Science.gov

Sample records for ha-mediated cell-cell fusion

  1. Regulation of cell-cell fusion by nanotopography

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Jagannath; Augelli, Michael J.; Cheung, Bettina; Kinser, Emily R.; Cleary, Barnett; Kumar, Priyanka; Wang, Renhao; Sawyer, Andrew J.; Li, Rui; Schwarz, Udo D.; Schroers, Jan; Kyriakides, Themis R.

    2016-09-01

    Cell-cell fusion is fundamental to a multitude of biological processes ranging from cell differentiation and embryogenesis to cancer metastasis and biomaterial-tissue interactions. Fusogenic cells are exposed to biochemical and biophysical factors, which could potentially alter cell behavior. While biochemical inducers of fusion such as cytokines and kinases have been identified, little is known about the biophysical regulation of cell-cell fusion. Here, we designed experiments to examine cell-cell fusion using bulk metallic glass (BMG) nanorod arrays with varying biophysical cues, i.e. nanotopography and stiffness. Through independent variation of stiffness and topography, we found that nanotopography constitutes the primary biophysical cue that can override biochemical signals to attenuate fusion. Specifically, nanotopography restricts cytoskeletal remodeling-associated signaling, which leads to reduced fusion. This finding expands our fundamental understanding of the nanoscale biophysical regulation of cell fusion and can be exploited in biomaterials design to induce desirable biomaterial-tissue interactions.

  2. Regulation of cell-cell fusion by nanotopography

    PubMed Central

    Padmanabhan, Jagannath; Augelli, Michael J.; Cheung, Bettina; Kinser, Emily R.; Cleary, Barnett; Kumar, Priyanka; Wang, Renhao; Sawyer, Andrew J.; Li, Rui; Schwarz, Udo D.; Schroers, Jan; Kyriakides, Themis R.

    2016-01-01

    Cell-cell fusion is fundamental to a multitude of biological processes ranging from cell differentiation and embryogenesis to cancer metastasis and biomaterial-tissue interactions. Fusogenic cells are exposed to biochemical and biophysical factors, which could potentially alter cell behavior. While biochemical inducers of fusion such as cytokines and kinases have been identified, little is known about the biophysical regulation of cell-cell fusion. Here, we designed experiments to examine cell-cell fusion using bulk metallic glass (BMG) nanorod arrays with varying biophysical cues, i.e. nanotopography and stiffness. Through independent variation of stiffness and topography, we found that nanotopography constitutes the primary biophysical cue that can override biochemical signals to attenuate fusion. Specifically, nanotopography restricts cytoskeletal remodeling-associated signaling, which leads to reduced fusion. This finding expands our fundamental understanding of the nanoscale biophysical regulation of cell fusion and can be exploited in biomaterials design to induce desirable biomaterial-tissue interactions. PMID:27615159

  3. Regulation of cell-cell fusion by nanotopography.

    PubMed

    Padmanabhan, Jagannath; Augelli, Michael J; Cheung, Bettina; Kinser, Emily R; Cleary, Barnett; Kumar, Priyanka; Wang, Renhao; Sawyer, Andrew J; Li, Rui; Schwarz, Udo D; Schroers, Jan; Kyriakides, Themis R

    2016-01-01

    Cell-cell fusion is fundamental to a multitude of biological processes ranging from cell differentiation and embryogenesis to cancer metastasis and biomaterial-tissue interactions. Fusogenic cells are exposed to biochemical and biophysical factors, which could potentially alter cell behavior. While biochemical inducers of fusion such as cytokines and kinases have been identified, little is known about the biophysical regulation of cell-cell fusion. Here, we designed experiments to examine cell-cell fusion using bulk metallic glass (BMG) nanorod arrays with varying biophysical cues, i.e. nanotopography and stiffness. Through independent variation of stiffness and topography, we found that nanotopography constitutes the primary biophysical cue that can override biochemical signals to attenuate fusion. Specifically, nanotopography restricts cytoskeletal remodeling-associated signaling, which leads to reduced fusion. This finding expands our fundamental understanding of the nanoscale biophysical regulation of cell fusion and can be exploited in biomaterials design to induce desirable biomaterial-tissue interactions. PMID:27615159

  4. Rho GTPase activity modulates paramyxovirus fusion protein-mediated cell-cell fusion

    SciTech Connect

    Schowalter, Rachel M.; Wurth, Mark A.; Aguilar, Hector C.; Lee, Benhur; Moncman, Carole L.; McCann, Richard O.; Dutch, Rebecca Ellis . E-mail: rdutc2@uky.edu

    2006-07-05

    The paramyxovirus fusion protein (F) promotes fusion of the viral envelope with the plasma membrane of target cells as well as cell-cell fusion. The plasma membrane is closely associated with the actin cytoskeleton, but the role of actin dynamics in paramyxovirus F-mediated membrane fusion is unclear. We examined cell-cell fusion promoted by two different paramyxovirus F proteins in three cell types in the presence of constitutively active Rho family GTPases, major cellular coordinators of actin dynamics. Reporter gene and syncytia assays demonstrated that expression of either Rac1{sup V12} or Cdc42{sup V12} could increase cell-cell fusion promoted by the Hendra or SV5 glycoproteins, though the effect was dependent on the cell type expressing the viral glycoproteins. In contrast, RhoA{sup L63} decreased cell-cell fusion promoted by Hendra glycoproteins but had little affect on SV5 F-mediated fusion. Also, data suggested that GTPase activation in the viral glycoprotein-containing cell was primarily responsible for changes in fusion. Additionally, we found that activated Cdc42 promoted nuclear rearrangement in syncytia.

  5. Methodologies in the study of cell-cell fusion.

    PubMed

    Cohen, F S; Melikyan, G B

    1998-10-01

    The process of membrane fusion has been profitably studied by fusing cells that express fusion proteins on their surfaces to the membranes of target cells. Primary methods for monitoring the occurrence of fusion between cells are measurement of formation of heterokaryons, measurement of activation of reporter genes, measurement of transfer of lipidic and aqueous fluorescent dyes, and electrophysiological recording of fusion pores. Fluorescence and electrical methods have been well developed for fusion of a nucleated cell expressing viral fusion proteins to red blood cell targets. These techniques are now being extended to the study of fusion between two nucleated cells. Microscopic observation of spread of fluorescent dyes from one cell to another is a sensitive and convenient means of detecting fusion on the level of single events. In such studies, both the membrane and the aqueous continuities that occur as a result of fusion can be measured in the same experiment. By following spread of aqueous dyes of different sizes from one cell to another, the growth of a fusion pore can also be followed. By labeling cells with fluorescent probes, a state of hemifusion can be identified if probes in outer membrane leaflets transfer but probes in inner leaflets or aqueous spaces do not. Electrical measurements-both capacitance and double-whole-cell voltage-clamp techniques-are the most sensitive methods yet developed for detecting the formation of pores and for quantifying their growth. These powerful single-event methodologies should be directly applicable to further advances in expressing nonviral fusion proteins on cell surfaces. PMID:9790869

  6. RAB-5- and DYNAMIN-1-Mediated Endocytosis of EFF-1 Fusogen Controls Cell-Cell Fusion

    PubMed Central

    Smurova, Ksenia; Podbilewicz, Benjamin

    2016-01-01

    Summary Cell-cell fusion plays essential roles during fertilization and organogenesis. Previous studies in C. elegans led to the identification of the eukaryotic fusion protein (EFF-1 fusogen), which has structural homology to class II viral fusogens. Transcriptional repression of EFF-1 ensures correct fusion fates, and overexpression of EFF-1 results in embryonic lethality. EFF-1 must be expressed on the surface of both fusing cells; however, little is known regarding how cells regulate EFF-1 surface exposure. Here, we report that EFF-1 is actively removed from the plasma membrane of epidermal cells by dynamin- and RAB-5-dependent endocytosis and accumulates in early endosomes. EFF-1 was transiently localized to apical domains of fusion-competent cells. Effective cell-cell fusion occurred only between pairs of cell membranes in which EFF-1 localized. Downregulation of dynamin or RAB-5 caused EFF-1 mislocalization to all apical membrane domains and excessive fusion. Thus, internalization of EFF-1 is a safety mechanism preventing excessive cell fusion. PMID:26854231

  7. [Molecular Mechanism of Glycoprotein-induced Cell-Cell Fusion of Herpesviruses].

    PubMed

    Feng, Daishen; Jia, Renyong

    2016-01-01

    Herpesviridae is a large family comprising linear, double-stranded DNA viruses. Herpesviridae contains three subfamilies: α-, β- and γ-herpesviruses. The glycoproteins gB, gH and gL of each subfamily form the "core fusion function" in cell-cell fusion. Other herpesviruses also need additional glycoproteins to promote fusion, such as gD of the Herpes simplex virus, gp42 of the Epstein-Barr virus, and gO or UL128-131 of the Human cytomegalovirus. In contrast, glycoproteins gM or gM/gN of herpesvirus inhibit fusion. We describe the molecular mechanisms of glycoprotein-induced fusion and entry of herpesviruses. It will be helpful to further study the pathogenic mechanism of herpesvirus.

  8. Sialic Acids on Varicella-Zoster Virus Glycoprotein B Are Required for Cell-Cell Fusion.

    PubMed

    Suenaga, Tadahiro; Matsumoto, Maki; Arisawa, Fuminori; Kohyama, Masako; Hirayasu, Kouyuki; Mori, Yasuko; Arase, Hisashi

    2015-08-01

    Varicella-zoster virus (VZV) is a member of the human Herpesvirus family that causes varicella (chicken pox) and zoster (shingles). VZV latently infects sensory ganglia and is also responsible for encephalomyelitis. Myelin-associated glycoprotein (MAG), a member of the sialic acid (SA)-binding immunoglobulin-like lectin family, is mainly expressed in neural tissues. VZV glycoprotein B (gB) associates with MAG and mediates membrane fusion during VZV entry into host cells. The SA requirements of MAG when associating with its ligands vary depending on the specific ligand, but it is unclear whether the SAs on gB are involved in the association with MAG. In this study, we found that SAs on gB are essential for the association with MAG as well as for membrane fusion during VZV infection. MAG with a point mutation in the SA-binding site did not bind to gB and did not mediate cell-cell fusion or VZV entry. Cell-cell fusion and VZV entry mediated by the gB-MAG interaction were blocked by sialidase treatment. N-glycosylation or O-glycosylation inhibitors also inhibited the fusion and entry mediated by gB-MAG interaction. Furthermore, gB with mutations in N-glycosylation sites, i.e. asparagine residues 557 and 686, did not associate with MAG, and the cell-cell fusion efficiency was low. Fusion between the viral envelope and cellular membrane is essential for host cell entry by herpesviruses. Therefore, these results suggest that SAs on gB play important roles in MAG-mediated VZV infection.

  9. Localization of a Region in the Fusion Protein of Avian Metapneumovirus That Modulates Cell-Cell Fusion

    PubMed Central

    Wei, Yongwei; Feng, Kurtis; Yao, Xiangjie; Cai, Hui; Li, Junan; Mirza, Anne M.; Iorio, Ronald M.

    2012-01-01

    The genus Metapneumovirus within the subfamily Pneumovirinae of the family Paramyxoviridae includes two members, human metapneumovirus (hMPV) and avian metapneumovirus (aMPV), causing respiratory tract infections in humans and birds, respectively. Paramyxoviruses enter host cells by fusing the viral envelope with a host cell membrane. Membrane fusion of hMPV appears to be unique, in that fusion of some hMPV strains requires low pH. Here, we show that the fusion (F) proteins of aMPV promote fusion in the absence of the attachment protein and low pH is not required. Furthermore, there are notable differences in cell-cell fusion among aMPV subtypes. Trypsin was required for cell-cell fusion induced by subtype B but not subtypes A and C. The F protein of aMPV subtype A was highly fusogenic, whereas those from subtypes B and C were not. By construction and evaluation of chimeric F proteins composed of domains from the F proteins of subtypes A and B, we localized a region composed of amino acid residues 170 to 338 in the F protein that is responsible for the hyperfusogenic phenotype of the F from subtype A. Further mutagenesis analysis revealed that residues R295, G297, and K323 in this region collectively contributed to the hyperfusogenicity. Taken together, we have identified a region in the aMPV F protein that modulates the extent of membrane fusion. A model for fusion consistent with these data is presented. PMID:22915815

  10. Induction of Cell-Cell Fusion by Ebola Virus Glycoprotein: Low pH Is Not a Trigger

    PubMed Central

    Zheng, Yi-Min; Melikyan, Gregory B.; Liu, Shan-Lu; Cohen, Fredric S.

    2016-01-01

    Ebola virus (EBOV) is a highly pathogenic filovirus that causes hemorrhagic fever in humans and animals. Currently, how EBOV fuses its envelope membrane within an endosomal membrane to cause infection is poorly understood. We successfully measure cell-cell fusion mediated by the EBOV fusion protein, GP, assayed by the transfer of both cytoplasmic and membrane dyes. A small molecule fusion inhibitor, a neutralizing antibody, as well as mutations in EBOV GP known to reduce viral infection, all greatly reduce fusion. By monitoring redistribution of small aqueous dyes between cells and by electrical capacitance measurements, we discovered that EBOV GP-mediated fusion pores do not readily enlarge—a marked difference from the behavior of other viral fusion proteins. EBOV GP must be cleaved by late endosome-resident cathepsins B or L in order to become fusion-competent. Cleavage of cell surface-expressed GP appears to occur in endosomes, as evidenced by the fusion block imposed by cathepsin inhibitors, agents that raise endosomal pH, or an inhibitor of anterograde trafficking. Treating effector cells with a recombinant soluble cathepsin B or thermolysin, which cleaves GP into an active form, increases the extent of fusion, suggesting that a fraction of surface-expressed GP is not cleaved. Whereas the rate of fusion is increased by a brief exposure to acidic pH, fusion does occur at neutral pH. Importantly, the extent of fusion is independent of external pH in experiments in which cathepsin activity is blocked and EBOV GP is cleaved by thermolysin. These results imply that low pH promotes fusion through the well-known pH-dependent activity of cathepsins; fusion induced by cleaved EBOV GP is a process that is fundamentally independent of pH. The cell-cell fusion system has revealed some previously unappreciated features of EBOV entry, which could not be readily elucidated in the context of endosomal entry. PMID:26730950

  11. Induction of Cell-Cell Fusion by Ebola Virus Glycoprotein: Low pH Is Not a Trigger.

    PubMed

    Markosyan, Ruben M; Miao, Chunhui; Zheng, Yi-Min; Melikyan, Gregory B; Liu, Shan-Lu; Cohen, Fredric S

    2016-01-01

    Ebola virus (EBOV) is a highly pathogenic filovirus that causes hemorrhagic fever in humans and animals. Currently, how EBOV fuses its envelope membrane within an endosomal membrane to cause infection is poorly understood. We successfully measure cell-cell fusion mediated by the EBOV fusion protein, GP, assayed by the transfer of both cytoplasmic and membrane dyes. A small molecule fusion inhibitor, a neutralizing antibody, as well as mutations in EBOV GP known to reduce viral infection, all greatly reduce fusion. By monitoring redistribution of small aqueous dyes between cells and by electrical capacitance measurements, we discovered that EBOV GP-mediated fusion pores do not readily enlarge-a marked difference from the behavior of other viral fusion proteins. EBOV GP must be cleaved by late endosome-resident cathepsins B or L in order to become fusion-competent. Cleavage of cell surface-expressed GP appears to occur in endosomes, as evidenced by the fusion block imposed by cathepsin inhibitors, agents that raise endosomal pH, or an inhibitor of anterograde trafficking. Treating effector cells with a recombinant soluble cathepsin B or thermolysin, which cleaves GP into an active form, increases the extent of fusion, suggesting that a fraction of surface-expressed GP is not cleaved. Whereas the rate of fusion is increased by a brief exposure to acidic pH, fusion does occur at neutral pH. Importantly, the extent of fusion is independent of external pH in experiments in which cathepsin activity is blocked and EBOV GP is cleaved by thermolysin. These results imply that low pH promotes fusion through the well-known pH-dependent activity of cathepsins; fusion induced by cleaved EBOV GP is a process that is fundamentally independent of pH. The cell-cell fusion system has revealed some previously unappreciated features of EBOV entry, which could not be readily elucidated in the context of endosomal entry.

  12. Development and characterization of a Rift Valley fever virus cell-cell fusion assay using alphavirus replicon vectors

    SciTech Connect

    Filone, Claire Marie; Heise, Mark; Doms, Robert W. . E-mail: doms@mail.med.upenn.edu; Bertolotti-Ciarlet, Andrea . E-mail: aciarlet@mail.med.upenn.edu

    2006-12-20

    Rift Valley fever virus (RVFV), a member of the Phlebovirus genus in the Bunyaviridae family, is transmitted by mosquitoes and infects both humans and domestic animals, particularly cattle and sheep. Since primary RVFV strains must be handled in BSL-3+ or BSL-4 facilities, a RVFV cell-cell fusion assay will facilitate the investigation of RVFV glycoprotein function under BSL-2 conditions. As for other members of the Bunyaviridae family, RVFV glycoproteins are targeted to the Golgi, where the virus buds, and are not efficiently delivered to the cell surface. However, overexpression of RVFV glycoproteins using an alphavirus replicon vector resulted in the expression of the glycoproteins on the surface of multiple cell types. Brief treatment of RVFV glycoprotein expressing cells with mildly acidic media (pH 6.2 and below) resulted in rapid and efficient syncytia formation, which we quantified by {beta}-galactosidase {alpha}-complementation. Fusion was observed with several cell types, suggesting that the receptor(s) for RVFV is widely expressed or that this acid-dependent virus does not require a specific receptor to mediate cell-cell fusion. Fusion occurred over a broad temperature range, as expected for a virus with both mosquito and mammalian hosts. In contrast to cell fusion mediated by the VSV-G glycoprotein, RVFV glycoprotein-dependent cell fusion could be prevented by treating target cells with trypsin, indicating that one or more proteins (or protein-associated carbohydrate) on the host cell surface are needed to support membrane fusion. The cell-cell fusion assay reported here will make it possible to study the membrane fusion activity of RVFV glycoproteins in a high-throughput format and to screen small molecule inhibitors for the ability to block virus-specific membrane fusion.

  13. Human papillomavirus 16 E5 induces bi-nucleated cell formation by cell-cell fusion

    SciTech Connect

    Hu Lulin; Plafker, Kendra; Vorozhko, Valeriya; Zuna, Rosemary E.; Hanigan, Marie H.; Gorbsky, Gary J.; Plafker, Scott M.; Angeletti, Peter C.; Ceresa, Brian P.

    2009-02-05

    Human papillomaviruses (HPV) 16 is a DNA virus encoding three oncogenes - E5, E6, and E7. The E6 and E7 proteins have well-established roles as inhibitors of tumor suppression, but the contribution of E5 to malignant transformation is controversial. Using spontaneously immortalized human keratinocytes (HaCaT cells), we demonstrate that expression of HPV16 E5 is necessary and sufficient for the formation of bi-nucleated cells, a common characteristic of precancerous cervical lesions. Expression of E5 from non-carcinogenic HPV6b does not produce bi-nucleate cells. Video microscopy and biochemical analyses reveal that bi-nucleates arise through cell-cell fusion. Although most E5-induced bi-nucleates fail to propagate, co-expression of HPV16 E6/E7 enhances the proliferation of these cells. Expression of HPV16 E6/E7 also increases bi-nucleated cell colony formation. These findings identify a new role for HPV16 E5 and support a model in which complementary roles of the HPV16 oncogenes lead to the induction of carcinogenesis.

  14. Roles of the Putative Integrin-Binding Motif of the Human Metapneumovirus Fusion (F) Protein in Cell-Cell Fusion, Viral Infectivity, and Pathogenesis

    PubMed Central

    Wei, Yongwei; Zhang, Yu; Cai, Hui; Mirza, Anne M.; Iorio, Ronald M.; Peeples, Mark E.; Niewiesk, Stefan

    2014-01-01

    ABSTRACT Human metapneumovirus (hMPV) is a relatively recently identified paramyxovirus that causes acute upper and lower respiratory tract infection. Entry of hMPV is unusual among the paramyxoviruses, in that fusion is accomplished by the fusion (F) protein without the attachment glycoprotein (G protein). It has been suggested that hMPV F protein utilizes integrin αvβ1 as a cellular receptor. Consistent with this, the F proteins of all known hMPV strains possess an integrin-binding motif (329RGD331). The role of this motif in viral entry, infectivity, and pathogenesis is poorly understood. Here, we show that α5β1 and αv integrins are essential for cell-cell fusion and hMPV infection. Mutational analysis found that residues R329 and G330 in the 329RGD331 motif are essential for cell-cell fusion, whereas mutations at D331 did not significantly impact fusion activity. Furthermore, fusion-defective RGD mutations were either lethal to the virus or resulted in recombinant hMPVs that had defects in viral replication in cell culture. In cotton rats, recombinant hMPV with the R329K mutation in the F protein (rhMPV-R329K) and rhMPV-D331A exhibited significant defects in viral replication in nasal turbinates and lungs. Importantly, inoculation of cotton rats with these mutants triggered a high level of neutralizing antibodies and protected against hMPV challenge. Taken together, our data indicate that (i) α5β1 and αv integrins are essential for cell-cell fusion and viral replication, (ii) the first two residues in the RGD motif are essential for fusion activity, and (iii) inhibition of the interaction of the integrin-RGD motif may serve as a new target to rationally attenuate hMPV for the development of live attenuated vaccines. IMPORTANCE Human metapneumovirus (hMPV) is one of the major causative agents of acute respiratory disease in humans. Currently, there is no vaccine or antiviral drug for hMPV. hMPV enters host cells via a unique mechanism, in that viral

  15. Different activities of the reovirus FAST proteins and influenza hemagglutinin in cell-cell fusion assays and in response to membrane curvature agents

    SciTech Connect

    Clancy, Eileen K.; Barry, Chris; Ciechonska, Marta; Duncan, Roy

    2010-02-05

    The reovirus fusion-associated small transmembrane (FAST) proteins evolved to induce cell-cell, rather than virus-cell, membrane fusion. It is unclear whether the FAST protein fusion reaction proceeds in the same manner as the enveloped virus fusion proteins. We now show that fluorescence-based cell-cell and cell-RBC hemifusion assays are unsuited for detecting lipid mixing in the absence of content mixing during FAST protein-mediated membrane fusion. Furthermore, membrane curvature agents that inhibit hemifusion or promote pore formation mediated by influenza hemagglutinin had no effect on p14-induced cell-cell fusion, even under conditions of limiting p14 concentrations. Standard assays used to detect fusion intermediates induced by enveloped virus fusion proteins are therefore not applicable to the FAST proteins. These results suggest the possibility that the nature of the fusion intermediates or the mechanisms used to transit through the various stages of the fusion reaction may differ between these distinct classes of viral fusogens.

  16. Furin cleavage of the SARS coronavirus spike glycoprotein enhances cell-cell fusion but does not affect virion entry

    SciTech Connect

    Follis, Kathryn E.; York, Joanne; Nunberg, Jack H. . E-mail: jack.nunberg@umontana.edu

    2006-07-05

    The fusogenic potential of Class I viral envelope glycoproteins is activated by proteloytic cleavage of the precursor glycoprotein to generate the mature receptor-binding and transmembrane fusion subunits. Although the coronavirus (CoV) S glycoproteins share membership in this class of envelope glycoproteins, cleavage to generate the respective S1 and S2 subunits appears absent in a subset of CoV species, including that responsible for the severe acute respiratory syndrome (SARS). To determine whether proteolytic cleavage of the S glycoprotein might be important for the newly emerged SARS-CoV, we introduced a furin recognition site at single basic residues within the putative S1-S2 junctional region. We show that furin cleavage at the modified R667 position generates discrete S1 and S2 subunits and potentiates membrane fusion activity. This effect on the cell-cell fusion activity by the S glycoprotein is not, however, reflected in the infectivity of pseudotyped lentiviruses bearing the cleaved glycoprotein. The lack of effect of furin cleavage on virion infectivity mirrors that observed in the normally cleaved S glycoprotein of the murine coronavirus and highlights an additional level of complexity in coronavirus entry.

  17. Flagellar membrane fusion and protein exchange in trypanosomes; a new form of cell-cell communication?

    PubMed Central

    Imhof, Simon; Fragoso, Cristina; Hemphill, Andrew; von Schubert, Conrad; Li, Dong; Legant, Wesley; Betzig, Eric; Roditi, Isabel

    2016-01-01

    Diverse structures facilitate direct exchange of proteins between cells, including plasmadesmata in plants and tunnelling nanotubes in bacteria and higher eukaryotes.  Here we describe a new mechanism of protein transfer, flagellar membrane fusion, in the unicellular parasite Trypanosoma brucei. When fluorescently tagged trypanosomes were co-cultured, a small proportion of double-positive cells were observed. The formation of double-positive cells was dependent on the presence of extracellular calcium and was enhanced by placing cells in medium supplemented with fresh bovine serum. Time-lapse microscopy revealed that double-positive cells arose by bidirectional protein exchange in the absence of nuclear transfer.  Furthermore, super-resolution microscopy showed that this process occurred in ≤1 minute, the limit of temporal resolution in these experiments. Both cytoplasmic and membrane proteins could be transferred provided they gained access to the flagellum. Intriguingly, a component of the RNAi machinery (Argonaute) was able to move between cells, raising the possibility that small interfering RNAs are transported as cargo. Transmission electron microscopy showed that shared flagella contained two axonemes and two paraflagellar rods bounded by a single membrane. In some cases flagellar fusion was partial and interactions between cells were transient. In other cases fusion occurred along the entire length of the flagellum, was stable for several hours and might be irreversible. Fusion did not appear to be deleterious for cell function: paired cells were motile and could give rise to progeny while fused. The motile flagella of unicellular organisms are related to the sensory cilia of higher eukaryotes, raising the possibility that protein transfer between cells via cilia or flagella occurs more widely in nature. PMID:27239276

  18. Flagellar membrane fusion and protein exchange in trypanosomes; a new form of cell-cell communication?

    PubMed

    Imhof, Simon; Fragoso, Cristina; Hemphill, Andrew; von Schubert, Conrad; Li, Dong; Legant, Wesley; Betzig, Eric; Roditi, Isabel

    2016-01-01

    Diverse structures facilitate direct exchange of proteins between cells, including plasmadesmata in plants and tunnelling nanotubes in bacteria and higher eukaryotes.  Here we describe a new mechanism of protein transfer, flagellar membrane fusion, in the unicellular parasite Trypanosoma brucei. When fluorescently tagged trypanosomes were co-cultured, a small proportion of double-positive cells were observed. The formation of double-positive cells was dependent on the presence of extracellular calcium and was enhanced by placing cells in medium supplemented with fresh bovine serum. Time-lapse microscopy revealed that double-positive cells arose by bidirectional protein exchange in the absence of nuclear transfer.  Furthermore, super-resolution microscopy showed that this process occurred in ≤1 minute, the limit of temporal resolution in these experiments. Both cytoplasmic and membrane proteins could be transferred provided they gained access to the flagellum. Intriguingly, a component of the RNAi machinery (Argonaute) was able to move between cells, raising the possibility that small interfering RNAs are transported as cargo. Transmission electron microscopy showed that shared flagella contained two axonemes and two paraflagellar rods bounded by a single membrane. In some cases flagellar fusion was partial and interactions between cells were transient. In other cases fusion occurred along the entire length of the flagellum, was stable for several hours and might be irreversible. Fusion did not appear to be deleterious for cell function: paired cells were motile and could give rise to progeny while fused. The motile flagella of unicellular organisms are related to the sensory cilia of higher eukaryotes, raising the possibility that protein transfer between cells via cilia or flagella occurs more widely in nature.

  19. Characterization of the plasma membrane localization and orientation of HPV16 E5 for cell-cell fusion

    SciTech Connect

    Hu Lulin; Ceresa, Brian P.

    2009-10-10

    Human papillomavirus (HPV) is a non-enveloped DNA virus with an approx 8000 base pair genome. Infection with certain types of HPV is associated with cervical cancer, although the molecular mechanism by which HPV induces carcinogenesis is poorly understood. Three genes encoded by HPV16 are regarded as oncogenic - E5, E6, and E7. The role of E5 has been controversial. Expression of HPV16 E5 causes cell-cell fusion, an event that can lead to increased chromosomal instability, particularly in the presence of cell cycle checkpoint inhibitors like HPV16 E6 and E7. Using biochemical and cell biological assays to better understand HPV16 E5, we find that HPV16 E5 localizes to the plasma membrane with an intracellular amino terminus and an extracellular carboxyl-terminus. Further, HPV16 E5 must be expressed on both cells for cell fusion to occur. When the extracellular epitope of HPV16 E5 is targeted with an antibody, the number of bi-nucleated cells decreases.

  20. Dual split protein-based fusion assay reveals that mutations to herpes simplex virus (HSV) glycoprotein gB alter the kinetics of cell-cell fusion induced by HSV entry glycoproteins.

    PubMed

    Atanasiu, Doina; Saw, Wan Ting; Gallagher, John R; Hannah, Brian P; Matsuda, Zene; Whitbeck, J Charles; Cohen, Gary H; Eisenberg, Roselyn J

    2013-11-01

    Herpes simplex virus (HSV) entry and cell-cell fusion require glycoproteins gD, gH/gL, and gB. We propose that receptor-activated changes to gD cause it to activate gH/gL, which then triggers gB into an active form. We employed a dual split-protein (DSP) assay to monitor the kinetics of HSV glycoprotein-induced cell-cell fusion. This assay measures content mixing between two cells, i.e., fusion, within the same cell population in real time (minutes to hours). Titration experiments suggest that both gD and gH/gL act in a catalytic fashion to trigger gB. In fact, fusion rates are governed by the amount of gB on the cell surface. We then used the DSP assay to focus on mutants in two functional regions (FRs) of gB, FR1 and FR3. FR1 contains the fusion loops (FL1 and FL2), and FR3 encompasses the crown at the trimer top. All FL mutants initiated fusion very slowly, if at all. However, the fusion rates caused by some FL2 mutants increased over time, so that total fusion by 8 h looked much like that of the WT. Two distinct kinetic patterns, "slow and fast," emerged for mutants in the crown of gB (FR3), again showing differences in initiation and ongoing fusion. Of note are the fusion kinetics of the gB syn mutant (LL871/872AA). Although this mutant was originally included as an ongoing high-rate-of-fusion control, its initiation of fusion is so rapid that it appears to be on a "hair trigger." Thus, the DSP assay affords a unique way to examine the dynamics of HSV glycoprotein-induced cell fusion.

  1. Different host cell proteases activate the SARS-coronavirus spike-protein for cell-cell and virus-cell fusion

    SciTech Connect

    Simmons, Graham; Bertram, Stephanie; Glowacka, Ilona; Steffen, Imke; Chaipan, Chawaree; Agudelo, Juliet; Lu Kai; Rennekamp, Andrew J.; Hofmann, Heike; Bates, Paul; Poehlmann, Stefan

    2011-05-10

    Severe acute respiratory syndrome coronavirus (SARS-CoV) poses a considerable threat to human health. Activation of the viral spike (S)-protein by host cell proteases is essential for viral infectivity. However, the cleavage sites in SARS-S and the protease(s) activating SARS-S are incompletely defined. We found that R667 was dispensable for SARS-S-driven virus-cell fusion and for SARS-S-activation by trypsin and cathepsin L in a virus-virus fusion assay. Mutation T760R, which optimizes the minimal furin consensus motif 758-RXXR-762, and furin overexpression augmented SARS-S activity, but did not result in detectable SARS-S cleavage. Finally, SARS-S-driven cell-cell fusion was independent of cathepsin L, a protease essential for virus-cell fusion. Instead, a so far unknown leupeptin-sensitive host cell protease activated cellular SARS-S for fusion with target cells expressing high levels of ACE2. Thus, different host cell proteases activate SARS-S for virus-cell and cell-cell fusion and SARS-S cleavage at R667 and 758-RXXR-762 can be dispensable for SARS-S activation.

  2. Using a split luciferase assay (SLA) to measure the kinetics of cell-cell fusion mediated by herpes simplex virus glycoproteins.

    PubMed

    Saw, Wan Ting; Matsuda, Zene; Eisenberg, Roselyn J; Cohen, Gary H; Atanasiu, Doina

    2015-11-15

    Herpes simplex virus (HSV) entry and cell-cell fusion require the envelope proteins gD, gH/gL and gB. We propose that receptor-activated conformational changes to gD activate gH/gL, which then triggers gB (the fusogen) into an active form. To study this dynamic process, we have adapted a dual split protein assay originally developed to study the kinetics of human immunodeficiency virus (HIV) mediated fusion. This assay uses a chimera of split forms of renilla luciferase (RL) and green fluorescent protein (GFP). Effector cells are co-transfected with the glycoproteins and one of the split reporters. Receptor-bearing target cells are transfected with the second reporter. Co-culture results in fusion and restoration of RL, which can convert a membrane permeable substrate into a luminescent product, thereby enabling one to monitor initiation and extent of fusion in live cells in real time. Restoration of GFP can also be studied by fluorescence microscopy. Two sets of split reporters have been developed: the original one allows one to measure fusion kinetics over hours whereas the more recent version was designed to enhance the sensitivity of RL activity allowing one to monitor both initiation and rates of fusion in minutes. Here, we provide a detailed, step-by-step protocol for the optimization of the assay (which we call the SLA for split luciferase assay) using the HSV system. We also show several examples of the power of this assay to examine both the initiation and kinetics of cell-cell fusion by wild type forms of gD, gB, gH/gL of both serotypes of HSV as well as the effect of mutations and antibodies that alter the kinetics of fusion. The SLA can be applied to other viral systems that carry out membrane fusion. PMID:26022509

  3. Using a split luciferase assay (SLA) to measure the kinetics of cell-cell fusion mediated by herpes simplex virus glycoproteins.

    PubMed

    Saw, Wan Ting; Matsuda, Zene; Eisenberg, Roselyn J; Cohen, Gary H; Atanasiu, Doina

    2015-11-15

    Herpes simplex virus (HSV) entry and cell-cell fusion require the envelope proteins gD, gH/gL and gB. We propose that receptor-activated conformational changes to gD activate gH/gL, which then triggers gB (the fusogen) into an active form. To study this dynamic process, we have adapted a dual split protein assay originally developed to study the kinetics of human immunodeficiency virus (HIV) mediated fusion. This assay uses a chimera of split forms of renilla luciferase (RL) and green fluorescent protein (GFP). Effector cells are co-transfected with the glycoproteins and one of the split reporters. Receptor-bearing target cells are transfected with the second reporter. Co-culture results in fusion and restoration of RL, which can convert a membrane permeable substrate into a luminescent product, thereby enabling one to monitor initiation and extent of fusion in live cells in real time. Restoration of GFP can also be studied by fluorescence microscopy. Two sets of split reporters have been developed: the original one allows one to measure fusion kinetics over hours whereas the more recent version was designed to enhance the sensitivity of RL activity allowing one to monitor both initiation and rates of fusion in minutes. Here, we provide a detailed, step-by-step protocol for the optimization of the assay (which we call the SLA for split luciferase assay) using the HSV system. We also show several examples of the power of this assay to examine both the initiation and kinetics of cell-cell fusion by wild type forms of gD, gB, gH/gL of both serotypes of HSV as well as the effect of mutations and antibodies that alter the kinetics of fusion. The SLA can be applied to other viral systems that carry out membrane fusion.

  4. Ezrin Is a Component of the HIV-1 Virological Presynapse and Contributes to the Inhibition of Cell-Cell Fusion

    PubMed Central

    Roy, Nathan H.; Lambelé, Marie; Chan, Jany; Symeonides, Menelaos

    2014-01-01

    coresponsible for key features of HIV-1 pathogenesis, including killing of bystander cells and establishment of latently infected T lymphocytes. Here we identify the ERM protein family member ezrin as a cellular factor that contributes to the inhibition of cell-cell fusion and thus to suppressing excessive syncytium formation. Our analyses further suggest that ezrin, which connects integral membrane proteins with actin, functions in concert with CD81, a member of the tetraspanin family of proteins. Additional evidence, documented here and elsewhere, suggests that ezrin and CD81 cooperate to prevent cytoskeleton rearrangements that need to take place during the fusion of cellular membranes. PMID:24760896

  5. Membrane potential and endocytic activity control disintegration of cell-cell adhesion and cell fusion in vinculin-injected MDBK cells.

    PubMed

    Palovuori, Riitta; Myrsky, Essi; Eskelinen, Sinikka

    2004-09-01

    Cell fusion occurs during fertilization and in the formation of organs such as muscles, placenta, and bones. We have developed an experimental model for epithelial cell fusion which permits analysis of the processes during junction disintegration and formation of polykaryons (Palovuori and Eskelinen [2000] Eur. J. Cell. Biol. 79: 961-974). In the present work, we analyzed the process in detail. Cell fusion was achieved by microinjecting into the cytoplasm of kidney epithelial Madin-Darby bovine kidney (MDBK) cells TAMRA-tagged vinculin, which incorporated into lateral membranes, focal adhesions and nucleus, and, prior fusion, induced internalization of actin, cadherin and plakoglobin to small clusters in cytoplasm. Injected vinculin was still visible at lateral membranes after removal of junctional proteins indicating that it was tightly associated and perturbed the cell-cell contact sites resulting in membrane fragmentation. Injection of active Rac together with vinculin induced accumulation of cadherin to the membranes, but did not affect vinculin-membrane association. However, it hampered cell fusion probably by supporting adherens junctions. In order to stop endocytosis, we lowered intracellular pH of vinculin-injected cells to 5.5 with the aid of nigericin in KCl buffer. In acidified cells, injected vinculin delineated lateral membranes as thick layers, cadherin remained in situ, and cell fusion was completely inhibited. Since this treatment also leads to cell depolarization, we checked the vinculin incorporation in a KCl solution containing nigericin at neutral pH. In these circumstances, both endogenous and injected vinculin delineated lateral membranes as very thin discontinuous layers, but still fusion was hampered most likely due to perturbation in the initial vinculin-membrane association. We suggest that vinculin might function as a sensor of the environment triggering cell fusion during development in circumstances where membrane potential and local

  6. Palmitoylation of SARS-CoV S protein is necessary for partitioning into detergent-resistant membranes and cell-cell fusion but not interaction with M protein

    SciTech Connect

    McBride, Corrin E.; Machamer, Carolyn E.

    2010-09-15

    Coronaviruses are enveloped RNA viruses that generally cause mild disease in humans. However, the recently emerged coronavirus that caused severe acute respiratory syndrome (SARS-CoV) is the most pathogenic human coronavirus discovered to date. The SARS-CoV spike (S) protein mediates virus entry by binding cellular receptors and inducing fusion between the viral envelope and the host cell membrane. Coronavirus S proteins are palmitoylated, which may affect function. Here, we created a non-palmitoylated SARS-CoV S protein by mutating all nine cytoplasmic cysteine residues. Palmitoylation of SARS-CoV S was required for partitioning into detergent-resistant membranes and for cell-cell fusion. Surprisingly, however, palmitoylation of S was not required for interaction with SARS-CoV M protein. This contrasts with the requirement for palmitoylation of mouse hepatitis virus S protein for interaction with M protein and may point to important differences in assembly and infectivity of these two coronaviruses.

  7. Sulphated Polysaccharides from Ulva clathrata and Cladosiphon okamuranus Seaweeds both Inhibit Viral Attachment/Entry and Cell-Cell Fusion, in NDV Infection

    PubMed Central

    Aguilar-Briseño, José Alberto; Cruz-Suarez, Lucia Elizabeth; Sassi, Jean-François; Ricque-Marie, Denis; Zapata-Benavides, Pablo; Mendoza-Gamboa, Edgar; Rodríguez-Padilla, Cristina; Trejo-Avila, Laura María

    2015-01-01

    Sulphated polysaccharides (SP) extracted from seaweeds have antiviral properties and are much less cytotoxic than conventional drugs, but little is known about their mode of action. Combination antiviral chemotherapy may offer advantages over single agent therapy, increasing efficiency, potency and delaying the emergence of resistant virus. The paramyxoviridae family includes pathogens causing morbidity and mortality worldwide in humans and animals, such as the Newcastle Disease Virus (NDV) in poultry. This study aims at determining the antiviral activity and mechanism of action in vitro of an ulvan (SP from the green seaweed Ulva clathrata), and of its mixture with a fucoidan (SP from Cladosiphon okamuranus), against La Sota NDV strain. The ulvan antiviral activity was tested using syncytia formation, exhibiting an IC50 of 0.1 μg/mL; ulvan had a better anti cell-cell spread effect than that previously shown for fucoidan, and inhibited cell-cell fusion via a direct effect on the F0 protein, but did not show any virucidal effect. The mixture of ulvan and fucoidan showed a greater anti-spread effect than SPs alone, but ulvan antagonizes the effect of fucoidan on the viral attachment/entry. Both SPs may be promising antivirals against paramyxovirus infection but their mixture has no clear synergistic advantage. PMID:25629385

  8. Clustering and Mobility of HIV-1 Env at Viral Assembly Sites Predict Its Propensity To Induce Cell-Cell Fusion

    PubMed Central

    Roy, Nathan H.; Chan, Jany; Lambelé, Marie

    2013-01-01

    HIV-1 Env mediates virus attachment to and fusion with target cell membranes, and yet, while Env is still situated at the plasma membrane of the producer cell and before its incorporation into newly formed particles, Env already interacts with the viral receptor CD4 on target cells, thus enabling the formation of transient cell contacts that facilitate the transmission of viral particles. During this first encounter with the receptor, Env must not induce membrane fusion, as this would prevent the producer cell and the target cell from separating upon virus transmission, but how Env's fusion activity is controlled remains unclear. To gain a better understanding of the Env regulation that precedes viral transmission, we examined the nanoscale organization of Env at the surface of producer cells. Utilizing superresolution microscopy (stochastic optical reconstruction microscopy [STORM]) and fluorescence recovery after photobleaching (FRAP), we quantitatively assessed the clustering and dynamics of Env upon its arrival at the plasma membrane. We found that Gag assembly induced the aggregation of small Env clusters into larger domains and that these domains were completely immobile. Truncation of the cytoplasmic tail (CT) of Env abrogated Gag's ability to induce Env clustering and restored Env mobility at assembly sites, both of which correlated with increased Env-induced fusion of infected and uninfected cells. Hence, while Env trapping by Gag secures Env incorporation into viral particles, Env clustering and its sequestration at assembly sites likely also leads to the repression of its fusion function, and thus, by preventing the formation of syncytia, Gag helps to secure efficient transfer of viral particles to target cells. PMID:23637402

  9. Integrin αvβ1 Modulation Affects Subtype B Avian Metapneumovirus Fusion Protein-mediated Cell-Cell Fusion and Virus Infection.

    PubMed

    Yun, Bing-Ling; Guan, Xiao-Lu; Liu, Yong-Zhen; Zhang, Yao; Wang, Yong-Qiang; Qi, Xiao-Le; Cui, Hong-Yu; Liu, Chang-Jun; Zhang, Yan-Ping; Gao, Hong-Lei; Gao, Li; Li, Kai; Gao, Yu-Long; Wang, Xiao-Mei

    2016-07-01

    Avian metapneumovirus (aMPV) fusion (F) protein mediates virus-cell membrane fusion to initiate viral infection, which requires F protein binding to its receptor(s) on the host cell surface. However, the receptor(s) for aMPV F protein is still not identified. All known subtype B aMPV (aMPV/B) F proteins contain a conserved Arg-Asp-Asp (RDD) motif, suggesting that the aMPV/B F protein may mediate membrane fusion via the binding of RDD to integrin. When blocked with integrin-specific peptides, aMPV/B F protein fusogenicity and viral replication were significantly reduced. Specifically we identified integrin αv and/or β1-mediated F protein fusogenicity and viral replication using antibody blocking, small interfering RNAs (siRNAs) knockdown, and overexpression. Additionally, overexpression of integrin αv and β1 in aMPV/B non-permissive cells conferred aMPV/B F protein binding and aMPV/B infection. When RDD was altered to RAE (Arg-Ala-Glu), aMPV/B F protein binding and fusogenic activity were profoundly impaired. These results suggest that integrin αvβ1 is a functional receptor for aMPV/B F protein-mediated membrane fusion and virus infection, which will provide new insights on the fusogenic mechanism and pathogenesis of aMPV. PMID:27226547

  10. Fusion

    NASA Astrophysics Data System (ADS)

    Herman, Robin

    1990-10-01

    The book abounds with fascinating anecdotes about fusion's rocky path: the spurious claim by Argentine dictator Juan Peron in 1951 that his country had built a working fusion reactor, the rush by the United States to drop secrecy and publicize its fusion work as a propaganda offensive after the Russian success with Sputnik; the fortune Penthouse magazine publisher Bob Guccione sank into an unconventional fusion device, the skepticism that met an assertion by two University of Utah chemists in 1989 that they had created "cold fusion" in a bottle. Aimed at a general audience, the book describes the scientific basis of controlled fusion--the fusing of atomic nuclei, under conditions hotter than the sun, to release energy. Using personal recollections of scientists involved, it traces the history of this little-known international race that began during the Cold War in secret laboratories in the United States, Great Britain and the Soviet Union, and evolved into an astonishingly open collaboration between East and West.

  11. Dual microRNA Screens Reveal That the Immune-Responsive miR-181 Promotes Henipavirus Entry and Cell-Cell Fusion

    PubMed Central

    Foo, Chwan Hong; Rootes, Christina L.; Marsh, Glenn A.; Gould, Cathryn M.; Klein, Reuben; Riddell, Sarah J.; Middleton, Deborah; Simpson, Kaylene J.; Bean, Andrew G. D.; Stewart, Cameron R.

    2016-01-01

    Hendra and Nipah viruses (family Paramyxoviridae, genus Henipavirus) are bat-borne viruses that cause fatal disease in humans and a range of other mammalian species. Gaining a deeper understanding of host pathways exploited by henipaviruses for infection may identify targets for new anti-viral therapies. Here we have performed genome-wide high-throughput agonist and antagonist screens at biosafety level 4 to identify host-encoded microRNAs (miRNAs) impacting henipavirus infection in human cells. Members of the miR-181 and miR-17~93 families strongly promoted Hendra virus infection. miR-181 also promoted Nipah virus infection, but did not affect infection by paramyxoviruses from other genera, indicating specificity in the virus-host interaction. Infection promotion was primarily mediated via the ability of miR-181 to significantly enhance henipavirus-induced membrane fusion. Cell signalling receptors of ephrins, namely EphA5 and EphA7, were identified as novel negative regulators of henipavirus fusion. The expression of these receptors, as well as EphB4, were suppressed by miR-181 overexpression, suggesting that simultaneous inhibition of several Ephs by the miRNA contributes to enhanced infection and fusion. Immune-responsive miR-181 levels was also up-regulated in the biofluids of ferrets and horses infected with Hendra virus, suggesting that the host innate immune response may promote henipavirus spread and exacerbate disease severity. This study is the first genome-wide screen of miRNAs influencing infection by a clinically significant mononegavirus and nominates select miRNAs as targets for future anti-viral therapy development. PMID:27783670

  12. Reconstitution of Fusion Proteins in Supported Lipid Bilayers for the Study of Cell Surface Receptor-Ligand Interactions in Cell-Cell Contact.

    PubMed

    Ghosh Moulick, R; Afanasenkau, D; Choi, S-E; Albers, J; Lange, W; Maybeck, V; Utesch, T; Offenhäusser, A

    2016-04-12

    Bioactive molecules such as adhesion ligands, growth factors, or enzymes play an important role in modulating cell behavior such as cell adhesion, spreading, and differentiation. Deciphering the mechanism of ligand-mediated cell adhesion and associated signaling is of great interest not only for fundamental biophysical investigations but also for applications in medicine and biotechnology. In the presented work, we developed a new biomimetic platform that enables culturing primary neurons and testing cell surface-receptor ligand interactions in cell-cell contacts as, e.g., in neuronal synapses. This platform consists of a supported lipid bilayer modified with incorporated neuronal adhesion proteins conjugated with the Fc-domain of IgG (ephrin A5 Fc-chimera). We extensively characterized properties of these protein containing bilayers using fluorescence recovery after photobleaching (FRAP), quartz crystal microbalance with dissipation (QCM-D), and immunostaining. We conclude that the Fc-domain is the part responsible for the incorporation of the protein into the bilayer. The biomimetic platform prepared by this new approach was able to promote neuronal cell adhesion and maintain growth as well as facilitate neuronal maturation as shown by electrophysiological measurements. We believe that our approach can be extended to insert other proteins to create a general culture platform for neurons and other cell types. PMID:26986674

  13. Toll-like receptor 2 (TLR2), transforming growth factor-β, hyaluronan (HA), and receptor for HA-mediated motility (RHAMM) are required for surfactant protein A-stimulated macrophage chemotaxis.

    PubMed

    Foley, Joseph P; Lam, David; Jiang, Hongmei; Liao, Jie; Cheong, Naeun; McDevitt, Theresa M; Zaman, Aisha; Wright, Jo Rae; Savani, Rashmin C

    2012-10-26

    The innate immune system protects the host from bacterial and viral invasion. Surfactant protein A (SPA), a lung-specific collectin, stimulates macrophage chemotaxis. However, the mechanisms regulating this function are unknown. Hyaluronan (HA) and its receptors RHAMM (receptor for HA-mediated motility, CD168) and CD44 also regulate cell migration and inflammation. We therefore examined the role of HA, RHAMM, and CD44 in SPA-stimulated macrophage chemotaxis. Using antibody blockade and murine macrophages, SPA-stimulated macrophage chemotaxis was dependent on TLR2 but not the other SPA receptors examined. Anti-TLR2 blocked SPA-induced production of TGFβ. In turn, TGFβ1-stimulated chemotaxis was inhibited by HA-binding peptide and anti-RHAMM antibody but not anti-TLR2 antibody. Macrophages from TLR2(-/-) mice failed to migrate in response to SPA but responded normally to TGFβ1 and HA, effects that were blocked by anti-RHAMM antibody. Macrophages from WT and CD44(-/-) mice had similar responses to SPA, whereas those from RHAMM(-/-) mice had decreased chemotaxis to SPA, TGFβ1, and HA. In primary macrophages, SPA-stimulated TGFβ production was dependent on TLR2, JNK, and ERK but not p38. Pam3Cys, a specific TLR2 agonist, stimulated phosphorylation of JNK, ERK, and p38, but only JNK and ERK inhibition blocked Pam3Cys-stimulated chemotaxis. We have uncovered a novel pathway for SPA-stimulated macrophage chemotaxis where SPA stimulation via TLR2 drives JNK- and ERK-dependent TGFβ production. TGFβ1, in turn, stimulates macrophage chemotaxis in a RHAMM and HA-dependent manner. These findings are highly relevant to the regulation of innate immune responses by SPA with key roles for specific components of the extracellular matrix.

  14. Deployment of membrane fusion protein domains during fusion.

    PubMed

    Bentz, J; Mittal, A

    2000-01-01

    It is clear that both viral and intracellular membrane fusion proteins contain a minimal set of domains which must be deployed at the appropriate time during the fusion process. An account of these domains and their functions is given here for the four best-described fusion systems: influenza HA, sendai virus F1, HIV gp120/41 and the neuronal SNARE core composed of synaptobrevin (syn), syntaxin (stx) and the N- and C-termini of SNAP25 (sn25), together with the Ca(2+)binding protein synaptotagmin (syt). Membrane fusion begins with the binding of the virion or vesicle to the target membrane via receptors. The committed step in influenza HA- mediated fusion begins with an aggregate of HAs (at least eight) with some of their HA2 N-termini, a.k.a. fusion peptides, embedded into the viral bilayer (Bentz, 2000 a). The hypothesis presented in Bentz (2000 b) is that the conformational change of HA to the extended coiled coil extracts the fusion peptides from the viral bilayer. When this extraction occurs from the center of the site of restricted lipid flow, it exposes acyl chains and parts of the HA transmembrane domains to the aqueous media, i.e. a hydrophobic defect is formed. This is the 'transition state' of the committed step of fusion. It is stabilized by a 'dam' of HAs, which are inhibited from diffusing away by the rest of the HAs in the aggregate and because that would initially expose more acyl chains to water. Recruitment of lipids from the apposed target membrane can heal this hydrophobic defect, initiating lipid mixing and fusion. The HA transmembrane domains are required to be part of the hydrophobic defect, because the HA aggregate must be closely packed enough to restrict lipid flow. This hypothesis provides a simple and direct coupling between the energy released by the formation of the coiled coil to the energy needed to create and stabilize the high energy intermediates of fusion. Several of these essential domains have been described for the viral fusion

  15. Spinal fusion

    MedlinePlus

    ... Anterior spinal fusion; Spine surgery - spinal fusion; Low back pain - fusion; Herniated disk - fusion ... If you had chronic back pain before surgery, you will likely still have some pain afterward. Spinal fusion is unlikely to take away all your pain ...

  16. Engineering cell-cell signaling.

    PubMed

    Blagovic, Katarina; Gong, Emily S; Milano, Daniel F; Natividad, Robert J; Asthagiri, Anand R

    2013-10-01

    Juxtacrine cell-cell signaling mediated by the direct interaction of adjoining mammalian cells is arguably the mode of cell communication that is most recalcitrant to engineering. Overcoming this challenge is crucial for progress in biomedical applications, such as tissue engineering, regenerative medicine, immune system engineering and therapeutic design. Here, we describe the significant advances that have been made in developing synthetic platforms (materials and devices) and synthetic cells (cell surface engineering and synthetic gene circuits) to modulate juxtacrine cell-cell signaling. In addition, significant progress has been made in elucidating design rules and strategies to modulate juxtacrine signaling on the basis of quantitative, engineering analysis of the mechanical and regulatory role of juxtacrine signals in the context of other cues and physical constraints in the microenvironment. These advances in engineering juxtacrine signaling lay a strong foundation for an integrative approach to utilize synthetic cells, advanced 'chassis' and predictive modeling to engineer the form and function of living tissues.

  17. New Small Molecule Entry Inhibitors Targeting Hemagglutinin-Mediated Influenza A Virus Fusion

    PubMed Central

    Antanasijevic, Aleksandar; Wang, Minxiu; Li, Bing; Mills, Debra M.; Ames, Jessica A.; Nash, Peter J.; Williams, John D.; Peet, Norton P.; Moir, Donald T.; Prichard, Mark N.; Keith, Kathy A.; Barnard, Dale L.; Caffrey, Michael; Rong, Lijun; Bowlin, Terry L.

    2014-01-01

    Influenza viruses are a major public health threat worldwide, and options for antiviral therapy are limited by the emergence of drug-resistant virus strains. The influenza virus glycoprotein hemagglutinin (HA) plays critical roles in the early stage of virus infection, including receptor binding and membrane fusion, making it a potential target for the development of anti-influenza drugs. Using pseudotype virus-based high-throughput screens, we have identified several new small molecules capable of inhibiting influenza virus entry. We prioritized two novel inhibitors, MBX2329 and MBX2546, with aminoalkyl phenol ether and sulfonamide scaffolds, respectively, that specifically inhibit HA-mediated viral entry. The two compounds (i) are potent (50% inhibitory concentration [IC50] of 0.3 to 5.9 μM); (ii) are selective (50% cytotoxicity concentration [CC50] of >100 μM), with selectivity index (SI) values of >20 to 200 for different influenza virus strains; (iii) inhibit a wide spectrum of influenza A viruses, which includes the 2009 pandemic influenza virus A/H1N1/2009, highly pathogenic avian influenza (HPAI) virus A/H5N1, and oseltamivir-resistant A/H1N1 strains; (iv) exhibit large volumes of synergy with oseltamivir (36 and 331 μM2 % at 95% confidence); and (v) have chemically tractable structures. Mechanism-of-action studies suggest that both MBX2329 and MBX2546 bind to HA in a nonoverlapping manner. Additional results from HA-mediated hemolysis of chicken red blood cells (cRBCs), competition assays with monoclonal antibody (MAb) C179, and mutational analysis suggest that the compounds bind in the stem region of the HA trimer and inhibit HA-mediated fusion. Therefore, MBX2329 and MBX2546 represent new starting points for chemical optimization and have the potential to provide valuable future therapeutic options and research tools to study the HA-mediated entry process. PMID:24198411

  18. Big fusion, little fusion

    NASA Astrophysics Data System (ADS)

    Chen, Frank; ddtuttle

    2016-08-01

    In reply to correspondence from George Scott and Adam Costley about the Physics World focus issue on nuclear energy, and to news of construction delays at ITER, the fusion reactor being built in France.

  19. Distinct functional determinants of influenza hemagglutinin-mediated membrane fusion

    PubMed Central

    Ivanovic, Tijana; Harrison, Stephen C

    2015-01-01

    Membrane fusion is the critical step for infectious cell penetration by enveloped viruses. We have previously used single-virion measurements of fusion kinetics to study the molecular mechanism of influenza-virus envelope fusion. Published data on fusion inhibition by antibodies to the 'stem' of influenza virus hemagglutinin (HA) now allow us to incorporate into simulations the provision that some HAs are inactive. We find that more than half of the HAs are unproductive even for virions with no bound antibodies, but that the overall mechanism is extremely robust. Determining the fraction of competent HAs allows us to determine their rates of target-membrane engagement. Comparison of simulations with data from H3N2 and H1N1 viruses reveals three independent functional variables of HA-mediated membrane fusion closely linked to neutralization susceptibility. Evidence for compensatory changes in the evolved mechanism sets the stage for studies aiming to define the molecular constraints on HA evolvability. DOI: http://dx.doi.org/10.7554/eLife.11009.001 PMID:26613408

  20. The Dark Side of Cell Fusion

    PubMed Central

    Bastida-Ruiz, Daniel; Van Hoesen, Kylie; Cohen, Marie

    2016-01-01

    Cell fusion is a physiological cellular process essential for fertilization, viral entry, muscle differentiation and placental development, among others. In this review, we will highlight the different cancer cell-cell fusions and the advantages obtained by these fusions. We will specially focus on the acquisition of metastatic features by cancer cells after fusion with bone marrow-derived cells. The mechanism by which cancer cells fuse with other cells has been poorly studied thus far, but the presence in several cancer cells of syncytin, a trophoblastic fusogen, leads us to a cancer cell fusion mechanism similar to the one used by the trophoblasts. The mechanism by which cancer cells perform the cell fusion could be an interesting target for cancer therapy. PMID:27136533

  1. Poxvirus entry and membrane fusion

    SciTech Connect

    Moss, Bernard . E-mail: bmoss@nih.gov

    2006-01-05

    The study of poxvirus entry and membrane fusion has been invigorated by new biochemical and microscopic findings that lead to the following conclusions: (1) the surface of the mature virion (MV), whether isolated from an infected cell or by disruption of the membrane wrapper of an extracellular virion, is comprised of a single lipid membrane embedded with non-glycosylated viral proteins; (2) the MV membrane fuses with the cell membrane, allowing the core to enter the cytoplasm and initiate gene expression; (3) fusion is mediated by a newly recognized group of viral protein components of the MV membrane, which are conserved in all members of the poxvirus family; (4) the latter MV entry/fusion proteins are required for cell to cell spread necessitating the disruption of the membrane wrapper of extracellular virions prior to fusion; and furthermore (5) the same group of MV entry/fusion proteins are required for virus-induced cell-cell fusion. Future research priorities include delineation of the roles of individual entry/fusion proteins and identification of cell receptors.

  2. Nuclear Fusion

    NASA Astrophysics Data System (ADS)

    Veres, G.

    This chapter is devoted to the fundamental concepts of nuclear fusion. To be more precise, it is devoted to the theoretical basics of fusion reactions between light nuclei such as hydrogen, helium, boron, and lithium. The discussion is limited because our purpose is to focus on laboratory-scale fusion experiments that aim at gaining energy from the fusion process. After discussing the methods of calculating the fusion cross section, it will be shown that sustained fusion reactions with energy gain must happen in a thermal medium because, in beam-target experiments, the energy of the beam is randomized faster than the fusion rate. Following a brief introduction to the elements of plasma physics, the chapter is concluded with the introduction of the most prominent fusion reactions ongoing in the Sun.

  3. Diaphanous regulates SCAR complex localization during Drosophila myoblast fusion.

    PubMed

    Deng, Su; Bothe, Ingo; Baylies, Mary

    2016-10-01

    From Drosophila to man, multinucleated muscle cells form through cell-cell fusion. Using Drosophila as a model system, researchers first identified, and then demonstrated, the importance of actin cytoskeletal rearrangements at the site of fusion. These actin rearrangements at the fusion site are regulated by SCAR and WASp mediated Arp2/3 activation, which nucleates branched actin networks. Loss of SCAR, WASp or both leads to defects in myoblast fusion. Recently, we have found that the actin regulator Diaphanous (Dia) also plays a role both in organizing actin and in regulating Arp2/3 activity at the fusion site. In this Extra View article, we provide additional data showing that the Abi-SCAR complex accumulates at the fusion site and that excessive SCAR activity impairs myoblast fusion. Using constitutively active Dia constructs, we provide additional evidence that Dia functions upstream of SCAR activity to regulate actin dynamics at the fusion site and to localize the Abi-SCAR complex.

  4. The Yeast Cell Fusion Protein Prm1p Requires Covalent Dimerization to Promote Membrane Fusion

    PubMed Central

    Engel, Alex; Aguilar, Pablo S.; Walter, Peter

    2010-01-01

    Prm1p is a multipass membrane protein that promotes plasma membrane fusion during yeast mating. The mechanism by which Prm1p and other putative regulators of developmentally controlled cell-cell fusion events facilitate membrane fusion has remained largely elusive. Here, we report that Prm1p forms covalently linked homodimers. Covalent Prm1p dimer formation occurs via intermolecular disulfide bonds of two cysteines, Cys-120 and Cys-545. PRM1 mutants in which these cysteines have been substituted are fusion defective. These PRM1 mutants are normally expressed, retain homotypic interaction and can traffic to the fusion zone. Because prm1-C120S and prm1-C545S mutants can form covalent dimers when coexpressed with wild-type PRM1, an intermolecular C120-C545 disulfide linkage is inferred. Cys-120 is adjacent to a highly conserved hydrophobic domain. Mutation of a charged residue within this hydrophobic domain abrogates formation of covalent dimers, trafficking to the fusion zone, and fusion-promoting activity. The importance of intermolecular disulfide bonding informs models regarding the mechanism of Prm1-mediated cell-cell fusion. PMID:20485669

  5. Fusion Implementation

    SciTech Connect

    J.A. Schmidt

    2002-02-20

    If a fusion DEMO reactor can be brought into operation during the first half of this century, fusion power production can have a significant impact on carbon dioxide production during the latter half of the century. An assessment of fusion implementation scenarios shows that the resource demands and waste production associated with these scenarios are manageable factors. If fusion is implemented during the latter half of this century it will be one element of a portfolio of (hopefully) carbon dioxide limiting sources of electrical power. It is time to assess the regional implications of fusion power implementation. An important attribute of fusion power is the wide range of possible regions of the country, or countries in the world, where power plants can be located. Unlike most renewable energy options, fusion energy will function within a local distribution system and not require costly, and difficult, long distance transmission systems. For example, the East Coast of the United States is a prime candidate for fusion power deployment by virtue of its distance from renewable energy sources. As fossil fuels become less and less available as an energy option, the transmission of energy across bodies of water will become very expensive. On a global scale, fusion power will be particularly attractive for regions separated from sources of renewable energy by oceans.

  6. Image fusion

    NASA Technical Reports Server (NTRS)

    Pavel, M.

    1993-01-01

    The topics covered include the following: a system overview of the basic components of a system designed to improve the ability of a pilot to fly through low-visibility conditions such as fog; the role of visual sciences; fusion issues; sensor characterization; sources of information; image processing; and image fusion.

  7. C-terminal tyrosine residues modulate the fusion activity of the Hendra virus fusion protein.

    PubMed

    Popa, Andreea; Pager, Cara Teresia; Dutch, Rebecca Ellis

    2011-02-15

    The paramyxovirus family includes important human pathogens such as measles, mumps, respiratory syncytial virus, and the recently emerged, highly pathogenic Hendra and Nipah viruses. The viral fusion (F) protein plays critical roles in infection, promoting both the virus-cell membrane fusion events needed for viral entry as well as cell-cell fusion events leading to syncytia formation. We describe the surprising finding that addition of the short epitope HA tag to the cytoplasmic tail (CT) of the Hendra virus F protein leads to a significant increase in the extent of cell-cell membrane fusion. This increase was not due to alterations in surface expression, cleavage state, or association with lipid microdomains. Addition of a Myc tag of similar length did not alter Hendra F protein fusion activity, indicating that the observed stimulation was not solely a result of lengthening the CT. Three tyrosine residues within the HA tag were critical for the increase in the extent of fusion, suggesting C-terminal tyrosines may modulate Hendra fusion activity. The effects of addition of the HA tag varied with other fusion proteins, as parainfluenza virus 5 F-HA showed a decreased level of surface expression and no stimulation of fusion. These results indicate that additions to the C-terminal end of the F protein CT can modulate protein function in a sequence specific manner, reinforcing the need for careful analysis of epitope-tagged glycoproteins. In addition, our results implicate C-terminal tyrosine residues in the modulation of the membrane fusion reaction promoted by these viral glycoproteins.

  8. Restricted movement of lipid and aqueous dyes through pores formed by influenza hemagglutinin during cell fusion

    PubMed Central

    1994-01-01

    The fusion of cells by influenza hemagglutinin (HA) is the best characterized example of protein-mediated membrane fusion. In simultaneous measurements of pairs of assays for fusion, we determined the order of detectable events during fusion. Fusion pore formation in HA-triggered cell-cell fusion was first detected by changes in cell membrane capacitance, next by a flux of fluorescent lipid, and finally by flux of aqueous fluorescent dye. Fusion pore conductance increased by small steps. A retardation of lipid and aqueous dyes occurred during fusion pore fluctuations. The flux of aqueous dye depended on the size of the molecule. The lack of movement of aqueous dyes while total fusion pore conductance increased suggests that initial HA-triggered fusion events are characterized by the opening of multiple small pores: the formation of a "sieve". PMID:7806567

  9. Fusion Power.

    ERIC Educational Resources Information Center

    Dingee, David A.

    1979-01-01

    Discusses the extraordinary potential, the technical difficulties, and the financial problems that are associated with research and development of fusion power plants as a major source of energy. (GA)

  10. A sensitive HIV-1 envelope induced fusion assay identifies fusion enhancement of thrombin

    SciTech Connect

    Cheng, De-Chun; Zhong, Guo-Cai; Su, Ju-Xiang; Liu, Yan-Hong; Li, Yan; Wang, Jia-Ye; Hattori, Toshio; Ling, Hong; Zhang, Feng-Min

    2010-01-22

    To evaluate the interaction between HIV-1 envelope glycoprotein (Env) and target cell receptors, various cell-cell-fusion assays have been developed. In the present study, we established a novel fusion system. In this system, the expression of the sensitive reporter gene, firefly luciferase (FL) gene, in the target cells was used to evaluate cell fusion event. Simultaneously, constitutively expressed Renilla luciferase (RL) gene was used to monitor effector cell number and viability. FL gave a wider dynamic range than other known reporters and the introduction of RL made the assay accurate and reproducible. This system is especially beneficial for investigation of potential entry-influencing agents, for its power of ruling out the false inhibition or enhancement caused by the artificial cell-number variation. As a case study, we applied this fusion system to observe the effect of a serine protease, thrombin, on HIV Env-mediated cell-cell fusion and have found the fusion enhancement activity of thrombin over two R5-tropic HIV strains.

