7.2 viruses were first detected in chickens in northern China in 2006, and vaccines specifically targeted to the clade were developed and have been used in poultry in China since 2006. During routine surveillance and disease diagnosis, we isolated seven H5 viruses between 2011 and 2014 that bear the clade 7.2 HA genes. Here, we performed extensive studies to understand how the clade 7.2 H5 viruses have evolved in chickens in China. Full genome sequence analysis revealed that the seven viruses formed two subtypes (four H5N1 viruses and three H5N2 viruses) and four genotypes by deriving genes from other influenza viruses. All of the viruses had antigenically drifted from the clade 7.2 viruses that were isolated in 2006. Pathogenicity studies of four viruses, one from each genotype, revealed that all of the viruses are highly pathogenic in chickens, but none of them could replicate in ducks. The four viruses exclusively bound to avian-type receptors and replicated only in the turbinates and/or lungs of mice; none of them were lethal to mice at a dosage of 10 6 50% egg infective doses (EID 50 ). Our study indicates that although the clade 7.2 viruses have not been eradicated from poultry through vaccination, they have not become more dangerous to other animals (e.g., ducks and mice) and humans. Animal influenza viruses can acquire the ability to infect and kill humans. The H5N1 viruses have been a concern in recent decades because of their clear pandemic potential. We sorted H5N1 influenza viruses into different phylogenetic clades based on their HA genes. The clade 7.2 viruses were detected in chickens in several provinces of northern China in 2006. Vaccines for these viruses were subsequently developed and have been used ever since to control infection of poultry. Here, we

  13. Emergence and evolution of H10 subtype influenza viruses in poultry in China.

    PubMed

    Ma, Chi; Lam, Tommy Tsan-Yuk; Chai, Yujuan; Wang, Jia; Fan, Xiaohui; Hong, Wenshan; Zhang, Yu; Li, Lifeng; Liu, Yongmei; Smith, David K; Webby, Richard J; Peiris, Joseph S M; Zhu, Huachen; Guan, Yi

    2015-04-01

    The cases of human infections with H10N8 viruses identified in late 2013 and early 2014 in Jiangxi, China, have raised concerns over the origin, prevalence, and development of these viruses in this region. Our long-term influenza surveillance of poultry and migratory birds in southern China in the past 12 years showed that H10 influenza viruses have been introduced from migratory to domestic ducks over several winter seasons at sentinel duck farms at Poyang Lake, where domestic ducks share their water body with overwintering migratory birds. H10 viruses were never detected in terrestrial poultry in our survey areas until August 2013, when they were identified at live-poultry markets in Jiangxi. Since then, we have isolated 124 H10N8 or H10N6 viruses from chickens at local markets, revealing an ongoing outbreak. Phylogenetic analysis of H10 and related viruses showed that the chicken H10N8 viruses were generated through multiple reassortments between H10 and N8 viruses from domestic ducks and the enzootic chicken H9N2 viruses. These chicken reassortant viruses were highly similar to the human isolate, indicating that market chickens were the source of human infection. Recently, the H10 viruses further reassorted, apparently with H5N6 viruses, and generated an H10N6 variant. The emergence and prevalence of H10 viruses in chickens and the occurrence of human infections provide direct evidence of the threat from the current influenza ecosystem in China. After the outbreak of avian-origin H7N9 influenza viruses in China, fatal human infections with a novel H10N8 virus were reported. Utilizing data from 12 years of influenza surveillance in southern China, we showed that H10 viruses were regularly introduced by migratory ducks to domestic ducks on Poyang Lake, a major aggregative site of migratory birds in Asia. The H10 viruses were maintained and amplified in domestic ducks and then transmitted to chickens and reassorted with enzootic H9N2 viruses, leading to an

  14. The NS segment of H5N1 avian influenza viruses (AIV) enhances the virulence of an H7N1 AIV in chickens.

    PubMed

    Vergara-Alert, Júlia; Busquets, Núria; Ballester, Maria; Chaves, Aida J; Rivas, Raquel; Dolz, Roser; Wang, Zhongfang; Pleschka, Stephan; Majó, Natàlia; Rodríguez, Fernando; Darji, Ayub

    2014-01-25

    Some outbreaks involving highly pathogenic avian influenza viruses (HPAIV) of subtypes H5 and H7 were caused by avian-to-human transmissions. In nature, different influenza A viruses can reassort leading to new viruses with new characteristics. We decided to investigate the impact that the NS-segment of H5 HPAIV would have on viral pathogenicity of a classical avian H7 HPAIV in poultry, a natural host. We focussed this study based on our previous work that demonstrated that single reassortment of the NS-segment from an H5 HPAIV into an H7 HPAIV changes the ability of the virus to replicate in mammalian hosts. Our present data show that two different H7-viruses containing an NS-segment from H5-types (FPV NS GD or FPV NS VN) show an overall highly pathogenic phenotype compared with the wild type H7-virus (FPV), as characterized by higher viral shedding and earlier manifestation of clinical signs. Correlating with the latter, higher amounts of IFN-β mRNA were detected in the blood of NS-reassortant infected birds, 48 h post-infection (pi). Although lymphopenia was detected in chickens from all AIV-infected groups, also 48 h pi those animals challenged with NS-reassortant viruses showed an increase of peripheral monocyte/macrophage-like cells expressing high levels of IL-1β, as determined by flow cytometry. Taken together, these findings highlight the importance of the NS-segment in viral pathogenicity which is directly involved in triggering antiviral and pro-inflammatory cytokines found during HPAIV pathogenesis in chickens.

  15. Experimental infection of clade 1.1.2 (H5N1), clade 2.3.2.1c (H5N1) and clade 2.3.4.4 (H5N6) highly pathogenic avian influenza viruses in dogs.

