Science.gov

Sample records for haarp ionospheric heater

  1. Telescopic Imaging of Heater-Induced Airglow at HAARP

    DTIC Science & Technology

    2007-01-01

    03-01-2007 Final1 10-09-2003 - 10-09-2006 4. TITLE AND SUBTITLE Ba. CONTRACT NUMBER Telescopic Imaging of Heater-Induced Airglow at HAARP N00014-03-1... HAARP to optically measure fine structure in the ionosphere and to study airglow sources. In the presence of aurora and a strong blanketing E layer... HAARP was modulated at intervals of several seconds. For several cycles, small bright airglow spots were observed whenever HAARP was on. These spots

  2. HAARP-Induced Ionospheric Ducts

    SciTech Connect

    Milikh, Gennady; Vartanyan, Aram

    2011-01-04

    It is well known that strong electron heating by a powerful HF-facility can lead to the formation of electron and ion density perturbations that stretch along the magnetic field line. Those density perturbations can serve as ducts for ELF waves, both of natural and artificial origin. This paper presents observations of the plasma density perturbations caused by the HF-heating of the ionosphere by the HAARP facility. The low orbit satellite DEMETER was used as a diagnostic tool to measure the electron and ion temperature and density along the satellite orbit overflying close to the magnetic zenith of the HF-heater. Thosemore » observations will be then checked against the theoretical model of duct formation due to HF-heating of the ionosphere. The model is based on the modified SAMI2 code, and is validated by comparison with well documented experiments.« less

  3. Full-Wave Radio Characterization of Ionospheric Modification at HAARP

    DTIC Science & Technology

    2015-07-26

    Full-Wave Radio Characterization of Ionospheric Modification at HAARP We have studied electrostatic and electromagnetic turbulence stimulated by...radio receivers at HAARP in Alaska, and ground-based radio receivers, incoherent scatter radars, and in-situ measurements from Canadian, ESA, and Polish...363255 San Juan, PR 00936 -3255 31-May-2015 ABSTRACT Final Report: Full-Wave Radio Characterization of Ionospheric Modification at HAARP Report Title We

  4. Excitation of Ionospheric Alfvén Resonator with HAARP

    NASA Astrophysics Data System (ADS)

    Streltsov, A. V.; Chang, C.; Labenski, J.; Milikh, G. M.; Vartanyan, A.; Snyder, A. L.

    2011-12-01

    We report results from numerical and experimental studies of the excitation of ULF waves inside the ionospheric Alfvén resonator (IAR) by heating the ionosphere with powerful HF waves launched from the High Frequency Active Auroral Research Program (HAARP) facility in Alaska. Numerical simulations of the two-fluid MHD model describing IAR in a dipole magnetic field geometry with plasma parameters taken from the observations at HAARP during October-November 2010 experimental campaign reveal that the IAR quality is higher during night-time conditions, when the ionospheric conductivity is very low. Simulations also reveal that the resonance wave cannot be identified from the magnetic measurements on the ground or at an altitude above 600 km because the magnetic field in this wave has nodes on both ends of the resonator, and the best way to detect IAR modes is by measuring the electric field on low-Earth-orbit satellites. These theoretical predictions are in good, quantitative agreement with results from observations: In particular, 1) observations from the ground-based magnetometer at the HAARP site demonstrate no any significant difference in the amplitudes of the magnetic field generated by HAARP in the frequency range from 0 to 5 Hz, and 2) the DEMETER satellite detected the electric field of the IAR first harmonic at an altitude of 670 km above HAARP during the heating experiment.

  5. HAARP-based Investigations of Lightning-induced Nonlinearities within the D-Region Ionosphere

    NASA Astrophysics Data System (ADS)

    Moore, R. C.

    2015-12-01

    It is well-documented that energetic lightning can produce fantastical events with the lower ionosphere. Although the High-frequency Active Auroral Research Program (HAARP) transmitter is not as powerful as lightning, it can be used to investigate the nonlinear interactions that occur within the lower ionosphere, many of which also occur during lightning-induced ionospheric events. This paper presents the best experimental results obtained during D-region modification experiments performed by the University of Florida at the HAARP observatory between 2007 and 2014, including ELF/VLF wave generation experiments, wave-wave mixing experiments, and cross-modulation experiments. We emphasize the physical processes important for lightning-ionosphere interactions that can be directly investigated using HAARP.

  6. Large ionospheric disturbances produced by the HAARP HF facility

    NASA Astrophysics Data System (ADS)

    Bernhardt, Paul A.; Siefring, Carl L.; Briczinski, Stanley J.; McCarrick, Mike; Michell, Robert G.

    2016-07-01

    The enormous transmitter power, fully programmable antenna array, and agile frequency generation of the High Frequency Active Auroral Research Program (HAARP) facility in Alaska have allowed the production of unprecedented disturbances in the ionosphere. Using both pencil beams and conical (or twisted) beam transmissions, artificial ionization clouds have been generated near the second, third, fourth, and sixth harmonics of the electron gyrofrequency. The conical beam has been used to sustain these clouds for up to 5 h as opposed to less than 30 min durations produced using pencil beams. The largest density plasma clouds have been produced at the highest harmonic transmissions. Satellite radio transmissions at 253 MHz from the National Research Laboratory TACSat4 communications experiment have been severely disturbed by propagating through artificial plasma regions. The scintillation levels for UHF waves passing through artificial ionization clouds from HAARP are typically 16 dB. This is much larger than previously reported scintillations at other HF facilities which have been limited to 3 dB or less. The goals of future HAARP experiments should be to build on these discoveries to sustain plasma densities larger than that of the background ionosphere for use as ionospheric reflectors of radio signals.

  7. Future Operations of HAARP with the UAF's Geophysical Institute

    NASA Astrophysics Data System (ADS)

    McCoy, R. P.

    2015-12-01

    The High frequency Active Aurora Research Program (HAARP) in Gakona Alaska is the world's premier facility for active experimentation in the ionosphere and upper atmosphere. The ionosphere affects communication, navigation, radar and a variety of other systems depending on, or affected by, radio propagation through this region. The primary component of HAARP, the Ionospheric Research Instrument (IRI), is a phased array of 180 HF antennas spread across 33 acres and capable of radiating 3.6 MW into the upper atmosphere and ionosphere. The array is fed by five 2500 kW generators, each driven by a 3600 hp diesel engine (4 + 1 spare). Transmit frequencies are selectable in the range 2.8 to 10 MHz and complex configurations of rapidly slewed single or multiple beams are possible. HAARP was owned by the Air Force Research Laboratory (AFRL/RV) in Albuquerque, NM but recently was transferred to the Geophysical Institute of the University of Alaska Fairbanks (UAF/GI). The transfer of ownership of the facility is being implemented in stages involving a Cooperative Research and Development Agreement (CRADA) and an Educational Partnership Agreement (EPA) which are complete, and future agreements to transfer ownership of the facility land. The UAF/GI plans to operate the facility for continued ionospheric and upper atmospheric experimentation in a pay-per-use model. In their 2013 "Decadal Survey in Solar and Space Physics" the National Research Council (NRC) made the recommendation to "Fully realize the potential of ionospheric modification…" and in their 2013 Workshop Report: "Opportunities for High-Power, High-Frequency Transmitters to Advance Ionospheric/Thermospheric Research" the NRC outlined the broad range of future ionospheric, thermospheric and magnetospheric experiments that could be performed with HAARP. HAARP is contains a variety of RF and optical ionospheric diagnostic instruments to measure the effects of the heater in real time. The UAF/GI encourages the

  8. Artificial Aurora and Ionospheric Heating by HAARP

    NASA Astrophysics Data System (ADS)

    Hadavandkhani, S.; Nikouravan, Bijan; Ghazimaghrebi, F.

    2016-08-01

    A recent experiment was achieved at HAARP to study the scaling of the ionospherically generated ELF signal with power transmitted from the high frequency (HF) array. The results were in excellent agreement with computer simulations. The outcomes approving that the ELF power increases with the square of the incident HF power. This paper present a review on the situation of the ionized particles in Ionospheric layer when stimulated by artificial an ELF and VLF external high energy radio waves.

  9. Studies of the Ionospheric Turbulence Excited by the Fourth Gyroharmonic at HAARP

    NASA Astrophysics Data System (ADS)

    Milikh, G. M.; Najmi, A. C.; Mahmoudian, A.; Bernhardt, P. A.; Briczinski, S.; Siefring, C. L.; Yampolski, Y.; Alexander, K.; Sopin, A.; Zalizovski, A.; Chiang, K.; Psiaki, M. L.; Morton, Y.; Taylor, S.; Papadopoulos, K.

    2014-12-01

    We report the results of a set of experiments conducted during the HAARP June 2014 campaign, whose objective was to study the development of artificial ionospheric turbulence. During the experiments, the heating frequency was stepped up and down near the 4th gyroharmonic, and the power of the heating HF radiation was varied. Our diagnostics included: measurements of phase-derived Slant Total Electron Content using the L1/L2 signals from PRN 25 GPS satellite received at HAARP; measurements of Stimulated Electromagnetic Emission (SEE) conducted 15 km away from the HAARP site; detection of the HAARP HF radiation at Vernadsky station located in Antarctica ~15.6 Mm from HAARP; ionograms from HAARP's digisonde and reflectance data from Kodiak radar. Our observations showed: a distinct correlation between the broad upshifted maximum detected by the SEE and strong suppression of the HF signals detected at Vernadsky station; drift velocity of the ionospheric irregularities causing HF scattering detected at Vernadsky station corresponds to that measured by the Kodiak radar; the intensity of the scattered radar signals by Kodiak correlates with the amplitude of downshifted maximum observed by the SEE.

  10. Studies of the ionospheric turbulence excited by the fourth gyroharmonic at HAARP

    NASA Astrophysics Data System (ADS)

    Najmi, A.; Milikh, G.; Yampolski, Y. M.; Koloskov, A. V.; Sopin, A. A.; Zalizovski, A.; Bernhardt, P.; Briczinski, S.; Siefring, C.; Chiang, K.; Morton, Y.; Taylor, S.; Mahmoudian, A.; Bristow, W.; Ruohoniemi, M.; Papadopoulos, K.

    2015-08-01

    A study is presented of artificial ionospheric turbulence (AIT) induced by HF heating at High Frequency Active Auroral Research Program (HAARP) using frequencies close to the fourth electron gyroharmonic, in a broad range of radiated powers and using a number of different diagnostics. The diagnostics include GPS scintillations, ground-based stimulated electromagnetic emission (SEE), the HAARP ionosonde, Kodiak radar, and signals received at the Ukrainian Antarctic Station (UAS). The latter allowed analysis of waves scattered by the AIT into the ionospheric waveguide along Earth's terminator, 15.6 mm from the HAARP facility. For the first time, the amplitudes of two prominent SEE features, the downshifted maximum and broad upshifted maximum, were observed to saturate at ~50% of the maximum HAARP effective radiated power. Nonlinear effects in slant total electron content, SEE, and signals received at UAS at different transmitted frequencies and intensities of the pump wave were observed. The correlations between the data from different detectors demonstrate that the scattered waves reach UAS by the waveguide along the Earth's terminator, and that they were injected into the waveguide by scattering off of artificial striations produced by AIT above HAARP, rather than via direct injection from sidelobe radiation.

  11. Studies of High Power RF-induced Turbulence in the Ionosphere over HAARP

    NASA Astrophysics Data System (ADS)

    Sheerin, J. P.; Watkins, B. J.; Bristow, W. A.; Bernhardt, P. A.

    2016-12-01

    The HAARP phased-array HF transmitter at Gakona, AK delivers up to 3.6 GW (ERP) of HF power in the range of 2.8 - 10 MHz to the ionosphere with millisecond pointing, power modulation, and frequency agility. HAARP's unique features have enabled the conduct of a number of nonlinear plasma experiments in the interaction region of overdense ionospheric plasma including stimulated electromagnetic emissions (SEE), artificial aurora, artificial ionization layers, VLF wave-particle interactions in the magnetosphere, strong Langmuir turbulence (SLT) and suprathermal electron acceleration. Diagnostics include the Modular UHF Ionospheric Radar (MUIR) sited at HAARP, the SuperDARN-Kodiak HF radar, spacecraft radio beacons, HF receivers to record stimulated electromagnetic emissions (SEE) and telescopes and cameras for optical emissions. We report on short timescale ponderomotive overshoot effects, artificial field-aligned irregularities (AFAI), the aspect angle dependence of the intensity of the plasma line, and production of suprathermal electrons. For a narrow range of HF pointing between Spitze and magnetic zenith, a reduced threshold for AFAI is observed. Recent results of simulations of these experiments enable interpretation of many observed features. Applications are made to the study of irregularities relevant to spacecraft communication and navigation systems.

  12. "Twisted Beam" SEE Observations of Ionospheric Heating from HAARP

    NASA Astrophysics Data System (ADS)

    Briczinski, S. J.; Bernhardt, P. A.; Siefring, C. L.; Han, S.-M.; Pedersen, T. R.; Scales, W. A.

    2015-10-01

    Nonlinear interactions of high power HF radio waves in the ionosphere provide aeronomers with a unique space-based laboratory capability. The High-Frequency Active Auroral Research Program (HAARP) in Gakona, Alaska is the world's largest heating facility, yielding effective radiated powers in the gigawatt range. New results are present from HAARP experiments using a "twisted beam" excitation mode. Analysis of twisted beam heating shows that the SEE results obtained are identical to more traditional patterns. One difference in the twisted beam mode is the heating region produced is in the shape of a ring as opposed to the more traditional "solid spot" region from a pencil beam. The ring heating pattern may be more conducive to the creation of stable artificial airglow layers because of the horizontal structure of the ring. The results of these runs include artificial layer creation and evolution as pertaining to the twisted beam pattern. The SEE measurements aid the interpretation of the twisted beam interactions in the ionosphere.

  13. Artificial periodic irregularities in the high-latitude ionosphere excited by the HAARP facility

    NASA Astrophysics Data System (ADS)

    Bakhmetieva, N. V.; Grach, S. M.; Sergeev, E. N.; Shindin, A. V.; Milikh, G. M.; Siefring, C. L.; Bernhardt, P. A.; McCarrick, M.

    2016-07-01

    We present results of the new observations of artificial periodic irregularities (APIs) in the ionosphere using the High Frequency Active Auroral Research Program (HAARP) heating facility carried out in late May and early June 2014.The objective of this work is to detect API using high-latitude facility and analyze possible differences of the temporal and spatial variations of the API echoes in the high (HAARP) and middle (Sura) latitudes. Irregularities were created by the powerful wave of X mode and were sounded using the short probing pulses signals of X mode. API echoes were observed in the D, E, and F regions of the ionosphere. Amplitudes and characteristic times of the API echoes were measured. The API growth and decay times at HAARP (high latitudes) observed were similar to those at the Sura heating facility (midlatitudes).

  14. SEE Observations of Ionospheric Heating from HAARP Using Orbital Angular Momentum

    NASA Astrophysics Data System (ADS)

    Briczinski, S. J.; Bernhardt, P. A.; Siefring, C. L.

    2013-12-01

    High power HF radio waves exciting the ionosphere provide aeronomers with a unique space-based laboratory capability. The High-Frequency Active Auroral Research Program (HAARP) in Gakona, Alaksa is the world's largest heating facility, providing effective radiated powers in the gigawatt range. Experiments performed at HAARP have allowed researchers to study many non-linear effects of wave-plasma interactions. Stimulated Electromagnetic Emission (SEE) is of interest to the ionospheric community for its diagnostic purposes. Typical SEE experiments at HAARP have focused on characterizing the parametric decay of the electromagnetic pump wave into several different wave modes such as upper and lower hybrid, ion acoustic, ion-Bernstein and electron-Bernstein. These production modes have been extensively studied at HAARP using traditional beam heating patterns and SEE detection. New results are present from HAARP experiments using an excitation mode that attempts to impart orbital angular momentum (OAM) into the heating region. This OAM mode is also referred to as a 'twisted beam.' Previous analysis of twisted beam heating shows that the SEE results obtained are nearly identical to the modes without OAM. Recent twisted beam heating experiments have produced SEE modes not previously characterized. These new modes are presented and discussed. One difference in the twisted beam mode is the heating region produced is in the shape of a ring as opposed to the more traditional 'solid spot' region. The ring heating pattern may be more conducive to the creation of artificial ionization clouds. The results of these runs include artificial ionization creation and evolution as pertaining to the twisted beam pattern.

  15. Ionospheric Turbulence and the Evolution of Artificial Irregularities Excited by RF Interactions at HAARP

    NASA Astrophysics Data System (ADS)

    Sheerin, J. P.; Rayyan, N.; Watkins, B. J.; Bristow, W. A.; Bernhardt, P. A.

    2015-12-01

    The HAARP phased-array HF transmitter at Gakona, AK delivers up to 3.6 GW (ERP) of HF power in the range of 2.8 - 10 MHz to the ionosphere with millisecond pointing, power modulation, and frequency agility. HAARP's unique features have enabled the conduct of a number of nonlinear plasma experiments in the interaction region of overdense ionospheric plasma including stimulated electromagnetic emissions (SEE), artificial aurora, artificial ionization layers, VLF wave-particle interactions in the magnetosphere, strong Langmuir turbulence (SLT) and suprathermal electron acceleration. Diagnostics include the Modular UHF Ionospheric Radar (MUIR) sited at HAARP, the SuperDARN-Kodiak HF radar, spacecraft radio beacons, HF receivers to record stimulated electromagnetic emissions (SEE) and telescopes and cameras for optical emissions. We report on short timescale ponderomotive overshoot effects, artificial field-aligned irregularities (AFAI), the aspect angle dependence of the intensity of the plasma line, and suprathermal electrons. For a narrow range of HF pointing between Spitze and magnetic zenith, a reduced threshold for AFAI is observed. Applications are made to the study of irregularities relevant to spacecraft communication and navigation systems.

  16. ULF Generation by Modulated Ionospheric Heating

    NASA Astrophysics Data System (ADS)

    Chang, C.; Labenski, J.; Wallace, T.; Papadopoulos, K.

    2013-12-01

    Modulated ionospheric heating experiments designed to generate ULF waves using the HAARP heater have been conducted since 2007. Artificial ULF waves in the Pc1 frequency range were observed from space and by ground induction magnetometers located in the vicinity of the heater as well as at long distances. Two distinct generation mechanisms of artificial ULF waves were identified. The first was electroject modulation under geomagnetically disturbed conditions. The second was pressure modulation in the E and F regions of the ionosphere under quiet conditions. Ground detections of ULF waves near the heater included both Shear Alfven waves and Magnetosonic waves generated by electrojet and/or pressure modulations. Distant ULF detections involved Magnetosonic wave propagation in the Alfvenic duct with pressure modulation as the most likely source. Summary of our observations and theoretical interpretations will be presented at the meeting. We would like to acknowledge the support provided by the staff at the HAARP facility during our ULF experiments.

  17. Excitation of earth-ionosphere waveguide in the ELF and lower VLF bands by modulated ionospheric current. Technical report

    SciTech Connect

    Field, E.C.; Bloom, R.M.

    1993-05-21

    In this report the authors use the principal of reciprocity in conjunction with a full-wave propagation code to calculate ground-level fields excited by ionospheric currents modulated at frequencies between 50 and 100 Hz with HF heaters. Their results show the dependence on source orientation, altitude, and dimension and therefore pertain to experiments using the HIPAS or HAARP ionospheric heaters. In the end-fire mode, the waveguide excitation efficiency of an ELF HED in the ionosphere is up to 20 dB greater than for a ground-based antenna, provided its altitude does not exceed 80-to-90 km. The highest efficiency occurs for a sourcemore » altitude of around 70 km; if that altitude is raised to 100 km, the efficiency drops by about 20 dB in the day and 10 dB at night. That efficiency does not account for the greater conductivity modulation that might be achieved at altitudes greater than 70 km, however. The trade-off between the altitude dependencies of the excitation efficiency and maximum achievable modulation depends on the ERP of the HF heater, the optimum altitude increasing with increasing ERP. For HIPAS the best modulation altitude is around 70 km, whereas for HAARP there might be marginal value in modulating at attitudes as high as 100 Km. Ionospheric modification, Ionospheric currents, Ionospheric heating.« less

  18. Multi-angle Spectra Evolution of Langmuir Turbulence Excited by RF Ionospheric Interactions at HAARP

    NASA Astrophysics Data System (ADS)

    Sheerin, J. P.; Rayyan, N.; Watkins, B. J.; Bristow, W. A.; Spaleta, J.; Watanabe, N.; Golkowski, M.; Bernhardt, P. A.

    2013-12-01

    The high power HAARP HF transmitter is employed to generate and study strong Langmuir turbulence (SLT) in the interaction region of overdense ionospheric plasma. Diagnostics included the Modular UHF Ionospheric Radar (MUIR) sited at HAARP, the SuperDARN-Kodiak HF radar, and HF receivers to record stimulated electromagnetic emissions (SEE). Dependence of diagnostic signals on HAARP HF parameters, including pulselength, duty-cycle, aspect angle, and frequency were recorded. Short pulse, low duty cycle experiments demonstrate control of artificial field-aligned irregularities (AFAI) and isolation of ponderomotive effects. Among the effects observed and studied are: SLT spectra including cascade, collapse, and co-existence spectra and an outshifted plasma line under certain ionospheric conditions. High time resolution studies of the temporal evolution of the plasma line reveal the appearance of an overshoot effect on ponderomotive timescales. Bursty turbulence is observed in the collapse and cascade lines. For the first time, simultaneous multi-angle radar measurements of plasma line spectra are recorded demonstrating marked dependence on aspect angle with the strongest interaction region observed displaced southward of the HF zenith pointing angle. Numerous measurements of the outshifted plasma line are observed. Experimental results are compared to previous high latitude experiments and predictions from recent modeling efforts.

  19. Multi-angle Spectra Evolution of Ionospheric Turbulence Excited by RF Interactions at HAARP

    NASA Astrophysics Data System (ADS)

    Sheerin, J. P.; Rayyan, N.; Watkins, B. J.; Watanabe, N.; Golkowski, M.; Bristow, W. A.; Bernhardt, P. A.; Briczinski, S. J., Jr.

    2014-12-01

    The high power HAARP HF transmitter is employed to generate and study strong Langmuir turbulence (SLT) in the interaction region of overdense ionospheric plasma. Diagnostics included the Modular UHF Ionospheric Radar (MUIR) sited at HAARP, the SuperDARN-Kodiak HF radar, and HF receivers to record stimulated electromagnetic emissions (SEE). Dependence of diagnostic signals on HAARP HF parameters, including pulselength, duty-cycle, aspect angle, and frequency were recorded. Short pulse, low duty cycle experiments demonstrate control of artificial field-aligned irregularities (AFAI) and isolation of ponderomotive effects. For the first time, simultaneous multi-angle radar measurements of plasma line spectra are recorded demonstrating marked dependence on aspect angle with the strongest interaction region observed displaced southward of the HF zenith pointing angle. For a narrow range of HF pointing between Spitze and magnetic zenith, a reduced threshold for AFAI is observed. High time resolution studies of the temporal evolution of the plasma line reveal the appearance of an overshoot effect on ponderomotive timescales. Numerous measurements of the outshifted plasma line are observed. Experimental results are compared to previous high latitude experiments and predictions from recent modeling efforts

  20. Excitation of Earth-ionosphere waveguide in the ELF and lower VLF bands by modulated ionospheric current

    NASA Astrophysics Data System (ADS)

    Field, E. C.; Bloom, R. M.

    1993-05-01

    In this report, the principal of reciprocity is used in conjunction with a full-wave propagation code to calculate ground-level fields excited by ionospheric currents modulated at frequencies between 50 and 100 Hz with HF heaters. Results show the dependence on source orientation, altitude, and dimension and therefore pertain to experiments using the HIPAS or HAARP ionospheric heaters. In the end-fire mode, the waveguide excitation efficiency of an ELF HED in the ionosphere is up to 20 dB greater than for a ground-based antenna, provided its altitude does not exceed 80 to 90 km. The highest efficiency occurs for a source altitude of around 70 km; if that altitude is raised to 100 km, the efficiency drops by about 20 dB in the day and 10 dB at night. That efficiency does not account for the greater conductivity modulation that might be achieved at altitudes greater than 70 km, however. The trade-off between the altitude dependencies of the excitation efficiency and maximum achievable modulation depends on the ERP of the HF heater, the optimum altitude increasing with increasing ERP. For HIPAS the best modulation altitude is around 70 km, whereas for HAARP there might be marginal value in modulating at attitudes as high as 100 km.

  1. A Diagnostic System for Studying Energy Partitioning and Assessing the Response of the Ionosphere during HAARP Modification Experiments

    NASA Technical Reports Server (NTRS)

    Djuth, Frank T.; Elder, John H.; Williams, Kenneth L.

    1996-01-01

    This research program focused on the construction of several key radio wave diagnostics in support of the HF Active Auroral Ionospheric Research Program (HAARP). Project activities led to the design, development, and fabrication of a variety of hardware units and to the development of several menu-driven software packages for data acquisition and analysis. The principal instrumentation includes an HF (28 MHz) radar system, a VHF (50 MHz) radar system, and a high-speed radar processor consisting of three separable processing units. The processor system supports the HF and VHF radars and is capable of acquiring very detailed data with large incoherent scatter radars. In addition, a tunable HF receiver system having high dynamic range was developed primarily for measurements of stimulated electromagnetic emissions (SEE). A separate processor unit was constructed for the SEE receiver. Finally, a large amount of support instrumentation was developed to accommodate complex field experiments. Overall, the HAARP diagnostics are powerful tools for studying diverse ionospheric modification phenomena. They are also flexible enough to support a host of other missions beyond the scope of HAARP. Many new research programs have been initiated by applying the HAARP diagnostics to studies of natural atmospheric processes.

  2. Recent Science Campaigns at HAARP

    NASA Astrophysics Data System (ADS)

    McCoy, R. P.; Bristow, W. A.; Fallen, C. T.

    2017-12-01

    Experiments in HF ionospheric heating using the High­frequency Active Auroral Research Program (HAARP) facilities have tremendous potential for informing our investigation of the Earth's upper atmosphere, ionosphere, and magnetosphere. They provide a unique opportunity for quantifying and modeling the multi­scale coupled processes that characterize the interactions between the plasma in near­Earth space, the Earth's magnetic field, and the neutral gasses of the atmosphere. Physical parameters of the region are often difficult to measure with ground­based instruments, and the measurements that are possible are often poorly resolved in range or time or unavailable outside narrow altitude regimes. HF ionospheric modification experiments allow us to measure ionospheric and thermospheric state parameters more systematically and over a broader range of conditions than would otherwise be possible. HAARP is the world's most powerful and most flexible HF transmitting facility, capable of generating 3.6 MW of RF power over a frequency range from about 2 MHz to about 10 MHz. The electronic phased array antenna provides the ability to direct the RF energy to a large region of the sky above Alaska. HAARP was constructed through a research program managed by the Air Force Research Laboratory (AFRL), and the Office of Naval Research (ONR). It was jointly funded by AFRL, ONR, and the Defense Advanced Projects Research Agency (DARPA). These agencies ended of their program of HAARP research in 2014, and donated the site equipment to the University of Alaska, Fairbanks (UAF), in the summer of 2015, who now operate the facility as an international observatory for radio plasma heating and subauroral physics. Since taking control of HAARP, UAF has carried out research campaigns in February 2017, and September 2017. The topics investigated in the campaigns included the physics of ionospheric irregularities (FAI), the stimulated electromagnetic emissions (SEE), generation of optical

  3. Observations of HF backscatter decay rates from HAARP generated FAI

    NASA Astrophysics Data System (ADS)

    Bristow, William; Hysell, David

    2016-07-01

    Suitable experiments at the High-frequency Active Auroral Research Program (HAARP) facilities in Gakona, Alaska, create a region of ionospheric Field-Aligned Irregularities (FAI) that produces strong radar backscatter observed by the SuperDARN radar on Kodiak Island, Alaska. Creation of FAI in HF ionospheric modification experiments has been studied by a number of authors who have developed a rich theoretical background. The decay of the irregularities, however, has not been so widely studied yet it has the potential for providing estimates of the parameters of natural irregularity diffusion, which are difficult measure by other means. Hysell, et al. [1996] demonstrated using the decay of radar scatter above the Sura heating facility to estimate irregularity diffusion. A large database of radar backscatter from HAARP generated FAI has been collected over the years. Experiments often cycled the heater power on and off in a way that allowed estimates of the FAI decay rate. The database has been examined to extract decay time estimates and diffusion rates over a range of ionospheric conditions. This presentation will summarize the database and the estimated diffusion rates, and will discuss the potential for targeted experiments for aeronomy measurements. Hysell, D. L., M. C. Kelley, Y. M. Yampolski, V. S. Beley, A. V. Koloskov, P. V. Ponomarenko, and O. F. Tyrnov, HF radar observations of decaying artificial field aligned irregularities, J. Geophys. Res. , 101, 26,981, 1996.

  4. Observations of HF backscatter decay rates from HAARP generated FAI

    NASA Astrophysics Data System (ADS)

    Bristow, W. A.; Hysell, D. L.

    2016-12-01

    Suitable experiments at the High-frequency Active Auroral Research Program (HAARP) facilities in Gakona, Alaska, create a region of ionospheric Field-Aligned Irregularities (FAI) that produces strong radar backscatter observed by the SuperDARN radar on Kodiak Island, Alaska. Creation of FAI in HF ionospheric modification experiments has been studied by a number of authors who have developed a rich theoretical background. The decay of the irregularities, however, has not been so widely studied yet it has the potential for providing estimates of the parameters of natural irregularity diffusion, which are difficult measure by other means. Hysell, et al. [1996] demonstrated using the decay of radar scatter above the Sura heating facility to estimate irregularity diffusion. A large database of radar backscatter from HAARP generated FAI has been collected over the years. Experiments often cycled the heater power on and off in a way that allowed estimates of the FAI decay rate. The database has been examined to extract decay time estimates and diffusion rates over a range of ionospheric conditions. This presentation will summarize the database and the estimated diffusion rates, and will discuss the potential for targeted experiments for aeronomy measurements. Hysell, D. L., M. C. Kelley, Y. M. Yampolski, V. S. Beley, A. V. Koloskov, P. V. Ponomarenko, and O. F. Tyrnov, HF radar observations of decaying artificial field aligned irregularities, J. Geophys. Res. , 101, 26,981, 1996.

  5. Ground and Satellite Observations of ULF Waves Artificially Produced by HAARP

    NASA Astrophysics Data System (ADS)

    Chang, C.; Labenski, J.; Shroff, H.; Doxas, I.; Papadopoulos, D.; Milikh, G.; Parrot, M.

    2008-12-01

    Modulated ionospheric heating at ULF frequencies using the HAARP heater was performed from April 28 to May 3, 2008 (http://www.haarp.alaska.edu). Simultaneous ground-based ULF measurements were made locally at Gakona, AK and at Lake Ozette, WA that is 2000 km away. The ground-based results showed that ULF amplitudes measured at Gakona are mostly proportional to the electrojet strength above HAARP, indicating electrojet modulation to be the source of the local ULF waves. However, the timing of ULF events recorded at Lake Ozette did not correlated with the electrojet strength at Gakona, indicating that modulation of F region pressure is the more likely source for distant ULF waves. These observations are consistent with the theoretical understanding that ULF waves generated by current modulation are shear Alfven waves propagating along the magnetic field line, thus at high latitude their observations are limited to the vicinity of the heated spot. On the other hand, propagation of ULF waves at significant lateral distances requires generation of magnetosonic waves since they are the only mode that propagates isotropically and can thus couple efficiently in the Alfvenic duct. In addition to ground-based observations, the DEMETER satellite also provided space measurements of the heating effects during its passes over HAARP. The DEMETER results showed direct detection of HAARP ULF waves at 0.1 Hz. Moreover, density dips were observed every time HAARP was operated at CW mode, which provides clear evidence of duct formation by direct HF heating at F peak. Details of these results will be presented at the meeting. We would like to acknowledge the support provided by the HAARP facility during our ULF experiments.

  6. Experiments and theory on parametric instabilities excited in HF heating experiments at HAARP

    NASA Astrophysics Data System (ADS)

    Kuo, Spencer; Snyder, Arnold; Lee, M. C.

    2014-06-01

    Parametric instabilities excited by O-mode HF heater and the induced ionospheric modification were explored via HAARP digisonde operated in a fast mode. The impact of excited Langmuir waves and upper hybrid waves on the ionosphere are manifested by bumps in the virtual spread, which expand the ionogram echoes upward as much as 140 km and the downward range spread of the sounding echoes, which exceeds 50 km over a significant frequency range. The theory of parametric instabilities is presented. The theory identifies the ionogram bump located between the 3.2 MHz heater frequency and the upper hybrid resonance frequency and the bump below the upper hybrid resonance frequency to be associated with the Langmuir and upper hybrid instabilities, respectively. The Langmuir bump is located close to the upper hybrid resonance frequency, rather than to the heater frequency, consistent with the theory. Each bump in the virtual height spread of the ionogram is similar to the cusp occurring in daytime ionograms at the E-F2 layer transition, indicating that there is a small ledge in the density profile similar to E-F2 layer transitions. The experimental results also show that the strong impact of the upper hybrid instability on the ionosphere can suppress the Langmuir instability.

  7. ELF/VLF Perturbations Above the Haarp Transmitter Recorded by the Demeter Satellite in the Upper Ionosphere

    NASA Astrophysics Data System (ADS)

    Titova, E. E.; Demekhov, A. G.; Mochalov, A. A.; Gvozdevsky, B. B.; Mogilevsky, M. M.; Parrot, M.

    2015-08-01

    In the studies of the data received from DEMETER (orbit altitude above the Earth is about 700 km), we detected for the first time electromagnetic perturbations, which are due to the ionospheric modification by HAARP, a high-power high-frequency transmitter, simultaneously in the extremely low-frequency (ELF, below 1200 Hz) and very low-frequency (VLF, below 20 kHz) ranges. Of the thirteen analyzed flybys of the satellite above the heated area, the ELF/VLF signals were detected in three cases in the daytime (LT = 11-12 h), when the minimum distance between the geomagnetic projections of the satellite and the heated area center on the Earth's surface did not exceed 31 km. During the nighttime flybys, the ELF/VLF perturbations were not detected. The size of the perturbed region was about 100 km. The amplitude, spectrum, and polarization of the ELF perturbations were analyzed, and their comparison with the characteristics of natural ELF noise above the HAARP transmitter was performed. In particular, it was shown that in the daytime the ELF perturbation amplitude above the heated area can exceed by a factor of 3 to 8 the amplitude of natural ELF noise. The absence of the nighttime records of artificial ELF/VLF perturbations above the heated area can be due to both the lower frequency of the heating signal, at which the heating occurs in the lower ionosphere, and the higher level of natural noise. The spectrum of the VLF signals related to the HAARP transmitter operation had two peaks at frequencies of 8 to 10 kHz and 15 to 18 kHz, which are close to the first and second harmonics of the lower-hybrid resonance in the heated area. The effect of the whistler wave propagation near the lower-hybrid resonance region on the perturbation spectrum recorded in the upper ionosphere for these signals has been demonstrated. In particular, some of the spectrum features can be explained by assuming that the VLF signals propagate in quasiresonance, rather than quasilongitudinal, regime

  8. Experiments and theory on parametric instabilities excited in HF heating experiments at HAARP

    SciTech Connect

    Kuo, Spencer; Snyder, Arnold; Lee, M. C.

    2014-06-15

    Parametric instabilities excited by O-mode HF heater and the induced ionospheric modification were explored via HAARP digisonde operated in a fast mode. The impact of excited Langmuir waves and upper hybrid waves on the ionosphere are manifested by bumps in the virtual spread, which expand the ionogram echoes upward as much as 140 km and the downward range spread of the sounding echoes, which exceeds 50 km over a significant frequency range. The theory of parametric instabilities is presented. The theory identifies the ionogram bump located between the 3.2 MHz heater frequency and the upper hybrid resonance frequency and the bump below themore » upper hybrid resonance frequency to be associated with the Langmuir and upper hybrid instabilities, respectively. The Langmuir bump is located close to the upper hybrid resonance frequency, rather than to the heater frequency, consistent with the theory. Each bump in the virtual height spread of the ionogram is similar to the cusp occurring in daytime ionograms at the E-F2 layer transition, indicating that there is a small ledge in the density profile similar to E-F2 layer transitions. The experimental results also show that the strong impact of the upper hybrid instability on the ionosphere can suppress the Langmuir instability.« less

  9. On the Additional Absorption of Radio Emission from Discrete Cosmic Sources Under HF Modification of the Lower Ionosphere

    NASA Astrophysics Data System (ADS)

    Bezrodny, V. G.; Charkina, O. V.; Yampolski, Yu. M.

    2015-12-01

    The possibilities of modification of a weakly ionized plasma are investigated theoretically and experimentally within different electron density behavior models. The dependence of the additional absorption of radiation of discreet cosmic sources Cassiopeia A and Cygnus A in the artificially disturbed ionospheric D-region on the amplitude of heating signal during the special measuring campaigns of February and October 2008 has been analyzed. The ionosphere has been modified with using the world most powerful HAARP heater, Alaska, USA. The 64 beam riometer located in the immediate vicinity of the heater was used as the recording system.

  10. ELF/VLF wave disturbances detected by the DEMETER satellite over the HAARP transmitter

    NASA Astrophysics Data System (ADS)

    Titova, Elena; Demekhov, Andrei; Parrot, Michel; Mogilevsky, Mikhail; Mochalov, Alexey; Pashin, Anatoly

    We report observations of electromagnetic the ELF/VLF wave disturbances by the DEMETER satellite (670 km altitude) overflying the HAARP heating facility (62.39(°) N, 145.15(°) W, L = 4.9). The HAARP HF transmitter operated at the maximum available power of 3.6 MW, O-mode polarization, and the beam directed towards the magnetic zenith. ELF/VLF waves caused by the HAARP heating are detected by the DEMETER satellite when the HF radio wave frequency was close to the critical frequency (foF2) of the ionospheric F2 layer but below it. ELF/VLF wave disturbances observed above the HAARP transmitter were detected by electrical antennas in an area with characteristic size 10 (2) km. We analyze amplitude and polarization spectra of the ELF disturbances and compare them with the characteristics of natural ELF hiss above HAARP. The VLF wave disturbances in the topside ionosphere above the HAARP transmitter were detected in the frequency ranges 8-17 kHz and 15-18 kHz which are close to the lower hybrid resonance frequency f _LHR in the heating region and its second harmonic (2f _LHR), respectively. In the case where the HAARP HF power was modulated, the detected VLF waves were also modulated with the same frequency whereas in the ELF frequency range the modulation period of the HAARP power was not observed. Possible mechanisms of generation of the ELF/VLF disturbances produced by the HAARP transmitter in the topside ionosphere are discussed.

  11. An Artificial Particle Precipitation Technique Using HAARP-Generated VLF Waves

    DTIC Science & Technology

    2006-11-02

    AFRL-VS-HA-TR-2007-1021 An Artificial Particle Precipitation Technique Using HAARP -Generated VLF Waves O o o r- Q M. J. Kosch T. Pedersen J...Artificial Particle Precipitation Technique Using HAARP Generated VLF Waves. 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62101F...model. The frequency-time modulated VLF wave patterns have been successfully implemented at the HAARP ionospheric modification facility in Alaska

  12. ELF/VLF Wave Generation and Scattering from Modulated Heating of the Ionosphere at Arecibo Observatory

    NASA Astrophysics Data System (ADS)

    Maxworth, A. S.; Golkowski, M.; McCormick, J.; Cohen, M.; Hosseini, P.; Bittle, J.

    2017-12-01

    The recently completed ionospheric heater at Arecibo Observatory is used for modulated HF (5 or 8 MHz) heating of the ionosphere, to generate ELF/VLF (3 Hz - 30 kHz) waves. Observation of ramp and tone signals at frequencies from hundreds of Hz to several kHz at multiple receivers confirms the ability of the heater to modulate D region currents and create an ELF/VLF antenna in the ionosphere. Observed ELF/VLF signal amplitudes are lower than for similar experiments performed at high latitudes at the HAARP and Tromso facilities, for a variety of reasons including the reduced natural currents at mid latitudes, and the lower HF power of the Arecibo heater. The heating of the overhead ionosphere is also observed to change the Earth-ionosphere waveguide propagation characteristics as is evident from simultaneous observations of lightning induced sferics and VLF transmitter signals that propagate under the heated region. The active heating of the ionosphere modifies the reflection of incident VLF (3-30 kHz) waves. We present initial observations of HF heating of the D-region and resulting ELF/VLF wave generation.

  13. Initial Results from CASSIOPE/ePOP Satellite Overpasses above HAARP in 2014

    NASA Astrophysics Data System (ADS)

    Siefring, C. L.; Bernhardt, P. A.; Briczinski, S. J., Jr.; James, H. G.; Yau, A. W.; Knudsen, D. J.

    2015-12-01

    The High Frequency Active Auroral Research Program (HAARP) facility was operated in conjunction with overpasses of the enhanced Polar Outflow Probe (ePOP) instruments on the Canadian CASSIOPE satellite. During these overpasses HAARP was operated in several different heating modes and regimes as diagnosed by the characteristics of Stimulated Electromagnetic Emissions (SEE) using ground-based receivers while simultaneously ePOP monitored in-situ HF and VLF signals, looked for ion and electron heating, and provided VHF and UHF signals for propagation effects studies. The e-POP suite of instruments and particularly the ePOP Radio Receiver Instrument (RRI) offer a unique combination diagnostics appropriate for studying the non-linear plasma effects generated high-power HF waves in the ionosphere. In this presentation, the initial results from ePOP observations from two separate 2014 measurement campaigns at HAARP (April 16 to April 29 and May 25 to June 9) will be discussed. Several innovative experiments were performed during the campaign. Experiments explored a wide range of ionospheric effects. These include: 1) Penetration of HF pump waves into the ionosphere via large and small scale irregularities, 2) effects of gyro-harmonic heating and artificial ionization layers, 3) effects of HAARP beam shape with O- and X-mode transmissions, 4) coupling of Lower Hybrid modes into Whistler waves, 5) D/E-region VLF generation in the ionosphere using VLF modulation of the HF pump 6) scattering of VHF and UHF signals and 7) scattering and non-linear modulation of a 9.5 MHz probe wave propagating through the region of the ionosphere modified by HAARP. This work supported by the Naval Research Laboratory Base Program.

  14. SuperDARN elevation angle calibration using HAARP-induced backscatter

    NASA Astrophysics Data System (ADS)

    Shepherd, S. G.; Thomas, E. G.; Palinski, T. J.; Bristow, W.

    2017-12-01

    SuperDARN radars rely on refraction in the ionosphere to make Doppler measurements of backscatter from ionospheric irregularities or the ground/sea, often to ranges of 4000 km or more. Elevation angle measurements of backscattered signals can be important for proper geolocation, mode identification and Doppler velocity corrections to the data. SuperDARN radars are equipped with a secondary array to make elevation angle measurements, however, calibration is often difficult. One method of calibration is presented here, whereby backscatter from HAARP-induced irregularities, at a known location, is used to independently determine the elevation angle of signals. Comparisons are made for several radars with HAARP in their field-of-view in addition to the results obtained fromray-tracing in a model ionosphere.

  15. Artificial Ionospheric Turbulence and Radio Wave Propagation (Sura - HAARP)

    DTIC Science & Technology

    2006-11-01

    investigations of AIT features, which have allowed to establish dependences of low-frequency AIT properties on PW power, frequency, and polarization , on...that a powerful HF heater wave of ordinary polarization , injected vertically from the ground into the ionosphere F-region, gives rise to secondary...or in direct proportion to the value of striation k- vector ). Basing on experimental data considered above we can conclude that for both narrow

  16. DEMETER Observations of ELF Waves Injected With the HAARP HF Transmitter

    DTIC Science & Technology

    2006-08-17

    DEMETER observations of ELF waves injected with the HAARP HF transmitter M. Platino,1 U. S. Inan,1 T. F. Bell,1 M. Parrot,2 and E. J. Kennedy3...Frequency Active Auroral Research Program ( HAARP ) facility in Gakona, Alaska, (located at L 4.9). Simultaneous observations of all six components of the ELF...signals generated by the HAARP heater are also simultaneously observed at a nearby ground-based site, allowing a comparison of the ELF power in the

  17. Nonlinear plasma experiments in geospace with gigawatts of RF power at HAARP

    NASA Astrophysics Data System (ADS)

    Sheerin, J. P.; Cohen, Morris B.

    2015-12-01

    The ionosphere is the ionized uppermost layer of our atmosphere (from 70 - 500 km altitude) where free electron densities yield peak critical frequencies in the HF (3 - 30 MHz) range. The ionosphere thus provides a quiescent plasma target, stable on timescales of minutes, for a whole host of active plasma experiments. High power RF experiments on ionospheric plasma conducted in the U.S. have been reported since 1970. The largest HF transmitter built to date is the HAARP phased-array HF transmitter near Gakona, Alaska which can deliver up to 3.6 Gigawatts (ERP) of CW RF power in the range of 2.8 - 10 MHz to the ionosphere with microsecond pointing, power modulation, and frequency agility. With an ionospheric background thermal energy in the range of only 0.1 eV, this amount of power gives access to the highest regimes of the nonlinearity (RF intensity to thermal pressure) ratio. HAARP's unique features have enabled the conduct of a number of unique nonlinear plasma experiments in the interaction region of overdense ionospheric plasma including generation of artificial aurorae, artificial ionization layers, VLF wave-particle interactions in the magnetosphere, parametric instabilities, stimulated electromagnetic emissions (SEE), strong Langmuir turbulence (SLT) and suprathermal electron acceleration. Diagnostics include the Modular UHF Ionospheric Radar (MUIR) sited at HAARP, the SuperDARN-Kodiak HF radar, spacecraft radio beacons, HF receivers to record stimulated electromagnetic emissions (SEE) and telescopes and cameras for optical emissions. We report on short timescale ponderomotive overshoot effects, artificial field-aligned irregularities (AFAI), the aspect angle dependence of the intensity of the HF-enhanced plasma line, and production of suprathermal electrons. One of the primary missions of HAARP, has been the generation of ELF (300 - 3000 Hz) and VLF (3 - 30 kHz) radio waves which are guided to global distances in the Earth-ionosphere waveguide. We review

  18. VLF wave generation by beating of two HF waves in the ionosphere

    NASA Astrophysics Data System (ADS)

    Kuo, Spencer; Snyder, Arnold; Kossey, Paul; Chang, Chia-Lie; Labenski, John

    2011-05-01

    Theory of a beat-wave mechanism for very low frequency (VLF) wave generation in the ionosphere is presented. The VLF current is produced by beating two high power HF waves of slightly different frequencies through the nonlinearity and inhomogeneity of the ionospheric plasma. Theory also shows that the density irregularities can enhance the beat-wave generation. An experiment was conducted by transmitting two high power HF waves of 3.2 MHz and 3.2 MHz + f, where f = 5, 8, 13, and 2.02 kHz, from the HAARP transmitter. In the experiment, the ionosphere was underdense to the O-mode heater, i.e., the heater frequency f0 > foF2, and overdense or slightly underdense to the X-mode heater, i.e., f0 < fxF2 or f0 ≥ fxF2. The radiation intensity increased with the VLF wave frequency, was much stronger with the X-mode heaters, and was not sensitive to the electrojet. The strongest VLF radiation of 13 kHz was generated when the reflection layer of the X-mode heater was just slightly below the foF2 layer and the spread of the O-mode sounding echoes had the largest enhancement, suggesting an optimal setting for beat-wave generation of VLF waves by the HF heaters.

  19. L-Band Ionosphere Scintillations Observed by A GNSS Receiver Array at HAARP

    NASA Astrophysics Data System (ADS)

    Morton, Y.; Pelgrum, W.; van Graas, F.

    2011-12-01

    As we enter a new solar maximum period, GNSS receivers, especially the ones operating in high latitude and equatorial regions, are facing an increasing threat from ionosphere scintillations. The increased solar activities, however, also offer a great opportunity to collect scintillation data to gain better understandings of scintillation effects on GNSS signals. During the past decade, many GPS receivers have been deployed around the globe to monitor ionosphere scintillations. Most of these GPS receivers are commercial receivers whose tracking mechanisms are not designed to operate under ionosphere scintillation. When strong scintillations occur, these receivers will either generate erroneous outputs or completely lose lock. Even when the scintillation is mild, the tracking loop outputs are not true representation of the signal parameters due the tracking loop transfer function. High quality, unprocessed GNSS receiver front end raw IF samples collected during ionosphere scintillations are necessary to produce realistic scintillation signal parameter estimations. In this presentation, we will update our effort in establishing a unique GNSS receiver array at HAARP, Alaska to collect GPS and GLONASS satellite signals at various stages of the GNSS receiver processing. Signal strength, carrier phase, and relative TEC measurements generated by the receiver array as well as additional on-site diagnostic instrumentation measurements obtained from two active heating experiment campaigns conducted in 2011 will be presented. Additionally, we will also highlight and contrast the artificial heating experiment results with observations of natural scintillation events captured by our receivers using an automatic event trigger mechanism during the past year. These interesting results demonstrate the feasibility and effectiveness of our experimental data collection system in providing insightful details of ionosphere responses to active perturbations and natural disturbances.

  20. Nonlinear Plasma Experiments in Geospace with Gigawatts of RF Power at HAARP

    NASA Astrophysics Data System (ADS)

    Sheerin, J. P.; Rayyan, N.; Watkins, B. J.; Bristow, W. A.; Bernhardt, P. A.

    2014-10-01

    The HAARP phased-array HF transmitter at Gakona, AK delivers up to 3.6 GW (ERP) of HF power in the range of 2.8 - 10 MHz to the ionosphere with millisecond pointing, power modulation, and frequency agility. HAARP's unique features have enabled the conduct of a number of nonlinear plasma experiments in the interaction region of overdense ionospheric plasma including stimulated electromagnetic emissions (SEE), artificial aurora, artificial ionization layers, VLF wave-particle interactions in the magnetosphere, strong Langmuir turbulence (SLT) and suprathermal electron acceleration. Diagnostics include the Modular UHF Ionospheric Radar (MUIR) sited at HAARP, the SuperDARN-Kodiak HF radar, spacecraft radio beacons, HF receivers to record stimulated electromagnetic emissions (SEE) and telescopes and cameras for optical emissions. We report on short timescale ponderomotive overshoot effects, artificial field-aligned irregularities (AFAI), the aspect angle dependence of the intensity of the plasma line, and suprathermal electrons. Applications are made to the study and control of irregularities affecting spacecraft communication and navigation systems.

  1. Shear Alfven Wave Injection in the Magnetosphere by Ionospheric Modifications in the Absence of Electrojet Currents

    NASA Astrophysics Data System (ADS)

    Papadopoulos, K.; Eliasson, B.; Shao, X.; Labenski, J.; Chang, C.

    2011-12-01

    A new concept of generating ionospheric currents in the ULF/ELF range with modulated HF heating using ground-based transmitters even in the absence of electrojet currents is presented. The new concept relies on using HF heating of the F-region to modulate the electron temperature and has been given the name Ionospheric Current Drive (ICD). In ICD, the pressure gradient associated with anomalous or collisional F-region electron heating drives a local diamagnetic current that acts as an antenna to inject mainly Magneto-Sonic (MS) waves in the ionospheric plasma. The electric field associated with the MS wave drives Hall currents when it reaches the E region of the ionosphere. The Hall currents act as a secondary antenna that inject waves in the Earth-Ionosphere Waveguide (EIW) below and shear Alfven waves or EMIC waves upwards towards the conjugate regions. The paper presents: (i) Theoretical results using a cold Hall MHD model to study ICD and the generation of ULF/ELF waves by the modulation of the electron pressure at the F2-region with an intense HF electromagnetic wave. The model solves equations governing the dynamics of the shear Alfven and magnetosonic modes, of the damped modes in the diffusive Pedersen layer, and of the weakly damped helicon wave mode in the Hall-dominated E-region. The model incorporates realistic profile of the ionospheric conductivities and magnetic field configuration. We use the model to simulate propagation and dynamics of the low-frequency waves and their injection into the magnetosphere from the HAARP and Arecibo ionospheric heaters. (ii) Proof of principle experiments using the HAARP ionospheric heater in conjunction with measurements by the DEMETER satellite This work is supported by ONR MURI grant and DARPA BRIOCHE Program

  2. First demonstration of HF-driven ionospheric currents

    NASA Astrophysics Data System (ADS)

    Papadopoulos, K.; Chang, C.-L.; Labenski, J.; Wallace, T.

    2011-10-01

    The first experimental demonstration of HF driven currents in the ionosphere at low ELF/ULF frequencies without relying in the presence of electrojets is presented. The effect was predicted by theoretical/computational means in a recent letter and given the name Ionospheric Current Drive (ICD). The effect relies on modulated F-region HF heating to generate Magneto-Sonic (MS) waves that drive Hall currents when they reach the E-region. The Hall currents inject ELF waves into the Earth-Ionosphere waveguide and helicon and Shear Alfven (SA) waves in the magnetosphere. The proof-of-concept experiments were conducted using the HAARP heater in Alaska under the BRIOCHE program. Waves between 0.1-70 Hz were measured at both near and far sites. The letter discusses the differences between ICD generated waves and those relying on modulation of electrojets.

  3. Large-Scale Ionospheric Effects Related to Electron-Gyro Harmonics: What We Have Learned from HAARP.

    NASA Astrophysics Data System (ADS)

    Watkins, B. J.; Fallen, C. T.; Secan, J. A.

    2014-12-01

    The HAARP ionospheric modification facility has unique capabilities that enable a wide range of HF frequencies with transmit powers ranging from very low to very high values. We will review a range of experiment results that illustrate large-scale ionospheric effects when the HF frequencies used are close to electron gyro-harmoncs and we focus mainly on the 3rd and 4th harmonics. The data are primarily from the UHF diagnosticc radar and total electron content (TEC) observations through the heated topside ionosphere. Radar data for HF frequencies just above and just below gyro harmoncs show significant differences in radar scatter cross-section that suggest differing plasma processes, and this effect is HF power dependent with some effects only observable with full HF power. For the production of artificial ionization in the E-region when the HF frequency is near gyro-harmoncs the results differ significantly for relatively small (50 kHz) variations in the HF frequency. We show how slow FM scans in conjunction with gyro-harmonic effects are effective in producing artificial ionization in the lower ionosphere.In the topside ionosphere enhanced density and upward fluxes have been observed and these may act as effective ducts for the propagation of VLF waves upward into the magneosphere. Experimental techniques have been developed that may be used to continuously maintain these effects in the topside ionossphere.

  4. Artificial Aurora Generated by HAARP (Invited)

    NASA Astrophysics Data System (ADS)

    Streltsov, A. V.; Kendall, E. A.

    2013-12-01

    We present results from the ionospheric heating experiment conducted on March 12, 2013 at the High Frequency Active Auroral Research Program (HAARP) facility in Alaska. During the experiment HAARP transmitted X-mode 4.57 MHz waves modulated with the frequency 0.9 mHz and pointed in the direction of the magnetic zenith. The beam was focused to ~20 km spot at the altitude 100 km. The heating produces two effects: First, it generates magnetic field-aligned currents producing D and H components of the magnetic field with frequency 0.9 mHz detected by fluxgate magnetometer in Gakona. Second, the heating produced bright luminous structures in the heated region detected with the SRI telescope in 427.8 nm, 557.7 nm, 630.0 nm wavelengths. We emphasize, that for the best of our knowledge, this is the first experiment where the heating of the ionosphere with X-mode produces luminous structures in the ionosphere. We classify this luminosity as an 'artificial aurora', because it correlate with the intensity of the magnetic field-aligned currents, and such correlation is constantly seen in the natural aurora.

  5. VHF Scintillation in an Artificially Heated Ionosphere

    NASA Astrophysics Data System (ADS)

    Suszcynsky, D. M.; Layne, J.; Light, M. E.; Pigue, M. J.; Rivera, L.

    2017-12-01

    As part of an ongoing project to characterize very-high-frequency (VHF) radio wave propagation through structured ionospheres, Los Alamos National Laboratory has been conducting a set of experiments to measure the scintillation effects of VHF transmissions under a variety of ionospheric conditions. Previous work (see 2015 Fall AGU poster by D. Suszcynsky et al.) measured the S4 index and ionospheric coherence bandwidth in the 32 - 44 MHz frequency range under naturally scintillated conditions in the equatorial region at Kwajalein Atoll during three separate campaigns centered on the 2014 and 2015 equinoxes. In this paper, we will present preliminary results from the February and September, 2017 High Altitude Auroral Research Project (HAARP) Experimental Campaigns where we are attempting to make these measurements under more controlled conditions using the HAARP ionospheric heater in a twisted-beam mode. Two types of measurements are made by transmitting VHF signals through the heated ionospheric volume to the Radio Frequency Propagation (RFProp) satellite experiment. The S4 scintillation index is determined by measuring the power fluctuations of a 135-MHz continuous wave signal and the ionospheric coherence bandwidth is simultaneously determined by measuring the delay spread of a frequency-modulated continuous wave (FMCW) signal in the 130 - 140 MHz frequency range. Additionally, a spatial Fourier transform of the CW time series is used to calculate the irregularity spectral density function. Finally, the temporal evolution of the time series is used to characterize spread-Doppler clutter effects arising from preferential ray paths to the satellite due to refraction off of isolated density irregularities. All results are compared to theory and scaled for comparison to the 32 - 44 MHz Kwajalein measurements.

  6. Ionospheric Modification from Under-Dense Heating by High-Power HF Transmitter

    DTIC Science & Technology

    2011-03-03

    Auroral Research Program ( HAARP ) is a HF transmitter, which delivers 0.36 to 3.6 GW effective isotropic radiated powers (F.IRP) for the radiation...dense heating, the EIRP of the HAARP heater can be increased significantly by increasing the heater frequency. With higher heater frequency, the loss...1304 local time) and on 13 April from 0812 to 0844 UTC (0012 to 0044 local time), using the HAARP transmitter facility at Gakona, AK, at full power

  7. UHF Radar observations at HAARP with HF pump frequencies near electron gyro-harmonics and associated ionospheric effects

    NASA Astrophysics Data System (ADS)

    Watkins, Brenton; Fallen, Christopher; Secan, James

    Results for HF modification experiments at the HAARP facility in Alaska are presented for experiments with the HF pump frequency near third and fourth electron gyro-harmonics. A UHF diagnostic radar with range resolution of 600 m was used to determine time-dependent altitudes of scattering from plasma turbulence during heating experiments. Experiments were conducted with multiple HF frequencies stepped by 20 kHz above and below the gyro-harmonic values. During times of HF heating the HAARP facility has sufficient power to enhance large-scale ionospheric densities in the lower ionosphere (about 150-200 km altitude) and also in the topside ionosphere (above about 350 km). In the lower ionosphere, time-dependent decreases of the altitude of radar scatter result from electron density enhancements. The effects are substantially different even for relatively small frequency steps of 20 kHz. In all cases the time-varying altitude decrease of radar scatter stops about 5-10 km below the gyro-harmonic altitude that is frequency dependent; we infer that electron density enhancements stop at this altitude where the radar signals stop decreasing with altitude. Experiments with corresponding total electron content (TEC) data show that for HF interaction altitudes above about 170 km there is substantial topside electron density increases due to upward electron thermal conduction. For lower altitudes of HF interaction the majority of the thermal energy is transferred to the neutral gas and no significant topside density increases are observed. By selecting an appropriate HF frequency a little greater than the gyro-harmonic value we have demonstrated that the ionospheric response to HF heating is a self-oscillating mode where the HF interaction altitude moves up and down with a period of several minutes. If the interaction region is above about 170 km this also produces a continuously enhanced topside electron density and upward plasma flux. Experiments using an FM scan with the HF

  8. HF-induced airglow structure as a proxy for ionospheric irregularity detection

    NASA Astrophysics Data System (ADS)

    Kendall, E. A.

    2013-12-01

    The High Frequency Active Auroral Research Program (HAARP) heating facility allows scientists to test current theories of plasma physics to gain a better understanding of the underlying mechanisms at work in the lower ionosphere. One powerful technique for diagnosing radio frequency interactions in the ionosphere is to use ground-based optical instrumentation. High-frequency (HF), heater-induced artificial airglow observations can be used to diagnose electron energies and distributions in the heated region, illuminate natural and/or artificially induced ionospheric irregularities, determine ExB plasma drifts, and measure quenching rates by neutral species. Artificial airglow is caused by HF-accelerated electrons colliding with various atmospheric constituents, which in turn emit a photon. The most common emissions are 630.0 nm O(1D), 557.7 nm O(1S), and 427.8 nm N2+(1NG). Because more photons will be emitted in regions of higher electron energization, it may be possible to use airglow imaging to map artificial field-aligned irregularities at a particular altitude range in the ionosphere. Since fairly wide field-of-view imagers are typically deployed in airglow campaigns, it is not well-known what meter-scale features exist in the artificial airglow emissions. Rocket data show that heater-induced electron density variations, or irregularities, consist of bundles of ~10-m-wide magnetic field-aligned filaments with a mean depletion depth of 6% [Kelley et al., 1995]. These bundles themselves constitute small-scale structures with widths of 1.5 to 6 km. Telescopic imaging provides high resolution spatial coverage of ionospheric irregularities and goes hand in hand with other observing techniques such as GPS scintillation, radar, and ionosonde. Since airglow observations can presumably image ionospheric irregularities (electron density variations), they can be used to determine the spatial scale variation, the fill factor, and the lifetime characteristics of

  9. Power-Stepped HF Cross Modulation Experiments at HAARP

    NASA Astrophysics Data System (ADS)

    Greene, S.; Moore, R. C.; Langston, J. S.

    2013-12-01

    High frequency (HF) cross modulation experiments are a well established means for probing the HF-modified characteristics of the D-region ionosphere. In this paper, we apply experimental observations of HF cross-modulation to the related problem of ELF/VLF wave generation. HF cross-modulation measurements are used to evaluate the efficiency of ionospheric conductivity modulation during power-stepped modulated HF heating experiments. The results are compared to previously published dependencies of ELF/VLF wave amplitude on HF peak power. The experiments were performed during the March 2013 campaign at the High Frequency Active Auroral Research Program (HAARP) Observatory. HAARP was operated in a dual-beam transmission format: the first beam heated the ionosphere using sinusoidal amplitude modulation while the second beam broadcast a series of low-power probe pulses. The peak power of the modulating beam was incremented in 1-dB steps. We compare the minimum and maximum cross-modulation effect and the amplitude of the resulting cross-modulation waveform to the expected power-law dependence of ELF/VLF wave amplitude on HF power.

  10. Active experiments in geospace plasmas with gigawatts of RF power at HAARP

    NASA Astrophysics Data System (ADS)

    Sheerin, James

    2016-07-01

    The ionosphere provides a relatively quiescent plasma target, stable on timescales of minutes, for a whole host of active plasma experiments. The largest HF transmitter built to date is the HAARP phased-array HF transmitter near Gakona, Alaska which can deliver up to 3.6 Gigawatts (ERP) of CW RF power in the range of 2.8 - 10 MHz to the ionosphere with millisecond pointing, power modulation, and frequency agility. With an ionospheric background thermal energy in the range of only 0.1 eV, this amount of power gives access to the highest regimes of the nonlinearity (RF intensity to thermal pressure) ratio. HAARP's unique features have enabled the conduct of a number of nonlinear plasma experiments in the inter¬action region of overdense ionospheric plasma including generation of artificial aurorae, artificial ionization layers, VLF wave-particle interactions in the magnetosphere, parametric instabilities, stimulated electromagnetic emissions (SEE), strong Langmuir turbulence (SLT) and suprathermal electron acceleration. Diagnostics include the Modular UHF Ionospheric Radar (MUIR) sited at HAARP, the SuperDARN-Kodiak HF radar, spacecraft radio beacons, HF receivers to record stimulated electromagnetic emissions (SEE) and optics for optical emissions. We report on short timescale ponderomotive overshoot effects, artificial field-aligned irregularities (AFAI), the aspect angle dependence of the intensity of the HF-enhanced plasma line, and production of suprathermal electrons. Applications are made to the controlled study of fundamental nonlinear plasma processes of relevance to laboratory plasmas, ionospheric irregularities affecting spacecraft communication and navigation systems, artificial ionization mirrors, wave-particle interactions in the magnetosphere, active global magnetospheric experiments, and many more.