  11. The role of fusion activity of influenza A viruses in their biological properties.

    PubMed

    Jakubcová, L; Hollý, J; Varečková, E

    2016-06-01

    Influenza A viruses (IAVs) cause acute respiratory infections of humans, which are repeated yearly. Human IAV infections are associated with significant morbidity and mortality and therefore they represent a serious health problem. All human IAV strains are originally derived from avian IAVs, which, after their adaptation to humans, can spread in the human population and cause pandemics with more or less severe course of the disease. Presently, however, the potential of avian IAV to infect humans and to cause the disease cannot be predicted. Many studies are therefore focused on factors influencing the virulence and pathogenicity of IAV viruses in a given host. The virus-host interaction starts by virus attachment via the envelope glycoprotein hemagglutinin (HA) to the receptors on the cell surface. In addition to receptor binding, HA mediates also the fusion of viral and endosomal membranes, which follows the virus endocytosis. The fusion potential of HA trimer, primed by proteolytic cleavage, is activated by low pH in endosomes, resulting in HA refolding into the fusion-active form. The HA conformation change is predetermined by its 3-D structure, is pH-dependent, irreversible and strain-specific. The process of fusion activation of IAV hemagglutinin is crucial for virus entry into the cell and for the ability of the virus to replicate in the host. Here we discuss the known data about the characteristics of fusion activation of HA in relation to IAV virulence and pathogenicity. PMID:27265461

  12. Laser fusion

    SciTech Connect

    Smit, W.A.; Boskma, P.

    1980-12-01

    Unrestricted laser fusion offers nations an opportunity to circumvent arms control agreements and develop thermonuclear weapons. Early laser weapons research sought a clean radiation-free bomb to replace the fission bomb, but this was deceptive because a fission bomb was needed to trigger the fusion reaction and additional radioactivity was induced by generating fast neutrons. As laser-implosion experiments focused on weapons physics, simulating weapons effects, and applications for new weapons, the military interest shifted from developing a laser-ignited hydrogen bomb to more sophisticated weapons and civilian applications for power generation. Civilian and military research now overlap, making it possible for several countries to continue weapons activities and permitting proliferation of nuclear weapons. These countries are reluctant to include inertial confinement fusion research in the Non-Proliferation Treaty. 16 references. (DCK)

  13. Crystal Structure of the Pre-fusion Nipah Virus Fusion Glycoprotein Reveals a Novel Hexamer-of-Trimers Assembly

    PubMed Central

    Dutta, Somnath; Yan, Lianying; Feng, YanRu; Wang, Lin-Fa; Skiniotis, Georgios; Lee, Benhur; Zhou, Z. Hong; Broder, Christopher C.; Aguilar, Hector C.; Nikolov, Dimitar B.

    2015-01-01

    Nipah virus (NiV) is a paramyxovirus that infects host cells through the coordinated efforts of two envelope glycoproteins. The G glycoprotein attaches to cell receptors, triggering the fusion (F) glycoprotein to execute membrane fusion. Here we report the first crystal structure of the pre-fusion form of the NiV-F glycoprotein ectodomain. Interestingly this structure also revealed a hexamer-of-trimers encircling a central axis. Electron tomography of Nipah virus-like particles supported the hexameric pre-fusion model, and biochemical analyses supported the hexamer-of-trimers F assembly in solution. Importantly, structure-assisted site-directed mutagenesis of the interfaces between F trimers highlighted the functional relevance of the hexameric assembly. Shown here, in both cell-cell fusion and virus-cell fusion systems, our results suggested that this hexamer-of-trimers assembly was important during fusion pore formation. We propose that this assembly would stabilize the pre-fusion F conformation prior to cell attachment and facilitate the coordinated transition to a post-fusion conformation of all six F trimers upon triggering of a single trimer. Together, our data reveal a novel and functional pre-fusion architecture of a paramyxoviral fusion glycoprotein. PMID:26646856

  14. Cold fusion, Alchemist's dream

    SciTech Connect

    Clayton, E.D.

    1989-09-01

    In this report the following topics relating to cold fusion are discussed: muon catalysed cold fusion; piezonuclear fusion; sundry explanations pertaining to cold fusion; cosmic ray muon catalysed cold fusion; vibrational mechanisms in excited states of D{sub 2} molecules; barrier penetration probabilities within the hydrogenated metal lattice/piezonuclear fusion; branching ratios of D{sub 2} fusion at low energies; fusion of deuterons into {sup 4}He; secondary D+T fusion within the hydrogenated metal lattice; {sup 3}He to {sup 4}He ratio within the metal lattice; shock induced fusion; and anomalously high isotopic ratios of {sup 3}He/{sup 4}He.

  15. Regulation of promyogenic signal transduction by cell-cell contact and adhesion

    SciTech Connect

    Krauss, Robert S.

    2010-11-01

    Skeletal myoblast differentiation involves acquisition of the muscle-specific transcriptional program and morphological changes, including fusion into multinucleated myofibers. Differentiation is regulated by extracellular signaling cues, including cell-cell contact and adhesion. Cadherin and Ig adhesion receptors have been implicated in distinct but overlapping stages of myogenesis. N-cadherin signals through the Ig receptor Cdo to activate p38 MAP kinase, while the Ig receptor neogenin signals to activate FAK; both processes promote muscle-specific gene expression and myoblast fusion. M-cadherin activates Rac1 to enhance fusion. Specific Ig receptors (Kirre and Sns) are essential for myoblast fusion in Drosophila, also signaling through Rac, and vertebrate orthologs of Kirre and Sns have partially conserved function. Mice lacking specific cytoplasmic signaling factors activated by multiple receptors (e.g., Rac1) have strong muscle phenotypes in vivo. In contrast, mice lacking individual adhesion receptors that lie upstream of these factors have modest phenotypes. Redundancy among receptors may account for this. Many of the mammalian Ig receptors and cadherins associate with each other, and multivalent interactions within these complexes may require removal of multiple components to reveal dramatic defects in vivo. Nevertheless, it is possible that the murine adhesion receptors rate-limiting in vivo have not yet been identified or fully assessed.

  16. Self-contact elimination by membrane fusion.

    PubMed

    Sumida, Grant M; Yamada, Soichiro

    2013-11-19

    Mutual, homophilic cell-cell adhesion between epithelial cells is required for proper maintenance of epithelial barrier function. Whereas opposing membranes from neighboring cells rapidly assemble junctional complexes, self-contacting membranes curiously do not, suggesting that cells have the ability to prevent the maturation of self-junctions. Using a self-contact-inducing microfabricated substrate, we show that self-contacts of normal epithelial cells are rapidly eliminated by membrane fusion between two opposing plasma membranes of a single cell. This membrane fusion is most frequently observed in E-cadherin-expressing epithelial cells, but not in fibroblasts. The efficiency of self-contact elimination depends on extracellular calcium concentration and the level of E-cadherin, suggesting that E-cadherin, although not required, enhances membrane fusion efficiency by bringing opposing membranes into close apposition to one another. Additionally, Rho-associated protein kinase inhibition decreases self-contact-induced membrane fusion of epithelial cells, suggesting that this fusion may be mechanically regulated through the actin-myosin network. This self-contact-induced membrane fusion is a key elimination mechanism for unwanted self-junctions and may be a feature of cell self-recognition. PMID:24191042

  17. Late stages of the synchronized macrophage fusion in osteoclast formation depend on dynamin.

    PubMed

    Verma, Santosh K; Leikina, Evgenia; Melikov, Kamran; Chernomordik, Leonid V

    2014-12-15

    Macrophage fusion that leads to osteoclast formation is one of the most important examples of cell-cell fusion in development, tissue homoeostasis and immune response. Protein machinery that fuses macrophages remains to be identified. In the present study, we explored the fusion stage of osteoclast formation for RAW macrophage-like murine cells and for macrophages derived from human monocytes. To uncouple fusion from the preceding differentiation processes, we accumulated fusion-committed cells in the presence of LPC (lysophosphatidylcholine) that reversibly blocks membrane merger. After 16 h, we removed LPC and observed cell fusion events that would normally develop within 16 h develop instead within 30-90 min. Thus, whereas osteoclastogenesis, generally, takes several days, our approach allowed us to focus on an hour in which we observe robust fusion between the cells. Complementing syncytium formation assay with a novel membrane merger assay let us study the synchronized fusion events downstream of a local merger between two plasma membranes, but before expansion of nascent membrane connections and complete unification of the cells. We found that the expansion of membrane connections detected as a growth of multinucleated osteoclasts depends on dynamin activity. In contrast, a merger between the plasma membranes of the two cells was not affected by inhibitors of dynamin GTPase. Thus dynamin that was recently found to control late stages of myoblast fusion also controls late stages of macrophage fusion, revealing an intriguing conserved mechanistic motif shared by diverse cell-cell fusion processes. PMID:25336256

  18. Changes in Parthenogenetic Imprinting Patterns during Reprogramming by Cell Fusion.

    PubMed

    Jang, Hyun Sik; Hong, Yean Ju; Choi, Hyun Woo; Song, Hyuk; Byun, Sung June; Uhm, Sang Jun; Seo, Han Geuk; Do, Jeong Tae

    2016-01-01

    Differentiated somatic cells can be reprogrammed into the pluripotent state by cell-cell fusion. In the pluripotent state, reprogrammed cells may then self-renew and differentiate into all three germ layers. Fusion-induced reprogramming also epigenetically modifies the somatic cell genome through DNA demethylation, X chromosome reactivation, and histone modification. In this study, we investigated whether fusion with embryonic stem cells (ESCs) also reprograms genomic imprinting patterns in somatic cells. In particular, we examined imprinting changes in parthenogenetic neural stem cells fused with biparental ESCs, as well as in biparental neural stem cells fused with parthenogenetic ESCs. The resulting hybrid cells expressed the pluripotency markers Oct4 and Nanog. In addition, methylation of several imprinted genes except Peg3 was comparable between hybrid cells and ESCs. This finding indicates that reprogramming by cell fusion does not necessarily reverse the status of all imprinted genes to the state of pluripotent fusion partner. PMID:27232503

  19. Changes in Parthenogenetic Imprinting Patterns during Reprogramming by Cell Fusion

    PubMed Central

    Jang, Hyun Sik; Hong, Yean Ju; Choi, Hyun Woo; Song, Hyuk; Byun, Sung June; Uhm, Sang Jun; Seo, Han Geuk; Do, Jeong Tae

    2016-01-01

    Differentiated somatic cells can be reprogrammed into the pluripotent state by cell-cell fusion. In the pluripotent state, reprogrammed cells may then self-renew and differentiate into all three germ layers. Fusion-induced reprogramming also epigenetically modifies the somatic cell genome through DNA demethylation, X chromosome reactivation, and histone modification. In this study, we investigated whether fusion with embryonic stem cells (ESCs) also reprograms genomic imprinting patterns in somatic cells. In particular, we examined imprinting changes in parthenogenetic neural stem cells fused with biparental ESCs, as well as in biparental neural stem cells fused with parthenogenetic ESCs. The resulting hybrid cells expressed the pluripotency markers Oct4 and Nanog. In addition, methylation of several imprinted genes except Peg3 was comparable between hybrid cells and ESCs. This finding indicates that reprogramming by cell fusion does not necessarily reverse the status of all imprinted genes to the state of pluripotent fusion partner. PMID:27232503

  20. Plant lipid bodies and cell-cell signaling

    PubMed Central

    van der Schoot, Christiaan; Paul, Laju K.; Paul, Sheetal Babu; Rinne, Päivi L.H.

    2011-01-01

    Plant lipid droplets are found in seeds and in post-embryonic tissues. Lipid droplets in seeds have been intensively studied, but those in post-embryonic tissues are less well characterised. Although known by a variety of names, here we will refer to all of them as lipid bodies (LBs). LBs are unique spherical organelles which bud off from the endoplasmic reticulum, and are composed of a single phospholipid (PL) layer enclosing a core of triacylglycerides. The PL monolayer is coated with oleosin, a structural protein that stabilizes the LB, restricts its size, and prevents fusion with adjacent LBs. Oleosin is uniquely present at LBs and is regarded as a LB marker. Although initially viewed as simple stores for energy and carbon, the emerging view is that LBs also function in cytoplasmic signalling, with the minor LB proteins caleosin and steroleosin in a prominent role. Apart from seeds, a variety of vegetative and floral structures contain LBs. Recently, it was found that numerous LBs emerge in the shoot apex of perennial plants during seasonal growth arrest and bud formation. They appear to function in dormancy release by reconstituting cell-cell signalling paths in the apex. As apices and orthodox seeds proceed through comparable cycles of dormancy and dehydration, the question arises to what degree LBs in apices share functions with those in seeds. We here review what is known about LBs, particularly in seeds, and speculate about possible unique functions of LBs in post-embryonic tissues in general and in apices in particular. PMID:22057325

  1. Protoplast Fusion

    PubMed Central

    Yamada, Yasuyuki; Hara, Yasuhiro; Katagi, Hiroaki; Senda, Mitsugi

    1980-01-01

    The relation between the composition of the phospholipid molecular species in a cell membrane and the velocity of protoplast fusion was studied using cells cultured at a low temperature (10 C). Cells cultured at a low temperature contained larger proportions of phospholipids of low phase transition point, the 1,2-dilinoleoyl-type, than those cultured at a normal temperature (25 C). When treated with polyethylene glycol 6000, protoplasts from cells cultured at 10 C fused and progressed to the fused sphere stage more rapidly than did those from cells cultured at 25 C. PMID:16661339

  2. Splenogonadal fusion.

    PubMed

    Tsingoglou, S; Wilkinson, A W

    1976-04-01

    The fusion between splenic tissue and the left gonad or the derivatives of the left mesonephros is a rare congenital anomaly first described in detail by Pommer in 1887/9 and divided into two forms by Putschar and Manion in 1956. In the first or continuous type a cord of splenic or fibrous tissue connects the spleen and the gonadalmesonephric structures. In the second type the fused splenomesonephric structures have lost continuity with the main spleen. An example of the continuous form is presented and the previous reports are briefly reviewed.

  3. A generic screening platform for inhibitors of virus induced cell fusion using cellular electrical impedance

    PubMed Central

    Watterson, Daniel; Robinson, Jodie; Chappell, Keith J.; Butler, Mark S.; Edwards, David J.; Fry, Scott R.; Bermingham, Imogen M.; Cooper, Matthew A.; Young, Paul R.

    2016-01-01

    Fusion of the viral envelope with host cell membranes is an essential step in the life cycle of all enveloped viruses. Despite such a clear target for antiviral drug development, few anti-fusion drugs have progressed to market. One significant hurdle is the absence of a generic, high-throughput, reproducible fusion assay. Here we report that real time, label-free measurement of cellular electrical impedance can quantify cell-cell fusion mediated by either individually expressed recombinant viral fusion proteins, or native virus infection. We validated this approach for all three classes of viral fusion and demonstrated utility in quantifying fusion inhibition using antibodies and small molecule inhibitors specific for dengue virus and respiratory syncytial virus. PMID:26976324

  4. Repulsive cues combined with physical barriers and cell-cell adhesion determine progenitor cell positioning during organogenesis.

    PubMed

    Paksa, Azadeh; Bandemer, Jan; Hoeckendorf, Burkhard; Razin, Nitzan; Tarbashevich, Katsiaryna; Minina, Sofia; Meyen, Dana; Biundo, Antonio; Leidel, Sebastian A; Peyrieras, Nadine; Gov, Nir S; Keller, Philipp J; Raz, Erez

    2016-04-18

    The precise positioning of organ progenitor cells constitutes an essential, yet poorly understood step during organogenesis. Using primordial germ cells that participate in gonad formation, we present the developmental mechanisms maintaining a motile progenitor cell population at the site where the organ develops. Employing high-resolution live-cell microscopy, we find that repulsive cues coupled with physical barriers confine the cells to the correct bilateral positions. This analysis revealed that cell polarity changes on interaction with the physical barrier and that the establishment of compact clusters involves increased cell-cell interaction time. Using particle-based simulations, we demonstrate the role of reflecting barriers, from which cells turn away on contact, and the importance of proper cell-cell adhesion level for maintaining the tight cell clusters and their correct positioning at the target region. The combination of these developmental and cellular mechanisms prevents organ fusion, controls organ positioning and is thus critical for its proper function.

  5. MFR, a Putative Receptor Mediating the Fusion of Macrophages

    PubMed Central

    Saginario, Charles; Sterling, Hyacinth; Beckers, Cornelius; Kobayashi, Ruji; Solimena, Michele; Ullu, Elisabetta; Vignery, Agnès

    1998-01-01

    We had previously identified a macrophage surface protein whose expression is highly induced, transient, and specific, as it is restricted to actively fusing macrophages in vitro and in vivo. This protein is recognized by monoclonal antibodies that block macrophage fusion. We have now purified this protein and cloned its corresponding cDNA. This protein belongs to the superfamily of immunoglobulins and is similar to immune antigen receptors such as the T-cell receptor, B-cell receptor, and viral receptors such as CD4. We have therefore named this protein macrophage fusion receptor (MFR). We show that the extracellular domain of MFR prevents fusion of macrophages in vitro and therefore propose that MFR belongs to the fusion machinery of macrophages. MFR is identical to SHPS-1 and BIT and is a homologue of P84, SIRPα, and MyD-1, all of which have been recently cloned and implicated in cell signaling and cell-cell interaction events. PMID:9774638

  6. Reprogramming of Somatic Cells Towards Pluripotency by Cell Fusion.

    PubMed

    Malinowski, Andrzej R; Fisher, Amanda G

    2016-01-01

    Pluripotent reprogramming can be dominantly induced in a somatic nucleus upon fusion with a pluripotent cell such as embryonic stem (ES) cell. Cell fusion between ES cells and somatic cells results in the formation of heterokaryons, in which the somatic nuclei begin to acquire features of the pluripotent partner. The generation of interspecies heterokaryons between mouse ES- and human somatic cells allows an experimenter to distinguish the nuclear events occurring specifically within the reprogrammed nucleus. Therefore, cell fusion provides a simple and rapid approach to look at the early nuclear events underlying pluripotent reprogramming. Here, we describe a polyethylene glycol (PEG)-mediated cell fusion protocol to generate interspecies heterokaryons and intraspecies hybrids between ES cells and B lymphocytes or fibroblasts. PMID:27659994

  7. Tracing myoblast fusion in Drosophila embryos by fluorescent actin probes.

    PubMed

    Haralalka, Shruti; Abmayr, Susan M

    2015-01-01

    Myoblast fusion in the Drosophila embryo is a highly elaborate process that is initiated by Founder Cells and Fusion-Competent Myoblasts (FCMs). It occurs through an asymmetric event in which actin foci assemble in the FCMs at points of cell-cell contact and direct the formation of membrane protrusions that drive fusion. Herein, we describe the approach that we have used to image in living embryos the highly dynamic actin foci and actin-rich projections that precede myoblast fusion. We discuss resources currently available for imaging actin and myogenesis, and our experience with these resources if available. This technical report is not intended to be comprehensive on providing instruction on standard microscopy practices or software utilization. However, we discuss microscope parameters that we have used in data collection, and our experience with image processing tools in data analysis.

  8. Reprogramming of Somatic Cells Towards Pluripotency by Cell Fusion.

    PubMed

    Malinowski, Andrzej R; Fisher, Amanda G

    2016-01-01

    Pluripotent reprogramming can be dominantly induced in a somatic nucleus upon fusion with a pluripotent cell such as embryonic stem (ES) cell. Cell fusion between ES cells and somatic cells results in the formation of heterokaryons, in which the somatic nuclei begin to acquire features of the pluripotent partner. The generation of interspecies heterokaryons between mouse ES- and human somatic cells allows an experimenter to distinguish the nuclear events occurring specifically within the reprogrammed nucleus. Therefore, cell fusion provides a simple and rapid approach to look at the early nuclear events underlying pluripotent reprogramming. Here, we describe a polyethylene glycol (PEG)-mediated cell fusion protocol to generate interspecies heterokaryons and intraspecies hybrids between ES cells and B lymphocytes or fibroblasts.

  9. Transient domains induced by influenza haemagglutinin during membrane fusion.

    PubMed

    Blumenthal, R; Pak, C C; Raviv, Y; Krumbiegel, M; Bergelson, L D; Morris, S J; Lowy, R J

    1995-01-01

    During low pH-induced fusion of influenza virus with erythrocytes we have observed differential dispersion of viral lipid and haemagglutinin (HA) into the erythrocyte membrane, and viral RNA into the erythrocyte using fluorescence video microscopy. The movement of both viral lipid and HA from virus to cell was restricted during the initial stages of fusion relative to free diffusion. This indicates the existence of relatively long-lived barriers to diffusion subsequent to fusion pore formation. Fluorescence anisotropy of phospholipid analogues incorporated into the viral membrane decreased when the pH was lowered to levels required for optimum fusion. This indicates that the restricted motion of viral membrane components was not due to rigidification of membrane lipids. The movement of HA from the fusion site was also assessed by photosensitized labelling by means of a fluorescent substrate (NBD-taurine) passing through the band 3 sialoglycoprotein (the erythrocyte anion transporter). We also examined the flow of lipid and aqueous markers during fusion of HA-expressing cells with labelled erythrocytes. During this cell-cell fusion, movement of lipid between fusing membranes begins before the fusion pore is wide enough to allow diffusion of aqueous molecules (M(r) > 500). The data indicate that HA is capable of creating domains in the membrane and controlling continuity of aqueous compartments which are bounded by such domains.

  10. Fusion energy

    NASA Astrophysics Data System (ADS)

    1990-09-01

    The main purpose of the International Thermonuclear Experimental Reactor (ITER) is to develop an experimental fusion reactor through the united efforts of many technologically advanced countries. The ITER terms of reference, issued jointly by the European Community, Japan, the USSR, and the United States, call for an integrated international design activity and constitute the basis of current activities. Joint work on ITER is carried out under the auspices of the International Atomic Energy Agency (IAEA), according to the terms of quadripartite agreement reached between the European Community, Japan, the USSR, and the United States. The site for joint technical work sessions is at the Max Planck Institute of Plasma Physics. Garching, Federal Republic of Germany. The ITER activities have two phases: a definition phase performed in 1988 and the present design phase (1989 to 1990). During the definition phase, a set of ITER technical characteristics and supporting research and development (R and D) activities were developed and reported. The present conceptual design phase of ITER lasts until the end of 1990. The objectives of this phase are to develop the design of ITER, perform a safety and environmental analysis, develop site requirements, define future R and D needs, and estimate cost, manpower, and schedule for construction and operation. A final report will be submitted at the end of 1990. This paper summarizes progress in the ITER program during the 1989 design phase.

  11. Fusion energy

    SciTech Connect

    Not Available

    1990-09-01

    The main purpose of the International Thermonuclear Experimental Reactor (ITER) is to develop an experimental fusion reactor through the united efforts of many technologically advanced countries. The ITER terms of reference, issued jointly by the European Community, Japan, the USSR, and the United States, call for an integrated international design activity and constitute the basis of current activities. Joint work on ITER is carried out under the auspices of the International Atomic Energy Agency (IAEA), according to the terms of quadripartite agreement reached between the European Community, Japan, the USSR, and the United States. The site for joint technical work sessions is at the MaxPlanck Institute of Plasma Physics. Garching, Federal Republic of Germany. The ITER activities have two phases: a definition phase performed in 1988 and the present design phase (1989--1990). During the definition phase, a set of ITER technical characteristics and supporting research and development (R D) activities were developed and reported. The present conceptual design phase of ITER lasts until the end of 1990. The objectives of this phase are to develop the design of ITER, perform a safety and environmental analysis, develop site requirements, define future R D needs, and estimate cost, manpower, and schedule for construction and operation. A final report will be submitted at the end of 1990. This paper summarizes progress in the ITER program during the 1989 design phase.

  12. The cytoplasmic domain of the gamete membrane fusion protein HAP2 targets the protein to the fusion site in Chlamydomonas and regulates the fusion reaction.

    PubMed

    Liu, Yanjie; Pei, Jimin; Grishin, Nick; Snell, William J

    2015-03-01

    Cell-cell fusion between gametes is a defining step during development of eukaryotes, yet we know little about the cellular and molecular mechanisms of the gamete membrane fusion reaction. HAP2 is the sole gamete-specific protein in any system that is broadly conserved and shown by gene disruption to be essential for gamete fusion. The wide evolutionary distribution of HAP2 (also known as GCS1) indicates it was present in the last eukaryotic common ancestor and, therefore, dissecting its molecular properties should provide new insights into fundamental features of fertilization. HAP2 acts at a step after membrane adhesion, presumably directly in the merger of the lipid bilayers. Here, we use the unicellular alga Chlamydomonas to characterize contributions of key regions of HAP2 to protein location and function. We report that mutation of three strongly conserved residues in the ectodomain has no effect on targeting or fusion, although short deletions that include those residues block surface expression and fusion. Furthermore, HAP2 lacking a 237-residue segment of the cytoplasmic region is expressed at the cell surface, but fails to localize at the apical membrane patch specialized for fusion and fails to rescue fusion. Finally, we provide evidence that the ancient HAP2 contained a juxta-membrane, multi-cysteine motif in its cytoplasmic region, and that mutation of a cysteine dyad in this motif preserves protein localization, but substantially impairs HAP2 fusion activity. Thus, the ectodomain of HAP2 is essential for its surface expression, and the cytoplasmic region targets HAP2 to the site of fusion and regulates the fusion reaction.

  13. The cytoplasmic domain of the gamete membrane fusion protein HAP2 targets the protein to the fusion site in Chlamydomonas and regulates the fusion reaction

    PubMed Central

    Liu, Yanjie; Pei, Jimin; Grishin, Nick; Snell, William J.

    2015-01-01

    Cell-cell fusion between gametes is a defining step during development of eukaryotes, yet we know little about the cellular and molecular mechanisms of the gamete membrane fusion reaction. HAP2 is the sole gamete-specific protein in any system that is broadly conserved and shown by gene disruption to be essential for gamete fusion. The wide evolutionary distribution of HAP2 (also known as GCS1) indicates it was present in the last eukaryotic common ancestor and, therefore, dissecting its molecular properties should provide new insights into fundamental features of fertilization. HAP2 acts at a step after membrane adhesion, presumably directly in the merger of the lipid bilayers. Here, we use the unicellular alga Chlamydomonas to characterize contributions of key regions of HAP2 to protein location and function. We report that mutation of three strongly conserved residues in the ectodomain has no effect on targeting or fusion, although short deletions that include those residues block surface expression and fusion. Furthermore, HAP2 lacking a 237-residue segment of the cytoplasmic region is expressed at the cell surface, but fails to localize at the apical membrane patch specialized for fusion and fails to rescue fusion. Finally, we provide evidence that the ancient HAP2 contained a juxta-membrane, multi-cysteine motif in its cytoplasmic region, and that mutation of a cysteine dyad in this motif preserves protein localization, but substantially impairs HAP2 fusion activity. Thus, the ectodomain of HAP2 is essential for its surface expression, and the cytoplasmic region targets HAP2 to the site of fusion and regulates the fusion reaction. PMID:25655701

  14. Quantitative methods for analyzing cell-cell adhesion in development.

    PubMed

    Kashef, Jubin; Franz, Clemens M

    2015-05-01

    During development cell-cell adhesion is not only crucial to maintain tissue morphogenesis and homeostasis, it also activates signalling pathways important for the regulation of different cellular processes including cell survival, gene expression, collective cell migration and differentiation. Importantly, gene mutations of adhesion receptors can cause developmental disorders and different diseases. Quantitative methods to measure cell adhesion are therefore necessary to understand how cells regulate cell-cell adhesion during development and how aberrations in cell-cell adhesion contribute to disease. Different in vitro adhesion assays have been developed in the past, but not all of them are suitable to study developmentally-related cell-cell adhesion processes, which usually requires working with low numbers of primary cells. In this review, we provide an overview of different in vitro techniques to study cell-cell adhesion during development, including a semi-quantitative cell flipping assay, and quantitative single-cell methods based on atomic force microscopy (AFM)-based single-cell force spectroscopy (SCFS) or dual micropipette aspiration (DPA). Furthermore, we review applications of Förster resonance energy transfer (FRET)-based molecular tension sensors to visualize intracellular mechanical forces acting on cell adhesion sites. Finally, we describe a recently introduced method to quantitate cell-generated forces directly in living tissues based on the deformation of oil microdroplets functionalized with adhesion receptor ligands. Together, these techniques provide a comprehensive toolbox to characterize different cell-cell adhesion phenomena during development.

  15. Determination of the minimal fusion peptide of bovine leukemia virus gp30

    SciTech Connect

    Lorin, Aurelien; Lins, Laurence; Stroobant, Vincent; Brasseur, Robert . E-mail: brasseur.r@fsagx.ac.be; Charloteaux, Benoit

    2007-04-13

    In this study, we determined the minimal N-terminal fusion peptide of the gp30 of the bovine leukemia virus on the basis of the tilted peptide theory. We first used molecular modelling to predict that the gp30 minimal fusion peptide corresponds to the 15 first residues. Liposome lipid-mixing and leakage assays confirmed that the 15-residue long peptide induces fusion in vitro and that it is the shortest peptide inducing optimal fusion since longer peptides destabilize liposomes to the same extent but not shorter ones. The 15-residue long peptide can thus be considered as the minimal fusion peptide. The effect of mutations reported in the literature was also investigated. Interestingly, mutations related to glycoproteins unable to induce syncytia in cell-cell fusion assays correspond to peptides predicted as non-tilted. The relationship between obliquity and fusogenicity was also confirmed in vitro for one tilted and one non-tilted mutant peptide.

  16. A soluble form of Epstein-Barr virus gH/gL inhibits EBV-induced membrane fusion and does not function in fusion

    SciTech Connect

    Rowe, Cynthia L.; Connolly, Sarah A.; Chen, Jia; Jardetzky, Theodore S.; Longnecker, Richard

    2013-02-05

    We investigated whether soluble EBV gH/gL (sgH/gL) functions in fusion and made a series of truncations of gH/gL domains based on the gH/gL crystal structure. We found sgH/gL failed to mediate cell-cell fusion both when co-expressed with the other entry glycoproteins and when added exogenously to fusion assays. Interestingly, sgH/gL inhibited cell-cell fusion in a dose dependent manner when co-expressed. sgH/gL from HSV was unable to inhibit EBV fusion, suggesting the inhibition was specific to EBV gH/gL. sgH/gL stably binds gp42, but not gB nor gH/gL. The domain mutants, DI/gL, DI-II/gL and DI-II-III/gL were unable to bind gp42. Instead, DI-II/gL, DI-II-III/gL and sgH/gL but not DI/gL decreased the expression of gp42, resulting in decreased overall fusion. Overall, our results suggest that domain IV may be required for proper folding and the transmembrane domain and cytoplasmic tail of EBV gH/gL are required for the most efficient fusion.

  17. Viral membrane fusion.

    PubMed

    Harrison, Stephen C

    2015-05-01

    Membrane fusion is an essential step when enveloped viruses enter cells. Lipid bilayer fusion requires catalysis to overcome a high kinetic barrier; viral fusion proteins are the agents that fulfill this catalytic function. Despite a variety of molecular architectures, these proteins facilitate fusion by essentially the same generic mechanism. Stimulated by a signal associated with arrival at the cell to be infected (e.g., receptor or co-receptor binding, proton binding in an endosome), they undergo a series of conformational changes. A hydrophobic segment (a "fusion loop" or "fusion peptide") engages the target-cell membrane and collapse of the bridging intermediate thus formed draws the two membranes (virus and cell) together. We know of three structural classes for viral fusion proteins. Structures for both pre- and postfusion conformations of illustrate the beginning and end points of a process that can be probed by single-virion measurements of fusion kinetics.

  18. Magneto-Inertial Fusion

    DOE PAGES

    Wurden, G. A.; Hsu, S. C.; Intrator, T. P.; Grabowski, T. C.; Degnan, J. H.; Domonkos, M.; Turchi, P. J.; Campbell, E. M.; Sinars, D. B.; Herrmann, M. C.; et al

    2015-11-17

    In this community white paper, we describe an approach to achieving fusion which employs a hybrid of elements from the traditional magnetic and inertial fusion concepts, called magneto-inertial fusion (MIF). The status of MIF research in North America at multiple institutions is summarized including recent progress, research opportunities, and future plans.

  19. Hot and cold fusion

    SciTech Connect

    Not Available

    1990-08-01

    This article presents an overview of research in cold fusion research and development in cold fusion at the Tokomak Fusion Test Reactor at the Princeton Plasma Physics Lab, and at the inertial containment facility at Lawrence Livermore National Lab. is described.

  20. Integration of AI-2 Based Cell-Cell Signaling with Metabolic Cues in Escherichia coli

    PubMed Central

    Mitra, Arindam; Herren, Christopher D.; Patel, Isha R.; Coleman, Adam; Mukhopadhyay, Suman

    2016-01-01

    The quorum sensing molecule Autoinducer-2 (AI-2) is generated as a byproduct of activated methyl cycle by the action of LuxS in Escherichia coli. AI-2 is synthesized, released and later internalized in a cell-density dependent manner. Here, by mutational analysis of the genes, uvrY and csrA, we describe a regulatory circuit of accumulation and uptake of AI-2. We constructed a single-copy chromosomal luxS-lacZ fusion in a luxS + merodiploid strain and evaluated its relative expression in uvrY and csrA mutants. At the entry of stationary phase, the expression of the fusion and AI-2 accumulation was positively regulated by uvrY and negatively regulated by csrA respectively. A deletion of csrA altered message stability of the luxS transcript and CsrA protein exhibited weak binding to 5’ luxS regulatory region. DNA protein interaction and chromatin immunoprecipitation analysis confirmed direct interaction of UvrY with the luxS promoter. Additionally, reduced expression of the fusion in hfq deletion mutant suggested involvement of small RNA interactions in luxS regulation. In contrast, the expression of lsrA operon involved in AI-2 uptake, is negatively regulated by uvrY and positively by csrA in a cell-density dependent manner. The dual role of csrA in AI-2 synthesis and uptake suggested a regulatory crosstalk of cell signaling with carbon regulation in Escherichia coli. We found that the cAMP-CRP mediated catabolite repression of luxS expression was uvrY dependent. This study suggests that luxS expression is complex and regulated at the level of transcription and translation. The multifactorial regulation supports the notion that cell-cell communication requires interaction and integration of multiple metabolic signals. PMID:27362507

  1. The conserved glycine-rich segment linking the N-terminal fusion peptide to the coiled coil of human T-cell leukemia virus type 1 transmembrane glycoprotein gp21 is a determinant of membrane fusion function.

    PubMed

    Wilson, Kirilee A; Bär, Séverine; Maerz, Anne L; Alizon, Marc; Poumbourios, Pantelis

    2005-04-01

    Retroviral transmembrane proteins (TMs) contain an N-terminal fusion peptide that initiates virus-cell membrane fusion. The fusion peptide is linked to the coiled-coil core through a conserved sequence that is often rich in glycines. We investigated the functional role of the glycine-rich segment, Met-326 to Ser-337, of the human T-cell leukemia virus type 1 (HTLV-1) TM, gp21, by alanine and proline scanning mutagenesis. Alanine substitution for the hydrophobic residue Ile-334 caused an approximately 90% reduction in cell-cell fusion activity without detectable effects on the lipid-mixing and pore formation phases of fusion. Alanine substitutions at other positions had smaller effects (Gly-329, Val-330, and Gly-332) or no effect on fusion function. Proline substitution for glycine residues inhibited cell-cell fusion function with position-dependent effects on the three phases of fusion. Retroviral glycoprotein fusion function thus appears to require flexibility within the glycine-rich segment and hydrophobic contacts mediated by this segment. PMID:15767455

  2. The Formin Diaphanous Regulates Myoblast Fusion through Actin Polymerization and Arp2/3 Regulation.

    PubMed

    Deng, Su; Bothe, Ingo; Baylies, Mary K

    2015-08-01

    The formation of multinucleated muscle cells through cell-cell fusion is a conserved process from fruit flies to humans. Numerous studies have shown the importance of Arp2/3, its regulators, and branched actin for the formation of an actin structure, the F-actin focus, at the fusion site. This F-actin focus forms the core of an invasive podosome-like structure that is required for myoblast fusion. In this study, we find that the formin Diaphanous (Dia), which nucleates and facilitates the elongation of actin filaments, is essential for Drosophila myoblast fusion. Following cell recognition and adhesion, Dia is enriched at the myoblast fusion site, concomitant with, and having the same dynamics as, the F-actin focus. Through analysis of Dia loss-of-function conditions using mutant alleles but particularly a dominant negative Dia transgene, we demonstrate that reduction in Dia activity in myoblasts leads to a fusion block. Significantly, no actin focus is detected, and neither branched actin regulators, SCAR or WASp, accumulate at the fusion site when Dia levels are reduced. Expression of constitutively active Dia also causes a fusion block that is associated with an increase in highly dynamic filopodia, altered actin turnover rates and F-actin distribution, and mislocalization of SCAR and WASp at the fusion site. Together our data indicate that Dia plays two roles during invasive podosome formation at the fusion site: it dictates the level of linear F-actin polymerization, and it is required for appropriate branched actin polymerization via localization of SCAR and WASp. These studies provide new insight to the mechanisms of cell-cell fusion, the relationship between different regulators of actin polymerization, and invasive podosome formation that occurs in normal development and in disease.

  3. Inhibition of the Hantavirus Fusion Process by Predicted Domain III and Stem Peptides from Glycoprotein Gc

    PubMed Central

    Barriga, Gonzalo P.; Villalón-Letelier, Fernando; Márquez, Chantal L.; Bignon, Eduardo A.; Acuña, Rodrigo; Ross, Breyan H.; Monasterio, Octavio; Mardones, Gonzalo A.; Vidal, Simon E.; Tischler, Nicole D.

    2016-01-01

    Hantaviruses can cause hantavirus pulmonary syndrome or hemorrhagic fever with renal syndrome in humans. To enter cells, hantaviruses fuse their envelope membrane with host cell membranes. Previously, we have shown that the Gc envelope glycoprotein is the viral fusion protein sharing characteristics with class II fusion proteins. The ectodomain of class II fusion proteins is composed of three domains connected by a stem region to a transmembrane anchor in the viral envelope. These fusion proteins can be inhibited through exogenous fusion protein fragments spanning domain III (DIII) and the stem region. Such fragments are thought to interact with the core of the fusion protein trimer during the transition from its pre-fusion to its post-fusion conformation. Based on our previous homology model structure for Gc from Andes hantavirus (ANDV), here we predicted and generated recombinant DIII and stem peptides to test whether these fragments inhibit hantavirus membrane fusion and cell entry. Recombinant ANDV DIII was soluble, presented disulfide bridges and beta-sheet secondary structure, supporting the in silico model. Using DIII and the C-terminal part of the stem region, the infection of cells by ANDV was blocked up to 60% when fusion of ANDV occurred within the endosomal route, and up to 95% when fusion occurred with the plasma membrane. Furthermore, the fragments impaired ANDV glycoprotein-mediated cell-cell fusion, and cross-inhibited the fusion mediated by the glycoproteins from Puumala virus (PUUV). The Gc fragments interfered in ANDV cell entry by preventing membrane hemifusion and pore formation, retaining Gc in a non-resistant homotrimer stage, as described for DIII and stem peptide inhibitors of class II fusion proteins. Collectively, our results demonstrate that hantavirus Gc shares not only structural, but also mechanistic similarity with class II viral fusion proteins, and will hopefully help in developing novel therapeutic strategies against hantaviruses

  4. Inhibition of the Hantavirus Fusion Process by Predicted Domain III and Stem Peptides from Glycoprotein Gc.

    PubMed

    Barriga, Gonzalo P; Villalón-Letelier, Fernando; Márquez, Chantal L; Bignon, Eduardo A; Acuña, Rodrigo; Ross, Breyan H; Monasterio, Octavio; Mardones, Gonzalo A; Vidal, Simon E; Tischler, Nicole D

    2016-07-01

    Hantaviruses can cause hantavirus pulmonary syndrome or hemorrhagic fever with renal syndrome in humans. To enter cells, hantaviruses fuse their envelope membrane with host cell membranes. Previously, we have shown that the Gc envelope glycoprotein is the viral fusion protein sharing characteristics with class II fusion proteins. The ectodomain of class II fusion proteins is composed of three domains connected by a stem region to a transmembrane anchor in the viral envelope. These fusion proteins can be inhibited through exogenous fusion protein fragments spanning domain III (DIII) and the stem region. Such fragments are thought to interact with the core of the fusion protein trimer during the transition from its pre-fusion to its post-fusion conformation. Based on our previous homology model structure for Gc from Andes hantavirus (ANDV), here we predicted and generated recombinant DIII and stem peptides to test whether these fragments inhibit hantavirus membrane fusion and cell entry. Recombinant ANDV DIII was soluble, presented disulfide bridges and beta-sheet secondary structure, supporting the in silico model. Using DIII and the C-terminal part of the stem region, the infection of cells by ANDV was blocked up to 60% when fusion of ANDV occurred within the endosomal route, and up to 95% when fusion occurred with the plasma membrane. Furthermore, the fragments impaired ANDV glycoprotein-mediated cell-cell fusion, and cross-inhibited the fusion mediated by the glycoproteins from Puumala virus (PUUV). The Gc fragments interfered in ANDV cell entry by preventing membrane hemifusion and pore formation, retaining Gc in a non-resistant homotrimer stage, as described for DIII and stem peptide inhibitors of class II fusion proteins. Collectively, our results demonstrate that hantavirus Gc shares not only structural, but also mechanistic similarity with class II viral fusion proteins, and will hopefully help in developing novel therapeutic strategies against hantaviruses

  5. Viral membrane fusion

    SciTech Connect

    Harrison, Stephen C.

    2015-05-15

    Membrane fusion is an essential step when enveloped viruses enter cells. Lipid bilayer fusion requires catalysis to overcome a high kinetic barrier; viral fusion proteins are the agents that fulfill this catalytic function. Despite a variety of molecular architectures, these proteins facilitate fusion by essentially the same generic mechanism. Stimulated by a signal associated with arrival at the cell to be infected (e.g., receptor or co-receptor binding, proton binding in an endosome), they undergo a series of conformational changes. A hydrophobic segment (a “fusion loop” or “fusion peptide”) engages the target-cell membrane and collapse of the bridging intermediate thus formed draws the two membranes (virus and cell) together. We know of three structural classes for viral fusion proteins. Structures for both pre- and postfusion conformations of illustrate the beginning and end points of a process that can be probed by single-virion measurements of fusion kinetics. - Highlights: • Viral fusion proteins overcome the high energy barrier to lipid bilayer merger. • Different molecular structures but the same catalytic mechanism. • Review describes properties of three known fusion-protein structural classes. • Single-virion fusion experiments elucidate mechanism.

  6. The fusion breeder

    NASA Astrophysics Data System (ADS)

    Moir, Ralph W.

    1982-10-01

    The fusion breeder is a fusion reactor designed with special blankets to maximize the transmutation by 14 MeV neutrons of uranium-238 to plutonium or thorium to uranium-233 for use as a fuel for fission reactors. Breeding fissile fuels has not been a goal of the U.S. fusion energy program. This paper suggests it is time for a policy change to make the fusion breeder a goal of the U.S. fusion program and the U.S. nuclear energy program. There is wide agreement that many approaches will work and will produce fuel for five equal-sized LWRs, and some approach as many as 20 LWRs at electricity costs within 20% of those at today's price of uranium (30/lb of U3O8). The blankets designed to suppress fissioning, called symbiotes, fusion fuel factories, or just fusion breeders, will have safety characteristics more like pure fusion reactors and will support as many as 15 equal power LWRs. The blankets designed to maximize fast fission of fertile material will have safety characteristics more like fission reactors and will support 5 LWRs. This author strongly recommends development of the fission suppressed blanket type, a point of view not agreed upon by everyone. There is, however, wide agreement that, to meet the market price for uranium which would result in LWR electricity within 20% of today's cost with either blanket type, fusion components can cost severalfold more than would be allowed for pure fusion to meet the goal of making electricity alone at 20% over today's fission costs. Also widely agreed is that the critical-path-item for the fusion breeder is fusion development itself; however, development of fusion breeder specific items (blankets, fuel cycle) should be started now in order to have the fusion breeder by the time the rise in uranium prices forces other more costly choices.

  7. Contribution of Endocytic Motifs in the Cytoplasmic Tail of Herpes Simplex Virus Type 1 Glycoprotein B to Virus Replication and Cell-Cell Fusion▿

    PubMed Central

    Beitia Ortiz de Zarate, Igor; Cantero-Aguilar, Lilia; Longo, Magalie; Berlioz-Torrent, Clarisse; Rozenberg, Flore

    2007-01-01

    The use of endocytic pathways by viral glycoproteins is thought to play various functions during viral infection. We previously showed in transfection assays that herpes simplex virus type 1 (HSV-1) glycoprotein B (gB) is transported from the cell surface back to the trans-Golgi network (TGN) and that two motifs of gB cytoplasmic tail, YTQV and LL, function distinctly in this process. To investigate the role of each of these gB trafficking signals in HSV-1 infection, we constructed recombinant viruses in which each motif was rendered nonfunctional by alanine mutagenesis. In infected cells, wild-type gB was internalized from the cell surface and concentrated in the TGN. Disruption of YTQV abolished internalization of gB during infection, whereas disruption of LL induced accumulation of internalized gB in early recycling endosomes and impaired its return to the TGN. The growth of both recombinants was moderately diminished. Moreover, the fusion phenotype of cells infected with the gB recombinants differed from that of cells infected with the wild-type virus. Cells infected with the YTQV-mutated virus displayed reduced cell-cell fusion, whereas giant syncytia were observed in cells infected with the LL-mutated virus. Furthermore, blocking gB internalization or impairing gB recycling to the cell surface, using drugs or a transdominant negative form of Rab11, significantly reduced cell-cell fusion. These results favor a role for endocytosis in virus replication and suggest that gB intracellular trafficking is involved in the regulation of cell-cell fusion. PMID:17913800

  8. An immunoreceptor tyrosine-based inhibition motif in varicella-zoster virus glycoprotein B regulates cell fusion and skin pathogenesis.

    PubMed

    Oliver, Stefan L; Brady, Jennifer J; Sommer, Marvin H; Reichelt, Mike; Sung, Phillip; Blau, Helen M; Arvin, Ann M

    2013-01-29

    Herpesvirus entry functions of the conserved glycoproteins gB and gH-gL have been delineated, but their role in regulating cell-cell fusion is poorly understood. Varicella-zoster virus (VZV) infection provides a valuable model for investigating cell-cell fusion because of the importance of this process for pathogenesis in human skin and sensory ganglia. The present study identifies a canonical immunoreceptor tyrosine-based inhibition motif (ITIM) in the gB cytoplasmic domain (gBcyt) and demonstrates that the gBcyt is a tyrosine kinase substrate. Orbitrap mass spectrometry confirmed that Y881, central to the ITIM, is phosphorylated. To determine whether the gBcyt ITIM regulates gB/gH-gL-induced cell-cell fusion in vitro, tyrosine residues Y881 and Y920 in the gBcyt were substituted with phenylalanine separately or together. Recombinant viruses with these substitutions were generated to establish their effects on syncytia formation in replication in vitro and in the human skin xenograft model of VZV pathogenesis. The Y881F substitution caused significantly increased cell-cell fusion despite reduced cell-surface gB. Importantly, the Y881F or Y881/920F substitutions in VZV caused aggressive syncytia formation, reducing cell-cell spread. These in vitro effects of aggressive syncytia formation translated to severely impaired skin infection in vivo. In contrast, the Y920F substitution did not affect virus replication in vitro or in vivo. These observations suggest that gB modulates cell-cell fusion via an ITIM-mediated Y881 phosphorylation-dependent mechanism, supporting a unique concept that intracellular signaling through this gBcyt motif regulates VZV syncytia formation and is essential for skin pathogenesis.

  9. Microtubule-dependent balanced cell contraction and luminal-matrix modification accelerate epithelial tube fusion.

    PubMed

    Kato, Kagayaki; Dong, Bo; Wada, Housei; Tanaka-Matakatsu, Miho; Yagi, Yoshimasa; Hayashi, Shigeo

    2016-01-01

    Connection of tubules into larger networks is the key process for the development of circulatory systems. In Drosophila development, tip cells of the tracheal system lead the migration of each branch and connect tubules by adhering to each other and simultaneously changing into a torus-shape. We show that as adhesion sites form between fusion cells, myosin and microtubules form polarized bundles that connect the new adhesion site to the cells' microtubule-organizing centres, and that E-cadherin and retrograde recycling endosomes are preferentially deposited at the new adhesion site. We demonstrate that microtubules help balancing tip cell contraction, which is driven by myosin, and is required for adhesion and tube fusion. We also show that retrograde recycling and directed secretion of a specific matrix protein into the fusion-cell interface promote fusion. We propose that microtubule bundles connecting these cell-cell interfaces coordinate cell contractility and apical secretion to facilitate tube fusion. PMID:27067650

  10. Materials research for fusion

    NASA Astrophysics Data System (ADS)

    Knaster, J.; Moeslang, A.; Muroga, T.

    2016-05-01

    Fusion materials research started in the early 1970s following the observation of the degradation of irradiated materials used in the first commercial fission reactors. The technological challenges of fusion energy are intimately linked with the availability of suitable materials capable of reliably withstanding the extremely severe operational conditions of fusion reactors. Although fission and fusion materials exhibit common features, fusion materials research is broader. The harder mono-energetic spectrum associated with the deuterium-tritium fusion neutrons (14.1 MeV compared to <2 MeV on average for fission neutrons) releases significant amounts of hydrogen and helium as transmutation products that might lead to a (at present undetermined) degradation of structural materials after a few years of operation. Overcoming the historical lack of a fusion-relevant neutron source for materials testing is an essential pending step in fusion roadmaps. Structural materials development, together with research on functional materials capable of sustaining unprecedented power densities during plasma operation in a fusion reactor, have been the subject of decades of worldwide research efforts underpinning the present maturity of the fusion materials research programme.

  11. Muon Catalyzed Fusion

    NASA Technical Reports Server (NTRS)

    Armour, Edward A.G.

    2007-01-01

    Muon catalyzed fusion is a process in which a negatively charged muon combines with two nuclei of isotopes of hydrogen, e.g, a proton and a deuteron or a deuteron and a triton, to form a muonic molecular ion in which the binding is so tight that nuclear fusion occurs. The muon is normally released after fusion has taken place and so can catalyze further fusions. As the muon has a mean lifetime of 2.2 microseconds, this is the maximum period over which a muon can participate in this process. This article gives an outline of the history of muon catalyzed fusion from 1947, when it was first realised that such a process might occur, to the present day. It includes a description of the contribution that Drachrnan has made to the theory of muon catalyzed fusion and the influence this has had on the author's research.

  12. Fusion facility siting considerations

    NASA Astrophysics Data System (ADS)

    Bussell, G. T.

    1985-02-01

    Inherent in the fusion program's transition from hydrogen devices to commercial power machines is a general increase in the size and scope of succeeding projects. This growth will lead to increased emphasis on safety, environmental impact, and the external effects of fusion in general, and of each new device in particular. An important consideration in this regard is site selection. Major siting issues that may affect the economics, safety, and environmental impact of fusion are examined.

  13. Status of fusion maintenance

    SciTech Connect

    Fuller, G.M.

    1984-01-01

    Effective maintenance will be an essential ingredient in determining fusion system productivity. This level of productivity will result only after close attention is paid to the entire system as an entity and appropriate integration of the elements is made. The status of fusion maintenance is reviewed in the context of the entire system. While there are many challenging developmental tasks ahead in fusion maintenance, the required technologies are available in several high-technology industries, including nuclear fission.

  14. Fusion: The controversy continues

    SciTech Connect

    1989-07-01

    Nuclear fusion-the power of the stars that promises mankind an inexhaustible supply of energy-seems concurrently much closer and still distant this month. The recent flurry of announcements concerning the achievement of a cold fusion reaction has-if nothing else-underscored the historic importance of the basic fusion reaction which uses hydrogen ions to fuel an energy-producing reaction.

  15. Magnetic-confinement fusion

    NASA Astrophysics Data System (ADS)

    Ongena, J.; Koch, R.; Wolf, R.; Zohm, H.

    2016-05-01

    Our modern society requires environmentally friendly solutions for energy production. Energy can be released not only from the fission of heavy nuclei but also from the fusion of light nuclei. Nuclear fusion is an important option for a clean and safe solution for our long-term energy needs. The extremely high temperatures required for the fusion reaction are routinely realized in several magnetic-fusion machines. Since the early 1990s, up to 16 MW of fusion power has been released in pulses of a few seconds, corresponding to a power multiplication close to break-even. Our understanding of the very complex behaviour of a magnetized plasma at temperatures between 150 and 200 million °C surrounded by cold walls has also advanced substantially. This steady progress has resulted in the construction of ITER, a fusion device with a planned fusion power output of 500 MW in pulses of 400 s. ITER should provide answers to remaining important questions on the integration of physics and technology, through a full-size demonstration of a tenfold power multiplication, and on nuclear safety aspects. Here we review the basic physics underlying magnetic fusion: past achievements, present efforts and the prospects for future production of electrical energy. We also discuss questions related to the safety, waste management and decommissioning of a future fusion power plant.

  16. Meteorite fusion crust variability.

    NASA Astrophysics Data System (ADS)

    Thaisen, Kevin G.; Taylor, Lawrence A.

    2009-06-01

    Two assumptions commonly employed in meteorite interpretation are that fusion crust compositions represent the bulk-rock chemistry of the interior meteorite and that the vesicles within the fusion crust result from the release of implanted solar wind volatiles. Electron microprobe analyses of thin sections from lunar meteorite Miller Range (MIL) 05035 and eucrite Bates Nunataks (BTN) 00300 were performed to determine if the chemical compositions of the fusion crust varied and/or represented the published bulk rock composition. It was determined that fusion crust compositions are significantly influenced by the incorporation of fragments from the substrate, and by the composition and grain size of those minerals. Because of compositional heterogeneities throughout the meteorite, one cannot assume that fusion crust composition represents the bulk rock composition. If the compositional variability within the fusion crust and mineralogical differences among thin sections goes unnoticed, then the perceived composition and petrogenetic models of formation will be incorrect. The formation of vesicles within these fusion crusts were also compared to current theories attributing vesicles to a solar wind origin. Previous work from the STONE-5 experiment, where terrestrial rocks were exposed on the exterior of a spacecraft heatshield, produced a vesicular fusion crust without prolonged exposure to solar wind suggesting that the high temperatures experienced by a meteorite during passage through the Earth's atmosphere are sufficient to cause boiling of the melt. Therefore, the assumption that all vesicles found within a fusion crust are due to the release of implanted volatiles of solar wind may not be justified.

  17. Measles virus spread by cell-cell contacts: uncoupling of contact-mediated receptor (CD46) downregulation from virus uptake.

    PubMed

    Firsching, R; Buchholz, C J; Schneider, U; Cattaneo, R; ter Meulen, V; Schneider-Schaulies, J

    1999-07-01

    CD46, which serves as a receptor for measles virus (MV; strain Edmonston), is rapidly downregulated from the cell surface after contact with viral particles or infected cells. We show here that the same two CD46 complement control protein (CCP) domains responsible for primary MV attachment mediate its downregulation. Optimal downregulation efficiency was obtained with CD46 recombinants containing CCP domains 1 and 2, whereas CCP 1, alone and duplicated, induced a slight downregulation. Using persistently infected monocytic/promyelocytic U937 cells which release very small amounts of infectious virus, and uninfected HeLa cells as contact partners, we then showed that during contact the formation of CD46-containing patches and caps precedes CD46 internalization. Nevertheless, neither substances inhibiting capping nor the fusion-inhibiting peptide Z-D-Phe-L-Phe-Gly-OH (FIP) blocked CD46 downregulation. Thus, CD46 downregulation can be uncoupled from fusion and subsequent virus uptake. Interestingly, in that system cell-cell contacts lead to a remarkably efficient infection of the target cells which is only partially inhibited by FIP. The finding that the contact of an infected with uninfected cells results in transfer of infectious viral material without significant (complete) fusion of the donor with the recipient cell suggests that microfusion events and/or FIP-independent mechanisms may mediate the transfer of MV infectivity from cell to cell. PMID:10364272

  18. Characterization of the fusion core in zebrafish endogenous retroviral envelope protein.

    PubMed

    Shi, Jian; Zhang, Huaidong; Gong, Rui; Xiao, Gengfu

    2015-05-01

    Zebrafish endogenous retrovirus (ZFERV) is the unique endogenous retrovirus in zebrafish, as yet, containing intact open reading frames of its envelope protein gene in zebrafish genome. Similarly, several envelope proteins of endogenous retroviruses in human and other mammalian animal genomes (such as syncytin-1 and 2 in human, syncytin-A and B in mouse) were identified and shown to be functional in induction of cell-cell fusion involved in placental development. ZFERV envelope protein (Env) gene appears to be also functional in vivo because it is expressible. After sequence alignment, we found ZFERV Env shares similar structural profiles with syncytin and other type I viral envelopes, especially in the regions of N- and C-terminal heptad repeats (NHR and CHR) which were crucial for membrane fusion. We expressed the regions of N + C protein in the ZFERV Env (residues 459-567, including predicted NHR and CHR) to characterize the fusion core structure. We found N + C protein could form a stable coiled-coil trimer that consists of three helical NHR regions forming a central trimeric core, and three helical CHR regions packing into the grooves on the surface of the central core. The structural characterization of the fusion core revealed the possible mechanism of fusion mediated by ZFERV Env. These results gave comprehensive explanation of how the ancient virus infects the zebrafish and integrates into the genome million years ago, and showed a rational clue for discovery of physiological significance (e.g., medicate cell-cell fusion). PMID:25804638

  19. Coatings for laser fusion

    SciTech Connect

    Lowdermilk, W.H.

    1981-12-18

    Optical coatings are used in lasers systems for fusion research to control beam propagation and reduce surface reflection losses. The performance of coatings is important in the design, reliability, energy output, and cost of the laser systems. Significant developments in coating technology are required for future lasers for fusion research and eventual power reactors.

  20. Fusion Science Education Outreach

    NASA Astrophysics Data System (ADS)

    Danielson, C. A.; DIII-D Education Group

    1996-11-01

    This presentation will focus on education outreach activities at General Atomics that have been expanded to include the general population on science education with a focus on fusion energy. Outreach materials are distributed upon request both nationally and internationally. These materials include a notebook containing copies of DIII--D tour panels, fusion poster, new fusion energy video, new fusion energy brochure, and the electromagnetic spectrum curriculum. The 1996 Fusion Forum (held in the House Caucus Room) included a student/ teacher lunch with Energy Secretary Hazel O'Leary and a private visit to the Forum exhibits. The continuing partnership with Kearny High School includes lectures, job shadowing, internship, equipment donations and an award-winning electric car-racing program. Development of distribution by CD of the existing interactive fusion energy kiosk and a virtual reality tour of the DIII--D facility are underway. The DIII--D fusion education WWW site includes e-mail addresses to ``Ask the Wizard,'' and/or receive GA's outreach materials. Steve Rodecker, a local science teacher, aided by DIII--D fusion staff, won his second Tapestry Award; he also was named the ``1995 National Science Teacher of the Year'' and will be present to share his experiences with the DIII--D educational outreach program.

  1. Controlled Nuclear Fusion.

    ERIC Educational Resources Information Center

    Glasstone, Samuel

    This publication is one of a series of information booklets for the general public published by The United States Atomic Energy Commission. Among the topics discussed are: Importance of Fusion Energy; Conditions for Nuclear Fusion; Thermonuclear Reactions in Plasmas; Plasma Confinement by Magnetic Fields; Experiments With Plasmas; High-Temperature…

  2. Two Horizons of Fusion

    ERIC Educational Resources Information Center

    Lo, Mun Ling; Chik, Pakey Pui Man

    2016-01-01

    In this paper, we aim to differentiate the internal and external horizons of "fusion." "Fusion" in the internal horizon relates to the structure and meaning of the object of learning as experienced by the learner. It clarifies the interrelationships among an object's critical features and aspects. It also illuminates the…

  3. Fusion Physics Toward ITER

    NASA Astrophysics Data System (ADS)

    Stambaugh, R. D.

    2006-04-01

    Stars are powered by fusion, the energy released by fusing together light nuclei, using gravitational confinement of plasma. Fusion on earth will be done in a 100 million degree plasma made of deuterium and tritium and confined by magnetic fields or inertia. The worldwide fusion research community will construct ITER, the first experiment that will burn a DT plasma by copious fusion reactions. ITER's nominal goal is to create 500 MW of fusion power. An energy gain of 10 will mean the plasma is dominantly self-heated by the fusion-produced alpha particles. ITER's all superconducting magnet technology and steady-state heat removal technology will enable nominal 400 s pulses to allow the study of burning plasmas on the longest intrinsic timescale of the confined plasma - diffusive redistribution of the electrical currents in the plasma. The advances in magnetic confinement physics that have led to this opportunity will be described, as well as the research opportunities afforded by ITER. The physics of confining stable plasmas and heating them will produce the high gain state in ITER. Sustained burn will come from the physics of controlling currents in plasmas and how the hot plasma is interfaced to its room temperature surroundings. ITER will provide our first experience with how fusion plasma self-heating will profoundly affect the complex, interlinked physical processes that occur in confined plasmas.

  4. Fusion Studies in Japan

    NASA Astrophysics Data System (ADS)

    Ogawa, Yuichi

    2016-05-01

    A new strategic energy plan decided by the Japanese Cabinet in 2014 strongly supports the steady promotion of nuclear fusion development activities, including the ITER project and the Broader Approach activities from the long-term viewpoint. Atomic Energy Commission (AEC) in Japan formulated the Third Phase Basic Program so as to promote an experimental fusion reactor project. In 2005 AEC has reviewed this Program, and discussed on selection and concentration among many projects of fusion reactor development. In addition to the promotion of ITER project, advanced tokamak research by JT-60SA, helical plasma experiment by LHD, FIREX project in laser fusion research and fusion engineering by IFMIF were highly prioritized. Although the basic concept is quite different between tokamak, helical and laser fusion researches, there exist a lot of common features such as plasma physics on 3-D magnetic geometry, high power heat load on plasma facing component and so on. Therefore, a synergetic scenario on fusion reactor development among various plasma confinement concepts would be important.

  5. Spherical torus fusion reactor

    DOEpatents

    Martin Peng, Y.K.M.

    1985-10-03

    The object of this invention is to provide a compact torus fusion reactor with dramatic simplification of plasma confinement design. Another object of this invention is to provide a compact torus fusion reactor with low magnetic field and small aspect ratio stable plasma confinement. In accordance with the principles of this invention there is provided a compact toroidal-type plasma confinement fusion reactor in which only the indispensable components inboard of a tokamak type of plasma confinement region, mainly a current conducting medium which carries electrical current for producing a toroidal magnet confinement field about the toroidal plasma region, are retained.

  6. Some new inequalities for continuous fusion frames and fusion pairs.

    PubMed

    Zhang, Wei; Li, Yun-Zhang

    2016-01-01

    This paper addresses continuous fusion frames and fusion pairs which are extensions of discrete fusion frames and continuous frames. The study of equalities and inequalities for various frames has seen great achievements. In this paper, using operator methods we establish some new inequalities for continuous fusion frames and fusion pairs. Our results extend and improve ones obtained by Balan, Casazza and Găvruţa. PMID:27652173

  7. Inertial fusion commercial power plants

    NASA Astrophysics Data System (ADS)

    Logan, B. Grant

    1994-09-01

    This presentation discusses the motivation for inertial fusion energy, a brief synopsis of five recently-completed inertial fusion power plant designs, some general conclusions drawn from these studies, and an exmaple of an IEE hydrogen synfuel plant to suggest that future fusion studies consider broadening fusion use to low-emission fuels production as well as electricity.

  8. All-optical human cell fusion by a fiber femtosecond laser

    NASA Astrophysics Data System (ADS)

    He, Hao; Chan, Kam Tai; Kong, Siu Kai; Lee, Rebecca Kit Ying

    2008-10-01

    Cell-cell fusion by physical methods has progressed slowly until the advent of femtosecond lasers in the near infrared range, which have an ultrahigh photon density and few side effects. Here we demonstrated using a fiber femtosecond laser at 1550 nm with an average power of 1.6×104 W per pulse to fuse human HepG2 and HeLa cells homotypically with an efficiency of 35%-37% in the absence of chemical fusogen. Heterohybrid HepG2-HeLa cells were also prepared. Our site-directed cell-cell fusion technique offers a precise tool for biotechnology and fundamental research in biomedical fields.

  9. Label fusion strategy selection.

    PubMed

    Robitaille, Nicolas; Duchesne, Simon

    2012-01-01

    Label fusion is used in medical image segmentation to combine several different labels of the same entity into a single discrete label, potentially more accurate, with respect to the exact, sought segmentation, than the best input element. Using simulated data, we compared three existing label fusion techniques-STAPLE, Voting, and Shape-Based Averaging (SBA)-and observed that none could be considered superior depending on the dissimilarity between the input elements. We thus developed an empirical, hybrid technique called SVS, which selects the most appropriate technique to apply based on this dissimilarity. We evaluated the label fusion strategies on two- and three-dimensional simulated data and showed that SVS is superior to any of the three existing methods examined. On real data, we used SVS to perform fusions of 10 segmentations of the hippocampus and amygdala in 78 subjects from the ICBM dataset. SVS selected SBA in almost all cases, which was the most appropriate method overall. PMID:22518113

  10. Fusion-power demonstration

    NASA Astrophysics Data System (ADS)

    Henning, C. D.; Logan, B. G.; Carlson, G. A.; Neef, W. S.; Moir, R. W.; Campbell, R. B.; Botwin, R.; Clarkson, I. R.; Carpenter, T. J.

    1983-03-01

    As a satellite to the MARS (Mirror Advanced Reactor Study) a smaller, near-term device has been scoped, called the FPD (Fusion Power Demonstration). Envisioned as the next logical step toward a power reactor, it would advance the mirror fusion program beyond MFTF-B and provide an intermediate step toward commercial fusion power. Breakeven net electric power capability would be the goal such that no net utility power would be required to sustain the operation. A phased implementation is envisioned, with a deuterium checkout first to verify the plasma systems before significant neutron activation has occurred. Major tritium-related facilities would be installed with the second phase to produce sufficient fusion power to supply the recirculating power to maintain the neutral beams, ECRH, magnets and other auxiliary equipment.

  11. Spinal fusion - series (image)

    MedlinePlus

    ... muscles hold the graft in place until it fuses with the vertebrae. A fusion will setup within ... hollow threaded titanium or carbon fiber cylinder to fuse two vertebrae together. The diseased disk is removed ...

