Sample records for ha molecular weight

  1. pH-Amplified multilayer films based on hyaluronan: influence of HA molecular weight and concentration on film growth and stability.

    PubMed

    Shen, Liyan; Chaudouet, Patrick; Ji, Jian; Picart, Catherine

    2011-04-11

    In this study, we investigate the growth and internal properties of polyelectrolyte multilayer films made of poly(l-lysine) and hyaluronan (PLL/HA) under pH-amplified conditions, that is, by alternate deposition of PLL at high pH and HA at low pH. We focus especially on the influence of the molecular weight of HA in this process as well as on its concentration in solution. Film growth was followed by quartz crystal microbalance and by infrared spectroscopy to quantify the deposited mass and to characterize the internal properties of the films, including the presence of hydrogen bonds and the ionization degree of HA in the films. Film growth was significantly faster for HA of high molecular weight (1300 kDa) as compared with 400 and 200 kDa. PLL was found to exhibit a random structure once deposited in the films. Furthermore, we found that PLL-ending films are more stable when they are placed in PBS than their HA counterparts. This was explained on the basis of more cohesive interactions in the films for PLL-ending films. Finally, we quantified PLL(FITC) diffusion into the films and observed that PLL diffusion is enhanced when PLL is paired with the HA of high MW. All together, these results suggest that besides purely physicochemical parameters such as variation in pH, the molecular weight of HA, its concentration in solution, and the possibility to form intermolecular HA association play important roles in film growth, internal cohesion, and stability.

  2. A Modified ELISA Accurately Measures Secretion of High Molecular Weight Hyaluronan (HA) by Graves' Disease Orbital Cells

    PubMed Central

    Krieger, Christine C.

    2014-01-01

    Excess production of hyaluronan (hyaluronic acid [HA]) in the retro-orbital space is a major component of Graves' ophthalmopathy, and regulation of HA production by orbital cells is a major research area. In most previous studies, HA was measured by ELISAs that used HA-binding proteins for detection and rooster comb HA as standards. We show that the binding efficiency of HA-binding protein in the ELISA is a function of HA polymer size. Using gel electrophoresis, we show that HA secreted from orbital cells is primarily comprised of polymers more than 500 000. We modified a commercially available ELISA by using 1 million molecular weight HA as standard to accurately measure HA of this size. We demonstrated that IL-1β-stimulated HA secretion is at least 2-fold greater than previously reported, and activation of the TSH receptor by an activating antibody M22 from a patient with Graves' disease led to more than 3-fold increase in HA production in both fibroblasts/preadipocytes and adipocytes. These effects were not consistently detected with the commercial ELISA using rooster comb HA as standard and suggest that fibroblasts/preadipocytes may play a more prominent role in HA remodeling in Graves' ophthalmopathy than previously appreciated. PMID:24302624

  3. Increase in gap-junctional intercellular communications (GJIC) of normal human dermal fibroblasts (NHDF) on surfaces coated with high-molecular-weight hyaluronic acid (HMW HA).

    PubMed

    Park, Jeong Ung; Tsuchiya, Toshie

    2002-06-15

    Normal human dermal fibroblast (NHDF) cells were used to detect differences in gap-junctional intercellular communication (GJIC) by hyaluronic acid (HA), a linear polymer built from repeating disaccharide units that consist of N-acetyl-D-glucosamine (GlcNa) and D-glucuronic acid (GlcA) linked by a beta 1-4 glycosidic bond. The NHDF cells were cultured with different molecular weights (MW) of HA for 4 days. The rates of cell attachment in dishes coated with high-molecular-weight (HMW; 310 kDa or 800 kDa) HA at 2 mg/dish were significantly reduced at an early time point compared with low-molecular-weight (LMW; 4.8 kDa or 48 kDa) HA with the same coating amounts. HA-coated surfaces were observed by atomic force microscopy (AFM) under air and showed that HA molecules ran parallel in the dish coated with LMW HA and had an aggregated island structure in the dish coated with HMW HA surfaces. The cell functions of GJIC were assayed by a scrape-loading dye transfer (SLDT) method using a dye solution of Lucifer yellow. Promotion of the dye transfer was clearly obtained in the cell monolayer grown on the surface coated with HMW HA. These results suggest that HMW HA promotes the function of GJIC in NHDF cells. In contrast, when HMW HA was added to the monolayer of NHDF cells, the functions of GJIC clearly were lowered in comparison with the cells grown in the control dish or with those grown on the surface of HMW HA. Therefore it is concluded that the MW size of HA and its application method are important factors for generating biocompatible tissue-engineered products because of the manner in which the GJIC participates in cell differentiation and cell growth rate. Copyright 2002 Wiley Periodicals, Inc. J Biomed Mater Res 60: 541-547, 2002

  4. An agarose gel electrophoretic method for analysis of hyaluronan molecular weight distribution.

    PubMed

    Lee, H G; Cowman, M K

    1994-06-01

    An electrophoretic method is described for determining the molecular weight distribution of hyaluronan (HA). The method involves separation of HA by electrophoresis on a 0.5% agarose gel, followed by detection of HA using the cationic dye Stains-All (3,3'-dimethyl-9-methyl-4,5,4'5'-dibenzothiacarbocyanine). The recommended sample load is 7 micrograms. Calibration of the method with HA standards of known molecular weight has established a linear relationship between electrophoretic mobility and the logarithm of the weight-average molecular weight over the range of approximately 0.2-6 x 10(6). The separated HA pattern may also be visualized after electrotransfer of HA from the agarose gel to a nylon membrane. The membrane may be stained with the dye alcian blue. Alternatively, specific detection of HA from impure samples can be achieved by probing the nylon membrane with biotin-labeled HA-binding protein and subsequent interaction with a streptavidin-linked gold reagent and silver staining for amplification. The electrophoretic method was used to analyze HA in two different liquid connective tissues. Normal human knee joint synovial fluid showed a narrow HA molecular weight distribution, with a peak at 6-7 x 10(6). Owl monkey vitreous HA also showed a narrow molecular weight distribution, with a peak at 5-6 x 10(6). These results agree well with available published data and indicate the applicability of the method to the analysis of impure HA samples which may be available in limited amounts.

  5. Improving the accuracy of hyaluronic acid molecular weight estimation by conventional size exclusion chromatography.

    PubMed

    Shanmuga Doss, Sreeja; Bhatt, Nirav Pravinbhai; Jayaraman, Guhan

    2017-08-15

    There is an unreasonably high variation in the literature reports on molecular weight of hyaluronic acid (HA) estimated using conventional size exclusion chromatography (SEC). This variation is most likely due to errors in estimation. Working with commercially available HA molecular weight standards, this work examines the extent of error in molecular weight estimation due to two factors: use of non-HA based calibration and concentration of sample injected into the SEC column. We develop a multivariate regression correlation to correct for concentration effect. Our analysis showed that, SEC calibration based on non-HA standards like polyethylene oxide and pullulan led to approximately 2 and 10 times overestimation, respectively, when compared to HA-based calibration. Further, we found that injected sample concentration has an effect on molecular weight estimation. Even at 1g/l injected sample concentration, HA molecular weight standards of 0.7 and 1.64MDa showed appreciable underestimation of 11-24%. The multivariate correlation developed was found to reduce error in estimations at 1g/l to <4%. The correlation was also successfully applied to accurately estimate the molecular weight of HA produced by a recombinant Lactococcus lactis fermentation. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Hyaluronic Acid Molecular Weight-Dependent Modulation of Mucin Nanostructure for Potential Mucosal Therapeutic Applications.

    PubMed

    Hansen, Irene M; Ebbesen, Morten F; Kaspersen, Liselotte; Thomsen, Troels; Bienk, Konrad; Cai, Yunpeng; Malle, Birgitte Mølholm; Howard, Kenneth A

    2017-07-03

    This study investigates the effects of different molecular weight hyaluronic acids (HAs) on the mucosal nanostructure using a pig stomach mucin hydrogel as a mucosal barrier model. Microparticles (1.0 μm) and nanoparticles (200 nm) were used as probes, and their movement in mucin was studied by a three-dimensional confocal microscopy-based particle tracking technique and by Nanoparticle Tracking Analysis (NTA) after addition of high-molecular weight (900 kDa) and low-molecular weight (33 kDa) HA. This demonstrated a molecular weight-dependent HA modulation of the mucin nanostructure with a 2.5-fold decrease in the mobility of 200 nm nanoparticles. To further investigate these mechanisms and to verify that the natural viscoelastic properties of mucus are not undesirably altered, rheological measurements were performed on mucin hydrogels with or without HA. This suggested the observed particle mobility restriction was not attributed to alterations of the natural mucin cohesive and viscoelastic properties but, instead, indicates that the added high-molecular weight HA primarily modulates the mucin nanostructure and mesh size. This study, hereby, demonstrates how mucus nanostructure can be modulated by the addition of high-molecular weight HA that offers an opportunity to control mucosal pathogenesis and drug delivery.

  7. Low-molecular-weight hyaluronan (LMW-HA) accelerates lymph node metastasis of melanoma cells by inducing disruption of lymphatic intercellular adhesion.

    PubMed

    Du, Yan; Cao, Manlin; Liu, Yiwen; He, Yiqing; Yang, Cuixia; Wu, Man; Zhang, Guoliang; Gao, Feng

    2016-01-01

    Endothelial integrity defects initiate lymphatic metastasis of tumor cells. Low-molecular-weight hyaluronan (LMW-HA) derived from plasma and interstitial fluid was reported to be associated with tumor lymphatic metastasis. In addition, LMW-HA was proved to disrupt lymphatic vessel endothelium integrity, thus promoting lymphatic metastasis of tumor cells. Until now, there are few reports on how LMW-HA modulates lymphatic endothelial cells adhesion junctions and affects cancer cells metastasizing into lymph vessels. The aim of our study is to unravel the novel mechanism of LMW-HA in mediating tumor lymphatic metastasis. Here, we employed a melanoma metastasis model to investigate whether LMW-HA facilitates tumor cells transferring from foci to remote lymph nodes by disrupting the lymphatic endothelial integrity. Our data indicate that LMW-HA significantly induces metastasis of melanoma cells to lymph nodes and accelerates interstitial-lymphatic flow in vivo . Further experiments show that increased migration of melanoma cells across human dermal lymphatic endothelial cell (HDLEC) monolayers is accompanied by impaired lymphatic endothelial barrier function and increased permeability. The mechanism study reveals that VE-cadherin-β-catenin pathway and relevant signals are involved in modulating the interactions between endothelial cells and that a significant inhibition of lymphatic endothelium disruption is observed when antibodies to the LMW-HA receptor (LYVE-1) are present. Thus, our findings demonstrate a disruptive effect of LMW-HA on lymphatic endothelium continuity which leads to a promotion on melanoma lymphatic metastasis and also suggest a cellular signaling mechanism associated with VE-cadherin-mediated lymphatic intercellular junctions.

  8. High and low molecular weight hyaluronic acid differentially influence macrophage activation

    PubMed Central

    Rayahin, Jamie E.; Buhrman, Jason S.; Zhang, Yu; Koh, Timothy J.; Gemeinhart, Richard A.

    2015-01-01

    Macrophages exhibit phenotypic diversity permitting wide-ranging roles in maintaining physiologic homeostasis. Hyaluronic acid, a major glycosaminoglycan of the extracellular matrix, has been shown to have differential signaling based on its molecular weight. With this in mind, the main objective of this study was to elucidate the role of hyaluronic acid molecular weight on macrophage activation and reprogramming. Changes in macrophage activation were assessed by activation state selective marker measurement, specifically quantitative real time polymerase chain reaction, and cytokine enzyme-linked immunoassays, after macrophage treatment with differing molecular weights of hyaluronic acid under four conditions: the resting state, concurrent with classical activation, and following inflammation involving either classically or alternatively activated macrophages. Regardless of initial polarization state, low molecular weight hyaluronic acid induced a classically activated-like state, confirmed by up-regulation of pro-inflammatory genes, including nos2, tnf, il12b, and cd80, and enhanced secretion of nitric oxide and TNF-α. High molecular weight hyaluronic acid promoted an alternatively activated-like state, confirmed by up regulation of pro-resolving gene transcription, including arg1, il10, and mrc1, and enhanced arginase activity. Overall, our observations suggest that macrophages undergo phenotypic changes dependent on molecular weight of hyaluronan that correspond to either (1) pro-inflammatory response for low molecular weight HA or (2) pro-resolving response for high molecular weight HA. These observations bring significant further understanding of the influence of extracellular matrix polymers, hyaluronic acid in particular, on regulating the inflammatory response of macrophages. This knowledge can be used to guide the design of HA-containing biomaterials to better utilize the natural response to HAs. PMID:26280020

  9. HA metabolism in skin homeostasis and inflammatory disease.

    PubMed

    Kavasi, Rafaela-Maria; Berdiaki, Aikaterini; Spyridaki, Ioanna; Corsini, Emanuela; Tsatsakis, Aristidis; Tzanakakis, George; Nikitovic, Dragana

    2017-03-01

    Hyaluronan (HA), an unsulfated glycosaminoglycan, is an important component of the complex extracellular matrix network which surrounds and supports cells in tissues. HA is detected in all vertebrate tissues, but the bulk of HA is produced and deposited in the skin. In this review we focus on the role of HA in skin-associated inflammatory disease and wound healing. Properties of HA are directly dependent on its molecular weight. Thus, high molecular weight HA (HMWHA) is deposited in normal tissues during homeostasis and promotes their stability whereas low molecular weight HA fragments (LMWHA), on the other hand, may arise from enzymatic or chemical activities. The degradation of HMWHA to LMWHA fragments, often leads to the generation of biologically active oligosaccharides with different properties and postulated functions in wound scar formation and inflammation. More detailed studies of HA involvement in skin-associated inflammatory disease may result in novel treatment modalities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Regulation of Hyaluronan (HA) Metabolism Mediated by HYBID (Hyaluronan-binding Protein Involved in HA Depolymerization, KIAA1199) and HA Synthases in Growth Factor-stimulated Fibroblasts.

    PubMed

    Nagaoka, Aya; Yoshida, Hiroyuki; Nakamura, Sachiko; Morikawa, Tomohiko; Kawabata, Keigo; Kobayashi, Masaki; Sakai, Shingo; Takahashi, Yoshito; Okada, Yasunori; Inoue, Shintaro

    2015-12-25

    Regulation of hyaluronan (HA) synthesis and degradation is essential to maintenance of extracellular matrix homeostasis. We recently reported that HYBID (HYaluronan-Binding protein Involved in hyaluronan Depolymerization), also called KIAA1199, plays a key role in HA depolymerization in skin and arthritic synovial fibroblasts. However, regulation of HA metabolism mediated by HYBID and HA synthases (HASs) under stimulation with growth factors remains obscure. Here we report that TGF-β1, basic FGF, EGF, and PDGF-BB commonly enhance total amount of HA in skin fibroblasts through up-regulation of HAS expression, but molecular size of newly produced HA is dependent on HYBID expression levels. Stimulation of HAS1/2 expression and suppression of HYBID expression by TGF-β1 were abrogated by blockade of the MAPK and/or Smad signaling and the PI3K-Akt signaling, respectively. In normal human skin, expression of the TGF-β1 receptors correlated positively with HAS2 expression and inversely with HYBID expression. On the other hand, TGF-β1 up-regulated HAS1/2 expression but exerted only a slight suppressive effect on HYBID expression in synovial fibroblasts from the patients with osteoarthritis or rheumatoid arthritis, resulting in the production of lower molecular weight HA compared with normal skin and synovial fibroblasts. These data demonstrate that although TGF-β1, basic FGF, EGF, and PDGF-BB enhance HA production in skin fibroblasts, TGF-β1 most efficiently contributes to production of high molecular weight HA by HAS up-regulation and HYBID down-regulation and suggests that inefficient down-regulation of HYBID by TGF-β1 in arthritic synovial fibroblasts may be linked to accumulation of depolymerized HA in synovial fluids in arthritis patients. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Enhancement of mechanical properties of 3D printed hydroxyapatite by combined low and high molecular weight polycaprolactone sequential infiltration.

    PubMed

    Suwanprateeb, Jintamai; Thammarakcharoen, Faungchat; Hobang, Nattapat

    2016-11-01

    A new infiltration technique using a combination of low and high molecular weight polycaprolactone (PCL) in sequence was developed as a mean to improve the mechanical properties of three dimensional printed hydroxyapatite (HA). It was observed that using either high (M n ~80,000) or low (M n ~10,000) molecular weight infiltration could only increase the flexural modulus compared to non-infiltrated HA, but did not affect strength, strain at break and energy at break. In contrast, a combination of low and high molecular infiltration in sequence increased the flexural modulus, strength and energy at break compared to those of non-infiltrated HA or infiltrated by high or low molecular weight PCL alone. This overall enhancement was found to be attributed to the densification of low molecular weight PCL and the reinforcement of high molecular PCL concurrently. The combined low and high molecular weight infiltration in sequence also maintained high osteoblast proliferation and differentiation of the composites at the similar level of the HA. Densification was a dominant mechanism for the change in modulus with porosity and density of the infiltrated HA/PCL composites. However, both densification and the reinforcing performance of the infiltration phase were crucial for strength and toughening enhancement of the composites possibly by the defect healing and stress shielding mechanisms. The sequence of using low molecular weight infiltration and followed by high molecular infiltration was seen to provide the greatest flexural properties and highest cells proliferation and differentiation capabilities.

  12. The High and Low Molecular Weight Forms of Hyaluronan Have Distinct Effects on CD44 Clustering*

    PubMed Central

    Yang, Cuixia; Cao, Manlin; Liu, Hua; He, Yiqing; Xu, Jing; Du, Yan; Liu, Yiwen; Wang, Wenjuan; Cui, Lian; Hu, Jiajie; Gao, Feng

    2012-01-01

    CD44 is a major cell surface receptor for the glycosaminoglycan hyaluronan (HA). Native high molecular weight hyaluronan (nHA) and oligosaccharides of hyaluronan (oHA) provoke distinct biological effects upon binding to CD44. Despite the importance of such interactions, however, the feature of binding with CD44 at the cell surface and the molecular basis for functional distinction between different sizes of HA is still unclear. In this study we investigated the effects of high and low molecular weight hyaluronan on CD44 clustering. For the first time, we provided direct evidence for a strong relationship between HA size and CD44 clustering in vivo. In CD44-transfected COS-7 cells, we showed that exogenous nHA stimulated CD44 clustering, which was disrupted by oHA. Moreover, naturally expressed CD44 was distributed into clusters due to abundantly expressed nHA in HK-2 cells (human renal proximal tubule cells) and BT549 cells (human breast cancer cell line) without exogenous stimulation. Our results suggest that native HA binding to CD44 selectively induces CD44 clustering, which could be inhibited by oHA. Finally, we demonstrated that HA regulates cell adhesion in a manner specifically dependent on its size. oHA promoted cell adhesion while nHA showed no effects. Our results might elucidate a molecular- and/or cellular-based mechanism for the diverse biological activities of nHA and oHA. PMID:23118219

  13. Effect of molecular weight of hyaluronic acid (HA) on viscoelasticity and particle texturing feel of HA dermal biphasic fillers.

    PubMed

    Chun, Cheolbyong; Lee, Deuk Yong; Kim, Jin-Tae; Kwon, Mi-Kyung; Kim, Young-Zu; Kim, Seok-Soon

    2016-01-01

    Hyaluronic acid (HA) dermal biphasic fillers are synthesized for their efficacy in correcting aesthetic defects such as wrinkles, scars and facial contouring defects. The fillers consist of crosslinked HA microspheres suspended in a noncrosslinked HA. To extend the duration of HAs within the dermis and obtain the particle texturing feel, HAs are crosslinked to obtain the suitable mechanical properties. Hyaluronic acid (HA) dermal biphasic fillers are prepared by mixing the crosslinked HA microspheres and the noncrosslinked HAs. The elastic modulus of the fillers increased with raising the volume fraction of the microspheres. The mechanical properties and the particle texturing feel of the fillers made from crosslinked HA (1058 kDa) microspheres suspended in noncrosslinked HA (1368 kDa) are successfully achieved, which are adequate for the fillers. Dermal biphasic HA fillers made from 1058 kDa exhibit suitable elastic moduli (211 to 420 Pa) and particle texturing feel (scale 7 ~ 9).

  14. Effect of molecular weight and concentration of hyaluronan on cell proliferation and osteogenic differentiation in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Ningbo, E-mail: curl-zhao@163.com; Wang, Xin, E-mail: 394041230@qq.com; Qin, Lei, E-mail: qinlei30@126.com

    Hyaluronan (HA), the simplest glycosaminoglycan and a major component of the extracellular matrix, exists in various tissues. It is involved in some critical biological procedures, including cellular signaling, cell adhesion and proliferation, and cell differentiation. The effect of molecular weight (MW) and concentration of HA on cell proliferation and differentiation was controversial. In this study, we investigated the effect of MW and concentration of HA on the proliferation and osteogenic differentiation of rabbit bone marrow-derived stem cells in vitro. Results showed that high MW HA decreased the cell adhesion rate in a concentration-dependant manner. The cell adhesion rate was decreased bymore » increasing MW of HA. Cell proliferation was significantly enhanced by low MW HA (P < 0.05). The factorial analysis indicated that MW and concentration had an interactive effect on the cell adhesion rate and cell proliferation (P < 0.05). High MW HA increased the mRNA expressions of ALP, RUNX-2 and OCN. The higher the MW was, the higher the mRNA expressions were. The factorial analysis indicated that MW and concentration had an interactive effect on ALP mRNA expression (P < 0.05). HA of higher MW and higher concentration promoted bone formation. These findings provide some useful information in understanding the mechanism underlying the effect of MW and concentration of HA on cell proliferation and differentiation. - Highlights: • Effect of hyaluronan on cell proliferation and differentiation is evaluated in vitro. • Hyaluronan of low molecular weight increases cell proliferation. • Hyaluronan of high molecular weight promotes cell osteogenic differentiation. • Molecular weight and concentration of hyaluronan show interactive effect.« less

  15. Low molecular weight hyaluronic acid effects on murine macrophage nitric oxide production.

    PubMed

    Lyle, Daniel B; Breger, Joyce C; Baeva, Larissa F; Shallcross, Jonathan C; Durfor, Charles N; Wang, Nam Sun; Langone, John J

    2010-09-01

    Hyaluronic acid (HA) is increasingly used for a number of medical device applications. Since the chemical structure of HA is identical no matter its bacterial or animal origin, it should be the ideal biomaterial. However, short term transient inflammatory reactions are common, while rare long-term adverse events may correlate with subclinical chronic inflammation. Concern has been raised that low molecular weight components or degradation fragments from implanted HA may directly stimulate inflammatory reactions. This study examined a panel of HA molecular weights from the unitary disaccharide up to 1.7 x 10(6) Dalton lengths, in which endotoxin was assayed at a very low level (less than 0.03 EU/mg). The murine cell line RAW 264.7, rat splenocytes, and rat adherent differentiated primary macrophages were assayed for nitric oxide production under a variety of inflammatory conditions plus or minus HA. Under the highest inflammatory states, nitric oxide production was mildly suppressed by HMW-HA while slightly augmented by LMW-HA at mg/mL concentrations. However, at micromolar concentrations fragments below 5000 Daltons, thought to have drug-like qualities, were without effect. These data support the hypothesis that if endotoxin is reduced to an extremely low level, LMW-HA may not directly provoke normal tissue macrophage-mediated inflammatory reactions. (c) 2010 Wiley Periodicals, Inc.

  16. Enhanced hyluronic acid production in Streptococcus zooepidemicus by over expressing HasA and molecular weight control with Niscin and glucose.

    PubMed

    Zakeri, Alireza; Rasaee, Mohammad Javad; Pourzardosht, Navid

    2017-12-01

    Hyaluronic acid (HA) is a high molecular weight linear polysaccharide, endowed with unique physiological and biological properties. Given its unique properties, HA have unprecedented applications in the fields of medicine and cosmetics. The ever growing demand for HA production is the driving force behind the need for finding and developing novel and amenable sources of the HA producers. Microbial fermentation of Streptococcus zooepidemicus deemed as one the most expeditious and pervasive methods of HA production. Herein, a wild type Streptococcus zooepidemicus , intrinsically expressing high levels of HA, was selected and optimized for HA production. HasA gene was amplified and introduced into the wild type Streptococcus zooepidemicus , under the control of Nisin promoter. The HasA over-expression increased the HA production, while the molecular weight was decreased. In order to compensate for molecular weight loss, the glucose concentration was increased to an optimum amount of 90 g/L. It is hypostatizes that excess glucose would rectify the distribution of the monomers and each HasA molecule would be provided with sufficient amount of substrates to lengthen the HA molecules. Arriving at an improved strain and optimized cultivating condition would pave the way for industrial grade HA production with high quality and quantity.

  17. Effects of cross-linked high-molecular-weight hyaluronic acid on epidural fibrosis: experimental study.

    PubMed

    Isık, Semra; Taşkapılıoğlu, M Özgür; Atalay, Fatma Oz; Dogan, Seref

    2015-01-01

    Epidural fibrosis is nonphysiological scar formation, usually at the site of neurosurgical access into the spinal canal, in the intimate vicinity of and around the origin of the radicular sheath. The formation of dense fibrous tissue causes lumbar and radicular pain. In addition to radicular symptoms, the formation of scar tissue may cause problems during reoperation. The authors aimed to investigate the effects of cross-linked high-molecular-weight hyaluronic acid (HA), an HA derivative known as HA gel, on the prevention of epidural fibrosis by using histopathological and biochemical parameters. Fifty-six adult female Sprague-Dawley rats were evaluated. The rats were divided into 4 groups. Rats in the sham group (n = 14) underwent laminectomy and discectomy and received no treatment; rats in the control group (n = 14) underwent laminectomy and discectomy and received 0.9% NaCl treatment in the surgical area; rats in the HA group (n = 14) received HA treatment at the surgical area after laminectomy and discectomy; and rats in the HA gel group (n = 14) underwent laminectomy and discectomy in addition to receiving treatment with cross-linked high-molecular-weight HA in the surgical area. All rats were decapitated after 4 weeks, and the specimens were evaluated histopathologically and biochemically. The results were statistically compared using the Mann-Whitney U-test. Compared with the sham and control groups, the HA and HA gel groups showed significantly lower fibroblast cell density and tissue hydroxyproline concentrations (p < 0.05). There was statistically significant lower dural adhesion and foreign-body reaction between the control and HA gel groups (p < 0.05). Granulation tissue and epidural fibrosis were significantly lower in the HA and HA gel groups compared with the sham group (p < 0.05). There were no significant differences in any histopathological parameters or biochemical values between Groups 3 and 4 (p > 0.05). Cross-linked high-molecular-weight HA

  18. Characteristics and bioactivities of different molecular weight polysaccharides from camellia seed cake.

    PubMed

    Xu, Zhou; Li, Xu; Feng, Shiling; Liu, Jing; Zhou, Lijun; Yuan, Ming; Ding, Chunbang

    2016-10-01

    Four polysaccharides, namely COP-1, COP-2, COP-3 and COP-4, were ultrafiltrated from crud Camellia oleifera seed cake polysaccharides (COP-c), purified, and characterized, including the determination of antioxidant and antiproliferative activities. Their molecular weights were 7.9, 36, 83 and 225kDa, respectively. All COPs showed the similar FT-IR spectrums, but significant differentials in monosaccharide components. COP-2 exhibited the highest radical scavenging abilities. COP-1 has the strongest metal chelating capabilities. Although with higher molecular weight, COP-4 showed the poorest antioxidant abilities. These results suggested appreciate molecular weight COP possessed a better antioxidant activities. Additionally, all COPs had non-significant antiproliferative abilities in HaLa and HepG2 cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. High molecular weight hyaluronan decreases oxidative DNA damage induced by EDTA in human corneal epithelial cells

    PubMed Central

    Ye, J; Wu, H; Wu, Y; Wang, C; Zhang, H; Shi, X; Yang, J

    2012-01-01

    Purpose To investigate the toxic effects of ethylenediaminetetraacetic acid disodium salt (EDTA), a corneal penetration enhancer in topical ophthalmic formulations, on DNA in human corneal epithelial cells (HCEs), and to investigate whether the effect induced by EDTA can be inhibited by high molecular weight hyaluronan (HA). Methods Cells were exposed to EDTA in concentrations ranging from 0.00001 to 0.01% for 60 min, or 30 min high molecular weight HA pretreatment followed by EDTA treatment. The cell viability was measured by the MTT test. Cell apoptosis was determined with annexin V staining by flow cytometry. The DNA single- and double-strand breaks of HCEs were examined by alkaline comet assay and by immunofluorescence microscope detection of the phosphorylated form of histone variant H2AX (γH2AX) foci, respectively. Reactive oxygen species (ROS) production was assessed by the fluorescent probe, 2′, 7′-dichlorodihydrofluorescein diacetate. Results EDTA exhibited no adverse effect on cell viability and did not induce cell apoptosis in human corneal epithelial cells at concentrations lower than 0.01%. However, a significant increase of DNA single- and double-strand breaks was observed in a dose-dependent manner with all the concentrations of EDTA tested in HCEs. In addition, EDTA treatment led to elevated ROS generation. Moreover, 30 min preincubation with high molecular weight HA significantly decreased EDTA-induced ROS generation and DNA damage. Conclusions EDTA could induce DNA damage in HCEs, probably through oxidative stress. Furthermore, high molecular weight HA was an effective protective agent that had antioxidant properties and decreased DNA damage induced by EDTA. PMID:22595911

  20. Effects of inhaled high-molecular weight hyaluronan in inflammatory airway disease.

    PubMed

    Lamas, Adelaida; Marshburn, Jamie; Stober, Vandy P; Donaldson, Scott H; Garantziotis, Stavros

    2016-10-03

    Cystic fibrosis (CF) is a chronic inflammatory disease that is affecting thousands of patients worldwide. Adjuvant anti-inflammatory treatment is an important component of cystic fibrosis treatment, and has shown promise in preserving lung function and prolonging life expectancy. Inhaled high molecular weight hyaluronan (HMW-HA) is reported to improve tolerability of hypertonic saline and thus increase compliance, and has been approved in some European countries for use as an adjunct to hypertonic saline treatment in cystic fibrosis. However, there are theoretical concerns that HMW-HA breakdown products may be pro-inflammatory. In this clinical pilot study we show that sputum cytokines in CF patients receiving HMW-HA are not increased, and therefore HMW-HA does not appear to adversely affect inflammatory status in CF airways.

  1. Increase in gap junctional intercellular communication by high molecular weight hyaluronic acid associated with fibroblast growth factor 2 and keratinocyte growth factor production in normal human dermal fibroblasts.

    PubMed

    Park, Jeong Ung; Tsuchiya, Toshie

    2002-07-01

    The effects of different molecular weights of hyaluronic acid (HA), a major component of extracellular matrix, on gap junctional intercellular communication (GJIC) in normal human dermal fibroblasts (NHDF cells) were investigated. NHDF cells were cultured for 4 days with different molecular weights of HA and then the extent of GJIC was assessed by the scrape-loading dye transfer method, using Lucifer yellow. The area of dye transfer was greater in the dishes coated with HA than in those to which HA was added. Thus, NHDF cells cultured on surfaces coated with high molecular weight (HMW) HA (MW, 800 kDa) showed greatly enhanced GJIC. Furthermore, another aim of this study was to evaluate the effects of different molecular weights of HA on the production of FGF-2 and KGF, because both are important cytokines produced by NHDF cells. When FGF-2 and KGF cultured levels of cell extracts and media were determined by ELISA, both levels were significantly enhanced when cells were grown on plates coated with HMW HA. This finding indicated that the function of gap junction channels in NHDF cells grown on plates coated with HMW HA may promote the biosynthesis of growth factors such as FGF-2 and KGF.

  2. Molecular Weight and Molecular Weight Distributions in Synthetic Polymers.

    ERIC Educational Resources Information Center

    Ward, Thomas Carl

    1981-01-01

    Focuses on molecular weight and molecular weight distributions (MWD) and models for predicting MWD in a pedagogical way. In addition, instrumental methods used to characterize MWD are reviewed with emphasis on physical chemistry of each, including end-group determination, osmometry, light scattering, solution viscosity, fractionation, and…

  3. High molecular weight hyaluronic acid increases the differentiation potential of the murine chondrocytic ATDC5 cell line.

    PubMed

    Sato, Eiichi; Ando, Takashi; Ichikawa, Jiro; Okita, Genki; Sato, Nobutaka; Wako, Masanori; Ohba, Tetsuro; Ochiai, Satoshi; Hagino, Tetsuo; Jacobson, Richard; Haro, Hirotaka

    2014-12-01

    Osteoarthritis (OA) is a group of common, chronic, and painful inflammatory joint diseases. One important finding in OA patients is a remarkable decrease in the molecular weight of hyaluronic acid (HA) in the synovial fluid of affected joints. Therapeutic HA is available to patients in most parts of the world as a viscosupplementation product for the treatment of OA. Previous clinical reports show that high molecular weight HA (HMWHA) more effectively relieves pain than low molecular weight HA (LMWHA). However, the mechanism behind this finding remains unclear. In this study, we investigated whether a LMWHA (Low-0.9 MDa) and two types of HMWHA (High-1.9 MDa and 6 MDa) differentially affected chondroregulatory action. We tested this using ATDC5 cell, a murine chondrocytic cell line widely used in culture systems to study chondrogenic differentiation. We found that HMWHA, especially hylan G-F 20 (High-6 MDa), significantly induced aggrecan and proteoglycan accumulation, nodule formation, and mRNA expression of chondrogenic differentiation markers in a time- and dose-dependent manner. In addition, we showed that HMWHA prevented TNF-α induced inhibition of chondrogenic differentiation, with no effect on cell proliferation or viability. These results reveal that HMWHA significantly promotes chondrogenic differentiation of ATDC5 cells in vitro, and suggest that HMWHA plays a significant chondroregulatory role in vivo. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  4. Formation of porous HPCL/LPCL/HA scaffolds with supercritical CO2 gas foaming method.

    PubMed

    Moghadam, M Zahedi; Hassanajili, Sh; Esmaeilzadeh, F; Ayatollahi, M; Ahmadi, M

    2017-05-01

    Scaffold is a 3D porous structure that is made of different materials, such as synthetic and natural polymers. It plays the role of a synthetic extracellular matrix and permits adhesion, proliferation and differentiation of the cells. Porosity and pore size are the important factors for any 3D scaffold used in bone tissue engineering. In this study, porous scaffolds were prepared by adding hydroxyapatite (HA) nanoparticles as filler to the polymeric matrix of polycaprolactone (PCL) blends with two different molecular weight by using supercritical CO 2 (ScCO 2 ) foaming method. The effect of different parameters such as CO 2 pressure, ratios of the polymers and amount of the filler on the scaffold properties was investigated. The results showed that porosity increased with increment of pressure and decreased with increasing the ratio of the high molecular weight PCL to the low molecular weight PCL in the scaffolds and also HA content. Optimum condition for obtaining adequate porous scaffold of HPCL/LPCL/HA occurred at 140bar and 45°C. The physical and mechanical properties of the prepared scaffolds were characterized using DSC, XRD, FTIR, SEM, contact angle and compression test. By analyzing the results of these tests, optimum sample for cell culture was selected. The biocompatibility of the selected HPCL/LPCL/HA scaffold (HPCL/LPCL 60/40 containing 2.5% HA) was assessed in vitro by using human mesenchymal stem cells (hMSCs). Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Ultrahigh molecular weight aromatic siloxane polymers

    NASA Technical Reports Server (NTRS)

    Ludwick, L. M.

    1982-01-01

    The condensation of a diol with a silane in toluene yields a silphenylene-siloxane polymer. The reaction of stiochiometric amounts of the diol and silane produced products with molecular weights in the range 2.0 - 6.0 x 10 to the 5th power. The molecular weight of the product was greatly increased by a multistep technique. The methodology for synthesis of high molecular weight polymers using a two step procedure was refined. Polymers with weight average molecular weights in excess of 1.0 x 10 to the 6th power produced by this method. Two more reactive silanes, bis(pyrrolidinyl)dimethylsilane and bis(gamma butyrolactam)dimethylsilane, are compared with the dimethyleminodimethylsilane in ability to advance the molecular weight of the prepolymer. The polymers produced are characterized by intrinsic viscosity in tetrahydrofuran. Weight and number average molecular weights and polydispersity are determined by gel permeation chromatography.

  6. Activity-guided separation and characterization of new halocin HA3 from fermented broth of Haloferax larsenii HA3.

    PubMed

    Kumar, Vijay; Tiwari, Santosh Kumar

    2017-05-01

    Haloferax larsenii HA3 was able to grow optimally in HS medium containing 15% NaCl, at pH 7.2 and 42 °C in aerobic conditions. Strain HA3 was found to be round shape, Gram-negative, catalase-positive, sensitive to bile acid, and resistant to chloramphenicol, and could not utilize arginine. The lipid profile revealed the presence of glycerol diether moiety (GDEM) suggesting Haloarchaea characteristics. Phylogenetic analysis based on 16S rRNA gene sequence similarities showed that it was closely related to H. larsenii ZJ206. Interestingly, strain HA3 was found to produce halocin HA3 which was purified using ultrafiltration and chromatography. It was found to be stable up to 80 °C, pH 2.0-10.0, organic solvents, surfactants, and detergents tested. However, the activity of halocin HA3 was completely reduced in the presence of proteinase K and trypsin. It was found to be halocidal against H. larsenii HA10, rupturing cell boundary and leading to cell death. The molecular weight of halocin HA3 was found to be ~13 kDa and MALDI-TOF MS/MS analysis suggested no homology with known halocins. The N-terminal ten amino-acid residues, NH 2 MNLGIILETN-COOH, suggested a new/novel halocin. These properties of halocin HA3 may be applicable for control of Haloarchaea in environments and salted foods.

  7. Phase Behavior of Binary Blends of High Molecular Weight Diblock Copolymers with a Low Molecular Weight Triblock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mickiewicz, Rafal A.; Ntoukas, Eleftherios; Avgeropoulos, Apostolos

    2009-08-26

    Binary blends of four different high molecular weight poly(styrene-b-isoprene) (SI) diblock copolymers with a lower molecular weight poly(styrene-b-isoprene-b-styrene) (SIS) triblock copolymer were prepared, and their morphology was characterized by transmission electron microscopy and ultra-small-angle X-ray scattering. All the neat block copolymers have nearly symmetric composition and exhibit the lamellar morphology. The SI diblock copolymers had number-average molecular weights, Mn, in the range 4.4 x 10{sup 5}--1.3 x 10{sup 6} g/mol and volume fractions of poly(styrene), {Phi}{sub PS}, in the range 0.43--0.49, and the SIS triblock had a molecular weight of Mn 6.2 x 10{sup 4} g/mol with {Phi}{sub PS} =more » 0.41. The high molecular weight diblock copolymers are very strongly segregating, with interaction parameter values, {chi}N, in the range 470--1410. A morphological phase diagram in the parameter space of molecular weight ratio (R = M{sub n}{sup diblock}/1/2M{sub n}{sup triblock}) and blend composition was constructed, with R values in the range between 14 and 43, which are higher than previously reported. The phase diagram revealed a large miscibility gap for the blends, with macrophase separation into two distinct types of microphase-separated domains for weight fractions of SI, w{sub SI} < 0.9, implying virtually no solubility of the much higher molecular weight diblocks in the lower molecular weight triblock. For certain blend compositions, above R 30, morphological transitions from the lamellar to cylindrical and bicontinuous structures were also observed.« less

  8. Effect of molecular weight on polymer processability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karg, R.F.

    1983-01-01

    Differences in rheological behavior due to the polymer molecular weight and molecular weight distribution have been shown with the MPT. SBR polymers having high molecular weight fractions develop higher stress relaxation time values due to the higher degree of polymer entanglements. Tests conducted at increasing temperatures show the diminishing influence of the polymer entanglements upon stress relaxation time. EPDM polymers show stress relaxation time and head pressure behavior which correlates with mill processability. As anticipated, compounded stock of EPDM have broad molecular weight distribution has higher stress relaxation time values than EPDM compounds with narrow molecular weight distribution.

  9. Effect of molecular weight on polyphenylquinoxaline properties

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J.

    1991-01-01

    A series of polyphenyl quinoxalines with different molecular weight and end-groups were prepared by varying monomer stoichiometry. Thus, 4,4'-oxydibenzil and 3,3'-diaminobenzidine were reacted in a 50/50 mixture of m-cresol and xylenes. Reaction concentration, temperature, and stir rate were studied and found to have an effect on polymer properties. Number and weight average molecular weights were determined and correlated well with viscosity data. Glass transition temperatures were determined and found to vary with molecular weight and end-groups. Mechanical properties of films from polymers with different molecular weights were essentially identical at room temperature but showed significant differences at 232 C. Diamine terminated polymers were found to be much less thermooxidatively stable than benzil terminated polymers when aged at 316 C even though dynamic thermogravimetric analysis revealed only slight differences. Lower molecular weight polymers exhibited better processability than higher molecular weight polymers.

  10. In situ cross-linkable high molecular weight hyaluronan-bisphosphonate conjugate for localized delivery and cell-specific targeting: a hydrogel linked prodrug approach.

    PubMed

    Varghese, Oommen P; Sun, Weilun; Hilborn, Jöns; Ossipov, Dmitri A

    2009-07-01

    We present here a novel synthesis route to functionalize high molecular weight hyaluronan (HMW-HA) with a hydrazide group and a bioactive ligand, namely bisphosphonate (BP). For this purpose, a new symmetrical self-immolative biscarbazate linker has been devised. The hydrazide group was used to form hydrazone cross-linked hydrogel upon treating with previously described aldehyde modified hyaluronan. The 1:1 weight ratio of these two polymers gave hydrogel in less than 30 s. In this communication we present the first in vitro results showing that even though HA can target CD44 positive cancer cells (HCT-116), receptor mediated endocytosis could only occur by cleavage of high molecular weight HA with an ubiquitous enzyme, hyaluronidase (Hase). The cancer cells are known to overexpress CD44 receptors and also increase the hyaluronidase activity in vivo. Thus the pro-drug design, based on drug conjugation to HMW-HA, represents a new drug delivery platform where the drug potency is triggered by Hase mediated degradation of the HA-drug conjugate. We have successfully demonstrated that the cross-linkable HA-BP conjugate first undergoes Hase-mediated scission to the fragments of suitable sizes so as to be internalized by CD44 positive cells. The specificity of this targeting was proven by comparing the results with less CD44 positive HEK-293T cells. The localized delivery of such drugs at the surgical resection site opens up avenues to control tumor recurrence after removal of the tumor. In the form of hydrogel it would prevent systemic exposure of the drug and would allow its controlled release.

  11. Apparatus for molecular weight separation

    DOEpatents

    Smith, Richard D.; Liu, Chuanliang

    2001-01-01

    The present invention relates generally to an apparatus and method for separating high molecular weight molecules from low molecular weight molecules. More specifically, the invention relates to the use of microdialysis for removal of the salt (low molecular weight molecules) from a nucleotide sample (high molecular weight molecules) for ESI-MS analysis. The dialysis or separation performance of the present invention is improved by (1) increasing dialysis temperature thereby increasing desalting efficiency and improving spectrum quality; (2) adding piperidine and imidazole to the dialysis buffer solution and reducing charge states and further increasing detection sensitivity for DNA; (3) using low concentrations (0-2.5 mM NH4OAc) of dialysis buffer and shifting the DNA negative ions to higher charge states, producing a nearly 10-fold increase in detection sensitivity and a slightly decreased desalting efficiency, (4) conducting a two-stage separation or (5) any combination of (1), (2), (3) and (4).

  12. Mechanical, Rheological, and Bioactivity Properties of Ultra High-Molecular-Weight Polyethylene Bioactive Composites Containing Polyethylene Glycol and Hydroxyapatite

    PubMed Central

    Ahmad, Mazatusziha; Wahit, Mat Uzir; Abdul Kadir, Mohammed Rafiq; Mohd Dahlan, Khairul Zaman

    2012-01-01

    Ultrahigh-molecular-weight polyethylene/high-density polyethylene (UHMWPE/HDPE) blends prepared using polyethylene glycol PEG as the processing aid and hydroxyapatite (HA) as the reinforcing filler were found to be highly processable using conventional melt blending technique. It was demonstrated that PEG reduced the melt viscosity of UHMWPE/HDPE blend significantly, thus improving the extrudability. The mechanical and bioactive properties were improved with incorporation of HA. Inclusion of HA from 10 to 50 phr resulted in a progressive increase in flexural strength and modulus of the composites. The strength increment is due to the improvement on surface contact between the irregular shape of HA and polymer matrix by formation of mechanical interlock. The HA particles were homogenously distributed even at higher percentage showed improvement in wetting ability between the polymer matrix and HA. The inclusion of HA enhanced the bioactivity properties of the composite by the formation of calcium phosphate (Ca-P) precipitates on the composite surface as proven from SEM and XRD analysis. PMID:22666129

  13. Determinations of molecular weight and molecular weight distribution of high polymers by the rheological properties

    NASA Technical Reports Server (NTRS)

    Huang, J. Y.; Hou, T. H.; Tiwari, S. N.

    1989-01-01

    Several methods are reviewed by which the molecular weight (MW) and the molecular weight distribution (MWD) of polymeric material were determined from the rheological properties. A poly(arylene ether) polymer with six different molecular weights was used in this investigation. Experimentally measured MW and MWD were conducted by GPC/LALLS (gel permeation chromatography/low angle laser light scattering), and the rheological properties of the melts were measured by a Rheometric System Four rheometer. It was found that qualitative information of the MW and MWD of these polymers could be derived from the viscoelastic properties, with the methods proposed by Zeichner and Patel, and by Dormier et al., by shifting the master curves of the dynamic storage modulus, G', and the loss modulus, G'', along the frequency axis. Efforts were also made to calculate quantitative profiles of MW and MWD for these polymers from their rheological properties. The technique recently proposed by Wu was evaluated. It was found that satisfactory results could only be obtained for polymers with single modal distribution in the molecular weight.

  14. Removal of humic acid using TiO2 photocatalytic process--fractionation and molecular weight characterisation studies.

    PubMed

    Liu, Sanly; Lim, May; Fabris, Rolando; Chow, Christopher; Chiang, Ken; Drikas, Mary; Amal, Rose

    2008-05-01

    The photocatalytic removal of humic acid (HA) using TiO2 under UVA irradiation was examined by monitoring changes in the UV(254) absorbance, dissolved organic carbon (DOC) concentration, apparent molecular weight distribution, and trihalomethane formation potentials (THMFPs) over treatment time. A resin fractionation technique in which the samples were fractionated into four components: very hydrophobic acids (VHA), slightly hydrophobic acids, hydrophilic charged (CHA) and hydrophilic neutral (NEU) was also employed to elucidate the changes in the chemical nature of the HA components during treatment. The UVA/TiO2 process was found to be effective in removing more than 80% DOC and 90% UV(254) absorbance. The THMFPs of samples were decreased to below 20 microg l(-1) after treatments, which demonstrate the potential to meet increasingly stringent regulatory level of trihalomethanes in water. Resin fractionation analysis showed that the VHA fraction was decreased considerably as a result of photocatalytic treatments, forming CHA intermediates which were further degraded with increased irradiation time. The NEU fraction, which comprised of non-UV-absorbing low molecular weight compounds, was found to be the most persistent component.

  15. Reducing Capacities and Distribution of Redox-Active Functional Groups in Low Molecular Weight Fractions of Humic Acids.

    PubMed

    Yang, Zhen; Kappler, Andreas; Jiang, Jie

    2016-11-15

    Humic substances (HS) are redox-active organic compounds with a broad spectrum of molecular sizes and reducing capacities, that is, number of electrons donated or accepted. However, it is unknown which role the distribution of redox-active functional groups in different molecule sizes plays for HS redox reactions in varying pore sizes microenvironments. We used dialysis experiments to separate bulk humic acids (HA) into low molecular weight fractions (LMWF) and retentate, for example, the remaining HA in the dialysis bag. LMWF accounted for only 2% of the total organic carbon content of the HA. However, their reducing capacities per gram of carbon were up to 33 times greater than either those of the bulk HA or the retentate. For a structural/mechanistic understanding of the high reducing capacity of the LMWF, we used fluorescence spectroscopy. We found that the LWMF showed significant fluorescence intensities for quinone-like functional groups, as indicated by the quinoid π-π* transition, that are probably responsible for the high reducing capacities. Therefore, the small-sized HS fraction can play a major role for redox transformation of metals or pollutants trapped in soil micropores (<2.5 nm diameter).

  16. Influence of different nominal molecular weight fractions of humic acids on phenol oxidation by permanganate.

    PubMed

    He, Di; Guan, Xiaohong; Ma, Jun; Yu, Min

    2009-11-01

    The effects of humic acid (HA) and its different nominal molecular weight (NMW) fractions on the phenol oxidation by permanganate were studied. Phenol oxidation by permanganate was enhanced by the presence of HA at pH 4-8, while slightly inhibited at pH 9-10. The effects of HA on phenol oxidation by permanganate were dependent on HA concentration and permanganate/phenol molar ratios. The high NMW fractions of HA enhanced phenol oxidation by permanganate at pH 7 more significantly than the low fractions of HA. The apparent second-order rate constants of phenol oxidation by permanganate in the presence of HA correlated well with their specific ultraviolet absorption (SUVA) at 254 nm and specific violet absorption (SVA) at 465 or 665 nm. High positive correlation coefficients (R(2) > 0.72) implied that pi-electrons of HA strongly influenced the reactivity of phenol towards permanganate oxidation which agreed well with the information provided by fluorescence spectroscopy. The FTIR analysis indicated that the HA fractions rich in aliphatic character, polysaccharide-like substances, and the amount of carboxylate groups had less effect on phenol oxidation by permanganate. The negative correlation between the rate constants of phenol oxidation by permanganate and O/C ratios suggested that the oxidation of phenol increased with a decrease in the content of oxygen-containing functional groups.

  17. Microdialysis unit for molecular weight separation

    DOEpatents

    Smith, Richard D.; Liu, Chuanliang

    1999-01-01

    The present invention relates generally to an apparatus and method for separating high molecular weight molecules from low molecular weight molecules. More specifically, the invention relates to the use of microdialysis for removal of the salt (low molecular weight molecules) from a nucleotide sample (high molecular weight molecules) for ESI-MS analysis. The dialysis or separation performance of the present invention is improved by (1) increasing dialysis temperature thereby increasing desalting efficiency and improving spectrum quality; (2) adding piperidine and imidazole to the dialysis buffer solution and reducing charge states and further increasing detection sensitivity for DNA; (3) using low concentrations (0-2.5 mM NH4OAc) of dialysis buffer and shifting the DNA negative ions to higher charge states, producing a nearly 10-fold increase in detection sensitivity and a slightly decreased desalting efficiency, or (4) any combination of (1), (2), and (3).

  18. Production of high molecular weight polylactic acid

    DOEpatents

    Bonsignore, Patrick V.

    1995-01-01

    A degradable high molecular weight poly(lactic acid). A poly(lactic acid) has a terminal end group of one of carboxyl or hydroxyl groups with low molecular weight poly(lactic acid) units coupled with linking agents of di-isocyanates, bis-epoxides, bis-oxazolines and bis-ortho esters. The resulting high molecular weight poly(lactic acid) can be used for applications taking advantage of the improved physical properties.

  19. SEDFIT-MSTAR: Molecular weight and molecular weight distribution analysis of polymers by sedimentation equilibrium in the ultracentrifuge

    PubMed Central

    Schuck, Peter; Gillis, Richard B.; Besong, Tabot M.D.; Almutairi, Fahad; Adams, Gary G.; Rowe, Arthur J.; Harding, Stephen E.

    2014-01-01

    Sedimentation equilibrium (analytical ultracentrifugation) is one of the most inherently suitable methods for the determination of average molecular weights and molecular weight distributions of polymers, because of its absolute basis (no conformation assumptions) and inherent fractionation ability (without the need for columns or membranes and associated assumptions over inertness). With modern instrumentation it is also possible to run up to 21 samples simultaneously in a single run. Its application has been severely hampered because of difficulties in terms of baseline determination (incorporating estimation of the concentration at the air/solution meniscus) and complexity of the analysis procedures. We describe a new method for baseline determination based on a smart-smoothing principle and built into the highly popular platform SEDFIT for the analysis of the sedimentation behavior of natural and synthetic polymer materials. The SEDFIT-MSTAR procedure – which takes only a few minutes to perform - is tested with four synthetic data sets (including a significantly non-ideal system) a naturally occurring protein (human IgG1) and two naturally occurring carbohydrate polymers (pullulan and λ–carrageenan) in terms of (i) weight average molecular weight for the whole distribution of species in the sample (ii) the variation in “point” average molecular weight with local concentration in the ultracentrifuge cell and (iii) molecular weight distribution. PMID:24244936

  20. Production of high molecular weight polylactic acid

    DOEpatents

    Bonsignore, P.V.

    1995-11-28

    A degradable high molecular weight poly(lactic acid) is described. The poly(lactic acid) has a terminal end group of one of carboxyl or hydroxyl groups with low molecular weight poly(lactic acid) units coupled with linking agents of di-isocyanates, bis-epoxides, bis-oxazolines and bis-ortho esters. The resulting high molecular weight poly(lactic acid) can be used for applications taking advantage of the improved physical properties.

  1. Absence of differences among low, middle, and high molecular weight hyaluronan in activating murine immune cells in vitro.

    PubMed

    Šafránková, Barbora; Hermannová, Martina; Nešporová, Kristina; Velebný, Vladimír; Kubala, Lukáš

    2018-02-01

    Hyaluronan (HA) effects on immune response are suggested to be dependent on HA molecular weight (MW), as low MW HA should activate immune cells in contrast to high MW HA. However, some current studies do not support this conception and emphasize the importance of the form of preparation of HA, particularly with respect to its purity and origin. We compared the activation of mouse immune cells by HA samples (100kDa, 500kDa, and 997kDa) prepared from HA originating from rooster comb, and HA samples (71kDa, 500kDa, and 1000kDa) prepared from pharmacological grade HA originating from Streptococcus equi. Interestingly, in contrast to established theory, only middle and high MW HA originating from rooster comb induced the production of tumor necrosis factor-α by macrophages and in whole blood. Further, all tested preparations of HA failed to induce the expression of inducible nitric oxide synthase, the production of nitric oxide, or the expression of cyclooxygenase 2 in macrophages and splenocytes. Importantly, all HA samples originating from rooster comb were found to be contaminated by endotoxin (up to 1.23EU/ml). Hence, low MW HA did not reveal itself to have significantly higher immunostimulatory activity compared to HA of higher MW. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Influence of Low Molecular Weight Fractions of Humic Substances on Their Reducing Capacities and Distribution of Redox Functional Groups.

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Jiang, J.

    2015-12-01

    Humic substances (HS) are redox-active organic compounds and their reducing capacities depend on molecule structure and distribution of redox functional groups (RFG). During dialysis experiments, initial HS were separated into low molecular weight fractions (LMWF, molecular weight <3,500 Da or <14,000 Da) and retentate. LMWF accounts for only 2% in TOC contents of HS molecules, while their reducing capacities are up to 33 times greater than those of initial HA. However, great amount of reducing capacities of LMWF does not cause decreasing reducing capacities of retentate relative to those of initial HA. Total reducing capacities of whole dialysis device were calculated for initial HA, retentate and LMWF in native and reduced state, and result suggests that releasing of LMWF leads to production and explosion of RFG. LWMF have great fluorescence intensities for protein-like fluorophores and humic acids-like fluorophores (quinone-like functional groups), where quinonoid π-π* transition is responsible for the great reducing capacities of LMWF. The 3,500 Da molecules (0.25 nm diameter) of HS are capable of stimulating transformation of redox-active metals or potential pollutants trapped in soil micropores (< 2 nm diameter). A development of relationship between reducing capacity and Ex / Em position provides a possibility to predicate relative reducing capacities of HS in treated raw water sample.

  3. Interaction of Low Molecular Weight Hyaluronan (LMW-HA) with CD44 and Toll-Like Receptors Promotes the Actin Filament-Associated Protein (AFAP-110)-Actin Binding and MyD88-NFκB Signaling Leading to Pro-inflammatory Cytokine/Chemokine Production and Breast Tumor Invasion

    PubMed Central

    Bourguignon, Lilly Y.W.; Wong, Gabriel; Earle, Christine A.; Xia, Weiliang

    2011-01-01

    Both high and low molecular weight hyaluronan (HMW-HA vs. LMW-HA) exist in various tissues and cells. In this study we investigated LMW-HA-mediated CD44 interaction with Toll-like receptors (TLRs), the actin filament-associated protein (AFAP-110) and a myeloid differentiation factor (MyD88) in breast tumor cells (MDA-MB-231 cells). Our data indicate that LMW-HA (but not HMW-HA) preferentially stimulates a physical association between CD44 and TLRs followed by a concomitant recruitment of AFAP-110 and MyD88 into receptor-containing complexes in breast tumor cells. LMW-HA-activated AFAP-110 then binds to F-actin resulting in MyD88/NF-κB nuclear translocation, NF-κB-specific transcription and target gene (IL-1β and IL-8) expression. These signaling events lead to pro-inflammatory cytokine/chemokine production in the breast tumor cells. AFAP-110-F-actin (activated by LMW-HA) also promotes tumor cell invasion. Downregulation of AFAP-110 or MyD88 by transfecting breast tumor cells with AFAP-110 siRNA or MyD88 siRNA, respectively not only blocks the ability of LMW-HA to stimulate AFAP-110-actin function, but also impairs MyD88-NF-κB nuclear translocation and NF-κB transcriptional activation. Consequently, both IL-1β/IL-8 production and tumor cell invasion are impaired. Taken together, these findings suggest that LMW-HA plays an important role in CD44-TLR-associated AFAP-110-actin interaction and MyD88-NF-κB signaling required for tumor cell behaviors which may contribute to the progression of breast cancer. PMID:22031535

  4. The Impact of HA Oligomer Content on Physical, Mechanical, and Biologic Properties of Divinyl Sulfone-Crosslinked HA Hydrogels

    PubMed Central

    Ibrahim, Samir; Kang, Qian K; Ramamurthi, Anand

    2009-01-01

    In recent studies, we showed that exogenous hyaluronic acid oligomers (HA-o) stimulate functional endothelialization, though native long-chain HA is more bioinert and possibly more biocompatible. Thus, in this study, hydrogels containing high molecular weight (HMW) HA (1×106 Da) and HA oligomer mixtures (HA-o: 0.75–10 kDa) were created by crosslinking with divinyl sulfone (DVS). The incorporation of HA oligomers was found to compromise the physical and mechanical properties of the gels (rheology, apparent crosslinking density, swelling ratio, degradation) and to very mildly enhance inflammatory cell recruitment in vivo; increasing the DVS crosslinker content within the gels in general, had the opposite effect, though the relatively high concentration of DVS within these gels (necessary to create a solid gel) also stimulated a mild sub-cutaneous inflammatory response in vivo and VCAM-1 expression by ECs cultured atop; ICAM-expression levels remained very low irrespective extent of DVS crosslinking or HA-o content. The greatest EC attachment and proliferation (MTT assay) was observed on gels that contained the highest amount of HA-o. The study shows that the beneficial EC response to HA oligomers and biocompatibility of HA is mostly unaltered by their chemical derivatization and crosslinking into a hydrogel. However, the study also demonstrates that the relatively high concentrations of DVS, necessary to create solid gels, compromises their biocompatibility. Moreover, the poor mechanics of even these heavily crosslinked gels, in the context of vascular implantation, necessitates the investigation of other, more appropriate crosslinking agents. Alternately, the outcomes of this study may be used to guide an approach based on chemical immobilization and controlled surface-presentation of both bioactive HA oligomers and more biocompatible HMW HAon synthetic or tissue engineered grafts already in use, without the use of a crosslinker, so that improved, predictable

  5. The Molecular Weight Distribution of Polymer Samples

    ERIC Educational Resources Information Center

    Horta, Arturo; Pastoriza, M. Alejandra

    2007-01-01

    Various methods for the determination of the molecular weight distribution (MWD) of different polymer samples are presented. The study shows that the molecular weight averages and distribution of a polymerization completely depend on the characteristics of the reaction itself.

  6. Low-molecular-weight heparin for thromboprophylaxis.

    PubMed

    Camporese, Giuseppe; Bernardi, Enrico

    2009-09-01

    Venous thromboembolism represents a potentially threatening complication in surgical and medical patients. Thromboprophylaxis showed a significant reduction of venous thromboembolic events, and low-molecular-weight heparins have been considered the standardized prophylactic regimen for a long time. The purpose of this review is to provide updated evidence on the use of low-molecular-weight heparins for prevention of venous thromboembolism after the publication of the latest American College of Chest Physicians Evidence-Based Clinical Practice Guidelines on antithrombotic and thrombolytic therapy. Low-molecular-weight heparins, used as comparator or investigational drug, have been investigated in several studies not included in the analysis of the latest American College of Chest Physicians Guidelines on Antithrombotic and Thrombolytic Therapy. Data gathered from studies published from December 2007 up to May 2009 dealing with surgical and medical patients have been collected and discussed. Low-molecular-weight heparins are expanding their application, but progressively they will be replaced by other new antithrombotics for the prophylaxis of venous thromboembolism. Surgical patients undergo a more concerted approach to thromboprophylaxis than medical patients. Future research should aim at improving prophylaxis in the latter setting in order to significantly reduce the rate of venous thromboembolic events.

  7. Extraction of hyaluronic acid (HA) from rooster comb and characterization using flow field-flow fractionation (FlFFF) coupled with multiangle light scattering (MALS).

    PubMed

    Kang, Dong Young; Kim, Won-Suk; Heo, In Sook; Park, Young Hun; Lee, Seungho

    2010-11-01

    Hyaluronic acid (HA) was extracted in a relatively large scale from rooster comb using a method similar to that reported previously. The extraction method was modified to simplify and to reduce time and cost in order to accommodate a large-scale extraction. Five hundred grams of frozen rooster combs yielded about 500 mg of dried HA. Extracted HA was characterized using asymmetrical flow field-flow fractionation (AsFlFFF) coupled online to a multiangle light scattering detector and a refractive index detector to determine the molecular size, molecular weight (MW) distribution, and molecular conformation of HA. For characterization of HA, AsFlFFF was operated by a simplified two-step procedure, instead of the conventional three-step procedure, where the first two steps (sample loading and focusing) were combined into one to avoid the adsorption of viscous HA onto the channel membrane. The simplified two-step AsFlFFF yielded reasonably good separations of HA molecules based on their MWs. The weight average MW (M(w) ) and the average root-mean-square (RMS) radius of HA extracted from rooster comb were 1.20×10(6) and 94.7 nm, respectively. When the sample solution was filtered through a 0.45 μm disposable syringe filter, they were reduced down to 3.8×10(5) and 50.1 nm, respectively. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. The Mechanical Properties and Modeling of Creep Behavior of UHMWPE/Nano-HA Composites

    NASA Astrophysics Data System (ADS)

    Li, Fan; Gao, Lilan; Gao, Hong; Cui, Yun

    2017-09-01

    Composites with different levels of hydroxyapatite (HA) content and ultra-high molecular weight polyethylene (UHMWPE) were prepared in this work. Mechanical properties of the composites were examined here, and to evaluate the effect of HA particles on the time-dependent behavior of the pure matrix, the creep and recovery performance of composites at various stress levels were also researched. As expected, the addition of HA influenced the time-dependent response of the UHMWPE and the effect had a strong dependence on the HA content. The creep and recovery strain of the composites significantly decreased with increasing HA content, and tensile properties were also impaired, which was due to the concentration of HA fillers. The mechanism and effect of HA dispersed into the UHMWPE matrix were examined by scanning electron microscopy. Additionally, since variations in the adjusted parameters revealed the impact of HA on the creep behavior of the UHMWPE matrix, Findley's model was employed. The results indicated that the analytical model was accurate for the prediction of creep of the pure matrix and its composites.

  9. Molecular Weight Effects on the Viscoelastic Response of a Polyimide

    NASA Technical Reports Server (NTRS)

    Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.

    2000-01-01

    The effect of molecular weight on the viscoelastic performance of an advanced polymer (LaRC -SI) was investigated through the use of creep compliance tests. Testing consisted of short-term isothermal creep and recovery with the creep segments performed under constant load. The tests were conducted at three temperatures below the glass transition temperature of each material with different molecular weight. Through the use of time-aging-time superposition procedures, the material constants, material master curves and aging-related parameters were evaluated at each temperature for a given molecular weight. The time-temperature superposition technique helped to describe the effect of temperature on the timescale of the viscoelastic response of each molecular weight. It was shown that the low molecular weight materials have increased creep compliance and creep compliance rate, and are more sensitive to temperature than the high molecular weight materials. Furthermore, a critical molecular weight transition was observed to occur at a weight-average molecular weight of approximately 25000 g/mol below which, the temperature sensitivity of the time-temperature superposition shift factor increases rapidly.

  10. Understanding the undelaying mechanism of HA-subtyping in the level of physic-chemical characteristics of protein.

    PubMed

    Ebrahimi, Mansour; Aghagolzadeh, Parisa; Shamabadi, Narges; Tahmasebi, Ahmad; Alsharifi, Mohammed; Adelson, David L; Hemmatzadeh, Farhid; Ebrahimie, Esmaeil

    2014-01-01

    The evolution of the influenza A virus to increase its host range is a major concern worldwide. Molecular mechanisms of increasing host range are largely unknown. Influenza surface proteins play determining roles in reorganization of host-sialic acid receptors and host range. In an attempt to uncover the physic-chemical attributes which govern HA subtyping, we performed a large scale functional analysis of over 7000 sequences of 16 different HA subtypes. Large number (896) of physic-chemical protein characteristics were calculated for each HA sequence. Then, 10 different attribute weighting algorithms were used to find the key characteristics distinguishing HA subtypes. Furthermore, to discover machine leaning models which can predict HA subtypes, various Decision Tree, Support Vector Machine, Naïve Bayes, and Neural Network models were trained on calculated protein characteristics dataset as well as 10 trimmed datasets generated by attribute weighting algorithms. The prediction accuracies of the machine learning methods were evaluated by 10-fold cross validation. The results highlighted the frequency of Gln (selected by 80% of attribute weighting algorithms), percentage/frequency of Tyr, percentage of Cys, and frequencies of Try and Glu (selected by 70% of attribute weighting algorithms) as the key features that are associated with HA subtyping. Random Forest tree induction algorithm and RBF kernel function of SVM (scaled by grid search) showed high accuracy of 98% in clustering and predicting HA subtypes based on protein attributes. Decision tree models were successful in monitoring the short mutation/reassortment paths by which influenza virus can gain the key protein structure of another HA subtype and increase its host range in a short period of time with less energy consumption. Extracting and mining a large number of amino acid attributes of HA subtypes of influenza A virus through supervised algorithms represent a new avenue for understanding and

  11. Understanding the Underlying Mechanism of HA-Subtyping in the Level of Physic-Chemical Characteristics of Protein

    PubMed Central

    Ebrahimi, Mansour; Aghagolzadeh, Parisa; Shamabadi, Narges; Tahmasebi, Ahmad; Alsharifi, Mohammed; Adelson, David L.

    2014-01-01

    The evolution of the influenza A virus to increase its host range is a major concern worldwide. Molecular mechanisms of increasing host range are largely unknown. Influenza surface proteins play determining roles in reorganization of host-sialic acid receptors and host range. In an attempt to uncover the physic-chemical attributes which govern HA subtyping, we performed a large scale functional analysis of over 7000 sequences of 16 different HA subtypes. Large number (896) of physic-chemical protein characteristics were calculated for each HA sequence. Then, 10 different attribute weighting algorithms were used to find the key characteristics distinguishing HA subtypes. Furthermore, to discover machine leaning models which can predict HA subtypes, various Decision Tree, Support Vector Machine, Naïve Bayes, and Neural Network models were trained on calculated protein characteristics dataset as well as 10 trimmed datasets generated by attribute weighting algorithms. The prediction accuracies of the machine learning methods were evaluated by 10-fold cross validation. The results highlighted the frequency of Gln (selected by 80% of attribute weighting algorithms), percentage/frequency of Tyr, percentage of Cys, and frequencies of Try and Glu (selected by 70% of attribute weighting algorithms) as the key features that are associated with HA subtyping. Random Forest tree induction algorithm and RBF kernel function of SVM (scaled by grid search) showed high accuracy of 98% in clustering and predicting HA subtypes based on protein attributes. Decision tree models were successful in monitoring the short mutation/reassortment paths by which influenza virus can gain the key protein structure of another HA subtype and increase its host range in a short period of time with less energy consumption. Extracting and mining a large number of amino acid attributes of HA subtypes of influenza A virus through supervised algorithms represent a new avenue for understanding and

  12. High molecular weight hyaluronic acid limits astrocyte activation and scar formation after spinal cord injury

    NASA Astrophysics Data System (ADS)

    Khaing, Zin Z.; Milman, Brian D.; Vanscoy, Jennifer E.; Seidlits, Stephanie K.; Grill, Raymond J.; Schmidt, Christine E.

    2011-08-01

    A major hurdle for regeneration after spinal cord injury (SCI) is the ability of axons to penetrate and grow through the scar tissue. After SCI, inflammatory cells, astrocytes and meningeal cells all play a role in developing the glial scar. In addition, degradation of native high molecular weight (MW) hyaluronic acid (HA), a component of the extracellular matrix, has been shown to induce activation and proliferation of astrocytes. However, it is not known if the degradation of native HA actually enhances glial scar formation. We hypothesize that the presence of high MW HA (HA with limited degradation) after SCI will decrease glial scarring. Here, we demonstrate that high MW HA decreases cell proliferation and reduces chondroitin sulfate proteoglycan (CSPG) production in cultured neonatal and adult astrocytes. In addition, stiffness-matched high MW HA hydrogels crosslinked to resist degradation were implanted in a rat model of spinal dorsal hemisection injury. The numbers of immune cells (macrophages and microglia) detected at the lesion site in animals with HA hydrogel implants were significantly reduced at acute time points (one, three and ten days post-injury). Lesioned animals with HA implants also exhibited significantly lower CSPG expression at ten days post-injury. At nine weeks post-injury, animals with HA hydrogel implants exhibited a significantly decreased astrocytic response, but did not have significantly altered CSPG expression. Combined, these data suggest that high MW HA, when stabilized against degradation, mitigates astrocyte activation in vitro and in vivo. The presence of HA implants was also associated with a significant decrease in CSPG deposition at ten days after SCI. Therefore, HA-based hydrogel systems hold great potential for minimizing undesired scarring as part of future repair strategies after SCI.

  13. High molecular weight hyaluronic acid limits astrocyte activation and scar formation after spinal cord injury.

    PubMed

    Khaing, Zin Z; Milman, Brian D; Vanscoy, Jennifer E; Seidlits, Stephanie K; Grill, Raymond J; Schmidt, Christine E

    2011-08-01

    A major hurdle for regeneration after spinal cord injury (SCI) is the ability of axons to penetrate and grow through the scar tissue. After SCI, inflammatory cells, astrocytes and meningeal cells all play a role in developing the glial scar. In addition, degradation of native high molecular weight (MW) hyaluronic acid (HA), a component of the extracellular matrix, has been shown to induce activation and proliferation of astrocytes. However, it is not known if the degradation of native HA actually enhances glial scar formation. We hypothesize that the presence of high MW HA (HA with limited degradation) after SCI will decrease glial scarring. Here, we demonstrate that high MW HA decreases cell proliferation and reduces chondroitin sulfate proteoglycan (CSPG) production in cultured neonatal and adult astrocytes. In addition, stiffness-matched high MW HA hydrogels crosslinked to resist degradation were implanted in a rat model of spinal dorsal hemisection injury. The numbers of immune cells (macrophages and microglia) detected at the lesion site in animals with HA hydrogel implants were significantly reduced at acute time points (one, three and ten days post-injury). Lesioned animals with HA implants also exhibited significantly lower CSPG expression at ten days post-injury. At nine weeks post-injury, animals with HA hydrogel implants exhibited a significantly decreased astrocytic response, but did not have significantly altered CSPG expression. Combined, these data suggest that high MW HA, when stabilized against degradation, mitigates astrocyte activation in vitro and in vivo. The presence of HA implants was also associated with a significant decrease in CSPG deposition at ten days after SCI. Therefore, HA-based hydrogel systems hold great potential for minimizing undesired scarring as part of future repair strategies after SCI.

  14. Design of peptide mimetics to block pro-inflammatory functions of HA fragments.

    PubMed

    Hauser-Kawaguchi, Alexandra; Luyt, Leonard G; Turley, Eva

    2018-01-31

    Hyaluronan is a simple extracellular matrix polysaccharide that actively regulates inflammation in tissue repair and disease processes. The native HA polymer, which is large (>500 kDa), contributes to the maintenance of homeostasis. In remodeling and diseased tissues, polymer size is strikingly polydisperse, ranging from <10 kDa to >500 kDa. In a diseased or stressed tissue context, both smaller HA fragments and high molecular weight HA polymers can acquire pro-inflammatory functions, which result in the activation of multiple receptors, triggering pro-inflammatory signaling to diverse stimuli. Peptide mimics that bind and scavenge HA fragments have been developed, which show efficacy in animal models of inflammation. These studies indicate both that HA fragments are key to driving inflammation and that scavenging these is a viable therapeutic approach to blunting inflammation in disease processes. This mini-review summarizes the peptide-based methods that have been reported to date for blocking HA signaling events as an anti-inflammatory therapeutic approach. Copyright © 2017 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  15. Minor histocompatibility antigen HA-1 and HA-2 polymorphisms in Taiwan: frequency and application in hematopoietic stem cell transplantation.

    PubMed

    Lio, Hoi-Yan; Tang, Jih-Luh; Wu, Jui; Wu, Shang-Ju; Lin, Chun-Ying; Yang, Ya-Chien

    2010-09-01

    Minor histocompatibility antigens influence the occurrence of graft-vs.-host disease and graft-vs.-leukemia effects after hematopoietic stem cell transplantation (HSCT). We determined the population frequencies of HA-1 and HA-2 alleles in Taiwan and exploited their potential applications in allogeneic HSCT. HA-1 and HA-2 were genotyped using polymerase chain reaction and restriction fragment length polymorphism in healthy controls (221 for HA-1 and 306 for HA-2) and HLA-matched donor-recipient sibling pairs with HSCT (92 for HA-1 and 38 for HA-2). The association of genetic polymorphisms with HSCT outcome was evaluated by univariate and multivariate analyses. The allele frequencies in controls were 35.3% and 64.7% for HA-1(H) and HA-1(R), and 89.0% and 11.0% for HA-2(V) and HA-2(M), respectively. HA-1 disparity was denoted in 16.3% of HLA-matched donor-recipient sibling pairs, while it was not associated with HSCT outcome. HA-2 disparity was not observed in the donor-recipient pairs studied. The possibilities of using HA-1 and HA-2 variabilities as molecular markers for hematopoietic chimerism after HSCT were 39.2% and 18.4%, respectively. Our data provide the information on allele and genotype frequencies of HA-1 and HA-2 in a Taiwanese population, and suggest that prospective genomic typing for HA-1 and HA-2 alleles of the donor and recipient could be a useful approach for molecular identification of hematopoietic chimerism after HSCT, rather than prognosis of clinical outcome.

  16. Effect of lubricant composition on the fatigue properties of ultra-high molecular weight polyethylene for total knee replacement.

    PubMed

    Aurora, A; DesJardins, J D; Joseph, P F; LaBerge, M

    2006-05-01

    Ultrahigh molecular weight polyethylene (UHMWPE) fatigue is a critical factor affecting the longevity of total knee replacement (TKR) bearings. With the increased need for laboratory studies to mimic near in vivo conditions for accurate characterization of material performance, the present study investigated the role of hyaluronic acid (HA) in testing lubricant on the crack growth response of UHMWPE. It was hypothesized that the change in lubricant viscosity as a result of HA would affect the fatigue life of the polymer. A fracture mechanics approach as per ASTM E 647 was adopted for this study. Surface micrograph and surface chemistry analyses were employed to study the micromechanisms of fatigue failure and protein adsorption of the specimen surfaces. Rheological analysis indicated that the addition of HA to diluted bovine serum increased testing lubricant viscosity. HA concentrations of 2.22, 0.55, and 1.5 g/l closely matched the viscosity ranges reported for osteoarthritis, rheumatoid arthritic diseased joint fluid, and periprosthetic fluids respectively. Results showed that the addition of HA to standard diluted bovine serum lubricants, in concentrations similar to that of periprosthetic fluid, delayed crack initiation and crack growth during fatigue testing.

  17. Polymer Molecular Weight Analysis by [Superscript 1]H NMR Spectroscopy

    ERIC Educational Resources Information Center

    Izunobi, Josephat U.; Higginbotham, Clement L.

    2011-01-01

    The measurement and analysis of molecular weight and molecular weight distribution remain matters of fundamental importance for the characterization and physical properties of polymers. Gel permeation chromatography (GPC) is the most routinely used method for the molecular weight determination of polymers whereas matrix-assisted laser…

  18. Enzymatic and acidic degradation of high molecular weight dextran into low molecular weight and its characterizations using novel Diffusion-ordered NMR spectroscopy.