    PubMed

    Lyoo, K S; Na, W; Phan, L V; Yoon, S W; Yeom, M; Song, D; Jeong, D G

    2017-12-01

    Since the emergence of highly pathogenic avian influenza (HPAI) H5N1 in Asia, the haemagglutinin (HA) gene of this virus lineage has continued to evolve in avian populations, and H5N1 lineage viruses now circulate concurrently worldwide. Dogs may act as an intermediate host, increasing the potential for zoonotic transmission of influenza viruses. Virus transmission and pathologic changes in HPAI clade 1.1.2 (H5N1)-, 2.3.2.1c (H5N1)- and 2.3.4.4 (H5N6)-infected dogs were investigated. Mild respiratory signs and antibody response were shown in dogs intranasally infected with the viruses. Lung histopathology showed lesions that were associated with moderate interstitial pneumonia in the infected dogs. In this study, HPAI H5N6 virus replication in dogs was demonstrated for the first time. Dogs have been suspected as a "mixing vessel" for reassortments between avian and human influenza viruses to occur. The replication of these three subtypes of the H5 lineage of HPAI viruses in dogs suggests that dogs could serve as intermediate hosts for avian-human influenza virus reassortment if they are also co-infected with human influenza viruses. © 2017 Blackwell Verlag GmbH.

  16. Characterization of the 2012 Highly Pathogenic Avian Influenza H7N3 Virus Isolated from Poultry in an Outbreak in Mexico: Pathobiology and Vaccine Protection

    PubMed Central

    Pantin-Jackwood, Mary; Guzman, Sofia G.; Ricardez, Yadira; Spackman, Erica; Bertran, Kateri; Suarez, David L.; Swayne, David E.

    2013-01-01

    In June of 2012, an H7N3 highly pathogenic avian influenza (HPAI) virus was identified as the cause of a severe disease outbreak in commercial laying chicken farms in Mexico. The purpose of this study was to characterize the Mexican 2012 H7N3 HPAI virus (A/chicken/Jalisco/CPA1/2012) and determine the protection against the virus conferred by different H7 inactivated vaccines in chickens. Both adult and young chickens intranasally inoculated with the virus became infected and died at between 2 and 4 days postinoculation (p.i.). High virus titers and viral replication in many tissues were demonstrated at 2 days p.i. in infected birds. The virus from Jalisco, Mexico, had high sequence similarity of greater than 97% to the sequences of wild bird viruses from North America in all eight gene segments. The hemagglutinin gene of the virus contained a 24-nucleotide insert at the hemagglutinin cleavage site which had 100% sequence identity to chicken 28S rRNA, suggesting that the insert was the result of nonhomologous recombination with the host genome. For vaccine protection studies, both U.S. H7 low-pathogenic avian influenza (LPAI) viruses and a 2006 Mexican H7 LPAI virus were tested as antigens in experimental oil emulsion vaccines and injected into chickens 3 weeks prior to challenge. All H7 vaccines tested provided ≥90% protection against clinical disease after challenge and decreased the number of birds shedding virus and the titers of virus shed. This study demonstrates the pathological consequences of the infection of chickens with the 2012 Mexican lineage H7N3 HPAI virus and provides support for effective programs of vaccination against this virus in poultry. PMID:23760232

  17. Characterization of the 2012 highly pathogenic avian influenza H7N3 virus isolated from poultry in an outbreak in Mexico: pathobiology and vaccine protection.

    PubMed

    Kapczynski, Darrell R; Pantin-Jackwood, Mary; Guzman, Sofia G; Ricardez, Yadira; Spackman, Erica; Bertran, Kateri; Suarez, David L; Swayne, David E

    2013-08-01

    In June of 2012, an H7N3 highly pathogenic avian influenza (HPAI) virus was identified as the cause of a severe disease outbreak in commercial laying chicken farms in Mexico. The purpose of this study was to characterize the Mexican 2012 H7N3 HPAI virus (A/chicken/Jalisco/CPA1/2012) and determine the protection against the virus conferred by different H7 inactivated vaccines in chickens. Both adult and young chickens intranasally inoculated with the virus became infected and died at between 2 and 4 days postinoculation (p.i.). High virus titers and viral replication in many tissues were demonstrated at 2 days p.i. in infected birds. The virus from Jalisco, Mexico, had high sequence similarity of greater than 97% to the sequences of wild bird viruses from North America in all eight gene segments. The hemagglutinin gene of the virus contained a 24-nucleotide insert at the hemagglutinin cleavage site which had 100% sequence identity to chicken 28S rRNA, suggesting that the insert was the result of nonhomologous recombination with the host genome. For vaccine protection studies, both U.S. H7 low-pathogenic avian influenza (LPAI) viruses and a 2006 Mexican H7 LPAI virus were tested as antigens in experimental oil emulsion vaccines and injected into chickens 3 weeks prior to challenge. All H7 vaccines tested provided ≥90% protection against clinical disease after challenge and decreased the number of birds shedding virus and the titers of virus shed. This study demonstrates the pathological consequences of the infection of chickens with the 2012 Mexican lineage H7N3 HPAI virus and provides support for effective programs of vaccination against this virus in poultry.

  18. Respiratory transmission of an avian H3N8 influenza virus isolated from a harbour seal

    USGS Publications Warehouse

    Karlsson, Erik A.; Ip, Hon S.; Hall, Jeffrey S.; Yoon, Sun W.; Johnson, Jordan; Beck, Melinda A.; Webby, Richard J.; Schultz-Cherry, Stacey

    2014-01-01

    The ongoing human H7N9 influenza infections highlight the threat of emerging avian influenza viruses. In 2011, an avian H3N8 influenza virus isolated from moribund New England harbour seals was shown to have naturally acquired mutations known to increase the transmissibility of highly pathogenic H5N1 influenza viruses. To elucidate the potential human health threat, here we evaluate a panel of avian H3N8 viruses and find that the harbour seal virus displays increased affinity for mammalian receptors, transmits via respiratory droplets in ferrets and replicates in human lung cells. Analysis of a panel of human sera for H3N8 neutralizing antibodies suggests that there is no population-wide immunity to these viruses. The prevalence of H3N8 viruses in birds and multiple mammalian species including recent isolations from pigs and evidence that it was a past human pandemic virus make the need for surveillance and risk analysis of these viruses of public health importance.