  12. Magnetized Target Fusion collaboration

    NASA Astrophysics Data System (ADS)

    Intrator, Thomas

    2004-11-01

    Magnetized Target Fusion (MTF) may be a low cost path to fusion, in a regime that is intermediate between magnetic and inertial fusion energy. It requires compression of a magnetized target plasma and consequent heating to fusion relevant conditions inside a converging flux conserver. We hope to demonstrate the physics basis for MTF, with a Field Reversed Configuration (FRC) target plasma to be translated axially to a compression region. We show recent and improved FRC formation data, example deformable liner implosions, and a conceptual design for the upcoming translation experiments, and describe a multi institution collaboration. The FRC is an elongated, compact toroid equilibrium that is extreme among magnetic configurations, and relaxed to a non force free state. There is high plasma beta, small toroidal field, cross-field diamagnetic current and flows, vanishing rotational transform, magnetic shear, helicity and anomalously large resistivity. Scientific issues include MTF with and without FRC's, and fundamental plasma physics beyond MHD, relevant to geophysical and astrophysical phenomena.

  13. Surface apposition and multiple cell contacts promote myoblast fusion in Drosophila flight muscles.

    PubMed

    Dhanyasi, Nagaraju; Segal, Dagan; Shimoni, Eyal; Shinder, Vera; Shilo, Ben-Zion; VijayRaghavan, K; Schejter, Eyal D

    2015-10-12

    Fusion of individual myoblasts to form multinucleated myofibers constitutes a widely conserved program for growth of the somatic musculature. We have used electron microscopy methods to study this key form of cell-cell fusion during development of the indirect flight muscles (IFMs) of Drosophila melanogaster. We find that IFM myoblast-myotube fusion proceeds in a stepwise fashion and is governed by apparent cross talk between transmembrane and cytoskeletal elements. Our analysis suggests that cell adhesion is necessary for bringing myoblasts to within a minimal distance from the myotubes. The branched actin polymerization machinery acts subsequently to promote tight apposition between the surfaces of the two cell types and formation of multiple sites of cell-cell contact, giving rise to nascent fusion pores whose expansion establishes full cytoplasmic continuity. Given the conserved features of IFM myogenesis, this sequence of cell interactions and membrane events and the mechanistic significance of cell adhesion elements and the actin-based cytoskeleton are likely to represent general principles of the myoblast fusion process.

  14. Novel function of stabilin-2 in myoblast fusion: the recognition of extracellular phosphatidylserine as a “fuse-me” signal

    PubMed Central

    Kim, Go-Woon; Park, Seung-Yoon; Kim, In-San

    2016-01-01

    Myoblast fusion is important for skeletal muscle formation. Even though the knowledge of myoblast fusion mechanism has accumulated over the years, the initial signal of fusion is yet to be elucidated. Our study reveals the novel function of a phosphatidylserine (PS) receptor, stabilin-2 (Stab2), in the modulation of myoblast fusion, through the recognition of PS exposed on myoblasts. During differentiation of myoblasts, Stab2 expression is higher than other PS receptors and is controlled by calcineurin/NFAT signaling on myoblasts. The forced expression of Stab2 results in an increase in myoblast fusion; genetic ablation of Stab2 in mice causes a reduction in muscle size, as a result of impaired myoblast fusion. After muscle injury, muscle regeneration is impaired in Stab2-deficient mice, resulting in small myofibers with fewer nuclei, which is due to reduction of fusion rather than defection of myoblast differentiation. The fusion-promoting role of Stab2 is dependent on its PS-binding motif, and the blocking of PS-Stab2 binding impairs cell-cell fusion on myoblasts. Given our previous finding that Stab2 recognizes PS exposed on apoptotic cells for sensing as an “eat-me” signal, we propose that PS-Stab2 binding is required for sensing of a “fuse-me” signal as the initial signal of myoblast fusion. [BMB Reports 2016; 49(6): 303-304] PMID:27174501

  15. Novel function of stabilin-2 in myoblast fusion: the recognition of extracellular phosphatidylserine as a "fuse-me" signal.

    PubMed

    Kim, Go-Woon; Park, Seung-Yoon; Kim, In-San

    2016-06-01

    Myoblast fusion is important for skeletal muscle formation. Even though the knowledge of myoblast fusion mechanism has accumulated over the years, the initial signal of fusion is yet to be elucidated. Our study reveals the novel function of a phosphatidylserine (PS) receptor, stabilin-2 (Stab2), in the modulation of myoblast fusion, through the recognition of PS exposed on myoblasts. During differentiation of myoblasts, Stab2 expression is higher than other PS receptors and is controlled by calcineurin/NFAT signaling on myoblasts. The forced expression of Stab2 results in an increase in myoblast fusion; genetic ablation of Stab2 in mice causes a reduction in muscle size, as a result of impaired myoblast fusion. After muscle injury, muscle regeneration is impaired in Stab2- deficient mice, resulting in small myofibers with fewer nuclei, which is due to reduction of fusion rather than defection of myoblast differentiation. The fusion-promoting role of Stab2 is dependent on its PS-binding motif, and the blocking of PS-Stab2 binding impairs cell-cell fusion on myoblasts. Given our previous finding that Stab2 recognizes PS exposed on apoptotic cells for sensing as an "eat-me" signal, we propose that PS-Stab2 binding is required for sensing of a "fuse-me" signal as the initial signal of myoblast fusion. [BMB Reports 2016; 49(6): 303-304].

  16. Cold nuclear fusion

    SciTech Connect

    Tsyganov, E. N.

    2012-02-15

    Recent accelerator experiments on fusion of various elements have clearly demonstrated that the effective cross-sections of these reactions depend on what material the target particle is placed in. In these experiments, there was a significant increase in the probability of interaction when target nuclei are imbedded in a conducting crystal or are a part of it. These experiments open a new perspective on the problem of so-called cold nuclear fusion.

  17. ITER Fusion Energy

    ScienceCinema

    Dr. Norbert Holtkamp

    2016-07-12

    ITER (in Latin “the way”) is designed to demonstrate the scientific and technological feasibility of fusion energy. Fusion is the process by which two light atomic nuclei combine to form a heavier over one and thus release energy. In the fusion process two isotopes of hydrogen – deuterium and tritium – fuse together to form a helium atom and a neutron. Thus fusion could provide large scale energy production without greenhouse effects; essentially limitless fuel would be available all over the world. The principal goals of ITER are to generate 500 megawatts of fusion power for periods of 300 to 500 seconds with a fusion power multiplication factor, Q, of at least 10. Q ? 10 (input power 50 MW / output power 500 MW). The ITER Organization was officially established in Cadarache, France, on 24 October 2007. The seven members engaged in the project – China, the European Union, India, Japan, Korea, Russia and the United States – represent more than half the world’s population. The costs for ITER are shared by the seven members. The cost for the construction will be approximately 5.5 billion Euros, a similar amount is foreseen for the twenty-year phase of operation and the subsequent decommissioning.

  18. Magnetized Target Fusion

    NASA Technical Reports Server (NTRS)

    Griffin, Steven T.

    2002-01-01

    Magnetized target fusion (MTF) is under consideration as a means of building a low mass, high specific impulse, and high thrust propulsion system for interplanetary travel. This unique combination is the result of the generation of a high temperature plasma by the nuclear fusion process. This plasma can then be deflected by magnetic fields to provide thrust. Fusion is initiated by a small traction of the energy generated in the magnetic coils due to the plasma's compression of the magnetic field. The power gain from a fusion reaction is such that inefficiencies due to thermal neutrons and coil losses can be overcome. Since the fusion reaction products are directly used for propulsion and the power to initiate the reaction is directly obtained from the thrust generation, no massive power supply for energy conversion is required. The result should be a low engine mass, high specific impulse and high thrust system. The key is to successfully initiate fusion as a proof-of-principle for this application. Currently MSFC is implementing MTF proof-of-principle experiments. This involves many technical details and ancillary investigations. Of these, selected pertinent issues include the properties, orientation and timing of the plasma guns and the convergence and interface development of the "pusher" plasma. Computer simulations of the target plasma's behavior under compression and the convergence and mixing of the gun plasma are under investigation. This work is to focus on the gun characterization and development as it relates to plasma initiation and repeatability.

  19. Fusion for Space Propulsion

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Schafer, Charles (Technical Monitor)

    2001-01-01

    There is little doubt that humans will attempt to explore and develop the solar system in this century. A large amount of energy will be required for accomplishing this. The need for fusion propulsion is discussed. For a propulsion system, there are three important thermodynamical attributes: (1) The absolute amount of energy available, (2) the propellant exhaust velocity, and (3) the jet power per unit mass of the propulsion system (specific power). For human exploration and development of the solar system, propellant exhaust velocity in excess of 100 km/s and specific power in excess of 10 kW/kg are required. Chemical combustion can produce exhaust velocity up to about 5 km/s. Nuclear fission processes typically result in producing energy in the form of heat that needs to be manipulated at temperatures limited by materials to about 2,800 K. Using the energy to heat a hydrogen propellant increases the exhaust velocity by only a factor of about two. Alternatively the energy can be converted into electricity which is then used to accelerate particles to high exhaust velocity. The necessary power conversion and conditioning equipment, however, increases the mass of the propulsion system for the same jet power by more than two orders of magnitude over chemical system, thus greatly limits the thrust-to-weight ratio attainable. The principal advantage of the fission process is that its development is relatively mature and is available right now. If fusion can be developed, fusion appears to have the best of all worlds in terms of propulsion - it can provide the absolute amount, the propellant exhaust velocity, and the high specific jet power. An intermediate step towards pure fusion propulsion is a bimodal system in which a fission reactor is used to provide some of the energy to drive a fusion propulsion unit. The technical issues related to fusion for space propulsion are discussed. The technical priorities for developing and applying fusion for propulsion are

  20. Improvements of image fusion methods

    NASA Astrophysics Data System (ADS)

    Ben-Shoshan, Yotam; Yitzhaky, Yitzhak

    2014-03-01

    Fusion of images from different imaging modalities, obtained by conventional fusion methods, may cause artifacts, including destructive superposition and brightness irregularities, in certain cases. This paper proposes two methods for improving image multimodal fusion quality. Based on the finding that a better fusion can be achieved when the images have a more positive correlation, the first method is a decision algorithm that runs at the preprocessing fusion stage and determines whether a complementary gray level of one of the input images should be used instead of the original one. The second method is suitable for multiresolution fusion, and it suggests choosing only one image from the lowest-frequency sub-bands in the pyramids, instead of combining values from both sub-bands. Experimental results indicate that the proposed fusion enhancement can reduce fusion artifacts. Quantitative fusion quality measures that support this conclusion are shown.

  1. Lateral Lumbar Interbody Fusion.

    PubMed

    Pawar, Abhijit; Hughes, Alexander; Girardi, Federico; Sama, Andrew; Lebl, Darren; Cammisa, Frank

    2015-12-01

    The lateral lumbar interbody fusion (LLIF) is a relatively new technique that allows the surgeon to access the intervertebral space from a direct lateral approach either anterior to or through the psoas muscle. This approach provides an alternative to anterior lumbar interbody fusion with instrumentation, posterior lumbar interbody fusion, and transforaminal lumbar interbody fusion for anterior column support. LLIF is minimally invasive, safe, better structural support from the apophyseal ring, potential for coronal plane deformity correction, and indirect decompression, which have has made this technique popular. LLIF is currently being utilized for a variety of pathologies including but not limited to adult de novo lumbar scoliosis, central and foraminal stenosis, spondylolisthesis, and adjacent segment degeneration. Although early clinical outcomes have been good, the potential for significant neurological and vascular vertebral endplate complications exists. Nevertheless, LLIF is a promising technique with the potential to more effectively treat complex adult de novo scoliosis and achieve predictable fusion while avoiding the complications of traditional anterior surgery and posterior interbody techniques. PMID:26713134

  2. Myoblast fusion in Drosophila

    SciTech Connect

    Haralalka, Shruti; Abmayr, Susan M.

    2010-11-01

    The body wall musculature of a Drosophila larva is composed of an intricate pattern of 30 segmentally repeated muscle fibers in each abdominal hemisegment. Each muscle fiber has unique spatial and behavioral characteristics that include its location, orientation, epidermal attachment, size and pattern of innervation. Many, if not all, of these properties are dictated by founder cells, which determine the muscle pattern and seed the fusion process. Myofibers are then derived from fusion between a specific founder cell and several fusion competent myoblasts (FCMs) fusing with as few as 3-5 FCMs in the small muscles on the most ventral side of the embryo and as many as 30 FCMs in the larger muscles on the dorsal side of the embryo. The focus of the present review is the formation of the larval muscles in the developing embryo, summarizing the major issues and players in this process. We have attempted to emphasize experimentally-validated details of the mechanism of myoblast fusion and distinguish these from the theoretically possible details that have not yet been confirmed experimentally. We also direct the interested reader to other recent reviews that discuss myoblast fusion in Drosophila, each with their own perspective on the process . With apologies, we use gene nomenclature as specified by Flybase (http://flybase.org) but provide Table 1 with alternative names and references.

  3. Lateral Lumbar Interbody Fusion

    PubMed Central

    Hughes, Alexander; Girardi, Federico; Sama, Andrew; Lebl, Darren; Cammisa, Frank

    2015-01-01

    The lateral lumbar interbody fusion (LLIF) is a relatively new technique that allows the surgeon to access the intervertebral space from a direct lateral approach either anterior to or through the psoas muscle. This approach provides an alternative to anterior lumbar interbody fusion with instrumentation, posterior lumbar interbody fusion, and transforaminal lumbar interbody fusion for anterior column support. LLIF is minimally invasive, safe, better structural support from the apophyseal ring, potential for coronal plane deformity correction, and indirect decompression, which have has made this technique popular. LLIF is currently being utilized for a variety of pathologies including but not limited to adult de novo lumbar scoliosis, central and foraminal stenosis, spondylolisthesis, and adjacent segment degeneration. Although early clinical outcomes have been good, the potential for significant neurological and vascular vertebral endplate complications exists. Nevertheless, LLIF is a promising technique with the potential to more effectively treat complex adult de novo scoliosis and achieve predictable fusion while avoiding the complications of traditional anterior surgery and posterior interbody techniques. PMID:26713134

  4. Fusion, magnetic confinement

    SciTech Connect

    Berk, H.L.

    1992-08-06

    An overview is presented of the principles of magnetic confinement of plasmas for the purpose of achieving controlled fusion conditions. Sec. 1 discusses the different nuclear fusion reactions which can be exploited in prospective fusion reactors and explains why special technologies need to be developed for the supply of tritium or {sup 3}He, the probable fuels. In Sec. 2 the Lawson condition, a criterion that is a measure of the quality of confinement relative to achieving fusion conditions, is explained. In Sec. 3 fluid equations are used to describe plasma confinement. Specific confinement configurations are considered. In Sec. 4 the orbits of particle sin magneti and electric fields are discussed. In Sec. 5 stability considerations are discussed. It is noted that confinement systems usually need to satisfy stability constraints imposed by ideal magnetohydrodynamic (MHD) theory. The paper culminates with a summary of experimental progress in magnetic confinement. Present experiments in tokamaks have reached the point that the conditions necessary to achieve fusion are being satisfied.

  5. Surface density of the Hendra G protein modulates Hendra F protein-promoted membrane fusion: role for Hendra G protein trafficking and degradation.

    PubMed

    Whitman, Shannon D; Dutch, Rebecca Ellis

    2007-07-01

    Hendra virus, like most paramyxoviruses, requires both a fusion (F) and attachment (G) protein for promotion of cell-cell fusion. Recent studies determined that Hendra F is proteolytically processed by the cellular protease cathepsin L after endocytosis. This unique cathepsin L processing results in a small percentage of Hendra F on the cell surface. To determine how the surface densities of the two Hendra glycoproteins affect fusion promotion, we performed experiments that varied the levels of glycoproteins expressed in transfected cells. Using two different fusion assays, we found a marked increase in fusion when expression of the Hendra G protein was increased, with a 1:1 molar ratio of Hendra F:G on the cell surface resulting in optimal membrane fusion. Our results also showed that Hendra G protein levels are modulated by both more rapid protein turnover and slower protein trafficking than is seen for Hendra F.

  6. Surface density of the Hendra G protein modulates Hendra F protein-promoted membrane fusion: Role for Hendra G protein trafficking and degradation

    SciTech Connect

    Whitman, Shannon D.; Dutch, Rebecca Ellis . E-mail: rdutc2@uky.edu

    2007-07-05

    Hendra virus, like most paramyxoviruses, requires both a fusion (F) and attachment (G) protein for promotion of cell-cell fusion. Recent studies determined that Hendra F is proteolytically processed by the cellular protease cathepsin L after endocytosis. This unique cathepsin L processing results in a small percentage of Hendra F on the cell surface. To determine how the surface densities of the two Hendra glycoproteins affect fusion promotion, we performed experiments that varied the levels of glycoproteins expressed in transfected cells. Using two different fusion assays, we found a marked increase in fusion when expression of the Hendra G protein was increased, with a 1:1 molar ratio of Hendra F:G on the cell surface resulting in optimal membrane fusion. Our results also showed that Hendra G protein levels are modulated by both more rapid protein turnover and slower protein trafficking than is seen for Hendra F.

  7. Ceramics for fusion applications

    SciTech Connect

    Clinard, F.W. Jr.

    1986-01-01

    Ceramics are required for a variety of uses in both near-term fusion devices and in commercial powerplants. These materials must retain adequate structural and electrical properties under conditions of neutron, particle, and ionizing irradiation; thermal and applied stresses; and physical and chemical sputtering. Ceramics such as Al/sub 2/O/sub 3/, MgAl/sub 2/O/sub 4/, BeO, Si/sub 3/N/sub 4/ and SiC are currently under study for fusion applications, and results to date show widely-varying response to the fusion environment. Materials can be identified today which will meet initial operating requirements, but improvements in physical properties are needed to achieve satisfactory lifetimes for critical applications.

  8. Peaceful Uses of Fusion

    DOE R&D Accomplishments Database

    Teller, E.

    1958-07-03

    Applications of thermonuclear energy for peaceful and constructive purposes are surveyed. Developments and problems in the release and control of fusion energy are reviewed. It is pointed out that the future of thermonuclear power reactors will depend upon the construction of a machine that produces more electric energy than it consumes. The fuel for thermonuclear reactors is cheap and practically inexhaustible. Thermonuclear reactors produce less dangerous radioactive materials than fission reactors and, when once brought under control, are not as likely to be subject to dangerous excursions. The interaction of the hot plasma with magnetic fields opens the way for the direct production of electricity. It is possible that explosive fusion energy released underground may be harnessed for the production of electricity before the same feat is accomplished in controlled fusion processes. Applications of underground detonations of fission devices in mining and for the enhancement of oil flow in large low-specific-yield formations are also suggested.

  9. Simulation of Fusion Plasmas

    ScienceCinema

    Holland, Chris [UC San Diego, San Diego, California, United States

    2016-07-12

    The upcoming ITER experiment (www.iter.org) represents the next major milestone in realizing the promise of using nuclear fusion as a commercial energy source, by moving into the “burning plasma” regime where the dominant heat source is the internal fusion reactions. As part of its support for the ITER mission, the US fusion community is actively developing validated predictive models of the behavior of magnetically confined plasmas. In this talk, I will describe how the plasma community is using the latest high performance computing facilities to develop and refine our models of the nonlinear, multiscale plasma dynamics, and how recent advances in experimental diagnostics are allowing us to directly test and validate these models at an unprecedented level.

  10. Spherical torus fusion reactor

    DOEpatents

    Peng, Yueng-Kay M.

    1989-04-04

    A fusion reactor is provided having a near spherical-shaped plasma with a modest central opening through which straight segments of toroidal field coils extend that carry electrical current for generating a toroidal magnet plasma confinement fields. By retaining only the indispensable components inboard of the plasma torus, principally the cooled toroidal field conductors and in some cases a vacuum containment vessel wall, the fusion reactor features an exceptionally small aspect ratio (typically about 1.5), a naturally elongated plasma cross section without extensive field shaping, requires low strength magnetic containment fields, small size and high beta. These features combine to produce a spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost.

  11. Spherical torus fusion reactor

    DOEpatents

    Peng, Yueng-Kay M.

    1989-01-01

    A fusion reactor is provided having a near spherical-shaped plasma with a modest central opening through which straight segments of toroidal field coils extend that carry electrical current for generating a toroidal magnet plasma confinement fields. By retaining only the indispensable components inboard of the plasma torus, principally the cooled toroidal field conductors and in some cases a vacuum containment vessel wall, the fusion reactor features an exceptionally small aspect ratio (typically about 1.5), a naturally elongated plasma cross section without extensive field shaping, requires low strength magnetic containment fields, small size and high beta. These features combine to produce a spherical torus plasma in a unique physics regime which permits compact fusion at low field and modest cost.

  12. CRYOGENICS FOR FUSION

    SciTech Connect

    Dauguet, P.; Bonneton, M.; Fauve, E.; Bernhardt, J. M.; Beauvisage, J.; Andrieu, F.; Gistau-Baguer, G. M.; Boissin, J. C.

    2008-03-16

    Fusion of Hydrogen to produce energy is one of the technologies under study to meet the mankind raising need in energy and as a substitute to fossil fuels for the future. This technology is under investigation for more than 30 years already, with, for example, the former construction of the experimental reactors Tore Supra, DIII-D and JET. With the construction of ITER to start, the next step to 'fusion for energy' will be done. In these projects, an extensive use of cryogenic systems is requested. Air Liquide has been involved as cryogenic partner in most of former and presently constructed fusion reactors. In the present paper, a review of the cryogenic systems we delivered to Tore Supra, JET, IPR and KSTAR will be presented.

  13. Intense fusion neutron sources

    NASA Astrophysics Data System (ADS)

    Kuteev, B. V.; Goncharov, P. R.; Sergeev, V. Yu.; Khripunov, V. I.

    2010-04-01

    The review describes physical principles underlying efficient production of free neutrons, up-to-date possibilities and prospects of creating fission and fusion neutron sources with intensities of 1015-1021 neutrons/s, and schemes of production and application of neutrons in fusion-fission hybrid systems. The physical processes and parameters of high-temperature plasmas are considered at which optimal conditions for producing the largest number of fusion neutrons in systems with magnetic and inertial plasma confinement are achieved. The proposed plasma methods for neutron production are compared with other methods based on fusion reactions in nonplasma media, fission reactions, spallation, and muon catalysis. At present, intense neutron fluxes are mainly used in nanotechnology, biotechnology, material science, and military and fundamental research. In the near future (10-20 years), it will be possible to apply high-power neutron sources in fusion-fission hybrid systems for producing hydrogen, electric power, and technological heat, as well as for manufacturing synthetic nuclear fuel and closing the nuclear fuel cycle. Neutron sources with intensities approaching 1020 neutrons/s may radically change the structure of power industry and considerably influence the fundamental and applied science and innovation technologies. Along with utilizing the energy produced in fusion reactions, the achievement of such high neutron intensities may stimulate wide application of subcritical fast nuclear reactors controlled by neutron sources. Superpower neutron sources will allow one to solve many problems of neutron diagnostics, monitor nano-and biological objects, and carry out radiation testing and modification of volumetric properties of materials at the industrial level. Such sources will considerably (up to 100 times) improve the accuracy of neutron physics experiments and will provide a better understanding of the structure of matter, including that of the neutron itself.

  14. Fusion welding process

    DOEpatents

    Thomas, Kenneth C.; Jones, Eric D.; McBride, Marvin A.

    1983-01-01

    A process for the fusion welding of nickel alloy steel members wherein a ferrite containing pellet is inserted into a cavity in one member and melted by a welding torch. The resulting weld nugget, a fusion of the nickel containing alloy from the members to be welded and the pellet, has a composition which is sufficiently low in nickel content such that ferrite phases occur within the weld nugget, resulting in improved weld properties. The steel alloys encompassed also include alloys containing carbon and manganese, considered nickel equivalents.

  15. Fusion for Space Propulsion

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Schmidt, George R.; Santarius, John F.; Turchi, Peter J.; Siemon, Richard E.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    The need for fusion propulsion for interplanetary flights is discussed. For a propulsion system, there are three important system attributes: (1) The absolute amount of energy available, (2) the propellant exhaust velocity, and (3) the jet power per unit mass of the propulsion system (specific power). For efficient and affordable human exploration of the solar system, propellant exhaust velocity in excess of 100 km/s and specific power in excess of 10 kW/kg are required. Chemical combustion obviously cannot meet the requirement in propellant exhaust velocity. Nuclear fission processes typically result in producing energy in the form of heat that needs to be manipulated at temperatures limited by materials to about 2,800 K. Using the fission energy to heat a low atomic weight propellant produces propellant velocity of the order of 10 kinds. Alternatively the fission energy can be converted into electricity that is used to accelerate particles to high exhaust velocity. However, the necessary power conversion and conditioning equipment greatly increases the mass of the propulsion system. Fundamental considerations in waste heat rejection and power conditioning in a fission electric propulsion system place a limit on its jet specific power to the order of about 0.2 kW/kg. If fusion can be developed for propulsion, it appears to have the best of all worlds - it can provide the largest absolute amount of energy, the propellant exhaust velocity (> 100 km/s), and the high specific jet power (> 10 kW/kg). An intermediate step towards fusion propulsion might be a bimodal system in which a fission reactor is used to provide some of the energy to drive a fusion propulsion unit. There are similarities as well as differences between applying fusion to propulsion and to terrestrial electrical power generation. The similarities are the underlying plasma and fusion physics, the enabling component technologies, the computational and the diagnostics capabilities. These physics and

  16. Atomic data for fusion

    SciTech Connect

    Hunter, H.T.; Kirkpatrick, M.I.; Alvarez, I.; Cisneros, C.; Phaneuf, R.A.; Barnett, C.F.

    1990-07-01

    This report provides a handbook of recommended cross-section and rate-coefficient data for inelastic collisions between hydrogen, helium and lithium atoms, molecules and ions, and encompasses more than 400 different reactions of primary interest in fusion research. Published experimental and theoretical data have been collected and evaluated, and the recommended data are presented in tabular, graphical and parametrized form. Processes include excitation and spectral line emission, charge exchange, ionization, stripping, dissociation and particle interchange reactions. The range of collision energies is appropriate to applications in fusion-energy research.

  17. Cell-Cell Interactions during pollen tube guidance

    SciTech Connect

    Daphne Preuss

    2009-03-31

    The long-term goal of this research is to identify the signaling molecules that mediate plant cell-cell interactions during pollination. The immediate goals of this project are to perform genetic and molecular analysis of pollen tube guidance. Specifically, we proposed to: 1. Characterize the pistil components that direct pollen tube navigation using the Arabidopsis thaliana in vitro pollen tube guidance system 2. Identify pistil signals that direct pollen tube guidance by a) using microarrays to profile gene expression in developing pistils, and b) employing proteomics and metabolomics to isolate pollen tube guidance signals. 3. Explore the genetic basis of natural variation in guidance signals, comparing the in vitro interactions between pollen and pistils from A. thaliana and its close relatives.

  18. Rapid Prototyping of Heterotypic Cell-Cell Contacts

    PubMed Central

    Scott, Carl; Ho, Chia-Chi; Co, Carlos C.

    2014-01-01

    Disparities in cellular behaviour between cultures of a single cell type and heterogeneous co-cultures require constructing spatially-defined arrays of multiple cell types. Such arrays are critical for investigating cellular properties as they exist in vivo. Current methods rely upon covalent surface modification or external physical micromanipulation to control cellular organization on a limited range of substrates. Here, we report a direct approach for creating co-cultures of different cell types by microcontact printing a photosensitive cell resist. The cell-resistant polymer converts to cell adhesive 0 with light exposure, thus the initial copolymer pattern dictates the position of both cell types. This strategy enables straightforward preparation of tailored heterotypic cell-cell contacts on materials ranging from polymers to metallic substrates. PMID:24466428

  19. Multisensor data fusion algorithm development

    SciTech Connect

    Yocky, D.A.; Chadwick, M.D.; Goudy, S.P.; Johnson, D.K.

    1995-12-01

    This report presents a two-year LDRD research effort into multisensor data fusion. We approached the problem by addressing the available types of data, preprocessing that data, and developing fusion algorithms using that data. The report reflects these three distinct areas. First, the possible data sets for fusion are identified. Second, automated registration techniques for imagery data are analyzed. Third, two fusion techniques are presented. The first fusion algorithm is based on the two-dimensional discrete wavelet transform. Using test images, the wavelet algorithm is compared against intensity modulation and intensity-hue-saturation image fusion algorithms that are available in commercial software. The wavelet approach outperforms the other two fusion techniques by preserving spectral/spatial information more precisely. The wavelet fusion algorithm was also applied to Landsat Thematic Mapper and SPOT panchromatic imagery data. The second algorithm is based on a linear-regression technique. We analyzed the technique using the same Landsat and SPOT data.

  20. Fusion engineering device design description

    SciTech Connect

    Flanagan, C.A.; Steiner, D.; Smith, G.E.

    1981-12-01

    The US Magnetic Fusion Engineering Act of 1980 calls for the operation of a Fusion Engineering Device (FED) by 1990. It is the intent of the Act that the FED, in combination with other testing facilities, will establish the engineering feasibility of magnetic fusion energy. During 1981, the Fusion Engineering Design Center (FEDC), under the guidance of a Technical Management Board (TMB), developed a baseline design for the FED. This design is summarized herein.

  1. Fusion Engineering Device design description

    SciTech Connect

    Flanagan, C.A.; Steiner, D.; Smith, G.E.

    1981-12-01

    The US Magnetic Fusion Engineering Act of 1980 calls for the operation of a Fusion Engineering Device (FED) by 1990. It is the intent of the Act that the FED, in combination with other testing facilities, will establish the engineering feasibility of magnetic fusion energy. During 1981, the Fusion Engineering Design Center (FEDC), under the guidance of a Technical Management Board (TMB), developed a baseline design for the FED. This design is summarized herein.

  2. Human-Centered Fusion Framework

    SciTech Connect

    Posse, Christian; White, Amanda M.; Beagley, Nathaniel

    2007-05-16

    In recent years the benefits of fusing signatures extracted from large amounts of distributed and/or heterogeneous data sources have been largely documented in various problems ranging from biological protein function prediction to cyberspace monitoring. In spite of significant progress in information fusion research, there is still no formal theoretical framework for defining various types of information fusion systems, defining and analyzing relations among such types, and designing information fusion systems using a formal method approach. Consequently, fusion systems are often poorly understood, are less than optimal, and/or do not suit user needs. To start addressing these issues, we outline a formal humancentered fusion framework for reasoning about fusion strategies. Our approach relies on a new taxonomy for fusion strategies, an alternative definition of information fusion in terms of parameterized paths in signature related spaces, an algorithmic formalization of fusion strategies and a library of numeric and dynamic visual tools measuring the impact as well as the impact behavior of fusion strategies. Using a real case of intelligence analysis we demonstrate that the proposed framework enables end users to rapidly 1) develop and implement alternative fusion strategies, 2) understand the impact of each strategy, 3) compare the various strategies, and 4) perform the above steps without having to know the mathematical foundations of the framework. We also demonstrate that the human impact on a fusion system is critical in the sense that small changes in strategies do not necessarily correspond to small changes in results.

  3. A fusion of minds

    NASA Astrophysics Data System (ADS)

    Corfield, Richard

    2013-02-01

    Mystery still surrounds the visit of the astronomer Sir Bernard Lovell to the Soviet Union in 1963. But his collaboration - and that of other British scientists - eased geopolitical tensions at the height of the Cold War and paved the way for today's global ITER fusion project, as Richard Corfield explains.

  4. Bubble fusion: Preliminary estimates

    SciTech Connect

    Krakowski, R.A.

    1995-02-01

    The collapse of a gas-filled bubble in disequilibrium (i.e., internal pressure {much_lt} external pressure) can occur with a significant focusing of energy onto the entrapped gas in the form of pressure-volume work and/or acoustical shocks; the resulting heating can be sufficient to cause ionization and the emission of atomic radiations. The suggestion that extreme conditions necessary for thermonuclear fusion to occur may be possible has been examined parametrically in terms of the ratio of initial bubble pressure relative to that required for equilibrium. In this sense, the disequilibrium bubble is viewed as a three-dimensional ``sling shot`` that is ``loaded`` to an extent allowed by the maximum level of disequilibrium that can stably be achieved. Values of this disequilibrium ratio in the range 10{sup {minus}5}--10{sup {minus}6} are predicted by an idealized bubble-dynamics model as necessary to achieve conditions where nuclear fusion of deuterium-tritium might be observed. Harmonic and aharmonic pressurizations/decompressions are examined as means to achieve the required levels of disequilibrium required to create fusion conditions. A number of phenomena not included in the analysis reported herein could enhance or reduce the small levels of nuclear fusions predicted.

  5. Mars manned fusion spaceship

    SciTech Connect

    Hedrick, J.; Buchholtz, B.; Ward, P.; Freuh, J.; Jensen, E.

    1991-01-01

    Fusion Propulsion has an enormous potential for space exploration in the near future. In the twenty-first century, a usable and efficient fusion rocket will be developed and in use. Because of the great distance between other planets and Earth, efficient use of time, fuel, and payload is essential. A nuclear spaceship would provide greater fuel efficiency, less travel time, and a larger payload. Extended missions would give more time for research, experiments, and data acquisition. With the extended mission time, a need for an artificial environment exists. The topics of magnetic fusion propulsion, living modules, artificial gravity, mass distribution, space connection, and orbital transfer to Mars are discussed. The propulsion system is a magnetic fusion reactor based on a tandem mirror design. This allows a faster, shorter trip time and a large thrust to weight ratio. The fuel proposed is a mixture of deuterium and helium. Helium can be obtained from lunar mining. There will be minimal external radiation from the reactor resulting in a safe, efficient propulsion system.

  6. Multilevel fusion exploitation

    NASA Astrophysics Data System (ADS)

    Lindberg, Perry C.; Dasarathy, Belur V.; McCullough, Claire L.

    1996-06-01

    This paper describes a project that was sponsored by the U.S. Army Space and Strategic Defense Command (USASSDC) to develop, test, and demonstrate sensor fusion algorithms for target recognition. The purpose of the project was to exploit the use of sensor fusion at all levels (signal, feature, and decision levels) and all combinations to improve target recognition capability against tactical ballistic missile (TBM) targets. These algorithms were trained with simulated radar signatures to accurately recognize selected TBM targets. The simulated signatures represent measurements made by two radars (S-band and X- band) with the targets at a variety of aspect and roll angles. Two tests were conducted: one with simulated signatures collected at angles different from those in the training database and one using actual test data. The test results demonstrate a high degree of recognition accuracy. This paper describes the training and testing techniques used; shows the fusion strategy employed; and illustrates the advantages of exploiting multi-level fusion.

  7. Mars manned fusion spaceship

    NASA Technical Reports Server (NTRS)

    Hedrick, James; Buchholtz, Brent; Ward, Paul; Freuh, Jim; Jensen, Eric

    1991-01-01

    Fusion Propulsion has an enormous potential for space exploration in the near future. In the twenty-first century, a usable and efficient fusion rocket will be developed and in use. Because of the great distance between other planets and Earth, efficient use of time, fuel, and payload is essential. A nuclear spaceship would provide greater fuel efficiency, less travel time, and a larger payload. Extended missions would give more time for research, experiments, and data acquisition. With the extended mission time, a need for an artificial environment exists. The topics of magnetic fusion propulsion, living modules, artificial gravity, mass distribution, space connection, and orbital transfer to Mars are discussed. The propulsion system is a magnetic fusion reactor based on a tandem mirror design. This allows a faster, shorter trip time and a large thrust to weight ratio. The fuel proposed is a mixture of deuterium and helium-3. Helium-3 can be obtained from lunar mining. There will be minimal external radiation from the reactor resulting in a safe, efficient propulsion system.

  8. Fusion reactor materials

    SciTech Connect

    none,

    1989-01-01

    This paper discuses the following topics on fusion reactor materials: irradiation, facilities, test matrices, and experimental methods; dosimetry, damage parameters, and activation calculations; materials engineering and design requirements; fundamental mechanical behavior; radiation effects; development of structural alloys; solid breeding materials; and ceramics.

  9. Enhanced image capture through fusion

    NASA Technical Reports Server (NTRS)

    Burt, Peter J.; Hanna, Keith; Kolczynski, Raymond J.

    1993-01-01

    Image fusion may be used to combine images from different sensors, such as IR and visible cameras, to obtain a single composite with extended information content. Fusion may also be used to combine multiple images from a given sensor to form a composite image in which information of interest is enhanced. We present a general method for performing image fusion and show that this method is effective for diverse fusion applications. We suggest that fusion may provide a powerful tool for enhanced image capture with broad utility in image processing and computer vision.

  10. Accelerators for heavy ion fusion

    SciTech Connect

    Bangerter, R.O.

    1985-10-01

    Large fusion devices will almost certainly produce net energy. However, a successful commercial fusion energy system must also satisfy important engineering and economic constraints. Inertial confinement fusion power plants driven by multi-stage, heavy-ion accelerators appear capable of meeting these constraints. The reasons behind this promising outlook for heavy-ion fusion are given in this report. This report is based on the transcript of a talk presented at the Symposium on Lasers and Particle Beams for Fusion and Strategic Defense at the University of Rochester on April 17-19, 1985.

  11. The path to fusion power.

    PubMed

    Llewellyn Smith, Chris; Ward, David

    2007-04-15

    Fusion is potentially an environmentally responsible and intrinsically safe source of essentially limitless power. It should be possible to build viable fusion power stations, and it looks as if the cost of fusion power will be reasonable. But time is needed to further develop the technology and to test in power station conditions the materials that would be used in their construction. Assuming no major adverse surprises, an orderly fusion development programme could lead to a prototype fusion power station putting electricity into the grid within 30 years, with commercial fusion power following some 10 or more years later. In the second half of the century, fusion could therefore be an important part of the portfolio of measures that are needed to cope with rising demand for energy in an environmentally responsible manner. In this paper, we describe the basics of fusion, its potential attractions, the status of fusion R&D, the remaining challenges and how they will be tackled at the International Tokamak Experimental Reactor and the proposed International Fusion Materials Irradiation Facility, and the timetable for the subsequent commercialization of fusion power. PMID:17272246

  12. The Need for Fusion Propulsion

    NASA Technical Reports Server (NTRS)

    Cassibry, Jason

    2005-01-01

    Fusion propulsion is inevitable if the human race remains dedicated to exploration of the solar system. There are fundamental reasons why fusion surpasses more traditional approaches to routine crewed missions to Mars, crewed missions to the outer planets, and deep space high speed robotic missions, assuming that reduced trip times, increased payloads, and higher available power are desired. A recent series of informal discussions were held among members from government, academia, and industry concerning fusion propulsion. We compiled a sufficient set of arguments for utilizing fusion in space. If the U.S. is to lead the effort and produce a working system in a reasonable amount of time, NASA must take the initiative, relying on, but not waiting for, DOE guidance. In this talk those arguments for fusion propulsion are presented, along with fusion enabled mission examples, fusion technology trade space, and a proposed outline for future efforts.

  13. Trypsin- and low pH-mediated fusogenicity of avian metapneumovirus fusion proteins is determined by residues at positions 100, 101 and 294

    PubMed Central

    Yun, Bingling; Guan, Xiaolu; Liu, Yongzhen; Gao, Yanni; Wang, Yongqiang; Qi, Xiaole; Cui, Hongyu; Liu, Changjun; Zhang, Yanping; Gao, Li; Li, Kai; Gao, Honglei; Gao, Yulong; Wang, Xiaomei

    2015-01-01

    Avian metapneumovirus (aMPV) and human metapneumovirus (hMPV) are members of the genus Metapneumovirus in the subfamily Pneumovirinae. Metapneumovirus fusion (F) protein mediates the fusion of host cells with the virus membrane for infection. Trypsin- and/or low pH-induced membrane fusion is a strain-dependent phenomenon for hMPV. Here, we demonstrated that three subtypes of aMPV (aMPV/A, aMPV/B, and aMPV/C) F proteins promoted cell-cell fusion in the absence of trypsin. Indeed, in the presence of trypsin, only aMPV/C F protein fusogenicity was enhanced. Mutagenesis of the amino acids at position 100 and/or 101, located at a putative cleavage region in aMPV F proteins, revealed that the trypsin-mediated fusogenicity of aMPV F proteins is regulated by the residues at positions 100 and 101. Moreover, we demonstrated that aMPV/A and aMPV/B F proteins mediated cell-cell fusion independent of low pH, whereas the aMPV/C F protein did not. Mutagenesis of the residue at position 294 in the aMPV/A, aMPV/B, and aMPV/C F proteins showed that 294G played a critical role in F protein-mediated fusion under low pH conditions. These findings on aMPV F protein-induced cell-cell fusion provide new insights into the molecular mechanisms underlying membrane fusion and pathogenesis of aMPV. PMID:26498473

  14. The cowpox virus fusion regulator proteins SPI-3 and hemagglutinin interact in infected and uninfected cells.

    PubMed

    Turner, Peter C; Moyer, Richard W

    2006-03-30

    The serpin SPI-3 and the hemagglutinin (HA) encoded by cowpox virus (CPV) block cell-cell fusion, and colocalize at the cell surface. wtCPV does not fuse cells, but inactivation of either gene leads to fusion. SPI-3 mAb added to wtCPV-infected cells caused fusion, confirming that SPI-3 protein at the cell surface prevents fusion. The SPI-3 mAb epitope mapped to an 85-amino acid region at the C-terminus. Removal of either 44 residues from the SPI-3 C-terminus or 48 residues following the N-terminal signal sequence resulted in fusion. Interaction between SPI-3 and HA proteins in infected cells was shown by coimmunoprecipitation. SPI-3/HA was not associated with the A27L "fusion" protein. SPI-3 and HA were able to associate in uninfected cells in the absence of other viral proteins. The HA-binding domain in SPI-3 resided in the C-terminal 229 residues, and did not include helix D, which mediates cofactor interaction in many other serpins.

  15. The temperature arrested intermediate of virus-cell fusion is a functional step in HIV infection.

    PubMed

    Henderson, Hamani I; Hope, Thomas J

    2006-05-25

    HIV entry occurs via membrane-mediated fusion of virus and target cells. Interactions between gp120 and cellular co-receptors lead to both the formation of fusion pores and release of the HIV genome into target cells. Studies using cell-cell fusion assays have demonstrated that a temperature-arrested state (TAS) can generate a stable intermediate in fusion related events. Other studies with MLV pseudotyped with HIV envelope also found that a temperature sensitive intermediate could be generated as revealed by the loss of a fluorescently labeled membrane. However, such an intermediate has never been analyzed in the context of virus infection. Therefore, we used virus-cell infection with replication competent HIV to gain insights into virus-cell fusion. We find that the TAS is an intermediate in the process culminating in the HIV infection of a target cell. In the virion-cell TAS, CD4 has been engaged, the heptad repeats of gp41 are exposed and the complex is kinetically predisposed to interact with coreceptor to complete the fusion event leading to infection.

  16. Heterochrony as Diachronically Modified Cell-Cell Interactions

    PubMed Central

    Torday, John S.

    2016-01-01

    Heterochrony is an enabling concept in evolution theory that metaphorically captures the mechanism of biologic change due to mechanisms of growth and development. The spatio-temporal patterns of morphogenesis are determined by cell-to-cell signaling mediated by specific soluble growth factors and their cognate receptors on nearby cells of different germline origins. Subsequently, down-stream production of second messengers generates patterns of form and function. Environmental upheavals such as Romer’s hypothesized drying up of bodies of water globally caused the vertebrate water-land transition. That transition caused physiologic stress, modifying cell-cell signaling to generate terrestrial adaptations of the skeleton, lung, skin, kidney and brain. These tissue-specific remodeling events occurred as a result of the duplication of the Parathyroid Hormone-related Protein Receptor (PTHrPR) gene, expressed in mesodermal fibroblasts in close proximity to ubiquitously expressed endodermal PTHrP, amplifying this signaling pathway. Examples of how and why PTHrPR amplification affected the ontogeny, phylogeny, physiology and pathophysiology of the lung are used to substantiate and further our understanding through insights to the heterochronic mechanisms of evolution, such as the fish swim bladder evolving into the vertebrate lung, interrelated by such functional homologies as surfactant and mechanotransduction. Instead of the conventional description of this phenomenon, lung evolution can now be understood as adaptive changes in the cellular-molecular signaling mechanisms underlying its ontogeny and phylogeny. PMID:26784244

  17. Precision of multicellular gradient sensing with cell-cell communication

    NASA Astrophysics Data System (ADS)

    Mugler, Andrew; Levchenko, Andre; Nemenman, Ilya

    Gradient sensing underlies diverse biological processes. In principle, bigger ``detectors'' (cells or groups of cells) make better sensors, since then concentrations measured at the front and back of a detector are more different, and the gradient can be determined with higher precision. Indeed, experiments have shown that populations of cells detect gradients more precisely than single cells. However, this argument neglects the fact that information must be communicated between different parts of the detector, and the communication process introduces its own noise. Here we derive the fundamental limits to the precision of gradient sensing with cell-cell communication and temporal integration. We find that communication imposes its own sensory length scale, beyond which the precision cannot increase no matter how large the cell population grows. We also find that temporal integration couples the internal communication with the external signal diffusion, imposing an additional limit on the precision. We discuss how these limits can be improved by a strategy with two communicated molecular species, which we term ``regional excitation--global inhibition''. We compare our findings to experiments with communicating epithelial cells, and infer a sensor length scale of about 4 cells.

  18. The Evolutionary Origin of Epithelial Cell-Cell Adhesion Mechanisms

    PubMed Central

    Miller, Phillip W.; Clarke, Donald N.; Weis, William I.; Lowe, Christopher J.; Nelson, W. James

    2014-01-01

    SUMMARY A simple epithelium forms a barrier between the outside and the inside of an organism, and is the first organized multicellular tissue found in evolution. We examine the relationship between the evolution of epithelia and specialized cell-cell adhesion proteins comprising the classical cadherin/β-catenin/α-catenin complex (CCC). A review of the divergent functional properties of the CCC in metazoans and non-metazoans, and an updated phylogenetic coverage of the CCC using recent genomic data reveal: 1) The core CCC likely originated before the last common ancestor of unikonts and their closest bikont sister taxa. 2) Formation of the CCC may have constrained sequence evolution of the classical cadherin cytoplasmic domain and β-catenin in metazoa. 3) The α-catenin binding domain in β-catenin appears to be the favored mutation site for disrupting β-catenin function in the CCC. 4) The ancestral function of the α/β-catenin heterodimer appears to be an actin-binding module. In some metazoan groups, more complex functions of α-catenin were gained by sequence divergence in the non-actin binding (N-, M-) domains. 5) Allosteric regulation of α-catenin, rather than loss of function mutations, may have evolved for more complex regulation of the actin cytoskeleton. PMID:24210433

  19. Homophilic Protocadherin Cell-Cell Interactions Promote Dendrite Complexity.

    PubMed

    Molumby, Michael J; Keeler, Austin B; Weiner, Joshua A

    2016-05-01

    Growth of a properly complex dendrite arbor is a key step in neuronal differentiation and a prerequisite for neural circuit formation. Diverse cell surface molecules, such as the clustered protocadherins (Pcdhs), have long been proposed to regulate circuit formation through specific cell-cell interactions. Here, using transgenic and conditional knockout mice to manipulate γ-Pcdh repertoire in the cerebral cortex, we show that the complexity of a neuron's dendritic arbor is determined by homophilic interactions with other cells. Neurons expressing only one of the 22 γ-Pcdhs can exhibit either exuberant or minimal dendrite complexity, depending only on whether surrounding cells express the same isoform. Furthermore, loss of astrocytic γ-Pcdhs, or disruption of astrocyte-neuron homophilic matching, reduces dendrite complexity cell non-autonomously. Our data indicate that γ-Pcdhs act locally to promote dendrite arborization via homophilic matching, and they confirm that connectivity in vivo depends on molecular interactions between neurons and between neurons and astrocytes.

  20. Unconventional approaches to fusion

    SciTech Connect

    Brunelli, B.; Leotta, G.G.

    1982-01-01

    This volume is dedicated to unconventional approaches to fusionthose thermonuclear reactors that, in comparison with Tokamak and other main lines, have received little attention in the worldwide scientific community. Many of the approaches considered are still in the embryonic stages. The authors-an international group of active nuclear scientists and engineers-focus on the parameters achieved in the use of these reactors and on the meaning of the most recent physical studies and their implications for the future. They also compare these approaches with conventional ones, the Tokamak in particular, stressing the non-plasma-physics requirements of fusion reactors. Unconventional compact toroids, linear systems, and multipoles are considered, as are the ''almost conventional'' fusion machines: stellarators, mirrors, reversed-field pinches, and EBT.

  1. Fusion Data Grid Service

    NASA Astrophysics Data System (ADS)

    Shasharina, Svetlana; Wang, Nanbor

    2004-11-01

    Simulations and experiments in the fusion and plasma physics community generate large datasets at remote sites. Visualization and analysis of these datasets are difficult because of the incompatibility among the various data formats adopted by simulation, experiments, and analysis tools, and the large sizes of analyzed data. Grids and Web Services technologies are capable of providing solutions for such heterogeneous settings, but need to be customized to the field-specific needs and merged with distributed technologies currently used by the community. This paper describes how we are addressing these issues in the Fusion Grid Service under development. We also present performance results of relevant data transfer mechanisms including binary SOAP, DIME, GridFTP and MDSplus and CORBA. We will describe the status of data converters (between HDF5 and MDSplus data types), developed in collaboration with MIT (J. Stillerman). Finally, we will analyze bottlenecks of MDSplus data transfer mechanism (work performed in collaboration with General Atomics (D. Schissel and M. Qian).

  2. Fusion pumped laser

    DOEpatents

    Pappas, D.S.

    1987-07-31

    The apparatus of this invention may comprise a system for generating laser radiation from a high-energy neutron source. The neutron source is a tokamak fusion reactor generating a long pulse of high-energy neutrons and having a temperature and magnetic field effective to generate a neutron flux of at least 10/sup 15/ neutrons/cm/sup 2//center dot/s. Conversion means are provided adjacent the fusion reactor at a location operable for converting the high-energy neutrons to an energy source with an intensity and energy effective to excite a preselected lasing medium. A lasing medium is spaced about and responsive to the energy source to generate a population inversion effective to support laser oscillations for generating output radiation. 2 figs., 2 tabs.

  3. Experiments in cold fusion

    SciTech Connect

    Palmer, E.P.

    1986-03-28

    The work of Steve Jones and others in muon-catalyzed cold fusion of deuterium and hydrogen suggests the possibility of such fusion catalyzed by ions, or combinations of atoms, or more-or-less free electrons in solid and liquid materials. A hint that this might occur naturally comes from the heat generated in volcanic action in subduction zones on the earth. It is questionable whether the potential energy of material raised to the height of a midocean ridge and falling to the depth of an ocean trench can produce the geothermal effects seen in the volcanoes of subduction zones. If the ridge, the trench, the plates, and the asthenosphere are merely visible effects of deeper density-gradient driven circulations, it is still uncertain that observed energy-concentration effects fit the models.

  4. Modular Aneutronic Fusion Engine

    SciTech Connect

    Gary Pajer, Yosef Razin, Michael Paluszek, A.H. Glasser and Samuel Cohen

    2012-05-11

    NASA's JUNO mission will arrive at Jupiter in July 2016, after nearly five years in space. Since operational costs tend to rise with mission time, minimizing such times becomes a top priority. We present the conceptual design for a 10MW aneutronic fusion engine with high exhaust velocities that would reduce transit time for a Jupiter mission to eighteen months and enable more challenging exploration missions in the solar system and beyond. __________________________________________________

  5. Inertial Confinement fusion targets

    NASA Technical Reports Server (NTRS)

    Hendricks, C. D.

    1982-01-01

    Inertial confinement fusion (ICF) targets are made as simple flat discs, as hollow shells or as complicated multilayer structures. Many techniques were devised for producing the targets. Glass and metal shells are made by using drop and bubble techniques. Solid hydrogen shells are also produced by adapting old methods to the solution of modern problems. Some of these techniques, problems, and solutions are discussed. In addition, the applications of many of the techniques to fabrication of ICF targets is presented.

  6. (Fusion energy research)

    SciTech Connect

    Phillips, C.A.

    1988-01-01

    This report discusses the following topics: principal parameters achieved in experimental devices (FY88); tokamak fusion test reactor; Princeton beta Experiment-Modification; S-1 Spheromak; current drive experiment; x-ray laser studies; spacecraft glow experiment; plasma deposition and etching of thin films; theoretical plasma; tokamak modeling; compact ignition tokamak; international thermonuclear experimental reactor; Engineering Department; Project Planning and Safety Office; quality assurance and reliability; and technology transfer.

  7. Fusion development and technology

    SciTech Connect

    Montgomery, D.B.

    1992-01-01

    This report discusses the following: superconducting magnet technology; high field superconductors; advanced magnetic system and divertor development; poloidal field coils; gyrotron development; commercial reactor studies--aries; ITER physics: alpha physics and alcator R D for ITER; lower hybrid current drive and heating in the ITER device; ITER superconducting PF scenario and magnet analysis; ITER systems studies; and safety, environmental and economic factors in fusion development.

  8. Characterization of a highly conserved domain within the severe acute respiratory syndrome coronavirus spike protein S2 domain with characteristics of a viral fusion peptide.

    PubMed

    Madu, Ikenna G; Roth, Shoshannah L; Belouzard, Sandrine; Whittaker, Gary R

    2009-08-01

    Many viral fusion proteins are primed by proteolytic cleavage near their fusion peptides. While the coronavirus (CoV) spike (S) protein is known to be cleaved at the S1/S2 boundary, this cleavage site is not closely linked to a fusion peptide. However, a second cleavage site has been identified in the severe acute respiratory syndrome CoV (SARS-CoV) S2 domain (R797). Here, we investigated whether this internal cleavage of S2 exposes a viral fusion peptide. We show that the residues immediately C-terminal to the SARS-CoV S2 cleavage site SFIEDLLFNKVTLADAGF are very highly conserved across all CoVs. Mutagenesis studies of these residues in SARS-CoV S, followed by cell-cell fusion and pseudotyped virion infectivity assays, showed a critical role for residues L803, L804, and F805 in membrane fusion. Mutation of the most N-terminal residue (S798) had little or no effect on membrane fusion. Biochemical analyses of synthetic peptides corresponding to the proposed S2 fusion peptide also showed an important role for this region in membrane fusion and indicated the presence of alpha-helical structure. We propose that proteolytic cleavage within S2 exposes a novel internal fusion peptide for SARS-CoV S, which may be conserved across the Coronaviridae.

  9. Characterization of a Highly Conserved Domain within the Severe Acute Respiratory Syndrome Coronavirus Spike Protein S2 Domain with Characteristics of a Viral Fusion Peptide▿

    PubMed Central

    Madu, Ikenna G.; Roth, Shoshannah L.; Belouzard, Sandrine; Whittaker, Gary R.

    2009-01-01

    Many viral fusion proteins are primed by proteolytic cleavage near their fusion peptides. While the coronavirus (CoV) spike (S) protein is known to be cleaved at the S1/S2 boundary, this cleavage site is not closely linked to a fusion peptide. However, a second cleavage site has been identified in the severe acute respiratory syndrome CoV (SARS-CoV) S2 domain (R797). Here, we investigated whether this internal cleavage of S2 exposes a viral fusion peptide. We show that the residues immediately C-terminal to the SARS-CoV S2 cleavage site SFIEDLLFNKVTLADAGF are very highly conserved across all CoVs. Mutagenesis studies of these residues in SARS-CoV S, followed by cell-cell fusion and pseudotyped virion infectivity assays, showed a critical role for residues L803, L804, and F805 in membrane fusion. Mutation of the most N-terminal residue (S798) had little or no effect on membrane fusion. Biochemical analyses of synthetic peptides corresponding to the proposed S2 fusion peptide also showed an important role for this region in membrane fusion and indicated the presence of α-helical structure. We propose that proteolytic cleavage within S2 exposes a novel internal fusion peptide for SARS-CoV S, which may be conserved across the Coronaviridae. PMID:19439480

  10. Cold fusion studies

    NASA Astrophysics Data System (ADS)

    Hembree, D. M.; Burchfield, L. A.; Fuller, E. L., Jr.; Perey, F. G.; Mamantov, G.

    1990-06-01

    A series of experiments designed to detect the by-products expected from deuterium fusion occurring in the palladium and titanium cathodes of heavy water, D2O, electrolysis cells is reported. The primary purpose of this account is to outline the integrated experimental design developed to test the cold fusion hypothesis and to report preliminary results that support continuing the investigation. Apparent positive indicators of deuterium fusion were observed, but could not be repeated or proved to originate from the electrochemical cells. In one instance, two large increases in the neutron count rate, the largest of which exceeded the background by 27 standard deviations, were observed. In a separate experiment, one of the calorimetry cells appeared to be producing approximately 18 percent more power that the input value, but thermistor failure prevented an accurate recording of the event as a function of time. In general, the tritium levels in most cells followed the slow enrichment expected from the electrolysis of D2O containing a small amount of tritium. However, after 576 hours of electrolysis, one cell developed a tritium concentration approximately seven times greater than expected level.

  11. Sensor fusion for synthetic vision

    NASA Technical Reports Server (NTRS)

    Pavel, M.; Larimer, J.; Ahumada, A.

    1991-01-01

    Display methodologies are explored for fusing images gathered by millimeter wave sensors with images rendered from an on-board terrain data base to facilitate visually guided flight and ground operations in low visibility conditions. An approach to fusion based on multiresolution image representation and processing is described which facilitates fusion of images differing in resolution within and between images. To investigate possible fusion methods, a workstation-based simulation environment is being developed.

  12. Inertial fusion research in China

    NASA Astrophysics Data System (ADS)

    He, X. T.; Zhang, W. Y.

    2007-08-01

    The goal of the first milestone of the inertial fusion program in China is to reach fusion ignition and plasma burning in about 2020. Under the program, in the past years, the inertial fusion physics research achieved great progress; the laser facilities and the support technologies for laser drivers are advanced; the advanced diagnostic techniques are developed and the relatively integrated system is set up; the precise target fabrications are coordinately developed.

  13. Lithium question for nuclear fusion

    SciTech Connect

    Shieh, P.S.S.

    1981-01-01

    An attempt is made to estimate the lithium reserve (the economically recoverable lithium) for the tritium breeding in D-T fusion reactors and other uses. Similar development patterns for fusion energy and fission energy are assumed to estimate the future lithium requirements. These requirements are grouped into three categories; the commercial uses, the lithium batteries for electric cars, and the fusion reactor uses. 5 refs.

  14. EDITORIAL: The Nuclear Fusion Award The Nuclear Fusion Award

    NASA Astrophysics Data System (ADS)

    Kikuchi, M.

    2011-01-01

    The Nuclear Fusion Award ceremony for 2009 and 2010 award winners was held during the 23rd IAEA Fusion Energy Conference in Daejeon. This time, both 2009 and 2010 award winners were celebrated by the IAEA and the participants of the 23rd IAEA Fusion Energy Conference. The Nuclear Fusion Award is a paper prize to acknowledge the best distinguished paper among the published papers in a particular volume of the Nuclear Fusion journal. Among the top-cited and highly-recommended papers chosen by the Editorial Board, excluding overview and review papers, and by analyzing self-citation and non-self-citation with an emphasis on non-self-citation, the Editorial Board confidentially selects ten distinguished papers as nominees for the Nuclear Fusion Award. Certificates are given to the leading authors of the Nuclear Fusion Award nominees. The final winner is selected among the ten nominees by the Nuclear Fusion Editorial Board voting confidentially. 2009 Nuclear Fusion Award nominees For the 2009 award, the papers published in the 2006 volume were assessed and the following papers were nominated, most of which are magnetic confinement experiments, theory and modeling, while one addresses inertial confinement. Sabbagh S.A. et al 2006 Resistive wall stabilized operation in rotating high beta NSTX plasmas Nucl. Fusion 46 635-44 La Haye R.J. et al 2006 Cross-machine benchmarking for ITER of neoclassical tearing mode stabilization by electron cyclotron current drive Nucl. Fusion 46 451-61 Honrubia J.J. et al 2006 Three-dimensional fast electron transport for ignition-scale inertial fusion capsules Nucl. Fusion 46 L25-8 Ido T. et al 2006 Observation of the interaction between the geodesic acoustic mode and ambient fluctuation in the JFT-2M tokamak Nucl. Fusion 46 512-20 Plyusnin V.V. et al 2006 Study of runaway electron generation during major disruptions in JET Nucl. Fusion 46 277-84 Pitts R.A. et al 2006 Far SOL ELM ion energies in JET Nucl. Fusion 46 82-98 Berk H.L. et al 2006

  15. High Level Information Fusion (HLIF) with nested fusion loops

    NASA Astrophysics Data System (ADS)

    Woodley, Robert; Gosnell, Michael; Fischer, Amber

    2013-05-01

    Situation modeling and threat prediction require higher levels of data fusion in order to provide actionable information. Beyond the sensor data and sources the analyst has access to, the use of out-sourced and re-sourced data is becoming common. Through the years, some common frameworks have emerged for dealing with information fusion—perhaps the most ubiquitous being the JDL Data Fusion Group and their initial 4-level data fusion model. Since these initial developments, numerous models of information fusion have emerged, hoping to better capture the human-centric process of data analyses within a machine-centric framework. 21st Century Systems, Inc. has developed Fusion with Uncertainty Reasoning using Nested Assessment Characterizer Elements (FURNACE) to address challenges of high level information fusion and handle bias, ambiguity, and uncertainty (BAU) for Situation Modeling, Threat Modeling, and Threat Prediction. It combines JDL fusion levels with nested fusion loops and state-of-the-art data reasoning. Initial research has shown that FURNACE is able to reduce BAU and improve the fusion process by allowing high level information fusion (HLIF) to affect lower levels without the double counting of information or other biasing issues. The initial FURNACE project was focused on the underlying algorithms to produce a fusion system able to handle BAU and repurposed data in a cohesive manner. FURNACE supports analyst's efforts to develop situation models, threat models, and threat predictions to increase situational awareness of the battlespace. FURNACE will not only revolutionize the military intelligence realm, but also benefit the larger homeland defense, law enforcement, and business intelligence markets.

  16. OCULUS Sea Track Fusion Service

    NASA Astrophysics Data System (ADS)

    Panagiotou, Stylianos C.; Rizogiannis, Constantinos; Katsoulis, Stavros; Lampropoulos, Vassilis; Kanellopoulos, Sotirios; Thomopoulos, Stelios C. A.

    2015-06-01

    Oculus Sea is a complete solution regarding maritime surveillance and communications at Local as well as Central Command and Control level. It includes a robust and independent track fusion service whose main functions include: 1) Interaction with the User to suggest the fusion of two or more tracks, confirm Track ID and Vessel Metadata creation for the fused track, and suggest de-association of two tracks 2) Fusion of same vessel tracks arriving simultaneously from multiple radar sensors featuring track Association, track Fusion of associated tracks to produce a more accurate track, and Multiple tracking filters and fusion algorithms 3) Unique Track ID Generator for each fused track 4) Track Dissemination Service. Oculus Sea Track Fusion Service adopts a system architecture where each sensor is associated with a Kalman estimator/tracker that obtains an estimate of the state vector and its respective error covariance matrix. Finally, at the fusion center, association and track state estimation fusion are carried out. The expected benefits of this system include multi-sensor information fusion, enhanced spatial resolution, and improved target detection.

  17. Economic potential of inertial fusion

    SciTech Connect

    Nuckolls, J.H.

    1984-04-01

    Beyond the achievement of scientific feasibility, the key question for fusion energy is: does it have the economic potential to be significantly cheaper than fission and coal energy. If fusion has this high economic potential then there are compelling commercial and geopolitical incentives to accelerate the pace of the fusion program in the near term, and to install a global fusion energy system in the long term. Without this high economic potential, fusion's success depends on the failure of all alternatives, and there is no real incentive to accelerate the program. If my conjectures on the economic potential of inertial fusion are approximately correct, then inertial fusion energy's ultimate costs may be only half to two-thirds those of advanced fission and coal energy systems. Relative cost escalation is not assumed and could increase this advantage. Both magnetic and inertial approaches to fusion potentially have a two-fold economic advantage which derives from two fundamental properties: negligible fuel costs and high quality energy which makes possible more efficient generation of electricity. The wining approach to fusion may excel in three areas: electrical generating efficiency, minimum material costs, and adaptability to manufacture in automated factories. The winning approach must also rate highly in environmental potential, safety, availability factor, lifetime, small 0 and M costs, and no possibility of utility-disabling accidents.

  18. Cold nuclear fusion

    NASA Astrophysics Data System (ADS)

    Tsyganov, E. N.; Bavizhev, M. D.; Buryakov, M. G.; Dabagov, S. B.; Golovatyuk, V. M.; Lobastov, S. P.

    2015-07-01

    If target deuterium atoms were implanted in a metal crystal in accelerator experiments, a sharp increase in the probability of DD-fusion reaction was clearly observed when compared with the reaction's theoretical value. The electronic screening potential, which for a collision of free deuterium atoms is about 27 eV, reached 300-700 eV in the case of the DD-fusion in metallic crystals. These data leads to the conclusion that a ban must exist for deuterium atoms to be in the ground state 1s in a niche filled with free conduction electrons. At the same time, the state 2p whose energy level is only 10 eV above that of state 1s is allowed in these conditions. With anisotropy of 2p, 3p or above orbitals, their spatial positions are strictly determined in the lattice coordinate system. When filling out the same potential niches with two deuterium atoms in the states 2p, 3p or higher, the nuclei of these atoms can be permanently positioned without creating much Coulomb repulsion at a very short distance from each other. In this case, the transparency of the potential barrier increases dramatically compared to the ground state 1s for these atoms. The probability of the deuterium nuclei penetrating the Coulomb barrier by zero quantum vibration of the DD-system also increases dramatically. The so-called cold nuclear DD-fusion for a number of years was registered in many experiments, however, was still rejected by mainstream science for allegedly having no consistent scientific explanation. Finally, it received the validation. Below, we outline the concept of this explanation and give the necessary calculations. This paper also considers the further destiny of the formed intermediate state of 4He∗.

  19. Fusion reactor pumped laser

    DOEpatents

    Jassby, Daniel L.

    1988-01-01

    A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam.

  20. Physics of Fusion Welding

    NASA Technical Reports Server (NTRS)

    Nunes, A. C., Jr.

    1986-01-01

    Applicabilities and limitations of three techniques analyzed. NASA technical memorandum discusses physics of electron-beam, gas/ tungsten-arc, and laser-beam welding. From comparison of capabilities and limitations of each technique with regard to various welding conditions and materials, possible to develop criteria for selecting best welding technique in specific application. All three techniques classified as fusion welding; small volume of workpiece melted by intense heat source. Heat source moved along seam, leaving in wake solid metal that joins seam edges together.

  1. A capsid protein of nonenveloped Bluetongue virus exhibits membrane fusion activity.

    PubMed

    Forzan, Mario; Wirblich, Christoph; Roy, Polly

    2004-02-17

    The outer capsid layer of Bluetongue virus, a member of the nonenveloped Reoviridae family, is composed of two proteins, a receptor-binding protein, VP2, and a second protein, VP5, which shares structural features with class I fusion proteins of enveloped viruses. In the replication cycle of Bluetongue virus VP5 acts as a membrane permeabilization protein that mediates release of viral particles from endosomal compartments into the cytoplasm. Here, we show that VP5 can also act as a fusion protein and induce syncytium formation when it is fused to a transmembrane anchor and expressed on the cell surface. Fusion activity is strictly pH-dependent and is triggered by short exposure to low pH. No cell-cell fusion is observed at neutral pH. Deletion of the first 40 amino acids, which can fold into two amphipathic helices, abolishes fusion activity. Syncytium formation by VP5 is inhibited in the presence of VP2 when it is expressed in a membrane-anchored form. The data indicate an interaction between the outer capsid protein VP2 and VP5 and show that VP5 undergoes pH-dependent conformational changes that render it capable of interacting with cellular membranes. More importantly, our data show that a membrane permeabilization protein of a nonenveloped virus can evolve into a fusion protein by the addition of an appropriate transmembrane anchor. The results strongly suggest that the mechanism of membrane permeabilization by VP5 and membrane fusion by viral fusion proteins require similar structural features and conformational changes.