    PubMed

    Iqbal, Samina; Marchetti, Roberta; Aman, Afsheen; Silipo, Alba; Qader, Shah Ali Ul; Molinaro, Antonio

    2017-10-01

    Low molecular weight fractions were derived from native high molecular weight dextran produced by Leuconostoc mesenteroides KIBGE-IB26. Structural characterization of native and low molecular weight fractions obtained after acidic and enzymatic hydrolysis was done using FTIR and NMR spectroscopy. The molecular weight was estimated using Diffusion Ordered NMR spectroscopy. Native dextran (892kDa) is composed of α-(1→6) glycosidic linkage along with α-(1→3) branching. Major proportion of 528kDa dextran was obtained after prolong enzymatic hydrolysis however, an effective acidic treatment at pH-1.4 up to 02 and 04h of exposure resulted in the formation of 77kDa and 57kDa, respectively. The increment in pH from 1.4 to 1.8 lowered the hydrolysis efficiency and resulted in the formation of 270kDa dextran fraction. The results suggest that derived low molecular weight water soluble fractions can be utilized as a drug delivery carrier along with multiple application relating pharmaceutical industries. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Influence of low molecular weight fractions of humic substances on reducing capacities and distribution of redox functional groups

    NASA Astrophysics Data System (ADS)

    Yang, Zhen; Jiang, Jie

    2016-04-01

    Humic substances (HS) are redox-active organic compounds and their reducing capacities depend on their molecule structure and distribution of redox functional groups (RFG). During dialysis experiments, bulk humic acids (HA) were separated into low molecular weight fractions (LMWF) and retentate. LMWF account for only 2% of the total organic carbon content of HA molecules, however, their reducing capacities are up to 33 times greater than either those of the bulk HA or retentate. Furthermore, the total reducing capacity of the bulk HA accounts for less than 15% of the total reducing capacity of bulk HA, retentate and LMWF combined, suggesting that releasing of LMWF cannot reduce the number of RFG. RFG are neither in fixed amounts nor in uniformly distributed in bulk HA. LWMF have great fluorescence intensities for humic-like fluorophores (quinone-like functional groups), where quinonoid π-π* transition is responsible for the great reducing capacities of LMWF, and protein-like fluorophores. The 3,500 Da molecules (1.25 nm diameter) of HS could stimulate transformation of redox-active metals or potential pollutants trapped in soil micropores (< 2 nm diameter). A development of relationship between reducing capacity and Ex/Em position provides a possibility to predicate relative reducing capacities of HS in environmental samples.

  20. Ingestion of hyaluronans (molecular weights 800 k and 300 k) improves dry skin conditions: a randomized, double blind, controlled study.

    PubMed

    Kawada, Chinatsu; Yoshida, Takushi; Yoshida, Hideto; Sakamoto, Wakako; Odanaka, Wataru; Sato, Toshihide; Yamasaki, Takeshi; Kanemitsu, Tomoyuki; Masuda, Yasunobu; Urushibata, Osamu

    2015-01-01

    Hyaluronan (HA) has been increasingly used as a dietary supplement to improve the skin. However, the effect of ingested HA may depend on its molecular weight (MW) because its physiological activities in the body vary with its MW. In this study, we examined the effects of ingested HA with varying MW on the skin. In this randomized, double blind, placebo controlled study, 61 subjects with dry skin received oral HA (120 mg/day), of MWs 800 k and 300 k or placebo, for 6 weeks. The skin moisture contents of the first two groups increased more than those of the placebo group during the ingestion period. In addition, group HA 300 k exhibited significant improvements in skin moisture content 2 weeks after ingestion ended compared with the placebo group. A questionnaire survey about subjective facial aging symptoms showed that the HA treated groups exhibited significantly improved the skin condition compared with the placebo treated group. Furthermore, dermatologists objectively evaluated the clinical symptoms of the facial and whole body skin, showing that no adverse events were related to daily ingestion of HA. This study shows that both of ingesting HAs (MWs 800 k and 300 k) improved the skin condition by increasing the moisture content.

  1. Ingestion of hyaluronans (molecular weights 800 k and 300 k) improves dry skin conditions: a randomized, double blind, controlled study

    PubMed Central

    Kawada, Chinatsu; Yoshida, Takushi; Yoshida, Hideto; Sakamoto, Wakako; Odanaka, Wataru; Sato, Toshihide; Yamasaki, Takeshi; Kanemitsu, Tomoyuki; Masuda, Yasunobu; Urushibata, Osamu

    2015-01-01

    Hyaluronan (HA) has been increasingly used as a dietary supplement to improve the skin. However, the effect of ingested HA may depend on its molecular weight (MW) because its physiological activities in the body vary with its MW. In this study, we examined the effects of ingested HA with varying MW on the skin. In this randomized, double blind, placebo controlled study, 61 subjects with dry skin received oral HA (120 mg/day), of MWs 800 k and 300 k or placebo, for 6 weeks. The skin moisture contents of the first two groups increased more than those of the placebo group during the ingestion period. In addition, group HA 300 k exhibited significant improvements in skin moisture content 2 weeks after ingestion ended compared with the placebo group. A questionnaire survey about subjective facial aging symptoms showed that the HA treated groups exhibited significantly improved the skin condition compared with the placebo treated group. Furthermore, dermatologists objectively evaluated the clinical symptoms of the facial and whole body skin, showing that no adverse events were related to daily ingestion of HA. This study shows that both of ingesting HAs (MWs 800 k and 300 k) improved the skin condition by increasing the moisture content. PMID:25834304

  2. Using molecular recognition of beta-cyclodextrin to determine molecular weights of low-molecular-weight explosives by MALDI-TOF mass spectrometry.

    PubMed

    Zhang, Min; Shi, Zhen; Bai, Yinjuan; Gao, Yong; Hu, Rongzu; Zhao, Fenqi

    2006-02-01

    This study presents a novel method for determining the molecular weights of low molecular weight (MW) energetic compounds through their complexes of beta-cyclodextrin (beta-CD) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) in a mass range of 500 to 1700 Da, avoiding matrix interference. The MWs of one composite explosive composed of 2,6-DNT, TNT, and RDX, one propellant with unknown components, and 14 single-compound explosives (RDX, HMX, 3,4-DNT, 2,6-DNT, 2,5-DNT, 2,4,6-TNT, TNAZ, DNI, BTTN, NG, TO, NTO, NP, and 662) were measured. The molecular recognition and inclusion behavior of beta-CD to energetic materials (EMs) were investigated. The results show that (1) the established method is sensitive, simple, accurate, and suitable for determining the MWs of low-MW single-compound explosives and energetic components in composite explosives and propellants; and (2) beta-CD has good inclusion and modular recognition abilities to the above EMs.

  3. Corneal protection with high-molecular-weight hyaluronan against in vitro and in vivo sodium lauryl sulfate-induced toxic effects.

    PubMed

    Pauloin, Thierry; Dutot, Mélody; Liang, Hong; Chavinier, Emilie; Warnet, Jean-Michel; Rat, Patrice

    2009-10-01

    The aim of this study was to investigate high-molecular-weight hyaluronan (HA-HMW) corneal protection against sodium lauryl sulfate (SLS)-induced toxic effects with in vitro and in vivo experimental approaches. In vitro experiments consisted of a human corneal epithelial cell line incubated with HA-HMW, rinsed, and incubated with SLS. Cell viability, oxidative stress, chromatin condensation, caspase-3, -8, -9, and P2X7 cell death receptor activation, interleukin-6, and interleukin-8 production were investigated. In vivo experiments consisted of 36 New Zealand white rabbits treated for 3 days, 3 times per day, with HA-HMW or phosphate-buffered salt solution. At day 4, eyes were treated with SLS. Clinical observation and in vivo confocal microscopy using the Rostock Cornea Module of the Heidelberg Retina Tomograph-II were performed to evaluate and to compare SLS-induced toxicity between eyes treated with HA-HMW and eyes treated with phosphate-buffered salt solution. In vitro data indicate that exposure of human corneal epithelial cells to HA-HMW significantly decreased SLS-induced oxidative stress, apoptosis, and inflammation cytokine production. In vivo data indicate that SLS cornea injuries, characterized by damaged corneal epithelium, damaged anterior stroma, and inflammatory infiltrations, were attenuated with HA-HMW treatment. A good correlation was seen between in vitro and in vivo findings showing that HA-HMW decreases SLS-induced toxic effects and protects cornea.

  4. Influence of Molecular Weight on the Mechanical Performance of a Thermoplastic Glassy Polyimide

    NASA Technical Reports Server (NTRS)

    Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.; Hinkley, Jeffrey A.

    1999-01-01

    Mechanical Testing of an advanced thermoplastic polyimide (LaRC-TM-SI) with known variations in molecular weight was performed over a range of temperatures below the glass transition temperature. The physical characterization, elastic properties and notched tensile strength were all determined as a function of molecular weight and test temperature. It was shown that notched tensile strength is a strong function of both temperature and molecular weight, whereas stiffness is only a strong function of temperature. A critical molecular weight (Mc) was observed to occur at a weight-average molecular weight (Mw) of approx. 22000 g/mol below which, the notched tensile strength decreases rapidly. This critical molecular weight transition is temperature-independent. Furthermore, inelastic analysis showed that low molecular weight materials tended to fail in a brittle manner, whereas high molecular weight materials exhibited ductile failure. The microstructural images supported these findings.

  5. Effect of Sulfation and Molecular Weight on Anticoagulant Activity of Dextran.

    PubMed

    Drozd, N N; Logvinova, Yu S; Torlopov, M A; Udoratina, E V

    2017-02-01

    Sulfation (to 2.8) of dextrans with molecular weight of 150 and 20 kDa was followed by the appearance of anticoagulant activity that increased with decreasing their molecular weight and did not depend on antithrombin, plasma inhibitor of serine proteases of the blood coagulation system. Antithrombin activity of dextran sulfate with a molecular weight of 20 kDa reached 12.6-15.3 U/mg. Dextran sulfates with molecular weights of 20 and 150 kDa did not potentiate ADP-induced human platelet aggregation.

  6. Low molecular weight species in humic and fulvic fractions

    USGS Publications Warehouse

    Wilson, M.A.; Collin, P.J.; Malcolm, R.L.; Perdue, E. Michael; Cresswell, P.

    1988-01-01

    Fourier transform solution 1H nuclear magnetic resonance (NMR) spectrometry with homogated water peak irradiation is a useful method for detecting low molecular weight substances in humic extracts. Succinate, acetate, methanol, formate, lactate and some aryl methoxyl compounds have been detected in extracts from a wide range of sources. In view of the controversy over whether low molecular weight substances are contaminants in humic extracts introduced by the concentration procedure, we report that some of these materials are not contaminants since 1H-NMR can be used to follow their formation from higher molecular weight species. ?? 1988.

  7. Determination of the absolute molecular weight averages and molecular weight distributions of alginates used as ice cream stabilizers by using multiangle laser light scattering measurements.

    PubMed

    Turquois, T; Gloria, H

    2000-11-01

    High-performance size exclusion chromatography with multiangle laser light scattering detection (HPSEC-MALLS) was used for characterizing complete molecular weight distributions for a range of commercial alginates used as ice cream stabilizers. For the samples investigated, molecular weight averages were found to vary between 115 000 and 321 700 g/mol and polydispersity indexes varied from 1. 53 to 3.25. These samples displayed a high content of low molecular weights. Thus, the weight percentage of material below 100 000 g/mol ranged between 6.9 and 54.4%.

  8. Ultrahigh Molecular Weight Aromatic Siloxane Polymers

    NASA Technical Reports Server (NTRS)

    Ludwick, L. M.

    1983-01-01

    Silphenylene-siloxane polymers can be prepared by a condensation reaction of a diol 1,4-bis(hydroxydimethylsilyl)benzene and a silane bis(dimethylamino)dimethylsilane. Using a stepwise condensation technique, a polymer (R=CH3) with a molecular weight in excess of 1.0 x 1 million has been produced. The polymer exhibits increased thermal stability, compared to a methyl siloxane polymer without the aromatic phenyl ring in the backbone. The use of bis(dimethylamino)methylvinylsilane should allow for ready crosslinking at the vinyl sites (R=-CH=CH2) introduced into the backbone. However, under the conditions of the reaction system a high molecular weight polymer was not obtained or the polymer underwent a crosslinking process during the synthesis.

  9. Characterization and analysis of the molecular weight of lignin for biorefining studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolbert, Allison; Akinosho, Hannah; Khunsupat, Ratayakorn

    2014-06-04

    The molecular weight of lignin is a fundamental property that infl uences the recalcitrance of biomass and the valorization of lignin. The determination of the molecular weight of lignin in native biomass is dependent on the bioresources used and the isolation and purifi cation procedures employed. The three most commonly employed isolation methods are milled wood lignin (MWL), cellulolytic enzyme lignin (CEL), and enzymatic mild acidolysis lignin (EMAL). Common characterization techniques for determining the molecular weight of lignin will be addressed, with an emphasis on gel permeation chromatography (GPC). This review also examines the mechanisms behind several biological, physical, andmore » chemical pre-treatments and their impact on the molecular weight of lignin. The number average molecular weight (Mn), weight average molecular weight (Mw) and polydispersity index (D) all vary in magnitude depending on the biomass source, pre-treatment conditions, and isolation method. Additionally, there is a growing body of literature that supports changes in the molecular weight of lignin in response to genetic modifi cations in the lignin biosynthetic pathways. This review summarizes different procedures for obtaining the molecular weight of lignin that have been used in recent years and highlight future opportunities for applications of lignin.« less

  10. Molecular weight dependency of polyrotaxane-cross-linked polymer gel extensibility.

    PubMed

    Ohmori, Kana; Abu Bin, Imran; Seki, Takahiro; Liu, Chang; Mayumi, Koichi; Ito, Kohzo; Takeoka, Yukikazu

    2016-12-11

    This work investigates the influence of the molecular weight of polyrotaxane (PR) cross-linkers on the extensibility of polymer gels. The polymer gels, which were prepared using PR cross-linkers of three different molecular weights but the same number of cross-linking points per unit volume of gel, have almost the same Young's modulus. By contrast, the extensibility and rupture strength of the polymer gels are substantially increased with increasing molecular weight of the PR cross-linker.

  11. A comparison of the sensitivity, specificity, and molecular weight accuracy of three different commercially available Hyaluronan ELISA-like assays.

    PubMed

    Haserodt, Sarah; Aytekin, Metin; Dweik, Raed A

    2011-02-01

    Hyaluronan (HA) is a glycosaminoglycan found in the extracellular matrix and ranges from several thousand to millions of daltons in size. HA has importance in various pathological conditions and is known to be elevated in several diseases. Three commonly used, commercially available HA enzyme-linked immunosorbent assay (ELISA)-like assays (from Corgenix, Echelon and R&D) were compared on the basis of accuracy, sample variability and ability to measure a range of HA sizes. The Corgenix HA ELISA-like assay displayed the lowest intra-assay variability [coefficient of variation (CV) = 11.7 ± 3.6%], followed by R&D (CV = 12.3 ± 4.6%) and Echelon (CV = 18.9 ± 9.2%). Interassay variability was also lowest for the Corgenix assay (CV = 6.0%), intermediate for the Echelon assay (9.5%) and highest for the R&D assay (CV = 34.1%). The high interassay variability seen for the R&D assay may have been due to the effect of dilution, since the dilution-independent interassay variability was 15.5%. The concentration of the standard HA was overestimated by the Echelon assay by 85% and underestimated by the R&D and Corgenix assays by 34 and 32%, respectively. The Echelon HA ELISA-like assay was the most effective at measuring all sizes of HA tested (2 MDa and 132, 66 and 6.4 kDa), whereas the Corgenix and R&D assays were unable to detect 6.4 kDa HA. These findings suggest that the Echelon HA ELISA-like assay is better suited for size-sensitive HA measurements but has a relatively high variability. The Corgenix and R&D HA ELISA-like assays have low variability and high accuracy but are not suitable for detecting low-molecular-weight HA.

  12. Molecular MR Imaging of CD44 in Breast Cancer with Hyaluronan-Based Contrast Agents

    DTIC Science & Technology

    2009-09-01

    linear polysaccharide composed of alternating (β-1,4)-linked d- glucuronic acid and (β-1,3) N-acetyl-d-glucosamine residues with molecular weights as...enzymatic reactions in-vivo that generate polysaccharides of decreasing sizes, which in principle may facilitate the timely excretion of HA based...14CO2) or in urine (as low molecular weight HA or monosaccharide fragments). The same authors also reported that the total amount of excretion into

  13. Molecular weight dependence of LB morphology of poly(n-hexyl isocyanate) (PHIC).

    PubMed

    Morioka, Takako; Shibata, Osamu; Kawaguchi, Masami

    2010-12-07

    The morphologies of Langmuir-Blodgett (LB) films of two fractionated poly(n-hexyl isocyanate) (PHIC) and those of their binary mixtures were observed by AFM, together with those of an unfractionated PHIC. The low molecular weight PHIC formed random packing of bundles consisting of rigid rods, while the high molecular weight PHIC formed random packing of bundles consisting of hairy rods. Bundle interpenetration was observed only for the latter in the semidilute regime. In the bilayer region, the area occupied by the PHIC bundles in the upper layer was obviously smaller for the high molecular weight PHIC than for the low molecular weight PHIC, suggesting that the bundles of high molecular weight PHIC more easily interpenetrate than those of low molecular weight PHIC. For the blended films composed of both low and high molecular weight PHICs, the characteristic morphologies of the respective PHIC samples were no longer present. Moreover, the morphologies of the blended films appeared to resemble each other at any molar fraction owing to the ideal miscibility of the low molecular weight and high molecular weight PHICs. The morphologies of the blended films were also similar to that of the unfractionated PHIC film in the dilute regime. In the semidilute regime, the blended films became rounded owing to an increase in bundles interpenetration between PHICs as compared to that in the dilute regime, whereas the morphology of unfractionated PHIC films remained unchanged as compared to that in the dilute regime.

  14. Isolation of a thermophilic bacterium capable of low-molecular-weight polyethylene degradation.

    PubMed

    Jeon, Hyun Jeong; Kim, Mal Nam

    2013-02-01

    A thermophilic bacterium capable of low-molecular-weight polyethylene (LMWPE) degradation was isolated from a compost sample, and was identified as Chelatococcus sp. E1, through sequencing of the 16S rRNA gene. LMWPE was prepared by thermal degradation of commercial PE in a strict nitrogen atmosphere. LMWPE with a weight-average-molecular-weight (Mw) in the range of 1,700-23,700 was noticeably mineralized into CO(2) by the bacterium. The biodegradability of LMWPE decreased as the Mw increased. The low molecular weight fraction of LMWPE decreased significantly as a result of the degradation process, and thereby both the number-average-molecular-weight and Mw increased after biodegradation. The polydispersity of LMWPE was either narrowed or widened, depending on the initial Mw of LMWPE, due to the preferential elimination of the low molecular weight fraction, in comparison to the high molecular weight portion. LMWPE free from an extremely low molecular weight fraction was also mineralized by the strain at a remarkable rate, and FTIR peaks assignable to C-O stretching appeared as a result of microbial action. The FTIR peaks corresponding to alkenes also became more intense, indicating that dehydrogenations occurred concomitantly with microbial induced oxidation.

  15. Evaluation of a Viscosity-Molecular Weight Relationship.

    ERIC Educational Resources Information Center

    Mathias, Lon J.

    1983-01-01

    Background information, procedures, and results are provided for a series of graduate/undergraduate polymer experiments. These include synthesis of poly(methylmethacrylate), viscosity experiment (indicating large effect even small amounts of a polymer may have on solution properties), and measurement of weight-average molecular weight by light…

  16. Comparison of antimicrobial activities of newly obtained low molecular weight scorpion chitosan and medium molecular weight commercial chitosan.

    PubMed

    Kaya, Murat; Asan-Ozusaglam, Meltem; Erdogan, Sevil

    2016-06-01

    In this study the antimicrobial activity of low molecular weight (3.22 kDa) chitosan, obtained for the first time from a species belonging to the Scorpiones, was screened against nine pathogenic microorganisms (seven bacteria and two yeasts) and compared with that of medium molecular weight commercial chitosan (MMWCC). It was observed that the antimicrobial activity of the low molecular weight scorpion chitosan (LMWSC) was specific to bacterial species in general rather than gram-negative or gram-positive bacterial groups. It was also determined that LMWSC had a stronger inhibitory effect than the MMWCC, particularly on the bacterium Listeria monocytogenes and the yeast Candida albicans, which are important pathogens for public health. In addition, it was recorded that the MMWCC had a greater inhibitory effect on Bacillus subtilis than LMWSC. According to the results obtained by the disc diffusion method, the antibacterial activity of both LMWSC and MMWCC against B. subtilis and Salmonella enteritidis was higher than the widely used antibiotic Gentamicin (CN, 10 μg/disc). Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. Complete Molecular Weight Profiling of Low-Molecular Weight Heparins Using Size Exclusion Chromatography-Ion Suppressor-High-Resolution Mass Spectrometry.

    PubMed

    Zaia, Joseph; Khatri, Kshitij; Klein, Joshua; Shao, Chun; Sheng, Yuewei; Viner, Rosa

    2016-11-01

    Low-molecular weight heparins (LMWH) prepared by partial depolymerization of unfractionated heparin are used globally to treat coagulation disorders on an outpatient basis. Patent protection for several LMWH has expired and abbreviated new drug applications have been approved by the Food and Drug Administration. As a result, reverse engineering of LMWH for biosimilar LMWH has become an active global endeavor. Traditionally, the molecular weight distributions of LMWH preparations have been determined using size exclusion chromatography (SEC) with optical detection. Recent advances in liquid chromatography-mass spectrometry methods have enabled exact mass measurements of heparin saccharides roughly up to degree-of-polymerization 20, leaving the high molecular weight half of the LMWH preparation unassigned. We demonstrate a new LC-MS system capable of determining the exact masses of complete LMWH preparations, up to dp30. This system employed an ion suppressor cell to desalt the chromatographic effluent online prior to the electrospray mass spectrometry source. We expect this new capability will impact the ability to define LMWH mixtures favorably.

  18. Synthesis of high molecular weight PEO using non-metal initiators

    DOEpatents

    Yang, Jin; Sivanandan, Kulandaivelu; Pistorino, Jonathan; Eitouni, Hany Basam

    2015-05-19

    A new synthetic method to prepare high molecular weight poly(ethylene oxide) with a very narrow molecular weight distribution (PDI<1.5) is described. The method involves a metal free initiator system, thus avoiding dangerous, flammable organometallic compounds.

  19. The enhanced anti-tissue adhesive effect of injectable pluronic-HA hydrogel by poly(γ-glutamic acid).

    PubMed

    Kim, Manse; Hwang, Youngmin; Tae, Giyoong

    2016-12-01

    The stability of tissue barrier in physiological condition is a key factor to isolate the damaged site from adjacent tissue for anti-tissue adhesion. Although pluronic or pluronic-hyaluronic acid (HA) hydrogel as an injectable formulation can prevent tissue adhesion at the injection site, the anti-tissue adhesion effect is limited due to its poor stability. Herein, we prepared tissue barrier formulations composed of pluronic F127 (F127) and HA mixture (F127-HA) and the effect of the addition of poly(γ-glutamic acid) (PGA) was characterized. All of F127, HA, and F127-HA mixture showed the poor in vitro residence stability less than 3 days. However, by adding PGA into F127-HA mixture, their stability was significantly enhanced by the control of the molecular weight and concentration of PGA. Thus, F127-HA with 10wt% PGA (2000kDa) showed the long-term stability over 10 days. Similarly, the enhanced stability of F127-HA with PGA resulted in the enhanced and excellent in vivo anti-tissue adhesion effect, evidenced by histological analysis and grading of tissue adhesion. Therefore, F127-HA containing PGA could be applied as an efficient injectable tissue barrier for anti-tissue adhesion. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances

    USGS Publications Warehouse

    Chin, Y.-P.; Aiken, G.; O'Loughlin, E.

    1994-01-01

    The number- and weight-averaged molecular weights of a number of aquatic fulvic acids, a commercial humic acid, and unfractionated organic matter from four natural water samples were measured by high-pressure size exclusion chromatography (HPSEC). Molecular weights determined in this manner compared favorably with those values reported in the literature. Both recent literature values and our data indicate that these substances are smaller and less polydisperse than previously believed. Moreover, the molecular weights of the organic matter from three of the four natural water samples compared favorably to the fulvic acid samples extracted from similar environments. Bulk spectroscopic properties of the fulvic substances such as molar absorptivity at 280 nm and the E4/E6 ratio were also measured. A strong correlation was observed between molar absorptivity, total aromaticity, and the weight average molecular weights of all the humic substances. This observation suggests that bulk spectroscopic properties can be used to quickly estimate the size of humic substances and their aromatic contents. Both parameters are important with respect to understanding humic substance mobility and their propensity to react with both organic and inorganic pollutants. ?? 1994 American Chemical Society.

  1. Low molecular weight salts combined with fluorinated solvents for electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tikhonov, Konstantin; Yip, Ka Ki; Lin, Tzu-Yuan

    2015-11-10

    Provided are electrochemical cells and electrolytes used to build such cells. An electrolyte includes at least one salt having a molecular weight less than about 250. Such salts allow forming electrolytes with higher salt concentrations and ensure high conductivity and ion transport in these electrolytes. The low molecular weight salt may have a concentration of at least about 0.5M and may be combined with one or more other salts, such as linear and cyclic imide salts and/or methide salts. The concentration of these additional salts may be less than that of the low molecular weight salt, in some embodiments, twicemore » less. The additional salts may have a molecular weight greater than about 250. The electrolyte may also include one or more fluorinated solvents and may be capable of maintaining single phase solutions at between about -30.degree. C. to about 80.degree. C.« less

  2. Western blotting of high and low molecular weight proteins using heat.

    PubMed

    Kurien, Biji T; Scofield, R Hal

    2015-01-01

    A method for the electrophoretic transfer of high and low molecular weight proteins to nitrocellulose membranes following sodium dodecyl sulfate (SDS) polyacrylamide gel is described here. The transfer was performed with heated (70-75 °C) normal transfer buffer from which methanol had been omitted. Complete transfer of high and low molecular weight antigens (molecular weight protein standards, a purified protein, and proteins from a human tissue extract) could be carried out in 10 min for a 7 % (0.75 mm) SDS polyacrylamide gel. For 10 and 12.5 % gels (0.75 mm) the corresponding time was 15 min. A complete transfer could be carried out in 20 min for 7, 10, and 12.5 % gels (1.5 mm gels). The permeability of the gel is increased by heat, such that the proteins trapped in the polyacrylamide gel matrix can be easily transferred to the membrane. The heat mediated transfer method was compared with a conventional transfer protocol, under similar conditions. The conventional method transferred minimal low molecular weight proteins while retaining most of the high molecular weight proteins in the gel. In summary, this procedure is particularly useful for the transfer of high molecular weight proteins, very rapid, and avoids the use of methanol.

  3. Immunostimulative Activity of Low Molecular Weight Chitosans in RAW264.7 Macrophages

    PubMed Central

    Wu, Ning; Wen, Zheng-Shun; Xiang, Xing-Wei; Huang, Yan-Na; Gao, Yang; Qu, You-Le

    2015-01-01

    Chitosan and its derivatives such as low molecular weight chitosans (LMWCs) have been reported to exert many biological activities, such as antioxidant and antitumor effects. However, complex and molecular weight dependent effects of chitosan remain controversial and the mechanisms that mediate these complex effects are still poorly defined. This study was carried out to investigate the immunostimulative effect of different molecular weight chitosan in RAW264.7 macrophages. Our data suggested that two LMWCs (molecular weight of 3 kDa and 50 kDa) both possessed immunostimulative activity, which was dependent on dose and, at the higher doses, also on the molecular weight. LMWCs could significantly enhance the the pinocytic activity, and induce the production of tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), interferon-γ (IFN-γ), nitric oxide (NO) and inducible nitric oxide synthase (iNOS) in a molecular weight and concentration-dependent manner. LMWCs were further showed to promote the expression of the genes including iNOS, TNF-α. Taken together, our findings suggested that LMWCs elicited significantly immunomodulatory response through up-regulating mRNA expression of proinflammatory cytokines and activated RAW264.7 macrophage in a molecular weight- and concentration-dependent manner. PMID:26437419

  4. Effect of molecular weight profile of sorghum proanthocyanidins on resistant starch formation.

    PubMed

    Barros, Frederico; Awika, Joseph; Rooney, Lloyd W

    2014-04-01

    There is a growing interest to increase resistant starch (RS) in foods through natural modification of starch. Sorghum tannins (proanthocyanidins, PAs) were recently reported to interact with starch, increasing RS. However, there is no information about how the molecular weight profile of PAs affects RS formation. This study investigated how different-molecular-weight PAs from sorghum affected RS formation in different starch models. The levels of RS were higher (331-437 mg g(-1)) when high-amylose starch was cooked with phenolic extracts containing mostly high-molecular-weight PAs compared with extracts containing lower-molecular-weight PAs or monomeric catechin (249-285 mg g(-1)). In general, binding capacity of PAs with amylose increased proportionally with molecular weight. For example, the percentage of PAs bound to amylose increased from 45% (PAs with degree of polymerization (DP) = 6) to 94% (polymeric PAs, DP > 10). The results demonstrate that molecular weight of the PAs directly affects their interaction with starch: the higher the molecular weight, the stronger the binding to amylose and the higher the RS formation. Polymeric PAs from sorghum can naturally modify starch by interacting strongly with amylose and are thus most suitable to produce foods with higher RS. © 2013 Society of Chemical Industry.

  5. Molecular weight of Escherichia coli β-galactosidase in concentrated solutions of guanidine hydrochloride

    PubMed Central

    Erickson, Robert P.

    1970-01-01

    The molecular weight of Escherichia coli β-galactosidase was determined in 6m- and 8m-guanidine hydrochloride by meniscus-depletion sedimentation equilibrium, sedimentation velocity and viscosity. Sedimentation equilibrium revealed heterogeneity with the smallest component having a molecular weight of about 50000. At lower speeds, the apparent weight-average molecular weight is about 80000. By use of a calculation based on an empirical correlation for proteins that are random coils in 6m-guanidine hydrochloride, sedimentation velocity gave a molecular weight of 91000, and the intrinsic viscosity indicated a viscosity-average molecular weight of 84000. Heating in 6m-guanidine hydrochloride lowered the viscosity of β-galactosidase in a variable manner. PMID:4924171

  6. A Systematic Study of the Effect of Different Molecular Weights of Hyaluronic Acid on Mesenchymal Stromal Cell-Mediated Immunomodulation

    PubMed Central

    Gómez-Aristizábal, Alejandro; Kim, Kyung-Phil; Viswanathan, Sowmya

    2016-01-01

    Introduction Osteoarthritis (OA) is associated with chronic inflammation, and mesenchymal stromal cells (MSCs) have been shown to provide pain relief and reparative effects in clinical investigations. MSCs are often delivered with hyaluronic acid (HA), although the combined mechanism of action is not fully understood; we thus investigated the immunomodulatory effects of combining MSCs with different molecular weights (MW) of HA. Methods HAs with MWs of 1.6 MDa (hHA), 150 kDa or 7.5 kDa, were added to MSCs alone or MSC-immune cell co-cultures. Gene expression analyses, flow cytometry and cytokine measurements were assessed to determine the effect of HAs on the MSC interactions with immune cells. Results MSCs in the presence of HAs, in both normal and lymphocyte-conditioned medium, showed negligible changes in gene expression. While addition of hHA resulted in increased proliferation of activated lymphocytes, both in the presence and absence of MSCs, the overall combined effect was a more regulated, homeostatic one; this was supported by higher ratios of secreted IL10/IFNγ and IL10/IL2, in lymphocyte cultures, than with lower MW HAs or no HA, both in the presence and absence of MSCs. In addition, examination of monocyte-derived macrophages showed an increased M2 macrophage frequency (CD14+CD163+CD206+) in the presence of hHA, both with and without MSCs. Conclusions hHA produces a less pro-inflammatory environment than lower MW HAs. Moreover, combining hHA with MSCs has an additive effect on the MSC-mediated immunomodulation, suggestive of a more potent combination treatment modality for OA. PMID:26820314

  7. Antioxidant Protects against Increases in Low Molecular Weight Hyaluronan and Inflammation in Asphyxiated Newborn Pigs Resuscitated with 100% Oxygen

    PubMed Central

    Akgul, Yucel; Ramgopal, Mrithyunjay; Mija, Dan S.; Cheong, Naeun; Longoria, Christopher; Mahendroo, Mala; Nakstad, Britt; Saugstad, Ola D.; Savani, Rashmin C.

    2012-01-01

    Background Newborn resuscitation with 100% oxygen is associated with oxidative-nitrative stresses and inflammation. The mechanisms are unclear. Hyaluronan (HA) is fragmented to low molecular weight (LMW) by oxidative-nitrative stresses and can promote inflammation. We examined the effects of 100% oxygen resuscitation and treatment with the antioxidant, N-acetylcysteine (NAC), on lung 3-nitrotyrosine (3-NT), LMW HA, inflammation, TNFα and IL1ß in a newborn pig model of resuscitation. Methods & Principal Findings Newborn pigs (n = 40) were subjected to severe asphyxia, followed by 30 min ventilation with either 21% or 100% oxygen, and were observed for the subsequent 150 minutes in 21% oxygen. One 100% oxygen group was treated with NAC. Serum, bronchoalveolar lavage (BAL), lung sections, and lung tissue were obtained. Asphyxia resulted in profound hypoxia, hypercarbia and metabolic acidosis. In controls, HA staining was in airway subepithelial matrix and no 3-NT staining was seen. At the end of asphyxia, lavage HA decreased, whereas serum HA increased. At 150 minutes after resuscitation, exposure to 100% oxygen was associated with significantly higher BAL HA, increased 3NT staining, and increased fragmentation of lung HA. Lung neutrophil and macrophage contents, and serum TNFα and IL1ß were higher in animals with LMW than those with HMW HA in the lung. Treatment of 100% oxygen animals with NAC blocked nitrative stress, preserved HMW HA, and decreased inflammation. In vitro, peroxynitrite was able to fragment HA, and macrophages stimulated with LMW HA increased TNFα and IL1ß expression. Conclusions & Significance Compared to 21%, resuscitation with 100% oxygen resulted in increased peroxynitrite, fragmentation of HA, inflammation, as well as TNFα and IL1ß expression. Antioxidant treatment prevented the expression of peroxynitrite, the degradation of HA, and also blocked increases in inflammation and inflammatory cytokines. These findings provide insight

  8. Origin of change in molecular-weight dependence for polymer surface tension.

    PubMed

    Thompson, R B; Macdonald, J R; Chen, P

    2008-09-01

    Self-consistent-field theory is used to reproduce the behavior of polymer surface tension with molecular-weight for both lower and higher molecular-weight polymers. The change in behavior of the surface tension between these two regimes is shown to be due to the almost total exclusion of polymer from the nonpolymer bulk phase. The predicted two regime surface tension behavior with molecular-weight and the exclusion explanation are shown to be valid for a range of different polymer compressibilities.

  9. Identification of potential biophysical and molecular signalling mechanisms underlying hyaluronic acid enhancement of cartilage formation

    PubMed Central

    Responte, Donald J.; Natoli, Roman M.; Athanasiou, Kyriacos A.

    2012-01-01

    This study determined the effects of exogenous hyaluronic acid (HA) on the biomechanical and biochemical properties of self-assembled bovine chondrocytes, and investigated biophysical and genetic mechanisms underlying these effects. The effects of HA commencement time, concentration, application duration and molecular weight were examined using histology, biomechanics and biochemistry. Additionally, the effects of HA application on sulphated glycosaminoglycan (GAG) retention were assessed. To investigate the influence of HA on gene expression, microarray analysis was conducted. HA treatment of developing neocartilage increased compressive stiffness onefold and increased sulphated GAG content by 35 per cent. These effects were dependent on HA molecular weight, concentration and application commencement time. Additionally, applying HA increased sulphated GAG retention within self-assembled neotissue. HA administration also upregulated 503 genes, including multiple genes associated with TGF-β1 signalling. Increased sulphated GAG retention indicated that HA could enhance compressive stiffness by increasing the osmotic pressure that negatively charged GAGs create. The gene expression data demonstrate that HA treatment differentially regulates genes related to TGF-β1 signalling, revealing a potential mechanism for altering matrix composition. These results illustrate the potential use of HA to improve cartilage regeneration efforts and better understand cartilage development. PMID:22809846

  10. Enrichment of low-molecular-weight proteins from biofluids for biomarker discovery.

    PubMed

    Chertov, Oleg; Simpson, John T; Biragyn, Arya; Conrads, Thomas P; Veenstra, Timothy D; Fisher, Robert J

    2005-01-01

    The dramatic progress in mass spectrometry-based methods of protein identification has triggered a new quest for disease-associated biomarkers. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and its variant surface-enhanced laser desorption/ionization mass spectrometry, provide effective means to explore the less studied information slice of the human serum proteome -- low-molecular-weight proteins and peptides. These low-molecular-weight proteins and peptides are promising for the detection of important biomarkers. Due to the significant experimental problems imposed by high-abundance and high-molecular-weight proteins, it is important to effectively remove these species prior to mass spectrometry analysis of the low-molecular-weight serum and plasma proteomes. In this review, the advantages afforded by recently introduced methods for prefractionation of serum, as they pertain to the detection and identification of biomarkers, will be discussed.

  11. EPDM polymers with intermolecular asymmetrical molecular weight, crystallinity and diene distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Datta, S.; Cheremishinoff, N.P.; Kresge, E.N.

    1993-12-31

    Rapid extrusion of EPDM elastomers require low viscosity and thus low molecular weights for the polymer. Efficient vulcanization of these elastomers requires network perfection and thus high molecular weights for the polymer. The benefits of these apparently mutually exclusive goals is important in uses of EPDM elastomers which require extrusion of profiles which are later cured. This paper shows that by introducing simultaneously asymmetry in the distribution of molecular weights, crystallinity and vulcanizable sites these apparently contradictory goals can be resolved. While these polymers cannot be made from a single Ziegler polymerization catalyst, the authors show the synthesis of thesemore » model EPDM polymers by blending polymers with very different molecular weights, ethylene and ENB contents. These blends can be rapidly extruded without melt fracture and can be cured to vulcanizates which have excellent tensile properties.« less

  12. Molecular aspects of zygotic embryogenesis in sunflower (Helianthus annuus L.): correlation of positive histone marks with HaWUS expression and putative link HaWUS/HaL1L.

    PubMed

    Salvini, Mariangela; Fambrini, Marco; Giorgetti, Lucia; Pugliesi, Claudio

    2016-01-01

    The link HaWUS/ HaL1L , the opposite transcriptional behavior, and the decrease/increase in positive histone marks bond to both genes suggest an inhibitory effect of WUS on HaL1L in sunflower zygotic embryos. In Arabidopsis, a group of transcription factors implicated in the earliest events of embryogenesis is the WUSCHEL-RELATED HOMEOBOX (WOX) protein family including WUSCHEL (WUS) and other 14 WOX protein, some of which contain a conserved WUS-box domain in addition to the homeodomain. WUS transcripts appear very early in embryogenesis, at the 16-cell embryo stage, but gradually become restricted to the center of the developing shoot apical meristem (SAM) primordium and continues to be expressed in cells of the niche/organizing center of SAM and floral meristems to maintain stem cell population. Moreover, WUS has decisive roles in the embryonic program presumably promoting the vegetative-to-embryonic transition and/or maintaining the identity of the embryonic stem cells. However, data on the direct interaction between WUS and key genes for seed development (as LEC1 and L1L) are not collected. The novelty of this report consists in the characterization of Helianthus annuus WUS (HaWUS) gene and in its analysis regarding the pattern of the methylated lysine 4 (K4) of the Histone H3 and of the acetylated histone H3 during the zygotic embryo development. Also, a parallel investigation was performed for HaL1L gene since two copies of the WUS-binding site (WUSATA), previously identified on HaL1L nucleotide sequence, were able to be bound by the HaWUS recombinant protein suggesting a not described effect of HaWUS on HaL1L transcription.

  13. Effects of low molecular weight hyaluronan combined with carprofen on canine osteoarthritis articular chondrocytes and cartilage explants in vitro.

    PubMed

    Euppayo, Thippaporn; Siengdee, Puntita; Buddhachat, Kittisak; Pradit, Waranee; Viriyakhasem, Nawarat; Chomdej, Siriwadee; Ongchai, Siriwan; Harada, Yasuji; Nganvongpanit, Korakot

    2015-09-01

    Intra-articular injection with non-steroidal anti-inflammatory drugs (NSAIDs) is used to treat inflammatory joint disease, but the side effects of NSAIDs include chondrotoxicity. Hyaluronan has shown positive effects on chondrocytes by reducing apoptosis and increasing proteoglycan synthesis. The purposes of this study were to evaluate the effects of low molecular weight hyaluronan (low MW HA), carprofen 25 mg/ml, carprofen 12.5 mg/ml, and a combination of HA and carprofen on canine osteoarthritis (OA) articular chondrocytes and a cartilage explant model in terms of cell viability, extracellular matrix remaining, and gene expression after exposure. In chondrocyte culture, MTT assay was used to evaluate the chondrotoxicity of IC50 and IC80 of carprofen with HA. In cartilage explant culture, two kinds of extracellular matrix (uronic acid and collagen) remaining in cartilage were used to evaluate cartilage damage for 14 d after treatment. Expression of COL2A1, AGG, and MMP3 was used to evaluate the synthesis and degradation of the matrix for 7 d after treatment. In chondrocyte culture, low MW HA could preserve OA chondrocyte viability but could not reduce the chondrotoxicity level of carprofen (P < 0.05). In explant culture, low MW HA combined with 12.5 mg/ml carprofen caused less destruction of uronic acid and collagen structure when compared with the control (P < 0.05). Low MW HA caused high expression levels of COL2A1 and AGG in OA cartilage (P < 0.05); HA combined with carprofen resulted in higher COL2A1 and AGG expression levels than carprofen alone.

  14. Ultrarapid electrophoretic transfer of high and low molecular weight proteins using heat.

    PubMed

    Kurien, Biji T; Scofield, R Hal

    2009-01-01

    An ultrarapid method for the electrophoretic transfer of high and low molecular weight proteins to nitrocellulose membranes following sodium dodecyl sulfate (SDS) polyacrylamide gel is described here. The transfer was performed with heated (70-75 degrees C) normal transfer buffer from which methanol had been omitted. Complete transfer of high and low molecular weight antigens (molecular weight protein standards, a purified protein, and proteins from a human tissue extract) could be carried out in 10 min for a 7% (0.75 mm) SDS polyacrylamide gel. For 10 and 12.5% gels (0.75 mm) the corresponding time was 15 min. A complete transfer could be carried out in 20 min for 7, 10, and 12.5% gels (1.5 mm gels). The permeability of the gel is increased by heat, such that the proteins trapped in the polyacrylamide gel matrix can be easily transferred to the membrane. The heat mediated transfer method was compared with a conventional transfer protocol, under similar conditions. The conventional method transferred minimal low molecular weight proteins while retaining most of the high molecular weight proteins in the gel. In summary, this procedure is particularly useful for the transfer of high molecular weight proteins, very rapid, and avoids the use of methanol.

  15. Improved Yield of High Molecular Weight Hyaluronic Acid Production in a Stable Strain of Streptococcus zooepidemicus via the Elimination of the Hyaluronidase-Encoding Gene.

    PubMed

    Pourzardosht, Navid; Rasaee, Mohammad Javad

    2017-06-01

    Despite the significant potential of Streptococcus zooepidemicus for hyaluronic acid (HA) production with high molecular weight (MW), the HA degrading properties of hyaluronidase prevents the bacteria to achieve enhanced HA yield with high MW. In the present study, we aim to knockout the hyaluronidase enzyme and assess its effects on the yield and MW of the produced HA. The kanamycin resistance gene between the left and right arms of hyaluronidase gene was inserted into pUC18 plasmid to construct pUC18-L-kana r -R as a recombinant suicide plasmid. The construct was then transferred into S. zooepidemicus to induce the homologous recombination between the hyaluronidase gene and the kanamycin resistance gene. Gene deletion was confirmed by PCR and enzyme assay. The product was cultured on selectable medium in which the MW of HA was increased from 1.5 to 3.8 MDa. The yield of HA production using the mutant strain was higher in all different concentrations of glucose from 40 to 120 g/l. Moreover, glucose increase results in higher HA production within both wild-type and recombinant strains. However, the growth rate of HA concentration (the slope of the plot), as a consequence of increased glucose concentration, is always higher for the recombinant strain. Unlike the wild-type strain, there was no sharp HA production drop approaching the 6 g/l HA concentration. In conclusion, hyaluronidase activity and HA concentration and MW exhibited a mutual control on each other. Based on our results, deletion of the hyaluronidase gene positively affects the yield and MW of HA.

  16. Stimulation of TLRs by LMW-HA induces self-defense mechanisms in vaginal epithelium.

    PubMed

    Dusio, Giuseppina F; Cardani, Diego; Zanobbio, Laura; Mantovani, Martina; Luchini, Patrizia; Battini, Lorenzo; Galli, Valentina; Diana, Angela; Balsari, Andrea; Rumio, Cristiano

    2011-07-01

    The innate immune system is present throughout the female reproductive tract and functions in synchrony with the adaptive immune system to provide protection in a way that enhances the chances for fetal survival, while protecting against potential pathogens. Recent data show that activation of Toll-like receptor (TLR)2 and 4 by low-molecular weight hyaluronic acid (LMW-HA) in the epidermis induces secretion of the antimicrobial peptide β-defensin 2. In the present work, we show that LMW-HA induces vaginal epithelial cells to release different antimicrobial peptides, via activation of TLR2 and TLR4. Further, we found that LMW-HA favors repair of vaginal epithelial injury, involving TLR2 and TLR4, and independently from its classical receptor CD44. This wound-healing activity of LMW-HA is dependent from an Akt/phosphatidylinositol 3 kinase pathway. Therefore, these findings suggest that the vaginal epithelium is more than a simple physical barrier to protect against invading pathogens: on the contrary, this surface acts as efficient player of innate host defense, which may modulate its antimicrobial properties and injury restitution activity, following LMW-HA stimulation; this activity may furnish an additional protective activity to this body compartment, highly and constantly exposed to microbiota, ameliorating the self-defense of the vaginal epithelium in both basal and pathological conditions.

  17. Degradation mechanisms of bioresorbable polyesters. Part 2. Effects of initial molecular weight and residual monomer.

    PubMed

    Gleadall, Andrew; Pan, Jingzhe; Kruft, Marc-Anton; Kellomäki, Minna

    2014-05-01

    This paper presents an understanding of how initial molecular weight and initial monomer fraction affect the degradation of bioresorbable polymers in terms of the underlying hydrolysis mechanisms. A mathematical model was used to analyse the effects of initial molecular weight for various hydrolysis mechanisms including noncatalytic random scission, autocatalytic random scission, noncatalytic end scission or autocatalytic end scission. Different behaviours were identified to relate initial molecular weight to the molecular weight half-life and to the time until the onset of mass loss. The behaviours were validated by fitting the model to experimental data for molecular weight reduction and mass loss of samples with different initial molecular weights. Several publications that consider initial molecular weight were reviewed. The effect of residual monomer on degradation was also analysed, and shown to accelerate the reduction of molecular weight and mass loss. An inverse square root law relationship was found between molecular weight half-life and initial monomer fraction for autocatalytic hydrolysis. The relationship was tested by fitting the model to experimental data with various residual monomer contents. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. The pPSU Plasmids for Generating DNA Molecular Weight Markers.

    PubMed

    Henrici, Ryan C; Pecen, Turner J; Johnston, James L; Tan, Song

    2017-05-26

    Visualizing nucleic acids by gel electrophoresis is one of the most common techniques in molecular biology, and reference molecular weight markers or ladders are commonly used for size estimation. We have created the pPSU1 & pPSU2 pair of molecular weight marker plasmids which produce both 100 bp and 1 kb DNA ladders when digested with two common restriction enzymes. The 100 bp ladder fragments have been optimized to migrate appropriately on both agarose and native polyacrylamide, unlike many currently available DNA ladders. Sufficient plasmid DNA can be isolated from 100 ml E. coli cultures for the two plasmids to produce 100 bp or 1 kb ladders for 1000 gels. As such, the pPSU1 and pPSU2 plasmids provide reference fragments from 50 to 10000 bp at a fraction of the cost of commercial DNA ladders. The pPSU1 and pPSU2 plasmids are available without licensing restrictions to nonprofit academic users, affording freely available high-quality, low-cost molecular weight standards for molecular biology applications.

  19. Molecular Weight Determination by an Improved Temperature-Monitored Vapor-Density Method.

    ERIC Educational Resources Information Center

    Grider, Douglas J.; And Others

    1988-01-01

    Recommends determining molecular weights of liquids by use of a thermocouple. Utilizing a mathematical gas equation, the molecular weight can be determined from the measurement of the vapor temperature upon complete evaporation. Lists benefits as reduced time and cost, and improved safety factors. (ML)

  20. Perchlorate-induced combustion of organic matter with variable molecular weights: Implications for Mars missions

    NASA Astrophysics Data System (ADS)

    Sephton, Mark A.; Lewis, James M. T.; Watson, Jonathan S.; Montgomery, Wren; Garnier, Carole

    2014-11-01

    Instruments on the Viking landers and Curiosity rover analyzed samples of Mars and detected carbon dioxide and organic compounds of uncertain origin. Mineral-assisted reactions are leading to uncertainty, particularly those involving perchlorate minerals which thermally decompose to produce chlorine and oxygen which can then react with organic matter to generate organochlorine compounds and carbon dioxide. Although generally considered a problem for interpretation, the release profiles of generated gases can indicate the type of organic matter present. We have performed a set of experiments with perchlorate and organic matter of variable molecular weights. Results indicate that organic susceptibility to thermal degradation and mineral-assisted reactions is related to molecular weight. Low molecular weight organic matter reacts at lower temperatures than its high molecular weight counterparts. The natural occurrence and association of organic matter with differing molecular weights helps to discriminate between contamination (usually low molecular weight organic matter only) and indigenous carbon (commonly low and high molecular weight organic matter together). Our results can be used to provide insights into data returning from Mars.

  1. 21 CFR 172.820 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ethylene oxide and water with a mean molecular weight of 200 to 9,500. (2) It contains no more than 0.2 percent total by weight of ethylene and diethylene glycols when tested by the analytical methods... the total ethylene and diethylene glycol content of polyethylene glycols having mean molecular weights...

  2. Endogenous ethanol affects biopolyester molecular weight in recombinant Escherichia coli.

    PubMed

    Hiroe, Ayaka; Hyakutake, Manami; Thomson, Nicholas M; Sivaniah, Easan; Tsuge, Takeharu

    2013-11-15

    In biopolyester synthesis, polyhydroxyalkanoate (PHA) synthase (PhaC) catalyzes the polymerization of PHA in bacterial cells, followed by a chain transfer (CT) reaction in which the PHA polymer chain is transferred from PhaC to a CT agent. Accordingly, the frequency of CT reaction determines PHA molecular weight. Previous studies have shown that exogenous alcohols are effective CT agents. This study aimed to clarify the effect of endogenous ethanol as a CT agent for poly[(R)-3-hydroxybutyrate] [P(3HB)] synthesis in recombinant Escherichia coli, by comparing with that of exogenous ethanol. Ethanol supplementation to the culture medium reduced P(3HB) molecular weights by up to 56% due to ethanol-induced CT reaction. NMR analysis of P(3HB) polymers purified from the culture supplemented with (13)C-labeled ethanol showed the formation of a covalent bond between ethanol and P(3HB) chain at the carboxyl end. Cultivation without ethanol supplementation resulted in the reduction of P(3HB) molecular weight with increasing host-produced ethanol depending on culture aeration. On the other hand, production in recombinant BW25113(ΔadhE), an alcohol dehydrogenase deletion strain, resulted in a 77% increase in molecular weight. Analysis of five E. coli strains revealed that the estimated number of CT reactions was correlated with ethanol production. These results demonstrate that host-produced ethanol acts as an equally effective CT agent as exogenous ethanol, and the control of ethanol production is important to regulate the PHA molecular weight.

  3. Biomolecule-loaded chitosan nanoparticles induce apoptosis and molecular changes in cancer cell line (SiHa).

    PubMed

    Sujima Anbu, Anbu; Velmurugan, Palanivel; Lee, Jeong-Ho; Oh, Byung-Taek; Venkatachalam, Perumal

    2016-07-01

    The present study reports on the synthesis of chitosan nanoparticles (CNPs) using methanol extracts of Gymnema sylvestre (GS) leaves and Cinnamomum zeylanicum (CZ) bark. Biomolecule-loaded nanoparticles induced apoptosis in a human cervical cancer (SiHa) cell line, and experiments were carried out to elucidate the underlying molecular mechanisms. FT-IR and XRD showed possible functional groups of the biomolecules and the crystalline nature of CNPs, respectively. Transmission electron microscopy images revealed that synthesized GSCNPs and CZCNPs had a smooth spherical shape with average sizes of about 58-80 and 60-120nm, respectively. Dynamic light scattering studies indicated that both GSCNPs and CZCNs were structurally stable with homogenous and heterogeneous natures, respectively. Furthermore, synthesized GSCNPs and CZCNPs exhibited dose-dependent cytotoxicity against the SiHa cancer cell line, with inhibitory concentration (IC50) values of 102.17μg/ml, 87.75μg/ml, 132.74μg/ml and 90.35μg/ml for GS leaf extract, GSCNPs, CZBE and CZCNPs, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. The association between different molecular weights of hyaluronic acid and CHAD, HIF-1α, COL2A1 expression in chondrocyte cultures

    PubMed Central

    Sirin, Duygu Yasar; Kaplan, Necati; Yilmaz, Ibrahim; Karaarslan, Numan; Ozbek, Hanefi; Akyuva, Yener; Kaya, Yasin Emre; Oznam, Kadir; Akkaya, Nuray; Guler, Olcay; Akkaya, Semih; Mahirogullari, Mahir

    2018-01-01

    The aim of the present study was to investigate the effects of three different formulations of hyaluronic acid (HA): Low molecular weight (MW) Sinovial One®, medium MW Viscoplus® and high MW Durolane®, on chondrocyte proliferation and collagen type II (COL2A1), hypoxia-inducible factor 1α (HIF-1α) and chondroadherin (CHAD) expression in primary chondrocyte cultures. Standard primary chondrocyte cultures were established from osteochondral tissues surgically obtained from 6 patients with gonarthrosis. Cell morphology was evaluated using an inverted light microscope; cell proliferation was determined with a MTT assay and confirmed with acridine orange/propidium iodide staining. Levels of CHAD, COL2A1 and HIF-1α expression were assessed using specific TaqMan gene expression assays. The results demonstrated the positive effect of HA treatment on cell proliferation, which was independent from the MW. COL2A1 expression increased in the medium and high MW HA treated groups. It was observed that HIF-1α expression increased in the high MW treated group alone. CHAD expression increased only in the medium MW HA treated group. Evaluation of gene expression revealed that levels of expression increased as the duration of HA application increased, in the medium and high MW HA treated groups. In terms of increased viability and proliferation, a longer duration of HA application was more effective. Taken together, it may be concluded that the administration of medium and high MW HA may be a successful way of treating diseases affecting chondrocytes in a clinical setting. PMID:29849772

  5. Mechanical Properties of LaRC(tm) SI Polymer for a Range of Molecular Weights

    NASA Technical Reports Server (NTRS)

    Whitley, Karen S.; Gates, Thomas S.; Hinkley, Jeffrey A.; Nicholson, Lee M.

    2000-01-01

    Mechanical testing of an advanced polyimide resin (LaRC(tm)-SI) with known variations in molecular weight was performed over a range of temperatures below the glass transition temperature. Elastic and inelastic properties were characterized as a function of molecular weight and test temperature. It was shown that notched tensile strength is a strong function of both temperature and molecular weight, whereas stiffness is only a strong function of temperature. The combined analysis of calculated yield stress and notched tensile strength indicated that low molecular weight materials tended to fail in a brittle manner, whereas high molecular weight materials exhibited ductile failure. The microphotographs of the failure surfaces also supported these findings.

  6. Chromatographic molecular weight measurements for heparin, its fragments and fractions, and other glycosaminoglycans.

    PubMed

    Mulloy, Barbara; Hogwood, John

    2015-01-01

    Glycosaminoglycan samples are usually polydisperse, consisting of molecules with differing length and differing sequence. Methods for measuring the molecular weight of heparin have been developed to assure the quality and consistency of heparin products for medicinal use, and these methods can be applied in other laboratory contexts. In the method described here, high-performance gel permeation chromatography is calibrated using appropriate heparin molecular weight markers or a single broad standard calibrant, and used to characterize the molecular weight distribution of polydisperse samples or the peak molecular weight of monodisperse, or approximately monodisperse, heparin fractions. The same technology can be adapted for use with other glycosaminoglycans.

  7. 21 CFR 178.3750 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... conditions: (a) The additive is an addition polymer of ethylene oxide and water with a mean molecular weight of 200 to 9,500. (b) It contains no more than 0.2 percent total by weight of ethylene and diethylene... ethylene and diethylene glycols if its mean molecular weight is below 350, when tested by the analytical...

  8. Effects of Molecular Weight upon Irradiation-Cross-Linked Poly(vinyl alcohol)/Clay Aerogel Properties.

    PubMed

    Chen, Hong-Bing; Zhao, Yan; Shen, Peng; Wang, Jun-Sheng; Huang, Wei; Schiraldi, David A

    2015-09-16

    Facile fabrication of mechanically strong poly(vinyl alcohol) (PVOH)/clay aerogel composites through a combination of increasing polymer molecular weights and gamma irradiation-cross-linking is reported herein. The aerogels produced from high polymer molecular weights exhibit significantly increased compressive moduli, similar to the effect of irradiation-induced cross-linking. The required irradiation dose for fabricating strong PVOH composite aerogels with dense microstructure decreased with increasing polymer molecular weight. Neither thermal stability nor flammability was significantly changed by altering the polymer molecular weight or by modest gamma irradiation, but they were highly dependent upon the polymer/clay ratio in the aerogel. Optimization of the mechanical, thermal, and flammability properties of these composite aerogels could therefore be obtained by using relatively low levels of polymer, with very high polymer molecular weight, or lower molecular weight coupled with moderate gamma irradiation. The facile preparation of strong, low flammability aerogels is an alternative to traditional polymer foams in applications where fire safety is important.

  9. Hyaluronic acid increases tendon derived cell viability and proliferation in vitro: comparative study of two different hyaluronic acid preparations by molecular weight.

    PubMed

    Gallorini, Marialucia; Berardi, Anna C; Berardocco, Martina; Gissi, Clarissa; Maffulli, Nicola; Cataldi, Amelia; Oliva, Francesco

    2017-01-01

    Hyaluronic Acid (HA) has been already approved by Food and Drug Administration (FDA) for osteoarthritis (OA), while its use in the treatment of tendinopathy is still debated. The aim of this study was to evaluate the effects of two different HA on human rotator cuff tendon derived cells in terms of cell viability, proliferation and apoptosis. An in vitro model was developed on human tendon derived cells from rotator cuff tears to study the effects of two different HA preparations: Sinovial HL® (High-Low molecular weight) (MW: 80-100 kDa) and KDa Sinovial Forte SF (MW: 800-1200), at various concentrations. Tendon derived cells morphology was evaluated after 0, 7 and 14 d of culture. Viability and proliferation were analyzed after 0, 24, and 48 h of culture and apoptosis occurrence was assessed after 24 h of culture. All the HAPs tested here increased viability and proliferation, in a dose-dependent manner and they reduced apoptosis at early stages (24 h) compared to control cells (without HAPs). HAPs enhanced viability and proliferation and counteracted apoptosis in tendon derived cells.

  10. Molecular Weight of Deoxyribonucleic Acid Synthesized During Initiation of Chromosome Replication in Escherichia coli

    PubMed Central

    Kuempel, Peter L.

    1972-01-01

    Alkaline sucrose gradients were used to study the molecular weight of deoxyribonucleic acid (DNA) synthesized during the initiation of chromosome replication in Escherichia coli 15 TAU-bar. The experiments were conducted to determine whether newly synthesized, replication origin DNA is attached to higher-molecular-weight parental DNA. Little of the DNA synthesized after readdition of required amino acids to cells previously deprived of the amino acids was present in DNA with a molecular weight comparable to that of the parental DNA. The newly synthesized, low-molecular-weight DNA rapidly appeared in higher-molecular-weight material, but there was an upper limit to the size of this intermediate-molecular-weight DNA. This limit was not observed when exponentially growing cells converted newly synthesized DNA to higher-molecular-weight material. The size of the intermediate-molecular-weight DNA was related to the age of the replication forks, and the size increased as the replication forks moved further from the replication origin. The results indicate that the newly synthesized replication origin DNA is not attached to parental DNA, but it is rapidly attached to the growing strands that extend from the replication fork to the replication origin, or to the other replication fork if replication is bidirectional. Experiments are reported which demonstrate that the DNA investigated was from the vicinity of the replication origin and was not plasmid DNA or DNA from random positions on the chromosome. PMID:4562387

  11. 21 CFR 172.820 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... the total ethylene and diethylene glycol content of polyethylene glycols having mean molecular weights... and diethylene glycol content of polyethylene glycols having mean molecular weights below 450. Analytical Method ethylene glycol and diethylene glycol content of polyethylene glycols The analytical method...

  12. Effect of PEO molecular weight on the miscibility and dynamics in epoxy/PEO blends.

    PubMed

    Lu, Shoudong; Zhang, Rongchun; Wang, Xiaoliang; Sun, Pingchuan; Lv, Weifeng; Liu, Qingjie; Jia, Ninghong

    2015-11-01

    In this work, the effect of poly(ethylene oxide) (PEO) molecular weight in blends of epoxy (ER) and PEO on the miscibility, inter-chain weak interactions and local dynamics were systematically investigated by multi-frequency temperature modulation DSC and solid-state NMR techniques. We found that the molecular weight (M(w)) of PEO was a crucial factor in controlling the miscibility, chain dynamics and hydrogen bonding interactions between PEO and ER. A critical PEO molecular weight (M(crit)) around 4.5k was found. PEO was well miscible with ER when the molecular weight was below M(crit), where the chain motion of PEO was restricted due to strong inter-chain hydrogen bonding interactions. However, for the blends with high molecular weight PEO (M(w) > M(crit)), the miscibility between PEO and ER was poor, and most of PEO chains were considerably mobile. Finally, polarization inversion spin exchange at magic angle (PISEMA) solid-state NMR experiment further revealed the different mobility of the PEO in ER/PEO blends with different molecular weight of PEO at molecular level. Based on the DSC and NMR results, a tentative model was proposed to illustrate the miscibility in ER/PEO blends.

  13. Combustion of High Molecular Weight Hydrocarbon Fuels and JP-8 at Moderate Pressures

    DTIC Science & Technology

    2016-07-26

    SECURITY CLASSIFICATION OF: The objective of this research is to characterize combustion of high molecular weight hydrocarbon fuels and jet- fuels (in...Unlimited UU UU UU UU 26-07-2016 1-May-2012 30-Apr-2016 Final Report: Combustion of High Molecular Weight Hydrocarbon Fuels and JP-8 at Moderate...Report: Combustion of High Molecular Weight Hydrocarbon Fuels and JP-8 at Moderate Pressures (Research Area 1: Mechanical Sciences) Report Title The

  14. Formation of high molecular weight products from benzene during boundary lubrication

    NASA Technical Reports Server (NTRS)

    Morales, W.

    1985-01-01

    High molecular weight products were detected on the wear track of an iron disk at the end of a sliding friction and wear test using benzene as a lubricant. Size exclusion chromagography in conjunction with UV analysis gave evidence that the high molecular weight products are polyphenyl ether type substances. Organic electrochemistry was used to elucidate the possible surface reaction mechanisms.

  15. Low Molecular Weight Chitosan–Insulin Polyelectrolyte Complex: Characterization and Stability Studies

    PubMed Central

    Al-Kurdi, Zakieh I.; Chowdhry, Babur Z.; Leharne, Stephen A.; Al Omari, Mahmoud M. H.; Badwan, Adnan A.

    2015-01-01

    The aim of the work reported herein was to investigate the effect of various low molecular weight chitosans (LMWCs) on the stability of insulin using USP HPLC methods. Insulin was found to be stable in a polyelectrolyte complex (PEC) consisting of insulin and LMWC in the presence of a Tris-buffer at pH 6.5. In the presence of LMWC, the stability of insulin increased with decreasing molecular weight of LMWC; 13 kDa LMWC was the most efficient molecular weight for enhancing the physical and chemical stability of insulin. Solubilization of insulin-LMWC polyelectrolyte complex (I-LMWC PEC) in a reverse micelle (RM) system, administered to diabetic rats, results in an oral delivery system for insulin with acceptable bioactivity. PMID:25830681

  16. Low Molecular Weight Norbornadiene Derivatives for Molecular Solar‐Thermal Energy Storage

    PubMed Central

    Quant, Maria; Lennartson, Anders; Dreos, Ambra; Kuisma, Mikael; Erhart, Paul; Börjesson, Karl

    2016-01-01

    Abstract Molecular solar‐thermal energy storage systems are based on molecular switches that reversibly convert solar energy into chemical energy. Herein, we report the synthesis, characterization, and computational evaluation of a series of low molecular weight (193–260 g mol−1) norbornadiene–quadricyclane systems. The molecules feature cyano acceptor and ethynyl‐substituted aromatic donor groups, leading to a good match with solar irradiation, quantitative photo‐thermal conversion between the norbornadiene and quadricyclane, as well as high energy storage densities (396–629 kJ kg−1). The spectroscopic properties and energy storage capability have been further evaluated through density functional theory calculations, which indicate that the ethynyl moiety plays a critical role in obtaining the high oscillator strengths seen for these molecules. PMID:27492997

  17. Distribution of molecular weight in glyceride polymerizates or aggregates of them after contact with lunar grains

    NASA Technical Reports Server (NTRS)

    Asunmaa, S. K.; Haack, R.

    1977-01-01

    An attempt is made to report on experiments in which a molecular-weight increase was determined in thin layers of triglyceride-containing glycerides after thin-layer contact for two years with lunar topsoil grains at 25 C without any thermal activation. It is noted that solidification was observed on both dielectric grains and metal-rich areas and that changes in viscosity and molecular weights were first detected by solidification of surface layers. Gel permeation chromatography is described which detected a general shift of the Gaussian distribution of the molecular-weight data toward generally higher molecular weights as well as an increase in mean molecular weight. Reaction mechanisms are considered, and results of spectrographic analysis are cited which support the interpretations of the molecular-weight data.

  18. A Simple, Inexpensive Molecular Weight Measurement for Water-Soluble Polymers Using Microemulsions.

    ERIC Educational Resources Information Center

    Mathias, Lon J.; Moore, D. Roger

    1985-01-01

    Describes an experiment involving use of a microemulsion and its characteristic thermal phase change to determine molecular weights of polyoxyethylene samples. The experiment provides students with background information on polymers and organized media and with experience in evaluating polymer molecular weight by using a unique property of a…

  19. Application of the weibull distribution function to the molecular weight distribution of cellulose

    Treesearch

    A. Broido; Hsiukang Yow

    1977-01-01

    The molecular weight distribution of a linear homologous polymer is usually obtained empirically for any particular sample. Sample-to-sample comparisons are made in terms of the weight- or number-average molecular weights and graphic displays of the distribution curves. Such treatment generally precludes data interpretations in which a distribution can be described in...

  20. Analysis of low molecular weight compounds by MALDI-FTICR-MS.

    PubMed

    Wang, Hao-Yang; Chu, Xu; Zhao, Zhi-Xiong; He, Xiao-Shuang; Guo, Yin-Long

    2011-05-15

    This review focuses on recent applications of matrix-assisted laser desorption ionization-Fourier-transform ion cyclotron resonance mass spectrometry (MALDI-FTICR-MS) in qualitative and quantitative analysis of low molecular weight compounds. The scope of the work includes amino acids, small peptides, mono and oligosaccharides, lipids, metabolic compounds, small molecule phytochemicals from medicinal herbs and even the volatile organic compounds from tobacco. We discuss both direct analysis and analysis following derivatization. In addition we review sample preparation strategies to reduce interferences in the low m/z range and to improve sensitivities by derivatization with charge tags. We also present coupling of head space techniques with MALDI-FTICR-MS. Furthermore, omics analyses based on MALDI-FTICR-MS were also discussed, including proteomics, metabolomics and lipidomics, as well as the relative MS imaging for bio-active low molecular weight compounds. Finally, we discussed the investigations on dissociation/rearrangement processes of low molecular weight compounds by MALDI-FTICR-MS. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Synthesis of the low molecular weight heat shock proteins in plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mansfield, M.A.; Key, J.L.

    1987-08-01

    Heat shock of living tissue induces the synthesis of a unique group of proteins, the heat shock proteins. In plants, the major group of heat shock proteins has a molecular mass of 15 to 25 kilodaltons. Accumulation to these proteins to stainable levels has been reported in only a few species. To examine accumulation of the low molecular weight heat shock proteins in a broader range of species, two-dimensional electrophoresis was used to resolve total protein from the following species: soybean (Glycine max L. Merr., var Wayne), pea (Pisum sativum L., var Early Alaska), sunflower (Helianthus annuus L.), wheat (Triticummore » asetivum L.), rice (Oryza sativa L., cv IR-36), maize (Zea mays L.), pearl millet (Pennisetum americanum L. Leeke, line 23DB), and Panicum miliaceum L. When identified by both silver staining and incorporation of radiolabel, a diverse array of low molecular weight heat shock proteins was synthesized in each of these species. These proteins accumulated to significant levels after three hours of heat shock but exhibited considerable heterogeneity in isoelectric point, molecular weight, stainability, and radiolabel incorporation. Although most appeared to be synthesized only during heat shock, some were detectable at low levels in control tissue. Compared to the monocots, a higher proportion of low molecular weight heat shock proteins was detectable in control tissues from dicots.« less

  2. The Role of Molecular Weight and Temperature on the Elastic and Viscoelastic Properties of a Glassy Thermoplastic Polyimide

    NASA Technical Reports Server (NTRS)

    Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.

    2001-01-01

    Mechanical testing of the elastic and viscoelastic response of an advanced thermoplastic polyimide (LaRC-SI) with known variations in molecular weight was performed over a range of temperatures below the glass transition temperature. The notched tensile strength was shown to be a strong function of both molecular weight and temperature, whereas stiffness was only a strong function of temperature. A critical molecular weight was observed to occur at a weight average molecular weight of M, approx. 22,000 g/mol below which, the notched tensile strength decreases rapidly. This critical molecular weight transition is temperature-independent. Low, molecular weight materials tended to fail in a brittle manner, whereas high molecular weight materials exhibited ductile failure. Furthermore, low molecular weight materials have increased creep compliance and creep compliance rate, and are more sensitive to temperature than the high molecular weight materials. At long timescales (less than 1100 hours) physical aging serves to significantly decrease the creep compliance and creep rate of all the materials tested. Low molecular weight materials are less influenced by the effects of physical aging.

  3. Molecular weight kinetics and chain scission models for dextran polymers during ultrasonic degradation.

    PubMed

    Pu, Yuanyuan; Zou, Qingsong; Hou, Dianzhi; Zhang, Yiping; Chen, Shan

    2017-01-20

    Ultrasonic degradation of six dextran samples with different initial molecular weights (IMW) has been performed to investigate the degradation behavior and chain scission mechanism of dextrans. The weight-average molecular weight (Mw) and polydispersity index (D value) were monitored by High Performance Gel Permeation Chromatography (HPGPC). Results showed that Mw and D value decreased with increasing ultrasonic time, resulting in a more homologous dextran solution with lower molecular weight. A significant degradation occurred in dextrans with higher IMW, particularly at the initial stage of the ultrasonic treatment. The Malhotra model was found to well describe the molecular weight kinetics for all dextran samples. Experimental data was fitted into two chain scission models to study dextran chain scission mechanism and the model performance was compared. Results indicated that the midpoint scission model agreed well with experimental results, with a linear regression factor of R 2 >0.99. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. From oligomers to molecular giants of soybean oil in supercritical carbon dioxide medium: 1. Preparation of polymers with lower molecular weight from soybean oil.

    PubMed

    Liu, Zengshe; Sharma, Brajendra K; Erhan, Sevim Z

    2007-01-01

    Polymers with a low molecular weight derived from soybean oil have been prepared in a supercritical carbon dioxide medium by cationic polymerization. Boron trifluoride diethyl etherate was used as an initiator. Influences of polymerization temperature, amount of initiator, and carbon dioxide pressure on the molecular weight were investigated. It is shown that the higher polymerization temperature favors polymers with relatively higher molecular weights. Larger amounts of initiator also provide polymers with higher molecular weights. Higher pressure favors polymers with relatively higher molecular weights. The applications of these soy-based materials will be in the lubrication and hydraulic fluid areas.

  5. Mechanical strength of [HA/Bioplastic/Sericin] composite part printed by bioprinter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tontowi, Alva Edy, E-mail: alvaedytontowi@ugm.ac.id; Setiawan, Agris

    The aim of this research was to determine the effect of hydroxyapatite (HA) content in printed biocomposite to its mechanical strength. The biocomposite paste was prepared by composing HA, bioplastic and sericin with various ratios of [HA/Bioplastic]: 40/60, 50/50, 60,40 and 70/30. Sericin of 0.3% weight was added to the biocomposite. Mechanical test was conducted to observe tensile (ASTM D 638 type 4) and flexural strength (ASTM D 790). Both type of specimens were fabricated using 3D Printer. Printing process parameter (infill speed, print speed and layer height) were set up as 60 mm/s, 10 mm/s, 0.35 mm, respectively. Resultsmore » showed that biocomposite with [HA/Biplastic]. weight ratio of 60/40(w/w) has an optimum tensile (3.89 ± 1.26 MPa) and flexural strength (2.51 ± 0.45 MPa). Scanning electron microscope observation indicated that microstructure of specimen was influenced by the percentage of the hydroxyapatite. There was no agglomeration of HA particle within the composite.« less

  6. Occurrence of a multimeric high-molecular-weight glyceraldehyde-3-phosphate dehydrogenase in human serum.

    PubMed

    Kunjithapatham, Rani; Geschwind, Jean-Francois; Devine, Lauren; Boronina, Tatiana N; O'Meally, Robert N; Cole, Robert N; Torbenson, Michael S; Ganapathy-Kanniappan, Shanmugasundaram

    2015-04-03

    Cellular glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a phylogenetically conserved, ubiquitous enzyme that plays an indispensable role in energy metabolism. Although a wealth of information is available on cellular GAPDH, there is a clear paucity of data on its extracellular counterpart (i.e., the secreted or extracellular GAPDH). Here, we show that the extracellular GAPDH in human serum is a multimeric, high-molecular-weight, yet glycolytically active enzyme. The high-molecular-weight multimers of serum GAPDH were identified by immunodetection on one- and two-dimensional gel electrophoresis using multiple antibodies specific for various epitopes of GAPDH. Partial purification of serum GAPDH by DEAE Affigel affinity/ion exchange chromatography further established the multimeric composition of serum GAPDH. In vitro data demonstrated that human cell lines secrete a multimeric, high-molecular-weight enzyme similar to that of serum GAPDH. Furthermore, LC-MS/MS analysis of extracellular GAPDH from human cell lines confirmed the presence of unique peptides of GAPDH in the high-molecular-weight subunits. Furthermore, data from pulse-chase experiments established the presence of high-molecular-weight subunits in the secreted, extracellular GAPDH. Taken together, our findings demonstrate the presence of a high-molecular-weight, enzymatically active secretory GAPDH in human serum that may have a hitherto unknown function in humans.

  7. Nanocomposite Porous Microcarriers Based on Strontium-Substituted HA- g-Poly(γ-benzyl-l-glutamate) for Bone Tissue Engineering.

    PubMed

    Yan, Shifeng; Xia, Pengfei; Xu, Shenghua; Zhang, Kunxi; Li, Guifei; Cui, Lei; Yin, Jingbo

    2018-05-04

    Porous microcarriers have aroused increasing attention recently, which can create a protected environment for sufficient cell seeding density, facilitate oxygen and nutrient transfer, and well support the cell attachment and growth. In this study, porous microcarriers fabricated from the strontium-substituted hydroxyapatite- graft-poly(γ-benzyl-l-glutamate) (Sr10-HA- g-PBLG) hybrid nanocomposite were developed. The surface grating of PBLG, the micromorphology and element distribution, mechanical strength, in vitro degradation, and Sr 2+ ion release of the obtained Sr10-HA- g-PBLG porous microcarriers were investigated, respectively. The grafting ratio and the molecular weight of the grafted PBLG of Sr10-HA- g-PBLG could be effectively controlled by varying the initial ratio of BLG-NCA to Sr10-HA-NH 2 . The microcarriers exhibited a highly porous and interconnected microstructure with the porosity of about 90% and overall density of 1.03-1.06 g/cm 3 . Also, the degradation rate of Sr10-HA-PBLG microcarriers could be effectively controlled and long-term Sr 2+ release was obtained. The Sr10-HA-PBLG microcarriers allowed cells adhesion, infiltration, and proliferation and promoted the osteogenic differentiation of rabbit adipose-derived stem cells (ADSCs). Successful healing of femoral bone defect was proved by injection of the ADSCs-seeded Sr10-HA-PBLG microcarriers in a rabbit model.