  11. Simultaneous Multi-angle Observations of Strong Langmuir Turbulence at HAARP

    NASA Astrophysics Data System (ADS)

    Watanabe, Naomi; Golkowski, Mark; Sheerin, James P.; Watkins, Brenton J.

    2015-10-01

    We report results from a recent series of experiments employing the HF transmitter of the High Frequency Active Auroral Research Program (HAARP) to generate and study strong Langmuir turbulence (SLT) in the interaction region of overdense ionospheric plasma. The Modular UHF Ionospheric Radar (MUIR) located at the HAARP facility is used as the primary diagnostic. Short pulse, low duty cycle experiments are used to avoid generation of artificial field-aligned irregularities and isolate ponderomotive plasma turbulence effects. The HF pump frequency is close to the 3rd gyro-harmonic frequency and the HF pointing angle and MUIR look angle are between the HF Spitze angle and Magnetic Zenith angle. Plasma line spectra measured simultaneously in different spots of the interaction region display differences dependent on the aspect angle of the HF pump beam in the boresight direction and the pointing angle of the MUIR diagnostic radar. Outshifted Plasma Lines, cascade, collapse, coexistence, spectra are observed in agreement with existing theory and simulation results of Strong Langmuir Turbulence in ionospheric interaction experiments. It is found that SLT at HAARP is most readily observed at a HF pointing angle of 11° and UHF observation angle of 15°, which is consistent with the magnetic zenith effect as documented in previous works and optimal orientation of the refracted HF electric field vector.

  12. Vlasov Simulations of Ionospheric Heating Near Upper Hybrid Resonance

    NASA Astrophysics Data System (ADS)

    Najmi, A. C.; Eliasson, B. E.; Shao, X.; Milikh, G. M.; Papadopoulos, K.

    2014-12-01

    It is well-known that high-frequency (HF) heating of the ionosphere can excite field- aligned density striations (FAS) in the ionospheric plasma. Furthermore, in the neighborhood of various resonances, the pump wave can undergo parametric instabilities to produce a variety of electrostatic and electromagnetic waves. We have used a Vlasov simulation with 1-spatial dimension, 2-velocity dimensions, and 2-components of fields, to study the effects of ionospheric heating when the pump frequency is in the vicinity of the upper hybrid resonance, employing parameters currently available at ionospheric heaters such as HAARP. We have found that by seeding theplasma with a FAS of width ~20% of the simulation domain, ~10% depletion, and by applying a spatially uniform HF dipole pump electric field, the pump wave gives rise to a broad spectrum of density fluctuations as well as to upper hybrid and lower hybrid oscillating electric fields. We also observe collisionless bulk-heating of the electrons that varies non-linearly with the amplitude of the pump field.

  13. ELF Waves Generated by Modulated HF Heating of the Auroral Electrojet and Observed at a Ground Distance of Approximately 4400 km

    DTIC Science & Technology

    2007-05-22

    HAARP ) HF transmitter in Gakona, Alaska, and detected after propagating more than 4400 km in the Earth-ionosphere waveguide to Midway Atoll. The...conductivity variation (created by modulated HF heating) and radiating 4–32 W. The HF-ELF conversion efficiency at HAARP is thus estimated to be...Program ( HAARP ) research station in Gakona, Alaska. The HAARP HF transmitter (or heater), which JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112, A05309, doi

  14. Nonlinear plasma experiments in geospace with gigawatts of RF power at HAARP

    SciTech Connect

    Sheerin, J. P., E-mail: jsheerin@emich.edu; Cohen, Morris B., E-mail: mcohen@gatech.edu

    2015-12-10

    The ionosphere is the ionized uppermost layer of our atmosphere (from 70 – 500 km altitude) where free electron densities yield peak critical frequencies in the HF (3 – 30 MHz) range. The ionosphere thus provides a quiescent plasma target, stable on timescales of minutes, for a whole host of active plasma experiments. High power RF experiments on ionospheric plasma conducted in the U.S. have been reported since 1970. The largest HF transmitter built to date is the HAARP phased-array HF transmitter near Gakona, Alaska which can deliver up to 3.6 Gigawatts (ERP) of CW RF power in the range of 2.8more » – 10 MHz to the ionosphere with microsecond pointing, power modulation, and frequency agility. With an ionospheric background thermal energy in the range of only 0.1 eV, this amount of power gives access to the highest regimes of the nonlinearity (RF intensity to thermal pressure) ratio. HAARP’s unique features have enabled the conduct of a number of unique nonlinear plasma experiments in the interaction region of overdense ionospheric plasma including generation of artificial aurorae, artificial ionization layers, VLF wave-particle interactions in the magnetosphere, parametric instabilities, stimulated electromagnetic emissions (SEE), strong Langmuir turbulence (SLT) and suprathermal electron acceleration. Diagnostics include the Modular UHF Ionospheric Radar (MUIR) sited at HAARP, the SuperDARN-Kodiak HF radar, spacecraft radio beacons, HF receivers to record stimulated electromagnetic emissions (SEE) and telescopes and cameras for optical emissions. We report on short timescale ponderomotive overshoot effects, artificial field-aligned irregularities (AFAI), the aspect angle dependence of the intensity of the HF-enhanced plasma line, and production of suprathermal electrons. One of the primary missions of HAARP, has been the generation of ELF (300 – 3000 Hz) and VLF (3 – 30 kHz) radio waves which are guided to global distances in the Earth-ionosphere

  15. Artificial Excitation of Schumann Resonance with HAARP

    NASA Astrophysics Data System (ADS)

    Streltsov, A. V.; Chang, C. L.

    2014-12-01

    We report results from the experiment aimed at the artificial excitation of extremely-low-frequency (ELF) electromagnetic waves with frequencies corresponding to the frequency of Schumann resonance (typically, 7.5 - 8.0 Hz frequency range). Electromagnetic waves with these frequencies can form a standing pattern inside the spherical cavity formed by the surface of the earth and the ionosphere. In the experiment the ELF waves were excited by heating the ionosphere with X-mode HF electromagnetic waves generated by the High Frequency Active Auroral Research Program (HAARP) facility in Alaska. The experiment demonstrates that heating of the ionosphere can excite relatively large-amplitude electromagnetic waves with frequencies in the range of the Schumann resonance, when the ionosphere has a strong F-layer and an electric field greater than 5 mV/m is present in the E-region.

  16. Upper Atmospheric Effects of the HF Active Auroral Research Program Ionospheric Research Instrument (HAARP IRI)

    DTIC Science & Technology

    1993-05-01

    RESEARCH INSTRUMENT ( HAARP IRI) V. Eccles R. Armstrong Mission Research Corporation One Tara Blvd Nashua, NH 03062-2801 May 1993 Scientific Report No...INSTRUMENT ( HAARP IRI) PR 2310 STA G3 WU BM6. AUTHOR(S) V. Eccles and R. Armstrong 7. PERFOR•IlNG ORGANIZATION NAME(S) AND AOORESS(ES) 8. PERFORMING...Because the HAARP (HF Active Auroral Research Program) facility is designed to mimic and investigate certain natural processes, a study of possible

  17. Further Investigations of Ionospheric Total Electron Content and Scintillation Effects on Transionospheric Radiowave Propagation

    DTIC Science & Technology

    1998-02-12

    HAARP ). 14. SUBJECT TERMS Global Positioning System (GPS), High Frequency Active Auroral Research Program ( HAARP ), ionosphere, radiowave...Scintillation Simulation 23 4.10 Automated Calibrations 23 5. HAARP Activities 24 5.1 Development of HAARP Diagnostics 24 5.2 Facilitation of... HAARP Operations and Broader Scientific Collaborations 27 5.3 Public Relations 28 6. Publications 30 References 30 Acronyms and Initials 30 Appendix

  18. Geophysical Remote Sensing Using the HF Pumped Stimulated Brillouin Scatter (SBS) Emission Lines Produced by HAARP

    NASA Astrophysics Data System (ADS)

    Bernhardt, P. A.; Selcher, C. A.

    2009-12-01

    An ordinary or extraordinary mode electromagnetic wave can decay into a low frequency electrostatic wave and a scattered electromagnetic wave by a process called stimulated Brillouin scatter (SBS). The low frequency wave can be either an ion acoustic wave (IA) or an electrostatic ion cyclotron (EIC) wave. The first detection ion acoustic waves by this process during ionospheric modification with high power radio waves was reported by Norin et al. (2009) using the HAARP transmitter in Alaska. The first detection of the electrostatic ion cyclotron waves is reported here using HAARP during the March 2009 campaign. Subsequent experiments have provided additional verification of the SBS process and quantitative interpretation of the scattered wave frequency offsets to yield measurements of the electron temperatures in the heated ionosphere by Bernhardt et al. (2009). Using the SBS technique to generate ion acoustic waves, electron temperatures between 3000 and 4000 K were measured over the HAARP facility. The matching conditions for decay of the high frequency pump wave show that in addition to the production of an ion-acoustic wave, an electrostatic ion cyclotron wave can produced by the generalized SBS processes only if the pump waves makes a large angle with the magnetic field. When the EIC mode is produced, it is seen as a narrow of stimulated electromagnetic emissions at the ion cyclotron frequency. Occasionally, multiple lines are seen and analyzed to yield the relative abundance of oxygen, and molecular ions in the lower ionosphere. This ion mass spectrometer interpretation of the SBS data is new to the field of ionosphere remote sensing. In addition, based on the matching condition theory, the first profiles of the scattered wave amplitude are produced using the stimulated Brillouin scatter (SBS) matching conditions. These profiles are consistent with maximum ionospheric interactions at the upper-hybrid resonance height and at a region just below the plasma

  19. Attenuation of Scintillation of Discrete Cosmic Sources during Nonresonant HF Heating of the Upper Ionosphere

    NASA Astrophysics Data System (ADS)

    Bezrodny, V. G.; Watkins, B.; Charkina, O. V.; Yampolski, Y. M.

    2014-03-01

    The aim of the work is to experimentally investigate the response of scintillation spectra and indices of discrete cosmic sources (DCS) to modification of the ionospheric F-region by powerful electromagnetic fields with frequencies exceeding the Langmuir and upper hybrid ones. The results of a special experiment on the scintillations of radiation from DCS Cygnus A observed with using the 64-beam imaging riometer located near the Gakona village (Alaska, USA) are here presented. The ionosphere was artificially disturbed by powerful HAARP heater. Under the studied conditions of nonresonant heating of the ionospheric plasma, an earlier unknown effect of reducing the level of DCS scintillation was discovered. The theoretical interpretation has been given for the discovered effect, which using allowed the proposed technique of solving the inverse problem (recovery deviations of average electron density and temperature in the modified region from their unperturbed values).

  20. Investigation of Third Gyro-harmonic Heating at HAARP Using Stimulated Radio Emissions, the MUIR and SuperDARN Radars

    NASA Astrophysics Data System (ADS)

    Mahmoudian, Alireza; Bernhardt, Paul; Ruohoniemi, J. Michael; Isham, Brett; Watkins, Brenton; Scales, Wayne

    2016-07-01

    Use of high frequency (HF) heating experiments has been extended in recent years as a useful methodology for plasma physicists wishing to remotely study the properties and behavior of the ionosphere as well as nonlinear plasma processes. Our recent work using high latitude heating experiments has lead to several important discoveries that have enabled assessment of active geomagnetic conditions, determination of minor ion species and their densities, ion mass spectrometry, electron temperature measurements in the heating ionosphere, as well a deeper understanding of physical processes associated with electron acceleration and formation of field aligned irregularities. The data recorded during two campaigns at HAARP in 2011 and 2012 will be presented. Several diagnostic instruments have been used to detect HAARP heater-generated ionospheric irregularities and plasma waves. These diagnostics include an ionosonde, MUIR (Modular UHF Ionospheric Radar at 446 MHz), SuperDARN HF backscatter radar and ground-based SEE receivers. Variation of the wideband/ narrowband SEE features, SuperDARN echoes, and enhanced ion lines were studied with pump power variation, pump frequency stepping near 3fce as well as changing beam angle relative to the magnetic zenith. In particular, formation of field-aligned irregularities (FAIs) and upper hybrid (UH) waves through oscillating two-stream instability (OSTI) and resonance instability is studied. During heating, Narrowband SEE (NSEE) showed enhancements that correlated with the enhanced MUIR radar ion lines. IA MSBS (Magnetized Stimulated Brillouin Scatter) lines are much narrower than Wideband SEE (WSEE) lines and as a result electron temperature calculated using NSEE line offset has potential to be more accurate. This technique may therefore complement the electron temperature calculation using ISR spectra. Strength of IA MSBS lines correlate with EHIL in the MUIR spectrum during HF pump frequency variation near 3fce. Therefore, NSEE

  1. Basis of Ionospheric Modification by High-Frequency Waves

    DTIC Science & Technology

    2007-06-01

    for conducting ionospheric heating experiments in Gakona, Alaska, as part of the High Frequency Active Auroral Research Program ( HAARP ) [5], is being...upgraded. The upgraded HAARP HF transmitting system will be a phased-array antenna of 180 elements. Each element is a cross dipole, which radiates a...supported by the High Frequency Active Auroral Research Program ( HAARP ), the Air Force Research Laboratory at Hanscom Air Force Base, MA, and by the Office

  2. Upper atmospheric effects of the hf active auroral research program ionospheric research instrument (HAARP IRI)

    SciTech Connect

    Eccles, V.; Armstrong, R.

    1993-05-01

    The earth's ozone layer occurs in the stratosphere, primarily between 10 and 30 miles altitude. The amount of ozone, O3, present is the result of a balance between production and destruction processes. Experiments have shown that natural processes such as auroras create molecules that destroy O. One family of such molecules is called odd nitrogen of which nitric oxide (NO) is an example. Because the HAARP (HF Active Auroral Research Program) facility is designed to mimic and investigate certain natural processes, a study of possible effects of HAARP on the ozone layer was conducted. The study used a detailed modelmore » of the thermal and chemical effects of the high power HF beam, which interacts with free electrons in the upper atmosphere above 50 miles altitude. It was found only a small fraction of the beam energy goes into the production of odd nitrogen molecules, whereas odd nitrogen is efficiently produced by auroras. Since the total energy emitted by HAARP in the year is some 200,000 times less than the energy deposited in the upper atmosphere by auroras, the study demonstrates that HAARP HF beam experiments will cause no measurable depletion of the earth's ozone layer.... Ozone, Ozone depletion, Ozone layer, Odd nitrogen, Nitric oxide, HAARP Emitter characteristics.« less

  3. Macroscopic time and altitude distribution of plasma turbulence induced in ionospheric modification experiments

    SciTech Connect

    Rose, H.; Dubois, D.; Russell, D.

    1996-03-01

    This is the final report of a three-year Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This research concentrated on the time dependence of the heater, induced-turbulence, and electron-density profiles excited in the ionosphere by a powerful radio-frequency heater wave. The macroscopic density is driven by the ponderomotive pressure and the density self-consistently determines the heater propagation. For typical parameters of the current Arecibo heater, a dramatic quasi-periodic behavior was found. For about 50 ms after turn-on of the heater wave, the turbulence is concentrated at the first standing-wave maximum of the heater near reflectionmore » altitude. From 50--100 ms the standing-wave pattern drops by about 1--2 km in altitude and the quasi-periodicity reappears at the higher altitudes with a period of roughly 50 ms. This behavior is due to the half-wavelength density depletion grating that is set up by the ponderomotive pressure at the maxima of the heater standing-wave pattern. Once the grating is established the heater can no longer propagate to higher altitudes. The grating is then unsupported by the heater at these altitudes and decays, allowing the heater to propagate again and initiate another cycle. For stronger heater powers, corresponding to the Arecibo upgrade and the HAARP heater now under construction, the effects are much more dramatic.« less

  4. Multiple-Station Observation of Frequency Dependence and Polarization Characteristics of ELF/VLF waves generated via Ionospheric Modification

    NASA Astrophysics Data System (ADS)

    Maxworth, A. S.; Golkowski, M.; Cohen, M.; Moore, R. C.

    2014-12-01

    Generation of Extremely Low Frequency (ELF) and Very Low Frequency (VLF) signals through ionospheric modification has been practiced for many years. Heating the lower ionosphere with high power HF waves allows for modulation of natural current systems. Our experiments were carried out at the High Frequency Active Auroral Research Program (HAARP) facility in Alaska, USA. In this experiment, the ionosphere was heated with a vertical amplitude modulating signal and the modulation frequency was changed sequentially within an array of 40 frequencies followed by a frequency ramp. The observed magnetic field amplitude and polarization of the generated ELF/VLF signals were analyzed for multiple sites and as a function of modulation frequency. Our three observation sites: Chistochina, Paxson and Paradise are located within 36km (azimuth 47.7°), 50.2km (azimuth -20°) and 99km (azimuth 80.3°) respectively. We show that the peak amplitudes observed as a function of frequency result from vertical resonance in the Earth-ionosphere waveguide and can be used to diagnose the D-region profile. Polarization analysis showed that out of the three sites Paxson shows the highest circularity in the magnetic field polarization, compared to Chistochina and Paradise which show highly linear polarizations. The experimental results were compared with a theoretical simulation model results and it was clear that in both cases, the modulated Hall current dominates the observed signals at Chistochina and Paradise sites and at Paxson there is an equal contribution from Hall and Pedersen currents. The Chistochina site shows the highest magnetic field amplitudes in both experimental and simulation environments. Depending upon the experimental and simulation observations at the three sites, a radiation pattern for the HAARP ionospheric heater can be mapped

  5. Excitation of the ionospheric Alfvén resonator from the ground: Theory and experiments

    NASA Astrophysics Data System (ADS)

    Streltsov, A. V.; Chang, C.-L.; Labenski, J.; Milikh, G.; Vartanyan, A.; Snyder, A. L.

    2011-10-01

    We report results from numerical and experimental studies of the excitation of ULF shear Alfvén waves inside the ionospheric Alfvén resonator (IAR) by heating the ionosphere with powerful HF waves launched from the High Frequency Active Auroral Research Program (HAARP) facility in Alaska. Numerical simulations of the two-fluid MHD model describing IAR in a dipole magnetic field geometry with plasma parameters taken from the observations at HAARP during the October-November 2010 experimental campaign reveal that the IAR quality is higher during nighttime conditions, when the ionospheric conductivity is very low. Simulations also reveal that the resonance wave cannot be identified from the magnetic measurements on the ground or at an altitude above 600 km because the magnetic field in this wave has nodes on both ends of the resonator, and the best way to detect IAR modes is by measuring the electric field on low Earth orbit satellites. These theoretical predictions are in good, quantitative agreement with results from observations: In particular, (1) observations from the ground-based magnetometer at the HAARP site demonstrate no significant difference in the amplitudes of the magnetic field generated by HAARP in the frequency range from 0 to 5 Hz, and (2) the DEMETER satellite detected the electric field of the IAR first harmonic at an altitude of 670 km above HAARP during the heating experiment.

  6. Magnetic zenith effect in the ionospheric modification by an X-mode HF heater wave

    NASA Astrophysics Data System (ADS)

    Blagoveshchenskaya, N. F.; Borisova, T. D.; Haggstrom, I.; Rietveld, M. T.; Yeoman, T. K.

    2013-12-01

    We report experimental results aimed at an investigation of the magnetic zenith effect in the high latitude ionosphere F region from ionospheric modification by powerful HF heater wave with X-polarization. The ionospheric modification was produced by the HF heating facility at Tromsø (Norway) using the phased array with a narrow beam with of 6 degrees. Effective radiated power was varied between 450 and 1000 MW. The HF pump wave radiated in different directions relative to the magnetic field from 90 degrees (vertical) to 78 degrees (magnetic zenith) at frequencies near or above the ordinary-mode critical frequency. The response of the ionosphere plasma to the HF pump wave impact was checked by the UHF incoherent scatter radar located in the immediate vicinity of the HF heater. UHF radar was probing the plasma parameters, such as electron density and temperature (Ne and Te), HF-induced plasma and ion lines in the altitude range from 90 to 600 km. It was running in a scanning mode when UHF radar look angles were changed from 74 to 90 degrees by 1 or 2 degree step. It was clearly demonstrated that the strongest heater-induced effects took place in the magnetic field-aligned direction when HF pointing was also to the magnetic zenith. It was found that strong Ne enhancement of up to 80 % along magnetic field (artificial density ducts) were excited only under HF pumping towards magnetic zenith. The width of the artificial ducts comes to only 2 degrees. The Ne increases were accompanied by the Te enhancements of up to about 50 %. Less pronounced Te increases were also observed in the directions of 84 and 90 degrees. Strong Ne enhancements can be accompanied by excitation of strong HF-induced plasma and ion lines. Thus experimental results obtained points to the strong magnetic zenith effect due to self-focusing powerful HF radio wave with X-mode polarization.

  7. 100 Days of ELF/VLF Generation via HF Heating with HAARP (Invited)

    NASA Astrophysics Data System (ADS)

    Cohen, M.; Golkowski, M.

    2013-12-01

    ELF/VLF radio waves are difficult to generate with conventional antennas. Ionospheric HF heating facilities generate ELF/VLF waves via modulated heating of the lower ionosphere. HF heating of the ionosphere changes the lower ionospheric conductivity, which in the presence of natural currents such as the auroral electrojet, creates an antenna in the sky when heating is modulated at ELF/VLF frequencies. We present a summary of nearly 100 days of ELF/VLF wave generation experiments at the 3.6 MW HAARP facility near Gakona, Alaska, and provide a baseline reference of ELF/VLF generation capabilities with HF heating. Between February 2007 and August 2008, HAARP was operated on close to 100 days for ELF/VLF wave generation experiments, at a variety of ELF/VLF frequencies, seasons and times of day. We present comprehensive statistics of generated ELF/VLF magnetic fields observed at a nearby site, in the 500-3500 Hz band. Transmissions with a specific HF beam configuration (3.25 MHz, vertical beam, amplitude modulation) are isolated so the data comparison is self-consistent, across nearly 5 million individual measurements of either a tone or a piece of a frequency-time ramp. There is a minimum in the average generation close to local midnight. It is found that generation during local nighttime is on average weaker, but more highly variable, with a small number of very strong generation periods. Signal amplitudes from day to day may vary by as much as 20-30 dB. Generation strengthens by ~5 dB during the first ~30 minutes of transmission, which may be a signature of slow electron density changes from sustained HF heating. Theoretical calculations are made to relate the amplitude observed to the power injected into the waveguide and reaching 250 km. The median power generated by HAARP and injected into the waveguide is ~0.05-0.1 W in this base-line configuration (vertical beam, 3.25 MHz, amplitude modulation), but may have generated hundreds of Watts for brief durations

  8. Applications of a time-dependent polar ionosphere model for radio modification experiments

    NASA Astrophysics Data System (ADS)

    Fallen, Christopher Thomas

    A time-dependent self-consistent ionosphere model (SLIM) has been developed to study the response of the polar ionosphere to radio modification experiments, similar to those conducted at the High-Frequency Active Auroral Research Program (HAARP) facility in Gakona, Alaska. SCIM solves the ion continuity and momentum equations, coupled with average electron and ion gas energy equations; it is validated by reproducing the diurnal variation of the daytime ionosphere critical frequency, as measured with an ionosonde. Powerful high-frequency (HF) electromagnetic waves can drive naturally occurring electrostatic plasma waves, enhancing the ionospheric reflectivity to ultra-high frequency (UHF) radar near the HF-interaction region as well as heating the electron gas. Measurements made during active experiments are compared with model calculations to clarify fundamental altitude-dependent physical processes governing the vertical composition and temperature of the polar ionosphere. The modular UHF ionosphere radar (MUIR), co-located with HAARP, measured HF-enhanced ion-line (HFIL) reflection height and observed that it ascended above its original altitude after the ionosphere had been HF-heated for several minutes. The HFIL ascent is found to follow from HF-induced depletion of plasma surrounding the F-region peak density layer, due to temperature-enhanced transport of atomic oxygen ions along the geomagnetic field line. The lower F-region and topside ionosphere also respond to HF heating. Model results show that electron temperature increases will lead to suppression of molecular ion recombination rates in the lower F region and enhancements of ambipolar diffusion in the topside ionosphere, resulting in a net enhancement of slant total electron content (TEC); these results have been confirmed by experiment. Additional evidence for the model-predicted topside ionosphere density enhancements via ambipolar diffusion is provided by in-situ measurements of ion density and

  9. Studies of Ionospheric Processes in the Atmosphere and the Laboratory

    DTIC Science & Technology

    2006-06-01

    relevance to HAARP observations, and on vibrationally-excited levels of the O2 ground state [2] and the b1Σ +g excited state [3]. Synergy with the...UT [20] 29.4 (33) 260 0.94 .077 3/24/95 1737 UT 43.4 (44) 278 0.54 0.53 HAARP 62N, 145W 3/20/04 0617 UT [21] 54 (44) 290 0.33 0.54... HAARP 0.62 5.0E8 1.09E8 4.6 Studies of Ionospheric Processes in the Atmosphere and the Laboratory RTO-MP-IST-056 1 - 9 UNCLASSIFIED/UNLIMITED

  10. New Generation of ELF/VLF Wave Injection Experiments for HAARP

    NASA Astrophysics Data System (ADS)

    Sonwalkar, V. S.; Reddy, A.; Watkins, B. J.

    2016-12-01

    We present a ray tracing study to investigate the feasibility of a new generation of wave injection experiments from HAARP transmitter (L 4.9). Highly successful whistler mode wave injection experiments from SIPLE station, Antarctica, have established the importance of such experiments to study magnetospheric wave-particle interactions, and for cold and hot plasma diagnostics [Helliwell and Katsufrakis, 1974; Carpenter and Miller, 1976; Sonwalkar et al., 1997]. Modulated heating experiments from HAARP have shown that it is possible to launch ELF/VLF waves into the magnetosphere that can be observed on the ground after one-, two-, and multi-hop ducted propagation [Inan et al., 2004]. Recent research has also shown that ionospheric heating experiments using HAARP can lead to the formation of magnetospheric ducts [e.g. Milikh et al., 2010; Fallen et al., 2011]. Collectively, these results indicate that the HAARP (or similar) transmitter can be used first to form ducts on nearby L shells, and then to inject and trap transmitter generated ELF/VLF waves in those ducts. Ray tracing studies using a model magnetosphere shows that ELF/VLF waves in a few kilohertz range can be trapped in ducts with L shells near the HAARP transmitter. For example, 1.5 kHz waves injected from L shell = 4.9 and altitude = 200 km can be trapped in ducts located within 0.3 L of the transmitter L-shell. The duct parameters needed for ray-trapping are typically duct width dL 0.1-0.3 and duct enhancement factor dNe/Ne 10-20% or more. The location of plasmapause with respect to transmitter plays a role in the nature of trapping. The duct locations and parameters required for trapping ELF/VLF waves inside the ducts are consistent with past observations of ducts generated by the HAARP transmitter. Ray tracing calculations provide trapped wave normal angles, time delays, resonant energetic electron energy, estimates of wave intensity inside the duct, on the ground, and on satellites such DEMETER, Van

  11. High Frequency Radar Astronomy With HAARP

    DTIC Science & Technology

    2003-01-01

    High Frequency Radar Astronomy With HAARP Paul Rodriguez Naval Research Laboratory Information Technology Division Washington, DC 20375, USA Edward...a period of several years, the High frequency Active Auroral Research Program ( HAARP ) transmitting array near Gakona, Alaska, has increased in total...high frequency (HF) radar facility used for research purposes. The basic science objective of HAARP is to study nonlinear effects associated with

  12. Active experiments in the ionosphere and geomagnetic field variations

    NASA Astrophysics Data System (ADS)

    Sivokon, V. P.; Cherneva, N. V.; Khomutov, S. Y.; Serovetnikov, A. S.

    2014-11-01

    Variations of ionospheric-magnetospheric relation energy, as one of the possible outer climatology factors, may be traced on the basis of analysis of natural geophysical phenomena such as ionosphere artificial radio radiation and magnetic storms. Experiments on active impact on the ionosphere have been carried out for quite a long time in Russia as well. The most modern heating stand is located in Alaska; it has been used within the HAARP Program. The possibility of this stand to affect geophysical fields, in particular, the geomagnetic field is of interest.

  13. The WIND-HAARP-HIPAS Interferometer Experiment

    DTIC Science & Technology

    1999-04-22

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6750--99-8349 The WIND- HAARP -HIPAS Interferometer Experiment P. RODRIGUEZ AND M. J...1999 3. REPORT TYPE AND DATES COVERED Interim Report 4. TITLE AND SUBTITLE The WIND- HAARP -HIPAS Interferometer Experiment 5. FUNDING NUMBERS JO...frequency transmitting facilities in a bistatic, interferometer mode. The HAARP and HIPAS facilities in Alaska radiated at 4525 kHz with total combined

  14. Investigation of third gyro-harmonic heating at HAARP using stimulated radio emissions and the MUIR and Kodiak radars

    NASA Astrophysics Data System (ADS)

    Mahmoudian, A.; Scales, W. A.; Watkins, B. J.; Bernhardt, P. A.; Isham, B.; Vega-Cancel, O.; Ruohoniemi, J. M.

    2017-01-01

    This paper presents data from two campaigns at the High Frequency Active Auroral Research Program facility (HAARP) in 2011 and 2012. The measurements of stimulated radio emissions (often called stimulated electromagnetic emissions or SEE) were conducted 15 km from the HAARP site. The potential of Narrowband SEE (NSEE) as a new diagnostic tool to monitor artificial irregularities excited during HF-pump heating of the ionosphere is the main goal of this paper. This has been investigated using well established diagnostics including the Modular UHF Ionospheric Radar (MUIR) and Kodiak SuperDARN radars as well as Wideband SEE (WSEE). The measured data using these three diagnostics were compared to characterize the ionospheric parameters and study the plasma irregularities generated in the interaction region. Variation of the wideband/narrowband SEE features, SuperDARN echoes, and HF-enhanced ion lines (EHIL) were studied with pump power variation, pump frequency stepping near the third electron gyro-frequency (3fce) as well as changing beam angle relative to the magnetic zenith. In particular, electrostatic plasma waves and associated irregularities excited near the reflection resonance layer as well as the upper-hybrid resonance layer are investigated. The time evolution and growth rate of these irregularities are studied using the experimental observations. Close alignment of narrowband SEE (NSEE) with wideband SEE (WSEE) and EHIL was observed. SuperDARN radar echoes and WSEE also showed alignment as in previous investigations. Correlations between these three measurements underscore potential diagnostics by utilizing the NSEE spectrum to estimate ionospheric parameters such as electron temperature.

  15. Recent Advances in Narrowband Stimulated Electromagnetic Emission NSEE Investigations at HAARP and EISCAT

    NASA Astrophysics Data System (ADS)

    Scales, Wayne

    2016-07-01

    Investigation of stimulated radiation, commonly known as Stimulated Electromagnetic Emissions (SEE), produced by the interaction of high-power, High Frequency HF radiowaves with the ionospheric plasma has been a vibrant area of research since the early 1980's. Substantial diagnostic information about ionospheric plasma characteristics, dynamics, and turbulence can be obtained from the frequency spectrum of the stimulated radiation. During the past several decades, so-called wideband SEE (WSEE) which exists in a frequency band of ±100 KHz or so of the transmit wave frequency (which is several MHz) has been investigated relatively thoroughly. Upgrades both in transmitter power and diagnostic receiver frequency sensitivity at major ionosphere interaction facilities (i.e. HAARP and EISCAT) have allowed new breakthroughs in the ability to study a plethora of processes associated with the ionospheric plasma during these active experiments. A primary advance is in observations of so-called narrowband SEE (NSEE) which exists roughly within ±1 kHz of the transmit wave frequency. NSEE investigation has opened the door for a potentially powerful tool for aeronomy investigations as well. An overview of several important new results associated with NSEE are discussed in this presentation, including observations, theory, computational modeling, as well as implications to new diagnostics of space plasma physics occurring during ionospheric interaction experiments.

  16. Upper Hybrid Effects in Artificial Ionization

    NASA Astrophysics Data System (ADS)

    Papadopoulos, K.; Eliasson, B. E.

    2014-12-01

    A most fascinating result of recent ionospheric experiments has been the discovery of artificial ionization by Pedersen et al. (GRL, 37, L02106, 2010). The Artificial Ionospheric Layers (AIL) were the result of F-region O-mode HF irradiation using the HAARP ionospheric heater operating at 3.6 MW power. As demonstrated by Eliasson et al. (JGR, 117, A10321, 2012) the physics controlling the observed phenomenon and its threshold can be summarized as: " Collisional ionization due to high energy (~ 20 eV) electron tails generated by the interaction of strong Langmuir turbulence with plasma heated at the upper hybrid resonance and transported at the reflection height". The objective of the current presentation is to explore the role of the upper hybrid heating in the formation of AIL and its implications to future experiments involving HF heaters operating in middle and equatorial latitudes.

  17. Estimating the electron energy distribution during ionospheric modification from spectrographic airglow measurements

    NASA Astrophysics Data System (ADS)

    Hysell, D. L.; Varney, R. H.; Vlasov, M. N.; Nossa, E.; Watkins, B.; Pedersen, T.; Huba, J. D.

    2012-02-01

    The electron energy distribution during an F region ionospheric modification experiment at the HAARP facility near Gakona, Alaska, is inferred from spectrographic airglow emission data. Emission lines at 630.0, 557.7, and 844.6 nm are considered along with the absence of detectable emissions at 427.8 nm. Estimating the electron energy distribution function from the airglow data is a problem in classical linear inverse theory. We describe an augmented version of the method of Backus and Gilbert which we use to invert the data. The method optimizes the model resolution, the precision of the mapping between the actual electron energy distribution and its estimate. Here, the method has also been augmented so as to limit the model prediction error. Model estimates of the suprathermal electron energy distribution versus energy and altitude are incorporated in the inverse problem formulation as representer functions. Our methodology indicates a heater-induced electron energy distribution with a broad peak near 5 eV that decreases approximately exponentially by 30 dB between 5-50 eV.

  18. High Frequency Resolution TOA Analysis for ELF/VLFWave Generation Experiments at HAARP

    NASA Astrophysics Data System (ADS)

    Ruddle, J. D.; Moore, R. C.

    2014-12-01

    Modulated HF heating of the ionosphere in the presence of natural ionospheric current sources has been used as a method to generate electromagnetic ELF/VLF waves since the 1970's. In the ~1-5 kHz band, the amplitude and phase of the received ELF/VLF signal depends on the amplitude and phase of the conductivity modulation generated throughout the HF-heated ionospheric body, as well as on the signal propagation parameters (i.e., the attenuation and phase constants) between each of the current sources and the receiver. Recent signal processing advances have produced an accurate ELF/VLF time-of-arrival (TOA) analysis technique that differentiates line-of-sight and ionospherically-reflected signal components, determining the amplitude and phase of each component observed at the receiver. This TOA method requires a wide bandwidth (> 2.5 kHz) and therefore is relatively insensitive to the frequency-dependent nature of ELF/VLF wave propagation. In this paper, we present an improved ELF/VLF TOA method that is capable of providing high frequency resolution. The new analysis technique is applied to experimental observations of ELF/VLF signals generated by modulated heating at HAARP. We present measurements of the amplitude and phase of the received ELF/VLF signal as a function of frequency and compare the results with the predictions of an HF heating model.

  19. Nonlinear Interactions within the D-Region Ionosphere

    NASA Astrophysics Data System (ADS)

    Moore, Robert

    2016-07-01

    This paper highlights the best results obtained during D-region modification experiments performed by the University of Florida at the High-frequency Active Auroral Research Program (HAARP) observatory between 2007 and 2014. Over this period, we saw a tremendous improvement in ELF/VLF wave generation efficiency. We identified methods to characterize ambient and modified ionospheric properties and to discern and quantify specific types of interactions. We have demonstrated several important implications of HF cross-modulation effects, including "Doppler Spoofing" on HF radio waves. Throughout this talk, observations are compared with the predictions of an ionospheric HF heating model to provide context and guidance for future D-region modification experiments.

  20. Low-Frequency Waves in HF Heating of the Ionosphere

    NASA Astrophysics Data System (ADS)

    Sharma, A. S.; Eliasson, B.; Milikh, G. M.; Najmi, A.; Papadopoulos, K.; Shao, X.; Vartanyan, A.

    2016-02-01

    Ionospheric heating experiments have enabled an exploration of the ionosphere as a large-scale natural laboratory for the study of many plasma processes. These experiments inject high-frequency (HF) radio waves using high-power transmitters and an array of ground- and space-based diagnostics. This chapter discusses the excitation and propagation of low-frequency waves in HF heating of the ionosphere. The theoretical aspects and the associated models and simulations, and the results from experiments, mostly from the HAARP facility, are presented together to provide a comprehensive interpretation of the relevant plasma processes. The chapter presents the plasma model of the ionosphere for describing the physical processes during HF heating, the numerical code, and the simulations of the excitation of low-frequency waves by HF heating. It then gives the simulations of the high-latitude ionosphere and mid-latitude ionosphere. The chapter also briefly discusses the role of kinetic processes associated with wave generation.

  1. Full-Scale Numerical Modeling of Turbulent Processes in the Earth's Ionosphere

    SciTech Connect

    Eliasson, B.; Stenflo, L.; Department of Physics, Linkoeping University, SE-581 83 Linkoeping

    2008-10-15

    We present a full-scale simulation study of ionospheric turbulence by means of a generalized Zakharov model based on the separation of variables into high-frequency and slow time scales. The model includes realistic length scales of the ionospheric profile and of the electromagnetic and electrostatic fields, and uses ionospheric plasma parameters relevant for high-latitude radio facilities such as Eiscat and HAARP. A nested grid numerical method has been developed to resolve the different length-scales, while avoiding severe restrictions on the time step. The simulation demonstrates the parametric decay of the ordinary mode into Langmuir and ion-acoustic waves, followed by a Langmuirmore » wave collapse and short-scale caviton formation, as observed in ionospheric heating experiments.« less

  2. Electromagnetic interference impact of the proposed emitters for the High Frequency Active Auroral Research Program (HAARP). Interim report

    SciTech Connect

    Robertshaw, G.A.; Snyder, A.L.; Weiner, M.M.

    1993-05-14

    The proposed HAARP emitters at the Gakona (Alaska) preferred site and at the Clear AFS (Alaska) alternative site are the Ionospheric Research Instrument (IRI), the Incoherent Scatter Radar (ISR), and the Vertical Incidence Sounder(VIS). The electromagnetic interference (EMI) impact of those emitters on receiving systems in the vicinity of the sites is estimated in this study. The results are intended for use as an input to the Air Force Environmental Impact Statement as part of the Environmental Impact Analysis Process.

  3. Stimulated Brillouin scattering during electron gyro-harmonic heating at EISCAT

    NASA Astrophysics Data System (ADS)

    Fu, H. Y.; Scales, W. A.; Bernhardt, P. A.; Briczinski, S. J.; Kosch, M. J.; Senior, A.; Rietveld, M. T.; Yeoman, T. K.; Ruohoniemi, J. M.

    2015-08-01

    Observations of secondary radiation, stimulated electromagnetic emission (SEE), produced during ionospheric modification experiments using ground-based, high-power, high-frequency (HF) radio waves are considered. The High Frequency Active Auroral Research Program (HAARP) facility is capable of generating narrowband SEE in the form of stimulated Brillouin scatter (SBS) and stimulated ion Bernstein scatter (SIBS) in the SEE spectrum. Such narrowband SEE spectral lines have not been reported using the European Incoherent Scatter (EISCAT) heater facility before. This work reports the first EISCAT results of narrowband SEE spectra and compares them to SEE previously observed at HAARP during electron gyro-harmonic heating. An analysis of experimental SEE data shows observations of emission lines within 100 Hz of the pump frequency, interpreted as SBS, during the 2012 July EISCAT campaign. Experimental results indicate that SBS strengthens as the pump frequency approaches the third electron gyro-harmonic. Also, for different heater antenna beam angles, the CUTLASS radar backscatter induced by HF radio pumping is suppressed near electron gyro-harmonics, whereas electron temperature enhancement weakens as measured by EISCAT/UHF radar. The main features of these new narrowband EISCAT observations are generally consistent with previous SBS measurements at HAARP.

  4. Ionospheric very low frequency transmitter

    SciTech Connect

    Kuo, Spencer P.

    2015-02-15

    The theme of this paper is to establish a reliable ionospheric very low frequency (VLF) transmitter, which is also broad band. Two approaches are studied that generate VLF waves in the ionosphere. The first, classic approach employs a ground-based HF heater to directly modulate the high latitude ionospheric, or auroral electrojet. In the classic approach, the intensity-modulated HF heater induces an alternating current in the electrojet, which serves as a virtual antenna to transmit VLF waves. The spatial and temporal variations of the electrojet impact the reliability of the classic approach. The second, beat-wave approach also employs a ground-based HFmore » heater; however, in this approach, the heater operates in a continuous wave mode at two HF frequencies separated by the desired VLF frequency. Theories for both approaches are formulated, calculations performed with numerical model simulations, and the calculations are compared to experimental results. Theory for the classic approach shows that an HF heater wave, intensity-modulated at VLF, modulates the electron temperature dependent electrical conductivity of the ionospheric electrojet, which, in turn, induces an ac electrojet current. Thus, the electrojet becomes a virtual VLF antenna. The numerical results show that the radiation intensity of the modulated electrojet decreases with an increase in VLF radiation frequency. Theory for the beat wave approach shows that the VLF radiation intensity depends upon the HF heater intensity rather than the electrojet strength, and yet this approach can also modulate the electrojet when present. HF heater experiments were conducted for both the intensity modulated and beat wave approaches. VLF radiations were generated and the experimental results confirm the numerical simulations. Theory and experimental results both show that in the absence of the electrojet, VLF radiation from the F-region is generated via the beat wave approach. Additionally, the beat wave

  5. Electron Acceleration and Ionization Production in High-Power Heating Experiments at HAARP

    NASA Astrophysics Data System (ADS)

    Mishin, E. V.; Pedersen, T.

    2012-12-01

    Recent ionospheric modification experiments with the 3.6 MW transmitter at the High Frequency Active Auroral Research Program (HAARP) facility in Alaska led to discovery of artificial ionization descending from the nominal interaction altitude in the background F-region ionosphere by ~60-80 km. Artificial ionization production is indicated by significant 427.8 nm emissions from the 1st negative band of N2+ and the appearance of transmitter-induced bottomside traces in ionosonde data during the periods of most intense optical emissions. However, the exact mechanisms producing the artificial plasmas remain to be determined. Yet the only existing theoretical models explain the development of artificial plasma as an ionizing wavefront moving downward due to ionization by electrons accelerated by HF-excited strong Langmuir turbulence (SLT) generated near the plasma resonance, where the pump frequency matches the plasma frequency. However, the observations suggest also the significance of interactions with upper hybrid and electron Bernstein waves near multiples of the electron gyrofrequency. We describe recent observations and discuss suitable acceleration mechanisms.

  6. Heater-induced ionization inferred from spectrometric airglow measurements

    NASA Astrophysics Data System (ADS)

    Hysell, D. L.; Miceli, R. J.; Varney, R. H.; Schlatter, N.; Huba, J. D.

    2013-12-01

    Spectrographic airglow measurements were made during an ionospheric modification experiment at HAARP on March 12, 2013. Artificial airglow enhancements at 427.8, 557.7, 630.0, 777.4, and 844.6 nm were observed. On the basis of these emissions and using a methodology based on the method of Backus and Gilbert [1968, 1970], we estimate the suprathermal electron population and the subsequent equilibrium electron density profile, including contributions from electron impact ionization. We find that the airglow is consistent with significant induced ionization in view of the spatial intermittency of the airglow.

  7. High Power Radio Wave Interactions within the D-Region Ionosphere

    NASA Astrophysics Data System (ADS)

    Moore, R. C.

    2014-12-01

    This paper highlights the best results obtained during D-region modification experiments performed by the University of Florida at the High-frequency Active Auroral Research Program (HAARP) observatory between 2007 and 2014. Over this period, we have seen a tremendous improvement in ELF/VLF wave generation efficiency. We have identified methods to characterize ambient and modified ionospheric properties and to discern and quantify specific types of interactions. We have demonstrated several important implications of HF cross-modulation effects, including "Doppler Spoofing" on HF radio waves. Throughout this talk, observations are compared with the predictions of an ionospheric HF heating model to provide context and guidance for future D-region modification experiments.

  8. Ionospheric modification at twice the electron cyclotron frequency.

    PubMed

    Djuth, F T; Pedersen, T R; Gerken, E A; Bernhardt, P A; Selcher, C A; Bristow, W A; Kosch, M J

    2005-04-01

    In 2004, a new transmission band was added to the HAARP high-frequency ionospheric modification facility that encompasses the second electron cyclotron harmonic at altitudes between approximately 220 and 330 km. Initial observations indicate that greatly enhanced airglow occurs whenever the transmission frequency approximately matches the second electron cyclotron harmonic at the height of the upper hybrid resonance. This is the reverse of what happens at higher electron cyclotron harmonics. The measured optical emissions confirm the presence of accelerated electrons in the plasma.

  9. Unprecedentedly Strong and Narrow Electromagnetic Emissions Stimulated by High-Frequency Radio Waves in the Ionosphere

    SciTech Connect

    Norin, L.; Leyser, T. B.; Nordblad, E.

    2009-02-13

    Experimental results of secondary electromagnetic radiation, stimulated by high-frequency radio waves irradiating the ionosphere, are reported. We have observed emission peaks, shifted in frequency up to a few tens of Hertz from radio waves transmitted at several megahertz. These emission peaks are by far the strongest spectral features of secondary radiation that have been reported. The emissions are attributed to stimulated Brillouin scattering, long predicted but hitherto never unambiguously identified in high-frequency ionospheric interaction experiments. The experiments were performed at the High-Frequency Active Auroral Research Program (HAARP), Alaska, USA.

  10. Unprecedentedly strong and narrow electromagnetic emissions stimulated by high-frequency radio waves in the ionosphere.

    PubMed

    Norin, L; Leyser, T B; Nordblad, E; Thidé, B; McCarrick, M

    2009-02-13

    Experimental results of secondary electromagnetic radiation, stimulated by high-frequency radio waves irradiating the ionosphere, are reported. We have observed emission peaks, shifted in frequency up to a few tens of Hertz from radio waves transmitted at several megahertz. These emission peaks are by far the strongest spectral features of secondary radiation that have been reported. The emissions are attributed to stimulated Brillouin scattering, long predicted but hitherto never unambiguously identified in high-frequency ionospheric interaction experiments. The experiments were performed at the High-Frequency Active Auroral Research Program (HAARP), Alaska, USA.

  11. High Power HF Excitation of Low Frequency Stimulated Electrostatic Waves in the Ionospheric Plasma over HAARP

    NASA Astrophysics Data System (ADS)

    Bernhardt, Paul; Selcher, Craig A.

    High Power electromagnetic (EM) waves transmitted from the HAARP facility in Alaska can excite low frequency electrostatic waves by several processes including (1) direct magnetized stimulated Brillouin scatter (MSBS) and (2) parametric decay of high frequency electrostatic waves into electron and ion Bernstein waves. Either an ion acoustic (IA) wave with a frequency less than the ion cyclotron frequency (fCI) or an electrostatic ion cyclotron (EIC) wave just above fCI can be produced by MSBS. The coupled equations describing the MSBS instabil-ity show that the production of both IA and EIC waves is strongly influenced by the wave propagation direction relative to the background magnetic field. Experimental observations of stimulated electromagnetic emissions (SEE) using the HAARP transmitter in Alaska have confirmed the theoretical predictions that only IA waves are excited for propagation along the magnetic zenith and that EIC waves can only be detected with oblique propagation angles. The electron temperature in the heated plasma is obtained from the IA spectrum offsets from the pump frequency. The ion composition can be determined from the measured EIC frequency. Near the second harmonic of the electron cyclotron frequency, the EM pump wave is converted into an electron Bernstein (EB) wave that decays into another EB wave and an ion Bernstein (IB) wave. Strong cyclotron resonance with the EB wave leads to acceleration of the electrons. Ground based SEE observations are related to the theory of low-frequency electrostatic wave generation.

  12. Prompt Ion Outflows and Artificial Ducts during High-Power HF Heating at HAARP: Effect of Suprathermal Electrons?

    NASA Astrophysics Data System (ADS)

    Mishin, E. V.; Milikh, G. M.

    2014-12-01

    In situ observations from the DMSP and Demeter satellites established that high-power HF heating of the ionosphere F-region results in significant ion outflows associated with 10-30% density enhancements in the topside ionosphere magnetically-conjugate to the heated region. As follows from the SAMI2 two-fluid model calculations, their formation time should exceed 5-7 minutes. However, specially designed DMSP-HAARP experiments have shown that artificial ducts and ion outflows appear on the topside within 2 minutes. We describe the results of these observations and present a semi-quantitative explanation of the fast timescale due to suprathermal electrons accelerated by HF-induced plasma turbulence. There are two possible effects of suprathermal electrons: (1) the increase of the ambipolar electric field over the usual thermal ambipolar diffusion and (2) excitation of heat flux-driven plasma instability resulting in an anomalous electron-ion momentum exchange. Both effects result in faster upward ion flows.

  13. Geophysical Electromagnetic Sounding Using HAARP

    DTIC Science & Technology

    2002-03-01

    apparent resistivity vs. frequency can be converted into true resistivity vs. depth, This grant involved an investigation into the HAARP virtual antenna pattern out to 200 km, and its use as a CSAMT transmitter.

  14. Beating HF waves to generate VLF waves in the ionosphere

    NASA Astrophysics Data System (ADS)

    Kuo, Spencer; Snyder, Arnold; Kossey, Paul; Chang, Chia-Lie; Labenski, John

    2012-03-01

    Beat-wave generation of very low frequency (VLF) waves by two HF heaters in the ionosphere is formulated theoretically and demonstrated experimentally. The heater-induced differential thermal pressure force and ponderomotive force, which dominate separately in the D and F regions of the ionosphere, drive an electron current for the VLF emission. A comparison, applying appropriate ionospheric parameters shows that the ponderomotive force dominates in beat-wave generation of VLF waves. Three experiments, one in the nighttime in the absence of D and E layers and two in the daytime in the presence of D and E layers, were performed. X mode HF heaters of slightly different frequencies were transmitted at CW full power. VLF waves at 10 frequencies ranging from 3.5 to 21.5 kHz were generated. The frequency dependencies of the daytime and nighttime radiation intensities are quite similar, but the nighttime radiation is much stronger than the daytime one at the same radiation frequency. The intensity ratio is as large as 9 dB at 11.5 kHz. An experiment directly comparing VLF waves generated by the beat-wave approach and by the amplitude modulation (AM) approach was also conducted. The results rule out the likely contribution of the AM mechanism acting on the electrojet and indicate that beat-wave in the VLF range prefers to be generated in the F region of the ionosphere through the ponderomotive nonlinearity, consistent with the theory. In the nighttime experiment, the ionosphere was underdense to the HF heaters, suggesting a likely setting for effective beat-wave generation of VLF waves by the HF heaters.

  15. Detection of Heater Generated Super Small Scale Striations Using GPS Signal Diagnostics

    NASA Astrophysics Data System (ADS)

    Najmi, A. C.; Milikh, G. M.; Chiang, K.; Psiaki, M.; Secan, J. A.; Bernhardt, P. A.; Briczinski, S. J.; Siefring, C. L.; Papadopoulos, K.

    2013-12-01

    Recent theoretical models predict that super small striations (SSS) of the electron density, on the order of ten centimeters, can be excited by HF waves with frequency close to multiples of the electron gyro frequency [Gurevich et al., 2006]. The first experimental verification of SSS was made at HAARP [Milikh et al., 2008]. We present results of HAARP experiments that include simultaneous observations of GPS carrier phase and SEE observations of ionospheric turbulence. These observations show that SSS excited by HF frequencies near the fourth harmonic of the gyro frequency scatter GPS signals, and in three out of six experiments indicate the presence of strong turbulence, similar to that observed in descending artificial ionized layer experiments [Pedersen et al., 2010]. This turbulence is capable of generating suprathermal electrons, and in one of the experiments, the presence of fast electrons was confirmed by the HAARP incoherent scattering radar. Estimates on the SSS shows that they correspond to 3-10% electron density depletions. Such irregularities affect UHF signals including GPS, and thus can be important in applications. Gurevich, A.V. and K.P. Zybin (2006), Phys. Lett. A, 358, 159. Milikh, G., et al. (2008), Geophys. Res. Let., 35, L22102, doi:10.1029/2008GL035527. Pedersen, T. et al. (2010), Geophys. Res. Let., 37, L02106, doi:10.1029/2009GL041895.

  16. HF-enhanced 4278-Å airglow: evidence of accelerated ionosphere electrons?

    NASA Astrophysics Data System (ADS)

    Fallen, C. T.; Watkins, B. J.

    2013-12-01

    We report calculations from a one-dimensional physics-based self-consistent ionosphere model (SCIM) demonstrating that HF-heating of F-region electrons can produce 4278-Å airglow enhancements comparable in magnitude to those reported during ionosphere HF modification experiments at the High-frequency Active Auroral Research Program (HAARP) observatory in Alaska. These artificial 'blue-line' emissions, also observed at the EISCAT ionosphere heating facility in Norway, have been attributed to arise solely from additional production of N2+ ions through impact ionization of N2 molecules by HF-accelerated electrons. Each N2+ ion produced by impact ionization or photoionization has a probability of being created in the N2+(1N) excited state, resulting in a blue-line emission from the allowed transition to its ground state. The ionization potential of N2 exceeds 18 eV, so enhanced impact ionization of N2 implies that significant electron acceleration processes occur in the HF-modified ionosphere. Further, because of the fast N2+ emission time, measurements of 4278-Å intensity during ionosphere HF modification experiments at HAARP have also been used to estimate artificial ionization rates. To the best of our knowledge, all observations of HF-enhanced blue-line emissions have been made during twilight conditions when resonant scattering of sunlight by N2+ ions is a significant source of 4278-Å airglow. Our model calculations show that F-region electron heating by powerful O-mode HF waves transmitted from HAARP is sufficient to increase N2+ ion densities above the shadow height through temperature-enhanced ambipolar diffusion and temperature-suppressed ion recombination. Resonant scattering from the modified sunlit region can cause a 10-20 R increase in 4278-Å airglow intensity, comparable in magnitude to artificial emissions measured during ionosphere HF-modification experiments. This thermally-induced artificial 4278-Å aurora occurs independently of any artificial

  17. Dynamic properties of ionospheric plasma turbulence driven by high-power high-frequency radiowaves

    NASA Astrophysics Data System (ADS)

    Grach, S. M.; Sergeev, E. N.; Mishin, E. V.; Shindin, A. V.

    2016-11-01

    A review is given of the current state-of-the-art of experimental studies and the theoretical understanding of nonlinear phenomena that occur in the ionospheric F-layer irradiated by high-power high-frequency ground-based transmitters. The main focus is on the dynamic features of high-frequency turbulence (plasma waves) and low-frequency turbulence (density irregularities of various scales) that have been studied in experiments at the Sura and HAARP heating facilities operated in temporal and frequency regimes specially designed with consideration of the characteristic properties of nonlinear processes in the perturbed ionosphere using modern radio receivers and optical instruments. Experimental results are compared with theoretical turbulence models for a magnetized collisional plasma in a high-frequency electromagnetic field, allowing the identification of the processes responsible for the observed features of artificial ionospheric turbulence.

  18. Radio Pumping of Ionospheric Plasma with Orbital Angular Momentum

    SciTech Connect

    Leyser, T. B.; Norin, L.; McCarrick, M.

    2009-02-13

    Experimental results are presented of pumping ionospheric plasma with a radio wave carrying orbital angular momentum (OAM), using the High Frequency Active Auroral Research Program (HAARP) facility in Alaska. Optical emissions from the pumped plasma turbulence exhibit the characteristic ring-shaped morphology when the pump beam carries OAM. Features of stimulated electromagnetic emissions (SEE) that are attributed to cascading Langmuir turbulence are well developed for a regular beam but are significantly weaker for a ring-shaped OAM beam in which case upper hybrid turbulence dominates the SEE.

  19. Radio pumping of ionospheric plasma with orbital angular momentum.

    PubMed

    Leyser, T B; Norin, L; McCarrick, M; Pedersen, T R; Gustavsson, B

    2009-02-13

    Experimental results are presented of pumping ionospheric plasma with a radio wave carrying orbital angular momentum (OAM), using the High Frequency Active Auroral Research Program (HAARP) facility in Alaska. Optical emissions from the pumped plasma turbulence exhibit the characteristic ring-shaped morphology when the pump beam carries OAM. Features of stimulated electromagnetic emissions (SEE) that are attributed to cascading Langmuir turbulence are well developed for a regular beam but are significantly weaker for a ring-shaped OAM beam in which case upper hybrid turbulence dominates the SEE.

  20. Recent Observations and Modeling of Narrowband Stimulated Electromagnetic Emissions SEEs at HAARP and EISCAT

    NASA Astrophysics Data System (ADS)

    Scales, W.; Mahmoudian, A.; Fu, H.; Bordikar, M. R.; Samimi, A.; Bernhardt, P. A.; Briczinski, S. J., Jr.; Kosch, M. J.; Senior, A.; Isham, B.

    2014-12-01

    There has been significant interest in so-called narrowband Stimulated Electromagnetic Emission SEE over the past several years due to recent discoveries at the High Frequency Active Auroral Research Program HAARP facility near Gakone, Alaska. Narrowband SEE (NSEE) has been defined as spectral features in the SEE spectrum typically within 1 kHz of the transmitter (or pump) frequency. SEE is due to nonlinear processes leading to re-radiation at frequencies other than the pump wave frequency during heating the ionospheric plasma with high power HF radio waves. Although NSEE exhibits a richly complex structure, it has now been shown after a substantial number of observations at HAARP, that NSEE can be grouped into two basic classes. The first are those spectral features, associated with Stimulated Brillouin Scatter SBS, which typically occur when the pump frequency is not close to electron gyro-harmonic frequencies. Typically, these spectral features are within roughly 50 Hz of the pump wave frequency where it is to be noted that the O+ ion gyro-frequency is roughly 50 Hz. The second class of spectral features corresponds to the case when the pump wave frequency is typically within roughly 10 kHz of electron gyro-harmonic frequencies. In this case, spectral features ordered by harmonics of ion gyro-frequencies are typically observed, and termed Stimulated Ion Bernstein Scatter SIBS. This presentation will first provide an overview of the recent NSEE experimental observations at HAARP. Both Stimulated Brillouin Scatter SBS and Stimulated Ion Bernstein Scatter SIBS observations will be discussed as well as their relationship to each other. Possible theoretical formulation in terms of parametric decay instabilities and computational modeling will be provided. Possible applications of NSEE will be pointed out including triggering diagnostics for artificial ionization layer formation, proton precipitation event diagnostics, electron temperature measurements in the heated

  1. Initial results of stimulated radiation measurements during the HAARP campaign of September 2017

    NASA Astrophysics Data System (ADS)

    Yellu, A. D.; Scales, W. A.; Mahmoudian, A.; Siefring, C.; Bernhardt, P.

    2018-02-01

    Initial results of stimulated electromagnetic radiation observed during an ionosphere heating experiment conducted at the High-Frequency Active Auroral Program (HAARP) facility are reported. The frequency of the pump wave used in the heating is in the neighborhood of the third harmonic of the electron cyclotron frequency, and of interest are simulated electromagnetic emissions (SEEs) within ? kHz of the heating frequency known as narrowband SEE (NSEE) and the commonly known wideband SEE (WSEE) which occur within ? kHz of the pump wave frequency. With the transmit power maintained at maximum, and all other conditions of the experiment invariable, the characteristics of NSEE and WSEE as time progresses from the time the transmitter is switched on are detailed in the results. The dependence of the characteristics of the NSEE and WSEE with temporal evolution into the heating cycle are observed to be fundamentally different.

  2. Investigation of ionospheric disturbances and associated diagnostic techniques. Final report, 1 January 1992-31 December 1994

    SciTech Connect

    Duncan, L.M.

    1995-12-12

    The objectives of this research and development program were to conduct simulation modeling of the generation and propagation of atmospheric acoustic signals associated with surface and subsurface ground disturbances; to construct an experimental measurement system for exploratory research studies of acoustic generated ionospheric disturbances; to model high power radio wave propagation through the ionosphere, including nonlinear wave plasma interaction effects; and to assist in the assessment of diagnostic systems for observation of ionospheric modification experiments using existing and planned high latitude high power RF transmitting facilities. A computer simulation of ionospheric response to ground launched acoustic pulses was constructed andmore » results compared to observational data associated with HF and incoherent scatter radar measurements of ionospheric effects produced by earthquakes and ground level explosions. These results were then utilized to help define the design, construct and test for an HF Doppler radar system. In addition, an assessment was conducted of ionospheric diagnostic instruments proposed for the Air Force/Navy High Frequency Active Auroral Research Program (HAARP).« less

  3. Artificial ionospheric layers during pump frequency stepping near the 4th gyroharmonic at HAARP.

    PubMed

    Sergeev, E; Grach, S; Shindin, A; Mishin, E; Bernhardt, P; Briczinski, S; Isham, B; Broughton, M; LaBelle, J; Watkins, B

    2013-02-08

    We report on artificial descending plasma layers created in the ionosphere F region by high-power high-frequency (HF) radio waves from High-frequency Active Auroral Research Program at frequencies f(0) near the fourth electron gyroharmonic 4f(ce). The data come from concurrent measurements of the secondary escaping radiation from the HF-pumped ionosphere, also known as stimulated electromagnetic emission, reflected probing signals at f(0), and plasma line radar echoes. The artificial layers appeared only for injections along the magnetic field and f(0)>4f(ce) at the nominal HF interaction altitude in the background ionosphere. Their average downward speed ~0.5 km/s holds until the terminal altitude where the local fourth gyroharmonic matches f(0). The total descent increases with the nominal offset f(0)-4f(ce).

  4. Optimizing an ELF/VLF Phased Array at HAARP

    NASA Astrophysics Data System (ADS)

    Fujimaru, S.; Moore, R. C.

    2013-12-01

    The goal of this study is to maximize the amplitude of 1-5 kHz ELF/VLF waves generated by ionospheric HF heating and measured at a ground-based ELF/VLF receiver. The optimization makes use of experimental observations performed during ELF/VLF wave generation experiments at the High-frequency Active Auroral Research Program (HAARP) Observatory in Gakona, Alaska. During these experiments, the amplitude, phase, and propagation delay of the ELF/VLF waves were carefully measured. The HF beam was aimed at 15 degrees zenith angle in 8 different azimuthal directions, equally spaced in a circle, while broadcasting a 3.25 MHz (X-mode) signal that was amplitude modulated (square wave) with a linear frequency-time chirp between 1 and 5 kHz. The experimental observations are used to provide reference amplitudes, phases, and propagation delays for ELF/VLF waves generated at these specific locations. The presented optimization accounts for the trade-off between duty cycle, heated area, and the distributed nature of the source region in order to construct a "most efficient" phased array. The amplitudes and phases generated by modulated heating at each location are combined in post-processing to find an optimal combination of duty cycle, heating location, and heating order.

  5. Characteristics of High Latitude Ionosphere Scintillations

    NASA Astrophysics Data System (ADS)

    Morton, Y.