  2. Unraveling a Three-Step Spatiotemporal Mechanism of Triggering of Receptor-Induced Nipah Virus Fusion and Cell Entry

    PubMed Central

    Liu, Qian; Stone, Jacquelyn A.; Bradel-Tretheway, Birgit; Dabundo, Jeffrey; Benavides Montano, Javier A.; Santos-Montanez, Jennifer; Biering, Scott B.; Nicola, Anthony V.; Iorio, Ronald M.; Lu, Xiaonan; Aguilar, Hector C.

    2013-01-01

    Membrane fusion is essential for entry of the biomedically-important paramyxoviruses into their host cells (viral-cell fusion), and for syncytia formation (cell-cell fusion), often induced by paramyxoviral infections [e.g. those of the deadly Nipah virus (NiV)]. For most paramyxoviruses, membrane fusion requires two viral glycoproteins. Upon receptor binding, the attachment glycoprotein (HN/H/G) triggers the fusion glycoprotein (F) to undergo conformational changes that merge viral and/or cell membranes. However, a significant knowledge gap remains on how HN/H/G couples cell receptor binding to F-triggering. Via interdisciplinary approaches we report the first comprehensive mechanism of NiV membrane fusion triggering, involving three spatiotemporally sequential cell receptor-induced conformational steps in NiV-G: two in the head and one in the stalk. Interestingly, a headless NiV-G mutant was able to trigger NiV-F, and the two head conformational steps were required for the exposure of the stalk domain. Moreover, the headless NiV-G prematurely triggered NiV-F on virions, indicating that the NiV-G head prevents premature triggering of NiV-F on virions by concealing a F-triggering stalk domain until the correct time and place: receptor-binding. Based on these and recent paramyxovirus findings, we present a comprehensive and fundamentally conserved mechanistic model of paramyxovirus membrane fusion triggering and cell entry. PMID:24278018

  3. Morphological changes and spatial regulation of diacylglycerol kinase-zeta, syntrophins, and Rac1 during myoblast fusion.

    PubMed

    Abramovici, Hanan; Gee, Stephen H

    2007-07-01

    The fusion of mononuclear myoblasts into multinucleated myofibers is essential for the formation and growth of skeletal muscle. Myoblast fusion follows a well-defined sequence of cellular events, from initial recognition and adhesion, to alignment, and finally plasma membrane fusion. These processes depend upon coordinated remodeling of the actin cytoskeleton. Our recent studies suggest diacylglycerol kinase-zeta (DGK-zeta), an enzyme that metabolizes diacylglycerol to yield phosphatidic acid, plays an important role in actin reorganization. Here, we investigated whether DGK-zeta has a role in the fusion of cultured C2C12 myoblasts. We show that DGK-zeta and syntrophins, scaffold proteins of the dystrophin glycoprotein complex that bind directly to DGK-zeta, are spatially regulated during fusion. Both proteins accumulated with the GTPase Rac1 at sites where fine filopodia mediate the initial contact between myoblasts. In addition, DGK-zeta codistributed with the Ca(2+)-dependent cell adhesion molecule N-cadherin at nascent, but not previously established cell contacts. We provide evidence that C2 cells are pulled together at cell-cell junctions by N-cadherin-containing filopodia reminiscent of epithelial adhesion zippers, which guide the advance of lamellipodia from apposing cells. At later times, vesicles with properties of macropinosomes formed close to cell-cell junctions. Reconstruction of confocal optical sections showed these form dome-like protrusions from the dorsal surface of contacting cells. Collectively, these results suggest DGK-zeta and syntrophins play a role at multiple stages of the fusion process. Moreover, our findings provide a potential link between changes in the lipid content of the membrane bilayer and reorganization of the actin cytoskeleton during myoblast fusion. PMID:17410543

  4. Membrane fusion induced by the membrane mobility agent, A2C. Differentiation between fusible and non-fusible cells. Transfer of fusibility.

    PubMed

    Tavassoli, M; Kosower, N S; Halverson, C; Aoki, M; Kosower, E M

    1980-10-01

    Red cells of different species respond differently to the treatment with the membrane mobility agent, A2C, with respect to both the A2C interaction and the subsequent cell-cell interaction. Depending on whether both, one or neither of the processes are effective, some red cells (e.g., nucleated Leghorn hen red cells, rat red cells) fuse easily, some (human red cells) show morphological changes but do not fuse, and others (nucleated Rock hen red cells) show little or no response. Mixed fusion (i.e., between fusible cells of different species) is readily obtained, indicating that no species-specific recognition sites are required for A2C-induced fusion. the potential for fusion is a transferable characteristic. In the presence of fusible cells, A2C induces both heterologous and homologous fusion of otherwise 'non-fusible' cells. Electron micrographs of fusing cells after treatment with A2C reveal 'onion-ring' structures ('whorls'), free of intramembranous protein particles but different from the smooth appearance of A(2)C particles. Whorls are considered to arise from fusion-potent membrane areas. Fusion is apparent at multiple sites along the contact line between apposed membranes. The postulated appearance of vesicle-like structures along the fusion line (Kosower, E.M., Kosower, N.S. and Wegman, P. (1977) Biochim. Biophys. Acta 471, 311-329) is confirmed by micrographs. The mechanism of this fusion process is duscussed and compared to other types of fusion process. PMID:7417438

  5. Magnetless magnetic fusion

    NASA Astrophysics Data System (ADS)

    Beklemishev, A. D.; Tajima, T.

    1994-02-01

    The authors propose a concept of thermonuclear fusion reactor in which the plasma pressure is balanced by direct gas-wall interaction in a high-pressure vessel. The energy confinement is achieved by means of the self-contained toroidal magnetic configuration sustained by an external current drive or charged fusion products. This field structure causes the plasma pressure to decrease toward the inside of the discharge and thus it should be magnetohydrodynamically stable. The maximum size, temperature and density profiles of the reactor are estimated. An important feature of confinement physics is the thin layer of cold gas at the wall and the adjacent transitional region of dense arc-like plasma. The burning condition is determined by the balance between these nonmagnetized layers and the current-carrying plasma. They suggest several questions for future investigation, such as the thermal stability of the transition layer and the possibility of an effective heating and current drive behind the dense edge plasma. The main advantage of this scheme is the absence of strong external magnets and, consequently, potentially cheaper design and lower energy consumption.

  6. Multispectral bilateral video fusion.

    PubMed

    Bennett, Eric P; Mason, John L; McMillan, Leonard

    2007-05-01

    We present a technique for enhancing underexposed visible-spectrum video by fusing it with simultaneously captured video from sensors in nonvisible spectra, such as Short Wave IR or Near IR. Although IR sensors can accurately capture video in low-light and night-vision applications, they lack the color and relative luminances of visible-spectrum sensors. RGB sensors do capture color and correct relative luminances, but are underexposed, noisy, and lack fine features due to short video exposure times. Our enhanced fusion output is a reconstruction of the RGB input assisted by the IR data, not an incorporation of elements imaged only in IR. With a temporal noise reduction, we first remove shot noise and increase the color accuracy of the RGB footage. The IR video is then normalized to ensure cross-spectral compatibility with the visible-spectrum video using ratio images. To aid fusion, we decompose the video sources with edge-preserving filters. We introduce a multispectral version of the bilateral filter called the "dual bilateral" that robustly decomposes the RGB video. It utilizes the less-noisy IR for edge detection but also preserves strong visible-spectrum edges not in the IR. We fuse the RGB low frequencies, the IR texture details, and the dual bilateral edges into a noise-reduced video with sharp details, correct chrominances, and natural relative luminances. PMID:17491451

  7. Inertial confinement fusion

    SciTech Connect

    Powers, L.; Condouris, R.; Kotowski, M.; Murphy, P.W.

    1992-01-01

    This issue of the ICF Quarterly contains seven articles that describe recent progress in Lawrence Livermore National Laboratory's ICF program. The Department of Energy recently initiated an effort to design a 1--2 MJ glass laser, the proposed National Ignition Facility (NIF). These articles span various aspects of a program which is aimed at moving forward toward such a facility by continuing to use the Nova laser to gain understanding of NIF-relevant target physics, by developing concepts for an NIF laser driver, and by envisioning a variety of applications for larger ICF facilities. This report discusses research on the following topics: Stimulated Rotational Raman Scattering in Nitrogen; A Maxwell Equation Solver in LASNEX for the Simulation of Moderately Intense Ultrashort Pulse Experiments; Measurements of Radial Heat-Wave Propagation in Laser-Produced Plasmas; Laser-Seeded Modulation Growth on Directly Driven Foils; Stimulated Raman Scattering in Large-Aperture, High-Fluence Frequency-Conversion Crystals; Fission Product Hazard Reduction Using Inertial Fusion Energy; Use of Inertial Confinement Fusion for Nuclear Weapons Effects Simulations.

  8. Helium Find Thaws the Cold Fusion Trail.

    ERIC Educational Resources Information Center

    Pennisi, E.

    1991-01-01

    Reported is a study of cold fusion in which trace amounts of helium, possible evidence of an actual fusion reaction, were found. Research methodology is detailed. The controversy over the validity of experimental results with cold fusion are reviewed. (CW)

  9. Multi-sensor fusion development

    NASA Astrophysics Data System (ADS)

    Bish, Sheldon; Rohrer, Matthew; Scheffel, Peter; Bennett, Kelly

    2016-05-01

    The U.S. Army Research Laboratory (ARL) and McQ Inc. are developing a generic sensor fusion architecture that involves several diverse processes working in combination to create a dynamic task-oriented, real-time informational capability. Processes include sensor data collection, persistent and observational data storage, and multimodal and multisensor fusion that includes the flexibility to modify the fusion program rules for each mission. Such a fusion engine lends itself to a diverse set of sensing applications and architectures while using open-source software technologies. In this paper, we describe a fusion engine architecture that combines multimodal and multi-sensor fusion within an Open Standard for Unattended Sensors (OSUS) framework. The modular, plug-and-play architecture of OSUS allows future fusion plugin methodologies to have seamless integration into the fusion architecture at the conceptual and implementation level. Although beyond the scope of this paper, this architecture allows for data and information manipulation and filtering for an array of applications.

  10. The status of cold fusion

    NASA Astrophysics Data System (ADS)

    Storms, E.

    This report attempts to update the status of the phenomenon of cold fusion. The new field is continuing to grow as a variety of nuclear reactions are discovered to occur in a variety of chemical environments at modest temperatures. However, it must be cautioned that most scientists consider cold fusion as something akin to UFO's, ESP, and numerology.

  11. Data fusion qualitative sensitivity analysis

    SciTech Connect

    Clayton, E.A.; Lewis, R.E.

    1995-09-01

    Pacific Northwest Laboratory was tasked with testing, debugging, and refining the Hanford Site data fusion workstation (DFW), with the assistance of Coleman Research Corporation (CRC), before delivering the DFW to the environmental restoration client at the Hanford Site. Data fusion is the mathematical combination (or fusion) of disparate data sets into a single interpretation. The data fusion software used in this study was developed by CRC. The data fusion software developed by CRC was initially demonstrated on a data set collected at the Hanford Site where three types of data were combined. These data were (1) seismic reflection, (2) seismic refraction, and (3) depth to geologic horizons. The fused results included a contour map of the top of a low-permeability horizon. This report discusses the results of a sensitivity analysis of data fusion software to variations in its input parameters. The data fusion software developed by CRC has a large number of input parameters that can be varied by the user and that influence the results of data fusion. Many of these parameters are defined as part of the earth model. The earth model is a series of 3-dimensional polynomials with horizontal spatial coordinates as the independent variables and either subsurface layer depth or values of various properties within these layers (e.g., compression wave velocity, resistivity) as the dependent variables.

  12. The quest for fusion power

    NASA Astrophysics Data System (ADS)

    Cowley, Steven C.

    2016-05-01

    Fusion power is one of a very few sustainable options to replace fossil fuels as the world's primary energy source. Although the conditions for fusion have been reached, much remains to be done to turn scientific success into commercial electrical power.

  13. Cellulose binding domain fusion proteins

    DOEpatents

    Shoseyov, O.; Yosef, K.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1998-02-17

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  14. Cellulose binding domain fusion proteins

    DOEpatents

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  15. Cold fusion; Myth versus reality

    SciTech Connect

    Rabinowitz, M. )

    1990-01-01

    Experiments indicate that several different nuclear reactions are taking place. Some of the experiments point to D-D fusion with a cominant tritium channel as one of the reactions. The article notes a similarity between Prometheus and the discoveries of cold fusion.

  16. Adjoint affine fusion and tadpoles

    NASA Astrophysics Data System (ADS)

    Urichuk, Andrew; Walton, Mark A.

    2016-06-01

    We study affine fusion with the adjoint representation. For simple Lie algebras, elementary and universal formulas determine the decomposition of a tensor product of an integrable highest-weight representation with the adjoint representation. Using the (refined) affine depth rule, we prove that equally striking results apply to adjoint affine fusion. For diagonal fusion, a coefficient equals the number of nonzero Dynkin labels of the relevant affine highest weight, minus 1. A nice lattice-polytope interpretation follows and allows the straightforward calculation of the genus-1 1-point adjoint Verlinde dimension, the adjoint affine fusion tadpole. Explicit formulas, (piecewise) polynomial in the level, are written for the adjoint tadpoles of all classical Lie algebras. We show that off-diagonal adjoint affine fusion is obtained from the corresponding tensor product by simply dropping non-dominant representations.

  17. Is there hope for fusion

    SciTech Connect

    Fowler, T.K. . Dept. of Nuclear Engineering)

    1990-04-12

    From the outset in the 1950's, fusion research has been motivated by environmental concerns as well as long-term fuel supply issues. Compared to fossil fuels both fusion and fission would produce essentially zero emissions to the atmosphere. Compared to fission, fusion reactors should offer high demonstrability of public protection from accidents and a substantial amelioration of the radioactive waste problem. Fusion still requires lengthy development, the earliest commercial deployment being likely to occur around 2025--2050. However, steady scientific progress is being made and there is a wide consensus that it is time to plan large-scale engineering development. A major international effort, called the International Thermonuclear Experimental Reactor (ITER), is being carried out under IAEA auspices to design the world's first fusion engineering test reactor, which could be constructed in the 1990's. 4 figs., 3 tabs.

  18. Magnetic fusion energy and computers

    SciTech Connect

    Killeen, J.

    1982-01-01

    The application of computers to magnetic fusion energy research is essential. In the last several years the use of computers in the numerical modeling of fusion systems has increased substantially. There are several categories of computer models used to study the physics of magnetically confined plasmas. A comparable number of types of models for engineering studies are also in use. To meet the needs of the fusion program, the National Magnetic Fusion Energy Computer Center has been established at the Lawrence Livermore National Laboratory. A large central computing facility is linked to smaller computer centers at each of the major MFE laboratories by a communication network. In addition to providing cost effective computing services, the NMFECC environment stimulates collaboration and the sharing of computer codes among the various fusion research groups.

  19. Information integration for data fusion

    SciTech Connect

    Bray, O.H.

    1997-01-01

    Data fusion has been identified by the Department of Defense as a critical technology for the U.S. defense industry. Data fusion requires combining expertise in two areas - sensors and information integration. Although data fusion is a rapidly growing area, there is little synergy and use of common, reusable, and/or tailorable objects and models, especially across different disciplines. The Laboratory-Directed Research and Development project had two purposes: to see if a natural language-based information modeling methodology could be used for data fusion problems, and if so, to determine whether this methodology would help identify commonalities across areas and achieve greater synergy. The project confirmed both of the initial hypotheses: that the natural language-based information modeling methodology could be used effectively in data fusion areas and that commonalities could be found that would allow synergy across various data fusion areas. The project found five common objects that are the basis for all of the data fusion areas examined: targets, behaviors, environments, signatures, and sensors. Many of the objects and the specific facts related to these objects were common across several areas and could easily be reused. In some cases, even the terminology remained the same. In other cases, different areas had their own terminology, but the concepts were the same. This commonality is important with the growing use of multisensor data fusion. Data fusion is much more difficult if each type of sensor uses its own objects and models rather than building on a common set. This report introduces data fusion, discusses how the synergy generated by this LDRD would have benefited an earlier successful project and contains a summary information model from that project, describes a preliminary management information model, and explains how information integration can facilitate cross-treaty synergy for various arms control treaties.

  20. Multiple shell fusion targets

    DOEpatents

    Lindl, J.D.; Bangerter, R.O.

    1975-10-31

    Multiple shell fusion targets for use with electron beam and ion beam implosion systems are described. The multiple shell targets are of the low-power type and use a separate relatively low Z, low density ablator at large radius for the outer shell, which reduces the focusing and power requirements of the implosion system while maintaining reasonable aspect ratios. The targets use a high Z, high density pusher shell placed at a much smaller radius in order to obtain an aspect ratio small enough to protect against fluid instability. Velocity multiplication between these shells further lowers the power requirements. Careful tuning of the power profile and intershell density results in a low entropy implosion which allows breakeven at low powers. For example, with ion beams as a power source, breakeven at 10-20 Terrawatts with 10 MeV alpha particles for imploding a multiple shell target can be accomplished.

  1. Fusion pumped laser

    DOEpatents

    Pappas, Daniel S.

    1989-01-01

    Apparatus is provided for generating energy in the form of laser radiation. A tokamak fusion reactor is provided for generating a long, or continuous, pulse of high-energy neutrons. The tokamak design provides a temperature and a magnetic field which is effective to generate a neutron flux of at least 10.sup.15 neutrons/cm.sup.2.s. A conversion medium receives neutrons from the tokamak and converts the high-energy neutrons to an energy source with an intensity and an energy effective to excite a preselected lasing medium. The energy source typically comprises fission fragments, alpha particles, and radiation from a fission event. A lasing medium is provided which is responsive to the energy source to generate a population inversion which is effective to support laser oscillations for generating output radiation.

  2. Fusion reactor pumped laser

    DOEpatents

    Jassby, D.L.

    1987-09-04

    A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam. 10 figs.

  3. Fusion pumped light source

    DOEpatents

    Pappas, Daniel S.

    1989-01-01

    Apparatus is provided for generating energy in the form of light radiation. A fusion reactor is provided for generating a long, or continuous, pulse of high-energy neutrons. The neutron flux is coupled directly with the lasing medium. The lasing medium includes a first component selected from Group O of the periodic table of the elements and having a high inelastic scattering cross section. Gamma radiation from the inelastic scattering reactions interacts with the first component to excite the first component, which decays by photon emission at a first output wavelength. The first output wavelength may be shifted to a second output wavelength using a second liquid component responsive to the first output wavelength. The light outputs may be converted to a coherent laser output by incorporating conventional optics adjacent the laser medium.

  4. LiWall Fusion - The New Concept of Magnetic Fusion

    SciTech Connect

    L.E. Zakharov

    2011-01-12

    Utilization of the outstanding abilities of a liquid lithium layer in pumping hydrogen isotopes leads to a new approach to magnetic fusion, called the LiWall Fusion. It relies on innovative plasma regimes with low edge density and high temperature. The approach combines fueling the plasma by neutral injection beams with the best possible elimination of outside neutral gas sources, which cools down the plasma edge. Prevention of cooling the plasma edge suppresses the dominant, temperature gradient related turbulence in the core. Such an approach is much more suitable for controlled fusion than the present practice, relying on high heating power for compensating essentially unlimited turbulent energy losses.

  5. Soldier systems sensor fusion

    NASA Astrophysics Data System (ADS)

    Brubaker, Kathryne M.

    1998-08-01

    This paper addresses sensor fusion and its applications in emerging Soldier Systems integration and the unique challenges associated with the human platform. Technology that,provides the highest operational payoff in a lightweight warrior system must not only have enhanced capabilities, but have low power components resulting in order of magnitude reductions coupled with significant cost reductions. These reductions in power and cost will be achieved through partnership with industry and leveraging of commercial state of the art advancements in microelectronics and power sources. As new generation of full solution fire control systems (to include temperature, wind and range sensors) and target acquisition systems will accompany a new generation of individual combat weapons and upgrade existing weapon systems. Advanced lightweight thermal, IR, laser and video senors will be used for surveillance, target acquisition, imaging and combat identification applications. Multifunctional sensors will provide embedded training features in combat configurations allowing the soldier to 'train as he fights' without the traditional cost and weight penalties associated with separate systems. Personal status monitors (detecting pulse, respiration rate, muscle fatigue, core temperature, etc.) will provide commanders and highest echelons instantaneous medical data. Seamless integration of GPS and dead reckoning (compass and pedometer) and/or inertial sensors will aid navigation and increase position accuracy. Improved sensors and processing capability will provide earlier detection of battlefield hazards such as mines, enemy lasers and NBC (nuclear, biological, chemical) agents. Via the digitized network the situational awareness database will automatically be updated with weapon, medical, position and battlefield hazard data. Soldier Systems Sensor Fusion will ultimately establish each individual soldier as an individual sensor on the battlefield.

  6. Prospects for bubble fusion

    SciTech Connect

    Nigmatulin, R.I.; Lahey, R.T. Jr.

    1995-09-01

    In this paper a new method for the realization of fusion energy is presented. This method is based on the superhigh compression of a gas bubble (deuterium or deuterium/thritium) in heavy water or another liquid. The superhigh compression of a gas bubble in a liquid is achieved through forced non-linear, non-periodic resonance oscillations using moderate amplitudes of forcing pressure. The key feature of this new method is a coordination of the forced liquid pressure change with the change of bubble volume. The corresponding regime of the bubble oscillation has been called {open_quotes}basketball dribbling (BD) regime{close_quotes}. The analytical solution describing this process for spherically symmetric bubble oscillations, neglecting dissipation and compressibility of the liquid, has been obtained. This solution shown no limitation on the supercompression of the bubble and the corresponding maximum temperature. The various dissipation mechanisms, including viscous, conductive and radiation heat losses have been considered. It is shown that in spite of these losses it is possible to achieve very high gas bubble temperatures. This because the time duration of the gas bubble supercompression becomes very short when increasing the intensity of compression, thus limiting the energy losses. Significantly, the calculated maximum gas temperatures have shown that nuclear fusion may be possible. First estimations of the affect of liquid compressibility have been made to determine possible limitations on gas bubble compression. The next step will be to investigate the role of interfacial instability and breaking down of the bubble, shock wave phenomena around and in the bubble and mutual diffusion of the gas and the liquid.

  7. Fission-fusion neutron source

    NASA Astrophysics Data System (ADS)

    Yu, Jinnan; Yu, Gang

    2009-04-01

    In order to meet the requirements of fusion power reactors and nuclear waste treatment, a concept of fission-fusion neutron source is proposed, which consists of a LiD assembly located in the heavy water region of the China Advanced Research Reactor. This assembly of LiD fuel rods will be irradiated with slow neutrons and will produce fusion neutrons in the central hole via the reaction 6Li(n, α). More precisely, tritium ions with a high energy of 2.739 MeV will be produced in LiD by the impinging slow neutrons. The tritium ions will in turn bombard the deuterium ions present in the LiD assembly, which will induce fusion reaction and then the production of 14 MeV neutrons. The fusion reaction rate will increase with the accumulation of tritium in LiD by the reaction between tritium and deuteron recoils produced by the 14 MeV neutrons. When the concentration of tritium reaches 0.5 · 10 22 and the fraction of fusion reactions between tritium and deuteron recoils approaches 1, the 14 MeV neutron flux is doubled and redoubled, an so forth, approaching saturation in which the tritium produced at a time t is exhausted by the fusion reactions to keep constant the tritium concentration in LiD.

  8. Future of Inertial Fusion Energy

    SciTech Connect

    Nuckolls, J H; Wood, L L

    2002-09-04

    In the past 50 years, fusion R&D programs have made enormous technical progress. Projected billion-dollar scale research facilities are designed to approach net energy production. In this century, scientific and engineering progress must continue until the economics of fusion power plants improves sufficiently to win large scale private funding in competition with fission and non-nuclear energy systems. This economic advantage must be sustained: trillion dollar investments will be required to build enough fusion power plants to generate ten percent of the world's energy. For Inertial Fusion Energy, multi-billion dollar driver costs must be reduced by up to an order of magnitude, to a small fraction of the total cost of the power plant. Major cost reductions could be achieved via substantial improvements in target performance-both higher gain and reduced ignition energy. Large target performance improvements may be feasible through a combination of design innovations, e.g., ''fast ignition,'' propagation down density gradients, and compression of fusion fuel with a combination of driver and chemical energy. The assumptions that limit projected performance of fusion targets should be carefully examined. The National Ignition Facility will enable development and testing of revolutionary targets designed to make possible economically competitive fusion power plants.

  9. Modeling keratinocyte wound healing dynamics: Cell-cell adhesion promotes sustained collective migration.

    PubMed

    Nardini, John T; Chapnick, Douglas A; Liu, Xuedong; Bortz, David M

    2016-07-01

    The in vitro migration of keratinocyte cell sheets displays behavioral and biochemical similarities to the in vivo wound healing response of keratinocytes in animal model systems. In both cases, ligand-dependent Epidermal Growth Factor Receptor (EGFR) activation is sufficient to elicit collective cell migration into the wound. Previous mathematical modeling studies of in vitro wound healing assays assume that physical connections between cells have a hindering effect on cell migration, but biological literature suggests a more complicated story. By combining mathematical modeling and experimental observations of collectively migrating sheets of keratinocytes, we investigate the role of cell-cell adhesion during in vitro keratinocyte wound healing assays. We develop and compare two nonlinear diffusion models of the wound healing process in which cell-cell adhesion either hinders or promotes migration. Both models can accurately fit the leading edge propagation of cell sheets during wound healing when using a time-dependent rate of cell-cell adhesion strength. The model that assumes a positive role of cell-cell adhesion on migration, however, is robust to changes in the leading edge definition and yields a qualitatively accurate density profile. Using RNAi for the critical adherens junction protein, α-catenin, we demonstrate that cell sheets with wild type cell-cell adhesion expression maintain migration into the wound longer than cell sheets with decreased cell-cell adhesion expression, which fails to exhibit collective migration. Our modeling and experimental data thus suggest that cell-cell adhesion promotes sustained migration as cells pull neighboring cells into the wound during wound healing.

  10. Modeling keratinocyte wound healing dynamics: Cell-cell adhesion promotes sustained collective migration.

    PubMed

    Nardini, John T; Chapnick, Douglas A; Liu, Xuedong; Bortz, David M

    2016-07-01

    The in vitro migration of keratinocyte cell sheets displays behavioral and biochemical similarities to the in vivo wound healing response of keratinocytes in animal model systems. In both cases, ligand-dependent Epidermal Growth Factor Receptor (EGFR) activation is sufficient to elicit collective cell migration into the wound. Previous mathematical modeling studies of in vitro wound healing assays assume that physical connections between cells have a hindering effect on cell migration, but biological literature suggests a more complicated story. By combining mathematical modeling and experimental observations of collectively migrating sheets of keratinocytes, we investigate the role of cell-cell adhesion during in vitro keratinocyte wound healing assays. We develop and compare two nonlinear diffusion models of the wound healing process in which cell-cell adhesion either hinders or promotes migration. Both models can accurately fit the leading edge propagation of cell sheets during wound healing when using a time-dependent rate of cell-cell adhesion strength. The model that assumes a positive role of cell-cell adhesion on migration, however, is robust to changes in the leading edge definition and yields a qualitatively accurate density profile. Using RNAi for the critical adherens junction protein, α-catenin, we demonstrate that cell sheets with wild type cell-cell adhesion expression maintain migration into the wound longer than cell sheets with decreased cell-cell adhesion expression, which fails to exhibit collective migration. Our modeling and experimental data thus suggest that cell-cell adhesion promotes sustained migration as cells pull neighboring cells into the wound during wound healing. PMID:27105673

  11. Control of mechanically activated polymersome fusion: Factors affecting fusion

    SciTech Connect

    Henderson, Ian M.; Paxton, Walter F.

    2014-12-15

    Previously we have studied the mechanically-activated fusion of extruded (200 nm) polymer vesicles into giant polymersomes using agitation in the presence of salt. In this study we have investigated several factors contributing to this phenomenon, including the effects of (i) polymer vesicle concentration, (ii) agitation speed and duration, and iii) variation of the salt and its concentration. It was found that increasing the concentration of the polymer dramatically increases the production of giant vesicles through the increased collisions of polymersomes. Our investigations also found that increasing the frequency of agitation increased the efficiency of fusion, though ultimately limited the size of vesicle which could be produced due to the high shear involved. Finally it was determined that salt-mediation of the fusion process was not limited to NaCl, but is instead a general effect facilitated by the presence of solvated ionic compounds, albeit with different salts initiating fusion at different concentration.

  12. Control of mechanically activated polymersome fusion: Factors affecting fusion

    DOE PAGES

    Henderson, Ian M.; Paxton, Walter F.

    2014-12-15

    Previously we have studied the mechanically-activated fusion of extruded (200 nm) polymer vesicles into giant polymersomes using agitation in the presence of salt. In this study we have investigated several factors contributing to this phenomenon, including the effects of (i) polymer vesicle concentration, (ii) agitation speed and duration, and iii) variation of the salt and its concentration. It was found that increasing the concentration of the polymer dramatically increases the production of giant vesicles through the increased collisions of polymersomes. Our investigations also found that increasing the frequency of agitation increased the efficiency of fusion, though ultimately limited the sizemore » of vesicle which could be produced due to the high shear involved. Finally it was determined that salt-mediation of the fusion process was not limited to NaCl, but is instead a general effect facilitated by the presence of solvated ionic compounds, albeit with different salts initiating fusion at different concentration.« less

  13. Pubertal growth and epiphyseal fusion

    PubMed Central

    2015-01-01

    The complex networks of nutritional, cellular, paracrine, and endocrine factors are closely related with pubertal growth and epiphyseal fusion. Important influencing factors include chondrocyte differentiation capacity, multiple molecular pathways active in the growth plate, and growth hormone-insulin-like growth factor-I axis activation and epiphyseal fusion through estrogen and its receptors. However, the exact mechanisms of these phenomena are still unclear. A better understanding of the detailed processes involved in the pubertal growth spurt and growth plate closure in longitudinal bone growth will help us develop methods to efficiently promote pubertal growth and delay epiphyseal fusion with fewer adverse effects. PMID:25883921

  14. The path to fusion power†

    PubMed Central

    Smith, Chris Llewellyn; Cowley, Steve

    2010-01-01

    The promise, status and challenges of developing fusion power are outlined. The key physics and engineering principles are described and recent progress quantified. As the successful demonstration of 16 MW of fusion in 1997 in the Joint European Torus showed, fusion works. The central issue is therefore to make it work reliably and economically on the scale of a power station. We argue that to meet this challenge in 30 years we must follow the aggressive programme known as the ‘Fast Track to Fusion’. This programme is described in some detail. PMID:20123748

  15. Advanced fusion concepts: project summaries

    SciTech Connect

    1980-12-01

    This report contains descriptions of the activities of all the projects supported by the Advanced Fusion Concepts Branch of the Office of Fusion Energy, US Department of Energy. These descriptions are project summaries of each of the individual projects, and contain the following: title, principle investigators, funding levels, purpose, approach, progress, plans, milestones, graduate students, graduates, other professional staff, and recent publications. Information is given for each of the following programs: (1) reverse-field pinch, (2) compact toroid, (3) alternate fuel/multipoles, (4) stellarator/torsatron, (5) linear magnetic fusion, (6) liners, and (7) Tormac. (MOW)

  16. Genetic Evidence That Captured Retroviral Envelope syncytins Contribute to Myoblast Fusion and Muscle Sexual Dimorphism in Mice.

    PubMed

    Redelsperger, François; Raddi, Najat; Bacquin, Agathe; Vernochet, Cécile; Mariot, Virginie; Gache, Vincent; Blanchard-Gutton, Nicolas; Charrin, Stéphanie; Tiret, Laurent; Dumonceaux, Julie; Dupressoir, Anne; Heidmann, Thierry

    2016-09-01

    Syncytins are envelope genes from endogenous retroviruses, "captured" for a role in placentation. They mediate cell-cell fusion, resulting in the formation of a syncytium (the syncytiotrophoblast) at the fetomaternal interface. These genes have been found in all placental mammals in which they have been searched for. Cell-cell fusion is also pivotal for muscle fiber formation and repair, where the myotubes are formed from the fusion of mononucleated myoblasts into large multinucleated structures. Here we show, taking advantage of mice knocked out for syncytins, that these captured genes contribute to myoblast fusion, with a >20% reduction in muscle mass, mean muscle fiber area and number of nuclei per fiber in knocked out mice for one of the two murine syncytin genes. Remarkably, this reduction is only observed in males, which subsequently show muscle quantitative traits more similar to those of females. In addition, we show that syncytins also contribute to muscle repair after cardiotoxin-induced injury, with again a male-specific effect on the rate and extent of regeneration. Finally, ex vivo experiments carried out on murine myoblasts demonstrate the direct involvement of syncytins in fusion, with a >40% reduction in fusion index upon addition of siRNA against both syncytins. Importantly, similar effects are observed with primary myoblasts from sheep, dog and human, with a 20-40% reduction upon addition of siRNA against the corresponding syncytins. Altogether, these results show a direct contribution of the fusogenic syncytins to myogenesis, with a demonstrated male-dependence of the effect in mice, suggesting that these captured genes could be responsible for the muscle sexual dimorphism observed in placental mammals. PMID:27589388

  17. Genetic Evidence That Captured Retroviral Envelope syncytins Contribute to Myoblast Fusion and Muscle Sexual Dimorphism in Mice

    PubMed Central

    Vernochet, Cécile; Mariot, Virginie; Gache, Vincent; Charrin, Stéphanie; Tiret, Laurent; Dumonceaux, Julie; Dupressoir, Anne; Heidmann, Thierry

    2016-01-01

    Syncytins are envelope genes from endogenous retroviruses, “captured” for a role in placentation. They mediate cell-cell fusion, resulting in the formation of a syncytium (the syncytiotrophoblast) at the fetomaternal interface. These genes have been found in all placental mammals in which they have been searched for. Cell-cell fusion is also pivotal for muscle fiber formation and repair, where the myotubes are formed from the fusion of mononucleated myoblasts into large multinucleated structures. Here we show, taking advantage of mice knocked out for syncytins, that these captured genes contribute to myoblast fusion, with a >20% reduction in muscle mass, mean muscle fiber area and number of nuclei per fiber in knocked out mice for one of the two murine syncytin genes. Remarkably, this reduction is only observed in males, which subsequently show muscle quantitative traits more similar to those of females. In addition, we show that syncytins also contribute to muscle repair after cardiotoxin-induced injury, with again a male-specific effect on the rate and extent of regeneration. Finally, ex vivo experiments carried out on murine myoblasts demonstrate the direct involvement of syncytins in fusion, with a >40% reduction in fusion index upon addition of siRNA against both syncytins. Importantly, similar effects are observed with primary myoblasts from sheep, dog and human, with a 20–40% reduction upon addition of siRNA against the corresponding syncytins. Altogether, these results show a direct contribution of the fusogenic syncytins to myogenesis, with a demonstrated male-dependence of the effect in mice, suggesting that these captured genes could be responsible for the muscle sexual dimorphism observed in placental mammals. PMID:27589388

  18. Alteration of the pH dependence of coronavirus-induced cell fusion: effect of mutations in the spike glycoprotein.

    PubMed Central

    Gallagher, T M; Escarmis, C; Buchmeier, M J

    1991-01-01

    Infection of susceptible murine cells with the coronavirus mouse hepatitis virus type 4 (MHV4) results in extensive cell-cell fusion at pHs from 5.5 to 8.5. The endosomotropic weak bases chloroquine and ammonium chloride do not prevent MHV4 infection. In marked contrast, we have selected variants from a neural cell line persistently infected with MHV4 which are entirely dependent on acid pH to fuse host cells and are strongly inhibited by endosomotropic weak bases. Wild-type and variant viruses were compared at the level of the fusion-active surface (S) glycoprotein gene. Cloning and sequencing of each 4,131-base open reading frame predicted a total of eight amino acid differences which fell into three distinct clusters. Each S glycoprotein, when expressed from cDNA, was synthesized in equivalent amounts, and similar proportions were transported to the cell surface. Wild-type S induced cell-cell fusion at neutral pH, whereas variant S required prolonged exposure to acidic pH to induce fusion. Expression of hybrid S genes prepared by exchange of restriction fragments between wild-type and variant cDNAs revealed that elimination of neutral pH fusion was solely dependent on amino acid alterations at positions 1067 (Q to H), 1094 (Q to H), and 1114 (L to R). These changes lie within a predicted heptad repeat region of the transmembrane cleavage fragment of S (S2). These findings demonstrate that the pH dependence of coronavirus fusion is highly variable and that this variability can be determined by as few as three amino acid residues. Images PMID:1848311

  19. Fusion materials irradiations at MaRIE's fission fusion facility

    SciTech Connect

    Pitcher, Eric J

    2010-10-06

    Los Alamos National Laboratory's proposed signature facility, MaRIE, will provide scientists and engineers with new capabilities for modeling, synthesizing, examining, and testing materials of the future that will enhance the USA's energy security and national security. In the area of fusion power, the development of new structural alloys with better tolerance to the harsh radiation environments expected in fusion reactors will lead to improved safety and lower operating costs. The Fission and Fusion Materials Facility (F{sup 3}), one of three pillars of the proposed MaRIE facility, will offer researchers unprecedented access to a neutron radiation environment so that the effects of radiation damage on materials can be measured in-situ, during irradiation. The calculated radiation damage conditions within the F{sup 3} match, in many respects, that of a fusion reactor first wall, making it well suited for testing fusion materials. Here we report in particular on two important characteristics of the radiation environment with relevancy to radiation damage: the primary knock-on atom spectrum and the impact of the pulse structure of the proton beam on temporal characteristics of the atomic displacement rate. With respect to both of these, analyses show the F{sup 3} has conditions that are consistent with those of a steady-state fusion reactor first wall.

  20. Characterization of fusion genes and the significantly expressed fusion isoforms in breast cancer by hybrid sequencing.

    PubMed

    Weirather, Jason L; Afshar, Pegah Tootoonchi; Clark, Tyson A; Tseng, Elizabeth; Powers, Linda S; Underwood, Jason G; Zabner, Joseph; Korlach, Jonas; Wong, Wing Hung; Au, Kin Fai

    2015-10-15

    We developed an innovative hybrid sequencing approach, IDP-fusion, to detect fusion genes, determine fusion sites and identify and quantify fusion isoforms. IDP-fusion is the first method to study gene fusion events by integrating Third Generation Sequencing long reads and Second Generation Sequencing short reads. We applied IDP-fusion to PacBio data and Illumina data from the MCF-7 breast cancer cells. Compared with the existing tools, IDP-fusion detects fusion genes at higher precision and a very low false positive rate. The results show that IDP-fusion will be useful for unraveling the complexity of multiple fusion splices and fusion isoforms within tumorigenesis-relevant fusion genes. PMID:26040699

  1. Characterization of fusion genes and the significantly expressed fusion isoforms in breast cancer by hybrid sequencing

    PubMed Central

    Weirather, Jason L.; Afshar, Pegah Tootoonchi; Clark, Tyson A.; Tseng, Elizabeth; Powers, Linda S.; Underwood, Jason G.; Zabner, Joseph; Korlach, Jonas; Wong, Wing Hung; Au, Kin Fai

    2015-01-01

    We developed an innovative hybrid sequencing approach, IDP-fusion, to detect fusion genes, determine fusion sites and identify and quantify fusion isoforms. IDP-fusion is the first method to study gene fusion events by integrating Third Generation Sequencing long reads and Second Generation Sequencing short reads. We applied IDP-fusion to PacBio data and Illumina data from the MCF-7 breast cancer cells. Compared with the existing tools, IDP-fusion detects fusion genes at higher precision and a very low false positive rate. The results show that IDP-fusion will be useful for unraveling the complexity of multiple fusion splices and fusion isoforms within tumorigenesis-relevant fusion genes. PMID:26040699

  2. Prospects for fusion: The winds of change

    NASA Astrophysics Data System (ADS)

    Davidson, R. C.

    This paper addresses the following topics: (1) national energy circumstances and policy, and the implications for fusion; (2) the intrinsic merit of fusion research and development as it contributes to the national science and technology base; (3) the research opportunities and priorities in inertial confinement fusion; and (4) the research opportunities and priorities in magnetic fusion.

  3. Sphingomyelin Synthase 2, but Not Sphingomyelin Synthase 1, Is Involved in HIV-1 Envelope-mediated Membrane Fusion*

    PubMed Central

    Hayashi, Yasuhiro; Nemoto-Sasaki, Yoko; Tanikawa, Takashi; Oka, Saori; Tsuchiya, Kiyoto; Zama, Kouta; Mitsutake, Susumu; Sugiura, Takayuki; Yamashita, Atsushi

    2014-01-01

    Membrane fusion between the viral envelope and plasma membranes of target cells has previously been correlated with HIV-1 infection. Lipids in the plasma membrane, including sphingomyelin, may be crucially involved in HIV-1 infection; however, the role of lipid-metabolic enzymes in membrane fusion remains unclear. In this study, we examined the roles of sphingomyelin synthase (SMS) in HIV-1 Env-mediated membrane fusion using a cell-cell fusion assay with HIV-1 mimetics and their target cells. We employed reconstituted cells as target cells that stably express Sms1 or Sms2 in Sms-deficient cells. Fusion susceptibility was ∼5-fold higher in Sms2-expressing cells (not in Sms1-expressing cells) than in Sms-deficient cells. The enhancement of fusion susceptibility observed in Sms2-expressing cells was reversed and reduced by Sms2 knockdown. We also found that catalytically nonactive Sms2 promoted membrane fusion susceptibility. Moreover, SMS2 co-localized and was constitutively associated with the HIV receptor·co-receptor complex in the plasma membrane. In addition, HIV-1 Env treatment resulted in a transient increase in nonreceptor tyrosine kinase (Pyk2) phosphorylation in Sms2-expressing and catalytically nonactive Sms2-expressing cells. We observed that F-actin polymerization in the region of membrane fusion was more prominent in Sms2-expressing cells than Sms-deficient cells. Taken together, our research provides insight into a novel function of SMS2 which is the regulation of HIV-1 Env-mediated membrane fusion via actin rearrangement. PMID:25231990

  4. Drosophila Kette coordinates myoblast junction dissolution and the ratio of Scar-to-WASp during myoblast fusion.

    PubMed

    Hamp, Julia; Löwer, Andreas; Dottermusch-Heidel, Christine; Beck, Lothar; Moussian, Bernard; Flötenmeyer, Matthias; Önel, Susanne-Filiz

    2016-09-15

    The fusion of founder cells and fusion-competent myoblasts (FCMs) is crucial for muscle formation in Drosophila Characteristic events of myoblast fusion include the recognition and adhesion of myoblasts, and the formation of branched F-actin by the Arp2/3 complex at the site of cell-cell contact. At the ultrastructural level, these events are reflected by the appearance of finger-like protrusions and electron-dense plaques that appear prior to fusion. Severe defects in myoblast fusion are caused by the loss of Kette (a homolog of Nap1 and Hem-2, also known as NCKAP1 and NCKAP1L, respectively), a member of the regulatory complex formed by Scar or WAVE proteins (represented by the single protein, Scar, in flies). kette mutants form finger-like protrusions, but the electron-dense plaques are extended. Here, we show that the electron-dense plaques in wild-type and kette mutant myoblasts resemble other electron-dense structures that are known to function as cellular junctions. Furthermore, analysis of double mutants and attempts to rescue the kette mutant phenotype with N-cadherin, wasp and genes of members of the regulatory Scar complex revealed that Kette has two functions during myoblast fusion. First, Kette controls the dissolution of electron-dense plaques. Second, Kette controls the ratio of the Arp2/3 activators Scar and WASp in FCMs. PMID:27521427

  5. Identification of a Potent and Broad-Spectrum Hepatitis C Virus Fusion Inhibitory Peptide from the E2 Stem Domain

    PubMed Central

    Chi, Xiaojing; Niu, Yuqiang; Cheng, Min; Liu, Xiuying; Feng, Yetong; Zheng, Fuxiang; Fan, Jingjing; Li, Xiang; Jin, Qi; Zhong, Jin; Li, Yi-Ping; Yang, Wei

    2016-01-01

    Hepatitis C virus (HCV) envelope proteins E1 and E2 play an essential role in virus entry. However, the fusion mechanisms of HCV remain largely unclear, hampering the development of efficient fusion inhibitors. Here, we developed two cell-based membrane fusion models that allow for screening a peptide library covering the full-length E1 and E2 amino acid sequences. A peptide from the E2 stem domain, named E27, was found to possess the ability to block E1E2-mediated cell-cell fusion and inhibit cell entry of HCV pseudoparticles and infection of cell culture-derived HCV at nanomolar concentrations. E27 demonstrated broad-spectrum inhibition of the major genotypes 1 to 6. A time-of-addition experiment revealed that E27 predominantly functions in the late steps during HCV entry, without influencing the expression and localization of HCV co-receptors. Moreover, we demonstrated that E27 interfered with hetero-dimerization of ectopically expressed E1E2 in cells, and mutational analysis suggested that E27 might target a conserved region in E1. Taken together, our findings provide a novel candidate as well as a strategy for developing potent and broad-spectrum HCV fusion inhibitors, which may complement the current direct-acting antiviral medications for chronic hepatitis C, and shed light on the mechanism of HCV membrane fusion. PMID:27121372

  6. Drosophila Kette coordinates myoblast junction dissolution and the ratio of Scar-to-WASp during myoblast fusion.

    PubMed

    Hamp, Julia; Löwer, Andreas; Dottermusch-Heidel, Christine; Beck, Lothar; Moussian, Bernard; Flötenmeyer, Matthias; Önel, Susanne-Filiz

    2016-09-15

    The fusion of founder cells and fusion-competent myoblasts (FCMs) is crucial for muscle formation in Drosophila Characteristic events of myoblast fusion include the recognition and adhesion of myoblasts, and the formation of branched F-actin by the Arp2/3 complex at the site of cell-cell contact. At the ultrastructural level, these events are reflected by the appearance of finger-like protrusions and electron-dense plaques that appear prior to fusion. Severe defects in myoblast fusion are caused by the loss of Kette (a homolog of Nap1 and Hem-2, also known as NCKAP1 and NCKAP1L, respectively), a member of the regulatory complex formed by Scar or WAVE proteins (represented by the single protein, Scar, in flies). kette mutants form finger-like protrusions, but the electron-dense plaques are extended. Here, we show that the electron-dense plaques in wild-type and kette mutant myoblasts resemble other electron-dense structures that are known to function as cellular junctions. Furthermore, analysis of double mutants and attempts to rescue the kette mutant phenotype with N-cadherin, wasp and genes of members of the regulatory Scar complex revealed that Kette has two functions during myoblast fusion. First, Kette controls the dissolution of electron-dense plaques. Second, Kette controls the ratio of the Arp2/3 activators Scar and WASp in FCMs.

  7. Genetic analysis of heptad-repeat regions in the G2 fusion subunit of the Junin arenavirus envelope glycoprotein

    SciTech Connect

    York, Joanne . E-mail: joanne.york@umontana.edu; Agnihothram, Sudhakar S. . E-mail: sudhakar.agnihothram@umontana.edu; Romanowski, Victor . E-mail: victor@biol.unlp.edu.ar; Nunberg, Jack H. . E-mail: jack.nunberg@umontana.edu

    2005-12-20

    The G2 fusion subunit of the Junin virus envelope glycoprotein GP-C contains two hydrophobic heptad-repeat regions that are postulated to form a six-helix bundle structure required for the membrane fusion activity of Class I viral fusion proteins. We have investigated the role of these heptad-repeat regions and, specifically, the importance of the putative interhelical a and d position sidechains by using alanine-scanning mutagenesis. All the mutant glycoproteins were expressed and transported to the cell surface. Proteolytic maturation at the subtilisin kexin isozyme-1/site-1-protease (SKI-1/S1P) cleavage site was observed in all but two of the mutants. Among the adequately cleaved mutant glycoproteins, four positions in the N-terminal region (I333, L336, L347 and L350) and two positions in the C-terminal region (R392 and W395) were shown to be important determinants of cell-cell fusion. Taken together, our results indicate that {alpha}-helical coiled-coil structures are likely critical in promoting arenavirus membrane fusion. These findings support the inclusion of the arenavirus GP-C among the Class I viral fusion proteins and suggest pharmacologic and immunologic strategies for targeting arenavirus infection and hemorrhagic fever.

  8. Dynamic interplay between adhesion surfaces in carcinomas: Cell-cell and cell-matrix crosstalk

    PubMed Central

    Smith, Yvonne E; Vellanki, Sri HariKrishna; Hopkins, Ann M

    2016-01-01

    Cell-cell and cell-matrix signaling and communication between adhesion sites involve mechanisms which are required for cellular functions during normal development and homeostasis; however these cellular functions and mechanisms are often deregulated in cancer. Aberrant signaling at cell-cell and cell-matrix adhesion sites often involves downstream mediators including Rho GTPases and tyrosine kinases. This review discusses these molecules as putative mediators of cellular crosstalk between cell-cell and cell-matrix adhesion sites, in addition to their attractiveness as therapeutic targets in cancer. Interestingly, inter-junctional crosstalk mechanisms are frequently typified by the way in which bacterial and viral pathogens opportunistically infect or intoxicate mammalian cells. This review therefore also discusses the concept of learning from pathogen-host interaction studies to better understand coordinated communication between cell-cell and cell-matrix adhesion sites, in addition to highlighting the potential therapeutic usefulness of exploiting pathogens or their products to tap into inter-junctional crosstalk. Taken together, we feel that increased knowledge around mechanisms of cell-cell and cell-matrix adhesion site crosstalk and consequently a greater understanding of their therapeutic targeting offers a unique opportunity to contribute to the emerging molecular revolution in cancer biology. PMID:26981196

  9. The formation of ordered nanoclusters controls cadherin anchoring to actin and cell-cell contact fluidity.

    PubMed

    Strale, Pierre-Olivier; Duchesne, Laurence; Peyret, Grégoire; Montel, Lorraine; Nguyen, Thao; Png, Evelyn; Tampé, Robert; Troyanovsky, Sergey; Hénon, Sylvie; Ladoux, Benoit; Mège, René-Marc

    2015-07-20

    Oligomerization of cadherins could provide the stability to ensure tissue cohesion. Cadherins mediate cell-cell adhesion by forming trans-interactions. They form cis-interactions whose role could be essential to stabilize intercellular junctions by shifting cadherin clusters from a fluid to an ordered phase. However, no evidence has been provided so far for cadherin oligomerization in cellulo and for its impact on cell-cell contact stability. Visualizing single cadherins within cell membrane at a nanometric resolution, we show that E-cadherins arrange in ordered clusters, providing the first demonstration of the existence of oligomeric cadherins at cell-cell contacts. Studying the consequences of the disruption of the cis-interface, we show that it is not essential for adherens junction formation. Its disruption, however, increased the mobility of junctional E-cadherin. This destabilization strongly affected E-cadherin anchoring to actin and cell-cell rearrangement during collective cell migration, indicating that the formation of oligomeric clusters controls the anchoring of cadherin to actin and cell-cell contact fluidity.

  10. Condensed hydrogen for thermonuclear fusion

    SciTech Connect

    Kucheyev, S. O.; Hamza, A. V.

    2010-11-15

    Inertial confinement fusion (ICF) power, in either pure fusion or fission-fusion hybrid reactors, is a possible solution for future world's energy demands. Formation of uniform layers of a condensed hydrogen fuel in ICF targets has been a long standing materials physics challenge. Here, we review the progress in this field. After a brief discussion of the major ICF target designs and the basic properties of condensed hydrogens, we review both liquid and solid layering methods, physical mechanisms causing layer nonuniformity, growth of hydrogen single crystals, attempts to prepare amorphous and nanostructured hydrogens, and mechanical deformation behavior. Emphasis is given to current challenges defining future research areas in the field of condensed hydrogens for fusion energy applications.

  11. Membrane tension and membrane fusion.

    PubMed

    Kozlov, Michael M; Chernomordik, Leonid V

    2015-08-01

    Diverse cell biological processes that involve shaping and remodeling of cell membranes are regulated by membrane lateral tension. Here we focus on the role of tension in driving membrane fusion. We discuss the physics of membrane tension, forces that can generate the tension in plasma membrane of a cell, and the hypothesis that tension powers expansion of membrane fusion pores in late stages of cell-to-cell and exocytotic fusion. We propose that fusion pore expansion can require unusually large membrane tensions or, alternatively, low line tensions of the pore resulting from accumulation in the pore rim of membrane-bending proteins. Increase of the inter-membrane distance facilitates the reaction. PMID:26282924

  12. Information fusion for palmprint authentication

    NASA Astrophysics Data System (ADS)

    Wu, Xiangqian; Wang, Kuanquan; Zhang, David

    2006-04-01

    A palmprint can be represented using different features and the different representations reflect the different characteristic of a palmprint. Fusion of multiple palmprint features may enhance the performance of a palmprint authentication system. This paper investigates the fusion of two types of palmprint information: the phase (called PalmCode) and the orientation (called OrientationCode). The PalmCode is extracted using the 2-D Gabor filters based algorithm and the OrientationCode is computed using several directional templates. Then several fusion strategies are investigated and compared. The experimental results show that the fusion of the PalmCode and OrientationCode using the Product, Sum and Weighted Sum strategies can greatly improve the accuracy of palmprint authentication, which is up to 99.6%.

  13. Pulsed Power Driven Fusion Energy

    SciTech Connect

    SLUTZ,STEPHEN A.

    1999-11-22

    Pulsed power is a robust and inexpensive technology for obtaining high powers. Considerable progress has been made on developing light ion beams as a means of transporting this power to inertial fusion capsules. However, further progress is hampered by the lack of an adequate ion source. Alternatively, z-pinches can efficiently convert pulsed power into thermal radiation, which can be used to drive an inertial fusion capsule. However, a z-pinch driven fusion explosion will destroy a portion of the transmission line that delivers the electrical power to the z-pinch. They investigate several options for providing standoff for z-pinch driven fusion. Recyclable Transmission Lines (RTLs) appear to be the most promising approach.

  14. Mulitvariate Visualization with Data Fusion

    SciTech Connect

    Wong, Pak C.; Foote, Harlan P.; Kao, David L.; Leung, Lai R.; Thomas, James J.

    2002-12-26

    We discuss a fusion-based visualization method to analyze a 2D flow field together with its related scalars. The primary difference between a conventional visualization and a fusion-based visuali-zation is that the former draws on a single image whereas the latter draws on multiple see-through layers, which are then over-laid on each other to form the final visualization. We propose uniquely designed colormaps to highlight flow features that would not be shown with conventional colormaps. We present fusion techniques that integrate multiple single-purpose flow visualiza-tion techniques into the same viewing space. Our highly flexible fusion approach allows scientists to explore multiple parameters concurrently by mixing and matching images without frequently reconstructing new visualizations from its data for every possible combination. Sample datasets collected from a climate modeling study are used to demonstrate our approach

  15. Mulitvariate Visualization with Data Fusion

    SciTech Connect

    Wong, Pak C.; Foote, Harlan P.; Kao, David L.; Leung, Lai R.; Thomas, James J.

    2002-12-31

    We discuss a fusion-based visualization method to analyze a 2D flow field together with its related scalars. The primary difference between a conventional visualization and a fusion-based visuali-zation is that the former draws on a single image whereas the latter draws on multiple see-through layers, which are then over-laid on each other to form the final visualization. We propose uniquely designed colormaps to highlight flow features that would not be shown with conventional colormaps. We present fusion techniques that integrate multiple single-purpose flow visualiza-tion techniques into the same viewing space. Our highly flexible fusion approach allows scientists to explore multiple parameters concurrently by mixing and matching images without frequently reconstructing new visualizations from its data for every possible combination. Sample datasets collected from a climate modeling study are used to demonstrate our approach

  16. Overview of fusion reactor safety

    NASA Astrophysics Data System (ADS)

    Cohen, S.; Crocker, J. G.

    Use of deuterium-tritium fusion reactors requires examination of several major safety and environmental issues: (1) tritium inventory control; (2) neutron activation of structural materials, fluid streams and reactor hall environment; (3) release of radioactivity from energy sources including lithium spill reactions, superconducting magnet stored energy release, and plasma disruptions; (4) high magnetic and electromagnetic fields associated with fusion reactor superconducting magnets and radio frequency heating devices; and (5) handling and disposal of radioactive waste. Early recognition of potential safety problems with fusion reactors provides the opportunity for improvement in design and materials to eliminate or greatly reduce these problems. With an early start in this endeavor, fusion should be among the lower risk technologies for generation of commercial electrical power.

  17. Novel innate immune functions for galectin-1: galectin-1 inhibits cell fusion by Nipah virus envelope glycoproteins and augments dendritic cell secretion of proinflammatory cytokines.

    PubMed

    Levroney, Ernest L; Aguilar, Hector C; Fulcher, Jennifer A; Kohatsu, Luciana; Pace, Karen E; Pang, Mabel; Gurney, Kevin B; Baum, Linda G; Lee, Benhur

    2005-07-01

    Galectin-1 (gal-1), an endogenous lectin secreted by a variety of cell types, has pleiotropic immunomodulatory functions, including regulation of lymphocyte survival and cytokine secretion in autoimmune, transplant disease, and parasitic infection models. However, the role of gal-1 in viral infections is unknown. Nipah virus (NiV) is an emerging pathogen that causes severe, often fatal, febrile encephalitis. The primary targets of NiV are endothelial cells. NiV infection of endothelial cells results in cell-cell fusion and syncytia formation triggered by the fusion (F) and attachment (G) envelope glycoproteins of NiV that bear glycan structures recognized by gal-1. In the present study, we report that NiV envelope-mediated cell-cell fusion is blocked by gal-1. This inhibition is specific to the Paramyxoviridae family because gal-1 did not inhibit fusion triggered by envelope glycoproteins of other viruses, including two retroviruses and a pox virus, but inhibited fusion triggered by envelope glycoproteins of the related Hendra virus and another paramyxovirus. The physiologic dimeric form of gal-1 is required for fusion inhibition because a monomeric gal-1 mutant had no inhibitory effect on cell fusion. gal-1 binds to specific N-glycans on NiV glycoproteins and aberrantly oligomerizes NiV-F and NiV-G, indicating a mechanism for fusion inhibition. gal-1 also increases dendritic cell production of proinflammatory cytokines such as IL-6, known to be protective in the setting of other viral diseases such as Ebola infections. Thus, gal-1 may have direct antiviral effects and may also augment the innate immune response against this emerging pathogen.

  18. Laser fusion monthly -- August 1980

    SciTech Connect

    Ahlstrom, H.G.

    1980-08-01

    This report documents the monthly progress for the laser fusion research at Lawrence Livermore National Laboratory. First it gives facilities report for both the Shiva and Argus projects. Topics discussed include; laser system for the Nova Project; the fusion experiments analysis facility; optical/x-ray streak camera; Shiva Dante System temporal response; 2{omega}{sub 0} experiment; and planning for an ICF engineering test facility.

  19. Cavitation and Fusion

    NASA Astrophysics Data System (ADS)

    Stringham, Roger S.

    2005-12-01

    Natural cavitation phenomena in D2O using piezo devices, is now amplified initiating DD fusion events that produce heat and helium. The transient cavitation bubble produces micro accelerators in the form of jets containing high densities of deuterons, 1024-25/cc from the cavitating D2O. An electrically driven piezo device in a reactor filled with D2O produces jets that implant deuterons into a target foil producing 4He and T plus heat. There is no long range radiation associated with this process. We are moving in the direction of utilizing smaller systems by gaining faster and less expensive technology growth moving from successes at 0.2 and 0.4 MHz to 1.7 MHz. One of the results of our low frequency studies is a 1 to 3 MHz induced standing wave in our target foils. We are using sonoluminescence intensity as a tool to guide us in finding highest plasma density in the adiabatic bubble collapse process in the jet plasma formation. The generation of these sonoluminescence photons relates to conditions for the target implantation process. These experiments and the analytical methods have concentrated on the mass spectroscopy of reactor gases, calorimetry of the reactor and power supply, and the scanning electron microscope photographs of target foils. This work provides a path for an ecological and hydrocarbon-free energy source for all energy applications.

  20. Prospects for Tokamak Fusion Reactors

    SciTech Connect

    Sheffield, J.; Galambos, J.

    1995-04-01

    This paper first reviews briefly the status and plans for research in magnetic fusion energy and discusses the prospects for the tokamak magnetic configuration to be the basis for a fusion power plant. Good progress has been made in achieving fusion reactor-level, deuterium-tritium (D-T) plasmas with the production of significant fusion power in the Joint European Torus (up to 2 MW) and the Tokamak Fusion Test Reactor (up to 10 MW) tokamaks. Advances on the technologies of heating, fueling, diagnostics, and materials supported these achievements. The successes have led to the initiation of the design phases of two tokamaks, the International Thermonuclear Experimental Reactor (ITER) and the US Toroidal Physics Experiment (TPX). ITER will demonstrate the controlled ignition and extended bum of D-T plasmas with steady state as an ultimate goal. ITER will further demonstrate technologies essential to a power plant in an integrated system and perform integrated testing of the high heat flux and nuclear components required to use fusion energy for practical purposes. TPX will complement ITER by testing advanced modes of steady-state plasma operation that, coupled with the developments in ITER, will lead to an optimized demonstration power plant.

  1. TRITIUM ACCOUNTANCY IN FUSION SYSTEMS

    SciTech Connect

    Klein, J. E.; Farmer, D. A.; Moore, M. L.; Tovo, L. L.; Poore, A. S.; Clark, E. A.; Harvel, C. D.

    2014-03-06

    The US Department of Energy (DOE) has clearly defined requirements for nuclear material control and accountability (MC&A) of tritium whereas the International Atomic Energy Agency (IAEA) does not since tritium is not a fissile material. MC&A requirements are expected for tritium fusion machines and will be dictated by the host country or regulatory body where the machine is operated. Material Balance Areas (MBAs) are defined to aid in the tracking and reporting of nuclear material movements and inventories. Material subaccounts (MSAs) are established along with key measurement points (KMPs) to further subdivide a MBA to localize and minimize uncertainties in the inventory difference (ID) calculations for tritium accountancy. Fusion systems try to minimize tritium inventory which may require continuous movement of material through the MSAs. The ability of making meaningful measurements of these material transfers is described in terms of establishing the MSA structure to perform and reconcile ID calculations. For fusion machines, changes to the traditional ID equation will be discussed which includes breading, burn-up, and retention of tritium in the fusion device. The concept of “net” tritium quantities consumed or lost in fusion devices is described in terms of inventory taking strategies and how it is used to track the accumulation of tritium in components or fusion machines.

  2. Tritium accountancy in fusion systems

    SciTech Connect

    Klein, J.E.; Clark, E.A.; Harvel, C.D.; Farmer, D.A.; Tovo, L.L.; Poore, A.S.; Moore, M.L.

    2015-03-15

    The US Department of Energy (DOE) has clearly defined requirements for nuclear material control and accountability (MCA) of tritium whereas the International Atomic Energy Agency (IAEA) does not since tritium is not a fissile material. MCA requirements are expected for tritium fusion machines and will be dictated by the host country or regulatory body where the machine is operated. Material Balance Areas (MBA) are defined to aid in the tracking and reporting of nuclear material movements and inventories. Material sub-accounts (MSA) are established along with key measurement points (KMP) to further subdivide a MBA to localize and minimize uncertainties in the inventory difference (ID) calculations for tritium accountancy. Fusion systems try to minimize tritium inventory which may require continuous movement of material through the MSA. The ability of making meaningful measurements of these material transfers is described in terms of establishing the MSA structure to perform and reconcile ID calculations. For fusion machines, changes to the traditional ID equation will be discussed which includes breeding, burn-up, and retention of tritium in the fusion device. The concept of 'net' tritium quantities consumed or lost in fusion devices is described in terms of inventory taking strategies and how it is used to track the accumulation of tritium in components or fusion machines. (authors)

  3. High-throughput detection and quantification of mitochondrial fusion through imaging flow cytometry.

    PubMed

    Nascimento, Aldo; Lannigan, Joanne; Kashatus, David

    2016-08-01

    Mitochondria are highly dynamic organelles whose fusion and fission play an increasingly important role in a number of both normal and pathological cellular functions. Despite the increased interest in mitochondrial dynamics, robust, and quantitative methods to analyze mitochondrial fusion and fission activity in intact cells have not been developed. The current state-of-the art method to measure mitochondrial fusion activity is the polyethylene glycol (PEG) fusion assay in which cells expressing distinct mitochondrially-targeted fluorescent proteins (FPs) are fused together and mitochondrial fusion activity is determined by the rate at which color mixing occurs. Although this assay is useful, cell-cell fusion events are rare, and finding the number of fused cells required to generate statistically rigorous data is both tedious and time-consuming. Furthermore, the data-collection methods available for fluorescence microscopy lead to inherent selection biases that are difficult to control for. To that end, we have developed an unbiased and high-throughput method to detect, image, and analyze fused cells using the Amnis ImagestreamX™ MKII. With IDEAS™ software, we developed algorithms for identifying the fused cells (two nuclei within a single cell), distinguishing them from cell aggregates. Additionally, using the fluorescence localization of the mitochondrially-targeted fluorescent proteins (YFP and DsRed), we applied a modified co-localization algorithm to identify those cells that had a high co-localization score indicating mitochondrial fusion activity. These algorithms were tested using negative controls (FPs associated with fusion deficient mitochondria) and positive controls (cells expressing both FPs in the same mitochondria). Once validated these algorithms could be applied to test samples to evaluate the degree of mitochondrial fusion in cells with various genetic mutations. Ultimately, this new method is the first robust, high-throughput way to

  4. High-throughput detection and quantification of mitochondrial fusion through imaging flow cytometry.

    PubMed

    Nascimento, Aldo; Lannigan, Joanne; Kashatus, David

    2016-08-01

    Mitochondria are highly dynamic organelles whose fusion and fission play an increasingly important role in a number of both normal and pathological cellular functions. Despite the increased interest in mitochondrial dynamics, robust, and quantitative methods to analyze mitochondrial fusion and fission activity in intact cells have not been developed. The current state-of-the art method to measure mitochondrial fusion activity is the polyethylene glycol (PEG) fusion assay in which cells expressing distinct mitochondrially-targeted fluorescent proteins (FPs) are fused together and mitochondrial fusion activity is determined by the rate at which color mixing occurs. Although this assay is useful, cell-cell fusion events are rare, and finding the number of fused cells required to generate statistically rigorous data is both tedious and time-consuming. Furthermore, the data-collection methods available for fluorescence microscopy lead to inherent selection biases that are difficult to control for. To that end, we have developed an unbiased and high-throughput method to detect, image, and analyze fused cells using the Amnis ImagestreamX™ MKII. With IDEAS™ software, we developed algorithms for identifying the fused cells (two nuclei within a single cell), distinguishing them from cell aggregates. Additionally, using the fluorescence localization of the mitochondrially-targeted fluorescent proteins (YFP and DsRed), we applied a modified co-localization algorithm to identify those cells that had a high co-localization score indicating mitochondrial fusion activity. These algorithms were tested using negative controls (FPs associated with fusion deficient mitochondria) and positive controls (cells expressing both FPs in the same mitochondria). Once validated these algorithms could be applied to test samples to evaluate the degree of mitochondrial fusion in cells with various genetic mutations. Ultimately, this new method is the first robust, high-throughput way to

  5. Spatiotemporal control of cell-cell reversible interactions using molecular engineering

    NASA Astrophysics Data System (ADS)

    Shi, Peng; Ju, Enguo; Yan, Zhengqing; Gao, Nan; Wang, Jiasi; Hou, Jianwen; Zhang, Yan; Ren, Jinsong; Qu, Xiaogang

    2016-10-01

    Manipulation of cell-cell interactions has potential applications in basic research and cell-based therapy. Herein, using a combination of metabolic glycan labelling and bio-orthogonal click reaction, we engineer cell membranes with β-cyclodextrin and subsequently manipulate cell behaviours via photo-responsive host-guest recognition. With this methodology, we demonstrate reversible manipulation of cell assembly and disassembly. The method enables light-controllable reversible assembly of cell-cell adhesion, in contrast with previously reported irreversible effects, in which altered structure could not be reused. We also illustrate the utility of the method by designing a cell-based therapy. Peripheral blood mononuclear cells modified with aptamer are effectively redirected towards target cells, resulting in enhanced cell apoptosis. Our approach allows precise control of reversible cell-cell interactions and we expect that it will promote further developments of cell-based therapy.