  8. Oligomeric cationic polymethacrylates: a comparison of methods for determining molecular weight.

    PubMed

    Locock, Katherine E S; Meagher, Laurence; Haeussler, Matthias

    2014-02-18

    This study compares three common laboratory methods, size-exclusion chromatography (SEC), (1)H nuclear magnetic resonance (NMR), and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF), to determine the molecular weight of oligomeric cationic copolymers. The potential bias for each method was examined across a series of polymers that varied in molecular weight and cationic character (both choice of cation (amine versus guanidine) and relative proportion present). SEC was found to be the least accurate, overestimating Mn by an average of 140%, owing to the lack of appropriate cationic standards available, and the complexity involved in estimating the hydrodynamic volume of copolymers. MALDI-TOF approximated Mn well for the highly monodisperse (Đ < 1.1), low molecular weight (degree of polymerization (DP) <50) species but appeared unsuitable for the largest polymers in the series due to the mass bias associated with the technique. (1)H NMR was found to most accurately estimate Mn in this study, differing to theoretical values by only 5.2%. (1)H NMR end-group analysis is therefore an inexpensive and facile, primary quantitative method to estimate the molecular weight of oliogomeric cationic polymethacrylates if suitably distinct end-groups signals are present in the spectrum.

  9. Long-term low-molecular-weight heparin and the post-thrombotic syndrome: a systematic review.

    PubMed

    Hull, Russell D; Liang, Jane; Townshend, Grace

    2011-08-01

    Post-thrombotic syndrome causes considerable morbidity. The Home-LITE study showed a lower incidence of post-thrombotic syndrome and venous ulcers after 3 months of treating deep vein thrombosis with the low-molecular-weight heparin tinzaparin versus oral anticoagulation. This systematic review examined whether long-term treatment of deep vein thrombosis using low-molecular-weight heparin, rather than oral anticoagulation, reduces development of post-thrombotic syndrome. We identified 9 articles comparing treatment of deep vein thrombosis using long-term low-molecular-weight heparin with any comparator, which reported outcomes relevant to the post-thrombotic syndrome assessed ≥ 3 months post-deep vein thrombosis. Pooled analysis of 2 studies yielded an 87% risk reduction with low-molecular-weight heparin in the incidence of venous ulcers at ≥ 3 months (P = .019). One study showed an overall odds ratio of 0.77 (P = .001) favoring low-molecular-weight heparin for the presence of 8 patient-reported post-thrombotic syndrome signs and symptoms. Pooled analysis of 5 studies showed a risk ratio for low-molecular-weight heparin versus oral anticoagulation of 0.66 (P < .0001) for complete recanalization of thrombosed veins. These results support the lower incidence of post-thrombotic syndrome and venous ulcers observed in Home-LITE. Long-term treatment with low-molecular-weight heparin rather than oral anticoagulation after a deep vein thrombosis may reduce or prevent development of signs and symptoms associated with post-thrombotic syndrome. Post-thrombotic syndrome and associated acute ulcers may develop more rapidly after deep vein thrombosis than previously recognized. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. The Vertex Version of Weighted Wiener Number for Bicyclic Molecular Structures

    PubMed Central

    Gao, Wei

    2015-01-01

    Graphs are used to model chemical compounds and drugs. In the graphs, each vertex represents an atom of molecule and edges between the corresponding vertices are used to represent covalent bounds between atoms. We call such a graph, which is derived from a chemical compound, a molecular graph. Evidence shows that the vertex-weighted Wiener number, which is defined over this molecular graph, is strongly correlated to both the melting point and boiling point of the compounds. In this paper, we report the extremal vertex-weighted Wiener number of bicyclic molecular graph in terms of molecular structural analysis and graph transformations. The promising prospects of the application for the chemical and pharmacy engineering are illustrated by theoretical results achieved in this paper. PMID:26640513

  11. Development of solvent-free offset ink using vegetable oil esters and high molecular-weight resin.

    PubMed

    Park, Jung Min; Kim, Young Han; Kim, Sung Bin

    2013-01-01

    In the development of solvent-free offset ink, the roles of resin molecular weight and used solvent on the ink performance were evaluated by examining the relationship between the various properties of resin and solvent and print quality. To find the best performing resin, the soy-oil fatty acid methyl ester (FAME) was applied to the five modified-phenolic resins having different molecular weights. It is found from the experimental results that the ink made of higher molecular weight and better solubility resin gives better printability and print quality. It is because larger molecular weight resin with better solubility gives higher rate of ink transfer. From the ink application of different esters to high molecular weight resin, the best printing performance was yielded from the soy-oil fatty acid butyl ester (FABE). It is due to its high kinematic viscosity resulting in the smallest change of ink transfer weight upon multiple number of printing, which improves the stability of ink quality.

  12. Purification of a low molecular weight fucoidan for SPECT molecular imaging of myocardial infarction.

    PubMed

    Saboural, Pierre; Chaubet, Frédéric; Rouzet, Francois; Al-Shoukr, Faisal; Azzouna, Rana Ben; Bouchemal, Nadia; Picton, Luc; Louedec, Liliane; Maire, Murielle; Rolland, Lydia; Potier, Guy; Guludec, Dominique Le; Letourneur, Didier; Chauvierre, Cédric

    2014-09-23

    Fucoidans constitute a large family of sulfated polysaccharides with several biochemical properties. A commercial fucoidan from brown algae, containing low molecular weight polysaccharidic species constituted of l-fucose, uronic acids and sulfate groups, was simply treated here with calcium acetate solution. This treatment led to a purified fraction with a yield of 45%. The physicochemical characterizations of the purified fucoidan using colorimetric assay, MALLS, dRI, FT-IR, NMR, exhibited molecular weight distributions and chemical profiles similar for both fucoidans whereas the sulfate and l-fucose contents increased by 16% and 71%, respectively. The biodistribution study in rat of both compounds labeled with 99mTc evidenced a predominant renal elimination of the purified fucoidan, but the crude fucoidan was mainly retained in liver and spleen. In rat myocardial ischemia-reperfusion, we then demonstrated the better efficiency of the purified fucoidan. This purified sulfated polysaccharide appears promising for the development of molecular imaging in acute coronary syndrome.

  13. Purification of a Low Molecular Weight Fucoidan for SPECT Molecular Imaging of Myocardial Infarction

    PubMed Central

    Saboural, Pierre; Chaubet, Frédéric; Rouzet, Francois; Al-Shoukr, Faisal; Ben Azzouna, Rana; Bouchemal, Nadia; Picton, Luc; Louedec, Liliane; Maire, Murielle; Rolland, Lydia; Potier, Guy; Le Guludec, Dominique; Letourneur, Didier; Chauvierre, Cédric

    2014-01-01

    Fucoidans constitute a large family of sulfated polysaccharides with several biochemical properties. A commercial fucoidan from brown algae, containing low molecular weight polysaccharidic species constituted of l-fucose, uronic acids and sulfate groups, was simply treated here with calcium acetate solution. This treatment led to a purified fraction with a yield of 45%. The physicochemical characterizations of the purified fucoidan using colorimetric assay, MALLS, dRI, FT-IR, NMR, exhibited molecular weight distributions and chemical profiles similar for both fucoidans whereas the sulfate and l-fucose contents increased by 16% and 71%, respectively. The biodistribution study in rat of both compounds labeled with 99mTc evidenced a predominant renal elimination of the purified fucoidan, but the crude fucoidan was mainly retained in liver and spleen. In rat myocardial ischemia-reperfusion, we then demonstrated the better efficiency of the purified fucoidan. This purified sulfated polysaccharide appears promising for the development of molecular imaging in acute coronary syndrome. PMID:25251032

  14. Adsorption of dissolved organics in lake water by aluminum oxide. Effect of molecular weight

    USGS Publications Warehouse

    Davis, J.A.; Gloor, R.

    1981-01-01

    Dissolved organic compounds in a Swiss lake were fractionated into three molecular size classes by gel exclusion chromatography, and adsorption of each fraction on colloidal alumina was studied as a function of pH. Organic compounds with molecular weight (Mr) greater than 1000 formed strong complexes with the alumina surface, but low molecular weight compounds were weakly adsorbed. Electrophoretic mobility measurements indicated that alumina particles suspended in the original lake water were highly negatively charged because of adsorbed organic matter. Most of the adsorbed organic compounds were in the Mr range 1000 < Mr < 3000. Adsorption of these compounds during the treatment of drinking water by alum coagulation may be responsible for the preferential removal of trihalomethane precursors. Adsorption may also influence the molecular-weight distribution of dissolved organic material in lakes. surface, the present work will focus on the influence of molecular size and pH on the adsorption behavior of dissolved organic material of a Swiss lake. From a geochemical point of view, it is important to know the molecular-weight distribution of adsorbed organic matter so that we may better assess its reactivity with trace elements. The study also serves as a first step in quantifying the role of adsorption in the geochemical cycle of organic carbon in lacustrine environments. For water-treatment practice, we need to determine whether molecular weight fractionation occurs during adsorption by aluminum oxide. Such a fractionation could be significant in the light of recent reports that chloroform and other organochlorine compounds are preferentially produced by particular molecular-weight fractions (25-27). ?? 1981 American Chemical Society.

  15. A log-normal distribution model for the molecular weight of aquatic fulvic acids

    USGS Publications Warehouse

    Cabaniss, S.E.; Zhou, Q.; Maurice, P.A.; Chin, Y.-P.; Aiken, G.R.

    2000-01-01

    The molecular weight of humic substances influences their proton and metal binding, organic pollutant partitioning, adsorption onto minerals and activated carbon, and behavior during water treatment. We propose a lognormal model for the molecular weight distribution in aquatic fulvic acids to provide a conceptual framework for studying these size effects. The normal curve mean and standard deviation are readily calculated from measured M(n) and M(w) and vary from 2.7 to 3 for the means and from 0.28 to 0.37 for the standard deviations for typical aquatic fulvic acids. The model is consistent with several types of molecular weight data, including the shapes of high- pressure size-exclusion chromatography (HP-SEC) peaks. Applications of the model to electrostatic interactions, pollutant solubilization, and adsorption are explored in illustrative calculations.The molecular weight of humic substances influences their proton and metal binding, organic pollutant partitioning, adsorption onto minerals and activated carbon, and behavior during water treatment. We propose a log-normal model for the molecular weight distribution in aquatic fulvic acids to provide a conceptual framework for studying these size effects. The normal curve mean and standard deviation are readily calculated from measured Mn and Mw and vary from 2.7 to 3 for the means and from 0.28 to 0.37 for the standard deviations for typical aquatic fulvic acids. The model is consistent with several type's of molecular weight data, including the shapes of high-pressure size-exclusion chromatography (HP-SEC) peaks. Applications of the model to electrostatic interactions, pollutant solubilization, and adsorption are explored in illustrative calculations.

  16. An evaluation of the effects of PEO/PEG molecular weights on extruded alumina rods

    NASA Astrophysics Data System (ADS)

    Bolger, Nancy Beth

    1998-12-01

    Alumina rods were piston extruded from bodies containing polyethylene glycols (PEGs) and polyethylene oxides (PEOs) with molecular weights ranging from 1,300 to 3,800,000 g/mol. A blend of aluminas possessing different particle size distributions was evaluated with regard to its extrusion pressure by varying the amount of PEG/PEO addition. Behavior exhibited by the alumina blend was dependent upon the additive that was used. The higher molecular weight binders with average molecular weight of 200,000 g/mol and 3,350,000 g/mol displayed the most severe behaviors of near dilatant and dilatant respectively. Physical properties of the green and fired states, as well as the binder burnout, were investigated with the changing additions. Correlation between the green and fired strengths and the changing molecular weights were examined. The additive present influenced the surface properties of the rods, which affected the green strengths. The highest average molecular weight polyethylene glycols showed higher green strengths, while the lowest green strengths were observed for the high molecular weight polyethylene oxides. Fired strengths generally ranged from approximately 12,000 psi to 16,000 psi for additive batches. Alumina pellets containing twelve separate combinations of polyethylene glycol with polyethylene oxide were dry pressed. Physical properties of the green and fired states were examined. Statistical analysis was performed upon the data and seven combinations of polyethylene glycol with polyethylene oxide were deemed significant. These combinations in conjunction with the same alumina blend were then piston extruded. The addition of polyethylene glycol reduced the near dilatant behavior exhibited by the 200,000 g/mol average molecular weight polyethylene oxide. Dilatant behavior was completely eliminated from the 3,350,000 g/mol average molecular weight polyethylene oxide batches. Physical properties of the green and fired states were again investigated with

  17. Molecular chaperone properties of the high molecular weight aggregate from aged lens

    NASA Technical Reports Server (NTRS)

    Takemoto, L.; Boyle, D.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    The high molecular weight aggregate (HMWA) fraction was isolated from the water soluble proteins of aged bovine lenses. Its composition and ability to inhibit heat-induced denaturation and aggregation were compared with the lower molecular weight, oligomeric fraction of alpha isolated from the same lens. Although the major components of both fractions were the alpha-A and alpha-B chains, the HMWA fraction possessed a decreased ability to protect other proteins against heat-induced denaturation and aggregation. Immunoelectron microscopy of both fractions demonstrated that alpha particles from the HMWA fraction contained increased amounts of beta and gamma crystallins, bound to a central region of the supramolecular complex. Together, these results demonstrate that alpha crystallins found in the HMWA fraction possess a decreased ability to protect against heat-induced denaturation and aggregation, and suggest that at least part of this decrease could be due to the increased presence of beta and gamma crystallins complexed to the putative chaperone receptor site of the alpha particles.

  18. Effect of sterilization irradiation on friction and wear of ultrahigh-molecular-weight polyethylene

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Hady, W. F.; Crugnola, A.

    1979-01-01

    The effect of sterilization gamma irradiation on the friction and wear properties of ultrahigh molecular weight polyethylene (UHMWPE) sliding against 316L stainless steel in dry air at 23 C was determined. A pin-on-disk apparatus was used. Experimental conditions included a 1-kilogram load, a 0.061- to 0.27-meter-per-second sliding velocity, and a 32000- to 578000-meter sliding distance. Although sterilization doses of 2.5 and 5.0 megarads greatly altered the average molecular weight and the molecular weight distribution, the friction and wear properties of the polymer were not significantly changed.

  19. Low-molecular-weight heparins: pharmacologic profile and product differentiation.

    PubMed

    Fareed, J; Jeske, W; Hoppensteadt, D; Clarizio, R; Walenga, J M

    1998-09-10

    The interchangeability of low-molecular-weight heparins (LMWHs) has been the subject of discussion since these products were first introduced for the prophylaxis of deep vein thrombosis. Experimental evidence now exists to show that LMWHs differ from each other in a number of characteristics. Products have been differentiated on the basis of molecular weight and biologic properties, but only limited information derived from the clinical setting is available. Potency has been described on the basis of anti-Factor Xa activity, but at equivalent anti-Xa activities, the anti-Factor IIa activity of different products shows marked variations. At the relatively small doses used for the management of postsurgical deep vein thrombosis, the effect of these interproduct differences may be relatively minor, but as LMWHs are developed for therapeutic use at much higher doses, such differences may become clinically important. Variations in safety and efficacy reported in clinical trials of LMWHs may reflect the known differences in their molecular composition and pharmacologic properties.

  20. Biological and structural analyses of bovine heparin fractions of intermediate and high molecular weight.

    PubMed

    Nogueira, Alexsandro V; Drehmer, Daiana L; Iacomini, Marcello; Sassaki, Guilherme L; Cipriani, Thales R

    2017-02-10

    Low molecular weight heparin, which is generally obtained by chemical and enzymatic depolymerization of unfractionated heparin, has high bioavailability and can be subcutaneously injected. The aim of the present investigation was to fractionate bovine heparin using a physical method (ultrafiltration through a 10kDa cut-off membrane), avoiding structural modifications that can be caused by chemical or enzymatic treatments. Two fractions with different molecular weights were obtained: the first had an intermediate molecular weight (B-IMWH; Mn=9587Da) and the other had a high molecular weight (B-HMWH; 22,396Da). B-IMWH and B-HMWH have anticoagulant activity of 103 and 154IU/mg respectively, which could be inhibited by protamine. Both fractions inhibited α-thrombin and factor Xa in vitro and showed antithrombotic effect in vivo. Moreover, ex vivo aPTT assay demonstrated that B-IMWH is absorbed by subcutaneous route. The results showed that ultrafiltration can be used to obtain two bovine heparin fractions, which differ on their molecular weights, structural components, anticoagulant potency, and administration routes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Low Molecular Weight Norbornadiene Derivatives for Molecular Solar-Thermal Energy Storage.

    PubMed

    Quant, Maria; Lennartson, Anders; Dreos, Ambra; Kuisma, Mikael; Erhart, Paul; Börjesson, Karl; Moth-Poulsen, Kasper

    2016-09-05

    Molecular solar-thermal energy storage systems are based on molecular switches that reversibly convert solar energy into chemical energy. Herein, we report the synthesis, characterization, and computational evaluation of a series of low molecular weight (193-260 g mol(-1) ) norbornadiene-quadricyclane systems. The molecules feature cyano acceptor and ethynyl-substituted aromatic donor groups, leading to a good match with solar irradiation, quantitative photo-thermal conversion between the norbornadiene and quadricyclane, as well as high energy storage densities (396-629 kJ kg(-1) ). The spectroscopic properties and energy storage capability have been further evaluated through density functional theory calculations, which indicate that the ethynyl moiety plays a critical role in obtaining the high oscillator strengths seen for these molecules. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  2. Agarose and Polyacrylamide Gel Electrophoresis Methods for Molecular Mass Analysis of 5–500 kDa Hyaluronan

    PubMed Central

    Bhilocha, Shardul; Amin, Ripal; Pandya, Monika; Yuan, Han; Tank, Mihir; LoBello, Jaclyn; Shytuhina, Anastasia; Wang, Wenlan; Wisniewski, Hans-Georg; de la Motte, Carol; Cowman, Mary K.

    2011-01-01

    Agarose and polyacrylamide gel electrophoresis systems for the molecular mass-dependent separation of hyaluronan (HA) in the size range of approximately 5–500 kDa have been investigated. For agarose-based systems, the suitability of different agarose types, agarose concentrations, and buffers systems were determined. Using chemoenzymatically synthesized HA standards of low polydispersity, the molecular mass range was determined for each gel composition, over which the relationship between HA mobility and logarithm of the molecular mass was linear. Excellent linear calibration was obtained for HA molecular mass as low as approximately 9 kDa in agarose gels. For higher resolution separation, and for extension to molecular masses as low as approximately 5 kDa, gradient polyacrylamide gels were superior. Densitometric scanning of stained gels allowed analysis of the range of molecular masses present in a sample, and calculation of weight-average and number-average values. The methods were validated for polydisperse HA samples with viscosity-average molecular masses of 112, 59, 37, and 22 kDa, at sample loads of 0.5 µg (for polyacrylamide) to 2.5 µg (for agarose). Use of the methods for electrophoretic mobility shift assays was demonstrated for binding of the HA-binding region of aggrecan (recombinant human aggrecan G1-IGD-G2 domains) to a 150 kDa HA standard. PMID:21684248

  3. Do Low Molecular Weight Agents Cause More Severe Asthma than High Molecular Weight Agents?

    PubMed

    Meca, Olga; Cruz, María-Jesús; Sánchez-Ortiz, Mónica; González-Barcala, Francisco-Javier; Ojanguren, Iñigo; Munoz, Xavier

    2016-01-01

    The aim of this study was to analyse whether patients with occupational asthma (OA) caused by low molecular weight (LMW) agents differed from patients with OA caused by high molecular weight (HMW) with regard to risk factors, asthma presentation and severity, and response to various diagnostic tests. Seventy-eight patients with OA diagnosed by positive specific inhalation challenge (SIC) were included. Anthropometric characteristics, atopic status, occupation, latency periods, asthma severity according to the Global Initiative for Asthma (GINA) control classification, lung function tests and SIC results were analysed. OA was induced by an HMW agent in 23 patients (29%) and by an LMW agent in 55 (71%). A logistic regression analysis confirmed that patients with OA caused by LMW agents had a significantly higher risk of severity according to the GINA classification after adjusting for potential confounders (OR = 3.579, 95% CI 1.136-11.280; p = 0.029). During the SIC, most patients with OA caused by HMW agents presented an early reaction (82%), while in patients with OA caused by LMW agents the response was mainly late (73%) (p = 0.0001). Similarly, patients with OA caused by LMW agents experienced a greater degree of bronchial hyperresponsiveness, measured as the difference in the methacholine dose-response ratio (DRR) before and after SIC (1.77, range 0-16), compared with patients with OA caused by HMW agents (0.87, range 0-72), (p = 0.024). OA caused by LMW agents may be more severe than that caused by HMW agents. The severity of the condition may be determined by the different mechanisms of action of these agents.

  4. Effects of polymer molecular weight on relative oral bioavailability of curcumin.

    PubMed

    Tsai, Yin-Meng; Chang-Liao, Wan-Ling; Chien, Chao-Feng; Lin, Lie-Chwen; Tsai, Tung-Hu

    2012-01-01

    Polylactic-co-glycolic acid (PLGA) nanoparticles have been used to increase the relative oral bioavailability of hydrophobic compounds and polyphenols in recent years, but the effects of the molecular weight of PLGA on bioavailability are still unknown. This study investigated the influence of polymer molecular weight on the relative oral bioavailability of curcumin, and explored the possible mechanism accounting for the outcome. Curcumin encapsulated in low (5000-15,000) and high (40,000-75,000) molecular weight PLGA (LMw-NPC and HMw-NPC, respectively) were prepared using an emulsification-solvent evaporation method. Curcumin alone and in the nanoformulations was administered orally to freely mobile rats, and blood samples were collected to evaluate the bioavailability of curcumin, LMw-NPC, and HMw-NPC. An ex vivo experimental gut absorption model was used to investigate the effects of different molecular weights of PLGA formulation on absorption of curcumin. High-performance liquid chromatography with diode array detection was used for quantification of curcumin in biosamples. There were no significant differences in particle properties between LMw-NPC and HMw-NPC, but the relative bioavailability of HMw-NPC was 1.67-fold and 40-fold higher than that of LMw-NPC and conventional curcumin, respectively. In addition, the mean peak concentration (C(max)) of conventional curcumin, LMw-NPC, and HMw-NPC was 0.028, 0.042, and 0.057 μg/mL, respectively. The gut absorption study further revealed that the HMw-PLGA formulation markedly increased the absorption rate of curcumin in the duodenum and resulted in excellent bioavailability compared with conventional curcumin and LMw-NPC. Our findings demonstrate that different molecular weights of PLGA have varying bioavailability, contributing to changes in the absorption rate at the duodenum. The results of this study provide the rationale for design of a nanomedicine delivery system to enhance the bioavailability of water

  5. Low molecular weight thermostable {beta}-D-glucosidase from Acidothermus cellulolyticus

    DOEpatents

    Himmel, M.E.; Tucker, M.P.; Adney, W.S.; Nieves, R.A.

    1995-07-11

    A purified low molecular weight {beta}-D-glucosidase is produced from Acidothermus cellulolyticus ATCC 43068. The enzyme is water soluble, possesses activity against pNP-{beta}-D-glucopyranoside, has a high of degree of stability toward heat, exhibits optimal temperature activity at about 65 C at a pH range of from about 2 to about 7, has an inactivation temperature of about 80 C at a pH range of from about 2 to about 7 and has a molecular weight of about 50.5--54.5 kD as determined by SDS-PAGE. 6 figs.

  6. Low molecular weight thermostable .beta.-D-glucosidase from acidothermus cellulolyticus

    DOEpatents

    Himmel, Michael E.; Tucker, Melvin P.; Adney, William S.; Nieves, Rafael A.

    1995-01-01

    A purified low molecular weight .beta.-D-glucosidase is produced from Acidothermus cellulolyticus ATCC 43068. The enzyme is water soluble, possesses activity against pNP-.beta.-D-glucopyranoside, has a high of degree of stability toward heat, exhibits optimal temperature activity at about 65.degree. C. at a pH range of from about 2 to about 7, has an inactivation temperature of about 80.degree. C. at a pH range of from about 2 to about 7 and has a molecular weight of about 50.5-54.5 kD as determineded by SDS-PAGE.

  7. High-molecular-weight polymers for protein crystallization: poly-γ-glutamic acid-based precipitants

    PubMed Central

    Hu, Ting-Chou; Korczyńska, Justyna; Smith, David K.; Brzozowski, Andrzej Marek

    2008-01-01

    Protein crystallization has been revolutionized by the intro­duction of high-throughput technologies, which have led to a speeding up of the process while simultaneously reducing the amount of protein sample necessary. Nonetheless, the chemistry dimension of protein crystallization has remained relatively undeveloped. Most crystallization screens are based on the same set of precipitants. To address this shortcoming, the development of new protein precipitants based on poly-γ-­glutamic acid (PGA) polymers with different molecular-weight ranges is reported here: PGA-LM (low molecular weight) of ∼400 kDa and PGA-HM (high molecular weight) of >1000 kDa. It is also demonstrated that protein precipitants can be expanded further to polymers with much higher molecular weight than those that are currently in use. Furthermore, the modification of PGA-like polymers by covalent attachments of glucosamine substantially improved their solubility without affecting their crystallization properties. Some preliminary PGA-based screens are presented here. PMID:18703844

  8. Profiling of the molecular weight and structural isomer abundance of macroalgae-derived phlorotannins.

    PubMed

    Heffernan, Natalie; Brunton, Nigel P; FitzGerald, Richard J; Smyth, Thomas J

    2015-01-16

    Phlorotannins are a group of complex polymers of phloroglucinol (1,3,5-trihydroxybenzene) unique to macroalgae. These phenolic compounds are integral structural components of the cell wall in brown algae, but also play many secondary ecological roles such as protection from UV radiation and defense against grazing. This study employed Ultra Performance Liquid Chromatography (UPLC) with tandem mass spectrometry to investigate isomeric complexity and observed differences in phlorotannins derived from macroalgae harvested off the Irish coast (Fucus serratus, Fucus vesiculosus, Himanthalia elongata and Cystoseira nodicaulis). Antioxidant activity and total phenolic content assays were used as an index for producing phlorotannin fractions, enriched using molecular weight cut-off dialysis with subsequent flash chromatography to profile phlorotannin isomers in these macroalgae. These fractions were profiled using UPLC-MS with multiple reaction monitoring (MRM) and the level of isomerization for specific molecular weight phlorotannins between 3 and 16 monomers were determined. The majority of the low molecular weight (LMW) phlorotannins were found to have a molecular weight range equivalent to 4-12 monomers of phloroglucinol. The level of isomerization within the individual macroalgal species differed, resulting in substantially different numbers of phlorotannin isomers for particular molecular weights. F. vesiculosus had the highest number of isomers of 61 at one specific molecular mass, corresponding to 12 phloroglucinol units (PGUs). These results highlight the complex nature of these extracts and emphasize the challenges involved in structural elucidation of these compounds.

  9. Profiling of the Molecular Weight and Structural Isomer Abundance of Macroalgae-Derived Phlorotannins

    PubMed Central

    Heffernan, Natalie; Brunton, Nigel P.; FitzGerald, Richard J.; Smyth, Thomas J.

    2015-01-01

    Phlorotannins are a group of complex polymers of phloroglucinol (1,3,5-trihydroxybenzene) unique to macroalgae. These phenolic compounds are integral structural components of the cell wall in brown algae, but also play many secondary ecological roles such as protection from UV radiation and defense against grazing. This study employed Ultra Performance Liquid Chromatography (UPLC) with tandem mass spectrometry to investigate isomeric complexity and observed differences in phlorotannins derived from macroalgae harvested off the Irish coast (Fucus serratus, Fucus vesiculosus, Himanthalia elongata and Cystoseira nodicaulis). Antioxidant activity and total phenolic content assays were used as an index for producing phlorotannin fractions, enriched using molecular weight cut-off dialysis with subsequent flash chromatography to profile phlorotannin isomers in these macroalgae. These fractions were profiled using UPLC-MS with multiple reaction monitoring (MRM) and the level of isomerization for specific molecular weight phlorotannins between 3 and 16 monomers were determined. The majority of the low molecular weight (LMW) phlorotannins were found to have a molecular weight range equivalent to 4–12 monomers of phloroglucinol. The level of isomerization within the individual macroalgal species differed, resulting in substantially different numbers of phlorotannin isomers for particular molecular weights. F. vesiculosus had the highest number of isomers of 61 at one specific molecular mass, corresponding to 12 phloroglucinol units (PGUs). These results highlight the complex nature of these extracts and emphasize the challenges involved in structural elucidation of these compounds. PMID:25603345

  10. Determination of the molecular weight of low-molecular-weight heparins by using high-pressure size exclusion chromatography on line with a triple detector array and conventional methods.

    PubMed

    Bisio, Antonella; Mantegazza, Alessandra; Vecchietti, Davide; Bensi, Donata; Coppa, Alessia; Torri, Giangiacomo; Bertini, Sabrina

    2015-03-19

    The evaluation of weight average molecular weight (Mw) and molecular weight distribution represents one of the most controversial aspects concerning the characterization of low molecular weight heparins (LMWHs). As the most commonly used method for the measurement of such parameters is high performance size exclusion chromatography (HP-SEC), the soundness of results mainly depends on the appropriate calibration of the chromatographic columns used. With the aim of meeting the requirement of proper Mw standards for LMWHs, in the present work the determination of molecular weight parameters (Mw and Mn) by HP-SEC combined with a triple detector array (TDA) was performed. The HP-SEC/TDA technique permits the evaluation of polymeric samples by exploiting the combined and simultaneous action of three on-line detectors: light scattering detectors (LALLS/RALLS); refractometer and viscometer. Three commercial LMWH samples, enoxaparin, tinzaparin and dalteparin, a γ-ray depolymerized heparin (γ-Hep) and its chromatographic fractions, and a synthetic pentasaccharide were analysed by HP-SEC/TDA. The same samples were analysed also with a conventional HP-SEC method employing refractive index (RI) and UV detectors and two different chromatographic column set, silica gel and polymeric gel columns. In both chromatographic systems, two different calibration curves were built up by using (i) γ-Hep chromatographic fractions and the corresponding Mw parameters obtained via HP-SEC/TDA; (ii) the whole γ-Hep preparation with broad Mw dispersion and the corresponding cumulative distribution function calculated via HP-SEC/TDA. In addition, also a chromatographic column calibration according to European Pharmacopoeia indication was built up. By comparing all the obtained results, some important differences among Mw and size distribution values of the three LMWHs were found with the five different calibration methods and with HP-SEC/TDA method. In particular, the detection of the lower

  11. How Does the Preparation of Rye Porridge Affect Molecular Weight Distribution of Extractable Dietary Fibers?

    PubMed Central

    Rakha, Allah; Åman, Per; Andersson, Roger

    2011-01-01

    Extractable dietary fiber (DF) plays an important role in nutrition. This study on porridge making with whole grain rye investigated the effect of rest time of flour slurries at room temperature before cooking and amount of flour and salt in the recipe on the content of DF components and molecular weight distribution of extractable fructan, mixed linkage (1→3)(1→4)-β-d-glucan (β-glucan) and arabinoxylan (AX) in the porridge. The content of total DF was increased (from about 20% to 23% of dry matter) during porridge making due to formation of insoluble resistant starch. A small but significant increase in the extractability of β-glucan (P = 0.016) and AX (P = 0.002) due to rest time was also noted. The molecular weight of extractable fructan and AX remained stable during porridge making. However, incubation of the rye flour slurries at increased temperature resulted in a significant decrease in extractable AX molecular weight. The molecular weight of extractable β-glucan decreased greatly during a rest time before cooking, most likely by the action of endogenous enzymes. The amount of salt and flour used in the recipe had small but significant effects on the molecular weight of β-glucan. These results show that whole grain rye porridge made without a rest time before cooking contains extractable DF components maintaining high molecular weights. High molecular weight is most likely of nutritional importance. PMID:21686191

  12. How does the preparation of rye porridge affect molecular weight distribution of extractable dietary fibers?

    PubMed

    Rakha, Allah; Aman, Per; Andersson, Roger

    2011-01-01

    Extractable dietary fiber (DF) plays an important role in nutrition. This study on porridge making with whole grain rye investigated the effect of rest time of flour slurries at room temperature before cooking and amount of flour and salt in the recipe on the content of DF components and molecular weight distribution of extractable fructan, mixed linkage (1→3)(1→4)-β-d-glucan (β-glucan) and arabinoxylan (AX) in the porridge. The content of total DF was increased (from about 20% to 23% of dry matter) during porridge making due to formation of insoluble resistant starch. A small but significant increase in the extractability of β-glucan (P = 0.016) and AX (P = 0.002) due to rest time was also noted. The molecular weight of extractable fructan and AX remained stable during porridge making. However, incubation of the rye flour slurries at increased temperature resulted in a significant decrease in extractable AX molecular weight. The molecular weight of extractable β-glucan decreased greatly during a rest time before cooking, most likely by the action of endogenous enzymes. The amount of salt and flour used in the recipe had small but significant effects on the molecular weight of β-glucan. These results show that whole grain rye porridge made without a rest time before cooking contains extractable DF components maintaining high molecular weights. High molecular weight is most likely of nutritional importance.

  13. Effects of Hofmeister Anions on the LCST of PNIPAM as a Function of Molecular Weight

    PubMed Central

    Zhang, Yanjie; Furyk, Steven; Sagle, Laura B.; Cho, Younhee; Bergbreiter, David E.; Cremer, Paul S.

    2008-01-01

    The effect of a series of sodium salts on the lower critical solution temperature (LCST) of poly(N-isopropylacrylamide), PNIPAM, was investigated as a function of molecular weight and polymer concentration with a temperature gradient microfluidic device under a dark-field microscope. In solutions containing sufficient concentrations of kosmotropic anions, the phase transition of PNIPAM was resolved into two separate steps for higher molecular weight samples. The first step of this two step transition was found to be sensitive to the polymer’s molecular weight and solution concentration, while the second step was not. Moreover, the binding of chaotropic anions to the polymer was also influenced by molecular weight. Both sets of results could be explained by the formation of intramolecular and intermolecular hydrogen-bonding between polymer chains. By contrast, the hydrophobic hydration of the isopropyl moieties and polymer backbone was found to be unaffected by either the polymer’s molecular weight or solution concentration. PMID:18820735

  14. The development of low-molecular weight hydrogels for applications in cancer therapy

    NASA Astrophysics Data System (ADS)

    Tian, Ran; Chen, Jin; Niu, Runfang

    2014-03-01

    To improve the anti-cancer efficacy and to counteract the side effects of chemotherapy, a variety of drug delivery systems have been invented in past decades, but few of these systems have succeeded in clinical trials due to their respective inherent shortcomings. Recently, low-molecular weight hydrogels of peptides that self-assemble via non-covalent interactions have attracted considerable attention due to their good biocompatibility, low toxicity, inherent biodegradability as well as their convenience of design. Low-molecular weight hydrogels have already shown promise in biomedical applications as diverse as 3D-cell culture, enzyme immobilization, controllable MSC differentiation, wound healing, drug delivery etc. Here we review the recent development in the use of low-molecular weight hydrogels for cancer therapy, which may be helpful in the design of soft materials for drug delivery.

  15. Formulation/cure technology for ultrahigh molecular weight silphenylene-siloxane polymers

    NASA Technical Reports Server (NTRS)

    Hundley, N. H.; Patterson, W. J.

    1985-01-01

    Molecular weights above one million were achieved for methylvinylsilphenylene-siloxane terpolymers using a two-stage polymerization technique which was successfully scaled up to 200 grams. The resulting polymer was vulcanized by two different formulations and compared to an identically formulated commercial methylvinyl silicone on the basis of ultimate strength, Young's modulus, percent elongation at failure, and tear strength. Relative thermal/oxidative stabilities of the elastomers were assessed by gradient and isothermal thermogravimetric analyses performed in both air and nitrogen. The experimental elastomer exhibited enhanced thermal/oxidative stability and possed equivalent or superior mechanical properties. The effect of variations in prepolymer molecular weight on mechanical properties was also investigated.

  16. Features of Extrusion Processing of Ultrahigh Molecular Weight Polyethylene. Experiment and Theory

    NASA Astrophysics Data System (ADS)

    Skul‧skii, O. I.; Slavnov, E. V.

    2018-05-01

    Experimental studies have been made of the permissible regimes of processing ultrahigh molecular weight polyethylene GUR 2122 with molecular mass of 4.5 million g/moles in a laboratory extruder with an auger diameter 32 mm and a ratio L/D = 20 at temperatures of 155-165oC. On the basis of rotational viscometry, the rheological properties of the melt are described. A mathematical model and a numerical method for calculating the motion of ultrahigh molecular weight polyethylene melt in the auger and in the moulding rigging are proposed. The velocity and stress fields have been determined.

  17. Effect of the molecular weight of a neutral polysaccharide on soy protein gelation.

    PubMed

    Monteiro, Sónia R; Lopes-da-Silva, José A

    2017-12-01

    The effects of galactomannans with different molecular weights on the heat-induced gelation characteristics of soybean protein were investigated using dynamic small-strain rheometry, under conditions where the proteins carry a net negative charge (pH7). Microstructure of the resulting gels was investigated by confocal laser scanning microscopy. Phase-separated systems were obtained with different morphologies and degree of phase separation, depending on both biopolymer concentrations and polysaccharide molecular weight. In general, a gelling enhancing effect on soy proteins was verified, despite extensive phase-separation processes observed at the higher polysaccharide molecular weight. This effect was demonstrated by an increase of the gelation rate, a decrease in the temperature at the onset of gelation, and an increase of gel stiffness and elastic character, with the length of polysaccharide chains. Overall, the results obtained established that the judicious selection of the galactomannan molecular weight may be used to modify the structure and gelation properties of soy proteins, originating a diversity of rheological characteristics and microstructures that will impact on the design of novel food formulations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Molecular weight analyses and enzymatic degradation profiles of the soft-tissue fillers Belotero Balance, Restylane, and Juvéderm Ultra.

    PubMed

    Flynn, Timothy Corcoran; Thompson, David H; Hyun, Seok-Hee

    2013-10-01

    In this study, the authors sought to determine the molecular weight distribution of three hyaluronic acids-Belotero Balance, Restylane, and Juvéderm Ultra-and their rates of degradation following exposure to hyaluronidase. Lot consistency of Belotero Balance also was analyzed. Three lots of Belotero Balance were analyzed using liquid chromatography techniques. The product was found to have high-molecular-weight and low-molecular-weight species. One lot of Belotero Balance was compared to one lot each of Juvéderm Ultra and Restylane. Molecular weights of the species were analyzed. The hyaluronic acids were exposed to ovine testicular hyaluronidase at six time points-baseline and 0.5, 1, 2, 6, and 24 hours-to determine degradation rates. Belotero Balance lots were remarkably consistent. Belotero Balance had the largest high-molecular-weight species, followed by Juvéderm Ultra and Restylane (p < 0.001). Low-molecular-weight differences among all three hyaluronic acids were not statistically significant. Percentages of high-molecular-weight polymer differ among the three materials, with Belotero Balance having the highest fraction of high-molecular-weight polymer. Degradation of the high-molecular-weight species over time showed different molecular weights of the high-molecular-weight fraction. Rates of degradation of the hyaluronic acids following exposure to ovine testicular hyaluronidase were similar. All hyaluronic acids were fully degraded at 24 hours. Fractions of high-molecular-weight polymer differ across the hyaluronic acids tested. The low-molecular-weight differences are not statistically significant. The high-molecular-weight products have different molecular weights at the 0.5- and 2-hour time points when exposed to ovine testicular hyaluronidase and are not statistically different at 24 hours.

  19. Tuning the superstructure of ultrahigh-molecular-weight polyethylene/low-molecular-weight polyethylene blend for artificial joint application.

    PubMed

    Xu, Ling; Chen, Chen; Zhong, Gan-Ji; Lei, Jun; Xu, Jia-Zhuang; Hsiao, Benjamin S; Li, Zhong-Ming

    2012-03-01

    An easy approach was reported to achieve high mechanical properties of ultrahigh-molecular-weight polyethylene (UHMWPE)-based polyethylene (PE) blend for artificial joint application without the sacrifice of the original excellent wear and fatigue behavior of UHMWPE. The PE blend with desirable fluidity was obtained by melt mixing UHMWPE and low molecular weight polyethylene (LMWPE), and then was processed by a modified injection molding technology-oscillatory shear injection molding (OSIM). Morphological observation of the OSIM PE blend showed LMWPE contained well-defined interlocking shish-kebab self-reinforced superstructure. Addition of a small amount of long chain polyethylene (2 wt %) to LMWPE greatly induced formation of rich shish-kebabs. The ultimate tensile strength considerably increased from 27.6 MPa for conventional compression molded UHMWPE up to 78.4 MPa for OSIM PE blend along the flow direction and up to 33.5 MPa in its transverse direction. The impact strength of OSIM PE blend was increased by 46% and 7% for OSIM PE blend in the direction parallel and vertical to the shear flow, respectively. Wear and fatigue resistance were comparable to conventional compression molded UHMWPE. The superb performance of the OSIM PE blend was originated from formation of rich interlocking shish-kebab superstructure while maintaining unique properties of UHMWPE. The present results suggested the OSIM PE blend has high potential for artificial joint application. © 2012 American Chemical Society

  20. High Molecular Weight Polymers in the New Chemicals Program

    EPA Pesticide Factsheets

    There are three categories or types of High Molecular Weight (HMW, 10,000 daltons) polymers typically reviewed by the New Chemicals Program: Soluble, insoluble, and water absorbing. Each of the three types are treated differently.

  1. Manipulation of Molecular Weight Distribution Shape as a New Strategy to Control Processing Parameters.

    PubMed

    Nadgorny, Milena; Gentekos, Dillon T; Xiao, Zeyun; Singleton, S Parker; Fors, Brett P; Connal, Luke A

    2017-10-01

    Molecular weight and dispersity (Ð) influence physical and rheological properties of polymers, which are of significant importance in polymer processing technologies. However, these parameters provide only partial information about the precise composition of polymers, which is reflected by the shape and symmetry of molecular weight distribution (MWD). In this work, the effect of MWD symmetry on thermal and rheological properties of polymers with identical molecular weights and Ð is demonstrated. Remarkably, when the MWD is skewed to higher molecular weight, a higher glass transition temperature (T g ), increased stiffness, increased thermal stability, and higher apparent viscosities are observed. These observed differences are attributed to the chain length composition of the polymers, easily controlled by the synthetic strategy. This work demonstrates a versatile approach to engineer the properties of polymers using controlled synthesis to skew the shape of MWD. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Structural fatigue in the 34-meter HA-dec antennas

    NASA Technical Reports Server (NTRS)

    Van Hek, Ronald A.; Saldua, Benjamin P.

    1991-01-01

    Three 26-m hour-angle/declination (HA-dec) antennas, designed for a life span of 20 years, were built in the early 1960s for the NASA Deep Space Network. After 16 years the antennas were upgraded. The design required a structural weight increase of about 50 percent in both the HA and dec structures to achieve the desired improvements. The fatigue caused by the resulting stress-reversal conditions is discussed. The structural failures and their analyses are described.

  3. Effects of polymer molecular weight on relative oral bioavailability of curcumin

    PubMed Central

    Tsai, Yin-Meng; Chang-Liao, Wan-Ling; Chien, Chao-Feng; Lin, Lie-Chwen; Tsai, Tung-Hu

    2012-01-01

    Background Polylactic-co-glycolic acid (PLGA) nanoparticles have been used to increase the relative oral bioavailability of hydrophobic compounds and polyphenols in recent years, but the effects of the molecular weight of PLGA on bioavailability are still unknown. This study investigated the influence of polymer molecular weight on the relative oral bioavailability of curcumin, and explored the possible mechanism accounting for the outcome. Methods Curcumin encapsulated in low (5000–15,000) and high (40,000–75,000) molecular weight PLGA (LMw-NPC and HMw-NPC, respectively) were prepared using an emulsification-solvent evaporation method. Curcumin alone and in the nanoformulations was administered orally to freely mobile rats, and blood samples were collected to evaluate the bioavailability of curcumin, LMw-NPC, and HMw-NPC. An ex vivo experimental gut absorption model was used to investigate the effects of different molecular weights of PLGA formulation on absorption of curcumin. High-performance liquid chromatography with diode array detection was used for quantification of curcumin in biosamples. Results There were no significant differences in particle properties between LMw-NPC and HMw-NPC, but the relative bioavailability of HMw-NPC was 1.67-fold and 40-fold higher than that of LMw-NPC and conventional curcumin, respectively. In addition, the mean peak concentration (Cmax) of conventional curcumin, LMw-NPC, and HMw-NPC was 0.028, 0.042, and 0.057 μg/mL, respectively. The gut absorption study further revealed that the HMw-PLGA formulation markedly increased the absorption rate of curcumin in the duodenum and resulted in excellent bioavailability compared with conventional curcumin and LMw-NPC. Conclusion Our findings demonstrate that different molecular weights of PLGA have varying bioavailability, contributing to changes in the absorption rate at the duodenum. The results of this study provide the rationale for design of a nanomedicine delivery system to

  4. Temperature and molecular-weight dependences of acoustic behaviors of polystyrene studied using Brillouin spectroscopy

    NASA Astrophysics Data System (ADS)

    Oh, Soo Han; Lee, Byoung Wan; Ko, Jae-Hyeon; Lee, Hyeonju; Park, Jaehoon; Ko, Young Ho; Kim, Kwang Joo

    2017-04-01

    The acoustic properties of three polystyrene polymers with different molecular weights were investigated as a function of temperature by using Brillouin light scattering. The longitudinal sound velocity showed a change in the slope, which depended on the molecular weight, at the glass transition temperature. The absorption coefficient exhibited a maximum above the glass transition temperature, and the maximum temperature became higher as the molecular weight was increased. Comparison with previous acoustic studies on polystyrene indicate that a substantial frequency dispersion caused by strong coupling between the longitudinal acoustic waves and the segmental motions exists in the high-temperature range.

  5. Production of low-molecular weight soluble yeast β-glucan by an acid degradation method.

    PubMed

    Ishimoto, Yuina; Ishibashi, Ken-Ichi; Yamanaka, Daisuke; Adachi, Yoshiyuki; Kanzaki, Ken; Iwakura, Yoichiro; Ohno, Naohito

    2018-02-01

    β-glucan is widely distributed in nature as water soluble and insoluble forms. Both forms of β-glucan are utilized in several fields, especially for functional foods. Yeast β-glucan is a medically important insoluble particle. Solubilization of yeast β-glucan may be valuable for improving functional foods and in medicinal industries. In the present study, we applied an acid degradation method to solubilize yeast β-glucan and found that β-glucan was effectively solubilized to low-molecular weight β-glucans by 45% sulfuric acid treatment at 20°C. The acid-degraded soluble yeast β-glucan (ad-sBBG) was further fractionated into a higher-molecular weight fraction (ad-sBBG-high) and a lower-molecular weight fraction (ad-sBBG-low). Since ad-sBBG-high contained mannan, while ad-sBBG-low contained it only scarcely, it was possible to prepare low-molecular weight soluble β-glucan with higher purity. In addition, ad-sBBG-low bound to dectin-1, which is an innate immunity receptor of β-glucan, and showed antagonistic activity against reactive oxygen production and cytokine synthesis by macrophages. Thus, this acid degradation method is an important procedure for generating immune-modulating, low-molecular weight, soluble yeast β-glucan. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Melt fracture of linear low-density polyethylenes: Die geometry and molecular weight characteristics

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Marzieh; Tomkovic, Tanja; Liu, Guochang; Doufas, Antonios A.; Hatzikiriakos, Savvas G.

    2018-05-01

    The melt fracture phenomena of three linear low-density polyethylenes are investigated as a function of die geometry (capillary, slit, and annular) and molecular weight and its distribution. The onset of melt fracture instabilities is determined by using capillary rheometry, mainly studying the extrudate appearance using optical microscopy. It is found that the onset of flow instabilities (melt fracture phenomena) is significantly affected by die geometry and molecular weight characteristics of the polymers. Use of annular die eliminates the stick-slip transition (oscillating melt fracture) and delays the onset of sharkskin to higher values of shear rate and shear stress. Moreover, it is shown that the molecular weight characteristics of the polymers are well correlated with critical conditions for the onset of flow instabilities based on a criterion proposed in the literature [A. Allal et al., "Relationships between molecular structure and sharkskin defect for linear polymers," J. Non-Newtonian Fluid Mech. 134, 127-135 (2006) and A. Allal and B. Vergnes, "Molecular design to eliminate sharkskin defect for linear polymers," J. Non-Newtonian Fluid Mech. 146, 45-50 (2007)].

  7. Relationship between molecular weight, monosaccharide composition and immunobiologic activity of Astragalus polysaccharides.

    PubMed

    Jiang, Yiping; Qi, Xiaohui; Gao, Kai; Liu, Wenjun; Li, Na; Cheng, Ningbo; Ding, Gang; Huang, Wenzhe; Wang, Zhenzhong; Xiao, Wei

    2016-10-01

    Four Astragalus polysaccharides (APS1-APS4) were isolated from the water extract of Radix Astragali and purified through ethanol precipitation with 20 %, 40 %, 60 % and 80 % ethanol, respectively. The total sugar content was measured by sulfuric acid-phenol method. Their molecular weight was determined using high performance gel permeation chromatography (HPGPC) and their monosaccharide composition was analyzed by reversed-phase high performance liquid chromatography (HPLC) after pre-column derivatization. Then the immunobiologic activity of APS was evaluated by the experiment of spleen lymphocytes proliferation in vitro. The data suggested that precipitation by different concentration of ethanol will obtain different molecular weight APS, the higher concentration of ethanol the smaller molecular weight for APS. The molecular weights of four APS were 257.7 kDa, 40.1 kDa, 15.3 kDa and 3.2 kDa. Monosaccharide composition analysis indicated that APS1 consisted of glucose only, and APS2 all consisted of arabinose. APS3 consisted of rhamnose, glucose, galactose and arabinose and APS4 consisted of galactose and arabinose, in a molar ratio of 1:10.76:6.55:12 and 3.02:1. The result of immunobiologic activity assay showed that both APS2 and APS3 can effectively stimulate normal spleen lymphocyte proliferation in vitro. Apart from this, the effect of APS2 also showed dose dependent tendency from 6.25 μg/mL to 800 μg/mL. The result of this research indicated that Astragalus polysaccharides, which consist of arabinose and their molecular weight between 15.2 kDa to 40.1 kDa, neither too high nor too low, had significant immune activity.

  8. Development of haplotype-specific molecular markers for the low-molecular-weight glutenin subunits

    USDA-ARS?s Scientific Manuscript database

    Low-molecular-weight glutenin subunits (LMW-GSs) are one of the major components of gluten and their allelic variation has been widely associated with numerous wheat end-use quality parameters. These proteins are encoded by multigene families located at the orthologous Glu-3 loci (Glu-A3, Glu-B3 and...

  9. Increasing molecular weight parameters of a helical polymer through polymerization in a chiral solvent.

    PubMed

    Holder, Simon J; Achilleos, Mariliz; Jones, Richard G

    2006-09-27

    In this communication, we will demonstrate that polymerization in a chiral solvent can affect the molecular weight distribution of the product by perturbing the balance of the P and M helical screw senses of the growing chains. Specifically, for the Wurtz-type synthesis of polymethylphenylsilane (PMPS) in either (R) or (S)-limonene, the weight-average molecular weight of the products (average Mw = 80 000) was twice that of PMPS synthesized in (R/S)-limonene (average Mw = 39 200). Peturbation of the helical segmentation along the polymer chains leads to a reduction in the rate of occurrence of a key termination step. This the first time that a chiral solvent has been demonstrated to have such an effect on a polymerization process in affecting molecular weight parameters in contrast to affecting tacticity.

  10. Resonant Raman scattering of controlled molecular weight polyacetylene

    NASA Astrophysics Data System (ADS)

    Schen, M. A.; Chien, J. C. W.; Perrin, E.; Lefrant, S.; Mulazzi, E.

    1988-12-01

    Polyacetylene, (CH)x, films of 500, 5300, 10 500, and 100 000 Daltons number average molecular weights (Mn ) were synthesized using the titanium tetra-n-butoxide/triethyl aluminum-catalyst/cocatalyst system and examined using resonant Raman scattering techniques. Before isomerization, trans segments are found to exist mainly as short, isolated sequences independent of Mn. After thermal isomerization, theoretical analysis of the RRS spectra using the Brivio, Mulazzi model indicate the ratio of long trans conjugated segments (N≥30) to short trans conjugated segments (N≤30) is significantly larger for 100 000 Dalton polymer in comparison to polymer of 10 500 Mn and below. For samples below 10 500 Daltons, no clear relationship between actual polymer molecular weight and G is observed. Optimization of the isomerization conditions for 100 000 Dalton polymer results in trans-(CH)x with a G=0.80. These results suggest that not until very long molecular chains are obtained can samples composed principally of long conjugated segments be obtained. It is proposed that defects which arise during and after the polymerization limit the content of long segments. Ambient, short term oxidation of 100 000 Mn polymer shows a decrease in G from 0.80 to 0.70. Low level chain oxidation or doping is shown to preferentially occur within long conjugated segments.

  11. Construction and heterologous expression of a truncated Haemagglutinin (HA) protein from the avian influenza virus H5N1 in Escherichia coli.

    PubMed

    Chee Wei, T; Nurul Wahida, A G; Shaharum, S

    2014-12-01

    Malaysia first reported H5N1 poultry case in 2004 and subsequently outbreak in poultry population in 2007. Here, a recombinant gene encoding of peptide epitopes, consisting fragments of HA1, HA2 and a polybasic cleavage site of H5N1 strain Malaysia, was amplified and cloned into pET-47b(+) bacterial expression vector. DNA sequencing and alignment analysis confirmed that the gene had no alteration and in-frame to the vector. Then, His-tagged truncated HA protein was expressed in Escherichia coli BL21 (DE3) under 1 mM IPTG induction. The protein expression was optimized under a time-course induction study and further purified using Ni-NTA agarose under reducing condition. Migration size of protein was detected at 15 kDa by Western blot using anti-His tag monoclonal antibody and demonstrated no discrepancy compared to its calculated molecular weight.

  12. Highly stretchable HA/SA hydrogels for tissue engineering.

    PubMed

    Zhu, Chengcheng; Yang, Rui; Hua, Xiaobin; Chen, Hong; Xu, Jumei; Wu, Rile; Cen, Lian

    2018-04-01

    A highly stretchable hyaluronic acid (HA)/sodium alginate (SA) hydrogel was developed in this study based on an interpenetrating polymer network. HA/SA hydrogels were prepared by mixing two polysaccharides followed by covalent crosslinking via epoxy groups on HA molecules and ionic crosslinking via divalent ions on SA chains sequentially. The effect of HA/SA ratio on the pore size and distribution, swelling ratio, elongation and rheological properties as well as protein loading and release properties of HA/SA hydrogels was explored. Moreover, a surface modification method, layer-by-layer (LBL) assembly technique, was applied to modify the hydrogel to evaluate the hydrogel's tenability in varying biological performance. It was then shown that the hydrogels had the pore sizes ranging from 100 to 50 μm. With the increase in SA content of the resulting hydrogels, the pore size, swelling ratio, and storage modulus (G') and loss modulus (G″) of the hydrogel all decreased, whereas the in vitro bulk weight loss was fastened. Moreover, elongation at break (EB) value increased first, reached a peak value and then decreased, that is HA8/SA1 (HA:SA = 8:1) had the highest EB value of 417%. This hydrogel could retain 33.2% of the pre-loaded protein even after 72 h, which could be further attenuated when LBL was used to shell the hydrogel. The growth of fibroblasts on HA8/SA1 hydrogel gave preliminary assessment on its suitability as a cellular carrier, while the LBL modified HA8/SA1 hydrogel also favored the anchoring of keratinocytes, further enhancing its cell carrier role for tissue regeneration, especially skin engineering.

  13. The Combined Influence of Molecular Weight and Temperature on the Aging and Viscoelastic Response of a Glassy Thermoplastic Polyimide

    NASA Technical Reports Server (NTRS)

    Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.

    2000-01-01

    The effect of molecular weight on the viscoelastic performance of an advanced polymer (LaRC-SI) was investigated through the use of creep compliance tests. Testing consisted of short-term isothermal creep and recovery with the creep segments performed under constant load. The tests were conducted at three temperatures below the glass transition temperature of five materials of different molecular weight. Through the use of time-aging-time superposition procedures, the material constants, material master curves and aging-related parameters were evaluated at each temperature for a given molecular weight. The time-temperature superposition technique helped to describe the effect of temperature on the timescale of the viscoelastic response of each molecular weight. It was shown that the low molecular weight materials have higher creep compliance and creep rate, and are more sensitive to temperature than the high molecular weight materials. Furthermore, a critical molecular weight transition was observed to occur at a weight-average molecular weight of M (bar) (sub w) 25000 g/mol below which, the temperature sensitivity of the time-temperature superposition shift factor increases rapidly. The short-term creep compliance data were used in association with Struik's effective time theory to predict the long-term creep compliance behavior for the different molecular weights. At long timescales, physical aging serves to significantly decrease the creep compliance and creep rate of all the materials tested.

  14. Optimization simulated injection molding process for ultrahigh molecular weight polyethylene nanocomposite hip liner using response surface methodology and simulation of mechanical behavior.

    PubMed

    Heidari, Behzad Shiroud; Davachi, Seyed Mohammad; Moghaddam, Amin Hedayati; Seyfi, Javad; Hejazi, Iman; Sahraeian, Razi; Rashedi, Hamid

    2018-05-01

    In this study, injection molding process of ultrahigh molecular weight polyethylene (UHMWPE) reinforced with nano-hydroxyapatite (nHA) was simulated and optimized through minimizing the shrinkage and warpage of the hip liners as an essential part of a hip prosthesis. Fractional factorial design (FFD) was applied to the design of the experiment, modeling, and optimizing the shrinkage and warpage of UHMWPE/nHA composite liners. The Analysis of variance (ANOVA) was applied to find the importance of operative parameters and their effects. In this experiment, seven input parameters were surveyed, including mold temperature (A), melt temperature (B), injection time (C), packing time (D), packing pressure (E), coolant temperature (F), and type of liner (G). Two models were capable of predicting warpage and volumetric shrinkage (%) in different conditions with R 2 of 0.9949 and 0.9989, respectively. According to the models, the optimized values of warpage and volumetric shrinkage are 0.287222 mm and 13.6613%, respectively. Meanwhile, a finite element analysis (FE analysis) was also carried out to examine the stress distribution in liners under the force values of demanding and daily activities. The Von-Mises stress distribution showed that both of the liners can be applied to all activities with no failure. However, UHMWPE/nHA liner is more resistant to the highest loads than UHMWPE liner due to the effect of nHA in the nanocomposite. Finally, according to the results of injection molding simulations, optimization, structural analysis as well as the tensile strength and wear resistance, UHMWPE/nHA liner is recommended for the production of a hip prosthesis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Low molecular-weight phenols in Tannat wines made by alternative winemaking procedures.

    PubMed

    Favre, Guzmán; Peña-Neira, Álvaro; Baldi, Cecilia; Hernández, Natalia; Traverso, Sofía; Gil, Graciela; González-Neves, Gustavo

    2014-09-01

    Low molecular weight phenols of Tannat red wines produced by Traditional Maceration (TM), Prefermentative Cold Maceration (PCM), Maceration Enzyme (ENZ) and grape-Seed Tannins additions (ST), were performed and discussed. Alternatives to TM increased wine phenolic contents but unequally, ST increased mainly smaller flavans-3-ol, PCM anthocyanins and ENZ proanthocyanidins (up to 2250 mg/L). However low molecular weight flavan-3-ols remained below 9 mg/L in all wines, showing that there is not necessarily a correspondence between wine richness in total tannins and flavan-3-ols contents at low molecular weight. PCM wines had particularly high concentrations of tyrosol and tryptophol, yeast metabolism derived compounds. The use of grape-seed enological tannins did not increase grape seed derived phenolic compounds such as gallic acid. Caftaric acid was found in concentrations much higher than those reported in other grape varieties. Wine phenolic content and composition was considerably affected by the winemaking procedures tested. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. The effects of postexercise consumption of high-molecular-weight versus low-molecular-weight carbohydrate solutions on subsequent high-intensity interval-running capacity.

    PubMed

    McGlory, Chris; Morton, James P

    2010-10-01

    The aim of this study was to determine the effects of postexercise ingestion of different-molecular-weight glucose polymer solutions on subsequent high-intensity interval-running capacity. In a repeated-measures design, 6 men ran for 60 min in the morning at 70% VO2max. Immediately post- and at 1 and 2 hr postexercise, participants consumed a 15% low-molecular-weight (LMW) or high-molecular-weight (HMW) carbohydrate solution, at a rate of 1.2 g of carbohydrate/kg body mass, or an equivalent volume of flavored water (WAT). After recovery, participants performed repeated 1-min intervals at 90% VO2max interspersed with 1 min active recovery (walking) until volitional exhaustion. Throughout the 3-hr recovery period, plasma glucose concentrations were higher (p=.002) during the HMW and LMW conditions than with WAT (M 7.0±0.8, 7.5±1.0, and 5.6±0.2 mmol/L, respectively), although there was no difference (p=.723) between HMW and LMW conditions. Exercise capacity was 13 (43±10 min; 95% CI for differences: 8-18; p=.001) and 11 min (41±9 min; 95% CI for differences; 2-18: p=.016) longer with HMW and LMW solutions, respectively, than with WAT (30±9 min). There was no substantial difference (2 min; 95% CI for differences: -5 to 10; p=.709) in exercise capacity between LMW and HMW solutions. Although this magnitude of difference is most likely trivial in nature, the uncertainty allows for a possible small substantial enhancement of physiological significance, and further research is required to clarify the true nature of the effect.

  17. Transport features of nano-hydroxylapatite (n-HA) embedded silicone rubber (SR) systems: influence of SR/n-HA interaction, degree of reinforcement and morphology.

    PubMed

    M, Bindu; G, Unnikrishnan

    2017-09-27

    We report the transport characteristics of silicone rubber/nano-hydroxylapatite (SR/n-HA) systems at room temperature with reference to the effects of n-HA loading, morphology and penetrant nature, using toluene, xylene, ethyl acetate and butyl acetate in the liquid phase and methanol, ethanol, 1-propanol, 2-propanol and butanol in the vapour phase as probe molecules. The interaction between the n-HA particles and SR matrix has been confirmed by FTIR analysis. As the n-HA content in the SR matrix increased, the penetrant uptake has been found to decrease. The observations have been correlated with the density and void content of the systems. Scanning electron microscopy images have been found to be complementary to the observed transport features. The reinforcement effect of n-HA particles on the SR matrix has been verified by Kraus equation. Molecular mass between the cross links has been observed to decrease with an increase in n-HA loading. The results have been compared with affine, phantom network, parallel, series and Maxwell models. The transport data have been complemented by observations on biological fluid uptake with urea, d-glucose, KI, saline water, phosphate buffer and artificial urine as the media.

  18. Correlation between human maternal-fetal placental transfer and molecular weight of PCB and dioxin congeners/isomers.

    PubMed

    Mori, Chisato; Nakamura, Noriko; Todaka, Emiko; Fujisaki, Takeyoshi; Matsuno, Yoshiharu; Nakaoka, Hiroko; Hanazato, Masamichi

    2014-11-01

    Establishing methods for the assessment of fetal exposure to chemicals is important for the prevention or prediction of the child's future disease risk. In the present study, we aimed to determine the influence of molecular weight on the likelihood of chemical transfer from mother to fetus via the placenta. The correlation between molecular weight and placental transfer rates of congeners/isomers of polychlorinated biphenyls (PCBs) and dioxins was examined. Twenty-nine sample sets of maternal blood, umbilical cord, and umbilical cord blood were used to measure PCB concentration, and 41 sample sets were used to analyze dioxins. Placental transfer rates were calculated using the concentrations of PCBs, dioxins, and their congeners/isomers within these sample sets. Transfer rate correlated negatively with molecular weight for PCB congeners, normalized using wet and lipid weights. The transfer rates of PCB or dioxin congeners differed from those of total PCBs or dioxins. The transfer rate for dioxin congeners did not always correlate significantly with molecular weight, perhaps because of the small sample size or other factors. Further improvement of the analytical methods for dioxin congeners is required. The findings of the present study suggested that PCBs, dioxins, or their congeners with lower molecular weights are more likely to be transferred from mother to fetus via the placenta. Consideration of chemical molecular weight and transfer rate could therefore contribute to the assessment of fetal exposure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Fluorescence spectroscopy and molecular weight distribution of extracellular polymers from full-scale activated sludge biomass.

    PubMed

    Esparza-Soto, M; Westerhoff, P K

    2001-01-01

    Two fractions of extracellular polymer substances (EPSs), soluble and readily extractable (RE), were characterised in terms of their molecular weight distributions (MWD) and 3-D excitation-emission-matrix (EEM) fluorescence spectroscopy signatures. The EPS fractions were different: the soluble EPSs were composed mainly of high molecular weight compounds, while the RE EPSs were composed of small molecular weight compounds. Contrary to previous thought, EPS may not be considered only as macromolecular because most organic matter present in both fractions had low molecular weight. Three different fluorophore peaks were identified in the EEM fluorescence spectra. Two peaks were attributed to protein-like fluorophores, and the third to a humic-like fluorophore. Fluorescence signatures were different from other previously published signatures for marine and riverine environments. EEM spectroscopy proved to be a suitable method that may be used to characterise and trace organic matter of bacterial origin in wastewater treatment operations.

  20. Molecular weight dependence of carrier mobility and recombination rate in neat P3HT films

    DOE PAGES

    Dixon, Alex G.; Visvanathan, Rayshan; Clark, Noel A.; ...

    2017-11-02

    The microstructure dependence of carrier mobility and recombination rates of neat films of poly 3-hexylthyophene (P3HT) were determined for a range of materials of weight-average molecular weights, Mw, ranging from 14 to 331 kDa. This variation has previously been shown to modify the polymer microstructure, with low molecular weights forming a one-phase, paraffinic-like structure comprised of chain-extended crystallites, and higher molecular weights forming a semicrystalline structure with crystalline domains being embedded in an amorphous matrix. Using Charge Extraction by Linearly Increasing Voltage (CELIV), we show here that the carrier mobility in P3HT devices peaks for materials of Mw = 48more » kDa, and that the recombination rate decreases monotonically with increasing molecular weight. This trend is likely due to the development of a semicrystalline, two-phase structure with increasing Mw, which allows for the spatial separation of holes and electrons into the amorphous and crystalline regions, respectively. This separation leads to decreased recombination.« less

  1. Molecular weight dependence of carrier mobility and recombination rate in neat P3HT films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixon, Alex G.; Visvanathan, Rayshan; Clark, Noel A.

    The microstructure dependence of carrier mobility and recombination rates of neat films of poly 3-hexylthyophene (P3HT) were determined for a range of materials of weight-average molecular weights, Mw, ranging from 14 to 331 kDa. This variation has previously been shown to modify the polymer microstructure, with low molecular weights forming a one-phase, paraffinic-like structure comprised of chain-extended crystallites, and higher molecular weights forming a semicrystalline structure with crystalline domains being embedded in an amorphous matrix. Using Charge Extraction by Linearly Increasing Voltage (CELIV), we show here that the carrier mobility in P3HT devices peaks for materials of Mw = 48more » kDa, and that the recombination rate decreases monotonically with increasing molecular weight. This trend is likely due to the development of a semicrystalline, two-phase structure with increasing Mw, which allows for the spatial separation of holes and electrons into the amorphous and crystalline regions, respectively. This separation leads to decreased recombination.« less

  2. [Intraoperative administration of low-molecular-weight heparins in reconstructive vascular operations].

    PubMed

    Pokrovskiĭ, A V; Demidova, V S; Titova, M I; Gontarenko, V N; Burtseva, E A

    2008-01-01

    The article deals with analysing the outcomes of administering low-molecular-weight heparins (LMWH) by the example of nadroparin ("Fraxiparin") during the intraoperative period in patients diagnosed with atherosclerotic lesions of femoropoplietal-crural segment of the lower-limb arteries as compared with non-fractionated heparin (NFH). Studied were the alterations in the parameters of the plasmatic and thrombocytic links of haemostasis on the background of administering various molecular-weight fractions of heparin. A conclusion was drawn on advantageous use of LMWH in the cohort of the patients involved. Also presented herein is an analysis of the literature data concerning appropriate usage of LMWH during the intraoperative period.

  3. Molecular weight determination and correlation analysis of Dalbergia sissoo polysaccharide with constituent oligosaccharides.

    PubMed

    Kumar, Vineet; Rana, Vikas; Soni, P L

    2013-01-01

    Mucilaginous polysaccharide extracted from Dalbergia sissoo Roxb. leaves has a number of medicinal applications. Molecular weight studies and correlation analysis of the structure of polysaccharide with oligosaccharides can be helpful for further utilisation, modification and structure-activity relationship for biological applications. To determine molecular weight of medicinally important polysaccharide. To establish an unequivocal correlation of the polysaccharide monosugars with constituting oligosaccharides and glucuronic acid content based on gas-liquid chromatography (GLC) with the spectrophotometric method. Complete and partial hydrolytic studies of pure polysaccharide yielded constituting monosugars and oligosaccharides. The ratio of sugars in polysaccharide and oligosaccharides was studied by preparation of alditol acetates and analysed using GLC. The uronic acid content was studied by GLC analysis and spectrophotometry. Molecular weight of the polysaccharide was determined using the viscometric method. Dalbergia sissoo leaves yielded 14.0% pure polysaccharide, containing 15.7% of glucuronic acid. Complete hydrolysis and GLC analysis of alditol acetate derivatives of reduced and unreduced monosugars indicated the presence of L-rhamnose, D-glucuronic acid, D-galactose and D-glucose in 1.00:1.00:2.00:2.33 molar ratios. Partial hydrolysis followed by monosugar analysis of oligosaccharides established the monosugar ratio in complete agreement with polysaccharide, thereby corroborating the sugar ratio. Similar uronic acid content was obtained by GLC and spectrophotometry. The polysaccharide had an average molecular weight of 1.5 × 10⁵  Da. The study has established an obvious correlation of the structure of polysaccharide with oligosaccharides, leading to unambiguous identification of monosaccharides, which normally is not studied conclusively while reporting the polysaccharide structure. The molecular weight of the polysaccharide was determined

  4. Isoleucine epimerization and amino acid composition in molecular-weight separations of Pleistocene Genyornis eggshell

    NASA Astrophysics Data System (ADS)

    Kaufman, Darrell S.; Miller, Gifford H.

    1995-07-01

    This study explores the geochronological utility and analytical reproducibility of separating the high-molecular-weight fraction (HMW) from eggshells of the extinct late Pleistocene ratite, Genyornis, using disposable, prepacked gel-filtration columns. The superior integrity of ratite eggshell for the retention of amino acids indicates that this biomineral is better suited for this type of investigation than previously studied molluscan shell. To evaluate the reproducibility of the gel-filtration technique, we analyzed triplicate subsamples of three eggshells of different ages. The reproducibility, based on the average intrashell variation (coefficient of variation; CV) in the extent of isoleucine epimerization (aIle/Ile) in the HMW (enriched in molecules ca. >10,000 MW) is 3%, well within the range appropriate for geochronological purposes. The average intrashell variation in the total amino acid concentration (Σ[aa]) of the HMW is 5%, somewhat better than for the total acid hydrolysate (TOTAL) of the same samples (7%). To evaluate the relation between molecular weight and the rate of isoleucine epimerization, three molecular-weight fractions were separated using gel filtration, plus the naturally hydrolyzed free fraction (FREE), for each of four fossil eggshells. AIle/Ile increases with decreasing molecular weight in all shells, with a ca. sixfold to ninefold difference in ratios between the HMW andFREE, and a ca. fivefold difference between the HMW andTOTAL. Although linear correlations between aIle/Ile measured in each molecular-weight fraction and in theTOTAL are all highly significant (r ⩾ 0.951), the relation between the extent of epimerization in the HMW and in the TOTAL is best expressed as an exponential function (r = 0.951). This relation is consistent with the idea that, as the epimerization reaction approaches equilibrium in theTOTAL (ca. aIle/Ile > 1.1), its rate decreases beyond that of the HMW. The amino acid composition (relative percent of

  5. Heat-mediated, ultra-rapid electrophoretic transfer of high and low molecular weight proteins to nitrocellulose membranes.

    PubMed

    Kurien, Biji T; Scofield, R Hal

    2002-08-01

    Here, we report an ultra-rapid method for the transfer of high and low molecular weight proteins to nitrocellulose membranes following sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). In this procedure, the electro-transfer was performed with heated (70-75 degrees C) normal transfer buffer from which methanol had been omitted. Complete transfer of high and low molecular weight proteins (a purified protein, molecular weight protein standards and proteins from a human tissue extract) could be carried out in 10 min for a 0.75-mm, 7% SDS-PAGE gel. For 10% and 12.5% gels (0.75 mm), the corresponding time was 15 min. In the case of 1.5-mm gels, a complete transfer could be carried out in 20 min for 7%, 10% and 12.5% gels. The permeability of the gel is increased by heat, such that the proteins trapped in the polyacrylamide gel matrix can be easily transferred to the membrane. When the heat-mediated transfer method was compared with a conventional transfer protocol, under similar conditions, we found that the latter method transferred minimal low molecular weight proteins while retaining most of the high molecular weight proteins in the gel. In summary, this procedure is very rapid, avoids the use of methanol and is particularly useful for the transfer of high molecular weight proteins.

  6. Establishment of replacement batches for heparin low-molecular-mass for calibration CRS, and the International Standard Low Molecular Weight Heparin for Calibration.

    PubMed

    Mulloy, B; Heath, A; Behr-Gross, M-E

    2007-12-01

    An international collaborative study involving fourteen laboratories has taken place, organised by the European Directorate for the Quality of Medicines & HealthCare (EDQM) with National Institute for Biological Standards & Control (NIBSC) (in its capacity as a World Health Organisation (WHO) Laboratory for Biological Standardisation) to provide supporting data for the establishment of replacement batches of Heparin Low-Molecular-Mass (LMM) for Calibration Chemical Reference Substance (CRS), and of the International Reference Reagent (IRR) Low Molecular Weight Heparin for Molecular Weight Calibration. A batch of low-molecular-mass heparin was donated to the organisers and candidate preparations of freeze-dried heparin were produced at NIBSC and EDQM. The establishment study was organised in two phases: a prequalification (phase 1, performed in 3 laboratories in 2005) followed by an international collaborative study (phase 2). In phase 2, started in March 2006, molecular mass parameters were determined for seven different LMM heparin samples using the current CRS batch and two batches of candidate replacement material with a defined number average relative molecular mass (Mn) of 3,700, determined in phase 1. The values calculated using the candidates as standard were systematically different from values calculated using the current batch with its assigned number-average molecular mass (Mna) of 3,700. Using raw data supplied by participants, molecular mass parameters were recalculated using the candidates as standard with values for Mna of 3,800 and 3,900. Values for these parameters agreed more closely with those calculated using the current batch supporting the fact that the candidates, though similar to batch 1 in view of the production processes used, differ slightly in terms of molecular mass distribution. Therefore establishment of the candidates was recommended with an assigned Mna value of 3,800 that is both consistent with phase 1 results and guarantees

  7. Molecular weight distribution characterization of hydrophobe-modified hydroxyethyl cellulose by size-exclusion chromatography.

    PubMed

    Li, Yongfu; Meunier, David M; Partain, Emmett M

    2014-09-12

    Size-exclusion chromatography (SEC) of hydrophobe-modified hydroxyethyl cellulose (HmHEC) is challenging because polymer chains are not isolated in solution due to association of hydrophobic groups and hydrophobic interaction with column packing materials. An approach to neutralize these hydrophobic interactions was developed by adding β-cyclodextrin (β-CD) to the aqueous eluent. SEC mass recovery, especially for the higher molecular weight chains, increased with increasing concentration of β-CD in the eluent. A β-CD concentration of 0.75wt% in the eluent was determined to be optimal for the HmHEC polymers studied. These conditions enabled precise determinations of apparent molecular weight distributions exhibiting less than 2% relative standard deviation in the measured weight-average molecular weight (MW) for five injections on three studied samples and showed no significant differences in MW determined on two different days. The developed technology was shown to be very robust for characterizing HmHEC having MW from 500kg/mol to 2000kg/mol, and it can be potentially applied to other hydrophobe-modified polymers. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Low Molecular Weight Polymethacrylates as Multi-Functional Lubricant Additives

    DOE PAGES

    Cosimbescu, Lelia; Vellore, Azhar; Shantini Ramasamy, Uma; ...