  19. Co-infection of classic swine H1N1 influenza virus in pigs persistently infected with porcine rubulavirus.

    PubMed

    Rivera-Benitez, José Francisco; De la Luz-Armendáriz, Jazmín; Saavedra-Montañez, Manuel; Jasso-Escutia, Miguel Ángel; Sánchez-Betancourt, Ivan; Pérez-Torres, Armando; Reyes-Leyva, Julio; Hernández, Jesús; Martínez-Lara, Atalo; Ramírez-Mendoza, Humberto

    2016-02-29

    Porcine rubulavirus (PorPV) and swine influenza virus infection causes respiratory disease in pigs. PorPV persistent infection could facilitate the establishment of secondary infections. The aim of this study was to analyse the pathogenicity of classic swine H1N1 influenza virus (swH1N1) in growing pigs persistently infected with porcine rubulavirus. Conventional six-week-old pigs were intranasally inoculated with PorPV, swH1N1, or PorPV/swH1N1. A mock-infected group was included. The co-infection with swH1N1 was at 44 days post-infection (DPI), right after clinical signs of PorPV infection had stopped. The pigs of the co-infection group presented an increase of clinical signs compared to the simple infection groups. In all infected groups, the most recurrent lung lesion was hyperplasia of the bronchiolar-associated lymphoid tissue and interstitial pneumonia. By means of immunohistochemical evaluation it was possible to demonstrate the presence of the two viral agents infecting simultaneously the bronchiolar epithelium. Viral excretion of PorPV in nasal and oral fluid was recorded at 28 and 52 DPI, respectively. PorPV persisted in several samples from respiratory tissues (RT), secondary lymphoid organs (SLO), and bronchoalveolar lavage fluid (BALF). For swH1N1, the viral excretion in nasal fluids was significantly higher in single-infected swH1N1 pigs than in the co-infected group. However, the co-infection group exhibited an increase in the presence of swH1N1 in RT, SLO, and BALF at two days after co-infection. In conclusion, the results obtained confirm an increase in the clinical signs of infection, and PorPV was observed to impact the spread of swH1N1 in analysed tissues in the early stage of co-infection, although viral shedding was not enhanced. In the present study, the interaction of swH1N1 infection is demonstrated in pigs persistently infected with PorPV. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Human infection with a novel, highly pathogenic avian influenza A (H5N6) virus: Virological and clinical findings.

    PubMed

    Pan, Ming; Gao, Rongbao; Lv, Qiang; Huang, Shunhe; Zhou, Zhonghui; Yang, Lei; Li, Xiaodan; Zhao, Xiang; Zou, Xiaohui; Tong, Wenbin; Mao, Suling; Zou, Shumei; Bo, Hong; Zhu, Xiaoping; Liu, Lei; Yuan, Heng; Zhang, Minghong; Wang, Daqing; Li, Zumao; Zhao, Wei; Ma, Maoli; Li, Yaqiang; Li, Tianshu; Yang, Huiping; Xu, Jianan; Zhou, Lijun; Zhou, Xingyu; Tang, Wei; Song, Ying; Chen, Tao; Bai, Tian; Zhou, Jianfang; Wang, Dayan; Wu, Guizhen; Li, Dexin; Feng, Zijian; Gao, George F; Wang, Yu; He, Shusen; Shu, Yuelong

    2016-01-01

    Severe infection with avian influenza A (H5N6) virus in humans was identified first in 2014 in China. Before that, it was unknown or unclear if the disease or the pathogen affected people. This study illustrates the virological and clinical findings of a fatal H5N6 virus infection in a human patient. We obtained and analyzed the clinical, epidemiological, and virological data from the patient. Reverse transcription polymerase chain reaction (RT-PCR), viral culture, and sequencing were conducted for determination of the causative pathogen. The patient, who presented with fever, severe pneumonia, leucopenia, and lymphopenia, developed septic shock and acute respiratory distress syndrome (ARDS), and died on day 10 after illness onset. A novel reassortant avian-origin influenza A (H5N6) virus was isolated from the throat swab or trachea aspirate of the patient. The virus was reassorted with the HA gene of clade 2.3.4.4 H5, the internal genes of clade 2.3.2.1 H5, and the NA gene of the H6N6 avian virus. The cleavage site of the HA gene contained multiple basic amino acids, indicating that the novel H5N6 virus was highly pathogenic in chicken. A novel, highly pathogenic avian influenza H5N6 virus with a backbone of H5N1 virus acquired from the NA gene from the H6N6 virus has been identified. It caused human infection resulting in severe respiratory disease. Copyright © 2015 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  1. The mRNA and Proteins Expression Levels Analysis of TC-1 Cells Immune Response to H9N2 Avian Influenza Virus.