  6. Topographical control of cell-cell interaction in C6 glioma by nanodot arrays

    NASA Astrophysics Data System (ADS)

    Lee, Chia-Hui; Cheng, Ya-Wen; Huang, G. Steven

    2014-05-01

    Nanotopography modulates the physiological behavior of cells and cell-cell interactions, but the manner of communication remains unclear. Cell networking (syncytium) of astroglia provides the optimal microenvironment for communication of the nervous system. C6 glioma cells were seeded on nanodot arrays with dot diameters ranging from 10 to 200 nm. Cell viability, morphology, cytoskeleton, and adhesion showed optimal cell growth on 50-nm nanodots if sufficient incubation was allowed. In particular, the astrocytic syncytium level maximized at 50 nm. The gap junction protein Cx43 showed size-dependent and time-dependent transport from the nucleus to the cell membrane. The transport efficiency was greatly enhanced by incubation on 50-nm nanodots. In summary, nanotopography is capable of modulating cell behavior and influencing the cell-cell interactions of astrocytes. By fine-tuning the nanoenvironment, it may be possible to regulate cell-cell communications and optimize the biocompatibility of neural implants.

  7. Topographical control of cell-cell interaction in C6 glioma by nanodot arrays.

    PubMed

    Lee, Chia-Hui; Cheng, Ya-Wen; Huang, G Steven

    2014-01-01

    Nanotopography modulates the physiological behavior of cells and cell-cell interactions, but the manner of communication remains unclear. Cell networking (syncytium) of astroglia provides the optimal microenvironment for communication of the nervous system. C6 glioma cells were seeded on nanodot arrays with dot diameters ranging from 10 to 200 nm. Cell viability, morphology, cytoskeleton, and adhesion showed optimal cell growth on 50-nm nanodots if sufficient incubation was allowed. In particular, the astrocytic syncytium level maximized at 50 nm. The gap junction protein Cx43 showed size-dependent and time-dependent transport from the nucleus to the cell membrane. The transport efficiency was greatly enhanced by incubation on 50-nm nanodots. In summary, nanotopography is capable of modulating cell behavior and influencing the cell-cell interactions of astrocytes. By fine-tuning the nanoenvironment, it may be possible to regulate cell-cell communications and optimize the biocompatibility of neural implants. PMID:24917700

  8. ADP-Ribosylation Factor 1 Regulates Proliferation, Migration, and Fusion in Early Stage of Osteoclast Differentiation

    PubMed Central

    Kim, Min Jae; Kim, Hyunsoo; Lee, Seoung Hoon; Gu, Dong Ryun; Lee, Soo Young; Lee, Kyunghee; Jeong, Daewon

    2015-01-01

    Small G-protein adenosine diphosphate (ADP)-ribosylation factors (ARFs) regulate a variety of cellular functions, including actin cytoskeleton remodeling, plasma membrane reorganization, and vesicular transport. Here, we propose the functional roles of ARF1 in multiple stages of osteoclast differentiation. ARF1 was upregulated during receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclast differentiation and transiently activated in an initial stage of their differentiation. Differentiation of ARF1-deficient osteoclast precursors into mature osteoclasts temporarily increased in pre-maturation stage of osteoclasts followed by reduced formation of mature osteoclasts, indicating that ARF1 regulates the osteoclastogenic process. ARF1 deficiency resulted in reduced osteoclast precursor proliferation and migration as well as increasing cell-cell fusion. In addition, ARF1 silencing downregulated c-Jun N-terminal kinase (JNK), Akt, osteopontin, and macrophage colony-stimulating factor (M-CSF)-receptor c-Fms as well as upregulating several fusion-related genes including CD44, CD47, E-cadherin, and meltrin-α. Collectively, we showed that ARF1 stimulated proliferation and migration of osteoclast precursors while suppressing their fusion, suggesting that ARF1 may be a plausible inter-player that mediates the transition to osteoclast fusion at multiple steps during osteoclast differentiation PMID:26690137

  9. Inhibition of endosomal fusion activity of influenza virus by Rheum tanguticum (da-huang).

    PubMed

    Lin, Ta-Jen; Lin, Chwan-Fwu; Chiu, Cheng-Hsun; Lee, Ming-Chung; Horng, Jim-Tong

    2016-01-01

    Rhubarb (Rheum tanguticum; da-huang in Chinese medicine) is a herbal medicine that has been used widely for managing fever and removing toxicity. In this study, we investigated how rhubarb inhibits influenza virus during the early stage of the infectious cycle using different functional assays. A non-toxic ethanolic extract of rhubarb (Rex) inhibited several H1N1 subtypes of influenza A viruses in Madin-Darby canine kidney cells, including strains that are clinically resistant to oseltamivir. Time course analysis of Rex addition showed that viral entry was one of the steps that was inhibited by Rex. We also confirmed that Rex effectively inhibited viral attachment and penetration into the host cells. The inhibition of red blood cell haemolysis and cell-cell fusion by Rex suggests that Rex may block haemagglutinin-mediated fusion (virus-endosome fusion) during the fusion/uncoating step. Rex has the capacity to inhibit influenza viruses by blocking viral endocytosis. Thus, rhubarb might provide an alternative therapeutic approach when resistant viruses become more prevalent. PMID:27302738

  10. ADP-Ribosylation Factor 1 Regulates Proliferation, Migration, and Fusion in Early Stage of Osteoclast Differentiation.

    PubMed

    Kim, Min Jae; Kim, Hyunsoo; Lee, Seoung Hoon; Gu, Dong Ryun; Lee, Soo Young; Lee, Kyunghee; Jeong, Daewon

    2015-12-09

    Small G-protein adenosine diphosphate (ADP)-ribosylation factors (ARFs) regulate a variety of cellular functions, including actin cytoskeleton remodeling, plasma membrane reorganization, and vesicular transport. Here, we propose the functional roles of ARF1 in multiple stages of osteoclast differentiation. ARF1 was upregulated during receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclast differentiation and transiently activated in an initial stage of their differentiation. Differentiation of ARF1-deficient osteoclast precursors into mature osteoclasts temporarily increased in pre-maturation stage of osteoclasts followed by reduced formation of mature osteoclasts, indicating that ARF1 regulates the osteoclastogenic process. ARF1 deficiency resulted in reduced osteoclast precursor proliferation and migration as well as increasing cell-cell fusion. In addition, ARF1 silencing downregulated c-Jun N-terminal kinase (JNK), Akt, osteopontin, and macrophage colony-stimulating factor (M-CSF)-receptor c-Fms as well as upregulating several fusion-related genes including CD44, CD47, E-cadherin, and meltrin-α. Collectively, we showed that ARF1 stimulated proliferation and migration of osteoclast precursors while suppressing their fusion, suggesting that ARF1 may be a plausible inter-player that mediates the transition to osteoclast fusion at multiple steps during osteoclast differentiation.

  11. A Social Medium: ASM's 5th Cell-Cell Communication in Bacteria Meeting in Review

    PubMed Central

    Federle, Michael J.

    2015-01-01

    The 5th American Society for Microbiology Conference on Cell-Cell Communication in Bacteria (CCCB-5), which convened from 18 to 21 October 2014 in San Antonio, TX, highlighted recent advances in our understanding of microbial intercellular signaling. While the CCCB meetings arose from interests in pheromone signaling and quorum sensing, it was evident at CCCB-5 that the cell-cell communication field is continuing to mature, expanding into new areas and integrating cutting-edge technologies. In this minireview, we recap some of the research discussed at CCCB-5 and the questions that have arisen from it. PMID:25917904

  12. Novel Hydrophobin Fusion Tags for Plant-Produced Fusion Proteins

    PubMed Central

    Ritala, Anneli; Linder, Markus; Joensuu, Jussi

    2016-01-01

    Hydrophobin fusion technology has been applied in the expression of several recombinant proteins in plants. Until now, the technology has relied exclusively on the Trichoderma reesei hydrophobin HFBI. We screened eight novel hydrophobin tags, T. reesei HFBII, HFBIII, HFBIV, HFBV, HFBVI and Fusarium verticillioides derived HYD3, HYD4 and HYD5, for production of fusion proteins in plants and purification by two-phase separation. To study the properties of the hydrophobins, we used N-terminal and C-terminal GFP as a fusion partner. Transient expression of the hydrophobin fusions in Nicotiana benthamiana revealed large variability in accumulation levels, which was also reflected in formation of protein bodies. In two-phase separations, only HFBII and HFBIV were able to concentrate GFP into the surfactant phase from a plant extract. The separation efficiency of both tags was comparable to HFBI. When the accumulation was tested side by side, HFBII-GFP gave a better yield than HFBI-GFP, while the yield of HFBIV-GFP remained lower. Thus we present here two alternatives for HFBI as functional fusion tags for plant-based protein production and first step purification. PMID:27706254

  13. SKIDS data fusion project

    NASA Astrophysics Data System (ADS)

    Greenway, Phil

    1992-04-01

    The European Community's strategic research initiative in information technology (ESPRIT) has been in place for nearly five years. An early example of the pan-European collaborative projects being conducted under this initiative is 'SKIDS': Signal and Knowledge Integration with Decisional Control for Multisensory Systems. This four year project, which is approaching completion, aims to build a real-time multisensor perception machine. This machine will be capable of performing data fusion, interpretation, situation assessment, and resource allocation tasks, under the constraints of both time and resource availability, and in the presence of uncertain data. Of the many possible applications, the surveillance and monitoring of a semi-automated 'factory environment' has been chosen as a challenging and representative test scenario. This paper presents an overview of the goals and objectives of the project, the makeup of the consortium, and roles of the members within it, and the main technical achievements to data. In particular, the following are discussed: relevant application domains, and the generic requirements that can be inferred from them; sensor configuration, including choice, placement, etc.; control paradigms, including the possible trade-offs between centralized, hierarchical, and decentralized approaches; the corresponding hardware architectural choices, including the need for parallel processing; and the appropriate software architecture and infra-structure required to support the chosen task oriented approach. Specific attention is paid to the functional decomposition of the system and how the requirements for control impact the organization of the identified interpretation tasks. Future work and outstanding problems are considered in some concluding remarks. By virtue of limited space, this paper is descriptive rather than explanatory.

  14. Fusion Plasma Theory project summaries

    SciTech Connect

    Not Available

    1993-10-01

    This Project Summary book is a published compilation consisting of short descriptions of each project supported by the Fusion Plasma Theory and Computing Group of the Advanced Physics and Technology Division of the Department of Energy, Office of Fusion Energy. The summaries contained in this volume were written by the individual contractors with minimal editing by the Office of Fusion Energy. Previous summaries were published in February of 1982 and December of 1987. The Plasma Theory program is responsible for the development of concepts and models that describe and predict the behavior of a magnetically confined plasma. Emphasis is given to the modelling and understanding of the processes controlling transport of energy and particles in a toroidal plasma and supporting the design of the International Thermonuclear Experimental Reactor (ITER). A tokamak transport initiative was begun in 1989 to improve understanding of how energy and particles are lost from the plasma by mechanisms that transport them across field lines. The Plasma Theory program has actively-participated in this initiative. Recently, increased attention has been given to issues of importance to the proposed Tokamak Physics Experiment (TPX). Particular attention has been paid to containment and thermalization of fast alpha particles produced in a burning fusion plasma as well as control of sawteeth, current drive, impurity control, and design of improved auxiliary heating. In addition, general models of plasma behavior are developed from physics features common to different confinement geometries. This work uses both analytical and numerical techniques. The Fusion Theory program supports research projects at US government laboratories, universities and industrial contractors. Its support of theoretical work at universities contributes to the office of Fusion Energy mission of training scientific manpower for the US Fusion Energy Program.

  15. Cell fusion in osteoclasts plays a critical role in controlling bone mass and osteoblastic activity

    SciTech Connect

    Iwasaki, Ryotaro; Ninomiya, Ken; Miyamoto, Kana; Suzuki, Toru; Sato, Yuiko

    2008-12-19

    The balance between osteoclast and osteoblast activity is central for maintaining the integrity of bone homeostasis. Here we show that mice lacking dendritic cell specific transmembrane protein (DC-STAMP), an essential molecule for osteoclast cell-cell fusion, exhibited impaired bone resorption and upregulation of bone formation by osteoblasts, which do not express DC-STAMP, which led to increased bone mass. On the contrary, DC-STAMP over-expressing transgenic (DC-STAMP-Tg) mice under the control of an actin promoter showed significantly accelerated cell-cell fusion of osteoclasts and bone resorption, with decreased osteoblastic activity and bone mass. Bone resorption and formation are known to be regulated in a coupled manner, whereas DC-STAMP regulates bone homeostasis in an un-coupled manner. Thus our results indicate that inhibition of a single molecule provides both decreased osteoclast activity and increased bone formation by osteoblasts, thereby increasing bone mass in an un-coupled and a tissue specific manner.

  16. Kinetic advantage of controlled intermediate nuclear fusion

    SciTech Connect

    Guo Xiaoming

    2012-09-26

    The dominated process of controlled fusion is to let nuclei gain enough kinetic energy to overcome Coulomb barrier. As a result, a fusion scheme can consider two factors in its design: to increase kinetic energy of nuclei and to alter the Coulomb barrier. Cold Fusion and Hot fusion are all one-factor schemes while Intermediate Fusion is a twofactors scheme. This made CINF kinetically superior. Cold Fusion reduces deuteron-deuteron distance, addressing Coulomb barrier, and Hot Fusion heat up plasma into extreme high temperature, addressing kinetic energy. Without enough kinetic energy made Cold Fusion skeptical. Extreme high temperature made Hot Fusion very difficult to engineer. Because CIFN addresses both factors, CIFN is a more promising technique to be industrialized.

  17. Kinetic advantage of controlled intermediate nuclear fusion

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoming

    2012-09-01

    The dominated process of controlled fusion is to let nuclei gain enough kinetic energy to overcome Coulomb barrier. As a result, a fusion scheme can consider two factors in its design: to increase kinetic energy of nuclei and to alter the Coulomb barrier. Cold Fusion and Hot fusion are all one-factor schemes while Intermediate Fusion is a twofactors scheme. This made CINF kinetically superior. Cold Fusion reduces deuteron-deuteron distance, addressing Coulomb barrier, and Hot Fusion heat up plasma into extreme high temperature, addressing kinetic energy. Without enough kinetic energy made Cold Fusion skeptical. Extreme high temperature made Hot Fusion very difficult to engineer. Because CIFN addresses both factors, CIFN is a more promising technique to be industrialized.

  18. Accelerators for Fusion Materials Testing

    NASA Astrophysics Data System (ADS)

    Knaster, Juan; Okumura, Yoshikazu

    Fusion materials research is a worldwide endeavor as old as the parallel one working toward the long term stable confinement of ignited plasma. In a fusion reactor, the preservation of the required minimum thermomechanical properties of the in-vessel components exposed to the severe irradiation and heat flux conditions is an indispensable factor for safe operation; it is also an essential goal for the economic viability of fusion. Energy from fusion power will be extracted from the 14 MeV neutron freed as a product of the deuterium-tritium fusion reactions; thus, this kinetic energy must be absorbed and efficiently evacuated and electricity eventually generated by the conventional methods of a thermal power plant. Worldwide technological efforts to understand the degradation of materials exposed to 14 MeV neutron fluxes > 1018 m-2s-1, as expected in future fusion power plants, have been intense over the last four decades. Existing neutron sources can reach suitable dpa ("displacement-per-atom", the figure of merit to assess materials degradation from being exposed to neutron irradiation), but the differences in the neutron spectrum of fission reactors and spallation sources do not allow one to unravel the physics and to anticipate the degradation of materials exposed to fusion neutrons. Fusion irradiation conditions can be achieved through Li (d, xn) nuclear reactions with suitable deuteron beam current and energy, and an adequate flowing lithium screen. This idea triggered in the late 1970s at Los Alamos National Laboratory (LANL) a campaign working toward the feasibility of continuous wave (CW) high current linacs framed by the Fusion Materials Irradiation Test (FMIT) project. These efforts continued with the Low Energy Demonstrating Accelerator (LEDA) (a validating prototype of the canceled Accelerator Production of Tritium (APT) project), which was proposed in 2002 to the fusion community as a 6.7MeV, 100mA CW beam injector for a Li (d, xn) source to bridge

  19. Accelerators for Fusion Materials Testing

    NASA Astrophysics Data System (ADS)

    Knaster, Juan; Okumura, Yoshikazu

    Fusion materials research is a worldwide endeavor as old as the parallel one working toward the long term stable confinement of ignited plasma. In a fusion reactor, the preservation of the required minimum thermomechanical properties of the in-vessel components exposed to the severe irradiation and heat flux conditions is an indispensable factor for safe operation; it is also an essential goal for the economic viability of fusion. Energy from fusion power will be extracted from the 14 MeV neutron freed as a product of the deuterium-tritium fusion reactions; thus, this kinetic energy must be absorbed and efficiently evacuated and electricity eventually generated by the conventional methods of a thermal power plant. Worldwide technological efforts to understand the degradation of materials exposed to 14 MeV neutron fluxes >1018 m-2s-1, as expected in future fusion power plants, have been intense over the last four decades. Existing neutron sources can reach suitable dpa (“displacement-per-atom”, the figure of merit to assess materials degradation from being exposed to neutron irradiation), but the differences in the neutron spectrum of fission reactors and spallation sources do not allow one to unravel the physics and to anticipate the degradation of materials exposed to fusion neutrons. Fusion irradiation conditions can be achieved through Li (d, xn) nuclear reactions with suitable deuteron beam current and energy, and an adequate flowing lithium screen. This idea triggered in the late 1970s at Los Alamos National Laboratory (LANL) a campaign working toward the feasibility of continuous wave (CW) high current linacs framed by the Fusion Materials Irradiation Test (FMIT) project. These efforts continued with the Low Energy Demonstrating Accelerator (LEDA) (a validating prototype of the canceled Accelerator Production of Tritium (APT) project), which was proposed in 2002 to the fusion community as a 6.7MeV, 100mA CW beam injector for a Li (d, xn) source to bridge

  20. Object recognition by active fusion

    NASA Astrophysics Data System (ADS)

    Prantl, Manfred; Kopp-Borotschnig, Hermann; Ganster, Harald; Sinclair, David; Pinz, Axel J.

    1996-10-01

    Today's computer vision applications often have to deal with multiple, uncertain, and incomplete visual information. In this paper, we apply a new method, termed 'active fusion', to the problem of generic object recognition. Active fusion provides a common framework for active selection and combination of information from multiple sources in order to arrive at a reliable result at reasonable costs. In our experimental setup we use a camera mounted on a 2m by 1.5m x/z-table observing objects placed on a rotating table. Zoom, pan, tilt, and aperture setting of the camera can be controlled by the system. We follow a part-based approach, trying to decompose objects into parts, which are modeled as geons. The active fusion system starts from an initial view of the objects placed on the table and is continuously trying to refine its current object hypotheses by requesting additional views. The implementation of active fusion on the basis of probability theory, Dempster-Shafer's theory of evidence and fuzzy set theory is discussed. First results demonstrating segmentation improvements by active fusion are presented.

  1. A Model for Membrane Fusion

    NASA Astrophysics Data System (ADS)

    Ngatchou, Annita

    2010-01-01

    Pheochromocytoma is a tumor of the adrenal gland which originates from chromaffin cells and is characterized by the secretion of excessive amounts of neurotransmitter which lead to high blood pressure and palpitations. Pheochromocytoma contain membrane bound granules that store neurotransmitter. The release of these stored molecules into the extracellular space occurs by fusion of the granule membrane with the cell plasma membrane, a process called exocytosis. The molecular mechanism of this membrane fusion is not well understood. It is proposed that the so called SNARE proteins [1] are the pillar of vesicle fusion as their cleavage by clostridial toxin notably, Botulinum neurotoxin and Tetanus toxin abrogate the secretion of neurotransmitter [2]. Here, I describe how physical principles are applied to a biological cell to explore the role of the vesicle SNARE protein synaptobrevin-2 in easing granule fusion. The data presented here suggest a paradigm according to which the movement of the C-terminal of synaptobrevin-2 disrupts the lipid bilayer to form a fusion pore through which molecules can exit.

  2. Fusion genes in solid tumors.

    PubMed

    Aman, P

    1999-08-01

    Tumor development in different cell types and tissue locations involves many pathways, distinct genes and exogenous factors. Tumor type-specific chromosome rearrangements resulting in fusion genes or promoter swapping are believed to be involved in the early development of many tumor types. They are present in almost all cases of a particular tumor type and cases have been described that carry only tumor type-specific translocations without any signs of other cytogenetic changes. The mechanisms behind chromosome rearrangements in solid tumors are largely unknown. Radiation is an important factor in thyroid carcinomas but no com-$bmon sequence motifs are made out in the break points of solid tumors. The fusion genes found in sarcomas are dominated by the transcription factor type of genes with the TLS/FUS and EWS series of fusion genes as the largest group. More than 50% of papillary thyroid carcinomas carry fusion proteins with tyrosine kinase activity. Rearrangements involving HMGIC, HMGIY, and PLAG1 are common in benign mesenchymal tumors and salivary gland adenomas. Many recurrent tumor translocations show a strict specificity for tumor type. This specificity can most likely be explained by the specific sets of target genes that are deregulated by the fusion gene products. Identification of the downstream target genes is currently the object of intense research and may provide us with information that will help design better diagnostic tools and eventually find a cure for these diseases.

  3. Hot fusion or cold fusion, best route to the SHEs?

    NASA Astrophysics Data System (ADS)

    Loveland, Walter

    2010-02-01

    Elements 102-113 have been synthesized using cold fusion reactions (Pb or Bi target nuclei, massive projectiles., E*=13 MeV, high survival probabilities,significant fusion hindrance). The production cross sections decrease with increasing ZCN with a cross section of 27 fb being measured for element 113. Synthesis of elements 102-108 by hot fusion reactions (actinide target nuclei, intermediate mass projectiles, E*=30-50 MeV, low survival probability, small fusion hindrance) shows decreasing production cross sections for Z=102 to Z=108 and then the cross sections level out at a few pb out to Z=118. Upper limit cross sections for the production of Z=120 nuclei in hot fusion reactions are ˜ 0.1 pb. How should one go forward to make nuclei with Z > 120 or with large neutron numbers, N ˜ 184? The cross section for the production of an evaporation residue, σEVR, is σEVR=σCNWsur where σCN is the complete fusion cross section and Wsur is the survival probability of the completely fused system. The complete fusion cross section can be written as σCN=∑J=0^J σcapture (Ec.m.,J)PCN( Ec.m.,J) where σcapture(Ec.m.,J) is the capture cross section and PCN is the probability that the projectile-target system will evolve inside the fission saddle point to form a completely fused system rather than reseparating (quasifission). I have used this formalism to make estimates of the best reactions to make new heavy nuclei using stable and radioactive beams. I conclude that stable beams offer the best opportunities to make new chemical elements and that radioactive beams offer new opportunities to make nuclei to study the atomic physics and chemistry of the heaviest elements. The radioactive beam reactions involve the light neutron-rich projectiles interacting in hot fusion reactions. If time permits I will also discuss recent experiments to make heavy nuclei using multi-nucleon transfer reactions. )

  4. The Path to Magnetic Fusion Energy

    SciTech Connect

    Prager, Stewart

    2011-05-04

    When the possibility of fusion as an energy source for electricity generation was realized in the 1950s, understanding of the plasma state was primitive. The fusion goal has been paced by, and has stimulated, the development of plasma physics. Our understanding of complex, nonlinear processes in plasmas is now mature. We can routinely produce and manipulate 100 million degree plasmas with remarkable finesse, and we can identify a path to commercial fusion power. The international experiment, ITER, will create a burning (self-sustained) plasma and produce 500 MW of thermal fusion power. This talk will summarize the progress in fusion research to date, and the remaining steps to fusion power.

  5. Modulation of junction tension by tumor suppressors and proto-oncogenes regulates cell-cell contacts.

    PubMed

    Bosveld, Floris; Guirao, Boris; Wang, Zhimin; Rivière, Mathieu; Bonnet, Isabelle; Graner, François; Bellaïche, Yohanns

    2016-02-15

    Tumor suppressors and proto-oncogenes play crucial roles in tissue proliferation. Furthermore, de-regulation of their functions is deleterious to tissue architecture and can result in the sorting of somatic rounded clones minimizing their contact with surrounding wild-type (wt) cells. Defects in the shape of somatic clones correlate with defects in proliferation, cell affinity, cell-cell adhesion, oriented cell division and cortical contractility. Combining genetics, live-imaging, laser ablation and computer simulations, we aim to analyze whether distinct or similar mechanisms can account for the common role of tumor suppressors and proto-oncogenes in cell-cell contact regulation. In Drosophila epithelia, the tumor suppressors Fat (Ft) and Dachsous (Ds) regulate cell proliferation, tissue morphogenesis, planar cell polarity and junction tension. By analyzing the evolution over time of ft mutant cells and clones, we show that ft clones reduce their cell-cell contacts with the surrounding wt tissue in the absence of concomitant cell divisions and over-proliferation. This contact reduction depends on opposed changes of junction tensions in the clone bulk and its boundary with neighboring wt tissue. More generally, either clone bulk or boundary junction tension is modulated by the activation of Yorkie, Myc and Ras, yielding similar contact reductions with wt cells. Together, our data highlight mechanical roles for proto-oncogene and tumor suppressor pathways in cell-cell interactions.

  6. Working Together for the Common Good: Cell-Cell Communication in Bacteria

    PubMed Central

    Schuster, Martin; Rumbaugh, Kendra P.

    2012-01-01

    The 4th ASM Conference on Cell-Cell Communication in Bacteria was held in Miami, FL, from 6 to 9 November 2011. This review highlights three key themes that emerged from the many exciting talks and poster presentations in the area of quorum sensing: sociomicrobiology, signal transduction mechanisms, and interspecies communication. PMID:22389476

  7. Theoretical study of the competition between cell-cell and cell-matrix adhesions

    NASA Astrophysics Data System (ADS)

    Xu, Guang-Kui; Feng, Xi-Qiao; Zhao, Hong-Ping; Li, Bo

    2009-07-01

    Adhesions between neighboring cells or between cells and their surrounding tissue/matrix play a crucial role in a wide range of biological processes. In order to investigate the competitive mechanisms between cell-cell and cell-matrix adhesions, we here develop a theoretical framework for multiple interacting cells lying on a planar matrix coated with distributed ligands. This model allows us to study, from the viewpoints of energy and statistics, the effects of such physical mechanisms as binding energy of bonds, nonspecific interactions, elastic deformation of cell membranes, and mixing entropy. Our calculations show that cell-matrix adhesion cannot occur when the ligand density on the matrix is lower than a threshold value, and cell-cell adhesion does not happen for a high ligand density. Glycocalyx repulsion plays a more important role in cell-matrix adhesion than in cell-cell adhesion. In addition, it is found that the cell-cell adhesion density decreases as the number of cells increases.

  8. Cell-Cell Interactions Mediate the Response of Vascular Smooth Muscle Cells to Substrate Stiffness

    PubMed Central

    Sazonova, Olga V.; Lee, Kristen L.; Isenberg, Brett C.; Rich, Celeste B.; Nugent, Matthew A.; Wong, Joyce Y.

    2011-01-01

    The vessel wall experiences progressive stiffening with age and the development of cardiovascular disease, which alters the micromechanical environment experienced by resident vascular smooth muscle cells (VSMCs). In vitro studies have shown that VSMCs are sensitive to substrate stiffness, but the exact molecular mechanisms of their response to stiffness remains unknown. Studies have also shown that cell-cell interactions can affect mechanotransduction at the cell-substrate interface. Using flexible substrates, we show that the expression of proteins associated with cell-matrix adhesion and cytoskeletal tension is regulated by substrate stiffness, and that an increase in cell density selectively attenuates some of these effects. We also show that cell-cell interactions exert a strong effect on cell morphology in a substrate-stiffness dependent manner. Collectively, the data suggest that as VSMCs form cell-cell contacts, substrate stiffness becomes a less potent regulator of focal adhesion signaling. This study provides insight into the mechanisms by which VSMCs respond to the mechanical environment of the blood vessel wall, and point to cell-cell interactions as critical mediators of VSMC response to vascular injury. PMID:21806930

  9. Glioma-associated Oncogene 2 Is Essential for Trophoblastic Fusion by Forming a Transcriptional Complex with Glial Cell Missing-a.

    PubMed

    Tang, Chao; Tang, Lanfang; Wu, Xiaokai; Xiong, Wenyi; Ruan, Hongfeng; Hussain, Musaddique; Wu, Junsong; Zou, Chaochun; Wu, Ximei

    2016-03-11

    Cell-cell fusion of human villous trophoblasts, referred to as a process of syncytialization, acts as a prerequisite for the proper development and functional maintenance of the human placenta. Given the fact that the main components of the Hedgehog signaling pathway are expressed predominantly in the syncytial layer of human placental villi, in this study, we investigated the potential roles and underlying mechanisms of Hedgehog signaling in trophoblastic fusion. Activation of Hedgehog signaling by a variety of approaches robustly induced cell fusion and the expression of syncytial markers, whereas suppression of Hedgehog signaling significantly attenuated cell fusion and the expression of syncytial markers in both human primary cytotrophoblasts and trophoblast-like BeWo cells. Moreover, among glioma-associated oncogene (GLI) family transcriptional factors in Hedgehog signaling, knockdown of GLI2 but not GLI1 and GLI3 significantly attenuated Hedgehog-induced cell fusion, whereas overexpression of the GLI2 activator alone was sufficient to induce cell fusion. Finally, GLI2 not only stabilized glial cell missing-a, a pivotal transcriptional factor for trophoblastic syncytialization, but also formed a transcriptional heterodimer with glial cell missing-a to transactivate syncytin-1, a trophoblastic fusogen, and promote trophoblastic syncytialization. Taken together, this study uncovered a so far uncharacterized role of Hedgehog/GLI2 signaling in trophoblastic fusion, implicating that Hedgehog signaling, through GLI2, could be required for human placental development and pregnancy maintenance.

  10. (Meeting on fusion reactor materials)

    SciTech Connect

    Jones, R.H. ); Klueh, R.L.; Rowcliffe, A.F.; Wiffen, F.W. ); Loomis, B.A. )

    1990-11-01

    During his visit to the KfK, Karlsruhe, F. W. Wiffen attended the IEA 12th Working Group Meeting on Fusion Reactor Materials. Plans were made for a low-activation materials workshop at Culham, UK, for April 1991, a data base workshop in Europe for June 1991, and a molecular dynamics workshop in the United States in 1991. At the 11th IEA Executive Committee on Fusion Materials, discussions centered on the recent FPAC and Colombo panel review in the United States and EC, respectively. The Committee also reviewed recent progress toward a neutron source in the United States (CWDD) and in Japan (ESNIT). A meeting with D. R. Harries (consultant to J. Darvas) yielded a useful overview of the EC technology program for fusion. Of particular interest to the US program is a strong effort on a conventional ferritic/martensitic steel for fist wall/blanket operation beyond NET/ITER.

  11. Bioenergetic roles of mitochondrial fusion.

    PubMed

    Silva Ramos, Eduardo; Larsson, Nils-Göran; Mourier, Arnaud

    2016-08-01

    Mitochondria are bioenergetic hotspots, producing the bulk of ATP by the oxidative phosphorylation process. Mitochondria are also structurally dynamic and undergo coordinated fusion and fission to maintain their function. Recent studies of the mitochondrial fusion machinery have provided new evidence in detailing their role in mitochondrial metabolism. Remarkably, mitofusin 2, in addition to its role in fusion, is important for maintaining coenzyme Q levels and may be an integral player in the mevalonate synthesis pathway. Here, we review the bioenergetic roles of mitochondrial dynamics and emphasize the importance of the in vitro growth conditions when evaluating mitochondrial respiration. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016,' edited by Prof. Paolo Bernardi. PMID:27060252

  12. Superconducting magnets for fusion applications

    SciTech Connect

    Henning, C.D.

    1987-07-02

    Fusion magnet technology has made spectacular advances in the past decade; to wit, the Mirror Fusion Test Facility and the Large Coil Project. However, further advances are still required for advanced economical fusion reactors. Higher fields to 14 T and radiation-hardened superconductors and insulators will be necessary. Coupled with high rates of nuclear heating and pulsed losses, the next-generation magnets will need still higher current density, better stability and quench protection. Cable-in-conduit conductors coupled with polyimide insulations and better steels seem to be the appropriate path. Neutron fluences up to 10/sup 19/ neutrons/cm/sup 2/ in niobium tin are achievable. In the future, other amorphous superconductors could raise these limits further to extend reactor life or decrease the neutron shielding and corresponding reactor size.

  13. Fusion Blanket Development in FDF

    NASA Astrophysics Data System (ADS)

    Wong, C. P. C.; Smith, J. P.; Stambaugh, R. D.

    2008-11-01

    To satisfy the electricity and tritium self-sufficiency missions of a Fusion Development Facility (FDF), suitable blanket designs will need to be evaluated, selected and developed. To demonstrate closure of the fusion fuel cycle, 2-3 main tritium breeding blankets will be used to cover most of the available chamber surface area in order to reach the project goal of achieving a tritium breeding ratio, TBR > 1. To demonstrate the feasibility of electricity and tritium production for subsequent devices such as the fusion demonstration power reactor (DEMO), several advanced test blankets will need to be selected and tested on the FDF to demonstrate high coolant outlet temperature necessary for efficient electricity production. Since the design goals for the main and test blankets are different, the design criteria of these blankets will also be different. The considerations in performing the evaluation of blanket and structural material options in concert with the maintenance approach for the FDF will be reported in this paper.

  14. Congress turns cold on fusion

    SciTech Connect

    Marshall, E.

    1984-06-22

    A 5% cut in fusion research budgets will force some programs to be dropped in order to keep the large machinery running unless US and European scientists collaborate instead of competing. Legislators became uneasy about the escalating costs of the new devices. The 1984 budget of $470 million for magnetic fusion research is only half the projected cost of the Tokomak Fusion Core Experiment (TFCX) planned to ignite, for the first time, a self-sustaining burn. Planning for the TCFX continued despite the message from Congress. Work at the large institutions at Princeton, MIT, etc. may survive at the expense of other programs, some of which will lose academic programs as well. Scientists point to the loss of new ideas and approaches when projects are cancelled. Enthusiasm is growing for international collaboration.

  15. Laser fusion experiments at LLL

    SciTech Connect

    Ahlstrom, H.G.

    1980-06-16

    These notes present the experimental basis and status for laser fusion as developed at LLL. Two other chapters, one authored by K.A. Brueckner and the other by C. Max, present the theoretical implosion physics and laser plasma interaction physics. The notes consist of six sections. The first is an introductory section which provides some of the history of inertial fusion and a simple explanation of the concepts involved. The second section presents an extensive discussion of diagnostic instrumentation used in the LLL Laser Fusion Program. The third section is a presentation of laser facilities and capabilities at LLL. The purpose here is to define capability, not to derive how it was obtained. The fourth and fifth sections present the experimental data on laser-plasma interaction and implosion physics. The last chapter is a short projection of the future.

  16. Tissue fusion over nonadhering surfaces

    PubMed Central

    Nier, Vincent; Deforet, Maxime; Duclos, Guillaume; Yevick, Hannah G.; Cochet-Escartin, Olivier; Marcq, Philippe; Silberzan, Pascal

    2015-01-01

    Tissue fusion eliminates physical voids in a tissue to form a continuous structure and is central to many processes in development and repair. Fusion events in vivo, particularly in embryonic development, often involve the purse-string contraction of a pluricellular actomyosin cable at the free edge. However, in vitro, adhesion of the cells to their substrate favors a closure mechanism mediated by lamellipodial protrusions, which has prevented a systematic study of the purse-string mechanism. Here, we show that monolayers can cover well-controlled mesoscopic nonadherent areas much larger than a cell size by purse-string closure and that active epithelial fluctuations are required for this process. We have formulated a simple stochastic model that includes purse-string contractility, tissue fluctuations, and effective friction to qualitatively and quantitatively account for the dynamics of closure. Our data suggest that, in vivo, tissue fusion adapts to the local environment by coordinating lamellipodial protrusions and purse-string contractions. PMID:26199417

  17. Quantitative analysis of cadherin-catenin-actin reorganization during development of cell-cell adhesion

    PubMed Central

    1996-01-01

    Epithelial cell-cell adhesion requires interactions between opposing extracellular domains of E-cadherin, and among the cytoplasmic domain of E-cadherin, catenins, and actin cytoskeleton. Little is known about how the cadherin-catenin-actin complex is assembled upon cell-cell contact, or how these complexes initiate and strengthen adhesion. We have used time-lapse differential interference contrast (DIC) imaging to observe the development of cell-cell contacts, and quantitative retrospective immunocytochemistry to measure recruitment of proteins to those contacts. We show that E-cadherin, alpha-catenin, and beta- catenin, but not plakoglobin, coassemble into Triton X-100 insoluble (TX-insoluble) structures at cell-cell contacts with kinetics similar to those for strengthening of E-cadherin-mediated cell adhesion (Angres, B., A. Barth, and W.J. Nelson. 1996. J. Cell Biol. 134:549- 557). TX-insoluble E-cadherin, alpha-catenin, and beta-catenin colocalize along cell-cell contacts in spatially discrete micro-domains which we designate "puncta," and the relative amounts of each protein in each punctum increase proportionally. As the length of the contact increases, the number of puncta increases proportionally along the contact and each punctum is associated with a bundle of actin filaments. These results indicate that localized clustering of E- cadherin/catenin complexes into puncta and their association with actin is involved in initiating cell contacts. Subsequently, the spatial ordering of additional puncta along the contact may be involved in zippering membranes together, resulting in rapid strengthening of adhesion. PMID:8991100

  18. Method for vacuum fusion bonding

    DOEpatents

    Ackler, Harold D.; Swierkowski, Stefan P.; Tarte, Lisa A.; Hicks, Randall K.

    2001-01-01

    An improved vacuum fusion bonding structure and process for aligned bonding of large area glass plates, patterned with microchannels and access holes and slots, for elevated glass fusion temperatures. Vacuum pumpout of all components is through the bottom platform which yields an untouched, defect free top surface which greatly improves optical access through this smooth surface. Also, a completely non-adherent interlayer, such as graphite, with alignment and location features is located between the main steel platform and the glass plate pair, which makes large improvements in quality, yield, and ease of use, and enables aligned bonding of very large glass structures.

  19. Plasma physics goes beyond fusion

    NASA Astrophysics Data System (ADS)

    Franklin, Raoul

    2008-11-01

    I was interested to read the fusion supplement published with the October issue of Physics World. However, in asserting that fusion created the need to recognize plasma physics as a separate branch of the subject, Stephen Cowley, the new director of the United Kingdom Atomic Energy Authority, was not quite correct. In fact, the word "plasma" was appropriated from the Greek by the chemical physicist (and later Nobel laureate) Irving Langmuir in 1928. It was used to describe the positive column of a gas discharge, which was then the subject of research into better lighting sources and advertising displays, as well as the underlying science.

  20. Electromagnetic computations for fusion devices

    SciTech Connect

    Turner, L.R.

    1989-09-01

    Among the difficulties in making nuclear fusion a useful energy source, two important ones are producing the magnetic fields needed to drive and confine the plasma, and controlling the eddy currents induced in electrically conducting components by changing fields. All over the world, researchers are developing electromagnetic codes and employing them to compute electromagnetic effects. Ferromagnetic components of a fusion reactor introduce field distortions. Eddy currents are induced in the vacuum vessel, blanket and other torus components of a tokamak when the plasma current disrupts. These eddy currents lead to large forces, and 3-D codes are being developed to study the currents and forces. 35 refs., 6 figs.

  1. Z-Pinch Fusion Propulsion

    NASA Technical Reports Server (NTRS)

    Miernik, Janie

    2011-01-01

    Fusion-based nuclear propulsion has the potential to enable fast interplanetary transportation. Shorter trips are better for humans in the harmful radiation environment of deep space. Nuclear propulsion and power plants can enable high Ispand payload mass fractions because they require less fuel mass. Fusion energy research has characterized the Z-Pinch dense plasma focus method. (1) Lightning is form of pinched plasma electrical discharge phenomena. (2) Wire array Z-Pinch experiments are commonly studied and nuclear power plant configurations have been proposed. (3) Used in the field of Nuclear Weapons Effects (NWE) testing in the defense industry, nuclear weapon x-rays are simulated through Z-Pinch phenomena.

  2. Fusion bonding and alignment fixture

    DOEpatents

    Ackler, Harold D.; Swierkowski, Stefan P.; Tarte, Lisa A.; Hicks, Randall K.

    2000-01-01

    An improved vacuum fusion bonding structure and process for aligned bonding of large area glass plates, patterned with microchannels and access holes and slots, for elevated glass fusion temperatures. Vacuum pumpout of all the components is through the bottom platform which yields an untouched, defect free top surface which greatly improves optical access through this smooth surface. Also, a completely non-adherent interlayer, such as graphite, with alignment and location features is located between the main steel platform and the glass plate pair, which makes large improvements in quality, yield, and ease of use, and enables aligned bonding of very large glass structures.

  3. Fusion Breeder Program interim report

    SciTech Connect

    Moir, R.; Lee, J.D.; Neef, W.

    1982-06-11

    This interim report for the FY82 Fusion Breeder Program covers work performed during the scoping phase of the study, December, 1981-February 1982. The goals for the FY82 study are the identification and development of a reference blanket concept using the fission suppression concept and the definition of a development plan to further the fusion breeder application. The context of the study is the tandem mirror reactor, but emphasis is placed upon blanket engineering. A tokamak driver and blanket concept will be selected and studied in more detail during FY83.

  4. Calculation of fusion product angular correlation coefficients for fusion plasmas

    SciTech Connect

    Murphy, T.J.

    1987-08-01

    The angular correlation coefficients for fusion products are calculated in the cases of Maxwellian and beam-target plasmas. Measurement of these coefficients as a localized ion temperature or fast-ion diagnostic is discussed. 8 refs., 7 figs., 1 tab.

  5. Equivalence of measurement space solution data fusion and complete fusion

    NASA Astrophysics Data System (ADS)

    Ceccherini, Simone

    2016-10-01

    Many observation systems are operating on space-borne and airborne platforms, as well as from ground-based stations, providing measurements of vertical profiles of atmospheric parameters. When independent measurements of the same profile are available data fusion methods can be used to combine them and exploit all the available information for a more comprehensive and accurate description of the atmospheric state. Several data fusion methods can be used. Among the others, both the measurement space solution data fusion method and the complete fusion method have the remarkable properties of using all the acquired information and of providing results that are independent from a priori information used in the individual retrievals. For this reason, though the two methods use two completely different procedures, it is reasonable to expect that they give the same results and in this paper the rigorous proof of the equivalence of the two methods is given. Therefore, the choice between them is only driven by the advantages of the different implementations.

  6. A Plan for the Development of Fusion Energy. Final Report to Fusion Energy Sciences Advisory Committee, Fusion Development Path Panel

    SciTech Connect

    None, None

    2003-03-05

    This report presents a plan for the deployment of a fusion demonstration power plant within 35 years, leading to commercial application of fusion energy by mid-century. The plan is derived from the necessary features of a demonstration fusion power plant and from the time scale defined by President Bush. It identifies critical milestones, key decision points, needed major facilities and required budgets.

  7. Advanced Concepts: Aneutronic Fusion Power and Propulsion

    NASA Technical Reports Server (NTRS)

    Chapman, John J.

    2012-01-01

    Aneutronic Fusion for In-Space thrust, power. Clean energy & potential nuclear gains. Fusion plant concepts, potential to use advanced fuels. Methods to harness ionic momentum for high Isp thrust plus direct power conversion into electricity will be presented.

  8. Cold fusion catalyzed by muons and electrons

    SciTech Connect

    Kulsrud, R.M.

    1990-10-01

    Two alternative methods have been suggested to produce fusion power at low temperature. The first, muon catalyzed fusion or MCF, uses muons to spontaneously catalyze fusion through the muon mesomolecule formation. Unfortunately, this method fails to generate enough fusion energy to supply the muons, by a factor of about ten. The physics of MCF is discussed, and a possible approach to increasing the number of MCF fusions generated by each muon is mentioned. The second method, which has become known as Cold Fusion,'' involves catalysis by electrons in electrolytic cells. The physics of this process, if it exists, is more mysterious than MCF. However, it now appears to be an artifact, the claims for its reality resting largely on experimental errors occurring in rather delicate experiments. However, a very low level of such fusion claimed by Jones may be real. Experiments in cold fusion will also be discussed.

  9. Z-Pinch Fusion for Energy Applications

    SciTech Connect

    SPIELMAN,RICK B.

    2000-01-01

    Z pinches, the oldest fusion concept, have recently been revisited in light of significant advances in the fields of plasma physics and pulsed power engineering. The possibility exists for z-pinch fusion to play a role in commercial energy applications. We report on work to develop z-pinch fusion concepts, the result of an extensive literature search, and the output for a congressionally-mandated workshop on fusion energy held in Snowmass, Co July 11-23,1999.

  10. Exo-endo cellulase fusion protein

    DOEpatents

    Bower, Benjamin S.; Larenas, Edmund A.; Mitchinson, Colin

    2012-01-17

    The present invention relates to a heterologous exo-endo cellulase fusion construct, which encodes a fusion protein having cellulolytic activity comprising a catalytic domain derived from a fungal exo-cellobiohydrolase and a catalytic domain derived from an endoglucanase. The invention also relates to vectors and fungal host cells comprising the heterologous exo-endo cellulase fusion construct as well as methods for producing a cellulase fusion protein and enzymatic cellulase compositions.

  11. Inertial confinement fusion (ICF) review

    SciTech Connect

    Hammer, D.; Dyson, F.; Fortson, N.; Novick, B.; Panofsky, W.; Rosenbluth, M.; Treiman, S.; York, H.

    1996-03-01

    During its 1996 winter study JASON reviewed the DOE Inertial Confinement Fusion (ICF) program. This included the National Ignition Facility (NIF) and proposed studies. The result of the review was to comment on the role of the ICF program in support of the DOE Science Based Stockpile Stewardship program.

  12. Seismic data fusion anomaly detection

    NASA Astrophysics Data System (ADS)

    Harrity, Kyle; Blasch, Erik; Alford, Mark; Ezekiel, Soundararajan; Ferris, David

    2014-06-01

    Detecting anomalies in non-stationary signals has valuable applications in many fields including medicine and meteorology. These include uses such as identifying possible heart conditions from an Electrocardiography (ECG) signals or predicting earthquakes via seismographic data. Over the many choices of anomaly detection algorithms, it is important to compare possible methods. In this paper, we examine and compare two approaches to anomaly detection and see how data fusion methods may improve performance. The first approach involves using an artificial neural network (ANN) to detect anomalies in a wavelet de-noised signal. The other method uses a perspective neural network (PNN) to analyze an arbitrary number of "perspectives" or transformations of the observed signal for anomalies. Possible perspectives may include wavelet de-noising, Fourier transform, peak-filtering, etc.. In order to evaluate these techniques via signal fusion metrics, we must apply signal preprocessing techniques such as de-noising methods to the original signal and then use a neural network to find anomalies in the generated signal. From this secondary result it is possible to use data fusion techniques that can be evaluated via existing data fusion metrics for single and multiple perspectives. The result will show which anomaly detection method, according to the metrics, is better suited overall for anomaly detection applications. The method used in this study could be applied to compare other signal processing algorithms.

  13. Magnetic fusion: progress -> stagnation -> degradation

    NASA Astrophysics Data System (ADS)

    Zakharov, Leonid

    2012-10-01

    ``The theory of the failure of magnetic fusion,'' created in 2004 and presented to APS-2007 introduced the notion of the ``difficult'' and ``complicated'' stages of the program and described them details. At the first phase the emerging fusion science was created under strong leadership. Progress was visible on year to year basis, and the program was easy to manage. The complicated phase started in the late 1980s, when the plasma physics appeared to be incapable to implement the mission of ITER to test nuclear components of a fusion reactor. Then, the failure of TFTR (PPPL, USA) and JET (Culham, UK) in the mid 1990 to demonstrate QDT=1 and the blindness of their leaders to already visible means to resolve the problem, were a clear indication of an irreversible stagnation. In fact, right after 2007, it became clear that in the case of a large system of human ``particles'' (scientists) two phases have a continuation. The internal degrees of freedom, otherwise protected from external perturbations by a strong dedication to the scientific method, are now eroding and collapsing. The loss of science in addressing confinement, stability, power extraction, fueling, stationary regimes issues makes the current program irrelevant to fusion energy. A fresh approach should be taken.

  14. Magnetic fusion and project ITER

    SciTech Connect

    Park, H.K.

    1992-01-01

    It has already been demonstrated that our economics and international relationship are impacted by an energy crisis. For the continuing prosperity of the human race, a new and viable energy source must be developed within the next century. It is evident that the cost will be high and will require a long term commitment to achieve this goal due to a high degree of technological and scientific knowledge. Energy from the controlled nuclear fusion is a safe, competitive, and environmentally attractive but has not yet been completely conquered. Magnetic fusion is one of the most difficult technological challenges. In modem magnetic fusion devices, temperatures that are significantly higher than the temperatures of the sun have been achieved routinely and the successful generation of tens of million watts as a result of scientific break-even is expected from the deuterium and tritium experiment within the next few years. For the practical future fusion reactor, we need to develop reactor relevant materials and technologies. The international project called International Thermonuclear Experimental Reactor (ITER)'' will fulfill this need and the success of this project will provide the most attractive long-term energy source for mankind.

  15. Magnetic fusion and project ITER

    SciTech Connect

    Park, H.K.

    1992-09-01

    It has already been demonstrated that our economics and international relationship are impacted by an energy crisis. For the continuing prosperity of the human race, a new and viable energy source must be developed within the next century. It is evident that the cost will be high and will require a long term commitment to achieve this goal due to a high degree of technological and scientific knowledge. Energy from the controlled nuclear fusion is a safe, competitive, and environmentally attractive but has not yet been completely conquered. Magnetic fusion is one of the most difficult technological challenges. In modem magnetic fusion devices, temperatures that are significantly higher than the temperatures of the sun have been achieved routinely and the successful generation of tens of million watts as a result of scientific break-even is expected from the deuterium and tritium experiment within the next few years. For the practical future fusion reactor, we need to develop reactor relevant materials and technologies. The international project called ``International Thermonuclear Experimental Reactor (ITER)`` will fulfill this need and the success of this project will provide the most attractive long-term energy source for mankind.

  16. Fusion blanket inherent safety assessment

    SciTech Connect

    Sze, D.K.; Jung, J.; Cheng, E.T.

    1986-01-01

    The inherent safety aspect of TPSS reactor blankets has been investigated. The idea is to design the blanket so safe that cost savings can be realized such as through non-nuclear grading construction. If the blanket materials are carefully selected, inherent safety is feasible for fusion reactor blankets up to 5 to 10 MW/m/sup 2/ neutron wall loading.

  17. Proton Collimators for Fusion Reactors

    NASA Technical Reports Server (NTRS)

    Miley, George H.; Momota, Hiromu

    2003-01-01

    Proton collimators have been proposed for incorporation into inertial-electrostatic-confinement (IEC) fusion reactors. Such reactors have been envisioned as thrusters and sources of electric power for spacecraft and as sources of energetic protons in commercial ion-beam applications.

  18. Membrane fusion during phage lysis

    PubMed Central

    Berry, Joel; Kongari, Rohit; Cahill, Jesse; Young, Ry

    2015-01-01

    In general, phages cause lysis of the bacterial host to effect release of the progeny virions. Until recently, it was thought that degradation of the peptidoglycan (PG) was necessary and sufficient for osmotic bursting of the cell. Recently, we have shown that in Gram-negative hosts, phage lysis also requires the disruption of the outer membrane (OM). This is accomplished by spanins, which are phage-encoded proteins that connect the cytoplasmic membrane (inner membrane, IM) and the OM. The mechanism by which the spanins destroy the OM is unknown. Here we show that the spanins of the paradigm coliphage lambda mediate efficient membrane fusion. This supports the notion that the last step of lysis is the fusion of the IM and OM. Moreover, data are provided indicating that spanin-mediated fusion is regulated by the meshwork of the PG, thus coupling fusion to murein degradation by the phage endolysin. Because endolysin function requires the formation of μm-scale holes by the phage holin, the lysis pathway is seen to require dramatic dynamics on the part of the OM and IM, as well as destruction of the PG. PMID:25870259

  19. Fusion probability in heavy nuclei

    NASA Astrophysics Data System (ADS)

    Banerjee, Tathagata; Nath, S.; Pal, Santanu

    2015-03-01

    Background: Fusion between two massive nuclei is a very complex process and is characterized by three stages: (a) capture inside the potential barrier, (b) formation of an equilibrated compound nucleus (CN), and (c) statistical decay of the CN leading to a cold evaporation residue (ER) or fission. The second stage is the least understood of the three and is the most crucial in predicting yield of superheavy elements (SHE) formed in complete fusion reactions. Purpose: A systematic study of average fusion probability, , is undertaken to obtain a better understanding of its dependence on various reaction parameters. The study may also help to clearly demarcate onset of non-CN fission (NCNF), which causes fusion probability, PCN, to deviate from unity. Method: ER excitation functions for 52 reactions leading to CN in the mass region 170-220, which are available in the literature, have been compared with statistical model (SM) calculations. Capture cross sections have been obtained from a coupled-channels code. In the SM, shell corrections in both the level density and the fission barrier have been included. for these reactions has been extracted by comparing experimental and theoretical ER excitation functions in the energy range ˜5 %-35% above the potential barrier, where known effects of nuclear structure are insignificant. Results: has been shown to vary with entrance channel mass asymmetry, η (or charge product, ZpZt ), as well as with fissility of the CN, χCN. No parameter has been found to be adequate as a single scaling variable to determine . Approximate boundaries have been obtained from where starts deviating from unity. Conclusions: This study quite clearly reveals the limits of applicability of the SM in interpreting experimental observables from fusion reactions involving two massive nuclei. Deviation of from unity marks the beginning of the domain of dynamical models of fusion. Availability of precise ER cross

  20. Magnetized Target Fusion: Prospects for Low-Cost Fusion Energy

    NASA Technical Reports Server (NTRS)

    Siemon, Richard E.; Turchi, Peter J.; Barnes, Daniel C.; Degnan, James; Parks, Paul; Ryutov, Dmitri D.; Thio, Y. C. Francis; Schafer, Charles (Technical Monitor)

    2001-01-01

    Magnetized Target Fusion (MTF) has attracted renewed interest in recent years because it has the potential to resolve one of the major problems with conventional fusion energy research - the high cost of facilities to do experiments and in general develop practical fusion energy. The requirement for costly facilities can be traced to fundamental constraints. The Lawson condition implies large system size in the case of conventional magnetic confinement, or large heating power in the case of conventional inertial confinement. The MTF approach is to use much higher fuel density than with conventional magnetic confinement (corresponding to megabar pressures), which results in a much-reduced system size to achieve Lawson conditions. Intrinsically the system must be pulsed because the pressures exceed the strength of any known material. To facilitate heating the fuel (or "target") to thermonuclear conditions with a high-power high-intensity source of energy, magnetic fields are used to insulate the high-pressure fuel from material surroundings (thus "magnetized target"). Because of magnetic insulation, the required heating power intensity is reduced by many orders of magnitude compared to conventional inertial fusion, even with relatively poor energy confinement in the magnetic field, such as that characterized by Bohm diffusion. In this paper we show semi-quantitatively why MTF-should allow fusion energy production without costly facilities within the same generally accepted physical constraints used for conventional magnetic and inertial fusion. We also briefly discuss potential applications of this technology ranging from nuclear rockets for space propulsion to a practical commercial energy system. Finally, we report on the exploratory research underway, and the interesting physics issues that arise in the MTF regime of parameters. Experiments at Los Alamos are focused on formation of a suitable plasma target for compression, utilizing the knowledge base for compact

  1. An introduction to multisensor data fusion

    SciTech Connect

    Hall, D.L.; Llinas, J.

    1997-01-01

    Multisensor data fusion is an emerging technology applied to Department of Defense (DoD) areas such as automated target recognition, battlefield surveillance, and guidance and control of autonomous vehicles, and to non-DoD applications such as monitoring of complex machinery, medical diagnosis, and smart buildings. Techniques for multisensor data fusion are drawn from a wide range of areas including artificial intelligence, pattern recognition, statistical estimation, and other areas. This paper provides a tutorial on data fusion, introducing data fusion applications, process models, and identification of applicable techniques. Comments are made on the state-of-the-art in data fusion.

  2. Fusion energy calorimeter for the tokamak fusion test reactor

    SciTech Connect

    Jassby, D.L.; Imel, G.R.

    1981-04-01

    One and two-dimensional neutronic analyses treating the transport and scattering of neutrons and the production and transport of gamma rays in the TFTR demonstrate that the fusion energy production in a D-T pulse in the TFTR can be determined with an uncertainty of +- 15% or less, simply by integrating the measured profile of temperature increase along the central radial axis of a large hydrocarbon moderator that fills the bay between adjacent toroidal-field coils, just outside the vacuum vessel. Limitations in thermopile temperature measurements dictate a minimum fusion-neutron fluence at the vacuum vessel of the order of 10/sup 12/ n/cm/sup 2/ per pulse (a source strength of 10/sup 18/ n/pulse in TFTR), in order that this simple calorimeter can provide useful accuracy.

  3. Quantitative and robust assay to measure cell-cell contact assembly and maintenance.

    PubMed

    Nola, Sébastien; Erasmus, Jennifer C; Braga, Vania M M

    2012-01-01

    Epithelial junction formation and maintenance are multistep processes that rely on the clustering of macromolecular complexes. These events are highly regulated by signalling pathways that involve Rho small GTPases. Usually, when analysing the contribution of different components of Rho-dependent pathways to cell-cell adhesion, the localisation of adhesion receptors at junctions is evaluated by immunofluorescence. However, we find that this method has limitations on the quantification (dynamic range), ability to detect partial phenotypes and to differentiate between the participation of a given regulatory protein in assembly and/or maintenance of cell-cell contacts.In this chapter, we describe a suitable method, the aggregation assay, in which we adapted a quantitative strategy to allow objective and reproducible detection of partial phenotypes. Importantly, this methodology estimates the ability of cells to form junctions and their resistance to mechanical shearing forces (stabilisation).

  4. Innovative Tools and Technology for Analysis of Single Cells and Cell-Cell Interaction.

    PubMed

    Konry, Tania; Sarkar, Saheli; Sabhachandani, Pooja; Cohen, Noa

    2016-07-11

    Heterogeneity in single-cell responses and intercellular interactions results from complex regulation of cell-intrinsic and environmental factors. Single-cell analysis allows not only detection of individual cellular characteristics but also correlation of genetic content with phenotypic traits in the same cell. Technological advances in micro- and nanofabrication have benefited single-cell analysis by allowing precise control of the localized microenvironment, cell manipulation, and sensitive detection capabilities. Additionally, microscale techniques permit rapid, high-throughput, multiparametric screening that has become essential for -omics research. This review highlights innovative applications of microscale platforms in genetic, proteomic, and metabolic detection in single cells; cell sorting strategies; and heterotypic cell-cell interaction. We discuss key design aspects of single-cell localization and isolation in microfluidic systems, dynamic and endpoint analyses, and approaches that integrate highly multiplexed detection of various intracellular species. PMID:26928209

  5. [The cell theory. Progress in studies on cell-cell communications].

    PubMed

    Brodskiĭ, V Ia

    2009-01-01

    Current data confirm the fundamental statement of the cell theory concerning the cell reproduction in a series of generations (omnis cellula e cellula). Cell communities or ensembles integrated by the signaling systems established in prokaryotes and protists and functioning in multicellular organisms including mammals are considered as the structural and functional unit of a multicellular organism. The cell is an elementary unit of life and basis of organism development and functioning. At the same time, the adult organism is not just a totality of cells. Multinucleated cells in some tissues, syncytial structure, and structural-functional units of organs are adaptations for optimal functioning of the multicellular organism and manifestations of cell-cell communications in development and definitive functioning. The cell theory was supplemented and developed by studies on cell-cell communications; however, these studies do not question the main generalizations of the theory.

  6. Innovative Tools and Technology for Analysis of Single Cells and Cell-Cell Interaction.

    PubMed

    Konry, Tania; Sarkar, Saheli; Sabhachandani, Pooja; Cohen, Noa

    2016-07-11

    Heterogeneity in single-cell responses and intercellular interactions results from complex regulation of cell-intrinsic and environmental factors. Single-cell analysis allows not only detection of individual cellular characteristics but also correlation of genetic content with phenotypic traits in the same cell. Technological advances in micro- and nanofabrication have benefited single-cell analysis by allowing precise control of the localized microenvironment, cell manipulation, and sensitive detection capabilities. Additionally, microscale techniques permit rapid, high-throughput, multiparametric screening that has become essential for -omics research. This review highlights innovative applications of microscale platforms in genetic, proteomic, and metabolic detection in single cells; cell sorting strategies; and heterotypic cell-cell interaction. We discuss key design aspects of single-cell localization and isolation in microfluidic systems, dynamic and endpoint analyses, and approaches that integrate highly multiplexed detection of various intracellular species.

  7. Inference of cell-cell interactions from population density characteristics and cell trajectories on static and growing domains.

    PubMed

    Ross, Robert J H; Yates, C A; Baker, R E

    2015-06-01

    A key feature of cell migration is how cell movement is affected by cell-cell interactions. Furthermore, many cell migratory processes such as neural crest stem cell migration [Thomas and Erickson, 2008; McLennan et al., 2012] occur on growing domains or in the presence of a chemoattractant. Therefore, it is important to study interactions between migrating cells in the context of domain growth and directed motility. Here we compare discrete and continuum models describing the spatial and temporal evolution of a cell population for different types of cell-cell interactions on static and growing domains. We suggest that cell-cell interactions can be inferred from population density characteristics in the presence of motility bias, and these population density characteristics for different cell-cell interactions are conserved on both static and growing domains. We also study the expected displacement of a tagged cell, and show that different types of cell-cell interactions can give rise to cell trajectories with different characteristics. These characteristics are conserved in the presence of domain growth, however, they are diminished in the presence of motility bias. Our results are relevant for researchers who study the existence and role of cell-cell interactions in biological systems, so far as we suggest that different types of cell-cell interactions could be identified from cell density and trajectory data.

  8. West European magnetic confinement fusion research

    SciTech Connect

    McKenney, B.L.; McGrain, M. . Foreign Applied Sciences Assessment Center); Hazeltine, R.D. . Inst. for Fusion Studies); Gentle, K.W. ); Hogan, J.T. ); Porkolab, M. . Dept. of Physics); Sigmar

    1990-01-01

    This report presents a technical assessment and review of the West European program in magnetic confinement fusion by a panel of US scientists and engineers active in fusion research. Findings are based on the scientific and technical literature, on laboratory reports and preprints, and on the personal experiences and collaborations of the panel members. Concerned primarily with developments during the past 10 years, from 1979 to 1989, the report assesses West European fusion research in seven technical areas: tokamak experiments; magnetic confinement technology and engineering; fusion nuclear technology; alternate concepts; theory; fusion computations; and program organization. The main conclusion emerging from the analysis is that West European fusion research has attained a position of leadership in the international fusion program. This distinction reflects in large measure the remarkable achievements of the Joint European Torus (JET). However, West European fusion prominence extends beyond tokamak experimental physics: the program has demonstrated a breadth of skill in fusion science and technology that is not excelled in the international effort. It is expected that the West European primacy in central areas of confinement physics will be maintained or even increased during the early 1990s. The program's maturity and commitment kindle expectations of dramatic West European advances toward the fusion energy goal. For example, achievement of fusion breakeven is expected first in JET, before 1995.

  9. Fusion of Enveloped Viruses in Endosomes.

    PubMed

    White, Judith M; Whittaker, Gary R

    2016-06-01

    Ari Helenius launched the field of enveloped virus fusion in endosomes with a seminal paper in the Journal of Cell Biology in 1980. In the intervening years, a great deal has been learned about the structures and mechanisms of viral membrane fusion proteins as well as about the endosomes in which different enveloped viruses fuse and the endosomal cues that trigger fusion. We now recognize three classes of viral membrane fusion proteins based on structural criteria and four mechanisms of fusion triggering. After reviewing general features of viral membrane fusion proteins and viral fusion in endosomes, we delve into three characterized mechanisms for viral fusion triggering in endosomes: by low pH, by receptor binding plus low pH and by receptor binding plus the action of a protease. We end with a discussion of viruses that may employ novel endosomal fusion-triggering mechanisms. A key take-home message is that enveloped viruses that enter cells by fusing in endosomes traverse the endocytic pathway until they reach an endosome that has all of the environmental conditions (pH, proteases, ions, intracellular receptors and lipid composition) to (if needed) prime and (in all cases) trigger the fusion protein and to support membrane fusion.

  10. Molecular mechanism of mitochondrial membrane fusion.

    PubMed

    Griffin, Erik E; Detmer, Scott A; Chan, David C

    2006-01-01

    Mitochondrial fusion requires coordinated fusion of the outer and inner membranes. This process leads to exchange of contents, controls the shape of mitochondria, and is important for mitochondrial function. Two types of mitochondrial GTPases are essential for mitochondrial fusion. On the outer membrane, the fuzzy onions/mitofusin proteins form complexes in trans that mediate homotypic physical interactions between adjacent mitochondria and are likely directly involved in outer membrane fusion. Associated with the inner membrane, the OPA1 dynamin-family GTPase maintains membrane structure and is a good candidate for mediating inner membrane fusion. In yeast, Ugo1p binds to both of these GTPases to form a fusion complex, although a related protein has yet to be found in mammals. An understanding of the molecular mechanism of fusion may have implications for Charcot-Marie-Tooth subtype 2A and autosomal dominant optic atrophy, neurodegenerative diseases caused by mutations in Mfn2 and OPA1.