    2018-04-24

    In this study, low molecular weight, moderately polar polymethacrylate polymers are explored as potential multi-functional lubricant additives. The performance of these novel additives in base oil is evaluated in terms of their viscosity index, shear stability, and friction-and-wear. The new compounds are compared to two benchmarks, a typical polymeric viscosity modifier and a fully-formulated oil. Results show that the best performing of the new polymers exhibit viscosity index and friction comparable to that of both benchmarks, far superior shear stability to either benchmark (as much as 15x lower shear loss), and wear reduction significantly better than a typical viscosity modifiermore » (lower wear volume by a factor of 2-3). The findings also suggest that the polarity and molecular weight of the polymers affect their performance which suggests future synthetic strategies may enable this new class of additives to replace multiple additives in typical lubricant formulations.« less

  9. Molecular physiology of weight regulation in mice and humans

    PubMed Central

    Leibel, RL

    2009-01-01

    Evolutionary considerations relating to efficiency in reproduction, and survival in hostile environments, suggest that body energy stores are sensed and actively regulated, with stronger physiological and behavioral responses to loss than gain of stored energy. Many physiological studies support this inference, and suggest that a critical axis runs between body fat and the hypothalamus. The molecular cloning of leptin and its receptor—projects based explicitly on the search for elements in this axis—confirmed the existence of this axis and provided important tools with which to understand its molecular physiology. Demonstration of the importance of this soma-brain reciprocal connection in body weight regulation in humans has been pursued using both classical genetic approaches and studies of physiological responses to experimental weight perturbation. This paper reviews the history of the rationale and methodology of the cloning of leptin (Lep) and the leptin receptor (Lepr), and describes some of the clinical investigation characterizing this axis. PMID:19136999

  10. Low Molecular Weight Polymethacrylates as Multi-Functional Lubricant Additives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cosimbescu, Lelia; Vellore, Azhar; Shantini Ramasamy, Uma

    In this study, low molecular weight, moderately polar polymethacrylate polymers are explored as potential multi-functional lubricant additives. The performance of these novel additives in base oil is evaluated in terms of their viscosity index, shear stability, and friction-and-wear. The new compounds are compared to two benchmarks, a typical polymeric viscosity modifier and a fully-formulated oil. Results show that the best performing of the new polymers exhibit viscosity index and friction comparable to that of both benchmarks, far superior shear stability to either benchmark (as much as 15x lower shear loss), and wear reduction significantly better than a typical viscosity modifiermore » (lower wear volume by a factor of 2-3). The findings also suggest that the polarity and molecular weight of the polymers affect their performance which suggests future synthetic strategies may enable this new class of additives to replace multiple additives in typical lubricant formulations.« less

  11. Reorganization of low-molecular-weight fraction of plasma proteins in the annual cycle of cyprinidae.

    PubMed

    Andreeva, A M; Lamas, N E; Serebryakova, M V; Ryabtseva, I P; Bolshakov, V V

    2015-02-01

    Reorganization of the low-molecular-weight fraction of cyprinid plasma was analyzed using various electrophoretic techniques (disc electrophoresis, electrophoresis in polyacrylamide concentration gradient, in polyacrylamide with urea, and in SDS-polyacrylamide). The study revealed coordinated changes in the low-molecular-weight protein fractions with seasonal dynamics and related reproductive rhythms of fishes. We used cultured species of the Cyprinidae family with sequenced genomes for the detection of these interrelations in fresh-water and anadromous cyprinid species. The common features of organization of fish low-molecular-weight plasma protein fractions made it possible to make reliable identification of their proteins. MALDI mass-spectrometry analysis revealed the presence of the same proteins (hemopexin, apolipoproteins, and serpins) in the low-molecular-weight plasma fraction in wild species and cultured species with sequenced genomes (carp, zebrafish). It is found that the proteins of the first two classes are organized as complexes made of protein oligomers. Stoichiometry of these complexes changes in concordance with the seasonal and reproductive rhythms.

  12. Middle molecules and small-molecular-weight proteins in ESRD: properties and strategies for their removal.

    PubMed

    Clark, William R; Winchester, James F

    2003-10-01

    Molecular weight has traditionally been the parameter most commonly used to classify uremic toxins, with a value of approximately 500 Da frequently used as a demarcation point below which the molecular weights of small nitrogenous waste products fall. This toxin group, the most extensively studied from a clinical perspective, is characterized by a high degree of water solubility and the absence of protein binding. However, uremia is mediated by the retention of a plethora of other compounds having characteristics that differ significantly from those of the previously mentioned group. As opposed to the relative homogeneity of the nitrogenous metabolite class, other uremic toxins collectively are a very heterogeneous group, not only with respect to molecular weight but also other characteristics, such as protein binding and hydrophobicity. A recently proposed classification scheme by the European Uraemic Toxin Work Group subdivides the remainder of molecules into 2 categories: protein-bound solutes and middle molecules. For the latter group, the Work Group proposes a molecular weight range (500-60,000 Da) that incorporates many toxins identified since the original middle molecule hypothesis, for which the upper molecular weight limit was approximately 2,000 Da. In fact, low-molecular-weight peptides and proteins (LMWPs) comprise nearly the entire middle molecule category in the new scheme. The purpose of this article is to provide an overview of the middle molecule class of uremic toxins, with the focus on LMWPs. A brief review of LMWP metabolism under conditions of normal (and in a few cases, abnormal) renal function will be presented. The physical characteristics of several LMWPs will also be presented, including molecular weight, conformation, and charge. Specific LMWPs to be covered will include beta 2-microglobulin, complement proteins (C3a and Factor D), leptin, and proinflammatory cytokines. The article will also include a discussion of the treatment

  13. HemX is required for production of 2-ketogluconate, the predominant organic anion required for inorganic phosphate solubilization by Burkholderia sp. Ha185.

    PubMed

    Hsu, Pei-Chun Lisa; Condron, Leo; O'Callaghan, Maureen; Hurst, Mark R H

    2015-12-01

    The bacterium Burkholderia sp. Ha185 readily solubilizes inorganic phosphate by releasing the low molecular weight organic anion, 2-ketogluconate. Using random transposon mutagenesis and in silico analysis, a mutation that caused almost complete abolition of phosphate solubilization was located within hemX, which is part of the hem operon. Burkholderia sp. Ha185 HemX is a multidomain protein, predicted to encode a bifunctional uroporphyrinogen-III synthetase/uroporphyrin-III C-methyltransferase, which has not previously been implicated in phosphate solubilization. Complementation of hemX restored the ability of the mutant to solubilize phosphate in both plate and liquid cultures. Based on a combination of organic-anion profiling, quantitative polymerase chain reaction and in silico analyses, hemX was confirmed to be solely responsible for hydroxyapatite solubilization in Burkholderia sp. Ha185. It is proposed that the biosynthesis of a yet to be determined redox cofactor by HemX is the main pathway for generating 2-ketogluconate via a haem-dependent gluconate 2-dehydrogenase in Burkholderia sp. Ha185. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  14. Synthetic polycations with controlled charge density and molecular weight as building blocks for biomaterials.

    PubMed

    Kleinberger, Rachelle M; Burke, Nicholas A D; Zhou, Christal; Stöver, Harald D H

    2016-01-01

    A series of polycations prepared by RAFT copolymerization of N-(3-aminopropyl)methacrylamide hydrochloride (APM) and N-(2-hydroxypropyl)methacrylamide, with molecular weights of 15 and 40 kDa, and APM content of 10-75 mol%, were tested as building blocks for electrostatically assembled hydrogels such as those used for cell encapsulation. Complexation and distribution of these copolymers within anionic calcium alginate gels, as well as cytotoxicity, cell attachment, and cell proliferation on surfaces grafted with the copolymers were found to depend on composition and molecular weight. Copolymers with lower cationic charge density and lower molecular weight showed less cytotoxicity and cell adhesion, and were more mobile within alginate gels. These findings aid in designing improved polyelectrolyte complexes for use as biomaterials.

  15. Cellular Viscosity in Prokaryotes and Thermal Stability of Low Molecular Weight Biomolecules.

    PubMed

    Cuecas, Alba; Cruces, Jorge; Galisteo-López, Juan F; Peng, Xiaojun; Gonzalez, Juan M

    2016-08-23

    Some low molecular weight biomolecules, i.e., NAD(P)H, are unstable at high temperatures. The use of these biomolecules by thermophilic microorganisms has been scarcely analyzed. Herein, NADH stability has been studied at different temperatures and viscosities. NADH decay increased at increasing temperatures. At increasing viscosities, NADH decay rates decreased. Thus, maintaining relatively high cellular viscosity in cells could result in increased stability of low molecular weight biomolecules (i.e., NADH) at high temperatures, unlike what was previously deduced from studies in diluted water solutions. Cellular viscosity was determined using a fluorescent molecular rotor in various prokaryotes covering the range from 10 to 100°C. Some mesophiles showed the capability of changing cellular viscosity depending on growth temperature. Thermophiles and extreme thermophiles presented a relatively high cellular viscosity, suggesting this strategy as a reasonable mechanism to thrive under these high temperatures. Results substantiate the capability of thermophiles and extreme thermophiles (growth range 50-80°C) to stabilize and use generally considered unstable, universal low molecular weight biomolecules. In addition, this study represents a first report, to our knowledge, on cellular viscosity measurements in prokaryotes and it shows the dependency of prokaryotic cellular viscosity on species and growth temperature. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. Modeling the relationship between body weight and energy intake: A molecular diffusion-based approach

    PubMed Central

    2012-01-01

    Background Body weight is at least partly controlled by the choices made by a human in response to external stimuli. Changes in body weight are mainly caused by energy intake. By analyzing the mechanisms involved in food intake, we considered that molecular diffusion plays an important role in body weight changes. We propose a model based on Fick's second law of diffusion to simulate the relationship between energy intake and body weight. Results This model was applied to food intake and body weight data recorded in humans; the model showed a good fit to the experimental data. This model was also effective in predicting future body weight. Conclusions In conclusion, this model based on molecular diffusion provides a new insight into the body weight mechanisms. Reviewers This article was reviewed by Dr. Cabral Balreira (nominated by Dr. Peter Olofsson), Prof. Yang Kuang and Dr. Chao Chen. PMID:22742862

  17. Influence of molecular weight on in vitro immunostimulatory properties of instant coffee.

    PubMed

    Passos, Cláudia P; Cepeda, Márcio R; Ferreira, Sónia S; Nunes, Fernando M; Evtuguin, Dmitry V; Madureira, Pedro; Vilanova, Manuel; Coimbra, Manuel A

    2014-10-15

    Instant coffee was prepared and fractionated into higher (>100kDa), medium (5-10, 10-30, 30-100kDa) and lower (1-5, <1kDa) molecular weight fractions. Sugars and linkage composition characteristics of arabinogalactans and galactomannans were recovered in all fractions. Also, amino acid analysis performed after hydrolysis showed similar compositions in all fractions. On the contrary, free chlorogenic acids and caffeine were only detected in the lowest molecular weight fraction (<1kDa). A direct relationship between the melanoidins browning index and the molecular weight was observed. The fractions obtained were incubated in vitro with murine spleen lymphocytes in order to evaluate their possible immunostimulatory abilities. The surface expression of CD69 (early activation marker) on different lymphocyte sub-populations showed that the fraction with 1-5kDa was able to induce activation of B-lymphocytes. This was the only fraction to induce B-lymphocyte activation, since all the other fractions failed, even when higher concentrations were used. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Molecular imprinted polymer-coated optical fiber sensor for the identification of low molecular weight molecules.

    PubMed

    Lépinay, Sandrine; Ianoul, Anatoli; Albert, Jacques

    2014-10-01

    A biomimetic optical probe for detecting low molecular weight molecules (maltol, 3-hydroxy-2-methyl-4H-pyran-4-one, molecular weight of 126.11 g/mol), was designed, fabricated, and characterized. The sensor couples a molecular imprinted polymer (MIP) and the Bragg grating refractometry technology into an optical fiber. The probe is fabricated first by inscribing tilted grating planes in the core of the fiber, and then by photopolymerization to immobilize a maltol imprinted MIP on the fiber cladding surface over the Bragg grating. The sensor response to the presence of maltol in different media is obtained by spectral interrogation of the fiber transmission signal. The results showed that the limit of detection of the sensor reached 1 ng/mL in pure water with a sensitivity of 6.3 × 10(8)pm/M. The selectivity of the sensor against other compounds and its reusability were also studied experimentally. Finally, the unambiguous detection of concentrations as little as 10nM of maltol in complex media (real food samples) by the MIP-coated tilted fiber Bragg grating sensor was demonstrated. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Mass spectrometric characterization of membrane integral low molecular weight proteins from photosystem II in barley etioplasts.

    PubMed

    Plöscher, Matthias; Granvogl, Bernhard; Zoryan, Mikael; Reisinger, Veronika; Eichacker, Lutz Andreas

    2009-02-01

    In Photosystem II (PSII), a high number of plastid encoded and membrane integral low molecular weight proteins smaller than 10 kDa, the proteins PsbE, F, H, I, J, K, L, M, N, Tc, Z and the nuclear encoded PsbW, X, Y1, Y2 proteins have been described. Here we show that all low molecular weight proteins of PSII already accumulate in the etioplast membrane fraction in darkness, whereas PsaI and PsaJ of photosystem I (PSI) represent the only low molecular weight proteins that do not accumulate in darkness. We found by BN-PAGE separation of membrane protein complexes and selective MS that the accumulation of one-helix proteins from PSII is light independent and occurs in etioplasts. In contrast, in chloroplasts isolated from light-grown plants, low molecular weight proteins were found to specifically accumulate in PSI and II complexes. Our results demonstrate how plants grown in darkness prepare for the induction of chlorophyll dependent photosystem assembly upon light perception. We anticipate that our investigation will provide the essential means for the analysis of protein assembly in any membrane utilizing low molecular weight protein subunits.

  20. Generation of recombinant pandemic H1N1 influenza virus with the HA cleavable by bromelain and identification of the residues influencing HA bromelain cleavage.

    PubMed

    Wang, Weijia; Suguitan, Amorsolo L; Zengel, James; Chen, Zhongying; Jin, Hong

    2012-01-20

    The proteolytic enzyme bromelain has been traditionally used to cleave the hemagglutinin (HA) protein at the C-terminus of the HA2 region to release the HA proteins from influenza virions. The bromelain cleaved HA (BHA) has been routinely used as an antigen to generate antiserum that is essential for influenza vaccine product release. The HA of the 2009 pandemic H1N1 influenza A/California/7/2009 (CA09) virus could not be cleaved efficiently by bromelain. To ensure timely delivery of BHA for antiserum production, we generated a chimeric virus that contained the HA1 region from CA09 and the HA2 region from the seasonal H1N1 A/South Dakota/6/2007 (SD07) virus that is cleavable by bromelain. The BHA from this chimeric virus was antigenically identical to CA09 and induced high levels of HA-specific antibodies and protected ferrets from wild-type H1N1 CA09 virus challenge. To determine the molecular basis of inefficient cleavage of CA09 HA by bromelain, the amino acids that differed between the HA2 of CA09 and SD07 were introduced into recombinant CA09 virus to assess their effect on bromelain cleavage. The D373N or E374G substitution in the HA2 stalk region of CA09 HA enabled efficient cleavage of CA09 HA by bromelain. Sequence analysis of the pandemic H1N1-like viruses isolated from 2010 revealed emergence of the E374K change. We found that K374 enabled the HA to be cleaved by bromelain and confirmed that the 374 residue is critical for HA bromelain cleavage. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Molecular weight distribution of phosphorus fraction of aquatic dissolved organic matter.

    PubMed

    Ged, Evan C; Boyer, Treavor H

    2013-05-01

    This study characterized dissolved organic phosphorus (DOP) that is discharged from the Everglades Agricultural Area as part of the larger pool of aquatic dissolved organic matter (DOM). Whole water samples collected at the Everglades stormwater treat area 1 West (STA-1 W) were fractionated using a batch ultrafiltration method to separate organic compounds based on apparent molecular weight (AMW). Each AMW fraction of DOM was characterized for phosphorus, carbon, nitrogen, UV absorbance, and fluorescence. The DOP content of the Everglades water matrix was characteristically variable constituting 4-56% of total phosphorus (TP) and demonstrated no correlation with dissolved organic carbon (DOC). Measured values for DOP exceeded 14μgL(-1) in four out of five sampling dates making phosphorus load reductions problematic for the stormwater treatment areas (STAs), which target inorganic phosphorus and have a goal of 10μgL(-1) as TP. The molecular weight distributions revealed 40% of DOP is high molecular weight, aromatic-rich DOM. The results of this research are expected to be of interest to environmental chemists, environmental engineers, and water resources managers because DOP presents a major obstacle to achieving TP levels <10μgL(-1). Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Post-translational modification and stability of low molecular weight cyclin E.

    PubMed

    Mull, B B; Cox, J; Bui, T; Keyomarsi, K

    2009-09-03

    Our laboratory has previously described the presence of five tumor-specific low molecular weight isoforms of cyclin E in both tumor cell lines and breast cancer patient biopsies. We have also shown that one of these low forms arises from an alternate start site, whereas the other four appear as two sets of doublets following cleavage through an elastase-like enzyme. However, the origin of both sets of doublets was unknown. Here, we demonstrate that the larger isoform of each doublet is the result of phosphorylation at a key degradation site. Through site-directed mutagenesis of different phosphorylation sites within the cyclin E protein, we discovered that phosphorylation of threonine 395 is responsible for generating the larger isoform of each doublet. Because phosphorylation of threonine 395 has been linked to the proteasome-mediated degradation of full length cyclin E, we examined the stability of T395A phospho-mutants in both non-tumorigenic mammary epithelial cells and tumor cells. The results revealed that the low molecular weight isoforms appear to be stable in both a tumor cell line and a non-tumor forming cell line regardless of the presence of this critical phosphorylation site. The stability of low molecular weight cyclin E may have implications for both tumorigenesis and treatment of tumors expressing them.

  3. MAPLE deposition of PLGA:PEG films for controlled drug delivery: Influence of PEG molecular weight

    NASA Astrophysics Data System (ADS)

    Paun, Irina Alexandra; Moldovan, Antoniu; Luculescu, Catalin Romeo; Staicu, Angela; Dinescu, Maria

    2012-09-01

    Implantable devices consisting of indomethacin (INC) cores coated with poly(lactide-co-glycolide):polyethylene glycol films (i.e. PLGA:PEG films) deposited by Matrix Assisted Pulsed Laser Evaporation (MAPLE) were produced. To predict their behavior after implantation inside the body, the implants were studied in vitro, in media similar with those encountered inside the body (phosphate buffered saline (PBS) pH 7.4 and blood). The influence of the molecular weight of PEG (i.e. low (1450 Da) versus high (10 kDa) molecular weights) on the characteristics of the implants was investigated, in terms of morphology, blood compatibility and kinetics of the drug release. The use of PEG of high molecular weight resulted in larger pores on the implants surfaces, enhanced blood compatibility of the implants and higher drug delivery rates. For both molecular weights PEGs, sustained release of INC was maintained over a three weeks interval. Theoretical fitting of the drug release data with Higuchi's model indicated that the INC was released mainly by diffusion, most probably through the pores formed in PLGA:PEG films during PBS immersion.

  4. Hypoglycemic effect of polysaccharides with different molecular weight of Pseudostellaria heterophylla

    PubMed Central

    2013-01-01

    Abstracts Background The aims of this study were to evaluate the antidiabetic activity and to detect molecular size of Pseudostellaria heterophylla polysaccharide (PHP). Pseudostellaria heterophylla is a medicine extensively used in traditional Chinese medicine formulas to treat diabetes and its complications. Methods Molecular weight of PHP was determined by gel permeation chromatography combined with phenol-sulphuric acid method and the monosaccharides composition was determined by HPLC with a precolumn derivatization. Four polysaccharides with different molecular weight were compared for hypoglycemic active on two animal models both high does alloxan induced type1 diabetic mellitus (T1DM) and high-fat/lower does streptozotocin induced type2 diabetic mellitus (T2DM). Blood sugar, glucose tolerance, and insulin tolerance were detected. Rat serum IL-1β, IL-2, IL-10, Leptin, TNF-α, Acrp30 and CRP were also analyzed by sandwich-ELISA approaches to preliminary probe the hypoglycemic mechanism of PHP. Results The hypoglycemic effects related to molecular size of polysaccharide were more effective against T2DM than T1DM. PHP comprise four monosaccharides of galacturonic acid, glucose, galactose and arabinos. T2DM rats daily receiving oral dose of polysaccharide(100 ~ 400 mg/kg) with 50 ~ 210 kDa molecular weight (PF40) could not only significantly lower blood sugar but also reduce total triglyceride level in serum. PF40 improves in insulin tolerance inhibited the expression of some biomarkers including inflammatory cytokine TNF-α and elevated anti-inflammatory cytokine IL-10, regulated adiponectin Acrp30 and leptin. Conclusions PF40 prevent the cascade of inflammatory events in the treatment of T2DM to block overweight progresses to obesity. PMID:24131482

  5. Peptidylation for the determination of low-molecular-weight compounds by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Tang, Feng; Cen, Si-Ying; He, Huan; Liu, Yi; Yuan, Bi-Feng; Feng, Yu-Qi

    2016-05-23

    Determination of low-molecular-weight compounds by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) has been a great challenge in the analytical research field. Here we developed a universal peptide-based derivatization (peptidylation) strategy for the sensitive analysis of low-molecular-weight compounds by MALDI-TOF-MS. Upon peptidylation, the molecular weights of target analytes increase, thus avoiding serious matrix ion interference in the low-molecular-weight region in MALDI-TOF-MS. Since peptides typically exhibit good signal response during MALDI-TOF-MS analysis, peptidylation endows high detection sensitivities of low-molecular-weight analytes. As a proof-of-concept, we analyzed low-molecular-weight compounds of aldehydes and thiols by the developed peptidylation strategy. Our results showed that aldehydes and thiols can be readily determined upon peptidylation, thus realizing the sensitive and efficient determination of low-molecular-weight compounds by MALDI-TOF-MS. Moreover, target analytes also can be unambiguously detected in biological samples using the peptidylation strategy. The established peptidylation strategy is a universal strategy and can be extended to the sensitive analysis of various low-molecular-weight compounds by MALDI-TOF-MS, which may be potentially used in areas such as metabolomics.

  6. Use of electroporation for high-molecular-weight DNA-mediated gene transfer.

    PubMed

    Jastreboff, M M; Ito, E; Bertino, J R; Narayanan, R

    1987-08-01

    Electroporation was used to introduce high-molecular-weight DNA into murine hematopoietic cells and NIH3T3 cells. CCRF-CEM cells were stably transfected with SV2NEO plasmid and the genomic DNA from G-418-resistant clones (greater than 65 kb) was introduced into mouse bone marrow and NIH3T3 cells by electroporation. NEO sequences and expression were detected in the hematopoietic tissues of lethally irradiated mice, with 24% of individual spleen colonies expressing NEO. The frequency of genomic DNA transfer into NIH3T3 cells was 0.25 X 10(-3). Electroporation thus offers a powerful mode of gene transfer not only of cloned genes but also of high-molecular-weight DNA into cells.

  7. Advantages of Molecular Weight Identification during Native MS Screening.

    PubMed

    Khan, Ahad; Bresnick, Anne; Cahill, Sean; Girvin, Mark; Almo, Steve; Quinn, Ronald

    2018-05-09

    Native mass spectrometry detection of ligand-protein complexes allowed rapid detection of natural product binders of apo and calcium-bound S100A4 (a member of the metal binding protein S100 family), T cell/transmembrane, immunoglobulin (Ig), and mucin protein 3, and T cell immunoreceptor with Ig and ITIM (immunoreceptor tyrosine-based inhibitory motif) domains precursor protein from extracts and fractions. Based on molecular weight common hits were detected binding to all four proteins. Seven common hits were identified as apigenin 6- C - β - D -glucoside 8- C - α - L -arabinoside, sweroside, 4',5-dihydroxy-7-methoxyflavanone-6- C -rutinoside, loganin acid, 6- C -glucosylnaringenin, biochanin A 7- O -rutinoside and quercetin 3- O -rutinoside. Mass guided isolation and NMR identification of hits confirmed the mass accuracy of the ligand in the ligand-protein MS complexes. Thus, molecular weight ID from ligand-protein complexes by electrospray ionization Fourier transform mass spectrometry allowed rapid dereplication. Native mass spectrometry using electrospray ionization Fourier transform mass spectrometry is a tool for dereplication and metabolomics analysis. Georg Thieme Verlag KG Stuttgart · New York.

  8. Isolation and Characterization of a Toxic Moiety of Low Molecular Weight from Clostridium botulinum Type A

    PubMed Central

    Gerwing, Julia; Dolman, Claude E.; Bains, Hardial S.

    1965-01-01

    Gerwing, Julia (The University of British Columbia, Vancouver, B.C., Canada), Claude E. Dolman, and Hardial S. Bains. Isolation and characterization of a toxic moiety of low molecular weight from Clostridium botulinum type A. J. Bacteriol. 89:1383–1386. 1965.—A toxic moiety of low molecular weight has been isolated from a type A strain of Clostridium botulinum, by a method involving ammonium sulfate precipitation and elution through diethylaminoethyl cellulose at pH 5.6. By means of electrophoresis and ultracentrifugation, the toxic substance was shown to be homogeneous; a molecular weight of 12,200 was calculated. Images PMID:14293025

  9. Conversion of calibration curves for accurate estimation of molecular weight averages and distributions of polyether polyols by conventional size exclusion chromatography.

    PubMed

    Xu, Xiuqing; Yang, Xiuhan; Martin, Steven J; Mes, Edwin; Chen, Junlan; Meunier, David M

    2018-08-17

    Accurate measurement of molecular weight averages (M¯ n, M¯ w, M¯ z ) and molecular weight distributions (MWD) of polyether polyols by conventional SEC (size exclusion chromatography) is not as straightforward as it would appear. Conventional calibration with polystyrene (PS) standards can only provide PS apparent molecular weights which do not provide accurate estimates of polyol molecular weights. Using polyethylene oxide/polyethylene glycol (PEO/PEG) for molecular weight calibration could improve the accuracy, but the retention behavior of PEO/PEG is not stable in THF-based (tetrahydrofuran) SEC systems. In this work, two approaches for calibration curve conversion with narrow PS and polyol molecular weight standards were developed. Equations to convert PS-apparent molecular weight to polyol-apparent molecular weight were developed using both a rigorous mathematical analysis and graphical plot regression method. The conversion equations obtained by the two approaches were in good agreement. Factors influencing the conversion equation were investigated. It was concluded that the separation conditions such as column batch and operating temperature did not have significant impact on the conversion coefficients and a universal conversion equation could be obtained. With this conversion equation, more accurate estimates of molecular weight averages and MWDs for polyether polyols can be achieved from conventional PS-THF SEC calibration. Moreover, no additional experimentation is required to convert historical PS equivalent data to reasonably accurate molecular weight results. Copyright © 2018. Published by Elsevier B.V.

  10. Systematic Analysis of Polymer Molecular Weight Influence on the Organic Photovoltaic Performance.

    PubMed

    Katsouras, Athanasios; Gasparini, Nicola; Koulogiannis, Chrysanthos; Spanos, Michael; Ameri, Tayebeh; Brabec, Christoph J; Chochos, Christos L; Avgeropoulos, Apostolos

    2015-10-01

    The molecular weight of an electron donor-conjugated polymer is as essential as other well-known parameters in the chemical structure of the polymer, such as length and the nature of any side groups (alkyl chains) positioned on the polymeric backbone, as well as their placement, relative strength, the ratio of the donor and acceptor moieties in the backbone of donor-acceptor (D-A)-conjugated polymers, and the arrangement of their energy levels for organic photovoltaic performance. Finding the "optimal" molecular weight for a specific conjugated polymer is an important aspect for the development of novel photovoltaic polymers. Therefore, it is evident that the chemistry of functional conjugated polymers faces major challenges and materials have to adopt a broad range of specifications in order to be established for high photovoltaic performance. In this review, the approaches followed for enhancing the molecular weight of electron-donor polymers are presented in detail, as well as how this influences the optoelectronic properties, charge transport properties, structural conformation, morphology, and the photovoltaic performance of the active layer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Molecular Factors Governing the Liquid and Glassy States Recrystallization of Celecoxib in Binary Mixtures with Excipients of Different Molecular Weights.

    PubMed

    Grzybowska, K; Chmiel, K; Knapik-Kowalczuk, J; Grzybowski, A; Jurkiewicz, K; Paluch, M

    2017-04-03

    Transformation of poorly water-soluble crystalline pharmaceuticals to the amorphous form is one of the most promising strategies to improve their oral bioavailability. Unfortunately, the amorphous drugs are usually thermodynamically unstable and may quickly return to their crystalline form. A very promising way to enhance the physical stability of amorphous drugs is to prepare amorphous compositions of APIs with certain excipients which can be characterized by significantly different molecular weights, such as polymers, acetate saccharides, and other APIs. By using different experimental techniques (broadband dielectric spectroscopy, differential scanning calorimetry, X-ray diffraction) we compare the effect of adding the large molecular weight polymer-polyvinylpyrrolidone (PVP K30)-and the small molecular weight excipient-octaacetylmaltose (acMAL)-on molecular dynamics as well as the tendency to recrystallization of the amorphous celecoxib (CEL) in the amorphous solid dispersions: CEL-PVP and CEL-acMAL. The physical stability investigations of the binary systems were performed in both the supercooled liquid and glassy states. We found that acMAL is a better inhibitor of recrystallization of amorphous CEL than PVP K30 deep in the glassy state (T < T g ). In contrast, PVP K30 is a better crystallization inhibitor of CEL than acMAL in the supercooled liquid state (at T > T g ). We discuss molecular factors governing the recrystallization of amorphous CEL in examined solid dispersions.

  12. 3D fabrication and characterization of phosphoric acid scaffold with a HA/β-TCP weight ratio of 60:40 for bone tissue engineering applications.

    PubMed

    Wang, Yanen; Wang, Kai; Li, Xinpei; Wei, Qinghua; Chai, Weihong; Wang, Shuzhi; Che, Yu; Lu, Tingli; Zhang, Bo

    2017-01-01

    A key requirement for three-dimensional printing (3-DP) at room temperature of medical implants depends on the availability of printable and biocompatible binder-powder systems. Different concentration polyvinyl alcohol (PVA) and phosphoric acid solutions were chosen as the binders to make the artificial stent biocompatible with sufficient compressive strength. In order to achieve an optimum balance between the bioceramic powder and binder solution, the biocompatibility and mechanical properties of these artificial stent samples were tested using two kinds of binder solutions. This study demonstrated the printable binder formulation at room temperature for the 3D artificial bone scaffolds. 0.6 wt% PVA solution was ejected easily via inkjet printing, with a supplementation of 0.25 wt% Tween 80 to reduce the surface tension of the polyvinyl alcohol solution. Compared with the polyvinyl alcohol scaffolds, the phosphoric acid scaffolds had better mechanical properties. Though both scaffolds supported the cell proliferation, the absorbance of the polyvinyl alcohol scaffolds was higher than that of the phosphoric acid scaffolds. The artificial stents with a hydroxyapatite/beta-tricalcium phosphate (HA/β-TCP) weight ratios of 60:40 depicted good biocompatibility for both scaffolds. Considering the scaffolds' mechanical and biocompatible properties, the phosphoric acid scaffolds with a HA/β-TCP weight ratio of 60:40 may be the best combination for bone tissue engineering applications.

  13. Physical Properties of Low-Molecular Weight Polydimethylsiloxane Fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Christine Cardinal; Graham, Alan; Nemer, Martin

    Physical property measurements including viscosity, density, thermal conductivity, and heat capacity of low-molecular weight polydimethylsiloxane (PDMS) fluids were measured over a wide temperature range (-50°C to 150°C when possible). Properties of blends of 1 cSt and 20 cSt PDMS fluids were also investigated. Uncertainties in the measurements are cited. These measurements will provide greater fidelity predictions of environmental sensing device behavior in hot and cold environments.

  14. Effect of molecular weight of starch on the properties of cassava starch microspheres prepared in aqueous two-phase system.

    PubMed

    Xia, Huiping; Li, Bing-Zheng; Gao, Qunyu

    2017-12-01

    Starch microspheres (SMs) were fabricated in an aqueous two-phase system (ATPS). A series of starch samples with different molecular weight were prepared by acid hydrolysis, and the effect of molecular weight of starch on the fabrication of SMs were investigated. Scanning electron microscopy (SEM) showed that the morphologies of SMs varied with starch molecular weight, and spherical SMs with sharp contours were obtained while using starch samples with weight-average molecular weight (M¯w)≤1.057×10 5 g/mol. X-ray diffraction (XRD) results revealed that crystalline structure of SMs were different from that of native cassava starch, and the relative crystallinity of SMs increased with the molecular weight of starch decreasing. Differential scanning calorimetry (DSC) results showed peak gelatinization temperature (T p ) and enthalpy of gelatinization (ΔH) of SMs increased with decreased M¯wof starch. Stability tests indicated that the SMs were stable under acid environment, but not stable under α-amylase hydrolysis. Copyright © 2017. Published by Elsevier Ltd.

  15. 21 CFR 172.820 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ethylene oxide and water with a mean molecular weight of 200 to 9,500. (2) It contains no more than 0.2..., or equivalent) 12 percent in H2O by weight on 60-80 mesh nonacid washed diatomaceous earth... in cylinder equipped with reducing regulator to provide 50 p.s.i.g. to the gas chromatograph...

  16. 21 CFR 172.820 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ethylene oxide and water with a mean molecular weight of 200 to 9,500. (2) It contains no more than 0.2..., or equivalent) 12 percent in H2O by weight on 60-80 mesh nonacid washed diatomaceous earth... in cylinder equipped with reducing regulator to provide 50 p.s.i.g. to the gas chromatograph...

  17. Physical characterization of polyethylene glycols by thermal analytical technique and the effect of humidity and molecular weight.

    PubMed

    Majumdar, R; Alexander, K S; Riga, A T

    2010-05-01

    Polyethylene glycols (PEGs) are well known as excipients in tablet dosage formulations. PEGs are generally known to be inert and have very few interactions with other components in the solid dosage forms. However, the physical nature of PEGs and how they affect the disintegration of tablets is not very well understood for the different molecular weights of PEGs. The knowledge of the effect of molecular weight of PEGs on their physical properties and the effect of humidity on the physical properties of PEGs are important parameters for the choice of a PEG to be acceptable as an excipient in pharmaceutical formulations. This study was done to determine the precision of the DSC physical properties for a wide range of PEGs with varying molecular weights from 194 to 23000 daltons. Nine different molecular weights of PEGs were examined in a DSC controlled Heat-Cool-Heat-Cool-Heat (HCHCH) cycle and the observed reproducible values of melting temperature, heat of fusion, crystallization temperature and the heat of crystallization were compared with values obtained from the literature and the observed percent crystallinity was again cross-checked by X-ray Diffraction (XRD) studies. The comparison values indicated acceptable precision. This study was also done to check the effect of humidity on the DSC physical properties for the entire range of PEGs. The results indicated that humidity probably has a higher effect on the physical properties of the low molecular weight PEGs as compared to the high molecular weight PEGs.

  18. Factors that affect molecular weight distribution of Suwannee river fulvic acid as determined by electrospray ionization/mass spectrometry

    USGS Publications Warehouse

    Rostad, Colleen E.; Leenheer, Jerry A.

    2004-01-01

    Effects of methylation, molar response, multiple charging, solvents, and positive and negative ionization on molecular weight distributions of aquatic fulvic acid were investigated by electrospray ionization/mass spectrometry. After preliminary analysis by positive and negative modes, samples and mixtures of standards were derivatized by methylation to minimize ionization sites and reanalyzed.Positive ionization was less effective and produced more complex spectra than negative ionization. Ionization in methanol/water produced greater response than in acetonitrile/water. Molar response varied widely for the selected free acid standards when analyzed individually and in a mixture, but after methylation this range decreased. After methylation, the number average molecular weight of the Suwannee River fulvic acid remained the same while the weight average molecular weight decreased. These differences are probably indicative of disaggregation of large aggregated ions during methylation. Since the weight average molecular weight decreased, it is likely that aggregate formation in the fulvic acid was present prior to derivatization, rather than multiple charging in the mass spectra.

  19. Effect of the different chain transfer agents on molecular weight and optical properties of poly(methyl methacrylate)

    NASA Astrophysics Data System (ADS)

    Çetinkaya, Onur; Demirci, Gökhan; Mergo, Paweł

    2017-08-01

    Investigation of molecular weight and optical properties of poly(methyl metacrylate) (PMMA) polymerized in house with different chain transfer agents was studied. Isopropyl alcohol (IPA), n-butyl mercaptan (nBMC) and pentamethyl disilane (PMDS) were used as chain transfer agents. The molecular weight (Mw) of PMMA samples were measured by Ostwald viscometer. Mw of bulk polymer samples were decreased with increase the concentration of chain transfer agents (CTA). Since reactivity of used CTAs is not same, molecular weights of samples which were produced with different type of CTA but same concentration of CTA was varied. Higher concentration of n-BMC showed higher scattering. Transmission of samples could not be correlated with different concentration of CTA. Refractive index of samples was not affected by concentration of CTA nevertheless higher molecular weight of CTA showed higher refractive index.

  20. High molecular weight DNA assembly in vivo for synthetic biology applications.

    PubMed

    Juhas, Mario; Ajioka, James W

    2017-05-01

    DNA assembly is the key technology of the emerging interdisciplinary field of synthetic biology. While the assembly of smaller DNA fragments is usually performed in vitro, high molecular weight DNA molecules are assembled in vivo via homologous recombination in the host cell. Escherichia coli, Bacillus subtilis and Saccharomyces cerevisiae are the main hosts used for DNA assembly in vivo. Progress in DNA assembly over the last few years has paved the way for the construction of whole genomes. This review provides an update on recent synthetic biology advances with particular emphasis on high molecular weight DNA assembly in vivo in E. coli, B. subtilis and S. cerevisiae. Special attention is paid to the assembly of whole genomes, such as those of the first synthetic cell, synthetic yeast and minimal genomes.

  1. A global survey of low-molecular weight carbohydrates in lentils

    USDA-ARS?s Scientific Manuscript database

    Lentils contain a range of low-molecular weight carbohydrates (LMWC); however, they have not been well characterized. The objectives of this study were to (1) determine the concentrations of LMWC in lentils grown in different environments and (2) identify any genetic and environmental effects on tho...

  2. A global survey of low-molecular weight carbohydrates in lentils

    USDA-ARS?s Scientific Manuscript database

    Lentils contain a range of low-molecular weight carbohydrates (LMWC); however, those have not been well characterized. The objectives of this study were to (1) determine the concentrations of LMWC in lentils grown in six locations, and (2) identify any genetic and environmental effects on those LMWC...

  3. Drying Affects the Fiber Network in Low Molecular Weight Hydrogels

    PubMed Central

    2017-01-01

    Low molecular weight gels are formed by the self-assembly of a suitable small molecule gelator into a three-dimensional network of fibrous structures. The gel properties are determined by the fiber structures, the number and type of cross-links and the distribution of the fibers and cross-links in space. Probing these structures and cross-links is difficult. Many reports rely on microscopy of dried gels (xerogels), where the solvent is removed prior to imaging. The assumption is made that this has little effect on the structures, but it is not clear that this assumption is always (or ever) valid. Here, we use small angle neutron scattering (SANS) to probe low molecular weight hydrogels formed by the self-assembly of dipeptides. We compare scattering data for wet and dried gels, as well as following the drying process. We show that the assumption that drying does not affect the network is not always correct. PMID:28631478

  4. Changes in Light Absorptivity of Molecular Weight Separated Brown Carbon Due to Photolytic Aging.

    PubMed

    Wong, Jenny P S; Nenes, Athanasios; Weber, Rodney J

    2017-08-01

    Brown carbon (BrC) consists of those organic compounds in atmospheric aerosols that absorb solar radiation and may play an important role in planetary radiative forcing and climate. However, little is known about the production and loss mechanisms of BrC in the atmosphere. Here, we study how the light absorptivity of BrC from wood smoke and secondary BrC generated from the reaction of ammonium sulfate with methylglyoxal changes under photolytic aging by UVA radiation in the aqueous phase. Owing to its chemical complexity, BrC is separated by molecular weight using size exclusion chromatography, and the response of each molecular weight fraction to aging is studied. Photolytic aging induced significant changes in the light absorptivity of BrC for all molecular weight fractions; secondary BrC was rapidly photoblenched, whereas for wood smoke BrC, both photoenhancement and photobleaching were observed. Initially, large biomass burning BrC molecules were rapidly photoenhanced, followed by slow photolysis. As a result, large BrC molecules dominated the total light absorption of aged biomass burning BrC. These experimental results further support earlier observations that large molecular weight BrC compounds from biomass burning can be relatively long-lived components in atmospheric aerosols, thus more likely to have larger impacts on aerosol radiative forcing and could serve as biomass burning tracers.

  5. [Anaphylactic reactions to low-molecular weight chemicals].

    PubMed

    Nowak, Daria; Panaszek, Bernard

    2015-02-06

    Low-molecular weight chemicals (haptens) include a large group of chemical compounds occurring in work environment, items of everyday use (cleaning products, clothing, footwear, gloves, furniture), jewelry (earrings, bracelets), drugs, especially in cosmetics. They cause type IV hypersensitive reactions. During the induction phase of delayed-type hypersensitivity, haptens form complexes with skin proteins. After internalization through antigen presenting cells, they are bound to MHC class II molecules. Next, they are exposed against specific T-lymphocytes, what triggers activation of Th1 cells mainly. After repeating exposition to that hapten, during effector phase, Th1 induce production of cytokines affecting non-specific inflammatory cells. Usually, it causes contact dermatitis. However, occasionally incidence of immediate generalized reactions after contact with some kinds of haptens is noticed. A question arises, how the hapten does induce symptoms which are typical for anaphylaxis, and what contributes to amplification of this mechanism. It seems that this phenomenon arises from pathomechanism occurring in contact urticaria syndrome in which an anaphylactic reaction may be caused either by contact of sensitized skin with protein antigens, high-molecular weight allergens, or haptens. One of the hypotheses indicates the leading role of basophiles in this process. Their contact with haptens, may cause to release mediators of immediate allergic reaction (histamine, eicosanoids) and to produce cytokines corresponding to Th2 cells profile. Furthermore, Th17 lymphocytes secreting pro-inflammatory interleukin-17 might be engaged into amplifying hypersensitivity into immediate reactions and regulatory T-cells may play role in the process, due to insufficient control of the activity of effector cells.

  6. Rectus sheath hematoma with low molecular weight heparin administration: a case series.

    PubMed

    Sullivan, Laura E J; Wortham, Dale C; Litton, Kayleigh M

    2014-09-01

    Rectus sheath hematoma is an uncommon but potentially serious bleeding complication that can occur spontaneously or as a result of anticoagulation administration. Case number one: A 62 year old chronically ill Caucasian female develops a rectus sheath hematoma seven days after hospital discharge. The previous hospitalization included low molecular weight heparin administration for deep vein thrombosis prophylaxis. The patient ultimately chooses comfort care and expires due to sepsis and respiratory failure. Case number two: A 79 year old Caucasian male develops a rectus sheath hematoma during hospital admission where LMWH is used for deep vein thrombosis prophylaxis. He is managed conservatively; however, his hematocrit drops from 46 to 25.8%. Case number three: A 44 year old chronically ill Caucasian female is treated with therapeutic low molecular weight heparin for recent deep vein thrombosis during a hospital admission. She develops a large rectus sheath hematoma requiring embolization as well as blood transfusion. We believe this reflects an underreported significant cause of morbidity and mortality with low molecular weight heparin administration. We review the pathophysiology of rectus sheath hematoma as well as its presentation, diagnosis, and treatment. We identify at-risk populations and proposed contributing factors. We also discuss factors leading to underreporting as well as preventive strategies implemented at our institution.

  7. Antiedematogenic and antioxidant properties of high molecular weight protein sub-fraction of Calotropis procera latex in rat.

    PubMed

    Chaudhary, Priyanka; de Araújo Viana, Carolina; Ramos, Marcio V; Kumar, Vijay L

    2015-03-01

    The aim was to evaluate the effect of high molecular weight protein fraction of Calotropis procera latex on edema formation and oxidative stress in carrageenan-induced paw inflammation. A sub-plantar injection of carrageenan was given to induce edema in the hind paw of the rat. The inhibitory effect of high molecular weight protein fraction of C. procera latex was evaluated following intravenous administration (5 and 25 mg/kg body weight) and was compared with that of diclofenac given orally (5 mg/kg). The levels of reduced glutathione (GSH), thiobarbituric acid reactive substances (TBARS) and myeloperoxidase (MPO) were measured in the inflamed paw tissue at the end of the study. The high molecular weight protein fraction obtained from the latex of C. procera produced a dose-dependent inhibition of edema formation that was accompanied by normalization of levels of oxidative stress markers (GSH and TBARS) and MPO, a marker for neutrophils in the paw tissue. The high molecular weight protein fraction of C. procera latex ameliorates acute inflammation in the paw through its antioxidant effect.

  8. Stable, concentrated solutions of high molecular weight polyaniline and articles therefrom

    DOEpatents

    Mattes, Benjamin R.; Wang, Hsing-Lin

    1999-11-09

    Stable, concentrated solutions of high molecular weight polyaniline. In order to process high quality fibers and other articles possessing good mechanical properties, it is known that solution concentrations of the chosen polymer should be in the range from 15-30% (w/w). Moreover, it is desirable to use the highest molecular weight consistent with the solubility properties of the polymer. However, such solutions are inherently unstable, forming gels before processing can be achieved. The present invention describes the addition gel inhibitors (GIs) to the polymer solution, thereby permitting high concentrations (between 15% and 30% (w/w)) of high molecular weight ((M.sub.w)>120,000, and (M.sub.n)>30,000) emeraldine base (EB) polyaniline to be dissolved. Secondary amines have been used for this purpose in concentrations which are small compared to those which might otherwise be used in a cosolvent role therefor. The resulting solutions are useful for generating excellent fibers, films, coatings and other objects, since the solutions are stable for significant time periods, and the GIs are present in too small concentrations to cause polymer deterioration. It is demonstrated that the GIs found to be useful do not act as cosolvents, and that gelation times of the solutions are directly proportional to the concentration of GI. In particular, there is a preferred concentration of GI, which if exceeded causes structural and electrical conductivity degradation of resulting articles. Heating of the solutions significantly improves solubility.

  9. Stable, concentrated solutions of high molecular weight polyaniline and articles therefrom

    DOEpatents

    Mattes, Benjamin R.; Wang, Hsing-Lin

    2000-01-01

    Stable, concentrated solutions of high molecular weight polyaniline. In order to process high quality fibers and other articles possessing good mechanical properties, it is known that solution concentrations of the chosen polymer should be in the range from 15-30% (w/w). Moreover, it is desirable to use the highest molecular weight consistent with the solubility properties of the polymer. However, such solutions are inherently unstable, forming gels before processing can be achieved. The present invention describes the addition gel inhibitors (GIs) to the polymer solution, thereby permitting high concentrations (>15% (w/w)) of high molecular weight ((M.sub.w)>120,000, and (M.sub.n)>30,000) emeraldine base (EB) polyaniline to be dissolved. Secondary amines have been used for this purpose in concentrations which are small compared to those which might otherwise be used in a cosolvent role therefor. The resulting solutions are useful for generating excellent fibers, films, coatings and other objects, since the solutions are stable for significant time periods, and the GIs are present in too small concentrations to cause polymer deterioration. It is demonstrated that the GIs found to be useful do not act as cosolvents, and that gelation times of the solutions are directly proportional to the concentration of GI. In particular, there is a preferred concentration of GI, which if exceeded causes structural and electrical conductivity degradation of resulting articles. Heating of the solutions significantly improves solubility.

  10. Antarctic snow: metals bound to high molecular weight dissolved organic matter.

    PubMed

    Calace, Nicoletta; Nardi, Elisa; Pietroletti, Marco; Bartolucci, Eugenia; Pietrantonio, Massimiliana; Cremisini, Carlo

    2017-05-01

    In this paper we studied some heavy metals (Cu, Zn, Cd, Pb, As, U) probably associated to high molecular weight organic compounds present in the Antarctic snow. Snow-pit samples were collected and analysed for high molecular weight fraction and heavy metals bound to them by means of ultrafiltration treatment. High molecular weight dissolved organic matter (HMW-DOM) recovered by ultrafiltration showed a dissolved organic carbon concentration (HMW-DOC) of about 18-83% of the total dissolved organic carbon measured in Antarctic snow. The characterisation of HMW-DOM fraction evidenced an ageing of organic compounds going from surface layers to the deepest ones with a shift from aliphatic compounds and proteins/amino sugars to more high unsaturated character and less nitrogen content. The heavy metals associated to HMW-DOM fraction follows the order: Zn > Cu > Pb > Cd ∼ As ∼ U. The percentage fraction of metals bound to HMW-DOM respect to total metal content follows the order: Cu > Pb > Zn, Cd in agreement with humic substance binding ability (Irwing-William series). Going down to depth of trench, all metals except arsenic, showed a high concentration peak corresponding to 2.0-2.5 m layer. This result was attributed to particular structural characteristic of organic matter able to form different type of complexes (1:1, 1:2, 1:n) with metals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Synthesis of High-Molecular-Weight Polyhydroxyalkanoates by Marine Photosynthetic Purple Bacteria

    PubMed Central

    Higuchi-Takeuchi, Mieko; Morisaki, Kumiko; Toyooka, Kiminori; Numata, Keiji

    2016-01-01

    Polyhydroxyalkanoate (PHA) is a biopolyester/bioplastic that is produced by a variety of microorganisms to store carbon and increase reducing redox potential. Photosynthetic bacteria convert carbon dioxide into organic compounds using light energy and are known to accumulate PHA. We analyzed PHAs synthesized by 3 purple sulfur bacteria and 9 purple non-sulfur bacteria strains. These 12 purple bacteria were cultured in nitrogen-limited medium containing acetate and/or sodium bicarbonate as carbon sources. PHA production in the purple sulfur bacteria was induced by nitrogen-limited conditions. Purple non-sulfur bacteria accumulated PHA even under normal growth conditions, and PHA production in 3 strains was enhanced by nitrogen-limited conditions. Gel permeation chromatography analysis revealed that 5 photosynthetic purple bacteria synthesized high-molecular-weight PHAs, which are useful for industrial applications. Quantitative reverse transcription polymerase chain reaction analysis revealed that mRNA levels of phaC and PhaZ genes were low under nitrogen-limited conditions, resulting in production of high-molecular-weight PHAs. We conclude that all 12 tested strains are able to synthesize PHA to some degree, and we identify 5 photosynthetic purple bacteria that accumulate high-molecular-weight PHA molecules. Furthermore, the photosynthetic purple bacteria synthesized PHA when they were cultured in seawater supplemented with acetate. The photosynthetic purple bacteria strains characterized in this study should be useful as host microorganisms for large-scale PHA production utilizing abundant marine resources and carbon dioxide. PMID:27513570

  12. High molecular weight polysaccharide that binds and inhibits virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konowalchuk, Thomas W.; Konowalchuk, Jack

    This invention provides a high molecular weight polysaccharide capable of binding to and inhibiting virus and related pharmaceutical formulations and methods of inhibiting viral infectivity and/or pathogenicity, as well as immunogenic compositions. The invention further includes methods of inhibiting the growth of cancer cells and of ameliorating a symptom of aging. Additionally, the invention provides methods of detecting and/or quantifying and/or isolating viruses.

  13. High molecular weight polysaccharide that binds and inhibits virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konowalchuk, Thomas W

    This invention provides a high molecular weight polysaccharide capable of binding to and inhibiting virus and related pharmaceutical formulations and methods on inhibiting viral infectivity and/or pathogenicity, as well as immunogenic compositions. The invention further methods of inhibiting the growth of cancer cells and of ameliorating a symptom of aging. Additionally, the invention provides methods of detecting and/or quantifying and/or isolating viruses.

  14. Factors that affect molecular weight distribution of Suwannee river fulvic acid as determined by electrospray ionization/mass spectrometry

    USGS Publications Warehouse

    Rostad, C.E.; Leenheer, J.A.

    2004-01-01

    Effects of methylation, molar response, multiple charging, solvents, and positive and negative ionization on molecular weight distributions of aquatic fulvic acid were investigated by electrospray ionization/mass spectrometry. After preliminary analysis by positive and negative modes, samples and mixtures of standards were derivatized by methylation to minimize ionization sites and reanalyzed.Positive ionization was less effective and produced more complex spectra than negative ionization. Ionization in methanol/water produced greater response than in acetonitrile/water. Molar response varied widely for the selected free acid standards when analyzed individually and in a mixture, but after methylation this range decreased. After methylation, the number average molecular weight of the Suwannee River fulvic acid remained the same while the weight average molecular weight decreased. These differences are probably indicative of disaggregation of large aggregated ions during methylation. Since the weight average molecular weight decreased, it is likely that aggregate formation in the fulvic acid was present prior to derivatization, rather than multiple charging in the mass spectra. ?? 2004 Elsevier B.V. All rights reserved.

  15. Low-molecular-weight heparins: differential characterization/physical characterization.

    PubMed

    Guerrini, Marco; Bisio, Antonella

    2012-01-01

    Low-molecular-weight heparins (LMWHs), derived from unfractionated heparin (UFH) through different depolymerization processes, have advantages with respect to the parent heparin in terms of pharmacokinetics, convenience of administration, and reduced side effects. Each LMWH can be considered as an independent drug with its own activity profile, placing significance on their biophysical characterization, which will also enable a better understanding of their structure-function relationship. Several chemical and physical methods, some involving sample modification, are now available and are reviewed.

  16. Synthesis of High Molecular Weight Poly(glycerol monomethacrylate) via RAFT Emulsion Polymerization of Isopropylideneglycerol Methacrylate

    PubMed Central

    2018-01-01

    High molecular weight water-soluble polymers are widely used as flocculants or thickeners. However, synthesis of such polymers via solution polymerization invariably results in highly viscous fluids, which makes subsequent processing somewhat problematic. Alternatively, such polymers can be prepared as colloidal dispersions; in principle, this is advantageous because the particulate nature of the polymer chains ensures a much lower fluid viscosity. Herein we exemplify the latter approach by reporting the convenient one-pot synthesis of high molecular weight poly(glycerol monomethacrylate) (PGMA) via the reversible addition–fragmentation chain transfer (RAFT) aqueous emulsion polymerization of a water-immiscible protected monomer precursor, isopropylideneglycerol methacrylate (IPGMA) at 70 °C, using a water-soluble poly(glycerol monomethacrylate) (PGMA) chain transfer agent as a steric stabilizer. This formulation produces a low-viscosity aqueous dispersion of PGMA–PIPGMA diblock copolymer nanoparticles at 20% solids. Subsequent acid deprotection of the hydrophobic core-forming PIPGMA block leads to particle dissolution and affords a viscous aqueous solution comprising high molecular weight PGMA homopolymer chains with a relatively narrow molecular weight distribution. Moreover, it is shown that this latex precursor route offers an important advantage compared to the RAFT aqueous solution polymerization of glycerol monomethacrylate since it provides a significantly faster rate of polymerization (and hence higher monomer conversion) under comparable conditions. PMID:29805184

  17. Development of gel-filter method for high enrichment of low-molecular weight proteins from serum.

    PubMed

    Chen, Lingsheng; Zhai, Linhui; Li, Yanchang; Li, Ning; Zhang, Chengpu; Ping, Lingyan; Chang, Lei; Wu, Junzhu; Li, Xiangping; Shi, Deshun; Xu, Ping

    2015-01-01

    The human serum proteome has been extensively screened for biomarkers. However, the large dynamic range of protein concentrations in serum and the presence of highly abundant and large molecular weight proteins, make identification and detection changes in the amount of low-molecular weight proteins (LMW, molecular weight ≤ 30kDa) difficult. Here, we developed a gel-filter method including four layers of different concentration of tricine SDS-PAGE-based gels to block high-molecular weight proteins and enrich LMW proteins. By utilizing this method, we identified 1,576 proteins (n = 2) from 10 μL serum. Among them, 559 (n = 2) proteins belonged to LMW proteins. Furthermore, this gel-filter method could identify 67.4% and 39.8% more LMW proteins than that in representative methods of glycine SDS-PAGE and optimized-DS, respectively. By utilizing SILAC-AQUA approach with labeled recombinant protein as internal standard, the recovery rate for GST spiked in serum during the treatment of gel-filter, optimized-DS, and ProteoMiner was 33.1 ± 0.01%, 18.7 ± 0.01% and 9.6 ± 0.03%, respectively. These results demonstrate that the gel-filter method offers a rapid, highly reproducible and efficient approach for screening biomarkers from serum through proteomic analyses.

  18. The polysaccharide and low molecular weight components of Opuntia ficus indica cladodes: Structure and skin repairing properties.

    PubMed

    Di Lorenzo, Flaviana; Silipo, Alba; Molinaro, Antonio; Parrilli, Michelangelo; Schiraldi, Chiara; D'Agostino, Antonella; Izzo, Elisabetta; Rizza, Luisa; Bonina, Andrea; Bonina, Francesco; Lanzetta, Rosa

    2017-02-10

    The Opuntia ficus-indica multiple properties are reflected in the increasing interest of chemists in the identification of its natural components having pharmaceutical and/or cosmetical applications. Here we report the structural elucidation of Opuntia ficus-indica mucilage that highlighted the presence of components differing for their chemical nature and the molecular weight distribution. The high molecular weight components were identified as a linear galactan polymer and a highly branched xyloarabinan. The low molecular weight components were identified as lactic acid, D-mannitol, piscidic, eucomic and 2-hydroxy-4-(4'-hydroxyphenyl)-butanoic acids. A wound healing assay was performed in order to test the cicatrizing properties of the various components, highlighting the ability of these latter to fasten dermal regeneration using a simplified in vitro cellular model based on a scratched keratinocytes monolayer. The results showed that the whole Opuntia mucilage and the low molecular weight components are active in the wound repair. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Utility of inverse probability weighting in molecular pathological epidemiology.

    PubMed

    Liu, Li; Nevo, Daniel; Nishihara, Reiko; Cao, Yin; Song, Mingyang; Twombly, Tyler S; Chan, Andrew T; Giovannucci, Edward L; VanderWeele, Tyler J; Wang, Molin; Ogino, Shuji

    2018-04-01

    As one of causal inference methodologies, the inverse probability weighting (IPW) method has been utilized to address confounding and account for missing data when subjects with missing data cannot be included in a primary analysis. The transdisciplinary field of molecular pathological epidemiology (MPE) integrates molecular pathological and epidemiological methods, and takes advantages of improved understanding of pathogenesis to generate stronger biological evidence of causality and optimize strategies for precision medicine and prevention. Disease subtyping based on biomarker analysis of biospecimens is essential in MPE research. However, there are nearly always cases that lack subtype information due to the unavailability or insufficiency of biospecimens. To address this missing subtype data issue, we incorporated inverse probability weights into Cox proportional cause-specific hazards regression. The weight was inverse of the probability of biomarker data availability estimated based on a model for biomarker data availability status. The strategy was illustrated in two example studies; each assessed alcohol intake or family history of colorectal cancer in relation to the risk of developing colorectal carcinoma subtypes classified by tumor microsatellite instability (MSI) status, using a prospective cohort study, the Nurses' Health Study. Logistic regression was used to estimate the probability of MSI data availability for each cancer case with covariates of clinical features and family history of colorectal cancer. This application of IPW can reduce selection bias caused by nonrandom variation in biospecimen data availability. The integration of causal inference methods into the MPE approach will likely have substantial potentials to advance the field of epidemiology.

  20. Mesoporous Silica Chips for Selective Enrichment and Stabilization of Low Molecular Weight Proteome

    PubMed Central

    Bouamrani, Ali; Hu, Ye; Tasciotti, Ennio; Li, Li; Chiappini, Ciro; Liu, Xuewu; Ferrari, Mauro

    2010-01-01

    The advanced properties of mesoporous silica have been demonstrated in applications which include chemical sensing, filtration, catalysis, drug-delivery and selective biomolecular uptake. These properties depend on the architectural, physical and chemical properties of the material, which in turn are determined by the processing parameters in evaporation-induced self-assembly. In this study, we introduce a combinatorial approach for the removal of the high molecular weight proteins and for the specific isolation and enrichment of low molecular weight species. This approach is based on Mesoporous Silica Chips able to fractionate, selectively harvest and protect from enzymatic degradation, peptides and proteins present in complex human biological fluids. We present the characterization of the harvesting properties of a wide range of mesoporous chips using a library of peptides and proteins standard and their selectivity on the recovery of serum peptidome. Using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, we established the correlation between the harvesting specificity and the physico-chemical properties of mesoporous silica surfaces. The introduction of this mesoporous material with fine controlled properties will provide a powerful platform for proteomics application offering a rapid and efficient methodology for low molecular weight biomarker discovery. PMID:20013801

  1. Mesoporous silica chips for selective enrichment and stabilization of low molecular weight proteome.

    PubMed

    Bouamrani, Ali; Hu, Ye; Tasciotti, Ennio; Li, Li; Chiappini, Ciro; Liu, Xuewu; Ferrari, Mauro

    2010-02-01

    The advanced properties of mesoporous silica have been demonstrated in applications, which include chemical sensing, filtration, catalysis, drug delivery and selective biomolecular uptake. These properties depend on the architectural, physical and chemical properties of the material, which in turn are determined by the processing parameters in evaporation-induced self-assembly. In this study, we introduce a combinatorial approach for the removal of the high molecular weight proteins and for the specific isolation and enrichment of low molecular weight species. This approach is based on mesoporous silica chips able to fractionate, selectively harvest and protect from enzymatic degradation, peptides and proteins present in complex human biological fluids. We present the characterization of the harvesting properties of a wide range of mesoporous chips using a library of peptides and proteins standard and their selectivity on the recovery of serum peptidome. Using MALDI-TOF-MS, we established the correlation between the harvesting specificity and the physicochemical properties of mesoporous silica surfaces. The introduction of this mesoporous material with fine controlled properties will provide a powerful platform for proteomics application offering a rapid and efficient methodology for low molecular weight biomarker discovery.

  2. [Correlation of molecular weight and nanofiltration mass transfer coefficient of phenolic acid composition from Salvia miltiorrhiza].

    PubMed

    Li, Cun-Yu; Wu, Xin; Gu, Jia-Mei; Li, Hong-Yang; Peng, Guo-Ping

    2018-04-01

    Based on the molecular sieving and solution-diffusion effect in nanofiltration separation, the correlation between initial concentration and mass transfer coefficient of three typical phenolic acids from Salvia miltiorrhiza was fitted to analyze the relationship among mass transfer coefficient, molecular weight and concentration. The experiment showed a linear relationship between operation pressure and membrane flux. Meanwhile, the membrane flux was gradually decayed with the increase of solute concentration. On the basis of the molecular sieving and solution-diffusion effect, the mass transfer coefficient and initial concentration of three phenolic acids showed a power function relationship, and the regression coefficients were all greater than 0.9. The mass transfer coefficient and molecular weight of three phenolic acids were negatively correlated with each other, and the order from high to low is protocatechualdehyde >rosmarinic acid> salvianolic acid B. The separation mechanism of nanofiltration for phenolic acids was further clarified through the analysis of the correlation of molecular weight and nanofiltration mass transfer coefficient. The findings provide references for nanofiltration separation, especially for traditional Chinese medicine with phenolic acids. Copyright© by the Chinese Pharmaceutical Association.

  3. Lead-binding capacity of calcium pectates with different molecular weight.

    PubMed

    Khotimchenko, Maksim; Makarova, Ksenia; Khozhaenko, Elena; Kovalev, Valeri

    2017-04-01

    Nowadays, heavy metal contamination of environment is considered as a serious threat to public health because of toxicity of these pollutants and the lack of effective materials with metal-binding properties. Some biopolymers such as pectins were proposed for removal of metal ions from industrial water disposals. Chemical structure of pectins is quite variable and substantially affects their metal binding properties. In this work, relationship between molecular weight and Pb(II)-binding capacity of calcium pectates was investigated in a batch sorption system. The results showed that all pectate samples are able to form complexes with Pb(II) ions. The effects of contact time, pH of the media and equilibrium metal concentration on metal-binding process were tested in experiments. The equilibrium time min required for uptake of Pb(II) by pectate compounds was found to be 60min. Langmuir and Freundlich models were applied for description of interactions between pectates and metal ions. Binding capacity of low molecular pectate was highest among all the samples tested. Langmuir model was figured out to be the best fit within the whole range of pH values. These results demonstrate that calcium pectate with low molecular weight is more promising agent for elimination of Pb(II) ions from contaminated wastewaters. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Vapor-pressure osmometric study of the molecular weight and aggregation tendency of a reference-soil fulvic acid

    USGS Publications Warehouse

    Marinsky, J.A.; Reddy, M.M.

    1990-01-01

    The molecular weight and aggregation tendency of a reference-soil fulvic acid in Armadale horizon Bh were determined by vapor-pressure osmometry using tetrahydrofuran and water as solvents. With tetrahydrofuran, number-average molecular weight values of 767 ?? 34 and 699 ?? 8 daltons were obtained from two separate sets of measurements. Two sets of measurements with water also yielded values within this range (754 ?? 70 daltons) provided that the fulvic acid concentration in water did not exceed 7 mg ml-1; at higher concentrations (9.1-13.7 mg ml-1) a number-average molecular weight of 956 ?? 25 daltons was resolved, providing evidence of molecular aggregation. Extension of these studies to 80% neutralized fulvic acid showed that a sizeable fraction of the sodium counter ion is not osmotically active.

  5. Electrical properties of multilayers from low- and high-molecular-weight polyelectrolytes.

    PubMed

    Radeva, Tsetska; Milkova, Viktoria; Petkanchin, Ivana

    2004-11-15

    The formation of stable multilayer films by using as constituents sodium poly(4-styrene sulfonate) (PSS) and poly(4-vinyl pyridine) (PVP) was studied by electrooptics. A strong increase in basicity of the pyridine rings in the electrical field of the oppositely charged PSS chains was suggested to be the driving force for multilayer film formation. A linear increase in the film thickness was registered after deposition of the first three layers, with no dependence on the polyelectrolyte molecular weight. The electrooptical effect was found to increase with increasing area of each next layer, but depended on the molecular weights of both polymers. Polarization of "condensed" counterions along the chains of the last-adsorbed layer was suggested to explain this dependence. Following the counterion dynamics, we come to the conclusion that the electrical properties of the top layer govern the electrooptical behavior of the PSS/PVP film.

  6. Determination of molecular weight distributions in native and pretreated wood.

    PubMed

    Leskinen, Timo; Kelley, Stephen S; Argyropoulos, Dimitris S

    2015-03-30

    The analysis of native wood components by size-exclusion chromatography (SEC) is challenging. Isolation, derivatization and solubilization of wood polymers is required prior to the analysis. The present approach allowed the determination of molecular weight distributions of the carbohydrates and of lignin in native and processed woods, without preparative component isolation steps. For the first time a component selective SEC analysis of sawdust preparations was made possible by the combination of two selective derivatization methods, namely; ionic liquid assisted benzoylation of the carbohydrate fraction and acetobromination of the lignin in acetic acid media. These were optimized for wood samples. The developed method was thus used to examine changes in softwood samples after degradative mechanical and/or chemical treatments, such as ball milling, steam explosion, green liquor pulping, and chemical oxidation with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ). The methodology can also be applied to examine changes in molecular weight and lignin-carbohydrate linkages that occur during wood-based biorefinery operations, such as pretreatments, and enzymatic saccharification. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Mass spectrometric techniques for characterizing low-molecular-weight resins used as paint varnishes.

    PubMed

    Bonaduce, I; Colombini, M P; Degano, I; Di Girolamo, F; La Nasa, J; Modugno, F; Orsini, S

    2013-01-01

    The molecular structure of three low-molecular-weight resins used as paint varnishes has been characterized by use of an approach based on three different mass spectrometric techniques. We investigated the ketone resin MS2A, the aldehyde resin Laropal A81, and the hydrocarbon resin Regalrez 1094, now commonly used in restoration. To date, the molecular structures of these resins have not been completely elucidated. To improve current knowledge of the chemical composition of these materials, information obtained by gas chromatography-mass spectrometry (GC/MS), pyrolysis-gas chromatography-mass spectrometry (Py/GC/MS), and electrospray ionization mass spectrometry (ESI-Q-ToF) was combined. Analysis, in solution, of the whole polymeric fraction of the resins by flow-injection ESI-Q-ToF, and of the non-polymeric fraction by GC-MS, enabled us to identify previously unreported features of the polymer structures. In addition, the Py-GC/MS profiles that we obtained will help to enhance the databases currently available in the literature. The proposed approach can be extended to other low-molecular-weight resins used as varnishes in conservation.

  8. Secondary anchor polymorphism in the HA-1 minor histocompatibility antigen critically affects MHC stability and TCR recognition

    PubMed Central

    Nicholls, Sarah; Piper, Karen P.; Mohammed, Fiyaz; Dafforn, Timothy R.; Tenzer, Stefan; Salim, Mahboob; Mahendra, Premini; Craddock, Charles; van Endert, Peter; Schild, Hansjörg; Cobbold, Mark; Engelhard, Victor H.; Moss, Paul A. H.; Willcox, Benjamin E.

    2009-01-01

    T cell recognition of minor histocompatibility antigens (mHags) underlies allogeneic immune responses that mediate graft-versus-host disease and the graft-versus-leukemia effect following stem cell transplantation. Many mHags derive from single amino acid polymorphisms in MHC-restricted epitopes, but our understanding of the molecular mechanisms governing mHag immunogenicity and recognition is incomplete. Here we examined antigenic presentation and T-cell recognition of HA-1, a prototypic autosomal mHag derived from single nucleotide dimorphism (HA-1H versus HA-1R) in the HMHA1 gene. The HA-1H peptide is restricted by HLA-A2 and is immunogenic in HA-1R/R into HA-1H transplants, while HA-1R has been suggested to be a “null allele” in terms of T cell reactivity. We found that proteasomal cleavage and TAP transport of the 2 peptides is similar and that both variants can bind to MHC. However, the His>Arg change substantially decreases the stability and affinity of HLA-A2 association, consistent with the reduced immunogenicity of the HA-1R variant. To understand these findings, we determined the structure of an HLA-A2-HA-1H complex to 1.3Å resolution. Whereas His-3 is accommodated comfortably in the D pocket, incorporation of the lengthy Arg-3 is predicted to require local conformational changes. Moreover, a soluble TCR generated from HA-1H-specific T-cells bound HA-1H peptide with moderate affinity but failed to bind HA-1R, indicating complete discrimination of HA-1 variants at the level of TCR/MHC interaction. Our results define the molecular mechanisms governing immunogenicity of HA-1, and highlight how single amino acid polymorphisms in mHags can critically affect both MHC association and TCR recognition. PMID:19234124

  9. Low molecular weight oligomers of amyloid peptides display β-barrel conformations: A replica exchange molecular dynamics study in explicit solvent

    NASA Astrophysics Data System (ADS)

    De Simone, Alfonso; Derreumaux, Philippe

    2010-04-01

    The self-assembly of proteins and peptides into amyloid fibrils is connected to over 40 pathological conditions including neurodegenerative diseases and systemic amyloidosis. Diffusible, low molecular weight protein and peptide oligomers that form in the early steps of aggregation appear to be the harmful cytotoxic species in the molecular etiology of these diseases. So far, the structural characterization of these oligomers has remained elusive owing to their transient and dynamic features. We here address, by means of full atomistic replica exchange molecular dynamics simulations, the energy landscape of heptamers of the amyloidogenic peptide NHVTLSQ from the beta-2 microglobulin protein. The simulations totaling 5 μs show that low molecular weight oligomers in explicit solvent consist of β-barrels in equilibrium with amorphous states and fibril-like assemblies. The results, also accounting for the influence of the pH on the conformational properties, provide a strong evidence of the formation of transient β-barrel assemblies in the early aggregation steps of amyloid-forming systems. Our findings are discussed in terms of oligomers cytotoxicity.

  10. Application of computer-assisted molecular modeling (CAMM) for immunoassay of low molecular weight food contaminants: A review

    USDA-ARS?s Scientific Manuscript database

    Immunoassay for low molecular weight food contaminants, such as pesticides, veterinary drugs, and mycotoxins is now a well-established technique which meets the demands for a rapid, reliable, and cost-effective analytical method. However, due to limited understanding of the fundamental aspects of i...

  11. Bone remodelling around HA-coated acetabular cups

    PubMed Central

    Nielsen, P. T.; Søballe, K.

    2006-01-01

    This study was designed to investigate bone remodelling around the cup in cementless THA. Previous studies indicate an advantage of better sealing of the bone-prosthesis interface by HA/TCP coating of implants, inhibiting polyethylene-induced osteolysis. One hundred patients gave informed consent to participate in a controlled randomized study between porous coated Trilogy versus Trilogy Calcicoat (HA/TCP coated). The cup was inserted in press-fit fixation. The femoral component was a cementless porous coated titanium alloy stem (Bi-Metric), with a modular 28-mm CrCo head. The Harris Hip Score (HHS) and bone mineral density (BMD) determined by DEXA scanning were used to study the effect. Measurements revealed no difference between the two groups after 3 years either in the clinical outcome or in terms of periprosthetic bone density. Patients with a body mass index above normal regained more bone mineral than patients with normal weight. This finding supports the assumption that load is beneficial to bone remodelling. PMID:16761153

  12. Effect of CMC Molecular Weight on Acid-Induced Gelation of Heated WPI-CMC Soluble Complex.

    PubMed

    Huan, Yan; Zhang, Sha; Vardhanabhuti, Bongkosh

    2016-02-01

    Acid-induced gelation properties of heated whey protein isolate (WPI) and carboxymethylcellulose (CMC) soluble complex were investigated as a function of CMC molecular weight (270, 680, and 750 kDa) and concentrations (0% to 0.125%). Heated WPI-CMC soluble complex with 6% protein was made by heating biopolymers together at pH 7.0 and 85 °C for 30 min and diluted to 5% protein before acid-induced gelation. Acid-induced gel formed from heated WPI-CMC complexes exhibited increased hardness and decreased water holding capacity with increasing CMC concentrations but gel strength decreased at higher CMC content. The highest gel strength was observed with CMC 750 k at 0.05%. Gels with low CMC concentration showed homogenous microstructure which was independent of CMC molecular weight, while increasing CMC concentration led to microphase separation with higher CMC molecular weight showing more extensive phase separation. When heated WPI-CMC complexes were prepared at 9% protein the acid gels showed improved gel hardness and water holding capacity, which was supported by the more interconnected protein network with less porosity when compared to complexes heated at 6% protein. It is concluded that protein concentration and biopolymer ratio during complex formation are the major factors affecting gel properties while the effect of CMC molecular weight was less significant. © 2016 Institute of Food Technologists®

  13. Highly Conductive Ionic-Liquid Gels Prepared with Orthogonal Double Networks of a Low-Molecular-Weight Gelator and Cross-Linked Polymer.

    PubMed

    Kataoka, Toshikazu; Ishioka, Yumi; Mizuhata, Minoru; Minami, Hideto; Maruyama, Tatsuo

    2015-10-21

    We prepared a heterogeneous double-network (DN) ionogel containing a low-molecular-weight gelator network and a polymer network that can exhibit high ionic conductivity and high mechanical strength. An imidazolium-based ionic liquid was first gelated by the molecular self-assembly of a low-molecular-weight gelator (benzenetricarboxamide derivative), and methyl methacrylate was polymerized with a cross-linker to form a cross-linked poly(methyl methacrylate) (PMMA) network within the ionogel. Microscopic observation and calorimetric measurement revealed that the fibrous network of the low-molecular-weight gelator was maintained in the DN ionogel. The PMMA network strengthened the ionogel of the low-molecular-weight gelator and allowed us to handle the ionogel using tweezers. The orthogonal DNs produced ionogels with a broad range of storage elastic moduli. DN ionogels with low PMMA concentrations exhibited high ionic conductivity that was comparable to that of a neat ionic liquid. The present study demonstrates that the ionic conductivities of the DN and single-network, low-molecular-weight gelator or polymer ionogels strongly depended on their storage elastic moduli.

  14. Tests of potential functional barriers for laminated multilayer food packages. Part II: Medium molecular weight permeants.

    PubMed

    Simal-Gándara, J; Sarria-Vidal, M; Rijk, R

    2000-09-01

    Experiments were performed to characterize the kinetics of the permeation of different medium molecular weight model permeants: bisphenol A, warfarin and anthracene, from liquid paraffin, through a surrogate potential functional barrier (25 microns-thick orientated polypropylene--OPP) into the food simulants olive oil and 3% (w/v) acetic acid. The characterization of permeation kinetics generally observed the permeation models previously reported to explain the experimental permeation results obtained for a low molecular weight group of model permeants. In general, the model permeants exhibited behaviour consistent with their relative molecular weights with respect to (a) the time taken to attain steady-state permeation into the food simulant in which they were more soluble, (b) their subsequent steady-state permeation rates, and (c) their partition between liquid paraffin and the OPP membrane.

  15. Effects of molecular weight of hyaluronic acid on its viscosity and enzymatic activities of lysozyme and peroxidase.

    PubMed

    Kim, Jihoon; Chang, Ji-Youn; Kim, Yoon-Young; Kim, Moon-Jong; Kho, Hong-Seop

    2018-05-01

    To investigate the effects of the molecular weight of hyaluronic acid on its viscosity and enzymatic activities of lysozyme and peroxidase in solution and on the hydroxyapatite surface. Hyaluronic acids of four different molecular weights (10 kDa, 100 kDa, 1 MDa, and 2 MDa), hen egg-white lysozyme, bovine lactoperoxidase, and human whole saliva were used. Viscosity values of hyaluronic acids were measured using a cone-and-plate viscometer at six different concentrations (0.1-5.0 mg/mL). Enzymatic activities of lysozyme and peroxidase were examined by hydrolysis of fluorescein-labeled Micrococcus lysodeikticus and oxidation of fluorogenic 2',7'-dichlorofluorescein to fluorescing 2',7'-dichlorofluorescein, respectively. In solution assays, only 2 MDa-hyaluronic acid significantly inhibited lysozyme activities in saliva. In surface assays, hyaluronic acids inhibited lysozyme and peroxidase activities; the inhibitory activities were more apparent with high-molecular-weight ones in saliva than in purified enzymes. The 100 kDa-hyaluronic acid at 5.0 mg/mL, 1 MDa-one at 0.5 mg/mL, and 2 MDa-one at 0.2 mg/mL showed viscosity values similar to those of human whole saliva at a shear rate range required for normal oral functions. The differences among the influences of the three conditions on the enzymatic activities were not statistically significant. High-molecular-weight hyaluronic acids at low concentration and low-molecular-weight ones at high concentration showed viscosity values similar to those of human whole saliva. Inhibitory effects of hyaluronic acids on lysozyme and peroxidase activities were more significant with high-molecular-weight ones on the surface and in saliva compared with in solution and on purified enzymes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. [A contribution safety on using low molecular weight heparin in patients with renal failure].