    PubMed

    Liu, Jiyuan; Li, Ning; Meng, Dan; Hao, Mengchan; Wei, Liangmeng; Chai, Tongjie

    2016-01-01

    Since 1994, the H9N2 avian influenza virus (AIV) has spread widely in mainland China, causing great economic losses to the poultry industry there. Subsequently, it was found that the H9N2 AIV had the ability to infect mammals, which gave rise to great panic. In order to investigate the immune response of a host infected with H9N2 AIV, TC-1 cells were set as a model in this research. Quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay methods were used to study the expression changes of pattern recognition receptors (PRRs), inflammatory cytokines, and chemokines in AIV-infected TC-1 cells. Our research found that TC-1 cells had similar susceptibility to both CK/SD/w3 (A/Chicken/Shandong/W3/2012) and CK/SD/w4 (A/Chicken/Shandong/W4/2012) H9N2 isolates, while the CK/SD/w3 isolate had a stronger capability of replication in the TC-1 cells. At the same time, the expression of PRRs (melanoma differentiation-associated gene 5, MDA-5), cytokines [interleukin (IL)-1β and IL-6], and chemokines [regulated on activation, normal T cell expressed and secreted (RANTES) and interferon-γ-induced protein-10 kDa (IP-10)] were significantly up-regulated. These results indicated that MDA-5, IL-1β, IL-6, RANTES, and IP-10 might play important roles in the host immune response to H9N2 AIV infection. This study provided useful information for further understanding the interaction between H9N2 virus infection and host immunity, and had certain guiding significance for the prevention and treatment of this disease.

  2. Fatal H5N6 Avian Influenza Virus Infection in a Domestic Cat and Wild Birds in China.

    PubMed

    Yu, Zhijun; Gao, Xiaolong; Wang, Tiecheng; Li, Yanbing; Li, Yongcheng; Xu, Yu; Chu, Dong; Sun, Heting; Wu, Changjiang; Li, Shengnan; Wang, Haijun; Li, Yuanguo; Xia, Zhiping; Lin, Weishi; Qian, Jun; Chen, Hualan; Xia, Xianzhu; Gao, Yuwei

    2015-06-02

    H5N6 avian influenza viruses (AIVs) may pose a potential human risk as suggested by the first documented naturally-acquired human H5N6 virus infection in 2014. Here, we report the first cases of fatal H5N6 avian influenza virus (AIV) infection in a domestic cat and wild birds. These cases followed human H5N6 infections in China and preceded an H5N6 outbreak in chickens. The extensive migration routes of wild birds may contribute to the geographic spread of H5N6 AIVs and pose a risk to humans and susceptible domesticated animals, and the H5N6 AIVs may spread from southern China to northern China by wild birds. Additional surveillance is required to better understand the threat of zoonotic transmission of AIVs.

  3. Influenza virus-like particles harboring H9N2 HA and NA proteins induce a protective immune response in chicken.

    PubMed

    Li, Xin; Ju, Houbin; Liu, Jian; Yang, Dequan; Qi, Xinyong; Yang, Xianchao; Qiu, Yafeng; Zheng, Jie; Ge, Feifei; Zhou, Jinping

    2017-11-01

    Avian influenza viruses represent a growing threat of an influenza pandemic. The co-circulation of multiple H9N2 genotypes over the past decade has been replaced by one predominant genotype-G57 genotype, which displays a changed antigenicity and improved adaptability in chickens. Effective H9N2 subtype avian influenza virus vaccines for poultry are urgently needed. In this study, we constructed H9N2 subtype avian influenza virus-like particle (VLP) and evaluated its protective efficacy in specific pathogen-free (SPF) chickens to lay the foundation for developing an effective vaccine against influenza viruses. Expression of influenza proteins in VLPs was confirmed by Western blot, hemagglutination inhibition (HI), and neuraminidase inhibition (NI). The morphology was observed by electron microscopy. A group of 15 three-week-old SPF chickens was divided into three subgroups of five chickens immunized with VLP, commercial vaccine, and PBS. Challenge study was performed to evaluate efficacy of VLP vaccine. The hemagglutinin (HA) and neuraminidase (NA) proteins were co-expressed in the infected cells, self-assembled, and were released into the culture medium in the form of VLPs of diameter ~80 nm. The VLPs exhibited some functional characteristics of a full influenza virus, including hemagglutination and neuraminidase activity. In SPF chickens, the VLPs elicited serum antibodies specific for H9N2 and induced a higher HI titer (as detected by a homologous antigen) than did a commercial H9N2 vaccine (A/chicken/Shanghai/F/1998). Viral shedding from VLP vaccine subgroup was reduced compared with commercial vaccine subgroup and control subgroup. © 2017 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  4. Highly pathogenic avian influenza virus (H5N1) in experimentally infected adult mute swans.

    PubMed

    Kalthoff, Donata; Breithaupt, Angele; Teifke, Jens P; Globig, Anja; Harder, Timm; Mettenleiter, Thomas C; Beer, Martin

    2008-08-01

    Adult, healthy mute swans were experimentally infected with highly pathogenic avian influenza virus A/Cygnus cygnus/Germany/R65/2006 subtype H5N1. Immunologically naive birds died, whereas animals with preexisting, naturally acquired avian influenza virus-specific antibodies became infected asymptomatically and shed virus. Adult mute swans are highly susceptible, excrete virus, and can be clinically protected by preexposure immunity.

  5. A Novel A(H7N2) Influenza Virus Isolated from a Veterinarian Caring for Cats in a New York City Animal Shelter Causes Mild Disease and Transmits Poorly in the Ferret Model.

    PubMed

    Belser, Jessica A; Pulit-Penaloza, Joanna A; Sun, Xiangjie; Brock, Nicole; Pappas, Claudia; Creager, Hannah M; Zeng, Hui; Tumpey, Terrence M; Maines, Taronna R