    2012-12-01

    As we enter a new solar maximum period, global navigation satellite systems (GNSS) receivers, especially the ones operating in high latitude and equatorial regions, are facing an increasing threat from ionosphere scintillations. The increased solar activities, however, also offer a great opportunity to collect scintillation data to characterize scintillation signal parameters and ionosphere irregularities. While there are numerous GPS receivers deployed around the globe to monitor ionosphere scintillations, most of them are commercial receivers whose signal processing mechanisms are not designed to operate under ionosphere scintillation. As a result, they may distort scintillation signal parameters or lose lock of satellite signals under strong scintillations. Since 2008, we have established and continuously improved a unique GNSS receiver array at HAARP, Alaska. The array contains high ends commercial receivers and custom RF front ends which can be automatically triggered to collect high quality GPS and GLONASS satellite signals during controlled heating experiments and natural scintillation events. Custom designed receiver signal tracking algorithms aim to preserve true scintillation signatures are used to process the raw RF samples. Signal strength, carrier phase, and relative TEC measurements generated by the receiver array since its inception have been analyzed to characterize high latitude scintillation phenomena. Daily, seasonal, and solar events dependency of scintillation occurrence, spectral contents of scintillation activities, and plasma drifts derived from these measurements will be presented. These interesting results demonstrate the feasibility and effectiveness of our experimental data collection system in providing insightful details of ionosphere responses to active perturbations and natural disturbances.

  6. Recent Observations and Modeling of Narrowband Stimulated Electromagnetic Emissions SEEs at the HAARP Facility

    NASA Astrophysics Data System (ADS)

    Scales, Wayne; Bernhardt, Paul; McCarrick, Michael; Briczinski, Stanley; Mahmoudian, Alireza; Fu, Haiyang; Ranade Bordikar, Maitrayee; Samimi, Alireza

    There has been significant interest in so-called narrowband Stimulated Electromagnetic Emission SEE over the past several years due to recent discoveries at the High Frequency Active Auroral Research Program HAARP facility near Gakone, Alaska. Narrowband SEE (NSEE) has been defined as spectral features in the SEE spectrum typically within 1 kHz of the transmitter (or pump) frequency. SEE is due to nonlinear processes leading to re-radiation at frequencies other than the pump wave frequency during heating the ionospheric plasma with high power HF radio waves. Although NSEE exhibits a richly complex structure, it has now been shown after a substantial number of observations at HAARP, that NSEE can be grouped into two basic classes. The first are those spectral features, associated with Stimulated Brillouin Scatter SBS, which typically occur when the pump frequency is not close to electron gyro-harmonic frequencies. Typically, these spectral features are within roughly 50 Hz of the pump wave frequency where it is to be noted that the O+ ion gyro-frequency is roughly 50 Hz. The second class of spectral features corresponds to the case when the pump wave frequency is typically within roughly 10 kHz of electron gyro-harmonic frequencies. In this case, spectral features ordered by harmonics of ion gyro-frequencies are typically observed, and termed Stimulated Ion Bernstein Scatter SIBS. There is also important parametric behavior on both classes of NSEE depending on the pump wave parameters including the field strength, antenna beam angle, and electron gyro-harmonic number. This presentation will first provide an overview of the recent NSEE experimental observations at HAARP. Both Stimulated Brillouin Scatter SBS and Stimulated Ion Bernstein Scatter SIBS observations will be discussed as well as their relationship to each other. Possible theoretical formulation in terms of parametric decay instabilities will be provided. Computer simulation model results will be presented

  7. Visual analysis as a method of interpretation of the results of satellite ionospheric measurements for exploratory problems

    NASA Astrophysics Data System (ADS)

    Korneva, N. N.; Mogilevskii, M. M.; Nazarov, V. N.

    2016-05-01

    Traditional methods of time series analysis of satellite ionospheric measurements have some limitations and disadvantages that are mainly associated with the complex nonstationary signal structure. In this paper, the possibility of identifying and studying the temporal characteristics of signals via visual analysis is considered. The proposed approach is illustrated by the example of the visual analysis of wave measurements on the DEMETER microsatellite during its passage over the HAARP facility.

  8. Artificial plasma cusp generated by upper hybrid instabilities in HF heating experiments at HAARP

    NASA Astrophysics Data System (ADS)

    Kuo, Spencer; Snyder, Arnold

    2013-05-01

    High Frequency Active Auroral Research Program digisonde was operated in a fast mode to record ionospheric modifications by the HF heating wave. With the O mode heater of 3.2 MHz turned on for 2 min, significant virtual height spread was observed in the heater off ionograms, acquired beginning the moment the heater turned off. Moreover, there is a noticeable bump in the virtual height spread of the ionogram trace that appears next to the plasma frequency (~ 2.88 MHz) of the upper hybrid resonance layer of the HF heating wave. The enhanced spread and the bump disappear in the subsequent heater off ionograms recorded 1 min later. The height distribution of the ionosphere in the spread situation indicates that both electron density and temperature increases exceed 10% over a large altitude region (> 30 km) from below to above the upper hybrid resonance layer. This "mini cusp" (bump) is similar to the cusp occurring in daytime ionograms at the F1-F2 layer transition, indicating that there is a small ledge in the density profile reminiscent of F1-F2 layer transitions. Two parametric processes exciting upper hybrid waves as the sidebands by the HF heating waves are studied. Field-aligned purely growing mode and lower hybrid wave are the respective decay modes. The excited upper hybrid and lower hybrid waves introduce the anomalous electron heating which results in the ionization enhancement and localized density ledge. The large-scale density irregularities formed in the heat flow, together with the density irregularities formed through the parametric instability, give rise to the enhanced virtual height spread. The results of upper hybrid instability analysis are also applied to explain the descending feature in the development of the artificial ionization layers observed in electron cyclotron harmonic resonance heating experiments.

  9. Ionosphere Profile Estimation Using Ionosonde & GPS Data in an Inverse Refraction Calculation

    NASA Astrophysics Data System (ADS)

    Psiaki, M. L.

    2014-12-01

    A method has been developed to assimilate ionosonde virtual heights and GPS slant TEC data to estimate the parameters of a local ionosphere model, including estimates of the topside and of latitude and longitude variations. This effort seeks to better assimilate a variety of remote sensing data in order to characterize local (and eventually regional and global) ionosphere electron density profiles. The core calculations involve a forward refractive ray-tracing solution and a nonlinear optimal estimation algorithm that inverts the forward model. The ray-tracing calculations solve a nonlinear two-point boundary value problem for the curved ionosonde or GPS ray path through a parameterized electron density profile. It implements a full 3D solution that can handle the case of a tilted ionosphere. These calculations use Hamiltonian equivalents of the Appleton-Hartree magneto-plasma refraction index model. The current ionosphere parameterization is a modified Booker profile. It has been augmented to include latitude and longitude dependencies. The forward ray-tracing solution yields a given signal's group delay and beat carrier phase observables. An auxiliary set of boundary value problem solutions determine the sensitivities of the ray paths and observables with respect to the parameters of the augmented Booker profile. The nonlinear estimation algorithm compares the measured ionosonde virtual-altitude observables and GPS slant-TEC observables to the corresponding values from the forward refraction model. It uses the parameter sensitivities of the model to iteratively improve its parameter estimates in a way the reduces the residual errors between the measurements and their modeled values. This method has been applied to data from HAARP in Gakona, AK and has produced good TEC and virtual height fits. It has been extended to characterize electron density perturbations caused by HAARP heating experiments through the use of GPS slant TEC data for an LOS through the heated

  10. A Comparison of Science and Technology Funding for DoD’s Space and Nonspace Programs

    DTIC Science & Technology

    2008-01-15

    Artificial intelligence for HAARP Multispectral signature libraries Environmental conditions that Ionospheric prediction HAARP Weather software for...Hardware and software for solar HAARP Electromagnetic interference for Plasma theory in the space Subproject details were not available Subproject

  11. The WIND-HAARP Experiment: Initial Results of High Power Radiowave Interactions with Space Plasmas

    DTIC Science & Technology

    1997-11-10

    Results from the first science experiment with the new HF Active Auroral Research Program ( HAARP ) facility in Alaska are reported. The initial...experiments involved transmission of high frequency waves from HAARP to the NASA/WIND satellite. The objective was to investigate the effects of space

  12. VLF remote sensing of the ambient and modified lower ionosphere

    NASA Astrophysics Data System (ADS)

    Demirkol, Mehmet Kursad

    2000-08-01

    Electron density and temperature changes in the D region are sensitively manifested as changes in the amplitude and phase of subionospheric Very Low Frequency (VLF) signals propagating beneath the perturbed region. Both localized and large scale disturbances (either in electron density or temperature) in the D region cause significant scattering of VLF waves propagating in the earth- ionosphere waveguide, leading to measurable changes in the amplitude and phase of the VLF waves. Large scale auroral disturbances, associated with intensification of the auroral electrojet, as well as ionospheric disturbances produced during relativistic electron enhancements, cause characteristic changes over relatively long time scales that allow the assessment of the `ambient' ionosphere. Localized ionospheric disturbances are also produced by powerful VLF transmitting facilities such as the High Power Auroral Stimulation (HIPAS) facility, the High frequency Active Auroral Research Program (HAARP), and also by lightning discharges. Amplitude and phase changes of VLF waveguide signals scattered from such artificially heated ionospheric patches are known to be detectable. In this study, we describe a new inversion algorithm to determine altitude profiles of electron density and collision frequency within such a localized disturbance by using the measured amplitude and phase of three different VLF signals at three separate receiving sites. For this purpose a new optimization algorithm is developed which is primarily based on the recursive usage of the three dimensional version of the Long Wave Propagation, Capability (LWPC) code used to model the subionospheric propagation and scattering of VLF signals in the earth- ionosphere waveguide in the presence of ionospheric disturbances.

  13. Solar Radiation Alert System

    DTIC Science & Technology

    2009-03-01

    18 December 2007). 19. HAARP , The Hgh Frequency Actve Auroral Research Program. Glossary of Solar and Geophysical Terms. Avalable at...www.haarp.alaska.edu/ haarp /glos.html (accessed: 4 September 2007). 13 20. IZMIRAN. Pushkov Insttute of Terrestral Mag- netsm, Ionosphere and Radowave

  14. Generation of whistler waves by continuous HF heating of the upper ionosphere

    NASA Astrophysics Data System (ADS)

    Vartanyan, A.; Milikh, G. M.; Eliasson, B. E.; Sharma, A.; Chang, C.; Parrot, M.; Papadopoulos, K.

    2013-12-01

    We report observations of VLF waves by the DEMETER satellite overflying the HAARP facility during ionospheric heating experiments. The detected VLF waves were in the range 8-17 kHz and coincided with times of continuous heating. The experiments indicate whistler generation due to conversion of artificial lower hybrid waves to whistlers on small scale field-aligned plasma density striations. The observations are compared with theoretical models, taking into account both linear and nonlinear processes. Implications of the mode conversion technique on VLF generation with subsequent injection into the radiation belts to trigger particle precipitation are discussed.

  15. Study of HF-induced plasma turbulence by SEE and ISR technique during 2011 HAARP experimental campaign

    NASA Astrophysics Data System (ADS)

    Grach, Savely; Bernhardt, Paul; Sergeev, Evgeny; Shindin, Alexey; Broughton, Matt; Labelle, James; Bricinsky, Stanley; Mishin, Evgeny; Isham, Brett; Watkins, Brenton

    A concise review of the results of the 20 March - 4 April 2011 experimental campaign at the HAARP heating facility, Gakona, Alaska is presented. The campaign goals were to study the physical processes that determine the interaction of high-power HF radio waves with the F-region ionosphere. The stimulated electromagnetic emission (SEE) observational sites A/B/C were located along the magnetic meridian to the south of the HAARP facility at about 11/83/113 km distant. Site A (B) was nearly under the region during injections at vertical (Magnetic Zenith, MZ). Enhanced plasma line (PL) radar echoes were measured by the modular UHF incoherent scatter radar (MUIR) located at HAARP. Specially designed 'diagnostic' regimes of the pump wave radiation were used to account for the characteristic times of the excitation and fading of the plasma waves (Delta t_w ˜ 1-10 ms) and small-scale field-aligned irregularities (FAI, Delta t_{fai} ˜ 1-10 s). They include mainly (I) alternation low-duty cycles consisting of short (a few Delta t_w) pulses with long (Delta t_{fai}) pauses between them and high duty cycles, i.e. long injection pulses (≫ t_w) with a short pauses of 20-30 ms. The low-duty regime is aimed to study the excited Langmuir turbulence and at to specify the evolution of FAI and their scale-lengths related to different SEE spectral features. The main objective of the high-duty regime is to explore the excitation and fading of upper-hybrid and electron Bernstein plasma waves, with FAI fixed. (II) Concurrent injection of the pump wave f_0 in the regime I, and another wave at a frequency f_1≠q f_0 in the low duty cycle. Since these waves reflect/refract at different altitudes, the altitudinal distribution of FAI can be obtained. (III) Fast (within some seconds) sweeping the pump frequency about electron gyroharmonics s f_c (s=2,3,4) in order to determine the contribution of various nonlinear interaction processes to the excitation of the HF part of the pump

  16. High Frequency Active Auroral Research Program (HAARP) imager. Final report, 29 August 1991-29 August 1993

    SciTech Connect

    Lance, C.; Eather, R.

    1993-09-30

    A low-light-level monochromatic imaging system was designed and fabricated which was optimized to detect and record optical emissions associated with high-power rf heating of the ionosphere. The instrument is capable of detecting very low intensities, of the order of 1 Rayleigh, from typical ionospheric atomic and molecular emissions. This is achieved through co-adding of ON images during heater pulses and subtraction of OFF (background) images between pulses. Images can be displayed and analyzed in real time and stored in optical disc for later analysis. Full image processing software is provided which was customized for this application and uses menu ormore » mouse user interaction.« less

  17. In-situ Measurements of the Direction of Propagation of Pump Waves

    NASA Astrophysics Data System (ADS)

    James, H. G.; Bernhardt, P. A.; Leyser, T.; Siefring, C. L.

    2017-12-01

    In the course of an experiment to modify the ionosphere, the direction of pump wave propagation is affected by density gradients in the horizontal and vertical directions, fundamentally affecting wave-energy transport. Horizontal gradients on various scales may await a modification attempt as a preexisting state of the ionosphere and/or be changed by the deposition of heater radio-frequency energy. In the results from the Radio Receiver Instrument (RRI) in the enhanced Polar Outflow Probe (e-POP), we have recorded on the order of 100 flights over ionospheric heaters revealing a variety of processes that high-frequency pump waves experience in the ionosphere. E-POP flies on the Canadian satellite CASSIOPE in an elliptic (320 x 1400 km), highly-inclined (81°) orbit. High frequency measurements have been/are being made near SPEAR, HAARP, Sura, EISCAT Heating and Arecibo. Electromagnetic waves from ground-based heaters are detected by the two, orthogonal, 6-m dipoles on the RRI. The high input impedance of the RRI means that the dipoles act as voltage probes, from which the electric field of incoming waves can be simply computed. When combined with cold-magnetoplasma electric-field theory, the relationship of voltages on the two orthogonal dipoles is used to deduce the direction of arrival of an incoming wave in three dimensions. We illustrate the technique by its application to analysis of signals from different transmitters. These results show a variety of pump-wave propagation directions, indicating the complexity of density structure within which modification might take place. Such complexity illustrates the importance of three-dimensional models of density in the vicinity of modification.

  18. Characterization of the Auroral Electrojet and the Ambient and Modified D Region for HAARP Using Long-Path VLF Diagnostics

    DTIC Science & Technology

    2001-03-15

    order to characterize the auroral electrojet and the ambient and modified D-region directly above and near the HAARP (High Frequency Active Auroral...near the HAARP facility and along the west coast of Alaska. In addition in order to characterize the auroral electrojet on a continental scale and to...United States and Canada. Data from the complete array of D-region diagnostic systems was acquired during a number of Fall and Spring HAARP campaigns

  19. Geometric Aspects of Artificial Ionospheric Layers Driven by High-Power HF-Heating

    NASA Astrophysics Data System (ADS)

    Milikh, G. M.; Eliasson, B.; Shao, X.; Djordjevic, B.; Mishin, E. V.; Zawdie, K.; Papadopoulos, K.

    2013-12-01

    We have generalized earlier developed multi-scale dynamic model for the creation and propagation of artificial plasma layers in the ionosphere [Eliasson et al, 2012] by including two dimensional effects in the horizontal direction. Such layers were observed during high-power high frequency HF heating experiments at HAARP [Pedersen et al., 2010]. We have numerically investigated the importance of different angles of incidence of ordinary mode waves on the Langmuir turbulence and the resulting electron acceleration that leads to the formation of artificial ionospheric layers. It was shown that the most efficient electron acceleration and subsequent ionization is obtained at angles between magnetic zenith and the vertical, where strong Langmuir turbulence dominates over weak turbulence. A role played by the heating wave propagation near caustics was also investigated. Eliasson, B. et al. (2012), J. Geophys. Res. 117, A10321, doi:10.1029/2012JA018105. Pedersen, T., et al. (2010), Geophys. Res. Lett., 37, L02106, doi:10.1029/2009GL041895.

  20. Equator and High-Latitude Ionosphere-to-Magnetosphere Research

    DTIC Science & Technology

    2010-12-04

    characterizing plasma velocity profile in the heated region above HAARP has been clearly established. Specification of D region absorption from Digisonde...Electron density profile, Ground truth, Cal/Val, Doppler skymap, HAARP , Plasma velocity profile, Ionogram autoscaling, D region absorption...2  3  HAARP INVESTIGATIONS ............................................................................ 5  3.1

  1. Multi Station Frequency Response and Polarization of ELF/VLF Signals Generated via Ionospheric Modification

    NASA Astrophysics Data System (ADS)

    Maxworth, Ashanthi; Golkowski, Mark; University of Colorado Denver Team

    2013-10-01

    ELF/VLF wave generation via HF modulated ionospheric heating has been practiced for many years as a unique way to generate waves in the ELF/VLF band (3 Hz - 30 kHz). This paper presents experimental results and associated theoretical modeling from work performed at the High Frequency Active Auroral Research Program (HAARP) facility in Alaska, USA. An experiment was designed to investigate the modulation frequency dependence of the generated ELF/VLF signal amplitudes and polarization at multiple sites at distances of 37 km, 50 km and 99 km from the facility. While no difference is observed for X mode versus O mode modulation of the heating wave, it is found that ELF/VLF amplitude and polarization as a function of modulated ELF/VLF frequency is different for each site. An ionospheric heating code is used to determine the primary current sources leading to the observations.

  2. Generation of whistler waves by continuous HF heating of the upper ionosphere

    NASA Astrophysics Data System (ADS)

    Vartanyan, A.; Milikh, G. M.; Eliasson, B.; Najmi, A. C.; Parrot, M.; Papadopoulos, K.

    2016-07-01

    Broadband VLF waves in the frequency range 7-10 kkHz and 15-19 kHz, generated by F region CW HF ionospheric heating in the absence of electrojet currents, were detected by the DEMETER satellite overflying the High Frequency Active Auroral Research Program (HAARP) transmitter during HAARP/BRIOCHE campaigns. The VLF waves are in a frequency range corresponding to the F region lower lybrid (LH) frequency and its harmonic. This paper aims to show that the VLF observations are whistler waves generated by mode conversion of LH waves that were parametrically excited by HF-pump-plasma interaction at the upper hybrid layer. The paper discusses the basic physics and presents a model that conjectures (1) the VLF waves observed at the LH frequency are due to the interaction of the LH waves with meter-scale field-aligned striations—generating whistler waves near the LH frequency; and (2) the VLF waves at twice the LH frequency are due to the interaction of two counterpropagating LH waves—generating whistler waves near the LH frequency harmonic. The model is supported by numerical simulations that show good agreement with the observations. The (Detection of Electromagnetic Emissions Transmitted from Earthquake Regions results and model discussions are complemented by the Kodiak radar, ionograms, and stimulated electromagnetic emission observations.

  3. Studies of Plasma Instabilities Excited by Ground-Based High Power HF (Heating) Facilities and of X and Gamma Ray Emission in Runaway Breakdown Processes

    DTIC Science & Technology

    2006-08-01

    latitude ( HAARP , TROMSO) and mid latitude (SURA) facilities [1]. The very strong and fully reproducible plasma perturbations in ionosphere are observed...beam propagating along magnetic field (θ = 0), in this case factor κs ≈ 1. As an a example we will consider now the HAARP facility. The ERP for HAARP ...as a function of fre- quency f0 is presented in the Table 1. ISTC 2236p 12 Table 1 ERP as function of wave frequency for HAARP (2001) f0 (MHz

  4. Stimulated Brillouin scatter and stimulated ion Bernstein scatter during electron gyroharmonic heating experiments

    NASA Astrophysics Data System (ADS)

    Fu, H.; Scales, W. A.; Bernhardt, P. A.; Samimi, A.; Mahmoudian, A.; Briczinski, S. J.; McCarrick, M. J.

    2013-09-01

    Results of secondary radiation, Stimulated Electromagnetic Emission (SEE), produced during ionospheric modification experiments using ground-based high-power radio waves are reported. These results obtained at the High Frequency Active Auroral Research Program (HAARP) facility specifically considered the generation of Magnetized Stimulated Brillouin Scatter (MSBS) and Stimulated Ion Bernstein Scatter (SIBS) lines in the SEE spectrum when the transmitter frequency is near harmonics of the electron gyrofrequency. The heater antenna beam angle effect was investigated on MSBS in detail and shows a new spectral line postulated to be generated near the upper hybrid resonance region due to ion acoustic wave interaction. Frequency sweeping experiments near the electron gyroharmonics show for the first time the transition from MSBS to SIBS lines as the heater pump frequency approaches the gyroharmonic. Significantly far from the gyroharmonic, MSBS lines dominate, while close to the gyroharmonic, SIBS lines strengthen while MSBS lines weaken. New possibilities for diagnostic information are discussed in light of these new observations.

  5. Ionospheric Sensor Developments for the Year-2000 Solar Maximum

    DTIC Science & Technology

    2000-10-23

    locations, work during the year enhanced and exploited several diagnostic instruments deployed for the High frequency Active Aurora Research Program ( HAARP ...Under HAARP , measurements employing both GPS and coherent VHF-UHF signals transmitted from satellites in low-earth polar orbit resulted in time...histories and latitudinal scans of absolute TEC over Maska, and enhanced operation of the HAARP classic riometer resulted in essentially continuous

  6. Physics of the Geospace Response to Powerful HF Radio Waves

    DTIC Science & Technology

    2012-10-31

    studies of the response of the Earth’s space plasma to high-power HF radio waves from the High-frequency Active Auroral Research Program ( HAARP ...of HF heating and explored to simulate artificial ducts. DMSP- HAARP experiments revealed that HF-created ion outflows and artificial density ducts...in the topside ionosphere appeared faster than predicted by the models, pointing to kinetic (suprathermal) effects. CHAMP/GRACE- HAARP experiments

  7. Artificial ionosphere layers for pumping-wave frequencies near the fourth electron gyroharmonic in experiments at the HAARP facility

    NASA Astrophysics Data System (ADS)

    Grach, S. M.; Sergeev, E. N.; Shindin, A. V.; Mishin, E. V.; Watkins, B.

    2014-02-01

    In this paper we consider the action (in the magnetic-zenith direction) of powerful high frequency (HF) radiation of ordinary polarization on the ionosphere F region. We deal with frequencies f 0 > 4 f ce ( f ce is the electron cyclotron frequency) of 1.7 GW equivalent radiated power. This action results in the appearance in the ionosphere of an artificial ionization layer. The layer descends with respect to the basic (unperturbed) layer at a rate of ˜500 m s-1 down to the altitude, where f 0 ≈ 4 f ce .

  8. Multisite Optical Imaging of Artificial Ionospheric Plasmas (Postprint)

    DTIC Science & Technology

    2011-11-09

    Frequency Active Auroral Research Program ( HAARP ) facility in Gakona, Alaska (62.4◦ N 145◦ W) after the trans- mitter reached full 3.6-MW power, these...The experiment was carried out on November 19, 2009, between 02:26 UT and 02:43:50 UT. Optical images were acquired at the HAARP site at 557.7 nm (O 1S...noise and integrated for 5 s at a temperature of −40 ◦C. A second system located 160 km north of the HAARP near Delta Junction used an Apogee Alta

  9. Excitation of small-scale waves in the F region of the ionosphere by powerful HF radio waves

    NASA Astrophysics Data System (ADS)

    Blagoveshchenskaya, N. F.; Chernyshev, M. Y.; Kornienko, V. A.

    1998-01-01

    Ionospheric small-scale waves in the F region, initiated by heating facilities in Nizhniy Novgorod, have been studied by the method of field-aligned scattering of diagnostic HF radio signals. Experimental data have been obtained on the radio path Kiev-N. Novgorod-St. Petersburg during heating campaigns with heater radiated power ERP = 20 MW and 100 MW. Observations of scattered HF signals have been made by a Doppler spectrum device with high temporal resolution. Analysis of the experimental data shows a relation between the heater power level and the parameters of ionospheric small-scale oscillations falling within the range of Pc 3-4 magnetic pulsations. It is found that the periods of wave processes in the F region of the ionosphere, induced by the heating facility, decrease with increasing heating power. The level of heating power also has an impact on the horizontal east-west component of the electric field E, the vertical component of the Doppler velocity Vd and the amplitude of the vertical displacements M of the heated region. Typical magnitudes of these parameters are the following: E = 1.25 mVm, Vd = 6 ms, M = 600-1500 m for ERP = 20 MW and E = 2.5-4.5 mVm, Vd = 11-25 ms, M = 1000-5000 m for ERP = 100 MW. The results obtained confirm the hypothesis of excitation of the Alfvén resonator by powerful HF radio waves which leads to the generation of magnetic field oscillations in the heated region giving rise to artificial Pc 3-4 magnetic pulsations and ionospheric small-scale wave processes. In this situation an increase of the heater power would lead to a growth of the electric field of hydromagnetic waves propagating in the ionosphere as well as the amplitude of the vertical displacements of the heated region.

  10. Detection of Transionospheric SuperDARN HF Waves by the Radio Receiver Instrument on the enhanced Polar Outflow Probe Satellite

    NASA Astrophysics Data System (ADS)

    Gillies, R. G.; Yau, A. W.; James, H. G.; Hussey, G. C.; McWilliams, K. A.

    2014-12-01

    The enhanced Polar Outflow Probe (ePOP) Canadian small-satellite was launched in September 2013. Included in this suite of eight scientific instruments is the Radio Receiver Instrument (RRI). The RRI has been used to measure VLF and HF radio waves from various ground and spontaneous ionospheric sources. The first dedicated ground transmission that was detected by RRI was from the Saskatoon Super Dual Auroral Radar Network (SuperDARN) radar on Nov. 7, 2013 at 14 MHz. Several other passes over the Saskatoon SuperDARN radar have been recorded since then. Ground transmissions have also been observed from other radars, such as the SPEAR, HAARP, and SURA ionospheric heaters. However, the focus of this study will be on the results obtained from the SuperDARN passes. An analysis of the signal recorded by the RRI provides estimates of signal power, Doppler shift, polarization, absolute time delay, differential mode delay, and angle of arrival. By comparing these parameters to similar parameters derived from ray tracing simulations, ionospheric electron density structures may be detected and measured. Further analysis of the results from the other ground transmitters and future SuperDARN passes will be used to refine these results.

  11. Imaging and Forecasting of Ionospheric Structures and Their System Impacts

    DTIC Science & Technology

    2003-12-05

    Trapped electrons, Wave/particle interaction, Plasmasphere, Magnetic field, HAARP , Cal/Val 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a...support to the HAARP digisonde (DPS) over the past year, UMLCAR cooperated with AFRL on a campaign during the last week of August 2003. This campaign was...held to develop new diagnostic techniques using the HAARP transmitter, the digisonde, and the all-sky imager as part of a coordinated measurement

  12. Creation of Artificial Ionospheric Layers Using High-Power HF Waves

    DTIC Science & Technology

    2010-01-30

    Program ( HAARP ) transmitter in Gakona, Alaska. The HF- driven ionization process is initiated near the 2nd electron gyroharmonic at 220 km altitude in...the 3.6 MW High-Frequency Active Auroral Program ( HAARP ) transmitter in Gakona, Alaska. The HF-driven ionization process is initiated near the 2nd...Maine. USA. Copyright 2010 by the American Geophysical Union. 0094-8276/I0/2009GLO41895SO5.0O Research Program ( HAARP ) transmitter facility, however

  13. Detection and Analysis of Partial Reflections of HF Waves from the Lower Ionosphere

    NASA Astrophysics Data System (ADS)

    Erdman, A.; Moore, R. C.

    2016-12-01

    On the afternoon of August 27, 2011, the western half of the High Frequency Active Auroral Research Program's (HAARP's) HF transmitter repeatedly broadcast a low-power (1 kW/Tx), 4.5-MHz, X-mode polarized, 10 microsecond pulse. The HF beam was directed vertically, and the inter-pulse period was 20 milliseconds. HF observations were performed at Oasis (62° 23' 30" N, 145° 9' 03" W) using two crossed 90-foot folded dipoles. Observations clearly indicate the detection of a ground wave and multiple reflections from different sources at F-region altitudes, which is consistent with digisonde measurements at 4.5 MHz. Additional reflections were detected at a virtual altitude of 90-110 km, and we interpret these reflections as partial reflections from the rapid conductivity change at the base of the ionosphere. We compare these observations with the predictions of a new finite-difference time-domain (FDTD) plasma model. The model is a one-dimensional, second-order accurate, cold plasma FDTD model of the ionosphere extending from ground through the lower F-region. The model accounts for a spatially varying plasma frequency, cyclotron frequency, and electron-neutral collision frequency. We discuss the possibility to analyze partial reflections from the base of the ionosphere as a function of frequency to characterize the reflecting plasma.

  14. Imaging and Forecasting of Ionospheric Structures and Their System Impacts

    DTIC Science & Technology

    2005-01-27

    Radiation Belt Remediation (RBR) studies were done and many of them remain active. The results of two HAARP heating experiments with the digisonde at...LORERS, Plasmasphere, HAARP , Cal/Val, Drift Software, ARTIST 4.5 16. SECURITY CLASSIFICATION OF: 17. UMITATION OF 1. NUMBER 19a. NAME OF RESPONSIBLE...STATION OBSERVATIONS 1 1.3 VLF INDUCED ELECTRON PITCH ANGLE SCATTERING (IEPAS) 2 1.4 HAARP CAMPAIGN 2 1.5 DRIFT SOFTWARE DEVELOPMENT 2 1.6 DISS SUPPORT

  15. Heater-induced ionization inferred from spectrometric airglow measurements

    NASA Astrophysics Data System (ADS)

    Hysell, D. L.; Miceli, R. J.; Kendall, E. A.; Schlatter, N. M.; Varney, R. H.; Watkins, B. J.; Pedersen, T. R.; Bernhardt, P. A.; Huba, J. D.

    2014-03-01

    Spectrographic airglow measurements were made during an ionospheric modification experiment at High Frequency Active Auroral Research Program on 12 March 2013. Artificial airglow enhancements at 427.8, 557.7, 630.0, 777.4, and 844.6 nm were observed. On the basis of these emissions and using a methodology based on the method of Backus and Gilbert (1968, 1970), we estimate the suprathermal electron population and the subsequent equilibrium electron density profile, including contributions from electron impact ionization. We find that the airglow is consistent with heater-induced ionization in view of the spatial intermittency of the airglow.

  16. ELF/VLF Waves Generated by an Artificially-Modulated Auroral Electrojet Above the HAARP HF Transmitter

    NASA Astrophysics Data System (ADS)

    Moore, R. C.; Inan, U. S.; Bell, T. F.

    2004-12-01

    Naturally-forming, global-scale currents, such as the polar electrojet current and the mid-latitude dynamo, have been used as current sources to generate electromagnetic waves in the Extremely Low Frequency (ELF) and Very Low Frequency (VLF) bands since the 1970's. While many short-duration experiments have been performed, no continuous multi-week campaign data sets have been published providing reliable statistics for ELF/VLF wave generation. In this paper, we summarize the experimental data resulting from multiple ELF/VLF wave generation campaigns conducted at the High-frequency Active Auroral Research Project (HAARP) HF transmitter in Gakona, Alaska. For one 14-day period in March, 2002, and one 24-day period in November, 2002, the HAARP HF transmitter broadcast ELF/VLF wave generation sequences for 10 hours per day, between 0400 and 1400 UT. Five different modulation frequencies broadcast separately using two HF carrier frequencies are examined at receivers located 36, 44, 147, and 155 km from the HAARP facility. Additionally, a continuous 24-hour transmission period is analyzed to compare day-time wave generation to night-time wave generation. Lastly, a power-ramping scheme was employed to investigate possible thresholding effects at the wave-generating altitude. Wave generation statistics are presented along with source-region property calculations performed using a simple model.

  17. The CERTO Beacon on CASSIOPE/e-POP and Experiments Using High-Power HF Ionospheric Heaters

    NASA Astrophysics Data System (ADS)

    Siefring, Carl L.; Bernhardt, Paul A.; James, H. Gordon; Parris, Richard Todd

    2015-06-01

    A new Coherent Electromagnetic Radio Tomography (CERTO) beacon is on the CASSIOPE satellite and part of the enhanced-Polar Outflow Probe (e-POP) suite of scientific instruments. CERTO signals can be used to measure ionospheric Total Electron Content (TEC) and radio scintillations along propagation paths between CERTO and receivers. The combination of CERTO and the array of e-POP in-situ diagnostics form a powerful tool for studying ionospheric plasma processes that have not been previously possible. Of note, the combination CERTO and the Radio Receiver Instrument (RRI), a modern digital receiver, which measures between 10 Hz to 18 MHz in selectable bands allows for innovative High Frequency (HF) radio propagation experiments. The use of high-power HF ionospheric heating facilities for such experiments further allows for repeatable studies of a number of important plasma processes. The new CERTO beacon transmits un-modulated, phase-coherent waves at 150, 400, and 1067 MHz with either right-hand-circular or linear polarization and TEC is measured using either differential phase and/or Faraday rotation. With a linear array of CERTO receivers, TEC data can be used for tomographic imaging of the ionosphere yielding two-dimensional maps of the plasma below the satellite orbit. In addition, the three CERTO frequencies cover a wide range for determination of radio scintillation effects caused by diffraction from propagation through ionospheric irregularities. We will describe the CERTO beacon and several potential innovative experiments using HF heating facilities in conjunction with CERTO, the RRI and other e-POP instruments.

  18. The Energy Spectrum of Accelerated Electrons from Wave-Plasma Interactions in the Ionosphere

    DTIC Science & Technology

    2012-06-29

    STATEMENT Distribution A: Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT A HAARP ...data was obtained. It was therefore necessary to find the resources to repeat the campaign effort (see budget below). A HAARP campaign was...were highly structured in space and time. This fact, and the lack of electron temperature data at HAARP , made data analysis difficult. It became

  19. ELF/VLF Wave Generation via HF Modulation of the Equatorial Electrojet at Arecibo Observatory

    NASA Astrophysics Data System (ADS)

    Flint, Q. A.; Moore, R. C.; Burch, H.; Erdman, A.; Wilkes, R.

    2017-12-01

    In this work we generate ELF/VLF waves by modulating the conductivity of the lower ionosphere using the HF heater at Arecibo. For many years, researchers have generated ELF/VLF waves using the powerful HF transmitters at HAARP, but few have attempted to do the same in the mid- to low- latitude region. While HAARP users have benefitted from the auroral electrojet, we attempt to exploit the equatorial electrojet to generate radio waves. On 31 July 2017, we transmitted at an HF frequency of 5.1 MHz (X-Mode) applying sinusoidal amplitude modulation in a step-like fashion from 0-5 kHz in 200 Hz steps over 10 seconds at 100% peak power to approximate a linear frequency ramp. We also transmitted 10-second-long fixed frequency tones spaced from 1 to 5 kHz. The frequency sweep is a helpful visual tool to identify generated waves, but is also used to determine optimal modulation frequencies for future campaigns. The tones allow us to perform higher SNR analysis. Ground-based B-field VLF receivers recorded the amplitude and phase of the generated radio waves. We employ time-of-arrival techniques to determine the altitude of the ELF/VLF signal source. In this paper, we present the initial analysis of these experimental results.

  20. What Can We Learn About the Ionosphere Using the EISCAT Heating Facility?

    DTIC Science & Technology

    2006-06-01

    1970s to do both plasma physics and geophysical research. At present there are five operating facilities: HIPAS [1] and HAARP [2] in Alaska, Heating...1995: HAARP (Alaska) •2003: SPEAR (Svalbard) World overview 32 (8) 22 (16) 0.19 4-6 (2-3) 78.9 N 78.15 W SPEAR Spitsbergen Norway 150-280180-340...19.2 E 62.39 N 145.15W 65.0 N 147.0 W 18.3 N 66.8 W 40.18 N 104.73 E Geographic Coordinates SURA Russia Tromsø Norway HAARP Alaska USA HIPAS Alaska

  1. Ionospheric modifications in high frequency heating experiments

    NASA Astrophysics Data System (ADS)

    Kuo, Spencer P.

    2015-01-01

    Featured observations in high-frequency (HF) heating experiments conducted at Arecibo, EISCAT, and high frequency active auroral research program are discussed. These phenomena appearing in the F region of the ionosphere include high-frequency heater enhanced plasma lines, airglow enhancement, energetic electron flux, artificial ionization layers, artificial spread-F, ionization enhancement, artificial cusp, wideband absorption, short-scale (meters) density irregularities, and stimulated electromagnetic emissions, which were observed when the O-mode HF heater waves with frequencies below foF2 were applied. The implication and associated physical mechanism of each observation are discussed and explained. It is shown that these phenomena caused by the HF heating are all ascribed directly or indirectly to the excitation of parametric instabilities which instigate anomalous heating. Formulation and analysis of parametric instabilities are presented. The results show that oscillating two stream instability and parametric decay instability can be excited by the O-mode HF heater waves, transmitted from all three heating facilities, in the regions near the HF reflection height and near the upper hybrid resonance layer. The excited Langmuir waves, upper hybrid waves, ion acoustic waves, lower hybrid waves, and field-aligned density irregularities set off subsequent wave-wave and wave-electron interactions, giving rise to the observed phenomena.

  2. Ionospheric modification by radio waves: An overview and novel applications

    NASA Astrophysics Data System (ADS)

    Kosch, M. J.

    2008-12-01

    High-power high-frequency radio waves, when beamed into the Earth's ionosphere, can heat the plasma by particle collisions in the D-layer or generate wave-plasma resonances in the F-layer. These basic phenomena have been used in many research applications. In the D-layer, ionospheric currents can be modulated through conductance modification to produce artificial ULF and VLF waves, which propagate allowing magnetospheric research. In the mesopause, PMSE can be modified allowing dusty plasma research. In the F-layer, wave-plasma interactions generate a variety of artificially stimulated phenomena, such as (1) magnetic field-aligned plasma irregularities linked to anomalous radio wave absorption, (2) stimulated electromagnetic emissions linked to upper-hybrid resonance, (3) optical emissions linked to electron acceleration and collisions with neutrals, and (4) Langmuir turbulence linked to enhanced radar backscatter. These phenomena are reviewed. In addition, some novel applications of ionospheric heaters will be presented, including HF radar sounding of the magnetosphere, the production of E-region optical emissions, and measurements of D-region electron temperature for controlled PMSE research.

  3. In-Band and Out-of-Band VLF Scattering by Modulated D-region Heating at the Arecibo Observatory

    NASA Astrophysics Data System (ADS)

    Burch, H.; Moore, R. C.

    2017-12-01

    The HF heating facility at the Arecibo Observatory is able to create an artificial disturbance in the D-region ionosphere through HF heating, a phenomenon which has been well documented at HAARP. Very Low Frequency (VLF, 3-30 kHz) waves radiated by Navy transmitters propagate around the globe in the Earth-Ionosphere waveguide and scatter from this artificially disturbed region. We investigated this effect at the Arecibo Observatory during the July 2017 HF heating campaign using an amplitude-modulated HF signal at modulation frequencies from below 1 Hz to approximately 5 kHz. VLF receivers stationed in Puerto Rico measured the amplitude and phase of propagating VLF transmitter signals under HF-heated and ambient ionospheric conditions. We interpret the scattered VLF signals in the context of an ionospheric HF heating model that has been successfully used to interpret the results of HAARP experiments for a number of years. We present initial results regarding the generation and detection of nonlinear mixing components at the VLF transmitter frequency +/- the HF modulation frequency.

  4. HAARP 2011 Summer Student Research Campaign

    DTIC Science & Technology

    2012-10-16

    in order to take advantage of a wide variety of background ionospheric conditions and to provide ample time for each student to investigate...The SSRC expands on the PARS Summer School by providing a significant increase in facility operational time. This has advantages in several areas...in several advantages for scheduling and conducting experiments: (1) Higher ionospheric density yields higher F-region critical frequency (foF2

  5. Generation of Artificial Acoustic-Gravity Waves and Traveling Ionospheric Disturbances in HF Heating Experiments

    NASA Astrophysics Data System (ADS)

    Pradipta, R.; Lee, M. C.; Cohen, J. A.; Watkins, B. J.

    2015-10-01

    We report the results of our ionospheric HF heating experiments to generate artificial acoustic-gravity waves (AGW) and traveling ionospheric disturbances (TID), which were conducted at the High-frequency Active Auroral Research Program facility in Gakona, Alaska. Based on the data from UHF radar, GPS total electron content, and ionosonde measurements, we found that artificial AGW/TID can be generated in ionospheric modification experiments by sinusoidally modulating the power envelope of the transmitted O-mode HF heater waves. In this case, the modulation frequency needs to be set below the characteristic Brunt-Vaisala frequency at the relevant altitudes. We avoided potential contamination from naturally-occurring AGW/TID of auroral origin by conducting the experiments during geomagnetically quiet time period. We determine that these artificial AGW/TID propagate away from the edge of the heated region with a horizontal speed of approximately 160 m/s.

  6. Unique concurrent observations of whistler mode hiss, chorus, and triggered emissions

    NASA Astrophysics Data System (ADS)

    Hosseini, Poorya; Gołkowski, Mark; Turner, Drew L.

    2017-06-01

    We present a unique 2 h ground-based observation of concurrent magnetospheric hiss, chorus, VLF triggered emissions as well as ELF/VLF signals generated locally by the High Frequency Active Auroral Research Program (HAARP) facility. Eccentricity of observed wave polarization is used as a criteria to identify magnetospheric emissions and estimate their ionospheric exit points. The observations of hiss and chorus in the unique background of coherent HAARP ELF/VLF waves and triggered emissions allow for more accurate characterization of hiss and chorus properties than in typical ground-based observations. Eccentricity and azimuth results suggest a moving ionospheric exit point associated with a single ducted path at L 5. The emissions exhibit dynamics in time suggesting an evolution of a magnetospheric source from hiss generation to chorus generation or a moving plasmapause location. We introduce a frequency band-limited autocorrelation method to quantify the relative coherency of the emissions. A range of coherency was observed from high order of coherency in local HAARP transmissions and their echoes to lower coherency in natural chorus and hiss emissions.

  7. Packaged die heater

    DOEpatents

    Spielberger, Richard; Ohme, Bruce Walker; Jensen, Ronald J.

    2011-06-21

    A heater for heating packaged die for burn-in and heat testing is described. The heater may be a ceramic-type heater with a metal filament. The heater may be incorporated into the integrated circuit package as an additional ceramic layer of the package, or may be an external heater placed in contact with the package to heat the die. Many different types of integrated circuit packages may be accommodated. The method provides increased energy efficiency for heating the die while reducing temperature stresses on testing equipment. The method allows the use of multiple heaters to heat die to different temperatures. Faulty die may be heated to weaken die attach material to facilitate removal of the die. The heater filament or a separate temperature thermistor located in the package may be used to accurately measure die temperature.

  8. Numerical study of the generation and propagation of ultralow-frequency waves by artificial ionospheric F region modulation at different latitudes

    NASA Astrophysics Data System (ADS)

    Xu, Xiang; Zhou, Chen; Shi, Run; Ni, Binbin; Zhao, Zhengyu; Zhang, Yuannong

    2016-09-01

    Powerful high-frequency (HF) radio waves can be used to efficiently modify the upper-ionospheric plasmas of the F region. The pressure gradient induced by modulated electron heating at ultralow-frequency (ULF) drives a local oscillating diamagnetic ring current source perpendicular to the ambient magnetic field, which can act as an antenna radiating ULF waves. In this paper, utilizing the HF heating model and the model of ULF wave generation and propagation, we investigate the effects of both the background ionospheric profiles at different latitudes in the daytime and nighttime ionosphere and the modulation frequency on the process of the HF modulated heating and the subsequent generation and propagation of artificial ULF waves. Firstly, based on a relation among the radiation efficiency of the ring current source, the size of the spatial distribution of the modulated electron temperature and the wavelength of ULF waves, we discuss the possibility of the effects of the background ionospheric parameters and the modulation frequency. Then the numerical simulations with both models are performed to demonstrate the prediction. Six different background parameters are used in the simulation, and they are from the International Reference Ionosphere (IRI-2012) model and the neutral atmosphere model (NRLMSISE-00), including the High Frequency Active Auroral Research Program (HAARP; 62.39° N, 145.15° W), Wuhan (30.52° N, 114.32° E) and Jicamarca (11.95° S, 76.87° W) at 02:00 and 14:00 LT. A modulation frequency sweep is also used in the simulation. Finally, by analyzing the numerical results, we come to the following conclusions: in the nighttime ionosphere, the size of the spatial distribution of the modulated electron temperature and the ground magnitude of the magnetic field of ULF wave are larger, while the propagation loss due to Joule heating is smaller compared to the daytime ionosphere; the amplitude of the electron temperature oscillation decreases with

  9. SATSIN System Manual

    SciTech Connect

    Livingston, R.C.

    1995-01-01

    This report outlines the design, functions and operation of the HAARP Diagnostic Satellite Scintillation (SATSIN) system that will be used to characterize the structure and dynamics of F region ionospheric irregularities created during HF heating. When in routine operation, the SATSIN system will be located so that the propagation path from satellite radio beacons passes through the heated volume created by HAARP. The signal, altered in phase and amplitude by the irregularities, is received by the SATSIN array of eight antennas and is processed to extract the spatial and temporal characteristics of the scintillation. From this information, the strength, shapemore » and motion of the in situ irregularities generated by HAARP can be implied. The hardware and software components of the system are reviewed, and the installation and operation in conjunction with the HAARP network are outlined.« less

  10. Impact of active geomagnetic conditions on stimulated radiation during ionospheric second electron gyroharmonic heating

    NASA Astrophysics Data System (ADS)

    Bordikar, M. R.; Scales, W. A.; Mahmoudian, A.; Kim, H.; Bernhardt, P. A.; Redmon, R.; Samimi, A. R.; Brizcinski, S.; McCarrick, M. J.

    2014-01-01

    Recently, narrowband emissions ordered near the H+ (proton) gyrofrequency (fcH) were reported in the stimulated electromagnetic emission (SEE) spectrum during active geomagnetic conditions. This work presents new observations and theoretical analysis of these recently discovered emissions. These emission lines are observed in the stimulated electromagnetic emission (SEE) spectrum when the transmitter is tuned near the second electron gyroharmonic frequency (2fce) during recent ionospheric modification experiments at the High Frequency Active Auroral Research (HAARP) facility near Gakona, Alaska. The spectral lines are typically shifted below and above the pump wave frequency by harmonics of a frequency roughly 10% less than fcH (≈ 800 Hz) with a narrow emission bandwidth less than the O+ gyrofrequency (≈ 50 Hz). However, new observations and analysis of emission lines ordered by a frequency approximately 10% greater than fcH are presented here for the first time as well. The interaction altitude for the heating for all the observations is in the range of 160 km up to 200 km. As described previously, proton precipitation due to active geomagnetic conditions is considered as the reason for the presence of H+ ions known to be a minor background constituent in this altitude region. DMSP satellite observations over HAARP during the heating experiments and ground-based magnetometer and riometer data validate active geomagnetic conditions. The theory of parametric decay instability in multi-ion component plasma including H+ ions as a minority species described in previous work is expanded in light of simultaneously observed preexisting SEE features to interpret the newly reported observations. Impact of active geomagnetic conditions on the SEE spectrum as a diagnostic tool for proton precipitation event characterization is discussed.

  11. 49 CFR 393.77 - Heaters.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... heater shall comply with the following requirements: (a) Prohibited types of heaters. The installation or use of the following types of heaters is prohibited: (1) Exhaust heaters. Any type of exhaust heater... heater which conducts engine compartment air into any such space. (2) Unenclosed flame heaters. Any type...

  12. 49 CFR 393.77 - Heaters.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... heater shall comply with the following requirements: (a) Prohibited types of heaters. The installation or use of the following types of heaters is prohibited: (1) Exhaust heaters. Any type of exhaust heater... heater which conducts engine compartment air into any such space. (2) Unenclosed flame heaters. Any type...

  13. Nonlinear interactions of electromagnetic waves with the auroral ionosphere

    SciTech Connect

    Wong, Alfred Y.

    1999-09-20

    The ionosphere provides us with an opportunity to perform plasma experiments in an environment with long confinement times, very large-scale lengths, and no confining walls. The auroral ionosphere with its nearly vertical magnetic field geometry is uniquely endowed with large amount of free energy from electron and ion precipitation along the magnetic field and mega-ampere current across the magnetic field. To take advantage of this giant outdoor laboratory, two facilities HAARP and HIPAS, with frequencies ranging from the radio to optical bands, are now available for active probing of and interaction with this interesting region. The ponderomotive pressures from themore » self-consistent wave fields have produced significant local perturbations of density and particle distributions at heights where the incident EM frequency matches a plasma resonance. This paper will review theory and experiments covering the nonlinear phenomena of parametric decay instability to wave collapse processes. At HF frequencies plasma lenses can be created by preconditioning pulses to focus what is a normally divergent beam into a high-intensity spot to further enhance nonlinear phenomena. At optical wavelengths a large rotating liquid metal mirror is used to focus laser pulses up to a given height. Such laser pulses are tuned to the same wavelengths of selected atomic and molecular resonances, with resulting large scattering cross sections. Ongoing experiments on dual-site experiments and excitation of ELF waves will be presented. The connection of such basic studies to environmental applications will be discussed. Such applications include the global communication using ELF waves, the ozone depletion and remediation and the control of atmospheric CO{sub 2} through the use of ion cyclotron resonant heating.« less

  14. Nonlinear interactions of electromagnetic waves with the auroral ionosphere

    NASA Astrophysics Data System (ADS)

    Wong, Alfred Y.

    1999-09-01

    The ionosphere provides us with an opportunity to perform plasma experiments in an environment with long confinement times, very large-scale lengths, and no confining walls. The auroral ionosphere with its nearly vertical magnetic field geometry is uniquely endowed with large amount of free energy from electron and ion precipitation along the magnetic field and mega-ampere current across the magnetic field. To take advantage of this giant outdoor laboratory, two facilities HAARP and HIPAS, with frequencies ranging from the radio to optical bands, are now available for active probing of and interaction with this interesting region. The ponderomotive pressures from the self-consistent wave fields have produced significant local perturbations of density and particle distributions at heights where the incident EM frequency matches a plasma resonance. This paper will review theory and experiments covering the nonlinear phenomena of parametric decay instability to wave collapse processes. At HF frequencies plasma lenses can be created by preconditioning pulses to focus what is a normally divergent beam into a high-intensity spot to further enhance nonlinear phenomena. At optical wavelengths a large rotating liquid metal mirror is used to focus laser pulses up to a given height. Such laser pulses are tuned to the same wavelengths of selected atomic and molecular resonances, with resulting large scattering cross sections. Ongoing experiments on dual-site experiments and excitation of ELF waves will be presented. The connection of such basic studies to environmental applications will be discussed. Such applications include the global communication using ELF waves, the ozone depletion and remediation and the control of atmospheric CO2 through the use of ion cyclotron resonant heating.

  15. Investigation of ionospheric stimulated Brillouin scatter generated at pump frequencies near electron gyroharmonics

    NASA Astrophysics Data System (ADS)

    Mahmoudian, A.; Scales, W. A.; Bernhardt, P. A.; Fu, H.; Briczinski, S. J.; McCarrick, M. J.

    2013-11-01

    Stimulated Electromagnetic Emissions (SEEs), secondary electromagnetic waves excited by high power electromagnetic waves transmitted into the ionosphere, produced by the Magnetized Stimulated Brillouin Scatter (MSBS) process are investigated. Data from four recent research campaigns at the High Frequency Active Auroral Research Program (HAARP) facility is presented in this work. These experiments have provided additional quantitative interpretation of the SEE spectrum produced by MSBS to yield diagnostic measurements of the electron temperature and ion composition in the heated ionosphere. SEE spectral emission lines corresponding to ion acoustic (IA) and electrostatic ion cyclotron (EIC) mode excitation were observed with a shift in frequency up to a few tens of Hz from the pump frequency for heating near the third harmonic of the electron gyrofrequency 3fce. The threshold of each emission line has been measured by changing the pump wave power. The excitation threshold of IA and EIC emission lines originating at the reflection and upper hybrid altitudes is measured for various beam angles relative to the magnetic field. Variation of strength of MSBS emission lines with pump frequency relative to 3fce and 4fce is also studied. A full wave solution has been used to estimate the amplitude of the electric field at the interaction altitude. The estimated instability threshold using the theoretical model is compared with the threshold of MSBS lines in the experiment and possible diagnostic information for the background ionospheric plasma is discussed. Simultaneous formation of artificial field-aligned irregularities (FAIs) and suppression of the MSBS process is investigated. This technique can be used to estimate the growth time of artificial FAIs which may result in determination of plasma waves and physical process involved in the formation of FAIs.

  16. Contrasting O/X-mode Heater Effects on O-Mode Sounding echo and the Generation of Magnetic Pulsations

    DTIC Science & Technology

    2010-01-06

    Micropulsation [10] The induced magnetic field variation was monitored by the fluxgate magnetometer located at Gakona, AK. The 1 sec resolution data...minutes on and 1 minute off, were explored. The experiments were monitored using the digisonde and magnetometer located at the HAARP facility. The...were explored. The experiments were monitored using the digisonde and magnetometer located at the HAARP facility. The results show that the

  17. Resonant scattering of energetic electrons in the outer radiation belt by HAARP-induced ELF/VLF waves

    NASA Astrophysics Data System (ADS)

    Chang, Shanshan; Zhu, Zhengping; Ni, Binbin; Cao, Xing; Luo, Weihua

    2016-10-01

    Several extremely low-frequency (ELF)/very low-frequency (VLF) wave generation experiments have been performed successfully at High-Frequency Active Auroral Research Program (HAARP) heating facility and the artificial ELF/VLF signals can leak into the outer radiation belt and contribute to resonant interactions with energetic electrons. Based on the artificial wave properties revealed by many of in situ observations, we implement test particle simulations to evaluate the effects of energetic electron resonant scattering driven by the HAARP-induced ELF/VLF waves. The results indicate that for both single-frequency/monotonic wave and multi-frequency/broadband waves, the behavior of each electron is stochastic while the averaged diffusion effect exhibits temporal linearity in the wave-particle interaction process. The computed local diffusion coefficients show that, the local pitch-angle scattering due to HARRP-induced single-frequency ELF/VLF whistlers with an amplitude of ∼10 pT can be intense near the loss cone with a rate of ∼10-2 rad2 s-1, suggesting the feasibility of HAARP-induced ELF/VLF waves for removal of outer radiation belt energetic electrons. In contrast, the energy diffusion of energetic electrons is relatively weak, which confirms that pitch-angle scattering by artificial ELF/VLF waves can dominantly lead to the precipitation of energetic electrons. Moreover, diffusion rates of the discrete, broadband waves, with the same amplitude of each discrete frequency as the monotonic waves, can be much larger, which suggests that it is feasible to trigger a reasonable broadband wave instead of the monotonic wave to achieve better performance of controlled precipitation of energetic electrons. Moreover, our test particle scattering simulation show good agreement with the predictions of the quasi-linear theory, confirming that both methods are applied to evaluate the effects of resonant interactions between radiation belt electrons and artificially generated

  18. IMPROVING SCIENCE EDUCATION AND CAREER OPPORTUNITIES IN RURAL ALASKA:The Synergistic Connection between Educational Outreach Efforts in the Copper Valley, Alaska.

    NASA Astrophysics Data System (ADS)

    Solie, D. J.; McCarthy, S.

    2004-12-01

    The objective of the High frequency Active Auroral Research Program (HAARP) Education Outreach is to enhance the science education opportunities in the Copper Valley region in Alaska. In the process, we also educate local residents about HAARP and its research. Funded jointly by US Air Force and Navy, HAARP is located at Gakona Alaska, a very rural region of central Alaska with a predominantly Native population. The main instrument at HAARP is a vertically directed, phased array RF transmitter which is primarily an ionospheric research tool, however, its geophysical research applications range from terrestrial to near-space. Research is conducted at HAARP in collaboration with scientists and institutions world-wide. The HAARP Education Outreach Program, run through the University of Alaska Geophysical Institute has been active for over six years and in that time has become an integral part of science education in the Copper Valley for residents of all ages. HAARP education outreach efforts are through direct involvement in local schools in the Copper River School District (CRSD) and the Prince William Sound Community College (PWSCC), as well as public lectures and workshops, and intern and student research programs. These outreach efforts require cooperation and coordination between the CRSD, PWSCC, the University of Alaska Fairbanks Physics Department and the NSF sponsored Alaska Native Science & Engineering Program (ANSEP) and HAARP researchers. The HAARP Outreach program also works with other organizations promoting science education in the region, such as the National Park Service (Wrangell- St. Elias National Park) and the Wrangell Institute for Science and Environment (WISE) a newly formed regional non-profit organization. We work closely with teachers in the schools, adapting to their needs and the particular scientific topic they are covering at the time. Because of time and logistic constraints, outreach visits to schools are episodic, occurring roughly

  19. Ionospheric manifestations of acoustic-gravity waves under quiet and disturbed conditions

    NASA Astrophysics Data System (ADS)

    Barabash, Vladimir; Chernogor, Leonid; Panasenko, Sergii; Domnin, Igor

    2014-05-01

    growth of quasi-periodic variations with periods of about 30 and 60 min were detected at all observable heights during this solar eclipse. The diagnostics of wave processes has been performed during ionospheric modification experiments with EISCAT heater. This heater is at a distance of about 2400 km from Kharkiv incoherent scatter radar. We have detected the TIDs over Kharkiv with periods of 40 - 80 min. The duration of these disturbances has not exceeded 120 - 180 min. The relative amplitudes of the TIDs in electron density ranged from 0.05 to 0.15 and those in electron and ion temperatures were about 0.02 - 0.05. The possible mechanisms for the generation of AGWs and TIDs by high power HF radio waves are sharp thermal gradients at the edge of the heated region and modulation of the ionospheric current systems by periodic high power radio transmission.

  20. First incoherent scatter radar observations of radio wave pumping in the ionosphere around the second electron gyroharmonic

    NASA Astrophysics Data System (ADS)

    Kosch, Michael; Bristow, Bill; Gustavsson, Bjorn; Heinselman, Craig; Hughes, John; Isham, Brett; Mutiso, Charles; Nielsen, Kim; Pedersen, Todd; Wang, Weiyuan; Wong, Alfred

    We report results from a unique experiment performed at the HIPAS ionospheric modification facility in Alaska. High power radio waves at 2.85 MHz, which corresponds to the second electron gyroharmonic at 240 km altitude, were transmitted into the nighttime ionosphere. Diagnostics included optical equipment at HIPAS and HAARP, 288 km to the south-east, the PFISR radar at Poker Flat, 32 km to the north-west, and the Kodiak SuperDARN radar, 856 km to the south-west. Camera observations of the stimulated optical emissions at 557.7 nm (O1S, threshold 4.2 eV) and 630 nm (O1D, threshold 2 eV) were made, allowing tomographic reconstruction of the volume emission. The first observations of pump-induced 732 nm (O+, threshold 18.6 eV) emissions are reported. Kodiak radar backscatter, which is a proxy for upper-hybrid resonance, shows strong production of striations without a minimum on the second gyroharmonic, confirming previous results. PFISR analysis shows clear evidence of electron temperature enhancements, consistent with previous EISCAT results, maximizing when the pump frequency matches the second gyroharmonic and when double resonance occurs, i.e. the upper-hybrid resonance frequency matches the second gyroharmonic. This is consistent with the optical observations. From the above data, we are able to infer the efficiency of different groups of electron-accelerating mechanisms.

  1. Creating Space Plasma from the Ground

    DTIC Science & Technology

    2016-05-12

    estimated a GW ERP of rf energy would produce an ionosphere half that from an overhead sun, assuming ~15% efficiency conversion of rf energy to...rf energy would produce an ionosphere half that from an overhead sun, assuming ~15% efficiency conversion of rf energy to accelerated electron energy...altitudes along the HAARP field line indicated); images of artificial optical emissions as viewed looking upwards along the magnetic field line from

  2. First artificial periodic inhomogeneity experiments at HAARP

    NASA Astrophysics Data System (ADS)

    Hysell, D. L.; McCarrick, M. J.; Fallen, C. T.; Vierinen, J.

    2015-03-01

    Experiments involving the generation and detection of artificial periodic inhomogeneities have been performed at the High Frequency Active Auroral Research Program (HAARP) facility. Irregularities were created using powerful X-mode HF emissions and then probed using short (10 μs) X- and O-mode pulses. Reception was performed using a portable software-defined receiver together with the crossed rhombic antenna from the local ionosonde. Echoes were observed reliably between about 85 and 140 km altitude with signal-to-noise ratios as high as about 30 dB. The Doppler shift of the echoes can be associated with the vertical neutral wind in this altitude range. Small but persistent Doppler shifts were observed. The decay time constant of the echoes is meanwhile indicative of the ambipolar diffusion coefficient which depends on the plasma temperature, composition, and neutral gas density. The measured time constants appear to be consistent with theoretical expectations and imply a methodology for measuring neutral density profiles. The significance of thermospheric vertical neutral wind and density measurements which are difficult to obtain using ground-based instruments by other means is discussed.

  3. Subsurface heaters with low sulfidation rates

    DOEpatents

    John, Randy Carl; Vinegar, Harold J

    2013-12-10

    A system for heating a hydrocarbon containing formation includes a heater having an elongated ferromagnetic metal heater section. The heater is located in an opening in a formation. The heater section is configured to heat the hydrocarbon containing formation. The exposed ferromagnetic metal has a sulfidation rate that goes down with increasing temperature of the heater, when the heater is in a selected temperature range.

  4. SPEAR-induced field-aligned irregularities observed from bi-static HF radio scattering in the polar ionosphere

    NASA Astrophysics Data System (ADS)

    Blagoveshchenskaya, N. F.; Borisova, T. D.; Kornienko, V. A.; Kalishin, A. S.; Robinson, T. R.; Yeoman, T. K.; Wright, D. M.; Baddeley, L. J.

    2009-01-01

    Experimental results from SPEAR HF heating experiments in the polar ionosphere are examined. Bi-static scatter measurements of HF diagnostic signals were carried out on the Pori (Finland)-SPEAR-St. Petersburg path at operational frequencies of 11,755 and 15,400 kHz and the London-SPEAR-St. Petersburg path at frequencies of 12,095 and 17,700 kHz, using a Doppler spectral method. The SPEAR HF heating facility generates heater-induced artificial field-aligned small-scale irregularities (AFAIs), which can be detected by HF diagnostic bi-static radio scatter techniques at St. Petersburg at a distance of about 2000 km. In accordance with the Bragg condition, HF bi-static backscatters were sensitive to small-scale irregularities having spatial sizes of the order of 9-13 m across the geomagnetic field line. The properties and behaviour of AFAIs have been considered in the winter and summer seasons under quiet magnetic conditions and under various status of the polar ionosphere (the presence of "thick" and "thin" sporadic Es layers, different structures of the F2 layer). The experimental results obtained have shown that AFAIs can be excited in the F as well as in the E regions of the polar ionosphere. The excitation of a very intense wide-band spectral component with an abrupt increase in the spectral width up to 16-20 Hz has been found in the signals scattered from striations. Along with a wide-band component, a narrow-band spectral component can be also seen in the Doppler sonograms and in the average spectra of the signals scattered from the SPEAR-induced striations. AFAIs were excited even when the HF heater frequency was up to 0.5 MHz larger than the critical frequency. A simulation of the ray geometry for the diagnostic HF radio waves scattered from AFAIs in the polar ionosphere has been made for the geophysical conditions prevailing during experiments carried out in both the winter and summer seasons.