    PubMed

    Gea Rodríguez, E; Barral Viñals, N; Manso Mardones, P; Indo Berges, O

    2004-01-01

    1. To promote safe and appropriate use of low molecular weight heparins in patients with renal failure. 2. To analyze results from a pharmaceutical intervention program. Data from a prospective, 16-month study are presented. The entire adult population of a general hospital with 41,792 stays/year is included. An intensive monitoring program for low molecular weight heparin prescriptions in patients with renal failure is implemented. This program identifies patients using a computerized unit dose system, and is aided by a software able to calculate creatinine clearance using the Cockroft-Gault formula from an interphase between laboratory, pharmacy and admissions data, and by an algorithm to establish a recommended pharmaceutical intervention according to renal failure severity and low molecular weight heparin indication, either with prophylactic or therapeutic purposes. In all, 221 patients were identified, corresponding to 2.9% of admitted patients and 25.5% of patients with renal failure. Answers were assessable for 128 patients (61%). Extent of program acceptance according to physician-accepted pharmaceutical interventions was proportional to renal failure severity and therapy intensiveness. An acceptance of 70% was obtained for treatments with clearance < 30 mL/min, of 41.8% for treatments with 30-60 mL/min, of 31.5% for prophylaxis, and of 21.4% for low-risk patients. 1. Program repercussions improve prescription safety. 2. Scarce literature and a belief in low molecular weight heparin safety account for responses regarding pharmaceutical intervention. 3. Integrated computerized systems are essential for the implementation of intensive pharmaceutical care programs.

  17. Generation of a large volume of clinically relevant nanometre-sized ultra-high-molecular-weight polyethylene wear particles for cell culture studies

    PubMed Central

    Ingham, Eileen; Fisher, John; Tipper, Joanne L

    2014-01-01

    It has recently been shown that the wear of ultra-high-molecular-weight polyethylene in hip and knee prostheses leads to the generation of nanometre-sized particles, in addition to micron-sized particles. The biological activity of nanometre-sized ultra-high-molecular-weight polyethylene wear particles has not, however, previously been studied due to difficulties in generating sufficient volumes of nanometre-sized ultra-high-molecular-weight polyethylene wear particles suitable for cell culture studies. In this study, wear simulation methods were investigated to generate a large volume of endotoxin-free clinically relevant nanometre-sized ultra-high-molecular-weight polyethylene wear particles. Both single-station and six-station multidirectional pin-on-plate wear simulators were used to generate ultra-high-molecular-weight polyethylene wear particles under sterile and non-sterile conditions. Microbial contamination and endotoxin levels in the lubricants were determined. The results indicated that microbial contamination was absent and endotoxin levels were low and within acceptable limits for the pharmaceutical industry, when a six-station pin-on-plate wear simulator was used to generate ultra-high-molecular-weight polyethylene wear particles in a non-sterile environment. Different pore-sized polycarbonate filters were investigated to isolate nanometre-sized ultra-high-molecular-weight polyethylene wear particles from the wear test lubricants. The use of the filter sequence of 10, 1, 0.1, 0.1 and 0.015 µm pore sizes allowed successful isolation of ultra-high-molecular-weight polyethylene wear particles with a size range of < 100 nm, which was suitable for cell culture studies. PMID:24658586

  18. Generation of a large volume of clinically relevant nanometre-sized ultra-high-molecular-weight polyethylene wear particles for cell culture studies.

    PubMed

    Liu, Aiqin; Ingham, Eileen; Fisher, John; Tipper, Joanne L

    2014-04-01

    It has recently been shown that the wear of ultra-high-molecular-weight polyethylene in hip and knee prostheses leads to the generation of nanometre-sized particles, in addition to micron-sized particles. The biological activity of nanometre-sized ultra-high-molecular-weight polyethylene wear particles has not, however, previously been studied due to difficulties in generating sufficient volumes of nanometre-sized ultra-high-molecular-weight polyethylene wear particles suitable for cell culture studies. In this study, wear simulation methods were investigated to generate a large volume of endotoxin-free clinically relevant nanometre-sized ultra-high-molecular-weight polyethylene wear particles. Both single-station and six-station multidirectional pin-on-plate wear simulators were used to generate ultra-high-molecular-weight polyethylene wear particles under sterile and non-sterile conditions. Microbial contamination and endotoxin levels in the lubricants were determined. The results indicated that microbial contamination was absent and endotoxin levels were low and within acceptable limits for the pharmaceutical industry, when a six-station pin-on-plate wear simulator was used to generate ultra-high-molecular-weight polyethylene wear particles in a non-sterile environment. Different pore-sized polycarbonate filters were investigated to isolate nanometre-sized ultra-high-molecular-weight polyethylene wear particles from the wear test lubricants. The use of the filter sequence of 10, 1, 0.1, 0.1 and 0.015 µm pore sizes allowed successful isolation of ultra-high-molecular-weight polyethylene wear particles with a size range of < 100 nm, which was suitable for cell culture studies.

  19. Synthesis and Structural Characterization of New Light Molecular Weight Inorganic Oxidizers and Related Derivatives. Volume: 2

    DTIC Science & Technology

    1993-02-01

    of the strong inductive effect of the five fluorine ligands attached to the tellurium atom. 34 It is prepared under anhydrous conditions according to...MOLECULAR WEIGHT INORGANIC OXIDIZERS AND RELATED DERIVATIVES. VOLUME: II Professor G. J. Schrobilgen McMaster University Department of Chemistry...C: F04611-91-K-0004 Molecular Weight Inorganic Oxidizers and Relative PE: 62302F SDerivatives: Volume II 1PR: 5730 6. AUTHOFR(S) TA: 0*( C

  20. Should Low Molecular Weight PSMA Targeted Ligands Get Bigger and Use Albumin Ligands for PSMA Targeting?

    PubMed

    Huang, Steve S; Heston, Warren D W

    2017-01-01

    Prostate Specific Membrane Antigen (PSMA) is strongly expressed in prostate cancer. Recently a number of low-molecular-weight inhibitors have demonstrated excellent PSMA targeting activity for both imaging as well as Lutecium-177 radiotherapy in human trials. The paper by Choy et al raises the question of whether we can further increase the effectiveness of PSMA targeted therapy by adding an albumin-binding entity to low-molecular-weight agents.

  1. The Effect of Molecular Weight on the Composite Properties of Cured Phenylethynyl Terminated Imide Oligomers

    NASA Technical Reports Server (NTRS)

    Smith, J. G., Jr.; Connell, J. W.; Hergenrother, P. M.

    1997-01-01

    As part of a program to develop high temperature/high performance structural resins for aeronautical applications, imide oligomers containing terminal phenylethynyl groups with calculated number average molecular weights of 1250, 2500 and 5000 g/mol were prepared, characterized, and evaluated as adhesives and composite matrix resins. The goal of this work was to develop resin systems that are processable using conventional processing equipment into void free composites that exhibit high mechanical properties with long term high temperature durability, and are not affected by exposure to common aircraft fluids. The imide oligomers containing terminal phenylethynyl groups were fabricated into titanium adhesive specimens and IM-7 carbon fiber laminates under 0.1 - 1.4 MPa for 1 hr at 350-371 C. The lower molecular weight oligomers exhibited higher cured Tg, better processability, and better retention of mechanical properties at elevated temperature without significantly sacrificing toughness or damage tolerance than the higher molecular weight oligomer. The neat resin, adhesive and composite properties of the cured polymers will be presented.

  2. Ultra-Fast RAFT-HDA Click Conjugation: An Efficient Route to High Molecular Weight Block Copolymers.

    PubMed

    Inglis, Andrew J; Stenzel, Martina H; Barner-Kowollik, Christopher

    2009-11-02

    The use of the reversible addition fragmentation chain transfer-hetero Diels-Alder (RAFT-HDA) click reaction for the modular construction of block copolymers is extended to the generation of high molecular weight materials. Cyclopentadienyl end-functionalized polystyrene (PS-Cp) prepared via both atom transfer radical polymerization (ATRP) and the RAFT process are conjugated to poly(isobornyl acrylate) (PiBoA) (also prepared via RAFT polymerization) to achieve well-defined block copolymers with molecular weights ranging from 34 000 to over 100 000 g · mol(-1) and with small polydispersities (PDI < 1.2). The conjugation reactions proceeded in a very rapid fashion (less than 10 min in the majority of cases) under ambient conditions of temperature and atmosphere. The present study demonstrates-for the first time-that RAFT-HDA click chemistry can provide access to high molecular weight block copolymers in a simple and straight-forward fashion. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Low molecular weight chitosan conjugated with folate for siRNA delivery in vitro: optimization studies

    PubMed Central

    Fernandes, Julio C; Qiu, Xingping; Winnik, Francoise M; Benderdour, Mohamed; Zhang, Xiaoling; Dai, Kerong; Shi, Qin

    2012-01-01

    The low transfection efficiency of chitosan is one of its drawbacks as a gene delivery carrier. Low molecular weight chitosan may help to form small-sized polymer-DNA or small interfering RNA (siRNA) complexes. Folate conjugation may improve gene transfection efficiency because of the promoted uptake of folate receptor-bearing cells. In the present study, chitosan was conjugated with folate and investigated for its efficacy as a delivery vector for siRNA in vitro. We demonstrate that the molecular weight of chitosan has a major influence on its biological and physicochemical properties, and very low molecular weight chitosan (below 10 kDa) has difficulty in forming stable complexes with siRNA. In this study, chitosan 25 kDa and 50 kDa completely absorbed siRNA and formed nanoparticles (≤220 nm) at a chitosan to siRNA weight ratio of 50:1. The introduction of a folate ligand onto chitosan decreased nanoparticle toxicity. Compared with chitosan-siRNA, folate-chitosan-siRNA nanoparticles improved gene silencing transfection efficiency. Therefore, folate-chitosan shows potential as a viable candidate vector for safe and efficient siRNA delivery. PMID:23209368

  4. Externally initiated regioregular P3HT with controlled molecular weight and narrow polydispersity.

    PubMed

    Bronstein, Hugo A; Luscombe, Christine K

    2009-09-16

    The ability of chemists to design and synthesize pi-conjugated organic polymers with precise control remains the key to technological breakthroughs for using polymer materials in electronic and photonic devices. In this communication, the controlled chain-growth polymerization of regioregular poly(3-hexylthiophene) (P3HT) from an external initiator using 1,3-bis(diphenylphosphino)propane (dppp) as a catalyst ligand is reported. The complexes cis-chloro(phenyl)(dppp)nickel(II) and cis-chloro(o-tolyl)(dppp)nickel(II) were synthesized and characterized by (31)P NMR spectroscopy. These complexes served as initiators in the polymerization of 2-bromo-5-chloromagnesio-3-hexylthiophene in THF at room temperature, affording fully regioregular P3HT with controlled molecular weights and narrow molecular weight distributions, as demonstrated by gel-permeation chromatography and (1)H NMR spectroscopy. MALDI-TOF mass spectrometry revealed that the polymers had almost complete incorporation of the initiating aryl group, and when the aryl group was o-tolyl, only Tol/H end groups were observed. Although external initiators have been used previously with a PPh(3) ligand, that methodology led to polymers with broad molecular weight distributions. This is the first example in which complete control over the externally initiated P3HT polymerization has been achieved.

  5. Developmental co-expression of small molecular weight apolipoprotein B synthesis and triacylglycerol secretion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, R.A.; Haynes, E.B.; Sand, T.M.

    1987-05-01

    The development of the liver's ability to coordinately express the synthesis and secretion of the two major components of very low density lipoproteins (VLDL): triacylglycerol (TG) and apolipoprotein B (apo B) was examined in cultured hepatocytes obtained from fetal, suckling and adult rats. Hepatocytes from fetal and suckling rats synthesized and secreted TG at rates lower than that displayed by adult cells. When TG synthesis was equalized by adding oleic acid to the culture medium, fetal cells still secreted only 39% as much TG as did adult cells. To determine the basis for the apparent defect in VLDL assembly/secretion displayedmore » by fetal cells, the synthesis and secretion of (TVS)methionine-labeled apo B was quantified by immunoprecipitation. Although adult and fetal cells synthesized and secreted large molecular weight apo B at similar rates, the synthesis and secretion of small molecular weight apo B was 2-fold greater in adult cells. These data suggest that the ability to assemble/secrete VLDL triacylglycerol varies in parallel with the developmental expression of small molecular weight apo B. Furthermore, these studies show the usefulness of the cultured rat hepatocyte model for examining the ontogeny and regulation of VLDL assembly/secretion.« less

  6. Determination of the low molecular weight fraction of food-grade carrageenans.

    PubMed

    Spichtig, Véronique; Austin, Sean

    2008-01-01

    Recently there has been some debate regarding the presence and associated health risk of low molecular weight carrageenan in foodstuffs. Unfortunately measurement of the low molecular weight tail (LMT) of food-grade carrageenans (defined here as the carrageenan having relative molecular mass (Mr) below 50,000) is not trivial, largely due to its low abundance. So far methods employing light scattering have been unsuccessful in producing reproducible results, probably due to the poor detector response at low masses. In this work a method based on high performance size exclusion chromatography coupled to a refractive index detector (HPSEC-RI) has been used for the measurement of the LMT in food-grade carrageenan ingredients and in a carrageenan-containing finished product (a jelly). Over the course of half a year, 19 measurements were made on a reference carrageenan; the results demonstrated that the method had excellent reproducibility. Applied to a number of different carrageenan ingredients, it was found that, in general, the LMT represents less than 8% of the total carrageenan in ingredients, and under the correct conditions increases little during food processing. The data also indicated that pH appears to be a critical factor during food processing and pH levels below 4.0 should be avoided.

  7. Improved synthesis with high yield and increased molecular weight of poly(alpha,beta-malic acid) by direct polycondensation.

    PubMed

    Kajiyama, Tetsuto; Kobayashi, Hisatoshi; Taguchi, Tetsushi; Kataoka, Kazunori; Tanaka, Junzo

    2004-01-01

    The development of synthetic biodegradable polymers, such as poly(alpha-hydroxy acid), is particularly important for constructing medical devices, including scaffolds and sutures, and has attracted growing interest in the biomedical field. Here, we report a novel approach to preparing high molecular weight poly(malic acid) (HMW--PMA) as a biodegradable and bioabsorbable water-soluble polymer. We investigated in detail the reaction conditions for the simple direct polycondensation of l-malic acid, including the reaction times, temperatures, and catalysts. The molecular weight of synthesized alpha,beta-PMA is dependent on both the reaction temperature and time. The optimum reaction condition to obtain alpha,beta-PMA by direct polycondensation using tin(II) chloride as a catalyst was thus determined to be 110 degrees C for 45 h with a molecular weight of 5300. The method for alpha,beta-PMA synthesis established here will facilitate production of alpha,beta-PMA of various molecular weights, which may have a potential utility as biomaterials.

  8. Effects of the Terminal Structure, Purity, and Molecular Weight of an Amorphous Conjugated Polymer on Its Photovoltaic Characteristics.

    PubMed

    Kuwabara, Junpei; Yasuda, Takeshi; Takase, Naoto; Kanbara, Takaki

    2016-01-27

    The photovoltaic characteristics of an amorphous polymer containing EDOT and fluorene units were investigated. In particular, the effects of the terminal structure, residual amount of Pd, and molecular weight were systematically investigated. Direct arylation polycondensation of EDOT followed by an established purification method readily afforded polymers with different terminal structures, Pd contents, and molecular weights. Of these factors, the terminal structure of the polymer was a crucial factor affecting the photovoltaic characteristics. For example, the polymer with a Br terminal had a PCE of 2.9% in bulk-heterojunction organic photovoltaics (BHJ OPVs) with a fullerene derivative, whereas the polymer without a Br terminal had a PCE of 4.6% in the same cell configuration. The decreased Pd residues and high molecular weights of the polymers increased the long-term stability of the devices. Moreover, BHJ OPVs containing the high-molecular-weight polymer could be fabricated with an environmentally friendly nonhalogenated solvent.

  9. Vitamin K antagonists or low-molecular-weight heparin for the long term treatment of symptomatic venous thromboembolism.

    PubMed

    van der Heijden, J F; Hutten, B A; Büller, H R; Prins, M H

    2002-01-01

    People with venous thromboembolism are generally treated for five days with intravenous unfractionated heparin or subcutaneous low-molecular-weight heparin followed by three months of vitamin K antagonists treatment. Treatment with vitamin K antagonists requires regular laboratory measurements and some patients have contraindications for treatment. To evaluate the efficacy and safety of long-term treatment of venous thromboembolism with low-molecular-weight heparins compared to vitamin K antagonists. Searches of MEDLINE, EMBASE and ISI Web of Science, the Specialised Trials Register of the Cochrane Peripheral Vascular Disease Group and the Cochrane Controlled Trials Register were made and relevant journals were hand-searched. Additional trials were sought through communication with colleagues and pharmaceutical companies. Two reviewers evaluated studies independently for methodological quality. Two reviewers extracted data independently. Primary analysis concerned all trial participants during the period of randomized treatment. Separate analyses were performed for category I and category II studies; i.e. studies using similar treatments initially in both study arms, and those that did not; and the different periods of follow-up. All seven studies fulfilling our criteria combined, a statistically non-significant reduction in the risk of recurrent venous thromboembolism favoring low-molecular-weight heparin treatment (OR 0.70; 95% CI [0.42, 1.16]) was found. Analysis of pooled data for category I studies showed a non-significant reduction in the risk of recurrent venous thromboembolism favoring low-molecular-weight heparin treatment (OR 0.75; 95% CI [0.40, 1.39]). Omitting a potentially-confounded study, a statistically non-significant reduction in the risk of recurrent venous thromboembolism favoring vitamin K antagonist treatment remained (OR 1.95; 95% CI [0.74, 5.19]). All studies combined, the difference in bleeding significantly favored treatment with low-molecular-weight

  10. Impact resistance and fractography in ultra high molecular weight polyethylenes.

    PubMed

    Puértolas, J A; Pascual, F J; Martínez-Morlanes, M J

    2014-02-01

    Highly crosslinked ultra high molecular weight polyethylenes (UHMWPE) stabilized by a remelting process or by the addition of an antioxidant are highly wear resistant and chemically stable. However, these polyethylenes currently used in total joint replacements suffer a loss of mechanical properties, especially in terms of fracture toughness. In this study we analyze the impact behavior of different polyethylenes using an instrumented double notch Izod test. The materials studied are three resins: GUR1050, GUR1020 with 0.1wt% of vitamin E, and MG003 with 0.1wt% of vitamin E. These resins were gamma irradiated at 90kGy, and pre and post-irradiation remelting processes were applied to GUR1050 for two different time periods. Microstructural data were determined by means of differential scanning calorimetry and transmission electron microscopy. Fractography carried out on the impact fracture surfaces and images obtained by scanning electron microscopy after etching indicated the existence of a fringe structure formed by consecutive ductile-brittle and brittle-ductile transitions, which is related to the appearance of discontinuities in the load-deflection curves. A correlation has been made of the macroscopic impact strength results and the molecular chain and microstructural characteristics of these aforementioned materials, with a view to designing future resins with improved impact resistance. The use of UHMWPE resins with low molecular weight or the application of a remelting treatment could contribute to obtain a better impact strength behavior. © 2013 Published by Elsevier Ltd.

  11. Ultra-high molecular weight silphenylene-siloxane polymers

    NASA Technical Reports Server (NTRS)

    Patterson, W. J.; Hundley, N. H.; Ludwick, L. M.

    1984-01-01

    Silphenylene-siloxane copolymers with molecular weights above one million were prepared using a two stage polymerization technique. The technique was successfully scaled up to produce 50 grams of this high polymer in a single run. The reactive monomer approach was also investigated using the following aminosilanes: bis(dimethylamino)dimethylsilane, N,N-bis(pyrrolidinyl)dimethylsilane and N,N-bis(gamma-butyrolactam)dimethylsilane). Thermal analyses were performed in both air and nitrogen. The experimental polymers decomposed at 540 to 562 C, as opposed to 408 to 426 C for commercial silicones. Differential scanning calorimetry showed a glass transition (Tg) at -50 to -55 C for the silphenylene-siloxane copolymer while the commercial silicones had Tg's at -96 to -112 C.

  12. Effects of molecular weight of natural organic matter on cadmium mobility in soil environments and its carbon isotope characteristics.

    PubMed

    Mahara, Y; Kubota, T; Wakayama, R; Nakano-Ohta, T; Nakamura, T

    2007-11-15

    We investigated the role of natural organic matter in cadmium mobility in soil environments. We collected the dissolved organic matter from two different types of natural waters: pond surface water, which is oxic, and deep anoxic groundwater. The collected organic matter was fractionated into four groups with molecular weights (unit: Da (Daltons)) of <1 x 10(3), 1-10 x 10(3), 10-100 x 10(3), and >100 x 10(3). The organic matter source was land plants, based on the carbon isotope ratios (delta(13)C/(12)C). The organic matter in surface water originated from presently growing land plants, based on (14)C dating, but the organic matter in deep groundwater originated from land plants that grew approximately 4000 years ago. However, some carbon was supplied by the high-molecular-weight fraction of humic substances in soil or sediments. Cadmium interacted in a system of siliceous sand, fractionated organic matter, and water. The lowest molecular weight fraction of organic matter (<1 x 10(3)) bound more cadmium than did the higher molecular weight fractions. Organic matter in deep groundwater was more strongly bound to cadmium than was organic matter in surface water. The binding behaviours of organic matter with cadmium depended on concentration, age, molecular weight, and degradation conditions of the organic matter in natural waters. Consequently, the dissolved, low-molecular-weight fraction in organic matter strongly influences cadmium migration and mobility in the environment.

  13. Reversible Association of the Hemagglutinin Subcomplex, HA-33/HA-17 Trimer, with the Botulinum Toxin Complex.

    PubMed

    Sagane, Yoshimasa; Mutoh, Shingo; Koizumi, Ryosuke; Suzuki, Tomonori; Miyashita, Shin-Ichiro; Miyata, Keita; Ohyama, Tohru; Niwa, Koichi; Watanabe, Toshihiro

    2017-10-01

    Botulinum neurotoxin (BoNT) associates with nontoxic proteins, either a nontoxic nonhemagglutinin (NTNHA) or the complex of NTNHA and hemagglutinin (HA), to form M- or L-toxin complexes (TCs). Single BoNT and NTNHA molecules are associated and form M-TC. A trimer of the 70-kDa HA protein (HA-70) attaches to the M-TC to form M-TC/HA-70. Further, 1-3 arm-like 33- and 17-kDa HA molecules (HA-33/HA-17 trimer), consisting of 1 HA-17 protein and 2 HA-33 proteins, can attach to the M-TC/HA-70 complex, yielding 1-, 2-, and 3-arm L-TC. In this study, the purified 1- and 2-arm L-TCs spontaneously converted into another L-TC species after acquiring the HA-33/HA-17 trimer from other TCs during long-term storage and freezing/thawing. Transmission electron microscopy analysis provided evidence of the formation of detached HA-33/HA-17 trimers in the purified TC preparation. These findings provide evidence of reversible association/dissociation of the M-TC/HA-70 complex with the HA-33/HA-17 trimers, as well as dynamic conversion of the quaternary structure of botulinum TC in culture.

  14. Molecular weights and subunit structure of LamB proteins.

    PubMed

    Nakae, T; Ishii, J N

    1982-01-01

    Phage lambda-receptor proteins of Escherichia coli, LamB proteins, form oligomeric aggregates to build transmembrane diffusion pores selective for maltose and maltodextrins. The molecular weights (MW) of functional oligomers as well as dissociated monomers were determined by sedimentation equilibrium analysis in homogeneous non-ionic surfactant and deuterium oxide and in 6 M guanidine-HCl, respectively. The MW of oligomers and monomers appeared as 135 600 and 45 900, respectively. Thus, functional Lamb proteins consisted of three identical subunits.

  15. Preparation of the low molecular weight serum proteome for mass spectrometry analysis.

    PubMed

    Waybright, Timothy J; Chan, King C; Veenstra, Timothy D; Xiao, Zhen

    2013-01-01

    The discovery of viable biomarkers or indicators of disease states is complicated by the inherent complexity of the chosen biological specimen. Every sample, whether it is serum, plasma, urine, tissue, cells, or a host of others, contains thousands of large and small components, each interacting in multiple ways. The need to concentrate on a group of these components to narrow the focus on a potential biomarker candidate becomes, out of necessity, a priority, especially in the search for immune-related low molecular weight serum biomarkers. One such method in the field of proteomics is to divide the sample proteome into groups based on the size of the protein, analyze each group, and mine the data for statistically significant items. This chapter details a portion of this method, concentrating on a method for fractionating and analyzing the low molecular weight proteome of human serum.

  16. [Intensive care of children with DIC syndrome based on the use of low molecular weight heparins].

    PubMed

    Chuprova, A V; Shmakov, A N; Solov'ev, O N; Anokhina, T Iu; Loskutova, S A; Pinegina, Iu S

    2002-01-01

    The first section of this paper presents data on low-molecular-weight heparins: pharmacokinetics and pharmacodynamics, advantages in comparison with common heparin. The second section presents the results of fraxiparin and clivarin use in 43 children aged 9 months to 14 years with acute/subacute DIC syndrome of infectious origin. Therapeutic and maintenance doses, the mode of injection of low-molecular-weight heparins, and methods for laboratory monitoring of their efficiency and safety are presented.

  17. MALDI matrices for low molecular weight compounds: an endless story?

    PubMed

    Calvano, Cosima Damiana; Monopoli, Antonio; Cataldi, Tommaso R I; Palmisano, Francesco

    2018-04-23

    Since its introduction in the 1980s, matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) has gained a prominent role in the analysis of high molecular weight biomolecules such as proteins, peptides, oligonucleotides, and polysaccharides. Its application to low molecular weight compounds has remained for long time challenging due to the spectral interferences produced by conventional organic matrices in the low m/z window. To overcome this problem, specific sample preparation such as analyte/matrix derivatization, addition of dopants, or sophisticated deposition technique especially useful for imaging experiments, have been proposed. Alternative approaches based on second generation (rationally designed) organic matrices, ionic liquids, and inorganic matrices, including metallic nanoparticles, have been the object of intense and continuous research efforts. Definite evidences are now provided that MALDI MS represents a powerful and invaluable analytical tool also for small molecules, including their quantification, thus opening new, exciting applications in metabolomics and imaging mass spectrometry. This review is intended to offer a concise critical overview of the most recent achievements about MALDI matrices capable of specifically address the challenging issue of small molecules analysis. Graphical abstract An ideal Book of matrices for MALDI MS of small molecules.

  18. Determination of the molecular weight of poly(ethylene glycol) in biological samples by reversed-phase LC-MS with in-source fragmentation.

    PubMed

    Warrack, Bethanne M; Redding, Brian P; Chen, Guodong; Bolgar, Mark S

    2013-05-01

    PEGylation has been widely used to improve the biopharmaceutical properties of therapeutic proteins and peptides. Previous studies have used multiple analytical techniques to determine the fate of both the therapeutic molecule and unconjugated poly(ethylene glycol) (PEG) after drug administration. A straightforward strategy utilizing liquid chromatography-mass spectrometry (LC-MS) to characterize high-molecular weight PEG in biologic matrices without a need for complex sample preparation is presented. The method is capable of determining whether high-MW PEG is cleaved in vivo to lower-molecular weight PEG species. Reversed-phase chromatographic separation is used to take advantage of the retention principles of polymeric materials whereby elution order correlates with PEG molecular weight. In-source collision-induced dissociation (CID) combined with selected reaction monitoring (SRM) or selected ion monitoring (SIM) mass spectrometry (MS) is then used to monitor characteristic PEG fragment ions in biological samples. MS provides high sensitivity and specificity for PEG and the observed retention times in reversed-phase LC enable estimation of molecular weight. This method was successfully used to characterize PEG molecular weight in mouse serum samples. No change in molecular weight was observed for 48 h after dosing.

  19. [The value of low-molecular-weight DNA of blood plasma in the diagnostic of the patological processes of different genesis].

    PubMed

    Vasil'eva, I N; Zinkin, V N

    2013-01-01

    The low-molecular-weight DNA appears in blood plasma of irradiated rats, and its content correlates directly with the irradiation dose. Cloning has shown, that enrichment of low-molecular-weight DNA with G+C content and features of its nucleotide sequences point to its ability to form rather stable nucleosomes. DNA obtained after irradiation of rats with principally different doses 8 and 100 Gy differed not only quantitatively, but also by content of the dinucleotides CpG and CpT; this suggests their origin from different sites of genome. For the first time it has been shown that exposure to low-frequency noise results in an increase of the contents of blood plasma low-molecular-weight DNA. In stroke patients blood concentrations of this DNA increased 3 days after the beginning of the acute period, and dynamics of its excretion differs in ischemic and hemorrhagic forms; in the case of ischemia low-molecular-weight DNA appears in cerebrospinal fluid. The chronic obstructive pulmonary disease in the state of remission is characterized by the decline of the level of low-molecular-weight DNA in the blood plasma unlike in the case of the chronic nonobstructive bronchitis. The clear dependence between formation and special features of the low-molecular-weight DNA fraction in blood plasma makes it possible to consider the low-molecular fraction as an universal index of apoptosis, which allows to distinguish basically different conditions of the body.

  20. Effect of mahlep on molecular weight distribution of cookie flour gluten proteins

    USDA-ARS?s Scientific Manuscript database

    Size Exclusion-High performance Chromatography (SE-HPLC) has been extensively used in molecular weight distribution analysis of wheat proteins. In this study the protein analysis was conducted on different cookie dough blends with different percentages of some ingredients. The mean chromatography ...

  1. Cytotoxicity of polycations: Relationship of molecular weight and the hydrolytic theory of the mechanism of toxicity.

    PubMed

    Monnery, Bryn D; Wright, Michael; Cavill, Rachel; Hoogenboom, Richard; Shaunak, Sunil; Steinke, Joachim H G; Thanou, Maya

    2017-04-15

    The mechanism of polycation cytotoxicity and the relationship to polymer molecular weight is poorly understood. To gain an insight into this important phenomenon a range of newly synthesised uniform (near monodisperse) linear polyethylenimines, commercially available poly(l-lysine)s and two commonly used PEI-based transfectants (broad 22kDa linear and 25kDa branched) were tested for their cytotoxicity against the A549 human lung carcinoma cell line. Cell membrane damage assays (LDH release) and cell viability assays (MTT) showed a strong relationship to dose and polymer molecular weight, and increasing incubation times revealed that even supposedly "non-toxic" low molecular weight polymers still damage cell membranes. The newly proposed mechanism of cell membrane damage is acid catalysed hydrolysis of lipidic phosphoester bonds, which was supported by observations of the hydrolysis of DOPC liposomes. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  2. Ultrafiltration for the Determination of Cu Complexed with Dissolved Organic Matters of Different Molecular Weight from a Eutrophic River, China.

    PubMed

    Li, Anding; Zhang, Yan; Zhou, Beihai; Xin, Kailing; Gu, Yingnan; Xu, Weijie; Tian, Jie

    2018-05-21

    The molecular weight of dissolved organic matter (DOM) is one of the essential factors controlling the properties of metal complexes. A continuous ultrafiltration experiment was designed to study the properties of Cu complexes with different molecular weights in a river before and after eutrophication. The results showed that the concentration of DOM increased from 26.47 to 38.20 mg/L during the eutrophication process, however, DOM was still dominated by the small molecular weight fraction before and after eutrophication. The amount of Cu-DOM complexes increased with the increasing of molecular weight, however, the amounts of DOM-Cu complexes before eutrophication were higher than those after eutrophication. This is because DOM contained more -COOH and -OH before eutrophication and these functional groups are the active sites complexed with Cu.

  3. High Molecular Weight Isoforms of Growth Hormone In Cells of the Immune System

    PubMed Central

    Weigent, Douglas A.

    2013-01-01

    A substantial body of research exists to support the idea that cells of the immune system produce growth hormone (GH). However, the structure and mechanism of action of lymphocyte-derived GH continues to remain largely unknown. Here we present the results of Western analysis of whole cell extracts showing that different molecular weight isoforms of GH of approximately 100 kDa, 65 kDa, and 48 kDa can be detected in primary mouse cells of the immune system and in the mouse EL4 cell line. The identity of the 65 kDa and 48 kDa isoforms of GH were confirmed by mass spectrometry. The various isoforms were detected in both enriched T and B spleen cell populations. The large molecular weight isoform appears to reside primarily in the cytoplasm whereas the lower molecular weight 65 kDa and 48 kDa isoforms were detected primarily in the nucleus. These results also suggest that GH isoforms are induced by oxidative stress. In EL4 cells overexpressing GH, the expression of luciferase controlled by a promoter containing the antioxidant response element is increased almost three-fold above control. The data suggest that the induction of isoforms of the GH molecule in cells of the immune system may be an important mechanism of adaptation and/or protection of lymphoid cells under conditions of oxidative stress. PMID:21741628

  4. Effect of molecular weight of polystyrensulfonic acid sodium salt polymers on the precipitation kinetics of sodium bicarbonate

    NASA Astrophysics Data System (ADS)

    Martínez-Cruz, Nancy; Carrillo-Romo, Felipe; Jaramillo-Vigueras, David

    2004-10-01

    This paper analyzes the effect of polystyrensulfonic acid sodium salt (NaPSS), obtained by kinetic precipitation from solutions of polymers of molecular weight 245 000 and 38 000 g mol-1 in sodium bicarbonate (NaHCO3) itself precipitated from synthetic brine. Crystal size, shape and the additive adsorbed are reported. X shaped and hexagonal prisms crystals with different aspect ratios were obtained. The results show that with increasing polymer concentration the crystal size decreases, from 0.27 to 0.48 mm. Additionally, the higher molecular weight polymer shows both higher adsorption capacity and higher crystal habit modification. Crystal shape patterns were similar for both polymers; however, the higher molecular weight material induced changes at lower concentration. It was observed that the precipitation rate reached a minimum with increasing additive concentration.

  5. Anterograde and retrograde tracing with high molecular weight biotinylated dextran amine through thalamocortical and corticothalamic pathways.

    PubMed

    Zhang, Wenjie; Xu, Dongsheng; Cui, Jingjing; Jing, Xianghong; Xu, Nenggui; Liu, Jianhua; Bai, Wanzhu

    2017-02-01

    Biotinylated dextran amine (BDA) has been used for neural pathway tracing in the central nervous system for many decades, in which high molecular weight BDA appeared to be transported predominantly in the anterograde direction and less in the retrograde direction. In the current study, we reexamined the properties of neural labeling with high molecular weight BDA through a reciprocal neural pathway between thalamus and somatosensory cortex. After injection of BDA into the ventral posteromedial nucleus of thalamus (VPM) in the rat, the BDA labeling was sequentially examined on somatosensory cortex at 3, 5, 7, 10, and 14 survival days. Both of anterogradely labeled axonal terminals and retrogradely labeled neuronal cell bodies were observed simultaneously on the somatosensory cortex. With the increasing of survival times after injection, morphological changes occurred on the labeled axonal arbors and neuronal dendrites, in which the high quality of BDA labeling appeared on the tenth survival day. These results indicate that high molecular weight BDA is not only a sensitive anterograde tracer but also an excellent retrograde marker to be used for tracing through thalamocortical and corticothalamic pathways. And the detailed structure of neural labeling with BDA similar to Golgi-like resolution can be obtained at optimal survival times of animals after the injection of high molecular weight BDA. © 2016 Wiley Periodicals, Inc.

  6. Lambda Red recombinase-mediated integration of the high molecular weight DNA into the Escherichia coli chromosome.

    PubMed

    Juhas, Mario; Ajioka, James W

    2016-10-05

    Escherichia coli K-12 is a frequently used host for a number of synthetic biology and biotechnology applications and chassis for the development of the minimal cell factories. Novel approaches for integrating high molecular weight DNA into the E. coli chromosome would therefore greatly facilitate engineering efforts in this bacterium. We developed a reliable and flexible lambda Red recombinase-based system, which utilizes overlapping DNA fragments for integration of the high molecular weight DNA into the E. coli chromosome. Our chromosomal integration strategy can be used to integrate high molecular weight DNA of variable length into any non-essential locus in the E. coli chromosome. Using this approach we integrated 15 kb DNA encoding sucrose catabolism and lactose metabolism and transport operons into the fliK locus of the flagellar region 3b in the E. coli K12 MG1655 chromosome. Furthermore, with this system we integrated 50 kb of Bacillus subtilis 168 DNA into two target sites in the E. coli K12 MG1655 chromosome. The chromosomal integrations into the fliK locus occurred with high efficiency, inhibited motility, and did not have a negative effect on the growth of E. coli. In addition to the rational design of synthetic biology devices, our high molecular weight DNA chromosomal integration system will facilitate metabolic and genome-scale engineering of E. coli.

  7. Molecular weight dependent charge carrier mobility in poly(3,3' '-dioctyl-2,2':5',2' '-terthiophene).

    PubMed

    Verilhac, Jean-Marie; Pokrop, Rafal; LeBlevennec, Gilles; Kulszewicz-Bajer, Irena; Buga, Katarzyna; Zagorska, Malgorzata; Sadki, Said; Pron, Adam

    2006-07-13

    Poly(3,3' '-dioctyl-2,2':5',2' '-terthiophene), a polymer recently used for the fabrication of organic field effect transistors, has been fractionated into five fractions distinctly differing in their molecular weights (Mn), with the goal of determining the influence of the degree of polymerization (DPn) on its principal physicochemical parameters. It has been demonstrated that within the Mn range studied (from 1.5 kDa to 10.5 kDa by SEC), corresponding to DPn from 10 to 38, the polymer band gap steadily decreases with growing molecular weight, which is clearly manifested by an increasing bathochromic shift of the band originating from the pi-pi* transition. The same trend is observed for the HOMO level, determined from the onset of the p-doping in cyclic voltammetry, which shifts from -5.10 eV to -4.90 eV for the lowest and the highest molecular weight fractions, respectively. The most pronounced influence of DPn has been found for the charge carriers' mobility-one of the most important parameters of field effect transistors (FETs) fabricated from this polymer. A fourfold increase in DPn results in an increase of the carriers' mobility by more than 3 orders of magnitude. Comparison of these results with those obtained for fractionated regioregular poly(3-hexylthiophene) shows a strikingly similar behavior of both polymers with respect to the molecular weight.

  8. Effects of molecular weight on the diffusion coefficient of aquatic dissolved organic matter and humic substances.

    PubMed

    Balch, J; Guéguen, C

    2015-01-01

    In situ measurements of labile metal species using diffusive gradients in thin films (DGT) passive samplers are based on the diffusion rates of individual species. Although most studies have dealt with chemically isolated humic substances, the diffusion of dissolved organic matter (DOM) across the hydrogel is not well understood. In this study, the diffusion coefficient (D) and molecular weight (MW) of 11 aquatic DOM and 4 humic substances (HS) were determined. Natural, unaltered aquatic DOM was capable of diffusing across the diffusive gel membrane with D values ranging from 2.48×10(-6) to 5.31×10(-6) cm(2) s(-1). Humic substances had diffusion coefficient values ranging from 3.48×10(-6) to 6.05×10(-6) cm(2) s(-1), congruent with previous studies. Molecular weight of aquatic DOM and HS samples (∼500-1750 Da) measured using asymmetrical flow field-flow fractionation (AF4) strongly influenced D, with larger molecular weight DOM having lower D values. No noticeable changes in DOM size properties were observed during the diffusion process, suggesting that DOM remains intact following diffusion across the diffusive gel. The influence of molecular weight on DOM mobility will assist in further understanding and development of the DGT technique and the uptake and mobility of contaminants associated with DOM in aquatic environments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Molecular weight dependent structure and charge transport in MAPLE-deposited poly(3-hexylthiophene) thin films

    DOE PAGES

    Dong, Ban Xuan; Smith, Mitchell; Strzalka, Joseph; ...

    2018-02-06

    In this work, poly(3-hexylthiophene) (P3HT) films prepared using the matrix-assisted pulsed laser evaporation (MAPLE) technique are shown to possess morphological structures that are dependent on molecular weight (MW). Specifically, the structures of low MW samples of MAPLE-deposited film are composed of crystallites/aggregates embedded within highly disordered environments, whereas those of high MW samples are composed of aggregated domains connected by long polymer chains. Additionally, the crystallite size along the side-chain (100) direction decreases, whereas the conjugation length increases with increasing molecular weight. This is qualitatively similar to the structure of spin-cast films, though the MAPLE-deposited films are more disordered. In-planemore » carrier mobilities in the MAPLE-deposited samples increase with MW, consistent with the notion that longer chains bridge adjacent aggregated domains thereby facilitating more effective charge transport. The carrier mobilities in the MAPLE-deposited simples are consistently lower than those in the solvent-cast samples for all molecular weights, consistent with the shorter conjugation length in samples prepared by this deposition technique.« less

  10. Molecular weight dependent structure and charge transport in MAPLE-deposited poly(3-hexylthiophene) thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Ban Xuan; Smith, Mitchell; Strzalka, Joseph

    In this work, poly(3-hexylthiophene) (P3HT) films prepared using the matrix-assisted pulsed laser evaporation (MAPLE) technique are shown to possess morphological structures that are dependent on molecular weight (MW). Specifically, the structures of low MW samples of MAPLE-deposited film are composed of crystallites/aggregates embedded within highly disordered environments, whereas those of high MW samples are composed of aggregated domains connected by long polymer chains. Additionally, the crystallite size along the side-chain (100) direction decreases, whereas the conjugation length increases with increasing molecular weight. This is qualitatively similar to the structure of spin-cast films, though the MAPLE-deposited films are more disordered. In-planemore » carrier mobilities in the MAPLE-deposited samples increase with MW, consistent with the notion that longer chains bridge adjacent aggregated domains thereby facilitating more effective charge transport. The carrier mobilities in the MAPLE-deposited simples are consistently lower than those in the solvent-cast samples for all molecular weights, consistent with the shorter conjugation length in samples prepared by this deposition technique.« less

  11. Role of induced glutathione-S-transferase from Helicoverpa armigera (Lepidoptera: Noctuidae) HaGST-8 in detoxification of pesticides.

    PubMed

    Labade, Chaitali P; Jadhav, Abhilash R; Ahire, Mehul; Zinjarde, Smita S; Tamhane, Vaijayanti A

    2018-01-01

    The present study deals with glutathione-S-transferase (GST) based detoxification of pesticides in Helicoverpa armigera and its potential application in eliminating pesticides from the environment. Dietary exposure of a pesticide mixture (organophosphates - chlorpyrifos and dichlorvos, pyrethroid - cypermethrin; 2-15ppm each) to H. armigera larvae resulted in a dose dependant up-regulation of GST activity and gene expression. A variant GST from H. armigera (HaGST-8) was isolated from larvae fed with 10ppm pesticide mixture and it was recombinantly expressed in yeast (Pichia pastoris HaGST-8). HaGST-8 had a molecular mass of 29kDa and was most active at pH 9 at 30°C. GC-MS and LC-HRMS analysis validated that HaGST-8 was effective in eliminating organophosphate type of pesticides and partially reduced the cypermethrin content (53%) from aqueous solutions. Unlike the untransformed yeast, P. pastoris HaGST-8 grew efficiently in media supplemented with pesticide mixtures (200 and 400ppm each pesticide) signifying the detoxification ability of HaGST-8. The amino acid sequence of HaGST-8 and the already reported sequence of HaGST-7 had just 2 mismatches. The studies on molecular interaction strengths revealed that HaGST-8 had stronger binding affinities with organophosphate, pyrethroid, organochloride, carbamate and neonicotinoid type of pesticides. The abilities of recombinant HaGST-8 to eliminate pesticides and P. pastoris HaGST-8 to grow profusely in the presence of high level of pesticide content can be applied for removal of such residues from food, water resources and bioremediation. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Low-Molecular-Weight Plasma Proteome Analysis Using Top-Down Mass Spectrometry.

    PubMed

    Cheon, Dong Huey; Yang, Eun Gyeong; Lee, Cheolju; Lee, Ji Eun

    2017-01-01

    While human plasma has a wealth of diagnostic information regarding the state of the human body in heath and disease, low molecular weight (LMW) proteome (<30 kDa) has been shown to contain a rich source of diagnostic biomarkers. Here we describe a protocol for top-down proteomic analysis to identify and characterize the LMW proteoforms present in four types of human plasma samples without immunoaffinity depletion and with depletion of the top two, six, and seven high-abundance proteins. Each type of plasma sample was first fractionated based on molecular weight using gel-eluted liquid fraction entrapment electrophoresis (GELFrEE). Then, the GELFrEE fractions containing up to 30 kDa were subjected to nanocapillary-LC-MS/MS, and the high-resolution MS and MS/MS data were processed using ProSightPC software. As a result, a total of 442 LMW proteins and cleaved products, including those with posttranslational modifications (PTMs) and single amino acid variations (SAAVs), were identified with a threshold E-value of 1 × 10 -4 from the four types of plasma samples.

  13. Branched chain amino acids maintain the molecular weight of poly(γ-glutamic acid) of Bacillus licheniformis ATCC 9945 during the fermentation.

    PubMed

    Mitsunaga, Hitoshi; Meissner, Lena; Büchs, Jochen; Fukusaki, Eiichiro

    2016-10-01

    Poly(γ-glutamic acid) mainly produced by Bacillus spp. is an industrially important compound due to several useful features. Among them, molecular weight is an important characteristic affecting on the physical properties such as viscosities and negative charge densities. However, it is difficult to control the molecular size of PGA since it decreases during fermentation. Previous study reported that PGA produced in the media containing different carbon sources such as glucose and glycerol showed differences in molecular weight. Therefore in this study, the effect of carbon source on the PGA molecular weight was examined; with the aim of developing a strategy to maintain the high molecular weight of PGA during fermentation. Our result showed that the weight average molecular weight (Mw) of PGA of Bacillus licheniformis ATCC 9945 cultivated in the media containing PTS-sugars were higher than the medium containing glycerol (non-PTS). The result of metabolome analysis indicated the possibility of CodY (a global regulator protein) activation in the cells cultivated in the media containing PTS-sugars. To mimic this effect, branched-chain amino acids (BCAAs), which are activators of CodY, were added to a medium containing glycerol. As the result, the Mw of PGA in the BCAAs-supplemented media were maintained and high during the early production phase compared to the non BCAAs-supplemented medium. These results indicate that BCAAs can repress the PGA molecular weight reduction during fermentation in B. licheniformis ATCC 9945. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Sugar-induced conformational change found in the HA-33/HA-17 trimer of the botulinum toxin complex.

    PubMed

    Sagane, Yoshimasa; Hayashi, Shintaro; Matsumoto, Takashi; Miyashita, Shin-Ichiro; Inui, Ken; Miyata, Keita; Yajima, Shunsuke; Suzuki, Tomonori; Hasegawa, Kimiko; Yamano, Akihito; Nishikawa, Atsushi; Ohyama, Tohru; Watanabe, Toshihiro; Niwa, Koichi

    2013-08-30

    Large-sized botulinum toxin complex (L-TC) is formed by conjugation of neurotoxin, nontoxic nonhemagglutinin and hemagglutinin (HA) complex. The HA complex is formed by association of three HA-70 molecules and three HA-33/HA-17 trimers, comprised of a single HA-17 and two HA-33 proteins. The HA-33/HA-17 trimer isolated from serotype D L-TC has the ability to bind to and penetrate through the intestinal epithelial cell monolayer in a sialic acid-dependent manner, and thus it plays an important role in toxin delivery through the intestinal cell wall. In this study, we determined the solution structure of the HA-33/HA-17 trimer by using small-angle X-ray scattering (SAXS). The SAXS image of HA-33/HA-17 exhibited broadly similar appearance to the crystal image of the complex. On the other hand, in the presence of N-acetylneuraminic acid, glucose and galactose, the solution structure of the HA-33/HA-17 trimer was drastically altered compared to the structure in the absence of the sugars. Sugar-induced structural change of the HA-33/HA-17 trimer may contribute to cell binding and subsequent transport across the intestinal cell layer. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Size and shape of soil humic acids estimated by viscosity and molecular weight.

    PubMed

    Kawahigashi, Masayuki; Sumida, Hiroaki; Yamamoto, Kazuhiko

    2005-04-15

    Ultrafiltration fractions of three soil humic acids were characterized by viscometry and high performance size-exclusion chromatography (HPSEC) in order to estimate shapes and hydrodynamic sizes. Intrinsic viscosities under given solute/solvent/temperature conditions were obtained by extrapolating the concentration dependence of reduced viscosities to zero concentration. Molecular mass (weight average molecular weight (M (w)) and number average molecular weight (M (n))) and hydrodynamic radius (R(H)) were determined by HPSEC using pullulan as calibrant. Values of M (w) and M (n) ranged from 15 to 118 x 10(3) and from 9 to 50 x 10(3) (g mol(-1)), respectively. Polydispersity, as indicated by M (w)/M (n), increased with increasing filter size from 1.5 to 2.4. The hydrodynamic radii (R(H)) ranged between 2.2 and 6.4 nm. For each humic acid, M (w) and [eta] were related. Mark-Houwink coefficients calculated on the basis of the M (w)-[eta] relationships suggested restricted flexible chains for two of the humic acids and a branched structure for the third humic acid. Those structures probably behave as hydrated sphere colloids in a good solvent. Hydrodynamic radii of fractions calculated from [eta] using Einstein's equation, which is applicable to hydrated sphere colloids, ranged from 2.2 to 7.1 nm. These dimensions are fit to the size of nanospaces on and between clay minerals and micropores in soil particle aggregates. On the other hand, the good agreement of R(H) values obtained by applying Einstein's equation with those directly determined by HPSEC suggests that pullulan is a suitable calibrant for estimation of molecular mass and size of humic acids by HPSEC.

  16. Determination of the presence of hyaluronic acid in preparations containing amino acids: the molecular weight characterization.

    PubMed

    Bellomaria, A; Nepravishta, R; Mazzanti, U; Marchetti, M; Piccioli, P; Paci, M

    2014-10-15

    Several pharmaceutical preparations contain hyaluronic acid in the presence of a large variety of low molecular weight charged molecules like amino acids. In these mixtures, it is particularly difficult to determine the concentration and the molecular weight of the hyaluronic acid fragments. In fact zwitterionic compounds in high concentration behave by masking the hyaluronic acid due to the electrostatic interactions between amino acids and hyaluronic acid. In such conditions the common colorimetric test of the hyaluronic acid determination appears ineffective and in the (1)H NMR spectra the peaks of the polymer disappear completely. By a simple separation procedure the presence of hyaluronic acid was revealed by the DMAB test and (1)H NMR while its average molecular weight in the final product was determined by DOSY NMR spectroscopy alone. The latter determination is very important due to the healthy effects of some sizes of this polymer's fragments. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Simulated dynamic response of a multi-stage compressor with variable molecular weight flow medium

    NASA Technical Reports Server (NTRS)

    Babcock, Dale A.

    1995-01-01

    A mathematical model of a multi-stage compressor with variable molecular weight flow medium is derived. The modeled system consists of a five stage, six cylinder, double acting, piston type compressor. Each stage is followed by a water cooled heat exchanger which serves to transfer the heat of compression from the gas. A high molecular weight gas (CFC-12) mixed with air in varying proportions is introduced to the suction of the compressor. Condensation of the heavy gas may occur in the upper stage heat exchangers. The state equations for the system are integrated using the Advanced Continuous Simulation Language (ACSL) for determining the system's dynamic and steady state characteristics under varying operating conditions.

  18. Early Estrogen Action: Stimulation of the Metabolism of High Molecular Weight and Ribosomal RNAs

    PubMed Central

    Luck, Dennis N.; Hamilton, Terrell H.

    1972-01-01

    Samples of RNA, isolated from uteri of ovariectomized adult rats treated with estrogen, have been analyzed on sucrose gradients. Treatment with estrogen either for 20 min or 2 hr increased the specific activity of all classes of uterine RNA, but produced no significant alteration in the distribution of radioactivity in the gradients, when animals received [3H]uridine intraperitoneally 15 min before they were killed. After labeling periods of 30 min, 1 hr, or 2 hr, however, the RNAs isolated from animals treated with estrogen had a smaller percentage of rapidly sedimenting (faster than 28S) species of RNA than did RNA from animals not treated with the hormone. The decreased percentage of high molecular weight RNA correlated with increases in both the specific activity of 28S and 18S RNA and the concentration of RNA in the whole organ. The labeled RNA of high molecular weight was also demonstrated, by the use of actinomycin D in vivo, to have a more rapid turnover rate in the estrogen-stimulated uterus. Our results indicate that estrogen increases not only the rate of synthesis of ribosomal RNA in the uterus of the ovariectomized adult rat, but also the rate or efficiency of processing of precursor RNA species of high molecular weight. PMID:4500546

  19. Selenium/Tellurium-Containing Hyperbranched Polymers: Effect of Molecular Weight and Degree of Branching on Glutathione Peroxidase-Like Activity.

    PubMed

    Thomas, Joice; Dong, Zeyuan; Dehaen, Wim; Smet, Mario

    2012-12-21

    A series of novel hyperbranched polyselenides and polytellurides with multiple catalytic sites at the branching units has been synthesized via the polycondensation of A2 + B3 monomers. The GPx-like activities of these polymer mimics were assessed and it was found that the polytellurides showed higher GPx-like activities than the corresponding polyselenides. Interestingly, the polymers with higher molecular weights and degree of branching (DB) showed higher GPx-like activities than the analogous lower molecular weight polymer. The enhancement in the catalytical activity of the hyperbranched polymers with increasing molecular weight affirmed the importance of the incorporation of multiple catalytic groups in the macromolecule which increases the local concentration of catalytic sites. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Conformational divergence in the HA-33/HA-17 trimer of serotype C and D botulinum toxin complex.

    PubMed

    Sagane, Yoshimasa; Hayashi, Shintaro; Akiyama, Tomonori; Matsumoto, Takashi; Hasegawa, Kimiko; Yamano, Akihito; Suzuki, Tomonori; Niwa, Koichi; Watanabe, Toshihiro; Yajima, Shunsuke

    2016-08-05

    Clostridium botulinum produces a large toxin complex (L-TC) comprising botulinum neurotoxin associated with auxiliary nontoxic proteins. A complex of 33- and 17-kDa hemagglutinins (an HA-33/HA-17 trimer) enhances L-TC transport across the intestinal epithelial cell layer via binding HA-33 to a sugar on the cell surface. At least two subtypes of serotype C/D HA-33 exhibit differing preferences for the sugars sialic acid and galactose. Here, we compared the three-dimensional structures of the galactose-binding HA-33 and HA-33/HA-17 trimers produced by the C-Yoichi strain. Comparisons of serotype C/D HA-33 sequences reveal a variable region with relatively low sequence similarity across the C. botulinum strains; the variability of this region may influence the manner of sugar-recognition by HA-33. Crystal structures of sialic acid- and galactose-binding HA-33 are broadly similar in appearance. However, small-angle X-ray scattering revealed distinct solution structures for HA-33/HA-17 trimers. A structural change in the C-terminal variable region of HA-33 might cause a dramatic shift in the conformation and sugar-recognition mode of HA-33/HA-17 trimer. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Effect of thermal treatment on potato starch evidenced by EPR, XRD and molecular weight distribution.

    PubMed

    Bidzińska, Ewa; Michalec, Marek; Pawcenis, Dominika

    2015-12-01

    Effect of heating of the potato starch on damages of its structure was investigated by quantitative electron paramagnetic resonance (EPR) spectroscopy, X-ray diffraction and determination of the molecular weight distribution. The measurements were performed in the temperature range commonly used for starch modifications optimizing properties important for industrial applications. Upon thermal treatment, because of breaking of the polymer chains, diminishing of the average molecular weights occurred, which significantly influences generation of radicals, evidenced by EPR. For the relatively mild conditions, with heating parameters not exceeding temperature 230 °C and time of heating equal to 30 min a moderate changes of both the number of thermally generated radicals and the mean molecular weight of the starch were observed. After more drastic thermal treatment (e.g. 2 h at 230 °C), a rapid increase in the radical amount occurred, which was accompanied by significant reduction of the starch molecular size and crystallinity. Experimentally established threshold values of heating parameters should not be exceeded in order to avoid excessive damages of the starch structure accompanied by the formation of the redundant amount of radicals. This requirement is important for industrial applications, because significant destruction of the starch matrix might annihilate the positive influence of the previously performed intentional starch modification. Copyright © 2015 John Wiley & Sons, Ltd.

  2. 21 CFR 178.3750 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... used in food-packaging adhesives complying with § 175.105 of this chapter. ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Polyethylene glycol (mean molecular weight 200-9,500). 178.3750 Section 178.3750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND...

  3. Methanol-induced chain termination in poly(3-hydroxybutyrate) biopolymers: molecular weight control

    USDA-ARS?s Scientific Manuscript database

    A systematic study was performed to demonstrate the impact of methanol (MeOH) on poly(3-hydroxybutyrate) (PHB) synthesis and molecular weight (MW) control. Glycerine (init. conc. = 1.0%; w/v), was used as the primary carbon source in batch-culture fermentations with varying concentrations (0 to 0.85...

  4. Use of Kinematic Viscosity Data for the Evaluation of the Molecular Weight of Petroleum Oils

    ERIC Educational Resources Information Center

    Maroto, J. A.; Quesada-Perez, M.; Ortiz-Hernandez, A. J.

    2010-01-01

    A new laboratory procedure for the evaluation of the mean molecular weight (mean relative molecular mass) of petroleum oils with high accuracy is described. The density and dynamic viscosity of three commercial petroleum oils are measured at different temperatures. These experimental data are used to calculate the kinematic viscosity as a function…

  5. Cleavage of the main carbon chain backbone of high molecular weight polyacrylamide by aerobic and anaerobic biological treatment.

    PubMed

    Song, Wenzhe; Zhang, Yu; Gao, Yingxin; Chen, Dong; Yang, Min

    2017-12-01

    High molecular weight partially hydrolyzed polyacrylamide (PAM) can be bio-hydrolyzed on the amide side group, however, solid evidence regarding the biological cleavage of its main carbon chain backbone is limited. In this study, viscometry, flow field-flow fractionation multi-angle light scattering (FFF-MALS), and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) analysis were used to investigate the biodegradability of PAM with a nominal molecular weight of 2 × 10 7  Da (Da) in two suspended aerobic (25 and 40 °C) and two upflow anaerobic blanket reactors (35 and 55 °C) operated for 470 d under a hydraulic residence time (HRT) of 2 d. Both anaerobic and aerobic biological treatment reduced the viscosity from 2.02 cp in the influent to 1.45-1.60 cp, and reduced the molecular weight of PAM using FFF-MALS from 2.17 × 10 7  Da to less than one-third its original size. The removals of both the amide group and carbon chain backbone in the PAM molecule were further supported by the FTIR analysis. In comparison with the other conditions, thermophilic anaerobic treatment exhibited higher efficiency for PAM biodegradation. Batch test excluded the influence of temperature on the molecular weight of PAM over the range 25-55 °C, suggesting that cleavage of the main carbon chain backbone was attributed to biological degradation. Our results suggested that high molecular weight PAM was biodegradable, but mineralization did not occur. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Graphene Nanocomposites with High Molecular Weight Poly(ε-caprolactone) Grafts: Controlled Synthesis and Accelerated Crystallization

    DOE PAGES

    Mondal, Titash; Ashkar, Rana; Butler, Paul; ...

    2016-02-08

    Grafting of high molecular weight polymers to graphitic nanoplatelets is a critical step toward the development of high performance graphene nanocomposites. However, designing such a grafting route has remained a major impediment. Herein, we report a "grafting to" synthetic pathway by which high molecular weight polymer, poly(e-caprolactone) (PCL), is tethered, at high grafting density, to highly anisotropic graphitic nanoplatelets. The efficacy of this tethering route and the resultant structural arrangements within the composite are confirmed by neutron and X-ray scattering measurements in the melt and solution phase. In the semicrystalline state, Xray analysis indicates that chain tethering onto the graphiticmore » nanoplatelets results in conformational changes of the polymer chains, which enhance the nucleation process and aid formation of PCL crystallites. This is corroborated by the superior thermal properties of the composite, manifested in accelerated crystallization kinetics and a significant increase in the thermal degradation temperature. Lastly, in principle, this synthesis route can be extended to a variety of high molecular weight polymers, which can open new avenues to solution-based processing of graphitic nanomaterials and the fabrication of complex 3D patterned graphitic nanocomposites.« less

  7. Hypoglycemic Effect of Chinese Yam (Dioscorea opposita rhizoma) Polysaccharide in Different Structure and Molecular Weight.

    PubMed

    Li, Qian; Li, Wenzhi; Gao, Qunyu; Zou, Yuxiao

    2017-10-01

    Three new Chinese yam polysaccharides (namely HSY, huaishanyao in Chinese) were isolated using the methods of boiled water extraction and stepwise ethanolic precipitation, combined with the tangential flow ultrafiltration membrane system. Their molecular weights were determined by high performance gel permeation chromatography. Three type yam polysaccharides in different molecular weight were isolated: HSY-I (>50 kDa), HSY-II (10 to 50 kDa), HSY-III (<10 kDa). The monosaccharide and glycosidic bond links composition were analyzed with GC and Smith degradation. The structure characteristics were further discussed combined with infrared spectrophotometry. Dexamethasone-induced insulin resistance glucose/lipid metabolism diabetic mice model was established to evaluate the hypoglycemic effect of different concentration of HSY and different molecular weights polysaccharide HSY-I, HSY-II, and HSY-III. The results indicated that the HSY polysaccharide mixture, HSY-I and HSY-II had hypoglycemic effect. Three polysaccharides from Chinese yam tuber were isolated in this study. Their structures were characterized and hypoglycemic effects were evaluated. The result clearly identified the benefits of this plant as a healthy functional food. © 2017 Institute of Food Technologists®.

  8. Temperature dependence of viscoelasticity of crystalline cellulose with different molecular weights added to silicone elastomer

    NASA Astrophysics Data System (ADS)

    Sugino, Naoto; Nakajima, Shinya; Kameda, Takao; Takei, Satoshi; Hanabata, Makoto

    2017-08-01

    Silicone elastomers ( polydimethylsiloxane _ PDMS) are widely used in the field of imprint lithography and microcontactprinting (μCP). When performing microcontactprinting, the mechanical properties of the PCMS as a base material have a great influence on the performance of the device. Cellulose nanofibers having features of high strength, high elasticity and low coefficient of linear expansion have attracted attention in recent years due to their characteristics. Therefore, three types of crystalline cellulose having different molecular weights were added to PDMS to prepare a composite material, and dynamic viscoelasticity was measured using a rheometer. The PDMS with the highest molecular weight crystalline cellulose added exhibited smaller storage modulus than PDMS with other molecular weight added in all temperature ranges. Furthermore, when comparing PDMS to which crystalline cellulose was added and PDMS which is not added, the storage modulus of PDMS to which cellulose was added in the low temperature region was higher than that of PDMS to which it was not added, but it was reversed in the high temperature region It was a result. When used in a low temperature range (less than 150 ° C.), it can be said that cellulose can function as a reinforcing material for PDMS.

  9. [Crosslinking sodium hyaluronate gel with different ratio of molecular weight for subcutaneous injection: animal experimental study and clinical trials subcutaneous injection].

    PubMed

    Ran, Weizhi; Wang, Xiaoli; Hu, Yuefei; Gao, Songying; Yang, Yahong; Sun, Jian; Sun, Shuming; Liu, Zhongmei; Wang, Jiangling

    2015-05-01

    To investigate the biocompatibility and degradation rate of crosslinking sodium hyaluronate gel with different ratio of molecular weight, so as to choose the effective, safe and totally degraded hyaluronate gel for aesthetic injection. (1) Compound colloid was formed by cross-linking the divinyl sulphone and sodium hyaluronate with different molecular weight (4 x 10(5), 8 x 10(5), 10 x 10(5), 12 x 10(5)). (2) Healthy level KM mice was randomly divided into two groups to receive hyaluronic acid gel or liquid injection. Each group was subdivided into three subgroup to receive hyaluronic acid with different molecular weight. The biocompatibility and degradation rate, of hyaluronate were observed at 7, 90, 180 days after injection. At the same time, different molecular weight of sodium hyaluronate gel is sealed or exposed respectively under the low temperature preservation to observe its natural degradation rate. (3) The most stable colloid was selected as aesthetic injector for volunteers to observe the aesthetic effect. The sodium hyaluronate gel with molecular of 4 x 10(5) was completely degraded 90 days later. The sodium hyaluronate gel with molecular of 8 x 10(5) was completely degraded 180 days later. The sodium hyaluronate gel with molecular of 10 x 10(5) was degraded to 90.0% after 180 days. The sodium hyaluronate liquid can be degraded completely within 7 days. The colloid could be kept for at least 12 months when sealed under low temperature, but was totally degraded when exposed for I d. Sodium hyaluronate gel with molecular 10 x 10(5) was confirmed to be kept for at least 6 months in animal experiment and clinical trials. Under the same condition of material ratio, the higher the molecular weight is, the lower the degradation rate is. But the liquidity of gel is not good for injection when molecular weight is too large. It suggests that Sodium hyaluronate gel with molecular 10 x 10(5) maybe the best choice in cosmetic injections.

  10. Removal of Anabaena spiroides by potassium permanganate pre-oxidation: effect on photosynthetic capacity and molecular weight distribution.

    PubMed

    Qiao, Junlian; Zhang, Xiaodong; Lv, Liping

    2017-11-01

    Bench scale tests were conducted to investigate the effect of potassium permanganate pre-oxidation on the photosynthetic activity and molecular weight distribution of Anabaena spiroides. Different concentrations of potassium permanganate were added into the suspension of Anabaena spiroides, one of the dominant algae in water bloom, and after pre-oxidation of permanganate for 1 h, the results show that the removal rate significantly increases by 33.99~36.35% compared to direct coagulation. Then, the algal characteristics, including photosynthetic ability, the changes in extracellular organic matter three-dimensional fluorescence, and the distribution of molecular weight were conducted and the results show that along with increasing concentration of potassium permanganate, the photosynthetic ability of algae decreases, more extracellular organic matter is secreted, and large molecular weight matter (humic-like and fulvic-like substances) are generated. Therefore, this study demonstrates that potassium permanganate could be used in addressing the algae-rich water.

  11. Release of low molecular weight silicones and platinum from silicone breast implants.

    PubMed

    Lykissa, E D; Kala, S V; Hurley, J B; Lebovitz, R M

    1997-12-01

    We have conducted a series of studies addressing the chemical composition of silicone gels from breast implants as well as the diffusion of low molecular weight silicones (LM-silicones) and heavy metals from intact implants into various surrounding media, namely, lipid-rich medium (soy oil), aqueous tissue culture medium (modified Dulbecco's medium, DMEM), or an emulsion consisting of DMEM plus 10% soy oil. LM-silicones in both implants and surrounding media were detected and quantitated using gas chromatography (GC) coupled with atomic emission (GC-AED) as well as mass spectrometric (GC/MS) detectors, which can detect silicones in the nanogram range. Platinum, a catalyst used in the preparation of silicone gels, was detected and quantitated using inductive argon-coupled plasma/mass spectrometry (ICP-MS), which can detect platinum in the parts per trillion range. Our results indicate that GC-detectable low molecular weight silicones contribute approximately 1-2% to the total gel mass and consist predominantly of cyclic and linear poly-(dimethylsiloxanes) ranging from 3 to 20 siloxane [(CH3)2-Si-O] units (molecular weight 200-1500). Platinum can be detected in implant gels at levels of approximately 700 micrograms/kg by ICP-MS. The major component of implant gels appears to be high molecular weight silicone polymers (HM-silicones) too large to be detected by GC. However, these HM-silicones can be converted almost quantitatively (80% by mass) to LM-silicones by heating implant gels at 150-180 degrees C for several hours. We also studied the rates at which LM-silicones and platinum leak through the intact implant outer shell into the surrounding media under a variety of conditions. Leakage of silicones was greatest when the surrounding medium was lipid-rich, and up to 10 mg/day LM-silicones was observed to diffuse into a lipid-rich medium per 250 g of implant at 37 degrees C. This rate of leakage was maintained over a 7-day experimental period. Similarly, platinum was

  12. Poly(ethylene glycol) analogs grafted with low molecular weight poly(ethylene imine) as non-viral gene vectors.

    PubMed

    Zhang, Zhenfang; Yang, Cuihong; Duan, Yajun; Wang, Yanming; Liu, Jianfeng; Wang, Lianyong; Kong, Deling

    2010-07-01

    A novel class of non-viral gene vectors consisting of low molecular weight poly(ethylene imine) (PEI) (molecular weight 800 Da) grafted onto degradable linear poly(ethylene glycol) (PEG) analogs was synthesized. First, a Michael addition reaction between poly(ethylene glycol) diacrylates (PEGDA) (molecular weight 258 Da) and d,l-dithiothreitol (DTT) was carried out to generate a linear polymer (PEG-DTT) having a terminal thiol, methacrylate and pendant hydroxyl functional groups. Five PEG-DTT analogs were synthesized by varying the molar ratio of diacrylates to thiols from 1.2:1 to 1:1.2. Then PEI (800 Da) was grafted onto the main chain of the PEG-DTTs using 1,1'-carbonyldiimidazole as the linker. The above reaction gave rise to a new class of non-viral gene vectors, (PEG-DTT)-g-PEI copolymers, which can effectively complex DNA to form nanoparticles. The molecular weights and structures of the copolymers were characterized by gel permeation chromatography, (1)H nuclear magnetic resonance and Fourier transform infrared spectroscopy. The size of the nanoparticles was<200 nm and the surface charge of the nanoparticles, expressed as the zeta potential, was between+20 and+40 mV. Cytotoxicity assays showed that the copolymers exhibited much lower cytotoxicities than high molecular weight PEI (25 kDa). Transfection was performed in cultured HeLa, HepG2, MCF-7 and COS-7 cells. The copolymers showed higher transfection efficiencies than PEI (25 kDa) tested in four cell lines. The presence of serum (up to 30%) had no inhibitory effect on the transfection efficiency. These results indicate that this new class of non-viral gene vectors may be a promising gene carrier that is worth further investigation. Copyright 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Low-molecular-weight heparin in pediatric patients.

    PubMed

    Sutor, Anton Heinz; Chan, Anthony K C; Massicotte, Patricia

    2004-02-01

    The incidence of thromboembolic events (TEs) in childhood is greatly underestimated. Two age groups account for approximately 70% of TEs in childhood: infants and teenagers. There are several predisposing risk factors for newborns such as small vessels, high hematocrit, and a unique neonatal hemostatic system. Central venous lines contribute to 80% of deep vein thrombosis in newborns. Other risk factors for all children are shock syndromes, trauma, surgery, heart and kidney disease, and acquired or hereditary thrombophilias. The best prophylaxis is to recognize, avoid, and remove risk factors if possible. This is particularly relevant in childhood, where risk factors can be found in the majority of TEs. The serious sequelae of TEs (mortality, and short- and long-term morbidity) require therapeutic intervention. Unfractionated heparin (UFH) has the following disadvantages: age-dependent unpredictable pharmacokinetics, the need for intravenous access for therapy and monitoring, delays in achieving therapeutic ranges, bleeding risk, the risk of heparin-induced thrombocytopenia, and osteoporosis with long-term use. Oral anticoagulants, in addition to some of these disadvantages, show considerable variation by diet (especially if there is a change from breast to bottle feeding), medication, and intercurrent illness. Review of case reports and cohort studies on 728 children treated with low-molecular-weight heparin (LMWH) indicate the following advantages over UFH: minimal monitoring, ease of administration (subcutaneous), and possibly equivalent efficacy and safety. Dose recommendations for pediatric patients cannot be directly extrapolated from those for adult patients. If dosages are calculated according to body weight, infants < 3 months (or < 5 kg) need approximately 50% more LMWH than older children or adults to reach prophylactic or therapeutic anti-factor Xa levels. Further studies are necessary to address the following: the importance of risk factors, the

  14. TOXICOLOGICAL HIGHLIGHT (REDOX REDUX: A CLOSER LOOK AT CONCEPTAL LOW MOLECULAR WEIGHT THIOLS)

    EPA Science Inventory

    Glutathione (GSH) is present as the most abundant low molecular weight thiol (LMWT) in virtually all mitochondria-bearing eucaryotic cells, often at millimolar concentrations (Meister, 1988). Functions of GSH include roles in DNA and protein synthesis, maintenance of cell membra...

  15. Conformations of low-molecular-weight lignin polymers in water

    DOE PAGES

    Petridis, Loukas; Smith, Jeremy C.

    2016-01-13

    Low-molecular-weight lignin binds to cellulose during the thermochemical pretreatment of biomass for biofuel production, which prevents the efficient hydrolysis of the cellulose to sugars. The binding properties of lignin are influenced strongly by the conformations it adopts. Here, we use molecular dynamics simulations in aqueous solution to investigate the dependence of the shape of lignin polymers on chain length and temperature. Lignin is found to adopt collapsed conformations in water at 300 and 500 K. However, at 300 K, a discontinuous transition is found in the shape of the polymer as a function of the chain length. Below a criticalmore » degree of polymerization, N c=15, the polymer adopts less spherical conformations than above N c. The transition disappears at high temperatures (500 K) at which only spherical shapes are adopted. As a result, an implication relevant to cellulosic biofuel production is that lignin will self-aggregate even at high pretreatment temperatures.« less

  16. Conformations of Low-Molecular-Weight Lignin Polymers in Water.

    PubMed

    Petridis, Loukas; Smith, Jeremy C

    2016-02-08

    Low-molecular-weight lignin binds to cellulose during the thermochemical pretreatment of biomass for biofuel production, which prevents the efficient hydrolysis of the cellulose to sugars. The binding properties of lignin are influenced strongly by the conformations it adopts. Here, we use molecular dynamics simulations in aqueous solution to investigate the dependence of the shape of lignin polymers on chain length and temperature. Lignin is found to adopt collapsed conformations in water at 300 and 500 K. However, at 300 K, a discontinuous transition is found in the shape of the polymer as a function of the chain length. Below a critical degree of polymerization, Nc =15, the polymer adopts less spherical conformations than above Nc. The transition disappears at high temperatures (500 K) at which only spherical shapes are adopted. An implication relevant to cellulosic biofuel production is that lignin will self-aggregate even at high pretreatment temperatures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Screening the low molecular weight fraction of human serum using ATR-IR spectroscopy.

    PubMed

    Bonnier, Franck; Brachet, Guillaume; Duong, Romain; Sojinrin, Tobiloba; Respaud, Renaud; Aubrey, Nicolas; Baker, Matthew J; Byrne, Hugh J; Chourpa, Igor

    2016-10-01

    Vibrational spectroscopic techniques can detect small variations in molecular content, linked with disease, showing promise for screening and early diagnosis. Biological fluids, particularly blood serum, are potentially valuable for diagnosis purposes. The so-called Low Molecular Weight Fraction (LMWF) contains the associated peptidome and metabolome and has been identified as potentially the most relevant molecular population for disease-associated biomarker research. Although vibrational spectroscopy can deliver a specific chemical fingerprint of the samples, the High Molecular Weight Fraction (HMWF), composed of the most abundant serum proteins, strongly dominates the response and ultimately makes the detection of minor spectral variations a challenging task. Spectroscopic detection of potential serum biomarkers present at relatively low concentrations can be improved using pre-analytical depletion of the HMWF. In the present study, human serum fractionation by centrifugal filtration was used prior to analysis by Attenuated Total Reflection infrared spectroscopy. Using a model sample based on glycine spiked serum, it is demonstrated that the screening of the LMWF can be applied to quantify blinded concentrations up to 50 times lower. Moreover, the approach is easily transferable to different bodily fluids which would support the development of more efficient and suitable clinical protocols exploring vibrational spectroscopy based ex-vivo diagnostic tools. Revealing serum LMWF for spectral serological diagnostic applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Counterion adsorption theory of dilute polyelectrolyte solutions: Apparent molecular weight, second virial coefficient, and intermolecular structure factor

    PubMed Central

    Muthukumar, M.

    2012-01-01

    Polyelectrolyte chains are well known to be strongly correlated even in extremely dilute solutions in the absence of additional strong electrolytes. Such correlations result in severe difficulties in interpreting light scattering measurements in the determination of the molecular weight, radius of gyration, and the second virial coefficient of charged macromolecules at lower ionic strengths from added strong electrolytes. By accounting for charge-regularization of the polyelectrolyte by the counterions, we present a theory of the apparent molecular weight, second virial coefficient, and the intermolecular structure factor in dilute polyelectrolyte solutions in terms of concentrations of the polymer and the added strong electrolyte. The counterion adsorption of the polyelectrolyte chains to differing levels at different concentrations of the strong electrolyte can lead to even an order of magnitude discrepancy in the molecular weight inferred from light scattering measurements. Based on counterion-mediated charge regularization, the second virial coefficient of the polyelectrolyte and the interchain structure factor are derived self-consistently. The effect of the interchain correlations, dominating at lower salt concentrations, on the inference of the radius of gyration and on molecular weight is derived. Conditions for the onset of nonmonotonic scattering wave vector dependence of scattered intensity upon lowering the electrolyte concentration and interpretation of the apparent radius of gyration are derived in terms of the counterion adsorption mechanism. PMID:22830728

  19. Low molecular weight components in an aquatic humic substance as characterized by membrane dialysis and orbitrap mass spectrometry.