    2017-08-01

    In December 2016, a low-pathogenic avian influenza (LPAI) A(H7N2) virus was identified to be the causative source of an outbreak in a cat shelter in New York City, which subsequently spread to multiple shelters in the states of New York and Pennsylvania. One person with occupational exposure to infected cats became infected with the virus, representing the first LPAI H7N2 virus infection in a human in North America since 2003. Considering the close contact that frequently occurs between companion animals and humans, it was critical to assess the relative risk of this novel virus to public health. The virus isolated from the human case, A/New York/108/2016 (NY/108), caused mild and transient illness in ferrets and mice but did not transmit to naive cohoused ferrets following traditional or aerosol-based inoculation methods. The environmental persistence of NY/108 virus was generally comparable to that of other LPAI H7N2 viruses. However, NY/108 virus replicated in human bronchial epithelial cells with an increased efficiency compared with that of previously isolated H7N2 viruses. Furthermore, the novel H7N2 virus was found to utilize a relatively lower pH for hemagglutinin activation, similar to human influenza viruses. Our data suggest that the LPAI H7N2 virus requires further adaptation before representing a substantial threat to public health. However, the reemergence of an LPAI H7N2 virus in the northeastern United States underscores the need for continuous surveillance of emerging zoonotic influenza viruses inclusive of mammalian species, such as domestic felines, that are not commonly considered intermediate hosts for avian influenza viruses. IMPORTANCE Avian influenza viruses are capable of crossing the species barrier to infect mammals, an event of public health concern due to the potential acquisition of a pandemic phenotype. In December 2016, an H7N2 virus caused an outbreak in cats in multiple animal shelters in New York State. This was the first

  6. A Novel A(H7N2) Influenza Virus Isolated from a Veterinarian Caring for Cats in a New York City Animal Shelter Causes Mild Disease and Transmits Poorly in the Ferret Model

    PubMed Central

    Belser, Jessica A.; Pulit-Penaloza, Joanna A.; Sun, Xiangjie; Brock, Nicole; Pappas, Claudia; Creager, Hannah M.; Zeng, Hui; Tumpey, Terrence M.

    2017-01-01

    ABSTRACT In December 2016, a low-pathogenic avian influenza (LPAI) A(H7N2) virus was identified to be the causative source of an outbreak in a cat shelter in New York City, which subsequently spread to multiple shelters in the states of New York and Pennsylvania. One person with occupational exposure to infected cats became infected with the virus, representing the first LPAI H7N2 virus infection in a human in North America since 2003. Considering the close contact that frequently occurs between companion animals and humans, it was critical to assess the relative risk of this novel virus to public health. The virus isolated from the human case, A/New York/108/2016 (NY/108), caused mild and transient illness in ferrets and mice but did not transmit to naive cohoused ferrets following traditional or aerosol-based inoculation methods. The environmental persistence of NY/108 virus was generally comparable to that of other LPAI H7N2 viruses. However, NY/108 virus replicated in human bronchial epithelial cells with an increased efficiency compared with that of previously isolated H7N2 viruses. Furthermore, the novel H7N2 virus was found to utilize a relatively lower pH for hemagglutinin activation, similar to human influenza viruses. Our data suggest that the LPAI H7N2 virus requires further adaptation before representing a substantial threat to public health. However, the reemergence of an LPAI H7N2 virus in the northeastern United States underscores the need for continuous surveillance of emerging zoonotic influenza viruses inclusive of mammalian species, such as domestic felines, that are not commonly considered intermediate hosts for avian influenza viruses. IMPORTANCE Avian influenza viruses are capable of crossing the species barrier to infect mammals, an event of public health concern due to the potential acquisition of a pandemic phenotype. In December 2016, an H7N2 virus caused an outbreak in cats in multiple animal shelters in New York State. This was the first

  7. Pathogenesis of Influenza A/H5N1 virus infection in ferrets differs between intranasal and intratracheal routes of inoculation.

    PubMed

    Bodewes, Rogier; Kreijtz, Joost H C M; van Amerongen, Geert; Fouchier, Ron A M; Osterhaus, Albert D M E; Rimmelzwaan, Guus F; Kuiken, Thijs

    2011-07-01

    Most patients infected with highly pathogenic avian influenza A/H5N1 virus develop severe pneumonia resulting in acute respiratory distress syndrome, with extrarespiratory disease as an uncommon complication. Intranasal inoculation of ferrets with influenza A/H5N1 virus causes lesions in both the respiratory tract and extrarespiratory organs (primarily brain). However, the route of spread to extrarespiratory organs and the relative contribution of extrarespiratory disease to pathogenicity are largely unknown. In the present study, we characterized lesions in the respiratory tract and central nervous system (CNS) of ferrets (n = 8) inoculated intranasally with influenza virus A/Indonesia/5/2005 (H5N1). By 7 days after inoculation, only 3 of 8 ferrets had a mild or moderate bronchointerstitial pneumonia. In contrast, all 8 ferrets had moderate or severe CNS lesions, characterized by meningoencephalitis, choroiditis, and ependymitis, and centered on tissues adjoining the cerebrospinal fluid. These findings indicate that influenza A/H5N1 virus spread directly from nasal cavity to brain, and that CNS lesions contributed more than pulmonary lesions to the pathogenicity of influenza A/H5N1 virus infection in ferrets. In comparison, intratracheal inoculation of ferrets with the same virus reproducibly caused severe bronchointerstitial pneumonia. The method of virus inoculation requires careful consideration in the design of ferret experiments as a model for influenza A/H5N1 in humans. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  8. Preparation of mucosal nanoparticles and polymer-based inactivated vaccine for Newcastle disease and H9N2 AI viruses

    PubMed Central

    Naggar, Heba M. El; Madkour, Mohamed Sayed; Hussein, Hussein Ali

    2017-01-01

    Aim: To develop a mucosal inactivated vaccines for Newcastle disease (ND) and H9N2 viruses to protect against these viruses at sites of infections through mucosal immunity. Materials and Methods: In this study, we prepared two new formulations for mucosal bivalent inactivated vaccine formulations for Newcastle and Avian Influenza (H9N2) based on the use of nanoparticles and polymer adjuvants. The prepared vaccines were delivered via intranasal and spray routes of administration in specific pathogen-free chickens. Cell-mediated and humoral immune response was measured as well as challenge trial was carried out. In addition, ISA71 water in oil was also evaluated. Results: Our results showed that the use of spray route as vaccination delivery method of polymer and nanoparticles Montanide™ adjuvants revealed that it enhanced the cell mediated immune response as indicated by phagocytic activity, gamma interferon and interleukin 6 responses and induced protection against challenge with Newcastle and Avian Influenza (H9N2) viruses. Conclusion: The results of this study demonstrate the potentiality of polymer compared to nanoparticles adjuvantes when used via spray route. Mass application of such vaccines will add value to improve the vaccination strategies against ND virus and Avian influenza viruses. PMID:28344402

  9. Computational Assay of H7N9 Influenza Neuraminidase Reveals R292K Mutation Reduces Drug Binding Affinity

    NASA Astrophysics Data System (ADS)

    Woods, Christopher J.; Malaisree, Maturos; Long, Ben; McIntosh-Smith, Simon; Mulholland, Adrian J.