  5. Mid-latitude Narrowband Stimulated Electromagnetic Emissions (NSEE): New Observations and Modeling

    NASA Astrophysics Data System (ADS)

    Nossa, E.; Mahmoudian, A.; Isham, B.; Bernhardt, P. A.; Briczinski, S. J., Jr.

    2017-12-01

    High power electromagnetic waves (EM) transmitted from the ground interact with the local plasma in the ionosphere and can produce Stimulated Electromagnetic Emissions (SEE) through the parametric decay instability (PDI). The classical SEE features known as wideband SEE (WSEE) with frequency offset of 1 kHz up to 100 kHz have been observed and studied in detail in the 1980s and 1990s. A new era of ionospheric remote sensing techniques was begun after the recent update of the HF transmitter at the HAARP. Sideband emissions of unprecedented strength have been reported during recent campaigns at HAARP, reaching up to 10 dB relative to the reflected pump wave which are by far the strongest spectral features of secondary radiation that have been reported. These emissions known as narrowband SEE (NSEE) are shifted by only up to a few tens of Hertz from radio-waves transmitted at several megahertz. One of these new NSEE features are emission lines within 100 Hz of the pump frequency and are produced through magnetized stimulated Brillouin scatter (MSBS) process. Stimulated Brillouin Scatter (SBS) is a strong SEE mode involving a direct parametric decay of the pump wave into an electrostatic wave (ES) and a secondary EM wave that sometimes could be stronger than the HF pump. SBS has been studied in laboratory plasma experiments by the interaction of high power lasers with plasmas. The SBS instability in magnetized ionospheric plasma was observed for the first time at HAARP in 2010. Our recent work at HAARP has shown that MSBS emission lines can be used to asses electron temperature in the heated region, ion mass spectrometry, determine minor ion species and their densities in the ionosphere, study the physics associated with electron acceleration and artificial airglow. Here, we present new observations of narrowband SEE (NSEE) features at the new mid-latitude heating facility at Arecibo. This includes the direct mode conversion of pump wave through MSBS process. Collected

  6. Grouped exposed metal heaters

    DOEpatents

    Vinegar, Harold J.; Coit, William George; Griffin, Peter Terry; Hamilton, Paul Taylor; Hsu, Chia-Fu; Mason, Stanley Leroy; Samuel, Allan James; Watkins, Ronnie Wade

    2010-11-09

    A system for treating a hydrocarbon containing formation is described. The system includes two or more groups of elongated heaters. The group includes two or more heaters placed in two or more openings in the formation. The heaters in the group are electrically coupled below the surface of the formation. The openings include at least partially uncased wellbores in a hydrocarbon layer of the formation. The groups are electrically configured such that current flow through the formation between at least two groups is inhibited. The heaters are configured to provide heat to the formation.

  7. Grouped exposed metal heaters

    DOEpatents

    Vinegar, Harold J [Bellaire, TX; Coit, William George [Bellaire, TX; Griffin, Peter Terry [Brixham, GB; Hamilton, Paul Taylor [Houston, TX; Hsu, Chia-Fu [Granada Hills, CA; Mason, Stanley Leroy [Allen, TX; Samuel, Allan James [Kular Lumpar, ML; Watkins, Ronnie Wade [Cypress, TX

    2012-07-31

    A system for treating a hydrocarbon containing formation is described. The system includes two or more groups of elongated heaters. The group includes two or more heaters placed in two or more openings in the formation. The heaters in the group are electrically coupled below the surface of the formation. The openings include at least partially uncased wellbores in a hydrocarbon layer of the formation. The groups are electrically configured such that current flow through the formation between at least two groups is inhibited. The heaters are configured to provide heat to the formation.

  8. Stimulated Brillouin scatter in a magnetized ionospheric plasma.

    PubMed

    Bernhardt, P A; Selcher, C A; Lehmberg, R H; Rodriguez, S P; Thomason, J F; Groves, K M; McCarrick, M J; Frazer, G J

    2010-04-23

    High power electromagnetic waves transmitted from the HAARP facility in Alaska can excite low-frequency electrostatic waves by magnetized stimulated Brillouin scatter. Either an ion-acoustic wave with a frequency less than the ion cyclotron frequency (f(CI)) or an electrostatic ion cyclotron (EIC) wave just above f(CI) can be produced. The coupled equations describing the magnetized stimulated Brillouin scatter instability show that the production of both ion-acoustic and EIC waves is strongly influenced by the wave propagation relative to the background magnetic field. Experimental observations of stimulated electromagnetic emissions using the HAARP transmitter have confirmed that only ion-acoustic waves are excited for propagation along the magnetic zenith and that EIC waves can only be detected with oblique propagation angles. The ion composition can be obtained from the measured EIC frequency.

  9. Coaxial Electric Heaters

    NASA Technical Reports Server (NTRS)

    Strekalov, Dmitry; Matsko, Andrey; Savchenkov, Anatoliy; Maleki, Lute

    2008-01-01

    Coaxial electric heaters have been conceived for use in highly sensitive instruments in which there are requirements for compact heaters but stray magnetic fields associated with heater electric currents would adversely affect operation. Such instruments include atomic clocks and magnetometers that utilize heated atomic-sample cells, wherein stray magnetic fields at picotesla levels could introduce systematic errors into instrument readings. A coaxial electric heater is essentially an axisymmetric coaxial cable, the outer conductor of which is deliberately made highly electrically resistive so that it can serve as a heating element. As in the cases of other axisymmetric coaxial cables, the equal magnitude electric currents flowing in opposite directions along the inner and outer conductors give rise to zero net magnetic field outside the outer conductor. Hence, a coaxial electric heater can be placed near an atomic-sample cell or other sensitive device. A coaxial electric heater can be fabricated from an insulated copper wire, the copper core of which serves as the inner conductor. For example, in one approach, the insulated wire is dipped in a colloidal graphite emulsion, then the emulsion-coated wire is dried to form a thin, uniform, highly electrically resistive film that serves as the outer conductor. Then the film is coated with a protective layer of high-temperature epoxy except at the end to be electrically connected to the power supply. Next, the insulation is stripped from the wire at that end. Finally, electrical leads from the heater power supply are attached to the exposed portions of the wire and the resistive film. The resistance of the graphite film can be tailored via its thickness. Alternatively, the film can be made from an electrically conductive paint, other than a colloidal graphite emulsion, chosen to impart the desired resistance. Yet another alternative is to tailor the resistance of a graphite film by exploiting the fact that its resistance

  10. Immersible solar heater for fluids

    DOEpatents

    Kronberg, James W.

    1995-01-01

    An immersible solar heater comprising a light-absorbing panel attached to a frame for absorbing heat energy from the light and transferring the absorbed heat energy directly to the fluid in which the heater is immersed. The heater can be used to heat a swimming pool, for example, and is held in position and at a preselected angle by a system of floats, weights and tethers so that the panel can operate efficiently. A skid can be used in one embodiment to prevent lateral movement of the heater along the bottom of the pool. Alternative embodiments include different arrangements of the weights, floats and tethers and methods for making the heater.

  11. Role of the Ionosphere in the Generation of Large-Amplitude Ulf Waves at High Latitudes

    NASA Astrophysics Data System (ADS)

    Tulegenov, B.; Guido, T.; Streltsov, A. V.

    2014-12-01

    We present results from the statistical study of ULF waves detected by the fluxgate magnetometer in Gakona, Alaska during several experimental campaigns conducted at the High Frequency Active Auroral Research Program (HAARP) facility in years 2011-2013. We analyzed frequencies of ULF waves recorded during 26 strongly disturbed geomagnetic events (substorms) and compared them with frequencies of ULF waves detected during magnetically quite times. Our analysis demonstrates that the frequency of the waves carrying most of the power almost in all these events is less than 1 mHz. We also analyzed data from the ACE satellite, measuring parameters of the solar wind in the L1 Lagrangian point between Earth and Sun, and found that in several occasions there is a strong correlation between oscillations of the magnetic field in the solar wind and oscillations detected on the ground. We also found several cases when there is no correlation between signals detected on ACE and on the ground. This finding suggests that these frequencies correspond to the fundamental eigenfrequency of the coupled magnetosphere-ionosphere system. The low frequency of the oscillations is explained by the effect of the ionosphere, where the current is carried by ions through highly collisional media. The amplitude of these waves can reach significant magnitude when the system is driven by the external driver (for example, the solar wind) with this particular frequency. When the frequency of the driver does not match the frequency of the system, the waves still are observed, but their amplitudes are much smaller.

  12. Stimulated Brillouin Scatter in a Magnetized Ionospheric Plasma

    SciTech Connect

    Bernhardt, P. A.; Selcher, C. A.; Lehmberg, R. H.

    2010-04-23

    High power electromagnetic waves transmitted from the HAARP facility in Alaska can excite low-frequency electrostatic waves by magnetized stimulated Brillouin scatter. Either an ion-acoustic wave with a frequency less than the ion cyclotron frequency (f{sub CI}) or an electrostatic ion cyclotron (EIC) wave just above f{sub CI} can be produced. The coupled equations describing the magnetized stimulated Brillouin scatter instability show that the production of both ion-acoustic and EIC waves is strongly influenced by the wave propagation relative to the background magnetic field. Experimental observations of stimulated electromagnetic emissions using the HAARP transmitter have confirmed that only ion-acoustic waves aremore » excited for propagation along the magnetic zenith and that EIC waves can only be detected with oblique propagation angles. The ion composition can be obtained from the measured EIC frequency.« less

  13. Hot gas engine heater head

    DOEpatents

    Berntell, John O.

    1983-01-01

    A heater head for a multi-cylinder double acting hot gas engine in which each cylinder is surrounded by an annular regenerator unit, and in which the tops of each cylinder and its surrounding regenerator are interconnected by a multiplicity of heater tubes. A manifold for the heater tubes has a centrally disposed duct connected to the top of the cylinder and surrounded by a wider duct connecting the other ends of the heater tubes with the regenerator unit.

  14. Numerical simulation of the plasma thermal disturbances during ionospheric modification experiments at the SURA heating facility

    NASA Astrophysics Data System (ADS)

    Belov, Alexey; Huba, J. D.

    indent=1cm We present the results of numerical simulation of the near-Earth plasma disturbances produced by resonant heating of the ionospheric F-region by high-power HF radio emission from the SURA facility. The computational model is based on the modified version of the SAMI2 code (release 1.00). The model input parameters are appropriated to the conditions of the SURA-DEMETER experiment. In this work, we study the spatial structure and temporal characteristics of stimulated large-scale disturbances of the electron number density and temperature. It is shown that the stimulated disturbances are observed throughout the ionosphere. Disturbances are recorded both in the region below the pump wave reflection level and in the outer ionosphere (up to 3000 km). At the DEMETER altitude, an increase in the ion number density is stipulated by the oxygen ions O (+) , whereas the number density of lighter H (+) ions decreases. A typical time of the formation of large-scale plasma density disturbances in the outer ionosphere is 2-3 min. After the heater is turned off, the disturbances relaxation time is approximately 30 min. The simulation results are important for planning future promising experiments on the formation of ionospheric artificial density ducts. This work was supported by the Russian Foundation for Basic Research (project No. 12-02-00747-a), and the Government of the Russian Federation (contract No. 14.B25.31.0008).

  15. Immersible solar heater for fluids

    DOEpatents

    Hazen, T.C.; Fliermans, C.B.

    1994-01-01

    An immersible solar heater is described comprising a light-absorbing panel attached to a frame for absorbing heat energy from the light and transferring the absorbed heat energy directly to the fluid in which the heater is immersed. The heater can be used to heat a swimming pool, for example, and is held in position and at a preselected angle by a system of floats, weights and tethers so that the panel can operate efficiently. A skid can be used in one embodiment to prevent lateral movement of the heater along the bottom of the pool. Alternative embodiments include different arrangements of the weights, floats and tethers and methods for making the heater.

  16. Immersible solar heater for fluids

    DOEpatents

    Kronberg, J.W.

    1995-07-11

    An immersible solar heater is described comprising a light-absorbing panel attached to a frame for absorbing heat energy from the light and transferring the absorbed heat energy directly to the fluid in which the heater is immersed. The heater can be used to heat a swimming pool, for example, and is held in position and at a preselected angle by a system of floats, weights and tethers so that the panel can operate efficiently. A skid can be used in one embodiment to prevent lateral movement of the heater along the bottom of the pool. Alternative embodiments include different arrangements of the weights, floats and tethers and methods for making the heater. 11 figs.

  17. 46 CFR 182.320 - Water heaters.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Water heaters. 182.320 Section 182.320 Shipping COAST...) MACHINERY INSTALLATION Auxiliary Machinery § 182.320 Water heaters. (a) A water heater must meet the...), except that an electric water heater is also acceptable if it: (1) Has a capacity of not more than 454...

  18. 46 CFR 182.320 - Water heaters.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Water heaters. 182.320 Section 182.320 Shipping COAST...) MACHINERY INSTALLATION Auxiliary Machinery § 182.320 Water heaters. (a) A water heater must meet the...), except that an electric water heater is also acceptable if it: (1) Has a capacity of not more than 454...

  19. 46 CFR 182.320 - Water heaters.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Water heaters. 182.320 Section 182.320 Shipping COAST...) MACHINERY INSTALLATION Auxiliary Machinery § 182.320 Water heaters. (a) A water heater must meet the...), except that an electric water heater is also acceptable if it: (1) Has a capacity of not more than 454...

  20. 46 CFR 182.320 - Water heaters.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Water heaters. 182.320 Section 182.320 Shipping COAST...) MACHINERY INSTALLATION Auxiliary Machinery § 182.320 Water heaters. (a) A water heater must meet the...), except that an electric water heater is also acceptable if it: (1) Has a capacity of not more than 454...

  1. 46 CFR 182.320 - Water heaters.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Water heaters. 182.320 Section 182.320 Shipping COAST...) MACHINERY INSTALLATION Auxiliary Machinery § 182.320 Water heaters. (a) A water heater must meet the...), except that an electric water heater is also acceptable if it: (1) Has a capacity of not more than 454...

  2. Radiotomographic imaging and GNSS remote sensing of the midlatitude ionosphere modified by powerful HF radiowaves.

    NASA Astrophysics Data System (ADS)

    Kunitsyn, V.; Andreeva, E. S.; Padokhin, A. M.; Vorontsov, A.; Frolov, V. L.; Komrakov, G.; Bernhardt, P. A.; Siefring, C. L.

    2014-12-01

    We present the results of the radiotomographic imaging and GNSS remote sensing of the artificial ionospheric disturbances obtained in the recent experiments on the modification of the midlatitude ionosphere by powerful HF radiowaves carried out at the Sura heating facility. The experiments were conducted using both O- and X- mode radiowaves, in daytime and nighttime conditions with various schemes of the radiation of the heating wave. Radio transmissions from the low- (Parus, e-POP on CASSIOPE) and high-orbital (GPS/GLONASS) navigational satellites received at the mobile network of receiving sites were used for the remote sensing of the heated area of the ionosphere. We study the variations in TEC caused by HF heating showing that the GNSS TEC spectra often contain frequency components corresponding to the modulation periods of the ERP of the heating wave. The manifestations of the heating-induced variations in TEC are most prominent in the area of magnetic zenith of the pumping wave. In this work we also present the radiotomographic reconstructions (including first time e-POP-SURA reconstructions) of the spatial structure of the disturbed area of the ionosphere corresponding to the directivity pattern of the heater as well as the spatial structure of the wave- like disturbances, which are possibly heating-induced AGWs, diverging from the heated area of the ionosphere. The spatial period of observed disturbances is 200-250 km and they are easily traced up to a distance of 700-800 km from the heated region, which is in good agreement with the modeling results.

  3. Multiple frequency backscatter observations of heater-induced field-aligned striations in the auroral E region

    SciTech Connect

    Noble, S.T.

    1985-01-01

    In September 1983 a series of HF ionospheric modification experiments were conducted in Scandinavia using the heat facility near Tromosoe Norway. The purpose of these experiments was to examine the mechanisms by which high-power HF radio waves produce geomagnetic field-aligned striations (FAS) in the auroral E region. The vast majority of the backscatter observations were made with radars operating at 47 and 144 MHz (STARE Finland). Additionally, limited observations were conducted at 140 (STARE Norway) and 21 MHz (SAFARI). These radars are sensitive to irregularities having scale lengths between 1 and 7 m across the geomagnetic field lines. During periodsmore » of full power O-mode heating, striations having peak cross sections of 40 to 50 dBsm are observed. Striations are not detected during times of X-mode heating. When the heater output is varied, a corresponding change in the cross section is measured. The magnitude of the change is most pronounced for heater level changes in the range 12.5 to 50% of full power. These cross sections are significantly larger than those measured at midlatitudes using the Arecibo heater (approx.10/sup 1/ m/sup 2/). This is consistent with theoretical studies which indicate that it is easier to excite short-scale FAS at places where the geomagnetic dip angle is large. The growth and decay times of the striations are frequency dependent.« less

  4. 46 CFR 119.320 - Water heaters.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Water heaters. 119.320 Section 119.320 Shipping COAST... Machinery § 119.320 Water heaters. (a) A water heater must meet the requirements of Parts 53 and 63 in... electric water heater is also acceptable if it: (1) Has a capacity of not more than 454 liters (120 gallons...

  5. 46 CFR 119.320 - Water heaters.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Water heaters. 119.320 Section 119.320 Shipping COAST... Machinery § 119.320 Water heaters. (a) A water heater must meet the requirements of Parts 53 and 63 in... electric water heater is also acceptable if it: (1) Has a capacity of not more than 454 liters (120 gallons...

  6. 46 CFR 119.320 - Water heaters.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Water heaters. 119.320 Section 119.320 Shipping COAST... Machinery § 119.320 Water heaters. (a) A water heater must meet the requirements of Parts 53 and 63 in... electric water heater is also acceptable if it: (1) Has a capacity of not more than 454 liters (120 gallons...

  7. 46 CFR 119.320 - Water heaters.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Water heaters. 119.320 Section 119.320 Shipping COAST... Machinery § 119.320 Water heaters. (a) A water heater must meet the requirements of Parts 53 and 63 in... electric water heater is also acceptable if it: (1) Has a capacity of not more than 454 liters (120 gallons...

  8. 46 CFR 119.320 - Water heaters.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Water heaters. 119.320 Section 119.320 Shipping COAST... Machinery § 119.320 Water heaters. (a) A water heater must meet the requirements of Parts 53 and 63 in... electric water heater is also acceptable if it: (1) Has a capacity of not more than 454 liters (120 gallons...

  9. Ionospheric "Volcanology": Ionospheric Detection of Volcano Eruptions

    NASA Astrophysics Data System (ADS)

    Astafyeva, E.; Shults, K.; Lognonne, P. H.; Rakoto, V.

    2016-12-01

    It is known that volcano eruptions and explosions can generate acoustic and gravity waves. These neutral waves further propagate into the atmosphere and ionosphere, where they are detectable by atmospheric and ionospheric sounding tools. So far, the features of co-volcanic ionospheric perturbations are not well understood yet. The development of the global and regional networks of ground-based GPS/GNSS receivers has opened a new era in the ionospheric detection of natural hazard events, including volcano eruptions. It is now known that eruptions with the volcanic explosivity index (VEI) of more than 2 can be detected in the ionosphere, especially in regions with dense GPS/GNSS-receiver coverage. The co-volcanic ionospheric disturbances are usually characterized as quasi-periodic oscillations. The Calbuco volcano, located in southern Chile, awoke in April 2015 after 43 years of inactivity. The first eruption began at 21:04UT on 22 April 2015, preceded by only an hour-long period of volcano-tectonic activity. This first eruption lasted 90 minutes and generated a sub-Plinian (i.e. medium to large explosive event), gray ash plume that rose 15 km above the main crater. A larger second event on 23 April began at 04:00UT (01:00LT), it lasted six hours, and also generated a sub-Plinian ash plume that rose higher than 15 km. The VEI was estimated to be 4 to 5 for these two events. In this work, we first study ionospheric TEC response to the Calbuco volcano eruptions of April 2015 by using ground-based GNSS-receivers located around the volcano. We analyze the spectral characteristics of the observed TEC variations and we estimate the propagation speed of the co-volcanic ionospheric perturbations. We further proceed with the normal mode summation technique based modeling of the ionospheric TEC variations due to the Calbuco volcano eruptions. Finally, we attempt to localize the position of the volcano from the ionospheric measurements, and we also estimate the time of the

  10. Interharmonic modulation products as a means to quantify nonlinear D-region interactions

    NASA Astrophysics Data System (ADS)

    Moore, Robert

    Experimental observations performed during dual beam ionospheric HF heating experiments at the High frequency Active Auroral Research Program (HAARP) HF transmitter in Gakona, Alaska are used to quantify the relative importance of specific nonlinear interactions that occur within the D region ionosphere. During these experiments, HAARP broadcast two amplitude modulated HF beams whose center frequencies were separated by less than 20 kHz. One beam was sinusoidally modulated at 500 Hz while the second beam was sinusoidally modulated using a 1-7 kHz linear frequency-time chirp. ELF/VLF observations performed at two different locations (3 and 98 km from HAARP) provide clear evidence of strong interactions between all field components of the two HF beams in the form of low and high order interharmonic modulation products. From a theoretical standpoint, the observed interharmonic modulation products could be produced by several different nonlinearities. The two primary nonlinearities take the form of wave-medium interactions (i.e., cross modulation), wherein the ionospheric conductivity modulation produced by one signal crosses onto the other signal via collision frequency modification, and wave-wave interactions, wherein the conduction current associated with one wave mixes with the electric field of the other wave to produce electron temperature oscillations. We are able to separate and quantify these two different nonlinearities, and we conclude that the wave-wave interactions dominate the wave-medium interactions by a factor of two. These results are of great importance for the modeling of transioinospheric radio wave propagation, in that both the wave-wave and the wave-medium interactions could be responsible for a significant amount of anomalous absorption.

  11. Stimulated electromagnetic emission and plasma line during pump wave frequency stepping near 4th electron gyroharmonic at HAARP

    NASA Astrophysics Data System (ADS)

    Grach, Savely; Sergeev, Evgeny; Shindin, Alexey; Mishin, Evgeny; Watkins, Brenton

    Concurrent observations of stimulated (secondary) electromagnetic emissions (SEE) and incoherent plasma line (PL) backscatter from the MUIR radar during HF pumping of the ionosphere by the HAARP heating facility (62.4(°) °N, 145.15(°) W, magnetic inclination α = 75.8^circ) with the pump wave (PW) frequency sweeps about the fourth electron gyroharmonic (4f_c) are presented. The PW frequency f0 was changed every 0.2 s in a 1-kHz step, i.e. with the rate of r_{f_0}=5 kHz/s. PW was transmitted at the magnetic zenith (MZ). Prior to sweeping, PW was transmitted continuously (CW) during 2 min at f_0 = 5730 kHz <4f_c to create the “preconditioned” ionosphere with small-scale magnetic field-aligned irregularities. During CW pumping, a typical SEE spectrum for f_0<4f_c, containing the prominent downshifted maxiμm (DM) shifted by Delta f_{DM} = f_{DM}-f_0approx-9 kHz, developed in 5-10 s after PW turn on. The PL echoes were observed during 2-3 s from the range dsim 220 km corresponding to the altitude slightly above PW reflection height. After sim5 s the PL echoes descended to dsim 210-212 km corresponding to the height h = d / (sinalpha) by sim 7 km below the height where f_0 = 4f_c. During frequency sweeps, two upshifted features appeared in the SEE spectrum for f_0> 4f_c, namely BUM_S and BUM_D. The former (stationary broad upshifted maxiμm) peaks at Delta f_{BUMs} approx f0 - nfc (d) + 15-20 kHz and is a typical SEE spectral feature. The latter, the dynamic BUM_D at smaller Delta f, is observed only at high pump powers (ERP=1.7 GW) and corresponds to artificial descending plasma layers created in the F-region ionosphere [1]. In the experiment in question, the BUM_D was present for f_0> f^*, where f^* was 5805-5815 kHz during stepping up and sim 10 kHz less for stepping down, and located 8-10 km below the background F-layer. The miniμm DM which indicated that f_0=4f_c=f_{uh} in the background ionospheric plasma, was sim 5760 kHz. The PL was observed only for f_0

  12. MHD oxidant intermediate temperature ceramic heater study

    NASA Technical Reports Server (NTRS)

    Carlson, A. W.; Chait, I. L.; Saari, D. P.; Marksberry, C. L.

    1981-01-01

    The use of three types of directly fired ceramic heaters for preheating oxygen enriched air to an intermediate temperature of 1144K was investigated. The three types of ceramic heaters are: (1) a fixed bed, periodic flow ceramic brick regenerative heater; (2) a ceramic pebble regenerative heater. The heater design, performance and operating characteristics under conditions in which the particulate matter is not solidified are evaluated. A comparison and overall evaluation of the three types of ceramic heaters and temperature range determination at which the particulate matter in the MHD exhaust gas is estimated to be a dry powder are presented.

  13. Solar air heaters and their applications

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K.

    1977-01-01

    The solar air heater appears to be the most logical choice, as far as the ultimate application of heating air to maintain a comfortable environment is concerned. One disadvantage of solar air heaters is the need for handling larger volumes of air than liquids due to the low density of air as a working substance. Another disadvantage is the low thermal capacity of air. In cases where thermal storage is needed, water is superior to air. Design variations of solar air heaters are discussed along with the calculation of the efficiency of a flat plate solar air heater, the performance of various collector types, and the applications of solar air heaters. Attention is given to collectors with nonporous absorber plates, collectors with porous absorbers, the performance of flat plate collectors with finned absorbers, a wire mesh absorber, and an overlapped glass plate air heater.

  14. Portable kerosene heater controversy

    SciTech Connect

    Decker, M.O.

    1982-04-01

    The National Kerosene Heater Association reports sales of slightly fewer than two million heaters in the United States between 1975 and 1979. More than one million were sold in 1980 and they project sales of eight to ten million by 1985. Kerosene heater dealers are urged to post warnings to customers specifying the grade of kerosene to be used. 1-K kerosene has a maximum sulfur content of .04% and is generally suitable for use in nonflue-connected burners. 2-K kerosene, with a sulfur content of as much as .30% should be used only in flue-connected burner applications. (JMT)

  15. The polar-ionosphere phenomena induced by high-power radio waves from the spear heating facility

    NASA Astrophysics Data System (ADS)

    Blagoveshchenskaya, N. F.; Borisova, T. D.; Kornienko, V. A.; Janzhura, A. S.; Kalishin, A. S.; Robinson, T. R.; Yeoman, T. K.; Wright, D. M.; Baddeley, L. J.

    2008-11-01

    We present the results of experimental studies of specific features in the behavior of small-scale artificial field-aligned irregularities (AFAIs) and the DM component in the spectra of stimulated electromagnetic emission (SEE). Analysis of experimental data shows that AFAIs in the polar ionosphere are generated under different background geophysical conditions (season, local time, the presence of sporadic layers in the E region, etc.). It is shown that AFAIs can be excited not only in the F region, but also in “thick” sporadic E s layers of the polar ionosphere. The AFAIs were observed in some cycles of heating when the HF heater frequency exceeded the critical frequency by 0.3-0.5 MHz. Propagation paths of diagnostic HF radio waves scattered by AFAIs were modelled for geophysical conditions prevailing during the SPEAR heating experiments. Two components, namely, a narrow-banded one with a Doppler-spectrum width of up to 2 Hz and a broadband one observed in a band of up to 20 Hz, were found in the sporadic E s layer during the AFAI excitation. Analysis of the SEE spectra shows that the behavior of the DM component in time is irregular, which is possibly due to strong variations in the critical frequency of the F 2 layer from 3.5 to 4.6 MHz. An interesting feature observed in the SPEAR heating experiments is that the generation of the DM component was similar to the excitation of AFAIs when the heater frequency was up to 0.5 MHz higher than the critical frequency.

  16. Infrared Heaters

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The heating units shown in the accompanying photos are Panelbloc infrared heaters, energy savers which burn little fuel in relation to their effective heat output. Produced by Bettcher Manufacturing Corporation, Cleveland, Ohio, Panelblocs are applicable to industrial or other facilities which have ceilings more than 12 feet high, such as those pictured: at left the Bare Hills Tennis Club, Baltimore, Maryland and at right, CVA Lincoln- Mercury, Gaithersburg, Maryland. The heaters are mounted high above the floor and they radiate infrared energy downward. Panelblocs do not waste energy by warming the surrounding air. Instead, they beam invisible heat rays directly to objects which absorb the radiation- people, floors, machinery and other plant equipment. All these objects in turn re-radiate the energy to the air. A key element in the Panelbloc design is a coating applied to the aluminized steel outer surface of the heater. This coating must be corrosion resistant at high temperatures and it must have high "emissivity"-the ability of a surface to emit radiant energy. The Bettcher company formerly used a porcelain coating, but it caused a production problem. Bettcher did not have the capability to apply the material in its own plant, so the heaters had to be shipped out of state for porcelainizing, which entailed extra cost. Bettcher sought a coating which could meet the specifications yet be applied in its own facilities. The company asked The Knowledge Availability Systems Center, Pittsburgh, Pennsylvania, a NASA Industrial Applications Center (IAC), for a search of NASA's files

  17. Heater Development, Fabrication, and Testing: Analysis of Fabricated Heaters

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, S. M.; Dickens, R. E.; Farmer, J. T.; Davis, J. D.; Adams, M. R.; Martin, J. J.; Webster, K. L.

    2008-01-01

    Thermal simulators (highly designed heater elements) developed at the Early Flight Fission Test Facility (EFF-TF) are used to simulate the heat from nuclear fission in a variety of reactor concepts. When inserted into the reactor geometry, the purpose of the thermal simulators is to deliver thermal power to the test article in the same fashion as if nuclear fuel were present. Considerable effort has been expended to mimic heat from fission as closely as possible. To accurately represent the fuel, the simulators should be capable of matching the overall properties of the nuclear fuel rather than simply matching the fuel temperatures. This includes matching thermal stresses in the pin, pin conductivities, total core power, and core power profile (axial and radial). This Technical Memorandum discusses the historical development of the thermal simulators used in nonnuclear testing at the EFF-TF and provides a basis for the development of the current series of thermal simulators. The status of current heater fabrication and testing is assessed, providing data and analyses for both successes and failures experienced in the heater development and testing program.

  18. Detection of Ionospheric Alfven Resonator Signatures in the Equatorial Ionosphere

    NASA Technical Reports Server (NTRS)

    Simoes, Fernando; Klenzing, Jeffrey; Ivanov, Stoyan; Pfaff, Robert; Freudenreich, Henry; Bilitza, Dieter; Rowland, Douglas; Bromund, Kenneth; Liebrecht, Maria Carmen; Martin, Steven; hide

    2012-01-01

    The ionosphere response resulting from minimum solar activity during cycle 23/24 was unusual and offered unique opportunities for investigating space weather in the near-Earth environment. We report ultra low frequency electric field signatures related to the ionospheric Alfven resonator detected by the Communications/Navigation Outage Forecasting System (C/NOFS) satellite in the equatorial region. These signatures are used to constrain ionospheric empirical models and offer a new approach for monitoring ionosphere dynamics and space weather phenomena, namely aeronomy processes, Alfven wave propagation, and troposphere24 ionosphere-magnetosphere coupling mechanisms.

  19. Parallel heater system for subsurface formations

    DOEpatents

    Harris, Christopher Kelvin [Houston, TX; Karanikas, John Michael [Houston, TX; Nguyen, Scott Vinh [Houston, TX

    2011-10-25

    A heating system for a subsurface formation is disclosed. The system includes a plurality of substantially horizontally oriented or inclined heater sections located in a hydrocarbon containing layer in the formation. At least a portion of two of the heater sections are substantially parallel to each other. The ends of at least two of the heater sections in the layer are electrically coupled to a substantially horizontal, or inclined, electrical conductor oriented substantially perpendicular to the ends of the at least two heater sections.

  20. Varying properties along lengths of temperature limited heaters

    DOEpatents

    Vinegar, Harold J [Bellaire, TX; Xie, Xueying [Houston, TX; Miller, David Scott [Katy, TX; Ginestra, Jean Charles [Richmond, TX

    2011-07-26

    A system for heating a subsurface formation is described. The system includes an elongated heater in an opening in the formation. The elongated heater includes two or more portions along the length of the heater that have different power outputs. At least one portion of the elongated heater includes at least one temperature limited portion with at least one selected temperature at which the portion provides a reduced heat output. The heater is configured to provide heat to the formation with the different power outputs. The heater is configured so that the heater heats one or more portions of the formation at one or more selected heating rates.

  1. Build Your Own Solar Air Heater.

    ERIC Educational Resources Information Center

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    The solar air heater is a simple device for catching some of the sun's energy to heat a home. Procedures for making and installing such a heater are presented. Included is a materials list, including tools needed for constructing the heater, sources for obtaining further details, and a list of material specifications. (JN)

  2. Theory of HF induced turbulence in the ionosphere: Status and challenges

    NASA Astrophysics Data System (ADS)

    Dubois, D. F.

    In the past five years the combination of new theoretical concepts and computer simulations along with dramatically improved observational diagnostics appear to have led to a detailed, quantitative, understanding of the properties of the Langmuir turbulence induced in the unpreconditioned ionosphere at Arecibo during the first tens of milliseconds following the turn-on of the HF heater. This is the only observational regime in which the initial ionospheric conditions are known to a high level of confidence. The so called strong Langmuir turbulence (SLT) theory predicts observed features in this early time heating which are completely at odds with the prediction of the traditional weak turbulence approximation. The understanding of the observed signatures for times greater than say 30-50 ms following the onset of heating at Arecibo is still incomplete. The same is apparently true for the observations at Tromso where the unique predictions of SLT theory are not so clearly observed. Density irregularities, induced by heating at Arecibo and perhaps present in the ambient ionosphere at Tromso, appear to control the properties of the turbulence. The proper description of the coexistence of Langmuir turbulence with various density irregularities and accounting for the turbulent modification of the electron velocity distribution are challenges for the theory. In this paper the author reviews, starting from the Vlasov-Poisson equations, the fundamental basis of the reduced models used to describe SLT and suggest improvements to the standard model including a new local quasi linear theory for the treatment of hot electron acceleration and transit time damping or burnout of collapsing Langmuir cavitons.

  3. 49 CFR 393.77 - Heaters.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... source and the heater. (13) “Tell-tale” indicators. Heaters subject to paragraph (c)(14) of this section and not provided with automatic controls shall be provided with “tell-tale” means to indicate to the...

  4. Evaluation of the Improved Flameless Ration Heater

    DTIC Science & Technology

    2001-12-01

    THROUGH SCIENCE TECHNICAL REPORT NATICKjTR.02/004 AD. _____ _ EVALUATION OF THE IMPROVED FLAMELESS RATION HEATER by Wendy K. Johnson and F...From- To) 21-12-2001 Final August 2000 - August 2001 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER EVALUATION OF THE IMPROVED FLAMELESS RATION HEATER...was conducted at Fort Wainwright, AK to evaluate two prototype heaters and a modified version of the current Flameless Ration Heater (FRH). The

  5. Heater Validation for the NEXT-C Hollow Cathodes

    NASA Technical Reports Server (NTRS)

    Verhey, Timothy R.; Soulas, George C.; Mackey, Jonathan Ar.

    2017-01-01

    Swaged cathode heaters whose design was successfully demonstrated under a prior flight project are to be provided by the NASA Glenn Research Center for the NEXT-C ion thruster being fabricated by Aerojet Rocketdyne. Extensive requalification activities were performed to validate process controls that had to be re-established or revised because systemic changes prevented reuse of the past approaches. A development batch of heaters was successfully fabricated based on the new process controls. Acceptance and cyclic life testing of multiple discharge and neutralizer sized heaters extracted from the development batch was initiated in August, 2016, with the last heater completing testing in April, 2017. Cyclic life testing results substantially exceeded the NEXT-C thruster requirement as well as all past experience for GRC fabricated units. The heaters demonstrated ultimate cyclic life capability of 19050 to 33500 cycles. A qualification batch of heaters is now being fabricated using the finalized process controls. A set of six heaters will be acceptance and cyclic tested to verify conformance to the behavior observed with the development heaters. The heaters for flight use will be then be provided to the contractor. This paper summarizes the fabrication process control activities and the acceptance and life testing of the development heater units.

  6. Heater Validation for the NEXT-C Hollow Cathodes

    NASA Technical Reports Server (NTRS)

    Verhey, Timothy R.; Soulas, George C.; Mackey, Jonathan A.

    2018-01-01

    Swaged cathode heaters whose design was successfully demonstrated under a prior flight project are to be provided by the NASA Glenn Research Center for the NEXT-C ion thruster being fabricated by Aerojet Rocketdyne. Extensive requalification activities were performed to validate process controls that had to be re-established or revised because systemic changes prevented reuse of the past approaches. A development batch of heaters was successfully fabricated based on the new process controls. Acceptance and cyclic life testing of multiple discharge and neutralizer sized heaters extracted from the development batch was initiated in August, 2016, with the last heater completing testing in April, 2017. Cyclic life testing results substantially exceeded the NEXT-C thruster requirement as well as all past experience for GRC-fabricated units. The heaters demonstrated ultimate cyclic life capability of 19050 to 33500 cycles. A qualification batch of heaters is now being fabricated using the finalized process controls. A set of six heaters will be acceptance and cyclic tested to verify conformance to the behavior observed with the development heaters. The heaters for flight use will be then be provided to the contractor from the remainder of the qualification batch. This paper summarizes the fabrication process control activities and the acceptance and life testing of the development heater units.

  7. Generation of Artificial Ionospheric Irregularities by the Modification of the Earth's Middle-Latitude Ionosphere by X-Mode Powerful HF Radio Waves

    NASA Astrophysics Data System (ADS)

    Frolov, Vladimir; Padokhin, Artem; Kunitsyn, Viacheslav; Akchurin, Adel; Bolotin, Ilya; Zykov, Evgeniy; Vertogradov, Gennadiy

    Basing on experimental data obtained at the SURA heating facility by modification of the Earth’s middle-latitude ionosphere, we consider in the report some peculiarities of the generation of artificial plasma density irregularities when X-mode powerful waves (PW) are used for ionosphere pumping [1]. Experiments were carried out during 2008 - 2012 under quite ionospheric conditions (Sigma K_p = 10 - 30). Analysis of obtained experimental data has shown that: 1) In our measurements the generation of small-scale irregularities with l{_⊥} {≃} 10 - 20 m is not observed in contrast to analogous measurements conducted at the EISCAT-heater [2,3]. 2) The generation of irregularities with l{_⊥} {≃} 50 m - 3 km is mainly observed in evening and night hours. In these conditions their intensity is by 3 to 4 times below in comparison with the O-mode pumping. During day hours these irregularities are not detected due to both strong PW energy absorption in the lower ionosphere and forming a defocusing lens at altitudes of 130 - 150 km [4]. 3) The generation of irregularities with l{_⊥} {≥} 5 - 10 km is only observed in evening and night hours. In these conditions their intensity is by 10 times below in comparison with the O-mode pumping. 4) The generation of the irregularities with l{_⊥} {≥} 50 m is observed only when the PW reflects in the ionospheric F _{2} region. 5) Under day-time conditions the defocusing lens is forming at altitudes of about of 130 - 150 km when the ionosphere is pumping both X- and O- mode powerful waves [4]. Its horizontal size is determined by the HF beam. In our experiments [1] it was revealed that the stronger generation of irregularities with scale-lengths l{_⊥} {≃} 5 - 10 km is observed at the HF beam edge where the effective radiated power is of about 0.1 P _{max}. Such a “beam-edge” effect is also observed when the ionosphere is modified by O-mode PW. The enhancement of irregularity generation at the HF beam edge was

  8. Convective heater

    DOEpatents

    Thorogood, Robert M.

    1986-01-01

    A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation.

  9. Convective heater

    DOEpatents

    Thorogood, Robert M.

    1983-01-01

    A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation.

  10. Convective heater

    DOEpatents

    Thorogood, R.M.

    1983-12-27

    A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation. 14 figs.

  11. 14 CFR 23.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Combustion heater fire protection. 23.859... Construction Fire Protection § 23.859 Combustion heater fire protection. (a) Combustion heater fire regions. The following combustion heater fire regions must be protected from fire in accordance with the...

  12. 14 CFR 23.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Combustion heater fire protection. 23.859... Construction Fire Protection § 23.859 Combustion heater fire protection. (a) Combustion heater fire regions. The following combustion heater fire regions must be protected from fire in accordance with the...

  13. 14 CFR 23.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Combustion heater fire protection. 23.859... Construction Fire Protection § 23.859 Combustion heater fire protection. (a) Combustion heater fire regions. The following combustion heater fire regions must be protected from fire in accordance with the...

  14. 14 CFR 23.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Combustion heater fire protection. 23.859... Construction Fire Protection § 23.859 Combustion heater fire protection. (a) Combustion heater fire regions. The following combustion heater fire regions must be protected from fire in accordance with the...

  15. 14 CFR 23.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Combustion heater fire protection. 23.859... Construction Fire Protection § 23.859 Combustion heater fire protection. (a) Combustion heater fire regions. The following combustion heater fire regions must be protected from fire in accordance with the...

  16. Medium-scale traveling ionospheric disturbances by three-dimensional ionospheric GPS tomography

    NASA Astrophysics Data System (ADS)

    Chen, C. H.; Saito, A.; Lin, C. H.; Yamamoto, M.; Suzuki, S.; Seemala, G. K.

    2016-02-01

    In this study, we develop a three-dimensional ionospheric tomography with the ground-based global position system (GPS) total electron content observations. Because of the geometric limitation of GPS observation path, it is difficult to solve the ill-posed inverse problem for the ionospheric electron density. Different from methods given by pervious studies, we consider an algorithm combining the least-square method with a constraint condition, in which the gradient of electron density tends to be smooth in the horizontal direction and steep in the vicinity of the ionospheric F2 peak. This algorithm is designed to be independent of any ionospheric or plasmaspheric electron density models as the initial condition. An observation system simulation experiment method is applied to evaluate the performance of the GPS ionospheric tomography in detecting ionospheric electron density perturbation at the scale size of around 200 km in wavelength, such as the medium-scale traveling ionospheric disturbances.

  17. Resistance Heater Helps Stirling-Engine Research

    NASA Technical Reports Server (NTRS)

    Hoehn, F. W.

    1982-01-01

    Stirling engine heater head consists of 18 double-turn coils of tubing, each of which is tightly wrapped with resistance-heating element, through which working gas flows. Coils form a toroid about periphery of heater-head body. With new resistance heater, total circuit resistance can be selected independently of tube geometry by changing size of wires and/or number of wire wraps around each tube.

  18. Measure Guideline: Transitioning to a Tankless Water Heater

    SciTech Connect

    Brozyna, K.; Rapport, A.

    2012-09-01

    This Measure Guideline provides information to help residential builders and retrofitters with the design, specification, selection, implementation, installation, and maintenance issues of transitioning from tank-type water heaters to tankless water heaters. The report compares the differences between tankless and tank-type water heaters, highlighting the energy savings that can be realized by adopting tankless water heaters over tank-type water heaters. Selection criteria and risks discussed include unit sizing and location, water distribution system, plumbing line length and diameter, water quality, electrical backup, and code issues. Cost and performance data are provided for various types of tankless and tank-type water heaters, bothmore » natural gas fired and electric. Also considered are interactions between the tankless water heater and other functional elements of a house, such as cold water supply and low-flow devices. Operating costs and energy use of water distribution systems for single- and two-story houses are provided, along with discussion of the various types of distribution systems that can be used with tankless water heaters. Finally, details to prepare for proper installation of a tankless water heater are described.« less

  19. Heater for Combustible-Gas Tanks

    NASA Technical Reports Server (NTRS)

    Ingle, Walter B.

    1987-01-01

    Proposed heater for pressurizing hydrogen, oxygen, or another combustible liquid or gas sealed in immersion cup in pressurized tank. Firmly supported in finned cup, coiled rod transfers heat through liquid metal to gas tank. Heater assembly welded or bolted to tank flange.

  20. Experimentally investigate ionospheric depletion chemicals in artificially created ionosphere

    SciTech Connect

    Liu Yu; Cao Jinxiang; Wang Jian

    2012-09-15

    A new approach for investigating ionosphere chemical depletion in the laboratory is introduced. Air glow discharge plasma closely resembling the ionosphere in both composition and chemical reactions is used as the artificially created ionosphere. The ionospheric depletion experiment is accomplished by releasing chemicals such as SF{sub 6}, CCl{sub 2}F{sub 2}, and CO{sub 2} into the model discharge. The evolution of the electron density is investigated by varying the plasma pressure and input power. It is found that the negative ion (SF{sub 6}{sup -}, CCl{sub 2}F{sub 2}{sup -}) intermediary species provide larger reduction of the electron density than the positive ionmore » (CO{sub 2}{sup +}) intermediary species. The negative ion intermediary species are also more efficient in producing ionospheric holes because of their fast reaction rates. Airglow enhancement attributed to SF{sub 6} and CO{sub 2} releases agrees well with the published data. Compared to the traditional methods, the new scheme is simpler to use, both in the release of chemicals and in the electron density measurements. It is therefore more efficient for investigating the release of chemicals in the ionosphere.« less

  1. Ionospheric research opportunity

    NASA Astrophysics Data System (ADS)

    Rickel, Dwight

    1985-05-01

    Ground-based explosions have been exploited successfully in the past as a relatively controlled source for producing ionospheric disturbances. On June 25, the Defense Nuclear Agency will conduct a high explosives test on the northern section of the White Sands Missile Range. Approximately 4,800 tons of ammonium nitrate and fuel oil (ANFO) will be detonated at ground level, producing an acoustic shock wave with a surface pressure change of approximately 20 mbar at a 6 km range. This shock front will have sufficient strength to propagate into the ionosphere with at least a 10% change in the ambient pressure across the disturbance front in the lower F region. Such an ionospheric perturbation will give ionospheric researchers an excellent opportunity to investigate acoustic propagation at ionospheric heights, shock dissipation effect, the ion-neutral coupling process, acoustic-gravity wave (traveling ionospheric disturbance) generation mechanisms, and associated RF phenomena.

  2. 49 CFR 179.12 - Interior heater systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Design Requirements § 179.12 Interior heater systems. (a) Interior heater systems shall be of approved design and materials. If a tank is divided into compartments, a separate system shall be provided for... 49 Transportation 2 2010-10-01 2010-10-01 false Interior heater systems. 179.12 Section 179.12...

  3. Temperature limited heaters using phase transformation of ferromagnetic material

    DOEpatents

    Vitek, John Michael [Oak Ridge, TN; Brady, Michael Patrick [Oak Ridge, TN

    2009-10-06

    Systems, methods, and heaters for treating a subsurface formation are described herein. Systems and methods for making heaters are described herein. At least one heater includes a ferromagnetic conductor and an electrical conductor. The electrical conductor is electrically coupled to the ferromagnetic conductor. The heater provides a first amount of heat at a lower temperature. The heater may provide a second reduced amount of heat when the heater reaches a selected temperature, or enters a selected temperature range, at which the ferromagnetic conductor undergoes a phase transformation.

  4. Slat Heater Boxes for Thermal Vacuum Testing

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene

    2003-01-01

    Slat heater boxes have been invented for controlling the sink temperatures of objects under test in a thermal vacuum chamber, the walls of which are cooled to the temperature of liquid nitrogen. A slat heater box (see Figure 1) includes a framework of struts that support electrically heated slats that are coated with a high-emissivity optically gray paint. The slats can be grouped together into heater zones for the purpose of maintaining an even temperature within each side. The sink temperature of an object under test is defined as the steady-state temperature of the object in the vacuum/ radiative environment during the absence of any internal heat source or sink. The slat heater box makes it possible to closely control the radiation environment to obtain a desired sink temperature. The slat heater box is placed inside the cold thermal vacuum chamber, and the object under test is placed inside (but not in contact with) the slat heater box. The slat heaters occupy about a third of the field of view from any point on the surface of the object under test, the remainder of the field of view being occupied by the cold chamber wall. Thus, the radiation environment is established by the combined effects of the slat heater box and the cold chamber wall. Given (1) the temperature of the chamber wall, (2) the fractions of the field of view occupied by the chamber wall and the slat heater box, and (3) the emissivities of the slats, chamber wall, and the surface of object under test, the slat temperature required to maintain a desired sink temperature can be calculated by solving the equations of gray-body radiation for the steady-state adiabatic case (equal absorption and emission by the object under test). Slat heater boxes offer an important advantage over the infrared lamps that have been previously used to obtain desired sink temperatures: In comparison with an infrared lamp, a slat heater box provides a greater degree of sink temperature uniformity for a test

  5. Adjusting alloy compositions for selected properties in temperature limited heaters

    DOEpatents

    Brady; Michael Patrick , Horton, Jr.; Joseph Arno , Vitek; John Michael

    2010-03-23

    Heaters for treating a subsurface formation are described herein. Such heaters can be obtained by using the systems and methods described herein. The heater includes a heater section including iron, cobalt, and carbon. The heater section has a Curie temperature less than a phase transformation temperature. The Curie temperature is at least 740.degree. C. The heater section provides, when time varying current is applied to the heater section, an electrical resistance.

  6. 10 CFR 429.17 - Residential water heaters.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Residential water heaters. 429.17 Section 429.17 Energy... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.17 Residential water heaters. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to residential water heaters...

  7. 10 CFR 429.17 - Residential water heaters.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Residential water heaters. 429.17 Section 429.17 Energy... COMMERCIAL AND INDUSTRIAL EQUIPMENT Certification § 429.17 Residential water heaters. (a) Sampling plan for selection of units for testing. (1) The requirements of § 429.11 are applicable to residential water heaters...

  8. Herbert Easterly auxiliary truck heater

    SciTech Connect

    Not Available

    The objective of this work was to continue the development of the Herbert Easterly heater apparatus for vehicles, such as semi-trailer tractors in order to fully establish its technical feasibility and provide the basis for its commercialization. This heater is auxiliary to the vehicle's primary heating system. With the engine off it heats both the vehicle engine to a temperature at which it starts easily and the vehicle passenger compartment. Specifically, this heater is automatically ignitable, operates directly from the vehicle diesel fuel supply and preheats the vehicle engine fuel prior to combustion. During the course of this work ninemore » different versions of prototype heaters were designed, constructed and tested. All designs were based on the ideas and principles outlined in the Easterly patent. Each successive version incorporated design and fabrication improvements relative to the previous version. The final version, Prototype 9, utilized a multiple water jacket design to capture additional heat from the combustion gases prior to exhausting to the atmosphere. This final prototype exceeded the performance of a commercially available Webasto DBW-2010 using the same commercial burner as the one used in the Webasto unit. The time required to raise the heater fluid temperature by 120{degree}F was 23% less (20 minutes compared to 26 minutes) for Prototype 9 compared to the commercially available unit. In addition a prototype heat exchanger for preheating engine fuel was designed, fabricated and tested. It was also determined that the Prototype 9 auxiliary heater could operate at 85{degree}F for approximately 6 hours on a fully charged 12 volt marine battery rated to deliver 500 cold cranking amps.« less

  9. Solar Water-Heater Design Package

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Information on a solar domestic-hot water heater is contained in 146 page design package. System consists of solar collector, storage tanks, automatic control circuitry and auxiliary heater. Data-acquisition equipment at sites monitors day-by-day performance. Includes performance specifications, schematics, solar-collector drawings and drawings of control parts.

  10. JPS heater and sensor lightning qualification

    NASA Technical Reports Server (NTRS)

    Cook, M.

    1989-01-01

    Simulated lightning strike testing of the Redesigned Solid Rocket Motor (RSRM) field joint protection system heater assembly was performed at Thiokol Corp., Wendover Lightning Facility. Testing consisted of subjecting the lightning evaluation test article to simulated lightning strikes and evaluating the effects of heater cable transients on cables within the systems tunnel. The maximum short circuit current coupled onto a United Space Boosters, Inc. operational flight cable within the systems tunnel, induced by transients from all cables external to the systems tunnel, was 92 amperes. The maximum open-circuit voltage coupled was 316 volts. The maximum short circuit current coupled onto a United Space Boosters, Inc. operational flight cable within the systems tunnel, induced by heater power cable transients only, was 2.7 amperes; the maximum open-circuit voltage coupled was 39 volts. All heater power cable induced coupling was due to simulated lightning discharges only, no heater operating power was applied during the test. The results showed that, for a worst-case lightning discharge, the heater power cable is responsible for a 3.9 decibel increase in voltage coupling to operational flight cables within the systems tunnel. Testing also showed that current and voltage levels coupled onto cables within the systems tunnel are partially dependant on the relative locations of the cables within the systems tunnel.

  11. Hollow cathode heater development for the Space Station plasma contactor

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    1993-01-01

    A hollow cathode-based plasma contactor has been selected for use on the Space Station. During the operation of the plasma contactor, the hollow cathode heater will endure approximately 12000 thermal cycles. Since a hollow cathode heater failure would result in a plasma contactor failure, a hollow cathode heater development program was established to produce a reliable heater design. The development program includes the heater design, process documents for both heater fabrication and assembly, and heater testing. The heater design was a modification of a sheathed ion thruster cathode heater. Three heaters have been tested to date using direct current power supplies. Performance testing was conducted to determine input current and power requirements for achieving activation and ignition temperatures, single unit operational repeatability, and unit-to-unit operational repeatability. Comparisons of performance testing data at the ignition input current level for the three heaters show the unit-to-unit repeatability of input power and tube temperature near the cathode tip to be within 3.5 W and 44 degrees C, respectively. Cyclic testing was then conducted to evaluate reliability under thermal cycling. The first heater, although damaged during assembly, completed 5985 ignition cycles before failing. Two additional heaters were subsequently fabricated and have completed 3178 cycles to date in an on-going test.

  12. Understanding the Residential Wood Heater Rules

    EPA Pesticide Factsheets

    Information on the components of the current wood heater new source performance standards (NSPS) and proposed updates to the NSPS including which types of heaters are covered under the rules and the benefits.

  13. Artificial excitation of ELF waves with frequency of Schumann resonance

    NASA Astrophysics Data System (ADS)

    Streltsov, A. V.; Guido, T.; Tulegenov, B.; Labenski, J.; Chang, C.-L.

    2014-11-01

    We report results from the experiment aimed at the artificial excitation of extremely low-frequency (ELF) electromagnetic waves with frequencies corresponding to the frequency of Schumann resonance. Electromagnetic waves with these frequencies can form a standing pattern inside the spherical cavity formed by the surface of the Earth and the ionosphere. In the experiment the ELF waves were excited by heating the ionosphere with X-mode HF electromagnetic waves generated at the High Frequency Active Auroral Research Program (HAARP) facility in Alaska. The experiment demonstrates that heating of the ionosphere can excite relatively large-amplitude electromagnetic waves with frequencies in the range 7.8-8.0 Hz when the ionosphere has a strong F layer, the frequency of the HF radiation is in the range 3.20-4.57 MHz, and the electric field greater than 5 mV/m is present in the ionosphere.

  14. Implementation of a self-controlling heater

    NASA Technical Reports Server (NTRS)

    Strange, M. G.

    1973-01-01

    Temperature control of radiation sensors, targets, and other critical components is a common requirement in modern scientific instruments. Conventional control systems use a heater and a temperature sensor mounted on the body to be controlled. For proportional control, the sensor provides feedback to circuitry which drives the heater with an amount of power proportional to the temperature error. It is impractical or undesirable to mount both a heater and a sensor on certain components such as ultra-small parts or thin filaments. In principle, a variable current through the element is used for heating, and the change in voltage drop due to the element's temperature coefficient is separated and used to monitor or control its own temperature. Since there are no thermal propagation delays between heater and sensor, such control systems are exceptionally stable.

  15. SELECTED ORGANIC POLLUTANT EMISSIONS FROM UNVENTED KEROSENE HEATERS

    EPA Science Inventory

    An exploratory study was performed to assess the semivolatile and nonvolatile organic pollutant emission rates from unvented kerosene space heaters. A well-tuned radiant heater and maltuned convective heater were tested for semivolatile and nonvolatile organic pollutant emiss...

  16. Extremophiles in Household Water Heaters

    NASA Astrophysics Data System (ADS)

    Wilpiszeski, R.; House, C. H.

    2016-12-01

    A significant fraction of Earth's microbial diversity comes from species living in extreme environments, but natural extreme environments can be difficult to access. Manmade systems like household water heaters serve as an effective proxy for thermophilic environments that are otherwise difficult to sample directly. As such, we are investigating the biogeography, taxonomic distribution, and evolution of thermophiles growing in domestic water heaters. Citizen scientists collected hot tap water culture- and filter- samples from 101 homes across the United States. We recovered a single species of thermophilic heterotroph from culture samples inoculated from water heaters across the United States, Thermus scotoductus. Whole-genome sequencing was conducted to better understand the distribution and evolution of this single species. We have also sequenced hyper-variable regions of the 16S rRNA gene from whole-community filter samples to identify the broad diversity and distribution of microbial cells captured from each water heater. These results shed light on the processes that shape thermophilic populations and genomes at a spatial resolution that is difficult to access in naturally occurring extreme ecosystems.

  17. Ionosphere Waves Service - A demonstration

    NASA Astrophysics Data System (ADS)

    Crespon, François

    2013-04-01

    In the frame of the FP7 POPDAT project the Ionosphere Waves Service was developed by ionosphere experts to answer several questions: How make the old ionosphere missions more valuable? How provide scientific community with a new insight on wave processes that take place in the ionosphere? The answer is a unique data mining service accessing a collection of topical catalogues that characterize a huge number of Atmospheric Gravity Waves, Travelling Ionosphere Disturbances and Whistlers events. The Ionosphere Waves Service regroups databases of specific events extracted by experts from a ten of ionosphere missions which end users can access by applying specific searches and by using statistical analysis modules for their domain of interest. The scientific applications covered by the IWS are relative to earthquake precursors, ionosphere climatology, geomagnetic storms, troposphere-ionosphere energy transfer, and trans-ionosphere link perturbations. In this presentation we propose to detail the service design, the hardware and software architecture, and the service functions. The service interface and capabilities will be the focus of a demonstration in order to help potential end-users for their first access to the Ionosphere Waves Service portal. This work is made with the support of FP7 grant # 263240.

  18. Is your electric process heater safe?

    SciTech Connect

    Tiras, C.S.

    2000-04-01

    Over the past 35 years, electric process heaters (EPHs) have been used to heat flowing fluids in different sectors of the energy industry: oil and gas exploration and production, refineries, petrochemical plants, pipeline compression facilities and power-generation plants. EPHs offer several advantages over fired heaters and shell-and-tube exchangers, which have been around for many years, including: smaller size, lighter weight, cleaner operation, lower capital costs, lower maintenance costs, no emissions or leakage, better control and improved safety. However, while many industrial standards have addressed safety concerns of fired heaters and shell-and-tube exchangers (API, TEMA, NFPA, OSHA and NEC), no standardsmore » address EPHs. The paper presents a list of questions that plant operators need to ask about the safety of their electric process heaters. The answers are also given.« less

  19. Assessment of radioisotope heaters for remote terrestrial applications

    NASA Astrophysics Data System (ADS)

    Uherka, Kenneth L.

    This paper examines the feasibility of using radioisotope byproducts for special heating applications at remote sites in Alaska and other cold regions. The investigation included assessment of candidate radioisotope materials for heater applications, identification of the most promising cold-region applications, evaluation of key technical issues and implementation constraints, and development of conceptual heater designs for candidate applications. Strontium-90 (Sr-90) was selected as the most viable fuel for radioisotopic heaters used in terrestrial applications. Opportunities for the application of radioisotopic heaters were determined through site visits to representative Alaskan installations. Candidate heater applications included water storage tanks, sludge digesters, sewage lagoons, water piping systems, well-head pumping stations, emergency shelters, and fuel storage tank deicers. Radio-isotopic heaters for freeze-up protection of water storage tanks and for enhancement of biological waste treatment processes at remote sites were selected as the most promising applications.

  20. Dayside Magnetosphere-Ionosphere Coupling and Prompt Response of Low-Latitude/Equatorial Ionosphere

    NASA Astrophysics Data System (ADS)

    Tu, J.; Song, P.

    2017-12-01

    We use a newly developed numerical simulation model of the ionosphere/thermosphere to investigate magnetosphere-ionosphere coupling and response of the low-latitude/equatorial ionosphere. The simulation model adapts an inductive-dynamic approach (including self-consistent solutions of Faraday's law and retaining inertia terms in ion momentum equations), that is, based on magnetic field B and plasma velocity v (B-v paradigm), in contrast to the conventional modeling based on electric field E and current j (E-j paradigm). The most distinct feature of this model is that the magnetic field in the ionosphere is not constant but self-consistently varies, e.g., with currents, in time. The model solves self-consistently time-dependent continuity, momentum, and energy equations for multiple species of ions and neutrals including photochemistry, and Maxwell's equations. The governing equations solved in the model are a set of multifluid-collisional-Hall MHD equations which are one of unique features of our ionosphere/thermosphere model. With such an inductive-dynamic approach, all possible MHD wave modes, each of which may refract and reflect depending on the local conditions, are retained in the solutions so that the dynamic coupling between the magnetosphere and ionosphere and among different regions of the ionosphere can be self-consistently investigated. In this presentation, we show that the disturbances propagate in the Alfven speed from the magnetosphere along the magnetic field lines down to the ionosphere/thermosphere and that they experience a mode conversion to compressional mode MHD waves (particularly fast mode) in the ionosphere. Because the fast modes can propagate perpendicular to the field, they propagate from the dayside high-latitude to the nightside as compressional waves and to the dayside low-latitude/equatorial ionosphere as rarefaction waves. The apparent prompt response of the low-latitude/equatorial ionosphere, manifesting as the sudden increase of

  1. 14 CFR 25.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Combustion heater fire protection. 25.859....859 Combustion heater fire protection. (a) Combustion heater fire zones. The following combustion... surrounds the combustion chamber. However, no fire extinguishment is required in cabin ventilating air...

  2. 14 CFR 25.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Combustion heater fire protection. 25.859....859 Combustion heater fire protection. (a) Combustion heater fire zones. The following combustion... surrounds the combustion chamber. However, no fire extinguishment is required in cabin ventilating air...

  3. 14 CFR 25.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Combustion heater fire protection. 25.859....859 Combustion heater fire protection. (a) Combustion heater fire zones. The following combustion... surrounds the combustion chamber. However, no fire extinguishment is required in cabin ventilating air...

  4. 14 CFR 25.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Combustion heater fire protection. 25.859....859 Combustion heater fire protection. (a) Combustion heater fire zones. The following combustion... surrounds the combustion chamber. However, no fire extinguishment is required in cabin ventilating air...

  5. 14 CFR 25.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Combustion heater fire protection. 25.859....859 Combustion heater fire protection. (a) Combustion heater fire zones. The following combustion... surrounds the combustion chamber. However, no fire extinguishment is required in cabin ventilating air...