    PubMed

    Remucal, Christina K; Cory, Rose M; Sander, Michael; McNeill, Kristopher

    2012-09-04

    Suwannee River fulvic acid (SRFA) was dialyzed through a 100-500 molecular weight cutoff dialysis membrane, and the dialysate and retentate were analyzed by UV-visible absorption and high-resolution Orbitrap mass spectrometry (MS). A significant fraction (36% based on dissolved organic carbon) of SRFA passed through the dialysis membrane. The fraction of SRFA in the dialysate had a different UV-visible absorption spectrum and was enriched in low molecular weight molecules with a more aliphatic composition relative to the initial SRFA solution. Comparison of the SRFA spectra collected by Orbitrap MS and Fourier transform ion cyclotron resonance MS (FT-ICR MS) demonstrated that the mass accuracy of the Orbitrap MS is sufficient for determination of unique molecular formulas of compounds with masses <600 Da in a complex mixture, such as SRFA. The most intense masses detected by Orbitrap MS were found in the 100-200 Da mass range. Many of these low molecular masses corresponded to molecular formulas of previously identified compounds in organic matter, lignin, and plants, and the use of the standard addition method provided an upper concentration estimate of selected target compounds in SRFA. Collectively, these results provide evidence that SRFA contains low molecular weight components that are present individually or in loosely bound assemblies.

  20. 21 CFR 178.3750 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... are not applicable to polyethylene glycols used in food-packaging adhesives complying with § 175.105... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polyethylene glycol (mean molecular weight 200-9,500). 178.3750 Section 178.3750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND...

  1. 21 CFR 178.3750 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... are not applicable to polyethylene glycols used in food-packaging adhesives complying with § 175.105... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Polyethylene glycol (mean molecular weight 200-9,500). 178.3750 Section 178.3750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND...

  2. 21 CFR 178.3750 - Polyethylene glycol (mean molecular weight 200-9,500).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... are not applicable to polyethylene glycols used in food-packaging adhesives complying with § 175.105... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Polyethylene glycol (mean molecular weight 200-9,500). 178.3750 Section 178.3750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND...

  3. Characterization of the Low-Molecular-Weight Human Plasma Peptidome.

    PubMed

    Greening, David W; Simpson, Richard J

    2017-01-01

    The human plasma proteome represents an important secreted sub-proteome. Proteomic analysis of blood plasma with mass spectrometry is a challenging task. The high complexity and wide dynamic range of proteins as well as the presence of several proteins at very high concentrations complicate the profiling of the human plasma proteome. The peptidome (or low-molecular-weight fraction, LMF) of the human plasma proteome is an invaluable source of biological information, especially in the context of identifying plasma-based markers of disease. Peptides are generated by active synthesis and proteolytic processing, often yielding proteolytic fragments that mediate a variety of physiological and pathological functions. As such, degradomic studies, investigating cleavage products via peptidomics and top-down proteomics in particular, have warranted significant research interest. However, due to their molecular weight, abundance, and solubility, issues with identifying specific cleavage sites and coverage of peptide fragments remain challenging. Peptidomics is currently focused toward comprehensively studying peptides cleaved from precursor proteins by endogenous proteases. This protocol outlines a standardized rapid and reproducible procedure for peptidomic profiling of human plasma using centrifugal ultrafiltration and mass spectrometry. Ultrafiltration is a convective process that uses anisotropic semipermeable membranes to separate macromolecular species on the basis of size. We have optimized centrifugal ultrafiltration (cellulose triacetate membrane) for plasma fractionation with respect to buffer and solvent composition, centrifugal force, duration, and temperature to facilitate recovery >95% and enrichment of the human plasma peptidome. This method serves as a comprehensive and facile process to enrich and identify a key, underrepresented sub-proteome of human blood plasma.

  4. Permeability of low molecular weight organics through nanofiltration membranes.

    PubMed

    Meylan, Sébastien; Hammes, Frederik; Traber, Jacqueline; Salhi, Elisabeth; von Gunten, Urs; Pronk, Wouter

    2007-09-01

    The removal of natural organic matter (NOM) using nanofiltration (NF) is increasingly becoming an option for drinking water treatment. Low molecular weight (LMW) organic compounds are nevertheless only partially retained by such membranes. Bacterial regrowth and biofilm formation in the drinking water distribution system is favoured by the presence of such compounds, which in this context are considered as the assimilable organic carbon (AOC). In this study, the question of whether NF produces microbiologically stable water was addressed. Two NF membranes (cut-off of about 300Da) were tested with different natural and synthetic water samples in a cross-flow filtration unit. NOM was characterised by liquid chromatography with organic carbon detection (LC-OCD) using a size-exclusion column in addition to specific organic acid measurements, while AOC was measured in a batch growth bioassay. Similarly to high molecular weight organic compounds like polysaccharides or humic substances that have a permeability lower than 1%, charged LMW organic compounds were efficiently retained by the NF membranes tested and showed a permeability lower than 3%. However, LMW neutrals and hydrophobic organic compounds permeate to a higher extent through the membranes and have a permeability of up to 6% and 12%, respectively. Furthermore, AOC was poorly retained by NF and the apparent AOC concentration measured in the permeated water was above the proposed limit for microbiologically stable water. This indicates that the drinking water produced by NF might be biologically unstable in the distribution system. Nevertheless, in comparison with the raw water, NF significantly reduced the AOC concentration.

  5. Effect of alkali lignins with different molecular weights from alkali pretreated rice straw hydrolyzate on enzymatic hydrolysis.

    PubMed

    Li, Yun; Qi, Benkun; Luo, Jianquan; Wan, Yinhua

    2016-01-01

    This study investigated the effect of alkali lignins with different molecular weights on enzymatic hydrolysis of lignocellulose. Different alkali lignins fractions, which were obtained from cascade ultrafiltration, were added into the dilute acid pretreated (DAP) and alkali pretreated (AP) rice straws respectively during enzymatic hydrolysis. The results showed that the addition of alkali lignins enhanced the hydrolysis and the enhancement for hydrolysis increased with increasing molecular weights of alkali lignins, with maximum enhancement being 28.69% for DAP and 20.05% for AP, respectively. The enhancement was partly attributed to the improved cellulase activity, and filter paper activity increased by 18.03% when adding lignin with highest molecular weight. It was found that the enhancement of enzymatic hydrolysis was correlated with the adsorption affinity of cellulase on alkali lignins, and the difference in surface charge and hydrophobicity of alkali lignins were responsible for the difference in affinity between cellulase and lignins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. High pressure size exclusion chromatography (HPSEC) determination of dissolved organic matter molecular weight revisited: Accounting for changes in stationary phases, analytical standards, and isolation methods

    USGS Publications Warehouse

    McAdams, Brandon C.; Aiken, George R.; McKnight, Diane M.; Arnold, William A.; Chin, Yu-Ping

    2018-01-01

    We reassessed the molecular weight of dissolved organic matter (DOM) determined by high pressure size exclusion chromatography (HPSEC) using measurements made with different columns and various generations of polystyrenesulfonate (PSS) molecular weight standards. Molecular weight measurements made with a newer generation HPSEC column and PSS standards from more recent lots are roughly 200 to 400 Da lower than initial measurements made in the early 1990s. These updated numbers match DOM molecular weights measured by colligative methods and fall within a range of values calculated from hydroxyl radical kinetics. These changes suggest improved accuracy of HPSEC molecular weight measurements that we attribute to improved accuracy of PSS standards and changes in the column packing. We also isolated DOM from wetlands in the Prairie Pothole Region (PPR) using XAD-8, a cation exchange resin, and PPL, a styrene-divinylbenzene media, and observed little difference in molecular weight and specific UV absorbance at 280 nm (SUVA280) between the two solid phase extraction resins, suggesting they capture similar DOM moieties. PPR DOM also showed lower SUVA280 at similar weights compared to DOM isolates from a global range of environments, which we attribute to oxidized sulfur in PPR DOM that would increase molecular weight without affecting SUVA280.

  7. High Pressure Size Exclusion Chromatography (HPSEC) Determination of Dissolved Organic Matter Molecular Weight Revisited: Accounting for Changes in Stationary Phases, Analytical Standards, and Isolation Methods.

    PubMed

    McAdams, Brandon C; Aiken, George R; McKnight, Diane M; Arnold, William A; Chin, Yu-Ping

    2018-01-16

    We reassessed the molecular weight of dissolved organic matter (DOM) determined by high pressure size exclusion chromatography (HPSEC) using measurements made with different columns and various generations of polystyrenesulfonate (PSS) molecular weight standards. Molecular weight measurements made with a newer generation HPSEC column and PSS standards from more recent lots are roughly 200 to 400 Da lower than initial measurements made in the early 1990s. These updated numbers match DOM molecular weights measured by colligative methods and fall within a range of values calculated from hydroxyl radical kinetics. These changes suggest improved accuracy of HPSEC molecular weight measurements that we attribute to improved accuracy of PSS standards and changes in the column packing. We also isolated DOM from wetlands in the Prairie Pothole Region (PPR) using XAD-8, a cation exchange resin, and PPL, a styrene-divinylbenzene media, and observed little difference in molecular weight and specific UV absorbance at 280 nm (SUVA 280 ) between the two solid phase extraction resins, suggesting they capture similar DOM moieties. PPR DOM also showed lower SUVA 280 at similar weights compared to DOM isolates from a global range of environments, which we attribute to oxidized sulfur in PPR DOM that would increase molecular weight without affecting SUVA 280 .

  8. A tunable pH-sensing system based on Ag nanoclusters capped by hyperbranched polyethyleneimine with different molecular weights.

    PubMed

    Qu, Fei; Zou, Xuan; Kong, Rongmei; You, Jinmao

    2016-01-01

    In this assay, a tunable pH sensing system was developed based on Ag nanoclusters (Ag NCs) capped by hyperbranched polyethyleneimine (PEI) with different molecular weights (abbreviated as Ag NC-PEIs). For instance, when the molecular weight of PEI was 600 or 1800, the fluorescence intensities of Ag NCs exhibited a linear fashion over the pH range 4.10-7.96; when the molecular weight of PEI was 25,000, the pH linear range was from 4.78 to 7.96; when the molecular weight of PEI was 70,000, the pH linear range was 6.09-8.95. According to the molecular weight of PEI 600/1800, 25,000, and 70,000, the color change point was pH 4.10-4.78, 5.33-6.09, and 6.09-6.80, respectively. Therefore, Ag NC-PEI 600 and 1800 were proper to acid conditions; Ag NC-PEI 25,000 was sensitive to weak acid media; while Ag NC-PEI 70,000 was adapted to neutral solution. The tunable and selective color change points brought an excellent feature of Ag NC-PEIs as visual pH indicators, which was flexible and applicable to a variety of environments. Besides, the ratios of absorbance at 415 nm and 268 nm of Ag NCs also showed linear relationships with pH variations. Therefore, there were three ways of this system for sensing pH values, including fluorescence assay, ultraviolet-visible measurement, and visual detection, suggesting that this tunable pH-sensing platform was more feasible, reliable, and accurate. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Effect of frozen storage on molecular weight, size distribution and conformation of gluten by SAXS and SEC-MALLS.

    PubMed

    Zhao, Lei; Li, Lin; Liu, Guo-Qin; Liu, Xing-Xun; Li, Bing

    2012-06-12

    In this study, the effects of frozen (-18 °C) storage time on molecular weight, size distribution, conformation, free amino groups and free sulfhydryl groups of gluten were studied by small-angle X-ray scattering (SAXS), multi-angle laser light scattering (MALLS) in conjunction with a size exclusion chromatography (SEC) and spectrophotometrically. The results showed that the gluten dissolved in 50 mM acetic acid appeared to be similar to quasi-spherical of the chain conformation and the slope of the conformation plot decreased during the storage. Both the molecular weight and radius of gyration of the frozen gluten decreased with the storage time showing a depolymerization in the high molecular weight fraction of gluten (10(5) Da ~ 10(9) Da). Therefore, at constant molecular weight the change of the chain conformation did not show a clear correlation with the storage time. The free amino groups content changed little and the free sulfhydryl groups content of the gluten increased from 9.8 μmol/g for the control to 12.87 μmol/g for 120-day-stored gluten, indicating that the water redistribution and ice recrystallization lead to the breakage of the disulphide bonds and may be one of the reasons for the depolymerization of gluten polymer.

  10. Controlling Internal Organization of Multilayer Poly(methacrylic acid) Hydrogels with Polymer Molecular Weight

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozlovskaya, Veronika; Zavgorodnya, Oleksandra; Ankner, John F.

    Here, we report on tailoring the internal architecture of multilayer-derived poly(methacrylic acid) (PMAA) hydrogels by controlling the molecular weight of poly(N-vinylpyrrolidone) (PVPON) in hydrogen-bonded (PMAA/PVPON) layer-by-layer precursor films. The hydrogels are produced by cross-linking PMAA in the spin-assisted multilayers followed by PVPON release. We found that the thickness, morphology, and architecture of hydrogen-bonded films and the corresponding hydrogels are significantly affected by PVPON chain length. For all systems, an increase in PVPON molecular weight from M w = 2.5 to 1300 kDa resulted in increased total film thickness. We also show that increasing polymer M w smooths the hydrogen-bonded filmmore » surfaces but roughens those of the hydrogels. Using deuterated dPMAA marker layers in neutron reflectometry measurements, we found that hydrogen-bonded films reveal a high degree of stratification which is preserved in the cross-linked films. We observed dPMAA to be distributed more widely in the hydrogen-bonded films prepared with small M w PVPON due to the greater mobility of short-chain PVPON. Furthermore, these variations in the distribution of PMAA are erased after cross-linking, resulting in a distribution of dPMAA over about two bilayers for all M w but being somewhat more widely distributed in the films templated with higher M w PVPON. Finally, our results yield new insights into controlling the organization of nanostructured polymer networks using polymer molecular weight and open opportunities for fabrication of thin films with well-organized architecture and controllable function.« less

  11. Controlling Internal Organization of Multilayer Poly(methacrylic acid) Hydrogels with Polymer Molecular Weight

    DOE PAGES

    Kozlovskaya, Veronika; Zavgorodnya, Oleksandra; Ankner, John F.; ...

    2015-11-16

    Here, we report on tailoring the internal architecture of multilayer-derived poly(methacrylic acid) (PMAA) hydrogels by controlling the molecular weight of poly(N-vinylpyrrolidone) (PVPON) in hydrogen-bonded (PMAA/PVPON) layer-by-layer precursor films. The hydrogels are produced by cross-linking PMAA in the spin-assisted multilayers followed by PVPON release. We found that the thickness, morphology, and architecture of hydrogen-bonded films and the corresponding hydrogels are significantly affected by PVPON chain length. For all systems, an increase in PVPON molecular weight from M w = 2.5 to 1300 kDa resulted in increased total film thickness. We also show that increasing polymer M w smooths the hydrogen-bonded filmmore » surfaces but roughens those of the hydrogels. Using deuterated dPMAA marker layers in neutron reflectometry measurements, we found that hydrogen-bonded films reveal a high degree of stratification which is preserved in the cross-linked films. We observed dPMAA to be distributed more widely in the hydrogen-bonded films prepared with small M w PVPON due to the greater mobility of short-chain PVPON. Furthermore, these variations in the distribution of PMAA are erased after cross-linking, resulting in a distribution of dPMAA over about two bilayers for all M w but being somewhat more widely distributed in the films templated with higher M w PVPON. Finally, our results yield new insights into controlling the organization of nanostructured polymer networks using polymer molecular weight and open opportunities for fabrication of thin films with well-organized architecture and controllable function.« less

  12. Isoleucine epimerization in the high-molecular-weight fraction of pleistocene Arctica

    NASA Astrophysics Data System (ADS)

    Kaufman, Darrell S.; Sejrup, Hans-Petter

    The extent of amino acid racemization, as traditionally determined in the entire (total acid hydrolysate) pool of amino acids comprising the organic remains of fossils, is a function of the integrated effects of a complex diagenetic reaction network. We investigated the possibility that some of the complications involved in protein diagenesis might be circumvented by isolating one component of the reaction network and studying the extent of racemization in that fraction alone. We used gel-filtration to extract the high-molecular-weight (HMW) fraction of proteinaceous matter from fossil and modem molluscan shells. This fraction contains the largest (ca. > 15,000 MW), most-pristine macromolecules and has been less affected by diagenesis than the more-degraded, lower molecular-weight fractions. Variations in the extent of racemization (isoleucine epimerization; alle/Ile) measured in the HMW fraction of subsamples taken along cross sections of Arctica shells from two interglacial sites, Bø and Fjøsanger, southwestern Norway, are within the range of analytical uncertainty [coefficient of variation (cv) = 5-8%], despite the strong gradient (cv = 20-24%) in alle/Ile of the total amino acid population. Because there is no age difference across a shell, this finding supports the idea that the HMW fraction contains more geochronologically reliable proteinaceous matter than the total amino acid pool. Weighted mean alle/Ile ratios in the HMW fraction of aliquots of powdered sample from the two shells overlap at ± 1σ, despite significantly different alle/Ile ratios in the total amino acid population of some shells from the two sites. The difference in alle/Ile ratios in the total population is attributed to a greater proportion of low-molecular-weight (ca. 300 MW), and hence, extensively epimerized molecules measured in gel-filtered samples from the Fjøsanger shell. Because the rate of epimerization in the HMW fraction is much lower than in the total population, the

  13. Dextran: Influence of Molecular Weight in Antioxidant Properties and Immunomodulatory Potential.

    PubMed

    Soeiro, Vinicius C; Melo, Karoline R T; Alves, Monique G C F; Medeiros, Mayara J C; Grilo, Maria L P M; Almeida-Lima, Jailma; Pontes, Daniel L; Costa, Leandro S; Rocha, Hugo A O

    2016-08-19

    Dextrans (α-d-glucans) extracted from Leuconostoc mesenteroides, with molecular weights (MW) of 10 (D10), 40 (D40) and 147 (D147) kDa, were evaluated as antioxidant, anticoagulant and immunomodulatory drugs for the first time. None presented anticoagulant activity. As for the antioxidant and immunomodulatory tests, a specific test showed an increase in the dextran activity that was proportional to the increase in molecular weight. In a different assay, however, activity decreased or showed no correlation to the MW. As an example, the reducing power assay showed that D147 was twice as potent as other dextrans. On the other hand, all three samples showed similar activity (50%) when it came to scavenging the OH radical, whereas only the D10 sample showed sharp activity (50%) when it came to scavenging the superoxide ion. D40 was the single dextran that presented with immunomodulatory features since it stimulated the proliferation (~50%) of murine macrophages (RAW 264.7) and decreased the release of nitric oxide (~40%) by the cells, both in the absence and presence of lipopolysaccharides (LPS). In addition, D40 showed a greater scavenging activity (50%) for the hydrogen peroxide, which caused it to also be the more potent dextran when it came to inhibiting lipid peroxidation (70%). These points toward dextrans with a 40 kDa weight as being ideal for antioxidant and immunomodulatory use. However, future studies with the D40 and other similarly 40 kDa dextrans are underway to confirm this hypothesis.

  14. Dextran: Influence of Molecular Weight in Antioxidant Properties and Immunomodulatory Potential

    PubMed Central

    Soeiro, Vinicius C.; Melo, Karoline R. T.; Alves, Monique G. C. F.; Medeiros, Mayara J. C.; Grilo, Maria L. P. M.; Almeida-Lima, Jailma; Pontes, Daniel L.; Costa, Leandro S.; Rocha, Hugo A. O.

    2016-01-01

    Dextrans (α-d-glucans) extracted from Leuconostoc mesenteroides, with molecular weights (MW) of 10 (D10), 40 (D40) and 147 (D147) kDa, were evaluated as antioxidant, anticoagulant and immunomodulatory drugs for the first time. None presented anticoagulant activity. As for the antioxidant and immunomodulatory tests, a specific test showed an increase in the dextran activity that was proportional to the increase in molecular weight. In a different assay, however, activity decreased or showed no correlation to the MW. As an example, the reducing power assay showed that D147 was twice as potent as other dextrans. On the other hand, all three samples showed similar activity (50%) when it came to scavenging the OH radical, whereas only the D10 sample showed sharp activity (50%) when it came to scavenging the superoxide ion. D40 was the single dextran that presented with immunomodulatory features since it stimulated the proliferation (~50%) of murine macrophages (RAW 264.7) and decreased the release of nitric oxide (~40%) by the cells, both in the absence and presence of lipopolysaccharides (LPS). In addition, D40 showed a greater scavenging activity (50%) for the hydrogen peroxide, which caused it to also be the more potent dextran when it came to inhibiting lipid peroxidation (70%). These points toward dextrans with a 40 kDa weight as being ideal for antioxidant and immunomodulatory use. However, future studies with the D40 and other similarly 40 kDa dextrans are underway to confirm this hypothesis. PMID:27548151

  15. Purification of two high molecular weight proteases from rabbit reticulocyte lysate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hough, R.; Pratt, G.; Rechsteiner, M.

    1987-05-01

    The authors have purified two large proteases from rabbit reticulocyte lysate. The enzymes are so similar in their chromatographic behavior that each is the only significant contaminant of the other during the final stages of purification. At pH 7.8, both hydrolyze /sup 125/I-..cap alpha..-casein and 4-methylcoumaryl-7-amide (MCA) derivatives with tyrosine, phenylalanine or arginine at the P/sub 1/ position. The larger, ATP-dependent enzyme degrades ubiquitin-lysozyme conjugates, but it does not degrade unmodified lysozyme. Hydrolysis of Suc-Leu-Leu-Val-Tyr-MCA by this enzyme is also stimulated two-fold in the presence of ATP. The protease has a molecular weight of 950,000 based on sedimentation, gel filtrationmore » and non-denaturing PAGE. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the protease is composed of a number of subunits with molecular masses between 32 and 110 kDa. Densitometric analysis showed equivalent amounts of the two larger chains, and the presence of one copy of each in the native enzyme would be consistent with an M/sub r/ of 950,000. The smaller protease has a molecular weight of 700,000 and is composed of 8 to 10 subunits ranging from 21,000 to 32,000. It cleaves ubiquitin-lysozyme conjugates only slightly, and hydrolysis of conjugates or fluorogenic peptide substrates is not stimulated by ATP. This protease appears similar, if not identical, to the multicatalytic protease complex first purified by Wilk and Orlowski.« less

  16. Effects and mechanism of dual-frequency power ultrasound on the molecular weight distribution of corn gluten meal hydrolysates.

    PubMed

    Jin, Jian; Ma, Haile; Wang, Bei; Yagoub, Abu El-Gasim A; Wang, Kai; He, Ronghai; Zhou, Cunshan

    2016-05-01

    The impact of dual-frequency power ultrasound (DPU) on the molecular weight distribution (MWD) of corn gluten meal (CGM) hydrolysates and its mechanism were investigated in the present study. The mechanism was studied from aspects of structural and nano-mechanical characteristics of the major protein fractions of CGM, viz. zein and glutelin. The results of molecular weight distribution indicated that DPU pretreatment of CGM was beneficial to the preparation of peptides with molecular weights of 200-1000Da. Moreover, FTIR spectral analysis and atomic force microscopy characterization showed that the DPU pretreatment changed the contents of secondary structure of proteins, decreased the particle height and surface roughness of glutelin, reduced the Young's modulus and stiffness of zein while increased its adhesion force. In conclusion, DPU pretreatment of proteins before proteolysis is an efficient alternative method to produce short-chain peptides because of its positive effects originating from acoustic cavitation on the molecular conformation, nano-structures and nano-mechanical properties of proteins as well. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Selenium Polysaccharide SPMP-2a from Pleurotus geesteranus Alleviates H2O2-Induced Oxidative Damage in HaCaT Cells

    PubMed Central

    Zhou, Cheng; Huang, Shoucheng

    2017-01-01

    Selenium- (Se-) enriched polysaccharide SPMP-2a was extracted and purified from Pleurotus geesteranus. SPMP-2a is a white flocculent polysaccharide and soluble in water, with a molecular weight of 3.32 × 104 Da. Fourier transform infrared spectroscopy spectral analysis indicated that it belongs to an acid Se polysaccharide with α-D-glucopyranoside bond. The effects of Se polysaccharide SPMP-2a in P. geesteranus against hydrogen peroxide- (H2O2-) induced oxidative damage in human keratinocytes (HaCaT) cells were evaluated further. Reduced cell viability and elevated apoptotic rates in H2O2-treated HaCaT cells were proven by MTT and flow cytometry assays. Hoechst 33342 staining revealed chromatin condensations in the nuclei of HaCaT cells. However, with the addition of SPMP-2a, cell viability improved, nuclear condensation declined, and cell apoptotic rates dropped significantly. Ultrastructural observation consistently revealed that treatments with SPMP-2a reduced the number of swollen and vacuolar mitochondria in the H2O2-treated cells compared with the controls. Furthermore, SPMP-2a increased the superoxide dismutase (SOD) and catalase (CAT) activities and reduced reactive oxygen species (ROS) content. Western blot analysis showed that SPMP-2a treatment effectively increased B-cell lymphoma 2 (Bcl-2) protein expression. Therefore, SPMP-2a could improve cellular antioxidant enzyme activities, reduce ROS levels, and increase Bcl-2 protein expression levels, thereby reducing cell apoptosis and protecting HaCaT cells from H2O2-induced oxidative damage. PMID:28293636

  18. Hofmeister effect on thermo-responsive poly(propylene oxide): Role of polymer molecular weight and concentration.

    PubMed

    Moghaddam, Saeed Zajforoushan; Thormann, Esben

    2016-03-01

    Although a vast amount of research has been dedicated to investigate the Hofmeister effect on the stability of polymer solutions, a clear understanding of the role of polymer properties in this phenomenon is still missing. Here, the Hofmeister effect of NaCl (destabilizing) and NaSCN (stabilizing) salts on aqueous solutions of poly(propylene oxide) (PPO) is studied. Four different molecular weights of PPO were investigated, to determine how the variation in the polymer coil size affects the Hofmeister effect. The investigation was further conducted for different PPO concentrations, in order to understand the effect of inter-chain interactions on the response to addition of salt. The temperature-driven phase separation of the solutions was monitored by differential scanning calorimetry, which provides the precise value of the phase separation temperature, as well as the enthalpy change accompanied with the transition. It was observed that increasing the molecular weight weakens the effect of the both salts, which is interpreted in terms of a scaling law between the molecular weight and the accessible surface area of the polymers. Increasing the PPO concentration further diminished the NaCl effect, but amplified the NaSCN effect. This difference is attributed to an electrostatic stabilization mechanism in the case of NaSCN. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Hyaluronan up-regulates growth and invasion of trophoblasts in an autocrine manner via PI3K/AKT and MAPK/ERK1/2 pathways in early human pregnancy.

    PubMed

    Zhu, R; Huang, Y-H; Tao, Y; Wang, S-C; Sun, Ch; Piao, H-L; Wang, X-Q; Du, M-R; Li, D-J

    2013-09-01

    As one of the key molecules in the extracellular matrix in human conceptus, hyaluronan (HA) has been receiving particular attention. Here, we have investigated the expression and regulation of different molecular weight HA on the biological behaviors of primary human trophoblasts during the first trimester of pregnancy. The expression of HA and HA synthetase (HAS) by human first trimester trophoblasts was analyzed in placentae from normal pregnancy or miscarriage by immunochemistry and real-time RT-PCR, respectively. ELISA was used to measure the secretion of HA by primary trophoblasts. The effects of HA on the proliferation, apoptosis and invasiveness of trophoblasts were examined. We also investigated the signaling pathways involved in HA activation in human trophoblasts. The higher HAS2 expression and HA secretion were observed in normal villi than that of miscarriage, and the primary trophoblasts secreted HA continuously. High molecular weight HA (HMW-HA) and medium molecular weight HA (MMW-HA) promoted proliferation and invasiveness while inhibited apoptosis of trophoblasts. However, low molecular weight HA (LMW-HA) had no obvious effect on the growth or invasiveness of human trophoblasts. In addition, HMW-HA showed more efficiently than MMW-HA on the growth while MMW-HA displayed a more obvious effect on the invasiveness of trophoblasts than HMW-HA. HMW-HA activated PI3K/AKT and MAPK/ERK1/2 signaling pathways in trophoblasts. Blocking PI3K/AKT or MAPK/ERK1/2 signaling inhibited the HA-upregulated growth and invasiveness of human trophoblasts. Our results suggest that higher level and greater molecular mass of HA can promote trophoblast growth and invasion in an autocrine manner, which was beneficial to placentation and maintenance of human early pregnancy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Post-exercise ingestion of a unique, high molecular weight glucose polymer solution improves performance during a subsequent bout of cycling exercise.

    PubMed

    Stephens, Francis B; Roig, Marc; Armstrong, Gerald; Greenhaff, Paul L

    2008-01-15

    The aim of the present study was to determine the effect of post-exercise ingestion of a unique, high molecular weight glucose polymer solution, known to augment gastric emptying and post-exercise muscle glycogen re-synthesis, on performance during a subsequent bout of intense exercise. On three randomized visits, eight healthy men cycled to exhaustion at 73.0% (s = 1.3) maximal oxygen uptake (90 min, s = 15). Immediately after this, participants consumed a one-litre solution containing sugar-free flavoured water (control), 100 g of a low molecular weight glucose polymer or 100 g of a very high molecular weight glucose polymer, and rested on a bed for 2 h. After recovery, a 15-min time-trial was performed on a cycle ergometer, during which work output was determined. Post-exercise ingestion of the very high molecular weight glucose polymer solution resulted in faster and greater increases in blood glucose (P < 0.001) and serum insulin (P < 0.01) concentrations than the low molecular weight glucose polymer solution, and greater work output during the 15-min time-trial (164.1 kJ, s = 21.1) than both the sugar-free flavoured water (137.5 kJ, s = 24.2; P < 0.05) and the low molecular weight glucose polymer (149.4 kJ, s = 21.8; P < 0.05) solutions. These findings could be of practical importance for athletes wishing to optimize performance by facilitating rapid re-synthesis of the muscle glycogen store during recovery following prolonged sub-maximal exercise.

  1. Molecular interactions in high conductive gel electrolytes based on low molecular weight gelator.

    PubMed

    Bielejewski, Michał; Łapiński, Andrzej; Demchuk, Oleg

    2017-03-15

    Organic ionic gel (OIG) electrolytes, also known as gel electrolytes or ionogels are one example of modern functional materials with the potential to use in wide range of electrochemical applications. The functionality of OIGs arises from the thermally reversible solidification of electrolytes or ionic liquids and their superior ionic conductivity. To understand and to predict the properties of these systems it is important to get the knowledge about the interactions on molecular level between the solid gelator matrix and the electrolyte solution. This paper reports the spectroscopic studies (FT-IR, UV-Vis and Raman) of the gel electrolyte based on low molecular weight gelator methyl-4,6-O-(p-nitrobenzylidene)-α-d-glucopyranoside and solution of quaternary ammonium salt, tetramethylammonium bromide. The solidification process was based on sol-gel technique. Below characteristic temperature, defined as gel to sol phase transition temperature, T gs , the samples were solid-like and showed high conductivity values of the same order as observed for pure liquid electrolytes. The investigations were performed for a OIGs in a wide range of molar concentrations of the electrolyte solution. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. In vitro and in vivo gene delivery using chitosan/hyaluronic acid nanoparticles: Influences of molecular mass of hyaluronic acid and lyophilization on transfection efficiency.

    PubMed

    Sato, Toshinori; Nakata, Mitsuhiro; Yang, Zhihong; Torizuka, Yu; Kishimoto, Satoko; Ishihara, Masayuki

    2017-08-01

    Lyophilization is an effective method for preserving nonviral gene vectors. To improve the stability and transgene expression of lyophilized plasmid DNA (pDNA) complexes, we coated the surfaces of pDNA/chitosan complexes with hyaluronic acid (HA) of varying molecular masses. The transgene expression of pDNA/chitosan/HA ternary complexes was characterized in vitro and in vivo. pDNA complexes were lyophilized overnight and the resultant products with spongy, porous consistencies were stored at -30, 4 or 25°C for 2 weeks. Rehydrated complexes were characterized using gel retardation assays, aiming to confirm complex formation, measure particle size and evaluate zeta potential, as well as conduct luciferase gene reporter assays. The anti-tumor effects of pDNA ternary complexes were evaluated using suicide gene (pTK) coding thymidine kinase in Huh7-implanted mice. Transfection efficiencies of pDNA/chitosan/HA ternary complexes were dependent on the average molecular masses of HA. The coating of pDNA/chitosan complexes with HA maintained the cellular transfection efficiencies of lyophilized pDNA ternary complexes. Furthermore, intratumoral injection of lyophilized, rehydrated pDNA ternary complexes into tumor-bearing mice showed a significant suppression of tumor growth. The coating of pDNA/chitosan complexes with high-molecular-weight HA augmented the stability and cellular transfection ability of the complexes after lyophilization-rehydration. Copyright © 2017 John Wiley & Sons, Ltd.

  3. Structural and biochemical characterization of the protease domain of the mosaic botulinum neurotoxin type HA.

    PubMed

    Lam, Kwok-Ho; Sikorra, Stefan; Weisemann, Jasmin; Maatsch, Hannah; Perry, Kay; Rummel, Andreas; Binz, Thomas; Jin, Rongsheng

    2018-04-23

    The extreme toxicity of botulinum neurotoxins (BoNTs) relies on their specific cleavage of SNARE proteins, which eventually leads to muscle paralysis. One newly identified mosaic toxin, BoNT/HA (aka H or FA), cleaves VAMP-2 at a unique position between residues L54 and E55, but the molecular basis underlying VAMP-2-recognition of BoNT/HA remains poorly characterized. Here, we report a ∼2.09 Å resolution crystal structure of the light chain protease domain of BoNT/HA (LC/HA). Structural comparison between LC/HA and LC of BoNT/F1 (LC/F1) reveals distinctive hydrophobic and electrostatic features near the active sites, which may explain their different VAMP-2 cleavage sites. When compared to BoNT/F5 that cleaves VAMP-2 at the same site as BoNT/HA, LC/HA displays higher affinity for VAMP-2, which could be caused by their different surface charge properties surrounding a VAMP-2 exosite-binding cleft. Furthermore, systematic mutagenesis studies on VAMP-2 and structural modeling demonstrate that residues R47 to K59 spanning the cleavage site in VAMP-2 may adopt a novel extended conformation when interacting with LC/HA and LC/F5. Taken together, our structure provides new insights into substrate-recognition of BoNT/HA and paves the way for rational design of small molecule or peptide inhibitors against LC/HA.

  4. Novel low-molecular-weight-gelator-based microcapsules with controllable morphology and temperature responsiveness.

    PubMed

    Patel, Ashok R; Remijn, Caroline; Heussen, Patricia C M; den Adel, Ruud; Velikov, Krassimir P

    2013-02-04

    A new type of microcapsules with controllable morphology is presented. They are based on a low-molecular-weight gelator and can be switched from temperature-stable to temperature-responsive by simply modifying the preparation method. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Anticancer, antioxidant, and antibacterial activities of low molecular weight bioactive subfractions isolated from cultures of wood degrading fungus Cerrena unicolor

    PubMed Central

    Jaszek, Magdalena; Stefaniuk, Dawid; Ciszewski, Tomasz; Matuszewski, Łukasz

    2018-01-01

    The aim of this study is to investigate in vitro the anticancer, antioxidant, and antibacterial activities of three low molecular weight subfractions I, II and III isolated from secondary metabolites produced by the wood degrading fungus Cerrena unicolor. The present study demonstrated that the low molecular weight subfractions III exhibited the strongest inhibitory activity towards breast carcinoma cells MDA-MB-231, prostatic carcinoma cells PC3, and breast cancer cells MCF7 with the half-maximal inhibitory concentration (IC50) value of 52,25 μg/mL, 60,66 μg/mL, and 54,92 μg/mL, respectively. The highest percentage of inhibition was noted at a concentration of 300 μg/mL in all the examined tumor lines. A significant percentage (59.08%) of ex-LMSIII inhibition of the MDA-MB-231 tumor line was reached at a concentration of 15 μg/ml, while the concentration applied did not affect normal human fibroblast cells. The low molecular weight subfraction III was the most effective and additionally showed the highest free radical 1,1-diphenyl-2-picryl-hydrazyl scavenging activity (IC50 20.39 μg/mL) followed by the low molecular weight subfraction I (IC50 64.14 μg/mL) and II (IC50 49.22 μg/mL). The antibacterial activity of the tested preparations was evaluated against three microorganisms: Bacillus subtilis, Staphylococcus aureus, and Escherichia coli. The MIC minimal inhibitory concentration (MIC) values for the low molecular weight subfraction I, II, and III showed a stronger inhibition effect on S. aureus than on B. subtilis and E. coli cells. The MIC values for the low molecular weight subfraction II against S. aureus, B. subtilis, and E. coli were 6.25, 12.5, and 100 mg/mL, respectively. PMID:29874240

  6. Serum cholesterol reduction by feeding a high-cholesterol diet containing a lower-molecular-weight polyphenol fraction from peanut skin.

    PubMed

    Tamura, Tomoko; Inoue, Naoko; Shimizu-Ibuka, Akiko; Tadaishi, Miki; Takita, Toshichika; Arai, Soichi; Mura, Kiyoshi

    2012-01-01

    Feeding a high-cholesterol diet with a water-soluble peanut skin polyphenol fraction to rats reduced their plasma cholesterol level, with an increase in fecal cholesterol excretion. The hypocholesterolemic effect was greater with the lower-molecular-weight rather than higher-molecular-weight polyphenol fraction. This effect was possibly due to some oligomeric polyphenols which reduced the solubility of dietary cholesterol in intestinal bile acid-emulsified micelles.

  7. Effects of temperature and solvent condition on phase separation induced molecular fractionation of gum arabic/hyaluronan aqueous mixtures.

    PubMed

    Hu, Bing; Han, Lingyu; Gao, Zhiming; Zhang, Ke; Al-Assaf, Saphwan; Nishinari, Katsuyoshi; Phillips, Glyn O; Yang, Jixin; Fang, Yapeng

    2018-05-14

    Effects of temperature and solvent condition on phase separation-induced molecular fractionation of gum arabic/hyaluronan (GA/HA) mixed solutions were investigated. Two gum arabic samples (EM10 and STD) with different molecular weights and polydispersity indices were used. Phase diagrams, including cloud and binodal curves, were established by visual observation and GPC-RI methods. The molecular parameters of control and fractionated GA, from upper and bottom phases, were measured by GPC-MALLS. Fractionation of GA increased the content of arabinogalactan-protein complex (AGP) from ca. 11% to 18% in STD/HA system and 28% to 55% in EM10/HA system. The phase separation-induced molecular fractionation was further studied as a function of temperature and solvent condition (varying ionic strength and ethanol content). Increasing salt concentration (from 0.5 to 5 mol/L) greatly reduced the extent of phase separation-induced fractionation. This effect may be ascribed to changes in the degree of ionization and shielding of the acid groups. Increasing temperature (from 4 °C to 80 °C) also exerted a significant influence on phase separation-induced fractionation. The best temperature for GA/HA mixture system was 40 °C while higher temperature negatively affected the fractionation due to denaturation and possibly degradation in mixed solutions. Increasing the ethanol content up to 30% showed almost no effect on the phase separation induced fractionation. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Phase behaviour of oat β-glucan/sodium caseinate mixtures varying in molecular weight.

    PubMed

    Agbenorhevi, Jacob K; Kontogiorgos, Vassilis; Kasapis, Stefan

    2013-05-01

    The isothermal phase behaviour at 5 °C of mixtures of sodium caseinate and oat β-glucan isolates varying in molecular weight (MW) was investigated by means of phase diagram construction, rheometry, fluorescence microscopy and electrophoresis. Phase diagrams indicated that the compatibility of the β-glucan/sodium caseinate system increases as β-glucan MW decreases. Images of mixtures taken at various biopolymer concentrations revealed phase separated domains. Results also revealed that at the state of thermodynamic equilibrium, lower MW samples yielded considerable viscosity in the mixture. At equivalent hydrodynamic volume of β-glucan in the mixtures, samples varying in molecular weight exhibited similar flow behaviour. A deviation dependent on the protein concentration was observed for the high MW sample in the concentrated regime due to the size of β-glucan aggregates formed. Results demonstrate that by controlling the structural features of β-glucan in mixtures with sodium caseinate, informed manipulation of rheological properties in these systems can be achieved. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. High-Flow, High-Molecular-Weight, Addition-Curing Polyimides

    NASA Technical Reports Server (NTRS)

    Chuang, Kathy C.; Vannucci, Raymond D.

    1993-01-01

    In developed series of high-flow PMR-type polyimide resins, 2, 2'-bis(trifluoromethyl)-4, 4'-diaminobiphenyl (BTDB) substituted for 1, 4-pheylenediamine in PMR-II formulation. Polyimides designated either as PMR-12F when nadic ester (NE) end caps used, or as V-CAP-12F when p-aminostyrene end caps used. High-molecular-weight, addition-curing polyimides based on BTBD and HFDE highly processable high-temperature matrix resins used to make composite materials with excellent retention of properties during long-term exposure to air at 650 degrees F or higher temperature. Furthermore, 12F addition-curing polyimides useful for electronic applications; fluorinated rigid-rod polyimides known to exhibit low thermal expansion coefficients as well as low absorption of moisture.

  10. Preparation of Low Molecular Weight Gelatin Using Microwave Discharge Electrodeless Lamp/TiO2 Photocatalyst Hybrid System.

    PubMed

    Lee, Do-Jin; Kim, Hangun; Park, Young-Kwon; Kim, Byung Hoon; Lee, Heon; Jungf, Sana-Chul

    2016-02-01

    In this study, an MDEL/TiO2 photocatalyst hybrid system was applied to the production of low molecular weight gelatin. The molecular weight of produed gelatin decreased with increasing microwave intensity and increasing treatment time. The abscission of the chemical bonds between the con- stituents of gelatin by photocatalytic reaction did not alter the characteristics of gelatin. Formation of any by-products due to side reaction was not observed. It is suggested that gelatin was depolymerized by hydroxyl radicals produced during the MDEL/TiO2 photochemical reaction.

  11. Preparation of Low Molecular Weight Heparin by Microwave Discharge Electrodeless Lamp/TiO2 Photo-Catalytic Reaction.

    PubMed

    Lee, Do-Jin; Kim, Byung Hoon; Kim, Sun-Jae; Kim, Jung-Sik; Lee, Heon; Jung, Sang-Chul

    2015-01-01

    An MDEL/TiO2 photo-catalyst hybrid system was applied, for the first time, for the production of low molecular weight heparin. The molecular weight of produed heparin decreased with increasing microwave intensity and treatment time. The abscission of the chemical bonds between the constituents of heparin by photo-catalytic reaction did not alter the characteristics of heparin. Formation of by-products due to side reaction was not observed. It is suggested that heparin was depolymerized by active oxygen radicals produced during the MDEL/TiO2 photo-chemical reaction.

  12. Ring-opening polymerization of 19-electron [2]cobaltocenophanes: a route to high-molecular-weight, water-soluble polycobaltocenium polyelectrolytes.

    PubMed

    Mayer, Ulrich F J; Gilroy, Joe B; O'Hare, Dermot; Manners, Ian

    2009-08-05

    Water-soluble, high-molecular-weight polycobaltocenium polyelectrolytes have been prepared by ring-opening polymerization (ROP) techniques. Anionic polymerization of a strained 19-electron dicarba[2]cobaltocenophane followed by oxidation in the presence of ammonium chloride resulted in the formation of oligomers with up to nine repeat units. Thermal ROP of dicarba[2]cobaltocenophane followed by oxidation in the presence of ammonium nitrate resulted in the formation of high-molecular-weight polycobaltocenium nitrate, a redox-active cobalt-containing polyelectrolyte.

  13. Unexpected molecular weight effect in polymer nanocomposites

    DOE PAGES

    Cheng, Shiwang; Holt, Adam P.; Wang, Huiqun; ...

    2016-01-22

    Here, the properties of the interfacial layer between the polymer matrix and nanoparticles largely determine the macroscopic properties of polymer nanocomposites (PNCs). Although the static thickness of the interfacial layer was found to increase with the molecular weight (MW), the influence of MW on segmental relaxation and the glass transition in this layer remains to be explored. In this Letter, we show an unexpected MW dependence of the interfacial properties in PNC with attractive polymer-nanoparticle interactions: the thickness of the interfacial layer with hindered segmental relaxation decreases as MW increases, in sharp constrast to theoretical predictions. Further analyses reveal amore » reduction in mass density of the interfacial layer with increasing MW, which can explain these unexpected dynamic effects. Our observations call for a significant revision of the current understandings of PNCs and suggest interesting ways to tailor their properties.« less

  14. On the use of hydroxyl radical kinetics to assess the number-average molecular weight of dissolved organic matter.

    PubMed

    Appiani, Elena; Page, Sarah E; McNeill, Kristopher

    2014-10-21

    Dissolved organic matter (DOM) is involved in numerous environmental processes, and its molecular size is important in many of these processes, such as DOM bioavailability, DOM sorptive capacity, and the formation of disinfection byproducts during water treatment. The size and size distribution of the molecules composing DOM remains an open question. In this contribution, an indirect method to assess the average size of DOM is described, which is based on the reaction of hydroxyl radical (HO(•)) quenching by DOM. HO(•) is often assumed to be relatively unselective, reacting with nearly all organic molecules with similar rate constants. Literature values for HO(•) reaction with organic molecules were surveyed to assess the unselectivity of DOM and to determine a representative quenching rate constant (k(rep) = 5.6 × 10(9) M(-1) s(-1)). This value was used to assess the average molecular weight of various humic and fulvic acid isolates as model DOM, using literature HO(•) quenching constants, kC,DOM. The results obtained by this method were compared with previous estimates of average molecular weight. The average molecular weight (Mn) values obtained with this approach are lower than the Mn measured by other techniques such as size exclusion chromatography (SEC), vapor pressure osmometry (VPO), and flow field fractionation (FFF). This suggests that DOM is an especially good quencher for HO(•), reacting at rates close to the diffusion-control limit. It was further observed that humic acids generally react faster than fulvic acids. The high reactivity of humic acids toward HO(•) is in line with the antioxidant properties of DOM. The benefit of this method is that it provides a firm upper bound on the average molecular weight of DOM, based on the kinetic limits of the HO(•) reaction. The results indicate low average molecular weight values, which is most consistent with the recent understanding of DOM. A possible DOM size distribution is discussed to

  15. Activation of the Low Molecular Weight Protein Tyrosine Phosphatase in Keratinocytes Exposed to Hyperosmotic Stress

    PubMed Central

    Cavalheiro, Renan P.; Machado, Daisy; Cruz, Bread L. G.; Paredes-Gamero, Edgar J.; Gomes-Marcondes, Maria C. C.; Zambuzzi, Willian F.; Vasques, Luciana; Nader, Helena B.; Souza, Ana Carolina S.; Justo, Giselle Z.

    2015-01-01

    Herein, we provide new contribution to the mechanisms involved in keratinocytes response to hyperosmotic shock showing, for the first time, the participation of Low Molecular Weight Protein Tyrosine Phosphatase (LMWPTP) activity in this event. We reported that sorbitol-induced osmotic stress mediates alterations in the phosphorylation of pivotal cytoskeletal proteins, particularly Src and cofilin. Furthermore, an increase in the expression of the phosphorylated form of LMWPTP, which was followed by an augment in its catalytic activity, was observed. Of particular importance, these responses occurred in an intracellular milieu characterized by elevated levels of reduced glutathione (GSH) and increased expression of the antioxidant enzymes glutathione peroxidase and glutathione reductase. Altogether, our results suggest that hyperosmostic stress provides a favorable cellular environment to the activation of LMWPTP, which is associated with increased expression of antioxidant enzymes, high levels of GSH and inhibition of Src kinase. Finally, the real contribution of LMWPTP in the hyperosmotic stress response of keratinocytes was demonstrated through analysis of the effects of ACP1 gene knockdown in stressed and non-stressed cells. LMWPTP knockdown attenuates the effects of sorbitol induced-stress in HaCaT cells, mainly in the status of Src kinase, Rac and STAT5 phosphorylation and activity. These results describe for the first time the participation of LMWPTP in the dynamics of cytoskeleton rearrangement during exposure of human keratinocytes to hyperosmotic shock, which may contribute to cell death. PMID:25781955

  16. Honey melanoidins: Analysis of the compositions of the high molecular weight melanoidins exhibiting radical-scavenging activity.

    PubMed

    Brudzynski, Katrina; Miotto, Danielle

    2011-08-01

    Size-exclusion chromatography (SEC) and activity-guided fractionation of honeys allowed the isolation of high molecular weight brown compounds, ranging in size from 66 to 235kDa that exhibited peroxyl radical-scavenging activity. Their concentrations, antioxidant activity and degree of browning increased after heat-treatment of honeys, suggesting that they represent melanoidins. Chemical analysis of melanoidins demonstrated the presence of proteins, polyphenols and oligosaccharides. Heat-treatment caused an increased incorporation of phenolics into high molecular weight melanoidins and drastically decreased the protein content in these fractions with a concomitant appearance of high molecular weight protein-polyphenol complexes of reduced solubility. LC-ESI-MS demonstrated the presence of oligosaccharide moieties, supporting the postulated origin of melanoidins. The changes in the phenolic content of melanoidins from heated honeys were strongly correlated with their oxygen radical absorbance capacity (ORAC) values (R=0.75, p<0.0001), indicating that polyphenols contribute to the antioxidant activity of melanoidins. In summary, honey melanoidins are multi-component polymers consisting of protein-polyphenol-oligosaccharide complexes. A direct interaction between polyphenols and melanoidins resulted in a loss or gain of function for melanoidin antioxidant activity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Effect of hyaluronic acid on the thermogelation and biocompatibility of its blends with methyl cellulose.

    PubMed

    Mayol, Laura; De Stefano, Daniela; De Falco, Francesca; Carnuccio, Rosa; Maiuri, Maria Chiara; De Rosa, Giuseppe

    2014-11-04

    Aim of this work was to investigate the influence of hyaluronic acid (HA) molecular weight on the thermogelation and biocompatibility of its blends with methyl cellulose in view of a possible application in drug delivery and/or wound healing. We found out that it was possible to obtain MC/HA blends showing a rheological behavior typical of a viscous solution at 20 °C and of a weak gel at 37 °C only when blending MC with low molecular weight HA. Moreover, the blends containing low molecular weight HA did not affect human foreskin fetal fibroblasts viability, proliferation and migration. On the contrary, the cell incubation with high molecular weight HA resulted in a marked and significant reduction of cell viability, compared to control cells. Finally, the optimized blends, in terms of rheological properties and biocompatibility, proved to be able to control and prolong bovine serum albumin release by a combined mechanism of platform dissolution and drug diffusion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Molecular and functional characterization of the American cockroach, Periplaneta americana, Rab5: the first exopterygotan low molecular weight ovarian GTPase during oogenesis.

    PubMed

    Elmogy, Mohamed; Mohamed, Amr A; Tufail, Muhammad; Uno, Tomohide; Takeda, Makio

    2017-05-26

    The small Rab GTPases are key regulators of membrane vesicle trafficking. Ovaries of Periplaneta americana (Linnaeus) (Blattodea: Blattidae) have small molecular weight GTP/ATP-binding proteins during early and late vitellogenic periods of oogenesis. However, the identification and characterization of the detected proteins have not been yet reported. Herein, we cloned a cDNA encoding Rab5 from the American cockroach, P. americana, ovaries (PamRab5). It comprises 796 bp, encoding a protein of 213 amino acid residues with a predicted molecular weight of 23.5 kDa. PamRab5 exists as a single-copy gene in the P. americana genome, as revealed by Southern blot analysis. An approximate 2.6 kb ovarian mRNA was transcribed especially at high levels in the previtellogenic ovaries, detected by Northern blot analysis. The muscle and head tissues also showed high levels of PamRab5 transcript. PamRab5 protein was localized, via immunofluorescence labeling, to germline-derived cells of the oocytes, very early during oocyte differentiation. Immunoblotting detected a ∼25 kDa signal as a membrane-associated form revealed after application of detergent in the extraction buffer, and 23 kDa as a cytosolic form consistent with the predicted molecular weight from amino acid sequence in different tissues including ovary, muscles and head. The PamRab5 during late vitellogenic periods is required to regulate the endocytotic machinery during oogenesis in this cockroach. This is the first report on Rab5 from a hemimetabolan, and presents an inaugural step in probing the molecular premises of insect oocyte endocytotic trafficking important for oogenesis and embryonic development. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  19. Differential osteogenic activity of osteoprogenitor cells on HA and TCP/HA scaffold of tissue engineered bone.

    PubMed

    Ng, Angela M H; Tan, K K; Phang, M Y; Aziyati, O; Tan, G H; Isa, M R; Aminuddin, B S; Naseem, M; Fauziah, O; Ruszymah, B H I

    2008-05-01

    Biomaterial, an essential component of tissue engineering, serves as a scaffold for cell attachment, proliferation, and differentiation; provides the three dimensional (3D) structure and, in some applications, the mechanical strength required for the engineered tissue. Both synthetic and naturally occurring calcium phosphate based biomaterial have been used as bone fillers or bone extenders in orthopedic and reconstructive surgeries. This study aims to evaluate two popular calcium phosphate based biomaterial i.e., hydroxyapatite (HA) and tricalcium phosphate/hydroxyapatite (TCP/HA) granules as scaffold materials in bone tissue engineering. In our strategy for constructing tissue engineered bone, human osteoprogenitor cells derived from periosteum were incorporated with human plasma-derived fibrin and seeded onto HA or TCP/HA forming 3D tissue constructs and further maintained in osteogenic medium for 4 weeks to induce osteogenic differentiation. Constructs were subsequently implanted intramuscularly in nude mice for 8 weeks after which mice were euthanized and constructs harvested for evaluation. The differential cell response to the biomaterial (HA or TCP/HA) adopted as scaffold was illustrated by the histology of undecalcified constructs and evaluation using SEM and TEM. Both HA and TCP/HA constructs showed evidence of cell proliferation, calcium deposition, and collagen bundle formation albeit lesser in the former. Our findings demonstrated that TCP/HA is superior between the two in early bone formation and hence is the scaffold material of choice in bone tissue engineering. Copyright 2007 Wiley Periodicals, Inc.

  20. Fluorophore-assisted carbohydrate electrophoresis for the determination of molecular mass of heparins and low-molecular-weight (LMW) heparins.

    PubMed

    Buzzega, Dania; Maccari, Francesca; Volpi, Nicola

    2008-11-01

    We report the use of fluorophore-assisted carbohydrate electrophoresis (FACE) to determine the molecular mass (M) values of heparins (Heps) and low-molecular-weight (LMW)-Hep derivatives. Hep are labeled with 8-aminonaphthalene-1,3,6-trisulfonic acid and FACE is able to resolve each fraction as a discrete band depending on their M. After densitometric acquisition, the migration distance of each Hep standard is acquired and the third-grade polynomial calibration standard curve is determined by plotting the logarithms of the M values as a function of migration ratio. Purified Hep samples having different properties, pharmaceutical Heps and various LMW-Heps were analyzed by both FACE and conventional high-performance size-exclusion liquid chromatography (HPSEC) methods. The molecular weight value on the top of the chromatographic peak (Mp), the number-average Mn, weight-average Mw and polydispersity (Mw/Mn) were examined by both techniques and found to be similar. This approach offers certain advantages over the HPSEC method. The derivatization process with 8-aminonaphthalene-1,3,6-trisulfonic acid is complete after 4 h so that many samples may be analyzed in a day also considering that multiple samples can be run simultaneously and in parallel and that a single FACE analysis requires approx. 15 min. Furthermore, FACE is a very sensitive method as it requires approx. 5-10 microg of Heps, about 10-100-fold lower than samples and standards used in HPSEC evaluation. Finally, the utilization of mini-gels allows the use of very low amounts of reagents with neither expensive equipment nor any complicated procedures having to be applied. This study demonstrates that FACE analysis is a sensitive method for the determination of the M values of Heps and LMW-Heps with possible utilization in virtually any kind of research and development such as quality control laboratories due to its rapid, parallel analysis of multiple samples by means of common and simple largely used

  1. In situ reinforced polymers using low molecular weight compounds

    NASA Astrophysics Data System (ADS)

    Yordem, Onur Sinan

    2011-12-01

    The primary objective of this research is to generate reinforcing domains in situ during the processing of polymers by using phase separation techniques. Low molecular weight compounds were mixed with polymers where the process viscosity is reduced at process temperatures and mechanical properties are improved once the material system is cooled or reacted. Thermally induced phase separation and thermotropic phase transformation of low molar mass compounds were used in isotactic polypropylene (iPP) and poly(ether ether ketone) (PEEK) resins. Reaction induced phase separation was utilized in thermosets to generate anisotropic reinforcements. A new strategy to increase fracture toughness of materials was introduced. Simultaneously, enhancement in stiffness and reduction in process viscosity were also attained. Materials with improved rheological and mechanical properties were prepared by using thermotropic phase transformations of metal soaps in polymers (calcium stearate/iPP). Morphology and thermal properties were studied using WAXS, DSC and SEM. Mechanical and rheological investigation showed significant reduction in process viscosity and substantial improvement in fracture toughness were attained. Effects of molecular architecture of metal soaps were investigated in PEEK (calcium stearate/PEEK and sodium stearate/PEEK). The selected compounds reduced the process viscosity due to the high temperature co-continuous morphology of metal soaps. Unlike the iPP system that incorporates spherical particles, interaction between PEEK and metal soaps resulted in two discrete and co-continuous phases of PEEK and the metal stearates. DMA and melt rheology exhibited that sodium stearate/PEEK composites are stiffer. Effective moduli of secondary metal stearate phase were calculated using different composite theories, which suggested bicontinuous morphology to the metal soaps in PEEK. Use of low molecular weight crystallizable solvents was investigated in reactive systems

  2. Detection of Diverse and High Molecular Weight Nesprin-1 and Nesprin-2 Isoforms Using Western Blotting.

    PubMed

    Carthew, James; Karakesisoglou, Iakowos

    2016-01-01

    Heavily utilized in cell and molecular biology, western blotting is considered a crucial technique for the detection and quantification of proteins within complex mixtures. In particular, the detection of members of the nesprin (nuclear envelope spectrin repeat protein) family has proven difficult to analyze due to their substantial isoform diversity, molecular weight variation, and the sheer size of both nesprin-1 and nesprin-2 giant protein variants (>800 kDa). Nesprin isoforms contain distinct domain signatures, perform differential cytoskeletal associations, occupy different subcellular compartments, and vary in their tissue expression profiles. This structural and functional variance highlights the need to distinguish between the full range of proteins within the nesprin protein family, allowing for greater understanding of their specific roles in cell biology and disease. Herein, we describe a western blotting protocol modified for the detection of low to high molecular weight (50-1000 kDa) nesprin proteins.

  3. Novel Synthesis of Core-Shell Silica Nanoparticles for the Capture of Low Molecular Weight Proteins and Peptides.

    PubMed

    Hernandez-Leon, Sergio G; Sarabia-Sainz, Jose Andre-I; Montfort, Gabriela Ramos-Clamont; Guzman-Partida, Ana M; Robles-Burgueño, Maria Del Refugio; Vazquez-Moreno, Luz

    2017-10-12

    Silica nanoparticles were functionalized with immobilized molecular bait, Cibacron Blue, and a porous polymeric bis-acrylamide shell. These nanoparticles represent a new alternative to capture low molecular weight (LMW) proteins/peptides, that might be potential biomarkers. Functionalized core-shell silica nanoparticles (FCSNP) presented a size distribution of 243.9 ± 11.6 nm and an estimated surface charge of -38.1 ± 0.9 mV. The successful attachment of compounds at every stage of synthesis was evidenced by ATR-FTIR. The capture of model peptides was determined by mass spectrometry, indicating that only the peptide with a long sequence of hydrophobic amino acids (alpha zein 34-mer) interacted with the molecular bait. FCSNP excluded the high molecular weight protein (HMW), BSA, and captured LMW proteins (myoglobin and aprotinin), as evidenced by SDS-PAGE. Functionalization of nanoparticles with Cibacron Blue was crucial to capture these molecules. FCSNP were stable after twelve months of storage and maintained a capacity of 3.1-3.4 µg/mg.

  4. Application of computer-assisted molecular modeling for immunoassay of low molecular weight food contaminants: A review.

    PubMed

    Xu, Zhen-Lin; Shen, Yu-Dong; Beier, Ross C; Yang, Jin-Yi; Lei, Hong-Tao; Wang, Hong; Sun, Yuan-Ming

    2009-08-11

    Immunoassay for low molecular weight food contaminants, such as pesticides, veterinary drugs, and mycotoxins is now a well-established technique which meets the demand for a rapid, reliable, and cost-effective analytical method. However, due to limited understanding of the molecular structure of antibody binding sites and antigenic epitopes, as well as the intermolecular binding forces that come into play, the traditional 'trial and error' method used to develop antibodies still remains the method of choice. Therefore, development of enhanced immunochemical techniques for specific- and generic-assays, requires new approaches for antibody design that will improve affinity and specificity of the antibody in a more rapid and economic manner. Computer-assisted molecular modeling (CAMM) has been demonstrated to be a useful tool to help the immunochemist develop immunoassays. CAMM methods can be used to help direct improvements to important antibody features, and can provide insights into the effects of molecular structure on biological activity that are difficult or impossible to obtain in any other way. In this review, we briefly summarize applications of CAMM in immunoassay development, including assisting in hapten design, explaining cross-reactivity, modeling antibody-antigen interactions, and providing insights into the effects of the mouse body temperature on the three-dimensional conformation of a hapten during antibody production. The fundamentals and theory, programs and software, limitations, and prospects of CAMM in immunoassay development were also discussed.

  5. Soluble, High Molecular Weight Polysilsesquioxanes with Carboxylate Functionalities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RAHIMIAN,KAMYAR; LOY,DOUGLAS A.; WHEELER,DAVID R.

    2000-07-14

    Trialkoxysilyl-containing monomers of the type (RO){sub 3}Si(CH{sub 2}){sub 3}C(O)OtBu (R = Me, Et) were prepared by hydrosilation of the corresponding vinylic tert-butyl esters CH{sub 3}CHCH{sub 2}C(O)OtBu. Acid- or base-catalyzed polymerization of the monomers leads to very high molecular weight polymers with relatively narrow polydispersities. The polymerization results in complete condensation of the alkoxy groups while the tert-butyl ester functionality remains fully intact. Partial or full deprotection of the tert-butyl group can easily be achieved to yield the corresponding carboxylic acid polymers. The ester and carboxylic acid functionalities of these new materials allow for their potential use in a variety ofmore » applications such as scavenging of heavy metals.« less

  6. Study on different molecular weights of chitosan as an immobilization matrix for a glucose biosensor.

    PubMed

    Ang, Lee Fung; Por, Lip Yee; Yam, Mun Fei

    2013-01-01

    Two chitosan samples (medium molecular weight (MMCHI) and low molecular weight (LMCHI)) were investigated as an enzyme immobilization matrix for the fabrication of a glucose biosensor. Chitosan membranes prepared from acetic acid were flexible, transparent, smooth and quick-drying. The FTIR spectra showed the existence of intermolecular interactions between chitosan and glucose oxidase (GOD). Higher catalytic activities were observed on for GOD-MMCHI than GOD-LMCHI and for those crosslinked with glutaraldehyde than using the adsorption technique. Enzyme loading greater than 0.6 mg decreased the activity. Under optimum conditions (pH 6.0, 35°C and applied potential of 0.6 V) response times of 85 s and 65 s were observed for medium molecular weight chitosan glucose biosensor (GOD-MMCHI/PT) and low molecular weight chitosan glucose biosensor (GOD-LMCHI/PT), respectively. The apparent Michaelis-Menten constant ([Formula: see text]) was found to be 12.737 mM for GOD-MMCHI/PT and 17.692 mM for GOD-LMCHI/PT. This indicated that GOD-MMCHI/PT had greater affinity for the enzyme. Moreover, GOD-MMCHI/PT showed higher sensitivity (52.3666 nA/mM glucose) when compared with GOD-LMCHI/PT (9.8579 nA/mM glucose) at S/N>3. Better repeatability and reproducibility were achieved with GOD-MMCHI/PT than GOD-LMCHI/PT regarding glucose measurement. GOD-MMCHI/PT was found to give the highest enzymatic activity among the electrodes under investigation. The extent of interference encountered by GOD-MMCHI/PT and GOD-LMCHI/PT was not significantly different. Although the Nafion coated biosensor significantly reduced the signal due to the interferents under study, it also significantly reduced the response to glucose. The performance of the biosensors in the determination of glucose in rat serum was evaluated. Comparatively better accuracy and recovery results were obtained for GOD-MMCHI/PT. Hence, GOD-MMCHI/PT showed a better performance when compared with GOD-LMCHI/PT. In conclusion

  7. Study on Different Molecular Weights of Chitosan as an Immobilization Matrix for a Glucose Biosensor

    PubMed Central

    Ang, Lee Fung; Por, Lip Yee; Yam, Mun Fei

    2013-01-01

    Two chitosan samples (medium molecular weight (MMCHI) and low molecular weight (LMCHI)) were investigated as an enzyme immobilization matrix for the fabrication of a glucose biosensor. Chitosan membranes prepared from acetic acid were flexible, transparent, smooth and quick-drying. The FTIR spectra showed the existence of intermolecular interactions between chitosan and glucose oxidase (GOD). Higher catalytic activities were observed on for GOD-MMCHI than GOD-LMCHI and for those crosslinked with glutaraldehyde than using the adsorption technique. Enzyme loading greater than 0.6 mg decreased the activity. Under optimum conditions (pH 6.0, 35°C and applied potential of 0.6 V) response times of 85 s and 65 s were observed for medium molecular weight chitosan glucose biosensor (GOD-MMCHI/PT) and low molecular weight chitosan glucose biosensor (GOD-LMCHI/PT), respectively. The apparent Michaelis-Menten constant () was found to be 12.737 mM for GOD-MMCHI/PT and 17.692 mM for GOD-LMCHI/PT. This indicated that GOD-MMCHI/PT had greater affinity for the enzyme. Moreover, GOD-MMCHI/PT showed higher sensitivity (52.3666 nA/mM glucose) when compared with GOD-LMCHI/PT (9.8579 nA/mM glucose) at S/N>3. Better repeatability and reproducibility were achieved with GOD-MMCHI/PT than GOD-LMCHI/PT regarding glucose measurement. GOD-MMCHI/PT was found to give the highest enzymatic activity among the electrodes under investigation. The extent of interference encountered by GOD-MMCHI/PT and GOD-LMCHI/PT was not significantly different. Although the Nafion coated biosensor significantly reduced the signal due to the interferents under study, it also significantly reduced the response to glucose. The performance of the biosensors in the determination of glucose in rat serum was evaluated. Comparatively better accuracy and recovery results were obtained for GOD-MMCHI/PT. Hence, GOD-MMCHI/PT showed a better performance when compared with GOD-LMCHI/PT. In conclusion, chitosan membranes shave

  8. Polysaccharides and their depolymerized fragments from Costaria costata: Molecular weight and sulfation-dependent anticoagulant and FGF/FGFR signal activating activities.

    PubMed

    Hou, Ningning; Zhang, Meng; Xu, Yingjie; Sun, Zhongmin; Wang, Jing; Zhang, Lijuan; Zhang, Quanbin

    2017-12-01

    Crude polysaccharides from Costaria costata were extracted by hot water and further fractionated by anion exchange chromatography into three polysaccharide fractions. Three low molecular weight fragments were then prepared by degradation of the polysaccharides with hydrogen peroxide and ascorbic acid. The structural features of the polysaccharides and their low molecular weight fragments were elucidated for the first time based on the HGPC, FT-IR, NMR, MS, monosaccharide composition, and other chemical analyses. Their anticoagulant and FGF-1, -2, -7, -8, -9, -10/FGFR1c signaling activation activities in BaF3 cells were also examined. Our studies showed that the polysaccharides were sulfated at different positions of galactose and fucose residues. The APTT-, PT- and TT-based anticoagulant assay results indicated that a high molecular weight and a higher degree of sulfation were essential for their anticoagulant activities. In contrast, not only the polysaccharides but also the depolymerized fragments showed significant FGF/FGFR signal activating activities in a FGF-, molecular weight-, and sulfation-dependent manner. The results presented in current study demonstrated the potential use of the polysaccharides and their fragments as anticoagulants and FGF signal regulators. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Role of Laccase and Low Molecular Weight Metabolites from Trametes versicolor in Dye Decolorization

    PubMed Central

    Moldes, Diego; Fernández-Fernández, María; Sanromán, M. Ángeles

    2012-01-01

    The studies regarding decolorization of dyes by laccase may not only inform about the possible application of this enzyme for environmental purposes, but also may provide important information about its reaction mechanism and the influence of several factors that could be involved. In this paper, decolorization of crystal violet and phenol red was carried out with different fractions of extracellular liquids from Trametes versicolor cultures, in order to describe the role of laccase in this reaction. Moreover, the possible role of the low molecular weight metabolites (LMWMs) also produced by the fungus was evaluated. The results confirm the existence of a nonenzymatic decolorization factor, since the nonprotein fraction of the extracellular liquids from cultures of T. versicolor has shown decolorization capability. Several experiments were performed in order to identify the main compounds related to this ability, which are probably low molecular weight peroxide compounds. PMID:22566767

  10. Isolation, purification and characterisation of low molecular weight xylanase from Bacillus pumilus SSP-34.

    PubMed

    Subramaniyan, S

    2012-04-01

    Low molecular weight endo-xylanase from Bacillus pumilus SSP-34 was purified to homogeneity using ion exchange and size exclusion chromatographies. Xylanases were isolated by novel purification protocol which includes the use of anion exchange matrix such as DEAE Sepharose CL 6B with less affinity towards enzyme protein. The purified B. pumilus SSP-34 have a molecular weight of 20 kDa, with optimum pH and temperature at 6.0 and 50 °C, respectively. The enzyme was stable at 50 °C for 30 min. It showed remarkable stability at pH values ranging from 4.5 to 9 when the reaction was carried out at 50 °C. K (m) and V (max) values, determined with oats spelts xylan were 6.5 mg ml⁻¹ and 1,233 μmol min⁻¹ mg⁻¹ protein, respectively, and the specific activity was 1,723 U mg⁻¹.

  11. Role of laccase and low molecular weight metabolites from Trametes versicolor in dye decolorization.

    PubMed

    Moldes, Diego; Fernández-Fernández, María; Sanromán, M Ángeles

    2012-01-01

    The studies regarding decolorization of dyes by laccase may not only inform about the possible application of this enzyme for environmental purposes, but also may provide important information about its reaction mechanism and the influence of several factors that could be involved. In this paper, decolorization of crystal violet and phenol red was carried out with different fractions of extracellular liquids from Trametes versicolor cultures, in order to describe the role of laccase in this reaction. Moreover, the possible role of the low molecular weight metabolites (LMWMs) also produced by the fungus was evaluated. The results confirm the existence of a nonenzymatic decolorization factor, since the nonprotein fraction of the extracellular liquids from cultures of T. versicolor has shown decolorization capability. Several experiments were performed in order to identify the main compounds related to this ability, which are probably low molecular weight peroxide compounds.

  12. Characterization of Three Novel Fatty Acid- and Retinoid-Binding Protein Genes (Ha-far-1, Ha-far-2 and Hf-far-1) from the Cereal Cyst Nematodes Heterodera avenae and H. filipjevi

    PubMed Central

    Peng, Huan; Luo, Shujie; Huang, Wenkun; Cui, Jiangkuan; Li, Xin; Kong, Lingan; Jiang, Daohong; Chitwood, David J.; Peng, Deliang

    2016-01-01

    Heterodera avenae and H. filipjevi are major parasites of wheat, reducing production worldwide. Both are sedentary endoparasitic nematodes, and their development and parasitism depend strongly on nutrients obtained from hosts. Secreted fatty acid- and retinol-binding (FAR) proteins are nematode-specific lipid carrier proteins used for nutrient acquisition as well as suppression of plant defenses. In this study, we obtained three novel FAR genes Ha-far-1 (KU877266), Ha-far-2 (KU877267), Hf-far-1 (KU877268). Ha-far-1 and Ha-far-2 were cloned from H. avenae, encoding proteins of 191 and 280 amino acids with molecular masses about 17 and 30 kDa, respectively and sequence identity of 28%. Protein Blast in NCBI revealed that Ha-FAR-1 sequence is 78% similar to the Gp-FAR-1 protein from Globodera pallida, while Ha-FAR-2 is 30% similar to Rs-FAR-1 from Radopholus similis. Only one FAR protein Hf-FAR-1was identified in H. filipjevi; it had 96% sequence identity to Ha-FAR-1. The three proteins are alpha-helix-rich and contain the conserved domain of Gp-FAR-1, but Ha-FAR-2 had a remarkable peptide at the C-terminus which was random-coil-rich. Both Ha-FAR-1 and Hf-FAR-1 had casein kinase II phosphorylation sites, while Ha-FAR-2 had predicted N-glycosylation sites. Phylogenetic analysis showed that the three proteins clustered together, though Ha-FAR-1 and Hf-FAR-1 adjoined each other in a plant-parasitic nematode branch, but Ha-FAR-2 was distinct from the other proteins in the group. Fluorescence-based ligand binding analysis showed the three FAR proteins bound to a fluorescent fatty acid derivative and retinol and with dissociation constants similar to FARs from other species, though Ha-FAR-2 binding ability was weaker than that of the two others. In situ hybridization detected mRNAs of Ha-far-1 and Ha-far-2 in the hypodermis. The qRT-PCR results showed that the Ha-far-1and Ha-far-2 were expressed in all developmental stages; Ha-far-1 expressed 70 times more than Ha-far-2 in

  13. Characterization of Three Novel Fatty Acid- and Retinoid-Binding Protein Genes (Ha-far-1, Ha-far-2 and Hf-far-1) from the Cereal Cyst Nematodes Heterodera avenae and H. filipjevi.

    PubMed

    Qiao, Fen; Luo, Lilian; Peng, Huan; Luo, Shujie; Huang, Wenkun; Cui, Jiangkuan; Li, Xin; Kong, Lingan; Jiang, Daohong; Chitwood, David J; Peng, Deliang

    2016-01-01

    Heterodera avenae and H. filipjevi are major parasites of wheat, reducing production worldwide. Both are sedentary endoparasitic nematodes, and their development and parasitism depend strongly on nutrients obtained from hosts. Secreted fatty acid- and retinol-binding (FAR) proteins are nematode-specific lipid carrier proteins used for nutrient acquisition as well as suppression of plant defenses. In this study, we obtained three novel FAR genes Ha-far-1 (KU877266), Ha-far-2 (KU877267), Hf-far-1 (KU877268). Ha-far-1 and Ha-far-2 were cloned from H. avenae, encoding proteins of 191 and 280 amino acids with molecular masses about 17 and 30 kDa, respectively and sequence identity of 28%. Protein Blast in NCBI revealed that Ha-FAR-1 sequence is 78% similar to the Gp-FAR-1 protein from Globodera pallida, while Ha-FAR-2 is 30% similar to Rs-FAR-1 from Radopholus similis. Only one FAR protein Hf-FAR-1was identified in H. filipjevi; it had 96% sequence identity to Ha-FAR-1. The three proteins are alpha-helix-rich and contain the conserved domain of Gp-FAR-1, but Ha-FAR-2 had a remarkable peptide at the C-terminus which was random-coil-rich. Both Ha-FAR-1 and Hf-FAR-1 had casein kinase II phosphorylation sites, while Ha-FAR-2 had predicted N-glycosylation sites. Phylogenetic analysis showed that the three proteins clustered together, though Ha-FAR-1 and Hf-FAR-1 adjoined each other in a plant-parasitic nematode branch, but Ha-FAR-2 was distinct from the other proteins in the group. Fluorescence-based ligand binding analysis showed the three FAR proteins bound to a fluorescent fatty acid derivative and retinol and with dissociation constants similar to FARs from other species, though Ha-FAR-2 binding ability was weaker than that of the two others. In situ hybridization detected mRNAs of Ha-far-1 and Ha-far-2 in the hypodermis. The qRT-PCR results showed that the Ha-far-1and Ha-far-2 were expressed in all developmental stages; Ha-far-1 expressed 70 times more than Ha-far-2 in

  14. Ex vivo inhibition of Clostridium botulinum neurotoxin types B, C, E, and F by small molecular weight inhibitors.

    PubMed

    Montgomery, Vicki A; Ahmed, S Ashraf; Olson, Mark A; Mizanur, Rahman M; Stafford, Robert G; Roxas-Duncan, Virginia I; Smith, Leonard A

    2015-05-01

    Two small molecular weight inhibitors, compounds CB7969312 and CB7967495, that displayed inhibition of botulinum neurotoxin serotype A in a previous study, were evaluated for inhibition of botulinum neurotoxin serotypes B, C, E, and F. The small molecular weight inhibitors were assessed by molecular modeling, UPLC-based peptide cleavage assay; and an ex vivo assay, the mouse phrenic nerve - hemidiaphragm assay (MPNHDA). While both compounds were inhibitors of botulinum neurotoxin (BoNT) serotypes B, C, and F in the MPNHDA, compound CB7969312 was effective at lower molar concentrations than compound CB7967495. However, compound CB7967495 was significantly more effective at preventing BoNTE intoxication than compound CB7969312. In the UPLC-based peptide cleavage assay, CB7969312 was also more effective against LcC. Both compounds inhibited BoNTE, but not BoNTF, LcE, or LcF in the UPLC-based peptide cleavage assay. Molecular modeling studies predicted that both compounds would be effective inhibitors of BoNTs B, C, E, and F. But CB7967495 was predicted to be a more effective inhibitor of the four serotypes (B, C, E, and F) than CB7969312. This is the first report of a small molecular weight compound that inhibits serotypes B, C, E, and F in the ex vivo assay. Published by Elsevier Ltd.