    2013-12-01

    The emergence of a novel H7N9 avian influenza that infects humans is a serious cause for concern. Of the genome sequences of H7N9 neuraminidase available, one contains a substitution of arginine to lysine at position 292, suggesting a potential for reduced drug binding efficacy. We have performed molecular dynamics simulations of oseltamivir, zanamivir and peramivir bound to H7N9, H7N9-R292K, and a structurally related H11N9 neuraminidase. They show that H7N9 neuraminidase is structurally homologous to H11N9, binding the drugs in identical modes. The simulations reveal that the R292K mutation disrupts drug binding in H7N9 in a comparable manner to that observed experimentally for H11N9-R292K. Absolute binding free energy calculations with the WaterSwap method confirm a reduction in binding affinity. This indicates that the efficacy of antiviral drugs against H7N9-R292K will be reduced. Simulations can assist in predicting disruption of binding caused by mutations in neuraminidase, thereby providing a computational `assay.'

  10. H7N9 and other pathogenic avian influenza viruses elicit a three-pronged transcriptomic signature that is reminiscent of 1918 influenza virus and is associated with lethal outcome in mice

    USDA-ARS?s Scientific Manuscript database

    Modulating the host response is a promising approach to treating influenza, a virus whose pathogenesis is determined in part by the host response it elicits. Though the pathogenicity of emerging H7N9 influenza virus has been reported in several animal models, these studies have not included a detai...

  11. The NS segment of H5N1 avian influenza viruses (AIV) enhances the virulence of an H7N1 AIV in chickens

    PubMed Central

    2014-01-01

    Some outbreaks involving highly pathogenic avian influenza viruses (HPAIV) of subtypes H5 and H7 were caused by avian-to-human transmissions. In nature, different influenza A viruses can reassort leading to new viruses with new characteristics. We decided to investigate the impact that the NS-segment of H5 HPAIV would have on viral pathogenicity of a classical avian H7 HPAIV in poultry, a natural host. We focussed this study based on our previous work that demonstrated that single reassortment of the NS-segment from an H5 HPAIV into an H7 HPAIV changes the ability of the virus to replicate in mammalian hosts. Our present data show that two different H7-viruses containing an NS-segment from H5–types (FPV NS GD or FPV NS VN) show an overall highly pathogenic phenotype compared with the wild type H7virus (FPV), as characterized by higher viral shedding and earlier manifestation of clinical signs. Correlating with the latter, higher amounts of IFN-β mRNA were detected in the blood of NS-reassortant infected birds, 48 h post-infection (pi). Although lymphopenia was detected in chickens from all AIV-infected groups, also 48 h pi those animals challenged with NS-reassortant viruses showed an increase of peripheral monocyte/macrophage-like cells expressing high levels of IL-1β, as determined by flow cytometry. Taken together, these findings highlight the importance of the NS-segment in viral pathogenicity which is directly involved in triggering antiviral and pro-inflammatory cytokines found during HPAIV pathogenesis in chickens. PMID:24460592

  12. Pathogenesis and transmission of novel 2013 H7N9 LPAIV from China in chickens

    USDA-ARS?s Scientific Manuscript database

    A novel influenza A lineage of the H7N9 subtype emerged in China in February 2013 where it was first recognized because it was causing severe disease and death in humans. The source of the virus was assumed to be an animal reservoir and poultry was considered likely since the genes of the virus were...

  13. Pathogenesis, Transmissibility, and Tropism of a Highly Pathogenic Avian Influenza A(H7N7) Virus Associated With Human Conjunctivitis in Italy, 2013.

    PubMed

    Belser, Jessica A; Creager, Hannah M; Zeng, Hui; Maines, Taronna R; Tumpey, Terrence M

    2017-09-15

    H7 subtype influenza viruses represent a persistent public health threat because of their continued detection in poultry and ability to cause human infection. An outbreak of highly pathogenic avian influenza H7N7 virus in Italy during 2013 resulted in 3 cases of human conjunctivitis. We determined the pathogenicity and transmissibility of influenza A/Italy/3/2013 virus in mouse and ferret models and examined the replication kinetics of this virus in several human epithelial cell types. The moderate virulence observed in mammalian models and the capacity for transmission in a direct contact model underscore the need for continued study of H7 subtype viruses. Published by Oxford University Press for the Infectious Diseases Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  14. Use of national pneumonia surveillance to describe influenza A(H7N9) virus epidemiology, China, 2004-2013.

    PubMed

    Xiang, Nijuan; Havers, Fiona; Chen, Tao; Song, Ying; Tu, Wenxiao; Li, Leilei; Cao, Yang; Liu, Bo; Zhou, Lei; Meng, Ling; Hong, Zhiheng; Wang, Rui; Niu, Yan; Yao, Jianyi; Liao, Kaiju; Jin, Lianmei; Zhang, Yanping; Li, Qun; Widdowson, Marc-Alain; Feng, Zijian

    2013-11-01

    In mainland China, most avian influenza A(H7N9) cases in the spring of 2013 were reported through the pneumonia of unknown etiology (PUE) surveillance system. To understand the role of possible underreporting and surveillance bias in assessing the epidemiology of subtype H7N9 cases and the effect of live-poultry market closures, we examined all PUE cases reported from 2004 through May 3, 2013. Historically, the PUE system was underused, reporting was inconsistent, and PUE reporting was biased toward A(H7N9)-affected provinces, with sparse data from unaffected provinces; however, we found no evidence that the older ages of persons with A(H7N9) resulted from surveillance bias. The absolute number and the proportion of PUE cases confirmed to be A(H7N9) declined after live-poultry market closures (p<0.001), indicating that market closures might have positively affected outbreak control. In China, PUE surveillance needs to be improved.