  6. Explosives tester with heater

    DOEpatents

    Del Eckels, Joel [Livermore, CA; Nunes, Peter J [Danville, CA; Simpson, Randall L [Livermore, CA; Whipple, Richard E [Livermore, CA; Carter, J Chance [Livermore, CA; Reynolds, John G [San Ramon, CA

    2010-08-10

    An inspection tester system for testing for explosives. The tester includes a body and a swab unit adapted to be removeably connected to the body. At least one reagent holder and dispenser is operatively connected to the body. The reagent holder and dispenser contains an explosives detecting reagent and is positioned to deliver the explosives detecting reagent to the swab unit. A heater is operatively connected to the body and the swab unit is adapted to be operatively connected to the heater.

  7. Ionospheric Modelling using GPS to Calibrate the MWA. II: Regional Ionospheric Modelling using GPS and GLONASS to Estimate Ionospheric Gradients

    NASA Astrophysics Data System (ADS)

    Arora, B. S.; Morgan, J.; Ord, S. M.; Tingay, S. J.; Bell, M.; Callingham, J. R.; Dwarakanath, K. S.; For, B.-Q.; Hancock, P.; Hindson, L.; Hurley-Walker, N.; Johnston-Hollitt, M.; Kapińska, A. D.; Lenc, E.; McKinley, B.; Offringa, A. R.; Procopio, P.; Staveley-Smith, L.; Wayth, R. B.; Wu, C.; Zheng, Q.

    2016-07-01

    We estimate spatial gradients in the ionosphere using the Global Positioning System and GLONASS (Russian global navigation system) observations, utilising data from multiple Global Positioning System stations in the vicinity of Murchison Radio-astronomy Observatory. In previous work, the ionosphere was characterised using a single-station to model the ionosphere as a single layer of fixed height and this was compared with ionospheric data derived from radio astronomy observations obtained from the Murchison Widefield Array. Having made improvements to our data quality (via cycle slip detection and repair) and incorporating data from the GLONASS system, we now present a multi-station approach. These two developments significantly improve our modelling of the ionosphere. We also explore the effects of a variable-height model. We conclude that modelling the small-scale features in the ionosphere that have been observed with the MWA will require a much denser network of Global Navigation Satellite System stations than is currently available at the Murchison Radio-astronomy Observatory.

  8. Methods for Creation and Detection of Ultra-Strong Artificial Ionization in the Upper Atmosphere (Invited)

    NASA Astrophysics Data System (ADS)

    Bernhardt, P. A.; Siefring, C. L.; Briczinski, S. J.; Kendall, E. A.; Watkins, B. J.; Bristow, W. A.; Michell, R.

    2013-12-01

    The High Frequency Active Auroral Research Program (HAARP) transmitter in Alaska has been used to produce localized regions of artificial ionization at altitudes between 150 and 250 km. High power radio waves tuned near harmonics of the electron gyro frequency were discovered by Todd Pederson of the Air Force Research Laboratory to produce ionosonde traces that looked like artificial ionization layers below the natural F-region. The initial regions of artificial ionization (AI) were not stable but had moved down in altitude over a period of 15 minutes. Recently, artificial ionization has been produced by the 2nd, 3rd, 4th and 6th harmonics transmissions by the HAARP. In march 2013, the artificial ionization clouds were sustained for more the 5 hours using HAARP tuned to the 4 fce at the full power of 3.6 Mega-Watts with a twisted-beam antenna pattern. Frequency selection with narrow-band sweeps and antenna pattern shaping has been employed for optimal generation of AI. Recent research at HAARP has produced the longest lived and denser artificial ionization clouds using HF transmissions at the harmonics of the electron cyclotron frequency and ring-shaped radio beams tailored to prevent the descent of the clouds. Detection of artificial ionization employs (1) ionosonde echoes, (2) coherent backscatter from the Kodiak SuperDARN radar, (3) enhanced ion and plasma line echoes from the HAARP MUIR radar at 400 MHz, (4) high resolution optical image from ground sites, and (5) unique stimulated electromagnetic emissions, and (6) strong UHF and L-Band scintillation induced into trans-ionospheric signals from satellite radio beacons. Future HAARP experiments will determine the uses of long-sustained AI for enhanced HF communications.

  9. Dampers for Natural Draft Heaters: Technical Report

    SciTech Connect

    Lutz, James D.; Biermayer, Peter; King, Derek

    2008-10-27

    Energy required for water heating accounts for approximately 40percent of national residential natural gas consumption in California. With water heating contributing such a substantial portion of natural gas consumption, it is important to pay attention to water heater efficiencies. This paper reports on an investigation of a patented, buoyancy-operated flue damper. It is an add-on design to a standard atmospherically vented natural-draft gas-fired storage water heater. The flue damper was expected to reduce off-cycle standby losses, which would lead to improvements in the efficiency of the water heater. The test results showed that the Energy Factor of the baseline watermore » heater was 0.576. The recovery efficiency was 0.768. The standby heat loss coefficient was 10.619 (BTU/hr-oF). After the damper was installed, the test results show an Energy Factor for the baseline water heater of 0.605. The recovery efficiency was 0.786. The standby heat loss coefficient was 9.135 (BTU/hr-oF). The recovery efficiency increased 2.3percent and the standby heat loss coefficient decreased 14percent. When the burner was on, the baseline water heater caused 28.0 CFM of air to flow from the room. During standby, the flow was 12.4 CFM. The addition of the damper reduced the flow when the burner was on to 23.5 CFM. During standby, flow with the damper was reduced to 11.1 CFM. The flue damper reduced off-cycle standby losses, and improved the efficiency of the water heater. The flue damper also improved the recovery efficiency of the water heater by restricting on-cycle air flows through the flue.With or without the flue damper, off-cycle air flow upthe stack is nearly half the air flow rate as when the burner is firing.« less

  10. An ionospheric index suitable for estimating the degree of ionospheric perturbations

    NASA Astrophysics Data System (ADS)

    Wilken, Volker; Kriegel, Martin; Jakowski, Norbert; Berdermann, Jens

    2018-03-01

    Space weather can strongly affect trans-ionospheric radio signals depending on the used frequency. In order to assess the strength of a space weather event from its origin at the sun towards its impact on the ionosphere a number of physical quantities need to be derived from scientific measurements. These are for example the Wolf number sunspot index, the solar flux density F10.7, measurements of the interplanetary magnetic field, the proton density, the solar wind speed, the dynamical pressure, the geomagnetic indices Auroral Electrojet, Kp, Ap and Dst as well as the Total Electron Content (TEC), the Rate of TEC, the scintillation indices S4 and σ(ϕ) and the Along-Arc TEC Rate index index. All these quantities provide in combination with an additional classification an orientation in a physical complex environment. Hence, they are used for brief communication of a simplified but appropriate space situation awareness. However, space weather driven ionospheric phenomena can affect many customers in the communication and navigation domain, which are still served inadequately by the existing indices. We present a new robust index, that is able to properly characterize temporal and spatial ionospheric variations of small to medium scales. The proposed ionospheric disturbance index can overcome several drawbacks of other ionospheric measures and might be suitable as potential driver for an ionospheric space weather scale.

  11. 14 CFR 29.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Combustion heater fire protection. 29.859... § 29.859 Combustion heater fire protection. (a) Combustion heater fire zones. The following combustion... any ventilating air passage that— (i) Surrounds the combustion chamber; and (ii) Would not contain...

  12. 14 CFR 29.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Combustion heater fire protection. 29.859... § 29.859 Combustion heater fire protection. (a) Combustion heater fire zones. The following combustion... any ventilating air passage that— (i) Surrounds the combustion chamber; and (ii) Would not contain...

  13. 14 CFR 29.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Combustion heater fire protection. 29.859... § 29.859 Combustion heater fire protection. (a) Combustion heater fire zones. The following combustion... any ventilating air passage that— (i) Surrounds the combustion chamber; and (ii) Would not contain...

  14. 14 CFR 29.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Combustion heater fire protection. 29.859... § 29.859 Combustion heater fire protection. (a) Combustion heater fire zones. The following combustion... any ventilating air passage that— (i) Surrounds the combustion chamber; and (ii) Would not contain...

  15. 14 CFR 29.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Combustion heater fire protection. 29.859... § 29.859 Combustion heater fire protection. (a) Combustion heater fire zones. The following combustion... any ventilating air passage that— (i) Surrounds the combustion chamber; and (ii) Would not contain...

  16. Mesoscale Ionospheric Prediction

    DTIC Science & Technology

    2006-09-30

    Mesoscale Ionospheric Prediction Gary S. Bust 10000 Burnet Austin Texas, 78758 phone: (512) 835-3623 fax: (512) 835-3808 email: gbust...time-evolving non-linear numerical model of the mesoscale ionosphere , second to couple the mesoscale model to a mesoscale data assimilative analysis...third to use the new data-assimilative mesoscale model to investigate ionospheric structure and plasma instabilities, and fourth to apply the data

  17. Particulate matter sensor with a heater

    DOEpatents

    Hall, Matthew [Austin, TX

    2011-08-16

    An apparatus to detect particulate matter. The apparatus includes a sensor electrode, a shroud, and a heater. The electrode measures a chemical composition within an exhaust stream. The shroud surrounds at least a portion of the sensor electrode, exclusive of a distal end of the sensor electrode exposed to the exhaust stream. The shroud defines an air gap between the sensor electrode and the shroud and an opening toward the distal end of the sensor electrode. The heater is mounted relative to the sensor electrode. The heater burns off particulate matter in the air gap between the sensor electrode and the shroud.

  18. Three-Dimensional Printable High-Temperature and High-Rate Heaters.

    PubMed

    Yao, Yonggang; Fu, Kun Kelvin; Yan, Chaoyi; Dai, Jiaqi; Chen, Yanan; Wang, Yibo; Zhang, Bilun; Hitz, Emily; Hu, Liangbing

    2016-05-24

    High temperature heaters are ubiquitously used in materials synthesis and device processing. In this work, we developed three-dimensional (3D) printed reduced graphene oxide (RGO)-based heaters to function as high-performance thermal supply with high temperature and ultrafast heating rate. Compared with other heating sources, such as furnace, laser, and infrared radiation, the 3D printed heaters demonstrated in this work have the following distinct advantages: (1) the RGO based heater can operate at high temperature up to 3000 K because of using the high temperature-sustainable carbon material; (2) the heater temperature can be ramped up and down with extremely fast rates, up to ∼20 000 K/second; (3) heaters with different shapes can be directly printed with small sizes and onto different substrates to enable heating anywhere. The 3D printable RGO heaters can be applied to a wide range of nanomanufacturing when precise temperature control in time, placement, and the ramping rate are important.

  19. Status of Hollow Cathode Heater Development for the Space Station Plasma Contactor

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    1994-01-01

    A hollow cathode-based plasma contactor has been selected for use on the Space Station. During the operation of the plasma contactor, the hollow cathode heater will endure approximately 12000 thermal cycles. Since a hollow cathode heater failure would result in a plasma contactor failure, a hollow cathode heater development program was established to produce a reliable heater. The development program includes the heater design, process documents for both heater fabrication and assembly, and heater testing. The heater design was a modification of a sheathed ion thruster cathode heater. Heater tests included testing of the heater unit alone and plasma contactor and ion thruster testing. To date, eight heaters have been or are being processed through heater unit testing, two through plasma contactor testing and three through ion thruster testing, all using direct current power supplies. Comparisons of data from heater unit performance tests before cyclic testing, plasma contactor tests, and ion thruster tests at the ignition input current level show the average deviation of input power and tube temperature near the cathode tip to be +/-0.9 W and +/- 21 C, respectively. Heater unit testing included cyclic testing to evaluate reliability under thermal cycling. The first heater, although damaged during assembly, completed 5985 ignition cycles before failing. Four additional heaters successfully completed 6300, 6300, 700, and 700 cycles. Heater unit testing is currently ongoing for three heaters which have to date accumulated greater than 7250, greater than 5500, and greater than 5500 cycles, respectively.

  20. Thin, Light, Flexible Heaters Save Time and Energy

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The Icing Branch at NASA's Glenn Research Center uses the Center's Icing Research Tunnel (IRT) and Icing Research Aircraft to research methods for evaluating and simulating the growth of ice on aircraft, the effects that ice may have on aircraft in flight, and the development and effectiveness of various ice protection and detection systems. EGC Enterprises Inc. (EGC), of Chardon, Ohio, used the IRT to develop thermoelectric thin-film heater technology to address in-flight icing on aircraft wings. Working with researchers at Glenn and the original equipment manufacturers of aircraft parts, the company tested various thin, flexible, durable, lightweight, and efficient heaters. Development yielded a thin-film heater technology that can be used in many applications in addition to being an effective deicer for aircraft. This new thermoelectric heater was dubbed the QoFoil Rapid Response Thin-Film Heater, or QoFoil, for short. The product meets all criteria for in-flight use and promises great advances in thin-film, rapid response heater technology for a broad range of industrial applications. Primary advantages include time savings, increased efficiency, and improved temperature uniformity. In addition to wing deicing, EGC has begun looking at the material's usefulness for applications including cooking griddles, small cabinet heaters, and several laboratory uses.

  1. Characterization of kerosene-heater emissions inside two mobile homes

    SciTech Connect

    Burton, R.M.; Seila, R.A.; Wilson, W.E.

    1990-03-01

    In an effort to determine the impact of kerosene heater emissions on indoor air quality, measurements were made in and around two mobile homes at a rural mobile home park near Apex, NC. The sampling was performed at two single-wide mobile homes equipped with kerosene heaters. The concentrations of acidic aerosols and gases, fine and coarse particulate aerosol mass, carbon monoxide, nitrogen oxides, volatile organic compounds and semivolatiles, were determined for periods of heater operation and for periods in which heaters were not operated. Simultaneous outdoor measurements of acid aerosols and gases, fine and coarse aerosol mass, and volatile organicmore » compounds were conducted to determine the contribution of outdoor pollutants to the indoor concentrations. Comparisons between the concentrations obtained from the analysis of outdoor, heater-on, and heater-off samples allowed the authors to examine the impacts of the kerosene emissions on indoor concentrations. Concentrations of sulfates, aerosol strong acidity, fine and coarse aerosol mass, carbon monoxide, and sulfur dioxide were found to be higher when the heater was operated; however, these heater-on concentrations were comparable to those observed in moderately polluted atmospheres. Indoor concentrations of nitrous acid and nitrogen oxides during heater operation were found to be considerably higher than those observed in polluted atmospheres. Finally, use of kerosene heaters was found to be responsible for increased concentrations of non-methane volatile and semi-volatile organic compounds indoors. Acid aerosol indoor concentrations were quite variable during the study and were found to exist in the presence of excess ammonia.« less

  2. Strategy Guideline. Proper Water Heater Selection

    SciTech Connect

    Hoeschele, M.; Springer, D.; German, A.

    2015-04-09

    This Strategy Guideline on proper water heater selection was developed by the Building America team Alliance for Residential Building Innovation to provide step-by-step procedures for evaluating preferred cost-effective options for energy efficient water heater alternatives based on local utility rates, climate, and anticipated loads.

  3. Strategy Guideline: Proper Water Heater Selection

    SciTech Connect

    Hoeschele, M.; Springer, D.; German, A.

    2015-04-01

    This Strategy Guideline on proper water heater selection was developed by the Building America team Alliance for Residential Building Innovation to provide step-by-step procedures for evaluating preferred cost-effective options for energy efficient water heater alternatives based on local utility rates, climate, and anticipated loads.

  4. Ionospheric data assimilation applied to HF geolocation in the presence of traveling ionospheric disturbances

    NASA Astrophysics Data System (ADS)

    Mitchell, C. N.; Rankov, N. R.; Bust, G. S.; Miller, E.; Gaussiran, T.; Calfas, R.; Doyle, J. D.; Teig, L. J.; Werth, J. L.; Dekine, I.

    2017-07-01

    Ionospheric data assimilation is a technique to evaluate the 3-D time varying distribution of electron density using a combination of a physics-based model and observations. A new ionospheric data assimilation method is introduced that has the capability to resolve traveling ionospheric disturbances (TIDs). TIDs are important because they cause strong delay and refraction to radio signals that are detrimental to the accuracy of high-frequency (HF) geolocation systems. The capability to accurately specify the ionosphere through data assimilation can correct systems for the error caused by the unknown ionospheric refraction. The new data assimilation method introduced here uses ionospheric models in combination with observations of HF signals from known transmitters. The assimilation methodology was tested by the ability to predict the incoming angles of HF signals from transmitters at a set of nonassimilated test locations. The technique is demonstrated and validated using observations collected during 2 days of a dedicated campaign of ionospheric measurements at White Sands Missile Range in New Mexico in January 2014. This is the first time that full HF ionospheric data assimilation using an ensemble run of a physics-based model of ionospheric TIDs has been demonstrated. The results show a significant improvement over HF angle-of-arrival prediction using an empirical model and also over the classic method of single-site location using an ionosonde close to the midpoint of the path. The assimilative approach is extendable to include other types of ionospheric measurements.

  5. Artificial Ionization and UHF Radar Response Associated with HF Frequencies near Electron Gyro-Harmonics (Invited)

    NASA Astrophysics Data System (ADS)

    Watkins, B. J.; Fallen, C. T.; Secan, J. A.

    2013-12-01

    We present new results from O-mode ionospheric heating experiments at the HAARP facility in Alaska to demonstrate that the magnitude of artificial ionization production is critically dependent on the choice of HF frequency near gyro-harmonics. For O-mode heating in the lower F-region ionosphere, typically about 200 km altitude, artificial ionization enhancements are observed in the lower ionosphere (about 150 - 220 km) and also in the topside ionosphere above about 500 km. Lower ionosphere density enhancements are inferred from HF-enhanced ion and plasma-line signals observed with UHF radar. Upper ionospheric density enhancements have been observed with TEC (total electron content) experiments by monitoring satellite radio beacons where signal paths traverse the HF-modified ionosphere. Both density enhancements and corresponding upward plasma fluxes have also been observed in the upper ionosphere via in-situ satellite observations. The data presented focus mainly on observations near the third and fourth gyro-harmonics. The specific values of the height-dependent gyro-harmonics have been computed from a magnetic model of the field line through the HF heated volume. Experiments with several closely spaced HF frequencies around the gyro-harmonic frequency region show that the magnitude of the lower-ionosphere artificial ionization production maximizes for HF frequencies about 1.0 - 1.5 MHz above the gyro-harmonic frequency. The response is progressively larger as the HF frequency is increased in the frequency region near the gyro-harmonics. For HF frequencies that are initially greater than the gyro-harmonic value the UHF radar scattering cross-section is relatively small, and non-existent or very weak signals are observed; as the signal returns drop in altitude due to density enhancements the HF interaction region passes through lower altitudes where the HF frequency is less than the gyro-harmonic value, for these conditions the radar scattering cross-section is

  6. Coupled storm-time magnetosphere-ionosphere-thermosphere simulations including microscopic ionospheric turbulence

    NASA Astrophysics Data System (ADS)

    Merkin, V. G.; Wiltberger, M. J.; Zhang, B.; Liu, J.; Wang, W.; Dimant, Y. S.; Oppenheim, M. M.; Lyon, J.

    2017-12-01

    During geomagnetic storms the magnetosphere-ionosphere-thermosphere system becomes activated in ways that are unique to disturbed conditions. This leads to emergence of physical feedback loops that provide tighter coupling between the system elements, often operating across disparate spatial and temporal scales. One such process that has recently received renewed interest is the generation of microscopic ionospheric turbulence in the electrojet regions (electrojet turbulence, ET) that results from strong convective electric fields imposed by the solar wind-magnetosphere interaction. ET leads to anomalous electron heating and generation of non-linear Pedersen current - both of which result in significant increases in effective ionospheric conductances. This, in turn, provides strong non-linear feedback on the magnetosphere. Recently, our group has published two studies aiming at a comprehensive analysis of the global effects of this microscopic process on the magnetosphere-ionosphere-thermosphere system. In one study, ET physics was incorporated in the TIEGCM model of the ionosphere-thermosphere. In the other study, ad hoc corrections to the ionospheric conductances based on ET theory were incorporated in the conductance module of the Lyon-Fedder-Mobarry (LFM) global magnetosphere model. In this presentation, we make the final step toward the full coupling of the microscopic ET physics within our global coupled model including LFM, the Rice Convection Model (RCM) and TIEGCM. To this end, ET effects are incorporated in the TIEGCM model and propagate throughout the system via thus modified TIEGCM conductances. The March 17, 2013 geomagnetic storm is used as a testbed for these fully coupled simulations, and the results of the model are compared with various ionospheric and magnetospheric observatories, including DMSP, AMPERE, and Van Allen Probes. Via these comparisons, we investigate, in particular, the ET effects on the global magnetosphere indicators such as the

  7. Inferring Nighttime Ionospheric Parameters with the Far Ultraviolet Imager Onboard the Ionospheric Connection Explorer

    NASA Astrophysics Data System (ADS)

    Kamalabadi, Farzad; Qin, Jianqi; Harding, Brian J.; Iliou, Dimitrios; Makela, Jonathan J.; Meier, R. R.; England, Scott L.; Frey, Harald U.; Mende, Stephen B.; Immel, Thomas J.

    2018-06-01

    The Ionospheric Connection Explorer (ICON) Far Ultraviolet (FUV) imager, ICON FUV, will measure altitude profiles of OI 135.6 nm emissions to infer nighttime ionospheric parameters. Accurate estimation of the ionospheric state requires the development of a comprehensive radiative transfer model from first principles to quantify the effects of physical processes on the production and transport of the 135.6 nm photons in the ionosphere including the mutual neutralization contribution as well as the effect of resonant scattering by atomic oxygen and pure absorption by oxygen molecules. This forward model is then used in conjunction with a constrained optimization algorithm to invert the anticipated ICON FUV line-of-sight integrated measurements. In this paper, we describe the connection between ICON FUV measurements and the nighttime ionosphere, along with the approach to inverting the measured emission profiles to derive the associated O+ profiles from 150-450 km in the nighttime ionosphere that directly reflect the electron density in the F-region of the ionosphere.

  8. Imaging the topside ionosphere and plasmasphere with ionospheric tomography using COSMIC GPS TEC

    NASA Astrophysics Data System (ADS)

    Pinto Jayawardena, Talini S.; Chartier, Alex T.; Spencer, Paul; Mitchell, Cathryn N.

    2016-01-01

    GPS-based ionospheric tomography is a well-known technique for imaging the total electron content (TEC) between GPS satellites and receivers. However, as an integral measurement of electron concentration, TEC typically encompasses both the ionosphere and plasmasphere, masking signatures from the topside ionosphere-plasmasphere due to the dominant ionosphere. Imaging these regions requires a technique that isolates TEC in the topside ionosphere-plasmasphere. Multi-Instrument Data Analysis System (MIDAS) employs tomography to image the electron distribution in the ionosphere. Its implementation for regions beyond is yet to be seen due to the different dynamics present above the ionosphere. This paper discusses the extension of MIDAS to image these altitudes using GPS phase-based TEC measurements and follows the work by Spencer and Mitchell (2011). Plasma is constrained to dipole field lines described by Euler potentials, resulting in a distribution symmetrical about the geomagnetic equator. A simulation of an empirical plasmaspheric model by Gallagher et al. (1988) is used to verify the technique by comparing reconstructions of the simulation with the empirical model. The Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) is used as GPS receiver locations. The verification is followed by a validation of the modified MIDAS algorithm, where the regions' TEC is reconstructed from COSMIC GPS phase measurements and qualitatively compared with previous studies using Jason-1 and COSMIC data. Results show that MIDAS can successfully image features/trends of the topside ionosphere-plasmasphere observed in other studies, with deviations in absolute TEC attributed to differences in data set properties and the resolution of the images.

  9. "Starfish" Heater Head For Stirling Engine

    NASA Technical Reports Server (NTRS)

    Vitale, N.

    1993-01-01

    Proposed "starfish" heater head for Stirling engine enables safe use of liquid sodium as heat-transfer fluid. Sodium makes direct contact with heater head but does not come in contact with any structural welds. Design concept minimizes number of, and simplifies nonstructural thermal welds and facilitates inspection of such welds.

  10. Improving the Nightside Mid-latitude Ionospheric Density in the Global Ionosphere-Thermosphere Model

    NASA Astrophysics Data System (ADS)

    Wu, C.; Ridley, A. J.

    2017-12-01

    The ionosphere and plasmasphere interact with each other through upwelling of plasma into the plasmasphere during the day and downwelling of the plasma into the ionosphere during the night. The storage of ion density in the plasmasphere and subsequent downwelling maintains the ion density in the nighttime mid-latitude ionosphere. Global models of the upper atmosphere that do not contain a plasmasphere, but are limited in altitude, such as the Thermosphere Ionosphere Electrodynamics Global Circulation Model (TIEGCM) and the Global Ionosphere-Thermosphere Model(GITM) need a boundary condition that allows for some sort of downwelling to occur. In the TIEGCM, this has been set to a constant downward flux, while GITM has had no downwelling specification at all, which has caused the nighttime mid-latitude densities to be much too low. We present a new boundary condition in GITM, where there is downward ion flux from the upper boundary, allowing the ionosphere to be maintained during the night. This new boundary condition is dependent on the the Disturbance Storm Time (Dst), since, as the activity level increases (i.e., Dst decreases), the plasmasphere is eroded and will not serve to supply the ionosphere at night. Various quiet time and active time comparisons to ionosonde electron density and total electron content data will be presented that show that the ionospheric density in GITM is improved due to this new boundary condition.

  11. Tsunami Ionospheric warning and Ionospheric seismology

    NASA Astrophysics Data System (ADS)

    Lognonne, Philippe; Rolland, Lucie; Rakoto, Virgile; Coisson, Pierdavide; Occhipinti, Giovanni; Larmat, Carene; Walwer, Damien; Astafyeva, Elvira; Hebert, Helene; Okal, Emile; Makela, Jonathan

    2014-05-01

    The last decade demonstrated that seismic waves and tsunamis are coupled to the ionosphere. Observations of Total Electron Content (TEC) and airglow perturbations of unique quality and amplitude were made during the Tohoku, 2011 giant Japan quake, and observations of much lower tsunamis down to a few cm in sea uplift are now routinely done, including for the Kuril 2006, Samoa 2009, Chili 2010, Haida Gwai 2012 tsunamis. This new branch of seismology is now mature enough to tackle the new challenge associated to the inversion of these data, with either the goal to provide from these data maps or profile of the earth surface vertical displacement (and therefore crucial information for tsunami warning system) or inversion, with ground and ionospheric data set, of the various parameters (atmospheric sound speed, viscosity, collision frequencies) controlling the coupling between the surface, lower atmosphere and the ionosphere. We first present the state of the art in the modeling of the tsunami-atmospheric coupling, including in terms of slight perturbation in the tsunami phase and group velocity and dependance of the coupling strength with local time, ocean depth and season. We then show the confrontation of modelled signals with observations. For tsunami, this is made with the different type of measurement having proven ionospheric tsunami detection over the last 5 years (ground and space GPS, Airglow), while we focus on GPS and GOCE observation for seismic waves. These observation systems allowed to track the propagation of the signal from the ground (with GPS and seismometers) to the neutral atmosphere (with infrasound sensors and GOCE drag measurement) to the ionosphere (with GPS TEC and airglow among other ionospheric sounding techniques). Modelling with different techniques (normal modes, spectral element methods, finite differences) are used and shown. While the fits of the waveform are generally very good, we analyse the differences and draw direction of future

  12. Transparent and Flexible Large-scale Graphene-based Heater

    NASA Astrophysics Data System (ADS)

    Kang, Junmo; Lee, Changgu; Kim, Young-Jin; Choi, Jae-Boong; Hong, Byung Hee

    2011-03-01

    We report the application of transparent and flexible heater with high optical transmittance and low sheet resistance using graphene films, showing outstanding thermal and electrical properties. The large-scale graphene films were grown on Cu foil by chemical vapor deposition methods, and transferred to transparent substrates by multiple stacking. The wet chemical doping process enhanced the electrical properties, showing a sheet resistance as low as 35 ohm/sq with 88.5 % transmittance. The temperature response usually depends on the dimension and the sheet resistance of the graphene-based heater. We show that a 4x4 cm2 heater can reach 80& circ; C within 40 seconds and large-scale (9x9 cm2) heater shows uniformly heating performance, which was measured using thermocouple and infra-red camera. These heaters would be very useful for defogging systems and smart windows.

  13. The International Reference Ionosphere - Climatological Standard for the Ionosphere

    NASA Technical Reports Server (NTRS)

    Bilitza, Dieter

    2006-01-01

    The International Reference Ionosphere (IRI) a joint project of URSI and COSPAR is the defacto standard for a climatological specification of ionospheric parameters. IRI is based on a wide range of ground and space data and has been steadily improved since its inception in 1969 with the ever-increasing volume of ionospheric data and with better mathematical descriptions of the observed global and temporal variation patterns. The IRI model has been validated with a large amount of data including data from the most recent ionospheric satellites (KOMPSAT, ROCSAT and TIMED) and data from global network of ionosondes. Several IRI teams are working on specific aspects of the IRI modeling effort including an improved representation of the topside ionosphere with a seamless transition to the plasmasphere, a new effort to represent the global variation of F2 peak parameters using the Neural Network (NN) technique, and the inclusion of several additional parameters in IRI, e.g., spread-F probability and ionospheric variability. Annual IRI workshops are the forum for discussions of these efforts and for all science activities related to IRI as well as applications of the IRI model in engineering and education. In this paper I will present a status report about the IRI effort with special emphasis on the presentations and results from the most recent IRI Workshops (Paris, 2004; Tortosa, 2005) and on the most important ongoing IRI activities. I will discuss the latest version of the IRI model, IRI-2006, highlighting the most recent changes and additions. Finally, the talk will review some of the applications of the IRI model with special emphasis on the use for radiowave propagation studies and communication purposes.

  14. Architecture for Absorption Based Heaters

    SciTech Connect

    Moghaddam, Saeed; Chugh, Devesh

    An absorption based heater is constructed on a fluid barrier heat exchanging plate such that it requires little space in a structure. The absorption based heater has a desorber, heat exchanger, and absorber sequentially placed on the fluid barrier heat exchanging plate. The vapor exchange faces of the desorber and the absorber are covered by a vapor permeable membrane that is permeable to a refrigerant vapor but impermeable to an absorbent. A process fluid flows on the side of the fluid barrier heat exchanging plate opposite the vapor exchange face through the absorber and subsequently through the heat exchanger. Themore » absorption based heater can include a second plate with a condenser situated parallel to the fluid barrier heat exchanging plate and opposing the desorber for condensation of the refrigerant for additional heating of the process fluid.« less

  15. Electrochemical cell has internal resistive heater element

    NASA Technical Reports Server (NTRS)

    Colston, E. F.; Ford, F. E.; Hennigan, T. J.

    1968-01-01

    External source supplies power to electrochemical cells containing internal resistive heater element. Each cell plate is individually contained in its own Pellon bag, enabling the heater element to be arranged in a continuous, parallel circuit.

  16. The ionospheric eclipse factor method (IEFM) and its application to determining the ionospheric delay for GPS

    NASA Astrophysics Data System (ADS)

    Yuan, Y.; Tscherning, C. C.; Knudsen, P.; Xu, G.; Ou, J.

    2008-01-01

    A new method for modeling the ionospheric delay using global positioning system (GPS) data is proposed, called the ionospheric eclipse factor method (IEFM). It is based on establishing a concept referred to as the ionospheric eclipse factor (IEF) λ of the ionospheric pierce point (IPP) and the IEF’s influence factor (IFF) bar{λ}. The IEF can be used to make a relatively precise distinction between ionospheric daytime and nighttime, whereas the IFF is advantageous for describing the IEF’s variations with day, month, season and year, associated with seasonal variations of total electron content (TEC) of the ionosphere. By combining λ and bar{λ} with the local time t of IPP, the IEFM has the ability to precisely distinguish between ionospheric daytime and nighttime, as well as efficiently combine them during different seasons or months over a year at the IPP. The IEFM-based ionospheric delay estimates are validated by combining an absolute positioning mode with several ionospheric delay correction models or algorithms, using GPS data at an international Global Navigation Satellite System (GNSS) service (IGS) station (WTZR). Our results indicate that the IEFM may further improve ionospheric delay modeling using GPS data.

  17. Simple Retrofit High-Efficiency Natural Gas Water Heater Field Test

    SciTech Connect

    Schoenbauer, Ben

    High-performance water heaters are typically more time consuming and costly to install in retrofit applications, making high performance water heaters difficult to justify economically. However, recent advancements in high performance water heaters have targeted the retrofit market, simplifying installations and reducing costs. Four high efficiency natural gas water heaters designed specifically for retrofit applications were installed in single-family homes along with detailed monitoring systems to characterize their savings potential, their installed efficiencies, and their ability to meet household demands. The water heaters tested for this project were designed to improve the cost-effectiveness and increase market penetration of high efficiency watermore » heaters in the residential retrofit market. The retrofit high efficiency water heaters achieved their goal of reducing costs, maintaining savings potential and installed efficiency of other high efficiency water heaters, and meeting the necessary capacity in order to improve cost-effectiveness. However, the improvements were not sufficient to achieve simple paybacks of less than ten years for the incremental cost compared to a minimum efficiency heater. Significant changes would be necessary to reduce the simple payback to six years or less. Annual energy savings in the range of $200 would also reduce paybacks to less than six years. These energy savings would require either significantly higher fuel costs (greater than $1.50 per therm) or very high usage (around 120 gallons per day). For current incremental costs, the water heater efficiency would need to be similar to that of a heat pump water heater to deliver a six year payback.« less

  18. Simple Retrofit High-Efficiency Natural Gas Water Heater Field Test

    SciTech Connect

    Schoenbauer, Ben

    High performance water heaters are typically more time consuming and costly to install in retrofit applications, making high performance water heaters difficult to justify economically. However, recent advancements in high performance water heaters have targeted the retrofit market, simplifying installations and reducing costs. Four high efficiency natural gas water heaters designed specifically for retrofit applications were installed in single-family homes along with detailed monitoring systems to characterize their savings potential, their installed efficiencies, and their ability to meet household demands. The water heaters tested for this project were designed to improve the cost-effectiveness and increase market penetration of high efficiencymore » water heaters in the residential retrofit market. The retrofit high efficiency water heaters achieved their goal of reducing costs, maintaining savings potential and installed efficiency of other high efficiency water heaters, and meeting the necessary capacity in order to improve cost-effectiveness. However, the improvements were not sufficient to achieve simple paybacks of less than ten years for the incremental cost compared to a minimum efficiency heater. Significant changes would be necessary to reduce the simple payback to six years or less. Annual energy savings in the range of $200 would also reduce paybacks to less than six years. These energy savings would require either significantly higher fuel costs (greater than $1.50 per therm) or very high usage (around 120 gallons per day). For current incremental costs, the water heater efficiency would need to be similar to that of a heat pump water heater to deliver a six year payback.« less

  19. Atmosphere-Ionosphere Electrodynamic Coupling

    NASA Astrophysics Data System (ADS)

    Sorokin, V. M.; Chmyrev, V. M.

    Numerous phenomena that occur in the mesosphere, ionosphere, and the magnetosphere of the Earth are caused by the sources located in the lower atmosphere and on the ground. We describe the effects produced by lightning activity and by ground-based transmitters operated in high frequency (HF) and very low frequency (VLF) ranges. Among these phenomena are the ionosphere heating and the formation of plasma density inhomogeneities, the excitation of gamma ray bursts and atmospheric emissions in different spectral bands, the generation of ULF/ELF/VLF electromagnetic waves and plasma turbulence in the ionosphere, the stimulation of radiation belt electron precipitations and the acceleration of ions in the upper ionosphere. The most interesting results of experimental and theoretical studies of these phenomena are discussed below. The ionosphere is subject to the action of the conductive electric current flowing in the atmosphere-ionosphere circuit. We present a physical model of DC electric field and current formation in this circuit. The key element of this model is an external current, which is formed with the occurrence of convective upward transport of charged aerosols and their gravitational sedimentation in the atmosphere. An increase in the level of atmospheric radioactivity results in the appearance of additional ionization and change of electrical conductivity. Variation of conductivity and external current in the lower atmosphere leads to perturbation of the electric current flowing in the global atmosphere-ionosphere circuit and to the associated DC electric field perturbation both on the Earth's surface and in the ionosphere. Description of these processes and some results of the electric field and current calculations are presented below. The seismic-induced electric field perturbations produce noticeable effects in the ionosphere by generating the electromagnetic field and plasma disturbances. We describe the generation mechanisms of such experimentally

  20. 40 CFR 279.23 - On-site burning in space heaters.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false On-site burning in space heaters. 279... burning in space heaters. Generators may burn used oil in used oil-fired space heaters provided that: (a) The heater burns only used oil that the owner or operator generates or used oil received from...

  1. 40 CFR 279.23 - On-site burning in space heaters.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false On-site burning in space heaters. 279... burning in space heaters. Generators may burn used oil in used oil-fired space heaters provided that: (a) The heater burns only used oil that the owner or operator generates or used oil received from...

  2. 40 CFR 279.23 - On-site burning in space heaters.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false On-site burning in space heaters. 279... burning in space heaters. Generators may burn used oil in used oil-fired space heaters provided that: (a) The heater burns only used oil that the owner or operator generates or used oil received from...

  3. 40 CFR 279.23 - On-site burning in space heaters.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false On-site burning in space heaters. 279... burning in space heaters. Generators may burn used oil in used oil-fired space heaters provided that: (a) The heater burns only used oil that the owner or operator generates or used oil received from...

  4. 40 CFR 279.23 - On-site burning in space heaters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false On-site burning in space heaters. 279... burning in space heaters. Generators may burn used oil in used oil-fired space heaters provided that: (a) The heater burns only used oil that the owner or operator generates or used oil received from...

  5. An Initial Investigation of Ionospheric Gradients for Detection of Ionospheric Disturbances over Turkey

    NASA Astrophysics Data System (ADS)

    Koroglu, Meltem; Arikan, Feza; Koroglu, Ozan

    2015-04-01

    Ionosphere is an ionized layer of earth's atmosphere which affect the propagation of radio signals due to highly varying electron density structure. Total Electron Content (TEC) and Slant Total Electron Content (STEC) are convenient measures of total electron density along a ray path. STEC model is given by the line integral of the electron density between the receiver and GPS satellite. TEC and STEC can be estimated by observing the difference between the two GPS signal time delays that have different frequencies L1 (1575 MHz) and L2 (1227 MHz). During extreme ionospheric storms ionospheric gradients becomes larger than those of quiet days since time delays of the radio signals becomes anomalous. Ionosphere gradients can be modeled as a linear semi-infinite wave front with constant propagation speed. One way of computing the ionospheric gradients is to compare the STEC values estimated between two neighbouring GPS stations. In this so-called station-pair method, ionospheric gradients are defined by dividing the difference of the time delays of two receivers, that see the same satellite at the same time period. In this study, ionospheric gradients over Turkey are computed using the Turkish National Permanent GPS Network (TNPGN-Active) between May 2009 and September 2012. The GPS receivers are paired in east-west and north-south directions with distances less than 150 km. GPS-STEC for each station are calculated using IONOLAB-TEC and IONOLAB-BIAS softwares (www.ionolab.org). Ionospheric delays are calculated for each paired station for both L1 and L2 frequencies and for each satellite in view with 30 s time resolution. During the investigation period, different types of geomagnetic storms, Travelling Ionospheric Disturbances (TID), Sudden Ionospheric Disturbances (SID) and various earthquakes with magnitudes between 3 to 7.4 have occured. Significant variations in the structure of station-pair gradients have been observed depending on location of station-pairs, the

  6. Dielectric Heaters for Testing Spacecraft Nuclear Reactors

    NASA Technical Reports Server (NTRS)

    Sims, William Herbert; Bitteker, Leo; Godfroy, Thomas

    2006-01-01

    A document proposes the development of radio-frequency-(RF)-driven dielectric heaters for non-nuclear thermal testing of the cores of nuclear-fission reactors for spacecraft. Like the electrical-resistance heaters used heretofore for such testing, the dielectric heaters would be inserted in the reactors in place of nuclear fuel rods. A typical heater according to the proposal would consist of a rod of lossy dielectric material sized and shaped like a fuel rod and containing an electrically conductive rod along its center line. Exploiting the dielectric loss mechanism that is usually considered a nuisance in other applications, an RF signal, typically at a frequency .50 MHz and an amplitude between 2 and 5 kV, would be applied to the central conductor to heat the dielectric material. The main advantage of the proposal is that the wiring needed for the RF dielectric heating would be simpler and easier to fabricate than is the wiring needed for resistance heating. In some applications, it might be possible to eliminate all heater wiring and, instead, beam the RF heating power into the dielectric rods from external antennas.

  7. 46 CFR 111.85-1 - Electric oil immersion heaters.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Electric oil immersion heaters. 111.85-1 Section 111.85-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Oil Immersion Heaters § 111.85-1 Electric oil immersion heaters...

  8. 46 CFR 111.85-1 - Electric oil immersion heaters.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Electric oil immersion heaters. 111.85-1 Section 111.85-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Oil Immersion Heaters § 111.85-1 Electric oil immersion heaters...

  9. 46 CFR 111.85-1 - Electric oil immersion heaters.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Electric oil immersion heaters. 111.85-1 Section 111.85-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Oil Immersion Heaters § 111.85-1 Electric oil immersion heaters...

  10. 46 CFR 111.85-1 - Electric oil immersion heaters.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Electric oil immersion heaters. 111.85-1 Section 111.85-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Oil Immersion Heaters § 111.85-1 Electric oil immersion heaters...

  11. 46 CFR 111.85-1 - Electric oil immersion heaters.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Electric oil immersion heaters. 111.85-1 Section 111.85-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Electric Oil Immersion Heaters § 111.85-1 Electric oil immersion heaters...

  12. Sub-Ionospheric Measurements of the Ocean, Atmosphere, and Ionosphere from the CARINA Satellites

    NASA Astrophysics Data System (ADS)

    Bernhardt, P. A.; Montgomery, J. A., Jr.; Siefring, C. L.; Gatling, G.

    2016-12-01

    New satellites designed to fly between 150 and 250 km has been constructed to study a wide range of geophysical topics extending from the ocean to the topside ionosphere. The key features of the CARINA satellites are (1) the ability of sustain long duration (60 day) orbits below the F-Layer ionosphere, (2) download large quantities of data (10 GBytes) per pass over a ground station, and (3) a heritage instrument payload comprised of an Electric Field Instrument (EFI) with full range measurements from 3 to 13 MHz, a Ram Langmuir Probe (RLP) the measures ion density from 102 to 106 cm-3 with 10 kHz sample rate, an Orbiting GPS Receiver (OGR) providing overhead total electron content and satellite position and the Wake Retro Reflectors (WRR) that use laser ranging for precise orbit determination. Each letter in "CARINA" represents one of the science objectives. "Coastal" ocean wave remote sensing of the sea surface wave height spectrum derived from HF surface wave scatter to the satellite. Assimilation ionospheric models are supported by Global measurements of GPS total electron count (TEC) and in situ plasma density for updating data driven ionospheric models (GAIM, IDA3D, etc.). Radio wave propagation and interactions determine the impact of the bottomside ionosphere on HF ray trajectories, the effects of ionospheric irregularities that yield UHF/L-band scintillations and ionospheric modifications by high power HF waves. Ionospheric structures such are sporadic-E and intermediate layers, traveling ionospheric disturbances (TID's) and large scale bottomside fluctuations in the F-layer are directly measured by CARINA sensors. Neutral drag is studied along the orbit through reentry modeling of drag coefficients and neutral density model updates. Finally, Atmospherics and lightning knowledge is acquired through studies of lightning EM pulses and their impact on ionosphere. Two CARINA satellites separated by 2000 km flying above 50 degree inclination represents the

  13. Impact of kerosene space heaters on indoor air quality.

    PubMed

    Hanoune, B; Carteret, M

    2015-09-01

    In recent years, the use of kerosene space heaters as additional or principal heat source has been increasing, because these heaters allow a continuous control on the energy cost. These devices are unvented, and all combustion products are released into the room where the heaters are operated. The indoor air quality of seven private homes using wick-type or electronic injection-type kerosene space heaters was investigated. Concentrations of CO, CO2, NOx, formaldehyde and particulate matter (0.02-10 μm) were measured, using time-resolved instruments when available. All heaters tested are significant sources of submicron particles, NOx and CO2. The average NO2 and CO2 concentrations are determined by the duration of use of the kerosene heaters. These results stress the need to regulate the use of unvented combustion appliances to decrease the exposure of people to air contaminants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Ionosphere-magnetosphere coupling and convection

    NASA Technical Reports Server (NTRS)

    Wolf, R. A.; Spiro, R. W.

    1984-01-01

    The following international Magnetospheric Study quantitative models of observed ionosphere-magnetosphere events are reviewed: (1) a theoretical model of convection; (2) algorithms for deducing ionospheric current and electric-field patterns from sets of ground magnetograms and ionospheric conductivity information; and (3) empirical models of ionospheric conductances and polar cap potential drop. Research into magnetic-field-aligned electric fields is reviewed, particularly magnetic-mirror effects and double layers.

  15. Multi-step heater deployment in a subsurface formation

    DOEpatents

    Mason, Stanley Leroy [Allen, TX

    2012-04-03

    A method for installing a horizontal or inclined subsurface heater includes placing a heating section of a heater in a horizontal or inclined section of a wellbore with an installation tool. The tool is uncoupled from the heating section. A lead in section is mechanically and electrically coupled to the heating section of the heater. The lead-in section is located in an angled or vertical section of the wellbore.

  16. Selected organic pollutant emissions from unvented kerosene space heaters

    SciTech Connect

    Traynor, G.W.; Apte, M.G.; Sokol, H.A.

    1990-08-01

    An exploratory study was performed to assess the semivolatile and nonvolatile organic pollutant emissions rates from unvented kerosene space heaters. A well-tuned radiant heater and maltuned convective heater were tested for semivolatile and nonvolatile organic pollutant emissions. Each heater was operated in a 27-m{sup 3} chamber with a prescribed on/off pattern. Organic compounds were collected on Teflon-impregnated glass filters backed by XAD-2 resin and analyzed by gas chromatography/mass spectrometry. Pollutant source strengths were calculated by use of a mass balance equation. The results show that kerosene heaters can emit polycyclic aromatic hydrocarbons (PAHs); nitrated PAHs; alkylbenzenes, phthalates; hydronaphthalenes; aliphatic hydrocarbons,more » alcohols, and ketones; and other organic compounds, some of which are known mutagens.« less

  17. Longitudinal Differences in the Low-latitude Ionosphere and in the Ionospheric Variability

    NASA Astrophysics Data System (ADS)

    Goncharenko, L. P.; Zhang, S.; Liu, H.; Tsugawa, T.; Batista, I. S.; Reinisch, B. W.

    2017-12-01

    Analysis of longitudinal differences in ionospheric parameters can illuminate variety of mechanisms responsible for ionospheric variability. In this study, we aim to 1) quantitatively describe major features of longitudinal differences in peak electron density in the low-latitude ionosphere; 2) examine differences in ionospheric variability at different longitude sectors, and 3) illustrate longitudinal differences in ionospheric response to a large disturbance event, sudden stratospheric warming of 2016. We examine NmF2 observations by a network of ionosondes in the American (30-80W) and Asian (110-170E) longitudinal sectors. Selected instruments are located in the vicinity of EIA troughs (Jicamarca, Sao Luis, Guam, Kwajalein), northern and southern crests of EIA (Boa Vista, Tucuman, Cachoeira Paulista, Okinawa), and beyond EIA crests (Ramey, Yamagawa, Kokubunji). To examine main ionospheric features at each location, we use long-term datasets collected at each site to construct empirical models that describe variations in NmF2 as a function of local time, season, solar flux, and geomagnetic activity. This set of empirical models can be used to accurately describe background ionospheric behavior and serve as a set of observational benchmarks for global circulation models. It reveals, for example, higher NmF2 in the EIA trough in the Asian sector as compared to the American sector. Further, we quantitatively describe variability in NmF2 as a difference between local observations and local empirical model, and find that American sector's EIA trough has overall higher variability that maximizes for all local times during wintertime, while Asian sector trough variability does not change significantly with season. Additionally, local empirical models are used to isolate ionospheric features resulting from dynamical disturbances of different origin (e.g. geomagnetic storms, convective activity, sudden stratospheric warming events, etc.). We illustrate this approach with

  18. Online, automatic, ionospheric maps: IRI-PLAS-MAP

    NASA Astrophysics Data System (ADS)

    Arikan, F.; Sezen, U.; Gulyaeva, T. L.; Cilibas, O.

    2015-04-01

    Global and regional behavior of the ionosphere is an important component of space weather. The peak height and critical frequency of ionospheric layer for the maximum ionization, namely, hmF2 and foF2, and the total number of electrons on a ray path, Total Electron Content (TEC), are the most investigated and monitored values of ionosphere in capturing and observing ionospheric variability. Typically ionospheric models such as International Reference Ionosphere (IRI) can provide electron density profile, critical parameters of ionospheric layers and Ionospheric electron content for a given location, date and time. Yet, IRI model is limited by only foF2 STORM option in reflecting the dynamics of ionospheric/plasmaspheric/geomagnetic storms. Global Ionospheric Maps (GIM) are provided by IGS analysis centers for global TEC distribution estimated from ground-based GPS stations that can capture the actual dynamics of ionosphere and plasmasphere, but this service is not available for other ionospheric observables. In this study, a unique and original space weather service is introduced as IRI-PLAS-MAP from http://www.ionolab.org

  19. Controlling an indirect hot water heater

    SciTech Connect

    Capano, J.

    The procedure for servicing a Dunkirk Empire indirect water heater is presented. In this particular case the serviceman found that a wire was loose on the aquastat on the tank. The serviceman checked the wire and the past and tightened the connection. This took care of the problem. A wiring diagram is presented for the home heating system and the hot water heater.

  20. Development of a Prototype Military Field Space Heater

    DTIC Science & Technology

    1983-04-01

    COMBUSTION HEATERS TENT HEATERS LIQUID FUELS LIQUID FUEL BURNERS 2&< ABSTRACT rCamrtbmum «o rarerem ataT» ft namteaamry mod Identity by block...M1941 heater. This prototype features a large triple stage burner obtained from Holland that uses staged combustion to achieve clean burning with...M1941. This Dutch burner features staged combustion , which results in complete and very clean burning of diesel fuel. This report covers fabrication and

  1. 46 CFR 52.25-15 - Fired thermal fluid heaters.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Fired thermal fluid heaters. 52.25-15 Section 52.25-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Other Boiler Types § 52.25-15 Fired thermal fluid heaters. (a) Fired thermal fluid heaters shall be designed...

  2. 46 CFR 52.25-15 - Fired thermal fluid heaters.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Fired thermal fluid heaters. 52.25-15 Section 52.25-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Other Boiler Types § 52.25-15 Fired thermal fluid heaters. (a) Fired thermal fluid heaters shall be designed...

  3. 46 CFR 52.25-15 - Fired thermal fluid heaters.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Fired thermal fluid heaters. 52.25-15 Section 52.25-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Other Boiler Types § 52.25-15 Fired thermal fluid heaters. (a) Fired thermal fluid heaters shall be designed...

  4. Automated robotic equipment for ultrasonic inspection of pressurizer heater wells

    DOEpatents

    Nachbar, Henry D.; DeRossi, Raymond S.; Mullins, Lawrence E.

    1993-01-01

    A robotic device for remotely inspecting pressurizer heater wells is provided which has the advantages of quickly, precisely, and reliably acquiring data at reasonable cost while also reducing radiation exposure of an operator. The device comprises a prober assembly including a probe which enters a heater well, gathers data regarding the condition of the heater well and transmits a signal carrying that data; a mounting device for mounting the probe assembly at the opening of the heater well so that the probe can enter the heater well; a first motor mounted on the mounting device for providing movement of the probe assembly in an axial direction; and a second motor mounted on the mounting device for providing rotation of the probe assembly. This arrangement enables full inspection of the heater well to be carried out.

  5. Ionospheric Change and Solar EUV Irradiance

    NASA Astrophysics Data System (ADS)

    Sojka, J. J.; David, M.; Jensen, J. B.; Schunk, R. W.

    2011-12-01

    The ionosphere has been quantitatively monitored for the past six solar cycles. The past few years of observations are showing trends that differ from the prior cycles! Our good statistical relationships between the solar radio flux index at 10.7 cm, the solar EUV Irradiance, and the ionospheric F-layer peak density are showing indications of divergence! Present day discussion of the Sun-Earth entering a Dalton Minimum would suggest change is occurring in the Sun, as the driver, followed by the Earth, as the receptor. The dayside ionosphere is driven by the solar EUV Irradiance. But different components of this spectrum affect the ionospheric layers differently. For a first time the continuous high cadence EUV spectra from the SDO EVE instrument enable ionospheric scientists the opportunity to evaluate solar EUV variability as a driver of ionospheric variability. A definitive understanding of which spectral components are responsible for the E- and F-layers of the ionosphere will enable assessments of how over 50 years of ionospheric observations, the solar EUV Irradiance has changed. If indeed the evidence suggesting the Sun-Earth system is entering a Dalton Minimum periods is correct, then the comprehensive EVE solar EUV Irradiance data base combined with the ongoing ionospheric data bases will provide a most fortuitous fiduciary reference baseline for Sun-Earth dependencies. Using the EVE EUV Irradiances, a physics based ionospheric model (TDIM), and 50 plus years of ionospheric observation from Wallops Island (Virginia) the above Sun-Earth ionospheric relationship will be reported on.

  6. Ionosphere monitoring and forecast activities within the IAG working group "Ionosphere Prediction"

    NASA Astrophysics Data System (ADS)

    Hoque, Mainul; Garcia-Rigo, Alberto; Erdogan, Eren; Cueto Santamaría, Marta; Jakowski, Norbert; Berdermann, Jens; Hernandez-Pajares, Manuel; Schmidt, Michael; Wilken, Volker

    2017-04-01

    Ionospheric disturbances can affect technologies in space and on Earth disrupting satellite and airline operations, communications networks, navigation systems. As the world becomes ever more dependent on these technologies, ionospheric disturbances as part of space weather pose an increasing risk to the economic vitality and national security. Therefore, having the knowledge of ionospheric state in advance during space weather events is becoming more and more important. To promote scientific cooperation we recently formed a Working Group (WG) called "Ionosphere Predictions" within the International Association of Geodesy (IAG) under Sub-Commission 4.3 "Atmosphere Remote Sensing" of the Commission 4 "Positioning and Applications". The general objective of the WG is to promote the development of ionosphere prediction algorithm/models based on the dependence of ionospheric characteristics on solar and magnetic conditions combining data from different sensors to improve the spatial and temporal resolution and sensitivity taking advantage of different sounding geometries and latency. Our presented work enables the possibility to compare total electron content (TEC) prediction approaches/results from different centers contributing to this WG such as German Aerospace Center (DLR), Universitat Politècnica de Catalunya (UPC), Technische Universität München (TUM) and GMV. DLR developed a model-assisted TEC forecast algorithm taking benefit from actual trends of the TEC behavior at each grid point. Since during perturbations, characterized by large TEC fluctuations or ionization fronts, this approach may fail, the trend information is merged with the current background model which provides a stable climatological TEC behavior. The presented solution is a first step to regularly provide forecasted TEC services via SWACI/IMPC by DLR. UPC forecast model is based on applying linear regression to a temporal window of TEC maps in the Discrete Cosine Transform (DCT) domain

  7. 21 CFR 868.5270 - Breathing system heater.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Breathing system heater. 868.5270 Section 868.5270 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5270 Breathing system heater. (a...

  8. 21 CFR 868.5270 - Breathing system heater.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Breathing system heater. 868.5270 Section 868.5270 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5270 Breathing system heater. (a...

  9. Ionospheric effects during severe space weather events seen in ionospheric service data products

    NASA Astrophysics Data System (ADS)

    Jakowski, Norbert; Danielides, Michael; Mayer, Christoph; Borries, Claudia

    Space weather effects are closely related to complex perturbation processes in the magnetosphere-ionosphere-thermosphere systems, initiated by enhanced solar energy input. To understand and model complex space weather processes, different views on the same subject are helpful. One of the ionosphere key parameters is the Total Electron Content (TEC) which provides a first or-der approximation of the ionospheric range error in Global Navigation Satellite System (GNSS) applications. Additionally, horizontal gradients and time rate of change of TEC are important for estimating the perturbation degree of the ionosphere. TEC maps can effectively be gener-ated using ground based GNSS measurements from global receiver networks. Whereas ground based GNSS measurements provide good horizontal resolution, space based radio occultation measurements can complete the view by providing information on the vertical plasma density distribution. The combination of ground based TEC and vertical sounding measurements pro-vide essential information on the shape of the vertical electron density profile by computing the equivalent slab thickness at the ionosonde station site. Since radio beacon measurements at 150/400 MHz are well suited to trace the horizontal structure of Travelling Ionospheric Dis-turbances (TIDs), these data products essentially complete GNSS based TEC mapping results. Radio scintillation data products, characterising small scale irregularities in the ionosphere, are useful to estimate the continuity and availability of transionospheric radio signals. The different data products are addressed while discussing severe space weather events in the ionosphere e.g. events in October/November 2003. The complementary view of different near real time service data products is helpful to better understand the complex dynamics of ionospheric perturbation processes and to forecast the development of parameters customers are interested in.

  10. Measure Guideline. Transitioning to a Tankless Water Heater

    SciTech Connect

    Brozyna, K.; Rapport, A.

    2012-09-01

    This measure guideline provides information to help residential builders and retrofitters with the design, specification, selection, implementation, installation, and maintenance issues of transitioning from tank-type water heaters to tankless water heaters.

  11. Optimization of VLf/ELF Wave Generation using Beam Painting

    NASA Astrophysics Data System (ADS)

    Robinson, A.; Moore, R. C.

    2017-12-01

    A novel optimized beam painting algorithm (OBP) is used to generate high amplitude very low frequency (VLF) and extremely low frequency (ELF) waves in the D-region of the ionosphere above the High-frequency Active Auroral Research Program (HAARP) observatory. The OBP method creates a phased array of sources in the ionosphere by varying the azimuth and zenith angles of the high frequency (HF) transmitter to capitalize on the constructive interference of propagating VLF/ELF waves. OBP generates higher amplitude VLF/ELF signals than any other previously proposed method. From April through June during 2014, OBP was performed at HAARP over 1200 times. We compare the BP generated signals against vertical amplitude modulated transmissions at 50 % duty cycle (V), oblique amplitude modulated transmissions at 15 degrees zenith and 81 degrees azimuth at 50 % duty cycle (O), and geometric (circle-sweep) modulation at 15 degrees off-zenith angle at 1562.5 Hz, 3125 Hz, and 5000 Hz. We present an analysis of the directional dependence of each signal, its polarization, and its dependence on the properties of the different source region elements. We find that BP increases the received signal amplitudes of VLF and ELF waves when compared to V, O, and GM methods over a statistically significant number of trials.

  12. Solar eclipses at high latitudes: ionospheric effects in the lower ionosphere

    NASA Astrophysics Data System (ADS)

    Cherniakov, S.

    2017-12-01

    The partial reflection facility of the Polar Geophysical Institute (the Tumanny observatory, 69.0N, 35.7E) has observed behavior of the high-latitude lower ionosphere during the 20 March 2015 total solar eclipse. There were several effects during the eclipse. At the heights of 60-80 km the ionosphere has shown the effect of a "short night", but at the higher altitudes local enhanced electron concentration had a wave-like form. Data received by the riometer of the Tumanny observatory have also shown wave-like behavior. The behavior can be explained by influence of acoustic-gravity waves which originated after cooling of the atmosphere during the lunar shadow supersonic movement, and transport processes during the eclipse. During the 21 August 2017 solar eclipse there was a substorm at the high latitudes. But after the end of the substorm in the region of the Tumanny observatory the observed amplitudes of the reflected waves had wave effects which could be connected with the coming waves from the region of the eclipse. The wave features were also shown in the behavior of the total electron content (TEC) of the lower ionosphere. During several solar eclipses it was implemented observations of lower ionosphere behavior by the partial reflection facility of the Tumanny observatory. The consideration of the lower ionosphere TEC had revealed common features in the TEC behavior during the eclipses. The photochemical theory of processes in the lower ionosphere is very complicated and up to now it is not completely developed. Therefore introduction of the effective coefficients determining the total speed of several important reactions has been widely adopted when modeling the D-region of the ionosphere. However, experimental opportunities for obtaining effective recombination coefficients are rather limited. One of the methods to estimate effective recombination coefficients uses the phenomenon of a solar eclipse. During solar eclipses at the partial reflection facility of

  13. Scientific Studies of the High-Latitude Ionosphere with the Ionosphere Dynamics and ElectroDynamics - Data Assimilation (IDED-DA) Model

    DTIC Science & Technology

    2014-09-23

    conduct simulations with a high-latitude data assimilation model. The specific objectives are to study magnetosphere-ionosphere ( M -I) coupling processes...based on three physics-based models, including a magnetosphere-ionosphere ( M -I) electrodynamics model, an ionosphere model, and a magnetic...inversion code. The ionosphere model is a high-resolution version of the Ionosphere Forecast Model ( IFM ), which is a 3-D, multi-ion model of the ionosphere

  14. 46 CFR 111.70-5 - Heater circuits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... REQUIREMENTS Motor Circuits, Controllers, and Protection § 111.70-5 Heater circuits. (a) If an enclosure for a motor, master switch, or other equipment has an electric heater inside the enclosure that is energized.... (b) If the location of the enclosure for a motor, master switch, or other equipment for deck...

  15. The worldwide ionospheric data base

    NASA Technical Reports Server (NTRS)

    Bilitza, Dieter

    1989-01-01

    The worldwide ionospheric data base is scattered over the entire globe. Different data sets are held at different institutions in the U.S., U.S.S.R., Australia, Europe, and Asia. The World Data Centers on the different continents archive and distribute part of the huge data base; the scope and cross section of the individual data holdings depend on the regional and special interest of the center. An attempt is made to pull together all the strings that point toward different ionospheric data holdings. Requesters are provided with the information about what is available and where to get it. An attempt is also made to evaluate the reliability and compatibility of the different data sets based on the consensus in the ionospheric research community. The status and accuracy of the standard ionospheric models are also discussed because they may facilitate first order assessment of ionospheric effects. This is a first step toward an ionospheric data directory within the framework of NSSDC's master directory.

  16. Earthquake-Ionosphere Coupling Processes

    NASA Astrophysics Data System (ADS)

    Kamogawa, Masashi

    After a giant earthquake (EQ), acoustic and gravity waves are excited by the displacement of land and sea surface, propagate through atmosphere, and then reach thermosphere, which causes ionospheric disturbances. This phenomenon was detected first by ionosonde and by HF Doppler sounderin the 1964 M9.2 Great Alaskan EQ. Developing Global Positioning System (GPS), seismogenic ionospheric disturbance detected by total electron content (TEC) measurement has been reported. A value of TEC is estimated by the phase difference between two different carrier frequencies through the propagation in the dispersive ionospheric plasma. The variation of TEC is mostly similar to that of F-region plasma. Acoustic-gravity waves triggered by an earthquake [Heki and Ping, EPSL, 2005; Liu et al., JGR, 2010] and a tsunami [Artu et al., GJI, 2005; Liu et al., JGR, 2006; Rolland, GRL, 2010] disturb the ionosphere and travel in the ionosphere. Besides the traveling ionospheric disturbances, ionospheric disturbances excited by Rayleigh waves [Ducic et al, GRL, 2003; Liu et al., GRL, 2006] as well as post-seismic 4-minute monoperiodic atmospheric resonances [Choosakul et al., JGR, 2009] have been observed after the large earthquakes. Since GPS Earth Observation Network System (GEONET) with more than 1200 GPS receiving points in Japan is a dense GPS network, seismogenic ionospheric disturbance is spatially observed. In particular, the seismogenic ionospheric disturbance caused by the M9.0 off the Pacific coast of Tohoku EQ (henceforth the Tohoku EQ) on 11 March 2011 was clearly observed. Approximately 9 minutes after the mainshock, acoustic waves which propagated radially emitted from the tsunami source area were observed through the TEC measurement (e. g., Liu et al. [JGR, 2011]). Moreover, there was a depression of TEC lasting for several tens of minutes after a huge earthquake, which was a large-scale phenomenon extending to a radius of a few hundred kilometers. This TEC depression may be

  17. Using the USU ionospheric model to predict radio propagation through a simulated ionosphere

    NASA Astrophysics Data System (ADS)

    Huffines, Gary R.