  15. Molecular mechanisms underlying protection against H9N2 influenza virus challenge in mice by recombinant Lactobacillus plantarum with surface displayed HA2-LTB.

    PubMed

    Jiang, Yanlong; Yang, Guilian; Wang, Qi; Wang, Zhannan; Yang, Wentao; Gu, Wei; Shi, Chunwei; Wang, Jianzhong; Huang, Haibin; Wang, Chunfeng

    2017-10-10

    It has been considered that the Avian influenza virus (AIV) causes severe threats to poultry industry. In this study, we constructed a series of recombinant Lactobacillus plantarum (L. plantarum) with surface displayed hemagglutinin subunit 2 (HA2) alone or together with heat-labile toxin B subunit (LTB) from enterotoxigenic Escherichia coli. Balb/c mice were used as model to evaluate the protective effects of recombinant L. plantarum strains against H9N2 subtype challenge. The results showed that the presence of LTB significantly increased the percentages of CD3 + CD4 + IL-4 + , CD3 + CD4 + IFN-γ + and CD3 + CD4 + IL-17 + T cells, as well as CD3 + CD8 + IFN-γ + T cells in spleen and MLNs determined by Fluorescence-Activated Cell Sorting assay. Similar increased production of serum IFN-γ was also confirmed by enzyme linked immunosorbent assay (ELISA). The L. plantarum with surface displayed HA2-LTB also dramatically increased the percentages of B220 + IgA + B cells in peyer patch, in consistent with elevated production of mucosal SIgA antibody determined by ELISA. Finally, the orally administrated HA2-LTB expressing strain efficiently protected mice against H9N2 subtype AIV challenge shown by increased survival percentages, body weight gains and decreased lung lesions in histopathologic analysis. In conclusion, this study provides more detail mechanisms underlying the adjuvant effects of LTB on heterologous antigen produced in recombinant lactic acid bacteria. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Molecular Weights of Bovine and Porcine Heparin Samples: Comparison of Chromatographic Methods and Results of a Collaborative Survey.

    PubMed

    Bertini, Sabrina; Risi, Giulia; Guerrini, Marco; Carrick, Kevin; Szajek, Anita Y; Mulloy, Barbara

    2017-07-19

    In a collaborative study involving six laboratories in the USA, Europe, and India the molecular weight distributions of a panel of heparin sodium samples were determined, in order to compare heparin sodium of bovine intestinal origin with that of bovine lung and porcine intestinal origin. Porcine samples met the current criteria as laid out in the USP Heparin Sodium monograph. Bovine lung heparin samples had consistently lower average molecular weights. Bovine intestinal heparin was variable in molecular weight; some samples fell below the USP limits, some fell within these limits and others fell above the upper limits. These data will inform the establishment of pharmacopeial acceptance criteria for heparin sodium derived from bovine intestinal mucosa. The method for MW determination as described in the USP monograph uses a single, broad standard calibrant to characterize the chromatographic profile of heparin sodium on high-resolution silica-based GPC columns. These columns may be short-lived in some laboratories. Using the panel of samples described above, methods based on the use of robust polymer-based columns have been developed. In addition to the use of the USP's broad standard calibrant for heparin sodium with these columns, a set of conditions have been devised that allow light-scattering detected molecular weight characterization of heparin sodium, giving results that agree well with the monograph method. These findings may facilitate the validation of variant chromatographic methods with some practical advantages over the USP monograph method.

  17. Employing the cyclophosphate to accelerate the degradation of nano-hydroxyapatite/poly(amino acid) (n-HA/PAA) composite materials.

    PubMed

    Jing, Linjing; Chen, Li; Peng, Haitao; Ji, Mizhi; Xiong, Yi; Lv, Guoyu

    2017-12-01

    Owing to the good degradability and biocompatibility of polyphosphoesters (PPEs), the aim of the current study was to investigate a novel degradable composite of nano-hydroxyapatite/poly(amino acid) (n-HA/PAA) with cyclophosphate (CPE) via in situ melting polymerization to improve the degradation of n-HA/PAA. The structure of each composite was characterized via Fourier transform infrared spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The degradation properties were studied in terms of the weight loss and pH in a phosphate-buffered saline (PBS) solution, while the surface morphology was examined using a scanning electron microscope-energy dispersive spectrometer (SEM-EDS) after soaking the surface in simulated body fluid (SBF). The cell proliferation, cell adhesion, and alkaline phosphatase (ALP) activity were used for the analysis of cytocompatibility. The weight loss results showed that the n-HA/PAA composite was 9.98 wt%, weighed after soaking in the PBS solution for 12 weeks, whereas the nano-hydroxyapatite/polyphosphoester-amino acid (n-HA/PPE-AA) composite was 46.94 wt%. The pH of the composites was in a suitable range between 6.64 to 7.06 and finally stabilized at 7.39. The SEM and EDS results revealed the formation of an apatite-like layer on the surface of the n-HA/PPE-AA composites after soaking in SBF for one week. The cell counting Kit 8 (CCK-8) assay of the cell culture in the leaching liquid of the n-HA/PPE-AA composites exhibited non-cytotoxicity and high-proliferation, and the cell adhesion showed the well spreading and normal phenotype extension of the cells on the n-HA/PPE-AA composites surface. Concurrently, the co-culture results of the composites and cells confirmed that the n-HA/PPE-AA composites exhibited a higher ALP activity. In summary, the results demonstrated that the n-HA/PPE-AA composites had a controllable degradation property, good bioactivity, and cytocompatibility.

  18. Polyacrylamide Molecular Weight and Phosphogypsum Effects on Infiltration and Erosion in Semi-Arid Soils

    USDA-ARS?s Scientific Manuscript database

    Seal formation at the surface of semi-arid soils during rainstorms reduces soil infiltration rate (IR) and causes runoff and erosion. Surface application of dry anionic polyacrylamide (PAM) with high molecular weight (MW) has been found to be effective in stabilizing soil aggregates, and decreasing ...

  19. Polyacrylamide molecular weight and phosphogypsum effects on infiltration and erosion in semi-arid soils

    USDA-ARS?s Scientific Manuscript database

    Seal formation at the surface of semi-arid soils during rainstorms reduces soil infiltration rate (IR) and causes runoff and erosion. Surface application of dry anionic polyacrylamide (PAM) with high molecular weight (MW) has been found to be effective in stabilizing soil aggregates, and decreasing ...

  20. Plasma zinc's alter ego is a low-molecular-weight humoral factor.

    PubMed

    Ou, Ou; Allen-Redpath, Keith; Urgast, Dagmar; Gordon, Margaret-Jane; Campbell, Gill; Feldmann, Jörg; Nixon, Graeme F; Mayer, Claus-Dieter; Kwun, In-Sook; Beattie, John H

    2013-09-01

    Mild dietary zinc deprivation in humans and rodents has little effect on blood plasma zinc levels, and yet cellular consequences of zinc depletion can be detected in vascular and other tissues. We proposed that a zinc-regulated humoral factor might mediate the effects of zinc deprivation. Using a novel approach, primary rat vascular smooth muscle cells (VSMCs) were treated with plasma from zinc-deficient (<1 mg Zn/kg) or zinc-adequate (35 mg Zn/kg, pair-fed) adult male rats, and zinc levels were manipulated to distinguish direct and indirect effects of plasma zinc. Gene expression changes were analyzed by microarray and qPCR, and incubation of VSMCs with blood plasma from zinc-deficient rats strongly changed the expression of >2500 genes, compared to incubation of cells with zinc-adequate rat plasma. We demonstrated that this effect was caused by a low-molecular-weight (∼2-kDa) zinc-regulated humoral factor but that changes in gene expression were mostly reversed by adding zinc back to zinc-deficient plasma. Strongly regulated genes were overrepresented in pathways associated with immune function and development. We conclude that zinc deficiency induces the production of a low-molecular-weight humoral factor whose influence on VSMC gene expression is blocked by plasma zinc. This factor is therefore under dual control by zinc.

  1. In vitro testing of calcium phosphate (HA, TCP, and biphasic HA-TCP) whiskers.

    PubMed

    Jalota, Sahil; Bhaduri, Sarit B; Tas, A Cuneyt

    2006-09-01

    Calcium phosphate [single-phase hydroxyapatite (HA, Ca(10)(PO(4))(6)(OH)(2)), single-phase tricalcium phosphate (beta-TCP, Ca(3)(PO(4))(2)), and biphasic HA-TCP] whiskers were formed by using a novel microwave-assisted molten salt mediated process. Aqueous solutions containing NaNO(3), HNO(3), Ca(NO(3))(2) x 4H(2)O, and KH(2)PO(4) (with or without urea) were used as starting reagents. These solutions were irradiated in a household microwave oven for 5 min. As-recovered precursors were then simply stirred in water at room temperature for 1 h to obtain the whiskers of the desired calcium phosphate (CaP) bioceramics. These whiskers were evaluated, respectively, in vitro by (1) soaking those in synthetic body fluid (SBF) solutions at 37 degrees C for one week, and (2) performing cell attachment and total protein assay tests on the neat whiskers by using a mouse osteoblast cell line (7F2). beta-TCP, HA, and HA-TCP biphasic whiskers were all found to possess apatite-inducing ability when soaked in SBF. SBF-soaked whiskers were found to have BET surface areas ranging from 45 to 112 m(2)/g. Although the osteoblast viability and protein concentrations were found to be the highest on the neat HA whiskers, cells were attached and proliferated on all the whiskers.

  2. Functional Comparison for Lipid Metabolism and Intestinal and Fecal Microflora Enzyme Activities between Low Molecular Weight Chitosan and Chitosan Oligosaccharide in High-Fat-Diet-Fed Rats.

    PubMed

    Chiu, Chen-Yuan; Feng, Shih-An; Liu, Shing-Hwa; Chiang, Meng-Tsan

    2017-07-24

    The present study investigated and compared the regulatory effects on the lipid-related metabolism and intestinal disaccharidase/fecal bacterial enzyme activities between low molecular weight chitosan and chitosan oligosaccharide in high-fat-diet-fed rats. Diet supplementation of low molecular weight chitosan showed greater efficiency than chitosan oligosaccharide in suppressing the increased weights in body and in liver and adipose tissues of high-fat-diet-fed rats. Supplementation of low molecular weight chitosan also showed a greater improvement than chitosan oligosaccharide in imbalance of plasma, hepatic, and fecal lipid profiles, and intestinal disaccharidase activities in high-fat-diet-fed rats. Moreover, both low molecular weight chitosan and chitosan oligosaccharide significantly decreased the fecal microflora mucinase and β-glucuronidase activities in high-fat-diet-fed rats. These results suggest that low molecular weight chitosan exerts a greater positive improvement than chitosan oligosaccharide in lipid metabolism and intestinal disaccharidase activity in high-fat-diet-induced obese rats.

  3. Rare expression of high-molecular-weight cytokeratin in adenocarcinoma of the prostate gland: a study of 100 cases of metastatic and locally advanced prostate cancer.

    PubMed

    Yang, X J; Lecksell, K; Gaudin, P; Epstein, J I

    1999-02-01

    Immunohistochemistry with antibodies for high-molecular-weight cytokeratin labels basal cells and is used as an ancillary study in diagnosing prostate carcinoma, which reportedly lacks expression of high-molecular-weight cytokeratin. A recent report questioned the specificity of this marker, describing immunopositivity for high-molecular-weight cytokeratin in a small series of metastatic prostate cancer. We have also noted rare cases of prostate lesions on biopsy with typical histological features of adenocarcinoma showing immunopositivity for high-molecular-weight cytokeratin, either in tumor cells or in patchy cells with the morphology of basal cells. In some of these cases, it was difficult to distinguish cancer from out-pouching of high-grade prostatic intraepithelial neoplasia. To investigate whether prostate cancer cells express high-molecular-weight cytokeratin, we studied 100 cases of metastatic prostate carcinoma and 10 cases of prostate cancer invading the seminal vesicles from surgical specimens. Metastatic sites included regional lymph nodes (n = 67), bone (n = 19), and miscellaneous (n = 14). Cases with any positivity for high-molecular-weight cytokeratin antibody (34betaE12) were verified as being of prostatic origin with immunohistochemistry for prostate-specific antigen and prostate-specific acid phosphatase. Only four cases were detected positive for high-molecular-weight cytokeratin. In two cases (one metastasis, one seminal vesicle invasion) there was weakly diffuse positivity above background level. Two metastases in lymph nodes showed scattered strong staining of clusters of tumor cells, which represented <0.2% of tumor cells in the metastatic deposits. These positive cells did not have the morphology of basal cells. We conclude that prostate cancer, even high grade, only rarely expresses high-molecular-weight cytokeratin. This marker remains a very useful adjunct in the diagnosis of prostate cancer.

  4. Detection of high molecular weight proteins by MALDI imaging mass spectrometry.

    PubMed

    Mainini, Veronica; Bovo, Giorgio; Chinello, Clizia; Gianazza, Erica; Grasso, Marco; Cattoretti, Giorgio; Magni, Fulvio

    2013-06-01

    MALDI imaging mass spectrometry (IMS) is a unique technology to explore the spatial distribution of biomolecules directly on tissues. It allows the in situ investigation of a large number of small proteins and peptides. Detection of high molecular weight proteins through MALDI IMS still represents an important challenge, as it would allow the direct investigation of the distribution of more proteins involved in biological processes, such as cytokines, enzymes, neuropeptide precursors and receptors. In this work we compare the traditional method performed with sinapinic acid with a comparable protocol using ferulic acid as the matrix. Data show a remarkable increase of signal acquisition in the mass range of 20k to 150k Th. Moreover, we report molecular images of biomolecules above 70k Th, demonstrating the possibility of expanding the application of this technology both in clinical investigations and basic science.

  5. Effect of molecular weight and concentration of legume condensed tannins on in vitro larval migration inhibition of Haemonchus contortus.

    PubMed

    Naumann, H D; Armstrong, S A; Lambert, B D; Muir, J P; Tedeschi, L O; Kothmann, M M

    2014-01-17

    The effect of molecular weight of condensed tannins (CT) from a variety of warm-season perennial legumes commonly consumed by sheep and goats on anthelmintic activity has not been previously explored. The objectives of this study were to determine if molecular weight of CT from warm-season perennial legumes could predict the biological activity of CT relative to anthelmintic activity against ivermectin resistant L3 stage Haemonchus contortus (HC) using a larval migration inhibition (LMI) assay. A second objective was to determine if CT from warm-season perennial legumes possess anthelmintic properties against L3 stage (HC). Lespedeza stuevei had the greatest concentration of total condensed tannin (TCT; 11.7%), whereas, with the exception of Arachis glabrata, a CT-free negative control, Leucaena retusa had the least TCT (3.3%). Weight-average molecular weight of CT ranged from 552 Da for L. stuevei to 1483 Da for Lespedeza cuneata. The treatments demonstrating the greatest percent LMI were L. retusa, L. stuevei and Acacia angustissima var. hirta (65.4%, 63.1% and 42.2%, respectively). The ivermectin treatment had the smallest percent LMI (12.5%) against ivermectin resistant L3 HC. There was a weak correlation (R(2)=0.34; P=0.05) between CT MW and percent LMI, suggesting that molecular weight of CT is a weak contributing factor to CT biological activity as it relates to LMI of L3 stage HC. L. stuevei, L. retusa and A. angustissima var. hirta STP5 warrant further evaluation of anthelmintic properties in vivo. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Controllable production of low molecular weight heparins by combinations of heparinase I/II/III.

    PubMed

    Wu, Jingjun; Zhang, Chong; Mei, Xiang; Li, Ye; Xing, Xin-Hui

    2014-01-30

    Enzymatic depolymerization of heparin by heparinases is promising for production of low molecular weight heparins (LMWHs) as anticoagulants, due to its mild reaction conditions and high selectivity. Here, different heparinase combinations were used to depolymerize heparin. Heparinase I and heparinase II can depolymerize heparin more efficiently than heparinase III, respectively, but heparinase III was the best able to protect the anticoagulant activities of LMWHs. Heparinase III and heparinase I/II combinations were able to efficiently depolymerize heparin to LMWHs with higher anticoagulant activity than the LMWHs produced by the respective heparinase I and heparinase II. HepIII and HepI is the best combination for maintaining high anti-IIa activity (75.7 ± 4.21 IU/mg) at the same Mw value. Furthermore, considering both the changes in molecular weight and anticoagulant activity, the action patterns of heparinase I and heparinase II were found not to follow the exolytic and processive depolymerizing mechanism from the reducing end of heparin. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Evaluating nephrotoxicity of high-molecular-weight organic compounds in drinking water from lignite aquifers

    USGS Publications Warehouse

    Bunnell, J.E.; Tatu, C.A.; Lerch, H.E.; Orem, W.H.; Pavlovic, N.

    2007-01-01

    High-molecular-weight organic compounds such as humic acids and/or fulvic acids that are naturally mobilized from lignite beds into untreated drinking-water supplies were suggested as one possible cause of Balkan endemic nephropathy (BEN) and cancer of the renal pelvis. A lab investigation was undertaken in order to assess the nephrotoxic potential of such organic compounds using an in vitro tissue culture model. Because of the infeasibility of exposing kidney tissue to low concentrations of organics for years in the lab, tangential flow ultrafiltration was employed to hyperconcentrate samples suitable for discerning effects in the short time frames necessitated by tissue culture systems. Effects on HK-2 kidney cells were measured using two different cell proliferation assays (MTT and alamarBlue). Results demonstrated that exposure of kidney tissue to high-molecular-weight organics produced excess cell death or proliferation depending on concentration and duration of exposure. Copyright ?? Taylor & Francis Group, LLC.

  8. Laser-based methods for the analysis of low molecular weight compounds in biological matrices.

    PubMed

    Kiss, András; Hopfgartner, Gérard

    2016-07-15

    Laser-based desorption and/or ionization methods play an important role in the field of the analysis of low molecular-weight compounds (LMWCs) because they allow direct analysis with high-throughput capabilities. In the recent years there were several new improvements in ionization methods with the emergence of novel atmospheric ion sources such as laser ablation electrospray ionization or laser diode thermal desorption and atmospheric pressure chemical ionization and in sample preparation methods with the development of new matrix compounds for matrix-assisted laser desorption/ionization (MALDI). Also, the combination of ion mobility separation with laser-based ionization methods starts to gain popularity with access to commercial systems. These developments have been driven mainly by the emergence of new application fields such as MS imaging and non-chromatographic analytical approaches for quantification. This review aims to present these new developments in laser-based methods for the analysis of low-molecular weight compounds by MS and several potential applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. A randomised, double-blind, controlled trial comparing two intra-articular hyaluronic acid preparations differing by their molecular weight in symptomatic knee osteoarthritis

    PubMed Central

    Berenbaum, Francis; Grifka, Joachim; Cazzaniga, Sara; D'Amato, Massimo; Giacovelli, Giampaolo; Chevalier, Xavier; Rannou, Francois; Rovati, Lucio C; Maheu, Emmanuel

    2012-01-01

    Objectives To compare the effects of an intermediate molecular weight (MW) intra-articular hyaluronic acid (HA) with a low MW product on knee osteoarthritis (OA) symptoms. Methods Patients with symptomatic knee OA were enrolled inarandomised, controlled, double-blind, parallel-group, non-inferiority trial with the possibility to shift to superiority. Patients were randomised to GO-ON(MW 800–1500 kD, 25 mg/2.5 ml) or Hyalgan(MW 500–730 kD, 20 mg/2 ml) injected at 3-weekly intervals. The primary outcome was 6-month change in the WOMAC pain subscale (0–100 mm). Sample size was calculated on a non-inferiority margin of 9 mm, lower than the minimum perceptible clinical improvement. Secondary endpoints included OARSI-OMERACT responder rates Results The intention-to-treat (ITT) and per-protocol (PP) populations consisted of 217 and 209 patients and 171 and 172 patients in the GO-ON and Hyalgan groups, respectively. ITT WOMAC pain of 47.5±1.0(SE) and 48.8±1.0 mm decreased by 22.9±1.4 mm with GO-ON and 18.4±1.5 mm with Hyalgan after 6 months. The primary analysis was conducted in the PP population followed by the ITT population.Mean (95% CI) differences in WOMAC pain change were 5.2 (0.9 to 9.6)mm and 4.5 (0.5 to 8.5)mm, respectively,favouring GO-ON, satisfying the claim for non-inferiority (lower limit>−9 mm) and for statistical superiority (95% CI all>0, p=0.021). Ahigher proportion of OARSI/OMERACT responders was observed with GO-ONthan with Hyalgan (73.3% vs58.4%, p=0.001). Both preparations were well tolerated. Conclusions Treatment with 3-weekly injections of intermediate MW HA may be superior to low MW HA on knee OA symptoms over 6 months, with similar safety. PMID:22294639

  10. High Sulfation and a High Molecular Weight Are Important for Anti-hepcidin Activity of Heparin

    PubMed Central

    Asperti, Michela; Naggi, Annamaria; Esposito, Emiliano; Ruzzenenti, Paola; Di Somma, Margherita; Gryzik, Magdalena; Arosio, Paolo; Poli, Maura

    2016-01-01

    Heparins are efficient inhibitors of hepcidin expression even in vivo, where they induce an increase of systemic iron availability. Heparins seem to act by interfering with BMP6 signaling pathways that control the expression of liver hepcidin, causing the suppression of SMAD1/5/8 phosphorylation. The anti-hepcidin activity persists also when the heparin anticoagulant property is abolished or reduced by chemical reactions of oxidation/reduction (glycol-split, Gs-Heparins) or by high sulfation (SS-Heparins), but the structural characteristics needed to optimize this inhibitory activity have not been studied in detail. To this aim we analyzed three different heparins (Mucosal Heparin, the Glycol split RO-82, the partially desulfated glycol-split RO-68 and the oversulfated SSLMWH) and separated them in fractions of molecular weight in the range 4–16 kD. Since the distribution of the negative charges in heparins contributes to the activity, we produced 2-O- and 6-O-desulfated heparins. These derivatives were analyzed for the capacity to inhibit hepcidin expression in hepatic HepG2 cells and in mice. The two approaches produced consistent results and showed that the anti-hepcidin activity strongly decreases with molecular weight below 7 kD, with high N-acetylation and after 2-O and 6-O desulfation. The high sulfation and high molecular weight properties for efficient anti-hepcidin activity suggest that heparin is involved in multiple binding sites. PMID:26955355

  11. Increasing the wear resistance of ultra-high molecular weight polyethylene by adding solid lubricating fillers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panin, S. V., E-mail: svp@ispms.tsc.ru; Kornienko, L. A.; Poltaranin, M. A.

    2014-11-14

    In order to compare effectiveness of adding solid lubricating fillers for polymeric composites based on ultra-high molecular weight polyethylene (UHMWPE) with graphite, molybdenum disulfide and polytetrafluoroethylene, their tribotechnical characteristics under dry friction, boundary lubrication and abrasive wearing were investigated. The optimal weight fractions of fillers in terms of improving wear resistance have been determined. The supramolecular structure and topography of wear track surfaces of UHMWPE-based composites with different content of fillers have been studied.

  12. Yield, Esterification Degree and Molecular Weight Evaluation of Pectins Isolated from Orange and Grapefruit Peels under Different Conditions

    PubMed Central

    Sayah, Mohamed Yassine; Chabir, Rachida; Benyahia, Hamid; Rodi Kandri, Youssef; Ouazzani Chahdi, Fouad; Touzani, Hanan; Errachidi, Faouzi

    2016-01-01

    Orange (Citrus sinensis) and grapefruit (Citrus paradise) peels were used as a source of pectin, which was extracted under different conditions. The peels are used under two states: fresh and residual (after essential oil extraction). Organic acid (citric acid) and mineral acid (sulfuric acid) were used in the pectin extraction. The aim of this study is the evaluation the effect of extraction conditions on pectin yield, degree of esterification “DE” and on molecular weight “Mw”. Results showed that the pectin yield was higher using the residual peels. Moreover, both peels allow the obtainment of a high methoxyl pectin with DE >50%. The molecular weight was calculated using Mark-Houwink-Sakurada equation which describes its relationship with intrinsic viscosity. This later was determined using four equations; Huggins equation, kramer, Schulz-Blaschke and Martin equation. The molecular weight varied from 1.538 x1005 to 2.47x1005 g/mol for grapefruit pectin and from 1.639 x1005 to 2.471 x1005 g/mol for orange pectin. PMID:27644093

  13. Fabrication and characterization of nanoengineered biocompatible n-HA/chitosan-tamarind seed polysaccharide: Bio-inspired nanocomposites for bone tissue engineering.

    PubMed

    Shakir, Mohammad; Zia, Iram; Rehman, Abdur; Ullah, Rizwan

    2018-05-01

    In this communication we describe the fabrication of nano-hydroxyapatite/chitosan-tamarind seed polysaccharide (n-HA/CS-TSP) nanocomposite with a weight ratio of 70/20/10, 70/15/15 and 70/10/20, respectively through a co-precipitation method. A comparative assessment of the properties of n-HA/CS-TSP and n-HA/CS nanocomposites was done by FT-IR, SEM-EDX, TEM, TGA/DTA, XRD and mechanical testing. The results suggested strong chemical interactions between the three components, decreased particle size and homogeneous dispersion of n-HA particles in n-HA/CS-TSP as compared to n-HA/CS. The n-HA/CS-TSP (70/10/20) showed the most porous and rough surface, enhanced thermal stability and highest compressive strength (4.0 MPa) and modulus (81 MPa). In addition, n-HA/CS-TSP (70/10/20) exhibited greater swelling character, acceptable degradation and increased biomineralization in simulated body fluid (SBF) as compared to n-HA/CS-TSP (70/20/10, 70/15/15) and n-HA/CS nanocomposites. The superior non-toxic response with MG-63 cells and better haemocompatibility was observed with n-HA/CS-TSP (70/15/15). Thereby, n-HA/CS-TSP nanocomposites could be promising alternative biomaterials in the field of bone tissue engineering compared to the n-HA/CS nanocomposite. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Tuning Molecular Weights of Bombyx mori (B. mori) Silk Sericin to Modify Its Assembly Structures and Materials Formation

    PubMed Central

    2015-01-01

    Bombyx mori (B. mori) silk sericin is a protein with features desirable as a biomaterial, such as increased hydrophilicity and biodegradation, as well as resistance to oxidation, bacteria, and ultraviolet light. In contrast to other widely studied B. mori silk proteins such as fibroin, sericin is still unexplored as a building block for fabricating biomaterial, and thus a facile technique of processing it into a material is needed. Here, electrospinning technology was used to fabricate it into biomaterials from two forms of B. mori silk sericin with different molecular weights, one is a low (12.0 kDa) molecular sericin (LS) form and another is a high (66.0 kDa) molecular weight sericin (HS) form. Circular dichroism (CD) spectra showed that LS in hexafluoroacetone (HFA) solvent adopted a predominantly random coil conformation, whereas HS tended to form a β-sheet structure along with a large content of random coils. In addition, LS and HS in HFA solvent were found to form cylinder-like smaller nanoparticles and larger irregular aggregates before electrospinning, respectively. As a result, biomaterials based on microparticles and nanofibers were successfully fabricated by electrospinning of LS and HS dissolved in HFA, respectively. The cell viability and differentiation assay indicated that nanofibers and microparticles improved cell adhesion, growth, and differentiation, proving that the scaffolds electrospun from sericin are biocompatible regardless of its molecular weight. The microparticles, not common in electrospinning of silk proteins reported previously, were found to promote the osteogenic differentiation of mesenchymal stem cells in comparison to the nanofibers. This study suggested that molecular weight of sericin mediates its secondary structure and assembly structure, which in turn leads to a control of final morphology of the electrospun materials. The microparticles and nanofibers of sericin can be potentially used as building blocks for fabricating

  15. Tuning molecular weights of Bombyx mori (B. mori) silk sericin to modify its assembly structures and materials formation.

    PubMed

    Yang, Mingying; Shuai, Yajun; Zhou, Guanshan; Mandal, Namita; Zhu, Liangjun; Mao, Chuanbin

    2014-08-27

    Bombyx mori (B. mori) silk sericin is a protein with features desirable as a biomaterial, such as increased hydrophilicity and biodegradation, as well as resistance to oxidation, bacteria, and ultraviolet light. In contrast to other widely studied B. mori silk proteins such as fibroin, sericin is still unexplored as a building block for fabricating biomaterial, and thus a facile technique of processing it into a material is needed. Here, electrospinning technology was used to fabricate it into biomaterials from two forms of B. mori silk sericin with different molecular weights, one is a low (12.0 kDa) molecular sericin (LS) form and another is a high (66.0 kDa) molecular weight sericin (HS) form. Circular dichroism (CD) spectra showed that LS in hexafluoroacetone (HFA) solvent adopted a predominantly random coil conformation, whereas HS tended to form a β-sheet structure along with a large content of random coils. In addition, LS and HS in HFA solvent were found to form cylinder-like smaller nanoparticles and larger irregular aggregates before electrospinning, respectively. As a result, biomaterials based on microparticles and nanofibers were successfully fabricated by electrospinning of LS and HS dissolved in HFA, respectively. The cell viability and differentiation assay indicated that nanofibers and microparticles improved cell adhesion, growth, and differentiation, proving that the scaffolds electrospun from sericin are biocompatible regardless of its molecular weight. The microparticles, not common in electrospinning of silk proteins reported previously, were found to promote the osteogenic differentiation of mesenchymal stem cells in comparison to the nanofibers. This study suggested that molecular weight of sericin mediates its secondary structure and assembly structure, which in turn leads to a control of final morphology of the electrospun materials. The microparticles and nanofibers of sericin can be potentially used as building blocks for fabricating

  16. Effect of molecular weight of polyethylene glycol on the rheological properties of fumed silica-polyethylene glycol shear thickening fluid

    NASA Astrophysics Data System (ADS)

    Singh, Mansi; Verma, Sanjeev K.; Biswas, Ipsita; Mehta, Rajeev

    2018-05-01

    The steady-shear viscosity and dynamic visco-elastic behavior of suspensions of 20 wt% fumed silica-polyethylene glycol (PEG200) shear thickening fluid (STF) with different concentrations of various molecular weight PEG (4600, 6000 and 10000) has been studied. The results demonstrate that with an increase in the molecular weight of dispersing medium, the shear thickening parameters are significantly enhanced. In steady-state rheology, addition of PEG6000 as an additive results in high shear thickening at both low and high temperatures whereas in dynamic state, PEG4600 gives high values of all dynamic parameters. Additionally, long polymer can interconnect several particles, acting as cross-links which explain the mechanism of the enhancement in viscosity. Interestingly, compositions having PEG10000 as additive exhibits shear thinning rheology. Long polymer chains increases hydrodynamic forces thus aggregation of particles increases. Also, the results demonstrate the effect of high molecular weight PEGs on the elasticity and stability of the STF, which is important with regard to high impact resisting applications.

  17. A Trickster in Disguise: Hyaluronan’s Ambivalent Roles in the Matrix

    PubMed Central

    Bohaumilitzky, Lena; Huber, Ann-Kathrin; Stork, Eva Maria; Wengert, Simon; Woelfl, Franziska; Boehm, Heike

    2017-01-01

    Hyaluronan (HA) is a simple but diverse glycosaminoglycan. It plays a major role in aging, cellular senescence, cancer, and tissue homeostasis. In which way HA affects the surrounding tissues greatly depends on the molecular weight of HA. Whereas high molecular weight HA is associated with homeostasis and protective effects, HA fragments tend to be linked to the pathologic state. Furthermore, the interaction of HA with its binding partners, the hyaladherins, such as CD44, is essential for sustaining tissue integrity and is likewise related to cancer. The naked mole rat, a rodent species, possesses a special form of very high molecular weight (vHMW) HA, which is associated with the extraordinary cancer resistance and longevity of those animals. This review addresses HA and its diverse facets: from HA synthesis to degradation, from oligomeric HA to vHMW-HA and from its beneficial properties to the involvement in pathologies. We further discuss the functions of HA in the naked mole rat and compare them to human conditions. Though intensively researched, this simple polymer bears some secrets that may hold the key for a better understanding of cellular processes and the development of diseases, such as cancer. PMID:29062810

  18. Hierarchical Structure and Mechanical Improvement of an n-HA/GCO-PU Composite Scaffold for Bone Regeneration.

    PubMed

    Li, Limei; Zuo, Yi; Zou, Qin; Yang, Boyuan; Lin, Lili; Li, Jidong; Li, Yubao

    2015-10-14

    To improve the mechanical properties of bone tissue and achieve the desired bone tissue regeneration for orthopedic surgery, newly designed hydroxyapatite/polyurethane (HA/PU) porous scaffolds were developed via in situ polymerization. The results showed that the molecular modification of PU soft segments by glyceride of castor oil (GCO) can increase the scaffold compressive strength by 48% and the elastic modulus by 96%. When nano-HA (n-HA) particles were incorporated into the GCO-PU matrix, the compressive strength and elastic modulus further increased by 49 and 74%, from 2.91 to 4.34 MPa and from 95 to 165.36 MPa, respectively. The n-HA particles with fine dispersity not only improved the interface bonding with the GCO-PU matrix but also provided effective bioactivity for bonding with bone tissue. The hierarchical structure and mechanical quality of the n-HA/GCO-PU composite scaffold were determined to be appropriate for the growth of cells and the regeneration of bony tissues, demonstrating promising prospects for bone repair and regeneration.

  19. An investigation of the preparation of high molecular weight perfluorocarbon polyethers

    NASA Technical Reports Server (NTRS)

    Watts, R. O.; Tarrant, P.

    1972-01-01

    High molecular weight perfluorocarbon polyether gums were obtained by photolysis of perfluorodienes and discyl fluorides containing a perfluorocarbon polyether backbond. The materials obtained are represented by chemical formulas. A method was developed whereby reactive acyl fluoride and trifluorovinyl end groups are converted into inert structures. In order to investigate the possible preparation of difunctional molecules which may be useful in polymer synthesis, the reactions of hexafluoropropene oxide (HFPO) with Grignard and organolithium reagents have been studied. Reactions of various nucleophilic reagents with HFPO were also investigated.

  20. Investigation of colloidal graphite as a matrix for matrix-assisted laser desorption/ionisation mass spectrometry of low molecular weight analytes.

    PubMed

    Warren, Alexander D; Conway, Ulric; Arthur, Christopher J; Gates, Paul J

    2016-07-01

    The analysis of low molecular weight compounds by matrix-assisted laser desorption/ionisation mass spectrometry is problematic due to the interference and suppression of analyte ionisation by the matrices typically employed - which are themselves low molecular weight compounds. The application of colloidal graphite is demonstrated here as an easy to use matrix that can promote the ionisation of a wide range of analytes including low molecular weight organic compounds, complex natural products and inorganic complexes. Analyte ionisation with colloidal graphite is compared with traditional organic matrices along with various other sources of graphite (e.g. graphite rods and charcoal pencils). Factors such as ease of application, spectra reproducibility, spot longevity, spot-to-spot reproducibility and spot homogeneity (through single spot imaging) are explored. For some analytes, considerable matrix suppression effects are observed resulting in spectra completely devoid of matrix ions. We also report the observation of radical molecular ions [M(-●) ] in the negative ion mode, particularly with some aromatic analytes. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Crosslink Density and Molecular Weight Effects on the Viscoelastic Response of a Glassy High-Performance Polyimide

    NASA Technical Reports Server (NTRS)

    Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.

    2001-01-01

    Durability and long-term performance are among the primary concerns for the use of advanced polymer matrix composites (PMCs) in modern aerospace structural applications. For a PMC subJected to long-term exposure at elevated temperatures. the viscoelastic nature of the polymer matrix will contribute to macroscopic changes in composite stiffness, strength and fatigue life. Over time. changes in the polymer due to physical aging will have profound effects on tile viscoelastic compliance of the material, hence affecting its long-term durability. Thus, the ability to predict material performance using intrinsic properties, such as crosslink density and molecular weight, would greatly enhance the efficiency of design and development of PMCs. The objective of this paper is to discuss and present the results of an experimental study that considers the effects of crosslink density, molecular weight and temperature on the viscoelastic behavior including physical aging of an advanced polymer. Five distinct variations in crosslink density were used to evaluate the differences in mechanical performance of an advanced polyimide. The physical aging behavior was isolated by conducting sequenced, short-term isothermal creep compliance tests in tension. These tests were performed over a range of sub-glass transition temperatures. The material constants, material master curves and physical aging-related parameters were evaluated as a function of temperature crosslink density and molecular weight using time-temperature and time-aging time superposition techniques.

  2. Optimally designed collagen/polycaprolactone biocomposites supplemented with controlled release of HA/TCP/rhBMP-2 and HA/TCP/PRP for hard tissue regeneration.

    PubMed

    Kim, WonJin; Jang, Chul Ho; Kim, GeunHyung

    2017-09-01

    Collagen has been widely used as a very promising material to regenerate various tissues. It is a chief component of the extracellular matrix, and encourages various biological effects conducive to tissue regeneration. However, poor mechanical stability, low processability, and high level of water absorption can lead to impaired control of growth factor release and have impeded the use of collagen as a functional biomedical scaffold. Here, to overcome the shortcomings of collagen scaffolds, we have additively manufactured collagen/polycaprolactone (PCL) biocomposites supplemented with a bioceramic (hydroxyapatite (HA)/β-tricalcium-phosphate (TCP)) and two growth factors (recombinant human bone morphogenetic protein-2 [rhBMP-2] and platelet-rich plasma [PRP]). Various weight fractions of PCL in the collagen/PCL composites were manipulated to select optimal growth factor release and highly active cellular responses. After the optimal concentration of PCL in the collagen/PCL scaffold was determined, biocomposites supplemented with bioceramic/growth-factors were fabricated. Continuously released growth factors were assumed to increase the in vitro cellular activities of the osteoblast-like cells (MG63) cultured on the biocomposites. In vitro cellular responses, including osteogenic activities, were examined, and results showed that compared to the HA/TCP/rhBMP-2 supplemented scaffold the HA/TCP/PRP biocomposites provide significantly high cellular activities (cell proliferation: >1.3-fold) and mineralization (calcium deposition: >1.4-fold, osteocalcin: >2.6-fold) sufficient for regenerating bone tissue. Copyright © 2017. Published by Elsevier B.V.

  3. Evidence of low molecular weight components in the organic matrix of the reef building coral, Stylophora pistillata.

    PubMed

    Puverel, S; Houlbrèque, F; Tambutté, E; Zoccola, D; Payan, P; Caminiti, N; Tambutté, S; Allemand, D

    2007-08-01

    Biominerals contain both inorganic and organic components. Organic components are collectively termed the organic matrix, and this matrix has been reported to play a crucial role in mineralization. Several matrix proteins have been characterized in vertebrates, but only a few in invertebrates, primarily in Molluscs and Echinoderms. Methods classically used to extract organic matrix proteins eliminate potential low molecular weight matrix components, since cut-offs ranging from 3.5 to 10 kDa are used to desalt matrix extracts. Consequently, the presence of such components remains unknown and these are never subjected to further analyses. In the present study, we have used microcolonies from the Scleractinian coral Stylophora pistillata to study newly synthesized matrix components by labelling them with 14C-labelled amino acids. Radioactive matrix components were investigated by a method in which both total organic matrix and fractions of matrix below and above 5 kDa were analyzed. Using this method and SDS-PAGE analyses, we were able to detect the presence of low molecular mass matrix components (<3.5 kDa), but no free amino acids in the skeletal organic matrix. Since more than 98% of the 14C-labelled amino acids were incorporated into low molecular weight molecules, these probably form the bulk of newly synthesized organic matrix components. Our results suggest that these low molecular weight components may be peptides, which can be involved in the regulation of coral skeleton mineralization.

  4. MALDI-TOF mass spectrometry analysis of small molecular weight compounds (under 10 KDa) as biomarkers of rat hearts undergoing arecoline challenge.

    PubMed

    Chen, Tung-Sheng; Chang, Mu-Hsin; Kuo, Wei-Wen; Lin, Yueh-Min; Yeh, Yu-Lan; Day, Cecilia Hsuan; Lin, Chien-Chung; Tsai, Fuu-Jen; Tsai, Chang-Hai; Huang, Chih-Yang

    2013-04-01

    Statistical and clinical reports indicate that betel nut chewing is strongly associated with progression of oral cancer because some ingredients in betel nuts are potential cancer promoters, especially arecoline. Early diagnosis for cancer biomarkers is the best strategy for prevention of cancer progression. Several methods are suggested for investigating cancer biomarkers. Among these methods, gel-based proteomics approach is the most powerful and recommended tool for investigating biomarkers due to its high-throughput. However, this proteomics approach is not suitable for screening biomarkers with molecular weight under 10 KDa because of the characteristics of gel electrophoresis. This study investigated biomarkers with molecular weight under 10 KDa in rats with arecoline challenge. The centrifuging vials with membrane (10 KDa molecular weight cut-off) played a crucial role in this study. After centrifuging, the filtrate (containing compounds with molecular weight under 10 KDa) was collected and spotted on a sample plate for MALDI-TOF mass spectrometry analysis. Compared to control, three extra peaks (m/z values were 1553.1611, 1668.2097 and 1740.1832, respectively) were found in sera and two extra peaks were found in heart tissue samples (408.9719 and 524.9961, respectively). These small compounds should play important roles and may be potential biomarker candidates in rats with arecoline. This study successfully reports a mass-based method for investigating biomarker candidates with small molecular weight in different types of sample (including serum and tissue). In addition, this reported method is more time-efficient (1 working day) than gel-based proteomics approach (5~7 working days).

  5. Detergent-dispersant additives based on high-molecular-weight alkylphenols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulieva, K.N.; Namazova, I.I.; Ismailova, N.D.

    1988-09-01

    This article describes the synthesis and investigation of Mannich bases produced for alkylphenols, obtained in turn from ethylene oligomers. These oligomers are the still bottoms from distillation products of high-temperature oligomerization of ethylene in the presence of triethylaluminum. Two narrow cuts obtained from the distillation of oligomer fraction were used to study the influence of ethylene oligomer molecular weight on the properties of the additives. The additives were blended in DS-11 oil to evaluate their detergency-dispersancy and other properties. Comparison blends were made with succinimide additives based on the same ethylene oligomers. The Mannich bases give improvements in the oxidationmore » resistance, anticorrosion properties, and detergency-dispersancy of the DS-11 diesel oil.« less

  6. Holographic recording medium employing a photoconductive layer and a low molecular weight microcrystalline polymeric layer

    NASA Technical Reports Server (NTRS)

    Gange, Robert Allen (Inventor)

    1977-01-01

    A holographic recording medium comprising a conductive substrate, a photoconductive layer and an electrically alterable layer of a linear, low molecular weight hydrocarbon polymer has improved fatigue resistance. An acrylic barrier layer can be interposed between the photoconductive and electrically alterable layers.

  7. Influence of molecular weight of chemically sulfated citrus pectin fractions on their antithrombotic and bleeding effects.

    PubMed

    Cipriani, Thales R; Gracher, Ana Helena P; de Souza, Lauro M; Fonseca, Roberto J C; Belmiro, Celso L R; Gorin, Philip A J; Sassaki, Guilherme L; Iacomini, Marcello

    2009-05-01

    Evaluated were the anticoagulant and antithrombotic activities, and bleeding effect of two chemically sulfated polysaccharides, obtained from citric pectin, with different average molar masses. Both low-molecular-weight (Pec-LWS, 3,600 g/mol) and high-molecular-weight sulfated pectins (Pec-HWS, 12,000 g/mol) had essentially the same structure, consisting of a (1-->4)-linked alpha-D-GalpA chain with almost all its HO-2 and HO-3 groups substituted by sulfate. Both polysaccharides had anticoagulant activity in vitro, although Pec-HWS was a more potent antithrombotic agent in vivo, giving rise to total inhibition of venous thrombosis at a dose of 3.5 mg/kg body weight. Surprisingly, in contrast with heparin, Pec-HWS and Pec-LWS are able to directly inhibit alpha-thrombin and factor Xa by a mechanism independent of antithrombin (AT) and/or heparin co-factor II (HCII). Moreover, Pec-HWS provided a lower risk of bleeding than heparin at a dose of 100% effectiveness against venous thrombosis, indicating it to be a promising antithrombotic agent.

  8. Rheological Properties of Gels from Pyrene Based Low Molecular Weight Gelators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leivo, Kimmo T.; Hahma, Arno P.

    2008-07-07

    Gels of pyrene derived low molecular weight organogelators (LMOGs) in primary alcohols have been characterized by rheometry and scanning electron microscopy. Total gelator concentration was 1-2.7 % w/w depending on the solvent and the gelator, including equimolar amounts of the gelator and 2,4,7-trinitrofluorenone (TNF), which is necessary for gelation. Thermoreversible and strongly shear thinning gels were achieved as the two components interact non-covalently to form a gel network. A qualitative correlation between the rheological properties and the nanoscale gel structure were found.

  9. Rheological Properties of Gels from Pyrene Based Low Molecular Weight Gelators

    NASA Astrophysics Data System (ADS)

    Leivo, Kimmo T.; Hahma, Arno P.

    2008-07-01

    Gels of pyrene derived low molecular weight organogelators (LMOGs) in primary alcohols have been characterized by rheometry and scanning electron microscopy. Total gelator concentration was 1-2.7 % w/w depending on the solvent and the gelator, including equimolar amounts of the gelator and 2,4,7-trinitrofluorenone (TNF), which is necessary for gelation. Thermoreversible and strongly shear thinning gels were achieved as the two components interact non-covalently to form a gel network. A qualitative correlation between the rheological properties and the nanoscale gel structure were found.

  10. Removal of low-molecular weight DBPs and inorganic ions for characterization of high-molecular weight DBPs in drinking water.

    PubMed

    Zhang, Xiangru; Minear, Roger A

    2006-03-01

    High-molecular weight (MW) halogenated disinfection byproducts (DBPs) may cause adverse health effects. In this work several issues related to the better separation and characterization of the high MW halogenated DBPs (MW>500Da) were studied. Ultra-filtration (UF) coupled with a nominal 500-Da membrane was employed to flush out low MW DBPs and inorganic ions. Two procedures, intermittent UF and continuous UF, were used and compared. The results demonstrate that haloacetic acids, chloride and sodium ions could be effectively flushed out, and most of phosphate ions could be flushed out for a given dilution number or sufficient Milli-Q water. The size exclusion chromatograms indicate that haloacetic acids and trihalomethanes were not bound to Suwannee River fulvic acid (SRFA); 2,4,6-trichlorophenol might form some binding with SRFA, but it appeared to be very weak and readily broken up when passing along the size exclusion column. The octanol-water partition coefficients of low MW DBPs and the properties of humic substances seem to play key roles in determining the formation of possible bindings between low MW DBPs and humic substances.

  11. Low-molecular-weight heparin biosimilars: potential implications for clinical practice. Australian Low-Molecular-Weight Heparin Biosimilar Working Group (ALBW).

    PubMed

    Nandurkar, H; Chong, B; Salem, H; Gallus, A; Ferro, V; McKinnon, R

    2014-05-01

    A working group of clinicians and scientists was formed to review the clinical considerations for use of low-molecular-weight heparin (LMWH) biosimilars. LMWH are biological molecules of significant complexity; the full complexity of chemical structure is still to be elucidated. LMWH biosimilars are products that are biologically similar to their reference product and rely on clinical data from a reference product to establish safety and efficacy. The complex nature of LMWH molecules means that it is uncertain whether a LMWH biosimilar is chemically identical to its reference product; this introduces the possibility of differences in activity and immunogenicity. The challenge for regulators and clinicians is to evaluate the level of evidence required to demonstrate that a LMWH is sufficiently similar to the reference product. The consensus opinion of the working group is that prior to clinical use a LMWH biosimilar should have proven efficacy and safety, similar to the reference product with prospective studies, which should be confirmed with a proactive post-marketing pharmacovigilance programme. © 2014 The Authors; Internal Medicine Journal © 2014 Royal Australasian College of Physicians.

  12. Improving the Application of High Molecular Weight Biotinylated Dextran Amine for Thalamocortical Projection Tracing in the Rat.

    PubMed

    Xu, Dongsheng; Cui, Jingjing; Wang, Jia; Zhang, Zhiyun; She, Chen; Bai, Wanzhu

    2018-04-12

    High molecular weight biotinylated dextran amine (BDA) has been used as a highly sensitive neuroanatomical tracer for many decades. Since the quality of its labeling was affected by various factors, here, we provide a refined protocol for the application of high molecular weight BDA for studying optimal neural labeling in the central nervous system. After stereotactic injection of BDA into the ventral posteromedial nucleus (VPM) of the thalamus in the rat through a delicate glass pipette, BDA was stained with fluorescent streptavidin-Alexa (AF) 594 and counterstained with fluorescent Nissl stain AF500/525. On the background of green Nissl staining, the red BDA labeling, including neuronal cell bodies and axonal terminals, was more distinctly demonstrated in the somatosensory cortex. Furthermore, double fluorescent staining for BDA and the calcium-binding protein parvalbumin (PV) was carried out to observe the correlation of BDA labeling and PV-positive interneurons in the cortical target, providing the opportunity to study the local neural circuits and their chemical characteristics. Thus, this refined method is not only suitable for visualizing high quality neural labeling with the high molecular weight BDA through reciprocal neural pathways between the thalamus and cerebral cortex, but also will permit the simultaneous demonstration of other neural markers with fluorescent histochemistry or immunochemistry.

  13. Novel strategies to construct complex synthetic vectors to produce DNA molecular weight standards.

    PubMed

    Chen, Zhe; Wu, Jianbing; Li, Xiaojuan; Ye, Chunjiang; Wenxing, He

    2009-05-01

    DNA molecular weight standards (DNA markers, nucleic acid ladders) are commonly used in molecular biology laboratories as references to estimate the size of various DNA samples in electrophoresis process. One method of DNA marker production is digestion of synthetic vectors harboring multiple DNA fragments of known sizes by restriction enzymes. In this article, we described three novel strategies-sequential DNA fragment ligation, screening of ligation products by polymerase chain reaction (PCR) with end primers, and "small fragment accumulation"-for constructing complex synthetic vectors and minimizing the mass differences between DNA fragments produced from restrictive digestion of synthetic vectors. The strategy could be applied to construct various complex synthetic vectors to produce any type of low-range DNA markers, usually available commercially. In addition, the strategy is useful for single-step ligation of multiple DNA fragments for construction of complex synthetic vectors and other applications in molecular biology field.

  14. Molecular weight of different angiotensin II polymers directly determines: density of endothelial membrane AT1 receptors and coronary vasoconstriction.

    PubMed

    Torres-Tirado, David; Ramiro-Diaz, Juan; Knabb, Maureen T; Rubio, Rafael

    2013-01-01

    We have shown that angiotensin II (Ang II) does not diffuse across the vessel wall, remaining intravascularly confined and acting solely on the coronary endothelial luminal membrane (CELM) receptors. A sustained intracoronary infusion of Ang II causes transient coronary vasoconstriction (desensitization) due to membrane internalization of CELM Ang II type 1 receptors (CELM-AT1R). In contrast, sustained intracoronary infusion of a non-diffusible polymer of Ang II (Ang II-Pol, 15,000 kDa) causes a sustained vasoconstriction by preventing CELM-AT1R internalization. In addition, a sustained intracoronary infusion of Ang II leads to a depressed response following a secondary Ang II administration (tachyphylaxis) that is reversed by Ang II-Pol. These findings led us to hypothesize that the rate of desensitization, tachyphylaxis, and AT1R internalization were dependent on Ang II-Pol molecular weight. To test this hypothesis, we synthesized Ang II-Pols of the following molecular weights (in kDa): 1.3, 2.7, 11, 47, 527, 3270 and 15,000. Vasoconstriction was measured following intracoronary infusion of Ang II-Pols in Langendorff-perfused guinea pig hearts at constant flow. The CELM protein fraction was extracted using the silica pellicle technique at different time points in order to determine the rate of AT1R internalization following each Ang II-Pol infusion. CELM-AT1R density was quantified by Western blot. We found that the rate of desensitization and the tachyphylaxis effect varied inversely with the molecular weight of the Ang II-Pols. Inversely proportional to the molecular weight of Ang II-Pol the CELM-AT1R density decreases over time. These results indicate that the mechanism responsible for the decreased rate of desensitization and tachyphylaxis by higher molecular weight Ang II polymers is due to reduction in the rate of CELM-AT1R internalization. These Ang II polymers would be valuable tools for studying the relationship between AT1R internalization and

  15. Bilateral rectal sheath hematomas after low-molecular weight heparin treatment in uremia.

    PubMed

    Xu, Lu; Liu, Lei; Li, Xinjian

    2017-11-01

    Rectus sheath hematomas (RSHs) are uncommon. They are usually unilateral and rarely bilateral. In this paper, we report the first case of spontaneous bilateral RSHs in a uremic patient after the administration of the first dose of low-molecular weight heparin during hemodialysis. The most interesting aspect of this case is that the main symptom of RSH in our patient was urinary bladder irritation. We highlight the importance of the prompt diagnosis and management of this medical emergency.

  16. Radiation cross-linking in ultra-high molecular weight polyethylene for orthopaedic applications

    NASA Astrophysics Data System (ADS)

    Oral, Ebru; Muratoglu, Orhun K.

    2007-12-01

    The motivation for radiation cross-linking of ultra-high molecular weight polyethylene (UHMWPE) is to increase its wear resistance to be used as bearing surfaces for total joint arthroplasty. However, radiation also leaves behind long-lived residual free radicals in this polymer, the reactions of which can detrimentally affect mechanical properties. In this review, we focus on the radiation cross-linking and oxidative stability of first and second generation highly cross-linked UHMWPEs developed in our laboratory.

  17. High-molecular-weight tropomyosins localize to the contractile rings of dividing CNS cells but are absent from malignant pediatric and adult CNS tumors.

    PubMed

    Hughes, Julie A I; Cooke-Yarborough, Claire M; Chadwick, Nigel C; Schevzov, Galina; Arbuckle, Susan M; Gunning, Peter; Weinberger, Ron P

    2003-04-01

    Tropomyosin has been implicated in the control of actin filament dynamics during cell migration, morphogenesis, and cytokinesis. In order to gain insight into the role of tropomyosins in cell division, we examined their expression in developing and neoplastic brain tissue. We found that the high-molecular-weight tropomyosins are downregulated at birth, which correlates with glial cell differentiation and withdrawal of most cells from the cell cycle. Expression of these isoforms was restricted to proliferative areas in the embryonic brain and was absent from the adult, where the majority of cells are quiescent. However, they were induced under conditions where glial cells became proliferative in response to injury. During cytokinesis, these tropomyosin isoforms were associated with the contractile ring. We also investigated tropomyosin expression in neoplastic CNS tissues. Low-grade astrocytic tumors expressed high-molecular-weight tropomyosins, while highly malignant CNS tumors of diverse origin did not (P molecular-weight tropomyosins were absent from the contractile ring in highly malignant astrocytoma cells. Our findings suggest a role for high-molecular-weight tropomyosins in astrocyte cytokinesis, although highly malignant CNS tumors are still able to undergo cell division in their absence. Additionally, the correlation between high-molecular-weight tropomyosin expression and tumor grade suggests that tropomyosins are potentially useful as indicators of CNS tumor grade. Copyright 2003 Wiley-Liss, Inc.

  18. Precision Extruding Deposition for Freeform Fabrication of PCL and PCL-HA Tissue Scaffolds

    NASA Astrophysics Data System (ADS)

    Shor, L.; Yildirim, E. D.; Güçeri, S.; Sun, W.

    Computer-aided tissue engineering approach was used to develop a novel Precision Extrusion Deposition (PED) process to directly fabricate Polycaprolactone (PCL) and composite PCL/Hydroxyapatite (PCL-HA) tissue scaffolds. The process optimization was carried out to fabricate both PCL and PCL-HA (25% concentration by weight of HA) with a controlled pore size and internal pore structure of the 0°/90° pattern. Two groups of scaffolds having 60 and 70% porosity and with pore sizes of 450 and 750 microns, respectively, were evaluated for their morphology and compressive properties using Scanning Electron Microscopy (SEM) and mechanical testing. The surface modification with plasma was conducted on PCL scaffold to increase the cellular attachment and proliferation. Our results suggested that inclusion of HA significantly increased the compressive modulus from 59 to 84 MPa for 60% porous scaffolds and from 30 to 76 MPa for 70% porous scaffolds. In vitro cell-scaffolds interaction study was carried out using primary fetal bovine osteoblasts to assess the feasibility of scaffolds for bone tissue engineering application. In addition, the results in surface hydrophilicity and roughness show that plasma surface modification can increase the hydrophilicity while introducing the nano-scale surface roughness on PCL surface. The cell proliferation and differentiation were calculated by Alamar Blue assay and by determining alkaline phosphatase activity. The osteoblasts were able to migrate and proliferate over the cultured time for both PCL as well as PCL-HA scaffolds. Our study demonstrated the viability of the PED process to the fabricate PCL and PCL-HA composite scaffolds having necessary mechanical property, structural integrity, controlled pore size and pore interconnectivity desired for bone tissue engineering.

  19. Mass Spectrometry Imaging of low Molecular Weight Compounds in Garlic (Allium sativum L.) with Gold Nanoparticle Enhanced Target.

    PubMed

    Misiorek, Maria; Sekuła, Justyna; Ruman, Tomasz

    2017-11-01

    Garlic (Allium sativum) is the subject of many studies due to its numerous beneficial properties. Although compounds of garlic have been studied by various analytical methods, their tissue distributions are still unclear. Mass spectrometry imaging (MSI) appears to be a very powerful tool for the identification of the localisation of compounds within a garlic clove. Visualisation of the spatial distribution of garlic low-molecular weight compounds with nanoparticle-based MSI. Compounds occurring on the cross-section of sprouted garlic has been transferred to gold-nanoparticle enhanced target (AuNPET) by imprinting. The imprint was then subjected to MSI analysis. The results suggest that low molecular weight compounds, such as amino acids, dipeptides, fatty acids, organosulphur and organoselenium compounds are distributed within the garlic clove in a characteristic manner. It can be connected with their biological functions and metabolic properties in the plant. New methodology for the visualisation of low molecular weight compounds allowed a correlation to be made between their spatial distribution within a sprouted garlic clove and their biological function. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  20. GlycCompSoft: Software for Automated Comparison of Low Molecular Weight Heparins Using Top-Down LC/MS Data

    PubMed Central

    Li, Lingyun; Zhang, Fuming; Hu, Min; Ren, Fuji; Chi, Lianli; Linhardt, Robert J.

    2016-01-01

    Low molecular weight heparins are complex polycomponent drugs that have recently become amenable to top-down analysis using liquid chromatography-mass spectrometry. Even using open source deconvolution software, DeconTools, and automatic structural assignment software, GlycReSoft, the comparison of two or more low molecular weight heparins is extremely time-consuming, taking about a week for an expert analyst and provides no guarantee of accuracy. Efficient data processing tools are required to improve analysis. This study uses the programming language of Microsoft Excel™ Visual Basic for Applications to extend its standard functionality for macro functions and specific mathematical modules for mass spectrometric data processing. The program developed enables the comparison of top-down analytical glycomics data on two or more low molecular weight heparins. The current study describes a new program, GlycCompSoft, which has a low error rate with good time efficiency in the automatic processing of large data sets. The experimental results based on three lots of Lovenox®, Clexane® and three generic enoxaparin samples show that the run time of GlycCompSoft decreases from 11 to 2 seconds when the data processed decreases from 18000 to 1500 rows. PMID:27942011

  1. Trypanosoma cruzi H+-ATPase 1 (TcHA1) and 2 (TcHA2) genes complement yeast mutants defective in H+ pumps and encode plasma membrane P-type H+-ATPases with different enzymatic properties.

    PubMed

    Luo, Shuhong; Scott, David A; Docampo, Roberto

    2002-11-15

    Previous studies in Trypanosoma cruzi have shown that intracellular pH homeostasis requires ATP and is affected by H(+)-ATPase inhibitors, indicating a major role for ATP-driven proton pumps in intracellular pH control. In the present study, we report the cloning and sequencing of a pair of genes linked in tandem (TcHA1 and TcHA2) in T. cruzi which encode proteins with homology to fungal and plant P-type proton-pumping ATPases. The genes are expressed at the mRNA level in different developmental stages of T. cruzi: TcHA1 is expressed maximally in epimastigotes, whereas TcHA2 is expressed predominantly in trypomastigotes. The proteins predicted from the nucleotide sequence of the genes have 875 and 917 amino acids and molecular masses of 96.3 and 101.2 kDa, respectively. Full-length TcHA1 and an N-terminal truncated version of TcHA2 complemented a Saccharomyces cerevisiae strain deficient in P-type H(+)-ATPase activity, the proteins localized to the yeast plasma membrane, and ATP-driven proton pumping could be detected in proteoliposomes reconstituted from plasma membrane purified from transfected yeast. The reconstituted proton transport activity was reduced by inhibitors of P-type H(+)-ATPases. C-terminal truncation did not affect complementation of mutant yeast, suggesting the lack of C-terminal autoinhibitory domains in these proteins. ATPase activity in plasma membrane from TcHA1- and (N-terminal truncated) TcHA2-transfected yeast was inhibited to different extents by vanadate, whereas the latter yeast strain was more resistant to extremes of pH, suggesting that the native proteins may serve different functions at different stages in the T. cruzi life cycle.

  2. Diabetes reversal by inhibition of the low molecular weight tyrosine phosphatase

    PubMed Central

    Stanford, Stephanie M; Aleshin, Alexander E; Zhang, Vida; Ardecky, Robert J; Hedrick, Michael P; Zou, Jiwen; Ganji, Santhi R.; Bliss, Matthew R; Yamamoto, Fusayo; Bobkov, Andrey A.; Kiselar, Janna; Liu, Yingge; Cadwell, Gregory W; Khare, Shilpi; Yu, Jinghua; Barquilla, Antonio; Chung, Thomas DY; Mustelin, Tomas; Schenk, Simon; Bankston, Laurie A; Liddington, Robert C; Pinkerton, Anthony B; Bottini, Nunzio

    2017-01-01

    Obesity-associated insulin resistance plays a central role in type 2 diabetes. As such, tyrosine phosphatases that dephosphorylate the insulin receptor (IR) are potential therapeutic targets. The low molecular weight protein tyrosine phosphatase (LMPTP) is a proposed IR phosphatase, yet its role in insulin signaling in vivo has not been defined. Here we show that global and liver-specific LMPTP deletion protects mice from high-fat diet-induced diabetes without affecting body weight. To examine the role of the catalytic activity of LMPTP, we developed a small-molecule inhibitor with a novel uncompetitive mechanism, a unique binding site at the opening of the catalytic pocket, and exquisite selectivity over other phosphatases. This inhibitor is orally bioavailable, increases liver IR phosphorylation in vivo, and reverses high-fat diet induced diabetes. Our findings suggest that LMPTP is a key promoter of insulin resistance and that LMPTP inhibitors would be beneficial for treating type 2 diabetes. PMID:28346406

  3. Diabetes reversal by inhibition of the low-molecular-weight tyrosine phosphatase.

    PubMed

    Stanford, Stephanie M; Aleshin, Alexander E; Zhang, Vida; Ardecky, Robert J; Hedrick, Michael P; Zou, Jiwen; Ganji, Santhi R; Bliss, Matthew R; Yamamoto, Fusayo; Bobkov, Andrey A; Kiselar, Janna; Liu, Yingge; Cadwell, Gregory W; Khare, Shilpi; Yu, Jinghua; Barquilla, Antonio; Chung, Thomas D Y; Mustelin, Tomas; Schenk, Simon; Bankston, Laurie A; Liddington, Robert C; Pinkerton, Anthony B; Bottini, Nunzio

    2017-06-01

    Obesity-associated insulin resistance plays a central role in type 2 diabetes. As such, tyrosine phosphatases that dephosphorylate the insulin receptor (IR) are potential therapeutic targets. The low-molecular-weight protein tyrosine phosphatase (LMPTP) is a proposed IR phosphatase, yet its role in insulin signaling in vivo has not been defined. Here we show that global and liver-specific LMPTP deletion protects mice from high-fat diet-induced diabetes without affecting body weight. To examine the role of the catalytic activity of LMPTP, we developed a small-molecule inhibitor with a novel uncompetitive mechanism, a unique binding site at the opening of the catalytic pocket, and an exquisite selectivity over other phosphatases. This inhibitor is orally bioavailable, and it increases liver IR phosphorylation in vivo and reverses high-fat diet-induced diabetes. Our findings suggest that LMPTP is a key promoter of insulin resistance and that LMPTP inhibitors would be beneficial for treating type 2 diabetes.

  4. Analysis of low molecular weight metabolites in tea using mass spectrometry-based analytical methods.

    PubMed

    Fraser, Karl; Harrison, Scott J; Lane, Geoff A; Otter, Don E; Hemar, Yacine; Quek, Siew-Young; Rasmussen, Susanne

    2014-01-01

    Tea is the second most consumed beverage in the world after water and there are numerous reported health benefits as a result of consuming tea, such as reducing the risk of cardiovascular disease and many types of cancer. Thus, there is much interest in the chemical composition of teas, for example; defining components responsible for contributing to reported health benefits; defining quality characteristics such as product flavor; and monitoring for pesticide residues to comply with food safety import/export requirements. Covered in this review are some of the latest developments in mass spectrometry-based analytical techniques for measuring and characterizing low molecular weight components of tea, in particular primary and secondary metabolites. The methodology; more specifically the chromatography and detection mechanisms used in both targeted and non-targeted studies, and their main advantages and disadvantages are discussed. Finally, we comment on the latest techniques that are likely to have significant benefit to analysts in the future, not merely in the area of tea research, but in the analytical chemistry of low molecular weight compounds in general.

  5. Structure and Activity of a New Low Molecular Weight Heparin Produced by Enzymatic Ultrafiltration

    PubMed Central

    FU, LI; ZHANG, FUMING; LI, GUOYUN; ONISHI, AKIHIRO; BHASKAR, UJJWAL; SUN, PEILONG; LINHARDT, ROBERT J.

    2014-01-01

    The standard process for preparing the low molecular weight heparin (LMWH) tinzaparin, through the partial enzymatic depolymerization of heparin, results in a reduced yield due to the formation of a high content of undesired disaccharides and tetrasaccharides. An enzymatic ultrafiltration reactor for LMWH preparation was developed to overcome this problem. The behavior, of the heparin oligosaccharides and polysaccharides using various membranes and conditions, was investigated to optimize this reactor. A novel product, LMWH-II, was produced from the controlled depolymerization of heparin using heparin lyase II in this optimized ultrafiltration reactor. Enzymatic ultrafiltration provides easy control and high yields (>80%) of LMWH-II. The molecular weight properties of LMWH-II were similar to other commercial LMWHs. The structure of LMWH-II closely matched heparin’s core structural features. Most of the common process artifacts, present in many commercial LWMHs, were eliminated as demonstrated by 1D and 2D nuclear magnetic resonance spectroscopy. The antithrombin III and platelet factor-4 binding affinity of LMWH-II were comparable to commercial LMWHs, as was its in vitro anticoagulant activity. PMID:24634007

  6. Assembly and Characterization ofWell-DefinedHigh-Molecular-Weight Poly(p-phenylene) Polymer Brushes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jihua; Dadmun, Mark D; Mays, Jimmy

    2011-01-01

    The assembly and characterization of well-de ned, end-tethered poly- (p-phenylene) (PPP) brushes having high molecular weight, low polydispersity and high 1,4-stereoregularity are presented. The PPP brushes are formed using a precursor route that relies on either self-assembly or spin coating of high molecular weight (degrees of poly- merizations 54, 146, and 238) end-functionalized poly(1,3-cyclohexadiene) (PCHD) chains from benzene solutions onto silicon or quartz substrates, followed by aromatization of the end-attached PCHD chains on the surface. The approach allows the thickness (grafting density) of the brushes to be easily varied. The dry brushes before and after aromatization are characterized by ellipsometry,more » atomic force microscopy, grazing angle attenuated total re ectance Fourier transform infrared spectroscopy, and UV-Vis spectros- copy. The properties of the PPP brushes are compared with those of lms made using oligo- paraphenylenes and with ab initio density functional theory simulations of optical proper- ties. Our results suggest conversion to fully aromatized, end-tetheredPPPpolymerbrusheshaving eective conjugation lengths of 5 phenyl units.« less

  7. Assembly and Characterization of Well Defined High Molecular Weight Poly(p-phenylene) Polymer Brushes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alonzo Calderon, Jose E; Kilbey, II, S Michael; Ankner, John Francis

    2011-01-01

    The assembly and characterization of well-defined, end-tethered poly(p-phenylene) (PPP) brushes having high molecular weight, low polydispersity and high 1,4-stereoregularity are presented. The PPP brushes are formed using a precursor route that relies on either self-assembly or spin coating of high molecular weight (degrees of polymerizations 54, 146, and 238) end-functionalized poly(1,3-cyclohexadiene) (PCHD) chains from benzene solutions onto silicon or quartz substrates, followed by aromatization of the end-attached PCHD chains on the surface. The approach allows the thickness (grafting density) of the brushes to be easily varied. The dry brushes before and after aromatization are characterized by ellipsometry, atomic force microscopy,more » grazing angle attenuated total reflectance Fourier transform infrared spectroscopy, and UV-Vis spectroscopy. The properties of the PPP brushes are compared with those of films made using oligo-paraphenylenes and with ab initio density functional theory simulations of optical properties. Our results suggest conversion to fully aromatized, end-tethered PPP polymer brushes having effective conjugation lengths of 5 phenyl units.« less

  8. Antimicrobial and anticancer potential of low molecular weight polypeptides extracted and characterized from leaves of Azadirachta indica.

    PubMed

    Al Saiqali, Mohammed; Tangutur, Anjana Devi; Banoth, Chandrasekhar; Bhukya, Bhima

    2018-07-15

    Low molecular weight antimicrobial polypeptides were extracted and purified from the young fresh leaves of Azadirachta indica (neem). The total protein extracted was precipitated with 15% TCA-Acetone. The total purified proteins yielded from the two extraction methods were 122.33±2.21 and 115.09±1.88mg/g of the total fresh weight. The SDS-PAGE analysis identified the presence of eight low molecular weight polypeptide bands. The antimicrobial activity of the resolved bands was detected by Polyacrylamide gel-Agar overlay diffusion assay (PAG-ADA). Their broad-spectrum bactericidal activity was confirmed using the same technique and found three low molecular weight bands from 11 to 14kDa collectively exhibiting superior bactericidal activities against Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus epidermis, Enterococcus faecalis, Pseudomonas aeruginosa and fungicidal activity against Candida tropicalis. The FTIR spectrum of the protein bands depicted the presence of hydroxyl and carbonyl groups in the protein bands. These polypeptides were characterized by MALDI-TOF/TOF analysis. Further, the purified protein extract was found to be active against HELA, BT-549 and Neuro-2a cell lines with IC 50 value of 74.03±2.31, 64.82±1.64, 238.32±2.12 and 109.94±2.96, 59.61±0.75 for 24h and 48h, respectively. The results of present study indicate that these polypeptides exhibit broad spectrum antimicrobial and anticancer activity and can therefore be explored for their therapeutic potential. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Incorporation of high-molecular-weight glutenin subunits into doughs using 2 gram mixograph and extensigraphs

    USDA-ARS?s Scientific Manuscript database

    To study the contributions of high-molecular-weight glutenin subunits (HMW-GS) to the gluten macropolymer and dough properties, wheat HMW-GS (x- and y-types) are synthesized in a bacterial expression system. These subunits are then purified and used to supplement dough mixing and extensigraph experi...

  10. 21 CFR 177.1440 - 4,4′-Isopropylidenediphenol-epichlorohydrin resins minimum molecular weight 10,000.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1440 4,4′-Isopropylidenediphenol-epichlorohydrin resins minimum molecular weight 10... may be safely used as articles or components of articles intended for use in producing, manufacturing...

  11. 21 CFR 177.1440 - 4,4′-Isopropylidenediphenol-epichlorohydrin resins minimum molecular weight 10,000.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1440 4,4′-Isopropylidenediphenol-epichlorohydrin resins minimum molecular weight 10... may be safely used as articles or components of articles intended for use in producing, manufacturing...

  12. Radiation sterilization of medical devices. Effects of ionizing radiation on ultra-high molecular-weight polyethylene

    NASA Astrophysics Data System (ADS)

    Buchalla, R.; Schüttler, C.; Bögl, K. W.

    1995-02-01

    Sterilization by ionizing radiation has become, next to ethylene oxide treament, the most important "cold" sterilization process for medical devices made from plastics. The effects of ionizing radiation on the most important polymer for medical devices, ultra-high molecular-weight polyethylene, are briefly described in this review.

  13. Local and systemic vasodilatory effects of low molecular weight S-nitrosothiols.

    PubMed

    Liu, Taiming; Schroeder, Hobe J; Wilson, Sean M; Terry, Michael H; Romero, Monica; Longo, Lawrence D; Power, Gordon G; Blood, Arlin B

    2016-02-01

    S-nitrosothiols (SNOs) such as S-nitroso-L-cysteine (L-cysNO) are endogenous compounds with potent vasodilatory activity. During circulation in the blood, the NO moiety can be exchanged among various thiol-containing compounds by S-transnitrosylation, resulting in SNOs with differing capacities to enter the cell (membrane permeability). To determine whether the vasodilating potency of SNOs is dependent upon membrane permeability, membrane-permeable L-cysNO and impermeable S-nitroso-D-cysteine (D-cysNO) and S-nitroso-glutathione (GSNO) were infused into one femoral artery of anesthetized adult sheep while measuring bilateral femoral and systemic vascular conductances. L-cysNO induced vasodilation in the infused hind limb, whereas D-cysNO and GSNO did not. L-cysNO also increased intracellular NO in isolated arterial smooth muscle cells, whereas GSNO did not. The infused SNOs remained predominantly in a low molecular weight form during first-passage through the hind limb vasculature, but were converted into high molecular weight SNOs upon systemic recirculation. At systemic concentrations of ~0.6 μmol/L, all three SNOs reduced mean arterial blood pressure by ~50%, with pronounced vasodilation in the mesenteric bed. Pharmacokinetics of L-cysNO and GSNO were measured in vitro and in vivo and correlated with their hemodynamic effects, membrane permeability, and S-transnitrosylation. These results suggest local vasodilation by SNOs in the hind limb requires membrane permeation, whereas systemic vasodilation does not. The systemic hemodynamic effects of SNOs occur after equilibration of the NO moiety amongst the plasma thiols via S-transnitrosylation. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Separation of both fibrous and globular proteins on the basis of molecular weight using high-performance size exclusion chromatography.

    PubMed

    Barden, J A

    1983-11-01

    A high-performance size exclusion liquid chromatographic system has been used to separate proteins with different shapes solely on the basis of their molecular weights. After the effects of ionic and hydrophobic interactions with the stationary phase have been overcome, protein elution is normally governed by their effective size in solution. Conditions are described under which proteins, with isoelectric points within the normal operating pH range of the columns, are eluted independent of their Stokes' radii. Even fibrous proteins with axial ratios of 50 elute according to their known molecular weights over the range 2000-2,000,000.

  15. Use of Low Molecular Weight Heparin and Aminocaproic Acid in Chronic DIC Associated with Prostate Cancer- A Case Report

    PubMed Central

    Shirai, Keisuke; Chaudhary, Uzair B.

    2007-01-01

    Disseminated Intravascular Coagulopathy (DIC) is the most common coagulopathy in patients with prostate cancer. Though rare, it could be fatal without treatment. Literature suggests that there is significant activation of fibrinolytic pathway. Pathophysiology of DIC in patients with prostate cancer is not completely understood. We present here a case of chronic DIC in a patient with metastatic androgen independent prostate cancer. His DIC was managed successfully with a combination of aminocaproic acid and low weight molecular heparin. The use of low molecular weight heparin may make management of chronic DIC in prostate cancer more feasible in an out patient setting. PMID:17619757

  16. Determination of low molecular weight thiols using monobromobimane fluorescent labeling and high-performance liquid chromatography

    NASA Technical Reports Server (NTRS)

    Fahey, Robert C.; Newton, Gerald L.

    1988-01-01

    Methods are described for the preparation and high-performance liquid chromatography (HPLC) analysis of monobromobimane derivatives of low molecular weight thiols in extracts of biological samples. Typical problems encountered in the development and application of these methods are discussed. Analysis of mung bean extract is used as an example.

  17. Novel method for the determination of average molecular weight of natural polymers based on 2D DOSY NMR and chemometrics: Example of heparin.

    PubMed

    Monakhova, Yulia B; Diehl, Bernd W K; Do, Tung X; Schulze, Margit; Witzleben, Steffen

    2018-02-05

    Apart from the characterization of impurities, the full characterization of heparin and low molecular weight heparin (LMWH) also requires the determination of average molecular weight, which is closely related to the pharmaceutical properties of anticoagulant drugs. To determine average molecular weight of these animal-derived polymer products, partial least squares regression (PLS) was utilized for modelling of diffused-ordered spectroscopy NMR data (DOSY) of a representative set of heparin (n=32) and LMWH (n=30) samples. The same sets of samples were measured by gel permeation chromatography (GPC) to obtain reference data. The application of PLS to the data led to calibration models with root mean square error of prediction of 498Da and 179Da for heparin and LMWH, respectively. The average coefficients of variation (CVs) did not exceed 2.1% excluding sample preparation (by successive measuring one solution, n=5) and 2.5% including sample preparation (by preparing and analyzing separate samples, n=5). An advantage of the method is that the sample after standard 1D NMR characterization can be used for the molecular weight determination without further manipulation. The accuracy of multivariate models is better than the previous results for other matrices employing internal standards. Therefore, DOSY experiment is recommended to be employed for the calculation of molecular weight of heparin products as a complementary measurement to standard 1D NMR quality control. The method can be easily transferred to other matrices as well. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Direct analysis in real time mass spectrometry (DART-MS) of highly non-polar low molecular weight polyisobutylenes.