  11. Security on the US Fusion Grid

    SciTech Connect

    Burruss, Justin R.; Fredian, Tom W.; Thompson, Mary R.

    2005-06-01

    The National Fusion Collaboratory project is developing and deploying new distributed computing and remote collaboration technologies with the goal of advancing magnetic fusion energy research. This work has led to the development of the US Fusion Grid (FusionGrid), a computational grid composed of collaborative, compute, and data resources from the three large US fusion research facilities and with users both in the US and in Europe. Critical to the development of FusionGrid was the creation and deployment of technologies to ensure security in a heterogeneous environment. These solutions to the problems of authentication, authorization, data transfer, and secure data storage, as well as the lessons learned during the development of these solutions, may be applied outside of FusionGrid and scale to future computing infrastructures such as those for next-generation devices like ITER.

  12. Data security on the national fusion grid

    SciTech Connect

    Burruss, Justine R.; Fredian, Tom W.; Thompson, Mary R.

    2005-06-01

    The National Fusion Collaboratory project is developing and deploying new distributed computing and remote collaboration technologies with the goal of advancing magnetic fusion energy research. This work has led to the development of the US Fusion Grid (FusionGrid), a computational grid composed of collaborative, compute, and data resources from the three large US fusion research facilities and with users both in the US and in Europe. Critical to the development of FusionGrid was the creation and deployment of technologies to ensure security in a heterogeneous environment. These solutions to the problems of authentication, authorization, data transfer, and secure data storage, as well as the lessons learned during the development of these solutions, may be applied outside of FusionGrid and scale to future computing infrastructures such as those for next-generation devices like ITER.

  13. 2002 Fusion Summer Study Executive Summary

    NASA Astrophysics Data System (ADS)

    Bangerter, Roger; Navratil, Gerald; Sauthoff, Ned

    2001-09-01

    The 2002 Fusion Summer Study was conducted July 8-19, 2002, in Snowmass, CO, and carried out a critical assessment of major next steps in the fusion energy sciences program in both magnetic fusion energy (MFE) and inertial fusion energy (IFE). The conclusions of this study were based on analysis led by over 60 conveners working with hundreds of members of the fusion energy sciences community extending over eight months. This effort culminated in two weeks of intense discussion by over 250 U.S. and 30 foreign fusion physicists and engineers present at the 2002 Fusion Summer Study. This is the Executive Summary of the study report. Details are posted at http://web.gat.com/snowmass

  14. Measurement of the fusion probability, PCN, for hot fusion reactions

    NASA Astrophysics Data System (ADS)

    Yanez, R.; Loveland, W.; Barrett, J. S.; Yao, L.; Back, B. B.; Zhu, S.; Khoo, T. L.

    2013-07-01

    Background: The cross section for forming a heavy evaporation residue in fusion reactions depends on the capture cross section, the fusion probability, PCN, i.e., the probability that the projectile-target system will evolve inside the fission saddle point to form a completely fused system rather than reseparating (quasifission), and the survival of the completely fused system against fission. PCN is the least known of these quantities.Purpose: We want to determine PCN for the reactions of 101.2 MeV 18O, 147.3 MeV 26Mg, 170.9 MeV 30Si, and 195.3 MeV 36S with 197Au.Methods: We measured the fission fragment angular distributions for these reactions and used the formalism of Back to deduce the fusion-fission and quasifission cross sections. From these quantities we deduced PCN for each reaction.Results: The values of PCN for the reactions of 101.2 MeV 18O, 147.3 MeV 26Mg, 170.9 MeV 30Si, and 195.3 MeV 36S with 197Au are 0.66, 1.00, 0.06, and 0.13, respectively.Conclusions: The new measured values of PCN agree roughly with the semiempirical systematic dependence of PCN upon fissility for excited nuclei.

  15. Fission Fusion Hybrids: a nearer term application of Fusion

    NASA Astrophysics Data System (ADS)

    Kotschenreuther, M.; Valanju, P.; Mahajan, S.; Covele, B.

    2011-10-01

    Fission-fusion hybrids enjoy unique advantages for addressing long standing societal acceptability issues of nuclear fission power at a much lower level of technical development than a competitive fusion power plant. For waste incineration, hybrids burn intransigent transuranic residues (with the long lived biohazard) from light water reactors (LWRs). The number of hybrids needed is 5-10 times less than the corresponding number of fast reactors (FRs). The highly sub-critical hybrids, with a thermal/epithermal spectrum, incinerate > 95% of the waste in decades rather than the centuries needed for FRs. For fuel production, hybrids can produce fuel for 3-4 times as many LWRs with no fuel reprocessing. Thorium fuel rods exposed to neutrons in the hybrid reach fissile concentrations that enable efficient burning in LWR without the proliferation risks of reprocessing. The proliferation risks of this method are far less than other fuel breeding approaches, including today's gas centrifuge. With this cycle, US Thorium reserves could supply the entire US electricity supply for centuries. The centerpiece of the fuel cycle is a high power density Compact Fusion Neutron Source (major+minor radius ~ 2.5-3.5 m), which is made feasible by the super-X divertor.

  16. Control of cell-cell forces and collective cell dynamics by the intercellular adhesome

    PubMed Central

    Bazellières, Elsa; Conte, Vito; Elosegui-Artola, Alberto; Serra-Picamal, Xavier; Bintanel-Morcillo, María; Roca-Cusachs, Pere; Muñoz, José J; Sales-Pardo, Marta; Guimerà, Roger; Trepat, Xavier

    2015-01-01

    Dynamics of epithelial tissues determines key processes in development, tissue healing, and cancer invasion. These processes are critically influenced by cell-cell adhesion forces. However, the identity of the proteins that resist and transmit forces at cell-cell junctions remains unclear, and how these proteins control tissue dynamics is largely unknown. Here we provide a systematic study of the interplay between cell-cell adhesion proteins, intercellular forces, and epithelial tissue dynamics. We show that collective cellular responses to selective perturbations of the intercellular adhesome conform to three mechanical phenotypes. These phenotypes are controlled by different molecular modules and characterized by distinct relationships between cellular kinematics and intercellular forces. We show that these forces and their rates can be predicted by the concentrations of cadherins and catenins. Unexpectedly, we identified different mechanical roles for P-cadherin and E-cadherin; while P-cadherin predicts levels of intercellular force, E-cadherin predicts the rate at which intercellular force builds up. PMID:25812522

  17. ADAMTS-10 and -6 differentially regulate cell-cell junctions and focal adhesions

    PubMed Central

    Cain, Stuart A.; Mularczyk, Ewa J.; Singh, Mukti; Massam-Wu, Teresa; Kielty, Cay M.

    2016-01-01

    ADAMTS10 and ADAMTS6 are homologous metalloproteinases with ill-defined roles. ADAMTS10 mutations cause Weill-Marchesani syndrome (WMS), implicating it in fibrillin microfibril biology since some fibrillin-1 mutations also cause WMS. However little is known about ADAMTS6 function. ADAMTS10 is resistant to furin cleavage, however we show that ADAMTS6 is effectively processed and active. Using siRNA, over-expression and mutagenesis, it was found ADAMTS6 inhibits and ADAMTS10 is required for focal adhesions, epithelial cell-cell junction formation, and microfibril deposition. Either knockdown of ADAMTS6, or disruption of its furin processing or catalytic sites restores focal adhesions, implicating its enzyme activity acts on targets in the focal adhesion complex. In ADAMTS10-depleted cultures, expression of syndecan-4 rescues focal adhesions and cell-cell junctions. Recombinant C-termini of ADAMTS10 and ADAMTS6, both of which induce focal adhesions, bind heparin and syndecan-4. However, cells overexpressing full-length ADAMTS6 lack heparan sulphate and focal adhesions, whilst depletion of ADAMTS6 induces a prominent glycocalyx. Thus ADAMTS10 and ADAMTS6 oppositely affect heparan sulphate-rich interfaces including focal adhesions. We previously showed that microfibril deposition requires fibronectin-induced focal adhesions, and cell-cell junctions in epithelial cultures. Here we reveal that ADAMTS6 causes a reduction in heparan sulphate-rich interfaces, and its expression is regulated by ADAMTS10. PMID:27779234

  18. Construction of macroscopic cytomimetic vesicle aggregates based on click chemistry: controllable vesicle fusion and phase separation.

    PubMed

    Jin, Haibao; Huang, Wei; Zheng, Yongli; Zhou, Yongfeng; Yan, Deyue

    2012-07-01

    Vesicle-vesicle aggregation to mimic cell-cell aggregation has attracted much attention. Here, hyperbranched polymer vesicles (branched-polymersomes, BPs) with a cell-like size were selected as model membranes, and the vesicle aggregation process, triggered by click chemistry of the copper-catalysed azide-alkyne cycloaddition reaction, was systematically studied. For this purpose, azide and alkynyl groups were loaded on the membranes of BPs through the co-assembly method to obtain N(3)-BPs and Alk-BPs, respectively. Subsequently, macroscopic vesicle aggregates were obtained when these two kinds of functional BPs were mixed together with the ratio of azide to alkynyl groups of about 1:1. Both the vesicle fusion events and lateral phase separation on the vesicle membrane occurred during such a vesicle aggregation process, and the fusion rate and phase-separation degree could be controlled by adjusting the clickable group content. The vesicle aggregation process with N(3) -micelles as desmosome mimics to connect with Alk-BPs through click-chemistry reaction was also studied, and large-scale vesicle aggregates without vesicle fusion were obtained in this process. The present work has extended the controllable cytomimetic vesicle aggregation process with the use of covalent bonds, instead of noncovalent bonds, as the driving force.

  19. The elementary fusion modalities of osteoclasts.

    PubMed

    Søe, Kent; Hobolt-Pedersen, Anne-Sofie; Delaisse, Jean-Marie

    2015-04-01

    The last step of the osteoclast differentiation process is cell fusion. Most efforts to understand the fusion mechanism have focused on the identification of molecules involved in the fusion process. Surprisingly, the basic fusion modalities, which are well known for fusion of other cell types, are not known for the osteoclast. Here we show that osteoclast fusion partners are characterized by differences in mobility, nuclearity, and differentiation level. Our demonstration was based on time-laps videos of human osteoclast preparations from three donors where 656 fusion events were analyzed. Fusions between a mobile and an immobile partner were most frequent (62%), while fusion between two mobile (26%) or two immobile partners (12%) was less frequent (p<0.001). In general, the immobile fusion partner contained more nuclei than the mobile one (p<0.01). Furthermore, enrichment in nuclei of an osteoclast with three or more nuclei resulted from fusion with a mono-nucleated cell in 67% of the cases (p<0.001), while mono-nucleated cells fused with a multinucleated cell in 61% of the cases (p<0.05). This observation suggested that a more mature osteoclast prefers to fuse with a less mature pre-osteoclast. This hypothesis was supported by a nucleus-tracing approach in a co-culture of more and less differentiated pre-osteoclasts/osteoclasts. Furthermore, we found that osteoclast fusion proceeds through primarily two different types of cell contacts: phagocytic-cup and broad-contact-surfaces (>80% of all fusions). We conclude that osteoclasts most often gain nuclei by addition of one nucleus at a time, and that this nucleus is most often delivered by a moving cell to an immobile cell. These characteristics fit the in vivo observations where mono-nucleated precursors migrating from the bone marrow fuse with more mature osteoclasts sitting on the bone surface. They also fit the fusion modalities of other cell types.

  20. Characterization of the Neurospora crassa Cell Fusion Proteins, HAM-6, HAM-7, HAM-8, HAM-9, HAM-10, AMPH-1 and WHI-2

    PubMed Central

    Fu, Ci; Ao, Jie; Dettmann, Anne; Seiler, Stephan; Free, Stephen J.

    2014-01-01

    Intercellular communication of vegetative cells and their subsequent cell fusion is vital for different aspects of growth, fitness, and differentiation of filamentous fungi. Cell fusion between germinating spores is important for early colony establishment, while hyphal fusion in the mature colony facilitates the movement of resources and organelles throughout an established colony. Approximately 50 proteins have been shown to be important for somatic cell-cell communication and fusion in the model filamentous fungus Neurospora crassa. Genetic, biochemical, and microscopic techniques were used to characterize the functions of seven previously poorly characterized cell fusion proteins. HAM-6, HAM-7 and HAM-8 share functional characteristics and are proposed to function in the same signaling network. Our data suggest that these proteins may form a sensor complex at the cell wall/plasma membrane for the MAK-1 cell wall integrity mitogen-activated protein kinase (MAPK) pathway. We also demonstrate that HAM-9, HAM-10, AMPH-1 and WHI-2 have more general functions and are required for normal growth and development. The activation status of the MAK-1 and MAK-2 MAPK pathways are altered in mutants lacking these proteins. We propose that these proteins may function to coordinate the activities of the two MAPK modules with other signaling pathways during cell fusion. PMID:25279949

  1. National mirror fusion program plan

    NASA Astrophysics Data System (ADS)

    Borchers, R. R.; Vanatta, C. M.

    1980-01-01

    Experiments are under way in the Tandem Mirror Experiment (TMX) facility at Livermore. Recently this idea was greatly improved by incorporating a new element called the thermal barrier, a concept that promises a higher power gain factor (Q = 10 to 20) with much less demanding neutral beam and magnet technology and a higher fusion power density in the reactor. In addition to the tandem-mirror experiments in TMX, a new attempt will be made in the Beta 2 facility during FY 1980 to create and sustain a field-reversed mirror configuration, which is a different mirror fusion approach that could lead to early commercialization of small reactors. The plan presented here is designed to exploit the results of these and other mirror experiments and theoretical developments toward a variety of applications. The main objective is electric power generation.

  2. Interpreting inertial fusion neutron spectra

    NASA Astrophysics Data System (ADS)

    Munro, David H.

    2016-03-01

    A burning laser fusion plasma produces a neutron spectrum first described by Brysk (1973 Plasma Phys. Control. Fusion 15 611). This and more recent work deals with the spectrum produced by a single fluid element. The distribution of temperatures and velocities in multiple fluid elements combine in any real spectrum; we derive formulas for how the neutron spectrum averages these contributions. The single element momentum spectrum is accurately Gaussian, but the multi-element spectrum exhibits higher moments. In particular, the skew and kurtosis are likely to be large enough to measure. Even the single fluid element spectrum may exhibit measurable directional anisotropy, so that instruments with different lines of sight should see different yields, mean velocities, mean temperatures, and higher moments. Finally, we briefly discuss how scattering in the imploded core modifies the neutron spectrum by changing the relative weighting of fuel regions with different temperatures and velocities.

  3. Prospects for toroidal fusion reactors

    SciTech Connect

    Sheffield, J.; Galambos, J.D.

    1994-06-01

    Work on the International Thermonuclear Experimental Reactor (ITER) tokamak has refined understanding of the realities of a deuterium-tritium (D-T) burning magnetic fusion reactor. An ITER-like tokamak reactor using ITER costs and performance would lead to a cost of electricity (COE) of about 130 mills/kWh. Advanced tokamak physics to be tested in the Toroidal Physics Experiment (TPX), coupled with moderate components in engineering, technology, and unit costs, should lead to a COE comparable with best existing fission systems around 60 mills/kWh. However, a larger unit size, {approximately}2000 MW(e), is favored for the fusion system. Alternative toroidal configurations to the conventional tokamak, such as the stellarator, reversed-field pinch, and field-reversed configuration, offer some potential advantage, but are less well developed, and have their own challenges.

  4. Interplanetary propulsion using inertial fusion

    NASA Technical Reports Server (NTRS)

    Orth, C. D.; Hogan, W. J.; Hoffman, N.; Murray, K.; Klein, G.; Diaz, F. C.

    1987-01-01

    Inertial fusion can be used to power spacecraft within the solar system and beyond. Such spacecraft have the potential for short-duration manned-mission performance exceeding other technologies. We are conducting a study to assess the systems aspects of inertial fusion as applied to such missions, based on the conceptual engine design of Hyde (1983) we describe the required systems for an entirely new spacecraft design called VISTA that is based on the use of DT fuel. We give preliminary design details for the power conversion and power conditioning systems for manned missions to Mars of total duration of about 100 days. Specific mission performance results will be published elsewhere, after the study has been completed.

  5. Investigation of condensed matter fusion

    SciTech Connect

    Jones, S.E.; Berrondo, M.; Czirr, J.B.; Decker, D.L.; Harrison, K.; Jensen, G.L.; Palmer, E.P.; Rees, L.B.; Taylor, S.; Vanfleet, H.B.; Wang, J.C.; Bennion, D.N.; Harb, J.N.; Pitt, W.G.; Thorne, J.M.; Anderson, A.N.; McMurtry, G.; Murphy, N.; Goff, F.E.

    1990-12-01

    Work on muon-catalyzed fusion led to research on a possible new type of fusion occurring in hydrogen isotopes embedded in metal lattices. While the nuclear-product yields observed to date are so small as to require careful further checking, rates observed over short times appear sufficiently large to suggest that significant neutrons and triton yields could be realized -- if the process could be understood and controlled. During 1990, we have developed two charged-particle detection systems and three new neutron detectors. A segmented, high-efficiency neutron counter was taken into 600 m underground in a mine in Colorado for studies out of the cosmic-ray background. Significant neutron emissions were observed in this environment in both deuterium-gas-loaded metals and in electrolytic cells, confirming our earlier observations.

  6. Mirror fusion vacuum technology developments

    SciTech Connect

    Batzer, T.H.; Call, W.R.

    1983-11-21

    Magnetic Mirror Fusion experiments, such as MFTF-B+T (Mirror Fusion Test Facility-B, Tritium Upgrade) and foreseeable follow-on devices, have operational and maintenance requirements that have not yet been fully demonstrated. Among those associated with vacuum technology are the very-high continuous-pumping speeds, 10/sup 7/ to 10/sup 8/ l/s for D/sub 2/, T/sub 2/ and, to a lesser extent, He; the early detection of water leaks from the very-high heat-flux neutral-beam dumps and the detection and location of leaks in the superconducting magnets not protected by guard vacuums. Possible solutions to these problems have been identified and considerable progress has been made toward successfully demonstrating their feasibility.

  7. Human Cytomegalovirus gH/gL Forms a Stable Complex with the Fusion Protein gB in Virions

    PubMed Central

    Vanarsdall, Adam L.; Howard, Paul W.; Wisner, Todd W.; Johnson, David C.

    2016-01-01

    Human cytomegalovirus (HCMV) is a ubiquitous virus that is a major pathogen in newborns and immunocompromised or immunosuppressed patients. HCMV infects a wide variety of cell types using distinct entry pathways that involve different forms of the gH/gL glycoprotein: gH/gL/gO and gH/gL/UL128-131 as well as the viral fusion glycoprotein, gB. However, the minimal or core fusion machinery (sufficient for cell-cell fusion) is just gH/gL and gB. Here, we demonstrate that HCMV gB and gH/gL form a stable complex early after their synthesis and in the absence of other viral proteins. gH/gL can interact with gB mutants that are unable to mediate cell-cell fusion. gB-gH/gL complexes included as much as 16–50% of the total gH/gL in HCMV virus particles. In contrast, only small amounts of gH/gL/gO and gH/gL/UL128-131 complexes were found associated with gB. All herpesviruses express gB and gH/gL molecules and most models describing herpesvirus entry suggest that gH/gL interacts with gB to mediate membrane fusion, although there is no direct evidence for this. For herpes simplex virus (HSV-1) it has been suggested that after receptor binding gH/gL binds to gB either just before, or coincident with membrane fusion. Therefore, our results have major implications for these models, demonstrating that HCMV gB and gH/gL forms stable gB-gH/gL complexes that are incorporated virions without receptor binding or membrane fusion. Moreover, our data is the best support to date for the proposal that gH/gL interacts with gB. PMID:27082872

  8. Heavy Ion Fusion Injector Program

    SciTech Connect

    Yu, S.; Eylon, S.; Chupp, W.W.

    1993-05-01

    A program is underway to construct a 2 MV, 800 mA, K{sup +} injector for heavy ion fusion. The Electrostatic Quadrupole (ESQ) injector configuration consists of a zeolite source, a diode of up to 1 MV, together with several electrostatic quadrupole units to simultaneously focus and accelerate the beam to 2 MV. The key issues of source technology, high voltage breakdown, beam aberrations, and transient effects will be discussed. Results from ongoing experiments and simulations will be presented.

  9. FUSION WELDING METHOD AND APPARATUS

    DOEpatents

    Wyman, W.L.; Steinkamp, W.I.

    1961-01-17

    An apparatus for the fusion welding of metal pieces at a joint is described. The apparatus comprises a highvacuum chamber enclosing the metal pieces and a thermionic filament emitter. Sufficient power is applied to the emitter so that when the electron emission therefrom is focused on the joint it has sufficient energy to melt the metal pieces, ionize the metallic vapor abcve the molten metal, and establish an arc discharge between the joint and the emitter.

  10. Fusion for Earth and Space

    SciTech Connect

    Williams, Pharis E

    2009-03-16

    The compact reactor concept (Williams, 2007) has the potential to provide clean, safe and unlimited supply of energy for Earth and Space applications. The concept is a potential fusion reactor wherein deuterium nuclei are preferentially fused into helium nuclei. Because the deuterium nuclei are preferentially fused into helium nuclei at temperatures and energies lower than specified by the standard model there is no harmful radiation as a byproduct of this fusion process. Therefore, a reactor using this reaction does not need any shielding to contain such radiation. The energy released from each reaction and the absence of shielding makes the deuterium-plus-deuterium-to-helium (DDH) reactor very compact when compared to other reactors, both fission and fusion types. Moreover, the potential energy output per reactor weight and the absence of harmful radiation makes the DDH reactor an ideal candidate for individual home and space power. The concept also would make it possible for each plant or remote location to have it's own power source, on site, without the need for a connection to the power grid. This would minimize, or eliminate, power blackouts. The concept could replace large fission reactors and fossil fuel power plants plus provide energy for ships, locomotives, trucks and autos. It would make an ideal source of energy for space power applications and for space propulsion.

  11. Gasdynamic Mirror Fusion Propulsion Experiment

    NASA Technical Reports Server (NTRS)

    Emrich, William J., Jr.; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    Nuclear fusion appears to be the most promising concept for producing extremely high specific impulse rocket engines. One particular fusion concept which seems to be particularly well suited for fusion propulsion applications is the gasdynamic mirror (GDM). This device would operate at much higher plasma densities and with much larger LD ratios than previous mirror machines. Several advantages accrue from such a design. First, the high LA:) ratio minimizes to a large extent certain magnetic curvature effects which lead to plasma instabilities causing a loss of plasma confinement. Second, the high plasma density will result in the plasma behaving much more Re a conventional fluid with a mean free path shorter than the length of the device. This characteristic helps reduce problems associated with "loss cone" microinstabilities. An experimental GDM device is currently being constructed at the NASA Marshall Space Flight Center to provide an initial assessment of the feasibility of this type of propulsion system. Initial experiments are expected to commence in the late fall of 2000.

  12. Fusion product measurements in tokamaks

    SciTech Connect

    Strachan, J.D.

    1985-05-01

    Diagnostic methods and the applications of fusion product measurements in tokamaks are reviewed with emphasis on results from PLT, PDX, and TFTR. Measurements have been made using the 2.5-MeV neutron from the d(d, n)/sup 3/ He reaction, the 3-MeV proton from the d(d, p)t reaction, both the 3.7-MeV alpha and the 14.7-MeV proton from the d(/sup 3/He, p)..cap alpha.. reaction, and the 14-MeV neutron from the d(t, n)..cap alpha.. reaction. The common use of these measurements is the determination of the ion temperature from the magnitude of the d-d neutron emission. For tokamak plasmas, these results are usually in good agreement with the charge exchange ion temperature. Recently, the charged fusion products have been used for high-resolution spectroscopic purposes, and emission profile measurements. Pitch angle resolution of the escaping 3-MeV proton emission has been used to determine the poloidal magnetic field inside the tokamak. Major issues in this field include the expected tritium operation on TFTR where the neutron measurements will determine when tritium will be introduced into the TFTR vessel and provide a measurement of the fusion power multiplication value (Q). The TFTR Q approx. 1 experiments will also provide a chance to measure the confinement of 3.5-MeV alphas in a tokamak.

  13. Observations of membrane fusion in a liposome dispersion: the missing fusion intermediate?

    PubMed Central

    Foldvari, Marianna

    2015-01-01

    Early intermediate structures of liposome-liposome fusion events were captured by freeze-fracture electron microscopic (EM) technique. The images show the morphology of the fusion interface at several different stages of the fusion event. One of the intermediates was captured at a serendipitous stage of two vesicles’ membranes (both leaflets) merging and their contents starting to intermix clearly showing the fusion interface with a previously unseen fusion rim. From the morphological information a hypothetical sequence of the fusion event and corresponding lipid structural arrangements are described. PMID:26069726

  14. Fusion Nuclear Science Pathways Assessment

    SciTech Connect

    C.E. Kessel, et. al.

    2012-02-23

    With the strong commitment of the US to the success of the ITER burning plasma mission, and the project overall, it is prudent to consider how to take the most advantage of this investment. The production of energy from fusion has been a long sought goal, and the subject of several programmatic investigations and time line proposals [1]. The nuclear aspects of fusion research have largely been avoided experimentally for practical reasons, resulting in a strong emphasis on plasma science. Meanwhile, ITER has brought into focus how the interface between the plasma and engineering/technology, presents the most challenging problems for design. In fact, this situation is becoming the rule and no longer the exception. ITER will demonstrate the deposition of 0.5 GW of neutron heating to the blanket, deliver a heat load of 10-20 MW/m2 or more on the divertor, inject 50-100 MW of heating power to the plasma, all at the expected size scale of a power plant. However, in spite of this, and a number of other technologies relevant power plant, ITER will provide a low neutron exposure compared to the levels expected to a fusion power plant, and will purchase its tritium entirely from world reserves accumulated from decades of CANDU reactor operations. Such a decision for ITER is technically well founded, allowing the use of conventional materials and water coolant, avoiding the thick tritium breeding blankets required for tritium self-sufficiency, and allowing the concentration on burning plasma and plasma-engineering interface issues. The neutron fluence experienced in ITER over its entire lifetime will be ~ 0.3 MW-yr/m2, while a fusion power plant is expected to experience 120-180 MW-yr/m2 over its lifetime. ITER utilizes shielding blanket modules, with no tritium breeding, except in test blanket modules (TBM) located in 3 ports on the midplane [2], which will provide early tests of the fusion nuclear environment with very low tritium production (a few g per year).

  15. Materials issues in fusion reactors

    NASA Astrophysics Data System (ADS)

    Suri, A. K.; Krishnamurthy, N.; Batra, I. S.

    2010-02-01

    The world scientific community is presently engaged in one of the toughest technological tasks of the current century, namely, exploitation of nuclear fusion in a controlled manner for the benefit of mankind. Scientific feasibility of controlled fusion of the light elements in plasma under magnetic confinement has already been proven. International efforts in a coordinated and co-operative manner are presently being made to build ITER - the International Thermonuclear Experimental Reactor - to test, in this first step, the concept of 'Tokamak' for net fusion energy production. To exploit this new developing option of making energy available through the route of fusion, India too embarked on a robust fusion programme under which we now have a working tokamak - the Aditya and a steady state tokamak (SST-1), which is on the verge of functioning. The programme envisages further development in terms of making SST-2 followed by a DEMO and finally the fusion power reactor. Further, with the participation of India in the ITER program in 2005, and recent allocation of half - a - port in ITER for placing our Lead - Lithium Ceramic Breeder (LLCB) based Test Blanket Module (TBM), meant basically for breeding tritium and extracting high grade heat, the need to understand and address issues related to materials for these complex systems has become all the more necessary. Also, it is obvious that with increasing power from the SST stages to DEMO and further to PROTOTYPE, the increasing demands on performance of materials would necessitate discovery and development of new materials. Because of the 14.1 MeV neutrons that are generated in the D+T reaction exploited in a tokamak, the materials, especially those employed for the construction of the first wall, the diverter and the blanket segments, suffer crippling damage due to the high He/dpa ratios that result due to the high energy of the neutrons. To meet this challenge, the materials that need to be developed for the tokamaks

  16. Imaging multiple intermediates of single-virus membrane fusion mediated by distinct fusion proteins.

    PubMed

    Joo, Kye-Il; Tai, April; Lee, Chi-Lin; Wong, Clement; Wang, Pin

    2010-09-01

    Membrane fusion plays an essential role in the entry of enveloped viruses into target cells. The merging of viral and target cell membranes is catalyzed by viral fusion proteins, which involves multiple sequential steps in the fusion process. However, the fusion mechanisms mediated by different fusion proteins involve multiple transient intermediates that have not been well characterized. Here, we report a synthetic virus platform that allows us to better understand the different fusion mechanisms driven by the diverse types fusion proteins. The platform consists of lentiviral particles coenveloped with a surface antibody, which serves as the binding protein, along with a fusion protein derived from either influenza virus (HAmu) or Sindbis virus (SINmu). By using a single virus tracking technique, we demonstrated that both HAmu- and SINmu-bearing viruses enter cells through clathrin-dependent endocytosis, but they required different endosomal trafficking routes to initiate viral fusion. Direct observation of single viral fusion events clearly showed that hemifusion mediated by SINmu upon exposure to low pH occurs faster than that mediated by HAmu. Monitoring sequential fusion processes by dual labeling the outer and inner leaflets of viral membranes also revealed that the SINmu-mediated hemifusion intermediate is relatively long-lived as compared with that mediated by HAmu. Taken together, we have demonstrated that the combination of this versatile viral platform with the techniques of single virus tracking can be a powerful tool for revealing molecular details of fusion mediated by various fusion proteins.

  17. Study of fusion Q-value rule in sub-barrier fusion of heavy ions

    NASA Astrophysics Data System (ADS)

    Liu, Xing-Xing; Zhang, Gao-Long; Zhang, Huan-Qiao

    2015-07-01

    A vast body of fusion data has been analyzed for different projectiles and target nuclei. It is indicated that the sub-barrier fusion depends on the fusion Q-value. In terms of a recently introduced fusion Q-value rule and an energy scaling reduction procedure, the experimental fusion excitation functions are reduced and compared with each other. It is found that the reduced fusion excitations of selected fusion systems show a similar trend. The fusion data for massive nuclei are in agreement with the Q-value rule. In the fusion process, the Q contribution should be considered. Within this approach, the sub-barrier fusion cross sections of most fusion systems can be predicted without involving any structure effects of colliding nuclei. Instances of disagreement are presented in a few fusion systems. The use of the energy scaling as a criterion of possible experimental data inconsistency is discussed. More precise experimental fusion data need to be measured. Supported by National Nature Science Foundation of China (11475013, 11035007, 11175011), State Key Laboratory of Software Development Environment (SKLSDE-2014ZX-08), Fundamental Research Funds for the Central Universities and the Key Laboratory of High Precision Nuclear Spectroscopy, Institute of Modern Physics, Chinese Academy of Sciences

  18. Nuclear Fusion Award 2009 speech Nuclear Fusion Award 2009 speech

    NASA Astrophysics Data System (ADS)

    Sabbagh, Steven Anthony

    2011-01-01

    This is an exceptional moment in my career, and so I want to thank all of my teachers, colleagues and mentors who have made this possible. From my co-authors and myself, many thanks to the International Atomic Energy Agency, IOP Publishing, the Nuclear Fusion journal team, and the selection committee for the great honor of receiving this award. Also gratitude to Kikuchi-sensei, not only for the inventive and visionary creation of this award, but also for being a key mentor dating back to his efforts in producing high neutron output in JT-60U. It was also a great honor to receive the award directly from IAEA Deputy Director General Burkart during the 23rd IAEA Fusion Energy Conference in Daejeon. Receiving the award at this venue is particularly exciting as Daejeon is home to the new, next-generation KSTAR tokamak device that will lead key magnetic fusion research areas going forward. I would also like to thank the mayor of Daejeon, Dr Yum Hong-Chul, and all of the meeting organizers for giving us all a truly spectacular and singular welcoming event during which the award was presented. The research leading to the award would not have been possible without the support of the US Department of Energy, and I thank the Department for the continued funding of this research. Special mention must be made to a valuable co-author who is no longer with us, Professor A. Bondeson, who was a significant pioneer in resistive wall mode (RWM) research. I would like to thank my wife, Mary, for her infinite patience and encouragement. Finally, I would like to personally thank all of you that have approached and congratulated me directly. There are no units to measure how important your words have been in this regard. When notified that our paper had been shortlisted for the 2009 Nuclear Fusion Award, my co-authors responded echoing how I felt—honored to be included in such a fine collection of research by colleagues. It was unfathomable—would this paper follow the brilliant work

  19. Influence of breakup on fusion barrier distributions

    NASA Astrophysics Data System (ADS)

    Patel, D.; Nayak, B. K.; Mukherjee, S.; Biswas, D. C.; Mirgule, E. T.; John, B. V.; Gupta, Y. K.; Mukhopadhyay, S.; Prajapati, G.; Danu, L. S.; Rath, P. K.; Desai, V.; Deshmukh, N.; Saxena, A.

    2013-04-01

    Fusion barrier distributions have been extracted from the quasi-elastic scattering excitation functions, measured at backward angle θlab = 160° in reactions of 6,7Li+209Bi. The present results have been compared with the barrier distributions obtained from the fusion excitation function measurements for the above mentioned systems. The fusion barrier distributions from the quasi-elastic scattering excitation functions have been analyzed with simplified Coupled Channels calculations using Fresco. Inclusions of resonant states for both 6,7Li projectiles improve the predictions to describe the measured quasi-elastic scattering excitation functions and barrier distributions. For both the reactions peak positions of fusion barrier distributions are shifted towards a lower energy side in comparison to that obtained from the fusion excitation function measurements. The observed discrepancy in peak positions of barrier distributions obtained from quasi-elastic scattering and fusion excitation function measurements has been discussed in terms of total reaction threshold distribution.

  20. Conceptual exploration package for data fusion

    NASA Astrophysics Data System (ADS)

    Jousselme, Anne-Laure; Grenier, Dominic; Bosse, Eloi

    2000-04-01

    In this paper, we present a software package designed to explore data fusion area applied to different contexts. This tool, called CEPfuse (Conceptual Exploration Package for Data Fusion) provides a good support to become familiar with all concepts and vocabulary linked to data fusion. Developed with Matlab 5.2, it's also a good tool to test, compare and analyze algorithms. Although the core of this package is evidential reasoning and identity information fusion, it has been conceived to develop all the interesting part of the Multi-Sensor Data Fusion system. Actually, because we concentrate our research work on identity information fusion, the principal included algorithms are Dempster- Shafer rules of combination, Shafer-Logan algorithms for hierarchical structures, and several decision rules.

  1. EDITORIAL: Safety aspects of fusion power plants

    NASA Astrophysics Data System (ADS)

    Kolbasov, B. N.

    2007-07-01

    This special issue of Nuclear Fusion contains 13 informative papers that were initially presented at the 8th IAEA Technical Meeting on Fusion Power Plant Safety held in Vienna, Austria, 10-13 July 2006. Following recommendation from the International Fusion Research Council, the IAEA organizes Technical Meetings on Fusion Safety with the aim to bring together experts to discuss the ongoing work, share new ideas and outline general guidance and recommendations on different issues related to safety and environmental (S&E) aspects of fusion research and power facilities. Previous meetings in this series were held in Vienna, Austria (1980), Ispra, Italy (1983), Culham, UK (1986), Jackson Hole, USA (1989), Toronto, Canada (1993), Naka, Japan (1996) and Cannes, France (2000). The recognized progress in fusion research and technology over the last quarter of a century has boosted the awareness of the potential of fusion to be a practically inexhaustible and clean source of energy. The decision to construct the International Thermonuclear Experimental Reactor (ITER) represents a landmark in the path to fusion power engineering. Ongoing activities to license ITER in France look for an adequate balance between technological and scientific deliverables and complying with safety requirements. Actually, this is the first instance of licensing a representative fusion machine, and it will very likely shape the way in which a more common basis for establishing safety standards and policies for licensing future fusion power plants will be developed. Now that ITER licensing activities are underway, it is becoming clear that the international fusion community should strengthen its efforts in the area of designing the next generations of fusion power plants—demonstrational and commercial. Therefore, the 8th IAEA Technical Meeting on Fusion Safety focused on the safety aspects of power facilities. Some ITER-related safety issues were reported and discussed owing to their potential

  2. Is Fusion Inhibited for Weakly Bound Nuclei?

    SciTech Connect

    Takahashi, J.; Munhoz, M.; Szanto, E.M.; Carlin, N.; Added, N.; Suaide, A.A.; de Moura, M.M.; Liguori Neto, R.; Szanto de Toledo, A.; Canto, L.F.

    1997-01-01

    Complete fusion of light radioactive nuclei is predicted to be hindered at near-barrier energies. This feature is investigated in the case of the least bound stable nuclei. Evaporation residues resulting from the {sup 6,7}Li+{sup 9}Be and {sup 6,7}Li+{sup 12}C fusion reactions have been measured in order to study common features in reactions involving light weakly bound nuclei. The experimental excitation functions revealed that the fusion cross section is significantly smaller than the total reaction cross section and also smaller than the fusion cross section expected from the available systematics. A clear correlation between the fusion probability and nucleon (cluster) separation energy has been established.The results suggest that the breakup process has a strong influence on the hindrance of the fusion cross section. {copyright} {ital 1996} {ital The American Physical Society}

  3. Lunar Helium-3 and Fusion Power

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The NASA Office of Exploration sponsored the NASA Lunar Helium-3 and Fusion Power Workshop. The meeting was held to understand the potential of using He-3 from the moon for terrestrial fusion power production. It provided an overview, two parallel working sessions, a review of sessions, and discussions. The lunar mining session concluded that mining, beneficiation, separation, and return of He-3 from the moon would be possible but that a large scale operation and improved technology is required. The fusion power session concluded that: (1) that He-3 offers significant, possibly compelling, advantages over fusion of tritium, principally increased reactor life, reduced radioactive wastes, and high efficiency conversion, (2) that detailed assessment of the potential of the D/He-3 fuel cycle requires more information, and (3) D/He-3 fusion may be best for commercial purposes, although D/T fusion is more near term.

  4. Incomplete fusion dynamics by spin distribution measurements

    SciTech Connect

    Singh, D.; Ali, R.; Ansari, M. Afzal; Singh, Pushpendra P.; Sharma, M. K.; Singh, B. P.; Babu, K. Surendra; Sinha, Rishi K.; Kumar, R.; Muralithar, S.; Singh, R. P.; Bhowmik, R. K.

    2010-02-15

    Spin distributions for various evaporation residues populated via complete and incomplete fusion of {sup 16}O with {sup 124}Sn at 6.3 MeV/nucleon have been measured, using charged particles (Z=1,2)-{gamma} coincidence technique. Experimentally measured spin distributions of the residues produced as incomplete fusion products associated with 'fast'{alpha}- and 2{alpha}-emission channels observed in the 'forward cone' are found to be distinctly different from those of the residues produced as complete fusion products. Moreover, 'fast'{alpha}-particles that arise from larger angular momentum in the entrance channel are populated at relatively higher driving input angular momentum than those produced through complete fusion. The incomplete fusion residues are populated in a limited, higher-angular-momentum range, in contrast to the complete fusion products, which are populated over a broad spin range.

  5. Inertial-confinement fusion with lasers

    NASA Astrophysics Data System (ADS)

    Betti, R.; Hurricane, O. A.

    2016-05-01

    The quest for controlled fusion energy has been ongoing for over a half century. The demonstration of ignition and energy gain from thermonuclear fuels in the laboratory has been a major goal of fusion research for decades. Thermonuclear ignition is widely considered a milestone in the development of fusion energy, as well as a major scientific achievement with important applications in national security and basic sciences. The US is arguably the world leader in the inertial confinement approach to fusion and has invested in large facilities to pursue it, with the objective of establishing the science related to the safety and reliability of the stockpile of nuclear weapons. Although significant progress has been made in recent years, major challenges still remain in the quest for thermonuclear ignition via laser fusion. Here, we review the current state of the art in inertial confinement fusion research and describe the underlying physical principles.

  6. History of Nuclear Fusion Research in Japan

    NASA Astrophysics Data System (ADS)

    Iguchi, Harukazu; Matsuoka, Keisuke; Kimura, Kazue; Namba, Chusei; Matsuda, Shinzaburo

    In the late 1950s just after the atomic energy research was opened worldwide, there was a lively discussion among scientists on the strategy of nuclear fusion research in Japan. Finally, decision was made that fusion research should be started from the basic, namely, research on plasma physics and from cultivation of human resources at universities under the Ministry of Education, Science and Culture (MOE). However, an endorsement was given that construction of an experimental device for fusion research would be approved sooner or later. Studies on toroidal plasma confinement started at Japan Atomic Energy Research Institute (JAERI) under the Science and Technology Agency (STA) in the mid-1960s. Dualistic fusion research framework in Japan was established. This structure has lasted until now. Fusion research activities over the last 50 years are described by the use of a flowchart, which is convenient to glance the historical development of fusion research in Japan.

  7. Cell-cell transmission enables HIV-1 to evade inhibition by potent CD4bs directed antibodies.

    PubMed

    Abela, Irene A; Berlinger, Livia; Schanz, Merle; Reynell, Lucy; Günthard, Huldrych F; Rusert, Peter; Trkola, Alexandra

    2012-01-01

    HIV is known to spread efficiently both in a cell-free state and from cell to cell, however the relative importance of the cell-cell transmission mode in natural infection has not yet been resolved. Likewise to what extent cell-cell transmission is vulnerable to inhibition by neutralizing antibodies and entry inhibitors remains to be determined. Here we report on neutralizing antibody activity during cell-cell transmission using specifically tailored experimental strategies which enable unambiguous discrimination between the two transmission routes. We demonstrate that the activity of neutralizing monoclonal antibodies (mAbs) and entry inhibitors during cell-cell transmission varies depending on their mode of action. While gp41 directed agents remain active, CD4 binding site (CD4bs) directed inhibitors, including the potent neutralizing mAb VRC01, dramatically lose potency during cell-cell transmission. This implies that CD4bs mAbs act preferentially through blocking free virus transmission, while still allowing HIV to spread through cell-cell contacts. Thus providing a plausible explanation for how HIV maintains infectivity and rapidly escapes potent and broadly active CD4bs directed antibody responses in vivo. PMID:22496655

  8. Study of the time effect on the strength of cell-cell adhesion force by a novel nano-picker

    SciTech Connect

    Shen, Yajing; Nakajima, Masahiro; Kojima, Seiji; Homma, Michio; Fukuda, Toshio

    2011-06-03

    Highlights: {yields} A nano-picker is developed for single cell adhesion force measurement. {yields} The adhesion of picker-cell has no influence to the cell-cell measurement result. {yields} Cell-cell adhesion force has a rise at the first few minutes and then becomes constant. -- Abstract: Cell's adhesion is important to cell's interaction and activates. In this paper, a novel method for cell-cell adhesion force measurement was proposed by using a nano-picker. The effect of the contact time on the cell-cell adhesion force was studied. The nano-picker was fabricated from an atomic force microscopy (AFM) cantilever by nano fabrication technique. The cell-cell adhesion force was measured based on the deflection of the nano-picker beam. The result suggests that the adhesion force between cells increased with the increasing of contact time at the first few minutes. After that, the force became constant. This measurement methodology was based on the nanorobotic manipulation system inside an environmental scanning electron microscope. It can realize both the observation and manipulation of a single cell at nanoscale. The quantitative and precise cell-cell adhesion force result can be obtained by this method. It would help us to understand the single cell interaction with time and would benefit the research in medical and biological fields potentially.

  9. Line tension at lipid phase boundaries as driving force for HIV fusion peptide-mediated fusion

    NASA Astrophysics Data System (ADS)

    Yang, Sung-Tae; Kiessling, Volker; Tamm, Lukas K.

    2016-04-01

    Lipids and proteins are organized in cellular membranes in clusters, often called `lipid rafts'. Although raft-constituent ordered lipid domains are thought to be energetically unfavourable for membrane fusion, rafts have long been implicated in many biological fusion processes. For the case of HIV gp41-mediated membrane fusion, this apparent contradiction can be resolved by recognizing that the interfaces between ordered and disordered lipid domains are the predominant sites of fusion. Here we show that line tension at lipid domain boundaries contributes significant energy to drive gp41-fusion peptide-mediated fusion. This energy, which depends on the hydrophobic mismatch between ordered and disordered lipid domains, may contribute tens of kBT to fusion, that is, it is comparable to the energy required to form a lipid stalk intermediate. Line-active compounds such as vitamin E lower line tension in inhomogeneous membranes, thereby inhibit membrane fusion, and thus may be useful natural viral entry inhibitors.

  10. Line tension at lipid phase boundaries as driving force for HIV fusion peptide-mediated fusion.

    PubMed

    Yang, Sung-Tae; Kiessling, Volker; Tamm, Lukas K

    2016-01-01

    Lipids and proteins are organized in cellular membranes in clusters, often called 'lipid rafts'. Although raft-constituent ordered lipid domains are thought to be energetically unfavourable for membrane fusion, rafts have long been implicated in many biological fusion processes. For the case of HIV gp41-mediated membrane fusion, this apparent contradiction can be resolved by recognizing that the interfaces between ordered and disordered lipid domains are the predominant sites of fusion. Here we show that line tension at lipid domain boundaries contributes significant energy to drive gp41-fusion peptide-mediated fusion. This energy, which depends on the hydrophobic mismatch between ordered and disordered lipid domains, may contribute tens of kBT to fusion, that is, it is comparable to the energy required to form a lipid stalk intermediate. Line-active compounds such as vitamin E lower line tension in inhomogeneous membranes, thereby inhibit membrane fusion, and thus may be useful natural viral entry inhibitors. PMID:27113279

  11. Adaptive sensor fusion using genetic algorithms

    SciTech Connect

    Fitzgerald, D.S.; Adams, D.G.

    1994-08-01

    Past attempts at sensor fusion have used some form of Boolean logic to combine the sensor information. As an alteniative, an adaptive ``fuzzy`` sensor fusion technique is described in this paper. This technique exploits the robust capabilities of fuzzy logic in the decision process as well as the optimization features of the genetic algorithm. This paper presents a brief background on fuzzy logic and genetic algorithms and how they are used in an online implementation of adaptive sensor fusion.

  12. An Alternate Development Path for Magnetic Fusion

    NASA Astrophysics Data System (ADS)

    Manheimer, Wallace

    2001-12-01

    Mid-century requirements for carbon free energy are daunting. Perhaps fusion could play a vital role. One of rather few possible solutions for sustainable development might be the fission fusion hybrid coupled with transmutation of the long lived actinide wastes. This paper suggests such an alternate development path for fusion, one that could lead to the production of multi-terawatts of carbon free power by 2050.

  13. Plasma Physics and Controlled Nuclear Fusion

    NASA Astrophysics Data System (ADS)

    Fisch, N. J.

    2010-01-01

    Already while making his famous contributions in uncontrolled nuclear fusion for wartime uses, Edward Teller contemplated how the abundant energy release through nuclear fusion might serve peacetime uses as well. His legacy in controlled nuclear fusion, and the associated physics of plasmas, spans both magnetic and inertial confinement approaches. His contributions in plasma physics, both the intellectual and the administrative, continue to impact the field.

  14. Review of alternative concepts for magnetic fusion

    SciTech Connect

    Krakowski, R.A.; Miller, R.L.; Hagenson, R.L.

    1980-01-01

    Although the Tokamak represents the mainstay of the world's quest for magnetic fusion power, with the tandem mirror serving as a primary backup concept in the US fusion program, a wide range of alternative fusion concepts (AFC's) have been and are being pursued. This review presents a summary of past and present reactor projections of a majority of AFC's. Whenever possible, quantitative results are given.

  15. Indirect drive targets for fusion power

    DOEpatents

    Amendt, Peter A.; Miles, Robin R.

    2016-10-11

    A hohlraum for an inertial confinement fusion power plant is disclosed. The hohlraum includes a generally cylindrical exterior surface, and an interior rugby ball-shaped surface. Windows over laser entrance holes at each end of the hohlraum enclose inert gas. Infrared reflectors on opposite sides of the central point reflect fusion chamber heat away from the capsule. P2 shields disposed on the infrared reflectors help assure an enhanced and more uniform x-ray bath for the fusion fuel capsule.

  16. Inertial fusion: strategy and economic potential

    SciTech Connect

    Nuckolls, J.H.

    1983-01-01

    Inertial fusion must demonstrate that the high target gains required for practical fusion energy can be achieved with driver energies not larger than a few megajoules. Before a multi-megajoule scale driver is constructed, inertial fusion must provide convincing experimental evidence that the required high target gains are feasible. This will be the principal objective of the NOVA laser experiments. Implosions will be conducted with scaled targets which are nearly hydrodynamically equivalent to the high gain target implosions. Experiments which demonstrate high target gains will be conducted in the early nineties when multi-megajoule drivers become available. Efficient drivers will also be demonstrated by this time period. Magnetic fusion may demonstrate high Q at about the same time as inertial fusion demonstrates high gain. Beyond demonstration of high performance fusion, economic considerations will predominate. Fusion energy will achieve full commercial success when it becomes cheaper than fission and coal. Analysis of the ultimate economic potential of inertial fusion suggests its costs may be reduced to half those of fission and coal. Relative cost escalation would increase this advantage. Fusions potential economic advantage derives from two fundamental properties: negligible fuel costs and high quality energy (which makes possible more efficient generation of electricity).

  17. Mitochondrial Fusion Is Essential for Steroid Biosynthesis

    PubMed Central

    Cooke, Mariana; Soria, Gastón; Cornejo Maciel, Fabiana; Gottifredi, Vanesa; Podestá, Ernesto J.

    2012-01-01

    Although the contribution of mitochondrial dynamics (a balance in fusion/fission events and changes in mitochondria subcellular distribution) to key biological process has been reported, the contribution of changes in mitochondrial fusion to achieve efficient steroid production has never been explored. The mitochondria are central during steroid synthesis and different enzymes are localized between the mitochondria and the endoplasmic reticulum to produce the final steroid hormone, thus suggesting that mitochondrial fusion might be relevant for this process. In the present study, we showed that the hormonal stimulation triggers mitochondrial fusion into tubular-shaped structures and we demonstrated that mitochondrial fusion does not only correlate-with but also is an essential step of steroid production, being both events depend on PKA activity. We also demonstrated that the hormone-stimulated relocalization of ERK1/2 in the mitochondrion, a critical step during steroidogenesis, depends on mitochondrial fusion. Additionally, we showed that the SHP2 phosphatase, which is required for full steroidogenesis, simultaneously modulates mitochondrial fusion and ERK1/2 localization in the mitochondrion. Strikingly, we found that mitofusin 2 (Mfn2) expression, a central protein for mitochondrial fusion, is upregulated immediately after hormone stimulation. Moreover, Mfn2 knockdown is sufficient to impair steroid biosynthesis. Together, our findings unveil an essential role for mitochondrial fusion during steroidogenesis. These discoveries highlight the importance of organelles’ reorganization in specialized cells, prompting the exploration of the impact that organelle dynamics has on biological processes that include, but are not limited to, steroid synthesis. PMID:23029265

  18. Fusion Concept Exploration Experiments at PPPL

    SciTech Connect

    Stewart Zweben; Samuel Cohen; Hantao Ji; Robert Kaita; Richard Majeski; Masaaki Yamada

    1999-05-01

    Small ''concept exploration'' experiments have for many years been an important part of the fusion research program at the Princeton Plasma Physics Laboratory (PPPL). this paper describes some of the present and planned fusion concept exploration experiments at PPPL. These experiments are a University-scale research level, in contrast with the larger fusion devices at PPPL such as the National Spherical Torus Experiment (NSTX) and the Tokamak Fusion Test Reactor (TFTR), which are at ''proof-of-principle'' and ''proof-of-performance'' levels, respectively.

  19. Mitochondrial fusion is essential for steroid biosynthesis.

    PubMed

    Duarte, Alejandra; Poderoso, Cecilia; Cooke, Mariana; Soria, Gastón; Cornejo Maciel, Fabiana; Gottifredi, Vanesa; Podestá, Ernesto J

    2012-01-01

    Although the contribution of mitochondrial dynamics (a balance in fusion/fission events and changes in mitochondria subcellular distribution) to key biological process has been reported, the contribution of changes in mitochondrial fusion to achieve efficient steroid production has never been explored. The mitochondria are central during steroid synthesis and different enzymes are localized between the mitochondria and the endoplasmic reticulum to produce the final steroid hormone, thus suggesting that mitochondrial fusion might be relevant for this process. In the present study, we showed that the hormonal stimulation triggers mitochondrial fusion into tubular-shaped structures and we demonstrated that mitochondrial fusion does not only correlate-with but also is an essential step of steroid production, being both events depend on PKA activity. We also demonstrated that the hormone-stimulated relocalization of ERK1/2 in the mitochondrion, a critical step during steroidogenesis, depends on mitochondrial fusion. Additionally, we showed that the SHP2 phosphatase, which is required for full steroidogenesis, simultaneously modulates mitochondrial fusion and ERK1/2 localization in the mitochondrion. Strikingly, we found that mitofusin 2 (Mfn2) expression, a central protein for mitochondrial fusion, is upregulated immediately after hormone stimulation. Moreover, Mfn2 knockdown is sufficient to impair steroid biosynthesis. Together, our findings unveil an essential role for mitochondrial fusion during steroidogenesis. These discoveries highlight the importance of organelles' reorganization in specialized cells, prompting the exploration of the impact that organelle dynamics has on biological processes that include, but are not limited to, steroid synthesis.

  20. Fisetin antagonizes cell fusion, cytoskeletal organization and bone resorption in RANKL-differentiated murine macrophages.

    PubMed

    Kim, Yun-Ho; Kim, Jung-Lye; Lee, Eun-Jung; Park, Sin-Hye; Han, Seon-Young; Kang, Soon Ah; Kang, Young-Hee

    2014-03-01

    Osteoclastogenesis is comprised of several stage s including progenitor survival, differentiation to mononuclear preosteoclasts, cell fusion to multinuclear mature osteoclasts, and activation to osteoclasts with bone resorbing activity. Botanical antioxidants are now being increasingly investigated for their health-promoting effects on bone. This study investigated that fisetin, a flavonol found naturally in many fruits and vegetables, suppressed osteoclastogenesis by disturbing receptor activator of nuclear factor (NF)-κB ligand (RANKL)-mediated signaling pathway and demoting osteoclastogenic protein induction. Nontoxic fisetin at ≤10 μM inhibited the induction of RANK, tumor necrosis factor receptor associated factor 6 (TRAF6) and the activation of NF-κB in RANKL-stimulated RAW 264.7 macrophages. In RANKL-differentiated osteoclasts cell fusion protein of E-cadherin was induced, which was dampened by fisetin. The formation of tartrate-resistance acid phosphatase-positive multinucleated osteoclasts was suppressed by adding fisetin to RANKL-exposed macrophages. It was also found that fisetin reduced actin ring formation and gelsolin induction of osteclasts enhanced by RANKL through disturbing c-Src-proline-rich tyrosine kinase 2 signaling. Fisetin deterred preosteoclasts from the cell-cell fusion and the organization of the cytoskeleton to seal the resorbing area and to secret protons for bone resorption. Consistently, the 5 day-treatment of fisetin diminished RANKL-induced cellular expression of carbonic anhydrase II and integrin β3 concurrently with a reduction of osteoclast bone-resorbing activity. Therefore, fisetin was a natural therapeutic agent retarding osteoclast fusion and cytoskeletal organization such as actin rings and ruffled boarder, which is a property of mature osteoclasts and is required for osteoclasts to resorb bone.

  1. Nuclear Fusion Award 2010 speech Nuclear Fusion Award 2010 speech

    NASA Astrophysics Data System (ADS)

    Rice, John

    2011-01-01

    Following the suggestion of Earl Marmar in 1995, I installed a compact von Hamos type x-ray spectrometer (originally built with Elisabeth Rachlew and Jan Kallne) on a tangentially viewing port on the Alcator C-Mod tokamak. The spectrometer views the plasma through a 2 cm diameter hole, and is tuned to H-like argon, suitable for passive measurement of the core toroidal rotation velocity from the Doppler shift. It soon became evident that the rotation in Ohmic L-mode discharges, while for the most part directed counter-current, depends in a very complicated fashion on plasma parameters, notably the electron density, current and magnetic configuration. The rotation can even flip sign for almost no apparent reason! In Ohmic and ion cyclotron range of frequencies (ICRF) heated H-mode plasmas the rotation is in the co-current direction and has a relatively simple dependence on plasma parameters, proportional to the stored energy normalized to the current. Rotation velocities as high as 130 km s-1 have been observed without external momentum input. In dimensionless terms this intrinsic (or spontaneous rotation) depends on the normalized plasma pressure. The association of toroidal rotation with plasma pressure in ICRF H-modes was first observed by Lars-Goran Eriksson in JET discharges. Similar results were subsequently reported for Tore Supra enhanced confinement plasmas. In the early 2000s concerns began to surface about the lack of substantial neutral beam driven rotation in ITER, and intrinsic rotation became a topic of interest in the ITPA Transport Group. Through that connection, similar observations from DIII-D, TCV and JT-60U were added to the growing list. A database of intrinsic rotation observations was assembled with the goal of extrapolating to the expected values for ITER. Both dimensional and dimensionless scalings were developed and formed the backbone of the 2007 Nuclear Fusion paper. I gratefully acknowledge the important contributions to this paper from

  2. Interplanetary propulsion using inertial fusion

    NASA Technical Reports Server (NTRS)

    Orth, Charles D.; Hoffman, Nate; Murray, Kathy; Klein, Gail; Diaz, Franklin Chang

    1987-01-01

    Inertial fusion can be used to power spacecraft within the solar system and beyond. Such spacecraft have the potential for short duration manned mission performance exceeding other technologies. A study was conducted to assess the systems aspects of inertial as applied to such missions, based on the conceptual engine design of Hyde (1983). The required systems for an entirely new spacecraft design called VISTA that is based on the use of DT fuel is described. Preliminary design details are given for the power conversion and power conditioning systems for manned missions to Mars of total duration of about 100 days.

  3. Modular stellarator fusion reactor concept

    NASA Astrophysics Data System (ADS)

    Miller, R. L.; Krakowski, R. A.

    1981-08-01

    A steady-state ignited, DT-fueled, magnetic fusion reactor is proposed for use as a central electric-power station. The MSR concept combines the physics of the classic stellarator confinement topology with an innovative, modular-coil design. Parametric tradeoff calculations are described, leading to the selection of an interim design point for a 4-GWt plant based on Alcator transport scaling and an average beta value of 0.04 in an 1 = 2 system with a plasma aspect ratio of 11. The physical basis of the design point is described together with supporting magnetics, coil-force, and stress computations.

  4. Tokamak Diagnostics Using Fusion Products.

    NASA Astrophysics Data System (ADS)

    Heidbrink, William Walter

    Measurements of neutrons and protons produced by the d(d,n)('3)He, d(t,n)(alpha), d(d,p)t, and d(('3)He,p)(alpha) fusion reactions are used to diagnose plasmas in the PLT and PDX tokamaks. An expression for the efficiency of proton detection is derived and confirmed experimentally. The time evolution of the ('3)He density indicates that a scoop limiter may pump ('3)He from the plasma faster than conventional limiters. The confinement of 1.0 MeV tritons and of 0.8 MeV ('3)He ions is studied by measuring the fraction of these fusion-produced ions that burn up in subsequent fusion reactions. In discharges with sawtooth activity and with B(,(phi)) > 2 T, the triton and ('3)He 'burnup' is consistent (within a factor of three) with predictions based on classical theories of ion confinement and slowing down. In discharges with large m = 2 or fishbone instabilities, the ('3)He burnup is less than classically predicted and, in PLT discharges at B(,(phi)) = 1.8 T, the triton burnup is over an order of magnitude smaller than predicted. Expressions for the energy spectrum of ions produced in beam-target fusion reactions are derived. Collimated measurements of the spectrum of 15 MeV protons produced by reactions between energetic ('3)He ions and relatively cold deuterons during fast wave minority heating indicate that the velocity distribution of fast ('3)He ions is peaked perpendicular to the tokamak magnetic field. The ion temperature profile and density of fast deuterons are measured with an array of collimated 3 MeV proton detectors. The fast ions produced by neutral beam injection and by launching lower hybrid waves are concentrated near the magnetic axis. Poloidal field measurements using 3 MeV protons also appear possible. In discharges in which the line radiation from central impurities does not decay, the plasma current profile is broader than in more typical discharges.

  5. Thomson scattering at general fusion

    NASA Astrophysics Data System (ADS)

    Young, W. C.; Parfeniuk, D.

    2016-11-01

    This paper provides an overview of the Thomson scattering diagnostic in use at General Fusion, including recent upgrades and upcoming plans. The plasma experiment under examination produces temperatures in the 50-500 eV range with density on the order of 1020 m-3. A four spatial point collection optics scheme has been implemented, with plans to expand to six spatial points. Recent changes to the optics of the laser beamline have reduced stray light. The system employs a frequency doubled Nd:YAG laser (532 nm), a grating spectrometer, and a photomultiplier array based detector.

  6. Laser fusion pulse shape controller

    DOEpatents

    Siebert, Larry D.

    1977-01-01

    An apparatus for controlling the pulse shape, i.e., the pulse duration and intensity pattern, of a pulsed laser system, and which is particularly well adapted for controlling the pellet ignition pulse in a laser-driven fusion reaction system. The apparatus comprises a laser generator for providing an optical control pulse of the shape desired, a pulsed laser triggered by the control pulse, and a plurality of optical Kerr-effect gates serially disposed at the output of the pulsed laser and selectively triggered by the control pulse to pass only a portion of the pulsed laser output generally corresponding in shape to the control pulse.

  7. Multisensor Fusion for Change Detection

    NASA Astrophysics Data System (ADS)

    Schenk, T.; Csatho, B.

    2005-12-01

    Combining sensors that record different properties of a 3-D scene leads to complementary and redundant information. If fused properly, a more robust and complete scene description becomes available. Moreover, fusion facilitates automatic procedures for object reconstruction and modeling. For example, aerial imaging sensors, hyperspectral scanning systems, and airborne laser scanning systems generate complementary data. We describe how data from these sensors can be fused for such diverse applications as mapping surface erosion and landslides, reconstructing urban scenes, monitoring urban land use and urban sprawl, and deriving velocities and surface changes of glaciers and ice sheets. An absolute prerequisite for successful fusion is a rigorous co-registration of the sensors involved. We establish a common 3-D reference frame by using sensor invariant features. Such features are caused by the same object space phenomena and are extracted in multiple steps from the individual sensors. After extracting, segmenting and grouping the features into more abstract entities, we discuss ways on how to automatically establish correspondences. This is followed by a brief description of rigorous mathematical models suitable to deal with linear and area features. In contrast to traditional, point-based registration methods, lineal and areal features lend themselves to a more robust and more accurate registration. More important, the chances to automate the registration process increases significantly. The result of the co-registration of the sensors is a unique transformation between the individual sensors and the object space. This makes spatial reasoning of extracted information more versatile; reasoning can be performed in sensor space or in 3-D space where domain knowledge about features and objects constrains reasoning processes, reduces the search space, and helps to make the problem well-posed. We demonstrate the feasibility of the proposed multisensor fusion approach

  8. A. Sakharov and Fusion Research

    NASA Astrophysics Data System (ADS)

    Coppi, Bruno

    2012-02-01

    In the landmark paper by Tamm and Sakharov [1], a controlled nuclear fusion reactor based on an axisymmetric magnetic confinement configuration whose principles remain valid to this day, was proposed. In the light of present understanding of plasma physics the virtues (e.g. that of considering the D-D reaction) and the shortcomings of this paper are pointed out. In fact, relatively recent results of theoretical plasma physics (e.g. discovery of the so called second stability region) and advances in high field magnet technology have made it possible to identify the parameters of meaningful experiments capable of exploring D-D and D-^3He burn conditions. At the same time an experimental program (IGNIR) has been undertaken through a (funded) collaboration between Italy and Russia to investigate D-T plasmas close to ignition conditions based on an advanced high field toroidal confinement configuration. A. Sakharov envisioned a bolder approach to fusion research than that advocated by some of his contemporaries. The time taken to design and decide to fabricate the first experiment capable of reaching ignition conditions is due in part to the problem of gaining an adequate understanding the expected physics of fusion burning plasmas. However, most of the relevant financial effort has gone in the pursuit of slow and indirect enterprises complying with the ``playing it safe'' tendencies of large organizations or motivated by the purpose to develop technologies or maintain a high level of expertise in plasma physics to the expected benefit of other kinds of endeavors. The creativity demonstrated by A. Sakharov in dealing with civil rights and disarmament issues is needed, while maintaining our concerns for energy and the environment on a global scale, to orient the funding for fusion research toward a direct and well based scientific effort on concepts for which a variety of developments can be envisioned. These can span from uncovering new physics relevant, for instance

  9. Introduction to Nuclear Fusion Power and the Design of Fusion Reactors. An Issue-Oriented Module.

    ERIC Educational Resources Information Center

    Fillo, J. A.

    This three-part module focuses on the principles of nuclear fusion and on the likely nature and components of a controlled-fusion power reactor. The physical conditions for a net energy release from fusion and two approaches (magnetic and inertial confinement) which are being developed to achieve this goal are described. Safety issues associated…

  10. Pharmacology on microfluidics: multimodal analysis for studying cell-cell interaction.

    PubMed

    Delamarche, Emmanuel; Tonna, Noemi; Lovchik, Robert D; Bianco, Fabio; Matteoli, Michela

    2013-10-01

    Understanding the mechanisms of cell-cell interaction is a key unanswered question in modern pharmacology, given crosstalk defects are at the basis of many pathologies. Microfluidics represents a valuable tool for analyzing intercellular communication mediated by transmission of soluble signals, as occurring for example between neurons and glial cells in neuroinflammation, or between tumor and surrounding cells in cancer. However, the use of microfluidics for studying cell behavior still encompasses many technical and biological challenges. In this review, a state of the art of successes, potentials and limitations of microfluidics applied to key biological questions in modern pharmacology is analyzed and commented.

  11. Adsorption characteristics of PCBs to resins, whole cells, cell and tissue components, and biomolecules

    SciTech Connect

    Kelley, R.L.; Conrad, J.; Akin, C.

    1990-01-01

    Polychlorinated biphenyls (PCBs) have been designated hazardous chemicals by the US Environmental Protection Agency (EPA). Although PCBs and PCB-containing oils have not been in use since 1977, they persist in the environment. They are known to be absorbed by various aquatic organisms, birds, and mammals. The nature of these affinities is not known. In this study, the Institute of Gas Technology (IGT) compared the adsorption phenomenon of PCBs on commercial resins, whole bacterial cells, cell and tissue component, and various biomolecules. Adsorption and desorption of PCBs to biomolecules and resins in both aqueous and nonaqueous conditions were examined. 9 refs., 7 figs., 2 tabs.