    1990-12-01

    To evaluate the capabilities of communication, navigation, and defense systems utilizing electromagnetic waves which interact with the ionosphere, a three-dimensional ray tracing program was used. A simple empirical model (Chapman function) and a complex physical model (Schunk and Sojka model) were used to compare the representation of ionospheric conditions. Four positions were chosen to test four different features of the Northern Hemispheric ionosphere. It seems that decreasing electron density has little or no effect on the horizontal components of the ray path while increasing electron density causes deviations in the ray path. It was also noted that rays in the physical model's mid-latitude trough region escaped the ionosphere for all frequencies used in this study.

  18. Complex network description of the ionosphere

    NASA Astrophysics Data System (ADS)

    Lu, Shikun; Zhang, Hao; Li, Xihai; Li, Yihong; Niu, Chao; Yang, Xiaoyun; Liu, Daizhi

    2018-03-01

    Complex networks have emerged as an essential approach of geoscience to generate novel insights into the nature of geophysical systems. To investigate the dynamic processes in the ionosphere, a directed complex network is constructed, based on a probabilistic graph of the vertical total electron content (VTEC) from 2012. The results of the power-law hypothesis test show that both the out-degree and in-degree distribution of the ionospheric network are not scale-free. Thus, the distribution of the interactions in the ionosphere is homogenous. None of the geospatial positions play an eminently important role in the propagation of the dynamic ionospheric processes. The spatial analysis of the ionospheric network shows that the interconnections principally exist between adjacent geographical locations, indicating that the propagation of the dynamic processes primarily depends on the geospatial distance in the ionosphere. Moreover, the joint distribution of the edge distances with respect to longitude and latitude directions shows that the dynamic processes travel further along the longitude than along the latitude in the ionosphere. The analysis of small-world-ness indicates that the ionospheric network possesses the small-world property, which can make the ionosphere stable and efficient in the propagation of dynamic processes.

  19. Infrared transparent graphene heater for silicon photonic integrated circuits.

    PubMed

    Schall, Daniel; Mohsin, Muhammad; Sagade, Abhay A; Otto, Martin; Chmielak, Bartos; Suckow, Stephan; Giesecke, Anna Lena; Neumaier, Daniel; Kurz, Heinrich

    2016-04-18

    Thermo-optical tuning of the refractive index is one of the pivotal operations performed in integrated silicon photonic circuits for thermal stabilization, compensation of fabrication tolerances, and implementation of photonic operations. Currently, heaters based on metal wires provide the temperature control in the silicon waveguide. The strong interaction of metal and light, however, necessitates a certain gap between the heater and the photonic structure to avoid significant transmission loss. Here we present a graphene heater that overcomes this constraint and enables an energy efficient tuning of the refractive index. We achieve a tuning power as low as 22 mW per free spectral range and fast response time of 3 µs, outperforming metal based waveguide heaters. Simulations support the experimental results and suggest that for graphene heaters the spacing to the silicon can be further reduced yielding the best possible energy efficiency and operation speed.

  20. Toxic organic pollutants from kerosene space heaters in Iran.

    PubMed

    Keyanpour-Rad, Mansoor

    2004-03-01

    The aim of this study was to investigate qualitatively the emission of toxic organic pollutants from an unventilated conventional kerosene space heater commonly used in Iran. A brand new common convective kerosene space heater, the "Aladdin," was used for this study. The well-tuned convective heater was operated in a 2.6-m(3) test chamber and then the emission was tested for organic pollutants. The emission was collected on Teflon-impregnated glass-fiber filters and XAD-2 resin and then analyzed by gas chromatography-mass spectroscopy. It was found that in addition to the ordinary pollutant gases, the heater emits aliphatic hydrocarbons, alcohols, polyaromatic hydrocarbons and the related nitrated compounds, phthalates, naphthalenes, and some other toxic organic compounds. However, it was found that the heater did not emit fluoranthene, cyclohexane, benzoic acid, and higher-molecular-weight alkylbenzenes, which could have resulted from the combustion of some other types of kerosene.

  1. A Review of Ionospheric Scintillation Models.

    PubMed

    Priyadarshi, S

    This is a general review of the existing climatological models of ionospheric radio scintillation for high and equatorial latitudes. Trans-ionospheric communication of radio waves from transmitter to user is affected by the ionosphere which is highly variable and dynamic in both time and space. Scintillation is the term given to irregular amplitude and phase fluctuations of the received signals and related to the electron density irregularities in the ionosphere. Key sources of ionospheric irregularities are plasma instabilities; every irregularities model is based on the theory of radio wave propagation in random media. It is important to understand scintillation phenomena and the approach of different theories. Therefore, we have briefly discussed the theories that are used to interpret ionospheric scintillation data. The global morphology of ionospheric scintillation is also discussed briefly. The most important (in our opinion) analytical and physical models of scintillation are reviewed here.

  2. Contribution of the International Reference Ionosphere to the progress of the ionospheric representation

    NASA Astrophysics Data System (ADS)

    Bilitza, Dieter

    2017-04-01

    The International Reference Ionosphere (IRI), a joint project of the Committee on Space Research (COSPAR) and the International Union of Radio Science (URSI), is a data-based reference model for the ionosphere and since 2014 it is also recognized as the ISO (International Standardization Organization) standard for the ionosphere. The model is a synthesis of most of the available and reliable observations of ionospheric parameters combining ground and space measurements. This presentation reviews the steady progress in achieving a more and more accurate representation of the ionospheric plasma parameters accomplished during the last decade of IRI model improvements. Understandably, a data-based model is only as good as the data foundation on which it is built. We will discuss areas where we are in need of more data to obtain a more solid and continuous data foundation in space and time. We will also take a look at still existing discrepancies between simultaneous measurements of the same parameter with different measurement techniques and discuss the approach taken in the IRI model to deal with these conflicts. In conclusion we will provide an outlook at development activities that may result in significant future improvements of the accurate representation of the ionosphere in the IRI model.

  3. Three-phase heaters with common overburden sections for heating subsurface formations

    DOEpatents

    Vinegar, Harold J [Bellaire, TX

    2012-02-14

    A heating system for a subsurface formation is described. The heating system includes three substantially u-shaped heaters with first end portions of the heaters being electrically coupled to a single, three-phase wye transformer and second end portions of the heaters being electrically coupled to each other and/or to ground. The three heaters may enter the formation through a first common wellbore and exit the formation through a second common wellbore so that the magnetic fields of the three heaters at least partially cancel out in the common wellbores.

  4. Radio Tomography of Ionospheric Structures (probably) due to Underground-Surface-Atmosphere-Ionosphere Coupling

    NASA Astrophysics Data System (ADS)

    Kunitsyn, V.; Nesterov, I.; Andreeva, E.; Rekenthaler, D. A.

    2012-12-01

    Ionospheric radio-tomography (RT) utilizes radio signals transmitted from the global navigational satellite systems (GNSS), including low-orbiting (LO) navigational systems such as Transit, Tsikada, etc., and high-orbiting (HO) navigational systems such as GPS, GLONASS, Galileo, Beidou, etc. The signals that are transmitted from the LO navigational satellites and recorded by ground receiving chains can be inverted for almost instantaneous (5-8 min) 2D snapshots of electron density. The data from the networks of ground receivers that record the signals of the HO satellites are suitable for implementing high-orbital RT (HORT), i.e. reconstructing the 4D distributions of the ionospheric electron density (one 3D image every 20-30 min). In the regions densely covered by the GNSS receivers, it is currently possible to get a time step of 2-4 min. The LORT and HORT approaches have a common methodical basis: in both these techniques, the integrals of electron density along the ray between the satellite and the receiver are measured, and then the tomographic procedures are applied to reconstruct the distributions of electron density. We present several examples of the experiments on the ionospheric RT, which are related to the Underground-Surface-Atmosphere-Ionosphere (USAI) coupling. In particular, we demonstrate examples of RT images of the ionosphere after industrial explosions, rocket launches, and modification of the ionosphere by high-power radio waves. We also show RT cross sections reflecting ionospheric disturbances caused by the earthquakes (EQ) and tsunami waves. In these cases, there is an evident cause-and-effect relationship. The perturbations are transferred between the geospheres predominantly by acoustic gravity waves (AGW), whose amplitudes increase with increasing height. As far as EQ are concerned, the cause of the USAI coupling mechanism is not obvious. It is clear, however, that the regular RT studies can promote the solution of this challenging problem

  5. The Ionosphere and Ocean Altimetry

    NASA Technical Reports Server (NTRS)

    Lindqwister, Ulf J.

    1999-01-01

    The accuracy of satellite-based single-frequency radar ocean altimeters benefits from calibration of the total electron content (TEC) of the ionosphere below the satellite. Data from the global network of Global Positioning System (GPS) receivers provides timely, continuous, and globally well-distributed measurements of ionospheric electron content. We have created a daily automated process called Daily Global Ionospheric Map (Daily-GIM) whose primary purpose is to use global GPS data to provide ionospheric calibration data for the Geosat Follow-On (GFO) ocean altimeter. This process also produces an hourly time-series of global maps of the electron content of the ionosphere. This system is designed to deliver "quick-look" ionospheric calibrations within 24 hours with 90+% reliability and with a root-mean-square accuracy of 2 cm at 13.6 GHz. In addition we produce a second product within 72 hours which takes advantage of additional GPS data which were not available in time for the first process. The diagram shows an example of a comparison between TEC data from the Topographic Experiment (TOPEX) ocean altimeter and Daily-GIM. TEC are displayed in TEC units, TECU, where 5 TECU is 1 cm at 13.6 GHz. Data from a single TOPEX track is shown. Also shown is the Bent climatological model TEC for the track. Although the GFO satellite is not yet in its operational mode, we have been running Daily-GIM reliably (much better than 90%) with better than 2-cm accuracy (based on comparisons against TOPEX) for several months. When timely ephemeris files for the European Remote Sensing Satellite 2 (ERS-2) are available, daily ERS-2 altimeter ionospheric calibration files are produced. When GFO ephemeris files are made available to us, we produce GFO ionosphere calibration files. Users of these GFO ionosphere calibration files find they are a great improvement over the alternative International Reference Ionosphere 1995 (IRI-95) climatological model. In addition, the TOPEX orbit

  6. Development of micro-heaters with optimized temperature compensation design for gas sensors.

    PubMed

    Hwang, Woo-Jin; Shin, Kyu-Sik; Roh, Ji-Hyoung; Lee, Dae-Sung; Choa, Sung-Hoon

    2011-01-01

    One of the key components of a chemical gas sensor is a MEMS micro-heater. Micro-heaters are used in both semiconductor gas sensors and NDIR gas sensors; however they each require different heat dissipation characteristics. For the semiconductor gas sensors, a uniform temperature is required over a wide area of the heater. On the other hand, for the NDIR gas sensor, the micro-heater needs high levels of infrared radiation in order to increase sensitivity. In this study, a novel design of a poly-Si micro-heater is proposed to improve the uniformity of heat dissipation on the heating plate. Temperature uniformity of the micro-heater is achieved by compensating for the variation in power consumption around the perimeter of the heater. With the power compensated design, the uniform heating area is increased by 2.5 times and the average temperature goes up by 40 °C. Therefore, this power compensated micro-heater design is suitable for a semiconductor gas sensor. Meanwhile, the poly-Si micro-heater without compensation shows a higher level of infrared radiation under equal power consumption conditions. This indicates that the micro-heater without compensation is more suitable for a NDIR gas sensor. Furthermore, the micro-heater shows a short response time of less than 20 ms, indicating a very high efficiency of pulse driving.

  7. Recovery Act: Water Heater ZigBee Open Standard Wireless Controller

    SciTech Connect

    Butler, William P.; Buescher, Tom

    2014-04-30

    The objective of Emerson's Water Heater ZigBee Open Standard Wireless Controller is to support the DOE's AARA priority for Clean, Secure Energy by designing a water heater control that levels out residential and small business peak electricity demand through thermal energy storage in the water heater tank.

  8. Influence of heating experiments on parameters of Schumann resonances

    NASA Astrophysics Data System (ADS)

    Agranat, Irina; Sivokon, Vladimir

    2017-10-01

    Recently the significant increase in intensity of researches in the field of the fissile impact on geophysical processes in various environments is noted. Special attention is paid to a research of impact on an ionosphere of a potent short-wave radio emission of heating stands. Today experiments on change of an ionosphere are made generally at stands HAARP, EISCAT in Tromse (Norway). Within the Russian campaign (Tomsk) EISCAT/heating (AARI_HFOX) made from October 19 to October 30, 2016 experiments on impact on an ionosphere F-layer by the radiation potent HF. For assessment of impact of these experiments on geophysical processes mathematical methods carried out the analysis of change of the parameters of the Schumann resonances received on the basis of data from the station of constant observation of the Schumann resonances in the city of Tomsk, the Tomsk State University (Russia).

  9. Implementation of heaters on thermally actuated spacecraft mechanisms

    NASA Technical Reports Server (NTRS)

    Busch, John D.; Bokaie, Michael D.

    1994-01-01

    This paper presents general insight into the design and implementation of heaters as used in actuating mechanisms for spacecraft. Problems and considerations that were encountered during development of the Deep Space Probe and Science Experiment (DSPSE) solar array release mechanism are discussed. Obstacles included large expected fluctuations in ambient temperature, variations in voltage supply levels outgassing concerns, heater circuit design, materials selection, and power control options. Successful resolution of these issues helped to establish a methodology which can be applied to many of the heater design challenges found in thermally actuated mechanisms.

  10. Thermally driven self-healing using copper nanofiber heater

    NASA Astrophysics Data System (ADS)

    Lee, Min Wook; Jo, Hong Seok; Yoon, Sam S.; Yarin, Alexander L.

    2017-07-01

    Nano-textured transparent heaters made of copper nanofibers (CuNFs) are used to facilitate accelerated self-healing of bromobutyl rubber (BIIR). The heater and BIIR layer are separately deposited on each side of a transparent flexible polyethylene terephthalate (PET) substrate. A pre-notched crack on the BIIR layer was bridged due to heating facilitated by CuNFs. In the corrosion test, a cracked BIIR layer covered a steel substrate. An accelerated self-healing of the crack due to the transparent copper nanofiber heater facilitated an anti-corrosion protective effect of the BIIR layer.

  11. Ionosphere Waves Service (IWS) - a problem-oriented tool in ionosphere and Space Weather research produced by POPDAT project

    NASA Astrophysics Data System (ADS)

    Ferencz, Csaba; Lizunov, Georgii; Crespon, François; Price, Ivan; Bankov, Ludmil; Przepiórka, Dorota; Brieß, Klaus; Dudkin, Denis; Girenko, Andrey; Korepanov, Valery; Kuzmych, Andrii; Skorokhod, Tetiana; Marinov, Pencho; Piankova, Olena; Rothkaehl, Hanna; Shtus, Tetyana; Steinbach, Péter; Lichtenberger, János; Sterenharz, Arnold; Vassileva, Any

    2014-05-01

    In the frame of the FP7 POPDAT project the Ionosphere Waves Service (IWS) has been developed and opened for public access by ionosphere experts. IWS is forming a database, derived from archived ionospheric wave records to assist the ionosphere and Space Weather research, and to answer the following questions: How can the data of earlier ionospheric missions be reprocessed with current algorithms to gain more profitable results? How could the scientific community be provided with a new insight on wave processes that take place in the ionosphere? The answer is a specific and unique data mining service accessing a collection of topical catalogs that characterize a huge number of recorded occurrences of Whistler-like Electromagnetic Wave Phenomena, Atmosphere Gravity Waves, and Traveling Ionosphere Disturbances. IWS online service (http://popdat.cbk.waw.pl) offers end users to query optional set of predefined wave phenomena, their detailed characteristics. These were collected by target specific event detection algorithms in selected satellite records during database buildup phase. Result of performed wave processing thus represents useful information on statistical or comparative investigations of wave types, listed in a detailed catalog of ionospheric wave phenomena. The IWS provides wave event characteristics, extracted by specific software systems from data records of the selected satellite missions. The end-user can access targets by making specific searches and use statistical modules within the service in their field of interest. Therefore the IWS opens a new way in ionosphere and Space Weather research. The scientific applications covered by IWS concern beyond Space Weather also other fields like earthquake precursors, ionosphere climatology, geomagnetic storms, troposphere-ionosphere energy transfer, and trans-ionosphere link perturbations.

  12. Natural convection in a parallel-plate vertical channel with discrete heating by two flush-mounted heaters: effect of the clearance between the heaters

    NASA Astrophysics Data System (ADS)

    Sarper, Bugra; Saglam, Mehmet; Aydin, Orhan; Avci, Mete

    2018-04-01

    In this study, natural convection in a vertical channel is studied experimentally and numerically. One of the channel walls is heated discretely by two flush-mounted heaters while the other is insulated. The effects of the clearance between the heaters on heat transfer and hot spot temperature while total length of the heaters keeps constant are investigated. Four different settlements of two discrete heaters are comparatively examined. Air is used as the working fluid. The range of the modified Grashof number covers the values between 9.6 × 105 and 1.53 × 10.7 Surface to surface radiation is taken into account. Flow visualizations and temperature measurements are performed in the experimental study. Numerical computations are performed using the commercial CFD code ANSYS FLUENT. The results are represented as the variations of surface temperature, hot spot temperature and Nusselt number with the modified Grashof number and the clearance between the heaters as well as velocity and temperature variations of the fluid.

  13. Ionospheric plasma cloud dynamics

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Measurements of the thermospheric neutral wind and ionospheric drift made at Eglin AFB, Florida and Kwajalein Atoll are discussed. The neutral wind measurements at Eglin had little variation over a period of four years for moderate magnetic activity (Kp 4); the ionospheric drifts are small. Evidence is presented that indicates that increased magnetic activity has a significant effect on the neutral wind magnitude and direction at this midlatitude station. The neutral wind at dusk near the equator is generally small although in one case out of seven it was significantly larger. It is described how observations of large barium releases can be used to infer the degree of electrodynamic coupling of ion clouds to the background ionosphere. Evidence is presented that indicates that large barium releases are coupled to the conjugate ionosphere at midlatitudes.

  14. A silicon nanowire heater and thermometer

    NASA Astrophysics Data System (ADS)

    Zhao, Xingyan; Dan, Yaping

    2017-07-01

    In the thermal conductivity measurements of thermoelectric materials, heaters and thermometers made of the same semiconducting materials under test, forming a homogeneous system, will significantly simplify fabrication and integration. In this work, we demonstrate a high-performance heater and thermometer made of single silicon nanowires (SiNWs). The SiNWs are patterned out of a silicon-on-insulator wafer by CMOS-compatible fabrication processes. The electronic properties of the nanowires are characterized by four-probe and low temperature Hall effect measurements. The I-V curves of the nanowires are linear at small voltage bias. The temperature dependence of the nanowire resistance allows the nanowire to be used as a highly sensitive thermometer. At high voltage bias, the I-V curves of the nanowire become nonlinear due to the effect of Joule heating. The temperature of the nanowire heater can be accurately monitored by the nanowire itself as a thermometer.

  15. Ionospheric research for space weather service support

    NASA Astrophysics Data System (ADS)

    Stanislawska, Iwona; Gulyaeva, Tamara; Dziak-Jankowska, Beata

    2016-07-01

    Knowledge of the behavior of the ionosphere is very important for space weather services. A wide variety of ground based and satellite existing and future systems (communications, radar, surveillance, intelligence gathering, satellite operation, etc) is affected by the ionosphere. There are the needs for reliable and efficient support for such systems against natural hazard and minimalization of the risk failure. The joint research Project on the 'Ionospheric Weather' of IZMIRAN and SRC PAS is aimed to provide on-line the ionospheric parameters characterizing the space weather in the ionosphere. It is devoted to science, techniques and to more application oriented areas of ionospheric investigation in order to support space weather services. The studies based on data mining philosophy increasing the knowledge of ionospheric physical properties, modelling capabilities and gain applications of various procedures in ionospheric monitoring and forecasting were concerned. In the framework of the joint Project the novel techniques for data analysis, the original system of the ionospheric disturbance indices and their implementation for the ionosphere and the ionospheric radio wave propagation are developed since 1997. Data of ionosonde measurements and results of their forecasting for the ionospheric observatories network, the regional maps and global ionospheric maps of total electron content from the navigational satellite system (GNSS) observations, the global maps of the F2 layer peak parameters (foF2, hmF2) and W-index of the ionospheric variability are provided at the web pages of SRC PAS and IZMIRAN. The data processing systems include analysis and forecast of geomagnetic indices ap and kp and new eta index applied for the ionosphere forecasting. For the first time in the world the new products of the W-index maps analysis are provided in Catalogues of the ionospheric storms and sub-storms and their association with the global geomagnetic Dst storms is

  16. Comparison of pollutant emission rates from unvented kerosene and gas space heaters

    SciTech Connect

    Apte, M.G.; Traynor, G.W.

    1986-05-01

    In this paper the pollutant emission rates of all five types of unvented space heaters are compared. Pollutant emission rates for carbon dioxide, carbon monoxide (CO), nitric oxide, nitrogen dioxide (NO/sub 2/), formaldehyde, and submicron suspended particles were measured. Special emphasis is placed on CO and NO/sub 2/ emissions. Pollutant measurements were made in a 27-m/sup 3/ environmental chamber and emission rates were calculated using a mass-balance model. Emission rates for propane and natural gas space heaters were similar. Emissions from the various types of heaters fall into three distinct groups. The groups are better characterized by burner design thanmore » by the type of fuel used. Radiant kerosene heaters and infrared UVGSHs constitute one group; convective kerosene heaters and convective UVGSHs the second, and two-stage kerosene heaters the third group. When groups are compared, emission rates vary by an order of magnitude for carbon monoxide and for nitrogen dioxide. The two-stage kerosene heaters emitted the least CO and also the least NO/sub 2/ per unit of fuel energy consumed. The radiant/infrared heaters emitted the most CO, and the convective heaters emitted the most NO/sub 2/. The effects of various operation parameters such as the wick height for kerosene heaters and the air shutter adjustment for gas heaters are discussed. Convective UVGSHs operating at half input were found to have lower emission rates on average than when operating at full input. Some maltuned convective UVGSHs were capable of emitting very high amounts of CO. Kerosene heaters were found to emit more CO and NO/sub 2/ on average when they were operated with lowered wicks.« less

  17. Chemistry in the Thermosphere and Ionosphere.

    ERIC Educational Resources Information Center

    Roble, Raymond G.

    1986-01-01

    An informative review which summarizes information about chemical reactions in the thermosphere and ionosphere. Topics include thermal structure, ultraviolet radiation, ionospheric photochemistry, thermospheric photochemistry, chemical heating, thermospheric circulation, auroral processes and ionospheric interactions. Provides suggested followup…

  18. Insulated conductor temperature limited heater for subsurface heating coupled in a three-phase WYE configuration

    DOEpatents

    Vinegar, Harold J.; Sandberg, Chester Ledlie

    2010-11-09

    A heating system for a subsurface formation is described. The heating system includes a first heater, a second heater, and a third heater placed in an opening in the subsurface formation. Each heater includes: an electrical conductor; an insulation layer at least partially surrounding the electrical conductor; and an electrically conductive sheath at least partially surrounding the insulation layer. The electrical conductor is electrically coupled to the sheath at a lower end portion of the heater. The lower end portion is the portion of the heater distal from a surface of the opening. The first heater, the second heater, and the third heater are electrically coupled at the lower end portions of the heaters. The first heater, the second heater, and the third heater are configured to be electrically coupled in a three-phase wye configuration.

  19. Total particle, sulfate, and acidic aerosol emissions from kerosene space heaters

    SciTech Connect

    Leaderer, B.P.; Boone, P.M.; Hammond, S.K.

    1990-06-01

    Chamber studies were conducted on four unvented kerosene space heaters to assess emissions of total particle, sulfate, and acidic aerosol. The heaters tested represented four burner designs currently in use by the public. Kerosene space heaters are a potential source of fine particles ({<=} 2.5-{mu}m diameter), sulfate, and acidic aerosol indoors. Fine particle concentrations in homes in which the heaters are used may be increased in excess of 20 {mu}g/m{sup 3} over background levels. Sulfate and acidic aerosol levels in such homes could exceed average and peak outdoor concentrations. Maltuned heaters could produce exceptionally high levels of all air contaminantsmore » measured.« less

  20. Total particle, sulfate, and acidic aerosol emissions from kerosene space heaters

    SciTech Connect

    Leaderer, B.P.; Boone, P.M.; Hammond, S.K.

    1990-01-01

    The article discusses chamber studies of four unvented kerosene space heaters to assess emissions of total particle, sulfate, and acidic aerosol. The heaters tested represented four burner designs currently in use by the public. Kerosene space heaters are a potential source of fine particles (= or < 2.5 micrometer diameter), sulfate, and acidic aerosol indoors. Fine particle concentrations in houses in which the heaters are used may be increased in excess of 20 micrograms/m3 over background levels. Sulfate and acidic aerosol levels in such houses could exceed average and peak outdoor concentrations. Maltuned heaters could produce exceptionally high levels ofmore » all air contaminants measured.« less

  1. Ionospheric behaviour during storm recovery phase

    NASA Astrophysics Data System (ADS)

    Buresova, D.; Lastovicka, J.; Boska, J.; Sindelarova, T.; Chum, J.

    2012-04-01

    Intensive ionospheric research, numerous multi-instrumental observations and large-scale numerical simulations of ionospheric F region response to magnetic storm-induced disturbances during the last several decades were primarily focused on the storm main phase, in most cases covering only a few hours of the recovery phase following after storm culmination. Ionospheric behaviour during entire recovery phase still belongs to not sufficiently explored and hardly predictable features. In general, the recovery phase is characterized by an abatement of perturbations and a gradual return to the "ground state" of ionosphere. However, observations of stormy ionosphere show significant departures from the climatology also within this phase. This paper deals with the quantitative and qualitative analysis of the ionospheric behaviour during the entire recovery phase of strong-to-severe magnetic storms at middle latitudes for nowadays and future modelling and forecasting purposes.

  2. The dynamics of the Venus ionosphere

    NASA Technical Reports Server (NTRS)

    Miller, K. L.

    1988-01-01

    Data from the Pioneer-Venus orbiter has demonstrated the importance of understanding ion dynamics in the Venus ionosphere. The analysis of the data has shown that during solar maximum the topside Venus ionosphere in the dark hemisphere is generated almost entirely on the dayside of the planet during solar maximum, and flows with supersonic velocities across the terminator into the nightside. The flow field in the ionosphere is mainly axially-symmetric about the sun-Venus axis, as are most measured ionospheric quantities. The primary data base used consisted of the ion velocity measurements made by the RPA during three years that periapsis of the orbiter was maintained in the Venus ionosphere. Examples of ion velocities were published and modeled. This research examined the planetary flow patterns measured in the Venus ionosphere, and the physical implications of departures from the mean flow.

  3. Design of an Improved Heater Array to Measure Microscale Wall Heat Transfer

    NASA Technical Reports Server (NTRS)

    Kim, Jungho; Chng, Choon Ping; Kalkur, T. S.

    1996-01-01

    An improved array of microscale heaters is being developed to measure the heat transfer coefficient at many points underneath individual bubbles during boiling as a function of space and time. This heater array enables the local heat transfer from a surface during the bubble growth and departure process to be measured with very high temporal and spatial resolution, and should allow better understanding of the boiling heat transfer mechanisms by pin-pointing when and where in the bubble departure cycle large amounts of wall heat transfer occur. Such information can provide much needed data regarding the important heat transfer mechanisms during the bubble departure cycle, and can serve as benchmarks to validate many of the analytical and numerical models used to simulate boiling. The improvements to the heater array include using a silicon-on-quartz substrate to reduce thermal cross-talk between the heaters, decreased space between the heaters, increased pad sizes on the heaters, and progressive heater sizes. Some results using the present heater array are discussed.

  4. Materials for a Stirling engine heater head

    NASA Technical Reports Server (NTRS)

    Noble, J. E.; Lehmann, G. A.; Emigh, S. G.

    1990-01-01

    Work done on the 25-kW advanced Stirling conversion system (ASCS) terrestrial solar program in establishing criteria and selecting materials for the engine heater head and heater tubes is described. Various mechanisms contributing to incompatibility between materials are identified and discussed. Large thermal gradients, coupled with requirements for long life (60,000 h at temperature) and a large number of heatup and cooldown cycles (20,000) drive the design from a structural standpoint. The pressurized cylinder is checked for creep rupture, localized yielding, reverse plasticity, creep and fatigue damage, and creep ratcheting, in addition to the basic requirements for bust and proof pressure. In general, creep rupture and creep and fatigue interaction are the dominant factors in the design. A wide range of materials for the heater head and tubes was evaluated. Factors involved in the assessment were strength and effect on engine efficiency, reliability, and cost. A preliminary selection of Inconel 713LC for the heater head is based on acceptable structural properties but driven mainly by low cost. The criteria for failure, the structural analysis, and the material characteristics with basis for selection are discussed.

  5. A programmable heater control circuit for spacecraft

    NASA Technical Reports Server (NTRS)

    Nguyen, D. D.; Owen, J. W.; Smith, D. A.; Lewter, W. J.

    1994-01-01

    Spacecraft thermal control is accomplished for many components through use of multilayer insulation systems, electrical heaters, and radiator systems. The heaters are commanded to maintain component temperatures within design specifications. The programmable heater control circuit (PHCC) was designed to obtain an effective and efficient means of spacecraft thermal control. The hybrid circuit provides use of control instrumentation as temperature data, available to the spacecraft central data system, reprogramming capability of the local microprocessor during the spacecraft's mission, and the elimination of significant spacecraft wiring. The hybrid integrated circuit has a temperature sensing and conditioning circuit, a microprocessor, and a heater power and control circuit. The device is miniature and housed in a volume which allows physical integration with the component to be controlled. Applications might include alternate battery-powered logic-circuit configurations. A prototype unit with appropriate physical and functional interfaces was procured for testing. The physical functionality and the feasibility of fabrication of the hybrid integrated circuit were successfully verified. The remaining work to develop a flight-qualified device includes fabrication and testing of a Mil-certified part. An option for completing the PHCC flight qualification testing is to enter into a joint venture with industry.

  6. TOTAL PARTICLE, SULFATE, AND ACIDIC AEROSOL EMISSIONS FROM KEROSENE SPACE HEATERS

    EPA Science Inventory

    Chamber studies were conducted on four unvented kerosene space heaters to assess emissions of total particle, sulfate, and acidic aerosol. The heaters tested represented four burner designs currently in use by the public. Kerosene space heaters are a potential source of fine part...

  7. Precise Heater Controller with rf-Biased Josephson Junctions

    NASA Technical Reports Server (NTRS)

    Green, Colin J.; Sergatskov, Dmitri A.; Duncan, R. V.

    2003-01-01

    Paramagnetic susceptibility thermometers used in fundamental physics experiments are capable of measuring temperature changes with a precision of a part in 2 x 10(exp 10). However, heater controllers are only able to control open-loop power dissipation to about a part in 10(exp 5). We used an array of rf-biased Josephson junctions to precisely control the electrical power dissipation in a heater resistor mounted on a thermally isolated cryogenic platform. Theoretically, this method is capable of controlling the electrical power dissipation to better than a part in 10(exp 12). However, this level has not yet been demonstrated experimentally. The experiment consists of a liquid helium cell that also functions as a high-resolution PdMn thermometer, with a heater resistor mounted on it. The cell is thermally connected to a temperature-controlled cooling stage via a weak thermal link. The heater resistor is electrically connected to the array of Josephson junctions using superconducting wire. An rf-biased array of capacitively shunted Josephson junctions drives the voltage across the heater. The quantized voltage across the resistor is Vn = nf(h/2e), where h is Planck's constant, f is the array biasing frequency, e is the charge of an electron, and n is the integer quantum state of the Josephson array. This results in an electrical power dissipation on the cell of Pn = (Vn)(sup 2/R), where R is the heater resistance. The change of the quantum state of the array changes the power dissipated in the heater, which in turn, results in the change of the cell temperature. This temperature change is compared to the expected values based on the known thermal standoff resistance of the cell from the cooling stage. We will present our initial experimental results and discuss future improvements. This work has been funded by the Fundamental Physics Discipline of the Microgravity Science Office of NASA, and supported by a no-cost equipment loan from Sandia National Laboratories.

  8. Reliability-Based Life Assessment of Stirling Convertor Heater Head

    NASA Technical Reports Server (NTRS)

    Shah, Ashwin R.; Halford, Gary R.; Korovaichuk, Igor

    2004-01-01

    Onboard radioisotope power systems being developed and planned for NASA's deep-space missions require reliable design lifetimes of up to 14 yr. The structurally critical heater head of the high-efficiency Stirling power convertor has undergone extensive computational analysis of operating temperatures, stresses, and creep resistance of the thin-walled Inconel 718 bill of material. A preliminary assessment of the effect of uncertainties in the material behavior was also performed. Creep failure resistance of the thin-walled heater head could show variation due to small deviations in the manufactured thickness and in uncertainties in operating temperature and pressure. Durability prediction and reliability of the heater head are affected by these deviations from nominal design conditions. Therefore, it is important to include the effects of these uncertainties in predicting the probability of survival of the heater head under mission loads. Furthermore, it may be possible for the heater head to experience rare incidences of small temperature excursions of short duration. These rare incidences would affect the creep strain rate and, therefore, the life. This paper addresses the effects of such rare incidences on the reliability. In addition, the sensitivities of variables affecting the reliability are quantified, and guidelines developed to improve the reliability are outlined. Heater head reliability is being quantified with data from NASA Glenn Research Center's accelerated benchmark testing program.

  9. Ionospheric effects of thunderstorms and lightning

    SciTech Connect

    Lay, Erin H.

    2014-02-03

    Tropospheric thunderstorms have been reported to disturb the lower ionosphere (~65-90 km) by convective atmospheric gravity waves and by electromagnetic field changes produced by lightning discharges. However, due to the low electron density in the lower ionosphere, active probing of its electron distribution is difficult, and the various perturbative effects are poorly understood. Recently, we have demonstrated that by using remotely-detected ?me waveforms of lightning radio signals it is possible to probe the lower ionosphere and its fluctuations in a spatially and temporally-resolved manner. Here we report evidence of gravity wave effects on the lower ionosphere originating from the thunderstorm.more » We also report variations in the nighttime ionosphere atop a small thunderstorm and associate the variations with the storm’s electrical activity. Finally, we present a data analysis technique to map ionospheric acoustic waves near thunderstorms.« less

  10. 88. ARAIII. "Petrochem" heater is hoisted over south exterior wall ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    88. ARA-III. "Petro-chem" heater is hoisted over south exterior wall of heater pit in GCRE reactor building (ARA-608). Printing on heater says, "Petro-chem iso-flow furnace; American industrial fabrications, inc." Camera facing north. January 7, 1959. Ineel photo no. 529-124. Photographer: Ken Mansfield. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  11. Temperature limited heater utilizing non-ferromagnetic conductor

    DOEpatents

    Vinegar,; Harold J. , Harris; Kelvin, Christopher [Houston, TX

    2012-07-17

    A heater is described. The heater includes a ferromagnetic conductor and an electrical conductor electrically coupled to the ferromagnetic conductor. The ferromagnetic conductor is positioned relative to the electrical conductor such that an electromagnetic field produced by time-varying current flow in the ferromagnetic conductor confines a majority of the flow of the electrical current to the electrical conductor at temperatures below or near a selected temperature.

  12. Engineering solutions for polymer composites solar water heaters production

    NASA Astrophysics Data System (ADS)

    Frid, S. E.; Arsatov, A. V.; Oshchepkov, M. Yu.

    2016-06-01

    Analysis of engineering solutions aimed at a considerable decrease of solar water heaters cost via the use of polymer composites in heaters construction and solar collector and heat storage integration into a single device representing an integrated unit results are considered. Possibilities of creating solar water heaters of only three components and changing welding, soldering, mechanical treatment, and assembly of a complicate construction for large components molding of polymer composites and their gluing are demonstrated. Materials of unit components and engineering solutions for their manufacturing are analyzed with consideration for construction requirements of solar water heaters. Optimal materials are fiber glass and carbon-filled plastics based on hot-cure thermosets, and an optimal molding technology is hot molding. It is necessary to manufacture the absorbing panel as corrugated and to use a special paint as its selective coating. Parameters of the unit have been optimized by calculation. Developed two-dimensional numerical model of the unit demonstrates good agreement with the experiment. Optimal ratio of daily load to receiving surface area of a solar water heater operating on a clear summer day in the midland of Russia is 130‒150 L/m2. Storage tank volume and load schedule have a slight effect on solar water heater output. A thermal insulation layer of 35‒40 mm is sufficient to provide an efficient thermal insulation of the back and side walls. An experimental model layout representing a solar water heater prototype of a prime cost of 70‒90/(m2 receiving surface) has been developed for a manufacturing volume of no less than 5000 pieces per year.

  13. Representation of the Auroral and Polar Ionosphere in the International Reference Ionosphere (IRI)

    NASA Technical Reports Server (NTRS)

    Bilitza, Dieter; Reinisch, Bodo

    2013-01-01

    This issue of Advances in Space Research presents a selection of papers that document the progress in developing and improving the International Reference Ionosphere (IRI), a widely used standard for the parameters that describe the Earths ionosphere. The core set of papers was presented during the 2010 General Assembly of the Committee on Space Research in Bremen, Germany in a session that focused on the representation of the auroral and polar ionosphere in the IRI model. In addition, papers were solicited and submitted from the scientific community in a general call for appropriate papers.

  14. Using network technology for studying the ionosphere

    NASA Astrophysics Data System (ADS)

    Yasyukevich, Yury; Zhivetiev, Ilya

    2015-09-01

    One of the key problems of ionosphere physics is the coupling between different ionospheric regions. We apply networks technology for studying the coupling of changing ionospheric dynamics in different regions. We used data from global ionosphere maps (GIM) of total electron content (TEC) produced by CODE for 2005-2010. Distribution of cross-correlation function maxima of TEC variations is not simple. This distribution allows us to reveal two levels of ionosphere coupling: "strong" (r>0.9) and "weak" (r>0.72). The ionosphere of the Arctic region upper 50° magnetic latitude is characterized by a "strong" coupling. In the Southern hemisphere, a similar region is bigger. "Weak" coupling is typical for the whole Southern hemisphere. In North America there is an area where TEC dynamics is "strongly" correlated inside and is not correlated with other ionospheric regions.

  15. Ionospheric Profiles from Ultraviolet Remote Sensing

    DTIC Science & Technology

    1997-09-30

    The long-term goal of this project is to obtain ionospheric profiles from ultraviolet remote sensing of the ionosphere from orbiting space platforms... Remote sensing of the nighttime ionosphere is a more straightforward process because of the absence of the complications brought about by daytime

  16. Herbert Easterly auxiliary truck heater. Final technical report

    SciTech Connect

    Not Available

    The objective of this work was to continue the development of the Herbert Easterly heater apparatus for vehicles, such as semi-trailer tractors in order to fully establish its technical feasibility and provide the basis for its commercialization. This heater is auxiliary to the vehicle`s primary heating system. With the engine off it heats both the vehicle engine to a temperature at which it starts easily and the vehicle passenger compartment. Specifically, this heater is automatically ignitable, operates directly from the vehicle diesel fuel supply and preheats the vehicle engine fuel prior to combustion. During the course of this work ninemore » different versions of prototype heaters were designed, constructed and tested. All designs were based on the ideas and principles outlined in the Easterly patent. Each successive version incorporated design and fabrication improvements relative to the previous version. The final version, Prototype 9, utilized a multiple water jacket design to capture additional heat from the combustion gases prior to exhausting to the atmosphere. This final prototype exceeded the performance of a commercially available Webasto DBW-2010 using the same commercial burner as the one used in the Webasto unit. The time required to raise the heater fluid temperature by 120{degree}F was 23% less (20 minutes compared to 26 minutes) for Prototype 9 compared to the commercially available unit. In addition a prototype heat exchanger for preheating engine fuel was designed, fabricated and tested. It was also determined that the Prototype 9 auxiliary heater could operate at 85{degree}F for approximately 6 hours on a fully charged 12 volt marine battery rated to deliver 500 cold cranking amps.« less

  17. Gravity and Heater Size Effects on Pool Boiling Heat Transfer

    NASA Technical Reports Server (NTRS)

    Kim, Jungho; Raj, Rishi

    2014-01-01

    The current work is based on observations of boiling heat transfer over a continuous range of gravity levels between 0g to 1.8g and varying heater sizes with a fluorinert as the test liquid (FC-72/n-perfluorohexane). Variable gravity pool boiling heat transfer measurements over a wide range of gravity levels were made during parabolic flight campaigns as well as onboard the International Space Station. For large heaters and-or higher gravity conditions, buoyancy dominated boiling and heat transfer results were heater size independent. The power law coefficient for gravity in the heat transfer equation was found to be a function of wall temperature under these conditions. Under low gravity conditions and-or for smaller heaters, surface tension forces dominated and heat transfer results were heater size dependent. A pool boiling regime map differentiating buoyancy and surface tension dominated regimes was developed along with a unified framework that allowed for scaling of pool boiling over a wide range of gravity levels and heater sizes. The scaling laws developed in this study are expected to allow performance quantification of phase change based technologies under variable gravity environments eventually leading to their implementation in space based applications.

  18. Martian Ionospheric Observation and Modeling

    NASA Astrophysics Data System (ADS)

    González-Galindo, Francisco

    2018-02-01

    The Martian ionosphere is a plasma embedded within the neutral upper atmosphere of the planet. Its main source is the ionization of the CO2-dominated Martian mesosphere and thermosphere by the energetic EUV solar radiation. The ionosphere of Mars is subject to an important variability induced by changes in its forcing mechanisms (e.g., the UV solar flux) and by variations in the neutral atmosphere (e.g., the presence of global dust storms, atmospheric waves and tides, changes in atmospheric composition, etc.). Its vertical structure is dominated by a maximum in the electron concentration placed at about 120–140 km of altitude, coincident with the peak of the ionization rate. Below, a secondary peak produced by solar X-rays and photoelectron-impact ionization is observed. A sporadic third layer, possibly of meteoric origin, has been also detected below. The most abundant ion in the Martian ionosphere is O2+, although O+ can become more abundant in the upper ionospheric layers. While below about 180–200 km the Martian ionosphere is dominated by photochemical processes, above those altitudes the dynamics of the plasma become more important. The ionosphere is also an important source of escaping particles via processes such as dissociative recombination of ions or ion pickup. So, characterization of the ionosphere provides or can provide information about such disparate systems and processes as the solar radiation getting to the planet, the neutral atmosphere, the meteoric influx, the atmospheric escape to space, or the interaction of the planet with the solar wind. It is thus not surprising that the interest about this region dates from the beginning of the space era. From the first measurements provided by the Mariner 4 mission in the 1960s to the contemporaneous observations, still ongoing, by the Mars Express and MAVEN orbiters, our current knowledge of this atmospheric region is the consequence of the accumulation of more than 50 years of discontinuous

  19. 40 CFR 65.149 - Boilers and process heaters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) A boiler or process heater with a design heat input capacity of 44 megawatts (150 million British... hazardous waste for which the owner or operator meets either of the following requirements: (A) The boiler...). If an owner or operator elects to use a boiler or process heater to replace an existing recovery...

  20. 40 CFR 65.149 - Boilers and process heaters.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) A boiler or process heater with a design heat input capacity of 44 megawatts (150 million British... hazardous waste for which the owner or operator meets either of the following requirements: (A) The boiler...). If an owner or operator elects to use a boiler or process heater to replace an existing recovery...

  1. Beyond the Electrostatic Ionosphere: Dynamic Coupling of the Magnetosphere and Ionosphere

    NASA Astrophysics Data System (ADS)

    Lysak, R. L.; Song, Y.

    2017-12-01

    Many models of magnetospheric dynamics treat the ionosphere as a height-integrated slab in which the electric fields are electrostatic. However, in dynamic situations, the coupling between magnetosphere and ionosphere is achieved by the propagation of shear Alfvén waves. Hall effects lead to a coupling of shear Alfvén and fast mode waves, resulting in an inductive electric field and a compressional component of the magnetic field. It is in fact this compressional magnetic field that is largely responsible for the magnetic fields seen on the ground. A fully inductive ionosphere model is required to describe this situation. The shear Alfvén waves are affected by the strong gradient in the Alfvén speed above the ionosphere, setting up the ionospheric Alfvén resonator with wave periods in the 1-10 second range. These waves develop a parallel electric field on small scales that can produce a broadband acceleration of auroral electrons, which form the Alfvénic aurora. Since these electrons are relatively low in energy (hundreds of eV to a few keV), they produce auroral emissions as well as ionization at higher altitudes. Therefore, they can produce localized columns of ionization that lead to structuring in the auroral currents due to phase mixing or feedback interactions. This implies that the height-integrated description of the ionosphere is not appropriate in these situations. These considerations suggest that the Alfvénic aurora may, at least in some cases, act as a precursor to the development of a quasi-static auroral arc. The acceleration of electrons and ions produces a density cavity at higher altitudes that favors the formation of parallel electric fields. Furthermore, the precipitating electrons will produce secondary and backscattered electrons that provide a necessary population for the formation of double layers. These interactions strongly suggest that the simple electrostatic boundary condition often assumed is inadequate to describe auroral arc

  2. Ionospheric Modelling using GPS to Calibrate the MWA. I: Comparison of First Order Ionospheric Effects between GPS Models and MWA Observations

    NASA Astrophysics Data System (ADS)

    Arora, B. S.; Morgan, J.; Ord, S. M.; Tingay, S. J.; Hurley-Walker, N.; Bell, M.; Bernardi, G.; Bhat, N. D. R.; Briggs, F.; Callingham, J. R.; Deshpande, A. A.; Dwarakanath, K. S.; Ewall-Wice, A.; Feng, L.; For, B.-Q.; Hancock, P.; Hazelton, B. J.; Hindson, L.; Jacobs, D.; Johnston-Hollitt, M.; Kapińska, A. D.; Kudryavtseva, N.; Lenc, E.; McKinley, B.; Mitchell, D.; Oberoi, D.; Offringa, A. R.; Pindor, B.; Procopio, P.; Riding, J.; Staveley-Smith, L.; Wayth, R. B.; Wu, C.; Zheng, Q.; Bowman, J. D.; Cappallo, R. J.; Corey, B. E.; Emrich, D.; Goeke, R.; Greenhill, L. J.; Kaplan, D. L.; Kasper, J. C.; Kratzenberg, E.; Lonsdale, C. J.; Lynch, M. J.; McWhirter, S. R.; Morales, M. F.; Morgan, E.; Prabu, T.; Rogers, A. E. E.; Roshi, A.; Shankar, N. Udaya; Srivani, K. S.; Subrahmanyan, R.; Waterson, M.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.

    2015-08-01

    We compare first-order (refractive) ionospheric effects seen by the MWA with the ionosphere as inferred from GPS data. The first-order ionosphere manifests itself as a bulk position shift of the observed sources across an MWA field of view. These effects can be computed from global ionosphere maps provided by GPS analysis centres, namely the CODE. However, for precision radio astronomy applications, data from local GPS networks needs to be incorporated into ionospheric modelling. For GPS observations, the ionospheric parameters are biased by GPS receiver instrument delays, among other effects, also known as receiver DCBs. The receiver DCBs need to be estimated for any non-CODE GPS station used for ionosphere modelling. In this work, single GPS station-based ionospheric modelling is performed at a time resolution of 10 min. Also the receiver DCBs are estimated for selected Geoscience Australia GPS receivers, located at Murchison Radio Observatory, Yarragadee, Mount Magnet and Wiluna. The ionospheric gradients estimated from GPS are compared with that inferred from MWA. The ionospheric gradients at all the GPS stations show a correlation with the gradients observed with the MWA. The ionosphere estimates obtained using GPS measurements show promise in terms of providing calibration information for the MWA.

  3. Forced convection in vertical Bridgman configuration with the submerged heater

    NASA Astrophysics Data System (ADS)

    Meyer, S.; Ostrogorsky, A. G.

    1997-02-01

    Ga-doped Ge single crystals were grown in vertical Bridgman configuration, using the submerged heater method (SHM). When used without rotation, the submerged heater drastically reduces convection at the solid-liquid interface. When the submerged heater is set in to rotation or oscillatory rotation, it acts as a centrifugal viscous pump, inducing forced convection (radial-inward flow) along the interface. The flow produced by a rotation and oscillatory rotation of the submerged heater was visualized using a 1 : 1 scale model. The vigorous mixing produced by the oscillatory rotation creates a nearly perfectly stirred melt, and yields a uniform lateral distribution of the dopant. The crystals were free of unintentionally produced striae.

  4. Evaluation of Cathode Heater Assembly for 42 GHz, 200 kW Gyrotron

    NASA Astrophysics Data System (ADS)

    Sharma, S. K.; Singh, Narendra Kumar; Singh, Udaybir; Khatun, Hasina; Kumar, Nitin; Alaria, M. K.; Raju, R. S.; Jain, P. K.; Sinha, A. K.

    2014-09-01

    In this paper, the evaluation of cathode-heater assembly of magnetron injection gun (MIG) for 42 GHz, 200 kW gyrotron is presented. The cathode-heater assembly is purchased from M/S SEMICON.The cathode-heater assembly is experimentally studied in three different conditions; in a belljar system, during vacuum processing of MIG and during MIG testing to ensure the required rise of cathode surface temperature for pre-set heater power.

  5. Diesel particulate filter with zoned resistive heater

    DOEpatents

    Gonze, Eugene V [Pinckney, MI

    2011-03-08

    A diesel particulate filter assembly comprises a diesel particulate filter (DPF) and a heater assembly. The DPF filters a particulate from exhaust produced by an engine. The heater assembly has a first metallic layer that is applied to the DPF, a resistive layer that is applied to the first metallic layer, and a second metallic layer that is applied to the resistive layer. The second metallic layer is etched to form a plurality of zones.

  6. Historical overview of HF ionospheric modification research

    SciTech Connect

    Gordon, W.E.; Duncan, L.M.

    1990-10-01

    Radio waves have inadvertently modified the Earth's ionosphere since the Luxembourg observations of Tellegen in 1933 and perhaps since Marconi in 1901. The history of ionospheric modification by radio waves is reviewed, beginning with Marconi, describing the Luxembourg effect and its explanations, and its early use to deduce the properties of the lower ionosphere in the 1930s. The measurements became more sophisticated in the 1950s, leading to the call for high-power high-frequency modification experiments in the upper ionosphere. Beginning in 1970, radio facilities became available of sufficient powers to induce changes in the ionospheric plasma detectable by a wide arraymore » of diagnostic instruments and techniques. A summary of these effects is presented based upon work up to 1990. These studies were originally motivated as a means of better understanding the natural ionosphere using a weak perturbational approach. However, a rich spectrum of nonlinear wave-plasma interactions was quickly discovered and ionospheric modification research became strongly motivated by issues in basic plasma physics. The ionosphere and near-Earth space are now exploited as an exceptional plasma laboratory-without-walls for the study of fundamental plasma processes requiring large spatial or temporal scales. Here we present a brief overview of these processes and phenomena, illustrated using results obtained from the Arecibo ionospheric modification facilities. The lessons learned and phenomena explored thus far offer many opportunities for controlling the ionospheric environment critical to many civilian and military telecommunications systems, both to disrupt systems normally operational and to create new propagation paths otherwise unavailable.« less

  7. Radar soundings of the ionosphere of Mars.

    PubMed

    Gurnett, D A; Kirchner, D L; Huff, R L; Morgan, D D; Persoon, A M; Averkamp, T F; Duru, F; Nielsen, E; Safaeinili, A; Plaut, J J; Picardi, G

    2005-12-23

    We report the first radar soundings of the ionosphere of Mars with the MARSIS (Mars Advanced Radar for Subsurface and Ionosphere Sounding) instrument on board the orbiting Mars Express spacecraft. Several types of ionospheric echoes are observed, ranging from vertical echoes caused by specular reflection from the horizontally stratified ionosphere to a wide variety of oblique and diffuse echoes. The oblique echoes are believed to arise mainly from ionospheric structures associated with the complex crustal magnetic fields of Mars. Echoes at the electron plasma frequency and the cyclotron period also provide measurements of the local electron density and magnetic field strength.

  8. Protection heater design validation for the LARP magnets using thermal imaging

    DOE PAGES

    Marchevsky, M.; Turqueti, M.; Cheng, D. W.; ...

    2016-03-16

    Protection heaters are essential elements of a quench protection scheme for high-field accelerator magnets. Various heater designs fabricated by LARP and CERN have been already tested in the LARP high-field quadrupole HQ and presently being built into the coils of the high-field quadrupole MQXF. In order to compare the heat flow characteristics and thermal diffusion timescales of different heater designs, we powered heaters of two different geometries in ambient conditions and imaged the resulting thermal distributions using a high-sensitivity thermal video camera. We observed a peculiar spatial periodicity in the temperature distribution maps potentially linked to the structure of themore » underlying cable. Two-dimensional numerical simulation of heat diffusion and spatial heat distribution have been conducted, and the results of simulation and experiment have been compared. Imaging revealed hot spots due to a current concentration around high curvature points of heater strip of varying cross sections and visualized thermal effects of various interlayer structural defects. Furthermore, thermal imaging can become a future quality control tool for the MQXF coil heaters.« less

  9. Venusian Earthquakes Detection by Ionospheric Sounding

    NASA Astrophysics Data System (ADS)

    Occhipinti, G.; Lognonne, P.; Garcia, R. F.; Gudkova, T.

    2010-12-01

    Thanks to technological advances over the past fifteen years the ionosphere is now a new medium for seismological investigation. As a consequence of density structure in Venus atmosphere, the coupling between solid and fluid part of Venus induce a more significant atmospheric responce to quakes and volcanic eruptions (Lognonné & Johnson, 2007). Equivalent perturbation induced by internal activity has been detected on Earth through their subsequent ionospheric signature imaged by ionospheric tools (Doppler sounding or GPS) (Lognonné et al., 2006, Occhipinti et al., 2010). The strong solid/atmosphere coupling on Venus (Garcia et al., 2005, 2009), the thin ionospheric layer as well as absence of magnetic field present optimal circumstances for a better detection of these signals on Venus than on Earth. Consequently, ionospheric Doppler sounders on-board orbiters or balloons will provide informations on the infrasonic response of the atmosphere/ionosphere to quakes, and will help to constrain the interior structure of Venus through the solid/atmosphere coupling. With this paper we explore the future mission possibility and constrains.

  10. International reference ionosphere 1990

    NASA Technical Reports Server (NTRS)

    Bilitza, Dieter; Rawer, K.; Bossy, L.; Kutiev, I.; Oyama, K.-I.; Leitinger, R.; Kazimirovsky, E.

    1990-01-01

    The International Reference Ionosphere 1990 (IRI-90) is described. IRI described monthly averages of the electron density, electron temperature, ion temperature, and ion composition in the altitude range from 50 to 1000 km for magnetically quiet conditions in the non-auroral ionosphere. The most important improvements and new developments are summarized.

  11. Modifications of the ionosphere prior to large earthquakes: report from the Ionosphere Precursor Study Group

    NASA Astrophysics Data System (ADS)

    Oyama, K.-I.; Devi, M.; Ryu, K.; Chen, C. H.; Liu, J. Y.; Liu, H.; Bankov, L.; Kodama, T.

    2016-12-01

    The current status of ionospheric precursor studies associated with large earthquakes (EQ) is summarized in this report. It is a joint endeavor of the "Ionosphere Precursor Study Task Group," which was formed with the support of the Mitsubishi Foundation in 2014-2015. The group promotes the study of ionosphere precursors (IP) to EQs and aims to prepare for a future EQ dedicated satellite constellation, which is essential to obtain the global morphology of IPs and hence demonstrate whether the ionosphere can be used for short-term EQ predictions. Following a review of the recent IP studies, the problems and specific research areas that emerged from the one-year project are described. Planned or launched satellite missions dedicated (or suitable) for EQ studies are also mentioned.

  12. Structural Benchmark Testing for Stirling Convertor Heater Heads

    NASA Technical Reports Server (NTRS)

    Krause, David L.; Kalluri, Sreeramesh; Bowman, Randy R.

    2007-01-01

    The National Aeronautics and Space Administration (NASA) has identified high efficiency Stirling technology for potential use on long duration Space Science missions such as Mars rovers, deep space missions, and lunar applications. For the long life times required, a structurally significant design limit for the Stirling convertor heater head is creep deformation induced even under relatively low stress levels at high material temperatures. Conventional investigations of creep behavior adequately rely on experimental results from uniaxial creep specimens, and much creep data is available for the proposed Inconel-718 (IN-718) and MarM-247 nickel-based superalloy materials of construction. However, very little experimental creep information is available that directly applies to the atypical thin walls, the specific microstructures, and the low stress levels. In addition, the geometry and loading conditions apply multiaxial stress states on the heater head components, far from the conditions of uniaxial testing. For these reasons, experimental benchmark testing is underway to aid in accurately assessing the durability of Stirling heater heads. The investigation supplements uniaxial creep testing with pneumatic testing of heater head test articles at elevated temperatures and with stress levels ranging from one to seven times design stresses. This paper presents experimental methods, results, post-test microstructural analyses, and conclusions for both accelerated and non-accelerated tests. The Stirling projects use the results to calibrate deterministic and probabilistic analytical creep models of the heater heads to predict their life times.

  13. The Polar Ionosphere and Interplanetary Field.

    DTIC Science & Technology

    1987-08-01

    model for investigating time dependent behavior of the Polar F-region ionosphere in response to varying interplanetary magnetic field (IMF...conditions. The model has been used to illustrate ionospheric behavior during geomagnetic storms conditions. Future model applications may include...magnetosphere model for investigating time dependent behavior of the polar F-region ionosphere in response to varying interplanetary magnetic field

  14. Mountain Plains Learning Experience Guide: Appliance Repair. Course: Heater-Type Appliances.

    ERIC Educational Resources Information Center

    Ziller, T.

    One of two individualized courses included in an appliance repair curriculum (see CE 027 767), this course covers minor and major heater-type appliances. The course is comprised of six units: (1) Irons, (2) Roasters, (3) Space Heaters, (4) Water Heaters, (5) Electric Ranges, and (6) Gas Ranges. Each unit begins with a Unit Learning Experience…

  15. Flat plate solar air heater with latent heat storage

    NASA Astrophysics Data System (ADS)

    Touati, B.; Kerroumi, N.; Virgone, J.

    2017-02-01

    Our work contains two parts, first is an experimental study of the solar air heater with a simple flow and forced convection, we can use thatlaste oneit in many engineering's sectors as solardrying, space heating in particular. The second part is a numerical study with ansys fluent 15 of the storage of part of this solar thermal energy produced,using latent heat by using phase change materials (PCM). In the experimental parts, we realize and tested our solar air heater in URER.MS ADRAR, locate in southwest Algeria. Where we measured the solarradiation, ambient temperature, air flow, thetemperature of the absorber, glasses and the outlet temperature of the solar air heater from the Sunrise to the sunset. In the second part, we added a PCM at outlet part of the solar air heater. This PCM store a part of the energy produced in the day to be used in peak period at evening by using the latent heat where the PCMs present a grateful storagesystem.A numerical study of the fusion or also named the charging of the PCM using ANSYS Fluent 15, this code use the method of enthalpies to solve the fusion and solidification formulations. Furthermore, to improve the conjugate heat transfer between the heat transfer fluid (Air heated in solar plate air heater) and the PCM, we simulate the effect of adding fins to our geometry. Also, four user define are write in C code to describe the thermophysicalpropriety of the PCM, and the inlet temperature of our geometry which is the temperature at the outflow of the solar heater.

  16. Dual-frequency radio soundings of planetary ionospheres avoid misinterpretations of ionospheric features

    NASA Astrophysics Data System (ADS)

    Paetzold, M.; Andert, T.; Bird, M. K.; Häusler, B.; Hinson, D. P.; Peter, K.; Tellmann, S.

    2017-12-01

    Planetary ionospheres are usually sounded at single frequency, e.g. S-band or X-band, or at dual-frequencies, e.g. simultaneous S-band and X-band frequencies. The differential Doppler is computed from the received dual-frequency sounding and it has the advantage that any residual motion by the spaceraft body is compensated. The electron density profile is derived from the propagation of the two radio signals through the ionospheric plasma. Vibrational motion of small amplitude by the spacecraft body may still be contained in the single frequency residuals and may be translated into electron densities. Examples from Mars Express and Venus Express shall be presented. Cases from other missions shall be presented where wave-like structures in the upper ionosphere may be a misinterpretation.

  17. Investigation of Thermospheric and Ionospheric Changes during Ionospheric Storms with Satellite and Ground-Based Data and Modeling

    NASA Technical Reports Server (NTRS)

    Richards, Philip G.

    2001-01-01

    The purpose of this proposed research is to improve our basic understanding of the causes of ionospheric storm behavior in the midlatitude F region ionosphere. This objective will be achieved by detailed comparisons between ground based measurements of the peak electron density (N(sub m)F(sub 2)), Atmosphere Explorer satellite measurements of ion and neutral composition, and output from the Field Line Interhemispheric Plasma (FLIP) model. The primary result will be a better understanding of changes in the neutral densities and ion chemistry during magnetic storms that will improve our capability to model the weather of the ionosphere which will be needed as a basis for ionospheric prediction. Specifically, this study seeks to answer the following questions: (1) To what extent are negative ionospheric storm phases caused by changes in the atomic to molecular ratio? (2) Are the changes in neutral density ratio due to increased N2, or decreased O, or both? (3) Are there other chemical processes (e.g., excited N2) that increase O+ loss rates during negative storms? (4) Do neutral density altitude distributions differed from hydrostatic equilibrium? (5) Why do near normal nighttime densities often follow daytime depletions of electron density; and (6) Can changes in h(sub m)F2 fully account for positive storm phases? To answer these questions, we plan to combine ground-based and space-based measurements with the aid of our ionospheric model which is ideally suited to this purpose. These proposed studies will lead to a better capability to predict long term ionospheric variability, leading to better predictions of ionospheric weather.

  18. New Model for Ionospheric Irregularities at Mars

    NASA Astrophysics Data System (ADS)

    Keskinen, M. J.

    2018-03-01

    A new model for ionospheric irregularities at Mars is presented. It is shown that wind-driven currents in the dynamo region of the Martian ionosphere can be unstable to the electromagnetic gradient drift instability. This plasma instability can generate ionospheric density and magnetic field irregularities with scale sizes of approximately 15-20 km down to a few kilometers. We show that the instability-driven magnetic field fluctuation amplitudes relative to background are correlated with the ionospheric density fluctuation amplitudes relative to background. Our results can explain recent observations made by the Mars Atmosphere and Volatile EvolutioN spacecraft in the Martian ionosphere dynamo region.

  19. Improved Controllers For Heaters In Toxic-Gas Combustors

    NASA Technical Reports Server (NTRS)

    Wishard, James; Lamb, James; Fortier, Edward; Velasquez, Hugo; Waltman, Doug

    1995-01-01

    Commercial electronic proportional controllers installed in place of mechanical power controllers for electric heaters in toxic-gas combustors at NASA's Jet Propulsion Laboratory. Designed to maintain temperature of heater at preset value by turning power fully on or fully off when temperature falls below or rises above that value, respectively. Solid-state power controllers overcome deficiencies of mechanical power controllers.