  15. A comprehensive retrospective study of the seroprevalence of H9N2 avian influenza viruses in occupationally exposed populations in China.

    PubMed

    Li, Xin; Tian, Bai; Jianfang, Zhou; Yongkun, Chen; Xiaodan, Li; Wenfei, Zhu; Yan, Li; Jing, Tang; Junfeng, Guo; Tao, Chen; Rongbao, Gao; Dayan, Wang; Shu, Yuelong

    2017-01-01

    The H9N2 avian influenza virus circulates worldwide, predominantly in poultry. Its increasing infectivity and adaptation in poultry and mammals have enhanced the possibility of human infection. However, H9N2 human cases are difficult to detect due to their mild clinical symptoms. Serological study is valuable for risk assessment. A total of 15,700 serum samples were collected from occupationally exposed populations in 22 provinces of China and tested using hemagglutination inhibition (HI) and microneutralization (MN) assays. The sera positive rate of A/Guangzhou/333/99 (G9) was significantly higher than that of A/quail/Hong Kong/G1/97 (G1) (p<0.0001). The seroprevalences of H9N2 were significantly higher in live poultry market workers, large-scale poultry farmers and backyard farmers than in poultry slaughtering factory workers and wild bird habitant workers. The seroprevalences of A/Guangzhou/333/99 (G9) (3.42%) and A/quail/Hong Kong/G1/97 (G1) (1.37%) in Southern China were significantly higher than those in Northern China (p<0.001). The seroprevalence was highest in the elderly, followed by adults and then youths. Our results indicate that subclinical human infection with H9N2 avian influenza virus is widely distributed in China. Longer poultry exposure might contribute to the higher seroprevalence in the elderly group. The higher seroprevalence observed in Southern China than in Northern China might be caused by a higher poultry density.

  16. A comprehensive retrospective study of the seroprevalence of H9N2 avian influenza viruses in occupationally exposed populations in China

    PubMed Central

    Li, Xin; Tian, Bai; Jianfang, Zhou; Yongkun, Chen; Xiaodan, Li; Wenfei, Zhu; Yan, Li; Jing, Tang; Junfeng, Guo; Tao, Chen; Rongbao, Gao; Dayan, Wang; Shu, Yuelong

    2017-01-01

    The H9N2 avian influenza virus circulates worldwide, predominantly in poultry. Its increasing infectivity and adaptation in poultry and mammals have enhanced the possibility of human infection. However, H9N2 human cases are difficult to detect due to their mild clinical symptoms. Serological study is valuable for risk assessment. A total of 15,700 serum samples were collected from occupationally exposed populations in 22 provinces of China and tested using hemagglutination inhibition (HI) and microneutralization (MN) assays. The sera positive rate of A/Guangzhou/333/99 (G9) was significantly higher than that of A/quail/Hong Kong/G1/97 (G1) (p<0.0001). The seroprevalences of H9N2 were significantly higher in live poultry market workers, large-scale poultry farmers and backyard farmers than in poultry slaughtering factory workers and wild bird habitant workers. The seroprevalences of A/Guangzhou/333/99 (G9) (3.42%) and A/quail/Hong Kong/G1/97 (G1) (1.37%) in Southern China were significantly higher than those in Northern China (p<0.001). The seroprevalence was highest in the elderly, followed by adults and then youths. Our results indicate that subclinical human infection with H9N2 avian influenza virus is widely distributed in China. Longer poultry exposure might contribute to the higher seroprevalence in the elderly group. The higher seroprevalence observed in Southern China than in Northern China might be caused by a higher poultry density. PMID:28575073

  17. Viral reassortment and transmission after co-infection of pigs with classical H1N1 and triple-reassortant H3N2 swine influenza viruses.

    PubMed

    Ma, Wenjun; Lager, Kelly M; Lekcharoensuk, Porntippa; Ulery, Eva S; Janke, Bruce H; Solórzano, Alicia; Webby, Richard J; García-Sastre, Adolfo; Richt, Jürgen A

    2010-09-01

    Triple-reassortant swine influenza viruses circulating in North American pigs contain the internal genes derived from swine (matrix, non-structural and nucleoprotein), human [polymerase basic 1 (PB1)] and avian (polymerase acidic and PB2) influenza viruses forming a constellation of genes that is well conserved and is called the triple-reassortant internal gene (TRIG) cassette. In contrast, the external genes [haemagglutinin (HA) and neuraminidase (NA)] are less conserved, reflecting multiple reassortant events that have produced viruses with different combinations of HA and NA genes. This study hypothesized that maintenance of the TRIG cassette confers a selective advantage to the virus. To test this hypothesis, pigs were co-infected with the triple-reassortant H3N2 A/Swine/Texas/4199-2/98 (Tx/98) and the classical H1N1 A/Swine/Iowa/15/1930 viruses and co-housed with a group of sentinel animals. This direct contact group was subsequently moved into contact with a second group of naïve animals. Four different subtypes (H1N1, H1N2, H3N1 and H3N2) of influenza virus were identified in bronchoalveolar lavage fluid collected from the lungs of the experimentally infected pigs, with most of the viruses containing TRIG from the Tx/98 virus. Interestingly, only the intact H3N2 Tx/98 virus was transmitted from the infected pigs to the direct-contact animals and from them to the second contact group of pigs. These results demonstrated that multiple reassortments can occur within a host; however, only specific gene constellations are readily transmissible. It was concluded that certain HA and NA gene pairs, in conjunction with the TRIG cassette, may have a competitive advantage over other combinations for transmission and maintenance in swine.