  12. A recombinant mimetics of the HIV-1 gp41 prehairpin fusion intermediate fused with human IgG Fc fragment elicits neutralizing antibody response in the vaccinated mice

    SciTech Connect

    Qi, Zhi; Pan, Chungen; Lu, Hong; Shui, Yuan; Li, Lin; Li, Xiaojuan; Xu, Xueqing; Liu, Shuwen; Jiang, Shibo

    2010-07-30

    Research highlights: {yields} One recombinant mimetics of gp41 prehairpin fusion intermediate (PFI) consisting of gp41 N46 sequence, foldon and IgG Fc, designated N46FdFc, was expressed. {yields} N46FdFc-induced antibodies in mice that neutralized HIV-1 infection, inhibited PIE7 binding to PFI, blocked gp41 six-helix bundle formation, and suppressed HIV-1 mediated cell-cell fusion. {yields} These findings provide an important clue for developing recombinant gp41 PFI mimetics-based HIV vaccines. -- Abstract: HIV-1 gp41 prehairpin fusion intermediate (PFI) composed of three N-terminal heptad repeats (NHR) plays a crucial role in viral fusion and entry and represents an attractive target for anti-HIV therapeutics (e.g., enfuvirtide) and vaccines. In present study, we constructed and expressed two recombinant gp41 PFI mimetics, designated N46Fd and N46FdFc. N46Fd consists of N46 (residues 536-581) in gp41 NHR and foldon (Fd), a trimerization motif. N46FdFc is composed of N46Fd fused with human IgG Fc fragment as an immunoenhancer. We immunized mice with N46 peptide, N46Fd and N46FdFc, respectively, and found that only N46FdFc elicited neutralizing antibody response in mice against infection by HIV-1 strains IIIB (clade B, X4), 92US657 (clade B, R5), and 94UG103 (clade A, X4R5). Anti-N46FdFc antibodies inhibited PIE7 binding to PFI, blocked gp41 six-helix bundle formation, and suppressed HIV-1 mediated cell-cell fusion. These findings provide an important clue for developing recombinant gp41 PFI mimetics-based HIV vaccines.

  13. Magnetized Target Fusion in Advanced Propulsion Research

    NASA Technical Reports Server (NTRS)

    Cylar, Rashad

    2003-01-01

    The Magnetized Target Fusion (MTF) Propulsion lab at NASA Marshall Space Flight Center in Huntsville, Alabama has a program in place that has adopted to attempt to create a faster, lower cost and more reliable deep space transportation system. In this deep space travel the physics and development of high velocity plasma jets must be understood. The MTF Propulsion lab is also in attempt to open up the solar system for human exploration and commercial use. Fusion, as compared to fission, is just the opposite. Fusion involves the light atomic nuclei combination to produce denser nuclei. In the process, the energy is created by destroying the mass according to the distinguished equation: E = mc2 . Fusion energy development is being pursued worldwide as a very sustainable form of energy that is environmentally friendly. For the purposes of space exploration fusion reactions considered include the isotopes of hydrogen-deuterium (D2) and tritium (T3). Nuclei have an electrostatic repulsion between them and in order for the nuclei to fuse this repulsion must be overcome. One technique to bypass repulsion is to heat the nuclei to very high temperatures. The temperatures vary according to the type of reactions. For D-D reactions, one billion degrees Celsius is required, and for D-T reactions, one hundred million degrees is sufficient. There has to be energy input for useful output to be obtained form the fusion To make fusion propulsion practical, the mass, the volume, and the cost of the equipment to produce the reactions (generally called the reactor) need to be reduced by an order of magnitude or two from the state-of-the-art fusion machines. Innovations in fusion schemes are therefore required, especially for obtaining thrust for propulsive applications. Magnetized target fusion (MTF) is one of the innovative fusion concepts that have emerged over the last several years. MSFC is working with Los Alamos National Laboratory and other research groups in studying the

  14. Ch. 37, Inertial Fusion Energy Technology

    SciTech Connect

    Moses, E

    2010-06-09

    Nuclear fission, nuclear fusion, and renewable energy (including biofuels) are the only energy sources capable of satisfying the Earth's need for power for the next century and beyond without the negative environmental impacts of fossil fuels. Substantially increasing the use of nuclear fission and renewable energy now could help reduce dependency on fossil fuels, but nuclear fusion has the potential of becoming the ultimate base-load energy source. Fusion is an attractive fuel source because it is virtually inexhaustible, widely available, and lacks proliferation concerns. It also has a greatly reduced waste impact, and no danger of runaway reactions or meltdowns. The substantial environmental, commercial, and security benefits of fusion continue to motivate the research needed to make fusion power a reality. Replicating the fusion reactions that power the sun and stars to meet Earth's energy needs has been a long-sought scientific and engineering challenge. In fact, this technological challenge is arguably the most difficult ever undertaken. Even after roughly 60 years of worldwide research, much more remains to be learned. the magnitude of the task has caused some to declare that fusion is 20 years away, and always will be. This glib criticism ignores the enormous progress that has occurred during those decades, progress inboth scientific understanding and essential technologies that has enabled experiments producing significant amounts of fusion energy. For example, more than 15 megawatts of fusion power was produced in a pulse of about half a second. Practical fusion power plants will need to produce higher powers averaged over much longer periods of time. In addition, the most efficient experiments to date have required using about 50% more energy than the resulting fusion reaction generated. That is, there was no net energy gain, which is essential if fusion energy is to be a viable source of electricity. The simplest fusion fuels, the heavy isotopes of

  15. Magnetized Target Fusion Driven by Plasma Liners

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Kirkpatrick, Ronald C.; Knapp, Charles E.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Magnetized target fusion is an emerging, relatively unexplored approach to fusion for electrical power and propulsion application. The physical principles of the concept are founded upon both inertial confinement fusion (ICF) and magnetic confinement fusion (MCF). It attempts to combine the favorable attributes of both these orthogonal approaches to fusion, but at the same time, avoiding the extreme technical challenges of both by exploiting a fusion regime intermediate between them. It uses a material liner to compress, heat and contain the fusion reacting plasma (the target plasma) mentally. By doing so, the fusion burn could be made to occur at plasma densities as high as six orders of magnitude higher than conventional MCF such as tokamak, thus leading to an approximately three orders of magnitude reduction in the plasma energy required for ignition. It also uses a transient magnetic field, compressed to extremely high intensity (100's T to 1000T) in the target plasma, to slow down the heat transport to the liner and to increase the energy deposition of charged-particle fusion products. This has several compounding beneficial effects. It leads to longer energy confinement time compared with conventional ICF without magnetized target, and thus permits the use of much lower plasma density to produce reasonable burn-up fraction. The compounding effects of lower plasma density and the magneto-insulation of the target lead to greatly reduced compressional heating power on the target. The increased energy deposition rate of charged-particle fusion products also helps to lower the energy threshold required for ignition and increasing the burn-up fraction. The reduction in ignition energy and the compressional power compound to lead to reduced system size, mass and R&D cost. It is a fusion approach that has an affordable R&D pathway, and appears attractive for propulsion application in the nearer term.

  16. Experiments in predictive sensor fusion

    NASA Astrophysics Data System (ADS)

    Keller, James M.; Auephanwiriyakul, Sansanee; Gader, Paul D.

    2001-10-01

    Data fusion is a process of combining evidence from different information sources in order to make a better judgement. However, multiple sources can provide complementary information that can be used to increase the performance in detection and recognition. There are many frameworks within which to combine these pieces into a more meaningful answer. However, new information added might be redundant or even conflicting with the existing information. These questions arise: can we predict the value added by fusing their outputs together, if we know the general characteristics of a set of sensors. Can we specify the needed characteristics of a new sensor/algorithm to add to an existing suite to gain a desired improvement performance. The characteristic of a new sensor can be in any forms, e.g., the ratio of a target's signal to the clutter's signal, the position resolution etc. In this paper, we consider these questions in the context of fuzzy set theory and in particular, a soft decision level fusion scheme we developed for land mine detection scenarios. Here, we primarily consider the ratio of a target's signal. We develop a tool to estimate a final d-metric when the information form several sensor is fused through the linguistic Choquet fuzzy integral. We utilize this tool in the examination of the performance of d-metrics in a simulation environment. The approach is demonstrated for data obtained from an Advanced Technology Demonstration in vehicle-based mine detection.

  17. Large excimer lasers for fusion

    SciTech Connect

    Jensen, R.J.

    1986-01-01

    Important goals in DOE and DOD programs require multimegajoule laser pulses. For inertial confinement fusion there is also a requirement to deliver the pulse in about 25 nsec with a very particular power vs time profile - all at high overall efficiency and low cost per joule. After exhaustive consideration of various alternatives, our studies have shown that the most cost effective approach to energy scaling is to increase the size of the final amplifiers up to the 200 to 300 kJ level. This conclusion derives largely from the fact that, at a given complexity, costs increase slowly with increasing part size while output energy should increase dramatically. Extrapolations to low cost by drastic cuts in the unit cost of smaller devices through mass production are considered highly risky. At a minimum the requirement to provide, space, optics and mounts for such systems will remain expensive. In recent years there have been dramatic advances in scaling. The Los Alamos LAM has produced over 10 kJ in a single 1/2 nsec pulse. In this paper we explore the issues involved in scaling to higher energy while still maintaining high efficiencies. In the remainder of this paper we will discuss KrF laser scaling for the fusion mission. We will omit most of the discussion of the laser system design, but address only KrF amplifiers.

  18. Role of the microtubule-targeting drug vinflunine on cell-cell adhesions in bladder epithelial tumour cells

    PubMed Central

    2014-01-01

    Background Vinflunine (VFL) is a microtubule-targeting drug that suppresses microtubule dynamics, showing anti-metastatic properties both in vitro and in living cancer cells. An increasing body of evidence underlines the influence of the microtubules dynamics on the cadherin-dependent cell-cell adhesions. E-cadherin is a marker of epithelial-to-mesenchymal transition (EMT) and a tumour suppressor; its reduced levels in carcinoma are associated with poor prognosis. In this report, we investigate the role of VFL on cell-cell adhesions in bladder epithelial tumour cells. Methods Human bladder epithelial tumour cell lines HT1376, 5637, SW780, T24 and UMUC3 were used to analyse cadherin-dependent cell-cell adhesions under VFL treatment. VFL effect on growth inhibition was measured by using a MTT colorimetric cell viability assay. Western blot, immunofluorescence and transmission electron microscopy analyses were performed to assess the roles of VFL effect on cell-cell adhesions, epithelial-to-mesenchymal markers and apoptosis. The role of the proteasome in controlling cell-cell adhesion was studied using the proteasome inhibitor MG132. Results We show that VFL induces cell death in bladder cancer cells and activates epithelial differentiation of the remaining living cells, leading to an increase of E-cadherin-dependent cell-cell adhesion and a reduction of mesenchymal markers, such as N-cadherin or vimentin. Moreover, while E-cadherin is increased, the levels of Hakai, an E3 ubiquitin-ligase for E-cadherin, were significantly reduced in presence of VFL. In 5637, this reduction on Hakai expression was blocked by MG132 proteasome inhibitor, indicating that the proteasome pathway could be one of the molecular mechanisms involved in its degradation. Conclusions Our findings underscore a critical function for VFL in cell-cell adhesions of epithelial bladder tumour cells, suggesting a novel molecular mechanism by which VFL may impact upon EMT and metastasis. PMID:25012153

  19. Determination of apical membrane polarity in mammary epithelial cell cultures: The role of cell-cell, cell-substratum, and membrane-cytoskeleton interactions

    SciTech Connect

    Parry, G.; Beck, J.C.; Moss, L.; Bartley, J. ); Ojakian, G.K. )

    1990-06-01

    The membrane glycoprotein, PAS-O, is a major differentiation antigen on mammary epithelial cells and is located exclusively in the apical domain of the plasma membrane. The authors have used 734B cultured human mammary carcinoma cells as a model system to study the role of tight junctions, cell-substratum contacts, and submembranous cytoskeletal elements in restricting PAS-O to the apical membrane. Immunofluorescence and immunoelectronmicroscopy experiments demonstrated that while tight junctions demarcate PAS-O distribution in confluent cultures, apical polarity could be established at low culture densities when cells could not form tight junctions with neighboring cells. They suggest, then, that interactions between vitronectin and its receptor, are responsible for establishment of membrane domains in the absence of tight junctions. The role of cytoskeletal elements in restricting PAS-O distribution was examined by treating cultures with cytochalasin D, colchicine, or acrylamide. Cytochalasin D led to a redistribution of PAS0O while colchicine and acrylamide did not. They hypothesize that PAS-O is restricted to the apical membrane by interactions with a microfilament network and that the cytoskeletal organization is dependent upon cell-cell and cell-substratum interactions.

  20. Molecular basis of sidekick-mediated cell-cell adhesion and specificity

    PubMed Central

    Goodman, Kerry M; Yamagata, Masahito; Jin, Xiangshu; Mannepalli, Seetha; Katsamba, Phinikoula S; Ahlsén, Göran; Sergeeva, Alina P; Honig, Barry; Sanes, Joshua R; Shapiro, Lawrence

    2016-01-01

    Sidekick (Sdk) 1 and 2 are related immunoglobulin superfamily cell adhesion proteins required for appropriate synaptic connections between specific subtypes of retinal neurons. Sdks mediate cell-cell adhesion with homophilic specificity that underlies their neuronal targeting function. Here we report crystal structures of Sdk1 and Sdk2 ectodomain regions, revealing similar homodimers mediated by the four N-terminal immunoglobulin domains (Ig1–4), arranged in a horseshoe conformation. These Ig1–4 horseshoes interact in a novel back-to-back orientation in both homodimers through Ig1:Ig2, Ig1:Ig1 and Ig3:Ig4 interactions. Structure-guided mutagenesis results show that this canonical dimer is required for both Sdk-mediated cell aggregation (via trans interactions) and Sdk clustering in isolated cells (via cis interactions). Sdk1/Sdk2 recognition specificity is encoded across Ig1–4, with Ig1–2 conferring the majority of binding affinity and differential specificity. We suggest that competition between cis and trans interactions provides a novel mechanism to sharpen the specificity of cell-cell interactions. DOI: http://dx.doi.org/10.7554/eLife.19058.001 PMID:27644106

  1. Short-Lived, Transitory Cell-Cell Interactions Foster Migration-Dependent Aggregation

    PubMed Central

    Pope, Melissa D.; Asthagiri, Anand R.

    2012-01-01

    During embryonic development, motile cells aggregate into cohesive groups, which give rise to tissues and organs. The role of cell migration in regulating aggregation is unclear. The current paradigm for aggregation is based on an equilibrium model of differential cell adhesivity to neighboring cells versus the underlying substratum. In many biological contexts, however, dynamics is critical. Here, we provide evidence that multicellular aggregation dynamics involves both local adhesive interactions and transport by cell migration. Using time-lapse video microscopy, we quantified the duration of cell-cell contacts among migrating cells that collided and adhered to another cell. This lifetime of cell-cell interactions exhibited a monotonic decreasing dependence on substratum adhesivity. Parallel quantitative measurements of cell migration speed revealed that across the tested range of adhesive substrata, the mean time needed for cells to migrate and encounter another cell was greater than the mean adhesion lifetime, suggesting that aggregation dynamics may depend on cell motility instead of the local differential adhesivity of cells. Consistent with this hypothesis, aggregate size exhibited a biphasic dependence on substratum adhesivity, matching the trend we observed for cell migration speed. Our findings suggest a new role for cell motility, alongside differential adhesion, in regulating developmental aggregation events and motivate new design principles for tuning aggregation dynamics in tissue engineering applications. PMID:22912835

  2. Microfabrication of a tunable collagen/alginate-chitosan hydrogel membrane for controlling cell-cell interactions.

    PubMed

    Song, Yizhe; Zhang, Demeng; Lv, Yan; Guo, Xin; Lou, Ruyun; Wang, Shujun; Wang, Xiuli; Yu, Weiting; Ma, Xiaojun

    2016-11-20

    Indirect cell contact co-culture system is increasingly becoming more attractable owing to their advantages of easy cell separation and desirable outcomes for cell-cell interactions. However, how to precisely control the spatial position of cells within multicellular co-cultures is still experimentally challenging due to the incapability of the conventional methods in vitro. In the present study, a tunable collagen/alginate-chitosan (Col/Alg-Chi) membrane was established, which was capable of controlling intercellular distance between the neighboring cells at a level of micrometer resolution. It was showed that intercellular distance between the hepatocytes and the fibroblasts exerted significant influence on hepatic function in vitro. In particular, maintenance of the functionality of primary hepatocytes requires direct contact between the hepatocytes and their supportive stromal cells, and their effective contact distance is within 30μm. This technical platform would potentially enable investigations of dynamic cell-cell interaction in a multitude of applications including organogenesis, development or even neoplastic transformation. PMID:27561537

  3. Direct cell-cell contact with the vascular niche maintains quiescent neural stem cells

    PubMed Central

    Ottone, Cristina; Krusche, Benjamin; Whitby, Ariadne; Clements, Melanie; Quadrato, Giorgia; Pitulescu, Mara E.; Adams, Ralf H.; Parrinello, Simona

    2014-01-01

    The vasculature is a prominent component of the subventricular zone neural stem cell niche. Although quiescent neural stem cells physically contact blood vessels at specialised endfeet, the significance of this interaction is not understood. In contrast, it is well established that vasculature-secreted soluble factors promote lineage progression of committed progenitors. Here we specifically investigated the role of cell-cell contact-dependent signalling in the vascular niche. Unexpectedly, we find that direct cell-cell interactions with endothelial cells enforces quiescence and promotes stem cell identity. Mechanistically, endothelial ephrinB2 and Jagged1 mediate these effects by suppressing cell-cycle entry downstream of mitogens and inducing stemness genes to jointly inhibit differentiation. In vivo, endothelial-specific ablation of either of the genes which encode these proteins, Efnb2 and Jag1 respectively, aberrantly activates quiescent stem cells, resulting in depletion. Thus, we identify the vasculature as a critical niche compartment for stem cell maintenance, furthering our understanding of how anchorage to the niche maintains stem cells within a pro-differentiative microenvironment. PMID:25283993

  4. Cell-cell contact regulates gene expression in CDK4-transformed mouse podocytes

    PubMed Central

    Sakairi, Toru; Abe, Yoshifusa; Jat, Parmijit S.

    2010-01-01

    We transformed mouse podocytes by ectopic expression of cyclin-dependent kinase 4 (CDK4). Compared with podocytes transformed with a thermo-sensitive SV40 large T antigen mutant tsA58U19 (tsT podocytes), podocytes transformed with CDK4 (CDK4 podocytes) exhibited significantly higher expression of nephrin mRNA. Synaptopodin mRNA expression was significantly lower in CDK4 podocytes and in tsT podocytes under growth-permissive conditions (33°C) compared with tsT podocytes under growth-restricted conditions (37°C), which suggests a role for cell cycle arrest in synaptopodin mRNA expression. Confluent CDK4 podocytes showed significantly higher mRNA expression levels for nephrin, synaptopodin, Wilms tumor 1, podocalyxin, and P-cadherin compared with subconfluent cultures. We carried out experiments to clarify roles of various factors in the confluent podocyte cultures; our findings indicate that cell-cell contact promotes expression of five podocyte marker genes studied, that cellular quiescence increases synaptopodin and podocalyxin mRNA expression, and that soluble factors play a role in nephrin mRNA expression. Our findings suggest that CDK4 podocytes are useful tools to study podocyte biology. Furthermore, the role of cell-cell contact in podocyte gene expression may have relevance for podocyte function in vivo. PMID:20668098

  5. DICER Regulates the Formation and Maintenance of Cell-Cell Junctions in the Mouse Seminiferous Epithelium.

    PubMed

    Korhonen, Hanna Maria; Yadav, Ram Prakash; Da Ros, Matteo; Chalmel, Frédéric; Zimmermann, Céline; Toppari, Jorma; Nef, Serge; Kotaja, Noora

    2015-12-01

    The endonuclease DICER that processes micro-RNAs and small interfering RNAs is essential for normal spermatogenesis and male fertility. We previously showed that the deletion of Dicer1 gene in postnatal spermatogonia in mice using Ngn3 promoter-driven Cre expression caused severe defects in the morphogenesis of haploid spermatid to mature spermatozoon, including problems in cell polarization and nuclear elongation. In this study, we further analyzed the same mouse model and revealed that absence of functional DICER in differentiating male germ cells induces disorganization of the cell-cell junctions in the seminiferous epithelium. We detected discontinuous and irregular apical ectoplasmic specializations between elongating spermatids and Sertoli cells. The defective anchoring of spermatids to Sertoli cells caused a premature release of spermatids into the lumen. Our findings may help also explain the abnormal elongation process of remaining spermatids because these junctions and the correct positioning of germ cells in the epithelium are critically important for the progression of spermiogenesis. Interestingly, cell adhesion-related genes were generally upregulated in Dicer1 knockout germ cells. Claudin 5 ( Cldn5 ) was among the most upregulated genes and we show that the polarized localization of CLAUDIN5 in the apical ectoplasmic specializations was lost in Dicer1 knockout spermatids. Our results suggest that DICER-dependent pathways control the formation and organization of cell-cell junctions in the seminiferous epithelium via the regulation of cell adhesion-related genes. PMID:26510868

  6. Heart of glass anchors Rasip1 at endothelial cell-cell junctions to support vascular integrity

    PubMed Central

    de Kreuk, Bart-Jan; Gingras, Alexandre R; Knight, James DR; Liu, Jian J; Gingras, Anne-Claude; Ginsberg, Mark H

    2016-01-01

    Heart of Glass (HEG1), a transmembrane receptor, and Rasip1, an endothelial-specific Rap1-binding protein, are both essential for cardiovascular development. Here we performed a proteomic screen for novel HEG1 interactors and report that HEG1 binds directly to Rasip1. Rasip1 localizes to forming endothelial cell (EC) cell-cell junctions and silencing HEG1 prevents this localization. Conversely, mitochondria-targeted HEG1 relocalizes Rasip1 to mitochondria in cells. The Rasip1-binding site in HEG1 contains a 9 residue sequence, deletion of which abrogates HEG1’s ability to recruit Rasip1. HEG1 binds to a central region of Rasip1 and deletion of this domain eliminates Rasip1’s ability to bind HEG1, to translocate to EC junctions, to inhibit ROCK activity, and to maintain EC junctional integrity. These studies establish that the binding of HEG1 to Rasip1 mediates Rap1-dependent recruitment of Rasip1 to and stabilization of EC cell-cell junctions. DOI: http://dx.doi.org/10.7554/eLife.11394.001 PMID:26780829

  7. Self-Organizing Actomyosin Patterns on the Cell Cortex at Epithelial Cell-Cell Junctions

    PubMed Central

    Moore, Thomas; Wu, Selwin K.; Michael, Magdalene; Yap, Alpha S.; Gomez, Guillermo A.; Neufeld, Zoltan

    2014-01-01

    The behavior of actomyosin critically determines morphologically distinct patterns of contractility found at the interface between adherent cells. One such pattern is found at the apical region (zonula adherens) of cell-cell junctions in epithelia, where clusters of the adhesion molecule E-cadherin concentrate in a static pattern. Meanwhile, E-cadherin clusters throughout lateral cell-cell contacts display dynamic movements in the plane of the junctions. To gain insight into the principles that determine the nature and organization of these dynamic structures, we analyze this behavior by modeling the 2D actomyosin cell cortex as an active fluid medium. The numerical simulations show that the stability of the actin filaments influences the spatial structure and dynamics of the system. We find that in addition to static Turing-type patterns, persistent dynamic behavior occurs in a wide range of parameters. In the 2D model, mechanical stress-dependent actin breakdown is shown to produce a continuously changing network of actin bridges, whereas with a constant breakdown rate, more isolated clusters of actomyosin tend to form. The model qualitatively reproduces the dynamic and stable patterns experimentally observed at the junctions between epithelial cells. PMID:25468344

  8. Self-organizing actomyosin patterns on the cell cortex at epithelial cell-cell junctions.

    PubMed

    Moore, Thomas; Wu, Selwin K; Michael, Magdalene; Yap, Alpha S; Gomez, Guillermo A; Neufeld, Zoltan

    2014-12-01

    The behavior of actomyosin critically determines morphologically distinct patterns of contractility found at the interface between adherent cells. One such pattern is found at the apical region (zonula adherens) of cell-cell junctions in epithelia, where clusters of the adhesion molecule E-cadherin concentrate in a static pattern. Meanwhile, E-cadherin clusters throughout lateral cell-cell contacts display dynamic movements in the plane of the junctions. To gain insight into the principles that determine the nature and organization of these dynamic structures, we analyze this behavior by modeling the 2D actomyosin cell cortex as an active fluid medium. The numerical simulations show that the stability of the actin filaments influences the spatial structure and dynamics of the system. We find that in addition to static Turing-type patterns, persistent dynamic behavior occurs in a wide range of parameters. In the 2D model, mechanical stress-dependent actin breakdown is shown to produce a continuously changing network of actin bridges, whereas with a constant breakdown rate, more isolated clusters of actomyosin tend to form. The model qualitatively reproduces the dynamic and stable patterns experimentally observed at the junctions between epithelial cells. PMID:25468344

  9. Contact inhibition of locomotion determines cell-cell and cell-substrate forces in tissues.

    PubMed

    Zimmermann, Juliane; Camley, Brian A; Rappel, Wouter-Jan; Levine, Herbert

    2016-03-01

    Cells organized in tissues exert forces on their neighbors and their environment. Those cellular forces determine tissue homeostasis as well as reorganization during embryonic development and wound healing. To understand how cellular forces are generated and how they can influence the tissue state, we develop a particle-based simulation model for adhesive cell clusters and monolayers. Cells are contractile, exert forces on their substrate and on each other, and interact through contact inhibition of locomotion (CIL), meaning that cell-cell contacts suppress force transduction to the substrate and propulsion forces align away from neighbors. Our model captures the traction force patterns of small clusters of nonmotile cells and larger sheets of motile Madin-Darby canine kidney (MDCK) cells. In agreement with observations in a spreading MDCK colony, the cell density in the center increases as cells divide and the tissue grows. A feedback between cell density, CIL, and cell-cell adhesion gives rise to a linear relationship between cell density and intercellular tensile stress and forces the tissue into a nonmotile state characterized by a broad distribution of traction forces. Our model also captures the experimentally observed tissue flow around circular obstacles, and CIL accounts for traction forces at the edge. PMID:26903658

  10. Computer Modeling of a Fusion Plasma

    SciTech Connect

    Cohen, B I

    2000-12-15

    Progress in the study of plasma physics and controlled fusion has been profoundly influenced by dramatic increases in computing capability. Computational plasma physics has become an equal partner with experiment and traditional theory. This presentation illustrates some of the progress in computer modeling of plasma physics and controlled fusion.

  11. Application of polarized nuclei to fusion

    SciTech Connect

    Kulsrud, R.M.

    1987-07-01

    It is shown that the d-t fusion reaction can be modified by polarizing nuclear spins. The ways in which this improves reactor performance are mentioned and the feasibility of the process of spin polarization for magnetic fusion is discussed. 18 refs.

  12. Plasma physics and controlled thermonuclear fusion

    SciTech Connect

    Krikorian, R. )

    1989-01-01

    This proceedings contains papers on plasma physics and controlled thermonuclear fusion. Included are the following topics: Plasma focus and Z-pinch, Review of mirror fusion research, Progress in studies of x-ray and ion-beam emission from plasma focus facilities.

  13. Plasmas are Hot and Fusion is Cool

    SciTech Connect

    2011-01-01

    Plasmas are Hot and Fusion is Cold. The DOE Princeton Plasma Physics Laboratory (PPPL) collaborates to develop fusion as a safe, clean and abundant energy source for the future. This video discusses PPPL's research and development on plasma, the fourth state of matter.

  14. Method of controlling fusion reaction rates

    DOEpatents

    Kulsrud, Russell M.; Furth, Harold P.; Valeo, Ernest J.; Goldhaber, Maurice

    1988-01-01

    A method of controlling the reaction rates of the fuel atoms in a fusion reactor comprises the step of polarizing the nuclei of the fuel atoms in a particular direction relative to the plasma confining magnetic field. Fusion reaction rates can be increased or decreased, and the direction of emission of the reaction products can be controlled, depending on the choice of polarization direction.

  15. Method of controlling fusion reaction rates

    DOEpatents

    Kulsrud, Russell M.; Furth, Harold P.; Valeo, Ernest J.; Goldhaber, Maurice

    1988-03-01

    A method of controlling the reaction rates of the fuel atoms in a fusion reactor comprises the step of polarizing the nuclei of the fuel atoms in a particular direction relative to the plasma confining magnetic field. Fusion reaction rates can be increased or decreased, and the direction of emission of the reaction products can be controlled, depending on the choice of polarization direction.

  16. Mass Producing Targets for Nuclear Fusion

    NASA Technical Reports Server (NTRS)

    Wang, T. G.; Elleman, D. D.; Kendall, J. M.

    1983-01-01

    Metal-encapsulating technique advances prospects of controlling nuclear fusion. Prefilled fusion targets form at nozzle as molten metal such as tin flows through outer channel and pressurized deuterium/tritium gas flows through inner channel. Molten metal completely encloses gas charge as it drops off nozzle.

  17. Controlled Nuclear Fusion: Status and Outlook

    ERIC Educational Resources Information Center

    Rose, David J.

    1971-01-01

    Presents the history, current concerns and potential developments of nuclear fusion as a major energy source. Controlled fusion research is summarized, technological feasibility is discussed and environmental factors are examined. Relationships of alternative energy sources as well as energy utilization are considered. (JM)

  18. Fusion Propulsion Z-Pinch Engine Concept

    NASA Technical Reports Server (NTRS)

    Miernik, J.; Statham, G.; Fabisinski, L.; Maples, C. D.; Adams, R.; Polsgrove, T.; Fincher, S.; Cassibry, J.; Cortez, R.; Turner, M.; Percy, T.

    2011-01-01

    Fusion-based nuclear propulsion has the potential to enable fast interplanetary transportation. Due to the great distances between the planets of our solar system and the harmful radiation environment of interplanetary space, high specific impulse (Isp) propulsion in vehicles with high payload mass fractions must be developed to provide practical and safe vehicles for human spaceflight missions. The Z-Pinch dense plasma focus method is a Magneto-Inertial Fusion (MIF) approach that may potentially lead to a small, low cost fusion reactor/engine assembly1. Recent advancements in experimental and theoretical understanding of this concept suggest favorable scaling of fusion power output yield 2. The magnetic field resulting from the large current compresses the plasma to fusion conditions, and this process can be pulsed over short timescales (10(exp -6 sec). This type of plasma formation is widely used in the field of Nuclear Weapons Effects testing in the defense industry, as well as in fusion energy research. A Decade Module 2 (DM2), approx.500 KJ pulsed-power is coming to the RSA Aerophysics Lab managed by UAHuntsville in January, 2012. A Z-Pinch propulsion concept was designed for a vehicle based on a previous fusion vehicle study called "Human Outer Planet Exploration" (HOPE), which used Magnetized Target Fusion (MTF) 3 propulsion. The reference mission is the transport of crew and cargo to Mars and back, with a reusable vehicle.

  19. Socio-economic Aspects of Fusion

    SciTech Connect

    J.A. Schmidt

    2004-10-21

    Fusion power systems, if developed and deployed, would have many attractive features including power production not dependant on weather or solar conditions, flexible siting, and minimal carbon dioxide production. In this paper, we quantify the benefit of these features. In addition, fusion deployment scenarios are developed for the last half of this century and these scenarios are analyzed for resource requirements and waste production.

  20. The social evolution of somatic fusion.

    PubMed

    Aanen, Duur K; Debets, Alfons J M; de Visser, J Arjan G M; Hoekstra, Rolf F

    2008-11-01

    The widespread potential for somatic fusion among different conspecific multicellular individuals suggests that such fusion is adaptive. However, because recognition of non-kin (allorecognition) usually leads to a rejection response, successful somatic fusion is limited to close kin. This is consistent with kin-selection theory, which predicts that the potential cost of fusion and the potential for somatic parasitism decrease with increasing relatedness. Paradoxically, however, Crozier found that, in the short term, positive-frequency-dependent selection eliminates the required genetic polymorphism at allorecognition loci. The 'Crozier paradox' may be solved if allorecognition is based on extrinsically balanced polymorphisms, for example at immune loci. Alternatively, the assumption of most models that self fusion is mutually beneficial is wrong. If fusion is on average harmful, selection will promote unconditional rejection. However, we propose that fusion within individuals is beneficial, selecting for the ability to fuse, but fusion between individuals on average costly, selecting for non-self recognition (rather than non-kin recognition). We discuss experimental data on fungi that are consistent with this hypothesis. PMID:18937373

  1. Fusion breeder: its potential role and prospects

    SciTech Connect

    Lee, J.D.

    1981-01-01

    The fusion breeder is a concept that utilizes 14 MeV neutrons from D + T ..-->.. n(14.1 MeV) + ..cap alpha..(3.5 MeV) fusion reactions to produce more fuel than the tritium (T) needed to sustain the fusion process. This excess fuel production capacity is used to produce fissile material (Pu-239 or U-233) for subsequent use in fission reactors. We are concentrating on a class of blankets we call fission suppressed. The blanket is the region surrounding the fusion plasma in which fusion neutrons interact to produce fuel and heat. The fission-suppressed blanket uses non-fission reactions (mainly (n,2n) or (n,n't)) to generate excess neutrons for the production of net fuel. This is in contrast to the fast fission class of blankets which use (n,fiss) reactions to generate excess neutrons. Fusion reactors with fast fission blankets are commony known as fusion-fission hybrids because they combine fusion and fission in the same device.

  2. [La(3+)-induced fusion of plant protoplasts].

    PubMed

    Sheremet'ev, Iu A; Smirnova, D V; Sheremet'eva, A V

    2009-01-01

    The effect of La(3+) on the fusion of plant protoplasts has been studied. It was shown that La(3+) induced the aggregation of plant protoplasts. The incubation of a suspension of aggregated protoplasts at 42 degrees C for 30 min resulted in their fusion.

  3. National Ignition Facility for Inertial Confinement Fusion

    SciTech Connect

    Paisner, J.A.; Murray, J.R.

    1997-10-08

    The National Ignition Facility for inertial confinement fusion will contain a 1.8 MJ, 500 TW frequency-tripled neodymium glass laser system that will be used to explore fusion ignition and other problems in the physics of high temperature and density. We describe the facility briefly. The NIF is scheduled to be completed in 2003.

  4. Fluidized wall for protecting fusion chamber walls

    SciTech Connect

    Maniscalco, J.A.; Meier, W.R.

    1982-08-17

    Apparatus for protecting the inner wall of a fusion chamber from microexplosion debris, x-rays, neutrons, etc. Produced by deuterium-tritium (DT) targets imploded within the fusion chamber. The apparatus utilizes a fluidized wall similar to a waterfall comprising liquid lithium or solid pellets of lithiumceramic, the waterfall forming a blanket to prevent damage of the structural materials of the chamber.

  5. Fusion research: the past is prologue

    SciTech Connect

    Post, R F

    1998-10-14

    At this juncture fusion research can be viewed as being at a turning point, a time to review its past and to imagine its future. Today, almost 50 years since the first serious attempts to address the daunting problem of achieving controlled fusion, we have both an opportunity and a challenge. Some predictions place fusion research today at a point midway between its first inception and its eventual maturation - in the middle of the 21st century - when fusion would become a major source of energy. Our opportunity therefore is to assess what we have learned from 50 years of hard work and use that knowledge as a starting point for new and better approaches to solving the fusion problem. Our challenge is to prove the "50 more years" prophesy wrong, by finding ways to shorten the time when fusion power becomes a reality. The thesis will be advanced that in the magnetic confinement approach to fusion open-ended magnetic confinement geometries offer much in responding to the challenge. A major advantage of open systems is that, owing to their theoretically and experimentally demonstrated ability to suppress plasma instabilities of both the MHD and the high-frequency wave-particle variety, the confinement becomes predictable from "classical," i.e., Fokker-Planck-type analysis. In a time of straitened budgetary circumstances for magnetic fusion research now being faced in the United States, the theoretical tractability of mirror-based systems is a substantial asset. In pursuing this avenue it is also necessary to keep an open mind as to the forms that mirror-based fusion power plants might take. For example, one can look to the high-energy physics community for a possible model: This community has shown the feasibility of constructing large and complex particle accelerators using superconducting magnets, vacuum chambers and complicated particle-handling technology, housed in underground tunnels that are 20 or more kilometers long. In the paper examples of mirror

  6. The fusion diagnostic gamma experiment: A high-bandwidth fusion diagnostic of the National Ignition Facility

    SciTech Connect

    Moran, M.J.

    1999-01-01

    Diagnostics for the National Ignition Facility/inertial confinement fusion program must include good characterization of the fusion source. Ideally, diagnostics would measure the spatially resolved history of the fusion reaction rate and temperature. Existing diagnostics can satisfy this goal only partially. One class of new techniques that could play a major role in high-yield diagnostics is measurements based on fusion {gamma} rays. The fusion diagnostic gamma experiment can perform energy-resolved measurements of (D,T) fusion reaction rates. This diagnostic is based on the 16.7 MeV {gamma} rays that are produced by (D,T) fusion. The {gamma} rays are free of spectral dispersion and can be detected (via Compton recoil electrons) with a high bandwidth Cherenkov detector. A simple magnetic monochromator selects signals from the 16.7 MeV {gamma} rays and reduces background signals from nonfusion {gamma} rays. {copyright} {ital 1998 American Institute of Physics.}

  7. Estimating the melting point, entropy of fusion, and enthalpy of fusion of organic compounds via SPARC.

    PubMed

    Whiteside, T S; Hilal, S H; Brenner, A; Carreira, L A

    2016-08-01

    The entropy of fusion, enthalpy of fusion, and melting point of organic compounds can be estimated through three models developed using the SPARC (SPARC Performs Automated Reasoning in Chemistry) platform. The entropy of fusion is modelled through a combination of interaction terms and physical descriptors. The enthalpy of fusion is modelled as a function of the entropy of fusion, boiling point, and flexibility of the molecule. The melting point model is the enthalpy of fusion divided by the entropy of fusion. These models were developed in part to improve SPARC's vapour pressure and solubility models. These models have been tested on 904 unique compounds. The entropy model has a RMS of 12.5 J mol(-1) K(-1). The enthalpy model has a RMS of 4.87 kJ mol(-1). The melting point model has a RMS of 54.4°C. PMID:27586365

  8. Estimating the melting point, entropy of fusion, and enthalpy of fusion of organic compounds via SPARC.

    PubMed

    Whiteside, T S; Hilal, S H; Brenner, A; Carreira, L A

    2016-08-01

    The entropy of fusion, enthalpy of fusion, and melting point of organic compounds can be estimated through three models developed using the SPARC (SPARC Performs Automated Reasoning in Chemistry) platform. The entropy of fusion is modelled through a combination of interaction terms and physical descriptors. The enthalpy of fusion is modelled as a function of the entropy of fusion, boiling point, and flexibility of the molecule. The melting point model is the enthalpy of fusion divided by the entropy of fusion. These models were developed in part to improve SPARC's vapour pressure and solubility models. These models have been tested on 904 unique compounds. The entropy model has a RMS of 12.5 J mol(-1) K(-1). The enthalpy model has a RMS of 4.87 kJ mol(-1). The melting point model has a RMS of 54.4°C.

  9. Inertial-confinement fusion with lasers

    DOE PAGES

    Betti, R.; Hurricane, O. A.

    2016-05-03

    The quest for controlled fusion energy has been ongoing for over a half century. The demonstration of ignition and energy gain from thermonuclear fuels in the laboratory has been a major goal of fusion research for decades. Thermonuclear ignition is widely considered a milestone in the development of fusion energy, as well as a major scientific achievement with important applications to national security and basic sciences. The U.S. is arguably the world leader in the inertial con fment approach to fusion and has invested in large facilities to pursue it with the objective of establishing the science related to themore » safety and reliability of the stockpile of nuclear weapons. Even though significant progress has been made in recent years, major challenges still remain in the quest for thermonuclear ignition via laser fusion.« less

  10. Feature fusion based on Wootters metric

    NASA Astrophysics Data System (ADS)

    Peng, Weimin; Chen, Aihong; Gong, Zhaozhe

    2016-10-01

    For further enhancing the completeness and conciseness of the existing quantum-inspired feature fusion methods, this paper applies the quantum-related theories of Wootters metric and Fisher linear discriminant to dimension reduction and feature fusion. From the perspective of quantum metric spaces, i.e. phase space and probability space, this paper proposes two different feature fusion methods which take the Wootters statistical distance as the key factor to detect and fuse the duplicate feature data, and are different to the already developed quantum-inspired feature fusion methods. The experimental results reflect the superiority of the proposed feature fusion methods based on the Wootters metric for their better performances on relative completeness and conciseness.

  11. Cancer Cell Fusion: Mechanisms Slowly Unravel

    PubMed Central

    Noubissi, Felicite K.; Ogle, Brenda M.

    2016-01-01

    Although molecular mechanisms and signaling pathways driving invasion and metastasis have been studied for many years, the origin of the population of metastatic cells within the primary tumor is still not well understood. About a century ago, Aichel proposed that cancer cell fusion was a mechanism of cancer metastasis. This hypothesis gained some support over the years, and recently became the focus of many studies that revealed increasing evidence pointing to the possibility that cancer cell fusion probably gives rise to the metastatic phenotype by generating widespread genetic and epigenetic diversity, leading to the emergence of critical populations needed to evolve resistance to the treatment and development of metastasis. In this review, we will discuss the clinical relevance of cancer cell fusion, describe emerging mechanisms of cancer cell fusion, address why inhibiting cancer cell fusion could represent a critical line of attack to limit drug resistance and to prevent metastasis, and suggest one new modality for doing so. PMID:27657058

  12. Laser-fusion rocket for interplanetary propulsion

    SciTech Connect

    Hyde, R.A.

    1983-09-27

    A rocket powered by fusion microexplosions is well suited for quick interplanetary travel. Fusion pellets are sequentially injected into a magnetic thrust chamber. There, focused energy from a fusion Driver is used to implode and ignite them. Upon exploding, the plasma debris expands into the surrounding magnetic field and is redirected by it, producing thrust. This paper discusses the desired features and operation of the fusion pellet, its Driver, and magnetic thrust chamber. A rocket design is presented which uses slightly tritium-enriched deuterium as the fusion fuel, a high temperature KrF laser as the Driver, and a thrust chamber consisting of a single superconducting current loop protected from the pellet by a radiation shield. This rocket can be operated with a power-to-mass ratio of 110 W gm/sup -1/, which permits missions ranging from occasional 9 day VIP service to Mars, to routine 1 year, 1500 ton, Plutonian cargo runs.

  13. A Reliability-Based Track Fusion Algorithm

    PubMed Central

    Xu, Li; Pan, Liqiang; Jin, Shuilin; Liu, Haibo; Yin, Guisheng

    2015-01-01

    The common track fusion algorithms in multi-sensor systems have some defects, such as serious imbalances between accuracy and computational cost, the same treatment of all the sensor information regardless of their quality, high fusion errors at inflection points. To address these defects, a track fusion algorithm based on the reliability (TFR) is presented in multi-sensor and multi-target environments. To improve the information quality, outliers in the local tracks are eliminated at first. Then the reliability of local tracks is calculated, and the local tracks with high reliability are chosen for the state estimation fusion. In contrast to the existing methods, TFR reduces high fusion errors at the inflection points of system tracks, and obtains a high accuracy with less computational cost. Simulation results verify the effectiveness and the superiority of the algorithm in dense sensor environments. PMID:25950174

  14. Magnetic-fusion energy and computers

    SciTech Connect

    Killeen, J.

    1982-01-01

    The application of computers to magnetic fusion energy research is essential. In the last several years the use of computers in the numerical modeling of fusion systems has increased substantially. There are several categories of computer models used to study the physics of magnetically confined plasmas. A comparable number of types of models for engineering studies are also in use. To meet the needs of the fusion program, the National Magnetic Fusion Energy Computer Center has been established at the Lawrence Livermore National Laboratory. A large central computing facility is linked to smaller computer centers at each of the major MFE laboratories by a communication network. In addition to providing cost effective computing services, the NMFECC environment stimulates collaboration and the sharing of computer codes among the various fusion research groups.

  15. Fusion-protein-assisted protein crystallization.

    PubMed

    Kobe, Bostjan; Ve, Thomas; Williams, Simon J

    2015-07-01

    Fusion proteins can be used directly in protein crystallization to assist crystallization in at least two different ways. In one approach, the `heterologous fusion-protein approach', the fusion partner can provide additional surface area to promote crystal contact formation. In another approach, the `fusion of interacting proteins approach', protein assemblies can be stabilized by covalently linking the interacting partners. The linker connecting the proteins plays different roles in the two applications: in the first approach a rigid linker is required to reduce conformational heterogeneity; in the second, conversely, a flexible linker is required that allows the native interaction between the fused proteins. The two approaches can also be combined. The recent applications of fusion-protein technology in protein crystallization from the work of our own and other laboratories are briefly reviewed.

  16. INTRODUCTION: Status report on fusion research

    NASA Astrophysics Data System (ADS)

    Burkart, Werner

    2005-10-01

    A major milestone on the path to fusion energy was reached in June 2005 on the occasion of the signing of the joint declaration of all parties to the ITER negotiations, agreeing on future arrangements and on the construction site at Cadarache in France. The International Atomic Energy Agency has been promoting fusion activities since the late 1950s; it took over the auspices of the ITER Conceptual Design Activities in 1988, and of the ITER Engineering and Design Activities in 1992. The Agency continues its support to Member States through the organization of consultancies, workshops and technical meetings, the most prominent being the series of International Fusion Energy Conferences (formerly called the International Conference on Plasma Physics and Controlled Nuclear Fusion Research). The meetings serve as a platform for experts from all Member States to have open discussions on their latest accomplishments as well as on their problems and eventual solutions. The papers presented at the meetings and conferences are routinely published, many being sent to the journal it Nuclear Fusion, co-published monthly by Institute of Physics Publishing, Bristol, UK. The journal's reputation is reflected in the fact that it is a world-renowned publication, and the International Fusion Research Council has used it for the publication of a Status Report on Controlled Thermonuclear Fusion in 1978 and 1990. This present report marks the conclusion of the preparatory phases of ITER activities. It provides background information on the progress of fusion research within the last 15 years. The International Fusion Research Council (IFRC), which initiated the report, was fully aware of the complexities of including all scientific results in just one paper, and so decided to provide an overview and extensive references for the interested reader who need not necessarily be a fusion specialist. Professor Predhiman K. Kaw, Chairman, prepared the report on behalf of the IFRC, reflecting

  17. A reliability-based track fusion algorithm.

    PubMed

    Xu, Li; Pan, Liqiang; Jin, Shuilin; Liu, Haibo; Yin, Guisheng

    2015-01-01

    The common track fusion algorithms in multi-sensor systems have some defects, such as serious imbalances between accuracy and computational cost, the same treatment of all the sensor information regardless of their quality, high fusion errors at inflection points. To address these defects, a track fusion algorithm based on the reliability (TFR) is presented in multi-sensor and multi-target environments. To improve the information quality, outliers in the local tracks are eliminated at first. Then the reliability of local tracks is calculated, and the local tracks with high reliability are chosen for the state estimation fusion. In contrast to the existing methods, TFR reduces high fusion errors at the inflection points of system tracks, and obtains a high accuracy with less computational cost. Simulation results verify the effectiveness and the superiority of the algorithm in dense sensor environments.

  18. Mirror Fusion Test Facility magnet system

    SciTech Connect

    VanSant, J.H.; Kozman, T.A.; Bulmer, R.H.; Ng, D.S.

    1981-09-11

    In 1979, R.H. Bulmer of Lawrence Livermore National Laboratory (LLNL) discussed a proposed tandem-mirror magnet system for the Mirror Fusion Test Facility (MFTF) at the 8th symposium on Engineering Problems in Fusion Research. Since then, Congress has voted funds for expanding LLNL's MFTF to a tandem-mirror facility (designated MFTF-B). The new facility, scheduled for completion by 1985, will seek to achieve two goals: (1) Energy break-even capability (Q or the ratio of fusion energy to plasma heating energy = 1) of mirror fusion, (2) Engineering feasibility of reactor-scale machines. Briefly stated, 22 superconducting magnets contained in a 11-m-diam by 65-m-long vacuum vessel will confine a fusion plasma fueled by 80 axial streaming-plasma guns and over 40 radial neutral beams. We have already completed a preliminary design of this magnet system.

  19. Economic potential of magnetic fusion energy

    SciTech Connect

    Henning, C.D.

    1981-03-10

    Scientific feasibility of magnetic fusion is no longer seriously in doubt. Rapid advances have been made in both tokamak and mirror research, leading to a demonstration in the TFTR tokamak at Princeton in 1982 and the tandem mirror MFTF-B at Livermore in 1985. Accordingly, the basis is established for an aggressive engineering thrust to develop a reactor within this century. However, care must be taken to guide the fusion program towards an economically and environmentally viable goal. While the fusion fuels are essentially free, capital costs of reactors appear to be at least as large as current power plants. Accordingly, the price of electricity will not decline, and capital availability for reactor constructions will be important. Details of reactor cost projections are discussed and mechanisms suggested for fusion power implementation. Also discussed are some environmental and safety aspects of magnetic fusion.

  20. Public Relations on Fusion in Europe

    NASA Astrophysics Data System (ADS)

    Ongena, J.; van Oost, G.; Paris, P. J.

    2000-10-01

    A summary will be presented of PR efforts on fusion energy research in Europe. A 3-D movie of a fusion research experimental reactor has been realized at the start of this year. It has been made entirely on virtual animation basis. Two versions exists, a short version of 3 min., as a video clip, and a longer version of nearly 8 min. Both could be viewed in 3D, using special projections and passive glasses or in normal VHS video projections. A new CD-ROM for individual and classroom use will be presented, discussing (i) the different energy forms, (ii) general principles of fusion, (iii) current research efforts and (iv) future prospects of fusion. This CD-ROM is now produced in English, German, French, Spanish, Italian and Portuguese Several new brochures and leaflets intended to increase the public awareness on fusion in Europe will be on display.

  1. Magneized target fusion: An overview of the concept

    SciTech Connect

    Kirkpatrick, R.C.

    1994-12-31

    Magnetized target fusion (MTF) seeks to take advantage of the reduction of thermal conductivity through the application of a strong magneticfield and thereby ease the requirements for reaching fusion conditions in a thermonuclear (TN) fusion fuel. A potentially important benefit of the strong field in the partial trapping of energetic charged particles to enhance energy deposition by the TN fusion reaction products. The essential physics is described. MTF appears to lead to fusion targets that require orders of magnitude less power and intensity for fusion ignition than currently proposed (unmagnetized) inertial confinement fusion (ICF) targets do, making some very energetic pulsed power drivers attractive for realizing controlled fusion.

  2. Passive-sensor data fusion

    NASA Astrophysics Data System (ADS)

    Kolitz, Stephan E.

    1991-08-01

    Problems in multi-sensor data fusion are addressed for passive (angle-only) sensors; the example used is a constellation of IR sensors on satellites in low-earth orbit, viewing up to several hundred ballistic missile targets. The sensor data used in the methodology of the report is 'post-detection,' with targets resolved on single pixels (it is possible for several targets to be resolved on the same pixel). A 'scan' by a sensor is modeled by the formation of a rectangular focal plane image of lit pixels (bits with value 1), representing the presence of at least one target, and unlit pixels (bits with value 0), representing the absence of a target, at a particular time. Approaches and algorithmic solutions are developed which address the following passive sensor data fusion problems: scan-to-scan target association, and association classification. The ultimate objective is to estimate target states, for use in a larger battle management system. Results indicate that successful scan-to-scan target association is feasible at scan rates >=2 Hz, independent of resolution. Sensor-to-sensor target association is difficult at low resolution; even with high-resolution sensors the performance of a standard two-sensor single scan approach is variable and unpredictable, since it is a function of the relative geometry of sensors and targets. A single-scan approach using the Varad algorithm and three sensors is not as sensitive to this relative geometry, but is usable only for high-resolution sensors. Innovative multi-scan and multi-sensor modifications of the three- sensor Varad algorithm are developed which provide excellent performance for a wide range of sensor resolutions. The multi-sensor multi-scan methodology also provides accurate information on the classification of target associations as correct or incorrect. For the scenarios examined with resolution cell sizes ranging from 300 m to 2 km, association errors are less than 5% and essentially no classification errors

  3. Computerized image analysis of cell-cell interactions in human renal tissue by using multi-channel immunoflourescent confocal microscopy

    NASA Astrophysics Data System (ADS)

    Peng, Yahui; Jiang, Yulei; Liarski, Vladimir M.; Kaverina, Natalya; Clark, Marcus R.; Giger, Maryellen L.

    2012-03-01

    Analysis of interactions between B and T cells in tubulointerstitial inflammation is important for understanding human lupus nephritis. We developed a computer technique to perform this analysis, and compared it with manual analysis. Multi-channel immunoflourescent-microscopy images were acquired from 207 regions of interest in 40 renal tissue sections of 19 patients diagnosed with lupus nephritis. Fresh-frozen renal tissue sections were stained with combinations of immunoflourescent antibodies to membrane proteins and counter-stained with a cell nuclear marker. Manual delineation of the antibodies was considered as the reference standard. We first segmented cell nuclei and cell membrane markers, and then determined corresponding cell types based on the distances between cell nuclei and specific cell-membrane marker combinations. Subsequently, the distribution of the shortest distance from T cell nuclei to B cell nuclei was obtained and used as a surrogate indicator of cell-cell interactions. The computer and manual analyses results were concordant. The average absolute difference was 1.1+/-1.2% between the computer and manual analysis results in the number of cell-cell distances of 3 μm or less as a percentage of the total number of cell-cell distances. Our computerized analysis of cell-cell distances could be used as a surrogate for quantifying cell-cell interactions as either an automated and quantitative analysis or for independent confirmation of manual analysis.

  4. Glioma cell dispersion is driven by α5 integrin-mediated cell-matrix and cell-cell interactions.

    PubMed

    Blandin, Anne-Florence; Noulet, Fanny; Renner, Guillaume; Mercier, Marie-Cécile; Choulier, Laurence; Vauchelles, Romain; Ronde, Philippe; Carreiras, Franck; Etienne-Selloum, Nelly; Vereb, Gyorgy; Lelong-Rebel, Isabelle; Martin, Sophie; Dontenwill, Monique; Lehmann, Maxime

    2016-07-01

    Glioblastoma multiform (GBM) is the most common and most aggressive primary brain tumor. The fibronectin receptor, α5 integrin is a pertinent novel therapeutic target. Despite numerous data showing that α5 integrin support tumor cell migration and invasion, it has been reported that α5 integrin can also limit cell dispersion by increasing cell-cell interaction. In this study, we showed that α5 integrin was involved in cell-cell interaction and gliomasphere formation. α5-mediated cell-cell cohesion limited cell dispersion from spheroids in fibronectin-poor microenvironment. However, in fibronectin-rich microenvironment, α5 integrin promoted cell dispersion. Ligand-occupied α5 integrin and fibronectin were distributed in fibril-like pattern at cell-cell junction of evading cells, forming cell-cell fibrillar adhesions. Activated focal adhesion kinase was not present in these adhesions but was progressively relocalized with α5 integrin as cell migrates away from the spheroids. α5 integrin function in GBM appears to be more complex than previously suspected. As GBM overexpressed fibronectin, it is most likely that in vivo, α5-mediated dissemination from the tumor mass overrides α5-mediated tumor cell cohesion. In this respect, α5-integrin antagonists may be useful to limit GBM invasion in brain parenchyma. PMID:27063097

  5. INTRODUCTION: Status report on fusion research

    NASA Astrophysics Data System (ADS)

    Burkart, Werner

    2005-10-01

    A major milestone on the path to fusion energy was reached in June 2005 on the occasion of the signing of the joint declaration of all parties to the ITER negotiations, agreeing on future arrangements and on the construction site at Cadarache in France. The International Atomic Energy Agency has been promoting fusion activities since the late 1950s; it took over the auspices of the ITER Conceptual Design Activities in 1988, and of the ITER Engineering and Design Activities in 1992. The Agency continues its support to Member States through the organization of consultancies, workshops and technical meetings, the most prominent being the series of International Fusion Energy Conferences (formerly called the International Conference on Plasma Physics and Controlled Nuclear Fusion Research). The meetings serve as a platform for experts from all Member States to have open discussions on their latest accomplishments as well as on their problems and eventual solutions. The papers presented at the meetings and conferences are routinely published, many being sent to the journal it Nuclear Fusion, co-published monthly by Institute of Physics Publishing, Bristol, UK. The journal's reputation is reflected in the fact that it is a world-renowned publication, and the International Fusion Research Council has used it for the publication of a Status Report on Controlled Thermonuclear Fusion in 1978 and 1990. This present report marks the conclusion of the preparatory phases of ITER activities. It provides background information on the progress of fusion research within the last 15 years. The International Fusion Research Council (IFRC), which initiated the report, was fully aware of the complexities of including all scientific results in just one paper, and so decided to provide an overview and extensive references for the interested reader who need not necessarily be a fusion specialist. Professor Predhiman K. Kaw, Chairman, prepared the report on behalf of the IFRC, reflecting

  6. Ion Rings for Magnetic Fusion

    SciTech Connect

    Greenly, John, B.

    2005-07-31

    This Final Technical Report presents the results of the program, Ion Rings for Magnetic Fusion, which was carried out under Department of Energy funding during the period August, 1993 to January, 2005. The central objective of the program was to study the properties of field-reversed configurations formed by ion rings. In order to reach this objective, our experimental program, called the Field-reversed Ion Ring Experiment, FIREX, undertook to develop an efficient, economical technology for the production of field-reversed ion rings. A field-reversed configuration (FRC) in which the azimuthal (field-reversing) current is carried by ions with gyro-radius comparable to the magnetic separatrix radius is called a field-reversed ion ring. A background plasma is required for charge neutralization of the ring, and this plasma will be confined within the ring's closed magnetic flux. Ion rings have long been of interest as the basis of compact magnetic fusion reactors, as the basis for a high-power accelerator for an inertial fusion driver, and for other applications of high power ion beams or plasmas of high energy density. Specifically, the FIREX program was intended to address the longstanding question of the contribution of large-orbit ions to the observed stability of experimental FRCs to the MHD tilt mode. Typical experimental FRCs with s {approx} 2-4, where s is the ratio of separatrix radius to ion gyro-radius, have been stable to tilting, but desired values for a fusion reactor, s > 20, should be unstable. The FIREX ring would consist of a plasma with large s for the background ions, but with s {approx} 1 for the ring ions. By varying the proportions of these two populations, the minimum proportion of large-orbit ions necessary for stability could be determined. The incorporation of large-orbit ions, perhaps by neutral-beam injection, into an FRC has been advanced for the purpose of stabilizing, heating, controlling angular momentum, and aiding the formation of a

  7. Magnetic systems for fusion devices

    SciTech Connect

    Henning, C.D.

    1985-02-01

    Mirror experiments have led the way in applying superconductivity to fusion research because of unique requirements for high and steady magnetic fields. The first significant applications were Baseball II at LLNL and IMP at ORNL. More recently, the MFTF-B yin-yang coil was successfully tested and the entire tandem configuration is nearing completion. Tokamak magnets have also enjoyed recent success with the large coil project tests at ORNL, preceded by single coil tests in Japan and Germany. In the USSR, the T-7 Tokamak has been operational for many years and the T-15 Tokamak is under construction, with the TF coils nearing completion. Also the Tore Supra is being built in France.

  8. Laser-driven fusion reactor

    DOEpatents

    Hedstrom, J.C.

    1973-10-01

    A laser-driven fusion reactor consisting of concentric spherical vessels in which the thermonuclear energy is derived from a deuterium-tritium (D + T) burn within a pellet'', located at the center of the vessels and initiated by a laser pulse. The resulting alpha -particle energy and a small fraction of the neutron energy are deposited within the pellet; this pellet energy is eventually transformed into sensible heat of lithium in a condenser outside the vessels. The remaining neutron energy is dissipated in a lithium blanket, located within the concentric vessels, where the fuel ingredient, tritium, is also produced. The heat content of the blanket and of the condenser lithium is eventually transferred to a conventional thermodynamic plant where the thermal energy is converted to electrical energy in a steam Rankine cycle. (Official Gazette)

  9. Status of cold fusion (2010).

    PubMed

    Storms, Edmund

    2010-10-01

    The phenomenon called cold fusion has been studied for the last 21 years since its discovery by Profs. Fleischmann and Pons in 1989. The discovery was met with considerable skepticism, but supporting evidence has accumulated, plausible theories have been suggested, and research is continuing in at least eight countries. This paper provides a brief overview of the major discoveries and some of the attempts at an explanation. The evidence supports the claim that a nuclear reaction between deuterons to produce helium can occur in special materials without application of high energy. This reaction is found to produce clean energy at potentially useful levels without the harmful byproducts normally associated with a nuclear process. Various requirements of a model are examined.

  10. Multishell inertial confinement fusion target

    DOEpatents

    Holland, James R.; Del Vecchio, Robert M.

    1984-01-01

    A method of fabricating multishell fuel targets for inertial confinement fusion usage. Sacrificial hemispherical molds encapsulate a concentric fuel pellet which is positioned by fiber nets stretched tautly across each hemispherical mold section. The fiber ends of the net protrude outwardly beyond the mold surfaces. The joint between the sacrificial hemispheres is smoothed. A ceramic or glass cover is then deposited about the finished mold surfaces to produce an inner spherical surface having continuously smooth surface configuration. The sacrificial mold is removed by gaseous reaction accomplished through the porous ceramic cover prior to enclosing of the outer sphere by addition of an outer coating. The multishell target comprises the inner fuel pellet concentrically arranged within a surrounding coated cover or shell by fiber nets imbedded within the cover material.

  11. Multishell inertial confinement fusion target

    DOEpatents

    Holland, James R.; Del Vecchio, Robert M.

    1987-01-01

    A method of fabricating multishell fuel targets for inertial confinement fusion usage. Sacrificial hemispherical molds encapsulate a concentric fuel pellet which is positioned by fiber nets stretched tautly across each hemispherical mold section. The fiber ends of the net protrude outwardly beyond the mold surfaces. The joint between the sacrificial hemispheres is smoothed. A ceramic or glass cover is then deposited about the finished mold surfaces to produce an inner spherical surface having continuously smooth surface configuration. The sacrificial mold is removed by gaseous reactions accomplished through the porous ceramic cover prior to enclosing of the outer sphere by addition of an outer coating. The multishell target comprises the inner fuel pellet concentrically arranged within a surrounding coated cover or shell by fiber nets imbedded within the cover material.

  12. Inertial-confinement-fusion targets

    SciTech Connect

    Hendricks, C.D.

    1982-08-10

    Much of the research in laser fusion has been done using simple ball on-stalk targets filled with a deuterium-tritium mixture. The targets operated in the exploding pusher mode in which the laser energy was delivered in a very short time (approx. 100 ps or less) and was absorbed by the glass wall of the target. The high energy density in the glass literally exploded the shell with the inward moving glass compressing the DT fuel to high temperatures and moderate densities. Temperatures achieved were high enough to produce DT reactions and accompanying thermonuclear neutrons and alpha particles. The primary criteria imposed on the target builders were: (1) wall thickness, (2) sphere diameter, and (3) fuel in the sphere.

  13. Status of cold fusion (2010)

    NASA Astrophysics Data System (ADS)

    Storms, Edmund

    2010-10-01

    The phenomenon called cold fusion has been studied for the last 21 years since its discovery by Profs. Fleischmann and Pons in 1989. The discovery was met with considerable skepticism, but supporting evidence has accumulated, plausible theories have been suggested, and research is continuing in at least eight countries. This paper provides a brief overview of the major discoveries and some of the attempts at an explanation. The evidence supports the claim that a nuclear reaction between deuterons to produce helium can occur in special materials without application of high energy. This reaction is found to produce clean energy at potentially useful levels without the harmful byproducts normally associated with a nuclear process. Various requirements of a model are examined.

  14. Progress in Heavy Ion Fusion

    SciTech Connect

    Herrmannsfeldt, W.B.

    1988-09-01

    The progress of the field of Heavy Ion Fusion has been documented in the proceedings of the series of International Symposia that, in recent years, have occurred every second year. The latest of these conferences was hosted by Gesellshaft fuer Schwerionenforshung (GSI) in Darmstadt, West Germany, June 28-30, 1988. For this report, a few highlights from the conference are selected, stressing experimental progress and prospects for future advances. A little extra time is devoted to report on the developments at the Lawrence Berkeley Laboratory (LBL) which is the center for most of the HIFAR program. The Director of the HIFAR program at LBL is Denis Keefe, who presented the HIF report at the last two of the meetings in this series, and in whose place the author is appearing now. 4 refs., 1 fig.

  15. Knowledge discovery of cell-cell and cell-surface interactions

    NASA Astrophysics Data System (ADS)

    Su, Jing

    High-throughput cell culture is an emerging technology that shows promise as a tool for research in tissue engineering, drug discovery, and medical diagnostics. An important, but overlooked, challenge is the integration of experimental methods with information processing suitable for handling large databases of cell-cell and cell-substrate interactions. In this work the traditional global descriptions of cell behaviors and surface characteristics was shown insufficient for investigating short-distance cell-to-cell and cell-to-surface interactions. Traditional summary metrics cannot distinguish information of cell near neighborhood from the average, global features, thus often is not suitable for studying distance-sensitive cell behaviors. The problem of traditional summary metrics was addressed by introducing individual-cell based local metrics that emphasize cell local environment. An individual-cell based local data analysis method was established. Contact inhibition of cell proliferation was used as a benchmark for the effectiveness of the local metrics and the method. Where global, summary metrics were unsuccessful, the local metrics successfully and quantitatively distinguished the contact inhibition effects of MC3T3-E1 cells on PLGA, PCL, and TCPS surfaces. In order to test the new metrics and analysis method in detail, a model of cell contact inhibition was proposed. Monte Carlo simulation was performed for validating the individual-cell based local data analysis method as well as the cell model itself. The simulation results well matched with the experimental observations. The parameters used in the cell model provided new descriptions of both cell behaviors and surface characteristics. Based on the viewpoint of individual cells, the local metrics and local data analysis method were extended to the investigation of cell-surface interactions, and a new high-throughput screening and knowledge discovery method on combinatorial libraries, local cell

  16. Differential cholesterol binding by class II fusion proteins determines membrane fusion properties.

    PubMed

    Umashankar, M; Sánchez-San Martín, Claudia; Liao, Maofu; Reilly, Brigid; Guo, Alice; Taylor, Gwen; Kielian, Margaret

    2008-09-01

    The class II fusion proteins of the alphaviruses and flaviviruses mediate virus infection by driving the fusion of the virus membrane with that of the cell. These fusion proteins are triggered by low pH, and their structures are strikingly similar in both the prefusion dimer and the postfusion homotrimer conformations. Here we have compared cholesterol interactions during membrane fusion by these two groups of viruses. Using cholesterol-depleted insect cells, we showed that fusion and infection by the alphaviruses Semliki Forest virus (SFV) and Sindbis virus were strongly promoted by cholesterol, with similar sterol dependence in laboratory and field isolates and in viruses passaged in tissue culture. The E1 fusion protein from SFV bound cholesterol, as detected by labeling with photocholesterol and by cholesterol extraction studies. In contrast, fusion and infection by numerous strains of the flavivirus dengue virus (DV) and by yellow fever virus 17D were cholesterol independent, and the DV fusion protein did not show significant cholesterol binding. SFV E1 is the first virus fusion protein demonstrated to directly bind cholesterol. Taken together, our results reveal important functional differences conferred by the cholesterol-binding properties of class II fusion proteins.