  20. Kerosene space heaters--combustion technology and kerosene characteristics

    SciTech Connect

    Kubayashi, k.; I Wasaki, N.

    1984-07-01

    This paper describes kerosene combustion technology. Unvented wick-type kerosene space heaters are very popular in Japan because of their economy and convenience. In recent years new vaporized kerosene burners having premixed combustion systems have been developed to solve some of the problems encountered in the older portable type. Some of the features of the new burners are instantaneous ignition, no vaporizing deposit on the burner and a wide range heating capacity. These new kerosene heaters have four major components: an air supply fan, a fuel supply assembly, a burner assembly and a control assembly. These heaters are designed to bemore » highly reliable, have stable combustion characteristics, yield minimum carbon deposit. Finally, they are simple and inexpensive to operate.« less

  1. An Active Heater Control Concept to Meet IXO Type Mirror Module Thermal-Structural Distortion Requirement

    NASA Technical Reports Server (NTRS)

    Choi, Michael

    2013-01-01

    Flight mirror assemblies (FMAs) of large telescopes, such as the International X-ray Observatory (IXO), have very stringent thermal-structural distortion requirements. The spatial temperature gradient requirement within a FMA could be as small as 0.05 C. Con ventionally, heaters and thermistors are attached to the stray light baffle (SLB), and centralized heater controllers (i.e., heater controller boards located in a large electronics box) are used. Due to the large number of heater harnesses, accommodating and routing them is extremely difficult. The total harness length/mass is very large. This innovation uses a thermally conductive pre-collimator to accommodate heaters and a distributed heater controller approach. It minimizes the harness length and mass, and reduces the problem of routing and accommodating them. Heaters and thermistors are attached to a short (4.67 cm) aluminum portion of the pre-collimator, which is thermally coupled to the SLB. Heaters, which have a very small heater power density, and thermistors are attached to the exterior of all the mirror module walls. The major portion (23.4 cm) of the pre-collimator for the middle and outer modules is made of thin, non-conductive material. It minimizes the view factors from the FMA and heated portion of the precollimator to space. It also minimizes heat conduction from one end of the FMA to the other. Small and multi-channel heater controllers, which have adjustable set points and internal redundancy, are used. They are mounted to the mechanical support structure members adjacent to each module. The IXO FMA, which is 3.3 m in diameter, is an example of a large telescope. If the heater controller boards are centralized, routing and accommodating heater harnesses is extremely difficult. This innovation has the following advantages. It minimizes the length/mass of the heater harness between the heater controllers and heater circuits. It reduces the problem of routing and accommodating the harness on the

  2. Monitoring of ionospheric irregularities with multi-GNSS observations: a new ionosphere activity index and product services

    NASA Astrophysics Data System (ADS)

    Wang, Ningbo; Li, Zishen; Yuan, Yunbin; Yuan, Hong

    2017-04-01

    Key words: Ionospheric irregularity, Rate of TEC (ROT), Rate of ROT index (RROT), GPS and GLONASS The ionospheric irregularities have a strong impact on many applications of Global Navigation Satellite Systems (GNSS) and other space-based radio systems. The rate of ionospheric total electron content (TEC) change index (ROTI, TECu/min), defined as the standard deviation of rate of TEC change (ROT) within a short time (e.g. 5 minutes), has been developed to describe the ionospheric irregularities and associated scintillations. However, ROT parameter may still contain the trend term of ionospheric TEC in spite of small-scale fluctuations. On the basis of single-differenced ROT (dROT) values, we develop a new ionosphere activity index, rate of ROT change index (RROT, TECu/min), to characterize the irregularity degree of the ionosphere. To illustrate the use of the index, we investigated the consistency between ROTI and RROT indexes, through the analysis of GPS data and S4 observations collected at two high-latitude stations of the northern hemisphere. It is confirmed that the correlation coefficients between RROT and S4 are higher than those between ROTI and S4 for the test period, meaning that the proposed RROT index is applicable to monitor the ionospheric irregularities and associated scintillations. RROT index can be easily calculated from dual-frequency GNSS signals (like GPS L1 and L2 carrier phase measurements). On the basis of GPS and GLONASS data provided by the IGS, ARGN, EPN and USCORS tracking networks (more than 1500 stations per day), absolute ROT (AROT), gradient of TEC index (GOTI), ROTI and RROT maps are generated to reflect the ionospheric irregularity activities. These maps are provided in an IONEX-like format on a global scale with a temporal resolution of 15 minutes and a spatial resolution of 5 and 2.5 degrees in longitude and latitude, respectively, and the maps with high spatial resolution (2x2 degrees) are also generated for European, Australia

  3. Generation of Shear Alfvén Waves by Repetitive High Power Microwave Pulses Near the Electron Plasma Frequency - A laboratory study of a ``Virtual Antenna''

    NASA Astrophysics Data System (ADS)

    Wang, Yuhou; Gekelman, Walter; Pribyl, Patrick; van Compernolle, Bart; Papadopoulos, Konstantinos

    2015-11-01

    ELF / ULF waves are important in terrestrial radio communications but difficult to launch using ground-based structures due to their enormous wavelengths. In spite of this generation of such waves by field-aligned ionospheric heating modulation was first demonstrated using the HAARP facility. In the future heaters near the equator will be constructed and laboratory experiments on cross-field wave propagation could be key to the program's success. Here we report a detailed laboratory study conducted on the Large Plasma Device (LaPD) at UCLA. In this experiment, ten rapid pulses of high power microwaves (250 kW X-band) near the plasma frequency were launched transverse to the background field, and were modulated at a variable fraction (0.1-1.0) of fci. Along with bulk electron heating and density modification, the microwave pulses generated a population of fast electrons. The field-aligned current carried by the fast electrons acted as an antenna that radiated shear Alfvén waves. It was demonstrated that a controllable arbitrary frequency (f

  4. 30 CFR 75.341 - Direct-fired intake air heaters.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 75.341 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.341 Direct-fired intake air heaters. (a) If any system used to heat intake air malfunctions, the heaters affected shall switch...

  5. Application of Wuhan Ionospheric Oblique Backscattering Sounding System (WIOBSS) for the investigation of midlatitude ionospheric irregularities

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Zhou, Xiaoming; Qiao, Lei; Gong, Wanlin

    2018-03-01

    An upgrade of Wuhan Ionospheric Backscattering Sounding System (WIOBSS) was developed in 2015. Based on the Universal Serial Bus (USB), and a high performance FPGA, the newly designed WIOBSS has a completely digital structure, which makes it portable and flexible. Two identical WIOBSSs, which were situated at Mile (24.31°N, 103.39°E) and Puer (22.74°N, 101.05°E) respectively, were used to investigate the ionospheric irregularities. The comparisons of group distance, Doppler shift and width between Mile-Puer and Puer-Mile VHF ionospheric propagation paths indicate that the reciprocity of the irregularities is satisfied at midlatitude region. The WIOBSS is robust in the detection of ionospheric irregularities.

  6. Interaction of Titan's ionosphere with Saturn's magnetosphere.

    PubMed

    Coates, Andrew J

    2009-02-28

    Titan is the only Moon in the Solar System with a significant permanent atmosphere. Within this nitrogen-methane atmosphere, an ionosphere forms. Titan has no significant magnetic dipole moment, and is usually located inside Saturn's magnetosphere. Atmospheric particles are ionized both by sunlight and by particles from Saturn's magnetosphere, mainly electrons, which reach the top of the atmosphere. So far, the Cassini spacecraft has made over 45 close flybys of Titan, allowing measurements in the ionosphere and the surrounding magnetosphere under different conditions. Here we review how Titan's ionosphere and Saturn's magnetosphere interact, using measurements from Cassini low-energy particle detectors. In particular, we discuss ionization processes and ionospheric photoelectrons, including their effect on ion escape from the ionosphere. We also discuss one of the unexpected discoveries in Titan's ionosphere, the existence of extremely heavy negative ions up to 10000amu at 950km altitude.

  7. Adding Spatially Correlated Noise to a Median Ionosphere

    NASA Astrophysics Data System (ADS)

    Holmes, J. M.; Egert, A. R.; Dao, E. V.; Colman, J. J.; Parris, R. T.

    2017-12-01

    We describe a process for adding spatially correlated noise to a background ionospheric model, in this case the International Reference Ionosphere (IRI). Monthly median models do a good job describing bulk features of the ionosphere in a median sense. It is well known that the ionosphere almost never actually looks like its median. For the purposes of constructing an Operational System Simulation Experiment, it may be desirable to construct an ionosphere more similar to a particular instant, hour, or day than to the monthly median. We will examine selected data from the Global Ionosphere Radio Observatory (GIRO) database and estimate the amount of variance captured by the IRI model. We will then examine spatial and temporal correlations within the residuals. This analysis will be used to construct a temporal-spatial gridded ionosphere that represents a particular instantiation of those statistics.

  8. Modifying the ionosphere with intense radio waves.

    PubMed

    Utlaut, W F; Cohen, R

    1971-10-15

    The ionospheric modification experiments provide an opportunity to better understand the aeronomy of the natural ionosphere and also afford the control of a naturally occurring plasma, which will make possible further progress in plasma physics. The ionospheric modification by powerful radio waves is analogous to studies of laser and microwave heating of laboratory plasmas (20). " Anomalous" reflectivity effects similar to the observed ionospheric attenuation have already been noted in plasmas modulated by microwaves, and anomalous heating may have been observed in plasmas irradiated by lasers. Contacts have now been established between the workers in these diverse areas, which span a wide range of the electromagnetic spectrum. Perhaps ionospheric modification will also be a valuable technique in radio communications.

  9. SINGLE HEATER TEST FINAL REPORT

    SciTech Connect

    J.B. Cho

    The Single Heater Test is the first of the in-situ thermal tests conducted by the U.S. Department of Energy as part of its program of characterizing Yucca Mountain in Nevada as the potential site for a proposed deep geologic repository for the disposal of spent nuclear fuel and high-level nuclear waste. The Site Characterization Plan (DOE 1988) contained an extensive plan of in-situ thermal tests aimed at understanding specific aspects of the response of the local rock-mass around the potential repository to the heat from the radioactive decay of the emplaced waste. With the refocusing of the Site Characterization Planmore » by the ''Civilian Radioactive Waste Management Program Plan'' (DOE 1994), a consolidated thermal testing program emerged by 1995 as documented in the reports ''In-Situ Thermal Testing Program Strategy'' (DOE 1995) and ''Updated In-Situ Thermal Testing Program Strategy'' (CRWMS M&O 1997a). The concept of the Single Heater Test took shape in the summer of 1995 and detailed planning and design of the test started with the beginning fiscal year 1996. The overall objective of the Single Heater Test was to gain an understanding of the coupled thermal, mechanical, hydrological, and chemical processes that are anticipated to occur in the local rock-mass in the potential repository as a result of heat from radioactive decay of the emplaced waste. This included making a priori predictions of the test results using existing models and subsequently refining or modifying the models, on the basis of comparative and interpretive analyses of the measurements and predictions. A second, no less important, objective was to try out, in a full-scale field setting, the various instruments and equipment to be employed in the future on a much larger, more complex, thermal test of longer duration, such as the Drift Scale Test. This ''shake down'' or trial aspect of the Single Heater Test applied not just to the hardware, but also to the teamwork and cooperation

  10. Four Bed Molecular Sieve - Exploration (4BMS-X) Virtual Heater Design and Optimization

    NASA Technical Reports Server (NTRS)

    Schunk, R. Gregory; Peters, Warren T.; Thomas, John T., Jr.

    2017-01-01

    A 4BMS-X (Four Bed Molecular Sieve - Exploration) design and heater optimization study for CO2 sorbent beds in proposed exploration system architectures is presented. The primary objectives of the study are to reduce heater power and thermal gradients within the CO2 sorbent beds while minimizing channeling effects. Some of the notable changes from the ISS (International Space Station) CDRA (Carbon Dioxide Removal Assembly) to the proposed exploration system architecture include cylindrical beds, alternate sorbents and an improved heater core. Results from both 2D and 3D sorbent bed thermal models with integrated heaters are presented. The 2D sorbent bed models are used to optimize heater power and fin geometry while the 3D models address end effects in the beds for more realistic thermal gradient and heater power predictions.

  11. Design and Implementation of the MSL Cruise Propulsion Tank Heaters

    NASA Technical Reports Server (NTRS)

    Krylo, Robert; Mikhaylov, Rebecca; Cucullu, Gordon; Watkins, Brenda

    2008-01-01

    This slide presentation reviews the design and the implementation of the heaters for the Mars Science Laboratory (MSL). The pressurized tanks store hydrazine that freezes at 2 C, this means that heaters are required to keep the hydrazine and the helium at 36 C for the trip to Mars. Using the TMG software the heat loss was analyzed, and a thermal model simulates a half full tank which yielded a 13W heating requirement for each hemisphere. Views of the design, and the heater are included.

  12. Space Station solar water heater

    NASA Technical Reports Server (NTRS)

    Horan, D. C.; Somers, Richard E.; Haynes, R. D.

    1990-01-01

    The feasibility of directly converting solar energy for crew water heating on the Space Station Freedom (SSF) and other human-tended missions such as a geosynchronous space station, lunar base, or Mars spacecraft was investigated. Computer codes were developed to model the systems, and a proof-of-concept thermal vacuum test was conducted to evaluate system performance in an environment simulating the SSF. The results indicate that a solar water heater is feasible. It could provide up to 100 percent of the design heating load without a significant configuration change to the SSF or other missions. The solar heater system requires only 15 percent of the electricity that an all-electric system on the SSF would require. This allows a reduction in the solar array or a surplus of electricity for onboard experiments.

  13. Ionospheric chemical releases

    NASA Technical Reports Server (NTRS)

    Bernhardt, Paul A.; Scales, W. A.

    1990-01-01

    Ionospheric plasma density irregularities can be produced by chemical releases into the upper atmosphere. F-region plasma modification occurs by: (1) chemically enhancing the electron number density; (2) chemically reducing the electron population; or (3) physically convecting the plasma from one region to another. The three processes (production, loss, and transport) determine the effectiveness of ionospheric chemical releases in subtle and surprising ways. Initially, a chemical release produces a localized change in plasma density. Subsequent processes, however, can lead to enhanced transport in chemically modified regions. Ionospheric modifications by chemical releases excites artificial enhancements in airglow intensities by exothermic chemical reactions between the newly created plasma species. Numerical models were developed to describe the creation and evolution of large scale density irregularities and airglow clouds generated by artificial means. Experimental data compares favorably with theses models. It was found that chemical releases produce transient, large amplitude perturbations in electron density which can evolve into fine scale irregularities via nonlinear transport properties.

  14. Diagnostics of plasma in the ionospheric D-region: detection and study of different ionospheric disturbance types

    NASA Astrophysics Data System (ADS)

    Nina, Aleksandra; Čadež, Vladimir M.; Popović, Luka Č.; Srećković, Vladimir A.

    2017-07-01

    Here we discuss our recent investigations of the ionospheric plasma by using very low and low frequency (VLF/LF) radio waves. We give a review of how to detect different low ionospheric reactions (sudden ionospheric disturbances) to various terrestrial and extra-terrestrial events, show their classification according to intensity and time duration, and present some methods for their detections in time and frequency domains. Investigations of detection in time domain are carried out for intensive long-lasting perturbations induced by solar X-ray flares and for short-lasting perturbations caused by gamma ray bursts. We also analyze time variations of signals used in the low ionospheric monitoring after earthquake events. In addition, we describe a procedure for the detection of acoustic and gravity waves from the VLF/LF signal analysis in frequency domain. The research of the low ionospheric plasma is based on data collected by the VLF/LF receivers located in Belgrade, Serbia. Contribution to the Topical Issue "Physics of Ionized Gases (SPIG 2016)", edited by Goran Poparic, Bratislav Obradovic, Dragana Maric and Aleksandar Milosavljevic.

  15. Power-Stepped HF Cross-Modulation Experiments: Simulations and Experimental Observations

    NASA Astrophysics Data System (ADS)

    Greene, S.; Moore, R. C.

    2014-12-01

    High frequency (HF) cross modulation experiments are a well established means for probing the HF-modified characteristics of the D-region ionosphere. The interaction between the heating wave and the probing pulse depends on the ambient and modified conditions of the D-region ionosphere. Cross-modulation observations are employed as a measure of the HF-modified refractive index. We employ an optimized version of Fejer's method that we developed during previous experiments. Experiments were performed in March 2013 at the High Frequency Active Auroral Research Program (HAARP) observatory in Gakona, Alaska. During these experiments, the power of the HF heating signal incrementally increased in order to determine the dependence of cross-modulation on HF power. We found that a simple power law relationship does not hold at high power levels, similar to previous ELF/VLF wave generation experiments. In this paper, we critically compare these experimental observations with the predictions of a numerical ionospheric HF heating model and demonstrate close agreement.

  16. Performance Study of Fluidized Bed Dryer with Immersed Heater for Paddy Drying

    NASA Astrophysics Data System (ADS)

    Suherman, S.; Azaria, N. F.; Karami, S.

    2018-03-01

    This paper investigated the performance of fluidized bed dryer with immersed heater for paddy drying. The influence of drying temperature and the temperature of immersed heater on drying curve, thermal efficiency, and quality of paddy was investigated. The fixed operating conditions are drying time of 60 minutes, paddy weight of 200 grams and the air velocity of 0.4 m/s. The variables are drying temperature and the temperature immersed heater namely 50, 60, 70, 80, 90 (°C). The results show addition immersed heater will increase drying rates. No constant drying rate was found. Increasing the temperature will decrease the utilized energy. The thermal efficiency decreases with increasing temperature. The increasing temperature and use immersed heater will decrease the residual moisture content, increase damaged and yellow paddy grain, and increase red paddy grain.

  17. Solar Water Heater

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Skylab derived Heating System offers computerized control with an innovative voice synthesizer that literally allows the control unit to talk to the system user. It reports time of day, outside temperature and system temperature, and asks questions as to how the user wants the system programmed. Master Module collects energy from the Sun and either transfers it directly to the home water heater or stores it until needed.

  18. Transmission of the electric fields to the low latitude ionosphere in the magnetosphere-ionosphere current circuit

    NASA Astrophysics Data System (ADS)

    Kikuchi, Takashi; Hashimoto, Kumiko K.

    2016-12-01

    The solar wind energy is transmitted to low latitude ionosphere in a current circuit from a dynamo in the magnetosphere to the equatorial ionosphere via the polar ionosphere. During the substorm growth phase and storm main phase, the dawn-to-dusk convection electric field is intensified by the southward interplanetary magnetic field (IMF), driving the ionospheric DP2 currents composed of two-cell Hall current vortices in high latitudes and Pedersen currents amplified at the dayside equator (EEJ). The EEJ-Region-1 field-aligned current (R1 FAC) circuit is completed via the Pedersen currents in midlatitude. On the other hand, the shielding electric field and the Region-2 FACs develop in the inner magnetosphere, tending to cancel the convection electric field at the mid-equatorial latitudes. The shielding often causes overshielding when the convection electric field reduces substantially and the EEJ is overcome by the counter electrojet (CEJ), leading to that even the quasi-periodic DP2 fluctuations are contributed by the overshielding as being composed of the EEJ and CEJ. The overshielding develop significantly during substorms and storms, leading to that the mid and low latitude ionosphere is under strong influence of the overshielding as well as the convection electric fields. The electric fields on the day- and night sides are in opposite direction to each other, but the electric fields in the evening are anomalously enhanced in the same direction as in the day. The evening anomaly is a unique feature of the electric potential distribution in the global ionosphere. DP2-type electric field and currents develop during the transient/short-term geomagnetic disturbances like the geomagnetic sudden commencements (SC), which appear simultaneously at high latitude and equator within the temporal resolution of 10 s. Using the SC, we can confirm that the electric potential and currents are transmitted near-instantaneously to low latitude ionosphere on both day- and night

  19. Remote Sensing of Ionosphere by IONOLAB Group

    NASA Astrophysics Data System (ADS)

    Arikan, Feza

    2016-07-01

    Ionosphere is a temporally and spatially varying, dispersive, anisotropic and inhomogeneous medium that is characterized primarily by its electron density distribution. Electron density is a complex function of spatial and temporal variations of solar, geomagnetic, and seismic activities. Ionosphere is the main source of error for navigation and positioning systems and satellite communication. Therefore, characterization and constant monitoring of variability of the ionosphere is of utmost importance for the performance improvement of these systems. Since ionospheric electron density is not a directly measurable quantity, an important derivable parameter is the Total Electron Content (TEC), which is used widely to characterize the ionosphere. TEC is proportional to the total number of electrons on a line crossing the atmosphere. IONOLAB is a research group is formed by Hacettepe University, Bilkent University and Kastamonu University, Turkey gathered to handle the challenges of the ionosphere using state-of-the-art remote sensing and signal processing techniques. IONOLAB group provides unique space weather services of IONOLAB-TEC, International Reference Ionosphere extended to Plasmasphere (IRI-Plas) model based IRI-Plas-MAP, IRI-Plas-STEC and Online IRI-Plas-2015 model at www.ionolab.org. IONOLAB group has been working for imaging and monitoring of ionospheric structure for the last 15 years. TEC is estimated from dual frequency GPS receivers as IONOLAB-TEC using IONOLAB-BIAS. For high spatio-temporal resolution 2-D imaging or mapping, IONOLAB-MAP algorithm is developed that uses automated Universal Kriging or Ordinary Kriging in which the experimental semivariogram is fitted to Matern Function with Particle Swarm Optimization (PSO). For 3-D imaging of ionosphere and 1-D vertical profiles of electron density, state-of-the-art IRI-Plas model based IONOLAB-CIT algorithm is developed for regional reconstruction that employs Kalman Filters for state

  20. Ground-based observations and simulation of ionospheric VLF source in experiments on modification of the polar ionosphere

    NASA Astrophysics Data System (ADS)

    Lebed', O. M.; Fedorenko, Yu. V.; Blagoveshchenskaya, N. F.; Larchenko, A. V.; Grigor'ev, V. F.; Pil'gaev, S. V.

    2017-11-01

    The phase velocities of TE and TEM waves at frequencies of 1017 and 3017 Hz, as well as the effect of precipitations during auroras on the velocities, are estimated in the Earth-ionosphere waveguide on the basis of observations of electromagnetic fields of an ionospheric source in experiments on modification of the lower ionosphere by a modulated high-power short-wave signals performed by the Arctic and Antarctic Research Institute (AARI) at the EISCAT/Heating test bench in October 2016. Probable electron density profiles in the plane-stratified ionosphere are retrieved from the numerical solution of a wave equation, which are used for the calculation of the phase velocities close to measured ones.

  1. A clear link connecting the troposphere and ionosphere: ionospheric reponses to the 2015 Typhoon Dujuan

    NASA Astrophysics Data System (ADS)

    Kong, Jian; Yao, Yibin; Xu, Yahui; Kuo, Chungyen; Zhang, Liang; Liu, Lei; Zhai, Changzhi

    2017-09-01

    The global navigation satellite system (GNSS) total electron content (TEC) sequences were used to capture the arrival time and location of the ionosphere disturbances in response to the 2015 Typhoon Dujuan. After removing the de-trended TEC variation, the clear ionosphere disturbances on the typhoon landing day could be distinguished, and these disturbances disappeared from the TEC sequences before and after the typhoon landing day. The foF2 data observed by Xiamen ionosonde station also show ionosphere disturbances. Based on the advantages of GNSS multi-point observations, the disturbances horizontal velocity in the ionosphere were estimated according to the linear theory for a dispersion relation of acoustic gravity waves (AGWs) in an isothermal atmosphere. The average horizontal velocity (˜ 240 m/s) and the radial velocity (˜ 287 m/s) were used in the two-dimensional grid search for the origin point on the Earth's surface. The origin area was determined to be on the eastern side of Taiwan. Lastly, a possible physical mechanism is discussed in this study. When typhoons land on Taiwan, the severe convective storms and the drag effect from the Central Mountains create an ideal location for development of AGWs. Topographic conditions, like the high lapse rate, contribute to the formation of AGWs, which then propagates into the ionosphere altitude.

  2. Variable pixel size ionospheric tomography

    NASA Astrophysics Data System (ADS)

    Zheng, Dunyong; Zheng, Hongwei; Wang, Yanjun; Nie, Wenfeng; Li, Chaokui; Ao, Minsi; Hu, Wusheng; Zhou, Wei

    2017-06-01

    A novel ionospheric tomography technique based on variable pixel size was developed for the tomographic reconstruction of the ionospheric electron density (IED) distribution. In variable pixel size computerized ionospheric tomography (VPSCIT) model, the IED distribution is parameterized by a decomposition of the lower and upper ionosphere with different pixel sizes. Thus, the lower and upper IED distribution may be very differently determined by the available data. The variable pixel size ionospheric tomography and constant pixel size tomography are similar in most other aspects. There are some differences between two kinds of models with constant and variable pixel size respectively, one is that the segments of GPS signal pay should be assigned to the different kinds of pixel in inversion; the other is smoothness constraint factor need to make the appropriate modified where the pixel change in size. For a real dataset, the variable pixel size method distinguishes different electron density distribution zones better than the constant pixel size method. Furthermore, it can be non-chided that when the effort is spent to identify the regions in a model with best data coverage. The variable pixel size method can not only greatly improve the efficiency of inversion, but also produce IED images with high fidelity which are the same as a used uniform pixel size method. In addition, variable pixel size tomography can reduce the underdetermined problem in an ill-posed inverse problem when the data coverage is irregular or less by adjusting quantitative proportion of pixels with different sizes. In comparison with constant pixel size tomography models, the variable pixel size ionospheric tomography technique achieved relatively good results in a numerical simulation. A careful validation of the reliability and superiority of variable pixel size ionospheric tomography was performed. Finally, according to the results of the statistical analysis and quantitative comparison, the

  3. Preface: International Reference Ionosphere - Progress in Ionospheric Modelling

    NASA Technical Reports Server (NTRS)

    Bilitza Dieter; Reinisch, Bodo

    2010-01-01

    The international reference ionosphere (lRI) is the internationally recommended empirical model for the specification of ionospheric parameters supported by the Committee on Space Research (COSPAR) and the International Union of Radio Science (URSI) and recognized by the International Standardization Organization (ISO). IRI is being continually improved by a team of international experts as new data become available and better models are being developed. This issue chronicles the latest phase of model updates as reported during two IRI-related meetings. The first was a special session during the Scientific Assembly of the Committee of Space Research (COSPAR) in Montreal, Canada in July 2008 and the second was an IRI Task Force Activity at the US Air Force Academy in Colorado Springs in May 2009. This work led to several improvements and additions of the model which will be included in the next version, IRI-201O. The issue is divided into three sections focusing on the improvements made in the topside ionosphere, the F-peak, and the lower ionosphere, respectively. This issue would not have been possible without the reviewing efforts of many individuals. Each paper was reviewed by two referees. We thankfully acknowledge the contribution to this issue made by the following reviewers: Jacob Adeniyi, David Altadill, Eduardo Araujo, Feza Arikan, Dieter Bilitza, Jilijana Cander, Bela Fejer, Tamara Gulyaeva, Manuel Hermindez-Pajares, Ivan Kutiev, John MacDougal, Leo McNamara, Bruno Nava, Olivier Obrou, Elijah Oyeyemi, Vadym Paznukhov, Bodo Reinisch, John Retterer, Phil Richards, Gary Sales, J.H. Sastri, Ludger Scherliess, Iwona Stanislavska, Stamir Stankov, Shin-Yi Su, Manlian Zhang, Y ongliang Zhang, and Irina Zakharenkova. We are grateful to Peggy Ann Shea for her final review and guidance as the editor-in-chief for special issues of Advances in Space Research. We thank the authors for their timely submission and their quick response to the reviewer comments and humbly

  4. 49 CFR 393.77 - Heaters.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS PARTS AND ACCESSORIES NECESSARY FOR SAFE OPERATION Miscellaneous Parts and Accessories § 393.77 Heaters. On every motor vehicle, every...

  5. 49 CFR 393.77 - Heaters.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Other Regulations Relating to Transportation (Continued) FEDERAL MOTOR CARRIER SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION FEDERAL MOTOR CARRIER SAFETY REGULATIONS PARTS AND ACCESSORIES NECESSARY FOR SAFE OPERATION Miscellaneous Parts and Accessories § 393.77 Heaters. On every motor vehicle, every...

  6. Ionospheric Specifications for SAR Interferometry (ISSI)

    NASA Technical Reports Server (NTRS)

    Pi, Xiaoqing; Chapman, Bruce D; Freeman, Anthony; Szeliga, Walter; Buckley, Sean M.; Rosen, Paul A.; Lavalle, Marco

    2013-01-01

    The ISSI software package is designed to image the ionosphere from space by calibrating and processing polarimetric synthetic aperture radar (PolSAR) data collected from low Earth orbit satellites. Signals transmitted and received by a PolSAR are subject to the Faraday rotation effect as they traverse the magnetized ionosphere. The ISSI algorithms combine the horizontally and vertically polarized (with respect to the radar system) SAR signals to estimate Faraday rotation and ionospheric total electron content (TEC) with spatial resolutions of sub-kilometers to kilometers, and to derive radar system calibration parameters. The ISSI software package has been designed and developed to integrate the algorithms, process PolSAR data, and image as well as visualize the ionospheric measurements. A number of tests have been conducted using ISSI with PolSAR data collected from various latitude regions using the phase array-type L-band synthetic aperture radar (PALSAR) onboard Japan Aerospace Exploration Agency's Advanced Land Observing Satellite mission, and also with Global Positioning System data. These tests have demonstrated and validated SAR-derived ionospheric images and data correction algorithms.

  7. Metrology and ionospheric observation standards

    NASA Astrophysics Data System (ADS)

    Panshin, Evgeniy; Minligareev, Vladimir; Pronin, Anton

    Accuracy and ionospheric observation validity are urgent trends nowadays. WMO, URSI and national metrological and standardisation services bring forward requirements and descriptions of the ionospheric observation means. Researches in the sphere of metrological and standardisation observation moved to the next level in the Russian Federation. Fedorov Institute of Applied Geophysics (IAG) is in charge of ionospheric observation in the Russian Federation and the National Technical Committee, TC-101 , which was set up on the base of IAG- of the standardisation in the sphere. TC-101 can be the platform for initiation of the core international committee in the network of ISO The new type of the ionosounde “Parus-A” is engineered, which is up to the national requirements. “Parus-A” calibration and test were conducted by National metrological Institute (NMI) -D.I. Mendeleyev Institute for Metrology (VNIIM), signed CIMP MRA in 1991. VNIIM is a basic NMI in the sphere of Space weather (including ionospheric observations), the founder of which was celebrated chemist and metrologist Dmitriy I. Mendeleyev. Tests and calibration were carried out for the 1st time throughout 50-year-history of ionosonde exploitation in Russia. The following metrological characteristics were tested: -measurement range of radiofrequency time delay 0.5-10 ms; -time measurement inaccuracy of radio- frequency pulse ±12mcs; -frequency range of radio impulse 1-20 MHz ; -measurement inaccuracy of radio impulse carrier frequency± 5KHz. For example, the sound impulse simulator that was built-in in the ionosounde was used for measurement range of radiofrequency time delay testing. The number of standards on different levels is developed. - “Ionospheric observation guidance”; - “The Earth ionosphere. Terms and definitions”.

  8. Ionospheric convection driven by NBZ currents

    NASA Technical Reports Server (NTRS)

    Rasmussen, C. E.; Schunk, R. W.

    1987-01-01

    Computer simulations of Birkeland currents and electric fields in the polar ionosphere during periods of northward IMF were conducted. When the IMF z component is northward, an additional current system, called the NBZ current system, is present in the polar cap. These simulations show the effect of the addition of NBZ currents on ionospheric convection, particularly in the polar cap. When the total current in the NBZ system is roughly 25 to 50 percent of the net region 1 and 2 currents, convection in the central portion of the polar cap reverses direction and turns sunward. This creates a pattern of four-cell convection with two small cells located in the polar cap, rotating in an opposite direction from the larger cells. When the Birkeland currents are fixed (constant current source), the electric field is reduced in regions of relatively high conductivity, which affects the pattern of ionospheric convection. Day-night asymmetries in conductivity change convection in such a way that the two polar-cap cells are located within the large dusk cell. When ionospheric convection is fixed (constant voltage source), Birkeland currents are increased in regions of relatively high conductivity. Ionospheric currents, which flow horizontally to close the Birkeland currents, are changed appreciably by the NBZ current system. The principal effect is an increase in ionospheric current in the polar cap.

  9. 73. SECOND FLOOR, HEATER ROOM, BAY 31/5 SOUTH, WITH FANFORCED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    73. SECOND FLOOR, HEATER ROOM, BAY 31/5 SOUTH, WITH FAN-FORCED HOT AIR HEATER; TO SOUTHEAST - Ford Motor Company Edgewater Assembly Plant, Assembly Building, 309 River Road, Edgewater, Bergen County, NJ

  10. Heater head for stirling engine

    DOEpatents

    Corey, John A.

    1985-07-09

    A monolithic heater head assembly which augments cast fins with ceramic inserts which narrow the flow of combustion gas and obtains high thermal effectiveness with the assembly including an improved flange design which gives greater durability and reduced conduction loss.

  11. Household wood heater usage and indoor leakage of BTEX in Launceston, Australia: A null result

    NASA Astrophysics Data System (ADS)

    Galbally, Ian E.; Gillett, Robert W.; Powell, Jennifer C.; Lawson, Sarah J.; Bentley, Simon T.; Weeks, Ian A.

    A study has been conducted in Launceston, Australia, to determine within households with wood heaters the effect of leakage from the heater and flue on the indoor air concentrations of the pollutants: benzene, toluene, ethylbenzene and xylene (BTEX). The study involved three classes: 28 households without wood heaters, 19 households with wood heaters compliant with the relevant Australian Standard and 30 households with non-compliant wood heaters. Outdoor and indoor BTEX concentrations were measured in each household for 7 days during summer when there was little or no wood heater usage, and for 7 days during winter when there was widespread wood heater usage. Each participant kept a household activity diary throughout their sampling periods. For wintertime, there were no significant differences of the indoor BTEX concentrations between the three classes of households. Also there were no significant relationships between BTEX indoor concentrations within houses and several measures of the amount of wood heater use within these houses. For the households sampled in this study, the use of a wood heater within a house did not lead to BTEX release within that house and had no direct detectable influence on the concentrations of BTEX within the house. We propose that the pressure differences associated with the both the leakiness or permeability of the building envelope and the draught of the wood heater have key roles in determining whether there will be backflow of smoke from the wood heater into the house. For a leaky house with a well maintained wood heater there should be no backflow of smoke from the wood heater into the house. However backflow of smoke may occur in well sealed houses. The study also found that wood heater emissions raise the outdoor concentrations of BTEX in winter in Launceston and through the mixing of outdoor air through the building envelopes into the houses, these emissions contribute to increases in the indoor concentrations of BTEX in

  12. New SuperDARN Radar Capabilities for Observing Ionospheric Plasma Convection and ITM Coupling in the Mid-Latitude Ionosphere

    NASA Astrophysics Data System (ADS)

    Ruohoniemi, J. M.; Baker, J. B.; Greenwald, R. A.; Clausen, L. B.; Shepherd, S. G.; Bristow, W. A.; Talaat, E. R.; Barnes, R. J.

    2010-12-01

    Within the past year the first pair of SuperDARN radars funded under the NSF MSI program has become operational at a site near Hays, Kansas. The fields of view of the co-located radars are oriented to provide common-volume observations with two existing radars in Virginia (Wallops, Blackstone) and two MSI radars under construction in Oregon (Christmas Valley). The emerging mid-latitude radar chain will complement the existing SuperDARN coverage at polar cap and auroral latitudes within North America. The mid-latitude radars observe the expansion of auroral effects during disturbed periods, subauroral polarization streams, and small-scale ionospheric irregularities on the nightside that open a window on the plasma drifts and electric fields of the quiet-time subauroral ionosphere. They also measure neutral winds at mesospheric heights and the propagation of ionospheric disturbances due to the passage of atmospheric gravity waves. The new radar capabilities provide unprecedented views of ITM processes in the subauroral ionosphere with applications to studies of ionospheric electric fields, ion-neutral coupling, atmospheric tides and planetary waves, ionospheric plasma structuring and plasma instability. In this talk we describe the new capabilities and the potential for providing large-scale context for related ITM measurements over North America. We present the first high-resolution two-dimensional maps of ionospheric plasma convection at mid-latitudes as generated from common-volume observations with the Hays and Blackstone radars.

  13. Performance Evaluation of Point-of-Use Water Heaters.

    DTIC Science & Technology

    1980-10-15

    AD-AG91 843 , JOHNS - MANVILLE SALES CORP DENVER CO RESEARCH AND OEV--ETC F/6 13/1 PERFORMANCE EVALUATION OF POINT-OF-USE WATER HEATERS.(U) OCT AG P B...POINT-OF-USE WATER HEATERS P. B. SHEPHERD JOHNS - MANVILLE SALES CORPORATION RESEARCH & DEVELOPMENT CENTER KEN-CARYL RANCH, DENVER, COLORADO 80217 15...literature survey was conducted by Ms. Suzanne D.A. Graham who is on the Corporate Information Center staff of the Johns - Manville Research & Development

  14. Feedback regulated induction heater for a flowing fluid

    DOEpatents

    Migliori, Albert; Swift, Gregory W.

    1985-01-01

    A regulated induction heater for heating a stream of flowing fluid to a predetermined desired temperature. The heater includes a radiofrequency induction coil which surrounds a glass tube through which the fluid flows. A heating element consisting of a bundle of approximately 200 stainless steel capillary tubes located within the glass tube couples the output of the induction coil to the fluid. The temperature of the fluid downstream from the heating element is sensed with a platinum resistance thermometer, the output of which is applied to an adjustable proportional and integral feedback control circuit which regulates the power applied to the induction coil. The heater regulates the fluid temperature to within 0.005.degree. C. at a flow rate of 50 cm.sup.3 /second with a response time of less than 0.1 second, and can accommodate changes in heat load up to 1500 watts.

  15. Feedback regulated induction heater for a flowing fluid

    DOEpatents

    Migliori, A.; Swift, G.W.

    1984-06-13

    A regulated induction heater for heating a stream of flowing fluid to a predetermined desired temperature. The heater includes a radiofrequency induction coil which surrounds a glass tube through which the fluid flows. A heating element consisting of a bundle of approximately 200 stainless steel capillary tubes located within the glass tube couples the output of the induction coil to the fluid. The temperature of the fluid downstream from the heating element is sensed with a platinum resistance thermometer, the output of which is applied to an adjustable porportional and integral feedback control circuit which regulates the power applied to the induction coil. The heater regulates the fluid temperature to within 0.005/sup 0/C at a flow rate of 50 cm/sup 3//sec with a response time of less than 0.1 second, and can accommodate changes in heat load up to 1500 watts.

  16. In-Situ Tuff Water Migration/Heater Experiment: posttest thermal analysis

    SciTech Connect

    Eaton, R.R.; Johnstone, J.K.; Nunziato, J.W.

    This report describes posttest laboratory experiments and thermal computations for the In-Situ Tuff Water Migration/Heater Experiment that was conducted in Grouse Canyon Welded Tuff in G-Tunnel, Nevada Test Site. Posttest laboratory experiments were designed to determine the accuracy of the temperatures measured by the rockwall thermocouples during the in-situ test. The posttest laboratory experiments showed that the measured in-situ rockwall temperatures were 10 to 20{sup 0}C higher than the true rockwall temperatures. The posttest computational results, obtained with the thermal conduction code COYOTE, were compared with the experimentally obtained data and with calculated pretest results. Daily heater output power fluctuationsmore » (+-4%) caused by input power line variations and the sensitivity of temperature to heater output power required care in selecting the average heater output power values used in the code. The posttest calculated results compare reasonably well with the experimental data. 10 references, 14 figures, 5 tables.« less

  17. Magnetospheric-ionospheric Poynting flux

    NASA Technical Reports Server (NTRS)

    Thayer, Jeffrey P.

    1994-01-01

    Over the past three years of funding SRI, in collaboration with the University of Texas at Dallas, has been involved in determining the total electromagnetic energy flux into the upper atmosphere from DE-B electric and magnetic field measurements and modeling the electromagnetic energy flux at high latitudes, taking into account the coupled magnetosphere-ionosphere system. This effort has been very successful in establishing the DC Poynting flux as a fundamental quantity in describing the coupling of electromagnetic energy between the magnetosphere and ionosphere. The DE-B satellite electric and magnetic field measurements were carefully scrutinized to provide, for the first time, a large data set of DC, field-aligned, Poynting flux measurement. Investigations describing the field-aligned Poynting flux observations from DE-B orbits under specific geomagnetic conditions and from many orbits were conducted to provide a statistical average of the Poynting flux distribution over the polar cap. The theoretical modeling effort has provided insight into the observations by formulating the connection between Poynting's theorem and the electromagnetic energy conversion processes that occur in the ionosphere. Modeling and evaluation of these processes has helped interpret the satellite observations of the DC Poynting flux and improved our understanding of the coupling between the ionosphere and magnetosphere.

  18. Excitation thresholds of field-aligned irregularities and associated ionospheric hysteresis at very high latitudes observed using SPEAR-induced HF radar backscatter

    NASA Astrophysics Data System (ADS)

    Wright, D. M.; Dhillon, R. S.; Yeoman, T. K.; Robinson, T. R.; Thomas, E. C.; Baddeley, L. J.; Imber, S.

    2009-07-01

    On 10 October 2006 the SPEAR high power radar facility was operated in a power-stepping mode where both CUTLASS radars were detecting backscatter from the SPEAR-induced field-aligned irregularities (FAIs). The effective radiated power of SPEAR was varied from 1-10 MW. The aim of the experiment was to investigate the power thresholds for excitation (Pt) and collapse (Pc) of artificially-induced FAIs in the ionosphere over Svalbard. It was demonstrated that FAI could be excited by a SPEAR ERP of only 1 MW, representing only 1/30th of SPEAR's total capability, and that once created the irregularities could be maintained for even lower powers. The experiment also demonstrated that the very high latitude ionosphere exhibits hysteresis, where the down-going part of the power cycle provided a higher density of irregularities than for the equivalent part of the up-going cycle. Although this second result is similar to that observed previously by CUTLASS in conjunction with the Tromsø heater, the same is not true for the equivalent incoherent scatter measurements. The EISCAT Svalbard Radar (ESR) failed to detect any hysteresis in the plasma parameters over Svalbard in stark contract with the measurements made using the Tromsø UHF.

  19. International Reference Ionosphere -2010

    NASA Astrophysics Data System (ADS)

    Bilitza, Dieter; Reinisch, Bodo

    The International Reference Ionosphere 2010 includes several important improvements and ad-ditions. This presentation introduces these changes and discusses their benefits. The electron and ion density profiles for the bottomside ionosphere will be significantly improved by using more ionosonde data as well as photochemical considerations. As an additional lower iono-sphere parameter IRI-2010 will include the transition height from molecular to cluster ions. At the F2 peak Neural Net models for the peak density and the propagation factor M3000F2, which is related to the F2 peak height, are introduced as new options. At high latitudes the model will benefit from the introduction of auroral oval boundaries and their variation with magnetic activity. Regarding the electron temperature, IRI-2010 now models variations with solar activity. The homepage for the IRI project is at http://IRI.gsfc.nasa.gov/.

  20. Impact of kerosene heater usage on indoor NO/sub 2/ exposures in 50 East Tennessee homes

    SciTech Connect

    Dudney, C.S.; Hawthorne, A.R.; Monar, K.P.

    1988-01-01

    As part of a study of indoor air quality in 300 houses in Roane County, Tennessee, a special study was made on kerosene heater usage and indoor pollutant levels, with emphasis on NO/sub 2/. Owners of 45 homes with kerosene heaters deployed pairs of passive NO/sub 2/ monitors on a weekly basis for ten weeks and recorded the weekly amount of heater use. Without correcting for house-specific factors, such as air exchange rate, indoor NO/sub 2/ levels were found to increase about 0.3 ppB per h/week of homeowner-reported heater use. In the absence of heater use, NO/sub 2/ levels weremore » about 10 ppB in houses with and without kerosene heaters. In four houses with kerosene heaters and one house without, continuous measurements were made of NO, NO/sub x/, SO/sub 2/, and CO. CO and SO/sub 2/ levels increased threefold and tenfold, respectively, when the heater was operated compared to when it was off. Mean SO/sub 2/ levels during heater operation were 57, 46, and 110 ppB in three houses with radiant heaters and 13.5 ppB in one house with a convective heater. 5 refs., 8 figs., 3 tabs.« less

  1. INSIGHT (interaction of low-orbiting satellites with the surrounding ionosphere and thermosphere)

    NASA Astrophysics Data System (ADS)

    Schlicht, Anja; Reussner, Elisabeth; Lühr, Hermann; Stolle, Claudia; Xiong, Chao; Schmidt, Michael; Blossfeld, Mathis; Erdogan, Eren; Pancetta, Francesca; Flury, Jakob

    2016-04-01

    In the framework of the DFG special program "Dynamic Earth" the project INSIGHT, started in September 2015, is studying the interactions between the ionosphere and thermosphere as well as the role of the satellites and their instruments in observing the space environment. Accelerometers on low-Earth orbiters (LEOs) are flown to separate non-gravitational forces acting on the satellite from influences of gravitational effects. Amongst others these instruments provide valuable information for improving our understanding of thermospheric properties like densities and winds. An unexpected result, for example, is the clear evidence of geomagnetic field control on the neutral upper atmosphere. The charged particles of the ionosphere act as mediators between the magnetic field and the thermosphere. In the framework of INSIGHT the climatology of the thermosphere will be established and the coupling between the ionosphere and thermosphere is studied. There are indications that the accelerometers are influenced by systematic errors not identified up to now. For GRACE it is one of the discussed reasons, why this mission so far did not reach the baseline accuracy. Beutler et al. 2010 discussed the limited use of the GRACE accelerometer measurements in comparison to stochastic pulses in gravity field recovery. Analysis of the accelerometer measurements show many structures in the high frequency region which can be traced back to switching processes of electric circuits in the spacecraft, like heater and magnetic torquer switching, or so called twangs, which can be associated with discharging of non-conducting surfaces of the satellite. As all observed signals have the same time dependency a common origin is very likely, namely the coupling of time variable electric currents into the accelerometer signal. In GOCE gravity field gradients non-gravitational signatures around the magnetic poles are found indicating that even at lower frequencies problems occur. INSIGHT will identify

  2. Assessment of a Hybrid Retrofit Gas Water Heater

    SciTech Connect

    Hoeschele, Marc; Weitzel, Elizabeth; Backman, Christine

    2017-02-28

    This project completed a modeling evaluation of a hybrid gas water heater that combines a reduced capacity tankless unit with a downsized storage tank. This product would meet a significant market need by providing a higher efficiency gas water heater solution for retrofit applications while maintaining compatibility with the 1/2 inch gas lines and standard B vents found in most homes. The TRNSYS simulation tool was used to model a base case 0.60 EF atmospheric gas storage water, a 0.82 EF non-condensing gas tankless water heater, an existing (high capacity) hybrid unit on the market, and an alternative hybrid unitmore » with lower storage volume and reduced gas input requirements. Simulations were completed under a 'peak day' sizing scenario with 183 gpd hot water loads in a Minnesota winter climate case. Full-year simulations were then completed in three climates (ranging from Phoenix to Minneapolis) for three hot water load scenarios (36, 57, and 96 gpd). Model projections indicate that the alternative hybrid offers an average 4.5% efficiency improvement relative to the 0.60 EF gas storage unit across all scenarios modeled. The alternative hybrid water heater evaluated does show promise, but the current low cost of natural gas across much of the country and the relatively small incremental efficiency improvement poses challenges in initially building a market demand for the product.« less

  3. Welding shield for coupling heaters

    DOEpatents

    Menotti, James Louis

    2010-03-09

    Systems for coupling end portions of two elongated heater portions and methods of using such systems to treat a subsurface formation are described herein. A system may include a holding system configured to hold end portions of the two elongated heater portions so that the end portions are abutted together or located near each other; a shield for enclosing the end portions, and one or more inert gas inlets configured to provide at least one inert gas to flush the system with inert gas during welding of the end portions. The shield may be configured to inhibit oxidation during welding that joins the end portions together. The shield may include a hinged door that, when closed, is configured to at least partially isolate the interior of the shield from the atmosphere. The hinged door, when open, is configured to allow access to the interior of the shield.

  4. Ionospheric Profiles from Ultraviolet Remote Sensing

    DTIC Science & Technology

    1998-01-01

    remote sensing of the ionosphere from orbiting space platforms. Remote sensing of the nighttime ionosphere is a relatively straightforward process due to the absence of the complications brought about by daytime solar radiation. Further, during the nighttime hours, the O(+)-H(+) transition level in both the mid- and low-latitude ionospheres lies around 750 km, which is within the range of accuracy of the path matrix inversion. The intensity of the O(+)-e(-) recombination radiation as observed from orbiting space platforms can now be used to

  5. 40 CFR 63.7491 - Are any boilers or process heaters not subject to this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 13 2010-07-01 2010-07-01 false Are any boilers or process heaters not..., and Institutional Boilers and Process Heaters What This Subpart Covers § 63.7491 Are any boilers or process heaters not subject to this subpart? The types of boilers and process heaters listed in paragraphs...

  6. Predicting ionospheric scintillation: Recent advancements and future challenges

    NASA Astrophysics Data System (ADS)

    Carter, B. A.; Currie, J. L.; Terkildsen, M.; Bouya, Z.; Parkinson, M. L.

    2017-12-01

    Society greatly benefits from space-based infrastructure and technology. For example, signals from Global Navigation Satellite Systems (GNSS) are used across a wide range of industrial sectors; including aviation, mining, agriculture and finance. Current trends indicate that the use of these space-based technologies is likely to increase over the coming decades as the global economy becomes more technology-dependent. Space weather represents a key vulnerability to space-based technology, both in terms of the space environment effects on satellite infrastructure and the influence of the ionosphere on the radio signals used for satellite communications. In recent decades, the impact of the ionosphere on GNSS signals has re-ignited research interest into the equatorial ionosphere, particularly towards understanding Equatorial Plasma Bubbles (EPBs). EPBs are a dominant source of nighttime plasma irregularities in the low-latitude ionosphere, which can cause severe scintillation on GNSS signals and subsequent degradation on GNSS product quality. Currently, ionospheric scintillation event forecasts are not being routinely released by any space weather prediction agency around the world, but this is likely to change in the near future. In this contribution, an overview of recent efforts to develop a global ionospheric scintillation prediction capability within Australia will be given. The challenges in understanding user requirements for ionospheric scintillation predictions will be discussed. Next, the use of ground- and space-based datasets for the purpose of near-real time ionospheric scintillation monitoring will be explored. Finally, some modeling that has shown significant promise in transitioning towards an operational ionospheric scintillation forecasting system will be discussed.

  7. Ionospheric limitations to time transfer by satellite

    NASA Technical Reports Server (NTRS)

    Knowles, S. H.

    1983-01-01

    The ionosphere can contribute appreciable group delay and phase change to radio signals traversing it; this can constitute a fundamental limitation to the accuracy of time and frequency measurements using satellites. Because of the dispersive nature of the ionosphere, the amount of delay is strongly frequency-dependent. Ionospheric compensation is necessary for the most precise time transfer and frequency measurements, with a group delay accuracy better than 10 nanoseconds. A priori modeling is not accurate to better than 25%. The dual-frequency compensation method holds promise, but has not been rigorously experimentally tested. Irregularities in the ionosphere must be included in the compensation process.

  8. Propagation studies using a theoretical ionosphere model

    SciTech Connect

    Lee, M.K.

    1973-03-01

    The mid-latitude ionospheric and neutral atmospheric models are coupled with an advanced three dimensional ray-tracing pron predicting the wave propagation conditions and to study to what extent the use of theoretical ionospheric models is practical. The Penn State MK 1 ionospheric model, the Mitra--Rowe D-region model, and the Groves' neutral atmospheric model are used throughout ihis work to represent the real electron densities and collision frequencies. The Faraday rotation and differential Doppler velocities from satellites, the propagation modes for long-distance high-frequency propagation, the group delays for each mode, the ionospheric absorption, and the spatial loss are all predicted. (auth) (STAR)

  9. IR Imaging Study on Heater Performamnce of Outside Rearview Mirrors for Automobiles

    SciTech Connect

    Wang, Hsin; England, Todd W

    Adhesive bonded electrical heaters have been used in outside rearview mirrors of automobiles in order to act as defrosters. Entrapment of air pockets between the heater and the mirror can affects the performance and structural integrity of the mirror assembly. Since painting over the mirror is not an option in the production environment, the biggest challenge for IR imaging is to minimize surface reflection. Looking through a smooth, highly reflective first-surface mirror and a 2 mm thick glass without picking up other heat sources in the room, such as people, electronics equipment and the camera itself, requires careful planning andmore » effective shielding. In this paper, we present our method of avoiding mirror reflection and IR images of the heated mirror in operation. Production heaters and heaters with artificial defect were studied. The IR imaging method has shown to be an effective tool for heater quality control and performance studies.« less

  10. Inductive-dynamic magnetosphere-ionosphere coupling via MHD waves

    NASA Astrophysics Data System (ADS)

    Tu, Jiannan; Song, Paul; Vasyliūnas, Vytenis M.

    2014-01-01

    In the present study, we investigate magnetosphere-ionosphere/thermosphere (M-IT) coupling via MHD waves by numerically solving time-dependent continuity, momentum, and energy equations for ions and neutrals, together with Maxwell's equations (Ampère's and Faraday's laws) and with photochemistry included. This inductive-dynamic approach we use is fundamentally different from those in previous magnetosphere-ionosphere (M-I) coupling models: all MHD wave modes are retained, and energy and momentum exchange between waves and plasma are incorporated into the governing equations, allowing a self-consistent examination of dynamic M-I coupling. Simulations, using an implicit numerical scheme, of the 1-D ionosphere/thermosphere system responding to an imposed convection velocity at the top boundary are presented to show how magnetosphere and ionosphere are coupled through Alfvén waves during the transient stage when the IT system changes from one quasi steady state to another. Wave reflection from the low-altitude ionosphere plays an essential role, causing overshoots and oscillations of ionospheric perturbations, and the dynamical Hall effect is an inherent aspect of the M-I coupling. The simulations demonstrate that the ionosphere/thermosphere responds to magnetospheric driving forces as a damped oscillator.

  11. Comparative ionospheres: Terrestrial and giant planets

    NASA Astrophysics Data System (ADS)

    Mendillo, Michael; Trovato, Jeffrey; Moore, Luke; Müller-Wodarg, Ingo

    2018-03-01

    The study of planetary ionospheres within our solar system offers a variety of settings to probe mechanisms of photo-ionization, chemical loss, and plasma transport. Ionospheres are a minor component of upper atmospheres, and thus their mix of ions observed depends on the neutral gas composition of their parent atmospheres. The same solar irradiance (x-rays and extreme-ultra-violet vs. wavelength) impinges upon each of these atmospheres, with solar flux magnitudes changed only by the inverse square of distance from the Sun. If all planets had the same neutral atmosphere-with ionospheres governed by photochemical equilibrium (production = loss)-their peak electron densities would decrease as the inverse of distance from the Sun, and any changes in solar output would exhibit coherent effects throughout the solar system. Here we examine the outer planet with the most observations of its ionosphere (Saturn) and compare its patterns of electron density with those at Earth under the same-day solar conditions. We show that, while the average magnitudes of the major layers of molecular ions at Earth and Saturn are approximately in accord with distance effects, only minor correlations exist between solar effects and day-to-day electron densities. This is in marked contrast to the strong correlations found between the ionospheres of Earth and Mars. Moreover, the variability observed for Saturn's ionosphere (maximum electron density and total electron content) is much larger than found at Earth and Mars. With solar irradiance changes far too small to cause such effects, we use model results to explore the roles of other agents. We find that water sources from Enceladus at low latitudes, and 'ring rain' at middle latitudes, contribute substantially to variability via water ion chemistry. Thermospheric winds and electrodynamics generated at auroral latitudes are suggested causes of high latitude ionospheric variability, but remain inconclusive due to the lack of relevant

  12. Infrasonic troposphere-ionosphere coupling in Hawaii

    NASA Astrophysics Data System (ADS)

    Garces, M. A.

    2011-12-01

    The propagation of infrasonic waves in the ionospheric layers has been considered since the 1960's. It is known that space weather can alter infrasonic propagation below the E layer (~120 km altitude), but it was thought that acoustic attenuation was too severe above this layer to sustain long-range propagation. Although volcanoes, earthquakes and tsunamis (all surface sources) appear to routinely excite perturbations in the ionospheric F layer by the propagation of acoustic and acoustic-gravity waves through the atmosphere, there are few reports of the inverse pathway. This paper discusses some of the routine ground-based infrasonic array observations of ionospheric returns from surface sources. These thermospheric returns generally point back towards the source, with an azimuth deviation that can be corrected using the wind velocity profiles in the mesosphere and lower thermosphere. However, the seismic excitation in the North Pacific by the Tohoku earthquake ensonified the coupled lithosphere-atmosphere-ionosphere waveguide in the 0.01 - 0.1 Hz frequency band, producing anomalous signals observed by infrasound arrays in Hawaii. These infrasonic signals propagated at curiously high velocities, suggesting that some assumptions on ionospheric sound generation and propagation could be revisited.

  13. Tropical Cyclone - Equatorial Ionosphere Coupling: A Statistical Study

    NASA Astrophysics Data System (ADS)

    Bhagavathiammal, G. J.

    2016-07-01

    This paper describes the equatorial ionosphere response to tropical cyclone events which was observed over the Indian Ocean. This statistical study tries to reveal the possible Tropical Cyclone (TC) - Ionosphere coupling. Tropical cyclone track and data can be obtained from the India Meteorological Department, New Delhi. Digisonde/Ionosonde data for the equatorial latitudes can be obtained from Global Ionospheric Radio Observatory. It is believed that TC induced convection as the driving agent for the increased gravity wave activity in the lower atmosphere and these propagating gravity waves deposit their energy and momentum into the upper atmosphere as Travelling Ionospheric Disturbances (TIDs). The convective regions are identified with the help of Outgoing Long wave radiation (OLR) data from NOAA Climate Data Center/ Precipitation data from TRMM Statellite. The variability of ionospheric parameter like Total Electron Content (TEC), foF2, h'F2 and Drift velocity are examined during TC periods. This study will report the possibility of TC-Ionosphere Coupling in equatorial atmosphere.

  14. Ionospheric Scintillation Explorer (ISX)

    NASA Astrophysics Data System (ADS)

    Iuliano, J.; Bahcivan, H.

    2015-12-01

    NSF has recently selected Ionospheric Scintillation Explorer (ISX), a 3U Cubesat mission to explore the three-dimensional structure of scintillation-scale ionospheric irregularities associated with Equatorial Spread F (ESF). ISX is a collaborative effort between SRI International and Cal Poly. This project addresses the science question: To what distance along a flux tube does an irregularity of certain transverse-scale extend? It has been difficult to measure the magnetic field-alignment of scintillation-scale turbulent structures because of the difficulty of sampling a flux tube at multiple locations within a short time. This measurement is now possible due to the worldwide transition to DTV, which presents unique signals of opportunity for remote sensing of ionospheric irregularities from numerous vantage points. DTV spectra, in various formats, contain phase-stable, narrowband pilot carrier components that are transmitted simultaneously. A 4-channel radar receiver will simultaneously record up to 4 spatially separated transmissions from the ground. Correlations of amplitude and phase scintillation patterns corresponding to multiple points on the same flux tube will be a measure of the spatial extent of the structures along the magnetic field. A subset of geometries where two or more transmitters are aligned with the orbital path will be used to infer the temporal development of the structures. ISX has the following broad impact. Scintillation of space-based radio signals is a space weather problem that is intensively studied. ISX is a step toward a CubeSat constellation to monitor worldwide TEC variations and radio wave distortions on thousands of ionospheric paths. Furthermore, the rapid sampling along spacecraft orbits provides a unique dataset to deterministically reconstruct ionospheric irregularities at scintillation-scale resolution using diffraction radio tomography, a technique that enables prediction of scintillations at other radio frequencies, and

  15. A review of ionospheric effects on Earth-space propagation

    NASA Technical Reports Server (NTRS)

    Klobuchar, J. A.

    1984-01-01

    A short description is given of each ionospheric total electron content (TEC) effect upon radio waves, along with a representative value of the magnitude of each of these effects under normal ionospheric conditions. A discussion is given of the important characteristics of average ionospheric TEC behavior and the temporal and spatial variability of TEC. Radio waves undergo several effects when they pass through the Earth's ionosphere. One of the most important of these effects is a retardation, or group delay, on the modulation or information carried on the radio wave that is due to its encounter with the free, thermal electrons in the Earth's ionosphere. Other effects the ionosphere has on radio waves include: radio frequency (RF) carrier phase advance; Doppler shift of the RF carrier of the radio wave; Faraday rotation of the plane of polarization of linearly polarized waves; angular refraction or bending of the radio wave path as it travels through the ionosphere; and amplitude and phase scintillations.

  16. First observation of the anomalous electric field in the topside ionosphere by ionospheric modification over EISCAT

    NASA Astrophysics Data System (ADS)

    Kosch, M. J.; Vickers, H.; Ogawa, Y.; Senior, A.; Blagoveshchenskaya, N.

    2014-11-01

    We have developed an active ground-based technique to estimate the steady state field-aligned anomalous electric field (E*) in the topside ionosphere, up to ~600 km, using the European Incoherent Scatter (EISCAT) ionospheric modification facility and UHF incoherent scatter radar. When pumping the ionosphere with high-power high-frequency radio waves, the F region electron temperature is significantly raised, increasing the plasma pressure gradient in the topside ionosphere, resulting in ion upflow along the magnetic field line. We estimate E* using a modified ion momentum equation and the Mass Spectrometer Incoherent Scatter model. From an experiment on 23 October 2013, E* points downward with an average amplitude of ~1.6 μV/m, becoming weaker at higher altitudes. The mechanism for anomalous resistivity is thought to be low-frequency ion acoustic waves generated by the pump-induced flux of suprathermal electrons. These high-energy electrons are produced near the pump wave reflection altitude by plasma resonance and also result in observed artificially induced optical emissions.

  17. Production of Ionospheric Perturbations by Cloud-to-Ground Lightning and the Recovery of the Lower Ionosphere

    NASA Astrophysics Data System (ADS)

    Liu, Ningyu; Dwyer, Joseph; Rassoul, Hamid

    2013-04-01

    The fact that lightning/thunderstorm activities can directly modify the lower ionosphere has long been established by observations of the perturbations of very low frequency (VLF) signals propagating in the earth-ionosphere waveguide. These perturbations are known as early VLF events [Inan et al., 2010, JGR, 115, A00E36, 2010]. More recently discovered transient luminous events caused by the lightning/thunderstorm activities only last ~1-100 ms, but studies of the early VLF events show that the lightning ionospheric effects can persist much longer, >10s min [Cotts and Inan, GRL, 34, L14809, 2007; Haldoupis et al., JGR, 39, L16801, 2012; Salut et al., JGR, 117, A08311, 2012]. It has been suggested that the long recovery is caused by long-lasting conductivity perturbations in the lower ionosphere, which can be created by sprites/sprite halos which in turn are triggered by cloud-to-ground (CG) lightning [Moore et al., JGR, 108, 1363, 2003; Haldoupis et al., 2012]. We recently developed a two-dimensional fluid model with simplified ionospheric chemistry for studying the quasi-electrostatic effects of lightning in the lower ionosphere [Liu, JGR, 117, A03308, 2012]. The model chemistry captures major ion species and reactions in the lower ionosphere. Additional important features of the model include self-consistent background ion density profiles and full description of electron and ion transport. In this talk, we present the simulation results on the dynamics of sprite halos caused by negative CG lightning. The modeling results indicate that electron density around 60 km altitude can be enhanced in a region as wide as 80 km. The enhancement reaches its full extent in ~1 s and recovers in 1-10 s, which are on the same orders as the durations of slow onset and post-onset peaks of some VLF events, respectively. In addition, long-lasting electron and ion density perturbations can occur around 80 km altitude due to negative halos as well as positive halos, which can explain

  18. Propagation studies using a theoretical ionosphere model

    NASA Technical Reports Server (NTRS)

    Lee, M.