    PubMed

    Nagy, Lajos; Nagy, Tibor; Deák, György; Kuki, Ákos; Antal, Borbála; Zsuga, Miklós; Kéki, Sándor

    2015-09-01

    Low molecular weight polyisobutylenes (PIB) with chlorine, olefin and succinic acid end-groups were studied using direct analysis in real time mass spectrometry (DART-MS). To facilitate the adduct ion formation under DART conditions, NH 4 Cl as an auxiliary reagent was deposited onto the PIB surface. It was found that chlorinated adduct ions of olefin and chlorine telechelic PIBs, i.e. [M + Cl] - up to m/z 1100, and the deprotonated polyisobutylene succinic acid [MH] - were formed as observed in the negative ion mode. In the positive ion mode formation of [M + NH 4 ] + , adduct ions were detected. In the tandem mass (MS/MS) spectra of [M + Cl] - , product ions were absent, suggesting a simple dissociation of the precursor [M + Cl] - into a Cl - ion and a neutral M without fragmentation of the PIB backbones. However, structurally important product ions were produced from the corresponding [M + NH 4 ] + ions, allowing us to obtain valuable information on the arm-length distributions of the PIBs containing aromatic initiator moiety. In addition, a model was developed to interpret the oligomer distributions and the number average molecular weights observed in DART-MS for PIBs and other polymers of low molecular weight. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Action of polysaccharides of similar average mass but differing molecular volume and charge on fluid drainage through synovial interstitium in rabbit knees

    PubMed Central

    Scott, D; Coleman, P J; Mason, R M; Levick, J R

    2000-01-01

    Hyaluronan (HA), an anionic polysaccharide of synovial fluid, attenuates fluid loss from joints as joint pressure is raised (‘outflow buffering’). The buffering is thought to depend on the expanded molecular domain of the polymer, which causes reflection by synovial extracellular matrix, leading to flow-dependent concentration polarization. We therefore assessed the effects of polysaccharides of differing average molecular volume and charge. Trans-synovial fluid drainage(Q̇s) was measured at controlled joint fluid pressure (Pj) in knees of anaesthetized rabbits. The joints were infused with polydisperse HA of weight-average mass 2100 kDa (4 mg ml−1, n = 17), with polydisperse neutral dextran of similar average mass (2000 kDa; n = 7) or with Ringer solution vehicle (n = 2). The role of polymer charge was assessed by infusions of neutral or sulphated dextran of average molecular mass 500 kDa (n = 6). When HA was present, Q̇s increased little with pressure, forming a virtual plateau of ∼4 μl min−1 from 10 to 25 cmH2O. Neutral dextran 2000 failed to replicate this effect. Instead, Q̇s increased steeply with Pj, reaching eight times the HA value by 20 cmH2O (P = 0.0001, ANOVA). Dextran 2000 reduced flows in comparison with Ringer solution. Analysis of the aspirated joint fluid showed that 31 ± 0.07 % (s.e.m.) of dextran 2000 in the filtrand was reflected by synovium, compared with ≥ 79 % for HA. The viscometric molecular radius of the dextran, ∼31 nm, was smaller than that of HA (101–181 nm), as was its osmotic pressure. Anionic dextran 500 failed to buffer fluid drainage, but it reduced fluid escape and synovial conductance dQ̇s/dPj more than neutral dextran 500 (P < 0.0001, ANOVA). The anionic charge increased the molecular volume and viscosity of dextran 500. The results support the hypothesis that polymer molecular volume influences its reflection by interstitial matrix and outflow buffering. Polymer charge influences flow through an effect on

  20. Product Differences in Intra-articular Hyaluronic Acids for Osteoarthritis of the Knee.

    PubMed

    Altman, Roy D; Bedi, Asheesh; Karlsson, Jon; Sancheti, Parag; Schemitsch, Emil

    2016-08-01

    Knee osteoarthritis (OA) is a common and often disabling joint disorder among adults that may result in impaired activity and daily function. A variety of treatment options are currently available and prescribed for knee OA depending on the severity of the disorder and physician preference. Intra-articular hyaluronic acid (IA-HA) injection is a treatment for knee OA that reportedly provides numerous biochemical and biological benefits, including shock absorption, chondroprotection, and anti-inflammatory effects within the knee. Clarity is needed as to whether the available IA-HA products should be considered for therapy as a group or whether there are significant differences in the products that need to be considered in treatment of OA of the knee. To determine whether there are differences in efficacy and safety with respect to intrinsic properties of available IA-HA injections for knee OA. Meta-analysis. A comprehensive literature search of the Medline, EMBASE, and PubMed databases was conducted for all existing randomized trials of IA-HA. The primary outcome measure analyzed was the mean pain score at the reported follow-up nearest to 26 weeks after injection. Pooled efficacy and safety results were recorded for subgroupings of HA product characteristics. A total of 68 studies were included for analysis. Products with an average molecular weight ≥3000 kDa provided favorable efficacy results when compared with products of an average molecular weight <3000 kDa. Products with a molecular weight ≥3000 kDa demonstrated significantly fewer discontinuations due to treatment-related adverse events than did ≤1500 kDa counterparts, while trial discontinuation rates were similar between biological fermentation-derived HA products and avian-derived HA. The results did not demonstrate a significant difference in the occurrence of effusion across molecular weight subgroups. Additionally, biological fermentation-derived HA had a significantly smaller incidence of

  1. High Molecular Weight Forms of Mammalian Respiratory Chain Complex II

    PubMed Central

    Nůsková, Hana; Holzerová, Eliška; Vrbacký, Marek; Pecina, Petr; Hejzlarová, Kateřina; Kľučková, Katarína; Rohlena, Jakub; Neuzil, Jiri; Houštěk, Josef

    2013-01-01

    Mitochondrial respiratory chain is organised into supramolecular structures that can be preserved in mild detergent solubilisates and resolved by native electrophoretic systems. Supercomplexes of respiratory complexes I, III and IV as well as multimeric forms of ATP synthase are well established. However, the involvement of complex II, linking respiratory chain with tricarboxylic acid cycle, in mitochondrial supercomplexes is questionable. Here we show that digitonin-solubilised complex II quantitatively forms high molecular weight structures (CIIhmw) that can be resolved by clear native electrophoresis. CIIhmw structures are enzymatically active and differ in electrophoretic mobility between tissues (500 – over 1000 kDa) and cultured cells (400–670 kDa). While their formation is unaffected by isolated defects in other respiratory chain complexes, they are destabilised in mtDNA-depleted, rho0 cells. Molecular interactions responsible for the assembly of CIIhmw are rather weak with the complexes being more stable in tissues than in cultured cells. While electrophoretic studies and immunoprecipitation experiments of CIIhmw do not indicate specific interactions with the respiratory chain complexes I, III or IV or enzymes of the tricarboxylic acid cycle, they point out to a specific interaction between CII and ATP synthase. PMID:23967256

  2. Characterization of New PEEK/HA Composites with 3D HA Network Fabricated by Extrusion Freeforming.

    PubMed

    Vaezi, Mohammad; Black, Cameron; Gibbs, David M R; Oreffo, Richard O C; Brady, Mark; Moshrefi-Torbati, Mohamed; Yang, Shoufeng

    2016-05-26

    Addition of bioactive materials such as calcium phosphates or Bioglass, and incorporation of porosity into polyetheretherketone (PEEK) has been identified as an effective approach to improve bone-implant interfaces and osseointegration of PEEK-based devices. In this paper, a novel production technique based on the extrusion freeforming method is proposed that yields a bioactive PEEK/hydroxyapatite (PEEK/HA) composite with a unique configuration in which the bioactive phase (i.e., HA) distribution is computer-controlled within a PEEK matrix. The 100% interconnectivity of the HA network in the biocomposite confers an advantage over alternative forms of other microstructural configurations. Moreover, the technique can be employed to produce porous PEEK structures with controlled pore size and distribution, facilitating greater cellular infiltration and biological integration of PEEK composites within patient tissue. The results of unconfined, uniaxial compressive tests on these new PEEK/HA biocomposites with 40% HA under both static and cyclic mode were promising, showing the composites possess yield and compressive strength within the range of human cortical bone suitable for load bearing applications. In addition, preliminary evidence supporting initial biological safety of the new technique developed is demonstrated in this paper. Sufficient cell attachment, sustained viability in contact with the sample over a seven-day period, evidence of cell bridging and matrix deposition all confirmed excellent biocompatibility.

  3. Topochemical approach to efficiently produce main-chain poly(bile acid)s with high molecular weights.

    PubMed

    Li, Weina; Li, Xuesong; Zhu, Wei; Li, Changxu; Xu, Dan; Ju, Yong; Li, Guangtao

    2011-07-21

    Based on a topochemical approach, a strategy for efficiently producing main-chain poly(bile acid)s in the solid state was developed. This strategy allows for facile and scalable synthesis of main-chain poly(bile acid)s not only with high molecular weights, but also with quantitative conversions and yields.

  4. 21 CFR 177.1440 - 4,4′-Isopropylidenediphenol-epichlorohydrin resins minimum molecular weight 10,000.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true 4,4â²-Isopropylidenediphenol-epichlorohydrin resins minimum molecular weight 10,000. 177.1440 Section 177.1440 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD...

  5. Deproteinization assessment using isotopically enriched compounds to trace the coprecipitation of low-molecular-weight selenium species with proteins.

    PubMed

    Godin, Simon; Bouzas-Ramos, Diego; Fontagné-Dicharry, Stéphanie; Bouyssière, Brice; Bueno, Maïté

    2017-08-01

    Studies have shown that information related to the presence of low-molecular-weight metabolites is frequently lost after deproteinization of complex matrices, such as blood and plasma, during sample preparation. Therefore, the effect of several deproteinization reagents on low-molecular-weight selenium species has been compared by species-specific isotope labeling. Two isotopically enriched selenium tracers were used to mimic models of small inorganic anionic ( 77 Se-selenite) and organic zwitterionic ( 76 Se-selenomethionine) species. The results presented here show that the use of a methanol-acetonitrile-acetone (1:1:1 v/v/v) mixture provided approximately two times less tracer loss from plasma samples in comparison with the classic procedure using acetonitrile, which may not be optimal as it leads to important losses of low-molecular-weight selenium species. In addition, the possible interactions between selenium tracers and proteins were investigated, revealing that both coprecipitation phenomena and association with proteins were potentially responsible for selenite tracer losses during protein precipitation in blood samples. However, coprecipitation phenomena were found to be fully responsible for losses of both tracers observed in plasma samples and of the selenomethionine tracer in blood samples. This successfully applied strategy is anticipated to be useful for more extensive future studies in selenometabolomics. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Improvement of liquid stored boar semen quality by removing low molecular weight proteins and supplementation with α-tocopherol.

    PubMed

    Zakošek Pipan, M; Mrkun, J; Nemec Svete, A; Zrimšek, P

    2017-11-01

    Seminal plasma contains low-molecular weight components that can exert a harmful effect on sperm function. We have evaluated the effects of removing low-molecular weight components from seminal plasma and adding α-tocopherol on boar semen quality after 72h of liquid storage. Semen was evaluated on the basis of motility, morphology, acrosome integrity, plasma membrane modifications, mitochondrial activity, DNA fragmentation and lipid peroxidation. Thiobarbituric acid reactive substances (TBARS), 8-isoprostane, and antioxidant status (total antioxidant capacity (TAC) and superoxide dismutase activity (SOD)) were measured in seminal plasma. Removal of low-molecular weight components from seminal plasma, together with the addition of α-tocopherol, kept the lipid peroxidation and mitochondrial activity and DNA fragmentation at the same level as in native semen samples. Dialysing semen and adding 200μM of α-tocopherol led to higher progressive motility, a higher proportion of morphologically normal spermatozoa and a significantly lower level of acrosomal reacted spermatozoa compared to non-dialyzed semen samples after 72h of storage. In conclusion, liquid stored boar semen was better preserved, and oxidative stress in the semen was reduced when semen was dialyzed and α-tocopherol was added prior to storage. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Inhibitory Effects of Medium Molecular Weight Heparinyl Amino Acid Derivatives on Ischemic Paw Edema in Mice.

    PubMed

    Takeda, Seiichi; Toda, Takao; Nakamura, Kazuki

    2016-01-01

    We investigated the radical-scavenging effects of heparin (HE), medium molecular weight heparinyl phenylalanine (MHF), and medium molecular weight heparinyl leucine (MHL) using ischemic paw edema in mice. We also examined the activated partial thromboplastin time (APTT) of mice that were administered these compounds as an index of their side-effects. HE had a preventative effect and significant reduced ischemic paw edema. However, its effect was not dose-dependent and the dose-response curve was bell-shaped. The effective dose of HE also exhibited a prolonged APTT. Pretreatment using MHF and MHL were effective against ischemic paw edema without a prolonged APTT. Remarkably, the action of MHF was not only preventively, but also therapeutically active. These results suggest that MHF and MHL are superior to HE as safe radical scavengers in vivo. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  8. Influence of third-body particles originating from bone void fillers on the wear of ultra-high-molecular-weight polyethylene

    PubMed Central

    Cowie, Raelene M; Carbone, Silvia; Aiken, Sean; Cooper, John J; Jennings, Louise M

    2016-01-01

    Calcium sulfate bone void fillers are increasingly being used for dead space management in infected arthroplasty revision surgery. The presence of these materials as loose beads close to the bearing surfaces of joint replacements gives the potential for them to enter the joint becoming trapped between the articulating surfaces; the resulting damage to cobalt chrome counterfaces and the subsequent wear of ultra-high-molecular-weight polyethylene is unknown. In this study, third-body damage to cobalt chrome counterfaces was simulated using particles of the calcium sulfate bone void fillers Stimulan® (Biocomposites Ltd., Keele, UK) and Osteoset® (Wright Medical Technology, TN, USA) using a bespoke rig. Scratches on the cobalt chrome plates were quantified in terms of their density and mean lip height, and the damage caused by the bone void fillers was compared to that caused by particles of SmartSet GMV PMMA bone cement (DePuy Synthes, IN, USA). The surface damage from Stimulan® was below the resolution of the analysis technique used; SmartSet GMV caused 0.19 scratches/mm with a mean lip height of 0.03 µm; Osteoset® led to a significantly higher number (1.62 scratches/mm) of scratches with a higher mean lip height (0.04 µm). Wear tests of ultra-high-molecular-weight polyethylene were carried out in a six-station multi-axial pin on plate reciprocating rig against the damaged plates and compared to negative (highly polished) and positive control plates damaged with a diamond stylus (2 µm lip height). The wear of ultra-high-molecular-weight polyethylene was shown to be similar against the negative control plates and those damaged with third-body particles; there was a significantly higher (p < 0.001) rate of ultra-high-molecular-weight polyethylene wear against the positive control plates. This study showed that bone void fillers of similar composition can cause varying damage to cobalt chrome counterfaces. However, the lip heights of the scratches

  9. A comparison of the wear of cross-linked polyethylene against itself with the wear of ultra-high molecular weight polyethylene against itself.

    PubMed

    Joyce, T J; Unsworth, A

    1996-01-01

    Wear tests were carried out on reciprocating pin-on-plate machines which had pins loaded at 10 N and 40 N. The materials tested were irradiated cross-linked polyethylene sliding against itself, irradiated ultra-high molecular weight polyethylene sliding against itself and non-irradiated ultra-high molecular weight polyethylene sliding against itself. After 153.5 km of sliding, the non-irradiated ultra-high molecular weight polyethylene plates and pins showed mean wear factors under 10 N loads, or a nominal contact stress of 0.51 MPa, of 84.0 x 10(-6) mm3/N m for the plates and 81.3 x 10(-6) mm3/N m for the pins. Under 40 N loads, or a nominal contact stress of 2.04 MPa, the non-irradiated ultra-high molecular weight polyethylene pins sheared at 22.3 km. At the last measurement point prior to this failure, 19.1 km, wear factors of 158 x 10(-6) mm3/N m for the plates and 85.0 x 10(-6) mm3/N m for the pins had been measured. After 152.8 km. the irradiated ultra-high molecular weight polyethylene plates and pins showed mean wear factors under 10 N loads of 59.8 x 10(-6) mm3/N m for the plates and 31.1 x 10(-6) mm3/N m for the pins. In contrast, after 150.2 km, a mean wear factor of 0.72 x 10(-6) mm3/N m was found for the irradiated cross-linked polyethylene plates compared with 0.053 x 10(-6) mm3/N m for the irradiated cross-linked polyethylene pins.

  10. Biomedical potential of chitosan/HA and chitosan/β-1,3-glucan/HA biomaterials as scaffolds for bone regeneration--A comparative study.

    PubMed

    Przekora, Agata; Palka, Krzysztof; Ginalska, Grazyna

    2016-01-01

    The aim of this work was to compare biomedical potential of chitosan/hydroxyapatite (chit/HA) and novel chitosan/β-1,3-glucan/hydroxyapatite (chit/glu/HA) materials as scaffolds for bone regeneration via characterization of their biocompatibility, porosity, mechanical properties, and water uptake behaviour. Biocompatibility of the scaffolds was assessed in direct-contact with the materials using normal human foetal osteoblast cell line. Cytotoxicity and osteoblast proliferation rate were evaluated. Porosity was assessed using computed microtomography analysis and mechanical properties were determined by compression testing. Obtained results demonstrated that chit/HA scaffold possessed significantly better mechanical properties (compressive strength: 1.23 MPa, Young's modulus: 0.46 MPa) than chit/glu/HA material (compressive strength: 0.26 MPa, Young's modulus: 0.25 MPa). However, addition of bacterial β-1,3-glucan to the chit/HA scaffold improved its flexibility and porosity. Moreover, chit/glu/HA scaffold revealed significantly higher water uptake capability (52.6% after 24h of soaking) compared to the chit/HA (30.7%) and thus can serve as a very good drug delivery carrier. Chit/glu/HA scaffold was also more favourable to osteoblast survival (near 100% viability after 24-h culture), proliferation, and spreading compared to the chit/HA (63% viability). The chit/glu/HA possesses better biomedical potential than chit/HA scaffold. Nevertheless, poor mechanical properties of the chit/glu/HA limit its application to non-load bearing implantation area. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Coalescence in PLA-PBAT blends under shear flow: Effects of blend preparation and PLA molecular weight

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nofar, M.; Heuzey, M. C.; Carreau, P. J., E-mail: pierre.carreau@polymtl.ca

    Blends containing 75 wt. % of an amorphous polylactide (PLA) with two different molecular weights and 25 wt. % of a poly[(butylene adipate)-co-terephthalate] (PBAT) were prepared using either a Brabender batch mixer or a twin-screw extruder. These compounds were selected because blending PLA with PBAT can overcome various drawbacks of PLA such as its brittleness and processability limitations. In this study, we investigated the effects of varying the molecular weight of the PLA matrix and of two different mixing processes on the blend morphology and, further, on droplet coalescence during shearing. The rheological properties of these blends were investigated and the interfacialmore » properties were analyzed using the Palierne emulsion model. Droplet coalescence was investigated by applying shear flows of 0.05 and 0.20 s{sup −1} at a fixed strain of 60. Subsequently, small amplitude oscillatory shear tests were conducted to investigate changes in the viscoelastic properties. The morphology of the blends was also examined using scanning electron microscope (SEM) micrographs. It was observed that the PBAT droplets were much smaller when twin-screw extrusion was used for the blend preparation. Shearing at 0.05 s{sup −1} induced significant droplet coalescence in all blends, but coalescence and changes in the viscoelastic properties were much more pronounced for the PLA-PBAT blend based on a lower molecular weight PLA. The viscoelastic responses were also somehow affected by the thermal degradation of the PLA matrix during the experiments.« less

  12. Effect of the molecular weight of chitosan on its antifungal activity against Candida spp. in planktonic cells and biofilm.

    PubMed

    Garcia, Lana Glerieide Silva; Guedes, Glaucia Morgana de Melo; da Silva, Maria Lucilene Queiroz; Castelo-Branco, Débora Souza Collares Maia; Sidrim, José Júlio Costa; Cordeiro, Rossana de Aguiar; Rocha, Marcos Fábio Gadelha; Vieira, Rodrigo Silveira; Brilhante, Raimunda Sâmia Nogueira

    2018-09-01

    Difficulties in the treatment of Candida spp. invasive infections are usually related to the formation of biofilms. The aim of this study was to determine the effects of molecular weight (MW) of chitosan (using high (HMW), medium (MMW) and low (LMW) molecular weight chitosan) on Candida albicans, Candida tropicalis and Candida parapsilosis sensu stricto. The deacetylation degree (DD) and molecular weight M were measured by potentiometric titration and viscosimetry, respectively. The planktonic shape activity was quantified by broth microdilution, and the activity against biofilm was quantified by metabolic activity through XTT 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]- 2H-tetrazolium hydroxide and biomass formation (crystal violet). The influence of chitosan MW on the planktonic form of Candida spp. was strain dependent. Fungal growth decreased with increasing chitosan MW for C. tropicalis and C. parapsilosis, while chitosan MW did not modulate the effect for C. albicans. With regard to the formation of biofilms, in both the adhesion and mature phases, the biomass and metabolic activities of Candida spp. were reduced by about 70% and 80%, respectively for each phase. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Effect of molecular weight of chitosan on the shelf life and other quality parameters of three different cultivars of Actinidia kolomikta (kiwifruit).

    PubMed

    Drevinskas, Tomas; Naujokaitytė, Gintarė; Maruška, Audrius; Kaya, Murat; Sargin, Idris; Daubaras, Remigijus; Česonienė, Laima

    2017-10-01

    The kiwi fruit, Actinidia kolomikta, has valuable properties such as high antioxidant activity, high vitamin C, polyphenols, chlorophylls and organic acids content, but the species are hardly commercialized due to their short shelf life (less than two days). In this study three different cultivars of A. kolomikta (Anykšta, Sentiabrskaya and VIR2) were coated with low, medium and high molecular weight chitosan bio-polymer with the aim to extend the shelf life. The changes in fruit firmness, mass, phenolic compound content, vitamin C content and subjective criteria (withering level, decoloration level and aesthetic appearance) were monitored. It was observed that high molecular weight chitosan had higher positive effect on the shelf life of Sentiabrskaya and Anykšta cultivars than VIR2. Low molecular weight chitosan was found effective on VIR2. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. [Low-molecular-weight autoregulatory factors in bacteria Thioalkalivibrio versutus and Thioalkalimicrobium aerophilum].

    PubMed

    Loĭko, N G; Kozlova, A N; Osipov, G A; El'-Registan, G I

    2002-01-01

    The haloalkaliphilic, lithoautotrophic, sulfur-oxidizing gram-negative bacteria Thioalkalivibrio versutus and Thioalkalimicrobium aerophilum were found to possess a special system for the autoregulation of their growth. The system includes the extracellular autoinducers of anabiosis (the d1 factor) and autolysis (the d2 factor). The principal components of the d1 factor are alkylhydroxybenzenes. The principal components of the d2 factor are free unsaturated fatty acids dominated by oleic acid isomers. Like the respective autoregulators of neutrophilic bacteria, the d1 factor of haloalkaliphilic bacteria presumably controls their growth and transition to a anabiotic state, while the d2 factor controls autolytic processes. Alkylhydroxybenzenes of both microbial and chemical origin were found to influence bacterial respiration. The low-molecular-weight osmoprotectant glycine betaine enhanced the thermostability of trypsin. This suggests that glycine betaine, like the d1 factor, serves as a molecular chaperone.

  15. Structure and activity of a new low-molecular-weight heparin produced by enzymatic ultrafiltration.

    PubMed

    Fu, Li; Zhang, Fuming; Li, Guoyun; Onishi, Akihiro; Bhaskar, Ujjwal; Sun, Peilong; Linhardt, Robert J

    2014-05-01

    The standard process for preparing the low-molecular-weight heparin (LMWH) tinzaparin, through the partial enzymatic depolymerization of heparin, results in a reduced yield because of the formation of a high content of undesired disaccharides and tetrasaccharides. An enzymatic ultrafiltration reactor for LMWH preparation was developed to overcome this problem. The behavior, of the heparin oligosaccharides and polysaccharides using various membranes and conditions, was investigated to optimize this reactor. A novel product, LMWH-II, was produced from the controlled depolymerization of heparin using heparin lyase II in this optimized ultrafiltration reactor. Enzymatic ultrafiltration provides easy control and high yields (>80%) of LMWH-II. The molecular weight properties of LMWH-II were similar to other commercial LMWHs. The structure of LMWH-II closely matched heparin's core structural features. Most of the common process artifacts, present in many commercial LWMHs, were eliminated as demonstrated by 1D and 2D nuclear magnetic resonance spectroscopy. The antithrombin III and platelet factor-4 binding affinity of LMWH-II were comparable to commercial LMWHs, as was its in vitro anticoagulant activity. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  16. Mass spectrometric profiling of low-molecular-weight volatile compounds--diagnostic potential and latest applications.

    PubMed

    Lechner, Matthias; Rieder, Josef

    2007-01-01

    The theoretical use of mass spectrometric profiling of low-molecular-weight volatile compounds, as one possible method to non-invasively and rapidly diagnose a variety of diseases, such as cancer, infection, and metabolic disorders has greatly raised the profile of this technique over the last ten years. Despite a number of promising results, this technique has not been introduced into common clinical practice yet. The use of mass spectrometric profiling of exhaled air is particularly hampered by various technical problems and basic methodological issues which have only been partially overcome. However, breath analysis aside, recently published studies reveal completely new ideas and concepts on how to establish fast and reliable diagnosis by using this valuable tool. These studies focussed on the headspace screening of various bodily fluids and sample fluids obtained during diagnostic procedures, as well as microbial cell cultures and demonstrated the vast diagnostic potential of this technique in a wide variety of settings, predominantly in vitro. It is the aim of the present review to discuss the most commonly detected low-molecular-weight volatile compounds and to summarize the current potential applications, latest developments and future perspectives of this promising diagnostic approach.

  17. De facto molecular weight distributions of glucans by size-exclusion chromatography combined with mass/molar-detection of fluorescence labeled terminal hemiacetals.

    PubMed

    Praznik, Werner; Huber, Anton

    2005-09-25

    A major capability of polysaccharides in aqueous media is their tendency for aggregation and dynamic formation of supermolecular structures. Even extended dissolution processes will not eliminate these structures which dominate many analytical approaches, in particular absolute molecular weight determinations referring to light scattering data. An alternative approach for determination of de facto molecular weight for glucans with free terminal hemiacetal functionality (reducing end group) has been adjusted from carbohydrates for midrange and high-dp glucans: quantitative and stabilized labeling as aminopyridyl-derivatives (AP-glucans) and subsequent analysis of SEC-separated elution profiles based on simultaneously monitored mass and molar fractions by refractive index and fluorescence detection. SEC-DRI/FL of AP-glucans proved as an appropriate approach for determination of de facto molecular weight of constituting glucan molecules even in the presence of supermolecular structures for non-branched (pullulan), branched (dextran), narrow distributed and broad distributed and for mixes of compact and loose packed polymer coils (starch glucan hydrolizate).

  18. Surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) of low molecular weight organic compounds and synthetic polymers using zinc oxide (ZnO) nanoparticles.

    PubMed

    Watanabe, Takehiro; Kawasaki, Hideya; Yonezawa, Tetsu; Arakawa, Ryuichi

    2008-08-01

    We have developed surface-assisted laser desorption/ionization mass spectrometry using zinc oxide (ZnO) nanoparticles with anisotropic shapes (ZnO-SALDI-MS). The mass spectra showed low background noises in the low m/z, i.e. less than 500 u region. Thus, we succeeded in SALDI ionization on low molecular weight organic compounds, such as verapamil hydrochloride, testosterone, and polypropylene glycol (PPG) (average molecular weight 400) without using a liquid matrix or buffers such as citric acids. In addition, we found that ZnO-SALDI has advantages in post-source decay (PSD) analysis and produced a simple mass spectrum for phospholipids. The ZnO-SALDI spectra for synthetic polymers of polyethylene glycol (PEG), polystyrene (PS) and polymethylmethacrylate (PMMA) showed the sensitivity and molecular weight distribution to be comparable to matrix-assisted laser desorption/ionization (MALDI) spectra with a 2,5-dihydroxybenzoic acid (DHB) matrix. ZnO-SALDI shows good performance for synthetic polymers as well as low molecular weight organic compounds. Copyright (c) 2008 John Wiley & Sons, Ltd.

  19. Tensile properties of HA 230 and HA 188 after 400 and 2500 hour exposures to LiF-22CaF2 and vacuum at 1093 K

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel

    1990-01-01

    The solid-to-liquid phase transformation of the nominal LiF-20CaF2 eutectic at 1043 K is considered to be an ideal candidate thermal energy storage mechanism for a space based low temperature Brayton cycle solar dynamic system. Although Co, Fe, and Ni superalloys are thought to be suitable containment materials for LiF based salts, long term containment is of concern because molten fluorides are usually corrosive and Cr can be lost into space through evaporation. Two examples of commercially available superalloys in sheet form, the Ni-base material HA 230 and the Co-base material Ha 88, have been exposed to molten LiF-22CaF2, its vapor, and vacuum, at 1093 K, for 400 and 2500 hr. Triplicate tensile testing of specimens subjected to all three environments have been undertaken between 77 to 1200 K. Comparison of the weight gain data, microstructure, and tensile properties indicate that little, if any, difference in behavior can be ascribed to the exposure environment.

  20. Developmental expression of high molecular weight tropomyosin isoforms in Mesocestoides corti.

    PubMed

    Koziol, Uriel; Costábile, Alicia; Domínguez, María Fernanda; Iriarte, Andrés; Alvite, Gabriela; Kun, Alejandra; Castillo, Estela

    2011-02-01

    Tropomyosins are a family of actin-binding proteins with diverse roles in actin filament function. One of the best characterized roles is the regulation of muscle contraction. Tropomyosin isoforms can be generated from different genes, and from alternative promoters and alternative splicing from the same gene. In this work, we have isolated sequences for tropomyosin isoforms from the cestode Mesocestoides corti, and searched for tropomyosin genes and isoforms in other flatworms. Two genes are conserved in the cestodes M. corti and Echinococcus multilocularis, and in the trematode Schistosoma mansoni. Both genes have the same structure, and each gene gives rise to at least two different isoforms, a high molecular weight (HMW) and a low molecular weight (LMW) one. Because most exons are duplicated and spliced in a mutually exclusive fashion, isoforms from one gene only share one exon and are highly divergent. The gene duplication preceded the divergence of neodermatans and the planarian Schmidtea mediterranea. Further duplications occurred in Schmidtea, coupled to the selective loss of duplicated exons, resulting in genes that only code for HMW or LMW isoforms. A polyclonal antibody raised against a HMW tropomyosin from Echinococcus granulosus was demonstrated to specifically recognize HMW tropomyosin isoforms of M. corti, and used to study their expression during segmentation. HMW tropomyosins are expressed in muscle layers, with very low or absent levels in other tissues. No expression of HMW tropomyosins is present in early or late genital primordia, and expression only begins once muscle fibers develop in the genital ducts. Therefore, HMW tropomyosins are markers for the development of muscles during the final differentiation of genital primordia. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Synergistic effect of high and low molecular weight molecules in the foamability and foam stability of sparkling wines.

    PubMed

    Coelho, Elisabete; Reis, Ana; Domingues, M Rosário M; Rocha, Sílvia M; Coimbra, Manuel A

    2011-04-13

    The foam of sparkling wines is a key parameter of their quality. However, the compounds that are directly involved in foam formation and stabilization are not yet completely established. In this work, seven sparkling wines were produced in Bairrada appellation (Portugal) under different conditions and their foaming properties evaluated using a Mosalux-based device. Fractionation of the sparkling wines into four independent fractions, (1) high molecular weight material, with molecular weight higher than 12 kDa (HMW), (2) hydrophilic material with molecular weigh between 1 and 12 kDa (AqIMW), (3) hydrophobic material with molecular weigh between 1 and 12 kDa (MeIMW), and (4) hydrophobic material with a molecular weight lower than 1 kDa (MeLMW), allowed the observation that the wines presenting the lower foam stability were those that presented lower amounts of the MeLMW fraction. The fraction that presented the best foam stability was HMW. When HMW is combined with MeLMW fraction, the foam stability largely increased. This increase was even larger, approaching the foam stability of the sparkling wine, when HMW was combined with the less hydrophobic subfraction of MeLMW (fraction 3). Electrospray tandem mass spectrometry (ESI-MS/MS) of fraction 3 allowed the assignment of polyethylene glycol oligomers (n = 5-11) and diethylene glycol 8-hydroxytridecanoate glyceryl acetate. To observe if these molecules occur in sparkling wine foam, the MeLMW was recovered directly from the sparkling wine foam and was also analyzed by ESI-MS/MS. The presence of monoacylglycerols of palmitic and stearic acids, as well as four glycerylethylene glycol fatty acid derivatives, was observed. These surface active compounds are preferentially partitioned by the sparkling wine foam rather than the liquid phase, allowing the inference of their role as key components in the promotion and stabilization of sparkling wine foam.

  2. Optimising low molecular weight hydrogels for automated 3D printing.

    PubMed

    Nolan, Michael C; Fuentes Caparrós, Ana M; Dietrich, Bart; Barrow, Michael; Cross, Emily R; Bleuel, Markus; King, Stephen M; Adams, Dave J

    2017-11-22

    Hydrogels prepared from low molecular weight gelators (LMWGs) are formed as a result of hierarchical intermolecular interactions between gelators to form fibres, and then further interactions between the self-assembled fibres via physical entanglements, as well as potential branching points. These interactions can allow hydrogels to recover quickly after a high shear rate has been applied. There are currently limited design rules describing which types of morphology or rheological properties are required for a LMWG hydrogel to be used as an effective, printable gel. By preparing hydrogels with different types of fibrous network structures, we have been able to understand in more detail the morphological type which gives rise to a 3D-printable hydrogel using a range of techniques, including rheology, small angle scattering and microscopy.

  3. Capture, enrichment, and mass spectrometric detection of low-molecular-weight biomarkers with nanoporous silicon microparticles.

    PubMed

    Tan, Jie; Zhao, Wei-Jie; Yu, Jie-Kai; Ma, Sai; Sailor, Michael J; Wu, Jian-Min

    2012-11-01

    Mining the disease information contained in the low-molecular-weight range of a proteomic profile is becoming of increasing interest in cancer research. This work evaluates the ability of nanoporous silicon microparticles (NPSMPs) to capture, enrich, protect, and detect low-molecular-weight peptides (LMWPs) sieved from a pool of highly abundant plasma proteins. The average pore size and porosity of NPSMPs are controlled by the electrochemical preparation conditions, and the critical parameters for admission or exclusion of protein with a definite molecular weight are determined by reflectometric-interference Fourier transform spectroscopy (RIFTS). Sodium dodecyl sulfate polyacrylamide-gel electrophoresis (SDS-PAGE) and matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) analysis of the proteins captured by the NPSMPs show that the chemical nature of the NPSMPs surface and the solution pH also play vital roles in determining the affinity of NPSMPs for target analytes. It is found that carboxyl-terminated porous microparticles with a porosity of 26% (pore diameter around 9.0 nm) specifically fractionate, enrich and protect LMWPs sieved from either simulated samples or human serum samples. Moreover, NPSMPs containing captured peptides can be directly spotted onto a MALDI plate. When placed in a conventional MALDI matrix, laser irradiation of the particles results in the release of the target peptides confined in the nanopores, which are then ionized and detected in the MALDI experiment. As a proof-of-principle test case, mass spectra of NPSMPs prepared using serum from colorectal cancer patients and from control patients can be clearly distinguished by statistical analysis. The work demonstrates the utility of the method for discovery of biomarkers in the untapped LMWP fraction of human serum, which can be of significant value in the early diagnosis and management of diseases. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Synthesis of Polystyrene and Molecular Weight Determination by [superscript 1]H NMR End-Group Analysis

    ERIC Educational Resources Information Center

    Wackerly, Jay Wm.; Dunne, James F.

    2017-01-01

    A procedure for the solution polymerization of styrene using di-"tert"-butyl peroxide (DTBP) as the initiator is described. The use of DTBP allows for end-group analysis by [superscript 1]H NMR spectroscopy and calculation of the number-average molecular weight of the polymer. This experiment was designed as a laboratory introduction to…

  5. Cholesterol-lowering effect of kori-tofu protein and its high-molecular-weight fraction content.

    PubMed

    Ishiguro, Takahiro; Tatsunokuchi, Seiji; Mitsui, Nobuo; Kayahara, Hisataka; Murasawa, Hisashi; Konishi, Yotaro; Nagaoka, Satoshi

    2011-01-01

    The serum total cholesterol concentration was significantly lower in the kori-tofu feeding group than in the soy protein isolate (SPI) group, except on the 28th day of the experiment. The high-molecular-weight fraction (HMF) content of the kori-tofu protein was significantly higher than that of SPI. This difference in the HMF content may have influenced the cholesterol-lowering effect of the protein.

  6. Accurate calibration of a molecular beam time-of-flight mass spectrometer for on-line analysis of high molecular weight species.

    PubMed

    Apicella, B; Wang, X; Passaro, M; Ciajolo, A; Russo, C

    2016-10-15

    Time-of-Flight (TOF) Mass Spectrometry is a powerful analytical technique, provided that an accurate calibration by standard molecules in the same m/z range of the analytes is performed. Calibration in a very large m/z range is a difficult task, particularly in studies focusing on the detection of high molecular weight clusters of different molecules or high molecular weight species. External calibration is the most common procedure used for TOF mass spectrometric analysis in the gas phase and, generally, the only available standards are made up of mixtures of noble gases, covering a small mass range for calibration, up to m/z 136 (higher mass isotope of xenon). In this work, an accurate calibration of a Molecular Beam Time-of Flight Mass Spectrometer (MB-TOFMS) is presented, based on the use of water clusters up to m/z 3000. The advantages of calibrating a MB-TOFMS with water clusters for the detection of analytes with masses above those of the traditional calibrants such as noble gases were quantitatively shown by statistical calculations. A comparison of the water cluster and noble gases calibration procedures in attributing the masses to a test mixture extending up to m/z 800 is also reported. In the case of the analysis of combustion products, another important feature of water cluster calibration was shown, that is the possibility of using them as "internal standard" directly formed from the combustion water, under suitable experimental conditions. The water clusters calibration of a MB-TOFMS gives rise to a ten-fold reduction in error compared to the traditional calibration with noble gases. The consequent improvement in mass accuracy in the calibration of a MB-TOFMS has important implications in various fields where detection of high molecular mass species is required. In combustion products analysis, it is also possible to obtain a new calibration spectrum before the acquisition of each spectrum, only modifying some operative conditions. Copyright © 2016

  7. Effect of chitosan molecular weight on rheological behavious of chitosan modified nanoclay at highly hydrated state

    USDA-ARS?s Scientific Manuscript database

    Effect of chitosan molecular weight (M(cs)) on the rheological properties of chitosan modified clay (CMCs) at highly hydrated state was investigated. With special emphasis on its effect on the thixotropy of CMCs, the structure recovery at rest after underwent a pre-shearing process was further perfo...

  8. Method for solubilization of low-rank coal using low molecular weight cell-free filtrates derived from cultures of Coriolus versicolor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, D.L.; Fredrickson, J.K.; Campbell, J.A.

    1992-01-28

    This patent describes a method for isolating an extracellular product derived from a broth of Coriolus versicolor. It comprises separating the cells from a broth of C. versicolor to obtain a cell-free filtrate; separating from the cell-free filtrate a fraction containing molecules of molecular weight in the range of about 500 to 1000 daltons. This patent also describes a method for degrading low-rank coal to a water-soluble material. It comprises contacting the low-rank coal with a cell-free fraction from the broth of Coriolus versicolor containing molecules in the molecular weight range of about 500 to 1000 daltons.

  9. The effect of the type of HA on the degradation of PLGA/HA composites.

    PubMed

    Naik, Ashutosh; Shepherd, David V; Shepherd, Jennifer H; Best, Serena M; Cameron, Ruth E

    2017-01-01

    The aim of this study is to explore the importance of the potentially competing effects of buffering effects of the calcium phosphate filler and particle-mediated water sorption on the degradation products of poly(d,l lactide-co-glycolide (50:50))(PLGA)/hydroxyapatite(HA) composites. Further the influence of type of HA on the mechanical properties of the composites was investigated. Phase pure HA was synthesised via a reaction between aqueous solutions of calcium hydroxide and orthophosphoric acid. The powder produced was either used as produced (uncalcined) or calcined in air or calcined in a humidified argon atmosphere. An in-vitro degradation study was carried out in phosphate buffered saline (PBS). The results obtained indicated that the degradation rate of the composite might be better understood if both the buffering effects and the rate of water sorption by the composites are considered. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Characterization, Corrosion Resistance, and Cell Response of High-Velocity Flame-Sprayed HA and HA/TiO2 Coatings on 316L SS

    NASA Astrophysics Data System (ADS)

    Singh, Tejinder Pal; Singh, Harpreet; Singh, Hazoor

    2012-09-01

    The main aim of this study is to evaluate corrosion and biocompatibility behavior of thermal spray hydroxyapatite (HA) and hydroxyapatite/titania bond (HA/TiO2)-coated 316L stainless steel (316L SS). In HA/TiO2 coatings, TiO2 was used as a bond coat between HA top coat and 316L SS substrate. The coatings were characterized by x-ray diffraction and scanning electron microscopy/energy dispersive spectroscopy, and corrosion resistance determined for the uncoated substrate and the two coatings. The biological behavior was investigated by the cell culture studies using osteosarcoma cell line KHOS-NP (R-970-5). The corrosion resistance of the steel was found to increase after the deposition of the HA and HA/TiO2 bond coatings. Both HA, as well as, HA/TiO2 coatings exhibit excellent bond strength of 49 and 47 MPa, respectively. The cell culture studies showed that HA-coated 316L SS specimens appeared more biocompatible than the uncoated and HA/TiO2-coated 316L SS specimens.

  11. Detection of ubiquityl-calmodulin conjugates with a novel high-molecular weight ubiquitylprotein-isopeptidase in rabbit tissues.

    PubMed

    Sixt, S U; Jennissen, H P; Winterhalter, M; Laub, M

    2010-10-25

    The selective degradation of many proteins in eukaryotic cells is carried out by the ubiquitin system. In this pathway, proteins are targeted for degradation by covalent ligation to ubiquitin, a highly conserved protein [1]. Ubiquitylated proteins were degraded by the 26S proteasome in an ATP-depended manner. The degradation of ubiquitylated proteins were controlled by isopeptidase cleavage. A well characterised system of ubiquitylation and deubiquitylation is the calmodulin system in vitro [2]. Detection of ubiquityl-calmodulin conjugtates in vivo have not been shown so far. In this article we discuss the detection of ubiquitin calmodulin conjugates in vivo by incubation with a novel high-molecular weight ubiquitylprotein-isopeptidase in rabbit tissues. Proteins with a molecular weight of ubiquityl-calmodulin conjugates could be detected in all organs tested. Incubation with ubiquitylprotein-isopeptidase showed clearly a decrease of ubiquitin calmodulin conjugates in vivo with an origination of unbounded ubiquitin. These results suggest that only few ubiquitin calmodulin conjugates exist in rabbit tissues.

  12. Binding of pyrene to aquatic and commercial humic substances: The role of molecular weight and aromaticity

    USGS Publications Warehouse

    Chin, Y.-P.; Aiken, G.R.; Danielsen, K.M.

    1997-01-01

    The binding of pyrene to a number of humic substances isolated from various aquatic sources and a commercial humic acid was measured using the solubility enhancement method. The humic materials used in this study were characterized by various spectroscopic and liquid chromatography methods. A strong correlation was observed between the pyrene binding coefficient, K(doc), and the molecular weights, molar absorptivities at 280 nm, and aromaticity of the aquatic humic substances. Binding of pyrene to the commercial humic acid, however, was significantly stronger and did not obey the relationships observed between K(doc) and the chemical properties of the aquatic humic substrates. These results suggest that the molecular weight and the aromatic content of the humic substrates exert influences on the binding of nonpolar and planar aromatic molecules and that the physicochemical properties of both humic materials and organic solutes are important in controlling the speciation of nonpolar organic contaminants in natural waters.

  13. Selective pre-priming of HA-specific CD4 T cells restores immunological reactivity to HA on heterosubtypic influenza infection.

    PubMed

    Alam, Shabnam; Chan, Cory; Qiu, Xing; Shannon, Ian; White, Chantelle L; Sant, Andrea J; Nayak, Jennifer L

    2017-01-01

    A hallmark of the immune response to influenza is repeated encounters with proteins containing both genetically conserved and variable components. Therefore, the B and T cell repertoire is continually being remodeled, with competition between memory and naïve lymphocytes. Our previous work using a mouse model of secondary heterosubtypic influenza infection has shown that this competition results in a focusing of CD4 T cell response specificity towards internal virion proteins with a selective decrease in CD4 T cell reactivity to the novel HA epitopes. Strikingly, this shift in CD4 T cell specificity was associated with a diminished anti-HA antibody response. Here, we sought to determine whether the loss in HA-specific reactivity that occurs as a consequence of immunological memory could be reversed by selectively priming HA-specific CD4 T cells prior to secondary infection. Using a peptide-based priming strategy, we found that selective expansion of the anti-HA CD4 T cell memory repertoire enhanced HA-specific antibody production upon heterosubtypic infection. These results suggest that the potentially deleterious consequences of repeated exposure to conserved influenza internal virion proteins could be reversed by vaccination strategies that selectively arm the HA-specific CD4 T cell compartment. This could be a potentially useful pre-pandemic vaccination strategy to promote accelerated neutralizing antibody production on challenge with a pandemic influenza strain that contains few conserved HA epitopes.

  14. Polypyrrole-based nanotheranostics for activatable fluorescence imaging and chemo/photothermal dual therapy of triple-negative breast cancer

    NASA Astrophysics Data System (ADS)

    Park, Dongjin; Ahn, Kyung-Ohk; Jeong, Kyung-Chae; Choi, Yongdoo

    2016-05-01

    Here, we fabricated polypyrrole nanoparticles (PPys) (termed HA10-PPy, HA20-PPy, and HA40-PPy) doped with different average molecular weight hyaluronic acids (HAs) (10, 20, and 40 kDa, respectively), and evaluated the effect of molecular weight of doped HA on photothermal induction, fluorescence quenching, and drug loading efficiencies. Doxorubicin-loaded HA-doped PPys (DOX@HA-PPys) could be used for imaging and therapy of triple-negative breast cancer (TNBC). Fluorescence turn-on, stimuli-responsive drug release, and photo-induced heating of DOX@HA-PPys enabled not only activatable fluorescence imaging but also subsequent chemo/photothermal dual therapy for TNBC. In particular, we illustrated the potential usefulness of the photothermal effect of the nanoparticles for overcoming chemoresistance in TNBC.

  15. Simultaneous detection of assembly and disassembly of multivalent HA tag and anti-HA antibody in single in-capillary assay.

    PubMed

    Wang, Jianhao; Qin, Yuqin; Qin, Haifang; Liu, Li; Ding, Shumin; Teng, Yiwan; Ji, Junling; Qiu, Lin; Jiang, Pengju

    2016-08-01

    Herein, we have developed an in-capillary assay for simultaneous detection of the assembly and disassembly of the multivalent HA tag peptide and antibody. HA tag with hexahistidine at C terminus (YPYDVPDYAG4 H6 , termed YPYDH6 ) was conjugated with quantum dots (QDs) by metal-affinity force to form a multivalent HA tag (QD-YPYDH6 ). QD-YPYDH6 and monoclonal anti-HA antibody (anti-HA) were sequentially injected into the capillary. They were mixed and assembled inside the capillary. The reaction products were online discriminated and detected by fluorescence coupled capillary electrophoresis (CE-FL). For the in-capillary assay, the binding efficiency of the multivalent HA tag and antibody on was influenced by the molar ratio and injection time. Such novel assay could even give out the self-assembly kinetic constant of QDs and YPYDH6 as KD of 34.1 μM with n (binding cooperativeness) of 2.2 by Hill equation. More importantly, the simultaneous detection of the assembly and imidazole (Im) induced disassembly of the QD-YPYDH6 -anti-HA complex was achieved in a single in-capillary assay. Our study demonstrated a new method for the online detection of antigen-antibody interactions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Effect of Water-Glass Coating on HA and HA-TCP Samples for MSCs Adhesion, Proliferation, and Differentiation.

    PubMed

    Bajpai, Indu; Kim, Duk Yeon; Kyong-Jin, Jung; Song, In-Hwan; Kim, Sukyoung

    2016-01-01

    Ca-P and silicon based materials have become very popular as bone tissue engineering materials. In this study, water-glass (also known as sodium silicate glass) was coated on sintered hydroxyapatite (HA) and HA-TCP (TCP stands for tricalcium phosphate) samples and subsequently heat-treated at 600°C for 2 hrs. X-rays diffraction showed the presence of β- and α-TCP phases along with HA in the HA-TCP samples. Samples without coating, with water-glass coating, and heat-treated after water-glass coating were used to observe the adhesion and proliferation response of bone marrow derived-mesenchymal stem cells (MSCs). Cell culture was carried out for 4 hrs, 1 day, and 7 days. Interestingly, all samples showed similar response for cell adhesion and proliferation up to 7-day culture but fibronectin, E-cadherin, and osteogenic differentiation related genes (osteocalcin and osteopontin) were significantly induced in heat-treated water-glass coated HA-TCP samples. A water-glass coating on Ca-P samples was not found to influence the cell proliferation response significantly but activated some extracellular matrix genes and induced osteogenic differentiation in the MSCs.

  17. Inkjet-printed gold nanoparticle surfaces for the detection of low molecular weight biomolecules by laser desorption/ionization mass spectrometry.

    PubMed

    Marsico, Alyssa L M; Creran, Brian; Duncan, Bradley; Elci, S Gokhan; Jiang, Ying; Onasch, Timothy B; Wormhoudt, Joda; Rotello, Vincent M; Vachet, Richard W

    2015-11-01

    Effective detection of low molecular weight compounds in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is often hindered by matrix interferences in the low m/z region of the mass spectrum. Here, we show that monolayer-protected gold nanoparticles (AuNPs) can serve as alternate matrices for the very sensitive detection of low molecular weight compounds such as amino acids. Amino acids can be detected at low fmol levels with minimal interferences by properly choosing the AuNP deposition method, density, size, and monolayer surface chemistry. By inkjet-printing AuNPs at various densities, we find that AuNP clusters are essential for obtaining the greatest sensitivity. Graphical Abstract ᅟ.

  18. Application of mass spectrometry technologies for the discovery of low-molecular weight modulators of enzymes and protein-protein interactions.

    PubMed

    Zehender, Hartmut; Mayr, Lorenz M

    2007-10-01

    In recent years, mass spectrometry has gained widespread use as an assay and screening technology in drug discovery because it enables sensitive, label-free detection of low-molecular weight modulators of biomolecules as well as sensitive and accurate detection of high-molecular weight modifications of biomolecules. Electrospray and matrix-assisted laser desorption ionization are the most widely used ionization techniques to identify chemical compounds interfering with enzymatic function, receptor-ligand binding or molecules modulating a protein-protein interaction of interest. Mass spectrometry based techniques are no longer restricted to screening in biochemical assay systems but have now become also applicable to imaging of biomolecules and chemical compounds in cell-based assay systems and even in highly complex tissue sections.

  19. HaLT2- an enhanced lumber grading trainer

    Treesearch

    Powsiri Klinkhachorn; Charles Gatchell; Charles McMillin; Ravi Kothari; Dennis Yost

    1992-01-01

    This paper reports on HaLT2, an improved version of HaLT (Hardwood Lumber Traning Program)- a computer program that provides training in lumber grading. The newly added enhancements In HaLT2 will provide training for both novice and experienced hardwood lumber graders in accordance with National Hardwood Lumber Assodation (NHLA) rules. HaLT2 is more accurate, easier to...

  20. Chain-Growth Methods for the Synthesis of High Molecular Weight Conducting and Semiconducting Polymers

    DTIC Science & Technology

    2013-08-25

    to produce the desired polymerization in analogy to the well-known “super glue ” anionic polymerization. Although there are abundant examples of...light (a) and UV light (b). 5 are further functionalized and block polymers formed with polynorborene have elastomeric properties. The...top) and UV (bottom) light show the evolution of the band gap of the polymer with increasing molecular weight. The plot on the right shows the

  1. Comparison of selected analytical techniques for protein sizing, quantitation and molecular weight determination.

    PubMed

    Goetz, H; Kuschel, M; Wulff, T; Sauber, C; Miller, C; Fisher, S; Woodward, C

    2004-09-30

    Protein analysis techniques are developing fast due to the growing number of proteins obtained by recombinant DNA techniques. In the present paper we compare selected techniques, which are used for protein sizing, quantitation and molecular weight determination: sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE), lab-on-a-chip or microfluidics technology (LoaC), size exclusion chromatography (SEC) and mass spectrometry (MS). We compare advantages and limitations of each technique in respect to different application areas, analysis time, protein sizing and quantitation performance.

  2. Investigating the effects of polymer molecular weight and non-solvent content on the phase separation, surface morphology and hydrophobicity of polyvinyl chloride films

    NASA Astrophysics Data System (ADS)

    Khoryani, Zahra; Seyfi, Javad; Nekoei, Mehdi

    2018-01-01

    The main aim of this research is to study the effects of polymer molecular weight as well as non-solvent concentration on the phase separation, surface morphology and wettability of polyvinyl chloride (PVC) films. Gel permeation chromatography (GPC) results showed that the Mn of the used PVC grades is 6 × 104, 8.7 × 104 and 1.26 × 105 g/mol. It was found that a proper combination of polymer molecular weight and non-solvent content could result in superhydrophobic and self-cleaning behaviors. Scanning electron microscopy (SEM) results demonstrated that addition of ethanol causes the polymer chains to be severely aggregated at the films' surface forming strand-like structures decorated by nano-scale polymer spheres. The polymer molecular weight was found to affect the degree of porosity which is highly influential on the hydrophobicity of the films. The mechanism of phase separation process was also discussed and it was found that the instantaneous demixing is the dominant mechanism once higher contents of non-solvent were used. However, a delayed demixing mechanism was detected when the lower molecular weight PVC has been used which resulted in a pore-less and dense skin layer. Differential scanning calorimetry was also utilized to study the crystallization and glass transition behavior of samples.

  3. Integrated ozone and biotreatment of pulp mill effluent and changes in biodegradability and molecular weight distribution of organic compounds.

    PubMed

    Bijan, Leila; Mohseni, Madjid

    2005-10-01

    The overall effectiveness of integrating ozonation with biological treatment on the biodegradability enhancement and recalcitrant organic matter (ROM) removal from pulp mill alkaline bleach plant effluent was investigated. Ozonation was performed in a semi-batch bubble column reactor at pH of 11 and 4.5. Batch biological treatment was conducted in shake flasks. Samples obtained during the treatments were monitored for BOD5, COD, TOC, and molecular weight distribution. At an ozone dosage of 0.7-0.8 mg O3/mL wastewater, integrated treatment showed about 30% higher TOC mineralization compared to individual ozonation or biotreatment. Ozone treatment enhanced the biodegradability of the effluent (monitored as 21% COD reduction and 13% BOD5 enhancement), allowing for a higher removal of pollutants. The conversion of high molecular weight (HMW) to low molecular weight (LMW) compounds was an important factor in the overall biodegradability enhancement of the alkaline effluent. The overall biodegradability of the LMW compounds did not change over the course of ozonation, but it increased from 5% to 50% (measured as COD removal) for the HMW portion. Ozonation at pH of 11 was more effective than that at pH of 4.5 in terms of generating more biodegradable compounds.

  4. Synthesis and characterization of star-shaped oligo(ethylene glycol) with tyrosine derived moieties under variation of their molecular weight.

    PubMed

    Julich-Gruner, Konstanze K; Roch, Toralf; Ma, Nan; Neffe, Axel T; Lendlein, Andreas

    2015-01-01

    Desamino tyrosine (DAT) and desamino tyrosyl tyrosine (DATT) can be used to functionalize the end groups of water soluble polymers. The phenolic groups may enable physical interactions by π- π interaction and hydrogen bonds, which might lead to the formation of a hydrogel by physical crosslinking. However, using star-shaped oligo(ethylene glycols) (sOEG) with a molecular weight of 5 kDa for functionalization with DAT or DATT resulted in the formation of surfactants and not in hydrogels.As the molecular weight of the sOEG polymer chain can have an influence on forming physical cross links, DAT(T)-fuctionalization of sOEGs with higher molecular weight was investigated, the polymers were structurally characterized and for their mechanical properties were evaluated by rheological measurements.Aqueous solutions of DAT(T)-sOEGs with 10 and 20 kDa showed lower storage and loss moduli compared to unfunctionalized sOEGs indicating also the formation of surfactants. Cell-based assays showed that all sOEG solutions did not impair cell viability and were free of endotoxins, which could otherwise induce uncontrolled immune responses.Conclusively, our data suggested that the sOEG solutions have surface active properties without inducing unwanted cellular responses, which is required e.g. in pharmaceutical applications to solubilize hydophobic substances.

  5. Homology modeling study toward identifying structural properties in the HA2 B-loop that would influence the HA1 receptor-binding site.

    PubMed

    Cueno, Marni E; Imai, Kenichi; Shimizu, Kazufumi; Ochiai, Kuniyasu

    2013-07-01

    Influenza hemagglutinin (HA) consists of a fibrous globular stem (HA2) inserted into the viral membrane supporting a globular head (HA1). HA1 receptor-binding has been hypothesized to be structurally correlated to the HA2 B-loop, however, this was never fully understood. Here, we elucidated the structural relationship between the HA2 B-loop and the HA1 receptor-binding site (RBS). Throughout this study, we analyzed 2486 H1N1 HA homology models obtained from human, swine and avian strains during 1976-2012. Quality of all homology models were verified before further analyses. We established that amino acid residue 882 is putatively strain-conserved and differs in the human (K882), swine (H882) and avian (N882) strains. Moreover, we observed that the amino acid at residue 882 and, similarly, its orientation has the potential to influence the HA1 RBS diameter measurements which we hypothesize may consequentially affect influenza H1N1 viral infectivity, immune escape, transmissibility, and evolution. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. High-molecular weight Aβ oligomers and protofibrils are the predominant Aβ species in the native soluble protein fraction of the AD brain.

    PubMed

    Upadhaya, Ajeet Rijal; Lungrin, Irina; Yamaguchi, Haruyasu; Fändrich, Marcus; Thal, Dietmar Rudolf

    2012-02-01

    Alzheimer's disease (AD) is characterized by the aggregation and deposition of amyloid β protein (Aβ) in the brain. Soluble Aβ oligomers are thought to be toxic. To investigate the predominant species of Aβ protein that may play a role in AD pathogenesis, we performed biochemical analysis of AD and control brains. Sucrose buffer-soluble brain lysates were characterized in native form using blue native (BN)-PAGE and also in denatured form using SDS-PAGE followed by Western blot analysis. BN-PAGE analysis revealed a high-molecular weight smear (>1000 kD) of Aβ(42) -positive material in the AD brain, whereas low-molecular weight and monomeric Aβ species were not detected. SDS-PAGE analysis, on the other hand, allowed the detection of prominent Aβ monomer and dimer bands in AD cases but not in controls. Immunoelectron microscopy of immunoprecipitated oligomers and protofibrils/fibrils showed spherical and protofibrillar Aβ-positive material, thereby confirming the presence of high-molecular weight Aβ (hiMWAβ) aggregates in the AD brain. In vitro analysis of synthetic Aβ(40) - and Aβ(42) preparations revealed Aβ fibrils, protofibrils, and hiMWAβ oligomers that were detectable at the electron microscopic level and after BN-PAGE. Further, BN-PAGE analysis exhibited a monomer band and less prominent low-molecular weight Aβ (loMWAβ) oligomers. In contrast, SDS-PAGE showed large amounts of loMWAβ but no hiMWAβ(40) and strikingly reduced levels of hiMWAβ(42) . These results indicate that hiMWAβ aggregates, particularly Aβ(42) species, are most prevalent in the soluble fraction of the AD brain. Thus, soluble hiMWAβ aggregates may play an important role in the pathogenesis of AD either independently or as a reservoir for release of loMWAβ oligomers. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  7. Anti-Toxoplasma activity of various molecular weights and concentrations of chitosan nanoparticles on tachyzoites of RH strain.

    PubMed

    Teimouri, Aref; Azami, Sanaz Jafarpour; Keshavarz, Hossein; Esmaeili, Fariba; Alimi, Rasoul; Mavi, Sara Ayazian; Shojaee, Saeedeh

    2018-01-01

    Natural polysaccharides such as chitosan (CS) are widely used as antimicrobial agents. In recent years, and considering that CS has a strong antimicrobial potential, interest has been focused on antimicrobial activity of chitosan nanoparticles (CS NPs). The main factors affecting the antibacterial activity of chitosan include molecular weight (MW) and concentration. In this regard, the aim of this study was to produce various MWs and concentrations of CS NPs, through the ionic gelation method, and investigate their potential anti-parasitic activity against tachyzoites of Toxoplasma gondii RH strain. The MWs and degree of deacetylation of the CS were characterized using viscometric and acid-base titration methods, respectively. The efficacy of various MWs and concentrations of NPs was assessed by performing in vitro experiments for tachyzoites of T. gondii RH strain, such as MTT assay, scanning electron microscopy, bioassay in mice and PCR. In vivo experiment was carried out in BALB/c mice which were inoculated with tachyzoites of T. gondii RH strain and treated with various MWs of CS NPs. The results of in vitro and in vivo experiments revealed that anti- Toxoplasma activity strengthened as the CS NPs concentration increased and the MW decreased. In vitro experiment showed 100% mortality of tachyzoites at 500 and 1,000 ppm concentrations of low molecular weight (LMW) CS NPs after 180 min and at 2,000 ppm after 120 min. Furthermore, a 100% mortality of tachyzoites was observed at 1,000 and 2,000 ppm concentrations of medium molecular weight (MMW) CS NPs and at 2,000 ppm concentration of high molecular weight (HMW) CS NPs after 180 min. Growth inhibition rates of tachyzoites in peritoneal exudates of mice receiving low, medium and high MWs of CS NPs were found to be 86%, 84% and 79% respectively, compared to those of mice in sulfadiazine treatment group (positive control). Various MWs of CS NPs exhibited great anti- Toxoplasma efficiency against tachyzoites of RH

  8. High and Low Molecular Weight Hyaluronic Acid Differentially Regulate Human Fibrocyte Differentiation

    PubMed Central

    Maharjan, Anu S.; Pilling, Darrell; Gomer, Richard H.

    2011-01-01

    Background Following tissue injury, monocytes can enter the tissue and differentiate into fibroblast-like cells called fibrocytes, but little is known about what regulates this differentiation. Extracellular matrix contains high molecular weight hyaluronic acid (HMWHA; ∼2×106 Da). During injury, HMWHA breaks down to low molecular weight hyaluronic acid (LMWHA; ∼0.8–8×105 Da). Methods and Findings In this report, we show that HMWHA potentiates the differentiation of human monocytes into fibrocytes, while LMWHA inhibits fibrocyte differentiation. Digestion of HMWHA with hyaluronidase produces small hyaluronic acid fragments, and these fragments inhibit fibrocyte differentiation. Monocytes internalize HMWHA and LMWHA equally well, suggesting that the opposing effects on fibrocyte differentiation are not due to differential internalization of HMWHA or LMWHA. Adding HMWHA to PBMC does not appear to affect the levels of the hyaluronic acid receptor CD44, whereas adding LMWHA decreases CD44 levels. The addition of anti-CD44 antibodies potentiates fibrocyte differentiation, suggesting that CD44 mediates at least some of the effect of hyaluronic acid on fibrocyte differentiation. The fibrocyte differentiation-inhibiting factor serum amyloid P (SAP) inhibits HMWHA-induced fibrocyte differentiation and potentiates LMWHA-induced inhibition. Conversely, LMWHA inhibits the ability of HMWHA, interleukin-4 (IL-4), or interleukin-13 (IL-13) to promote fibrocyte differentiation. Conclusions We hypothesize that hyaluronic acid signals at least in part through CD44 to regulate fibrocyte differentiation, with a dominance hierarchy of SAP>LMWHA≥HMWHA>IL-4 or IL-13. PMID:22022512

  9. Hyaluronan influence on the onset of chondrogenic differentiation of mesenchymal stem cells.

    PubMed

    Dvorakova, Jana; Velebny, Vladimir; Kubala, Lukas

    2008-10-01

    Hyaluronan (HA) is an abundant component of chondrogenic tissue hence it is often used as a fundamental constituent in cartilage tissue substitutes. However, effects of different molecular weight HA on chondrogenic differentiation are not clear. The aim was to evaluate modulation of mesenchymal stem cell (MSC) early chondrogenesis by HA of molecular weights 100, 600 and 1 500 kDa. HA was applied on MSCs cultured in a pellet system for one, two and three weeks. Chondrogenesis was evaluated by determinations of gene expression of transcription factor Sox-9 and extracellular matrix proteins collagen type II and XI, aggrecan, and COMP by Real-Time PCR and completed with histological analysis. Upon chondrogenic induction, the respective pellets revealed active transcription of the chondrogenic genes together with proceeding accumulation of glycosaminoglycan (GAG) rich extracellular matrix. Sox-9 was also expressed in non-chondrogenic MSC controls. HA treated pellets were not significantly influenced on day 7 of culture. However, on day 14, lowered expression in some of the extracellular matrix proteins appeared together with a moderately smaller amount of GAG content in pellet sections. Nevertheless, the analysis on day 21 has demonstrated that HA did not affect the outcome of the differentiation by the end of the culture. Any difference regarding the molecular weight of the HA was not found. It could be speculated that HA induced a time shift in the phase of the dominant matrix protein onset which was in full compensated by the end of the evaluated time period. Thus, data suggest that HA of any tested molecular weight does not significantly modulate chondrogenesis of MSCs in pellet system.

  10. An improved correlation to predict molecular weight between crosslinks based on equilibrium degree of swelling of hydrogel networks.

    PubMed

    Jimenez-Vergara, Andrea C; Lewis, John; Hahn, Mariah S; Munoz-Pinto, Dany J

    2018-04-01

    Accurate characterization of hydrogel diffusional properties is of substantial importance for a range of biotechnological applications. The diffusional capacity of hydrogels has commonly been estimated using the average molecular weight between crosslinks (M c ), which is calculated based on the equilibrium degree of swelling. However, the existing correlation linking M c and equilibrium swelling fails to accurately reflect the diffusional properties of highly crosslinked hydrogel networks. Also, as demonstrated herein, the current model fails to accurately predict the diffusional properties of hydrogels when polymer concentration and molecular weight are varied simultaneously. To address these limitations, we evaluated the diffusional properties of 48 distinct hydrogel formulations using two different photoinitiator systems, employing molecular size exclusion as an alternative methodology to calculate average hydrogel mesh size. The resulting data were then utilized to develop a revised correlation between M c and hydrogel equilibrium swelling that substantially reduces the limitations associated with the current correlation. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1339-1348, 2018. © 2017 Wiley Periodicals, Inc.

  11. Sedimentation Coefficient, Frictional Coefficient, and Molecular Weight: A Preparative Ultracentrifuge Experiment for the Advanced Undergraduate Laboratory.

    ERIC Educational Resources Information Center

    Halsall, H. B.; Wermeling, J. R.

    1982-01-01

    Describes an experiment using a high-speed preparative centrifuge and calculator to demonstrate effects of the frictional coefficient of a macromolecule on its rate of transport in a force field and to estimate molecular weight of the macromolecule using an empirical relationship. Background information, procedures, and discussion of results are…

  12. Microfluidics Meets Dilute Solution Viscometry: An Undergraduate Laboratory to Determine Polymer Molecular Weight Using a Microviscometer

    ERIC Educational Resources Information Center

    Pety, Stephen J.; Lu, Hang; Thio, Yonathan S.

    2011-01-01

    This paper describes a student laboratory experiment to determine the molecular weight of a polymer sample by measuring the viscosity of dilute polymer solutions in a PDMS microfluidic viscometer. Sample data are given for aqueous solutions of poly(ethylene oxide) (PEO). A demonstration of shear thinning behavior using the microviscometer is…

  13. A MURINE MODEL FOR LOW MOLECULAR WEIGHT CHEMICALS: DIFFERENTIATION OF RESPIRATORY SENSITIZERS (TMA) FROM CONTACT SENSITIZERS (DNFB)

    EPA Science Inventory

    Exposure to low molecular weight (LMW) chemicals contributes to both dermal and respiratory sensitization and is an important occupational health problem. Our goal was to establish an in vivo murine model for hazard identification of LMW chemicals that have the potential to indu...

  14. Isolation, purification, and immunological activities of a low-molecular-weight polysaccharide from the Lingzhi or Reishi medicinal mushroom Ganoderma lucidum (higher Basidiomycetes).

    PubMed

    Zhu, Lina; Luo, Xi; Tang, Qingjiu; Liu, Yanfang; Zhou, Shuai; Yang, Yan; Zhang, Jingsong

    2013-01-01

    To obtain a low-molecular-weight polysaccharide with immuno-enhancing activity, hot water extract of Ganoderma lucidum fruit bodies was separated by membrane ultrafiltration, anion exchange, and gel filtration chromatography, and the immunological activities of fractions were assessed on the basis of nitric oxide production by RAW 264.7 macrophages. A novel polysaccharide (TB3-2-2) was successfully isolated and purified. TB3-2-2 is a homogeneous polysaccharide, with a relative molecular weight of 5.11 × 103 Da, identified by high-performance liquid chromatography and was composed of galactose and glucose in a molar ratio of 2:3 determined by high-performance anion exchange chromatography. TB3-2-2 had a carbohydrate content of 99%, as measured using the phenol-sulfuric acid method. Proliferation of mouse spleen lymphocytes and the expression level of interleukin-6 was significantly increased by TB3-2-2. Results indicate that the low-molecular-weight polysaccharide with immunological activity in G. lucidum is worthy of further research and development.

  15. Quantitative LC-MS of polymers: determining accurate molecular weight distributions by combined size exclusion chromatography and electrospray mass spectrometry with maximum entropy data processing.

    PubMed

    Gruendling, Till; Guilhaus, Michael; Barner-Kowollik, Christopher

    2008-09-15

    We report on the successful application of size exclusion chromatography (SEC) combined with electrospray ionization mass spectrometry (ESI-MS) and refractive index (RI) detection for the determination of accurate molecular weight distributions of synthetic polymers, corrected for chromatographic band broadening. The presented method makes use of the ability of ESI-MS to accurately depict the peak profiles and retention volumes of individual oligomers eluting from the SEC column, whereas quantitative information on the absolute concentration of oligomers is obtained from the RI-detector only. A sophisticated computational algorithm based on the maximum entropy principle is used to process the data gained by both detectors, yielding an accurate molecular weight distribution, corrected for chromatographic band broadening. Poly(methyl methacrylate) standards with molecular weights up to 10 kDa serve as model compounds. Molecular weight distributions (MWDs) obtained by the maximum entropy procedure are compared to MWDs, which were calculated by a conventional calibration of the SEC-retention time axis with peak retention data obtained from the mass spectrometer. Comparison showed that for the employed chromatographic system, distributions below 7 kDa were only weakly influenced by chromatographic band broadening. However, the maximum entropy algorithm could successfully correct the MWD of a 10 kDa standard for band broadening effects. Molecular weight averages were between 5 and 14% lower than the manufacturer stated data obtained by classical means of calibration. The presented method demonstrates a consistent approach for analyzing data obtained by coupling mass spectrometric detectors and concentration sensitive detectors to polymer liquid chromatography.

  16. Nanostructured solid substrates for efficient laser desorption/ionization mass spectrometry (LDI-MS) of low molecular weight compounds.

    PubMed

    Silina, Yuliya E; Volmer, Dietrich A

    2013-12-07

    Analytical applications often require rapid measurement of compounds from complex sample mixtures. High-speed mass spectrometry approaches frequently utilize techniques based on direct ionization of the sample by laser irradiation, mostly by means of matrix-assisted laser desorption/ionization (MALDI). Compounds of low molecular weight are difficult to analyze by MALDI, however, because of severe interferences in the low m/z range from the organic matrix used for desorption/ionization. In recent years, surface-assisted laser desorption/ionization (SALDI) techniques have shown promise for small molecule analysis, due to the unique properties of nanostructured surfaces, in particular, the lack of a chemical background in the low m/z range and enhanced production of analyte ions by SALDI. This short review article presents a summary of the most promising recent developments in SALDI materials for MS analysis of low molecular weight analytes, with emphasis on nanostructured materials based on metals and semiconductors.

  17. Monitoring bound HA1(H1N1) and HA1(H5N1) on freely suspended graphene over plasmonic platforms with infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Banerjee, Amrita; Chakraborty, Sumit; Altan-Bonnet, Nihal; Grebel, Haim

    2013-09-01

    Infrared (IR) spectroscopy provides fingerprinting of the energy and orientation of molecular bonds. The IR signals are generally weak and require amplification. Here we present a new plasmonic platform, made of freely suspended graphene, which was coating periodic metal structures. Only monolayer thick films were needed for a fast signal recording. We demonstrated unique IR absorption signals of bound proteins: these were the hemagglutinin area (HA1) of swine influenza (H1N1) and the avian influenza (H5N1) viruses bound to their respective tri-saccharides ligand receptors. The simplicity and sensitivity of such approach may find applications in fast monitoring of binding events.

  18. Low-molecular-weight poly(alpha-methyl beta,L-malate) of microbial origin: synthesis and crystallization.

    PubMed

    Fernández, Carlos E; Mancera, Manuel; Holler, Eggehard; Bou, Jordi J; Galbis, Juan A; Muñoz-Guerra, Sebastián

    2005-02-23

    Low-molecular-weight poly(alpha-methyl beta,L-malate) made of approximately 25-30 units was prepared from microbial poly(beta,L-malic acid) by treatment with diazomethane. The thermal characterization of the polymalate methyl ester was carried out and its crystalline structure was preliminary examined. Its ability to crystallize both from solution and from the melt was comparatively evaluated.

  19. Comprehensive Analysis of Low-Molecular-Weight Human Plasma Proteome Using Top-Down Mass Spectrometry.

    PubMed

    Cheon, Dong Huey; Nam, Eun Ji; Park, Kyu Hyung; Woo, Se Joon; Lee, Hye Jin; Kim, Hee Cheol; Yang, Eun Gyeong; Lee, Cheolju; Lee, Ji Eun

    2016-01-04

    While human plasma serves as a great source for disease diagnosis, low-molecular-weight (LMW) proteome (<30 kDa) has been shown to contain a rich source of diagnostic biomarkers. Here we employ top-down mass spectrometry to analyze the LMW proteoforms present in four types of human plasma samples pooled from three healthy controls (HCs) without immunoaffinity depletion and with depletion of the top two, six, and seven high-abundance proteins. The LMW proteoforms were first fractionated based on molecular weight using gel-eluted liquid fraction entrapment electrophoresis (GELFrEE). Then, the GELFrEE fractions containing up to 30 kDa were subjected to nanocapillary-LC-MS/MS, and the high-resolution MS and MS/MS data were processed using ProSightPC 3.0. As a result, a total of 442 LMW proteins and cleaved products, including those with post-translational modifications and single amino acid variations, were identified. From additional comparative analysis of plasma samples without immunoaffinity depletion between HCs and colorectal cancer (CRC) patients via top-down approach, tens of LMW proteoforms, including platelet factor 4, were found to show >1.5-fold changes between the plasma samples of HCs and CRC patients, and six of the LMW proteins were verified by Western blot analysis.

  20. Low-molecular-weight hydroxyacids in marine atmospheric aerosol: evidence of a marine microbial origin

    NASA Astrophysics Data System (ADS)

    Miyazaki, Y.; Sawano, M.; Kawamura, K.

    2014-04-01

    Lactic acid (LA) and glycolic acid (GA), which are low-molecular-weight hydroxyacids, were identified in the particle and gas phases within the marine atmospheric boundary layer over the western subarctic North Pacific. Major portion of LA (81%) and GA (57%) were present in the particulate phase, which is consistent with the presence of a hydroxyl group in these molecules leading to the low volatility of the compounds. The average concentration of LA in more biologically influenced marine aerosols (average 33 ± 58 ng m-3) was substantially higher than that in less biologically influenced aerosols (average 11 ± 12 ng m-3). Over the oceacnic region of phytoplankton blooms, the concentration of aerosol LA was comparable to that of oxalic acid, which was the most abundant diacid during the study period. A positive correlation was found between the LA concentrations in more biologically influenced aerosols and chlorophyll a in seawater (r2 = 0.56), suggesting an important production of aerosol LA possibly associated with microbial (e.g., lactobacillus) activity in seawater and/or aerosols. Our finding provides a new insight into the poorly quantified microbial sources of marine organic aerosols (OA) because such low-molecular-weight hydroxyacids are key intermediates for OA formation.