  18. Development of a dual-protective live attenuated vaccine against H5N1 and H9N2 avian influenza viruses by modifying the NS1 gene.

    PubMed

    Choi, Eun-hye; Song, Min-Suk; Park, Su-Jin; Pascua, Philippe Noriel Q; Baek, Yun Hee; Kwon, Hyeok-il; Kim, Eun-Ha; Kim, Semi; Jang, Hyung-Kwan; Poo, Haryoung; Kim, Chul-Joong; Choi, Young Ki

    2015-07-01

    An increasing number of outbreaks of avian influenza H5N1 and H9N2 viruses in poultry have caused serious economic losses and raised concerns for human health due to the risk of zoonotic transmission. However, licensed H5N1 and H9N2 vaccines for animals and humans have not been developed. Thus, to develop a dual H5N1 and H9N2 live-attenuated influenza vaccine (LAIV), the HA and NA genes from a virulent mouse-adapted avian H5N2 (A/WB/Korea/ma81/06) virus and a recently isolated chicken H9N2 (A/CK/Korea/116/06) virus, respectively, were introduced into the A/Puerto Rico/8/34 backbone expressing truncated NS1 proteins (NS1-73, NS1-86, NS1-101, NS1-122) but still possessing a full-length NS gene. Two H5N2/NS1-LAIV viruses (H5N2/NS1-86 and H5N2/NS1-101) were highly attenuated compared with the full-length and remaining H5N2/NS-LAIV viruses in a mouse model. Furthermore, viruses containing NS1 modifications were found to induce more IFN-β activation than viruses with full-length NS1 proteins and were correspondingly attenuated in mice. Intranasal vaccination with a single dose (10(4.0) PFU/ml) of these viruses completely protected mice from a lethal challenge with the homologous A/WB/Korea/ma81/06 (H5N2), heterologous highly pathogenic A/EM/Korea/W149/06 (H5N1), and heterosubtypic highly virulent mouse-adapted H9N2 viruses. This study clearly demonstrates that the modified H5N2/NS1-LAIV viruses attenuated through the introduction of mutations in the NS1 coding region display characteristics that are desirable for live attenuated vaccines and hold potential as vaccine candidates for mammalian hosts.

  19. Avian influenza virus infections in humans.

    PubMed

    Wong, Samson S Y; Yuen, Kwok-Yung

    2006-01-01

    Seroepidemiologic and virologic studies since 1889 suggested that human influenza pandemics were caused by H1, H2, and H3 subtypes of influenza A viruses. If not for the 1997 avian A/H5N1 outbreak in Hong Kong of China, subtype H2 is the likely candidate for the next pandemic. However, unlike previous poultry outbreaks of highly pathogenic avian influenza due to H5 that were controlled by depopulation with or without vaccination, the presently circulating A/H5N1 genotype Z virus has since been spreading from Southern China to other parts of the world. Migratory birds and, less likely, bird trafficking are believed to be globalizing the avian influenza A/H5N1 epidemic in poultry. More than 200 human cases of avian influenza virus infection due to A/H5, A/H7, and A/H9 subtypes mainly as a result of poultry-to-human transmission have been reported with a > 50% case fatality rate for A/H5N1 infections. A mutant or reassortant virus capable of efficient human-to-human transmission could trigger another influenza pandemic. The recent isolation of this virus in extrapulmonary sites of human diseases suggests that the high fatality of this infection may be more than just the result of a cytokine storm triggered by the pulmonary disease. The emergence of resistance to adamantanes (amantadine and rimantadine) and recently oseltamivir while H5N1 vaccines are still at the developmental stage of phase I clinical trial are causes for grave concern. Moreover, the to-be pandemic strain may have little cross immunogenicity to the presently tested vaccine strain. The relative importance and usefulness of airborne, droplet, or contact precautions in infection control are still uncertain. Laboratory-acquired avian influenza H7N7 has been reported, and the laboratory strains of human influenza H2N2 could also be the cause of another pandemic. The control of this impending disaster requires more research in addition to national and international preparedness at various levels. The

  20. Genetic characterization of highly pathogenic avian influenza H5N1 viruses isolated from naturally infected pigeons in Egypt.

    PubMed

    Elgendy, Emad Mohamed; Watanabe, Yohei; Daidoji, Tomo; Arai, Yasuha; Ikuta, Kazuyoshi; Ibrahim, Madiha Salah; Nakaya, Takaaki

    2016-12-01

    Avian influenza viruses impose serious public health burdens with significant mortality and morbidity not only in poultry but also in humans. While poultry susceptibility to avian influenza virus infection is well characterized, pigeons have been thought to have low susceptibility to these viruses. However, recent studies reported natural pigeon infections with highly pathogenic avian influenza H5N1 viruses. In Egypt, which is one of the H5N1 endemic areas for birds, pigeons are raised in towers built on farms in backyards and on house roofs, providing a potential risk for virus transmission from pigeons to humans. In this study, we performed genetic analysis of two H5N1 virus strains that were isolated from naturally infected pigeons in Egypt. Genetic and phylogenetic analyses showed that these viruses originated from Egyptian H5N1 viruses that were circulating in chickens or ducks. Several unique mutations, not reported before in any Egyptian isolates, were detected in the internal genes (i.e., polymerase residues PB1-V3D, PB1-K363R, PA-A369V, and PA-V602I; nucleoprotein residue NP-R38K; and nonstructural protein residues NS1-D120N and NS2-F55C). Our findings suggested that pigeons are naturally infected with H5N1 virus and can be a potential reservoir for transmission to humans, and showed the importance of genetic analysis of H5N1 internal genes.