    1973-01-01

    The mid-latitude ionospheric and neutral atmospheric models are coupled with an advanced three dimensional ray tracing program to see what success would be obtained in predicting the wave propagation conditions and to study to what extent the use of theoretical ionospheric models is practical. The Penn State MK 1 ionospheric model, the Mitra-Rowe D region model, and the Groves' neutral atmospheric model are used throughout this work to represent the real electron densities and collision frequencies. The Faraday rotation and differential Doppler velocities from satellites, the propagation modes for long distance high frequency propagation, the group delays for each mode, the ionospheric absorption, and the spatial loss are all predicted.

  19. New Design Heaters Using Tubes Finned by Deforming Cutting Method

    NASA Astrophysics Data System (ADS)

    Zubkov, N. N.; Nikitenko, S. M.; Nikitenko, M. S.

    2017-10-01

    The article describes the results of research aimed at selecting and assigning technological processing parameters for obtaining outer fins of heat-exchange tubes by the deformational cutting method, for use in a new design of industrial water-air heaters. The thermohydraulic results of comparative engineering tests of new and standard design air-heaters are presented.

  20. TOmographic Remote Observer of Ionospheric Disturbances

    DTIC Science & Technology

    2007-11-15

    ionosphere . The proposed spacecraft was an evolutionary design from the USUSat, Combat Sentinel, and USUSat II programs whose histories are shown in...Figure 1. The primary science instrument, TOROID for TOmographic Remote Observer of Ionospheric Disturbances, is a photometer for measuring the

  1. Experimental evidence of electromagnetic pollution of ionosphere

    NASA Astrophysics Data System (ADS)

    Pronenko, Vira; Korepanov, Valery; Dudkin, Denis

    The Earth’s ionosphere responds to external perturbations originated mainly in the Sun, which is the primary driver of the space weather (SW). But solar activity influences on the ionosphere and the Earth's atmosphere (i.e., the energy transfer in the direction of the Sun-magnetosphere-ionosphere-atmosphere-surface of the Earth), though important, is not a unique factor affecting its state - there is also a significant impact of the powerful natural and anthropogenic processes, which occur on the Earth’s surface and propagating in opposite direction along the Earth’s surface-atmosphere-ionosphere-magnetosphere chain. Numerous experimental data confirm that the powerful sources and consumers of electrical energy (radio transmitters, power plants, power lines and industrial objects) cause different ionospheric phenomena, for example, changes of the electromagnetic (EM) field and plasma in the ionosphere, and affect on the state of the Earth atmosphere. Anthropogenic EM effects in the ionosphere are already observed by the scientific satellites and the consequences of their impact on the ionosphere are not currently known. Therefore, it is very important and urgent task to conduct the statistically significant research of the ionospheric parameters variations due to the influence of the powerful man-made factors, primarily owing to substantial increase of the EM energy production. Naturally, the satellite monitoring of the ionosphere and magnetosphere in the frequency range from tens of hertz to tens of MHz with wide ground support offers the best opportunity to observe the EM energy release, both in the global and local scales. Parasitic EM radiation from the power supply lines, when entering the ionosphere-magnetosphere system, might have an impact on the electron population in the radiation belt. Its interaction with trapped particles will change their energy and pitch angles; as a result particle precipitations might occur. Observations of EM emission by

  2. Ionospheres of the terrestrial planets

    NASA Astrophysics Data System (ADS)

    Schunk, R. W.; Nagy, A. F.

    1980-11-01

    The theory and observations relating to the ionospheres of the terrestrial planets Venus, the earth, and Mars are reviewed. Emphasis is placed on comparing the basic differences and similarities between the planetary ionospheres. The review covers the plasma and electric-magnetic field environments that surround the planets, the theory leading to the creation and transport of ionization in the ionospheres, the relevant observations, and the most recent model calculations. The theory section includes a discussion of ambipolar diffusion in a partially ionized plasma, diffusion in a fully ionized plasma, supersonic plasma flow, photochemistry, and heating and cooling processes. The sections on observations and model calculations cover the neutral atmosphere composition, the ion composition, the electron density, and the electron, ion, and neutral temperatures.

  3. Effects of ionospheric modification on system performance

    NASA Astrophysics Data System (ADS)

    Ganguly, Suman

    1989-12-01

    Controlled ionospheric modification can be used for disrupting as well as facilitating communication and radar systems. After briefly describing the results achieved with the present day ionospheric modification facilities, a scenario is presented for the generation of strong and significant ionospheric modification. A few schemes are presented for the development of modern high power facilities using the state of the art technology and then the impact of such facilities on the system performance is described.

  4. Inverse problem of radiofrequency sounding of ionosphere

    NASA Astrophysics Data System (ADS)

    Velichko, E. N.; Yu. Grishentsev, A.; Korobeynikov, A. G.

    2016-01-01

    An algorithm for the solution of the inverse problem of vertical ionosphere sounding and a mathematical model of noise filtering are presented. An automated system for processing and analysis of spectrograms of vertical ionosphere sounding based on our algorithm is described. It is shown that the algorithm we suggest has a rather high efficiency. This is supported by the data obtained at the ionospheric stations of the so-called “AIS-M” type.

  5. Ion Escape from the Ionosphere of Titan

    NASA Technical Reports Server (NTRS)

    Hartle, R.; Sittler, E.; Lipatov, A.

    2008-01-01

    Ions have been observed to flow away from Titan along its induced magnetic tail by the Plasma Science Instrument (PLS) on Voyager 1 and the Cassini Plasma Spectrometer (CAPS) on Cassini. In both cases, the ions have been inferred to be of ionospheric origin. Recent plasma measurements made at another unmagnetized body, Venus, have also observed similar flow in its magnetic tail. Much earlier, the possibility of such flow was inferred when ionospheric measurements made from the Pioneer Venus Orbiter (PVO) were used to derive upward flow and acceleration of H(+), D(+) and O(+) within the nightside ionosphere of Venus. The measurements revealed that the polarization electric field in the ionosphere produced the principal upward force on these light ions. The resulting vertical flow of H(+) and D(+) was found to be the dominant escape mechanism of hydrogen and deuterium, corresponding to loss rates consistent with large oceans in early Venus. Other electrodynamic forces were unimportant because the plasma beta in the nightside ionosphere of Venus is much greater than one. Although the plasma beta is also greater than one on Titan, ion acceleration is expected to be more complex, especially because the subsolar point and the subflow points can be 180 degrees apart. Following what we learned at Venus, upward acceleration of light ions by the polarization electric field opposing gravity in the ionosphere of Titan will be described. Additional electrodynamic forces resulting from the interaction of Saturn's magnetosphere with Titan's ionosphere will be examined using a recent hybrid model.

  6. 89. ARAIII. Petrochem oilfired gas heater installed in reactor building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    89. ARA-III. Petro-chem oil-fired gas heater installed in reactor building (ARA-608). View is at floor level. Shows hand rails around heater pit and top of pit extending upwards through ceiling. January 20, 1959. Ineel photo no. 59-321. Photographer: Jack L. Anderson. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  7. AgNW/Chinese Xuan paper film heaters for electro-thermochromic paper display

    NASA Astrophysics Data System (ADS)

    Wang, Guoliang; Xu, Wei; Xu, Feng; Shen, Wenfeng; Song, Weijie

    2017-11-01

    Electro-thermochromic paper display is the convenient and low-cost device for information presentation. As an integral part of this device, film heaters (FHs) with conductive layer have attracted much attention. In this paper, the AgNW based film heaters on Chinese Xuan paper (CXP) substrates were fabricated by a drop-coating method. The fabricated AgNW/CXP film heaters exhibited high heating temperature (78.1 °C) at low input voltage (3 V) and short response time less than 15 s. We theoretically analyzed the principles of heating and put forward the non-linear relationship between the input power and steady-state temperature, which is agreeing with our experimental data. The film heaters showed excellent mechanical properties with the change of the resistance as low as 2.7% after 2000 times outer bending tests. Finally, the electro-thermochromic paper display was fabricated using the AgNW/CXP film heaters, with the thermochromic inks on the other side of the paper substrate. Such results showed a useful approach for manufacturing of colorful display and color-changing painting.

  8. Observation of Schumann Resonances in the Earth's Ionosphere

    NASA Technical Reports Server (NTRS)

    Simoes, Fernando; Pfaff, Robert; Freudenreich, Henry

    2011-01-01

    The surface of the Earth and the lower edge of the ionosphere define a cavity in which electromagnetic waves propagate. When the cavity is excited by broadband electromagnetic sources, e.g., lightning, a resonant state can develop provided the average equatorial circumference is approximately equal to an integral number of wavelengths of the electromagnetic waves. This phenomenon, known as Schumann resonance, corresponds to electromagnetic oscillations of the surface-ionosphere cavity, and has been used extensively to investigate atmospheric electricity. Using measurements from the Communications/Navigation Outage Forecasting System (C/NOFS) satellite, we report, for the first time, Schumann resonance signatures detected well beyond the upper boundary of the cavity. These results offer new means for investigating atmospheric electricity, tropospheric-ionospheric coupling mechanisms related to lightning activity, and wave propagation in the ionosphere. The detection of Schumann resonances in the ionosphere calls for revisions to the existing models of extremely low frequency wave propagation in the surface-ionosphere cavity. Additionally, these measurements suggest new remote sensing capabilities for investigating atmospheric electricity at other planets.

  9. Cubesat-Based Dtv Receiver Constellation for Ionospheric Tomography

    NASA Astrophysics Data System (ADS)

    Bahcivan, H.; Leveque, K.; Doe, R. A.

    2013-12-01

    The Radio Aurora Explorer mission, funded by NSF's Space Weather and Atmospheric Research program, has demonstrated the utility of CubeSat-based radio receiver payloads for ionospheric research. RAX has primarily been an investigation of microphysics of meter-scale ionospheric structures; however, the data products are also suitable for research on ionospheric effects on radio propagation. To date, the spacecraft has acquired (1) ground-based UHF radar signals that are backscattered from meter-scale ionospheric irregularities, which have been used to measure the dispersion properties of meter-scale plasma waves and (2) ground-based signals, directly on the transmitter-spacecraft path, which have been used to measure radio propagation disturbances (scintillations). Herein we describe the application of a CubeSat constellation of UHF receivers to expand the latter research topic for global-scale ionospheric tomography. The enabling factor for this expansion is the worldwide availability of ground-based digital television (DTV) broadcast signals whose characteristics are optimal for scintillation analysis. A significant part of the populated world have transitioned, or soon to be transitioned, to DTV. The DTV signal has a standard format that contains a highly phase-stable pilot carrier that can be readily adapted for propagation diagnostics. A multi-frequency software-defined radar receiver, similar to the RAX payload, can measure these signals at a large number of pilot carrier frequencies to make radio ray and diffraction tomographic measurements of the ionosphere and the irregularities contained in it. A constellation of CubeSats, launched simultaneously, or in sequence over years, similar to DMSPs, can listen to the DTV stations, providing a vast and dense probing of the ionosphere. Each spacecraft can establish links to a preprogrammed list of DTV stations and cycle through them using time-division frequency multiplexing (TDFM) method. An on board program can

  10. Ionospheric Irregularities at Mars Probed by MARSIS Topside Sounding

    NASA Astrophysics Data System (ADS)

    Harada, Y.; Gurnett, D. A.; Kopf, A. J.; Halekas, J. S.; Ruhunusiri, S.

    2018-01-01

    The upper ionosphere of Mars contains a variety of perturbations driven by solar wind forcing from above and upward propagating atmospheric waves from below. Here we explore the global distribution and variability of ionospheric irregularities around the exobase at Mars by analyzing topside sounding data from the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) instrument on board Mars Express. As irregular structure gives rise to off-vertical echoes with excess propagation time, the diffuseness of ionospheric echo traces can be used as a diagnostic tool for perturbed reflection surfaces. The observed properties of diffuse echoes above unmagnetized regions suggest that ionospheric irregularities with horizontal wavelengths of tens to hundreds of kilometers are particularly enhanced in the winter hemisphere and at high solar zenith angles. Given the known inverse dependence of neutral gravity wave amplitudes on the background atmospheric temperature, the ionospheric irregularities probed by MARSIS are most likely associated with plasma perturbations driven by atmospheric gravity waves. Though extreme events with unusually diffuse echoes are more frequently observed for high solar wind dynamic pressures during some time intervals, the vast majority of the diffuse echo events are unaffected by varying solar wind conditions, implying limited influence of solar wind forcing on the generation of ionospheric irregularities. Combination of remote and in situ measurements of ionospheric irregularities would offer the opportunity for a better understanding of the ionospheric dynamics at Mars.

  11. What Drives the Variability of the Mid-Latitude Ionosphere?

    NASA Astrophysics Data System (ADS)

    Goncharenko, L. P.; Zhang, S.; Erickson, P. J.; Harvey, L.; Spraggs, M. E.; Maute, A. I.

    2016-12-01

    The state of the ionosphere is determined by the superposition of the regular changes and stochastic variations of the ionospheric parameters. Regular variations are represented by diurnal, seasonal and solar cycle changes, and can be well described by empirical models. Short-term perturbations that vary from a few seconds to a few hours or days can be induced in the ionosphere by solar flares, changes in solar wind, coronal mass ejections, travelling ionospheric disturbances, or meteorological influences. We use over 40 years of observations by the Millstone Hill incoherent scatter radar (42.6oN, 288.5oE) to develop an updated empirical model of ionospheric parameters, and wintertime data collected in 2004-2016 to study variability in ionospheric parameters. We also use NASA MERRA2 atmospheric reanalysis data to examine possible connections between the state of the stratosphere & mesosphere and the upper atmosphere (250-400km). A case of major SSW of January 2013 is selected for in-depth study and reveals large anomalies in ionospheric parameters. Modeling with the NCAR Thermospheric-Ionospheric-Mesospheric-Electrodynamics general Circulation Model (TIME-GCM) nudged by WACCM-GEOS5 simulation indicates that during the 2013 SSW the neutral and ion temperature in the polar through mid-latitude region deviates from the seasonal behavior.

  12. Ionospheric research

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Data from research on ionospheric D, E, and F, regions are reported. Wave propagation, mass spectrometer measurements, and atmospheric reactions of HO2 with NO and NO2 and NH2 with NO and O2 are summarized.

  13. Building America Case Study: Simple Retrofit High-Efficiency Natural Gas Water Heater Field Test, Minneapolis, Minnesota

    SciTech Connect

    High performance water heaters are typically more time consuming and costly to install in retrofit applications, making high performance water heaters difficult to justify economically. However, recent advancements in high performance water heaters have targeted the retrofit market, simplifying installations and reducing costs. Four high efficiency natural gas water heaters designed specifically for retrofit applications were installed in single-family homes along with detailed monitoring systems to characterize their savings potential, their installed efficiencies, and their ability to meet household demands. The water heaters tested for this project were designed to improve the cost-effectiveness and increase market penetration of high efficiencymore » water heaters in the residential retrofit market. The retrofit high efficiency water heaters achieved their goal of reducing costs, maintaining savings potential and installed efficiency of other high efficiency water heaters, and meeting the necessary capacity in order to improve cost-effectiveness. However, the improvements were not sufficient to achieve simple paybacks of less than ten years for the incremental cost compared to a minimum efficiency heater. Significant changes would be necessary to reduce the simple payback to six years or less. Annual energy savings in the range of $200 would also reduce paybacks to less than six years. These energy savings would require either significantly higher fuel costs (greater than $1.50 per therm) or very high usage (around 120 gallons per day). For current incremental costs, the water heater efficiency would need to be similar to that of a heat pump water heater to deliver a six year payback.« less

  14. The theory of ionospheric focused heating

    NASA Technical Reports Server (NTRS)

    Bernhardt, P. A.; Duncan, L. M.

    1987-01-01

    Ionospheric modification by high power radio waves and by chemical releases are combined in a theoretical study of ionospheric focused heating. The release of materials which promote electron-ion recombination creates a hole in the bottomside ionosphere. The ionospheric hole focuses high power radio waves from a ground-based transmitter to give a 20 dB or greater enhancement in power density. The intense radio beam excites atomic oxygen by collisions with accelerated electrons. Airglow from the excited oxygen provides a visible trace of the focused beam. The large increase in the intensity of the radio beam stimulates new wave-plasma interactions. Numerical simulations show that the threshold for the two-plasmon decay instability is exceeded. The interaction of the pump electromagnetic wave with the backward plasmon produces a scattered electromagnetic wave at 3/2 the pump frequency. The scattered wave provides a unique signature of the two-plasmon decay process for ground-based detection.

  15. Magnetic Fluctuations in the Martian Ionosphere

    NASA Technical Reports Server (NTRS)

    Espley, Jared

    2010-01-01

    The Martian ionosphere is influenced by both the solar wind and the regional magnetic fields present in the Martian crust. Both influences ought to cause time variable changes in the magnetic fields present in the ionosphere. I report observations of these magnetic field fluctuations in the Martian ionosphere. I use data from the Mars Global Surveyor magnetometer instrument. By using data from the aerobraking low altitude passes (approx. 200 km) I find that there are numerous fluctuations both near and far from the strong crustal sources. Using data from the 400 km altitude mapping phase (which is near the topside of the primary ionosphere), I look at the comparative strength of the fluctuations relative to the solar wind and temporal variations. I discuss which wave modes and instabilities could be contributing to these fluctuations. I also discuss the implications of these fluctuations for understanding energy transfer in the Martian system and the effects on atmospheric escape.

  16. Ionospheric Electron Density Measurements Using COSMIC

    NASA Astrophysics Data System (ADS)

    Dymond, K. F.; Budzien, S. A.; Bernhardt, P. A.; Rocken, C.; Syndergaard, S.

    2007-12-01

    At 0140 UTC on April 15, 2006, the joint Taiwan-U.S. COSMIC/FORMOSAT-3 (Constellation Observing System for Meteorology, Ionosphere, and Climate and Formosa Satellite mission #3; hereafter COSMIC) mission, a constellation of six micro-satellites, was launched into a 512-km orbit from Vandenberg Air Force Base in California. Using on-board propulsion these satellites have been deployed to their final orbits at 800 km with 30 degrees of separation. This process has taken about 17 months following the launch. There are three instruments aboard each COSMIC satellite: the GPS Occultation Experiment (GOX), the Tri-Band Beacon (TBB), and the Tiny Ionospheric Photometer (TIP). These three instruments constitute a unique suite of instruments for studying the Earth's ionosphere. The GOX instrument operates by inferring the slant total electron content (the integral of the electron density along the line-of-sight) between the COSMIC satellites and the GPS satellites as a function of tangent height above the Earth's limb. These data can be inverted to produce electron density profiles in the E and F regions of the ionosphere. The TBB is a three frequency radio beacon that radiates coherently at 150, 400, and 1067 MHz. When the relative phases of the signals are measured between the COSMIC satellites and ground-based or space-based receivers, the total electron content along the line-of-sight can be determined. By making the measurements from a set of receivers, the two-dimensional distribution of electrons beneath the satellite can be determined using tomographic techniques. The TIP instrument measures the optical signature of the natural decay of the ionosphere produced via ecombination of the O+ ions and electrons. The TIP measurements can be used to characterize the morphology and dynamics of the global ionosphere. Additionally, the TIP measurements can be inverted in conjunction with the GPS occultation measurements, using tomographic techniques, to produce the two

  17. Analysis of Large- Capacity Water Heaters in Electric Thermal Storage Programs

    SciTech Connect

    Cooke, Alan L.; Anderson, David M.; Winiarski, David W.

    2015-03-17

    This report documents a national impact analysis of large tank heat pump water heaters (HPWH) in electric thermal storage (ETS) programs and conveys the findings related to concerns raised by utilities regarding the ability of large-tank heat pump water heaters to provide electric thermal storage services.

  18. Generation of Artificial Ionospheric Irregularities in the Midlatitude Ionosphere Modified by High-Power High-Frequency X-Mode Radio Waves

    NASA Astrophysics Data System (ADS)

    Frolov, V. L.; Bolotin, I. A.; Komrakov, G. P.; Pershin, A. V.; Vertogradov, G. G.; Vertogradov, V. G.; Vertogradova, E. G.; Kunitsyn, V. E.; Padokhin, A. M.; Kurbatov, G. A.; Akchurin, A. D.; Zykov, E. Yu.

    2014-11-01

    We consider the properties of the artificial ionospheric irregularities excited in the ionospheric F 2 region modified by high-power high-frequency X-mode radio waves. It is shown that small-scale (decameter) irregularities are not generated in the midlatitude ionosphere. The intensity of irregularities with the scales l ⊥ ≈50 m to 3 km is severalfold weaker compared with the case where the irregularities are excited by high-power O-mode radio waves. The intensity of the larger-scale irregularities is even stronger attenuated. It is found that the generation of large-scale ( l ⊥ ≈5-10 km) artificial ionospheric irregularities is enhanced at the edge of the directivity pattern of a beam of high-power radio waves.

  19. Efficient graphite ring heater suitable for diamond-anvil cells to 1300 K

    SciTech Connect

    Du Zhixue; Amulele, George; Lee, Kanani K. M.

    In order to generate homogeneous high temperatures at high pressures, a ring-shaped graphite heater has been developed to resistively heat diamond-anvil cell (DAC) samples up to 1300 K. By putting the heater in direct contact with the diamond anvils, this graphite heater design features the following advantages: (1) efficient heating: sample can be heated to 1300 K while the DAC body temperature remains less than 800 K, eliminating the requirement of a special alloy for the DAC; (2) compact design: the sample can be analyzed with in situ measurements, e.g., x-ray, optical, and electrical probes are possible. In particular, themore » side access of the heater allows for radial x-ray diffraction (XRD) measurements in addition to traditional axial XRD.« less

  20. 46 CFR 52.25-3 - Feedwater heaters (modifies PFH-1).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Feedwater heaters (modifies PFH-1). 52.25-3 Section 52.25-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Other Boiler Types § 52.25-3 Feedwater heaters (modifies PFH-1). In addition to the requirements in PFH-1 of section I of the ASME Boiler and...

  1. 46 CFR 52.25-3 - Feedwater heaters (modifies PFH-1).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Feedwater heaters (modifies PFH-1). 52.25-3 Section 52.25-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Other Boiler Types § 52.25-3 Feedwater heaters (modifies PFH-1). In addition to the requirements in PFH-1 of section I of the ASME Boiler and...

  2. 46 CFR 52.25-3 - Feedwater heaters (modifies PFH-1).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Feedwater heaters (modifies PFH-1). 52.25-3 Section 52.25-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Other Boiler Types § 52.25-3 Feedwater heaters (modifies PFH-1). In addition to the requirements in PFH-1 of section I of the ASME Boiler and...

  3. 46 CFR 52.25-3 - Feedwater heaters (modifies PFH-1).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Feedwater heaters (modifies PFH-1). 52.25-3 Section 52.25-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Other Boiler Types § 52.25-3 Feedwater heaters (modifies PFH-1). In addition to the requirements in PFH-1 of section I of the ASME Boiler and...

  4. 46 CFR 52.25-3 - Feedwater heaters (modifies PFH-1).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Feedwater heaters (modifies PFH-1). 52.25-3 Section 52.25-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Other Boiler Types § 52.25-3 Feedwater heaters (modifies PFH-1). In addition to the requirements in PFH-1 of section I of the ASME Boiler and...

  5. A Study of Ionospheric Storm Association with Intense Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Okpala, K. C.

    2017-12-01

    The bulk association between ionospheric storms and geomagnetic storms have been studied. Hemispheric features of seasonal variation of ionospheric storms in the mid-latitude were also investigated. 188 intense geomagnetic storms (Dst ≤100nT) that occurred during solar cycle 22 and 23 were considered, of which 143 were observed to be identified with an ionospheric storm. Individual ionospheric storms were identified as maximum deviations of the F2 layer peak electron density from quiet time values. Only ionospheric storms that could clearly be associated with the peak of a geomagnetic storms were considered. Data from two mid-latitude ionosonde stations; one in the northern hemisphere (i.e Moscow) and the other in the southern hemisphere (Grahamstown) were used to study ionospheric condition at the time of the individual geomagnetic storms. Results show hemispheric and latitudinal differences in the intensity and nature of ionospheric storms association with different types of geomagnetic storms. These results are significant for our present understanding of the mechanisms which drive the changes in electron density during different types of ionospheric storms.

  6. Ionosphere research with a HF/MF cubesat radio instrument

    NASA Astrophysics Data System (ADS)

    Kallio, Esa; Aikio, Anita; Alho, Markku; Fontell, Mathias; Harri, Ari-Matti; Kauristie, Kirsti; Kestilä, Antti; Koskimaa, Petri; Mäkelä, Jakke; Mäkelä, Miika; Turunen, Esa; Vanhamäki, Heikki; Verronen, Pekka

    2017-04-01

    New technology provides new possibilities to study geospace and 3D ionosphere by using spacecraft and computer simulations. A type of nanosatellites, CubeSats, provide a cost effective possibility to provide in-situ measurements in the ionosphere. Moreover, combined CubeSat observations with ground-based observations gives a new view on auroras and associated electromagnetic phenomena. Especially joint and active CubeSat - ground based observation campaigns enable the possibility of studying the 3D structure of the ionosphere. Furthermore using several CubeSats to form satellite constellations enables much higher temporal resolution. At the same time, increasing computation capacity has made it possible to perform simulations where properties of the ionosphere, such as propagation of the electromagnetic waves in the medium frequency, MF (0.3-3 MHz) and high frequency, HF (3-30 MHz), ranges is based on a 3D ionospheric model and on first-principles modelling. Electromagnetic waves at those frequencies are strongly affected by ionospheric electrons and, consequently, those frequencies can be used for studying the plasma. On the other hand, even if the ionosphere originally enables long-range telecommunication at MF and HF frequencies, the frequent occurrence of spatiotemporal variations in the ionosphere disturbs communication channels, especially at high latitudes. Therefore, study of the MF and HF waves in the ionosphere has both a strong science and technology interests. We introduce recently developed simulation models as well as measuring principles and techniques to investigate the arctic ionosphere by a polar orbiting CubeSat whose novel AM radio instrument measures HF and MF waves. The cubesat, which contains also a white light aurora camera, is planned to be launched in late 2017 (http://www.suomi100satelliitti.fi/eng). The new models are (1) a 3D ray tracing model and (2) a 3D full kinetic electromagnetic simulation. We also introduce how combining of the

  7. Estimate of higher order ionospheric errors in GNSS positioning

    NASA Astrophysics Data System (ADS)

    Hoque, M. Mainul; Jakowski, N.

    2008-10-01

    Precise navigation and positioning using GPS/GLONASS/Galileo require the ionospheric propagation errors to be accurately determined and corrected for. Current dual-frequency method of ionospheric correction ignores higher order ionospheric errors such as the second and third order ionospheric terms in the refractive index formula and errors due to bending of the signal. The total electron content (TEC) is assumed to be same at two GPS frequencies. All these assumptions lead to erroneous estimations and corrections of the ionospheric errors. In this paper a rigorous treatment of these problems is presented. Different approximation formulas have been proposed to correct errors due to excess path length in addition to the free space path length, TEC difference at two GNSS frequencies, and third-order ionospheric term. The GPS dual-frequency residual range errors can be corrected within millimeter level accuracy using the proposed correction formulas.

  8. Evaluating Embedded Heater Bonding for Composites

    NASA Astrophysics Data System (ADS)

    Carte, Casey

    Out-of-autoclave bonding of high-strength carbon-fiber composites structures can reduce costs associated with autoclaves. Nevertheless, a concern is whether out-of-autoclave bonding results in a loss of delamination toughness. The main contribution of this paper is to comparatively evaluate the delamination toughness of adhesively bonded composite parts using carbon fiber embedded heaters and those bonded in an autoclave. Carbon Fiber Reinforced Polymer (CFRP) adherends were bonded by passing an electrical current through a layer of carbon fiber prepreg embedded at the bondline between two electrically insulating thin film adhesives. The delamination toughness was evaluated under mode I dominated loading conditions using a modified single cantilever beam test. Experimental results show that the delamination toughness of specimens bonded using a carbon fiber embedded heater was comparable to that of samples bonded in an autoclave.

  9. Diesel-fired self-pumping water heater

    NASA Astrophysics Data System (ADS)

    Gertsmann, Joseph

    1994-07-01

    The object of this project was to study the feasibility of pumping and heating water by sustained oscillatory vaporization and condensation in a fired heat exchanger. Portable field liquid fueled water heaters would facilitate heating water for sanitation, personal hygiene, food service, laundry, equipment maintenance, and decontamination presently available only from larger, less portable, motorized pumping units. The technical tasks consisted of: development of an analytical model, operation of proof-of-principal prototypes, and determination of the thermal and mechanical relationships to evaluate operating range and control characteristics. Four successive pump models were analyzed and tested. The final analytical model gave reasonable agreement with the experimental results, indicating that the actual pumping effect was an order of magnitude lower than originally anticipated. It was concluded that a thermally-activated self pumping water heater based on the proposed principle is not feasible.

  10. Solar water heater design package

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Package describes commercial domestic-hot-water heater with roof or rack mounted solar collectors. System is adjustable to pre-existing gas or electric hot-water house units. Design package includes drawings, description of automatic control logic, evaluation measurements, possible design variations, list of materials and installation tools, and trouble-shooting guide and manual.

  11. The solar wind-magnetosphere-ionosphere system

    PubMed

    Lyon

    2000-06-16

    The solar wind, magnetosphere, and ionosphere form a single system driven by the transfer of energy and momentum from the solar wind to the magnetosphere and ionosphere. Variations in the solar wind can lead to disruptions of space- and ground-based systems caused by enhanced currents flowing into the ionosphere and increased radiation in the near-Earth environment. The coupling between the solar wind and the magnetosphere is mediated and controlled by the magnetic field in the solar wind through the process of magnetic reconnection. Understanding of the global behavior of this system has improved markedly in the recent past from coordinated observations with a constellation of satellite and ground instruments.

  12. Magnetically Controlled Upper Ionosphere of Mars

    NASA Astrophysics Data System (ADS)

    Majeed, T.; Al Aryani, O.; Al Mutawa, S.; Bougher, S. W.; Haider, S. A.

    2017-12-01

    The electron density (Ne) profiles measured by the Mars Express spacecraft over regions of strong crustal magnetic fields have shown anomalous characteristics of the topside plasma distribution with variable scale heights. One of such Ne profiles is located at 82oS and 180oE whose topside ionosphere is extended up to an altitude of 700 km. The crustal magnetic field at this southern site is nearly vertical and open to the access of solar wind plasma through magnetic reconnection with the interplanetary magnetic field. This can lead to the acceleration of electrons and ions during the daytime ionosphere. The downward accelerated electrons with energies >200 eV can penetrate deep into the Martian upper ionosphere along vertical magnetic field lines and cause heating, excitation and ionization of the background atmosphere. The upward acceleration of ions resulting from energy input by precipitating electrons can lead to enhance ion escape rate and modify scale heights of the topside ionosphere. We have developed a 1-D chemical diffusive model from 100 km to 400 km to interpret the Martian ionospheric structure at 82oS latitude. The primary source of ionization in the model is due to solar EUV radiation. An extra ionization source due to precipitating electrons of 0.25 keV, peaking near an altitude of 145 km is added in the model to reasonably reproduce the measured ionospheric structure below an altitude of 180 km. The behavior of the topside ionosphere can be interpreted by the vertical plasma transport caused by precipitating electrons. The vertical transport of plasma in our model is simulated by vertical ion velocities, whose values can be interpreted as drift velocities along magnetic field lines. We find that the variation of the topside Ne scale heights is sensitive to the magnitudes of upward and downward drifts with an imposed outward flux boundary condition at the top of the model. The model requires an upward flux of more than 107 ions cm-2 s-1 for both O2

  13. Space weather. Ionospheric control of magnetotail reconnection.

    PubMed

    Lotko, William; Smith, Ryan H; Zhang, Binzheng; Ouellette, Jeremy E; Brambles, Oliver J; Lyon, John G

    2014-07-11

    Observed distributions of high-speed plasma flows at distances of 10 to 30 Earth radii (R(E)) in Earth's magnetotail neutral sheet are highly skewed toward the premidnight sector. The flows are a product of the magnetic reconnection process that converts magnetic energy stored in the magnetotail into plasma kinetic and thermal energy. We show, using global numerical simulations, that the electrodynamic interaction between Earth's magnetosphere and ionosphere produces an asymmetry consistent with observed distributions in nightside reconnection and plasmasheet flows and in accompanying ionospheric convection. The primary causal agent is the meridional gradient in the ionospheric Hall conductance which, through the Cowling effect, regulates the distribution of electrical currents flowing within and between the ionosphere and magnetotail. Copyright © 2014, American Association for the Advancement of Science.

  14. Experimental performance of an internal resistance heater for Langley 6-inch expansion tube driver

    NASA Technical Reports Server (NTRS)

    Creel, T. R., Jr.

    1972-01-01

    An experimental investigation of the heating characteristics of an internal resistance heating element was conducted in the driver of the Langley 6-inch expansion tube to obtain actual operating conditions, to compare these results to theory, and to determine whether any modification need be made to the heater element. The heater was operated in pressurized helium from 138. MN/sq m to 62.1 MN/sq m. This investigation revealed large temperature variations within the heater element caused primarily by area reductions at insulator locations. These large temperature variations were reduced by welding small tabs over all grooves. Previous predictions of heater element and driver gas temperature were unacceptable so new equations were derived. These equations predict element and gas temperature within 10 percent of the test data when either the constant power cycle or the interrupted power cycle is used. Visual observation of the heater element, when exposed to the atmosphere with power on, resulted in a decision to limit the heater element to 815 K. Experimental shock Mach numbers are in good agreement with theory.

  15. Regenerative air heater

    DOEpatents

    Hasselquist, P.B.; Baldner, R.

    1980-11-26

    A gas-cooled steel skirt is used to support a refractory cored brick matrix and dome structure in a high temperature regenerative air heater useful in magnetohydrodynamic power generation. The steel skirt thermally expands to accommodate the thermal expansion of the dome structure despite substantial temperature differential thereby reducing relative movement between the dome bricks. Gas cooling of the steel skirt allows the structure to operate above its normal temperature during clean-out cycles and also allows for the control of the thermal expansion of the steel skirt.

  16. Regenerative air heater

    DOEpatents

    Hasselquist, Paul B.; Baldner, Richard

    1982-01-01

    A gas-cooled steel skirt is used to support a refractory cored brick matrix and dome structure in a high temperature regenerative air heater useful in magnetohydrodynamic power generation. The steel skirt thermally expands to accommodate the thermal expansion of the dome structure despite substantial temperature differential thereby reducing relative movement between the dome bricks. Gas cooling of the steel skirt allows the structure to operate above its normal temperature during clean-out cycles and also allows for the control of the thermal expansion of the steel skirt.

  17. Room chamber assessment of the pollutant emission properties of (nominally) low-emission unflued gas heaters.

    PubMed

    Brown, Stephen K; Mahoney, K John; Cheng, Min

    2004-01-01

    Pollutant emissions from unflued gas heaters were assessed in CSIRO's Room Dynamic Environmental Chamber. This paper describes the chamber assessment procedure and presents findings for major commercial heaters that are nominally "low-emission". The chamber was operated at controlled conditions of temperature, humidity, ventilation and air mixing, representative of those encountered in typical indoor environments. A fixed rate of heat removal from the chamber air ensured that the heaters operated at constant heating rates, typically approximately 6 MJ/h which simulated operation of a heater after warm-up in an insulated dwelling in south-east Australia. The pollutants assessed were nitrogen dioxide, carbon monoxide, formaldehyde, VOCs and respirable suspended particulates. One type of heater was lower emitting for nitrogen dioxide, but emitted greater amounts of carbon monoxide and formaldehyde (the latter becoming significant to indoor air quality). When operated with low line pressure or slight misalignment of the gas burner, this heater became a hazardous source of these pollutants. Emissions from the heaters changed little after continuous operation for up to 2 months. Unflued gas heaters have been popular as primary heating sources in Australian homes for many years due to their ease of installation and energy efficiency, with approximately 600,000 now installed in housing and schools. However, with concerns over potential health impacts to occupants, manufacturers have reduced the nitrogen dioxide emissions from unflued gas heaters in Australia over recent years. They have done so with a target level for nitrogen dioxide in indoor air of 300 p.p.b. This is somewhat higher than the ambient air (and WHO) guideline of 110 p.p.b. Several studies of child respiratory health show an impact of unflued gas combustion products. A full characterization of the combustion products is needed under conditions that simulate heater operation in practice-this study was

  18. Incredibly distant ionospheric responses to earthquake

    NASA Astrophysics Data System (ADS)

    Yusupov, Kamil; Akchurin, Adel

    2015-04-01

    Attempts to observe ionospheric responses to the earthquake has been going on for decades. In recent years, the greatest progress in the study of this question have GPS-measurements with simultaneous HF-measurements. The use of a dense network of GPS-receivers and getting with it sufficiently detailed two-dimensional maps of the total electron content (TEC) greatly clarified the nature of the ionospheric response to strong earthquakes. For ionospheric responses observation, that are remote more than 1000 km from the strong earthquakes epicentres, it is necessary to applying more sensitive methods than GPS. The most experience in the observation of the ionospheric responses to earthquakes accumulated with Doppler sounding. Using these measurements, ionospheric disturbances characteristic features (signature) have been allocated, which associated with the passage of Rayleigh waves on the surface. Particular, this Rayleigh wave signatures allocation is implemented in the Nostradamus coherent backscatter radar. The authors of this method suggest using radar techniques like a sensitive "ionospheric seismometer." The most productive allocation and studying of the vertical structure ionospheric responses could be ionosonde observations. However, their typical 15 minute sounding rate is quite sufficient for observing the regular ionosphere, but it is not enough for studying the ionospheric responses to earthquakes, because ionospheric responses is often seen only in one ionogram and it is absent in adjacent. The decisive factor in establishing the striking ionospheric response to the earthquake was the Tohoku earthquake in 2011, when there was three ionosondes distant at 870-2000 km from the epicentre. These ionosondes simultaneously showed distortion of the F1-layer traces as its multiple stratification (multiple-cusp signature - MCS), which generated by Rayleigh wave. Note that there was another fourth Japanese ionosonde. It is located a little further near boundaries

  19. Canadian High Arctic Ionospheric Network (CHAIN)

    NASA Astrophysics Data System (ADS)

    Jayachandran, P. T.; Langley, R. B.; MacDougall, J. W.; Mushini, S. C.; Pokhotelov, D.; Hamza, A. M.; Mann, I. R.; Milling, D. K.; Kale, Z. C.; Chadwick, R.; Kelly, T.; Danskin, D. W.; Carrano, C. S.

    2009-02-01

    Polar cap ionospheric measurements are important for the complete understanding of the various processes in the solar wind-magnetosphere-ionosphere system as well as for space weather applications. Currently, the polar cap region is lacking high temporal and spatial resolution ionospheric measurements because of the orbit limitations of space-based measurements and the sparse network providing ground-based measurements. Canada has a unique advantage in remedying this shortcoming because it has the most accessible landmass in the high Arctic regions, and the Canadian High Arctic Ionospheric Network (CHAIN) is designed to take advantage of Canadian geographic vantage points for a better understanding of the Sun-Earth system. CHAIN is a distributed array of ground-based radio instruments in the Canadian high Arctic. The instrument components of CHAIN are 10 high data rate Global Positioning System ionospheric scintillation and total electron content monitors and six Canadian Advanced Digital Ionosondes. Most of these instruments have been sited within the polar cap region except for two GPS reference stations at lower latitudes. This paper briefly overviews the scientific capabilities, instrument components, and deployment status of CHAIN. This paper also reports a GPS signal scintillation episode associated with a magnetospheric impulse event. More details of the CHAIN project and data can be found at http://chain.physics.unb.ca/chain.

  20. Application of generalized singular value decomposition to ionospheric tomography

    NASA Astrophysics Data System (ADS)

    Bhuyan, K.; Singh, S.; Bhuyan, P.

    2004-10-01

    The electron density distribution of the low- and mid-latitude ionosphere has been investigated by the computerized tomography technique using a Generalized Singular Value Decomposition (GSVD) based algorithm. Model ionospheric total electron content (TEC) data obtained from the International Reference Ionosphere 2001 and slant relative TEC data measured at a chain of three stations receiving transit satellite transmissions in Alaska, USA are used in this analysis. The issue of optimum efficiency of the GSVD algorithm in the reconstruction of ionospheric structures is being addressed through simulation of the equatorial ionization anomaly (EIA), in addition to its application to investigate complicated ionospheric density irregularities. Results show that the Generalized Cross Validation approach to find the regularization parameter and the corresponding solution gives a very good reconstructed image of the low-latitude ionosphere and the EIA within it. Provided that some minimum norm is fulfilled, the GSVD solution is found to be least affected by considerations, such as pixel size and number of ray paths. The method has also been used to investigate the behaviour of the mid-latitude ionosphere under magnetically quiet and disturbed conditions.

  1. Evaluation of the Demand Response Performance of Electric Water Heaters

    SciTech Connect

    Mayhorn, Ebony T.; Widder, Sarah H.; Parker, Steven A.

    2015-03-17

    The purpose of this project is to verify or refute many of the concerns raised by utilities regarding the ability of large tank HPWHs to perform DR by measuring the performance of HPWHs compared to ERWHs in providing DR services. perform DR by measuring the performance of HPWHs compared to ERWHs in providing DR services. This project was divided into three phases. Phase 1 consisted of week-long laboratory experiments designed to demonstrate technical feasibility of individual large-tank HPWHs in providing DR services compared to large-tank ERWHs. In Phase 2, the individual behaviors of the water heaters were then extrapolated tomore » a population by first calibrating readily available water heater models developed in GridLAB-D simulation software to experimental results obtained in Phase 1. These models were used to simulate a population of water heaters and generate annual load profiles to assess the impacts on system-level power and residential load curves. Such population modeling allows for the inherent and permanent load reduction accomplished by the more efficient HPWHs to be considered, in addition to the temporal DR services the water heater can provide by switching ON or OFF as needed by utilities. The economic and emissions impacts of using large-tank water heaters in DR programs are then analyzed from the utility and consumer perspective, based on National Impacts Analysis in Phase 3. Phase 1 is discussed in this report. Details on Phases 2 and 3 can be found in the companion report (Cooke et al. 2014).« less

  2. 46 CFR 61.30-5 - Preparation of thermal fluid heater for inspection and test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Preparation of thermal fluid heater for inspection and test. 61.30-5 Section 61.30-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PERIODIC TESTS AND INSPECTIONS Tests and Inspections of Fired Thermal Fluid Heaters § 61.30-5 Preparation of thermal fluid heater for...

  3. High voltage bus and auxiliary heater control system for an electric or hybrid vehicle

    DOEpatents

    Murty, Balarama Vempaty

    2000-01-01

    A control system for an electric or hybrid electric vehicle includes a vehicle system controller and a control circuit having an electric immersion heater. The heater is electrically connected to the vehicle's high voltage bus and is thermally coupled to a coolant loop containing a heater core for the vehicle's climate control system. The system controller responds to cabin heat requests from the climate control system by generating a pulse width modulated signal that is used by the control circuit to operate the heater at a duty cycle appropriate for the amount of cabin heating requested. The control system also uses the heater to dissipate excess energy produced by an auxiliary power unit and to provide electric braking when regenerative braking is not desirable and manual braking is not necessary. The control system further utilizes the heater to provide a safe discharge of a bank of energy storage capacitors following disconnection of the battery or one of the high voltage connectors used to transmit high voltage operating power to the various vehicle systems. The control circuit includes a high voltage clamping circuit that monitors the voltage on the bus and operates the heater to clamp down the bus voltage when it exceeds a pre-selected maximum voltage. The control system can also be used to phase in operation of the heater when the bus voltage exceeds a lower threshold voltage and can be used to phase out the auxiliary power unit charging and regenerative braking when the battery becomes fully charged.

  4. Ionospheric responses during equinox and solstice periods over Turkey

    NASA Astrophysics Data System (ADS)

    Karatay, Secil; Cinar, Ali; Arikan, Feza

    2017-11-01

    Ionospheric electron density is the determining variable for investigation of the spatial and temporal variations in the ionosphere. Total Electron Content (TEC) is the integral of the electron density along a ray path that indicates the total variability through the ionosphere. Global Positioning System (GPS) recordings can be utilized to estimate the TEC, thus GPS proves itself as a useful tool in monitoring the total variability of electron distribution within the ionosphere. This study focuses on the analysis of the variations of ionosphere over Turkey that can be grouped into anomalies during equinox and solstice periods using TEC estimates obtained by a regional GPS network. It is observed that noon time depletions in TEC distributions predominantly occur in winter for minimum Sun Spots Numbers (SSN) in the central regions of Turkey which also exhibit high variability due to midlatitude winter anomaly. TEC values and ionospheric variations at solstice periods demonstrate significant enhancements compared to those at equinox periods.

  5. Accelerated Life Structural Benchmark Testing for a Stirling Convertor Heater Head

    NASA Technical Reports Server (NTRS)

    Krause, David L.; Kantzos, Pete T.

    2006-01-01

    For proposed long-duration NASA Space Science missions, the Department of Energy, Lockheed Martin, Infinia Corporation, and NASA Glenn Research Center are developing a high-efficiency, 110 W Stirling Radioisotope Generator (SRG110). A structurally significant limit state for the SRG110 heater head component is creep deformation induced at high material temperature and low stress level. Conventional investigations of creep behavior adequately rely on experimental results from uniaxial creep specimens, and a wealth of creep data is available for the Inconel 718 material of construction. However, the specified atypical thin heater head material is fine-grained with a heat treatment that limits precipitate growth, and little creep property data for this microstructure is available in the literature. In addition, the geometry and loading conditions apply a multiaxial stress state on the component, far from the conditions of uniaxial testing. For these reasons, an extensive experimental investigation is ongoing to aid in accurately assessing the durability of the SRG110 heater head. This investigation supplements uniaxial creep testing with pneumatic testing of heater head-like pressure vessels at design temperature with stress levels ranging from approximately the design stress to several times that. This paper presents experimental results, post-test microstructural analyses, and conclusions for four higher-stress, accelerated life tests. Analysts are using these results to calibrate deterministic and probabilistic analytical creep models of the SRG110 heater head.

  6. A heater made from graphite composite material for potential deicing application

    NASA Technical Reports Server (NTRS)

    Hung, C. C.; Stahl, M.; Stahl, M.; Stahl, M.

    1986-01-01

    A surface heater was developed using a graphite fiber-epoxy composite as the heating element. This heater can be thin, highly electrically and thermally conductive, and can conform to an irregular surface. Therefore it may be used in an aircraft's thermal deicing system to quickly and uniformly heat the aircraft surface. One-ply of unidirectional graphite fiber-epoxy composite was laminated between two plies of fiber glass-epoxy composite, with nickel foil contacting the end portions of the composite and partly exposed beyond the composites for electrical contact. The model heater used brominated P-100 fibers from Amoco. The fiber's electrical resistivity, thermal conductivity and density were 50 micro ohms per centimeter, 270 W/m-K and 2.30 gm/cubic cm, respectively. The electricity was found to penetrate through the composite in the transverse direction to make an acceptably low foil-composite contact resistance. When conducting current, the heater temperature increase reached 50 percent of the steady state value within 20 sec. There was no overheating at the ends of the heater provided there was no water corrosion. If the foil-composite bonding failed during storage, liquid water exposure was found to oxidize the foil. Such bonding failure may be avoided if perforated nickel foil is used, so that the composite plies can bond to each other through the perforated holes and therefore lock the foil in place.

  7. Ionospheric Correction of D-InSAR Using Split-Spectrum Technique and 3D Ionosphere Model in Deformation Monitoring

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Guo, L.; Wu, J. J.; Chen, Q.; Song, S.

    2014-12-01

    In Differential Interferometric Synthetic Aperture Radar (D-InSAR) atmosphere effect including troposphere and ionosphere is one of the dominant sources of error in most interferograms, which greatly reduced the accuracy of deformation monitoring. In recent years tropospheric correction especially Zwd in InSAR data processing has ever got widely investigated and got efficiently suppressed. And thus we focused our study on ionospheric correction using two different methods, which are split-spectrum technique and Nequick model, one of the three dimensional electron density models. We processed Wenchuan ALOS PALSAR images, and compared InSAR surface deformation after ionospheric modification using the two approaches mentioned above with ground GPS subsidence observations to validate the effect of split-spectrum method and NeQuick model, further discussed the performance and feasibility of external data and InSAR itself during the study of the elimination of InSAR ionospheric effect.

  8. Process for thermal imaging scanning of a swaged heater for an anode subassembly of a hollow cathode assembly

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J. (Inventor); Verhey, Timothy R. R. (Inventor); Soulas, George C. (Inventor)

    2004-01-01

    A process for thermal imaging scanning of a swaged heater of an anode subassembly of a hollow cathode assembly, comprising scanning a swaged heater with a thermal imaging radiometer to measure a temperature distribution of the heater; raising the current in a power supply to increase the temperature of the swaged heater; and measuring the swaged heater temperature using the radiometer, whereupon the temperature distribution along the length of the heater shall be less than plus or minus 5 degrees C.

  9. The Role of Ionospheric Conductivity in the Response of the Magnetosphere and Ionosphere to Changes in the Earth's Magnetic Field

    NASA Astrophysics Data System (ADS)

    Cnossen, I.; Wiltberger, M. J.; Richmond, A. D.; Ouellette, J.

    2014-12-01

    The strength and orientation of the Earth's magnetic field play an important role in the magnetosphere-ionosphere-thermosphere system. This is demonstrated in a set of idealized experiments with the Coupled Magnetosphere-Ionosphere-Thermosphere model using a dipolar magnetic field. A decrease of the dipole moment (M) causes an increase in ionospheric conductance. This increase in conductance results in enhanced field-aligned currents (FACs), which change the shape of the magnetosphere, and causes a deviation from theoretical scaling relations of the stand-off distance, the size of the polar cap, and the cross-polar cap potential with M. The orientation of the Earth's magnetic field determines how the angle μ between the geomagnetic dipole axis and the geocentric solar magnetospheric (GSM) z-axis varies with season and universal time (UT). The angle μ can affect solar wind-magnetosphere-ionosphere coupling in two distinct ways: via variations in ionospheric conductivity over the polar caps or via a change in the coupling efficiency between the solar wind and magnetosphere as a result of changes in geometry. Simulations in which the ionospheric conductivity was either kept fixed or allowed to vary realistically demonstrated that variations in ionospheric conductance are responsible for ~10-30% of the variations in the cross-polar cap potential associated with variations in μ for southward interplanetary magnetic field (IMF). The remainder was mostly due to variations in the magnetic reconnection rate, which were associated with variations in the length of the section of the separator line along which relatively strong reconnection occurs.

  10. Development of a High Temperature Heater using an Yttria Stabilized Zirconia Cored Brick Matrix

    NASA Technical Reports Server (NTRS)

    Smith, K. W.; Decoursin, D. G.

    1971-01-01

    The Ames pilot heater is a ceramic regenerative heater that provides high temperature air for aerodynamic and combustion experiments. The development of this heater to provide a heat storage bed with temperature capability of about 4600 R is described. A bed was designed and installed having cored brick elements of yttria-stabilized zirconia. The bed dimensions were 14 inches in diameter by 10 feet high. The thermal stress limitations of the bed were studied and maximum air flow rates based upon these limits were established. A combustion reheat system was designed and installed to provide the necessary control over the bed temperature distribution. The revised heater system was successfully operated at a maximum bed temperature of 4600 R. The successful operation demonstrated that yttria-stabilized zirconia cored brick can satisfy the high temperature-long duration requirement for storage heater applications.

  11. Ionosphere/microwave beam interaction study

    NASA Technical Reports Server (NTRS)

    Gordon, W. E.; Duncan, L. M.

    1978-01-01

    The microwave beam of the Solar Power Satellite (SPS) is predicted to interact with the ionosphere producing thermal runaway up to an altitude of about 100 kilometers at a power density threshold of 12 mW/cm sq (within a factor of two). The operation of the SPS at two frequencies, 2450 and 5800 MHz, is compared. The ionosphere interaction is less at the higher frequency, but the tropospheric problem scattering from heavy rain and hail is worse at the higher frequency. Microwave signals from communication satellites were observed to scintillate, but there is some concern that the uplink pilot signal may be distorted by the SPS heated ionosphere. The microwave scintillations are only observed in the tropics in the early evenings near the equinoxes. Results indicate that large phase errors in the uplink pilot signal can be reduced.

  12. Bayesian ionospheric multi-instrument 3D tomography

    NASA Astrophysics Data System (ADS)

    Norberg, Johannes; Vierinen, Juha; Roininen, Lassi

    2017-04-01

    The tomographic reconstruction of ionospheric electron densities is an inverse problem that cannot be solved without relatively strong regularising additional information. % Especially the vertical electron density profile is determined predominantly by the regularisation. % %Often utilised regularisations in ionospheric tomography include smoothness constraints and iterative methods with initial ionospheric models. % Despite its crucial role, the regularisation is often hidden in the algorithm as a numerical procedure without physical understanding. % % The Bayesian methodology provides an interpretative approach for the problem, as the regularisation can be given in a physically meaningful and quantifiable prior probability distribution. % The prior distribution can be based on ionospheric physics, other available ionospheric measurements and their statistics. % Updating the prior with measurements results as the posterior distribution that carries all the available information combined. % From the posterior distribution, the most probable state of the ionosphere can then be solved with the corresponding probability intervals. % Altogether, the Bayesian methodology provides understanding on how strong the given regularisation is, what is the information gained with the measurements and how reliable the final result is. % In addition, the combination of different measurements and temporal development can be taken into account in a very intuitive way. However, a direct implementation of the Bayesian approach requires inversion of large covariance matrices resulting in computational infeasibility. % In the presented method, Gaussian Markov random fields are used to form a sparse matrix approximations for the covariances. % The approach makes the problem computationally feasible while retaining the probabilistic and physical interpretation. Here, the Bayesian method with Gaussian Markov random fields is applied for ionospheric 3D tomography over Northern Europe

  13. Computerized ionospheric tomography based on geosynchronous SAR

    NASA Astrophysics Data System (ADS)

    Hu, Cheng; Tian, Ye; Dong, Xichao; Wang, Rui; Long, Teng

    2017-02-01

    Computerized ionospheric tomography (CIT) based on spaceborne synthetic aperture radar (SAR) is an emerging technique to construct the three-dimensional (3-D) image of ionosphere. The current studies are all based on the Low Earth Orbit synthetic aperture radar (LEO SAR) which is limited by long repeat period and small coverage. In this paper, a novel ionospheric 3-D CIT technique based on geosynchronous SAR (GEO SAR) is put forward. First, several influences of complex atmospheric environment on GEO SAR focusing are detailedly analyzed, including background ionosphere and multiple scattering effects (induced by turbulent ionosphere), tropospheric effects, and random noises. Then the corresponding GEO SAR signal model is constructed with consideration of the temporal-variant background ionosphere within the GEO SAR long integration time (typically 100 s to 1000 s level). Concurrently, an accurate total electron content (TEC) retrieval method based on GEO SAR data is put forward through subband division in range and subaperture division in azimuth, obtaining variant TEC value with respect to the azimuth time. The processing steps of GEO SAR CIT are given and discussed. Owing to the short repeat period and large coverage area, GEO SAR CIT has potentials of covering the specific space continuously and completely and resultantly has excellent real-time performance. Finally, the TEC retrieval and GEO SAR CIT construction are performed by employing a numerical study based on the meteorological data. The feasibility and correctness of the proposed methods are verified.

  14. The Canadian High Arctic Ionospheric Network (CHAIN)

    NASA Astrophysics Data System (ADS)

    Jayachandran, P. T.; Langley, R. B.; MacDougall, J. W.; Mushini, S. C.; Pokhotelov, D.; Chadwick, R.; Kelly, T.

    2009-05-01

    Polar cap ionospheric measurements are important for the complete understanding of the various processes in the solar wind - magnetosphere - ionosphere (SW-M-I) system as well as for space weather applications. Currently the polar cap region is lacking high temporal and spatial resolution ionospheric measurements because of the orbit limitations of space-based measurements and the sparse network providing ground- based measurements. Canada has a unique advantage in remedying this shortcoming because it has the most accessible landmass in the high Arctic regions and the Canadian High Arctic Ionospheric Network (CHAIN) is designed to take advantage of Canadian geographic vantage points for a better understanding of the Sun-Earth system. CHAIN is a distributed array of ground-based radio instruments in the Canadian high Arctic. The instruments components of CHAIN are ten high data-rate Global Positioning System ionospheric scintillation and total electron content monitors and six Canadian Advanced Digital Ionosondes. Most of these instruments have been sited within the polar cap region except for two GPS reference stations at lower latitudes. This paper briefly overviews the scientific capabilities, instrument components, and deployment status of CHAIN.

  15. Ionospheric Impacts on UHF Space Surveillance

    NASA Astrophysics Data System (ADS)

    Jones, J. C.

    2017-12-01

    Earth's atmosphere contains regions of ionized plasma caused by the interaction of highly energetic solar radiation. This region of ionization is called the ionosphere and varies significantly with altitude, latitude, local solar time, season, and solar cycle. Significant ionization begins at about 100 km (E layer) with a peak in the ionization at about 300 km (F2 layer). Above the F2 layer, the atmosphere is mostly ionized but the ion and electron densities are low due to the unavailability of neutral molecules for ionization so the density decreases exponentially with height to well over 1000 km. The gradients of these variations in the ionosphere play a significant role in radio wave propagation. These gradients induce variations in the index of refraction and cause some radio waves to refract. The amount of refraction depends on the magnitude and direction of the electron density gradient and the frequency of the radio wave. The refraction is significant at HF frequencies (3-30 MHz) with decreasing effects toward the UHF (300-3000 MHz) range. UHF is commonly used for tracking of space objects in low Earth orbit (LEO). While ionospheric refraction is small for UHF frequencies, it can cause errors in range, azimuth angle, and elevation angle estimation by ground-based radars tracking space objects. These errors can cause significant errors in precise orbit determinations. For radio waves transiting the ionosphere, it is important to understand and account for these effects. Using a sophisticated radio wave propagation tool suite and an empirical ionospheric model, we calculate the errors induced by the ionosphere in a simulation of a notional space surveillance radar tracking objects in LEO. These errors are analyzed to determine daily, monthly, annual, and solar cycle trends. Corrections to surveillance radar measurements can be adapted from our simulation capability.

  16. Control and Coordination of Frequency Responsive Residential Water Heaters

    SciTech Connect

    Williams, Tess L.; Kalsi, Karanjit; Elizondo, Marcelo A.

    2016-07-31

    Demand-side frequency control can complement traditional generator controls to maintain the stability of large electric systems in the face of rising uncertainty and variability associated with renewable energy resources. This paper presents a hierarchical frequency-based load control strategy that uses a supervisor to flexibly adjust control gains that a population of end-use loads respond to in a decentralized manner to help meet the NERC BAL-003-1 frequency response standard at both the area level and interconnection level. The load model is calibrated and used to model populations of frequency-responsive water heaters in a PowerWorld simulation of the U.S. Western Interconnection (WECC).more » The proposed design is implemented and demonstrated on physical water heaters in a laboratory setting. A significant fraction of the required frequency response in the WECC could be supplied by electric water heaters alone at penetration levels of less than 15%, while contributing to NERC requirements at the interconnection and area levels.« less

  17. Can the ionosphere regulate magnetospheric convection.

    NASA Technical Reports Server (NTRS)

    Coroniti, F. V.; Kennel, C. F.

    1973-01-01

    A simple model is outlined that relates the dayside magnetopause displacement to the currents feeding the polar cap ionosphere, from which the ionospheric electric field and the flux return rate may be estimated as a function of magnetopause displacement. Then, flux conservation arguments make possible an estimate of the time scale on which convection increases.

  18. A Comparative Study of the Ionospheric TEC Measurements Using Global Ionospheric Maps of GPS, TOPEX Radar and the Bent Model

    NASA Technical Reports Server (NTRS)

    Ho, C.; Wilson, B.; Mannucci, A.; Lindqwister, U.; Yuan, D.

    1997-01-01

    Global ionospheric mapping (GIM) is a new, emerging technique for determining global ionospheric TEC (total electron content) based on measurements from a worldwide network of Global Positioning System (GPS) receivers.

  19. Ionospheric tomography using Faraday rotation of Automatic Dependent Surveillance Broadcast (UHF) signals Ionospheric Measurement From ADS-B Signals

    NASA Astrophysics Data System (ADS)

    Cushley, Alex Clay

    The proposed launch of a CubeSat carrying the first space-borne ADS-B receiver by RMCC will create a unique opportunity to study the modification of radio waves following propagation through the ionosphere as the signals propagate from the transmitting aircraft to the passive satellite receiver(s). Experimental work is described which successfully demonstrated that ADS-B data can be used to reconstruct two-dimensional electron density maps of the ionosphere using techniques from computerized tomography. Ray-tracing techniques are used to determine the characteristics of individual waves, including the wave path and the state of polarization at the satellite receiver. The modelled Faraday rotation is determined and converted to TEC along the ray-paths. The resulting TEC is used as input for CIT using ART. This study concentrated on meso-scale structures 100--1000 km in horizontal extent. The primary scientific interest of this thesis was to show the feasibility of a new method to image the ionosphere and obtain a better understanding of magneto-ionic wave propagation. Keywords: Automatic Dependent Surveillance-Broadcast (ADS-B), Faraday rotation, electromagnetic (EM) waves, radio frequency (RF) propagation, ionosphere (auroral, irregularities, instruments and techniques), electron density profile, total electron content (TEC), computer ionospheric tomography (CIT), algebraic reconstruction technique (ART).

  20. Considering the potential of IAR emissions for ionospheric sounding

    NASA Astrophysics Data System (ADS)

    Potapov, A. S.; Polyushkina, T. N.; Tsegmed, B.; Oinats, A. V.; Pashinin, A. Yu.; Edemskiy, I. K.; Mylnikova, A. A.; Ratovsky, K. G.

    2017-11-01

    Knowledge of the ionospheric state allows us to adjust the forecasts of radio wave propagation, specify the environment models, and follow the changes of space weather. At present, probing of the ionosphere is produced by radio sounding with ground ionosondes, as well as by raying signals from satellites. We want to draw attention to the possibility of the diagnosis of the ionospheric parameters by detecting ultra-low frequency (ULF) electromagnetic emission generated in the so-called ionospheric Alfvén resonator (IAR). To do this, we present observations of the IAR emission made simultaneously for the first time at three stations using identical induction magnetometers. The stations are within one-hour difference of local time, two of them are mid-latitudinal; the third one is situated in the auroral zone. We compare frequency and frequency difference between adjacent harmonics of the observed multi-band emission with ionospheric parameters measured at the stations using ionosondes and GPS-observations. Diurnal variations of the ionospheric and ULF emission characteristics are also compared. The results show that there is quite a stable correlation between the resonant frequencies of the resonator bands and the critical frequency of the F2 layer of the ionosphere, namely, the frequency of the IAR emission varies inversely as the critical frequency of the ionosphere. This is due to the fact that the frequency of oscillation captured in the resonator is primarily determined by the Alfvén velocity (which depends on the plasma density) in the ionospheric F2 layer. The correlation is high; it varies at different stations, but is observed distinctly along the whole meridian. However, coefficients of a regression equation that connects the ionosphere critical frequency with DSB frequency vary significantly from day to day at all stations. The reason for such a big spread of the regression parameters is not clear and needs further investigation before we are able to