  17. In vitro fusion of Acanthamoeba phagolysosomes. I. Demonstration and quantitation of vacuole fusion in Acanthamoeba homogenates.

    PubMed

    Oates, P J; Touster, O

    1976-02-01

    Fusion of phagolysosomes (PLs) has been demonstrated to occur in vitro. Two separate cell homogenates of the ameba Acanthamoeba sp. (Neff) were prepared, each rich in PLs labeled with distinctive particulate markers. Portions of each were incubated together in vitro and fusion occurred as evidenced by the appearance of PLs containing both types of markers. Fusion was confirmed by electron microscopy, including serial sectioning. The membranes of fused vacuoles excluded the dye eosin Y. Surviving cells in the homogenates were not responsible for the observed fusion. Fusion was obtained using either synthetic markers (polystyrene and polyvinyltoluene latex) or biological markers (autoclaved yeast cells and glutaraldehyde-fixed goat red blood cells), or a combination of both. The specificity of PL fusion in vivo appeared to be maintained in vitro. As determined by light and electron microscopy, the fusion reaction was dependent on time and temperature, and on the initial presence of membrane around both marker particles. A minimum of 10% of the vacuoles fused by 10 min of incubation at 30 degrees C, and no rupture of the vacuoles was detected during this time. After 10 min of incubation, vacuole rupture began and fusion ceased. At a constant initial vacuole concentration, the extent of PL fusion in vitro was quantitatively reproducible. This appears to be a promising system for further investigation of membrane fusion in the lysosomal system. PMID:1245550

  18. Statistical label fusion with hierarchical performance models

    PubMed Central

    Asman, Andrew J.; Dagley, Alexander S.; Landman, Bennett A.

    2014-01-01

    Label fusion is a critical step in many image segmentation frameworks (e.g., multi-atlas segmentation) as it provides a mechanism for generalizing a collection of labeled examples into a single estimate of the underlying segmentation. In the multi-label case, typical label fusion algorithms treat all labels equally – fully neglecting the known, yet complex, anatomical relationships exhibited in the data. To address this problem, we propose a generalized statistical fusion framework using hierarchical models of rater performance. Building on the seminal work in statistical fusion, we reformulate the traditional rater performance model from a multi-tiered hierarchical perspective. This new approach provides a natural framework for leveraging known anatomical relationships and accurately modeling the types of errors that raters (or atlases) make within a hierarchically consistent formulation. Herein, we describe several contributions. First, we derive a theoretical advancement to the statistical fusion framework that enables the simultaneous estimation of multiple (hierarchical) performance models within the statistical fusion context. Second, we demonstrate that the proposed hierarchical formulation is highly amenable to the state-of-the-art advancements that have been made to the statistical fusion framework. Lastly, in an empirical whole-brain segmentation task we demonstrate substantial qualitative and significant quantitative improvement in overall segmentation accuracy. PMID:24817809

  19. Multisensor image fusion guidelines in remote sensing

    NASA Astrophysics Data System (ADS)

    Pohl, C.

    2016-04-01

    Remote sensing delivers multimodal and -temporal data from the Earth's surface. In order to cope with these multidimensional data sources and to make the most of them, image fusion is a valuable tool. It has developed over the past few decades into a usable image processing technique for extracting information of higher quality and reliability. As more sensors and advanced image fusion techniques have become available, researchers have conducted a vast amount of successful studies using image fusion. However, the definition of an appropriate workflow prior to processing the imagery requires knowledge in all related fields - i.e. remote sensing, image fusion and the desired image exploitation processing. From the findings of this research it can be seen that the choice of the appropriate technique, as well as the fine-tuning of the individual parameters of this technique, is crucial. There is still a lack of strategic guidelines due to the complexity and variability of data selection, processing techniques and applications. This paper gives an overview on the state-of-the-art in remote sensing image fusion including sensors and applications. Putting research results in image fusion from the past 15 years into a context provides a new view on the subject and helps other researchers to build their innovation on these findings. Recommendations of experts help to understand further needs to achieve feasible strategies in remote sensing image fusion.

  20. Establishment of an Institute for Fusion Studies

    NASA Astrophysics Data System (ADS)

    Hazeltine, R. D.

    1992-07-01

    The Institute for Fusion Studies is a national center for theoretical fusion plasma physics research. Its purposes are: (1) to conduct research on theoretical questions concerning the achievement of controlled fusion energy by means of magnetic confinement--including both fundamental problems of long-range significance, as well as shorter-term issues; (2) to serve as a center for information exchange, nationally and internationally, by hosting exchange visits, conferences, and workshops; (3) and to train students and postdoctoral research personnel for the fusion energy program and plasma physics research areas. The theoretical research results that are obtained by the Institute contribute mainly to the progress of national and international efforts in nuclear fusion research, whose goal is the development of fusion power as a basic energy source. In addition to its primary focus on fusion physics, the Institute is also involved with research in related fields, such as advanced computing techniques, nonlinear dynamics, plasma astrophysics, and accelerator physics. The work of EFS scientists continued to receive national and international recognition. Numerous invited papers were given during the past year at workshops, conferences, and scientific meetings. Last year IFS scientists published 95 scientific articles in technical journals and monographs.

  1. Fusion pore regulation of transmitter release.

    PubMed

    Fernández-Peruchena, Carlos; Navas, Sergio; Montes, María A; Alvarez de Toledo, Guillermo

    2005-09-01

    During the last decade a wealth of new information about the properties of the exocytotic fusion pore is changing our current view of exocytosis. The exocytotic fusion pore, a necessary stage before the full merging of the vesicle membrane with the plasma membrane, is becoming a key cellular structure that might critically control the amount of neurotransmitter released into the synaptic cleft and that can be subjected to control by second messengers and phosphorylated proteins. Fusion pores form, expand to fully merge membranes, or can close leaving an intact and identical synaptic vesicle in place for a new round of exocytosis. Transient formation of fusion pores is the mechanistic representation of the "kiss-and-run" hypothesis of transmitter release and offers new alternatives for synaptic vesicle recycling besides to the classical mechanism mediated by clathrin coat endocytosis. For vesicle recycling transient fusion pores ensures a fast mechanism for maintaining an active pool of synaptic vesicles. The size reached by transient fusion pores and the time spent on the open state can determine the release of subquantal synaptic transmission, which could be a mechanism of synaptic potentiation. In this review we will described the electrophysiological and fluorescence methods that contribute to further explore the biophysical properties of the exocytotic fusion pore and the relevant experiments obtained by these methods.

  2. Status and problems of fusion reactor development.

    PubMed

    Schumacher, U

    2001-03-01

    Thermonuclear fusion of deuterium and tritium constitutes an enormous potential for a safe, environmentally compatible and sustainable energy supply. The fuel source is practically inexhaustible. Further, the safety prospects of a fusion reactor are quite favourable due to the inherently self-limiting fusion process, the limited radiologic toxicity and the passive cooling property. Among a small number of approaches, the concept of toroidal magnetic confinement of fusion plasmas has achieved most impressive scientific and technical progress towards energy release by thermonuclear burn of deuterium-tritium fuels. The status of thermonuclear fusion research activity world-wide is reviewed and present solutions to the complicated physical and technological problems are presented. These problems comprise plasma heating, confinement and exhaust of energy and particles, plasma stability, alpha particle heating, fusion reactor materials, reactor safety and environmental compatibility. The results and the high scientific level of this international research activity provide a sound basis for the realisation of the International Thermonuclear Experimental Reactor (ITER), whose goal is to demonstrate the scientific and technological feasibility of a fusion energy source for peaceful purposes.

  3. Establishment of an Institute for Fusion Studies

    SciTech Connect

    Hazeltine, R.D.

    1992-07-01

    The Institute for Fusion Studies is a national center for theoretical fusion plasma physics research. Its purposes are: (1) to conduct research on theoretical questions concerning the achievement of controlled fusion energy by means of magnetic confinement--including both fundamental problems of long-range significance, as well as shorter-term issues; (2) to serve as a center for information exchange, nationally and internationally, by hosting exchange visits, conferences, and workshops; (3) and to train students and postdoctoral research personnel for the fusion energy program and plasma physics research areas. The theoretical research results that are obtained by the Institute contribute mainly to the progress of national and international efforts in nuclear fusion research, whose goal is the development of fusion power.as a basic energy source. In addition to its primary focus on fusion physics, the Institute is also involved with research in related fields, such as advanced computing techniques, nonlinear dynamics, plasma astrophysics, and accelerator physics. The work of EFS scientists continued to receive national and international recognition. Numerous invited papers were given during the past year at workshops, conferences, and scientific meetings. Last year IFS scientists published 95 scientific articles in technical journals and monographs.

  4. Engineering Challenges in Antiproton Triggered Fusion Propulsion

    SciTech Connect

    Cassenti, Brice; Kammash, Terry

    2008-01-21

    During the last decade antiproton triggered fusion propulsion has been investigated as a method for achieving high specific impulse, high thrust in a nuclear pulse propulsion system. In general the antiprotons are injected into a pellet containing fusion fuel with a small amount of fissionable material (i.e., an amount less than the critical mass) where the products from the fission are then used to trigger a fusion reaction. Initial calculations and simulations indicate that if magnetically insulated inertial confinement fusion is used that the pellets should result in a specific impulse of between 100,000 and 300,000 seconds at high thrust. The engineering challenges associated with this propulsion system are significant. For example, the antiprotons must be precisely focused. The pellet must be designed to contain the fission and initial fusion products and this will require strong magnetic fields. The fusion fuel must be contained for a sufficiently long time to effectively release the fusion energy, and the payload must be shielded from the radiation, especially the excess neutrons emitted, in addition to many other particles. We will review the recent progress, possible engineering solutions and the potential performance of these systems.

  5. Construction of human LRIG1-TAT fusions and TAT-mediated LRIG1 protein delivery.

    PubMed

    Wang, Yuchun; Fu, Liqi; Liu, Bo; Wang, Xiaomin; Wang, Kai; Ye, Ming

    2015-02-01

    Human leucine-rich repeats and immunoglobulin-like domains (LRIG1) is a tumor suppressor in animals and also functions as an endogenous suppressor in human tumor. The level of LRIG1 expression is highly associated with patient survival in clinic. The exploration of LRIG1 as a protein drug is an important task. HIV-1 transactivator of transcription peptide (TAT) is an excellent candidate for protein transduction. In this study, human LRIG1 was cloned and LRIG1-TAT fusion gene was constructed. The fusion proteins were produced by an Escherichia coli strain and purified by Ni(2+)-resin. Western blot assay and immunofluorescence microscopy were employed for monitoring LRIG1-TAT protein transduction into human neuroblastoma cells. Cell proliferation and invasion were measured for evaluating the effect of LRIG1-TAT on neuroblastoma cell. Our data showed that LRIG1 protein can be delivered into cells or organs in living animals by TAT. One-time transduction of LRIG1 proteins into human neuroblastoma cells enhanced cell proliferation and increased cell invasion. In vivo transduction showed that LRIG1-TAT protein can be presented in living animal organs. Our experiments provide a new vision on LRIG1 applications and also offer a therapy window for revealing the intrinsic function of LRIG1 on cells.

  6. The BAR domain proteins: molding membranes in fission, fusion, and phagy.

    PubMed

    Ren, Gang; Vajjhala, Parimala; Lee, Janet S; Winsor, Barbara; Munn, Alan L

    2006-03-01

    The Bin1/amphiphysin/Rvs167 (BAR) domain proteins are a ubiquitous protein family. Genes encoding members of this family have not yet been found in the genomes of prokaryotes, but within eukaryotes, BAR domain proteins are found universally from unicellular eukaryotes such as yeast through to plants, insects, and vertebrates. BAR domain proteins share an N-terminal BAR domain with a high propensity to adopt alpha-helical structure and engage in coiled-coil interactions with other proteins. BAR domain proteins are implicated in processes as fundamental and diverse as fission of synaptic vesicles, cell polarity, endocytosis, regulation of the actin cytoskeleton, transcriptional repression, cell-cell fusion, signal transduction, apoptosis, secretory vesicle fusion, excitation-contraction coupling, learning and memory, tissue differentiation, ion flux across membranes, and tumor suppression. What has been lacking is a molecular understanding of the role of the BAR domain protein in each process. The three-dimensional structure of the BAR domain has now been determined and valuable insight has been gained in understanding the interactions of BAR domains with membranes. The cellular roles of BAR domain proteins, characterized over the past decade in cells as distinct as yeasts, neurons, and myocytes, can now be understood in terms of a fundamental molecular function of all BAR domain proteins: to sense membrane curvature, to bind GTPases, and to mold a diversity of cellular membranes. PMID:16524918

  7. Construction of human LRIG1-TAT fusions and TAT-mediated LRIG1 protein delivery.

    PubMed

    Wang, Yuchun; Fu, Liqi; Liu, Bo; Wang, Xiaomin; Wang, Kai; Ye, Ming

    2015-02-01

    Human leucine-rich repeats and immunoglobulin-like domains (LRIG1) is a tumor suppressor in animals and also functions as an endogenous suppressor in human tumor. The level of LRIG1 expression is highly associated with patient survival in clinic. The exploration of LRIG1 as a protein drug is an important task. HIV-1 transactivator of transcription peptide (TAT) is an excellent candidate for protein transduction. In this study, human LRIG1 was cloned and LRIG1-TAT fusion gene was constructed. The fusion proteins were produced by an Escherichia coli strain and purified by Ni(2+)-resin. Western blot assay and immunofluorescence microscopy were employed for monitoring LRIG1-TAT protein transduction into human neuroblastoma cells. Cell proliferation and invasion were measured for evaluating the effect of LRIG1-TAT on neuroblastoma cell. Our data showed that LRIG1 protein can be delivered into cells or organs in living animals by TAT. One-time transduction of LRIG1 proteins into human neuroblastoma cells enhanced cell proliferation and increased cell invasion. In vivo transduction showed that LRIG1-TAT protein can be presented in living animal organs. Our experiments provide a new vision on LRIG1 applications and also offer a therapy window for revealing the intrinsic function of LRIG1 on cells. PMID:25661388

  8. The BAR Domain Proteins: Molding Membranes in Fission, Fusion, and Phagy

    PubMed Central

    Ren, Gang; Vajjhala, Parimala; Lee, Janet S.; Winsor, Barbara; Munn, Alan L.

    2006-01-01

    The Bin1/amphiphysin/Rvs167 (BAR) domain proteins are a ubiquitous protein family. Genes encoding members of this family have not yet been found in the genomes of prokaryotes, but within eukaryotes, BAR domain proteins are found universally from unicellular eukaryotes such as yeast through to plants, insects, and vertebrates. BAR domain proteins share an N-terminal BAR domain with a high propensity to adopt α-helical structure and engage in coiled-coil interactions with other proteins. BAR domain proteins are implicated in processes as fundamental and diverse as fission of synaptic vesicles, cell polarity, endocytosis, regulation of the actin cytoskeleton, transcriptional repression, cell-cell fusion, signal transduction, apoptosis, secretory vesicle fusion, excitation-contraction coupling, learning and memory, tissue differentiation, ion flux across membranes, and tumor suppression. What has been lacking is a molecular understanding of the role of the BAR domain protein in each process. The three-dimensional structure of the BAR domain has now been determined and valuable insight has been gained in understanding the interactions of BAR domains with membranes. The cellular roles of BAR domain proteins, characterized over the past decade in cells as distinct as yeasts, neurons, and myocytes, can now be understood in terms of a fundamental molecular function of all BAR domain proteins: to sense membrane curvature, to bind GTPases, and to mold a diversity of cellular membranes. PMID:16524918

  9. The EFF-1A Cytoplasmic Domain Influences Hypodermal Cell Fusions in C. elegans But Is Not Dependent on 14-3-3 Proteins

    PubMed Central

    Shinn-Thomas, Jessica H.; del Campo, Jacob J.; Wang, Jianjun; Mohler, William A.

    2016-01-01

    Background Regulatory and biophysical mechanisms of cell-cell fusion are largely unknown despite the fundamental requirement for fused cells in eukaryotic development. Only two cellular fusogens that are not of clear recent viral origin have been identified to date, both in nematodes. One of these, EFF-1, is necessary for most cell fusions in Caenorhabditis elegans. Unregulated EFF-1 expression causes lethality due to ectopic fusion between cells not developmentally programmed to fuse, highlighting the necessity of tight fusogen regulation for proper development. Identifying factors that regulate EFF-1 and its paralog AFF-1 could lead to discovery of molecular mechanisms that control cell fusion upstream of the action of a membrane fusogen. Bioinformatic analysis of the EFF-1A isoform’s predicted cytoplasmic domain (endodomain) previously revealed two motifs that have high probabilities of interacting with 14-3-3 proteins when phosphorylated. Mutation of predicted phosphorylation sites within these motifs caused measurable loss of eff-1 gene function in cell fusion in vivo. Moreover, a human 14-3-3 isoform bound to EFF-1::GFP in vitro. We hypothesized that the two 14-3-3 proteins in C. elegans, PAR-5 and FTT-2, may regulate either localization or fusion-inducing activity of EFF-1. Methodology/Principal Findings Timing of fusion events was slightly but significantly delayed in animals unable to produce full-length EFF-1A. Yet, mutagenesis and live imaging showed that phosphoserines in putative 14-3-3 binding sites are not essential for EFF-1::GFP accumulation at the membrane contact between fusion partner cells. Moreover, although the EFF-1A endodomain was required for normal rates of eff-1-dependent epidermal cell fusions, reduced levels of FTT-2 and PAR-5 did not visibly affect the function of wild-type EFF-1 in the hypodermis. Conclusions/Significance Deletion of the EFF-1A endodomain noticeably affects the timing of hypodermal cell fusions in vivo. However

  10. The Saccharomyces cerevisiae PRM1 homolog in Neurospora crassa is involved in vegetative and sexual cell fusion events but also has postfertilization functions.

    PubMed

    Fleissner, André; Diamond, Spencer; Glass, N Louise

    2009-02-01

    Cell-cell fusion is essential for a variety of developmental steps in many eukaryotic organisms, during both fertilization and vegetative cell growth. Although the molecular mechanisms associated with intracellular membrane fusion are well characterized, the molecular mechanisms of plasma membrane merger between cells are poorly understood. In the filamentous fungus Neurospora crassa, cell fusion events occur during both vegetative and sexual stages of its life cycle, thus making it an attractive model for studying the molecular basis of cell fusion during vegetative growth vs. sexual reproduction. In the unicellular yeast Saccharomyces cerevisiae, one of the few proteins implicated in plasma membrane merger during mating is Prm1p; prm1Delta mutants show an approximately 50% reduction in mating cell fusion. Here we report on the role of the PRM1 homolog in N. crassa. N. crassa strains with deletions of a Prm1-like gene (Prm1) showed an approximately 50% reduction in both vegetative and sexual cell fusion events, suggesting that PRM1 is part of the general cell fusion machinery. However, unlike S. cerevisiae, N. crassa strains carrying a Prm1 deletion exhibited complete sterility as either a male or female mating partner, a phenotype that was not complemented in a heterokaryon with wild type (WT). Crosses with DeltaPrm1 strains were blocked early in sexual development, well before development of ascogenous hyphae. The DeltaPrm1 sexual defect in N. crassa was not suppressed by mutations in Sad-1, which is required for meiotic silencing of unpaired DNA (MSUD). However, mutations in Sad-1 increased the number of progeny obtained in crosses with a DeltaPrm1 (Prm1-gfp) complemented strain. These data indicate multiple roles for PRM1 during sexual development.

  11. Visualize Your Data with Google Fusion Tables

    NASA Astrophysics Data System (ADS)

    Brisbin, K. E.

    2011-12-01

    Google Fusion Tables is a modern data management platform that makes it easy to host, manage, collaborate on, visualize, and publish tabular data online. Fusion Tables allows users to upload their own data to the Google cloud, which they can then use to create compelling and interactive visualizations with the data. Users can view data on a Google Map, plot data in a line chart, or display data along a timeline. Users can share these visualizations with others to explore and discover interesting trends about various types of data, including scientific data such as invasive species or global trends in disease. Fusion Tables has been used by many organizations to visualize a variety of scientific data. One example is the California Redistricting Map created by the LA Times: http://goo.gl/gwZt5 The Pacific Institute and Circle of Blue have used Fusion Tables to map the quality of water around the world: http://goo.gl/T4SX8 The World Resources Institute mapped the threat level of coral reefs using Fusion Tables: http://goo.gl/cdqe8 What attendees will learn in this session: This session will cover all the steps necessary to use Fusion Tables to create a variety of interactive visualizations. Attendees will begin by learning about the various options for uploading data into Fusion Tables, including Shapefile, KML file, and CSV file import. Attendees will then learn how to use Fusion Tables to manage their data by merging it with other data and controlling the permissions of the data. Finally, the session will cover how to create a customized visualization from the data, and share that visualization with others using both Fusion Tables and the Google Maps API.

  12. Dynamical effects in fusion with exotic nuclei

    NASA Astrophysics Data System (ADS)

    Vo-Phuoc, K.; Simenel, C.; Simpson, E. C.

    2016-08-01

    Background: Reactions with stable beams have demonstrated strong interplay between nuclear structure and fusion. Exotic beam facilities open new perspectives to understand the impact of neutron skin, large isospin, and weak binding energies on fusion. Microscopic theories of fusion are required to guide future experiments. Purpose: To investigate new effects of exotic structures and dynamics in near-barrier fusion with exotic nuclei. Method: Microscopic approaches based on the Hartree-Fock (HF) mean-field theory are used for studying fusion barriers in -54Ca40+116Sn reactions for even isotopes. Bare potential barriers are obtained assuming frozen HF ground-state densities. Dynamical effects on the barrier are accounted for in time-dependent Hartree-Fock (TDHF) calculations of the collisions. Vibrational couplings are studied in the coupled-channel framework and near-barrier nucleon transfer is investigated with TDHF calculations. Results: The development of a neutron skin in exotic calcium isotopes strongly lowers the bare potential barrier. However, this static effect is not apparent when dynamical effects are included. On the contrary, a fusion hindrance is observed in TDHF calculations with the most neutron-rich calcium isotopes which cannot be explained by vibrational couplings. Transfer reactions are also important in these systems due to charge equilibration processes. Conclusions: Despite its impact on the bare potential, the neutron skin is not seen as playing an important role in the fusion dynamics. However, the charge transfer with exotic projectiles could lead to an increase of the Coulomb repulsion between the fragments, suppressing fusion. The effects of transfer and dissipative mechanisms on fusion with exotic nuclei deserve further studies.

  13. Cell-cell adhesion in the cnidaria: insights into the evolution of tissue morphogenesis.

    PubMed

    Magie, Craig R; Martindale, Mark Q

    2008-06-01

    Cell adhesion is a major aspect of cell biology and one of the fundamental processes involved in the development of a multicellular animal. Adhesive mechanisms, both cell-cell and between cell and extracellular matrix, are intimately involved in assembling cells into the three-dimensional structures of tissues and organs. The modulation of adhesive complexes could therefore be seen as a central component in the molecular control of morphogenesis, translating information encoded within the genome into organismal form. The availability of whole genomes from early-branching metazoa such as cnidarians is providing important insights into the evolution of adhesive processes by allowing for the easy identification of the genes involved in adhesion in these organisms. Discovery of the molecular nature of cell adhesion in the early-branching groups, coupled with comparisons across the metazoa, is revealing the ways evolution has tinkered with this vital cellular process in the generation of the myriad forms seen across the animal kingdom.

  14. Gonococcal and meningococcal pathogenesis as defined by human cell, cell culture, and organ culture assays.

    PubMed Central

    Stephens, D S

    1989-01-01

    Human cells, cell cultures, and organ cultures have been extremely useful for studying the events that occur when gonococci and meningococci encounter human mucosal surfaces. The specificity and selectivity of these events for human cells are striking and correlate with the adaptation of these pathogens for survival on human mucous membranes. To colonize these sites, meningococci and gonococci have developed mechanisms to damage local host defenses such as the mucociliary blanket, to attach to epithelial cells, and to invade these cells. Attachment to epithelial cells mediated by pili, and to some types of cells mediated by PIIs, serves to anchor the organism close to sources of nutrition and allows multiplication. Intracellular invasion, possibly initiated by the major porin protein, may provide additional nutritional support and protection from host defenses. Mucosal invasion may also result in access of gonococci and meningococci to the bloodstream, leading to dissemination. Images PMID:2497953

  15. Microfluidic devices for studying heterotypic cell-cell interactions and tissue specimen cultures under controlled microenvironments

    PubMed Central

    Zervantonakis, Ioannis K.; Kothapalli, Chandrasekhar R.; Chung, Seok; Sudo, Ryo; Kamm, Roger D.

    2011-01-01

    Microfluidic devices allow for precise control of the cellular and noncellular microenvironment at physiologically relevant length- and time-scales. These devices have been shown to mimic the complex in vivo microenvironment better than conventional in vitro assays, and allow real-time monitoring of homotypic or heterotypic cellular interactions. Microfluidic culture platforms enable new assay designs for culturing multiple different cell populations and∕or tissue specimens under controlled user-defined conditions. Applications include fundamental studies of cell population behaviors, high-throughput drug screening, and tissue engineering. In this review, we summarize recent developments in this field along with studies of heterotypic cell-cell interactions and tissue specimen culture in microfluidic devices from our own laboratory. PMID:21522496

  16. Free-zone electrophoresis of animal cells. 1: Experiments on cell-cell interactions

    NASA Technical Reports Server (NTRS)

    Todd, P. W.; Hjerten, S.

    1985-01-01

    The electrophoretically migrating zones wasa monitored. The absence of fluid flows in the direction of migration permits direct measurement of electrophoretic velocities of any material. Sedimentation is orthogonal to electrokinetic motion and the effects of particle-particle interaction on electrophoretic mobility is studied by free zone electrophoresis. Fixed erythrocytes at high concentrations, mixtures of fixed erythrocytes from different animal species, and mixtures of cultured human cells were studied in low ionic strength buffers. The electrophoretic velocity of fixed erythrocytes was not altered by increasing cell concentration or by the mixing of erythrocytes from different species. When zones containing cultured human glial cells and neuroblastoma cells are permitted to interact during electrophoresis, altered migration patterns occur. It is found that cell-cell interactions depends upon cell type.

  17. Cell-cell signaling and adhesion in phagocytosis and early development of Dictyostelium.

    PubMed

    Bracco, E; Pergolizzi, B; Peracino, B; Ponte, E; Balbo, A; Mai, A; Ceccarelli, A; Bozzaro, S

    2000-01-01

    Cell-cell signaling and adhesion regulate transition from the unicellular to the multicellular stage of development in the cellular slime mold Dictyostelium. Essential gene networks involved in these processes have been identified and their interplay dissected. Heterotrimeric G protein-linked signal transduction plays a key role in regulating expression of genes mediating chemotaxis or cell adhesion, as well as coordinating actin-based cell motility during phagocytosis and chemotaxis. Two classes of cell adhesion molecules, one cadherin-like and the second belonging to the IgG superfamily, contribute to the strength of adhesion in Dictyostelium aggregates. The developmental role of genes involved in motility and adhesion, and their degree of redundancy, have been re-assessed by using novel developmental assay conditions which are closer to development in nature. PMID:11061438

  18. Flocculation protein structure and cell-cell adhesion mechanism in Saccharomyces cerevisiae.

    PubMed

    Goossens, Katty; Willaert, Ronnie

    2010-11-01

    Cell-cell adhesion occurs in a broad spectrum of biological processes, of which yeast flocculation is an area of interest for evolutionary scientists to brewers and winemakers. The flocculation mechanism is based on a lectin-carbohydrate interaction but is not yet fully understood, although the first model dates back to the 1950s. This review will update the current understanding of the complex mechanism behind yeast flocculation. Moreover, modern technologies to measure the forces involved in single carbohydrate-lectin interactions, are discussed. The Flo1 protein has been extensively described as the protein responsible for strong flocculation. Recently, more research has been directed to the detailed analysis of this flocculin. Due to the advances in the field of bioinformatics, more information about Flo1p could be obtained via structurally or functionally related proteins. Here, we review the current knowledge of the Flo1 protein, with a strong emphasis towards its structure.

  19. [Direct cell-cell communications and social behavior of cells in mammals, protists, and bacteria. Possible causes of multicellularity].

    PubMed

    Brodskiĭ, V Ia

    2009-01-01

    Comparison of current data on direct cell-cell communications in mammals, protists, and bacteria suggests that the emergence of the signaling systems of self-organization underlay the emergence of multicellular organisms. Biogenic amines, regulators of coordinated behavior and aggregation in bacteria, have been found in protists and multicellular organisms. In metazoans, biogenic amines have become specific neurotransmitters. At the same time, the studies on synchronization of protein synthesis rhythm in mammalian cell cultures demonstrated that noradrenaline and serotonin have conserved their ancient function of cell-cell cooperation in mammals, which is manifested as coordinated social behavior of cells in population in the case of bacteria and multicellular organisms.

  20. Homeostatic Interplay between Bacterial Cell-Cell Signaling and Iron in Virulence

    PubMed Central

    Hazan, Ronen; He, Jianxin; Xiao, Gaoping; Dekimpe, Valérie; Apidianakis, Yiorgos; Lesic, Biliana; Astrakas, Christos; Déziel, Eric; Lépine, François; Rahme, Laurence G.

    2010-01-01

    Pathogenic bacteria use interconnected multi-layered regulatory networks, such as quorum sensing (QS) networks to sense and respond to environmental cues and external and internal bacterial cell signals, and thereby adapt to and exploit target hosts. Despite the many advances that have been made in understanding QS regulation, little is known regarding how these inputs are integrated and processed in the context of multi-layered QS regulatory networks. Here we report the examination of the Pseudomonas aeruginosa QS 4-hydroxy-2-alkylquinolines (HAQs) MvfR regulatory network and determination of its interaction with the QS acyl-homoserine-lactone (AHL) RhlR network. The aim of this work was to elucidate paradigmatically the complex relationships between multi-layered regulatory QS circuitries, their signaling molecules, and the environmental cues to which they respond. Our findings revealed positive and negative homeostatic regulatory loops that fine-tune the MvfR regulon via a multi-layered dependent homeostatic regulation of the cell-cell signaling molecules PQS and HHQ, and interplay between these molecules and iron. We discovered that the MvfR regulon component PqsE is a key mediator in orchestrating this homeostatic regulation, and in establishing a connection to the QS rhlR system in cooperation with RhlR. Our results show that P. aeruginosa modulates the intensity of its virulence response, at least in part, through this multi-layered interplay. Our findings underscore the importance of the homeostatic interplay that balances competition within and between QS systems via cell-cell signaling molecules and environmental cues in the control of virulence gene expression. Elucidation of the fine-tuning of this complex relationship offers novel insights into the regulation of these systems and may inform strategies designed to limit infections caused by P. aeruginosa and related human pathogens. PMID:20300606

  1. Micropatterned cell-cell interactions enable functional encapsulation of primary hepatocytes in hydrogel microtissues.

    PubMed

    Li, Cheri Y; Stevens, Kelly R; Schwartz, Robert E; Alejandro, Brian S; Huang, Joanne H; Bhatia, Sangeeta N

    2014-08-01

    Drug-induced liver injury is a major cause of drug development failures and postmarket withdrawals. In vitro models that incorporate primary hepatocytes have been shown to be more predictive than model systems which rely on liver microsomes or hepatocellular carcinoma cell lines. Methods to phenotypically stabilize primary hepatocytes ex vivo often rely on mimicry of hepatic microenvironmental cues such as cell-cell interactions and cell-matrix interactions. In this work, we sought to incorporate phenotypically stable hepatocytes into three-dimensional (3D) microtissues, which, in turn, could be deployed in drug-screening platforms such as multiwell plates and diverse organ-on-a-chip devices. We first utilize micropatterning on collagen I to specify cell-cell interactions in two-dimensions, followed by collagenase digestion to produce well-controlled aggregates for 3D encapsulation in polyethylene glycol (PEG) diacrylate. Using this approach, we examined the influence of homotypic hepatocyte interactions and composition of the encapsulating hydrogel, and achieved the maintenance of liver-specific function for over 50 days. Optimally preaggregated structures were subsequently encapsulated using a microfluidic droplet-generator to produce 3D microtissues. Interactions of engineered hepatic microtissues with drugs was characterized by flow cytometry, and yielded both induction of P450 enzymes in response to prototypic small molecules and drug-drug interactions that give rise to hepatotoxicity. Collectively, this study establishes a pipeline for the manufacturing of 3D hepatic microtissues that exhibit stabilized liver-specific functions and can be incorporated into a wide array of emerging drug development platforms.

  2. Extracellular Matrix Ligand and Stiffness Modulate Immature Nucleus Pulposus Cell-Cell Interactions

    PubMed Central

    Gilchrist, Christopher L.; Darling, Eric M.; Chen, Jun; Setton, Lori A.

    2011-01-01

    The nucleus pulposus (NP) of the intervertebral disc functions to provide compressive load support in the spine, and contains cells that play a critical role in the generation and maintenance of this tissue. The NP cell population undergoes significant morphological and phenotypic changes during maturation and aging, transitioning from large, vacuolated immature cells arranged in cell clusters to a sparse population of smaller, isolated chondrocyte-like cells. These morphological and organizational changes appear to correlate with the first signs of degenerative changes within the intervertebral disc. The extracellular matrix of the immature NP is a soft, gelatinous material containing multiple laminin isoforms, features that are unique to the NP relative to other regions of the disc and that change with aging and degeneration. Based on this knowledge, we hypothesized that a soft, laminin-rich extracellular matrix environment would promote NP cell-cell interactions and phenotypes similar to those found in immature NP tissues. NP cells were isolated from porcine intervertebral discs and cultured in matrix environments of varying mechanical stiffness that were functionalized with various matrix ligands; cellular responses to periods of culture were assessed using quantitative measures of cell organization and phenotype. Results show that soft (<720 Pa), laminin-containing extracellular matrix substrates promote NP cell morphologies, cell-cell interactions, and proteoglycan production in vitro, and that this behavior is dependent upon both extracellular matrix ligand and substrate mechanical properties. These findings indicate that NP cell organization and phenotype may be highly sensitive to their surrounding extracellular matrix environment. PMID:22087260

  3. Modelling of Yeast Mating Reveals Robustness Strategies for Cell-Cell Interactions.

    PubMed

    Chen, Weitao; Nie, Qing; Yi, Tau-Mu; Chou, Ching-Shan

    2016-07-01

    Mating of budding yeast cells is a model system for studying cell-cell interactions. Haploid yeast cells secrete mating pheromones that are sensed by the partner which responds by growing a mating projection toward the source. The two projections meet and fuse to form the diploid. Successful mating relies on precise coordination of dynamic extracellular signals, signaling pathways, and cell shape changes in a noisy background. It remains elusive how cells mate accurately and efficiently in a natural multi-cell environment. Here we present the first stochastic model of multiple mating cells whose morphologies are driven by pheromone gradients and intracellular signals. Our novel computational framework encompassed a moving boundary method for modeling both a-cells and α-cells and their cell shape changes, the extracellular diffusion of mating pheromones dynamically coupled with cell polarization, and both external and internal noise. Quantification of mating efficiency was developed and tested for different model parameters. Computer simulations revealed important robustness strategies for mating in the presence of noise. These strategies included the polarized secretion of pheromone, the presence of the α-factor protease Bar1, and the regulation of sensing sensitivity; all were consistent with data in the literature. In addition, we investigated mating discrimination, the ability of an a-cell to distinguish between α-cells either making or not making α-factor, and mating competition, in which multiple a-cells compete to mate with one α-cell. Our simulations were consistent with previous experimental results. Moreover, we performed a combination of simulations and experiments to estimate the diffusion rate of the pheromone a-factor. In summary, we constructed a framework for simulating yeast mating with multiple cells in a noisy environment, and used this framework to reproduce mating behaviors and to identify strategies for robust cell-cell interactions. PMID

  4. Modelling of Yeast Mating Reveals Robustness Strategies for Cell-Cell Interactions

    PubMed Central

    Chen, Weitao; Nie, Qing; Yi, Tau-Mu; Chou, Ching-Shan

    2016-01-01

    Mating of budding yeast cells is a model system for studying cell-cell interactions. Haploid yeast cells secrete mating pheromones that are sensed by the partner which responds by growing a mating projection toward the source. The two projections meet and fuse to form the diploid. Successful mating relies on precise coordination of dynamic extracellular signals, signaling pathways, and cell shape changes in a noisy background. It remains elusive how cells mate accurately and efficiently in a natural multi-cell environment. Here we present the first stochastic model of multiple mating cells whose morphologies are driven by pheromone gradients and intracellular signals. Our novel computational framework encompassed a moving boundary method for modeling both a-cells and α-cells and their cell shape changes, the extracellular diffusion of mating pheromones dynamically coupled with cell polarization, and both external and internal noise. Quantification of mating efficiency was developed and tested for different model parameters. Computer simulations revealed important robustness strategies for mating in the presence of noise. These strategies included the polarized secretion of pheromone, the presence of the α-factor protease Bar1, and the regulation of sensing sensitivity; all were consistent with data in the literature. In addition, we investigated mating discrimination, the ability of an a-cell to distinguish between α-cells either making or not making α-factor, and mating competition, in which multiple a-cells compete to mate with one α-cell. Our simulations were consistent with previous experimental results. Moreover, we performed a combination of simulations and experiments to estimate the diffusion rate of the pheromone a-factor. In summary, we constructed a framework for simulating yeast mating with multiple cells in a noisy environment, and used this framework to reproduce mating behaviors and to identify strategies for robust cell-cell interactions. PMID

  5. Minimally invasive transforaminal lumbosacral interbody fusion.

    PubMed

    Chang, Peng-Yuan; Wang, Michael Y

    2016-07-01

    In minimally invasive spinal fusion surgery, transforaminal lumbar (sacral) interbody fusion (TLIF) is one of the most common procedures that provides both anterior and posterior column support without retraction or violation to the neural structure. Direct and indirect decompression can be done through this single approach. Preoperative plain radiographs and MR scan should be carefully evaluated. This video demonstrates a standard approach for how to perform a minimally invasive transforaminal lumbosacral interbody fusion. The video can be found here: https://youtu.be/bhEeafKJ370 . PMID:27364426

  6. Design of Fusion Safety Data Base

    NASA Astrophysics Data System (ADS)

    Aoki, Isao; Seki, Yasushi

    1994-03-01

    This report presents a data base architecture with its circumstance which is designed to be used for safety design and analysis studies. Design of Fusion Safety Data Base has been carried out to take into account a great number of published references on operation and control of fusion energy and engineering features to secure safety of fusion devices. Data Base of Fiscal Year 1993 - which has been established over an extended year - realized on PC (Personal Computer) peripherals is reported. The concept of data base architecture with its attributive issues and a manipulating way for users are also shown.

  7. Cold-fusion television show angers APS

    NASA Astrophysics Data System (ADS)

    Cartwright, Jon

    2009-06-01

    Cold fusion has been controversial since its inception on 23 March 1989, when chemists Martin Fleischmann and Stanley Pons at the University of Utah in the US announced that they had achieved a sustained nuclear-fusion reaction at room temperature. Two decades on, a US television documentary about the field has stirred up fresh debate after it linked the American Physical Society (APS) to an evaluation of some cold-fusion results by Robert Duncan, a physicist and vice chancellor of the University of Missouri.

  8. Fusion Utility in the Knudsen Layer

    SciTech Connect

    Davidovits, Seth; Fisch, Nathaniel J.

    2014-08-01

    In inertial confi nement fusion, the loss of fast ions from the edge of the fusing hot-spot region reduces the reactivity below its Maxwellian value. The loss of fast ions may be pronounced because of the long mean free paths of fast ions, compared to those of thermal ions. We introduce a fusion utility function to demonstrate essential features of this Knudsen layer e ffect, in both magnetized and unmagnetized cases. The fusion utility concept is also used to evaluate restoring the reactivity in the Knudsen layer by manipulating fast ions in phase space using waves.

  9. IPFR: Integrated Pool Fusion Reactor concept

    SciTech Connect

    Sze, D.K.

    1986-01-01

    The IPFR (Integrated Pool Fusion Reactor) concept is to place a fusion reactor into a pool of molten Flibe. The Flibe will serve the multiple functions of breeding, cooling, shielding, and moderating. Therefore, the only structural material between the superconducting magnets and the plasma is the first wall. The first wall is a stand-alone structure with no coolant connection and is cooled by Flibe at the atmospheric pressure. There is also no need of the primary coolant loop. The design is expected to improve the safety, reliability, and maintainability aspects of the fusion system.

  10. Fusion utility in the Knudsen layer

    SciTech Connect

    Davidovits, Seth; Fisch, Nathaniel J.

    2014-09-15

    In inertial confinement fusion, the loss of fast ions from the edge of the fusing hot-spot region reduces the reactivity below its Maxwellian value. The loss of fast ions may be pronounced because of the long mean free paths of fast ions, compared with those of thermal ions. We introduce a fusion utility function to demonstrate essential features of this Knudsen layer effect, in both magnetized and unmagnetized cases. The fusion utility concept is also used to evaluate the restoring reactivity in the Knudsen layer by manipulating fast ions in phase space using waves.

  11. Visualizing new dimensions in Drosophila myoblast fusion

    PubMed Central

    Richardson, Brian; Beckett, Karen; Baylies, Mary

    2009-01-01

    Summary Over several years, genetic studies in the model system, Drosophila melanogastor, have uncovered genes that when mutated, lead to a block in myoblast fusion. Analyses of these gene products have suggested that Arp2/3-mediated regulation of the actin cytoskeleton is crucial to myoblast fusion in the fly. Recent advances in imaging in Drosophila embryos, both in fixed and live preparations, have led to a new appreciation of both the three-dimensional organization of the somatic mesoderm and the cell biology underlying myoblast fusion. PMID:18404690

  12. Protoplasts from Acetabularia: isolation and fusion.

    PubMed

    Primke, M; Berger, S; Schweiger, H G

    1978-04-01

    Protoplasts were isolated from cells of Acetabularia cliftonii, which are presumed to be haploid. The release of the protoplasts occurred after treatment of the cells with papain or proteinase K. They are genuine protoplasts since they contain a nucleus. Fusion was initiated by mechanically pushing together two protoplasts. Under these conditions, the efficiency of fusion was more than 90% within 30 minutes at room temperature. Haploid cells from one cyst, i.e., cells which eventually would have formed gametes of the same mating type, exhibit a greater propensity for fusion as compared to haploid cells from different cysts.

  13. The dengue virus type 2 envelope protein fusion peptide is essential for membrane fusion

    SciTech Connect

    Huang, Claire Y.-H.; Butrapet, Siritorn; Moss, Kelly J.; Childers, Thomas; Erb, Steven M.; Calvert, Amanda E.; Silengo, Shawn J.; Kinney, Richard M.; Blair, Carol D.; Roehrig, John T.

    2010-01-20

    The flaviviral envelope (E) protein directs virus-mediated membrane fusion. To investigate membrane fusion as a requirement for virus growth, we introduced 27 unique mutations into the fusion peptide of an infectious cDNA clone of dengue 2 virus and recovered seven stable mutant viruses. The fusion efficiency of the mutants was impaired, demonstrating for the first time the requirement for specific FP AAs in optimal fusion. Mutant viruses exhibited different growth kinetics and/or genetic stabilities in different cell types and adult mosquitoes. Virus particles could be recovered following RNA transfection of cells with four lethal mutants; however, recovered viruses could not re-infect cells. These viruses could enter cells, but internalized virus appeared to be retained in endosomal compartments of infected cells, thus suggesting a fusion blockade. Mutations of the FP also resulted in reduced virus reactivity with flavivirus group-reactive antibodies, confirming earlier reports using virus-like particles.

  14. Basics of Fusion-Fissison Research Facility (FFRF) as a Fusion Neutron Source

    SciTech Connect

    Leonid E. Zakharov

    2011-06-03

    FFRF, standing for the Fusion-Fission Research Facility represents an option for the next step project of ASIPP (Hefei, China) aiming to a first fusion-fission multifunctional device [1]. FFRF strongly relies on new, Lithium Wall Fusion plasma regimes, the development of which has already started in the US and China. With R/a=4/1m/m, Ipl=5 MA, Btor=4-6 T, PDT=50- 100 MW, Pfission=80-4000MW, 1 m thick blanket, FFRF has a unique fusion mission of a stationary fusion neutron source. Its pioneering mission of merging fusion and fission consists in accumulation of design, experimental, and operational data for future hybrid applications.

  15. EDITORIAL: Safety aspects of fusion power plants

    NASA Astrophysics Data System (ADS)

    Kolbasov, B. N.

    2007-07-01

    This special issue of Nuclear Fusion contains 13 informative papers that were initially presented at the 8th IAEA Technical Meeting on Fusion Power Plant Safety held in Vienna, Austria, 10-13 July 2006. Following recommendation from the International Fusion Research Council, the IAEA organizes Technical Meetings on Fusion Safety with the aim to bring together experts to discuss the ongoing work, share new ideas and outline general guidance and recommendations on different issues related to safety and environmental (S&E) aspects of fusion research and power facilities. Previous meetings in this series were held in Vienna, Austria (1980), Ispra, Italy (1983), Culham, UK (1986), Jackson Hole, USA (1989), Toronto, Canada (1993), Naka, Japan (1996) and Cannes, France (2000). The recognized progress in fusion research and technology over the last quarter of a century has boosted the awareness of the potential of fusion to be a practically inexhaustible and clean source of energy. The decision to construct the International Thermonuclear Experimental Reactor (ITER) represents a landmark in the path to fusion power engineering. Ongoing activities to license ITER in France look for an adequate balance between technological and scientific deliverables and complying with safety requirements. Actually, this is the first instance of licensing a representative fusion machine, and it will very likely shape the way in which a more common basis for establishing safety standards and policies for licensing future fusion power plants will be developed. Now that ITER licensing activities are underway, it is becoming clear that the international fusion community should strengthen its efforts in the area of designing the next generations of fusion power plants—demonstrational and commercial. Therefore, the 8th IAEA Technical Meeting on Fusion Safety focused on the safety aspects of power facilities. Some ITER-related safety issues were reported and discussed owing to their potential

  16. Alternative approaches to fusion. [reactor design and reactor physics for Tokamak fusion reactors

    NASA Technical Reports Server (NTRS)

    Roth, R. J.

    1976-01-01

    The limitations of the Tokamak fusion reactor concept are discussed and various other fusion reactor concepts are considered that employ the containment of thermonuclear plasmas by magnetic fields (i.e., stellarators). Progress made in the containment of plasmas in toroidal devices is reported. Reactor design concepts are illustrated. The possibility of using fusion reactors as a power source in interplanetary space travel and electric power plants is briefly examined.

  17. FusionDB: a database for in-depth analysis of prokaryotic gene fusion events.

    PubMed

    Suhre, Karsten; Claverie, Jean-Michel

    2004-01-01

    FusionDB (http://igs-server.cnrs-mrs.fr/FusionDB/) constitutes a resource dedicated to in-depth analysis of bacterial and archaeal gene fusion events. Such events can provide the 'Rosetta stone' in the search for potential protein-protein interactions, as well as metabolic and regulatory networks. However, the false positive rate of this approach may be quite high, prompting a detailed scrutiny of putative gene fusion events. FusionDB readily provides much of the information required for that task. Moreover, FusionDB extends the notion of gene fusion from that of a single gene to that of a family of genes by assembling pairs of genes from different genomes that belong to the same Cluster of Orthogonal Groups (COG). Multiple sequence alignments and phylogenetic tree reconstruction for the N- and C-terminal parts of these 'COG fusion' events are provided to distinguish single and multiple fusion events from cases of gene fission, pseudogenes and other false positives. Finally, gene fusion events with matches to known structures of heterodimers in the Protein Data Bank (PDB) are identified and may be visualized. FusionDB is fully searchable with access to sequence and alignment data at all levels. A number of different scores are provided to easily differentiate 'real' from 'questionable' cases, especially when larger database searches are performed. FusionDB is cross-linked with the 'Phylogenomic Display of Bacterial Genes' (PhydBac) online web server. Together, these servers provide the complete set of information required for in-depth analysis of non-homology-based gene function attribution. PMID:14681411

  18. FusionDB: a database for in-depth analysis of prokaryotic gene fusion events.

    PubMed

    Suhre, Karsten; Claverie, Jean-Michel

    2004-01-01

    FusionDB (http://igs-server.cnrs-mrs.fr/FusionDB/) constitutes a resource dedicated to in-depth analysis of bacterial and archaeal gene fusion events. Such events can provide the 'Rosetta stone' in the search for potential protein-protein interactions, as well as metabolic and regulatory networks. However, the false positive rate of this approach may be quite high, prompting a detailed scrutiny of putative gene fusion events. FusionDB readily provides much of the information required for that task. Moreover, FusionDB extends the notion of gene fusion from that of a single gene to that of a family of genes by assembling pairs of genes from different genomes that belong to the same Cluster of Orthogonal Groups (COG). Multiple sequence alignments and phylogenetic tree reconstruction for the N- and C-terminal parts of these 'COG fusion' events are provided to distinguish single and multiple fusion events from cases of gene fission, pseudogenes and other false positives. Finally, gene fusion events with matches to known structures of heterodimers in the Protein Data Bank (PDB) are identified and may be visualized. FusionDB is fully searchable with access to sequence and alignment data at all levels. A number of different scores are provided to easily differentiate 'real' from 'questionable' cases, especially when larger database searches are performed. FusionDB is cross-linked with the 'Phylogenomic Display of Bacterial Genes' (PhydBac) online web server. Together, these servers provide the complete set of information required for in-depth analysis of non-homology-based gene function attribution.

  19. Complex Spectra in Fusion Plasmas

    NASA Astrophysics Data System (ADS)

    von Hellermann, M. G.; Bertschinger, G.; Biel, W.; Giroud, C.; Jaspers, R.; Jupen, C.; Marchuk, O.; O'Mullane, M.; Summers, H. P.; Whiteford, A.; Zastrow, K.-D.

    2005-01-01

    The need for quantitative evaluation of complex line emission spectra as observed in hot fusion plasmas initiated a challenging development of sophisticated interpretation tools based on integrating advanced atomic modelling with detailed treatment of the plasma environment. The successful merging of the two worlds has led to routine diagnostic procedures which have contributed enormously to the understanding of underlying plasma processes and also to a wide acceptance of spectroscopy as a reliable diagnostic method. In this paper three characteristic types of spectra of current and continuing interest are presented. The first is that of medium/heavy species with many ionisation stages revealed in survey VUV and XUV spectra. Such species occur as control gases, as wall materials, as ablated heavy species and possible as layered wall dopants for monitoring erosion. The spectra are complex with line-like and quasi-continuum regions and are amenable to advanced `pattern recognition' methods. The second type is of few electron, highly ionised systems observed as line-of-sight integrated passive emission spectra in the soft x-ray region. They are analysed successfully in terms of plasma parameters through matching of observation with predicted synthetic spectra. Examples used here include highly resolved helium-like emission spectra of argon, iron and titanium observed on the tokamaks TEXTOR and Tore Supra. The third type, and the emphasis of this work, comprises spectra linked to active beam spectroscopy, that is, charge exchange recombination spectroscopy (CXRS) and beam emission spectroscopy (BES). In this case, a complex spectrum is again composed of a (usually) dominating active spectrum and an underlying passive emission spectrum. Its analysis requires modelling of both active and passive features. Examples used here are from the CXRS diagnostic at JET and TEXTOR. They display characteristic features of the main light impurity ions (C+6, He+2, N+7, Ne+10 and Ar+18

  20. Medical image fusion by wavelet transform modulus maxima

    NASA Astrophysics Data System (ADS)

    Guihong, Qu; Dali, Zhang; Pingfan, Yan

    2001-08-01

    Medical image fusion has been used to derive useful information from multimodality medical image data. In this research, we propose a novel method for multimodality medical image fusion. Using wavelet transform, we achieved a fusion scheme. Afusion rule is proposed and used for calculating the wavelet transformation modulus maxima of input images at different bandwidths and levels. To evaluate the fusion result, a metric based on mutual information (MI) is presented for measuring fusion effect. The performances of other two methods of image fusion based on wavelet transform are briefly described for comparison. The experiment results demonstrate the effectiveness of the fusion scheme.

  1. A New Approach to Image Fusion Based on Cokriging

    NASA Technical Reports Server (NTRS)

    Memarsadeghi, Nargess; LeMoigne, Jacqueline; Mount, David M.; Morisette, Jeffrey T.

    2005-01-01

    We consider the image fusion problem involving remotely sensed data. We introduce cokriging as a method to perform fusion. We investigate the advantages of fusing Hyperion with ALI. The evaluation is performed by comparing the classification of the fused data with that of input images and by calculating well-chosen quantitative fusion quality metrics. We consider the Invasive Species Forecasting System (ISFS) project as our fusion application. The fusion of ALI with Hyperion data is studies using PCA and wavelet-based fusion. We then propose utilizing a geostatistical based interpolation method called cokriging as a new approach for image fusion.

  2. Bibliography of fusion product physics in tokamaks

    SciTech Connect

    Hively, L. M.; Sigmar, D. J.

    1989-09-01

    Almost 700 citations have been compiled as the first step in reviewing the recent research on tokamak fusion product effects in tokamaks. The publications are listed alphabetically by the last name of the first author and by subject category.

  3. Multisensor data fusion for integrated maritime surveillance

    NASA Astrophysics Data System (ADS)

    Premji, A.; Ponsford, A. M.

    1995-01-01

    A prototype Integrated Coastal Surveillance system has been developed on Canada's East Coast to provide effective surveillance out to and beyond the 200 nautical mile Exclusive Economic Zone. The system has been designed to protect Canada's natural resources, and to monitor and control the coastline for smuggling, drug trafficking, and similar illegal activity. This paper describes the Multiple Sensor - Multiple Target data fusion system that has been developed. The fusion processor has been developed around the celebrated Multiple Hypothesis Tracking algorithm which accommodates multiple targets, new targets, false alarms, and missed detections. This processor performs four major functions: plot-to-track association to form individual radar tracks; fusion of radar tracks with secondary sensor reports; track identification and tagging using secondary reports; and track level fusion to form common tracks. Radar data from coherent and non-coherent radars has been used to evaluate the performance of the processor. This paper presents preliminary results.

  4. 1995 International Sherwood Fusion Theory Conference

    SciTech Connect

    1995-07-01

    This book is a guide to the 1995 International Sherwood Fusion Theory Conference. It consists largely of abstracts of the oral and poster presentations that were to be made, and gives some general information about the conference and its schedule.

  5. Gasdynamic Mirror (GDM) Fusion Propulsion Engine Experiment

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The Gasdynamic Mirror, or GDM, is an example of a magnetic mirror-based fusion propulsion system. Its design is primarily consisting of a long slender solenoid surrounding a vacuum chamber that contains plasma. The bulk of the fusion plasma is confined by magnetic field generated by a series of toroidal-shaped magnets in the center section of the device. the purpose of the GDM Fusion Propulsion Experiment is to confirm the feasibility of the concept and to demonstrate many of the operational characteristics of a full-size plasma can be confined within the desired physical configuration and still reman stable. This image shows an engineer from Propulsion Research Technologies Division at Marshall Space Flight Center inspecting solenoid magnets-A, an integrate part of the Gasdynamic Mirror Fusion Propulsion Engine Experiment.

  6. Research on compressive fusion by multiwavelet transform

    NASA Astrophysics Data System (ADS)

    Yang, Senlin; Wan, Guobin; Li, Yuanyuan; Zhao, Xiaoxia; Chong, Xin

    2014-02-01

    A new strategy for images fusion is developed on the basis of block compressed sensing (BCS) and multiwavelet transform (MWT). Since the BCS with structured random matrix requires small memory space and enables fast computation, firstly, the images with large amounts of data can be compressively sampled into block images for fusion. Secondly, taking full advantages of multiwavelet such as symmetry, orthogonality, short support, and a higher number of vanishing moments, the compressive sampling of block images can be better described by MWT transform. Then the compressive measurements are fused with a linear weighting strategy based on MWT decomposition. And finally, the fused compressive samplings are reconstructed by the smoothed projection Landweber algorithm, with consideration of blocking artifacts. Experiment result shows that the validity of proposed method. Simultaneously, field test indicates that the compressive fusion can give similar resolution with traditional MWT fusion.

  7. Magnetic mirror fusion: status and prospects

    SciTech Connect

    Post, R.F.

    1980-02-11

    Two improved mirror systems, the tandem mirror (TM) and the field-reversed mirror (FRM) are being intensively studied. The twin practical aims of these studies: to improve the economic prospects for mirror fusion power plants and to reduce the size and/or complexity of such plants relative to earlier approaches to magnetic fusion. While at the present time the program emphasis is still strongly oriented toward answering scientific questions, the emphasis is shifting as the data accumulates and as larger facilities - ones with a heavy technological and engineering orientation - are being prepared. The experimental and theoretical progress that led to the new look in mirror fusion research is briefly reviewed, the new TM and the FRM ideas are outlined, and the projected future course of mirror fusion research is discussed.

  8. [Fusion implants of carbon fiber reinforced plastic].

    PubMed

    Früh, H J; Liebetrau, A; Bertagnoli, R

    2002-05-01

    Carbon fiber reinforced plastics (CFRP) are used in the medical field when high mechanical strength, innovative design, and radiolucency (see spinal fusion implants) are needed. During the manufacturing process of the material CFRP carbon fibers are embedded into a resin matrix. This resin material could be thermoset (e.g., epoxy resin EPN/DDS) or thermoplastic (e.g., PEAK). CFRP is biocompatible, radiolucent, and has higher mechanical capabilities compared to other implant materials. This publication demonstrates the manufacturing process of fusion implants made of a thermoset matrix system using a fiber winding process. The material has been used clinically since 1994 for fusion implants of the cervical and lumbar spine. The results of the fusion systems CORNERSTONE-SR C (cervical) and UNION (lumbar) showed no implant-related complications. New implant systems made of this CFRP material are under investigation and are presented.

  9. Perspectives on Magnetized Target Fusion Power Plants

    NASA Astrophysics Data System (ADS)

    Miller, R. L.

    2007-06-01

    One approach to Magnetized Target Fusion (MTF) builds upon the ongoing experimental effort (FRX-L) to generate a Field Reversed Configuration (FRC) target plasma suitable for translation and cylindrical-liner (i.e., converging flux conserver) implosion. Numerical modeling is underway to elucidate key performance drivers for possible future power-plant extrapolations. The fusion gain, Q (ratio of DT fusion yield to the sum of initial liner kinetic energy plus plasma formation energy), sets the power-plant duty cycle for a nominal design electric power [ e.g. 1,000 MWe(net)]. A pulsed MTF power plant of this type derives from the historic Fast Liner Reactor (FLR) concept and shares attributes with the recent Inertial Fusion Energy (IFE) Z-pinch and laser-driven pellet HYLIFE-II conceptual designs.

  10. Melanoma detection algorithm based on feature fusion.

    PubMed

    Barata, Catarina; Emre Celebi, M; Marques, Jorge S

    2015-08-01

    A Computer Aided-Diagnosis (CAD) System for melanoma diagnosis usually makes use of different types of features to characterize the lesions. The features are often combined into a single vector that can belong to a high dimensional space (early fusion). However, it is not clear if this is the optimal strategy and works on other fields have shown that early fusion has some limitations. In this work, we address this issue and investigate which is the best approach to combine different features comparing early and late fusion. Experiments carried on the datasets PH2 (single source) and EDRA (multi source) show that late fusion performs better, leading to classification scores of Sensitivity = 98% and Specificity = 90% (PH(2)) and Sensitivity = 83% and Specificity = 76% (EDRA). PMID:26736837

  11. [Recent Advances of Biomechanical Studies on Cervical Fusion and Non-fusion Surgery].

    PubMed

    Liao, Zhenhua; Liu, Weiqiang

    2016-02-01

    This article reviews the progress of biomechanical studies on anterior cervical fusion and non-fusion surgery in recent years. The similarities and differences between animal and human cervical spines as well as the major three biomechanical test methods are introduced. Major progresses of biomechanical evaluation in anterior cervical fusion and non-fusion devices, hybrid surgery, coupled motion and biomechanical parameters, such as the instant center of rotation, are classified and summarized. Future development of loading method, multilevel hybrid surgery and coupling character are also discussed. PMID:27382760

  12. Nuclear structure and sub-barrier fusion

    SciTech Connect

    Esbensen, H. . Cyclotron Lab. Argonne National Lab., IL )

    1990-01-01

    The influence of nuclear structure on heavy-ion fusion and elastic scattering, at energies near and below the Coulomb barrier, is discussed within the coupled channels formalism. The coupled channels approach provides a consistent description of the enhancement of sub-barrier fusion and the energy dependence of the effective potential for elastic scattering. This is illustrated by comparison to the data for several systems. 48 refs., 4 figs.

  13. Antiproton catalyzed microfission/fusion propulsion

    NASA Technical Reports Server (NTRS)

    Chiang, Pi-Ren; Lewis, Raymond A.; Smith, Gerald A.; Newton, Richard; Dailey, James; Werthman, W. Lance; Chakrabarti, Suman

    1994-01-01

    Inertial confinement fusion (ICF) utilizing an antiproton catalyzed hybrid fission/fusion target is discussed as a potential energy source for interplanetary propulsion. A proof-of-principle experiment underway at Phillips Laboratory, Kirtland AFB and antiproton trapping experiments at CERN, Geneva, Switzerland, are presented. The ICAN propulsion concept is described and results of performance analyses are reviewed. Future work to further define the ICAN concept is outlined.

  14. Radar E-O image fusion

    NASA Technical Reports Server (NTRS)

    Oneil, William F.

    1993-01-01

    The fusion of radar and electro-optic (E-O) sensor images presents unique challenges. The two sensors measure different properties of the real three-dimensional (3-D) world. Forming the sensor outputs into a common format does not mask these differences. In this paper, the conditions under which fusion of the two sensor signals is possible are explored. The program currently planned to investigate this problem is briefly discussed.

  15. Fluidized wall for protecting fusion chamber walls

    DOEpatents

    Maniscalco, James A.; Meier, Wayne R.

    1982-01-01

    Apparatus for protecting the inner wall of a fusion chamber from microexplosion debris, x-rays, neutrons, etc. produced by deuterium-tritium (DT) targets imploded within the fusion chamber. The apparatus utilizes a fluidized wall similar to a waterfall comprising liquid lithium or solid pellets of lithium-ceramic, the waterfall forming a blanket to prevent damage of the structural materials of the chamber.

  16. Computational mathematics and physics of fusion reactors

    PubMed Central

    Garabedian, Paul R.

    2003-01-01

    Theory has contributed significantly to recent advances in magnetic fusion research. New configurations have been found for a stellarator experiment by computational methods. Solutions of a free-boundary problem are applied to study the performance of the plasma and look for islands in the magnetic surfaces. Mathematical analysis and numerical calculations have been used to study equilibrium, stability, and transport of optimized fusion reactors. PMID:14614129

  17. Polarimeter for the General Fusion SPECTOR machine

    NASA Astrophysics Data System (ADS)

    Carle, Patrick; Froese, Aaron; Wong, Adrian; Howard, Stephen; O'Shea, Peter; Laberge, Michel

    2016-11-01

    A polarimeter has been designed to measure Faraday rotation and help to understand the profile of its safety factor, q, on the recently built SPECTOR magnetized target fusion machine at General Fusion. The polarimeter uses two counter-rotating, circularly polarized, 118.8 μm beams to probe the plasma. Grad-Shafranov simulations have been used to investigate the effect of measurement error and chord geometry.

  18. Generic Magnetic Fusion Reactor Revisited

    NASA Astrophysics Data System (ADS)

    Sheffield, John; Milora, Stanley

    2015-11-01

    The original Generic Magnetic Fusion Reactor paper was published in 1986. This update describes what has changed in 30 years. Notably, the construction of ITER is providing important benchmark numbers for technologies and costs. In addition, we use a more conservative neutron wall flux and fluence. But these cost-increasing factors are offset by greater optimism on the thermal-electric conversion efficiency and potential availability. The main examples show the cost of electricity (COE) as a function of aspect ratio and neutron flux to the first wall. The dependence of the COE on availability, thermo-electric efficiency, electrical power output, and the present day's low interest rates is also discussed. Interestingly, at fixed aspect ratio there is a shallow minimum in the COE at neutron flux around 2.5 MW/m2. The possibility of operating with only a small COE penalty at even lower wall loadings (to 1.0 MW/m2 at larger plant size) and the use of niobium-titanium coils are also investigated. J. Sheffield was supported by ORNL subcontract 4000088999 with the University of Tennessee.

  19. ITER project and fusion technology

    NASA Astrophysics Data System (ADS)

    Takatsu, H.

    2011-09-01

    In the sessions of ITR, FTP and SEE of the 23rd IAEA Fusion Energy Conference, 159 papers were presented in total, highlighted by the remarkable progress of the ITER project: ITER baseline has been established and procurement activities have been started as planned with a target of realizing the first plasma in 2019; ITER physics basis is sound and operation scenarios and operational issues have been extensively studied in close collaboration with the worldwide physics community; the test blanket module programme has been incorporated into the ITER programme and extensive R&D works are ongoing in the member countries with a view to delivering their own modules in a timely manner according to the ITER master schedule. Good progress was also reported in the areas of a variety of complementary activities to DEMO, including Broader Approach activities and long-term technology. This paper summarizes the highlights of the papers presented in the ITR, FTP and SEE sessions with a minimum set of background information.

  20. Space-Time Data Fusion

    NASA Technical Reports Server (NTRS)

    Braverman, Amy; Nguyen, Hai; Olsen, Edward; Cressie, Noel

    2011-01-01

    Space-time Data Fusion (STDF) is a methodology for combing heterogeneous remote sensing data to optimally estimate the true values of a geophysical field of interest, and obtain uncertainties for those estimates. The input data sets may have different observing characteristics including different footprints, spatial resolutions and fields of view, orbit cycles, biases, and noise characteristics. Despite these differences all observed data can be linked to the underlying field, and therefore the each other, by a statistical model. Differences in footprints and other geometric characteristics are accounted for by parameterizing pixel-level remote sensing observations as spatial integrals of true field values lying within pixel boundaries, plus measurement error. Both spatial and temporal correlations in the true field and in the observations are estimated and incorporated through the use of a space-time random effects (STRE) model. Once the models parameters are estimated, we use it to derive expressions for optimal (minimum mean squared error and unbiased) estimates of the true field at any arbitrary location of interest, computed from the observations. Standard errors of these estimates are also produced, allowing confidence intervals to be constructed. The procedure is carried out on a fine spatial grid to approximate a continuous field. We demonstrate STDF by applying it to the problem of estimating CO2 concentration in the lower-atmosphere using data from the Atmospheric Infrared Sounder (AIRS) and the Japanese Greenhouse Gasses Observing Satellite (GOSAT) over one year for the continental US.